

Lecture Notes in Computer Science 5364
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Athman Bouguettaya Ingolf Krueger
Tiziana Margaria (Eds.)

Service-Oriented
Computing –
ICSOC 2008

6th International Conference
Sydney, Australia, December 1-5, 2008
Proceedings

13

Volume Editors

Athman Bouguettaya
CSIRO ICT Centre, GPO Box 664
Canberra, ACT 2601 Australia
E-mail: athman.bouguettaya@csiro.au

Ingolf Krueger
University of California, San Diego
Dept. of Computer Science and Engineering, CSE Building
9500 Gilman Drive, La Jolla, CA 92093-0404, USA
E-mail: ikrueger@cs.ucsd.edu

Tiziana Margaria
University of Potsdam, Institute for Informatics
August-Bebel-Str. 89, 14482, Potsdam, Germany
E-mail: margaria@cs.uni-potsdam.de

Library of Congress Control Number: 2008939869

CR Subject Classification (1998): C.2, D.2, D.4, H.4, H.3, K.4.4

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-89647-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-89647-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12577101 06/3180 5 4 3 2 1 0

Preface

This volume contains the conference proceedings of ICSOC 2008, the 6th Interna-
tional Conference on Service-Oriented Computing, which took place in Sydney, Aus-
tralia, December 1–5, 2008; it comprises research, industry and demo papers. ICSOC
2008 built upon the tradition of five previous successful editions that were held in
Vienna, Austria (2007), Chicago, USA (2006), Amsterdam, The Netherlands (2005),
New York City, USA (2004) and Trento, Italy (2003). ICSOC is recognized as the
premier conference for service-oriented computing research; it covers the entire spec-
trum from theoretical and foundational results to empirical evaluations to practical and
industrial experiences. In addition, ICSOC 2008 has successfully demonstrated the
cross-disciplinary nature of service engineering by building bridges with the business
community, and by attracting contributions on service-oriented systems of systems
integration.

Service-oriented computing (SOC) has emerged as an approach to tackling the com-
plexity we face in developing, operating and maintaining Internet-scale applications of
high quality. SOC shifts the focus from monolithic systems to flexible integration of ser-
vices using novel approaches to dynamic discovery, orchestration, assembly and man-
agement, policy and governance, quality of service, and information assurance. SOC is
also a key enabler of the emerging trends towards grid and cloud computing, which play
an integral role in enabling novel applications in E-Sciences, E-Government and ultra-
large-scale software-intensive systems, to name just a few examples. This shift toward
flexible service integration also requires a deep understanding and, often, rethinking of
end-to-end systems engineering processes, including the corresponding business and
economic drivers for definition of, or changes to, enterprise architectures.

The program we assembled is reflective of the breadth and depth of the research and
applications of SOC, with contributions in the following areas:

– Business Service Modeling
– System of Systems Integration
– Service Engineering
– Service Assembly and Grid Services
– Service Management
– SOA Runtime
– Quality of Service
– Business and Economical Aspects of Services

In addition, we were honored to have four prominent players in the area of SOC
give keynote addresses at ICSOC 2008:

– “Services for Science”, by Ian Foster, Argonne National Laboratory and University
of Chicago.

– “Web Scale Computing: The Power of Infrastructure as a Service”, by Peter
Vosshall, Vice-President and Distinguished Engineer at Amazon.com.

VI Preface

– “Services in the Long tail World: Challenges and Opportunities”, by Neel
Sundaresan, Senior Director and Head at Ebay Research Labs.

– “Managing and Internet Service Bus”, by Donald F. Ferguson, Chief Architect,
Enterprise IT Management Products at CA, Inc.

ICSOC 2008 received 151 contributions in the research track, of which we accepted
32 full and 20 short papers. The Industry Track selected 6 of the 22 submissions, and
the Demonstration Committee proposed 6 Demonstration papers out of 11 submissions
for inclusion in the proceedings. The selection process was difficult because of the large
number of excellent submissions we had to choose from.

We thank the Area Coordinators for their help throughout the review process, as
well as the members of the Program Committee and their sub-referees for their efforts
in selecting the papers to be presented.

We also gratefully acknowledge the contributions of Martin Karusseit, Holger Wille-
brandt, and Zoi Choselidou in helping with the conference management system (OCS)
and the notification process. We would also like to acknowledge Hakim Hacid for his
untiring and thankless work of maintaining the ICSOC 2008 website. We would also
like to acknowledge the active and generous support of our sponsors. To all of them,
and all others who helped make ICSOC 2008 a success, we express our gratitude!

We hope you find the papers in this volume interesting and stimulating.

December 2008 Athman Bouguettaya
Tiziana Margaria

Ingolf Krueger

Organization

General Chairs

Boualem Benatallah University of New South Wales, Australia
Vincenzo d’Andrea University of Trento, Italy
Frank Leymann University of Stuttgart, Germany

Program Committee Chairs

Athman Bouguettaya CSIRO, Australia
Ingolf H. Krueger University of California, San Diego, USA
Tiziana Margaria University of Potsdam, Germany

Area Coordinators

Service Foundations

Bernhard Steffen Technical University Dortmund, Germany
Gianluigi Zavattaro University of Bologna, Italy

Business Service Modeling

Jian Yang Macquarie University, Australia

Integrating Systems of Systems Using Services

Doug Schmidt Vanderbilt University, USA

Service Engineering

Michael Huhns University of South Carolina, USA

Service Assembly

Paco Curbera IBM

Service Management

Asit Dan IBM Research, USA
Mike Papazoglou University of Tilburg, The Netherlands

SOA Runtime

Priya Narasimhan Carnegie Mellon University, USA

VIII Organization

Quality of Service

Mourad Ouzzani Purdue University, USA

Grid Services

Domenico Laforenza CNR, Italy
Uwe Schwiegelshohn TU Dortmund, Germany

Business and Economical Aspects of Services

Paul Maglio IBM Almaden, USA
Stefan Tai TU of Karlsruhe, Germany

Program Committee

Wil van der Aalst TU Eindhoven, The Netherlands
Marco Aiello University of Groningen, The Netherlands
Jörn Altmann Seoul National University, South Korea
Luciano Baresi Politecnico di Milano, Italy
Alistair Barros SAP, Australia
Salima Benbernou University of Lyon, France
Kamal Bhattacharya IBM Research, USA
Ken Birman Cornell University, USA
Laura Bocchi University of Leicester, UK
Mario Bravetti University of Bologna, Italy
Karin Breitman PUC Rio, Rio de Janeiro, Brazil
Ruth Breu University of Innsbruck, Austria
Frank van Breugel York University, Ontario, Canada
Paul Buhler College of Charleston, Charleston, USA
Tefvik Bultan UC Santa Barbara, California, USA
Christoph Bussler BEA, USA
Hong Cai IBM China Research Laboratory, China
Jorge Cardoso SAP, Germany
Manuel Carro Polytechnic University of Madrid, Spain
Fabio Casati ITC-IRST, Italy
Shiping Chen CSIRO, Australia
Siobhan Clarke Trinity College, Dublin, Ireland
Jiangbo Dang Siemens, USA
Asuman Dogac METU, Turkey
Schahram Dustdar TU Vienna, Austria
Kim Elms SAP, Germany
Chris Gill Washington University, St. Louis, Missouri, USA
Andy Gordon Microsoft Research, UK
Paul Grefen Eindhoven University of Technology, The Netherlands
Andrew Grimshaw University of Virginia, USA
Norbert Gronau University Potsdam, Germany

Organization IX

Chihab Hanachi University of Toulouse, France
Jingshan Huang University of South Carolina, USA
Richard Hull Bell Labs, USA
Dimka Karastoyanova University Stuttgart, Germany
Bettina Kemme McGill University, Canada
Bernd Kraemer Free University Hagen, Germany
Christine Legner University of St. Gallen, Switzerland
Qianhui (Althea) Liang Singapore Management University, Singapore
Chengfei Liu Swinburne University, Australia
Qing Liu CSIRO, Australia
Michael Maximilien IBM Almaden, USA
Massimo Mecella Universitá di Roma “La Sapienza”, Italy
Brahim Medjahed University of Michigan, USA
Anne Ngu Texas State University, USA
Christos Nikolaou University of Crete, Greece
Cesare Pautasso University Lugano, Switzerland
Thierry Priol INRIA, France
Wolfgang Reisig Humboldt University Berlin, Germany
Abdelmounaam Rezgui Virginia Tech, USA
Colette Rolland University Paris 1, France
Robin Russell Virginia Tech, USA
Karsten Schwan Georgia tech, USA
Quan Z. Sheng University of Adelaide, Australia
Munindar Singh NCSU, USA
Ketil Stoelen SINTEF, Norway
Jianwen Su UC Santa Barbara, California, USA
Tarja Systä Tampere University, Finland
Zahir Tari RMIT, Australia
Paolo Traverso ITC-IRST, Italy
Kunal Verma Accenture Technology Labs, USA
Von Welch NCSA, UIUC, USA
Mathias Weske University of Potsdam, Germany
John Wilkes HP, USA
Raymond Wong University of NSW, Australia
Lai Xu CSIRO, Australia
Yelena Yesha University of Maryland, USA
Qi Yu Rochester Institute of Technology, USA
Wenbing Zhao Cleveland State University, USA
Andrea Zisman City University London, UK

Reviewers

Sudhir Agarwal
Berthold Agreiter
Gunes Aluc

Vasilios Andrikopoulos
Samuil Angelov
Claudio Bartolini

X Organization

Domenico Bianculli
Martin Bichler
Aliaksandr Birukou
Marina Bitsaki
Benjamin Blau
Joanna Chimiak-Opoka
Heidi Dahl
Florian Daniel
Elie El-Khoury
Rik Eshuis
Michael Felderer
Alexander Foelling
Jorge Fox
Stefan Freitag
G.R. Gangadharan
Christian Grimme
Alexander Grosskopf
Will Jan van den Heuvel
Yi Hong
Tormod Håvaldsrud
Frank Innerhofer-Oberperfler
Yildiray Kabak
Eirini Kaldeli
Mariana Karmazi
Basel Katt
Natallia Kokash
Woralak Kongdenfha
Gokce Banu Laleci
Steffen Lamparter
Joachim Lepping
Olav Ligaarden
Sarah Löw
Zaki Malik

Michele Mancioppi
Waqar Mashwani
Mukhtiar Memon
Harald Meyer
Hamid Motahari
Tuncay Namli
Franco Maria Nardini
Anh Nguyen-Tuong
Aida Omerovic
Alexander Papaspyrou
Pantelis Petridis
Rodion Podorozhny
Alina Psycharaki
Hajo Reijers
Sebastien Saudrais
Lars Schley
Fabrizio Silvestri
Haiyang Sun
Evi Syukur
Aries T. Tao
Gabriele Tolomei
Nicola Tonellotto
Mazhar Tekin
Fulya Tuncer
Jochem Vonk
Paul de Vrieze
Matthias Weidlich
Barbara Weber
Yong Yang
Hong Qing Yu
Jian Yu
Xiaohui Zhao
Christian Zirpins

Industry Program Chairs

Christoph Bussler Merced Systems, Inc., USA
Don Ferguson Computer Associates, USA
Volkmar Lotz SAP, USA

Industry Committee

Jorge Cardoso SAP, Germany
Malu Castellanos HP Labs, USA
Richard Hull Bell Labs, USA

Organization XI

Mark Little RedHat, USA
Heiko Ludwig IBM Research, USA
Eugene M. Maximilien IBM Almaden, USA
Kunal Verma Accenture, USA
Sanjeeva Weerawarana WSO2, USA
Umit Yalcinalp SAP, USA
Michal Zaremba SeekDa, Austria

Demonstration Chairs

Malu Castellanos HP Labs, USA
Marlon Dumas University of Tartu, Estonia
Karsten Schulz SAP, Australia

Demonstration Committee

Jorge Cardoso SAP Research, Germany
Mike Carey BEA Systems, USA
Remco Dijkman Eindhoven University of Technology, The Netherlands
Schahram Dustdar Vienna University of Technology, Austria
Howard Foster Imperial College, UK
Rania Khalaf IBM TJ Watson Research Centre, USA
Peep Küngas SOA Trader, Estonia
Julien Vayssiere SAP Research, Australia
Jim Webber ThoughtWorks, UK
Andreas Wombacher EPFL, Switzerland
Olaf Zimmermann IBM Zürich Research Laboratory, Switzerland

Table of Contents

Web Scale Computing: The Power of Infrastructure as a Service 1
Peter Vosshall

Services in the Long Tail World: Challenges and Opportunities 2
Neel Sundaresan

Services for Science . 3
Ian Foster

Managing and Internet Service Bus . 4
Donald F. Ferguson

Quality-Driven Business Policy Specification and Refinement for
Service-Oriented Systems . 5

Tan Phan, Jun Han, Jean-Guy Schneider, and Kirk Wilson

Adaptation of Web Service Composition Based on Workflow Patterns . . . 22
Qiang He, Jun Yan, Hai Jin, and Yun Yang

Protocol-Based Web Service Composition . 38
Ramy Ragab Hassen, Lhouari Nourine, and Farouk Toumani

Design and Implementation of a Fault Tolerant Job Flow Manager
Using Job Flow Patterns and Recovery Policies . 54

Selim Kalayci, Onyeka Ezenwoye, Balaji Viswanathan,
Gargi Dasgupta, S. Masoud Sadjadi, and Liana Fong

Building Mashups for the Enterprise with SABRE 70
Ziyan Maraikar, Alexander Lazovik, and Farhad Arbab

Adaptation of Service Protocols Using Process Algebra and On-the-Fly
Reduction Techniques . 84

Radu Mateescu, Pascal Poizat, and Gwen Salaün

Automatic Workflow Graph Refactoring and Completion 100
Jussi Vanhatalo, Hagen Völzer, Frank Leymann, and Simon Moser

Authorization and User Failure Resiliency for WS-BPEL Business
Processes . 116

Federica Paci, Rodolfo Ferrini, Yuqing Sun, and Elisa Bertino

Reasoning on Semantically Annotated Processes . 132
Chiara Di Francescomarino, Chiara Ghidini, Marco Rospocher,
Luciano Serafini, and Paolo Tonella

XIV Table of Contents

Event-Driven Quality of Service Prediction . 147
Liangzhao Zeng, Christoph Lingenfelder, Hui Lei, and Henry Chang

Automatic Realization of SOA Deployment Patterns in Distributed
Environments . 162

William Arnold, Tamar Eilam, Michael Kalantar,
Alexander V. Konstantinou, and Alexander A. Totok

The LLAMA Middleware Support for Accountable Service-Oriented
Architecture . 180

Mark Panahi, Kwei-Jay Lin, Yue Zhang, Soo-Ho Chang,
Jing Zhang, and Leonardo Varela

ubiSOAP: A Service Oriented Middleware for Seamless Networking 195
Mauro Caporuscio, Pierre-Guillaume Raverdy,
Hassine Moungla, and Valerie Issarny

Towards a Service-Oriented Approach for Managing Context in Mobile
Environment . 210

Waskitho Wibisono, Arkady Zaslavsky, and Sea Ling

An Autonomic Middleware Solution for Coordinating Multiple QoS
Controls . 225

Yan Liu, Min’an Tan, Ian Gorton, and Andrew John Clayphan

Transparent Runtime Adaptability for BPEL Processes 241
Adina Mosincat and Walter Binder

Organizational Constraints to Realizing Business Value from Service
Oriented Architectures: An Empirical Study of Financial Service
Institutions . 256

Haresh Luthria and Fethi Rabhi

E-Marketplace for Semantic Web Services . 271
Witold Abramowicz, Konstanty Haniewicz, Monika Kaczmarek, and
Dominik Zyskowski

Business Driven SOA Customization . 286
Pietro Mazzoleni and Biplav Srivastava

Sound Multi-party Business Protocols for Service Networks 302
Michele Mancioppi, Manuel Carro,
Willem-Jan van den Heuvel, and Mike P. Papazoglou

Automatic Mash Up of Composite Applications . 317
Michael Pierre Carlson, Anne H.H. Ngu, Rodion Podorozhny, and
Liangzhao Zeng

Table of Contents XV

Non-desynchronizable Service Choreographies . 331
Gero Decker, Alistair Barros, Frank Michael Kraft, and
Niels Lohmann

A Framework for Semantic Sensor Network Services 347
Lily Li and Kerry Taylor

Context-Driven Autonomic Adaptation of SLA . 362
Caroline Herssens, Stéphane Faulkner, and Ivan J. Jureta

Determining QoS of WS-BPEL Compositions . 378
Debdoot Mukherjee, Pankaj Jalote, and Mangala Gowri Nanda

An Initial Approach to Explaining SLA Inconsistencies 394
Carlos Müller, Antonio Ruiz-Cortés, and Manuel Resinas

Ontology-Based Compatibility Checking for Web Service Configuration
Management . 407

Qianhui Liang and Michael N. Huhns

SOAlive Service Catalog: A Simplified Approach to Describing,
Discovering and Composing Situational Enterprise Services 422

Ignacio Silva-Lepe, Revathi Subramanian, Isabelle Rouvellou,
Thomas Mikalsen, Judah Diament, and Arun Iyengar

WorldTravel: A Testbed for Service-Oriented Applications 438
Peter Budny, Srihari Govindharaj, and Karsten Schwan

TCP-Compose� – A TCP-Net Based Algorithm for Efficient Composition
of Web Services Using Qualitative Preferences . 453

Ganesh Ram Santhanam, Samik Basu, and Vasant Honavar

A Runtime Quality Architecture for Service-Oriented Systems 468
Daniel Robinson and Gerald Kotonya

QoS Policies for Business Processes in Service Oriented Architectures . . . 483
Fabien Baligand, Nicolas Rivierre, and Thomas Ledoux

Deriving Business Service Interfaces in Windows Workflow from UMM
Transactions . 498

Marco Zapletal

From Business Process Models to Web Services Orchestration: The
Case of UML 2.0 Activity Diagram to BPEL . 505

Man Zhang and Zhenhua Duan

Batch Invocation of Web Services in BPEL Process 511
Liang Bao, Ping Chen, Xiang Zhang, Sheng Chen,
Shengming Hu, and Yang Yang

XVI Table of Contents

Formation of Service Value Networks for Decentralized Service
Provisioning . 517

Sebastian Speiser, Benjamin Blau, Steffen Lamparter, and Stefan Tai

Towards Automated WSDL-Based Testing of Web Services 524
Cesare Bartolini, Antonia Bertolino, Eda Marchetti, and
Andrea Polini

Automated Service Composition with Adaptive Planning 530
Sandrine Beauche and Pascal Poizat

A Planning-Based Approach for the Automated Configuration of the
Enterprise Service Bus . 538

Zhen Liu, Anand Ranganathan, and Anton Riabov

Verifying Interaction Protocol Compliance of Service Orchestrations 545
Andreas Schroeder and Philip Mayer

Specify Once Test Everywhere: Analyzing Invariants to Augment
Service Descriptions for Automated Test Generation 551

Amit Paradkar and Avik Sinha

A Model-Driven Approach to Dynamic and Adaptive Service Brokering
Using Modes . 558

Howard Foster, Arun Mukhija, David S. Rosenblum, and
Sebastian Uchitel

Integrated Security Context Management of Web Components and
Services in Federated Identity Environments . 565

Apurva Kumar

Predicting and Learning Executability of Composite Web Services 572
Masahiro Tanaka and Toru Ishida

Authorization Policy Based Business Collaboration Reliability
Verification . 579

Haiyang Sun, Xin Wang, Jian Yang, and Yanchun Zhang

VGC: Generating Valid Global Communication Models of Composite
Services Using Temporal Reasoning . 585

Nalaka Gooneratne, Zahir Tari, and James Harland

A Framework for Advanced Modularization and Data Flow in Workflow
Systems . 592

Niels Joncheere, Dirk Deridder, Ragnhild Van Der Straeten, and
Viviane Jonckers

Model Identification for Energy-Aware Management of Web Service
Systems . 599

Mara Tanelli, Danilo Ardagna, Marco Lovera, and Li Zhang

Table of Contents XVII

LASS – License Aware Service Selection: Methodology and
Framework . 607

G.R. Gangadharan, Marco Comerio, Hong-Linh Truong,
Vincenzo D’Andrea, Flavio De Paoli, and Schahram Dustdar

Integrated and Composable Supervision of BPEL Processes 614
Luciano Baresi, Sam Guinea, and Liliana Pasquale

Optimised Semantic Reasoning for Pervasive Service Discovery 620
Luke Steller and Shonali Krishnaswamy

COSMA – An Approach for Managing SLAs in Composite Services 626
André Ludwig and Bogdan Franczyk

Resource Calculations with Constraints, and Placement of Tenants and
Instances for Multi-tenant SaaS Applications . 633

Thomas Kwok and Ajay Mohindra

SPIN: Service Performance Isolation Infrastructure in Multi-tenancy
Environment . 649

Xin Hui Li, Tian Cheng Liu, Ying Li, and Ying Chen

Management as a Service for IT Service Management 664
Bo Yang, Hao Wang, and Ying Chen

SMART: Application of a Method for Migration of Legacy Systems to
SOA Environments . 678

Sriram Balasubramaniam, Grace A. Lewis, Ed Morris,
Soumya Simanta, and Dennis Smith

Discovering and Deriving Service Variants from Business Process
Specifications . 691

Karthikeyan Ponnalagu and Nanjangud C. Narendra

Market Overview of Enterprise Mashup Tools . 708
Volker Hoyer and Marco Fischer

Siena: From PowerPoint to Web App in 5 Minutes 722
David Cohn, Pankaj Dhoolia, Fenno Heath III, Florian Pinel, and
John Vergo

Exploration of Discovered Process Views in Process Spaceship 724
Hamid R. Motahari Nezhad, Boualem Benatalah, Fabio Casati,
Regis Saint-Paul, Periklis Andristsos, and Adnene Guabtni

ROME4EU: A Web Service-Based Process-Aware System for Smart
Devices . 726

Daniele Battista, Massimiliano de Leoni, Alessio De Gaetanis,
Massimo Mecella, Alessandro Pezzullo, Alessandro Russo, and
Costantino Saponaro

XVIII Table of Contents

WS-Engineer 2008: A Service Architecture, Behaviour and Deployment
Verification Platform . 728

Howard Foster

MetaCDN: Harnessing Storage Clouds for High Performance Content
Delivery . 730

James Broberg and Zahir Tari

Yowie: Information Extraction in a Service Enabled World 732
Marek Kowalkiewicz and Konrad Jünemann

Author Index . 735

Web Scale Computing: The Power of
Infrastructure as a Service

Peter Vosshall

Amazon VP and Distinguished Engineer
vosshall@amazon.com

Abstract. Building the right infrastructure that can scale up or down
at a moment’s notice can be a complicated and expensive task, but it’s
essential in today’s competitive landscape. This applies to an enterprise
trying to cut costs, a young business unexpectedly saturated with cus-
tomer demand, or a research lab wanting to test at scale. There are
many challenges when building a reliable, flexible architecture that can
manage unpredictable behaviors of today’s Internet business. This pre-
sentation will outline some of the lessons learned from building one of the
world’s largest distributed systems, Amazon.com, and the evolution that
gave rise to Amazon reselling its infrastructure in the form of Amazon
Web Services, allowing anyone to leverage the same robust, scalable, and
reliable technology that powers Amazon’s business.

A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, p. 1, 2008.
c© 2008 Amazon.com, Inc. All Rights Reserved

Services in the Long Tail World: Challenges and
Opportunities

Neel Sundaresan

Sr. Director and Head, eBay Research Labs
nsundaresan@ebay.com

Abstract. This talk will focus on Internet based systems that are pri-
marily participatory in nature. In such systems, we need to think beyond
infrastructure, data,and algorithms. While these entities are well under-
stood from the service architecture point of view, the demands of partic-
ipatory systems are different. In a massive-scale system like eBay thats
highly participatory in nature, user roles, actions and interactions affect
and influence how the system functions and scales. While applications
and platforms as service are well understood in the current, evolution
through participation mandates the need for additional service orienta-
tions. For instance, interface as a service through programmable imple-
mentations or user experience as a service through programmable visual
elements and interactions can be easily perceived. Machines and machine
algorithms will take us part of the way but making them scalable and
adaptable to change is a challenge. We need to talk about augmented
intelligence where machine power coexists with and is complemented by
human intelligence. Designing scalable services and applications in this
dynamic context pose interesting challenges and new opportunities. This
ltalk will focus on the unique nature of this long tail world.

A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, p. 2, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Services for Science

Ian Foster

Computation Institute
Argonne National Laboratory

& University of Chicago
foster@mcs.anl.gov

Abstract. Computational approaches to problem solving have proven
their worth in many fields of science, allowing the collection and analysis
of unprecedented quantities of data and the exploration via simulation
of previously obscure phenomena. We now face the challenge of scaling
the impact of these approaches from the specialist to entire communities.
I speak here about work that seeks to address this goal by rethinking
science’s information technology foundations in terms of service-oriented
architecture. In principle, service-oriented approaches can have a trans-
formative effect on scientific communities, allowing tools formerly acces-
sible only to the specialist to be made available to all, and permitting
previously manual data-processing and analysis tasks to be automated.
However, while the potential of such “service-oriented science” has been
demonstrated, its routine application across many disciplines raises chal-
lenging technical problems. One important requirement is to achieve a
separation of concerns between discipline-specific content and domain-
independent infrastructure, so that new services can be developed quickly
and existing services can respond effectively to time-varying load. An-
other key requirement is to streamline the formation and evolution of
the “virtual organizations” that create and access content. I describe the
architectural principles, software, and deployments that I am and my
colleagues have produced as we tackle these problems, and point to fu-
ture technical challenges and scientific opportunities. I illustrate my talk
with examples from astronomy and biomedicine.

A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, p. 3, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Managing and Internet Service Bus

Donald F. Ferguson

Chief Architect, Enterprise IT Management Products
CA, Inc.

donald.ferguson@ca.com

Abstract. SOA and Web services have profoundly changed enterprise
and commercial applications. BPEL, dynamic binding via service regis-
tries and repositories, alignment of grid computing with Web service stan-
dards, and a common approach to SOA and event driven architectures are
examples of technologies that enable a new approach to applications and
solutions. Many papers and talks have explained these technologies and
their benefits. Systems and application management using Web services
is a growing area that builds on these technologies. There are many ben-
efits to a common SOA/Web service approach to modeling, developing,
deploying, managing and optimizing SW solutions. This presentation ex-
plains the benefits.

Several significant intellectual challenges hinder realizing the promise
of a SOA/Web service approach to systems and application manage-
ment. One of the most important is “managing from a business service
perspective.” Business professionals have a completely different defini-
tion of “service” from technical professionals. Enterprises think in terms
of IT realization of “business services,” for example online banking or
shipped package tracking. The business services are an interacting fabric
of SOA services, and in many cases the enterprise does not fully un-
derstand which services interact in a business solution or to process a
request. Many elements in the business service are not SOA services, for
example databases, directories, file servers, etc.

This talk provides a deeper explanation of the business problem and
challenges. The talk also explains the state of the art for solving some of
the challenges. Finally, the talk concludes with suggestions for research
and projects.

A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, p. 4, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Quality-Driven Business Policy Specification and
Refinement for Service-Oriented Systems

Tan Phan1, Jun Han1, Jean-Guy Schneider1, and Kirk Wilson2

1 Faculty of Information & Communication Technologies
Swinburne University of Technology

P.O. Box 218 Hawthorn, VIC 3122, Australia
{tphan,jhan,jschneider}@swin.edu.au

2 CA Labs
One CA Plaza, Islandia, NY 11749, USA

{Kirk.Wilson@ca.com}

Abstract. Enterprise software systems play an essential role in an organization’s
business operation. Many business rules and regulations governing an organi-
zation’s operation can be translated into quality requirements of the relevant
software systems, such as security, availability, and manageability. For systems
implemented using Web Services, the specification and management of these
qualities in the form of Web Service policies are often complicated and difficult
to be aligned with the initial business requirements. In this paper, we introduce
the HOPE (High-Level Objective-based Policy for Enterprises) framework that
supports, in a systematic manner, the specification of quality-oriented policies at
the business level and their refinement into policies at the system/service level.
Quality-oriented business requirements are expressed in HOPE as quality objec-
tives applied to business entities and further refined or translated into system-level
WS-Policy statements. The refinement relies on an application-specific business
entity model and application-independent domain quality models. We demon-
strate the approach with a case study involving policy specification and refine-
ment in the security domain.

1 Introduction

Business rules, government acts such as Sarbanes-Oxley [1], industry standards such
as Basel II [2], and enterprise-specific rules mandate non-functional or quality require-
ments of the various entities in an organization’s IT environment. These requirements
can often be formulated as high-level quality objectives (e.g., Customer data must be
kept confidential) and realized using various means for IT management and governance.

In recent years, Service-Oriented Architectures (SOA) and Web Services (WS) have
offered a new way of implementing enterprise business processes. Core business func-
tionalities are codified as network-accessible Web Services and enterprise software sys-
tems become live networks of interconnected services. To ensure that WS-based SOA
systems are reliable and interoperable, various industry standards have been proposed
to support the specification and management of quality aspects, most notably security,
reliable messaging, and transactions [3]. In general, these standards are about system-
level mechanisms to achieve some non-functional qualities. Example mechanisms in

A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, pp. 5–21, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

6 T. Phan et al.

security or distributed transaction coordination are role-based access control, message
encryption and signing, and content-based routing. The Web Services Policy Frame-
work (WS-Policy) [4] is a standard that supports the specification of various quality
properties for Web Services and service systems.

One of the issues that needs to be addressed is how to align the high-level and of-
ten business-oriented quality objectives with the system-level realization mechanisms
offered by the WS standards. Currently, the quality objectives are often identified by
practitioners who are either business analysts or IT compliance officers (hereafter re-
ferred to as policy experts). They have a good understanding of the business domain and
regulations, and have a high-level understanding of the IT systems in general. However,
policy experts are typically not SOA experts and often do not have an in-depth un-
derstanding of all the system-level realization mechanisms used to achieve the quality
objectives. They view IT systems more from a business perspective and their concerns
are to identify the quality objectives rather than how they can be realized. It is the sys-
tem developers’ responsibility to implement the quality objectives in the corresponding
IT systems. The underlying processes are generally ad-hoc and, therefore, it is difficult
to ensure that a system fully implements all required quality objectives. As such, a con-
tribution of great value would be a systematic process and related techniques that can
derive the system-level realization from the business-level requirements and can verify
that the realization actually fulfills these requirements.

In this work, we address the issue of aligning business-oriented quality objectives
with system-level WS quality properties by introducing the HOPE (High-level Objective-
based Policies for Enterprises) framework. HOPE assists policy experts in specifying
business policies and quality objectives and, by utilizing realization mechanisms avail-
able in the respective quality domains, refines them into system-level WS-Policy state-
ments that prescribe quality properties for service-based enterprise software systems.
This paper starts with a business case study as a motivating example. It then introduces
the HOPE framework and the mechanisms for policy refinement, illustrated using se-
lected examples from the case study. A prototyping tool for HOPE is also presented. The
paper concludes with a summary of the main contributions and future work.

2 A Motivating Example

In this section, we introduce an example business process and identify applicable rules
and regulations. A set of quality-oriented business policies is then derived from the rules
and regulations. We discuss the limitations of current approaches with regards to spec-
ifying and realizing such policies, motivating our approach of the HOPE framework.

2.1 Business Case: The Mortgage Loan Approval Business Process

When a customer applies for a mortgage loan product at a hypothetical multi-national
bank SwinBank, a LoanOfficier accepts the application and triggers the bank’s loan
approval business process. First, the bank arranges a professional appraiser to estimate
the market value of the collateral property. Next, the customer’s ID/social security num-
ber is forwarded to a credit checking unit to verify the customer’s credit history. A list

Quality-Driven Business Policy Specification 7

Fig. 1. The Mortgage Loan Approval business process

of credit scores from multiple credit rating agencies is then obtained. Finally, the repay-
ment capacity of the customer is checked by judging the income against the amount to
be repaid. Based on this information, an approval decision for the loan is made.

2.2 MortgageLoan: The Mortgage Loan Approval Application

SwinBank automates its mortgage loan approval process using SOA. The process is
implemented in BPEL utilizing a number of services (depicted in Figure 1).

The service CustomerProfileManager provides customer account information
whereas CollateralPropertyAnalyser calculates the value of a given property.
The CreditRating service, acting as a gateway to other credit rating agencies’ WS,
forwards the customer’s social security number to the agencies and obtains the cus-
tomer’s credit history report. The service RepaymentCapacityAnalyser checks the
customer’s repayment capacity based on his/her income and the amount of loan to be
repaid, taking into account interest rate, inflation, and other factors. Finally, the service
LoanApprover takes the output of the previous three services and makes a decision,
with human input, as to whether the loan is approved or not.

2.3 Rules, Regulations and SwinBank Business Policies

The discussion of the mortgage loan approval business process and system forSwinBank
has primarily focused on the business and application functionality. In reality, this busi-
ness process is also subject to many rules and regulations that may be general or specific
to the Banking Industry. The following are some of the relevant acts:

8 T. Phan et al.

1. Bank Secrecy Act of 1970 [5]: Any information disclosed by the applicants, any
temporary data collected during the approval process, and any final decision need
to be persistently stored and traceable.

2. Australian Privacy Act 1988 [6]: Information related to loan applicants’ credit
information, customer identifier information must be available to only authorized
personnel and not disclosed to the public.

By analyzing the rules and regulations, policy and compliance experts can identify
the business policies applicable to the loan approval process and system. In general,
business policies can be functional or non-functional (i.e. system’s qualities). In this
paper, we focus on the latter. The following are some of the non-functional quality-
oriented business policies for the loan approval process and system:

(BP1): Loan application data must be persistently stored.
(BP2): Information about customers’ personal identifications and financial records

must be kept secure during transmission.
(BP3): All activities related to loan processing must be recorded.
(BP4): Loan applicants must not be able to repudiate the lodgment of a loan and the

bank must not be able to repudiate the receipt of a loan application.
(BP5): People working with customer information must be authorized.

These business policies require MortgageLoan to have the corresponding quality prop-
erties related to the privacy and security of data and loan processing activities.

2.4 Realization of Quality-Oriented Business Policies

In SOA development, system requirements (functional and non-functional) are gener-
ally realized through services and the WS policies applicable to these services (at the
assembly or deployment phase) [7]. The fact that some system requirements are realized
through policies increases the flexibility and agility of the system. For example, WS
policies can be updated to realize certain system changes without modifying the ser-
vices’ implementation. As the WS-Policy framework is predicated on WS interactions,
only requirements that concern WS interactions can be realized through Web Service
policies. Other requirements have to be realized in the services themselves. In this pa-
per, we focus on quality-oriented non-functional requirements or business policies, and
in particular those that can be realized through WS policies at the system-level (cf. Fig-
ure 2). For example, the requirement in BP1 cannot be fully realized by the WS quality
model and, therefore, needs to be realized programmatically or using other means (such
as database transaction management).

In current SOA practice (cf. Figure 2(a)), it is the system developers’ responsibility
to realize the quality-oriented business policies in terms of WS policies. This process is
generally ad-hoc and there is no easy way to ensure that all the relevant business-level
policies are properly interpreted and implemented by the developers, who have gener-
ally limited understanding of the rules and regulations [7]. Furthermore, this process is
often very tedious as well as error-prone.

To alleviate this problem, we have developed the HOPE framework with the aim to
automate the process of refining high-level business policies into system-level quality

Quality-Driven Business Policy Specification 9

Fig. 2. Current SOA development (a) and the HOPE approach (b)

properties (cf. Figure 2). In particular, we introduced the concept of quality objectives to
model non-functional business requirements in the form of required qualities applicable
to the various entities in a system’s design models. These quality objectives are then
refined into WS policies applicable to the service-based system.

3 The HOPE Framework

HOPE is a framework for specifying high-level, quality-oriented business policies and
refining them into system-level Web Services policies for Web Services-based enter-
prise software systems in a systematic manner. HOPE is built on a number of underlying
models as illustrated in Figure 3.

The quality models are domain-specific and identify, for a given domain (e.g., secu-
rity), the relevant quality attributes and the mechanisms to realize them. The application
entity model provides a layered hierarchy of business-oriented entities involved in the
application, and can be extracted from the application’s design models. The business
concepts in this entity model are used to specify the quality objectives for the system
and to annotate the system’s WS elements (portTypes, operations, messages etc.). Based
on the quality models and the WS annotations, HOPE refines and translates the high-
level quality objectives into system-level policy statements asserting WS properties.
The remainder of this section discusses these models in more detail.

3.1 Domain Quality Models

For each quality domain a quality model defines the set of quality attributes concern-
ing the domain and the realization mechanisms for these attributes. The quality model
itself is application-independent and is often derived from standards, ontologies, pat-
terns, and best practices, respectively, and the system-level WS quality specification
WS-*, where * denotes the quality domain name for that domain. We have chosen

10 T. Phan et al.

Fig. 3. The HOPE framework

XML Schema as a means to specify quality models and defined a corresponding qual-
ity meta-model each quality model must adhere to. In the following, we will further
illustrate this approach using the security domain as an example.

The Quality Meta-Model and the Security Quality Model. The quality meta-model
provides a formal structure to specify the entities of each quality domain. Throughout
the remainder of this section, we will use a simplified security quality model based
on [7,8,9,10,11] for illustration purposes (cf. Figure 4). We expect that other domain
quality models can be expressed using the same set of notations and structure as defined
in the security meta-model.

• Quality. a quality attribute or quality, q, specifies a desired quality aspect. In the se-
curity domain, the common quality attributes are confidentiality (preventing unau-
thorized access to sensitive data), integrity (preventing unauthorized modification
of the data), non-repudiation (preventing a message sender from repudiating the
fact that it was him who sent the message and a message receiver from repudiating
the fact that it was him who received the message), authentication (proving the au-
thenticity of a user), authorization (proving that the user is in the role he claims),
and audit (making sure that actions are recorded and traceable).

• Quality realization mechanism. a quality realization mechanism defines how a
quality q can be realized. It is a logical structure in disjunctive normal form (OR of
ANDs) of abstract quality functions. For example, according to [12,13], (i) confi-
dentiality can be realized by encrypting data that needs to be protected, (ii) integrity
can be realized by signing the data, and (iii) non-repudiation of a message can be
realized by logging the sending and receiving actions and signing the message.

• Quality function. a quality function specifies a measure that can be used to achieve
one or more qualities. A quality function f is specified in the form f(fb) where fb
denotes the function binding (defined below) for that function. If fb is left empty,
the function is called an abstract function, only specifying what needs to be done.

Quality-Driven Business Policy Specification 11

Fig. 4. The partial security meta-model

If fb is defined, the function is called a concrete function. For example, some of
the common abstract security functions as defined in [12,13] are encrypt, sign, log,
includeUsernameToken, and includeUserRoleToken.

• Function Binding Mechanism1. a function binding mechanism represents a method
of realizing a quality function based on a type of quality infrastructure. A quality do-
main typically has a limited set of alternatives for realizing a given quality function.
For example, security functions such as encrypt or sign have the three binding mech-
anisms (i) transport (using transport security such as HTTPS), (ii) symmetric (using
a shared key), and (iii) asymmetric (using a pair of public and private keys).

• Binding Property Set. a binding property set {(p1, v1), . . . , (pn, vn)} contains
name-value pairs where pi is the name of a property and vi the corresponding value.
Example security binding properties are AlgorithmSuite=SHA1, indicating that
the SHA1 algorithm suite is used, and SignatureProtection=TRUE, indicating
that both the signature and the signature confirmation elements must be encrypted.

• Function Binding Tree. a function binding tree is formed by detailing abstract
functions with binding information. The root of a binding tree is the abstract func-
tion itself containing empty binding information. The direct children of the root
node contain the function’s binding mechanisms. Child-nodes of the binding mech-
anism nodes are leaf nodes containing all possible values of available binding
properties for that mechanism. Furthermore, function binding trees can be assigned
priorities for particular binding mechanisms and/or properties. For the security
function encrypt, the binding tree is formed by having a root node being the abstract
encrypt function, the direct children of the root nodes are the binding mechanisms
transport, symmetric, and asymmetric, and the sub-nodes contain detailed binding
properties for each of the binding mechanism (e.g., Algorithm=SHA1).

Binding trees can potentially become quite large as the number of possible branches
is defined as the Cartesian product of all available binding mechanisms and all
applicable binding property values. However, an organization often follows a certain

12 T. Phan et al.

security profile which has a limited number of predefined binding options. For exam-
ple, the Basic Security Profile, Version 1.0 [14] mandates the use of message level
mechanisms and places some constraints on values of certain binding properties (e.g.,
SHA1-based algorithms must be used for interoperability purposes).

System-Level Web Services Quality Models. At the system-level, qualities are ap-
plied to Web Services in the form of WS-Policy statements. The WS Policy frame-
work (WS-Policy) allows the specification of qualities and their realization details
for WS. For each quality domain, there is a WS-*Policy standard, such as the WS-
SecurityPolicy [15] for security, that allows for the specification of the qualities and
their realization details in that domain. WS-Policy is extensible and specifications for
new quality domains can be defined and included in the framework. It is aimed at defin-
ing non-functional properties that govern service-service or service-client interactions,
but not the implementation details of the services themselves. However, there are qual-
ities that cannot be supported by the WS quality model, e.g. durability for persisting
data. Therefore, when defining a quality model, the system-level WS quality model for
that domain is taken into consideration in order to filter out the qualities, functions,
mechanisms or properties that are not supported by the system-level model.

3.2 The Application Entity Model

An application’s entity model defines application-specific business concepts. Policy ex-
perts work with this model and apply policies on the entities in the model in the form
of quality objective requirements. In general, such a model is extracted from an ap-
plication’s analysis and design models (e.g., ER or UML diagrams) made available by
business analysts or system architects during system analysis. In HOPE, a Business-
Entity represents a business-oriented concept from the application and can be classified
into one of the following basic entity types:

• Processor: performs business logic at request (e.g., LoanProcessor),
• DataItem: holds business data (e.g., CustomerTaxFileNumber), and
• UserRole: represents user roles in an organization, has access to DataItems, and

can ask Processors to perform actions (e.g., LoanOfficier).

In a HOPE entity model, each entity is a direct or indirect specialization of one of the
three basic entity types. Although an entity in a given application can be the specializa-
tion of more than (super-)entity, it can only be the (direct or indirect) specialization of
one of the basic entity types. For example, an entity cannot be a specialization of both,
DataItem and Processor, respectively. Using this approach, applications can be viewed
as compositions of interacting entities.

A HOPE entity model can be represented as a directed graph of entities: a node cor-
responds to an entity and a (directed) edge represents an entity specialization. Figure 5
represents part of the entity model for the motivating example MortgageEntityModel
introduced in Section 2. The entities CustomerData and PersonalIdentifier and
their specializationsLoanApplicationData,LoanApplicantCreditHistory, and
LoanApplicantTaxFileNumberare specializations of the basic entity type DataItem,
LoanProcessor and CreditVerifier are specializations of Processor, and finally
LoanOfficier and Teller are specializations of the basic entity type UserRole.

Quality-Driven Business Policy Specification 13

Fig. 5. Example MortgageEntityModel

Fig. 6. Example Web Services and entity model mapping using WSDL-S

Annotating Services and Messages. Once the high-level entity model is defined, the
Web Services elements portTypes, operations, and messages of an application’s imple-
mentation need to be mapped to the high-level business concepts defined in the model
in order to perform policy refinement. The mapping is done via annotations using the
WS Semantic (WSDL-S) framework (chosen for its simplicity and tool support) [16].

Figure 6 shows an example of mapping Web Service elements to concepts of the
application entity model using WSDL-S for MortageLoan. The WSDL-S annotations
wssem:modelReference are used to map Web Service messages such as loanAppli-
cationRequest and message parts such as CustomerID and TaxFileNumber (rep-
resented in the WSDL description of the service) to specializations of DataItem. In a
similar manner, portTypes such as processLoanApplicationPortType and opera-
tions such as acceptApplication are mapped to the corresponding specializations of
Processor. Any service client that uses these services is also annotated with UserRole
information, indicating which user role constraints this client has to adhere to.

3.3 Quality Objectives and Policies

A central concept in HOPE is the quality objective. A quality objective, denoted by
q[e], specifies the application of the quality q on the business entity type e, meaning that

14 T. Phan et al.

Table 1. Business policies and corresponding quality objectives

Business Policy Quality Objectives
BP2 (“Information about customers’ . . . secure during transmission”,

confidentiality[LoanApplicantTaxFileNumber],
confidentiality[LoanApplicantCreditHistory],
integrity[LoanApplicantTaxFileNumber],
integrity[LoanApplicantCreditHistory])

BP3 (“All activities related to loan processing must be recorded”,
audit[LoanApplicationData],
audit[LoanApplicantCreditHistory],
audit[LoanApplicantCreditResult]

BP4 (“Loan applicants must not be able . . . of a loan application”,
non-repudiation[LoanApplicationData])

BP5 (“People working with customer. . . must be authorized ”,
authorization[LoanOfficier])

quality q must hold on all entities of type of e and all of its specializations. Furthermore,
a policy is defined as a n-tuple p(t, q1[e]1, . . ., qn−1[en−1]) where t is the textual
representation in natural language of the business policy requirement, qi[ei] is a quality
objective and {q1[e]1, . . ., qn−1[en−1]} is the set of quality objectives meeting the
requirements specified by the policy. This information is made available to the policy
experts when they apply a quality onto an entity.

Some qualities can only be applied to certain types of entities. For example, manage-
ability qualities like notifiability, controllability, or introspectability can only be applied
to specializations of Processor. In the security domain, confidentiality, integrity, and
non-repudiation can only be applied to specializations of DataItems whilst authentica-
tion and authorization are only applicable to specializations of UserRoles.

The example business policies specified in Section 2 can be decomposed into quality
objectives as given in Table 1. As mentioned before, BP1 cannot be supported by HOPE.
Apart from that, quality objectives of the other four policies can be refined into WS-
SecurityPolicy assertions, based on the security quality model and the annotated Web
Service descriptions (cf. Section 4).

4 Generating WS-Policy Assertions

The refinement of a quality objective into WS-Policy Assertions involves two major
steps: (i) the quality objective is realised in terms of concrete quality functions, according
to the quality model and (ii) the concrete quality functions are mapped to corresponding
WS-Policy statements for that domain. The statements are applied on the relevant WS
that will be manifested when the services operate at runtime. In this process, mapping
information available in WS annotations is used to identify the relevant WS elements
that correspond to the business entities in the original quality objectives.

Each quality domain has its own way of generating WS-*Policy statements from the
domain’s concrete functions. We will discuss the methods for generating WS-Security-
Policy assertions from concrete security functions throughout the rest of this section.

Quality-Driven Business Policy Specification 15

The current version of the WS-SecurityPolicy [15] specification defines different
types of assertions for specifying the mechanisms of applying security measures on
SOAP messages. There are basically three types of assertion relevant to our mechanism:
(i) protection assertions, (ii) token assertions, and (iii) binding assertions.

4.1 Mapping an Abstract Functions to WS-Security Assertions

Security Functions for DataItems: The WS-SecurityPolicy protection assertions, spec-
ifying what security measures need to be applied on which parts of SOAP messages, can
be used to describe security functions for DataItems such as encryp or sign. For a security
function functionX to be applied on the entity DataItemX which, via annotation, is
known to be carried by a collection of <Message1, . . ., MessageN>, the corresponding
WS-SecurityPolicy protection assertion for the function functionX is

<functionXAssertion>
<Xpath>Message1 </Xpath>
. . .
<Xpath>MessageN </Xpath>

</functionXAssertion>

where <Xpath>Messagei</Xpath> is the path pointing to the message or message
part relative to the SOAP document, and the mapping between functionX and its
assertion is as follows:

Quality Realization Functions WS-SecurityPolicy assertions
Integrity encrypt SignedElements

Confidentiality sign EncryptedElements

Non-
repudiation

encrypt AND log EncryptedElements

//Log assertion has not been defined

Security function for Processors and UserRoles: The focus of WS-Security and,
therefore, WS-SecurityPolicy, is not to protect UserRoles and Processors. However,
existing mechanisms can be leveraged to support the realization of authentication and
authorization by using token assertions as follows:

Quality Realization Functions WS-SecurityPolicy assertions
Authentication IncludeUsernameToken():

Attach a username token in
messages originated from
the user.

<wsse:SecurityToken

wsp:Usage="wsp:Required">

<wsse:TokenType>

wsse:UsernameToken

</wsse:TokenType>

</wsse:SecurityToken>

Authorization includeToken – SAML. At-
tach a SAML token mes-
sages originated from the
user.

<wsse:SecurityToken

wsp:Usage="wsp:Required">

<wsse:TokenType>

wsse:SAMLToken

</wsse:TokenType>

</wsse:SecurityToken>

16 T. Phan et al.

To associate these assertions with the WS portTypes and operations, we use the
mechanisms specified in WS-PolicyAttachment [17]. The security functions applied
on a UserRole are, via entity mapping information, also applied on WS, WS port-
Types, or WS operations that the role might have access to (i.e. invoke) accordingly
using a similar mechanism. For example, LoanOfficier, via annotation is known to
have access to the portType LoanProcessor, thus quality objectives such as autho-
rization[LoanOfficier] are translated into corresponding WS-Policy assertions that are,
via WS-PolicyAttachment, applied on the LoanProcessor portType.

The reader may note that the WS-SecurityPolicy [15] standard does not define as-
sertions for all well known security functions as WS-Security itself focuses more on
message confidentiality and integrity. For example, an assertion for logging is not avail-
able. However, the standard is still evolving and it is expected that additional support
will be accommodated in future versions.

4.2 Mapping Function Binding to WS-SecurityPolicy Binding Assertions

The general structure of a WS-SecurityPolicy binding assertion is as follows

<BindingMechanism>
<Structured collection of Binding property assertions>

</BindingMechanism>

The BindingMechanism can be symmetric, asymmetric or transport binding. The
“structured collection of Binding property assertions” is generally a logical AND of
the assertions that specify the value of the binding properties. In WS-Policy syntax,
this logical AND can be represented using a wsp:Policy or a wsp:All container. For
a concrete security function, the function BindingMechanism in the quality function
is mapped to the corresponding WS-SecurityPolicy BindingMechanism assertions and
each of the BindingProperty is mapped to the corresponding WS-Policy BindingProp-
erty assertions. The mapping is relatively straightforward and is one to one.

4.3 An Example Assertion Generation

Figure 7 shows the generated WS-SecurityPolicy fragment for the quality objective
integrity[LoanApplicantTaxFileNumber] in the business policy BP2. This quality
objective can be realized using the security function sign to sign the Web Services
message parts related to LoanApplicantTaxFileNumber. sign is mapped to the WS-
SecurityPolicy protection assertion signedElements (Line 17). We use the entity
mapping information as in the example introduced in Section 3.2 to map the mes-
sage part taxFileNumber of the message processLoanRequest to the business con-
cept LoanApplicantTaxFileNumber (Line 18). We assume that SymmetricBinding
is used (Line 2, 16) and that the preferred binding properties are as follows:

{protectionToken = KerberosV5ApReqToken11 (line 4-12),
ProtectionOrder = SignBeforeEncrypting (line 13),
EncryptSignature = True (line 14)}

meaning that a KerberosV5ApReqToken11 is used as the protection token, the digital
signature to be computed over plain text (before the message content is encrypted), and
that the signature itself should also be signed, respectively.

Quality-Driven Business Policy Specification 17

1<sp:Policy>
2 <sp:>SymmetricBinding>
3 <wsp:Policy>
4 <sp:ProtectionToken>
5 <wsp:Policy>
6 <sp:Kerberos.../>
7 <wsp:Policy>
8 <sp:>WSSKerberosV5ApReqToken11/>
9 <wsp:Policy>
10 </sp:Kerberos>
11 </wsp:Policy>
12 </sp:ProtectionToken>
13 <sp:>SignBeforeEncrypting/>
14 <sp:>EncryptSignature/>
15 </wsp:Policy>
16 </sp:>SymmetricBinding>
17 <sp:>SignedElements...>
18 <sp:XPath>processLoanRequest/taxFileNumber</sp:XPath>
19 </sp:>SignedElements>
20</sp:Policy>

Fig. 7. WS-SecurityPolicy fragment for integrity[LoanApplicantTaxFileNumber]

5 Prototype Tool

We have implemented a supporting prototype for the HOPE framework. The prototype
assumes the existence of domain quality models and application entity models. The tool
also needs the WSDL descriptions of Web Services and service compositions of a given
application. As illustrated in Figure 8, the prototype allows users to specify and manage
business policies, and have them refined into WS-Policy statements. For policy editing,
the tool presents the application entities and the qualities for each of the three domains
(security, manageability, and reliability) in tabular format with one dimension being the
set of qualities available in a domain and the other dimension being the list of entities
in the application entity model (as seen in the top right corner of Figure 8). A user ticks
a checkbox corresponding to a (entity, quality) pair to apply quality to entity to form a
quality objective. The application entity model is also visualized (bottom left corner).

If a user applies a quality to an entity, the quality is also automatically applied to
all specializations of this entity. Qualities that cannot be realized by the Web Services
quality model (i.e. not supported by WS-*, WS-*Policy) are not displayed for selection.
Invalid combinations, that is, qualities that are not applicable on some types of entities,
as discussed in Section 3.3, are also disabled from user selection.

If a user clicks “Apply”, the tool associates the formed quality objectives with the
natural language representation of the policy. It then refines the business policy into
a system-level policy by generating a set of WS-Policy statements that correspond to
these objectives. In the current implementation, the tool only supports refinement in the
security domain and assumes the Basic Security Profile 1.0 [14] to be applied. During
refinement, the tool automatically uses the first available branch in the binding tree

18 T. Phan et al.

Fig. 8. Screenshot of the HOPE prototype

unless the tree is annotated with user’s preferences. In that case, the branch with the
highest priority is followed.

6 Related Work

Our work is related to a number of areas, including business rule specification and man-
agement, business rule refinement, and Service Level Agreement (SLA) specification
and management.

There has been a body work on the specification and management of SLA and
Service Level Objectives that focuses on ensuring the delivery of quality services to
clients. Keller and Ludwig [18] proposed the Web Service Level Agreement (WSLA)
standard to allow the specification of service level agreements and objectives for Web
Services. SLANG [19] is another effort of specifying end-to-end service level con-
tracts between a client and the service. Their work considers quality of service more
from a client point of view and thus focuses on the specification of rules to gov-
ern client-service interactions. Our research investigates quality of services from an
enterprise system governance and management viewpoint of which the purpose is to
have a dependable/interoperable SOA ecosystem including the SOA services and ser-
vice clients and also all the applications built on top of the services themselves. As
such, the types of interactions we are concerned with are not limited to client-service
interactions.

The objective of our work is more aligned with that of business rule specification
and management as we are concerned with services being compliant to high-level busi-
ness rules and regulations. In this field, several business rules specification languages
and frameworks have been proposed [20,21] and some rule engines have been built to
support the execution of business rules. However, the target business rules are more

Quality-Driven Business Policy Specification 19

concerned with business logic and functional logic (e.g., “if (FlightBookingActivity is
performed) then (Role type is airline)” [20]) while we focus on the non-functional qual-
ity properties related to the various entities.

In the area of policy-based specification and refinement, frameworks such as [22,23]
support platform-independent specification of non-functional requirements such as
those related to access control or configuration management in the form of policy state-
ments. However, these frameworks are mainly for resource management and cannot be
easily adapted for SOA systems as discussed in our previous work [24].

There have been a number of attempts to apply model-driven architecture (MDA)
techniques for the modeling and translation of SOA qualities into system-level real-
ization mechanisms [25,26]. In these approaches, quality properties of services and
applications are modeled in platform-independent ways and then transformed into
platform-dependent code and configurations for middle-ware to realize these qualities.
However, the entities being modeled, even though being platform-independent, are still
technical entities (i.e. they represent technical concepts such as filter, connector, ser-
vice, or proxy), not business-oriented entities. This not only limits the participation of
business analysts and IT compliance officers in the modeling process, but also makes it
difficult to align the models with the original business requirements.

7 Conclusions and Future Work

In this paper, we introduced the HOPE framework that, in a systematic manner, as-
sists practitioners in defining quality-oriented business policies and refining them into
system-level Web Service policies in order to realize quality requirements in the service-
based applications. Central to the framework are domain-specific quality models, each
of which codifies the quality attributes and their realization mechanisms in a given
domain. Based on these quality models and an application’s business entity model,
quality-oriented business policies applicable to the application can be stated as qual-
ity objectives. Again using the quality models, quality objectives can be refined into
Web Service policies as part of the application’s Web Service-based implementation.
This framework assists system developers in performing such tasks with a systematic
approach and associated models, techniques, and tool support.

In general, HOPE does not aim for fully automated policy refinement as decomposing
a high-level business policy into a set of system-level policies requires complex model-
ing and reasoning. HOPE’s approach is that human decision should be leveraged when a
policy statement in natural language needs to be interpreted and decomposed into a set
of quality objectives. On the other hand, automation is provided (as much as possible)
to refine these quality objectives into system-level statements, thereby abstracting away
the complexity of the system-level infrastructure.

We expect that the HOPE framework can be adapted or generalized to be used with
other policy frameworks/platforms in addition to WS-Policy. As part of future work, we
will further examine the relationships among business policies, system requirements,
system qualities, service/composition design, and system-level policies to improve the
system development process and a system’s adaptability and evolvability.

20 T. Phan et al.

References

1. Sarbanes, P.: Sarbanes-Oxley Act of 2002. The Public Company Accounting Reform and
Investor Protection Act. Washington, DC, US Congress (2002)

2. Basel, I.: Basel II: International Convergence of Capital Measurement and Capital Standards:
a Revised Framework (2004)

3. O’Brien, L., Merson, P., Bass, L.: Quality attributes for service-oriented architectures. In:
SDSOA 2007: Proceedings of the International Workshop on Systems Development in SOA
Environments, Washington, DC, USA, p. 3. IEEE Computer Society, Los Alamitos (2007)

4. Bajaj, S., Box, D., Chappell, D., Curbera, F., Daniels, G., Hallam-Baker, P., Hondo, M.,
Kaler, C., Langworthy, D., Malhotra, A., et al.: Web Services Policy Framework (WS-
Policy). Version 1(2), 2003–2006 (2006)

5. America, Bank secrecy act of 1970 (1970)
6. Australia, Privacy act 1988 (1988)
7. Bücker, A.: ITS Organization IBM Corporation, Understanding SOA Security Design and

Implementation. Books24x7.com (2005)
8. Nadalin, A., Kaler, C., Hallam-Baker, P., Monzillo, R., et al.: Web Services Security: SOAP

Message Security 1.0 (WS-Security 2004). OASIS Standard 200401 (2004)
9. Kim, A., Luo, J., Kang, M.: Security ontology for annotating resources. In: Meersman, R.,

Tari, Z. (eds.) OTM 2005. LNCS, vol. 3761, pp. 1483–1499. Springer, Heidelberg (2005)
10. I. JTC, SC27/WG3. Common Criteria for Information Technology Security Evaluation

(1998)
11. Khan, K.M., Han, J.: Assessing Security Properties of Software Components: A Software

Engineer’s Perspective. In: Han, J., Staples, M. (eds.) Proceedings of the 17th Australian
Software Engineering Conference (ASWEC 2006), Sydney, Australia, pp. 199–208. IEEE
Computer Society Press, Los Alamitos (2006)

12. Meier, J., Mackman, A., Dunner, M., Vasireddy, S.: Building Secure ASP .NET Applica-
tions: Authentication, Authorization, and Secure Communication. Microsoft Patterns and
Practices. Microsoft Corporation, pp. 354–362 (2002)

13. Steel, C., Nagappan, R., Lai, R.: Core Security Patterns. Prentice-Hall, Englewood Cliffs
(2006)

14. McIntosh, M., Gudgin, M., Morrison, K., Barbir, A.: Basic Security Profile Version 1.0. WS-I
Standard 30 (2007)

15. Kaler, C., Nadalin, A., et al.: Web Services Security Policy Language (WS-SecurityPolicy)
(2005)

16. Akkiraju, R., Farrell, J., Miller, J., Nagarajan, M., Schmidt, M., Sheth, A., Verma, K.: Web
Service Semantics-WSDL-S, W3C Member Submission (2005)

17. Bajaj, S., Box, D., Chappell, D., Curbera, F., Daniels, G., Hallam-Baker, P., Hondo, M.,
Kaler, C., Malhotra, A., Maruyama, H., et al.: Web Services Policy Attachment (WS-
PolicyAttachment), W3C Member Submission (April 2006)

18. Keller, A., Ludwig, H.: The WSLA Framework: Specifying and Monitoring Service Level
Agreements for Web Services. Journal of Network and Systems Management 11(1), 57–81
(2003)

19. Lamanna, D., Skene, J., Emmerich, W.: SLAng: A Language for Defining Service Level
Agreements. In: Proc. of the 9th IEEE Workshop on Future Trends in Distributed Computing
Systems-FTDCS, pp. 100–106 (2003)

20. Orriens, B., Yang, J., Papazoglou, M.P.: A Framework for Business Rule Driven Web Service
Composition. In: Jeusfeld, M.A., Pastor, Ó. (eds.) ER Workshops 2003. LNCS, vol. 2814, pp.
52–64. Springer, Heidelberg (2003)

Quality-Driven Business Policy Specification 21

21. Horrocks, I., Patel-Schneider, P., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: A
Semantic Web Rule Language Combining OWL and RuleML, W3C Member Submission
(2004)

22. Damianou, N., Dulay, N., Lupu, E., Sloman, M.: The Ponder Policy Specification Language.
In: Sloman, M., Lobo, J., Lupu, E.C. (eds.) POLICY 2001. LNCS, vol. 1995, pp. 18–38.
Springer, Heidelberg (2001)

23. Uszok, A., Bradshaw, J., Jeffers, R., Suri, N., Hayes, P., Breedy, M., Bunch, L., Johnson, M.,
Kulkarni, S., Lott, J.: Kaos policy and domain services: toward a description-logic approach
to policy representation, deconfliction, and enforcement. In: Proceedings of 4th International
Workshop on Policies for Distributed Systems and Networks (POLICY 2003), June 2003,
pp. 93–96 (2003)

24. Phan, T., Han, J., Schneider, J.-G., Ebringer, T., Rogers, T.: A Survey of Policy-Based Man-
agement Approaches for Service Oriented Systems. In: Hussain, F.K., Chang, E. (eds.) Pro-
ceedings of the 19th Australian Software Engineering Conference (ASWEC 2008), Perth,
Australia, pp. 392–401. IEEE Computer Society Press, Los Alamitos (2008)

25. Wada, H., Suzuki, J., Oba, K.: A Model-Driven Development Framework for Non-Functional
Aspects in Service Oriented Architecture. International Journal of Web Services Re-
search 5(4), 1–31 (2008)

26. Nakamura, Y., Tatsubori, M., Imamura, T., Ono, K.: Model-Driven Security based on a
Web Services Security Architecture. In: Proceedings of International Conference on Services
Computing, July 2005, pp. 7–15 (2005)

A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, pp. 22–37, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Adaptation of Web Service Composition Based on
Workflow Patterns

Qiang He1,2, Jun Yan3, Hai Jin1, and Yun Yang2

1 School of Computer Science and Technology,
Huazhong University of Science and Technology, Wuhan, China 430074

hjin@hust.edu.cn
2 Faculty of Information and Communication Technologies,

Swinburne University of Technology, Melbourne, Australia 3122
qhe@ict.swin.edu.au, yyang@swin.edu.au

3 School of Information Systems and Technology,
University of Wollongong, Wollongong, Australia 2522

jyan@uow.edu.au

Abstract. Business processes consisting of component Web services are often
executed in volatile environments where the quality of service parameters of the
participating services might change during the execution of the business proc-
esses. Recently, research has been carried out on adapting composite Web ser-
vice in volatile service-oriented computing environments. However, current
approaches do not consider the internal logic of the business process and the
impact of adaptation for a single service on the other component services. Other
than quality of service parameters, effective adaptation requires specific infor-
mation of the component services in terms of their position and interaction in the
business process. The work reported in this paper is a first step in this direction.
We present a novel approach to adaptation of Web service composition based on
workflow patterns. This approach measures the value of changed information
that updated services may potentially introduce in the business process. Ex-
perimental results show that our approach provides effective adaptation solutions
by expanding the adaptation scope and considering the internal logic of business
process.

Keywords: Adaptation, Business Process, Quality of Service, Adaptation, Ser-
vice Level Agreement, Web Service Composition.

1 Introduction

In service-oriented computing (SOC), one of the most important functions is to create
value-added services, i.e. service compositions, by composing existing services,
namely component services. A composite service can be modelled as a business
process with the internal logic between the component services captured using a
business process modelling language tailored for Web services, e.g. BPEL [1, 12],
WSCI [3] and BPSS [5]. The delivery of a composite service is achieved through the
coordinated invocation of component services.

 Adaptation of Web Service Composition Based on Workflow Patterns 23

Quality of service (QoS) control for service compositions is very difficult to manage
due to the cross-organisation and location-distribution of Web services. To solve this
problem, service level agreements (SLA) [10, 16], referring to mutually agreed un-
derstanding and expectation about service provision, can be established between ser-
vice consumers and service providers. WS-Agreement [2, 13] is the de facto SLA
specification standard for Web services. In service composition scenarios, QoS control
is critical, as any failure to meet local requirements of the component services may
result in exceptions of the composite service. In these scenarios, the service consumer
will contract SLAs with the service providers over each individual component service.
The aggregation of QoS of component services is supposed to meet the global re-
quirements of the client. However, the SOC environment is always volatile in which
contracted SLAs would potentially be violated due to the inherent unreliability of the
underlying Internet and internal infrastructures of service providers. When a violation
of SLA occurs, the corresponding component service needs to be recovered with sat-
isfying QoS to meet the global business process requirements. During the recovery
process, cost applies. Therefore, when recovering the failed service the service provider
that brings the greatest estimated profit - estimated value minus cost – should be se-
lected. The value of changed information (VOC) [6] is used to compute the tradeoff
between the expected value and the cost from updating the service. The update is
performed only when it is going to pay off. Here the VOC computation shares its
concepts with the value of perfect information (VPI) [15], which also attempts to de-
cide whether new information is necessary and useful to a particular process, as ex-
plained in [6]. Usually, “update” refers to changing QoS of the services. Since
recovering the services also incurs cost while bringing benefit, VOC related mecha-
nisms can also be applied to recover services. There are two typical methods to recover
failed services in an executing business process instance: 1) renegotiate with the failed
service provider; 2) replace the failed service provider with a new service provider.
Both methods will incur recovery cost. Generally speaking, the recovery cost occurs
upon querying the information, renegotiating and negotiating with service providers,
and switching service providers. The optimal solution for service adaptation is to select
the solution that brings the most tradeoff, i.e. VOC minus recovery cost. The compu-
tation of the VOC and recovery cost are domain-specific and thus out the scope of this
paper.

So far, little efforts have been placed on the business process adaptation which
considers the impact of the adaptation for one service on the other services. When
service recovery is required, e.g. current service providers claim to be incapable of
providing promised services or service providers fail to deliver results as specified in
the SLA, it is sometimes essential to update a group of component services because
otherwise the global QoS requirements of the business process cannot be met. For
example, it takes a certain amount of time to recover the failed service, which, with the
addition of pre-specified time consumption of the remaining unexecuted component
services, will lead to violation of the global requirements of time consumption on the
whole business process and thus requires adaptation of more unexecuted component
services. Therefore, a comprehensive adaptation mechanism that involves recovering
and updating services is imperative to the generation of optimal adaptation solution.
Besides, adaptation is supposed to be confined within a certain scope, usually the
smaller the better, to limit the impact of failed services on other services and the cost

24 Q. He et al.

and complexity of adaptation. Hence, defining the scope and furthermore, the adapta-
tion solution is considerably significant. Workflow patterns [17] define specific in-
ternal workflow logics – elicited from multiple homogeneous cases - and provide
reusable models for developers to deliver solid, proper architecture solutions. In this
paper, we discuss how to apply VOC to the generation of adaptation solutions in the
scope of component services of the business process captured using pre-defined
workflow patterns.

The rest of the paper is organised as follows. Section 2 introduces the major related
work. Then, Section 3 analyses the requirements of adaptation in service composition
scenarios by illustrating a motivating example. After that, Section 4 discusses the VOC
computation based on workflow patterns followed by Section 5 which presents a
method that utilises the approach presented in Section 4. Finally, Section 6 describes
the experiments to demonstrate the effectiveness of the approach and Section 7 sum-
marises the major contribution of this paper and outlines authors’ future work.

2 Related Work

Recently, business process adaptation in dynamical and volatile environments has
attracted increasing attention. Harney and Doshi [6] present a mechanism called VOC
which computes the estimated value brought by the changes of the business process and
compares the value to the cost required to make the changes. The update is performed
only when it is expected to pay off. In [7], Harney and Doshi utilise service expiration
times to reduce the computational overhead of adaptation. The improvement is based
on the insight that service providers often keep the quality of their services at a certain
level for a period of time. A new approach is proposed, namely VOC with expiration
times (VOCε). VOCε manages to reduce the computational burden of adaptation.
However, while considering adapting one individual service, the effect of VOC and
VOCε is limited on just the one service without taking into account the global business
process. In other words, VOC and VOCε facilitate only local adaptation solutions for
business process which cannot guarantee the satisfaction of the global business process
requirements.

Chafle et al. [4] introduce adaptation on different levels, including the instance level,
logic level and physical level. Multiple backup workflows are prepared to substitute the
failed components or workflows at any moment. By enabling this, workflow systems
can adapt to environmental changes. Verma et al. [18] introduce a suite of stochastic
optimisation based methods, including centralised and decentralised ones for adapting
business process modelled as Markov decision processes. Exogenous events and in-
ter-service constraints are both taken into account when performing the adaptation.
Narendra et al. [14] use the aspect-oriented programming (AOP) technology to dictate
modifications in component services in order to meet non-functional requirement
changes in the composite service. None of the above approaches consider the cost that
may occur in the adaptation of business processes and may generate worthless adapta-
tion solutions which may bring cost more than profit. Our approach aims at addressing
the above mentioned shortcomings.

 Adaptation of Web Service Composition Based on Workflow Patterns 25

3 A Motivating Example

In order to illustrate the needs for and the complexity of service composition adapta-
tion, in this section we present a motivating example.

This example business process involves a trading company, a manufacturer, a road
transportation company and a shipping company. The trading company wants to pur-
chase some goods which will be produced by the manufacturer, and then delivered by
road transportation company A and shipping company A in sequence. The SLAs for the
manufacturing, road transportation and shipping have been negotiated before services
are provided, which collectively fulfil the global requirements. Suppose that the road
transportation company A suddenly claims a delay and cannot provide the service
within the timeframe as promised in the SLA, this may delay the whole process.
Therefore, the business process must have adaptation capabilities to recover from this
exceptional situation. In addition, it is possible that the schedule of shipping company
A will also be disturbed. For example, the shipping company may specify the constraint
such as “Shipping service will be completed with 10 days during May 1 to May 30.” in
SLA. Therefore, with the road transportation service rearranged, this constraint may no
longer be held. Thus, the shipping service needs to be coordinated by either renego-
tiating over the shipping SLA between the trading company and shipping company A
or selecting a new shipping company.

In the adaptation process, cost applies, including the service query cost and the
negotiation cost. The trading company may recover the road transportation service by
either renegotiating with road transportation company A or finding another service
provider, say road transportation company B or C, to replace road transportation
company A. To select from the candidate service providers for road transportation
service, the trading company needs to estimate the value and cost that candidate service
providers may bring. Meanwhile, the trading company needs to compute the probabil-
ity that the recovery of road transportation service will lead to disturbance of the
shipping service and the corresponding value and cost from adapting the shipping
service. Based on the results, the trading company will decide how to recover the road
transportation service, whether to update the shipping service and if so, how.

In this case, the optimal solution is not necessarily selecting the companies with the
best quality but the one with the best tradeoff between the value and cost. This moti-
vating example reveals three important factors for selecting the optimal adaptation
solution. First, the trading company must estimate the tradeoff between the value and
cost brought by the candidate service providers. Second, the trading company must also
estimate the impact drawn from the recovered services on other services to see if they
need to be updated. Third, the cost for rearranging other services must be considered.

4 Adaptation for Composite Service Based on Workflow Patterns

Web service composition can be modelled as executable process using Web service
composition languages like BPEL and WSFL incorporating the concepts and mecha-
nisms in the workflow community. Therefore, the logic in a composite service can be
captured using workflow patterns. In this section, we consider the workflow patterns

26 Q. He et al.

presented in [17], and discuss and analyse how the VOC mechanism can be extended
based on these patterns to facilitate adaptation in Web service composition. The ser-
vices discussed are generic and their states are recoverable.

4.1 Sequence Pattern

 Pattern 1 Sequence. A Sequence pattern describes the structure where a component
service starts after the completion of another component service in the same process.

When service A violates the SLA, there are two ways to recover it. The business
process manager can either renegotiate with the current service provider to see if it can
still provide service A to meet the global business process requirements, or find a new
service provider to replace it. Before performing the adaptation process, the VOC of
each of the above measures needs to be computed.

Since the actual values of the updated QoS are not known until after querying the
service providers, we average all the possible combination of the values of updated
QoS of the service using current belief distributions which can be obtained from the
pre-defined SLAs, previous interactions with the service providers or a third SLA
profiling center [8]. For each candidate service provider for service A (including the
original service provider), an estimated value is computed. Formally,

 A'
A' A' A'V (A| A') u(e, p) Pr(E e,P p)d

Ω
Ω= ⋅ = =∫ 1 . (1)

where V(A| A') is the estimated value from recover service A with service provider A' ,
u(e, p) is a utility function which computes the utility of a service based on the client’s
preferences for execution time, e, and price, p, Pr(E e,P p)= = denotes the belief dis-
tribution of the combination (e, p) and A'Ω = <(e1, p1), (e2, p2), …, (en, pn)>A’ represents

the possible combinations of the values of execution time and price from the candidate
service providers for service A. Here we take the originally contracted service provider
as a candidate service provider if it is still potentially capable of providing the service
with amended SLA.

Then the process manager computes the probability that service B needs to be re-
arranged due to selecting service provider A' to recover service A. The probability,
denoted as P(A| A' B)→ , is affected by three main aspects:

1) the extra resource consumption caused by the adaptation of service A. For example,
delay and increased price from adapting service A will increase the need of updating
service B;

2) the margins of the related terms in the SLA contracted for services A and B. If the
business process manager had succeeded in contracting an SLA with extra marginal
violation tolerance, there would be a relatively low chance that service B needs to be
adapted; and

3) the estimated capability of candidate service providers for service A. If it is ex-
pected to seal a deal with a candidate service provider that is capable of providing
service A with better QoS, the need of updating service B will decrease.

1 In this paper we use execution time and price for the purpose of demonstration.

 Adaptation of Web Service Composition Based on Workflow Patterns 27

In the sequence pattern, the formal computation of SeqP (A| A' B)→ is:

A'
Seq A' A' A'

A'

1
P (A| A' B) isGlobal RequirementViolated(e, p) Pr(E e,P p)d

| | Ω
Ω

Ω
→ = ⋅ ⋅ = =∫ .

 (2)
where isGlobalRequirementViolated(e, p) is a function that, given the execution time
and price, returns 1 if the global business process requirements will be violated and 0
otherwise. This function involves QoS aggregation [9] and multiple criteria decision
making (MCDM) [11] and is implemented application-specifically.

Then we formulate the VOC due to the service adaptation as:

A|A' B|B'VOC V(A| A') P(A| A' B) V(B | B')+ = + → ⋅

 A'
A' A' A'u(e, p) Pr(E e,P p)d

Ω
Ω= ⋅ = =∫

 B'
Seq B' B' B'P (A| A' B) u(e, p) Pr(E e,P p)d

Ω
Ω+ → ⋅ ⋅ = =∫ . (3)

where A|A' B|B'VOC + is the value brought from adapting service A with service provid

er A' and service B with service provider B' .
Since adapting services A and B may be expensive, the adaptation is performed only

when it is expected to pay off. The adaptation cost, including querying information,
renegotiating and negotiating with service providers, and switching service providers,
must be lower than the corresponding VOC. Formally, the adaptation is performed
when:

 A|A' B|B'VOC COST(A| A' B | B')+ > + . (4)

where COST(A| A' B | B')+ is the adaptation cost from recovering service A with service
provider A' and service B with service provider B' . When there are more than one
qualified combination of candidates for services A and B, the one with the greatest
profit, i.e. A|A' B|B'VOC COST(A| A' B | B')+ − + , is selected.

From formulas (1) - (4), we can observe that it is the combination of candidates for
services A and B that determines the profit from the adaptation process. The business
process manger needs to compute the VOC of all the possible combinations of candi-
dates for services A and B, which is computationally intensive if the number of can-
didates is large. Under this circumstance, the business process manger can select
several candidates according to the ranking provided by an SLA profiling centre.

4.2 Parallel Patterns

Besides the sequence pattern, parallel is another major pattern in any model of business
processes. The authors in [17] consider the parallel patterns in terms of (1) how the
branches are picked, (2) how they are executed and (3) how they converge. In this
section, we analyse the adaptation mechanisms for different types of parallel patterns
considering the three aspects above.

28 Q. He et al.

There are three typical split patterns that describe the logic of processes splitting and
proceeding:

 Pattern 2 Parallel Split. A Parallel Split describes the structure where a single
thread splits into multiple threads which can be executed in parallel. In this pattern,
component services A and B will both be executed and can be executed simultane-
ously in any order.

 Pattern 3 Exclusive Choice. An Exclusive Choice pattern descries the structure
where, based on a decision or process control data, only one selected branch is ac-
tivated and executed.

 Pattern 4 Multi-Choice. A Multi-Choice pattern describes the structure where,
based on a decision or process control data, a number of branches are chosen.

We must also consider how the branches will converge (if they will). There are five
typical patterns that model the logic of the branches converging:

 Pattern 5 Synchronisation. A Synchronisation pattern describes the structure
where multiple parallel branches converge into one single thread synchronised.

 Pattern 6 Simple Merge. A Simple Merge pattern describes the structure where
more than one branches converge without synchronisation and only one of them has
ever been executed.

 Pattern 7 Synchronising Merge. A Synchronising Merge pattern describes the
structure where synchronising happens only when more than one branches are active
(i.e. they are being executed).

 Pattern 8 Multi-Merge. A Multi-Merge pattern describes the structure where the
branches converge without synchronisation and the service succeeding the mer-
gence will be activated by the completion of every incoming branch.

 Pattern 9 Discriminator. A Discriminator pattern describes the structure where the
subsequent service will be activated by the first and only the first completed branch.
The remaining branches will be ignored.

The combination of the split patterns and converge patterns determines the adapta-
tion solution when services need to be recovered. Starting with the simplest combina-
tion, i.e. Parallel Split + Synchronisation, we discuss the corresponding adaptation
mechanisms.

Parallel Split + Synchronisation

In this pattern combination, there are more than one branches splitting at a certain point
and then converge with synchronisation at the end of the completion of all the branches.
Here we suppose there is only one service on each parallel branch. This assumption is
realistic because if there are more than one services on any branch they can be con-
sidered as a composite service. When the service on one of the parallel branches needs
to be recovered, the business process manager must compute the VOC of the service
and select an appropriate service provider. Moreover, to guarantee global business
process requirements satisfaction, the business process manager must also consider if it
is necessary to update the services on other branches.

We consider the adaptation under two circumstances: 1) all the branches have not
been activated and executed and the service provider for one of them claims to be
unable to provide the service, or incapable of providing the service with promised

 Adaptation of Web Service Composition Based on Workflow Patterns 29

Fig. 1. Parallel Split + Synchronisation

quality. In this case, the adaptation happens before point M in Figure 1; 2) all the
branches have been activated and one of the service providers fails to deliver the re-
quired result. In this case, the adaptation happens after points like N.

In case 1), the business process manger needs to estimate if the adaptation of failed
service, i.e. service A in Figure 1, will cause the delay of activation of service D due to
the time consumption of the adaptation process and the newly contracted SLA. If it is
true, the business process manager can think about giving services B and C more time
to complete because given more flexible time constraint, the business process manager
may be able to renegotiate with service providers of B and C for a lower price or better
QoS if the SLAs previously contracted for services B and C are renegotiable and
modifiable.

For the pattern combination, Parallel Split + Synchronisation, the probabilities of
additional execution time for services B and C caused by the adaptation of service A,
assuming service A is replaced by service A' , are computed as:

A'

PSP A' B A'E
A'

1
P (A| A' B) Pr(E e) isBigger(e,e)dE

| E |
→ = ⋅ ⋅ = ⋅∫ . (5)

A'

PSP A' C A'E
A'

1
P (A| A' C) Pr(E e) isBigger(e,e)dE

| E |
→ = ⋅ ⋅ = ⋅∫ . (6)

where eB and eC are the execution times for services B and C, A'| E | is the modulo

of A'E , and isBigger(x, y) is a function returns 1 when x is bigger than y and 0 other-

wise. Then the VOC of different adaptation strategies, involving services A, B and C,
can be computed as:

A|A' B|B' C|C '
PSPVOC V(A| A') P(A| A' B) V(B | B') P(A| A' C) V(C | C')+ + = + → ⋅ + → ⋅ . (7)

In case 2), when the exception is detected on service A, services on other branches,
i.e. services B and C, have already been activated. When the adaptation for service A is
being performed, services B and C are already under execution. Therefore, the esti-
mated time consumption from adapting service A, must be involved in the computation
of P(A| A' B)→ and P(A| A' C)→ :

A'

PSP A' adap adap ADAP B A'E
A'

1
P (A| A' B) Pr(E e,E e) isBigger(e e ,e)dE

| E |
→ = ⋅ ⋅ = = ⋅ +∫ . (8)

A

PSP A' adap adap ADAP C A'E '
A'

1
P (A| A' C) Pr(E e,E e) isBigger(e e ,e)dE

| E |
→ = ⋅ ⋅ = = ⋅ +∫ . (9)

where eADAP is the estimated time to adapt service A.

30 Q. He et al.

Then the VOC of different adaptation solutions can be computed using formula (7)
withV(A| A') , V(B | B') andV(C | C') computed similarly as formula (1).

Parallel Split + Multi-Merge
In a Multi-Merge pattern, the service succeeding the mergence will be executed every
time an incoming branch completes. Most of the workflow products, e.g. Eastman,
Verve Workflow and Forte Conductor, implement the Multi-Merge pattern by repli-
cating the service(s) succeeding the mergence (see Figure 2 for a simple example). And
the replicated services will be made sequential to the services on each of the original
branches, generating several independent sequence structures. Actually, at runtime, no
Multi-Merge structures will be found. Therefore, VOC computation for Sequence
pattern will be applied to the created Sequence structures in adaptation.

Fig. 2. Implementation of Multi-Merge pattern

Parallel Split + Discriminator

In a Discriminator pattern, the service succeeding the mergence waits for the first
completed incoming branch and ignores the rest. In other words, the succeeding service
will be activated only once when one of the incoming branches is firstly completed. We
now discuss how to adapt the parallel services in terms of VOC.

In this pattern combination the fastest branch (the one with the shortest execution
time) determines the start time of the service succeeding the mergence. Once the suc-
ceeding service is activated, the uncompleted branches will be ignored. In fact, Dis-
criminator pattern is not found often in business processes where SLA is enabled
because generally the execution time of the services will be specified in the SLA and
hence it can be estimated that which branch is likely to complete first and which
branches will be ignored. However, there is one exception: the business process man-
ager wants to hedge the risk of delay caused by service provider failing to deliver ex-
pected result. In this case, by employing the Discriminator pattern, when a branch is
broken, other branches can still deliver expected result in a relatively tolerant period of
time. Intuitively, the most effective way to hedge the risk is to allocate low execution
time for individual branches while obtaining a high successful global execution rate of
the branches. It is also the major objective of adapting the branches when a branch is
broken. Since the services on different branches are functionally equivalent, they share
a group of candidate service providers and a utility function. For the demonstration
purpose, we use the example in Figure 3.

 Adaptation of Web Service Composition Based on Workflow Patterns 31

Fig. 3. Parallel Split + Discriminator

First, the normalised successful execution rate weights, w1, w2 and w3, are assigned to
the candidate service providers. The success rate weights range from 0 to 1, repre-
senting how much trustworthy the service providers are based on their historical per-
formance. Service providers with better historical performance, i.e. higher successful
rate, will be assigned with higher weights. The historical performance of service pro-
viders may be provided by the service providers through pre-defined SLAs or they
could be learnt from previous interactions with the service providers.

Second, the VOC can be computed as:

(A',B',C')

A|A' B|B' C|C '
PSD 1 A' A' A' A' A' A'VOC w u(e , p) Pr(E e ,P p)

Ω
+ + = ⋅ ⋅ = =∫

 2 B' B' B' B' B' B' 3 C' C' C' C' C' C' (A',B',C')w u(e ,p) Pr(E e ,P p) w u(e ,p) Pr(E e ,P p)dΩ+ ⋅ ⋅ = = + ⋅ ⋅ = = . (10)

Based on formula (10), the combination of candidate providers that maximises
A|A' B|B' C|C '
PSDVOC Cost(A| A') Cost(B | B') Cost(C |C')+ + − − − will be selected.

Sometimes which branches will be executed is dependent on runtime decision
making. Pattern 3 Exclusive Choice and pattern 4 Multi-Choice describe the two dif-
ferent situations in this category. In pattern 3 Exclusive Choice, only one branch will be
chosen and executed in a running process instance and it leads to a Simple Merge. That
makes the branches uninfluential on one another. Therefore, when one branch needs to
be recovered, other branches do not need to be considered. Yet the VOC mechanism
can still be applied here because, the broken branch, together with the service suc-
ceeding the mergence, can be seen as a Sequence pattern. In pattern 4 Multi-Choice,
multiple branches will be chosen for execution. Therefore, the business process man-
ager needs to consider the other branches when trying to recover a branch. Next we
discuss the pattern combinations involving the Multi-Choice pattern.

Multi-Choice + Synchronizing Merge
In this pattern combination, multiple branches will be chosen for execution and they
will be synchronised when they merge. The way the branches merge is similar to pattern
5 Synchronisation. The difference is that not all the incoming branches will be activated
for every running instance. If one of the branches is broken and needs to be recovered,
the business process manager needs to estimate the probabilities of other branches being
activated and whether they can benefit from updating.

Generally, there is no way to ascertain which branches will be activated for a specific
running instance until the dynamic decision is made. However, the business process
manager can estimate the probability that a branch will be activated based on the his-
torical performance of the branches. For example, if a branch was executed 80 times out
of the last 100 business process instances, we consider the branch will be selected with

32 Q. He et al.

a probability of 80%. The probability of being selected for each branch can be nor-
malised as weights, s1, s2, … sn, ranging between 0 and 1 representing how important
the branches based on the probability they will be selected for execution. Take the
business process in Figure 1 as an example, with Parallel Split replaced with
Multi-Choice. Based on this assumption the computation of the VOC for the adaptation
solution can be formalised as:

A|A' B|B' C|C'
MCSMVOC + + =

 1 2 3s V(A| A') s P(A| A' B) V (B | B') s P(A| A' C) V(C | C')⋅ + ⋅ → ⋅ + ⋅ → ⋅ . (11)

where V(A| A') , V(B | B') and V(C |C') are computed similarly to formula (1),

MCSMP (A| A' B)→ and MCSMP (A| A' C)→ are computed similarly to formulas (5) and (6).

Multi-Choice + Multi-Merge
Similar to the Parallel Split + Multi-Merge pattern combination, in Multi-Choice +
Multi-Merge pattern combination the branches will be transformed into several inde-
pendent sequence structures before being executed. Thus, VOC computation for Se-
quence pattern will be applied when necessary.

Multi-Choice + Discriminator
In this pattern combination, a number of branches are selected and executed in parallel
based on a decision dynamically made. The first branch that completes will trigger the
service succeeding the mergence and after that other branches will be ignored. As
discussed before, the aim of employing the Discriminator pattern is to achieve rela-
tively tolerant execution time when service failure happens. Therefore, in adaptation
solution determination, the branches that have higher successful execution rates and
higher probabilities of being selected should be given higher preference. Here we adopt
the weights used before: w, representing the successful execution rate, and s, repre-
senting the probability of branches being selected. Again, for three parallel branches,
the formalised VOC computation is:

(A',B',C ')

A|A' B|B' C|C '
MCD 1 1 A' A' A' A' A' A'VOC s w u(e , p) Pr(E e ,P p)

Ω
+ + = ⋅ ⋅ ⋅ = =∫

 2 2 B' B' B' B' B' B's w u(e , p) Pr(E e ,P p)+ ⋅ ⋅ ⋅ = =

3 3 C' C ' C ' C ' C ' C' (A',B',C ')s w u(e , p) Pr(E e ,P p)dΩ+ ⋅ ⋅ ⋅ = = . (12)

4.3 Other Patterns

In addition to the nine patterns addressed so far, there are other eleven patterns repre-
sented in [17] not mentioned. Some of them are used to describe the global properties
and special activities of the business processes, including Arbitrary Cycles, Implicit
Termination, Multiple Instance, Cancel Activity and Cancel Case. Another two pat-
terns, Deferred Choice and Milestone, are used to specify the triggering condition of
services based on decision dynamically made. The last pattern, Interleaved Parallel
Routing, describes a set of services that are executed one by one in an arbitrary order
decided at runtime. However, our work, VOC based on workflow patterns, is dedicated
to analysing adaptation solution for business process based on specific influence

 Adaptation of Web Service Composition Based on Workflow Patterns 33

between services in a confined recovery scope described using workflow patterns. The
above eleven patterns do not serve the goal and thus are excluded in discussion from
this paper.

5 Adaptation Method

Figure 4 shows the pseudo code for adapting the business process using the mechanism
presented in Section 4. The algorithm takes one input - the service that requires re-
covery, denoted as S0. The algorithm starts with identifying the pattern that S0 belongs
to (line 3). After the pattern identification, the VOC of different adaptation solutions is
computed (line 7 for Sequence pattern and line 18 for Parallel pattern). The adaptation
solution that is estimated to bring the most profit will be performed (lines 9 and 20). If
the adaptation solution within the current scope specified with workflow patterns is not
satisfactory, the component services in the current scope will be considered as a com-
posite service (lines 12-13 and lines 23-24) and adaptation will be performed in a larger
scope. The algorithm returns true if the business process is successfully adapted and
false if all the unexecuted component services have been taken into account and still no
satisfactory adaptation solution found.

Fig. 4. Pseudo code for adapting a business process

34 Q. He et al.

6 Experimental Evaluation

To evaluate the performance of our workflow based VOC approach for adapting
business processes, we conducted experiments in a simulated volatile environment.
The experimental evaluation is aimed at showing that our approach is effective in
guaranteeing the satisfaction of the global business process requirements.

We utilised the goods purchase example presented in Section 3 for evaluation. This
example is compliant with the Sequence pattern. Due to space limit, the results for other
patterns are not presented. We evaluated the satisfaction rate of the global business
process requirements with our adaptation approach enabled which considers both re-
covering the road transportation service and updating the shipping service. Considering
that in different situations the difficulty levels of recovering and updating services
might vary significantly, we model the road transportation companies’ distribution and
the shipping companies’ distribution over their service satisfaction rates at two diffi-
culty levels, i.e. easy and difficult, using beta distribution functions presented in Figure
5. Intuitively, service providers expose relatively high and low service satisfaction rates
in respective easy and difficult situations.

We ran 1,000 independent business process instances for each experiment within a
simulated volatile environment. Since the difficulty of adapting two sequential services
might vary in different situations, we conducted comprehensive experiments with all

(a) Easy service satisfaction rates of road
transportation companies

(c) Easy service satisfaction rates of
shipping companies

(b) Difficult service satisfaction rates of road
transportation companies

(d) Difficult service satisfaction rates of
shipping companies

Fig. 5. Probability density functions

 Adaptation of Web Service Composition Based on Workflow Patterns 35

Fig. 6. Comparison between traditional adaptation and our adaptation for Sequence pattern

the four combinations of difficulty levels. We measured the satisfaction rate of the
global requirements by calculating the successful cases, i.e. cases where global re-
quirements can be met after the adaptation, out of the overall cases.

Figure 6 compares the satisfaction rates of global business process requirements in
different situations with and without our approach enabled. The results demonstrate
that in all situations our adaptation approach provide a more effective solution to the
problem of global business process requirements satisfaction. In situations with dif-
ferent combinations of difficulty levels, including difficult-difficult, easy-difficult,
difficult-easy and easy-easy, our approach provides an increment of 22%, 12%, 46%
and 25% respectively in the satisfaction rates of global business process requirements.

7 Conclusion and Future Work

In open SOC environments, services can be volatile. Due to the inherent unreliability of
the underlying Internet and internal infrastructures of service providers, SLA violation
might happen. In service composition scenarios recovering just the failed service might
not satisfy the global requirements of the composite service. Hence, business process
adaptation needs to consider updating a certain scope of component services while re-
covering the failed one. Therefore, to determine the adaptation solution, we need to iden-
tify the adaptation scope and analyse the profit from different adaptation solutions. In this
paper, we have discussed how the value of changed information (VOC) is extended and
applied to business process adaptation based on workflow patterns. Specifically, we have
analysed and presented how to compute VOC for sequence and different parallel pattern
scenarios. When the adaptation is expected to pay off, it is performed within a certain
scope defined by workflow patterns. In doing so, the business process adaptation can
deliver satisfactory results while being kept within a reasonable scope. The experimental
results show that our approach can significantly improve the satisfaction rates of global
business process requirements in different situations.

In the future, we will apply the workflow-pattern-based VOC computation mecha-
nism to our experimental prototype to test and analyse the performance of our ap-
proach. We will also attempt to improve the accuracy of VOC computation by utilising
SLA profiling centre to provide historical and real-time performance of service
providers.

36 Q. He et al.

Acknowledgments. This work is partly funded by the Australian Research Council
Discovery Project Scheme under grant No. DP0663841, National Science Foundation
of China under grant No.90412010 and ChinaGrid project from Ministry of Education
of China.

References

1. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu, K., Roller,
D., Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: Business Process Execution
Language for Web Services Version 1.1 (2003),
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/
ws-bpel/ws-bpel.pdf

2. Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Toshiyuki, N., Pruyne, J.,
Rofrano, J., Tuecke, S., Xu, M.: Web Services Agreement Specification (WS-Agreement):
World-Wide-Web Consortium, W3C (2007),
http://www.ogf.org/documents/GFD.107.pdf

3. Arkin, A., Askary, S., Fordin, S., Jekeli, W., Kawaguchi, K., Orchard, D., Pogliani, S.,
Riemer, K., Struble, S., Takacsi-Nagy, P., Trickovic, I., Zimek, S.: Web Service Choreog-
raphy Interface (WSCI) 1.0: World Wide Web Consortium, W3C (2002), http://
www.w3.org/TR/wsci/

4. Chafle, G., Dasgupta, K., Kumar, A., Mittal, S., Srivastava, B.: Adaptation in Web Service
Composition and Execution. In: IEEE International Conference on Web Services, pp.
549–557. IEEE Computer Society, Chicago (2006)

5. Clark, J., Casanave, C., Kanaskie, K., Harvey, B., Clark, J., Smith, N., Yunker, J., Riemer,
K.: ebXML Business Process Specification Schema Version 1.01: OASIS (2001),
http://www.ebxml.org/specs/ebBPSS.pdf

6. Harney, J., Doshi, P.: Adaptive Web Processes Using Value of Changed Information. In: 4th
International Conference on Service-Oriented Computing, pp. 179–190. Springer, Chicago
(2006)

7. Harney, J., Doshi, P.: Speeding Up Adaptation of Web Service Compositions Using Expi-
ration Times. In: 16th International Conference on World Wide Web, pp. 1023–1032. ACM,
Banff (2007)

8. He, Q., Yan, J., Kowalczyk, R., Jin, H., Yang, Y.: Lifetime Service Level Agreement
Management with Autonomous Agents for Services Provision Information Sciences (to
appear, 2008)

9. Hwang, S.-Y., Wang, H., Tang, J., Srivastava, J.: A Probabilistic Approach to Modeling and
Estimating the QoS of Web-Services-Based Workflows. Information Sciences 177(23),
5484–5503 (2007)

10. Jin, L.-J., Machiraju, V., Sahai, A.: Analysis on Service Level Agreement of Web Services.
Technical Report, HP Laboratories (2002), http://www.hpl.hp.co.uk/
techreports/2002/HPL-2002-180.pdf

11. Köksalan, M., Zionts, S.: Multiple Criteria Decision Making in the New Millennium.
Springer, Heidelberg (2001)

12. Khalaf, R., Mukhi, N., Weerawarana, S.: Service-Oriented Composition in BPEL4WS. In:
12th International World Wide Web Conference (Alternate Paper Tracks), Budapest,
Hungary (2003)

 Adaptation of Web Service Composition Based on Workflow Patterns 37

13. Ludwig, H., Dan, A., Kearney, R.: Cremona: An Architecture and Library for Creation and
Monitoring of WS-Agreements. In: 2nd International Conference on Service Oriented
Computing, New York, USA, pp. 65–74 (2004)

14. Narendra, N.C., Ponnalagu, K., Krishnamurthy, J., Ramkumar, R.: Run-Time Adaptation of
Non-functional Properties of Composite Web Services Using Aspect-Oriented Program-
ming. In: 5th International Conference on Service-Oriented Computing, pp. 546–557.
Springer, Vienna (2007)

15. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Prentice-Hall,
Englewood Cliffs (2003)

16. Sturm, R., Morris, W., Hander, M.: Foundations of Service Level Management. SAMS
(2000)

17. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B.P.B.A.: Workflow Patterns.
Distributed and Parallel Databases 14(1), 5–51 (2003)

18. Verma, K., Doshi, P., Gomadam, K., Miller, J.A., Sheth, A.P.: Optimal Adaptation in Web
Processes with Coordination Constraints. In: IEEE International Conference on Web Ser-
vices, pp. 257–264. IEEE Computer Society, Chicago (2006)

Protocol-Based Web Service Composition

Ramy Ragab Hassen, Lhouari Nourine, and Farouk Toumani

LIMOS - CNRS UMR 6158
Universit Blaise Pascal, Clermont-Ferrand

{ragab,nourine,ftoumani}@isima.fr

Abstract. We study the problem of web service protocol composition.
We consider a formal framework where service business protocols are
described by means of Finite State Machines (FSM) and focus on the
protocol synthesis problem, i.e., how to generate automatically a new tar-
get service protocol by reusing some existing ones. We consider a general
case of this problem where the number of instances of existing services
that can be used in a given composition is not bounded a priori. We mo-
tivate the practical interest of investigating such a problem and then we
prove its decidability by providing a sound and complete composition al-
gorithm. Since the main composition algorithm is not primitive recursive,
which means that no theoretical complexity bound can be computed, we
evaluated experimentally the performance of the algorithm on synthetic
data instances and present preliminary results in this paper.

1 Introduction

Web services is an emerging computing paradigm that tends to become the
dominant technology for interoperation among autonomous and distributed ap-
plications in the Internet environment [1]. Informally, a service is a self-contained
and platform-independent application (i.e., program) that can be described, pub-
lished, and invoked over the network by using standards network technologies.
One of the ultimate goals of the web service technology is to enable rapid low-
cost development and easy composition of distributed applications, a goal that
has a long history strewn with only partial successes. To achieve this goal, there
has been recently numerous research work [2,3,4,5,6,7,8,9,10] on the challenges
associated with web service composition. The research problems involved by ser-
vice composition are varied in nature and depends on several issues such as the
kind of the composition process, e.g., manual v.s. automatic, the model used to
describe the services, etc (e.g., see [3]). A line of demarcation between existing
works in this area lies in the nature of the composition process: manual v.s. au-
tomatic. The first category of work deals generally with low-level programming
details and implementation issues (e.g., WS-BPEL1) while automatic service
composition focuses on different issues such as composition verification [2,7,8],
planning [9,10] or synthesis [4,5,6].

1 http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, pp. 38–53, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

Protocol-Based Web Service Composition 39

In this paper we investigate the problem of automatic web service composition.
We consider more particularly the composition synthesis problem, i.e., how to
generate automatically a new target service by reusing some existing ones. We
consider this problem at the web service business protocol abstraction level. A
web service business protocol (or simply, a service protocol) is used to describe
the external behavior of a service. Recent works have drawn attention to the
importance of the state machine based formalisms for modeling the external
behaviors of web services [4,11]. Continuing with this line of research, we build
our work upon a formal framework where web service business protocols are
described by means of Finite State Machines (FSM) and we concentrate on
the following protocol synthesis problem: given a set of n available web service
protocols P1, . . . , Pn and a new target protocol PT , can the behavior described by
PT be synthesized by combining (parts of) the behaviors described by the available
protocols. This problem has already been addressed in recent literature [4,5,6]
under the restriction that the number of instances of an existing service that can
be used in a composition is bounded and fixed a priori. We call this restricted
form of the composition problem the bounded instances protocol (composition)
synthesis problem. It should be noted that this restricted setting is not realistic
and has severe practical limitations that may impede the usage of automatic
service composition by organizations. Indeed, as illustrated in section 3 of this
paper, some very simple cases of web service composition cannot be solved in
such a restricted setting.

Contributions. In this paper, we focus on the general case of protocol syn-
thesis problem by relaxing the restriction on the number of protocol instances
that can be used in a given service composition (i.e., we consider the unbounded
instances case). The decision problem underlying composition existence in such
an unrestricted setting is still an open problem. This paper makes the following
contributions: (i) we show that the composition existence problem can be for-
malized as that of checking simulation between an FSM and a product closure
of a FSM (i.e., an iteratively infinite product of FSMs), (ii) we propose a suit-
able model, called Product Closure State Machine (PCSM), to describe product
closure of a FSM as an infinite state machine, (iii) we extend existing works
in formal models area to prove the decidability of testing simulation between a
FSM and a PCSM, and (iv) we provide a sound and complete web service com-
position algorithm and present first experimental results regarding performance
evaluation of this algorithm.

Organization. The remainder of the paper is organized as follows. Section 2
introduce basic notions. Section 3 defines the service composition problem dealt
with in this paper and points out the main theoretical and practical limitations
of current state of the art. Section 4 presents the main technical results: proof
of the decidability of the considered composition problem as well as a protocol-
based web service composition algorithm. Section 5 describes first experimental
results and Section 6 concludes and draws some directions for future works.

40 R.R. Hassen, L. Nourine, and F. Toumani

2 Preliminaries

We recall some basic notions that will be useful for the rest of this paper. A
State Machine M is a tuple M =< ΣM , SM , FM , q0

M , δM >, where ΣM is a
finite alphabet, SM is a set of states, δM ⊆ SM × ΣM × SM is a set of labeled
transitions (actions), FM ⊆ SM is the set of final states and q0

M ∈ SM is the
initial state. If SM is finite then M is called a Finite State Machine (FSM).

We define below the notions of intermediate and hybrid states of an
FSM M which will be useful in the remainder of this paper. Let M =<
ΣM , SM , FM , q0

M , δM > be a FSM. Then: (i) the set of hybrid states of M , de-
noted Hs(M), contains all the final states of M that have at least one outgoing
transition, and (ii) the set of intermediate states of M , denoted Is(M), contains
the states of SM \ FM that have at least one incoming and one outgoing transi-
tions. For example, the hybrid states of the FSM P1 depicted at figure 1(a) are
Hs(P1) = {V ehicleSelected} while the intermediate states the FSM P2 depicted
at figure 1(b) are Is(P2) = {PaymentEstimation}.

We provide below a definition of the notion of simulation relation be-
tween state machines. Let M =< ΣM , SM , FM , q0

M , δM > and M ′ =<
ΣM ′ , SM ′ , FM ′ , q0

M ′ , δM ′ > be two state machines. A state q1 ∈ SM is simu-
lated by a state q′1 ∈ SM ′ , noted q1 � q′1, iff: (i)∀a ∈ ΣM and ∀q2 ∈ SM s.t.
(q1, a, q2) ∈ δM there is (q′1, a, q′2) ∈ δM ′ s.t. q2 � q′2 and (ii) if q1 ∈ FM , then
q′1 ∈ FM ′ . M is simulated by M ′, noted M � M ′, iff q0

M � q0
M ′ .

Let M =< ΣM , SM , FM , q0
M , δM > and M ′ =< ΣM ′ , SM ′ , FM ′ , q0

M ′ , δM ′ >
be two FSMs. The asynchronous product (or simply, product) of M and M ′,
denoted M ×M ′, is a FSM < ΣM ∪ΣM ′ , SM × SM ′ , FM × FM ′ , (q0

M , q0
M ′), λ >

where the transition function λ is defined as follows: λ = {((q, q′), a, (q1, q1
′)) :

((q, a, q1) ∈ δM and q′ = q′1) or ((q′, a, q1
′) ∈ δM ′ and q = q1)}.

Let k > 0 be a positive integer. The k-iterated product of a state machine
M is defined by M⊗k = M⊗k−1 × M with M⊗1 = M . Recall that a state of
M⊗k is given by a tuple over (SM)k. A product closure of an FSM M , noted
M⊗, is defined as follows: M⊗ =

⋃+∞
i=0 M⊗i It is worth noting that for any finite

positive integer k, the k-iterated product M⊗k is still an FSM. However, this
property does not hold for M⊗ since product closure leads to a state machine
with an infinite number of states.

Let R = {P1, . . . , Pn} be a set of FSMs. In the sequel we use �(R) to denote
the union of the asynchronous product of all the subsets elements of R, i.e.,
�(R) =

⋃
{Pi1 ,...,Pin}⊆2R(Pi1 × . . .× Pin).

3 Web Services Composition

In this section we first define the service composition problem dealt with in this
paper and then we point out the main theoretical and practical limitations in
current state of the art.

Web Services Protocol Model. We consider web services described by means
of their protocols. The main goal of a web service protocol is to describe the

Protocol-Based Web Service Composition 41

Fig. 1. An example of protocol composition

ordering constraints that govern messages exchanges between a service and its
clients (i.e., messages choreography constraints). In this paper, we use the tradi-
tional deterministic finite state-machine formalism to represent messages chore-
ography constraints (the protocol). States represent the different phases that
a service may go through during its interaction with a requester. Transitions
are triggered by messages sent by the requester to the provider or vice versa.
Each transition is labeled with a message name. Usually the message names are
followed by message polarity [11] to denote whether the message is incoming
(e.g., the plus sign) or outgoing (e.g., the minus sign). For simplicity reasons,
and w.l.o.g., we do not consider message polarities in this paper (i.e., incoming
and outgoing messages are considered to be distinguished activities). Therefore,
we obtain a web service protocol model equal the so-called Roman model [4],
i.e., a FSM where transitions are labeled by “abstract” activities. For instance,
figure 1(b) depicts the protocol of an hypothetical financing web service. The
protocol specifies that the financing service is initially in the Start state, and
that clients begin using the service by executing the activity estimate payment,
upon which the service moves to the Payment Estimated state (transition Es-
timatePayement). In the figure, the initial state is indicated by an unlabeled
entering arrow without source while final (accepting) states are double-circled.

The Protocol Synthesis Problem. Let us now turn our attention to the web
service composition problem. We first illustrate this problem on an example. We
assume a repository of two available services S1 and S2, respectively, described
by their protocols P1 and P2 depicted at figure 1(a) and (b). We consider the
development of a new web service ST whose protocol PT , called a target protocol,
is depicted at figure 1(c). An interesting question is to see whether or not it is
possible to implement the service ST by combining the functionality provided
by the available services S1 and S2. Dealing with this composition problem
at the business protocol abstraction level, leads to the following question: is
it possible to generate the protocol PT by combining (parts of) the available
protocols P1 and P2. In our illustrative case the answer is yes and an example
of the composition of the target protocol PT using the protocols P1 and P2 is

42 R.R. Hassen, L. Nourine, and F. Toumani

Fig. 2. Example of the composition bounded case

depicted at figure 1(d). In this case, PT is called the target protocol while P1
and P2 are called the component protocols. The service composition (or protocol
synthesis) problem is defined in [4] as the problem of generating a delegator of a
target service using available services. A delegator is a FSM where the activities
are annotated with suitable delegations in order to specify to which component
each activity of the target service is delegated. Continuing with our example,
figure 1(d) shows a delegator that enables to compose the protocol PT using the
available protocols P1 and P2 of figure 1(a) and ((b). For instance, this delagator
specifies that the activity selectVehicle of the target protocol is delegated to the
protocol P1 while the activity estimatePayment is delegated to the protocol P2.

The notion of a delegator is defined formally in [4] and the composition syn-
thesis problem is expressed as the problem of finding a “correct” delegator for
a given target protocol using a set of available protocols. A crucial question
regarding this problem lies in the number of instances of the available services
that can be used in a composition (i.e., to build a delegator). Figure 2 shows
two examples of delegators, namely PC1 and PC2, that use several instances of
available services to respectively compose target protocols. More precisely, the
delegator PC1 uses two instances of the protocol P1, namely P 1

1 and P 2
1 , to com-

pose the target protocol PT1. The delegator PC2 uses however (may be infinitely)
many instances of the protocols P1 and P2 to compose the protocol PT2. Indeed,
each execution of the loop a.d.b (respectively, c.b) of the target protocol PT2 is
realized by two new instances of the available protocol P1 (respectively, one new
instance of P2). Hence, the number of instances of P1, respectively P2, that can
be used to compose PT2 is unbounded and hence cannot be fixed a priori.

We provide below a definition of a generic protocol synthesis problem that
makes explicit the number of instances of protocols allowed in a composition.
Let R be a repository of services protocols, i.e., R = {Pi, i ∈ [1, n]}, where
each Pi =< Σi, Si, Fi, s

0
i , δi > is a protocol. For each Pi ∈ R, we denote by P j

i

the jth instance of the protocol Pi. Given a protocol repository R, we note by
Rm =

⋃n
i=1{P 1

i , . . . , Pm
i }, with m ∈ N.

Definition 1. generic protocol composition problem Let R be a set of
available service protocols and PT be a target protocol and let k ∈ N. A (generic)
protocol synthesis problem, noted Compose(R, ST , k) is the problem of deciding
whether there exist a composition of PT using Rk.

Protocol-Based Web Service Composition 43

Note that, instances of this generic composition problem are characterized by
the maximal number of instances of component protocols that are allowed to be
used in a given composition. We distinguish in the following between two main
cases, namely the bounded instances and the unbounded instances ones.

Protocol Synthesis Problem: The Bounded Case. Existing works [4,5,6]
that investigated the protocol synthesis problem make the simplifying assump-
tion that k, the number of instances of a service that can be involved in the
composition of a target service is bounded and fixed a priori, i.e., they ad-
dress the problem Compose(R, ST , k). Note that this particular case, called the
bounded instance protocol synthesis problem, can be reduced w.l.o.g to the sim-
plest case where k = 1. Indeed, if k > 1 the problem Compose(R, ST , k) can
be straightforwardly reduced to the problem Compose(Rk, ST , 1). The follow-
ing proposition gives a formalization of the bounded protocol synthesis problem
using the k-iterated product operator.

Proposition 1. Let Compose(R, ST , k) be a protocol synthesis problem with
k a finite positive integer. The problem Compose(R, ST , k) has a solution iff
ST � �(Rk).

The work of [4] shows that the problem Compose(R, ST , 1) can be reduced to
that of testing the satisfiability of a suitable formula of Deterministic Proposi-
tional Dynamic Logic (DPDL). In [5], the PDL-based framework proposed in [4]
is extended to deal with a more expressive protocol model. Interestingly, in [6]
the protocol synthesis problem is reduced to the problem of testing a simulation
relation between the target protocol and the product of the existing protocols.
Using such a reduction, [6] shows the Exptime completeness of the bounded
instances protocol synthesis problem.

It is worth noting that the setting of bounded instances is very restrictive in
the sense that some simple protocol synthesis problems, in which the solution
may use an unbounded number of instances of component protocols, cannot
be solved. As an example, the rather simple composition problem depicted at
figure 2, and which consists in the synthesis of the target protocol PT1 using
the available protocols P1 and P2, cannot be solved by the current state of
the art approaches although a solution (i.e., the delegator PC2) is not complex
to construct. These strong limitations motivated our work on the unbounded
instance case of the protocol synthesis problem.

Protocol Synthesis Problem: The Unbounded Case. In the remainder of
this paper we study the protocol synthesis problem in the case where the number
of protocol instances that can be used in a composition are not bounded a priori
(i.e., the problem Compose(R, ST , +∞)). In other words, given a repositoryR =
{P1, . . . , Pn} of service protocols, we consider the generation of new composite
protocols that can be obtained by an asynchronous product of any subset of
protocols in R+∞. More precisely, we consider the decision problem underlying
the general protocol synthesis problem, i.e., the problem Compose(R, ST , +∞).

44 R.R. Hassen, L. Nourine, and F. Toumani

Problem 1. Let R and ST defined as previously. Is the problem
Compose(R, ST , +∞) decidable?

One way to answer this open question is to consider the related ’simulation
relation’ decision problem. Indeed, Compose(R, ST , +∞) has a solution if ST is
simulated by a product of any subset elements of R+∞ (i.e., ST � �(R+∞)).
Such a characterization of solutions can also be expressed using the product
closure operator as stated below.

Theorem 1. The problem Compose(R, ST , +∞) has a solution iff ST �
�(R+∞) (or equivalently, ST � (�(R))⊗).

The main difficulty here comes from the fact that a product closure of an FSM
is not an FSM. We shall prove in next section that checking simulation between
an FSM M and a product closure of M (i.e., M⊗) is decidable. This enables to
derive the decidability of the protocol synthesis problem.

4 Decidability Problem and Composition Algorithm

In this section we are interested by the problem of testing the existence of a
simulation relation between an FSM and a product closure of an FSM. To inves-
tigate this problem, we need first to define a suitable state machine model that
enables to describe a product closure of an FSM. Various state machine-based
representations may be suitable to tackle our problem such as, for example, shuf-
fle automata, introduced in [12] to recognize the so-called shuffle languages, or
Petri Nets. However, as we deal only with a specific form of shuffle automata, i.e.,
automaton of the form M⊗ where M is an FSM, we use in our work a simpler
tool. We introduce below a state machine, a PCSM (Product Closure State Ma-
chine), that enables to describe the product closure of an FSM. More precisely,
a PCSM is an infinite state machine that describes: (i) all possible executions
of a product closure of an FSM, and (ii) the branching choices at each state of
the execution of such an state machine. It should be noted that PCSMs are a
particular form of the so-called Vector Addition Systems (VAD) [14], which are
nothing other than a variant mathematical notation of Petri Nets. The PCSM
notation turned out to be more convenient to handle proofs and complexity
analysis in our context.

Informally, the product closure M⊗ enables to run an infinite number of parallel
instances of M . A product closure M⊗ may then be described by an FSM similar
to M with an unbounded stack of tokens in each state. The tokens number of a
stack describes the number of parallel instances having reached that state. Let
w ∈ Σ∗

M the input of M⊗, a symbol a ∈ w is recognized by the execution of such
a state machine in two cases : (i) creation of a new instance of M : if there is an
outgoing transition labeled a from the initial state of M to a state q. Upon such a
transition, a token is added to q, or (ii) moving an existing instance of M : if there
exists two states q and q′ such that (q, a, q′) ∈ δM and q has one or more tokens,
then upon this transition, a token is moved from q to q′.

Protocol-Based Web Service Composition 45

Unlike finite state machines, where the instantaneous description (ID) of a
given state machine is given by its current state, an ID of a PCSM involves
the set of its states as well as the number of tokens in each state (number of
instances having reached that state when recognizing a word). We introduce
below the notion of configuration that enables to capture an ID of a PCSM. Let
M =< ΣM , SM , FM , q0

M , δM > be an FSM and let |Is(M)| = l and |Hs(M)| = n
be respectively the set of intermediate and hybrid states of M . We assume states
of Is(M) (respectively, Hs(M)) ordered according to the lexicographical order
and relabeled accordingly with integers from 1 to l (respectively, from l + 1 to
l + n). The configurations of M⊗ are formally defined below.

Definition 2. (Configuration) A configuration C of the product closure M⊗

is a tuple of size l + n of positive integers. The ith element of C, written C[i],
denotes the number of tokens (i.e., instance of M) that are at state i. We say
that C[i] is the witness of the state i in a configuration C. Note that, if i ≤ l
(respectively, i > l) then C[i] is a witness of an intermediate state (respectively,
an hybrid state).

A configuration C is an initial (respectively, final) configuration of M⊗ iff
C[i] = 0, ∀i ∈ [1, l + n] (respectively, iff C[i] = 0, ∀i ∈ [1, l].

Note that, a configuration keeps only the information about intermediate and
hybrid states. Indeed, it is useless to store information about the number of
tokens (i.e., instances of M) that are in final, not hybrid, states since such
instances can no longer contribute to the realization of the target service. In the
same spirit, as the number of instance of M that can be created is infinite (i.e.,
the set of tokens in the initial state is infinite) we do not describe the initial
state in a configuration unless it is also an intermediate state.

Continuing with the example of figure 3, the FSM M contains only one inter-
mediate state (state q1) and one hybrid state (state q2). Hence, a configuration
associated with M⊗ is a pair of integers where the first (respectively, the second)
integer is the witness of the state q1 (respectively, q2). For instance, a configu-
ration C = (2, 3) indicates an instantaneous description of M⊗ in which there
are two instances of M at state q1 and three instances at state q2.

Using the notion of configuration, we formally define below PCSMs.

Fig. 3. An FSM and its corresponding PCSM

46 R.R. Hassen, L. Nourine, and F. Toumani

Definition 3. (PCSM) Let M =< ΣM , SM , FM , q0
M , δM > be a FSM with

|Is(M)| = l and |Hs(M)| = n. The associated PCSM of M is an infinite state
machine M⊗ =< ΣM , C, FC , C0, φ >, where:

– C is an (infinite) set of states consisting of all the configurations of M⊗,
– FC is the set of final configurations of M⊗, i.e., {C ∈ C |C[i] = 0, ∀i ∈ [1, l]},
– C0 is the initial state of M⊗ and corresponds to the initial configuration,

i.e., C0[i] = 0, ∀i ∈ [1, l + n],
– φ ⊆ C × ΣM × C is an infinite set of transitions. The set φ is built as

follows. Let C1 and C2 be two configurations in C. We have (C1, a, C2) ∈ φ
iff (q, a, q′) ∈ δM and one of the following conditions holds:
• q = q0

M and q′ ∈ (FM\Hs(M)) with C1[i] = C2[i], ∀i ∈ [1, l + n], or
• q = q0

M and q′ ∈ (Is(M)∪Hs(M)) with C2[q′] = C1[q′]+1, C1[i] = C2[i],
∀i ∈ [1, l + n] and i 	= q′, or

• {q, q′} ⊆ (Is(M) ∪Hs(M)) with C1[q] > 0, C2[q] = C1[q] − 1, C2[q′] =
C1[q′] + 1, C1[i] = C2[i], ∀i ∈ [1, l + n] and i /∈ {q, q′}, or

• q ∈ (Is(M) ∪ Hs(M)) and q′ ∈ (FM\Hs(M)) with C2[q] = C1[q] − 1,
C1[i] = C2[i], ∀i ∈ [1, l + n] and i 	= q.

Figure 3(b) describes a part of M⊗, the PCSM of the FSM M depicted at
figure 3(a). As mentioned before, configurations of M⊗ are pairs (i, j) where i
(respectively, j) is the witness of the state q1 (respectively, q2). The infinite state
machine M⊗ is initially in the configuration C0 = (0, 0) then it can, for example,
execute the activity a, upon which it moves to the configuration C1 = (1, 0). At
this stage, M⊗ has two possibilities to execute the activity c : (i) by moving
the current instance of M that is at state q1 into the final state q3, or (ii) by
creating a new instance of M and moving it from state q0 into the final state q5.
Note that, as the final states q3 and q5 are not described in configurations, case
(i) make the M⊗ moving back to the configuration C0 while case (ii) makes it
looping on configuration C1.

SimulationDecisionProblem. Weprovidebelowthemainresultof this section.
Problem 2. Let A and M be two FSMs. Is it decidable whether A � M⊗ or,
equivalently, is decidable whether q0

A � C0?.
This section answers positively to this problem by providing a sound and com-
plete algorithm that checks the existence of a simulation relation between a FSM
and a product closure of a FSM.

Note that, the main difficulty to devise our algorithm comes from the fact
that we have to check the existence of a simulation relation between an FSM
and a PCSM, this latter one being an infinite state machine. The corner stone
of our proof is to show that to check the existence of such a simulation rela-
tion we need only to explore a finite part of the corresponding PCSM. We pro-
pose an algorithm made of three main procedures : Check-Sim, Check-Candidate
and Check-Cover. When checking the simulation between a given state q and a
configuration C, the Check-Sim procedure will recursively generate new simula-
tion tests by making calls to the Check-Candidate procedure for each transition
(q, a, q′) in A. This latter procedure enables to check if the state q′ is simulated

Protocol-Based Web Service Composition 47

by at least one configuration C′ such that (C, a, C′) is in M⊗. Informally speak-
ing, the execution of the algorithm can be seen as a tree where the nodes are
labeled with pairs (q, C) and correspond to the calls of the Check-Sim algorithm.
As an example, figure 4(b) shows an execution of a Check-Sim between the initial
state q1 of the FSM of figure 4(a) and the initial configuration C0 = (0, 0) of the
product closure of the FSM of figure 3(a).

A crucial question is then to ensure that the algorithm terminates. Observe
that for each state q′, the number of candidates C′ generated by the Check-
Candidate procedure is linear in the size of M since for any configuration C of a
PCSM M⊗, the number of outgoing transitions is finite and bounded by the total
number of transitions in M . Therefore, to ensure termination of the algorithm it
remains to show that there are no infinite branches in the execution tree of the
algorithm. In the simple case where A is a loop-free FSM, it is easy to see that
the corresponding execution tree of the algorithm is finite since the length of
the branches are bounded by the size of the maximal path in A. For the general
case, a state q belonging to a loop in A may appear an unbounded many times
in a branch of the execution tree of the algorithm. Such a case is illustrated
on the figure 4(b) where the branch depicted in bold involves many times the
state q1 which belongs to the loop (ab)∗ of the FSM A. An important technical
contribution of this work is to provide necessary and sufficient conditions that
enable to cut such infinite branches. This is achieved by the second terminating
condition of the Check-Sim (i.e., the call to the Check-Cover procedure) which
is based on the following property: if a state q appears infinitely many times in
a given branch then there is necessarily a sub-path in this branch from a node
(q, C) to a node (q, C′) such that C′ is a cover of C. Interestingly, this condition
characterizes the cases where a loop in A is simulated by M⊗. Continuing with
the example of figure 4(b), the bold branch which is potentially infinite is cut at
node (q1, (0, 1)) since the configuration (0, 1) is a cover of the configuration (0, 0)
which appear previously in a node (q1, (0, 0)) in the same branch. Note that, to
verify such a condition, the Check-Cover procedure maintains for each state q in
a given branch a list, noted L(q), of all the configurations C′ corresponding to
the nodes (q, C′) of this branch. In our example, we have at node (q1, (0, 1)) of
the bold branch the sequence L(q1) = [(0, 0), (1, 0)].

Fig. 4. Simulation of an FSM by a PCSM

48 R.R. Hassen, L. Nourine, and F. Toumani

Algorithm 1. Check-Sim
Input. Two FSM A and M , a state q of A, a configuration C of M⊗

Output. boolean
begin

if q ∈ FA \ Hs(A) then
return(

�|Is(M)|
i=1 C[i] = 0);

if Check-Cover(q,C) then
Return(true);

for each transition (q, a, q′) in δA do
if not(Check-Candidate(q′ , C, a)) then

return(false);

return(true);
end

The correctness of the algorithm Check-Sim is stated in the following theorem.

Theorem 2. The algorithm Check-Sim halts and is sound and complete.

The proof of this theorem, omitted here for lack of space, is available in [16].
It is worth noting that the proposed proof is constructive in the sense that if
the answer is true, the algorithm may be easily modified to exhibit a simulation
relation between its inputs. This is an interesting point in the context of the
protocol synthesis problem since such a simulation relation can be effectively
used to build a delegator.

Algorithm 2. Check-Candidate
Input. a state q′ of A, a configuration C of M⊗, a ∈ ΣM

Output. boolean
begin

Candidates=∅;
for each transition (C, a, C′) in φ do

if
�|Is(M)|

i=1 C′[i] ≤ norme(q′) then
Candidates= Candidates ∪{C′};

flag=0;
while Candidates�= ∅ and (not flag) do

C′ =first element in Candidates;
flag= Check-Sim(q’,C’);

return(flag);
end

Theorem 3. Let A and M be two FSMs. It is decidable whether A � M⊗.

Finally, in the following corollary, we derive the main result of this work regarding
the addressed web service composition problem.4

Protocol-Based Web Service Composition 49

Algorithm 3. Check-Cover
Input. a state q of A, a configuration C of M⊗

Output. boolean
begin

for C′ ∈ L(q) do
if C′ � C then

return(true);

return(false);
end

Table 1. Description of the test sets

Test ID #S #M #H #L Number of Total number
variants of generated tests

Test 1 200 2, 4, 8 ..
4096

c c 12 12000

Test 2 10, 25, 50,
100, 200

2, 4, 8 ..
4096

c c 60 60000

Test 3 100 10 from 0 to 4 c 5 5000
Test 4 100 10 c 0, 1, 2, 3 4 4000

Corollary 1. Let R and ST defined as previously. The problem
Compose(R, ST , +∞) is decidable.

5 Experimental Evaluation

We implemented our algorithm as part of ServiceMosaic2, a model-driven proto-
type Caise tool for modeling, analyzing, and managing web services. We devel-
opped two main components: (i) WS-protocol-generator that enables to generate
synthetic web service protocols according to several input parameters, such as the
number of transitions per services, number of services, etc, and (ii) WS-protocol-
composer an implementation of our composition algorithm. These components
have been implemented using the JavaTM platform version 6 and the Eclipse
framework where they are deployed as plug-ins.

Evaluation Goals. We can observe that the time complexity of our composition
algorithm depends on the size of the execution tree of the algorithm Check-sim.
The sizes of such a tree vary depending on two main parameters: the degrees of
the nodes (i.e., the number of childrens of a given node) and the depth of the
tree (i.e. the sizes of the paths between the root and the leaves).

To better understand this issue, we focused our first experiments on the analysis
of the impact of the following parameters on the execution time of the algorithm:

2 http://servicemosaic.isima.fr

http://servicemosaic.isima.fr

50 R.R. Hassen, L. Nourine, and F. Toumani

– Number of services in the service repository, noted #S,
– Total number of distinct message labels that appear in the services of the

repository, noted #M,
– Number of hybrid states in each service in the repository, noted #H,
– Level of nested loop in each service in the repository, noted #L.

Indeed, the degree of a node depends on the number of candidates computed
by the procedure Check-Candidate. It corresponds to the number of transitions
labeled by the same message in the services of the repository. Note that the
degree does not depend on the number of active instances of a service, since
using any of them leads to the same configuration. To increase the node degree
one can either increase the number of services (i.e., the value of #S) or decrease
the number of message labels (i.e., the value of #M). Secondly, The depth and
the density of the tree depends on the presence of loops. Indeed, our proof was
based on the Dickson lemma [15] which ensures the finiteness of the Check-
sim procedure when hybrid states are present. This motivates the use of the
parameters #H and #L in our tests. The case where only intermediate states
are considered, the depth of the execution tree is bounded by a factorial function.
As will be seen below, this theoretical deduction was confirmed by the results of
our experimental tests.

Building the Test Sets. To achieve the aforementioned goals, we constructed
4 test sets each of which focusing on the study of some specific parameters
among the ones mentioned above. Each test set describes the main features of
the studied composition problem. The description of the test sets, summarized at
table 1, as well as the results of the experimental evaluation are presented in the
remainder of this section. The experiments have been achieved on Xeon double
process HT 3GHz and 2GO of RAM. In the presented results, the execution
times are given in milliseconds.

Test 1. This test set enables to assess the impact of the number of the distinct
message labels that appear in the available services. For this test set (first line of
the table 1, we defined a first variant with a target service and a repository of 200
available services taking their message from an alphabet of 4096 distinct labels.
Then starting with this first variant, we generate other variants by relabeling at
each step the messages in order to reduce the total number of distinc labels by
magnetitude of 2. The total number of variants is then equal to 12 (i.e., #M =
4096, #M = 2048, #M = 1024, . . . , #M = 2048). Note that, the occurrence of
symbol c in the table 1 indicates a constant value, generated randomly, and used
for the different variants of the test set.

For each of the variant of Test 1, we generated and runned 1000 instances.
The result is reported on figure 5(a). Each point of the given curve denotes
the average execution time of the 1000 instances of the corresponding variant.
Observe that when #M decreases below a given threshold, namely 8 in the
figure, this leads to an exponential blow up in the execution time while above
this threshold, the values of the parameter #M seem to have less impact on the
performance of the algorithm.

Protocol-Based Web Service Composition 51

Fig. 5. Experimental evaluation results

Test 2. In addition to the number of messages labels (#M), this test set enables
to assess the impact of the number of services available in the service repository
(#S). We considered five variants of this test set obtained by varying the value
of the parameter #S (respectively, 10, 25, 50, 100 and 200). As previously,
for each value of #S, we define several variants for different values of #M
(ranging from 4096 to 2). We generated and executed 1000 instances of each
variant (i.e., a total number of 60000 tests). The average execution time of each
variant is reported on figure 5(b). Unsurprisingly, the results show that number
of available services to explore during the composition process impacts the global
performance of the algorithm. Moreover, this test set confirms the trend observed
previously regarding the impact of the number of the distinct message labels on
the performance.

Test 3. Test 3 studies the impact of the number #H of hybrid states (respec-
tively, the level #L of nesting) in the available protocols. As previously, we
generated a first variant of Test 3 with #S = 100 and #M = 10 and #H = 0
(i.e., no hybrid state). Then, we generate other variants by modifying the first
one by increasing the number of hybrid states (from 0 to 4). Therefore, we obtain
a total number of 5 variants. We generate and executed 1000 instances of each
variant. The results are depicted at figure 5(c).

Interestingly, we can observe two main phases in the results depicted on this
figure. In the first phase (from #H = 0 to #H = 1) , the augmentation of

52 R.R. Hassen, L. Nourine, and F. Toumani

the number of hybrid states leads to a proportional increase of the execution
time while we observe the converse behaviour in the second phase (i.e., when
#H > 1, the execution time decreases while #H increases). In fact, above a
given threshold, adding hybrid states increases the number of accepting states
making the complete conversation (i.e., accepted words) shorter.

Test 4. Test 4 studies the impact of the level #L of nested loops in the available
protocols. For this test set, we generate 4 variants with a fixed set of 100 services
and 10 message labels. We distinguish 4 varaiants with respect to the values of
#L (ranging from 0 to 3). We executed 1000 instances of each variant and
reported the average execution time in figure 5(d). As it can be expected, it
turned out that the level of nesting leads to an exponential blow up in the
performance of the algorithm.

6 Conclusion

We have studied the web service protocol synthesis problem in the general case
where the number of protocol instances that can be used in a composition is
unbounded. We made a reduction of this problem to that of of checking simu-
lation between a FSM and a product closure of a FSM. To cope with this later
problem, we first proposed PCAs as a suitable tool for describing the behavior
of a product closure of an FSM and built upon this formal framework to prove
the decidability of checking the simulation relation between a FSM and a PCA.

Our preliminary experimental results show that not only the total number of
services in a repository, but also other parameters, such as the number of message
labels or the level of the nested loops, may influence heavily the performance of
the algorithm.

As a perspective of this work, we point out several interesting issues: (i) the
algorithmic issues related to the optimization of the proposed algorithm as well
as the development of suitable implementation strategies, (ii) complexity, by
identifying particular cases that either reduce the complexity of the problem or
can be solved using classical simulation algorithms, and (iii) extension of our
technique to more expressive models that enable for example modeling message
exchanges and impacts on the real world such as the Colombo model [5].

References

1. Alonso, G., Casati, F., Kuno, H.A., Machiraju, V.: Web Services - Concepts, Ar-
chitectures and Applications. Springer, Heidelberg (2004)

2. Bultan, T., Fu, X., Hull, R., Su, J.: Conversation specification: a new approach
to design and analysis of e-service composition. In: WWW 2003. ACM, New York
(2003)

3. Dustdar, S., Schreiner, W.: A survey on web services composition. International
Journal of Web and Grid Services 1(1), 1–30 (2005)

4. Berardi, D., Calvanese, D., Giacomo, G.D., Lenzerini, M., Mecella, M.: Automatic
service composition based on behavioral descriptions. IJCIS 14(4), 333–376 (2005)

Protocol-Based Web Service Composition 53

5. Berardi, D., Calvanese, D., Giacomo, G.D., Hull, R., Mecella, M.: Automatic com-
position of transition-based semantic web services with messaging. In: VLDB, pp.
613–624 (2005)

6. Muscholl, A., Walukiewicz, I.: A lower bound on web services composition. In:
Seidl, H. (ed.) FOSSACS 2007. LNCS, vol. 4423, pp. 274–286. Springer, Heidelberg
(2007)

7. Narayanan, S., McIlraith, S.: Simulation, verification and automated composition
of web services. In: WWW 2002, pp. 77–88 (2002)

8. Hamadi, R., Benatallah, B.: A Petri net-based model for web service composition.
In: Australasian Database Conference, pp. 191–200 (2003)

9. Traverso, P., Pistore, M.: Automated Composition of Semantic Web Services into
Executable Processes. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.)
ISWC 2004. LNCS, vol. 3298, pp. 380–394. Springer, Heidelberg (2004)

10. McIlraith, S., Son, T.: Adapting Golog for Composition of Semantic Web Services.
In: KR 2002, pp. 482–493 (2002)

11. Benatallah, B., Casati, F., Toumani, F.: Representing, analysing and managing
web service protocols. DKE 58(3), 327–357 (2006)

12. Jedrzejowicz, J., Szepietowski, A.: Shuffle languages are in p. TCS 250(1-2), 31–53
(2001)

13. Warmuth, M.K., Haussler, D.: On the complexity of iterated shuffle. JCSS 28(3),
345–358 (1984)

14. Karp, R., Miller, R.: Parallel Program Schemata. JCSS 3(2), 147–195 (1969)
15. Dickson, L.E.: Finiteness of the odd perfect and primitive abundant numbers with

n distinct prime factors. Amer. Journal Math. 35, 413–422 (1913)
16. Ragab, R., Nourine, L., Toumani, F.: Web services composition is decidable,

http://www.isima.fr/ragab/RNTReport08.pdf

http://www.isima.fr/ragab/RNTReport08.pdf

A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, pp. 54–69, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Design and Implementation of a Fault Tolerant Job Flow
Manager Using Job Flow Patterns and Recovery Policies

Selim Kalayci1, Onyeka Ezenwoye2, Balaji Viswanathan3, Gargi Dasgupta3,
S. Masoud Sadjadi1, and Liana Fong4

1 Florida International University, Miami, FL, USA
{skala001, sadjadi}@cs.fiu.edu

2 South Dakota State University, Brookings, SD, USA
onyeka.ezenwoye@sdstate.edu

3 IBM India Research Lab, New Delhi, India
{gdasgupt, bviswana}@in.ibm.com

4 IBM Watson Research Center, Hawthorne, NY, USA
llfong@us.ibm.com

Abstract. Currently, many grid applications are developed as job flows that are
composed of multiple jobs. The execution of job flows requires the support of a
job flow manager and a job scheduler. Due to the long running nature of job
flows, the support for fault tolerance and recovery policies is especially impor-
tant. This support is inherently complicated due to the sequencing and depend-
ency of jobs within a flow, and the required coordination between workflow
engines and job schedulers. In this paper, we describe the design and implemen-
tation of a job flow manager that supports fault tolerance. First, we identify and
label job flow patterns within a job flow during deployment time. Next, at run-
time, we introduce a proxy that intercepts and resolves faults using job flow
patterns and their corresponding fault-recovery policies. Our design has the ad-
vantages of separation of the job flow and fault handling logic, requiring no
manipulation at the modeling time, and providing flexibility with respect to
fault resolution at runtime. We validate our design with a prototypical imple-
mentation based on the ActiveBPEL workflow engine and GridWay Meta-
scheduler, and Montage application as the case study.

1 Introduction

Currently, many complex computing applications are being developed as job flows
that are composed of multiple lower-function jobs. The execution of these job flows
requires functional support of a job flow manager and a job scheduler. Due to the
typical long running nature of job flows, the support for fault tolerance and recovery
policies is especially important, and requires coordination between workflow engines
and job schedulers. Very often, the failure of a job within a flow cannot be treated in
isolation and recovery actions may need to be applied to preceding and dependent
jobs as well. The interaction of multi-layered grid services with dynamic distributed
resources makes fault-tolerance a critical and challenging aspect of job flow manage-
ment. In this paper, we address fault tolerant issues at runtime using recurrent job
flow patterns, fault tolerant patterns, and a transparent proxy.

 Design and Implementation of a Fault Tolerant Job Flow Manager 55

Many exemplary job flows can be found in grid and cluster computing environ-
ments, such as the Montage application [1], workflows1 in e-Science [2], and many
commercial job flows using Z/OS JCL [3]. Execution of job flows requires functional
support of a job flow manager and a job scheduler, as either two components of an
integrated software or two separate software components. One approach to handle
flow-level compensation is to include failure management logic during the develop-
ment of job flow model. This approach adds the complexity of fault recovery logic to
the application flow. Wei et al. [4] investigated how to incorporate fault handling and
recovery strategy for jobs at modeling time without requiring the user to embed the
recovery logic in the application flows by using a two-staged methodology. How-
ever, their work requires modification of the original flow to incorporate fault-
handling policies at modeling time. An alternate approach is to handle workflow
failures at runtime, without explicit changes to workflow process logic. In
TRAP/BPEL [5], an intermediate proxy traps calls from the workflow engine, and on
behalf of it, implements a runtime failure handling approach for stateless web ser-
vices. However, unlike stateless web services, defining recovery policies for jobs is
more challenging, as different jobs may fail at different stages of execution and may
require different types of recovery actions. Long-running jobs often may require
elaborate cleanup phases on account of failure.

In this paper, we present the architecture of a fault-tolerant job flow manager using
job flow patterns and web services. A salient feature of our architecture is that the
fault-handling for job flow execution can be introduced as late as , requiring no modi-
fications to workflows during the modeling time. Thus, our design also has the advan-
tages of the separation of job flow and fault handling logic, and flexibility in fault
resolution at runtime. Our technique first examines the workflow automatically during
deployment time to identify and label common, recurrent job flow patterns based on a
knowledge base that incorporates up-to-date job flow patterns [6]. Next, we introduce
a proxy that transparently intercepts and monitors job submissions and resolves faults
at runtime using user-defined recovery policies, the identified job flow patterns, and
their corresponding fault-tolerant patterns. Depending on the recovery policies, recov-
ery actions will be selected from the alternative fault-tolerant patterns during runtime.
To validate our design, we implemented a job flow management system using the
open-source software, including ActiveBPEL [7] workflow engine and GridWay
Meta-scheduler [8]. We used the Montage application as the case study.

The rest of this paper is organized as follows. Section 2 provides a brief background
on job flow and fault tolerant patterns. Section 3 provides an architectural overview of
our job flow management system. Section 4 further elaborates on the job flow manage-
ment design. Section 5 introduces our prototypical implementation. Section 6 presents
our experimental results. Section 7 surveys related work. Section 8 concludes the paper
with a short summary of our work and suggests some directions for future work.

2 Job Flow and Fault Tolerant Patterns

Workflow failures have been broadly categorized as work item failures, deadline
expiry, resource unavailability, external triggers, and constraint violation [9]. Some of

1 In this paper, the terms job flows and workflows will be used interchangeably.

56 S. Kalayci et al.

these failures can be handled well by specifying recovery actions at modeling time.
However, in an uncontrolled grid environment, exceptions may occur due to a variety
of reasons. Handling all this at modeling time is infeasible due to the high complexity
it will add to the workflow and the pre-knowledge of all different failure scenarios
that can arise. Prior literature [10] characterizes workflow exceptions for web services
into a set of patterns. These patterns identify the individual task that the exception is
based and all other dependent tasks that need to be handled; and specify the recovery
action to be undertaken. In [6], we classified grid failures into some common patterns
and identified common grid fault-tolerance patterns to be applied to them.

2.1 Job Flow Patterns

Below, we briefly summarize the relevant abstract, reusable patterns presented in [6],
which arise in a job flow management system. The patterns are related to the submis-
sion of jobs from the job flow manager to the job scheduler, the exchange of monitored
information regarding job states between the entities, the staging of data required for
these jobs, and their execution on the scheduler resources.

Job Submission and Monitoring. A job submission by the flow manager to the job
scheduler involves invoking the corresponding job scheduler interfaces to perform the
functions of submission of the job to the resource management layer and monitoring
for any state changes. Examples of different submission patterns are synchronous job
submission and asynchronous submission with polling/notification.

Data Staging. Many grid jobs require input data, and in the absence of a shared file
system, these datasets need to be staged in at the site of execution. A typical data
staging pattern in job flows comprises staging in data from either producer jobs or
from defined inputs, followed by a job submission pattern.

Job Execution. Job execution completion status is captured in the job state and in the
job state transitions. Some job execution failures are best handled by resubmitting the
job either at the same domain or redirecting the job to a new domain. Others may
require additional handling such that getting information from the job definitions.

2.2 Fault Tolerant Patterns

Fig. 1 shows a state transition diagram that models the patterns identified in Section 2.1.
A failure in any one or more of these activities entails a transition to the Failed state and
each such transition represents a fault-pattern. Thus, the specific fault-patterns observed
due to failure at the resource management layer can be classified broadly as job submis-
sion failure, data staging failure, job execution failure, job notification failure, and job
query failure. For each of these faults, we have outlined recovery actions that are
generically repeatable and can be applied as fault tolerant patterns [6]. Some of the
identified fault tolerant patterns include:

Retry job. A job is re-submitted for execution upon the occurrence of an exception
during job submission or execution. In this pattern, jobs are submitted to the same
domain. The resubmission of the job may require modifications in the job specifica-
tion and resource requirements. For example, submission failures that arise from the

 Design and Implementation of a Fault Tolerant Job Flow Manager 57

Fig. 1. Statechart diagram capturing the typical job flow patterns

temporary unavailability of the scheduling service can be recovered by re-submitting
the job whereas execution errors require more detailed analysis of job state, status,
and exit codes as well as a significant amount of domain expertise for fault-handling.
When a job is re-submitted, the job flow manager automatically needs to re-poll or re-
register for the new submission.

Redirect job. A job is redirected to a different domain for execution upon the occur-
rence of an exception during job submission or execution. This fault-tolerant pattern
may be selected because all of its previous attempts of re-submitting to the same do-
main have failed or because it has been decided that the submission of the job to the
current domain has a low probability of success. The input data of the redirected job
is re-staged at the new target domain. Output data may need to be staged out.

Retry query. Polling for job status and/or registration for job status notification is
resumed upon job re-submission. The newly submitted job is transparently re-polled
(possibly using the newly returned job ID). This involves translating and modifying
the original polling messages from the flow manager to map to the re-polling of the
newly re-submitted job.

Force-fail. When no further progress is possible, the job state is changed to Failed.

3 Architecture Overview

In this section, we introduce the architecture of our fault-tolerant job flow manager,
which is depicted in Fig. 2. This architecture incorporates two distinct advantages
with respect to other related works. The first advantage is to avoid introducing the
complexity of the recovery process to the application flows. Hence, the approach
would maintain the separation of concerns. Please note that in Fig. 2, the compo-
nents and arrows with solid line indicate those portions of the architecture related to
the core business logic of the job flow and those with dashed lines relate to the fault-
tolerance and recovery portion of the job flow. Secondly, the approach provides the
flexibility of defining job flow patterns, fault-tolerant patterns, and recovery policies,
which may be stored unto the knowledge base of the system, as late as deployment

58 S. Kalayci et al.

Recovery
Policies

Workflow
BPEL+JSDL

Automatic
Adapter

Workflow
Engine

Transparent
Proxy

Modeling Time Deployment Time Run Time

Adapted
Workflow

Resubmit Forward

Fault-Tolerant
Patterns

Job Flow
Patterns

Workflow
Patterns

Alt. meta
scheduler

meta
scheduler

Legend
Data & Control Flow

Transparent Data & Control Flow

Workflow
Composer

Pattern &
Policy Editor

Knowledge
Base

Fig. 2. The architecture of our fault-tolerant job flow manager

and runtime. The sophistication of recovery policies can grow with the knowledge of
the flow and fault patterns. In addition to the above advantages, our architecture fol-
lows the two-layer design for job flow orchestration and scheduling introduced in [6].
The job flow manager is responsible for execution of the job flow according to the
specified logic while being agnostic to resource allocation decisions. In contrast, the
job scheduler component matches user work requests to grid resources, performs
allocation, and enables distributed execution of the individual jobs in a workflow.

We note that there are many custom job flow and job definition languages used in
the literature to express job flow and individual jobs. The OASIS’s Web Service
Business Process Execution Language (WS-BPEL or BPEL) [11] has attracted many
researchers to explore for job flow specification, as there are numerous implementa-
tions (e.g. ActiveBPEL [7] and Websphere Process Server [12]). Thus, BPEL is used
to express the flow of jobs, their dependencies, and flow of data among the jobs. A
job definition describes a unit of job (e.g. an executable file together with parameters
and resource requirements) to be submitted to a scheduler. The GGF’s Job Submis-
sion Description Language (JSDL) [13] has been accepted by many researchers as the
de-facto job language. Without loss of generality, our design uses BPEL and JSDL
as our reference languages for job flow and job definition.

As illustrated in the left side of Fig. 2, first, a domain expert will use the Workflow
Composer to specify the business logic of the application using BPEL+JSDL. The
domain expert should only be concerned about the business logic of the application
and should not be concerned about handling faults and exceptions. We note that a
BPEL+JSDL workflow is still a valid BPEL. The job descriptions are treated as
complex types in XML, which in turn are used as the parameters to some Invoke
constructs in BPEL. Therefore, any BPEL editor can be used as the workflow com-
poser. We also note that such editors may not have the capability to compose job
descriptions in JSDL, but it is possible to compose job descriptions in JSDL in other
editors and then copy/paste the corresponding XML document.

During deployment time, the resulting workflow is passed to the Automatic
Adapter, which in turn automatically generates a functionally equivalent workflow
with the context information that is needed for the Proxy to monitor the interaction
between the flow manager and the meta-schedulers. The automatic adapter has an
algorithm that identifies the known workflow patterns (e.g. job submission) within the
workflow. The most updated workflow patterns are stored in the Knowledge Base.

 Design and Implementation of a Fault Tolerant Job Flow Manager 59

New workflow patterns can be added to the knowledge base using the Pattern &
Policy Editor. The generated workflow, called adapted workflow, would then include
the context information (e.g. the pattern and job id - details to be provided in the next
section), but it does not have any knowledge of how to handle faults at runtime. In-
stead, the adaptation incorporates some generic interceptors at sensitive join-points in
the original BPEL+JSDL workflow. The most appropriate place to insert interception
hooks in a BPEL+JSDL workflow is at the interaction join-points (i.e. at scheduler
service invocation). The inserted code is in the form of standard BPEL constructs to
ensure the portability of the modified process. This adaptation permits the
BPEL+JSDL workflow behavior to be modified at runtime by the Transparent Proxy.

At runtime, the BPEL+JSDL workflow will be executed by the Workflow Engine.
The workflow engine can be any BPEL engine without any modification or extension,
as we did not extend BPEL in our work. Note that during the automatic adaptation of
the workflow, all the calls originally targeted for the local Meta-scheduler are redi-
rected to the Transparent Proxy [6]. Therefore, the Transparent Proxy will intercept
all the calls to the Meta-scheduler. The Proxy will appear as a Meta-scheduler to the
workflow process, and as a workflow process to the Meta-scheduler; hence, the name
transparent. Its main responsibility includes submission of the intercepted jobs to the
local Meta-scheduler and notifying the workflow process of the job status when it
receives job status updates from the Meta-scheduler. In addition, it implements a
pattern-matching algorithm that monitors the behavior of the intercepted calls and
provides fault-tolerant behavior when faults occur. The algorithm is based on the
classification of exception handling introduced in Section 2, the Recovery Policies,
the context information embedded in the adapted workflow, the Workflow Patterns,
and their corresponding Fault-Tolerant Patterns. For example, following the recovery
policies governing the current faulty situation, the Transparent Proxy may resubmit
the job to the same Meta-scheduler or redirect it to another Meta-scheduler.

4 Detailed Design

In this section we provide the detailed design of our fault-tolerant job flow manager.

Job flow Adaptation. Fig. 3 shows a code snippet of an example job flow that in-
cludes a job submission invocation to the underlying Meta-scheduler. Prior to the
invocation construct, the JSDL definition for the job is copied to the input variable
(jobReqMsg) of the Meta-scheduler. This invocation is replaced during the adaptation
process by the Automatic Adapter with a corresponding invocation to the Transparent
Proxy; thus, the invocations meant for the Meta-scheduler will be intercepted by the
Proxy. Note that the input message for Meta-scheduler is now sent to the Proxy.
Fig. 4 shows the same section of the code as in Fig. 3 after the adaptation process. In
Fig. 4, the invocation to the Meta-scheduler is replaced with that of the Proxy. Note
that invocations to the Proxy have an additional parameter, which is the job identifier
(jobID). The Proxy uses this jobID to monitor and maintain the state of each job from
inception to completion; in other words, from data-staging to completion as depicted
in Fig. 1. This unique jobID helps the Proxy to keep track of the job as it progresses
through each pattern.

60 S. Kalayci et al.

<bpel:assign>
<bpel:copy>

<bpel:from>
<bpel:literal>

<jsdl:JobDescription>
...

</jsdl:JobDescription>
</bpel:literal>

</bpel:from>
<bpel:to part="SubmitJobRequest" variable="jobReqMsg">

<bpel:query>ns1:JSDLDocument</bpel:query>
</bpel:to>

</bpel:copy>
</bpel:assign>
<bpel:invoke partnerLink="jobSubmitPartner"

portType="ns1:JobManagement“
operation="submitJob"
inputVariable="jobReqMsg"
outputVariable="jobResMsg" />

Literal copy of JDSL
document

JDSL assigned to job
request message

Metascheduler
Invocation

<bpel:assign>
…
<bpel:copy>

<bpel:from part="SubmitJobRequest" variable="jobReqMsg"/>
<bpel:to part="SubmitJobRequest" variable="ProxyJobReqMsg"/>

</bpel:copy>
<bpel:copy>

<bpel:from>'001'</bpel:from>
<bpel:to part="JobID" variable="ProxyJobReqMsg"/>

</bpel:copy>
</bpel:assign>
<!-- replaces regular submit job -->
<bpel:invoke partnerLink="ProxyJobManagementPartner"

portType="ns1:ProxyJobManagement"
operation="submitJob"
inputVariable="ProxyJobReqMsg"
outputVariable=“jobResMsg"/>

Job request message
copied to proxy job
request message

Job identifier assigned to
proxy job request message

Proxy Invocation

Fig. 3. Job flow snippet code prior to adaptation Fig. 4. Job flow example snippet code after

the adaptation: invocation to the Proxy

Interface Design. In [14], we introduced a set of APIs for meta-schedulers that sup-
ports interoperability among different meta-schedulers and demonstrated how jobs
originating from a meta-scheduler can be scheduled to run on resources under the
control of other meta-schedulers. In this work, we utilize this common meta-scheduler
interface for communication between the Workflow Engine, Transparent Proxy, and
Meta-scheduler. The job submission interface provided by the underlying Meta-
scheduler layer, defines the following operations. The submitJob operation submits a
job to the Meta-scheduler in JSDL format. If the job gets successfully submitted, the
Meta-scheduler returns the corresponding job id for this job. The getProperties opera-
tion queries the status of a certain job by specifying its job id. The queryJobs opera-
tion queries the status of all submitted jobs during the current session. Certain filters
for the jobs to be queried can be provided optionally. The cancelJob operation cancels
the execution of a certain job specified by its jobID.

The Transparent Proxy interface extends the interface of the Meta-scheduler. As
mentioned before, the operations of the Proxy interface require an additional parame-
ter for job identification (jobID). The Proxy, acting as an intermediary between the
Workflow Engine and the Meta-scheduler, requires the jobID in order to keep track of
the interactions between the Workflow Engine and the Meta-scheduler; the intended
pattern is implied by the invoked operation (e.g. submitJob operation for job submis-
sion pattern and queryJobs for poll job status pattern). The Proxy also maintains state
information about individual jobs.

Fault Handling and Recovery Policies. On receipt of an invocation, the Proxy stores
any necessary information and redirects the call to the local Meta-scheduler. Any
reply from the Meta-scheduler is routed through the Proxy. In the event of a fault, the
Proxy can enact fault-tolerance actions as defined in the recovery policy. The se-
quence diagram in Fig. 5 shows the interactions between the Workflow Engine,
Transparent Proxy, Meta-scheduler, and Alternative Meta-scheduler during a job
submission.

 Design and Implementation of a Fault Tolerant Job Flow Manager 61

Flow Engine Proxy Meta Scheduler Alt. Meta Scheduler

submitJob(req, jobid)

submitJob(req)

scheduler job ID

readPolicy(fault)

submitJob(req)

submitJob(req)

scheduler job ID

scheduler job ID
scheduler job ID

fault

Fig. 5. The interactions between Workflow Engine, Transparent Proxy, Meta-scheduler, and
Alternate Meta-scheduler during job submission

Job submission

Operation failed Invalid arguments Service unavailableTimeout

Retry Redirect

Task

Fault

Fault handling Force-
Fail

Retry Redirect

Fig. 6. A graphical representation of an example recovery policy for job submission

As shown in the figure, the Proxy redirects a job submission call to the Meta-
scheduler and initiates a timer to measure the time of the invocation; the duration of
the timer is defined in the recovery policy for this particular invocation. In the event
of a fault (or timeout), the Proxy will either retry the job submission to the same
Meta-scheduler or redirect the job to an alternative Meta-scheduler. The Proxy con-
sults the recovery policy to determine what action to take. The number of retries,
length of retry interval, and maximum number of attempts to redirect the job may be
defined in the recovery policy.

Fig. 6 shows a graphical model of an example recovery policy where a set of pos-
sible faults are associated with the job submission task. Recovery actions are defined
for those specified fault events. For example, a retry of job submission is specified for
a timeout fault. If the retries are exhausted for the same fault, the Proxy is then re-
quired to redirect the job submission to an alternative Meta-scheduler. A failed opera-
tion follows its normal fault handling process in the workflow and the Proxy does not
get involved in this situation. A Force-Fail (section 2.2) is enacted for an “invalid
arguments” fault and a Retry/Redirect operation is required if the desired Meta-
scheduler is unavailable. Similar recovery policy specifications can be specified for

62 S. Kalayci et al.

the data-staging and job-status-polling stages of the job. This policy model can be
easily represented in XML within the policy document. The advantages of this model
are: (1) simplification of representation; (2) ease of extension; and (3) flexibility since
recovery actions do not have to be hardcoded in the Proxy.

5 Prototypical Implementation

This section presents the details of our fault-tolerant job flow management prototype
setup at Florida International University (FIU) that consists of a job flow manager, a
Proxy and a scheduler component. For building this testbed, we used the ActiveB-
PEL flow engine (v4.1), and the Meta-scheduler built based on the Globus Toolkit
(GT4) [15], and GridWay Meta-scheduler (v5.2.3). We used the DRMAA [16] API
for job submission, monitoring, and controlling.

To detect faults during job submission, job monitoring, or job execution, the Proxy
maintains an internal state machine and several timers for each job. The state machine
at the Proxy is same as the one shown in Fig. 1. On fault-detection, the Proxy consults
its policy knowledge base and takes the necessary actions specified in the policy file.
Policies, defined in XML, are generic and thus apply to all jobs. The snippet of a
generic policy file used by the Proxy is shown in Fig. 7.

< p o l i cy t y p e= " g e ne r i c " >
< d a t aS t a g in g / >
< j o b St a g i ng / >
< j o b Su b m i ss i o n >

< t h re s h o l ds >
< t i me o u t se c o n d s= " 2 0 " />
< m a xR e t r y v a l u e =" 2 " / >

< r e tr y I n t er v a l se c o n d s= " 2 0 "/ >
< m a xR e di r e c t v a l u e =" 1 " / >

< / t hr e s h o ld s >
< f a ul t >

< e r ro r t y pe = " T r an s p o r t" v a lu e = " H TT P / 1 .1 4 0 4 "/ >
< t h re s h o l ds >

< t i me o u t se c o n d s= " 5 0 "/ >
< m ax R e d ir e c t va l u e = "3 " / >

< / t hr e s h o ld s >
< h a nd l e r >

< a c ti o n v al u e = " Re d i r ect" / >
< / h an d l e r >

< / f au l t >
< f a u l t>

< e r ro r t y pe = " a l l" / >
< h a nd l e r >
< a c ti o n v al u e = " Re t r y "/ >
< / h an d l e r >

< / f au l t >
< / j o bS u b m is s i o n >

< / p o l ic y >

Ge n er ic Po l ic y

D e f au lt Thr e sh o ld
V a lue s

O v e rr i d e t h e De f au lt
Th re sh o ld V al uesSp ec if ic Fa u lt

a nd R e c o v ery
Sp ec if ic at io n

R e co v e ry ac t io n
fo r ‘a ll’ oth er
Fa u lts
Sp e c ifi ca t io n

R ed i rec t the jo b to
an o t he r d o m a in

R etr y th e
o p era t io n a t the
sa m ed o m ai n

Fig. 7. A generic policy example snippet

In this policy example, a list of fault handlers can be specified (fault elements in
Fig. 7), each capable of handling a specific fault (error elements). The fault handlers
are matched in sequence and the first matching fault handler is applied. Fault han-
dling is done by performing the associated sequence of recovery actions (action ele-
ments). A default handler which matches all faults (error type=“all”) can apply a
generic set of recovery actions for all unmatched faults.

 Design and Implementation of a Fault Tolerant Job Flow Manager 63

We used the Montage application [1]
for this experimentation. The applica-
tion structure, as shown in Fig. 8, con-
sists of the computational workflow of
re-projection of input images (mPro-
ject), modeling of background radiation
(mDiffFit), rectification of images
(mBackground) and co-addition of re-
projected, background corrected images
into a final mosaic (mAdd). Activities
like mProject and mDiffFit can run as
parallel tasks. The most computationally
intensive step is that of mProject while
the most data-intensive steps are that of
mOverlaps and mBackground. The inherent parallelism among jobs in its different
stages makes Montage a very suitable candidate application for grid enablement.

6 Experimental Results

We setup our Montage application execution environment on two different platforms: the
first, called GCB, is an eight node cluster, with dual P4@3GHz and 1 GB of memory per
node, running GT4, Rocks, and CentOS 4.4. The second, called Skywarp, is a single
node P4 with 1 GB of memory as the alternative execution environment. Both environ-
ments have the same Meta-scheduler setup and Montage executables and libraries.

6.1 Proxy Overhead and Opportunistic Behavior Analysis

When there is no fault to be handled by the Proxy, the Proxy intercepts all interactions
between Flow Engine and the Meta-scheduler; causing a small amount of overhead
during job flow execution. To calculate this performance overhead, we executed the
same workflow on GCB, both with and without our fault tolerant infrastructure. Table 1
presents the average statistics from 5 separate runs without any faults during the execu-
tion. As indicated in the column with the heading “No Slowdown”, the Proxy introduces
a very small overhead in execution time.

In some cases the presence of a Proxy may not be necessary for the successful
completion of the workflow. However, it may provide better performance (depending
on the system load at the time). One such scenario is the slowdown during the service
call directed towards the Meta-scheduler, resulting in a long delay before getting back

Table 1. Average Montage workflow runtime table on GCB with/without Proxy

 No Slowdown 1 Slowdown 2 Slowdowns
No Proxy 18 min. 44 sec. 19 min. 12 sec. 19 min. 43 sec.

With Proxy 18 min. 46 sec. 19 min. 01 sec. 19 min. 14 sec.

Fig. 8. Montage Application

mImag e

mBa ckground

m Project

m Overlaps

mBgModel

m Add

mD if fFit

64 S. Kalayci et al.

Fig. 9. Average total service calls completion time for successive calls

with a reply. In this case, the Proxy can detect the slowdown in the Meta-scheduler
service and redirect the requested service to the alternative Meta-scheduler, which is
idle at the time. We call this the opportunistic behavior of the Proxy. For the class of
short-running jobs, we present results for two such slowdowns in Table 1. Each
slowdown lasted for 30 seconds, while the Proxy’s call timeout value was configured
at 10 seconds. The recovery policy was set to Redirect. Table 1 (columns 2, 3) dem-
onstrates the opportunistic behavior of Proxy that results in shorter runtimes in case of
slowdown/interruption in service. Figure 9 shows the series of individual request
completion time with and without the Proxy.

6.2 Fault-Recovery Scenarios and Experimental Results

This section details the specific fault and recovery scenarios we experimented with
while inducing faults in our test-bed for the Montage workflow:

1. Job submission faults:

a. The particular web service is not available and the service returns a transport
level error (such as HTTP 503: Service Unavailable Message).

b. The submit request message gets to the Job Submission Web Service, but the
service internally decides to send a Service Unavailable Fault message.

c. Timeout value that matches for the current job is exceeded.

Proxy Action: Retry the job request on the same domain for a maximum of N times,
with M seconds interval between each retry. If after N retries job submission doesn’t
succeed, try another fault-tolerant pattern (i.e., Redirect).

2. Job status query faults:

a. An “UnknownResourceFault” message is returned by the operation “get-
Properties”. This may occur due to an unknown job id (i.e., a job id not rec-
ognized by Meta-scheduler).

 Design and Implementation of a Fault Tolerant Job Flow Manager 65

Fig. 10. Sequence diagram for scenario 2.a. Proxy first enacts the “Retry Query” on the same
domain (GCB), then on another domain (Skywarp).

Proxy Action: Retry the corresponding job on the same domain. Again, the policy can
specify the number of retries. If this action does not complete successfully, repeat the
same action on another domain. The sequence diagram for Scenario 2.a can be seen in
Fig. 10, where N (number of retries) is set to be 1.

3. Other Job faults :

a. The recovery actions for 1.a, 1.b and 1.c (e.g. Resubmit Job pattern) fail. In
this case the job is redirected to a new domain.

b. A “No Service” fault occurs when a job submission request is sent to a do-
main, but the service does not exist due to either the service was never de-
ployed, or it was migrated. (For e.g. HTTP 404 error: Page Not Found). In
this scenario, there is no benefit in retrying the job at the same domain, and
hence can be directly redirected.

Proxy Action: Redirect the job submission request to another domain. Policies specify
the number of maximum redirecting attempts value.

66 S. Kalayci et al.

Table 2 summarizes results from our experiments that simulate the above men-
tioned failure and recovery scenarios. Each row reports the number of patterns applied
by the Proxy in different fault scenarios and the average execution times observed
across multiple runs of the Montage workflow. Test 1 represents the base case with no
faults. For all the other cases, the same policy file was used with the timeout = 20
seconds, retryInterval = 20 seconds and maxRetry = 2. In order to measure the time
values in isolation from the specific service that was faulted, each enumerated fault
within Test 2-4 was generated at the same point (i.e. before the same service call for
the specific task) throughout the workflow.

Total execution time values for Test 3 and Test 4 are comparable as the Proxy be-
havior is similar for the “Service Unavailable” and “Connection Error” fault types.
However, Test 2 has a higher execution time than both Test 3 and Test 4, because
while the faults are reactively and immediately raised, the timeouts are passively
observed. Test 5 has much higher execution time than the remaining tests, substan-
tially because of the large number of Redirects. In this test, upon a “Service Unavail-
able” or “Connection Error” fault, a job redirection occurs after the Retry Job pattern
fails. This means that each extra Redirect introduces at least 40 seconds (maxRetry *
retryInterval) to the total execution time.

Table 2. Runtime table for 5 different simulations of the Montage workflow. Number of “Retry
Job”, “Redirect” and “Retry Operation” patterns applied by the Proxy is given for each service
and each fault type.

 Fault Type

Service
 (Pattern)

Timeout

Service
Unavailable

Connection
Error

No
Service

Total
Execution

Time

SubmitJob
 (Retry Job/Redirect)

0/0

0/0

0/0

-/0

Test 1 GetProperties
(Retry Operation/Redirect)

0/0

0/0

0/0

-/0

18 min.
46 sec.

SubmitJob
(Retry Job/Redirect)

3/1

0/0

0/0

-/0

Test 2 GetProperties
(Retry Operation/Redirect)

3/1

0/0

0/0

-/0

23 min.
18 sec.

SubmitJob
 (Retry Job/Redirect)

0/0

3/1

0/0

-/0

Test 3 GetProperties
(Retry Operation/Redirect)

0/0

3/1

0/0

-/0

22 min.
06 sec.

SubmitJob
 (Retry Job/Redirect)

0/0

0/0

3/1

-/0

Test 4 GetProperties
(Retry Operation/Redirect)

0/0

0/0

3/1

-/0

21 min.
56 sec.

SubmitJob
(Retry Job/Redirect)

0/0

2/1

2/1

-/1

Test 5 GetProperties
(Retry Operation/Redirect)

0/0

2/1

2/1

-/1

25 min
 43 sec.

 Design and Implementation of a Fault Tolerant Job Flow Manager 67

7 Related Work

Condor [17] addresses faults that occur due to job failure, communications faults and
other unusual and erroneous conditions via job resubmissions and restarts. DAGMan,
the workflow engine in Condor, is responsible for enforcing the dependencies be-
tween the jobs defined in the workflow. In case of job failure, DAGMan can retry a
job for a given number of times, or a job flow generated as a rescue DAG can be
potentially modified and re-submitted at a later time.

The approach in BPEL4JOB [4] investigated the incorporation of fault handling
policies in BPEL workflows at flow model development time. It used a two staged
methodology: embedding only the recovery policies in the application flow and then
expanding the application flow to include the recovery processes. Unlike our ap-
proach to handle faults at execution time, this approach would require modification of
the application flow and modeling tooling.

Since modeling-time fault-handling requires knowledge of all faults a-priori, an al-
ternate approach is to handle these failures at runtime. The Pegasus project [18] pro-
vides support for just-in-time planning, which follows a lazy approach for mapping
sub-flows to the currently available resources. This approach works better than static
mapping in dynamic resource conditions. However, if a job fails at runtime, it blindly
re-schedules the entire sub-flow without looking into the source of the problem. In
[19], the authors study the impact of runtime optimizations made at the scheduler for
handling workload surges, while minimizing the reconfiguration overhead. However,
identification of failure causes and fault-tolerant patterns is not addressed. Prior work
in [9] characterizes workflow exceptions for web services into a set of patterns that
specify how the individual task on which the exception is based and all other depend-
ent tasks should be handled and what recovery action (if any) is to be undertaken. In
the workflow domain, worklets [10] have been proposed to build extensible dynamic
fault-handling services for Yet Another Workflow Language (YAWL). This work
presents a detailed taxonomy of exception patterns in the web services domain from
which a dynamic runtime selection is made depending on the context of the exception
and the particular work instance.

8 Conclusion and Future Work

In this paper, we proposed the approach of addressing the fault tolerant issues at de-
ployment and runtime, in comparison to various fault recovery strategies at the mod-
eling time. We adapt job flows at deployment time and automatically incorporate
context information to be used by the Transparent Proxy, which intercepts potential
faults at runtime. The Transparent Proxy searches the populated knowledge-base with
recurrent job flow patterns and fault tolerant patterns, and then finds the pre-defined
recovery strategies from the recovery policies to handle the fault. This approach has
two distinct advantages: (1) maintaining separation of concerns between application
flow and recovery strategies; and (2) flexibility of defining job flow patterns, fault
patterns, and recovery strategies as late as deployment or runtime. We validated our
approach with a prototypical implementation using ActiveBPEL workflow engine,
GridWay Meta-scheduler and the Montage application and presented experimental

68 S. Kalayci et al.

data collected on the validation system. Our current experimentation uses a selected
set of job flow and fault patterns, and a limited set of recovery strategies expressed
simply in a policy file. Possible future work would include exploration of additional
flow and fault patterns and more sophisticated recovery strategies using semantic and
data information of the job flows.

Acknowledgement. This work was supported in part by IBM, the National Science
Foundation (grants OISE-0730065, OCI-0636031, HRD-0833093, and HRD-
0317692). Any opinions, findings and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect those of the NSF
and IBM.

References

1. Berriman, G.: Montage: A Grid enabled image mosaic service for the national virtual ob-
servatory. Astronomical Data Analysis Software and Systems XIII (2003)

2. Taylor, I.J., et al. (eds.): Workflows for e-Science. Springer, Heidelberg (2007)
3. Brown, G.D.: Z/OS JC, 5th edn. Wiley Publisher, Chichester (2002)
4. Tan, W., Fong, L., Bobroff, N.: BPEL4Job: a fault-handling design for job flow manage-

ment. In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749,
pp. 27–42. Springer, Heidelberg (2007)

5. Ezenwoye, O., Sadjadi, S.M.: TRAP/BPEL: A Framework for Dynamic Adaptation of
Composite Services. In: International Conference on Web Information Systems and Tech-
nologies (WEBIST-2007), Barcelona, Spain (2007)

6. Dasgupta, G., Ezenwoye, O., Fong, L., Kalayci, S., Sadjadi, S.M., Viswanathan, B.:
Design of a Fault-Tolerant Job-Flow Manager for Grid Environments Using Standard
Technologies, Job-Flow Patterns, and a Transparent Proxy. In: Proceedings of 20th Inter-
national Conference on Software Engineering and Knowledge Engineering (SEKE), Red-
wood City, CA (July 2008)

7. ActiveBPEL, http://www.activevos.com/community-open-source.php
8. Huedo, E., Montero, R.S., Llorente, I.M.: The GridWay Framework for Adaptive Schedul-

ing and Execution on Grids. In: Workshop on Adaptive Grid Middleware, Intl. Conf. Par-
allel Architectures and Compilation Techniques (PACT 2003) (September 2003)

9. Russell, N., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Workflow Exception Patterns.
In: Dubois, E., Pohl, K. (eds.) CAiSE 2006. LNCS, vol. 4001. Springer, Heidelberg (2006)

10. Adams, M., ter Hofstede, A.H.M., Edmond, D., van der Aalst, W.M.P.: Dynamic and Ex-
tensible Exception Handling for Workflows: A Service-Oriented Implementation. BPM
Center Report BPM-07-03, BPMcenter.org (2007)

11. Jordan, D., et al.: Web Services Business Process Execution Language Version 2.0 (2007),
http://docs.oasis-open.org/wsbpel/2.0/CS01/wsbpel-v2.0-CS01.pdf

12. IBM Websphere Process Server,
http://www-306.ibm.com/software/integration/wps/

13. Anjomshoaa, A., et al.: Job Submission Description Language (JSDL) Specification v1.0.
Proposed Recommendation from the JSDL Working Group (2005), http://
www.gridforum.org/documents/GFD.56.pdf

14. Bobroff, N., Fong, L., Kalayci, S., Liu, Y., Martinez, J.C., Rodero, I., Sadjadi, S.M.,
Villegas, D.: Enabling Interoperability among Meta-Schedulers. In: IEEE 8th International
Symposium on Cluster Computing and the Grid (ccGrid) (May 2008)

 Design and Implementation of a Fault Tolerant Job Flow Manager 69

15. Foster, I., Kesselman, C.: Globus: A Metacomputing Infrastructure Toolkit. In: Proceed-
ings of the Workshop on Environments and Tools for Parallel Scientific Computing,
SIAM, Lyon, France (August 1996)

16. Rajic, H., et al.: Distributed Resource Management Application API Specification 1.0.
Technical report, DRMAA. Working Group - The Global Grid Forum (2003)

17. Couvares, P., et al.: Workflow Management in Condor. In: Taylor, I.J., et al. (eds.) Work-
flows for e-Science. Springer Press, Heidelberg (2007)

18. Deelman, E., et al.: Pegasus: a Framework for Mapping Complex Scientific Workflows
onto Distributed Systems. Scientific Programming Journal 13(3), 219–237 (2005)

19. Dasgupta, G., Dasgupta, K., Viswanathan, B.: Data-WISE: Efficient management of data-
intensive workloads in scheduled Grid environments. In: Proceedings of IEEE/IFIP Net-
work Operations and Management Symposium, NOMS (2008)

Building Mashups for the Enterprise with
SABRE

Ziyan Maraikar1,�, Alexander Lazovik2,��, and Farhad Arbab1

1 Centrum voor Wiskunde en Informatica, The Netherlands
{maraikar,farhad}@cwi.nl

2 INRIA Saclay, Parc Club Orsay Université, France
lazovik@lri.fr

Abstract. The explosive popularity of mashups has given rise to a
plethora of web-based tools for rapidly building mashups with minimal
programming effort. In turn, this has spurred interest in using these tools
to empower end-users to build situational applications for business. Sit-
uational applications based on Reo (SABRE) is a service composition
platform that addresses service heterogeneity as a first-class concern by
adopting a mashup’s data-centric approach. Built atop the Reo coor-
dination language, SABRE provides tools to combine, filter and trans-
form web services and data sources like RSS and ATOM feeds. Whereas
other mashup platforms intermingle data transformation logic and I/O
concerns, we aim to clearly separate them by formalising coordination
logic within a mashup. Reo’s well-defined compositional semantics opens
up the possibility of constructing a mashup’s core logic from a library
of prebuilt connectors. Input/output in SABRE is handled by service
stubs generated by combining a syntactic service specification such as
WSDL with a constraint automaton specifying service behaviour. These
stubs insulate services from misbehaving clients while protecting clients
against services that do not conform to their contracts. We believe these
are compelling features as mashups graduate from curiosities on the Web
to situational applications for the enterprise.

1 Introduction

A recent trend in web applications has been the emergence of so-called mashups.
Mashups are web applications that literally mash-up or combine disparate web
services, RSS and ATOM feeds and other data sources in new and interesting
ways. They compose these services in ways usually unanticipated by their original
authors. Mashups are thus, ad-hoc by very nature.

More formal approaches to service-oriented computing (SOC), such as WS-
BPEL[9], assume the availability of uniform service interfaces and service meta-
data available in centralised registries. Yet the Utopian promise of uniform service
� Supported by NWO project BRICKS-AFM3.

�� This work was carried out during the tenure of an ERCIM “Alain Bensoussan”
Fellowship Programme.

A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, pp. 70–83, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Building Mashups for the Enterprise with SABRE 71

interface standards, metadata and universal service registries, in the form of the
SOAP, WSDL and UDDI, standards has proven elusive. Instead, prominent web
service providers like Google, Yahoo, Amazon and eBay have opted to use light-
weight protocols like RSS and ATOM to push data to consumers, while exposing
their service offerings as simple REST-style[10] APIs. In turn, each of these service
provider APIs have their own syntax and semantics.

A holistic approach to SOC on the Web, must therefore embrace service het-
erogeneity as a first-class concern, instead of relegating it to a mere implemen-
tation detail. Where mashups succeed is in adopting a data-centric approach to
service composition. In a sense, they follow the UNIX tradition of gluing arbi-
trary programmes together using pipes and text processing tools like awk and
sed, to meet any need. We believe this is a useful approach that complements the
traditional control-driven coordination and orchestration exemplified by BPEL.

Situational applications based on Reo (SABRE) aims to have the best of
both world by marrying formal SOC with the data-driven approach of mashups.
SABRE’s contributions are threefold. First, it structures mashups by introducing
a clear separation of concerns between service coordination and input/output.
Secondly, by using the Reo coordination language[2] (described in §4) we are able
to graphically define not just data mangling, but also the semantics of service
composition, that is, the synchronisation constraints we wish to impose between
services. Thirdly, SABRE’s automatically generated service stubs isolates faults
caused either by services that do not conform to their contracts or by misbehav-
ing clients. We put these ideas into practice by providing a rich suite of tools to
graphically define a mashups’ data-driven logic and service interfaces with pre-
cise formal semantics, automatically generate service stubs and a deployment
environment running in an Java application container such as Apache Tomcat.

The rest of this paper is organised as follows. In §2 we review the state of
the art in mashup platforms and traditional service composition. A discussion
of applicability of mashup platforms for service-oriented computing, together
with a motivating example appear in §3. In §4 we consider Reo as a means of
formalising coordination of services within mashups. In §5 we apply constraint
automata as a unifying formalism for Reo as well as a behavioural specification
of services. We describe a reference implementation for the SABRE framework
and its architectural issues in §6. We conclude in §7, with a summary of the
paper and a discussion of our further work.

2 Related Work

2.1 Mashup Platforms

Mashups can, and are, built using traditional web scripting languages like Perl,
PHP and JavaScript. Their explosive popularity has however, given rise to a
number of “mashup platforms” for building mashups, with minimal program-
ming. This trend parallels the rise of rapid application development (RAD) tools
to ease the development of graphical user interfaces in the 90’s.

72 Z. Maraikar, A. Lazovik, and F. Arbab

The use of mashups as situational applications in enterprise environments is ad-
dressed in [11]. They use the phrase “enterprise information mashup fabric” to de-
scribe mashup platforms for the enterprise. DAMIA[1] is a concrete realisation of
these ideas for building mashups on corporate intranets. Both SABRE’s tools and
runtime environmenthave similarities toDAMIA.However,wearemore concerned
with enabling compositional construction of mashups with well defined semantics.
In this respect the SABRE tools share a common purpose with the SENSORIA
Development Environment[21] (SDE) for semantic-based development of service-
oriented systems. Whereas SDE is a general-purpose SOC tool suite, SABRE fo-
cuses on exclusively on tools for data-driven service coordination.

SABRE also borrows ideas from commercial mashup platforms. Google mashup
Editor1(GME) is a textual mashup tool that uses XML based mark-up, combined
with HTML and optionally, JavaScript. Each user-interface element in the mashup
is defined using a module tag that groups an input data source with a template
specifying the format of the resulting output. Yahoo Pipes2, another commercial
offering, takes a graphical approach to mashup creation. A variety of data sources
can be plumbed through so-called pipes that filter and transform data. Predefined
pipes are available to connect to data sources like RSS feeds, REST and SOAP web
services, perform string, number, and date manipulation, and filter and sort data.
Complex pipes may be composed of primitives and invoke external services. Pipes
superficially resemble channels in Reo (§4) and SABRE’s editor closely resembles
the Pipes Editor, but Reo and its tool suite described in §6 actually predates Ya-
hoo Pipes.

Most mashup platforms commingle the core coordination logic of the mashup
with external input/output and user interface concerns. Furthermore, none of
them consider the semantics of the services being used. Consequently none sup-
port true compositional construction of a mashup’s logic. For instance, while
Yahoo Pipes supports composing pipes, its notion of composition is limited to
data transformation operations. Arguably, this notion of composition is suffi-
cient for building the types of simple mashups commonly found on the Web. As
mashups migrate into enterprise environments, however, more formal notions of
service composition and coordination become highly desirable. SABRE aims to
provide the features necessary to support this use case, without unduly burden-
ing the mashup developer.

2.2 Service Coordination

Service coordination refers to managing interactions among different business
processes and any atomic services that they may entail. Currently WS-BPEL[9]
and WS-CDL[12] are the most widely used languages dealing with orchestra-
tion and choreography, respectively. While BPEL is a powerful standard for
composition of services, it lacks support for actual coordination of services. Or-
chestration and choreography, have received considerable attention in the web

1 http://googlemashups.com
2 http://pipes.yahoo.com

Building Mashups for the Enterprise with SABRE 73

services community, and separate standards (e.g., WS-CDL) are being proposed
for them. However, orchestration and choreograph are in fact, different facets
of coordination. Thus, it is questionable whether such fragmented solutions for
various aspects of coordination, which involve incongruent models and standards
for choreography and orchestration, can yield a satisfactory SOA. Most efforts
up to now have been focused on statically defined coordination (compositions),
as in BPEL. To the best of our knowledge the issues involved in dynamic coor-
dination of web services with continuously changing requirements have not been
seriously considered. The closest attempts consider automatic or semi-automatic
service composition, service discovery, etc. However, all these approaches mainly
concentrate on how to compose a service, and do not pay adequate attention to
the coordination of existing services.

In SABRE we use the channel-based exogenous coordination language Reo [2]
to specify mashup logic. Reo supports a specific notion of composition that en-
ables coordinated composition of individual services as well as composed business
processes. It is claimed that BPEL-like languages maintain service independence,
but in practice they hard-wire services through the connections that they specify
in the process itself. Reo in contrast, allows us to concentrate only on impor-
tant protocol decisions and define only those restrictions that actually form the
domain knowledge, leaving more freedom for process specification, choice of in-
dividual services, and their run-time execution. In traditional SOC, it is often
difficult and costly to make any modification to the process, due to the complex
relationships among its participants. This is a by-product of forcing a process
designer to explicitly define all steps in precise execution order in the process
specification, resulting from the use of essentially sequential, imperative, and
process oriented languages and tools. It is extremely difficult to adapt such over-
specified processes to accommodate even minor deviations in implementation.
By placing interaction and its coordination at the centre of attention, Reo lifts
the level of abstraction for the specification of composed processes.

Several other formalisms have also been developed for composition and co-
ordination of distributed entities e.g., based on Petri nets and π-calculus, and
coordination based on mobile channels[19]. However, these general frameworks
do not particularly cater to certain issues in service-oriented computing, e.g.,
non-deterministic nature of services or late binding of service implementations.

3 Mashups Versus Service-Oriented Computing

The upshot of the discussion in §2 is that while mashups and traditional BPEL-
style SOC have their strengths, each has many shortcomings that need to be
addressed. Since SABRE attempts to bridge the gap between classical SOC and
mashups, we begin by trying to identify how SOC best-practises apply to the
mashup building process.

Separation of concerns. By virtue of being ad-hoc there is tight coupling
between the data mangling logic, the utilised services and feeds, and user

74 Z. Maraikar, A. Lazovik, and F. Arbab

interface elements that render the data in mashups. SOC regards having a
clear separation between these concerns as highly desirable.

Composition and coordination. In the context of a mashup, composition
usually boils down to ad-hoc “data mangling”; that is, filtering combining
and transforming various inputs to generate desired outputs. Furthermore, a
mashup’s logic should be composable from reusable blocks to facilitate quick,
modular construction. No mashup platforms known to us, has any notion
of service semantics. Therefore existing mashup platforms cannot support
the notion of service coordination. In SOC is control-driven coordination
exemplified by BPEL is the norm, but this style does not mesh well with the
data-driven nature of mashups.

Service contracts and fault isolation. A service should have both a syntac-
tic specification, using WSDL for example, and a behavioural specification of
its semantics. Such precise service contracts shields services from misbehav-
ing clients, while ensuring services actually adhere to their contracts. This
helps isolate faults due to misbehaving clients or services. Although there is
extensive research on behavioural specification, no industry standards cur-
rently exist.

Service binding. There is an inherent trade-off between flexibility in service
binding vs. dealing with service heterogeneity. The late-binding approach ad-
vocated in SOC assumes uniform service interfaces, and universal registries.
Conversely, mashups handle heterogeneity at the cost of being tightly cou-
pled to the services they use. Ideally, we would like a limited form of late-
binding at least for standard input source like RSS feeds.

For the remainder of this paper we use the “Sports-fan Dashboard” example to
demonstrate mashup development in SABRE, and highlight how we achieve the
the first three improvements identified above. Our example mashup shows rele-

Fig. 1. Example sports-fan mashup user interface

Building Mashups for the Enterprise with SABRE 75

vant information based on the fixture schedule of a sports team. The Dashboard
uses an RSS or ATOM feed containing a schedule of team fixtures. A fixture
calender for Ajax FC for example, is available on Google Calendar3. Once the
user chooses a match of interest the Sports-fan Dashboard display the following
information: (i) a map showing the venue; (ii) news articles about the match;
(iii) weather forecast for the day of the match; (iv) option to purchase tickets
online, if the weather forecast is “good”4. Figure 1 shows a screenshot of the
running application.

4 Specifying Mashup Logic with Reo

We formalise the the core logic within a mashup by encoding it in Reo. Reo
is exogenous in that it imposes a coordination pattern on components, without
any knowledge of the internals of the components and without the components
having any knowledge of the coordination. This makes Reo ideal for coordinating
services from a data-centric perspective. Coordination in Reo is specified by
a connector consisting of nodes and primitives. Formally, a Reo connector is
defined as follows:

Definition 1 (Reo connector). A connector C = 〈N ,P , E, node, prim, type〉
consists of a set N of nodes, a set P of primitives, a set E of primitive ends
and functions:

– node : E → N , assigning a node to each primitive end,
– prim : E → P, assigning a primitive to each primitive end,
– type : E → {src, snk}, assigning a type to each primitive end.

A node is where the execution of different primitives is synchronised. Data flow
at a node occurs, iff (i) at least one of the attached sink ends provides data and
(ii) all attached source ends are able to accept data. A node does a destructive
read at one of its sink ends and replicates the data obtained to every one of its
source ends.

Typically, Reo primitives are channels. Channels can be attached to nodes
to compose connectors. The ends of a channel can be either source ends, which
accept data or sink ends which produce data. The actual semantics of a channel
depends on its type. Reo does not restrict the possible channels used as long as
their semantics is provided. Nodes, however, have the fixed semantics defined
above, which specifies their routing constraints. Table 1 describes the behaviour
of some common Reo channels. The top three channels represent synchronous
communication. A channel is called synchronous if it delays the success of the
appropriate pairs of operations on its two ends such that they can succeed only
simultaneously. Note that a Reo connector built from synchronous channels is
stateless and its execution is instantaneous in an all-or-nothing fashion. The
3 http://www.google.com/calendar/embed?src=
jdtvbcrk1vtpn5ec4ptnnfnd6lc0udfprt.calendar.google.com

4 Admittedly this was contrived to show the utility of channel composition in Reo.

76 Z. Maraikar, A. Lazovik, and F. Arbab

Table 1. Behaviour of common Reo channels

Sync Simultaneously accepts data on one end and passes it
out the other end

SyncDrain Simultaneously accepts data on both ends
SyncSpout Simultaneously produces data on both ends
LossySync Behaves as a Sync if a take operation is pending on

the output end, otherwise the data is lost

Filter Passes data matching a filter pattern and loses the
rest

FIFO Buffers a single data item.

FIFO channel enables us to add stateful behaviour to a connector. An extensive
discussion of Reo, various channel types and numerous examples can be found
in [2]. Formal semantics for Reo has been given using constraint automata[6],
connector colouring[7] and structured operational semantics[17].

Once channels are composed into a complex connector, it can be used disre-
garding its internal details. As an example consider the XOR element shown in
Figure 2, built out of five sync channels, two lossy sync channels, and a sync
drain. The intuitive behaviour of this connector is that data obtained as input
through A is delivered to one of the output nodes F or G. If both F and G is
willing to accept data then the merger at node E non-deterministically selects
which side of the connector will succeed in passing the data. The sync drain
channel B -E and the two C -E, D -E channels ensure that data flows at only one
of C and D, and hence F and G.

Fig. 2. XOR connector

Services are independent distributed entities that utilise Reo channels and
connectors to communicate. The service implementation details remain fully
internal to individual elements, while the behaviour of the whole system is coor-
dinated by the Reo circuit. A deeper treatment of using Reo for service coordi-
nation is given in [14]. We discuss how we interface services with Reo in SABRE
is §5.1.

Building Mashups for the Enterprise with SABRE 77

4.1 Building the Sports-Fan Dashboard in SABRE

Augmenting the Reo tool suite with filter and transformer channels, gives
SABRE the data mangling functionality common to other mashup platforms.
Filter channels take a filter expression e.g. a data type or regular expression to
match against. If a datum matches the filter expression it passes through the
channel, otherwise it is dropped . A transformer channel, likewise, accepts a data
transformation expressed e.g. as a sed -like text replacement or using XPath or
XSLT. Each input datum is rewritten according to the transform expression as
it passes through. Filters and transformers can also execute user-defined func-
tions. For example, a geo-coding channel that converts place names to latitude
and longitude can invoke an external service. Semantically, a filter acts as a
specialised lossy sync channel while a transformer acts as a sync.

Fig. 3. Reo connector implementing Sports fan mashup’s coordination

Figure 3 shows the coordination in our sports fan application defined in Reo.
The connector works as follows. Whenever the calendar service has a new event,
it is written to node A. From A, the data is passed to node D when the user

78 Z. Maraikar, A. Lazovik, and F. Arbab

interface is ready to accept it. In parallel, data about the new event is also
transferred to the RSS and map services, if they are on-line. Otherwise, the
lossy channels A-B and A-H just discard the data. The map service provides
the location information to the user interface (through the K-G channel) and to
the weather service to retrieve the local forecast (K-J channel). The transformer
C-E uses an XPath expression to extract titles from the RSS feed for display in
the user interface. Whenever the user presses the “Proceed to payment” button,
the connector passes the required data through channel N-R. The SyncDrain
channel Q-R prevents data flow through the N-R-O pair of channels if the output
of the weather service does not “approve” it through the filter channel L-Q,
which accepts the data only if the forecast weather forecast is either “good”
or “fair”. When the ticket reservation is approved (via a Google Checkout test
payment account), the result is put into the FIFO channel P-F. The user interface
application then receives the current payment status from the buffer.

Using Reo as the basis for coordination offers a number of advantages. A
unique feature of SABRE is that connector in Figure 3 completely specifies
not just the data mangling logic, but also synchronisation constraints between
services. Just as in Yahoo Pipes, SABRE’s transformer and filter channels can
be composed to effect aggregate data filtering and transformation operations.
However, thanks to Reo’s semantic compositionality, we can also define much
more powerful constructs such as the XOR connector in Figure 2. Using library
of such predefined connectors, a mashup’s coordination logic can be composed
with precise formal semantics.

5 Behavioural Specification of Service Using Constraint
Automata

Numerous formalisms for behavioural specification have been proposed such as
I/O automata[16] and open workflow nets[15]. We use constraint automata[6] to
specify the behaviour of services that interact with a SABRE mashup. Constraint
automata enables the to use the same formalism as an operational model for the
core mashup logic modelled in Reo and for behavioural specification of services
we interface with.

Definition 2 (Constraint Automaton[6]). A constraint automaton (over the
data domain Data) is a tuple A = (Q,N ,→, Q0) where

– Q is a set of states,
– N is a finite set of port names,
– DC(N , Data) the data constraints, are sets of port name - data assignments,
– −→ the transition relation of A is a subset of Q× 2N ×DC ×Q

– Q0 ⊆ Q is the set of initial states.

For every transition (q,N , g, p) ∈−→ we require that: (1) N 	= ∅, and (2) g ∈
DC(N , Data).

Building Mashups for the Enterprise with SABRE 79

A thorough treatment of using constraint automaton as an operational model for
Reo connectors can be found in [6]. Intuitively, states represent the configurations
of the connector, the transitions the possible one-step behaviour. The meaning of

q
(N,g)−→ p is that in configuration q the port names Ai ∈ N have the possibility to

perform I/O operations that meet the guard g and that lead from configuration
q to p, while the other ports Aj ∈ N\N do not perform any I/O-operation. We
discuss the use of constraint automata for service specification below.

5.1 Interfacing Web Services with the Sports-Fan Dashboard

Input/output considerations are an integral part of mashup design. We use con-
straint automata to specify service behaviour in the typical fashion that labelled
transition systems are used as formal models for reactive systems. SABRE uses
stubs automatically generated from behavioural specifications to bind to ser-
vices. We extend the method of specifying service behaviour using constraint
automata described in [20] to allow for asynchronous service invocation.

Fig. 4. Constraint automaton specifying the behaviour of the Checkout Service

We use the “Checkout” service in Figure 3 to demonstrate behavioural specifi-
cation using constraint automata. Suppose this service consists of two operations:
selectTickets and pay. We map each synchronous operations in the service
interface to a constraint automaton port with the same name. Asynchronous
operations are mapped to two port names suffixed by i and r, corresponding
to the operation invocation and return, respectively. In Figure 4, we specify that
selectTickets is a synchronous operation by placing the single port name on
a transition. Following selectTickets, a client must invoke the asynchronous
pay operation that returns a boolean value indicating success or failure. We use
constraints to specify data-dependent state changes. For example, based on the
return value of the pay invocation, we either request payment again, or permit
the client to select another ticket to purchase.

80 Z. Maraikar, A. Lazovik, and F. Arbab

6 Implementation

The SABRE implementation consists of a mashup design tool and a runtime
environment for mashup execution. The design tool is an enhanced version of
the Eclipse Coordination Tools [3] (ECT) — a suite of graphical tools for Reo.
Built on the Eclipse Graphical Modelling Framework, ECT consists of graphical
editors for Reo connectors, an animator for visualising a connector’s semantics,
transformation from Reo to constraint automata, and a model checker for con-
straint automata. The addition of filter and transformer channels brings the data
mangling features found in graphical mashup builders like Yahoo Pipes to ECT’s
Reo editor. We are integrating the Smooks data transformation framework5 into
SABRE, to enable more powerful filter constraints and data transformations to
be specified in a declarative fashion.

SABRE’s execution environment depicted in Figure 5, consists of a Reo engine
and a management interface, hosted in a servlet container such as Tomcat. Reo
has several executable implementations available, any of which may be used to
run a SABRE mashup. ReoCP is a constraint programming engine that directly
executes a Reo circuit based on the colouring semantics for Reo [8]. CASP [3]
generates Java code from a constraint automaton representation of a Reo con-
nector. A distributed Reo implementation [18] on Scala Actors is ongoing. Any
one of these engines may be plugged into the SABRE runtime via a common
interface, depending on the specific deployment needs of the application. For ex-
ample, a deployment requiring run-time changes to the connector may choose to
use ReoCP, while deploying a very large connector is best done using distributed
Reo.

The management interface lets a user deploy Reo connectors, and start and
stop connector instances via a web browser. Once a connectors is deployed
and started, the runtime initialises the Reo engine with the given connector
and instantiates service stubs and other server-side components. Stubs for ser-
vices (ovals on the left) and user interface elements (ovals on the right), depicted
in Figure 5, communicate with the engine via synchronous read and write op-
erations on ports (arrows) of the Reo connector being run by the engine. The
SABRE runtime also maps ports to URLs, which may be used by remote com-
ponents to read and write data to ports using HTTP GET and PUT operations
respectively.

SABRE generates Java service stub classes from a constraint automaton and
a Java interface6 declaring operations a service provides. Each start state of the
automaton is mapped to a thread which listens for reads and writes on the ports
of the outgoing transitions of the current state. Once all ports of a transition are
active, the thread invokes the corresponding operation(s) with the parameters
received on invocation ports and/or writes any return values to return ports.

For user interface creation we envisage a library of common user interface
elements like maps and clickable lists. A user interface element may either execute

5 http://milyn.codehaus.org/Smooks
6 WSDL specification can be easily translated to Java using tools like Apache Axis.

Building Mashups for the Enterprise with SABRE 81

Fig. 5. Sports-fan Dashboard deployed on the SABRE runtime environment

locally on the same server as the mashup, or remotely on the user’s browser, such
as a component using the Google Maps JavaScript API. Such browser-based UI
elements may use JavaScript’s XMLHTTPRequest object to perform I/O via the
URL mapped ports, with the Reo connector executing on the server7.

7 Conclusion and Future Work

We have presented a framework for rapid composition of heterogeneous data and
services on the Web. Rather than approach service coordination from the tradi-
tional control flow perspective, we take a data-centric view inspired by mashups.
The SABRE framework permits compositional construction of mashups with
precise semantics and fault isolation, without sacrificing rapid development and
flexibility inherent in mashups. The synchronous semantics of Reo gives us simple
transactions that can ensure that a chain of components connected by channels
all execute atomically. Compensation is another major concern in specification
and implementation of business processes that involve long running transac-
tions. We intend to adapt the schemes used to translate the compensation con-
structs available in the BPMN standard to provide a compensation mechanism
for SABRE [4]. In summary, SABRE improves on the current state of the art in
mashup construction platforms by leveraging the strengths of Reo, by using it
as the basis for formalising coordination logic in a mashup.

7 This is the same technique known as AJAX in common parlance.

82 Z. Maraikar, A. Lazovik, and F. Arbab

Specifying service behaviour in constraint automata is onerous for casual
mashup development. An alternative is to describe a service by a UML sequence
diagram and then extract the behavioural specification in the form of a con-
straint automaton [5]. Ongoing work on Reo also makes it possible dynamically
reconfigure connectors based on graph transformations [13]. Dynamic reconfig-
uration opens up possibilities such as run time service discovery and binding.
Finally, we would like to add more prepackaged components along the lines of
Yahoo Pipes and streamline SABRE’s graphical interface to make it accessible
to non-technical end-users.

References

1. Altinel, M., Brown, P., Cline, S., Kartha, R., Louie, E., Markl, V., Mau, L., Ng,
Y., Simmen, D., Singh, A.: Damia - a data mashup fabric for intranet applications.
In: VLDB, pp. 1370–1373 (2007)

2. Arbab, F.: Reo: a Channel-based Coordination Model for Component Composition.
Mathematical Structures in Computer Science 14, 329–366 (2004)

3. Arbab, F., Koehler, C., Maraikar, Z., Moon, Y., Proença, J.: Modeling, testing and
executing Reo connectors with the Eclipse Coordination Tools. In: Proceedings of
FACS, SCP (to appear, 2008)

4. Arbab, F., Kokash, N., Sun, M.: Towards using Reo for compliance-aware Business
Process Modelling. In: Proceedings of ISOLA (to appear, 2008)

5. Arbab, F., Meng, S.: Synthesis of connectors from scenario-based interaction spec-
ifications. In: Chaudron, M.R.V., Szyperski, C., Reussner, R. (eds.) CBSE 2008.
LNCS, vol. 5282, pp. 114–129. Springer, Heidelberg (2008)

6. Baier, C., Sirjani, M., Arbab, F., Rutten, J.: Modeling component connectors in
Reo by Constraint Automata. Sci. Comput. Program 61(2), 75–113 (2006)

7. Clarke, D., Costa, D., Arbab, F.: Connector colouring I: Synchronisation and con-
text dependency. Electr. Notes Theor. Comput. Sci. 154(1), 101–119 (2006)

8. Clarke, D., Proença, J., Lazovik, A., Arbab, F.: Deconstructing Reo. In: Proceed-
ings of FOCLASA. ENTCS (to appear, 2008)

9. Curbera, F., Goland, Y., Klein, J., Leymann, F.: Business process execution lan-
guage for web services. Technical report, IBM (2002),
http://www.ibm.com/developerworks/library/ws-bpel/

10. Fielding, R.: Architectural styles and the design of network-based software archi-
tectures. PhD thesis, Chair-Richard N. Taylor (2000)

11. Jhingran, A.: Enterprise information mashups: Integrating information, simply. In:
VLDB, pp. 3–4 (2006)

12. Kavantzas, N., Burdett, D., Ritzinger, G.: Web services choreography description
language (WS-CDL) version 1.0. Working draft, W3C (2004),
http://www.w3.org/TR/2004/WD-ws-cdl-10-20040427

13. Koehler, C., Costa, D., Proenca, J., Arbab, F.: Reconfiguration of Reo connectors
triggered by dataflow. In: Proceedings of GT-VMT. Electronic Communications of
the EASST, vol. 10 (2008)

14. Lazovik, A., Arbab, F.: Using Reo for service coordination. In: Krämer, B.J., Lin,
K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 398–403. Springer,
Heidelberg (2007)

Building Mashups for the Enterprise with SABRE 83

15. Lohmann, N., Massuthe, P., Wolf, K.: Behavioral constraints for services (chapter
Behavioral Constraints for Services). In: Alonso, G., Dadam, P., Rosemann, M.
(eds.) BPM 2007. LNCS, vol. 4714, pp. 271–287. Springer, Heidelberg (2007)

16. Lynch, N., Tuttle, M.: An introduction to input/output automata. Technical re-
port, Centrum voor Wiskunde en Informatica, Amsterdam, The Netherlands (1980)

17. Mousavi, M., Sirjani, M., Arbab, F.: Formal semantics and analysis of component
connectors in Reo. ENTCS 154(1), 83–99 (2006)

18. J. Proença Towards Distributed Reo. In: CIC workshop (2007),
http://homepages.cwi.nl/∼proenca/distributedreo

19. Scholten, J., Arbab, F., de Boer, F., Bonsangue, M.: A component coordination
model based on mobile channels. Fundam. Inform. 73(4), 561–582 (2006)

20. Sun, M., Arbab, F.: Web Services Choreography And Orchestration In Reo And
Constraint Automata. In: Proceedings of the 2007 ACM Symposium on Applied
Computing (SAC), pp. 346–353. ACM, New York (2007)

21. Wirsing, M., Clark, A., Gilmore, S., Hölzl, M., Knapp, A., Koch, N., Schroeder, A.:
Semantic-Based Development of Service-Oriented Systems. In: Najm, E., Pradat-
Peyre, J.-F., Donzeau-Gouge, V.V. (eds.) FORTE 2006. LNCS, vol. 4229, pp. 24–
45. Springer, Heidelberg (2006)

Adaptation of Service Protocols Using Process
Algebra and On-the-Fly Reduction Techniques

Radu Mateescu1, Pascal Poizat2,3, and Gwen Salaün4

1 INRIA/VASY project-team, aile de l’Ingénieur, bât. LE2I, Dijon, France
radu.mateescu@inria.fr

2 INRIA/ARLES project-team, France
pascal.poizat@inria.fr

3 IBISC FRE 3910 CNRS – Université d’Évry Val d’Essonne, France
4 University of Málaga, Spain

salaun@lcc.uma.es

Abstract. Software Adaptation is a hot topic in Software Engineering
since it is the only way to compose non-intrusively black-box compo-
nents or services with mismatching interfaces. However, adaptation is a
complex issue especially when behavioral descriptions of services are con-
sidered. This paper presents optimised techniques to generate adaptor
protocols, being given a set of service interfaces involved in a composi-
tion and an adaptation contract. In this work, interfaces are described
using a signature, and a protocol that takes value passing into account.
Our proposal is completely supported by tools that automate the gener-
ation and the verification of the adaptor protocols. Last, we show how
our adaptation techniques are implemented into BPEL.

1 Introduction

Service composition is a central issue in Service Oriented Computing. Reuse of
existing entities is mandatory not to implement again the same blocks of soft-
ware, and then help developers to reduce development time, respect delays, and
have their companies save money by diminishing software design costs. However,
direct reuse and composition of existing services is in most of cases impossible
because their interfaces present some incompatibilities. Software Adaptation [3]
is a very promising solution to compose in a non-intrusive way black-box com-
ponents or (Web) services whose functionality is as required for the new system,
although they present interface mismatches. Adaptation techniques aim at au-
tomatically generating new components called adaptors, and usually rely on an
adaptation contract which is an abstract description of how mismatches can be
worked out. All the messages pass through the adaptor which acts as an orches-
trator, and makes the involved services work correctly together by compensating
mismatches.

Contributions. Model-based behavioral adaptation approaches are either re-
strictive or generative. Restrictive approaches [5,2] try to solve the problem by

A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, pp. 84–99, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Adaptation of Service Protocols 85

cutting off (pruning) the behaviors that may lead to mismatch, thus restrict-
ing the functionality of the services involved. Generative approaches [4,7] try to
accommodate the protocols without restricting the behavior of the services, by
generating adaptors that act as mediators, remembering and reordering events
and data when necessary. In the current state of the art, restrictive approaches
are fully automated and are directly related to programming languages, but they
do not support advanced adaptation scenarios. On the other hand, generative
approaches suffer from the computational complexity of generating adaptors,
often lack of tool support, and are not related to implementation languages. In
this paper, we propose model-based adaptation techniques that are both gen-
erative and restrictive since we support complex adaptation scenarios (such as
message reordering), while removing incorrect behaviors. We also diminish the
computational complexity of adaptor generation by using on-the-fly exploration
and reduction techniques to avoid the generation of the full state space of the
adaptor under construction. Last, let us emphasize that our approach is fully
supported by tools we implemented, and adaptors are finally implemented using
service implementation languages.

Approach. In this paper, we first present a model of services that makes it pos-
sible to describe signatures (operation names and types) and behaviors (interac-
tion protocols). Protocols are essential because erroneous executions or deadlock
situations may occur if the designer does not take them into account while build-
ing composite services. More than only considering messages exchanged in proto-
cols, it is important to include value passing (parameters) coming with messages
since this feature may raise composition issues too (unmatching number of pa-
rameters, different ordering, etc). Next, we introduce the contract notation that
is used to describe how mismatches appearing in signatures and protocols can
be worked out by defining correspondences between messages but also between
message parameters. Then, from a set of service protocols and a contract, we
present our approach to generate adaptor protocols which relies on (i) encodings
into the LOTOS process algebra [14], and (ii) on-the-fly exploration and reduc-
tion techniques. Verification of contracts is also possible by using CADP [13] a
rich verification toolbox for LOTOS. Last but not least, we show how adaptors
can be implemented in the WS-BPEL (BPEL for short) service orchestration
language. Our proposal is supported by tools (Fig. 1) that automate the extrac-
tion of abstract interfaces from XML description of services (BPEL2STS), the
generation of the LOTOS encoding (Compositor), the efficient computation of
the adaptor protocol from the LOTOS specification (Scrutator), the verification
of the adapted system (Evaluator), and the generation of BPEL from adaptor
models (STS2BPEL). The only step of our approach which requires manual in-
tervention is the adaptation contract construction.

Outline. The remainder of this paper is structured as follows. Section 2 presents
our model of services. Section 3 introduces the contract notation which is used
for adaptation purposes. In Section 4, we present the adaptor generation and
verification techniques. Section 5 focuses on adaptor implementation. Section 6

86 R. Mateescu, P. Poizat, and G. Salaün

Fig. 1. Overview of our approach

compares our approach to related work, and Section 7 ends the paper with some
concluding remarks.

2 Service Model

In this section we present our service interface model. We assume that service in-
terfaces are given using both a signature and a protocol. Signatures correspond
to operation profiles described using WSDL, i.e., operation names associated
with argument and return types relative to the messages and data being ex-
changed when the operation is called. Additionally, we propose that protocols
are represented by means of Symbolic Transition Systems (STSs) which are La-
belled Transition Systems (LTSs) extended with value passing (data parameters
coming with messages). Communication between services is represented using
events relative to the emission (denoted using !) and reception (denoted using ?)
of messages corresponding to operation calls. Events may come with a set of
data terms whose types respect the operation signatures. In our model, a label is
either the internal action (tau) or a tuple (SI, M, D, PL) where SI is a service
identifier, M is a message name, D stands for the direction (!,?), and PL is
either a list of data terms if the message corresponds to an emission, or a list of
variables if the message is a reception.

An STS is a tuple (A, S, I, F, T) where: A is an alphabet that corresponds to
message events relative to the service provided and required operations, S is a
set of states, I ∈ S is the initial state, F ∈ S are final states, and T ∈ S×A×S is
the transition function. This formal model has been chosen because it is simple,
graphical, and it can be easily derived from existing implementation platforms’
languages, see for instance [10,21,9] where such abstractions for Web services

Adaptation of Service Protocols 87

EasyRestaurant (er)

availabilityCheck!resp:bool

book?id:stringbook!

availabilityCheck?restau:string,
 nbpers:int, when:datetime

availabilityCheck?restau:string,
 nbpers:int, when:datetime

USER (u)

search!place:string
search?select:addr

tau

tau

tau

quit!

tau
reserve?avail:bool

tauconfirm!name:string

search!place:string

reserve!restau:string,

 nbpers:int
 date:datetime,

bookTaxi!myadd:addr,
 date:datetime

YellowPages (yp)

find?name:string

find!select:addr,map:map

eTaxi (et)
book?ad:addr,
 date:datetime

book!ad:addr,
 date:datetime

Fig. 2. Example – service protocols

were used for verification, composition or adaptation purposes. For space reasons,
in the rest of the paper, we will describe service interfaces only with their STSs.
Signatures will be left implicit, yet they can be inferred from the typing of
arguments (made explicit here) in STS labels.

Example. We will use throughout this paper an on-line restaurant booking
system as a running example. First of all, let us present the three existing services
we reuse to build this new system (Fig. 2). Service YellowPages can receive a
search request, and returns an address and a map. Service EasyRestaurant can
receive and answer availability requests to check if a restaurant has room for a
given date and number of people. After these interactions, this service can receive
a booking message and send an acknowledgement back. Service eTaxi receives
booking requests with address and date. In addition, we give the system end-user
requirements (USER). The user can first look for a place. Then, (s)he can search
again, quit, or reserve a restaurant found in the former step. If reservation is
possible, the user can accept and book a taxi if necessary. The tau transitions
in the user protocol stand for internal decisions taken by her/him.

3 Adaptation Contracts

In this section, we present the adaptation contract notation that allows us to
specify interactions and to work mismatch situations out. We rely on synchro-
nization vectors [1] (or vectors for short). They express correspondences between
messages, like bindings between ports or connectors in architectural descriptions.
Each event appearing in a vector is executed by one service and the overall result
corresponds to an interaction between all the involved services. A vector may
involve any number of services and does not require interactions occuring on the
same names of events. Furthermore, variables are used in events as placeholders
for message parameters. The same variable name appearing in different events
(possibly in different vectors) enables one to relate sent and received message

88 R. Mateescu, P. Poizat, and G. Salaün

USER
(u)

search

qui t

conf i rm

bookTaxi

search

reserve

reserve

YellowPages
 (yp)f ind

f ind

EasyRestaurant
 (er)availabil i tyCheck

availabil i tyCheck

book
book

eTaxi
 (et)book

book

output port

input port

Vres2

Vres1

Vsearch1, Vsearch2, Vquit

Vsearch1

Vquit, Vconf1, Vconf2
 Vbtaxi1, Vbtaxi2

Fig. 3. Example – (left) system architecture, (right) vector LTS

parameters. Vectors can be either written by hand or obtained from a graphical
description of the architecture built by the designer (Fig. 3).

However, vectors are not sufficient to support more advanced adaptation sce-
narios such as contextual rules, choice between vectors or, more generally, or-
dering (e.g., when one message in some service corresponds to several in another
service, which requires to apply several vectors in sequence). The ordering in
which vectors have to be applied can be specified using different notations such
as regular expressions, LTSs, or (Hierarchical) Message Sequence Charts. Due
to their readability and user-friendliness, we chose to specify adaptation con-
tracts using vector LTSs, that is, LTSs whose labels are vectors. In addition,
vector LTSs ease the development of adaptation algorithms since they provide
an explicit description of the adaptation contract set of states. An adaptation
contract for a set of service STSs is a couple (V, L) where V is a set of vec-
tors, and L is a vector LTS built over V . If only message name correspon-
dences are necessary to solve mismatches between services, the vector LTS may
leave the vector application order unconstrained using a single state and all
vector transitions looping on it. In particular, this pattern may be used on spe-
cific parts of the contract for which the designer does not want to impose any
ordering.

Example. The very first step in the construction of an adaptation contract
is to relate messages, and then building the architecture of the system-to-be.
The graphical architecture of our booking system is shown in Figure 3 (left)
where for instance the search messages in the user requirements correspond to
the find ones in the YellowPages service. A specific notation is used to denote an
unsynchronized message, i.e., a message with no correspondence (see quit in the
user requirements for example).

However, such an architecture is not sufficient because we are considering value
passing too, and data exchanged through messages (Fig. 2) have to be matched
as well. We give below the vectors that are first deduced automatically from the
architecture and complemented with data mappings. As an example the search
request emitted by the user comes with a parameter (place) whose counterpart
is the argument coming with the reception of find in the YellowPages service

Adaptation of Service Protocols 89

(vector Vsearch1). Next, in vector Vsearch2, we can see that answer sent by the
YellowPages service comes with two parameters, one of which is matched (select)
but the other one (map) is received by the adaptor yet never used afterwards
in any other vector. An example of data reordering exists in vector Vres1. Note
that the variable scope is not limited to one vector, and a data received in a
vector can be used (sent) in another. We have implemented analysis techniques
to check possible scope inconsistencies (see Section 4.3).

Vsearch1 = 〈u :search!place; yp :find?place〉
Vsearch2 = 〈u :search?select; yp :find!select, map〉
Vquit = 〈u :quit!〉
Vres1 = 〈u : reserve!restau, date, nbpers; er :availabilityCheck?restau, nbpers, date〉
Vres2 = 〈u : reserve?resp; er :availabilityCheck!resp〉
Vconf1 = 〈u :confirm!name; er :book?name〉
Vconf2 = 〈er :book!〉
Vbtaxi1 = 〈u :bookTaxi!address, date; et :book?address, date〉
Vbtaxi2 = 〈et :book!address, date〉

Being given this set of interactions, the user would be able to submit infinitely
availability requests to EasyRestaurant for the same restaurant, which is useless.
Accordingly, a vector LTS is defined (Fig. 3, right) in order to impose a single
interaction between the user and the EasyRestaurant service every time the user
is eager to check for place availability at some restaurant.

4 Adaptor Generation and Verification

An adaptor model for a set of services is an STS running in parallel with the ser-
vice STSs and guiding their execution (all exchanged messages pass through the
adaptor) in such a way that mismatches are avoided and the ordering of messages
imposed by the adaptation contract is guaranteed. Generating adaptor protocols
is a complicated task since the adaptor has to respect the adaptation contract
taking into consideration behavioral constraints of services formalised into their
interfaces (STSs). In addition, protocols may generate many interleaved inter-
actions that we want to preserve to accept all the possible message execution
orders.

In this work, we chose to encode the adaptation constraints (service interfaces
and adaptation contract) into the LOTOS process algebra [14]. LOTOS relies
on a rich notation that allows to specify complex concurrent systems possibly
involving data types. Our goal is first to generate LOTOS code for service inter-
faces and their interaction constraints as specified in the contract. In a second
step, the LOTOS encoding allows the automatic generation of adaptor protocols
whose traces represent all possible (correct) interactions between services. To do
so, we rely on CADP [13] a toolbox for LOTOS which implements optimised state
space exploration techniques. In particular, we employ on-the-fly algorithms to
increase, w.r.t. existing approaches, the efficiency of the adaptator generation
and reduction process by avoiding the generation of the full state space. The
LOTOS encoding also enables the adaptor protocol verification by using model

90 R. Mateescu, P. Poizat, and G. Salaün

checking tools available in CADP. Techniques and tools presented in this section
have been validated on more than 200 examples.

4.1 Principles of the Encoding into LOTOS

This approach aims at successively encoding: the services’ STSs, the abstract
requirements for composition and adaptation (i.e., the adaptation contract),
and the desired system architecture that formalises how the services interact
guided by the contract.

Service STS encoding. Each service STS sv is encoded using several LOTOS
processes. Each LOTOS process corresponds to one state s of the STS, and its
behavior is a choice containing as many branches as there are transitions out-
going from s. Each branch encodes the label associated to the transition, and
is followed by a call to the LOTOS process that encodes the target state of the
transition being translated. An additional branch, using a specific FINAL action,
models termination when s is final. STS labels are encoded into LOTOS follow-
ing patterns presented in Figure 4. Sent (resp. received) messages are represented
with a “ EM” (resp. “ REC”) suffix. In addition, LOTOS symbols ! and ? are used
to support data transfer (resp. emission and reception). In our context, the cor-
rect distribution will be ensured by the encoding of the adaptation constraints
(see the next step in this section), therefore all service STS labels that involve
value passing (emission or reception of parameters) are translated into LOTOS
with a question mark followed by as many fresh variables as there are parameters
coming with the message. Since these variables are placeholders, their LOTOS
type can simply be an arbitrary one that we call PH. This type is defined be-
forehand using the LOTOS abstract datatype facilities with all the placeholder
names appearing in the contract defined as type constructors.

Adaptation contract encoding. An adaptation contract is encoded by gen-
erating (i) a process for the vector LTS, (ii) a process for each vector defined in
the contract, and (iii) the interleaving of all these vector processes. The correct
ordering of vectors is ensured by the vector LTS process thanks to two actions
for each vector v. A first one (run v) activates the corresponding vector process.
A second one (rel v) releases the vector LTS and enables it to overlap vector

STS labels

sv:m!

LOTOS

sv_m_EM

sv:m? sv_m_REC

sv:m!e1,..,en sv_m_EM ?x1:PH .. ?xn:PH

sv:m?y1,..,yn sv_m_REC ?y1:PH .. ?yn:PH

Fig. 4. Encoding patterns for STS labels

Adaptation of Service Protocols 91

1:activates Vj and waits

4a.1:is released by Vj

4a.2:activates Vk ...

2:waits for services to be
 ready to send (Ox)

4b.2:waits for services to be
 ready to receive (Iy)

3:sets data in Ox
 as available

4b.1:checks if data in Iy
 are available

vector
LTS

service STSi

vectorStore
V j=<Ox , I y>

Fig. 5. Encoding pattern for vectors

applications. The vector LTS process (i) is encoded using the same pattern as
service STSs, that is every state is encoded as a LOTOS process. For each tran-
sition with label v in the vector LTS, two LOTOS actions are generated in a
sequence: run v; rel v.

Vector processes (ii) are first launched through a “run ” interaction with the
vector LTS (Fig. 5, 1). Next, they communicate with services on all actions
appearing in their vector definition. They have to receive all sent messages
(Fig. 5, 2) before beginning to emit some (Fig. 5, 4b.2). There is no spe-
cific ordering between receptions (resp. between emissions) in a vector process.
When a vector process executes a vector, it must be ready to interact with
the service STSs on their emissions (Ox in Fig. 5). Then, several strategies
are possible to release the vector (rel v), and therefore to execute the ser-
vices’ receptions. A first option is to wait the complete processing of a vector
before firing a new one (4a.2 done after 4b.1 and 4b.2). Another strategy
is to execute the release action once all the emissions executed, that means
that the execution of the receptions by the services (Iy in Fig. 5) can be
postponed, and the vector LTS can launch another vector. This behavior
makes the reordering of messages possible, a typical case of mismatch between
services.

As regards value passing, an auxiliary LOTOS process Store is generated
to store information about the availability of received values. Every time some
values are sent by a service, they are received by one of the vector processes
and stored by using the (global) process Store, which makes them available
at the level of the adaptor. This availability is essential, because when service
receptions in a vector are being run (emissions at the level of the adaptor), this
firing is conditioned by the availability of the values to be emitted. Thus, every
service emission in a vector is followed by an interaction with the process Store
to set to true the availability of the received values (Fig. 5, 3), and every service
reception in a vector is preceded by some interactions with the Store process
to check that the required values have been received (Fig. 5, 4b.1). In the latter
case, the vector process may have to wait the availability of the needed resources.
Such an active waiting is encoded using a looping process that terminates once
the data are available. If they are never available, this will generate a deadlock

92 R. Mateescu, P. Poizat, and G. Salaün

in the underlying state space that will be cut away in a second step by our
reduction techniques (see Section 4.2).

Finally, vector processes (iii) are interleaved since they do not communicate
together. All the vector processes may synchronize with the Store process to
store new available values, or check the availability of some values to be sent. The
collaboration diagram in Figure 5 summarizes the pattern for encoding vectors
into LOTOS when vector overlapping is enabled.

System encoding. In this step, we generate a LOTOS expression corresponding
to the whole system constraints from the LOTOS processes encoding the service
STSs, the ones encoding the adaptation contract, and respecting the desired sys-
tem architecture (adaptor in-the-middle, intercepting all messages). This means
that the service STSs only interact together on FINAL (correct termination is
when all services terminate) while they interact with vectors on actions used
in their alphabets. The synchronizing between vector processes and vector LTS
has been described earlier on (using “run ” and “rel ” actions). In addition,
all actions that are not messages of the system, i.e., messages appearing in the
involved services, are hidden as they represent internal actions of the adaptor we
are building (e.g., “run ” and “rel ” actions, or all interactions with the Store
process). They are the “mechanics” of adaptation and are not relevant for imple-
mentation. They will be removed by reduction steps of the adaptor generation
process (see Section 4.2).

Tool support: Compositor. The LOTOS encoding is fully automated by Com-
positor, a tool we have implemented. Supported inputs are XML STSs and the
aut LTS textual format extended with value passing for service interfaces, and
XML for contract specifications. Strategies to implement the different ways of
releasing vectors have been implemented as an option.

4.2 On-the-Fly Adaptor Generation

An adaptor can be obtained from the state space of the whole system (ser-
vices and adaptation contract) by keeping only the correct behaviors, which
amounts to cut the execution sequences leading to deadlock states. In the adap-
tation techniques that support deadlock elimination [6,2], the computation of
the deadlock-free behaviors is done by performing a backward exploration of the
explicit, entirely constructed, state space by starting at the deadlock states and
cutting all the transitions whose target state leads to a deadlock. To increase
efficiency, we avoid the entire construction of the state space and instead we
explore it forwards in order to generate the adaptor on-the-fly by carrying out
deadlock elimination and behavioral reduction simultaneously.

Deadlock elimination. First, the execution sequences leading to deadlocks
must be pruned. We do this by keeping, for each state encountered, only its
successor states that potentially reach a successful termination state, which is
source of a transition labeled with the action FINAL. Besides avoiding deadlocks
(sink states reached by actions other than FINAL), this also avoids livelocks,

Adaptation of Service Protocols 93

i.e., portions of the state space where some services get “trapped” and can-
not reach their final states anymore. The desired successor states satisfy the
PDL [8] formula 〈true∗.FINAL〉 true, which can be checked on-the-fly using the
Evaluator [18] model checker. However, this scheme is not efficient since each
invocation of Evaluator has a linear complexity w.r.t. the size of the state space
and therefore a sequence of invocations (in the worst case, one for each state)
may have a quadratic complexity. An efficient solution is to translate the eval-
uation of the formula into the resolution of the boolean equation system (BES)
{Xs=µ

∨
s
FINAL→ s′true ∨

∨
s→s′′Xs′′}, where a boolean variable Xs is true iff state

s satisfies the propositional variable X corresponding to the PDL formula. A
state s potentially leading to a successful termination is detected by solving on-
the-fly the variable Xs of this BES using the algorithm A3 of the Caesar Solve
library [16]. In this way, a sequence of resolutions performed during a forward
exploration of the state space has a linear-time overall complexity and does not
store transitions, but only states in memory.

Behavioral reduction. Second, the adaptor STS obtained by pruning can be
reduced on-the-fly modulo an appropriate equivalence relation in order to get rid
of the internal actions and obtain an adaptor as small as possible. These internal
actions correspond here to the encoding of the system adaptation constraints,
e.g., “run ” and “rel ” actions. Such internal actions are not relevant for adaptor
implementation but are usually inherent to adaptation processes, as they model
internal computations done by adaptors [6]. The algorithms presented in [15]
can be used to implement on-the-fly reductions modulo tau-confluence (a form
of partial order reduction preserving branching bisimulation) and the tau∗.a
and weak trace equivalences, both of which eliminate internal transitions and
(for weak trace) determinize adaptor STSs.

Tool support: Scrutator and CADP. The on-the-fly adaptor genera-
tion is implemented by the Scrutator tool that we have developed using the
Open/Caesar [11] environment for graph manipulation provided by the CADP
verification toolbox. Two kinds of pruning are implemented by the tool: the
first one deletes the states leading eventually to deadlocks and the second one
keeps only the states leading (potentially or eventually) to transitions labeled
by a given action (here, FINAL). Besides the on-the-fly reductions currently of-
fered by Scrutator (tau-confluence, tau∗.a, and weak trace equivalence), we plan
to implement reductions modulo other equivalences, such as branching bisim-
ulation; for the time being, the adaptors generated by Scrutator can be re-
duced off-line modulo strong or branching bisimulation using the Bcg Min tool of
CADP.

To automate the whole adaptation process, Compositor generates an SVL
script [12] in charge of the following activities: building and reducing the adap-
tor on-the-fly by invoking Scrutator on the LOTOS specification of the system;
“mirroring” of the adaptor actions (reversing emissions and receptions, “ EM”
and “ REC”) as the adaptor acts as an orchestrator in-the-middle of the ser-
vices; and pretty-printing of the adaptor STS by translating its actions from a
LOTOS-like to a more user-friendly syntax.

94 R. Mateescu, P. Poizat, and G. Salaün

14

8

yp:FIND !PLACE

13

16

u:SEARCH !SELECT

11

12

er:BOOK !NAME 3

yp:FIND ?SELECT,MAP

15

yp:FIND ?SELECT,MAP

4

u:SEARCH !SELECT

6

yp:FIND !PLACE u:SEARCH ?PLACE

17

u:QUIT ?

20

u:RESERVE ?RESTAU,DATE,NBPERS

u:SEARCH ?PLACE

u:RESERVE ?RESTAU,DATE,NBPERS

0

u:SEARCH ?PLACE

9

10

et:BOOK !ADDRESS,DATE

7

et:BOOK ?ADDRESS,DATE

2

er:BOOK ?

er:BOOK ?et:BOOK ?ADDRESS,DATE

1

FINAL

22

er:AVAILABILITYCHECK !RESTAU,NBPERS,DATE

5

21

u:BOOKTAXI ?ADDRESS,DATE

FINAL

et:BOOK !ADDRESS,DATE

u:BOOKTAXI ?ADDRESS,DATEer:BOOK ?

18

19

u:RESERVE !RESP

u:SEARCH ?PLACEu:CONFIRM ?NAME

u:QUIT ?

er:AVAILABILITYCHECK ?RESP

Fig. 6. Example – adaptor protocol

The reduced adaptor protocol for our running example is shown in Figure 6.
The initial state is identified by 0. In this state, the adaptor can interact with
the user (message SEARCH) and receives as parameter the place (s)he is looking
for. Next, the adaptor sends this place to the YellowPages service with the FIND
message, etc.

4.3 Adaptor Verification

In our approach, contracts are built by the designer. Therefore, they can contain
errors that will also appear at the level of the adaptor. As a first step in the ver-
ification of the adaptor, we have implemented several static analysis checks to
verify that the contract is correctly written (labels defined in interfaces correctly
used in vectors, vectors and vector LTS structurally consistent, scope and type of
placeholders, etc). These static analysis features are very useful for detecting the
simple errors that one can make while writing out a contract manually. Nonethe-
less, this is not enough since protocols of interfaces and contracts (vector LTS)
are not considered. Therefore, to complement static analysis checks, we propose
more powerful verification techniques based on model checking tools (Evaluator).
Two kinds of temporal properties are suitable for checking the behavior of adap-
tors: (i) general properties (placeholder occurrence, service action preserving,
etc) related to the adaptor structure, which should be satisfied by any adaptor
generated using our approach, (ii) specific properties (safety and liveness) related
to the adaptor protocol, which differ from one adaptor to another.

5 Adaptor Implementation

In this section we present the final step of our approach, namely adaptor imple-
mentation. Due to lack of space, the initial step, generating STS models from

Adaptation of Service Protocols 95

(A)BPEL (using the rules defined in [21]) is not presented here. To generate a
BPEL orchestrator from an adaptor model we proceed in two steps: (i) filtering
the model, and (ii) encoding the filtered model into BPEL.

Adaptor filtering. The adaptor generation algorithm is a implementation in-
dependent model-based one whose objective is to be applied to different imple-
mentation platforms (BPEL, Windows Workflows, SCA components, etc.). To
support implementation using the BPEL constructs, we have to apply first three
simplification rules:

– whenever a state has both emission and reception outgoing transitions, we
remove the reception transitions;

– whenever a state has more than one emission outgoing transition, we keep a
single one;

– let o be a two-way operation, i.e, a receive-reply operation of a service to
be invoked by the adaptor in a synchronous way; for every transition t with
an emission corresponding to such an o, and targeting state s, we remove
all transitions outgoing from s but for the transition with the correspond-
ing reception (i.e., we impose atomicity of the two events corresponding to
invocations in the adaptor). In a case where such a second transition is not
available, we also remove t.

We end by cleaning the adaptor model, i.e., we remove states (and accordingly
transitions) which are not reachable (from the initial state) or not coreachable
(from a final state). Filtering is demonstrated on Figure 6 where the grey states
and related transitions are removed. Filtering is compatible with adaptation; it
just removes some of the interactions between the services which are not possible
from a BPEL point of view. Verification techniques presented for adaptor models
apply to filtered models too. Currently, we have been able to show that the
important safety and liveness properties that yield for the Figure 6 adaptor (e.g.,
that the client cannot be asked to confirm the reservation before the YellowPages
service has found an appropriate place, or that the client cannot be asked to
confirm the reservation before the YellowPages service has found an appropriate
place) yield also after filtering.

BPEL implementation. Once models have been cleaned up as presented
above, we automatically implement them in BPEL as follows.
Partnerlinks and variables. A partnerlink is created for each service, plus one for
the composite itself (USER). Global variables are created for the vector variables
and for each part of received or emitted message. Moreover, a STATE integer
variable is used to represent the current state and a FINAL boolean variable to
represent the termination of the adaptor.

Communication. A c:msg!x1,...,xn transition (c not being USER) followed by a
c:msg?y1,...,yn transition is encoded as a synchronous invoke activity with mes-
sage msg and partnerlink c. A USER:msg?x1,...,xn transition corresponds to the
interaction with the environment, it is encoded as a receive activity with message
msg and partnerlink USER. Finally, a USER:msg!x1,...,xn transition corresponds

96 R. Mateescu, P. Poizat, and G. Salaün

WHILE not(FINAL)

STATE1

STATE4

STATE3

STATES

IF (STATE=4)

PICK
possible receptions

in STATE 4

pre−assigns
(sets message parts

 from vector variables)

post−assigns
(sets vector variables
from message parts
and sets STATE)

Fig. 7. BPEL Adaptor (part of) in the NetBeans IDE 6.0.1

to an interaction with the environment, it is encoded as a reply activity with mes-
sage msg and partnerlink USER. All communication activities related to USER
are linked using a correlation set named USER CS with a property USER PROP.
Moreover, each of the operations in the USER interface has an additionnal part
with a string identifier and a corresponding property alias making the link with
USER PROP. This machinery is required to ensure the correctness of the adaptor
protocol w.r.t. its environment, e.g., the user.

Assignments. Some adaptor variables (xi and yj above, e.g., name in our example)
come from vectors, while message parts in the communication activities (invoke,
receive, reply) correspond to variables in service protocols (e.g., id for message
book in service EasyRestaurant in our example). To link them, before each invoke
or reply activity, we add an assign activity assigning adaptor variables to message
parts; accordingly, after each invoke or receive activity we add an assign activity
assigning message parts to adaptor variables.

Process. We rely on the state machine pattern. Initially the STATE variable is
set to the target state of the first transition in the adaptor. The main body
of the process then corresponds to a while (not FINAL) activity. Cascaded if
statements are used inside it to encode the adaptor states. The if body of a
state i encodes its outgoing transition(s). For a single one we use communication
encodings presented above. When there are several possible receptions we use a
pick activity with an onMessage branch for each. If there is also a termination
transition, we add an onEvent branch in the pick with a timer. In all cases, we
terminate by updating the STATE variable accordingly to the transition(s) taken
into account. For the final state we only set FINAL to true.

Tool support: BPEL2STS and STS2BPEL. The obtaining of STS from
BPEL, the filtering of adaptor models, and the generation of BPEL adap-
tors from STS models, presented above, are automated by BPEL2STS and

Adaptation of Service Protocols 97

STS2BPEL, tools we have implemented. A part of our adaptor in BPEL is
presented in Figure 7. Service deployment has been achieved using the NetBeans
6.0.1 IDE with the GlassFish BPEL Engine.

6 Related Work

Several adaptation proposals [4,6,2] focus on solving behavioral mismatch be-
tween abstract descriptions of components. Brogi et al. (BBC) [4] present a
methodology for generative behavioral adaptation where component behaviors
are specified with a subset of the π-calculus and composition specifications with
name correspondences. An adaptor generation algorithm is used to refine the
given specification into a concrete adaptor which is able to accommodate both
message name and protocol mismatch. This approach has recently been used to
obtain adaptor implementations for services [5] (see below). Autili et al. (IT) [2]
address the enforcement of behavioral properties out of a set of components.
Starting from the specification with MSCs of the components to be assembled
and of LTL properties (liveness or safety) that the resulting system should ver-
ify, they automatically derive the adaptor glue code for the set of components
in order to obtain a property-satisfying system. They follow a restrictive adap-
tation approach, hence they are not able for example to reorder messages when
required. More recently, in [6], we have proposed an automated adaptation ap-
proach that is generative and supports adaptation policies and system properties
described by means of regular expressions of vectors. It superseded both IT (as
it supported message reordering) and BBC (which could generate dumb adap-
tors [4] and has no tool-support), yet it built on algorithms based on synchronous
products and Petri nets encodings with a resulting exponential complexity for
the computation of adaptors. Here, this is avoided thanks to process algebra
encodings and on-the-fly generation techniques.

In their paper Adapt or Perish [7], Dumas and collaborators presented an
approach to behavioral interface adaptation based on the definition of a set
of adaptation operations for establishing the basic relation patterns between
the messages names used in the components being adapted, and they defined
a trace-based algebra for describing the transformations required to solve the
adaptation problem. They also present a visual notation for describing a mapping
between the behavioral interfaces of the components. However, their proposal
does not present a solution for deriving an adaptor from the visual mappings, but
just contains a preliminary (i.e., non sufficient) condition for detecting deadlock
scenarios in the behavioral interfaces.

Some recent approaches found in the literature [5,20,19] focus on existing
programming languages and platforms, such as BPEL or SCA components, and
suggest manual or at most semi-automated techniques for solving behavioral
mismatch. In the context of Web services and BPEL, [5] outlines a methodology
for the generation of adaptors capable of solving behavioral mismatches between
BPEL processes. In their adaptation methodology, the authors use an intermedi-
ate workflow language for describing component behavioral interfaces, and they

98 R. Mateescu, P. Poizat, and G. Salaün

use lock analysis techniques to detect behavioral mismatch. Similarly, [20] pro-
vides automated support for the identification of protocol-level mismatches, but
is able to generate an adaptor only in the absence of deadlock. If deadlock may
arise from the combination of the components, the authors propose a way to
handle the situation by generating a tree for all mismatches that result in a
deadlock, and suggesting some hints for assisting the designer in the manual im-
plementation of the actual adaptor. In [19], the authors deal with the monitoring
and adaptation of BPEL services at run-time according to Quality of Services
attributes (different focus than us). Their approach also proposes replacement
of partner services based on various strategies either syntactic or semantic.

Finally, compared to a preliminary version of this work [17], in the current
paper, we have first extended the model of services with value passing. Conse-
quently, the contract notation was enhanced as well to consider not only message
matching but also correspondences between message arguments. New adaptation
and verification techniques have been proposed to deal with these new models,
and tool support extended in consequence. Last but not least, we have addressed
adaptor implementation in BPEL.

7 Concluding Remarks

Software adaptation is a promising solution to compose in a non-intrusive way
black-box services that contain incompatibilities in their interfaces. In this pa-
per, we have presented our tool-supported techniques to generate adaptor pro-
tocols from interfaces of services described by signatures and protocols with
value-passing, and an adaptation contract. Adaptor generation is completely
automated and the resulting adaptor makes the whole system work correctly by
solving protocol mismatches as well as value passing issues. Since our mechanisms
are based on an encoding into the LOTOS process algebra, we take advantage of
the existing CADP toolbox for LOTOS to verify the correctness of the contract.
We have also shown with BPEL how our adaptors can be implemented. The
main perspective of this work is to propose an assisted design approach to help
and guide the architect in the construction of adaptation contracts.

Acknowledgements. This work has been partially supported by project “PER-
vasive Service cOmposition” (PERSO) funded by the French National Agency
for Research (ANR-07-JCJC-0155-01), project TIN2008-05932 funded by the
Spanish Ministry of Innovation and Science, and project P06-TIC2250 funded
by the Andalusian local Government.

References

1. Arnold, A.: Finite Transition Systems. International Series in Computer Science.
Prentice-Hall, Englewood Cliffs (1994)

2. Autili, M., Inverardi, P., Navarra, A., Tivoli, M.: SYNTHESIS: A Tool for Au-
tomatically Assembling Correct and Distributed Component-based Systems. In:
Proc. of ICSE 2007, pp. 784–787. IEEE Computer Society, Los Alamitos (2007)

Adaptation of Service Protocols 99

3. Becker, S., Brogi, A., Gorton, I., Overhage, S., Romanovsky, A., Tivoli, M.: To-
wards an Engineering Approach to Component Adaptation. In: Reussner, R.,
Stafford, J.A., Szyperski, C. (eds.) Architecting Systems with Trustworthy Com-
ponents. LNCS, vol. 3938, pp. 193–215. Springer, Heidelberg (2006)

4. Bracciali, A., Brogi, A., Canal, C.: A Formal Approach to Component Adaptation.
Journal of Systems and Software 74(1), 45–54 (2005)

5. Brogi, A., Popescu, R.: Automated Generation of BPEL Adapters. In: Dan, A.,
Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp. 27–39. Springer, Heidel-
berg (2006)

6. Canal, C., Poizat, P., Salaün, G.: Model-Based Adaptation of Behavioural Mis-
matching Components. IEEE Transactions on Software Engineering 34(4), 546–563
(2008)

7. Dumas, M., Wang, K.W.S., Spork, M.L.: Adapt or Perish: Algebra and Visual
Notation for Service Interface Adaptation. In: Dustdar, S., Fiadeiro, J.L., Sheth,
A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 65–80. Springer, Heidelberg (2006)

8. Fischer, M.J., Ladner, R.E.: Propositional Dynamic Logic of Regular Programs.
Journal of Computer and System Sciences 18(2), 194–211 (1979)

9. Foster, H., Uchitel, S., Kramer, J.: LTSA-WS: A Tool for Model-based Verification
of Web Service Compositions and Choreography. In: Proc. of ICSE 2006, pp. 771–
774. ACM Press, New York (2006)

10. Fu, X., Bultan, T., Su, J.: Analysis of Interacting BPEL Web Services. In: Proc.
of WWW 2004, pp. 621–630. ACM Press, New York (2004)

11. Garavel, H.: Open/Cæsar: An Open Software Architecture for Verification, Simu-
lation, and Testing. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 68–84.
Springer, Heidelberg (1998)

12. Garavel, H., Lang, F.: SVL: a Scripting Language for Compositional Verification.
In: Proc. of FORTE 2001, IFIP, pp. 377–392. Kluwer Academic, Dordrecht (2001)

13. Garavel, H., Mateescu, R., Lang, F., Serwe, W.: CADP 2006: A Toolbox for the
Construction and Analysis of Distributed Processes. In: Damm, W., Hermanns, H.
(eds.) CAV 2007. LNCS, vol. 4590, pp. 158–163. Springer, Heidelberg (2007)

14. ISO/IEC. LOTOS — A Formal Description Technique Based on the Temporal
Ordering of Observational Behaviour. International Standard 8807, ISO (1989)

15. Mateescu, R.: On-the-fly State Space Reductions for Weak Equivalences. In: Proc.
of FMICS 2005, pp. 80–89. ACM Computer Society Press, New York (2005)

16. Mateescu, R.: CAESAR SOLVE: A Generic Library for On-the-Fly Resolution of
Alternation-Free Boolean Equation Systems. STTT Journal 8(1), 37–56 (2006)

17. Mateescu, R., Poizat, P., Salaün, G.: Behavioral Adaptation of Component Com-
positions based on Process Algebra Encodings. In: Proc. of ASE 2007, pp. 385–388.
IEEE Computer Society, Los Alamitos (2007)

18. Mateescu, R., Sighireanu, M.: Efficient On-the-Fly Model-Checking for Regular
Alternation-Free Mu-Calculus. Science of Computer Programming 46(3), 255–281
(2003)

19. Moser, O., Rosenberg, F., Dustdar, S.: Non-Intrusive Monitoring and Adaptation
for WS-BPEL. In: Proc. of WWW 2008, pp. 815–824 (2008)

20. Motahari-Nezhad, H.R., Benatallah, B., Martens, A., Curbera, F., Casati, F.: Semi-
Automated Adaptation of Service Interactions. In: Proc. of WWW 2007, pp. 993–
1002 (2007)

21. Salaün, G., Bordeaux, L., Schaerf, M.: Describing and Reasoning on Web Services
using Process Algebra. International Journal of Business Process Integration and
Management 1(2), 116–128 (2006)

Automatic Workflow Graph Refactoring and
Completion

Jussi Vanhatalo1,2, Hagen Völzer1, Frank Leymann2, and Simon Moser3

1 IBM Zurich Research Laboratory, Switzerland
{juv,hvo}@zurich.ibm.com

2 Institute of Architecture of Application Systems, University of Stuttgart, Germany
frank.leymann@iaas.uni-stuttgart.de

3 IBM Böblingen Software Laboratory, Germany
smoser@de.ibm.com

Abstract. Workflow graphs are used to model the control flow of business
processes in various languages, e.g., BPMN, EPCs and UML activity diagrams.
We present techniques for automatic workflow graph refactoring and completion.
These techniques enable various use cases in modeling and runtime optimization.
For example they allow us to complete a partial workflow graph, they provide
local termination detection for workflow graphs with multiple ends, and they al-
low us to execute models containing OR-joins faster. Some of our techniques are
based on workflow graph parsing and the Refined Process Structure Tree [10].

1 Introduction

A workflow graph shows the control flow of a business process similar to a flow chart
as a directed graph. Figure 1(a) shows an example. Workflow graphs form the core of
many specification languages, e.g., BPMN, EPCs and UML activity diagrams.

Different workflow graphs can model the same behavior, i.e., the same control flow.
For example, the two workflow graphs in Figs. 1(a) and 1(b) model the same behavior.
The workflow graph in Fig. 1(b) is well-structured in the sense that it consists of match-
ing pairs of a node that splits the flow and a node that joins the flow. Well-structured
workflow graphs are often preferred because they are easier to comprehend [9,2] and
analyze [11], and can be represented as a regular expression.

(a) (b)

G

a3

a2
a5

a4

a6

a1

s

v

w

e
u

x
G*

a3

a2

a5

a4

a6

a1
s

u2

v

w

e

x1

u1 x2

Fig. 1. (a) A workflow graph G, (b) A well-structured workflow graph G∗

A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, pp. 100–115, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Automatic Workflow Graph Refactoring and Completion 101

The workflow graph G can be transformed into the well-structured workflow graph
G∗ using local transformation rules that preserve the execution semantics. While those
rules are known [7,8], it is not clear how to apply them to obtain G∗ from G auto-
matically. This is because a transformation rule can be applied to different parts of the
workflow graph, which can lead to different refactoring results. For example, applying
the same rule that transforms G into G∗, we can transform G also into G′ in Fig. 2. The
transformation rule is given in Sect. 3.2. We are not aware of any work that specifies a
desired refactoring result and proposes a concrete algorithm that computes it.

G’

a3

a2
a5

a4

a6

a1
s

u2
v

w

e
x1u1

x2

Fig. 2. Alternative transformation of G

In this paper, we propose such a defini-
tion and such an algorithm. Given a work-
flow graph G, the algorithm computes a
normal form G∗ of G that makes the struc-
ture of G more explicit—and, as a side-
product, making it more well-structured.
Our approach is based on the normal [11]
and the refined process structure trees [10]
of a workflow graph.

It is important that a workflow graph can be represented in an easily comprehensible
form, as this makes it better accessible for users that may not be experienced in busi-
ness process modeling. After all, workflow graphs are used for communicating business
processes among different stakeholders, and not only among modeling experts. We hope
that a workflow graph is, in general, easier to comprehend in our normal form than in
its original form, as it is more well-structured.

s

x1

a3

a2

a1
p1

(a) (b)

G0 e1

e3

e2 e

x2
p2s

x1

a3

a2

a1
p1

G1 e1

e3

e2

Fig. 3. (a) A workflow graph with multiple end nodes. (b) Its completion.

In the second part of the paper, we show how this refactoring technique can be used
to compute a completion of a workflow graph. Figure 3 shows (a) a workflow graph
with multiple end nodes and (b) its completion, which by definition has a unique end
node. This has multiple use cases, which we discuss in Sect. 4. For example, it can
be used to complete a partial workflow graph at modeling time [4], to provide local
termination detection for workflow graphs with multiple ends, and to execute models
containing OR-joins faster.

The refactoring technique efficiently computes a completion for many workflow
graphs, but not for all. Sometimes a completion does not exist. We characterize these
cases and also provide an algorithm that computes a completion in the general case
when it exists. This algorithm is less efficient than the refactoring-based completion.

We review preliminary notions in Sect. 2. Then, we present our contributions: the
refactoring technique in Sect. 3 and the completion technique in Sect. 4. Section 5

102 J. Vanhatalo et al.

concludes this paper. We include short proofs of some theorems in this paper, whereas
longer proofs of the other theorems can be found in a technical report [12].

2 Preliminaries

This section defines the basic preliminary notions of this paper, which include workflow
graphs and their semantics, their extension by inclusive OR-gateways, and the sound-
ness property for workflow graphs.

2.1 Workflow Graphs

A workflow graph G consists of a directed graph (V, E), consisting of a set V of nodes,
a set E ⊆ V × V of edges, and a partial mapping � : V → {AND, XOR} such that

1. �(x) is defined if and only if x has more than one incoming edge or more than one
outgoing edge,

2. there is exactly one source and at least one sink,
3. the source has exactly one outgoing edge and each sink has exactly one incoming

edge, and
4. every node is on a path from the source to some sink.

The source is also called the start node, a sink is called an end node, �(x) is called
the logic of x. If the logic is AND or XOR, we call x a gateway; if x has no logic, then
we call x a task. We use BPMN to depict workflow graphs, i.e., gateways are drawn as
diamonds, where the symbol “+” inside stands for AND, whereas no decoration stands
for XOR. Tasks are drawn as rectangles or circles. In particular, here start and end
nodes are considered special tasks, which are always drawn as circles. A gateway that
has more than one incoming edge and only one outgoing edge is also called a join, a
gateway with more than one outgoing but only one incoming edge is also called a split.
We say that an edge e is incident to a node n if e is incoming to n or outgoing from n.

The semantics of a workflow graph is, similarly to Petri nets, defined as a token
game. A state of a workflow graph is represented by tokens on the edges of the graph.
Let G = (V, E, �) be a workflow graph. A state of G is a mapping s : E → N, which as-
signs a natural number to each edge. When s(e) = k, we say that edge e carries k tokens
in state s. The semantics of the various nodes is defined as usual. An AND-gateway
removes one token from each of its ingoing edges and adds one token to each of its out-
going edges. An XOR-gateway nondeterministically chooses one of its incoming edges
on which there is at least one token, removes one token from that edge, then nonde-
terministically chooses one of its outgoing edges, and adds one token to that outgoing
edge. As usual, we abstract from the data that controls the flow in XOR-gateways, hence
the nondeterministic choice.

To be more precise, let s and s′ be two states and x a node that is neither a start nor

an end node. We write s
x→ s′ when s changes to s′ by executing x. We have s

x→ s′ if

1. �(x) = AND or the logic of x is undefined, and

s′(e) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

s(e) − 1 e is an incoming edge of x,

s(e) + 1 e is an outgoing edge of x,

s(e) otherwise.

Automatic Workflow Graph Refactoring and Completion 103

2. �(x) = XOR, and there exists an incoming edge e′ and an outgoing edge e′′ of x
such that

s′(e) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

s(e) − 1 e = e′,

s(e) + 1 e = e′′,
s(e) otherwise.

The initial state of G is the state where there is exactly one token on the unique out-
going edge of the start node and no token anywhere else. Node x is said to be activated

in a state s if there exists a state s′ such that s
x→ s′. A state s′ is reachable from a state s,

denoted s
∗−→ s′, if there exists a (possibly empty) finite sequence s0

x1→ s1 . . . sk−1
xk→ sk

such that s0 = s and sk = s′. A state is a reachable state of G if it is reachable from the
initial state of G.

2.2 Inclusive OR-Gateways

A generalized workflow graph is a workflow graph in which a gateway x may also have
OR-logic (inclusive OR), i.e., �(x) = OR. OR-gateways are drawn as diamonds with a
circle inside. An OR-gateway has non-local join behavior, which is difficult to define if
there is a cycle in the graph that contains an OR-join. As the semantics for the OR-join
is not settled in that case, we do not consider that case. So, in the following we assume
that a generalized workflow graph does not contain a cycle that contains an OR-gateway
that has more than one incoming edge.

The OR-gateway behaves as follows. It is activated if for each incoming edge e′ of
the gateway that carries no token, and for each edge e′′ of the graph that carries a token,
there is no directed path from e′′ to e′. When it executes, it consumes a token from each
incoming edge that carries a token and produces a token for each edge of a nonempty
subset of its outgoing edges. That subset is chosen nondeterministically. More precisely,

we also have s
x→ s′ if

3. - �(x) = OR,
- for each edge e′′ ∈ E and each incoming edge e′ of x such that, s(e′′) ≥ 1 and

s(e′) = 0, there is no path from e′′ to e′ in the graph, and
- there exists a nonempty set F of outgoing edges of x such that

s′(e) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

s(e) − 1 e is an incoming edge of x such that s(e) ≥ 1,

s(e) + 1 e ∈ F,

s(e) otherwise.

2.3 The Soundness Property

We now define what we understand by a “well-behaved” (generalized) workflow graph.
A final state is a reachable state s of G that has no successor state, i.e., s activates
no node. A final state is a deadlock if it contains a token on some edge that is not an
incoming edge of an end node. (It follows that it must then be an incoming edge of a
join.) A reachable state s contains a lack of synchronization if there is an edge e such
that s(e) > 1. A (generalized) workflow graph is sound if it contains neither a deadlock
nor a lack of synchronization.

104 J. Vanhatalo et al.

A deadlock is clearly undesired. Absence of lack of synchronization is a valuable de-
sign principle as it rules out that a task is executed concurrently to itself (“uncontrolled
auto-concurrency”). Multiple concurrent instances of tasks can be modeled explicitly
with dedicated constructs (e.g. “multiple instance activities” in BPEL and BPMN).
Soundness is necessary for translating a (generalized) workflow graph to BPEL in a
structured way, but has also an independent motivation: For workflow graphs with a
unique end node and without OR-gateways, it is equivalent with the traditional defini-
tion of soundness (cf. [9,11]).

3 Automatic Refactoring of Workflow Graphs

In this section, we present our technique that automatically refactors a workflow graph
into a normal form that makes the structure of the workflow graph explicit. By structure
we mean the decomposition of the workflow graph into logically atomic parts, which we
call fragments. We use two alternative ways to do this decomposition, the normal [11]
and the refined process structure tree [10]. We review the definitions of these process
structure trees in Sect. 3.1. In Sect. 3.2, we present our novel refactoring technique.

3.1 The Refined and the Normal Process Structure Trees

Let G = (V, E, �) be a (generalized) workflow graph. We assume that G has a unique
end node. A detailed discussion on how to extend a workflow graph with multiple end
nodes to a workflow graph with a unique end node is given in Sect. 4.

(a) (b)

G

a2

a1
a4 es xu

w v

a5a3

FD E

C

A

B

G

HI

A B C

D E

F G

I

H

(c)

F

evu a1s

a2

G

Fig. 4. (a) The canonical R-fragments of a workflow graph G. (b) The refined process structure
tree of G. (c) F is not an R-fragment of G.

Figure 4(a) shows a workflow graph G and its decomposition into canonical R-
fragments. An R-fragment is a connected subgraph with a unique entry and a unique
exit node. The canonical R-fragments form a hierarchy, which can be represented as a
tree. This tree, called the refined process structure tree (RPST), is shown in Fig. 4(b).
These notions can be formally be defined as follows.

For a set F ⊆ E of edges, let VF denote the set of nodes that are incident to some
edge in F and let GF = (VF , F). We say GF is formed by F.

Let F ⊆ E be a set of edges such that GF is a connected subgraph of G. A node
v ∈ VF is a boundary node of F if it is the source or sink node of G, or if there exist
edges e ∈ F and e′ ∈ E \ F such that v is incident to e and e′. A boundary node v is

Automatic Workflow Graph Refactoring and Completion 105

(a) (b)

G

a2

a1
a4 es xu

wv

a5a3

C

A

B

G

H

J K

a1 a2 a4

u v w

a3 a5

xA B

H

C

J K

G

Fig. 5. (a) The canonical N-fragments of a workflow graph G. (b) The NPST of G.

an entry of F if no incoming edge of v is in F or if all outgoing edges of v are in F. A
boundary node v is an exit of F if all incoming edges of v are in F or if no outgoing
edge of v is in F. F is called an R-fragment of G if it has exactly two boundary nodes,
an entry and an exit.

Figure 4(a) shows examples of R-fragments, which are indicated dotted boxes. They
contain all those edges that are either inside the box or cross the boundary of the box.
Thus, the box D denotes the R-fragment D = {(u, a1), (a1, v), (u, a2), (a2, v)}. Node u is
the entry and v is the exit of D. E = {(v, a4), (a4,w), (w, v)} is an R-fragment with entry
v and exit w. In Fig. 4(c), F = {(u, a2), (a2, u), (v, u)} has two boundary nodes, u and v,
but neither of them is an entry or an exit of F. Thus, F is not an R-fragment.

An R-fragment F is canonical if it does not overlap with any other R-fragment, that
is, for each R-fragment F′ of G, we have F ⊆ F′ or F′ ⊆ F or F ∩ F′ = ∅. It follows
that canonical R-fragments do not overlap with each other and hence form a hierarchy,
which is represented as the refined process structure tree (RPST) of G. Note that each
leaf node of the RPST represents an edge of the workflow graph, as each edge forms
an R-fragment. The boundary nodes of this R-fragment are the two nodes that this edge
connects. Vanhatalo, Völzer and Koehler [10] show how the RPST can be computed in
linear time.

Figure 5(a) shows an alternative decomposition of the same workflow graph into
N-fragments. An N-fragment has unique entry and exit edges (as opposed to nodes).
The corresponding tree, shown in Fig. 5(b), is called the normal process structure tree
(NPST).

Let G = (V, E, �) be a workflow graph. An N-fragment GF = (V ′, E′) is a nonempty
connected subgraph of G such that there exist edges e, e′ ∈ E with E∩((V\V ′)×V ′) = {e}
and E ∩ (V ′ × (V \ V ′)) = {e′}; e and e′ are called the entry and the exit edge of
GF , respectively. An N-fragment is canonical if it does not overlap with any other N-
fragment. The tree representing the hierarchy of canonical N-fragments is called the
normal process structure tree (NPST). It can also be computed in linear time [5,1,11].

We define special kinds of R-fragments and N-fragments as follows. An R-fragment
F is trivial if F has exactly one edge. The union of two R-fragments F, F′ is an R-
sequence if the exit node u of F is the entry node of F′, and each edge incident to u is
in F ∪ F′. An N-fragment F is trivial if the entry and the exit edge of F are incident
to the same node of F. An N-fragment F is an N-sequence if F is the union of two N-
fragments F′, F′′ such that the exit edge of F′ is the entry edge of F′′. An R-fragment
(N-fragment) is proper if it is neither trivial nor an R-sequence (N-sequence). A node

106 J. Vanhatalo et al.

u is a child of a canonical N-fragment F if F is the smallest canonical N-fragment that
contains u.

While the RPST exhibits more structure than the NPST, the NPST shows the struc-
ture more explicitly, in a less dense, more readable, form. The NPST produces a de-
composition of the edges and nodes, defining a home fragment for each node and each
edge—whereas the RPST produces a decomposition of edges only, while nodes may
be shared between adjacent fragments. In the following, we show how to compute
the normal form of a workflow graph G, which has the best of both worlds: It has
all the structure of the RPST of G, but shows it explicitly in the more readable form
of the NPST. The normal form is also more well-structured than the original workflow
graph.

3.2 Refactoring Based on the RPST

Let G be a (generalized) workflow graph with a unique end node. We want to trans-
form G, maintaining its structure given by its RPST but showing it more explicitly in
form of N-fragments. Some R-fragments can be considered as N-fragments. We call
them normal:

Definition 1 (Normal R-fragment, normal (generalized) workflow graph). A proper
canonical R-fragment F is normal if exactly one edge outside F is incident to the entry
of F and exactly one edge outside F is incident to the exit of F. A (generalized) workflow
graph G is normal if every proper canonical R-fragment F is normal.

Normal R-fragments can be obtained by splitting nodes. Figures 6(a)-(c) show three
examples of a valid expansion (G0,G1) that splits a node u into two nodes v and w in
a way that it preserves the execution semantics of the workflow graph. Subfigure (a)
shows the splitting of a node into a join and a split. Subfigures (b) and (c) show a split-
ting that separates different inputs and outputs of the node respectively. The splitting
shown in subfigure (d) is invalid as the simultaneous separation of inputs and outputs
does not preserve execution semantics. (The original path from b to c gets lost.) The
three valid cases are instances of a single rule that splits a node into two nodes v,w:

Definition 2 (Valid expansion). Let Gi = (Vi, Ei, �i), i = 0, 1 be two (generalized)
workflow graphs. The pair (G0,G1) is a valid expansion if there exists two nodes v,w ∈
V1 and a surjective mapping φ : V1 → V0 such that

_

w
w

w

(a)

(c) (d)

(b)

ua

b

c

d

va

b

e
w c

d

ua

b

c

d

va c

b

e
w

d

u
a

b

d
c

v b
e

w

d
ca

ua

b
c

d
va

e
w

db
c

G0 G1

G0 G1

G0 G1

G0 G1

Ev Ew

Ev

Ew

Ev

Ew

Ev Ew

Fig. 6. (a), (b), (c) Valid expansions that split a node u into nodes v,w. (d) An invalid expansion.

Automatic Workflow Graph Refactoring and Completion 107

ww

(a) (b)

u

a

b

c

v b
e ca

ua
b c

va
e cb

G0 G1 G0 G1

w w

Ev

Ew

Ev

Ew

Fig. 7. Two examples of undesired expansions that split node u into nodes v and w

• (v,w) ∈ E1 and (w, v) � E1,
• (v, x) ∈ E1 and (y,w) ∈ E1 ⇒ x = w or y = v,
• φ(x) = φ(y)⇔ x = y or {x, y} = {v,w},
• (φ(x), φ(y)) ∈ E0 ⇔ (x, y) ∈ E1 and (x, y) � (v,w),
• �0(φ(x)) = �1(x), or �1(x) is undefined.

We define two parameters for a valid expansion: 1. the node u = φ(v) = φ(w) and 2. a
partition of the edges Eu that are incident to u into two sets Eu = Ev ∪ Ew. We define

Ev = {(u, φ(y) | (v, y) ∈ E1, y � w} ∪ {(φ(x), u) | (x, v) ∈ E1, x � w} (1)

Ew can be defined similarly or as Ew = Eu \ Ev.

Sadiq and Orlowska [8] have shown for workflow graphs that if (G0,G1) is a valid
expansion that splits a node u into nodes v and w, and the logic of u is AND or XOR,
then G0 and G1 have the same behavior. An analogous result is also known from Petri
nets [7]. The behavior is also the same if the logic of u is OR and u is not in a cycle.

Some valid expansions create redundant nodes that we want to exclude from our
refactoring technique. We call these undesired expansions. A desired expansion splits
a gateway into two gateways, whereas an undesired expansion creates at least one task.
Figure 7 shows two examples of undesired expansions. Each of these valid expansions
is undesired, because node w has only one incoming and only one outgoing edge.

Definition 3 (Desired expansion, undesired expansion). Let Gi = (Vi, Ei, �i), i = 0, 1
be two (generalized) workflow graphs and v,w ∈ V1 be distinct nodes such that (G0,G1)
is a valid expansion and φ(v) = φ(w). The pair (G0,G1) is a desired expansion if

• v has at least two incoming edges or at least two outgoing edges, and
• w has at least two incoming edges or at least two outgoing edges.

Otherwise (G0,G1) is an undesired expansion.

The valid expansions in Fig. 6 are also desired expansions. Desired expansions restrict
the application of node splitting. However, application of the desired expansion can still
lead to different results, as shown by the example in Sect. 1. As we want to maintain
the structure of the graph, we apply the expansion only based on the R-fragments. This
will lead to a unique result.

Definition 4 (F-based expansion of node u). Let (G0,G1) be a desired expansion with
parameters u, Ev and Ew as in Def. 2 and let F be an R-fragment of G0. Furthermore, let
Eu denote the set of edges that are incident to u. We say that the expansion is F-based
if either u is the entry of F and Ew = F ∩ Eu, or u is the exit of F and Ev = F ∩ Eu.

108 J. Vanhatalo et al.

The fragment-based expansions can be applied repeatedly until we obtain a normal
generalized workflow graph.

Definition 5 (Expansion). Let G0 and Gn be (generalized) workflow graphs. Gn is an
expansion of G0 if there is a sequence G0, ...,Gn of (generalized) workflow graphs such
that (Gi,Gi+1) is a fragment-based expansion, when 0 ≤ i < n.

Although a given workflow graph G allows different sequences of fragment-based ex-
pansions, we nevertheless obtain a unique result, which we call the expanded normal
form of G, denoted as G∗.

Theorem 1. For every (generalized) workflow graph G, there exists a unique (general-
ized) workflow graph G∗ such that G∗ is an expansion of G and G∗ is normal.

Proof. Each F-based expansion replaces a fragment that is not normal by a sequence of
a trivial fragment and F. It is a local change to the original generalized workflow graph
G that preserves the structure of the RPST. This feature, which was named modularity
of the RPST, was proved earlier [10]. In fact, if we do not consider trivial fragments
and sequences, the RPST stays the same after the expansion. Because expansions can be
considered as modular replacements that do not change the RPST up to trivial fragments
and sequences, and because fragments are either nested or disjoint, then all fragment-
based expansions that can be applied to the original graph G are mutually independent,
i.e. they can be applied in any order to obtain the same result. (Note however, that a
particular expansion can be based on different fragments.)

Furthermore, an F-based expansion can only be applied if either the entry or the exit
of F violates the normality constraint and if F is neither trivial nor a sequence. An F-
based expansion removes such a violation of a normality constraint and cannot introduce
a new one. It follows that we arrive at a unique normal generalized workflow graph after
any sequence of all the expansions that are possible in the original graph G. ��
It is clear from the proof of Thm. 1 that the normal form G∗ arises as the maximal
expansion of G. Therefore, Alg. 1 computes G∗. It can be implemented in linear time to
the number of edges of G.

Theorem 2. Let G be a (generalized) workflow graph. Algorithm 1 computes the ex-
panded normal form of G.

Algorithm 1. Computes the expanded normal form of a generalized workflow graph G
computeExpandedNormalForm(G)

Compute the RPST T of G, and a list L of proper canonical R-fragments that are not normal.
while L has a proper canonical R-fragment F such that F is not normal do

Transform G into G′ based on an F-based expansion (G,G′).
Locally update T to correspond to the RPST of this updated G.
if F is normal, then remove F from L.

return G

Next we show that the NPST and the RPST coincide if G is normal. As R-fragments and
N-fragments are different objects, there are subtle differences in the trivial fragments.
However, the main structure that is represented by the proper fragments coincides:

Automatic Workflow Graph Refactoring and Completion 109

(a) (b)

G

a2

a1
a4 es xu

w v

a5a3

G*

a2

a1

a5a3

s

u2 v1

eu1 xa4

wv2
D E E*

H
D*

H*

Fig. 8. (a) A workflow graph G. (b) The expanded normal form G∗ of G.

Theorem 3. Let G be a normal (generalized) workflow graph, F a set of edges and GF

the subgraph formed by F. F is a proper canonical R-fragment of G if and only if GF is
a proper canonical N-fragment of G.

Proof. Presented in a technical report [12].

Figure 8(a) shows a workflow graph G and its proper canonical R-fragments. The R-
fragment H is normal, whereas D and E are not. Thus, we transform G into its extended
normal form G∗ shown in Fig. 8(b) through D-based and E-based expansions. It is
possible to transform G with D-based expansion of u and v, and an E-based expansion
of v. The D-based and E-based expansions of v split v into nodes v1 and v2 the same
way. Thus, we can obtain G∗ from G through two D-based expansions, or through one
E-based and one D-based expansion. The proper canonical R-fragments of G∗ are also
the proper canonical N-fragments of G∗. G∗ has two more proper canonical N-fragments
(D∗ and E∗) than G.

An N-fragment F is well-structured (c.f. [6,11]) if F is trivial, an N-sequence, or if
F has exactly two gateways as children, a split and a join j, that have the same logic
and if the entry edge of F is incoming to j, then j is an XOR-join. Note that a well-
structured fragment cannot be further refactored. However, if a fragment is not well-
structured it may become well-structured as shown in the examples of Figs. 1 and 8. In
this sense, the normal form of G is “more well-structured” than G. Note that we only use
local refactorings. It is known [6] that some workflow graphs can only be transformed
into well-structured graphs through non-local transformations, whereas there are also
workflow graphs that have no well-structured equivalent.

4 Automatic Completion of Workflow Graphs

In this section, we show how the refactoring technique of Sect. 3 can be used to compute
a completion of a workflow graph.

Definition 6 (Completion). Let G = (V, E, �) be a sound workflow graph (sound gen-
eralized workflow graph) and G′ = (V ′, E′, �′) a workflow graph (generalized workflow
graph). G′ is called a completion of G if

1. G is a subgraph of G′ such that if an edge e ∈ E′ \ E is incident to some node in
x ∈ V, then x is an end node of G and e is outgoing from x,

2. G′ has a unique end node,
3. G′ is sound.

110 J. Vanhatalo et al.

A completion of a generalized workflow graph is easy to construct. We just add an OR-
join j and an end node e, and connect each original end node to j and j to e. Figure 9
illustrates this.

Proposition 1. The construction shown in Fig. 9 defines a completion of a generalized
workflow graph.

Proof. We have to prove soundness of G′. We claim that the final OR-join can fire only
if G has no more tokens. Suppose the contrary. Then there is a state s that activates the
OR-join and there is some token inside G, say on edge e. As G has no deadlock, we can
move the token from e to some end node of G. As G has no lack of synchronization,
this end node was unmarked in s. It follows that in state s, there is a path from some
token to an unmarked incoming edge of the OR-join. It follows that the OR-join is not
activated in s, contradicting our supposition. The claim of the proposition follows now
directly. ��

s

e1

e2

en

(a)

...

(b)

G1

exs

e1

e2

en

G0

...

Fig. 9. G1 is the simple completion of G0

This simple completion can be used to
compute a translation from generalized
workflow graphs (e.g. BPMN diagrams)
with multiple end nodes to BPEL us-
ing the refined process structure tree
[10], which needs a generalized workflow
graph with a unique start1 and a unique
end node as input. However, there are var-
ious use cases where we want a comple-
tion without using OR-gateways:

• A user modeling a process has drawn a part of a diagram where she opened a num-
ber of parallel and alternative paths, i.e., she used a combination of AND-splits and
XOR-splits, possibly also some AND-joins or XOR-joins. Now the user does not
know what logic, i.e., combination of AND-joins and XOR-joins to use to close a
given set of paths correctly. In that situation, an OR-join could also be used to close
these paths. However, the OR-join may not be available in the language chosen or
may be considered too expensive to execute (see next use case). Gschwind et al. [4]
present this use case described above, but do not provide a technical solution.
• An OR-join was used to close a particular set of paths. In our restricted setting,

the evaluation of the OR-join at runtime requires that the whole graph preceding
the OR-join be checked for tokens. If we compute a completion of the graph pre-
ceding the OR-join, we can replace the OR-join with a combination of merges and
joins, all of which can be executed locally. Removing OR-joins also allows us to
translate the generalized workflow graph to a Petri net in a simple way [9]. (Petri
net transitions have a local semantics.) A translation to Petri nets may not only be
useful as an intermediate language between two different business process speci-
fication languages, but also to apply some of the various analysis techniques and
tools available for Petri nets.

1 In most languages, multiple start nodes stand for either an implicit AND-split or an implicit
XOR-split. Therefore, we restrict to workflow graphs having exactly one start node.

Automatic Workflow Graph Refactoring and Completion 111

• Dead Path Elimination of BPEL [3] is a way to simulate the OR-join by gateways
that can be executed locally. There, dead tokens are sent along those paths that are
not taken. An OR-join can then wait for a token, dead or alive, on each incoming
edge before it executes. If we can replace OR-joins by merges and joins, dead path
elimination can be switched off, saving the overhead of sending, propagating and
synchronizing dead tokens along potentially long paths.
• Checking whether a process has terminated also requires checking the entire gen-

eralized workflow graph for tokens. A sound generalized workflow graph with a
unique end node will, however, signal termination through a single token on the
unique end node. Thus, a completion at compile time provides a local termination
detection at runtime.

In the general case, a completion may be difficult to compute or not even exist. In
the following section, we show how to efficiently compute a completion based on the
refactoring technique from Sect. 3 for many cases. In Sect. 4.2, we characterize for
which workflow graphs a completion exists. Finally, in Sect. 4.3, we discuss how to
compute a completion in the general case where it exists.

4.1 Completion by Refactoring

Let G be a sound generalized workflow graph with multiple end nodes. We first com-
plete G using the simple OR-join completion described above. This adds a unique end
node, which allows us to compute the RPST for the completed graph. We obtain one or
more proper canonical R-fragments that contain the added OR-join of G as exit. Such
an R-fragment is called an end fragment of G. Figures 10(a) & (b) show an example of
a workflow graph G0 and its simple completion G1 that has two end fragments A and B.

We then split the final OR-join into several OR-joins, one per end fragment according
to the refactoring technique presented in Sect. 3.2. This preserves behavior as stated in

s

e1

a3

a2

a1v

e2

e3

s

e1

a3

a2

a1v

u

w

e2

e3

ex

s

e1

a3

a2

a1v

u

w

u

w

e2

e3

e

AB

(a)

(c)

(b)

G0

G2

G1

G3AB

s

e1

a3

a2

a1v

u

w

e2

e3

ex2
x1

(d)

AB
x1

x2

Fig. 10. Example of a completion by refactoring. The refactoring step produces G2 from G1.

112 J. Vanhatalo et al.

Sect. 3.2 and therefore also soundness. We refactor the end fragments until they are
normal, and thus also N-fragments. Figure 10(c) shows an example of the resulting
expansion G2 of G1. Now we can replace an OR-join j by an XOR-join if the fragment
F of j is sequential, that is, if F has no AND-split and no OR-split as a child. On the
other hand, an OR-join j can be replaced by an AND-join if F of j is deterministic,
that is, F has no XOR-split and no OR-split as a child. This replacement preserves
soundness.

Theorem 4. Let F be an N-fragment of a sound generalized workflow graph G, and an
OR-join j be a child of F.

1. If F has neither an XOR-split nor an OR-split as children and j is replaced with an
AND-join, then the resulting generalized workflow graph G′ is sound.

2. If F has neither an AND-split nor an OR-split as children and j is replaced with an
XOR-join then, the resulting generalized workflow graph G′ is sound.

Proof. Presented in a technical report [12].

Applying this theorem repeatedly allows us to replace all OR-joins in such a fragment F
with either 1) AND-joins or 2) XOR-joins. Figure 10(d) shows an example of a comple-
tion G3 of G0 obtained with our technique. Note that this completion technique requires
only linear time. After a review of more than 150 sound workflow graphs created from
realistic business processes, we believe that in practice most workflow graphs can be
completed using this fast technique. The power of this technique stems from the fact that
it abstracts from the interior of subfragments. For example, fragment B in Fig. 10(c) is
sequential, although it contains a subfragment with concurrency.

Figure 11(a) shows a workflow graph that can be completed, but not with the fast
technique presented here. We discuss these cases in the next section. It is clear that this
technique can also replace OR-joins in the middle of a generalized workflow graph,
provided that we restrict its application to settings where an OR-join is not in a cycle.

4.2 Existence of Completions

In this section, we present a technique that computes a completion for each workflow
graph that has a completion, and we characterize for which workflow graphs a comple-
tion exists. Let G be a sound workflow graph. As G is sound, we can represent a final
state as a set of end nodes. Let F be the set of final states of G, presented in this way.

(a) (b)

s

e2
a2

a1

v

v a3

a4

x

e1

s

e3a2

a1

v

w

u

a3

a5

x

e1

a4
e2

G0 G1

Fig. 11. Two workflow graphs. (a) G0 has a completion and (b) G1 has no completion.

Automatic Workflow Graph Refactoring and Completion 113

Definition 7. Two distinct end nodes x, y are mutually exclusive if there is no final state
M ∈ F such that x ∈ M and y ∈ M. A test is a set T of pairwise mutually exclusive end
nodes such that for each final state M, M ∩ T � ∅.
Figure 11(a) shows a workflow graph with final states F = {{e1, e3}, {e2, e3}}. There
are two tests, T1 = {e1, e2} and T2 = {e3}. Figure 11(b) shows a workflow graph with
final states F = {{e1, e2}, {e2}}. There is only one test T3 = {e2}.
Theorem 5. A sound workflow graph has a completion if and only if each end node
belongs to a test.

Proof. Presented in a technical report [12].

e1

e2

en

...

G1= (V1, E1, ´1)

e

t1

ja2

a1

an
tm...

s

(ai, tk) c E1g ei c Tk

...

Fig. 12. General completion

This completion can be constructed as shown
in Fig. 12. We extend a workflow graph G
by creating an XOR-join for each test of G
and one final AND-join that is connected to
the unique end node. Each end node x is con-
nected to those XOR-joins that correspond to
a test T such that x ∈ T . If an end node has to
be connected to more than one XOR-join, an
AND-split is inserted after the end node. All
XOR-joins are connected to the final AND-
join.

(a) (b)

s e

a2

a1 z

v

w

a4

u

y

x

a3s

e3a2

a1

v

w

u

a3

a5

x

e1

a4
e2

y

ez

e2

e1
G2 G3

Fig. 13. (a) Completion of G0 from Fig. 11(a). (b) Completion of G1 from Fig. 11(b) after adding
AND-split w in the middle of the graph.

Figure 13(a) shows the completion of G0 from Fig. 11. Note that gateways of comple-
tion that would have only a single incoming and a single outgoing edge can be omitted.
Node y corresponds to the test {e1, e2} whereas the node created by the test {e3} was
omitted. Also no AND-split was necessary.

G1 in Fig. 11(b) does not have a completion because e1 is not in any test. Note that
it is impossible to obtain a completion if there exist two final states M and M′ such that
M ⊆ M′. Figure 13(b) shows that it is nevertheless possible to “complete” G1 in a more
liberal sense; AND-split w added in the middle of G1 allows us to complete G1.

4.3 Computation of the Completion in the General Case

The completion technique above requires computing the final states of the workflow
graph, of which there can be exponentially many. The computation can be done by a

114 J. Vanhatalo et al.

simple state-space exploration. However, using the refactoring in Sect. 3.2 first, allows
us to restrict the completion to single end fragments, that is, we also have to compute
the state space only for individual end fragments, which are typically much smaller.
We transformed our library of more than 150 industrial process models into workflow
graphs having, on average, 57 edges. The largest has 203 edges and more than 100,000
states. However, those fragments that are neither sequential nor deterministic have at
most 38 states.

Once the final states have been computed, a suitable set of tests can be computed.
Sometimes a simple set of tests exists that can be computed in a simple way: An end
node x is called an identifier of a final state M if x is contained in M but not in any
other final state. Assume every state M has an identifier xM . Let y be an end node. Then
Ty = {xM | M ∈ F , y � M} ∪ {y} is a test containing y. So, in that special case, which is
easy to check, we get a simple set of tests that suffices.

5 Conclusion

This paper presents two new techniques for generalized workflow graphs—an RPST-
based refactoring technique that renders their structure more explicit, and a completion
technique that builds on this refactoring technique. We also provide a characterization
of workflow graphs that have a completion.

Only few related papers on workflow graph refactoring and completion exist and
these papers, having different focus, are only loosely related. Sadiq and Orlowska [8]
transform a workflow graph preserving its behavior to analyze its soundness. Eder
et al. [2] define equivalence of workflow graphs through rewriting rules. Zhang and
D’Hollander [13] use hammocks to structure flow graphs of sequential programs, which
can all be made well-structured in the absence of concurrency. A hammock is a spe-
cial case of an R-fragment, but their technique to restructure hammocks differs from
ours. Well-structuredness makes workflow graphs more readable [9,2]. Gschwind et al.
[4] identify a use case for a completion technique, but do not provide a solution to
solve it.

We believe that our refactoring-based completion technique is also useful for remov-
ing OR-joins that occur in cycles. Figure 14 shows an example. Note that the refactor-
ing produces a well-structured workflow graph. A formal treatment of these examples
would, however, exceed the scope of this paper as it requires a semantics for OR-joins
in cycles. In EPCs, our refactoring-based technique can also provide a completion in
the beginning of a graph, which describes the start node combinations that lead into a
sound execution.

s ew

a2

a1
a3

s

a2

a1 ewv2

a3

u v v1uBA BA

(a) (b)

G0 G1

Fig. 14. Separating sequential cyclic fragments from concurrent fragments

Automatic Workflow Graph Refactoring and Completion 115

Acknowledgments. The work published in this article was partially supported by the
SUPER project (http://www.ip-super.org/) under the EU 6th Framework Programme
Information Society Technologies Objective (contract no. FP6-026850).

References

1. Ananian, C.S.: The static single information form. Master’s thesis, Massachusetts Institute
of Technology (September 1999)

2. Eder, J., Gruber, W., Pichler, H.: Transforming workflow graphs. In: INTEROP-ESA 2005,
pp. 203–214 (2005)

3. Alves, A., et al.: Web Services Business Process Execution Language Version 2.0. OASIS
Org. (2007)

4. Gschwind, T., Koehler, J., Wong, J.: Applying patterns during business process modeling.
In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 4–19.
Springer, Heidelberg (2008)

5. Johnson, R., Pearson, D., Pingali, K.: The program structure tree: Computing control regions
in linear time. In: PLDI 1994, pp. 171–185. ACM, New York (1994)

6. Kiepuszewski, B., ter Hofstede, A.H.M., Bussler, C.: On structured workflow modelling. In:
Wangler, B., Bergman, L.D. (eds.) CAiSE 2000. LNCS, vol. 1789, pp. 431–445. Springer,
Heidelberg (2000)

7. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the IEEE 77(4),
541–580 (1989)

8. Sadiq, W., Orlowska, M.E.: Analyzing process models using graph reduction techniques. Inf.
Syst. 25(2), 117–134 (2000)

9. van der Aalst, W.M.P., Hirnschall, A., Verbeek, H.M.W.: An alternative way to analyze work-
flow graphs. In: Pidduck, A.B., Mylopoulos, J., Woo, C.C., Ozsu, M.T. (eds.) CAiSE 2002.
LNCS, vol. 2348, pp. 535–552. Springer, Heidelberg (2002)

10. Vanhatalo, J., Völzer, H., Koehler, J.: The refined process structure tree. In: Dumas, M.,
Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 100–115. Springer, Hei-
delberg (2008)

11. Vanhatalo, J., Völzer, H., Leymann, F.: Faster and more focused control-flow analysis
for business process models through SESE decomposition. In: Krämer, B.J., Lin, K.-J.,
Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 43–55. Springer, Heidelberg (2007)

12. Vanhatalo, J., Völzer, H., Leymann, F., Moser, S.: Automatic workflow graph refactoring and
completion. IBM Research Report RZ 3715 (2008)

13. Zhang, F., D’Hollander, E.H.: Using hammock graphs to structure programs. IEEE Trans.
Softw. Eng. 30(4), 231–245 (2004)

Authorization and User Failure Resiliency for
WS-BPEL Business Processes

Federica Paci1, Rodolfo Ferrini2, Yuqing Sun3, and Elisa Bertino1

1 Cerias and Computer Science Department, Purdue University
{paci,bertino}@cs.purdue.edu

2 Department of Computer Science, University of Bologna
ferrini@csr.unibo.it

3 School of Computer Science and Technology (SCST), Shandong University
sun yuqing@sdu.edu.cn

Abstract. We investigate the problem of WS-BPEL processes resiliency
in RBAC-WS-BPEL, an authorization model for WS-BPEL that sup-
ports the specification of authorizations for the execution of WS-BPEL
process activities by roles and users and authorization constraints, such
as separation and binding of duty. The goal of resiliency is to guaran-
tee that even if some users becomes unavailable during the execution
of a WS-BPEL process, the remaining users can still complete the exe-
cution of the process. We extend RBAC-WS-BPEL with a new type of
constraints called resiliency constraints and the notion of user failure re-
siliency for WS-BPEL processes and propose an algorithm to determine
if a WS-BPEL process is user failure resilient.

1 Introduction

Several XML-based languages have been proposed for specifying and orchestrat-
ing business processes, resulting in the WS-BPEL standard language. WS-BPEL
has been developed to specify automated business processes that orchestrate
activities of multiple Web services. There are, however, cases in which people
must be considered as additional participants to the execution of a process.
Therefore, it is important to extend WS-BPEL to include the specification of
activities that must be fully or partially performed by humans. The inclusion of
humans, in turn, requires an access control model to support the specification
and enforcement of authorizations to users for the execution of human activi-
ties while enforcing constraints, such as separation of duty, on the execution of
those activities. One such model is RBAC-WS-BPEL, a role based access control
model for WS-BPEL, that supports the specification of authorization informa-
tion stating which role or user is allowed to execute which human activities in a
process [6]. The authorization information comprises a role hierarchy reflecting
the organizational structure, a permission-role assignment relation, and a set
of permissions which represent the ability to execute activities. Authorization
constraints place restrictions on the roles and users that can perform the ac-
tivities in the business process. RBAC-WS-BPEL includes also a mechanism to

A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, pp. 116–131, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Authorization and User Failure Resiliency 117

determine if user requests to perform an activity in a WS-BPEL process can be
granted or not; requests are granted if the execution of a WS-BPEL process will
complete without violation to the authorization constraints.

In many situations, it is however necessary to make sure that a process can
complete even if certain users become unavailable to execute critical activities
in the process. The set of available users may change during the execution of
a WS-BPEL process for a large variety of reasons. Therefore, resiliency to user
unavailability is an important requirement for WS-BPEL processes.

In this paper, we investigate the problem of resiliency for WS-BPEL processes.
The goal of resiliency is to guarantee that even if some users become unavailable,
the remaining users can still complete the activities according to the stated
authorization constraints. To address such goal, we extend RBAC-WS-BPEL
with a new type of constraints, referred to as resiliency constraints, that specify
the minimum number of users that must be associated with the execution of
the activities in order to give some assurance that even if some users are not
available, the WS-BPEL process can terminate. We also define an algorithm
that generates assignments (if such assignments exist) of users to activities that
satisfy both the authorization constraints and the resiliency constraints.

The remainder of the paper is organized as follows. Section 2 introduces a
running example. Section 3 presents the main components of RBAC-WS-BPEL
authorization model. Section 4 investigates the problem of resiliency for WS-
BPEL processes. Section 4 describes the approach to check if a WS-BPEL process
is user failure resilient and presents some complexity results. Sections 6 and
7 discuss the system architecture and report experimental results respectively.
Section 8 outlines related work. Section 9 concludes the paper and outlines future
research directions.

2 Running Example

In this section we show an example of WS-BPEL process that implements the
submission of a research project in an academic institution (see Figure 1). The
process orchestrates the following operations:

– the submit operation, by the Submission service, to submit a project pro-
posal and check if the proposal satisfies various regulations;

– the review operation, by the Review service, that allows one to review the
project proposal;

– the approve operation, by the Approval service, that allows a faculty mem-
ber to check the reviews and decide if the project must be supported or
not;

– the assign funds operation, by the Fund Assignment service, that allows
one to revise the funds available and to determine the amount of funds that
can be assigned to the project.

The project submission process is organized as follows. First, a faculty member
or a phd student submits a project proposal to the academic institution by invok-
ing operation submit (the <receive> submit activity). Then, the two review

118 F. Paci et al.

< receive >
submit

< receive >
submit

< invoke >
review1

< invoke >
review1

parallel

< invoke >
review2

< invoke >
review2

< invoke >
approve

< invoke >
approve

< invoke >
assign funds

< invoke >
assign funds

< reply >
submit
< reply >
submit

Funds
Assignment

Service

Approval
Service

Review
Service

Submission
Service

Not Approved Approved

Fig. 1. Project Submission process specification

operations (<invoke> review activity) are executed in parallel. After the review
process is completed, the approve operation is executed (<invoke> approve
activity): if the project is approved, the operation assign funds (<invoke>
assign funds activity) is performed and a notification is sent back to the project
investigator (<reply> submit activity).

3 RBAC-WS-BPEL Authorization Model

RBAC-WS-BPEL applies to WS-BPEL business processes deployed in a sin-
gle organization composed of different organizational units. RBAC-WS-BPEL
inherits all the components of traditional RBAC models: users, roles, permis-
sions, role hierarchies, user-role assignment and role-permission assignment re-
lations. Moreover, RBAC-WS-BPEL supports the specification of authorization
constraints such as separation of duty and binding of duty that restrict the set
of users that can perform a given activity (see Figure 2). In particular, RBAC-
WS-BPEL associates with a WS-BPEL business process a set of roles R. Each
role is associated with a set of conditions on users’ properties that users must
satisfy in order to be assigned to that role. Examples of such properties are “so-
cial security number”, “birth-date” and “employment”. Users’ properties, that
are referred to as identity attributes, are conveyed in digital credential issued by
trusted third parties called Certification Authorities. Therefore, the assignment
of a user to a role is executed by evaluating the user’s attributes against the con-
ditions associated with the role. If the user attributes satisfy such conditions,
the user is assigned to the role.

In RBAC-WS-BPEL, permissions represent the ability to execute an activ-
ity of a WS-BPEL business process and are specified as tuples of the form
(Ai, Action) where Ai identifies an activity and Action identifies the execution

Authorization and User Failure Resiliency 119

Fig. 2. RBAC-WS-BPEL main components

of the activity. Permissions are assigned to roles that are structured in a role hi-
erarchy that defines a permission inheritance relation among the roles. RBAC-
WS-BPEL supports separation of duty and binding of duty constraints and
any authorization constraint that can be expressed as a binary relation on
the set of users or roles. An authorization constraint is represented by a tu-
ple < D, (A1, A2), ρ >, where D is the user or role who has executed activity
A1, called the antecedent activity, A2 is the consequent activity to which the
constraints is applied and ρ is a relation on U , the set of users, or on R, the set
of roles. A constraint < D, (A1, A2), ρ > is satisfied if, whenever x ∈ D performs
A1 and y performs A2, then (x, y) ∈ ρ. Authorization information is encoded in
RBAC-XACML [3] while authorization constraints are represented in BPCL, a
special purpose XML language for specifying authorization constraints [6]. Fi-
nally, RBAC-WS-BPEL supports an algorithm to evaluate at runtime whether
a request to execute an activity by a user can be granted or not on the basis
of the authorizations the user has and on the basis of authorization constraints
defined for the activity.

Example 1. Figures 3 and 4 show the RBAC-WS-BPEL components defined for
our running example. Figure 3 (b) shows the role hierarchy that specifies the
different positions in an academic institution. Figure 3 (a) lists for each role
the users explicitly assigned to each role. 1 Figure 4 (a) illustrates a typical role-
permission assignment relation. For example, activity <invoke> review1 can be
performed both by an Assistant professor and by an Associate professor.
Figure 4 (b) reports the authorization constraints defined for the project sub-
mission process. C1 is a binding of duty constraint, requiring that the same user
that assigns the funds to the project must notify if the project proposal has been
approved or not. C2, C3, C4, C5 and C6 are separation of duty constraints. For
example, C2 states that the users who perform <invoke> review1 and <invoke>
review2 must be different.
1 A user is explicitly assigned to a role if the user’s attributes satisfy the conditions

associated with the role. A user is implicitly assigned to the roles that are dominated
in the role hierarchy by the role to which the user is explicitly assigned.

120 F. Paci et al.

Roles Users
Dean {John }

Full professor {Mary, Jane}
Associate {Chris, Irini }
professor
Assistant {Anna, Dan }
professor
Post Doctorate {Ellen, Doug}
PhD Student {Ashish, Melanie,

Kara}
Business Office {Tammy }
Manager
Business Office { Robynne, Leslie}
Clerk

(a) Roles

(b) The role hierarchy

Fig. 3. RBAC-WS-BPEL role hierarchy and role-permission assignment relation for
the project submission process

Roles Permission
Post Doctorate, (<receive> submit, execute)
PhD Student
Assistant professor, (<invoke> review1, execute)
Associate professor
Assistant professor, (<invoke> review2, execute)
Associate professor
Full professor (<invoke> approve, execute)
Business Office Manager (<invoke> assign funds, execute)
Business Office Clerk (<reply> submit, execute)

(a) Role-permission assignment relation

Authorization Constraint
C1 <U, (<invoke> assign funds, <reply> submit), = >

C2 <U, (<invoke> review1, <invoke> review2), �= >

C3 <U, (<receive> submit, <invoke> review1), �= >

C4 <U, (<receive> submit, <invoke> review2), �= >

C5 <U, (<receive> submit,<invoke> approve,) �= >

C6 <U, (<invoke> review1, <invoke> approve), �= >

C7 <U, (<invoke> review2, <invoke> approve), �= >

(b) Authorization constraints

Fig. 4. RBAC-WS-BPEL role-permission assignment relation and authorization con-
straints for the project submission process

Authorization and User Failure Resiliency 121

4 Process User Failure Resiliency

In this section we introduce the key notions of our resiliency model.

Definition 1 (Resiliency constraint). Let U be the set of users and let BP a
WS-BPEL process. A resiliency constraint is a tuple <Ai, ni>, where Ai ∈ BP
and, ni ∈ N, ni denotes the minimum number of users that must have the autho-
rization2 to perform Ai.

We now introduce the notion of user failure resiliency for a WS-BPEL business
process.

Definition 2 (User Failure Resiliency). Let U be the set of users, BP be
a WS-BPEL business process, UAi be the set of users authorized to perform
activity Ai ∈ BP , and <Ai, ni> be a resiliency constraint for activity Ai. We
say that BP is user failure resilient if for each Ai ∈ BP such that a resiliency
constraint <Ai, ni> exists, then |UAi | ≥ ni. Moreover, the maximum resiliency
of a WS-BPEL business BP , denoted as MaxRes, is defined as the maximum
over the set {ni | ∃ <Ai, ni> such that Ai ∈ BP }.

If a WS-BPEL process is user failure resilient, there is a sufficient number of
authorized users to perform the process so that authorization constraints are
satisfied and the process terminates even if some users become unavailable.

A relevant concept to determine whether a WS-BPEL process is user failure
resistant is the concept of configurations.

Definition 3 (Configuration). Let U be the set of users, BP be a WS-BPEL
business process and UAi be the set of users authorized to perform activity Ai ∈
BP . Let C be the set {<A, u> | A ∈ BP ∧ u ∈ UA }. We say that c, c ⊆ C,
is a configuration for BP if ∀ Ai ∈ BP , ∃ one and only one tuple <A, u> ∈ c
such that A = Ai.

The above definition states basically that a configuration must specify a user
assignment for each activity in the process.

To determine if a WS-BPEL process is user failure resilient a possible ap-
proach is to compute the set S of all possible configurations and then evaluate
if the resiliency constraints are satisfied. All such configurations would be then
stored to decide which user has to substitute another user if the latter becomes
unavailable at run-time. However, rather than computing and storing all the
possible configurations, it is sufficient to compute only a subset Sc of S that
satisfies the following property:

2 To determine if a WS-BPEL business process is user failure resilient, we assume
that a user has the authorization to execute an activity Ai if he/she is assigned to
a role which has the permission to perform Ai. The authorization to execute the
activity Ai is effectively granted to the user only at runtime when he/she claims the
execution of Ai.

122 F. Paci et al.

for each activity Ai ∈ BP such that a resiliency constraint <Ai, ni> exists, |⋃
c∈Sc

{<Ai, u> | <Ai, u> ∈ c} | = ni.
A resiliency constraint <Ai, ni> for an activity Ai is satisfied if it is possible to
find at least ni users authorized to perform Ai and therefore ni configurations.
It is trivial to prove that if Sc exists, the cardinality of Sc is equal to MaxRes.

In the next section we evaluate the complexity of computing the configurations
in Sc.

4.1 Computational Complexity of Checking User Failure Resiliency

The complexity of checking whether a WS-BPEL process is user failure resilient
is given by the following lemmas.

Lemma 1. Checking whether a WS-BPEL process is user failure resistant, which
is called the user failure resiliency checking problem (RCP for short), is NP-
Complete in RBAC-WS-BPEL.

Lemma 2. RCP is P in RBAC-WS-BPEL if only binding of duty constraints
are specified on the process activities.

Lemma 3. RCP is NP-Complete in RBAC-WS-BPEL if only separation of
duty constraints are specified on the process activities.

See [7] for the proofs.

5 Constraints Evaluation and Planning

As we proved in the previous section, the complexity of computing the config-
urations to check whether a WS-BPEL process is user failure resilient is NP-
Complete. In fact, in the worst case, the complexity is O(|U ||A| ∗ MaxRes),
where |U | is the number of potential users and |A| is the number of activities in
the process, because to compute a configuration, all the possible assignments of
users to activities are tried for all the activities in the process and this step is
iterated a number of times equal to MaxRes.

To reduce the complexity of computing configurations, we thus introduce two
heuristics that reduce the number of assignments of users to activities. First, for
all the activities that are linked by a binding of duty constraint, the set of users
that are authorized to perform these activities is set to the intersection of the
sets of users who are authorized to perform each single activity. For example, if
the binding of duty constraints < U ,(A1, A2),= > and < U ,(A1, A3),= > are
specified for activities A1, A2 and A3, the sets of users UA1 , UA2 and UA3 that
are authorized to perform A1, A2 and A3 are equal to the intersection VA1 ∩ VA2

∩ VA3 . VA1 , VA2 and VA3 are, respectively, the set of users that are authorized
to execute A1, A2 and A3 because they are assigned to a role that has the
permission to execute A1, A2 and A3. The adoption of this heuristic increases
the success rate of assignment of users to activities and therefore minimizes the
number of user assignments.

Authorization and User Failure Resiliency 123

Algorithm 1. Process User Failure resiliency satisfaction

Require: AC set of authorization constraints,
RC set of resiliency constraints,
Activities set of activities ordered according the business process specification

Ensure: BP is user failure resistant
1. MaxRes = Max(RC)
2. for Ai ∈ Activities do
3. VAi = getAuthorizedUsers(Ai)
4. if |VAi | < RCAi then
5. exit
6. else
7. V . add(VAi)
8. end if
9. end for

10. LinkedActivities = getSubActivities(Activities)
11. satisfiable = true
12. while (Num < MaxRes AND satisfiable) do
13. for LinkedActivitiesi ∈ LinkedActivities do
14. Current Activity = LinkedActivitiesi.head()
15. SubConfigi = build config(Current Activity, V , AC, RC, Conf Set,

SubConfigi, LinkedActivitiesi)
16. SubConfig.add(SubConfigi)
17. end for
18. Current Config = merge(SubConfig)
19. if Current Config.size() == Activities.size() then
20. satisfiable = true
21. Conf Set.add(Current Config)
22. Num = Num+1
23. else
24. satisfiable = false
25. end if
26. end while
27. if | Conf Set | < MaxRes then
28. for Ai ∈ Activities do
29. if | Conf Set | < RCAi then
30. Missing Users = RCAi - | Conf Set |
31. Roles=ua-update(Missing Users)
32. end if
33. end for
34. end if

The second heuristic groups the activities that are linked by authorization
constraints. For example, activities A4 and A5 are in the same subset of activ-
ities if there is a separation of duty constraint < U ,(A4, A5),	= > between A4
and A5. For each subset of activities, a partial configuration is computed and
then a complete configuration for the process is generated by merging the par-
tial configurations. This optimization reduces the number of user assignments
to activities because, when the assignment of a user to an activity fails, the

124 F. Paci et al.

reassignment of a user is performed only for the antecedent activities that are
in the same subset of the activity for which the assignment fails and not for
all the other antecedent activities. The computation of the set of users autho-
rized to perform the activities linked by a binding of duty constraint and of the
subsets of activities has complexity |AC|2, where |AC| is the number of autho-
rization constraints. The computation of the sub-configurations for each subset
of activities has complexity O(|Usubset||Asubset|), where |Usubset| and |Asubset|
are respectively the number of candidate users and the number of activities
in each subset while the complexity of combining the sub-configurations to-
gether to obtain a configuration for the whole business process is |A|. Therefore,
by adopting these heuristics, the complexity of calculating the configurations
necessary to assure that a WS-BPEL process is user failure resilient becomes
O(|AC|2 + MaxRes ∗ {|Usubset||Asubset| + |A|}).

Algorithm 1 adopts the heuristics we have described to compute a number
of users-to-activities assignment configurations equal to MaxRes. First of all
the algorithm, computes MaxRes (line 1). Then, for each activity Ai, the pro-
cedure getAuthorizedUsers returns the set of users VAi that are authorized
to perform activity Ai because they are assigned to a role that has the per-
mission to execute Ai (lines 2-3). If the cardinality of VAi is lower than the
resiliency value specified for Ai, the algorithm terminates, otherwise VAi is
added to V , that is a vector containing for each activity Ai the set VAi (line
7). Then, the procedure getSubSetActivities calculates the subsets of activ-
ities SubSetActivities on the basis of the authorization constraints that are
applied to them. Each SubSetActivities is saved in the LinkedActivities set
(line 10). Then, the algorithm iterates till a number of user configurations equal
to MaxRes is not found (line 12) or it is not possible to find such a number of
configurations because all the possible combinations of users-to-activities assign-
ment have been tried. The configurations are computed by the recursive proce-
dure build config. build config is executed for each subset LinkedActivitiesi

and returns a partial configuration SubConfigi. Once a partial configuration
SubConfigi is computed for each subset LinkedActivitiesi, the procedure merge
combines all SubConfigi in one configuration Current Config that is added to
the configurations set Config Set. If Algorithm 1 is not able to compute a num-
ber of configurations equal to MaxRes, it determines the activities for which
the resiliency constraint is not satisfied. These activities are the activities whose
resiliency value is lower than the number of configurations in Config Set. For
each of these activities, Algorithm 1 calculates the number of additional po-
tential users should be associated with the execution of the activities. Then,
ua-update checks the logs associated with the activities and returns the roles
for which the user failure assignment has more frequently failed. The additional
potential users needed must be added to these roles.

Example 2. Assume that for the activities <invoke> review1, <invoke> review2
and<invoke>approve the following resiliencyconstraintsare specified: (<invoke>
review1, 3), (<invoke> review2, 3) and (<invoke> approve, 2). Since MaxRes is
equal to three, to prove that the project submission process is user failure resilient,

Authorization and User Failure Resiliency 125

weneed to find three different users-to-activities assignment configurations.An ex-
ample of such configurations is:

1. (<receive> submit, Irini), (<invoke> review1, Mary),(<invoke>review2,
Anna), (<invoke> approve, Jane), (<invoke> assign funds, John),
(<reply> submit, John)

2. (<receive> submit, Kara), (<invoke> review1, Chris), (<invoke>
review2, Mary), (<invoke> approve, John), (<invoke> assign funds,
Tammy), (<reply> submit, Tammy)

3. (<receive> submit, Irini), (<invoke> review1, Jane), (<invoke> review2,
John), (<invoke> approve, Mary), (<invoke> assign funds, Tammy),
(<reply> submit, Tammy).

Therefore, the project submission process is user failure resilient. Consider a
different scenario, in which the resiliency constraints (<invoke> review1, 4),
(<invoke> review2, 4) and (<invoke> approve, 3) are applied to activities
<invoke> review1, <invoke> review2 and <invoke> approve. Now, we have
to find four configurations to prove that the process is resilient since MaxRes
is equal to four. In this case, the following configurations are generated:

1. (<receive> submit, Jane), (<invoke> review1, Dan), (<invoke> review2,
Chris), (<invoke> approve, Mary), (<invoke> assign funds, Tammy),
(<reply> submit, Tammy)

2. (<receive> submit, Anna), (<invoke> review1, Irini), (<invoke> review2,
John), (<invoke> approve, Jane), (<invoke> assign funds, John), (<reply>
submit, John)

3. (<receive> submit, Kara), (<invoke> review1, Jane), (<invoke> review2,
Mary), (<invoke>approve, John), (<invoke> assign funds, null), (<reply>
submit, null)

4. <receive>submit, Ashish), (<invoke> review1, Chris), (<invoke> review2,
Anna), (<invoke> approve, null), (<invoke> assign funds, null), (<reply>
submit, null).

It’s easy to see that the process is not user failure resilient because the first two
configurations are complete but for the other ones the assignment of a user to
activities <invoke> approve, <invoke> assign funds and <reply> submit fails.

6 System Architecture

The main components of the RBAC-WS-BPEL architecture (see Figure 5) are the
WS-BPEL engine, the XACML Policy Store, BPCL Constraints Store
repositories, the History Store and the RBAC-WS-BPEL Enforcement Service.
The WS-BPEL engine is responsible for scheduling and synchronizing the various
activities within the business process according to the specified activity depen-
dencies, and for invoking Web services operations associated with activities. The
XACML Policy Store records the RBAC-WS-BPEL authorization schema asso-
ciated with the business process, whereas the BPCL Constraints Store records

126 F. Paci et al.

Fig. 5. RBAC-WS-BPEL architecture

the authorization constraints. The History Store records the users who have per-
formed an activity and whether the execution of the activity has been successful or
not. The RBAC-WS-BPEL Enforcement Service supports the WS-BPEL process
administrators both at deployment time and at runtime. When the process is de-
ployed, the RBAC-WS-BPEL Enforcement Service checks if the process is user
failure resilient and, hence, if there is a number of users sufficient to start the
execution of the process, while during the execution of the process the RBAC-
WS-BPEL Enforcement Service checks whether the execution of an activity by a
user violates authorization constraints. The RBAC-WS-BPEL Enforcement Ser-
vice offers three WSDL interfaces. The first interface provides the operations for
starting and completing the execution of a WS-BPEL activity that must be per-
formed by a user. The second interface allows users to visualize the activities they
can claim, and to claim and execute them [6]. The third interface provides func-
tions for determining if a WS-BPEL process is user failure resilient.

In what follows, we focus on the description of the third interface, because it
is the most relevant for the discussion in the paper.

Such interface provides a single operation, called planning, that implements
Algorithm 1. The planning operation notifies the WS-BPEL process adminis-
trator if the process is user failure resilient and, if this is not the case, displays
the activities for which the resiliency constraints are not satisfied and the roles
authorized to perform the activities that should be populated with additional
users. The WS-BPEL process administrator can decide to proceed with the ex-
ecution of the process or to halt the execution and modify the set of potential
users associated with the execution of the process. To enable the execution of
the planning operation, the WS-BPEL process designer has to include in the
<partnerLinks> list, the RBAC-WS-BPEL Enforcement Service. Moreover, the
WS-BPEL specification must be such that the start activity of the process is
a <receive> activity that executes the planning operation. The <receive>
planning activity is followed by an <if> activity that performs the subsequent

Authorization and User Failure Resiliency 127

Table 1. Test cases parameters

Test Case Business Num of Num of MaxRes Num of
Process BoD SoD Users

1 21 activities 4 4 6 50..140
2 21 activities 4 4 [3,9] 50
3 21 activities [0,5] 4 6 50
4 21 activities 0 [3,6] 6 50

activities that implement the business process only if the execution of planning
is successful. The planning operation retrieves from the XACML Policy Store
the hierarchy of roles and the list of users assigned to the roles and selects from
the BPCL Constraints Store the set of authorization and resiliency constraints
that are necessary for executing Algorithm 1. All configurations computed by
the planning operation are stored in an additional repository, referred to as
Planning Store, while the logs of unsuccessful assignments of users to activities
are recorded in the History Store.

7 Experimental Evaluation

We have carried out several experiments to evaluate the impact of the heuristics
for reducing the cost of the configuration computation and to prove the effec-
tiveness of our approach. To execute the tests we have implemented Algorithm 1
and, in addition, an algorithm, referred to as NoNOptimized, which computes a
number of configurations equal to MaxRes as Algorithms 1 but without adopt-
ing the heuristics to reduce the complexity. We have also generated a WS-BPEL
process composed by 21 activities, a set of 50 potential users, a role hierarchy of
7 roles, 4 separation of duty and 4 binding of duty constraints. Such process has
a MaxRes value equal to 6. We have considered four test cases that are sum-
marized in Table 1. In particular, we have measured in CPU time (milliseconds)
the execution time of Algorithm 1 and of the NoNOptimized algorithm in the
following cases:

1. we varied the number of potential user from 50 to 140 and we kept the
number of separation of duty and binding of duty constraints equal to 4,
and the value of MaxRes equal to 6.

2. we varied the value of MaxRes from 3 to 6 and we kept the number of
separation of duty and binding of duty constraints equal to 4 and the number
of potential users equal to 50.

3. we varied the number of binding of duty constraints defined for the process
from 0 to 5 and we set the number of separation of duty constraints to 4,
the value of MaxRes to 6 and the number of potential users to 50.

4. we varied the number of separation of duty constraints defined for the process
from 3 to 6 and we set the number of binding of duty constraints to 4,
MaxRes value to 6 and the number of of potential users to 50.

128 F. Paci et al.

(a) First Test Case (b) Second Test Case

(c) Third Test Case (d) Fourth Test Case

Fig. 6. Experimental results

The experiments have been run on a PC with operating system WINDOWS XP
SP2, a 2Gz T7200 processor and 2GB RAM. Moreover, for each test case we
have executed twenty trials, and the average over all the trial execution times
has been computed.

Figures 6 (a) and (b) report the execution times measured for test cases 1 and
2. The execution times of Algorithm 1 are almost constant for increasing values
of the number of potential users and MaxRes value, while the execution time
of the NoNOptimized algorithm increases. The reason is that in Algorithm 1
the first heuristic reduces the number of unsuccessful users assignments. More-
over, the second heuristic reduces the number of activities for which we try to
reassign a user in case of failure. Instead, for the NoNOptimized algorithm, the
time increases because in case of user assignment failure for an activity Ai, a re-
assignment of a user is tried for all the antecedent activities Ai−1, Ai−2 . . . rather
than only for the antecedent activities that are linked to Ai by an authorization
constraint. The experimental results reported in Figure 6 (c) show the advantage
of adopting the first heuristic about the activities that are linked by a binding of
duty constraint. When the number of binding of duty constraints is equal to 0,
the execution times of Algorithm 1 and of the NoNOptimized algorithm are the
same; while when the number of binding of duty constraints increases, the exe-
cution times of the NoNOptimized algorithm become greater than Algorithm 1.
When increasing the number of binding of duty constraints, the user assignment

Authorization and User Failure Resiliency 129

success rate for Algorithm 1 increases and, as a consequence, the number of user
assignments is minimized. This is the reason why Algorithm 1’s execution time
is almost constant, while the execution time of the NoNOptimized algorithm
increases. Finally, Figure 6 (d) shows the impact of generating the subsets of ac-
tivities. The increase of the number of separation of duty constraints restricts the
number of users authorized to perform the activities and, as a consequence, the
probability that a user assignment fails is very high. Therefore also the number
of reassignments of users to activities is high. The execution time of Algorithm 1
is lower than the time of the NoNOptimized algorithm because the number of
activities for which the user reassignments is performed is minimized; the user
reassignment is tried only for the antecedent activities in the same subset of
the activity for which the user assignment fails. Note that the execution time of
Algorithm 1, regardless of the test cases we have performed, is under 100 ms.
Such results show that our approach to check whether a WS-BPEL process is
user failure resilient is applicable to real case scenarios.

8 Related Work

With the widespread adoption of Web services composition to implement com-
plex business processes and of WS-BPEL as the standard language to specify
business processes based on Web services, the problem of how to associate au-
thorized users with the activities of a WS-BPEL process is gaining attention.
Koshutanski et al. [5] propose an authorization model for business processes
based on Web services. Both the model of Koshutanski et al. and RBAC-WS-
BPEL assume an RBAC model and support authorizations constraints on the
set of users and roles. They also consider the problem of taking authorization
decision on the execution of business process’s activities. The main difference
with RBAC-WS-BPEL is in the approach to take authorization decision. In the
model by Koshutanski et al., an authorization decision is taken by orchestrating
the authorization processes of each Web service, the activities of which are or-
chestrated in the business process, while in RBAC-WS-BPEL an authorization
decision is taken independently for each activity in the process.

Xiangpeng et al. [8] propose an RBAC access control model for WS-BPEL
business process. Roles correspond to <partnerRole> elements in the WS-BPEL
specification and are organized in a hierarchy. Permissions correspond to the
execution of the basic activities in the process specification. In addition, separa-
tion of duty constraints can be specified. A main difference with respect to our
approach is that RBAC-WS-BPEL’s BCPL constraints language supports the
specification of a broader range of authorizations constraints than the model by
Xiangpeng et al.

BPEL4People [1] is a recent proposal to handle person-to-person WS-BPEL
business process. With respect to RBAC-WS-BPEL, in BPEL4People users that
have to perform the activities of a WS-BPEL business process are directly spec-
ified in the process by user identifier(s) or by groups of people’s names. No
assumption is made on how the assignment is done or on how it is possible to
enforce constraints like separation of duties.

130 F. Paci et al.

The workflow authorization model proposed by Wang et al. [9] is probably the
one that is most closely related to RBAC-WS-BPEL. Wang et al. propose the
role-and-relation-based access control (R2BAC) model for workflow systems. In
R2BAC, in addition to a users role memberships, the users relationships with
other users help determine whether the user is allowed to perform a certain step
in a workflow. Wang et al. investigate the workflow satisfiability problem, which
asks whether a set of users can complete a workflow. They also investigate the
resiliency problem in workflow systems, which asks whether a workflow can be
completed even if a number of users may be absent. The notion of resiliency
supported by RBAC-WB-BPEL is slightly different from the one proposed by
Wang et al. They propose a notion of resiliency parametrized in the number
of absent users. A workflow is resilient, if it is satisfiable in any configuration
where any set of users of cardinality equal to the parameter is not available.
Instead, in RBAC-WS-BPEL, a WS-BPEL process is resilient if it is possible
to find a number of configurations that satisfy both resiliency constraints and
authorization constraints.

9 Conclusions

In this paper, we have investigated the resiliency problem for WS-BPEL business
processes. Resiliency in the context of business process means that even if some
users become unavailable, the remaining users can still complete the execution
of the process according to the stated authorizations and authorization con-
straints. To address such problem, we have extended RBAC-WS-BPEL, which
is an authorization model for WS-BPEL business processes, with the notions
of resiliency constraints for activities and user failure resiliency for a business
process. We have proposed an algorithm that allows to statically determine if a
WS-BPEL is user failure resilient. The algorithm verifies there is a number of
users-to-activities assignment configurations equal to MaxRes. These configu-
rations are computed by assuming that users are assigned to the execution of an
activity because they cover a role that is granted the execution of the activity.
The authorization to execute an activity is effectively granted to users only at
runtime when they claim the execution of the activity. Though, the complex-
ity of computing such configurations is NP-complete in the most general case,
the proposed algorithm adopts some heuristics that reduce the computational
complexity. The experimental results, we have performed, have shown that the
algorithm is efficient in most practical cases.

We are planning to extend this work in several directions. We are currently in-
vestigating how the RBAC-WS-BPEL Enforcement Service can be implemented
on top of ODE BPEL engine[4]. We also want to extend RBAC-WS-BPEL
to support authorizations for cross-organizations business processes. Currently,
RBAC-WS-BPEL is applied to inter-organization business processes. As we have
been told by the main companies providing solutions for WS-BPEL processes,
WS-BPEL is mainly used to specify inter-organization business processes rather
than cross-organizations business processes. We are also planning to extend
RBAC-WS-BPEL with more sophisticated authorization constraints.

Authorization and User Failure Resiliency 131

References

1. Agrawal, A., et al.: WS-BPEL Extension for People (BPEL4People), Version 1.0
(2007), http://www.adobe.com/devnet/livecycle/pdfs/bpel4people spec.pdf

2. Alves. A. et al.: Web Services Business Process Execution Language, Version 2.0,
OASIS Standard (April 2007),
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf

3. Anderson, A.: Core and Hierarchical Role Based Access Control (RBAC) Profile of
XACML, Version 2.0, OASIS Standard (2005),
http://docs.oasis-open.org/xacml/2.0/access control-xacml-2.0-rbac
-profile1-spec-os.pdf

4. Apache ODE BPEL engine, http://ode.apache.org/bpel-extensions.html
5. Kostutanski, H., Massacci, F.: An Access Control Framework for Business Processes

for Web Services. In: Proceedings of ACM Workshop on XML Security, George W.
Johnson Center at George Mason University, Fairfax, Va, USA, October 2003, pp.
15–24 (2003)

6. Paci, F., Bertino, E., Crampton, J.: An Access Control Framework for WS-BPEL.
International Journal of Web service Research 5(3), 20–43 (2008)

7. Paci, F., Ferrini, R., Sun, Y., Bertino, E.: Authorization and User Failure Resiliency
for WS-BPEL business processes, Cerias Technical report (2008)

8. Xiangpeng, Z., Cerone, A., Krishnan, P.: Verifying BPEL Workflows Under Autho-
risation Constraints. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006.
LNCS, vol. 4102. Springer, Heidelberg (2006)

9. Wang, Q., Li, N.: Satisfiability and Resiliency in Workflow Systems. In: Biskup, J.,
López, J. (eds.) ESORICS 2007. LNCS, vol. 4734, pp. 90–105. Springer, Heidelberg
(2007)

http://www.adobe.com/devnet/livecycle/pdfs/bpel4people_spec.pdf
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-rbac-profile1-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-rbac-profile1-spec-os.pdf
http://ode.apache.org/bpel-extensions.html

Reasoning on Semantically Annotated Processes

Chiara Di Francescomarino, Chiara Ghidini, Marco Rospocher,
Luciano Serafini, and Paolo Tonella

FBK-irst, Via Sommarive 18 Povo, I-38100,Trento, Italy
{dfmchiara,ghidini,rospocher,serafini,tonella}@fbk.eu

Abstract. Enriching business process models with semantic tags taken
from an ontology has become a crucial necessity in service provisioning,
integration and composition. In this paper we propose to represent se-
mantically labelled business processes as part of a knowledge base that
formalises: business process structure, business domains, and a set of cri-
teria describing correct semantic labelling. Our approach allows (1) to
impose domain dependent constraints during the phase of process de-
sign, and (2) to automatically verify, via logical reasoning, if business
processes fulfill a set of given constraints, and to formulate queries that
involve both knowledge about the domain and the process structure. Fea-
sibility and usefulness of our approach will be shown by means of two
use cases. The first one on domain specific constraints, and the second
one on mining and evolution of crosscutting concerns.

1 Introduction

Semantic Business Process Management (SBPM) [16,12] has the main objec-
tive of improving the level of automation in the specification, implementation,
execution, and monitoring of business processes by extending business process
management tools with the most significant results from the area of semantic
web. Focussing on process modeling, i.e. the activity of specification of business
processes at an abstract level (descriptive and non executable), it has been ar-
gued that annotating process descriptions with a set of tags taken from a set of
domain ontologies would provide an additional support to the business analysis
in this phase. (see e.g. [20]).

However, semantic annotations will positively affect the creation of high qual-
ity process models only if they are correct. Though the notion of correct semantic
annotation deserves a precise definition, we can intuitively say that a necessary
condition for a correct annotation is that it respects types. E.g. activities in
a business process should be labeled with some concepts denoting indeed an
activity; similarly, conditional tests should be labeled with boolean conditions,
and so on. Thus, for instance, an activity labeled “purchase order” or a gate-
way condition labeled “send a request” are intuitively not correct annotations.
Additional requirements for a correct labeling could be imposed because of the
specific application domain. For instance, in a domain in which simple actions
only come from a fixed set, tasks should be only tagged with actions taken from

A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, pp. 132–146, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Reasoning on Semantically Annotated Processes 133

this set. Providing a way to specify the criteria for correct annotation is a critical
and important issue in the development of business processes. It is even more
important because, as shown in the examples above, while certain criteria for
correct annotation can be valid for all (or a wide range of) business domains,
others need to be specified for the specific business domain at hand.

Assuming that the process is correctly annotated, semantic tags can be help-
ful in several BPM activities. Semantic tags convey the necessary information to
perform an early analysis of the process in order to find critical patterns, and can
be used to guide the user to recognize problems at design time and features which
can be useful in further refinements of the process specification. In addition the
search for instances of these critical patterns can be automatised using queries.
Another use is related to the presence and evolution of the so-called crosscutting
concerns [23] of a business process. Crosscutting concerns are process features
that cannot be modularized into a single unit (e.g., an activity or a subprocess),
because they are intrinsically scattered across the process and tangled with the
other concerns. For example, in a business process for an online shop there are
usually several places in which the user makes choices based on her/his pref-
erences. All related activities form a crosscutting concern, the user preferences
concern. Knowledge about its presence is important to understand how such
a feature is currently managed and how it can be evolved in the future (e.g.,
storing preferences and making suggestions to the user in a proactive way). Se-
mantic annotations provide the basic information necessary for documentation
and consistent management of crosscutting concerns in business processes.

In this paper we propose an approach for (1) the specification of constraints
for correct annotations of business processes, (2) the automatic verification of the
correctness of annotated processes, and (3) the provision of reasoning services
on labelled processes via query answering. Our approach is based on two pil-
lars: first, on the implementation of a Knowledge Base, called Business Process
Knowledge Base, that contains: an ontology formalizing one of the most widely
used language for describing business processes, i.e. BPMN [7], a (set of) do-
main ontology(es) that provide the tagging language and semantics, and a set of
merging axioms that specify labeling restrictions and annotation criteria; second,
on a tool that automatically translates a BPMN process labelled with seman-
tic tags into a set of assertions of the knowledge base. Detection of correctness
of semantic tagging, suggestion of possible correct tagging, and semantic query
based analysis of a process in order to find criticalities and manage crosscutting
concerns are implemented via logical reasoning.

2 The Approach

Business Process Modeling Notation (BPMN) [21] is a (graphical) language for
the specification of Business Process Diagrams (BPD). Roughly speaking, a BPD
is an annotated graph whose nodes represents activities, control flows, data, and
auxiliary information about the process. In our semantic variant of BPMN we
allow for tagging objects of a BPD with concept descriptions taken from a (set
of) domain ontology(es), i.e. shared formalizations of a specific domain.

134 C. Di Francescomarino et al.

Fig. 1. Business Processes Knowledge Base

However, not every BPD object can be labelled with any concept. Meaning-
ful semantic annotations should respect some restrictions. For instance, if the
domain ontology is RosettaNet1, then a BPMN object of type activity can be
correctly tagged by rosetta:PIP2 (Partner Interface Process, i.e. a protocol of
outgoing and incoming messages representing request and response dialogue), or
some of its subclasses, but it would be a mistake to label it with rosetta:TotalPrice
(i.e. Total Price for the entire business document, including freight, tax and spe-
cial handling if applicable).

Criteria for correct/incorrect annotation are statements that bridge the se-
mantics of BPMN and the semantics of the domain ontology. From the formal
point of view, these criteria can be represented by inclusion axioms between the
concepts of an ontology formalizing BPD and the domain ontology.

In order to express this kind of constraints and to support automated rea-
soning on them, we propose to encode all the information about semantically
annotated processes into a logical knowledge base, called Business Processes
Knowledge Base (BPKB) and schematized in Figure 1. A BPKB is composed of
the following four modules:

BPMN ontology formalises the structure of a BPD. This ontology is a for-
malization of the BPMN standard [21] and consists of a set of axioms that
describe the BPMN elements and the way in which they can be combined
for the construction of BPDs.

Domain Ontology is a (set of) ontology(es) that describes a specific business
domain. It can be an already existing business domain ontology (e.g. Roset-
taNet or similar standard business ontologies) or an ontology developed on
purpose.

Merging axioms state the correspondence between the domain ontology and
the BPMN ontology. They formalise the criteria for correct/incorrect seman-
tic annotations.

BPD instances contain the description of a set of BPDs in terms of instances of
the BPMN/domain ontology. Every element of the process is represented as an

1 www.w3.org/2002/ws/sawsdl/spec/ontology/rosetta.owl
2 The notation <ontology>:<concept-name> stands for the concept <concept name> of

the ontology <ontology>.

Reasoning on Semantically Annotated Processes 135

individual of a class. The structure of the process (i.e. the connection between
different elements) is represented by means of relations between instances.

A BPKB can be implemented in any knowledge representation language with
minimum expressive power and a complete decision procedure. Using logical
reasoning over BPKB we can implement the following services:

Query answering on the BPD instances: a number of queries that involve
either the domain ontology, the BPMN ontology or both, can be formulated.
An example of query would be to “provide all the actions that are associated
with credit card data”. We can see that to formulate this query we need
knowledge coming from the BPMN ontology (the concept “action” and the
relation “associated with”) and knowledge coming from the domain ontology
(“credit card data”).

Verification of semantic labeling: verifying whether the semantic labelling
satisfies the constraints specified using the merging axioms.

Suggestions for correct labelling of the process: merging axioms can be
used to suggest (sets of) labels on-the-fly during process annotation. Note that
the usage of merging axioms ensures that the suggested labels are correct.

3 The Business Process Knowledge Base

We implemented BPKB using the standard semantic web language OWL (Web
Ontology Language) based on Description Logics (DL). Description Logics
(see [4]) are a family of knowledge representation formalisms which can be used to
represent the terminological and assertional knowledge of an application domain
in a structured and formally well-understood way. The terminological knowledge,
contained in the so-called T-box, represents the background knowledge and the
knowledge about the terminology (classes and properties) relevant for the de-
scribed domain. The assertional part, the so-called A-box, contains knowledge
about the individuals which populate the given domain in the form of member-
ship statements. Roughly speaking, in our framework the terminological part
- which is the stable description of a given domain - is provided by the upper
level modules of Figure 1. Instead, the changeable part, which corresponds to a
specific process description shown in the bottom part of Figure 1, is provided in
the form of assertional knowledge.

3.1 An Ontology for BPMN

The BPMN specification [21] aims at the definition of: the building blocks of
BPDs, their graphical representation, their attributes and properties, and how
they can be combined to build a BPD.

Examples of BPMN elements are: Event, Activity Gateway and Sequence
Flow. Properties of basic elements concern both the usage of the BPMN elements
to compose the business process diagrams, and the behavior of the elements dur-
ing the execution of a process. An example of property of the first kind is the
one used to specify a Start Event :

136 C. Di Francescomarino et al.

“A Start Event MUST NOT be a target for Sequence Flow; it MUST
NOT have incoming Sequence Flow.”[An exception follows.] (1)

A different example of property, which specifies the behavioral nature of a graph-
ical element, is the following one. This property contributes towards the speci-
fication of the exclusive nature of the Sequence Flows which originate from an
Exclusive Data-Based Gateway, that is, a Gateway which is used to indicate the
place where a Sequence Flow can take two or more alternative paths:

“if there are multiple outgoing Sequence Flow then only one Gate (or the
DefaultGate) SHALL be selected during performance of the Process.” (2)

BPMNO3 (namely our BPMN ontology) provides a formalization of the struc-
tural part of BPDs, i.e. which are the basic elements of a BPD and how they are
(can be) connected. BPMNO is not intended to model the dynamic behaviour of
BPDs (that is, how the flow proceeds within a process). Ontology languages are
not particularly suited to specify behavioral semantics. This part can be better
modelled using formal languages for Workflow or Business Process Specification
based on Petri Nets, as proposed in [18].

BPMNO is based on the latest stable BPMN specifications from OMG [21].
The ontology is structured according to the description of the complete set of
BPMN Element Attributes and Types contained in Annex B of [21]. The ontol-
ogy currently consists of 95 Classes and 439 Class Axioms, 108 Object Properties
and 18 Object Property Axioms, and 70 Data Properties; it has the expressive-
ness of ALCHOIN (D) and a textual description of its Description Logic version
is contained in [14].

In BPMNO, besides organizing the BPMN objects in an is-a taxonomy, we
encoded the attributes and properties which describe how to use these elements
to compose business process diagrams. As a consequence of our effort towards
the modelling of properties, BPMNO contains, in its current state, more than
400 class axioms which describe a wide set of properties of the BPMN elements.
Due to expressiveness limitation imposed by Description Logics and by the fact
that we want to remain in a decidable version of OWL, there is a limited (and
documented) number of properties listed in [21] which are not represented in
BPMNO. These properties concern: (i) attributes’ default values, and (ii) all the
properties that, once translated into first order logic, require more than two
variables. A typical example of this kind of properties is “two objects cannot
have the same object identifier” or that “all outgoing sequence flows connected
to an inclusive gateway must have the same conditional expression attached”.

3.2 Representing Criteria for Correct Semantic Annotations

Let us indicate with BDO a specific domain ontology contained in BPKB. Though
belonging to different ontologies, concepts from BPMNO and BDO are not totally

3 Available for download at http://dkm.fbk.eu/index.php/BPMN Ontology

Reasoning on Semantically Annotated Processes 137

unrelated. Consider for instance the ontologies shown in Figure 2. A BPMN activ-
ity, for example, could correspond to BDO actions, but not to BDO objects. Such
kind of relationships can be generic or domain specific constraints that a business
designer decides to impose. For instance, one would like to impose that BPMNsub-
processes can not be annotated by to add product and to remove product, as these
two actions in BDO are considered to be atomic. Conversely, one would like to im-
pose that certain complex BDO actions (e.g. to manage) should correspond to sub-
processes in a BPD because they must be specified in more details.

To allow the business designer to specify this kind of positive and negative
constraints between pairs of concepts, each belonging to one of the two ontolo-
gies, we introduce two relations: “annotatable only by” (AB−→) and “not annotat-
able by” (nAB−→) from BPMNO concepts to BDO concepts. Moreover, to allow the
binding of a specific BDO concept only to a certain BPMNO element, instead of
defining the nAB−→ relationship between each BPMNO element and a specific BDO
concept, we introduce the symmetrical relations: “annotates only” (A−→) and
“cannot annotate” (nA−→). These four relationships represent constraints on the
valid labelling of BPD objects. This informal description is then translated into
a more formal set of DL axioms, denoted with Merging Axioms(BPMNO, BDO),
that formalise these constraints within the logical formalism. In the following
table we report the intuitive meaning, and the formalization as DL axioms, of
the four annotation restrictions introduced above. We use x to denote a concept
of BPMNO and y to denote a concept ofBDO.

Restriction Intuitive meaning DL axiom4

x
AB−→ y

a BPMN element of type x can be annotated only
with a concept equivalent or more specific than y

x � y

x
nAB−→ y

a BPMN element of type x cannot be annotated
with a concept equivalent or more specific than y

x � ¬y

y
A−→ x

any concept equivalent or more specific than y can
be used to denote BPMN elements of type x

y � x

y
nA−→ x

any concept equivalent or more specific than y can
not be used to denote BPMN elements of type x

y � ¬x

Figure 2 shows examples of constraints. BPMNO:data object AB−→ BDO:object
states that a BPMN data object is indeed an object of the domain ontology.
BPMNO:action AB−→ BDO:activity states that an activity can be any kind of action
(either an action itself or a subclass of action). However, if an activity is a sub-
process, then it cannot be labelled by to add product and to remove product, as
stated by BPMNO:sub process nAB−→ BDO:to add product and BPMNO:sub process
nAB−→ BDO:to remove product. Finally the concept to manage can be used only for
annotating subprocesses, as stated by BDO:to manage A−→ BPMNO:sub process.

4 Though the meaning of x
nAB−→ y and y

nA−→ x coincide, we provide both primitives
as, depending on the case to be modelled, one may result more intuitive than the
other.

138 C. Di Francescomarino et al.

Fig. 2. Relationships between BPMNO and BDO

In the general case, some bindings specified by the user via the four prim-
itives may generate inconsistencies in the integrated ontology. This situation
can be automatically detected by verifying the consistency of BPMNO∪ BDO ∪
Merging Axioms(BPMNO, BDO) via a DL reasoner. In these cases, suggestions
can be given automatically for recovering from inconsistency.

3.3 Representing a Semantically Annotated BPD in an OWL
A-Box

Given a semantically annotated BDO β, in this section we describe how it is
possible to formalize it as an A-box Aβ in the language of BPMNO ∪ BDO. We
explain it with the help of the sample process of Figure 3. This figure represents
the sub-process that manages the addition/removal of items in a shopping cart
of the on-line shopping process represented in full in [13] and not included here
for lack of space. Semantic annotations are preceded by the “@” symbol. The
main part of the A-box associated with this sub-process is shown in Figure 4.

The elements of the A-box Aβ obtained from the annotated BPD β, the so-
called BPD objects in Figure 4, are all the graphical objects of β. The assertions
on these elements can be divided into three groups: BPM-type assertions, BPM-
structural assertions and BPM-semantic assertions.

Reasoning on Semantically Annotated Processes 139

Fig. 3. A sub-process of the on-line purchase process

BPM-type assertions: for every graphical element g of type T occurring in
β, Aβ contains the assertions T (g), i.e., g is an instance of concept T 5. For
instance the assertion sequence flow(s4) in Figure 4 states that the BPM
object s4 is of type sequence flow.

BPM-structural assertions For every connecting object c of β that goes from
a to b, Aβ will contain two structural assertions of the form SourceRef(c, a)
and TargetRef(c, b). For instance the assertion has sequence flow source ref
(s1, g1) in Figure 4 states that the sequence flow s1 originates from
gateway g1.

BPM-semantic assertions For every graphical element g of the diagram which
is annotated with a label C (where C is a complex concept expression of the
domain ontology), Aβ contains the assertion C(g). For instance the assertion
to update cart(t1) in Figure 4 states that task t1 is an instance of concept
to update cart and is obtained from the semantic annotation to update cart
of the BPD in Figure 3.

Given an OWL representation Aβ we can reduce the problem of checking
the correctness of the semantic annotation of the BPD β to a satisfiability
problem in DL. In particular we can reformulate the fact that Aβ represents a
business process labelled correctly as the fact that BPMNO ∪ BDO ∪
Merging Axioms(BPMNO, BDO) ∪Aβ is a consistent knowledge base.

The semantic annotation of the process in Figure 3 is consistent with the merg-
ing axioms Merging Axioms(BPMNO,BDO) shown in the previous section. As-
sume, instead, to introduce a faulty annotation by replacing @to manage cart in
Figure 3 with @to remove product. In this case the assertion to manage cart(p1)
in Figure 4 is replaced by the assertion to remove product(p1). This new assertion
generates an inconsistent A-box. Indeed, BPMNO contains the axiom:

embedded loop sub process � sub process

which allows to infer sub process(p1) from the assertion embedded loop sub process
(p1). Furthermore Merging Axioms(BPMNO,BDO) contains the annotation
restriction.
5 For the sake of readability, we omit the BPMNO prefix in non ambiguous expressions.

140 C. Di Francescomarino et al.

BPD objects
p1 corresponds to the entire subprocess
s1, . . . , s4 correspond to the four sequence flow
g1 and g2 correspond to the left and the right gateways
t1 and t2 correspond to the top and bottom atomic task
BPM-type assertions
embedded loop sub process(p1) /* p1 is an iterative subprocess */
data based exclusive gateway(g1) /* g1 is a data base xor gateway */
data based exclusive gateway(g2)
sequence flow(s1) /* s1 is a sequence flow object */
sequence flow(s2)
sequence flow(s3)
sequence flow(s4)
task(t1) /* s1 is an atomic task object */
task(t2)
BPM-structural assertions
has embedded sub process sub graphical elements(p1, g1)
... /* p1 contains g1, g2, s1 . . . s4, t1 and t2 */
has embedded sub process sub graphical elements(p1, t2)
has sequence flow source ref(s1, g1)
has sequence flow target ref(s1, t1)
has sequence flow source ref(s2, g1)
has sequence flow target ref(s2, t2)
has sequence flow source ref(s3, t1)
has sequence flow target ref(s3, g2)
has sequence flow source ref(s4, t2)
has sequence flow target ref(s4, g2)
BPM-semantic assertions
to manage cart(p1) /* pi is an activity of managing of carts */
to update cart(t1)
to remove product(t2)

Fig. 4. The encoding of the OnlineShop process in an OWL A-box

BPMNO:sub process � ¬BDO:to remove product

corresponding to BPMNO:sub process nAB−→ BDO:to remove product, which im-
plies ¬BDO:to remove product(p1). This last assertion is in contradiction with
the assertion BDO:to remove product(p1) generated by the incorrect labelling.

3.4 Automatically Encoding a BPD into an A-box

We developed a tool for the automated transformation of a BPD into an OWL
A-box. Given BPMNO, BDO, Merging Axioms(BPMNO,BDO) and a BPD β an-
notated with concepts taken from the domain ontology, the tool creates the A-
box Aβ and populates the ontology with instances of BPMN elements belonging
to the specific process.

The input BPMN process is currently described in a .bpmn file, one of the
files generated by both the Eclipse SOA Tools Platform and the Intalio Process
Modeler tools. The .bpmn file is an XML file that contains just the structural
description of the process, leaving out all the graphical details. The ontology pop-
ulation is realized by parsing the file and, taking advantage of a mapping file,
instantiating the corresponding classes and properties in the BPKB T-Box. The
mapping file associates XML tags/attributes used in the .bpmn file with BPMN

Reasoning on Semantically Annotated Processes 141

ontology concepts and properties. It is dependent on the particular process rep-
resentation adopted by the tools generating the .bpmn file, hence it must be
redefined or adjusted whenever a tool different from Eclipse SOA Tools Plat-
form and Intalio Process Modeler are used for process creation and editing.

The BPMN process descriptions currently generated by the Eclipse tool or
the Intalio tool do not exhaustively cover the features provided by the BPMN
specification and, therefore, the full ontology potential. The mapping file is lim-
ited to the subset of the specification actually implemented by the considered
tools. Sometimes the mapping is based on assumptions implicitly made by the
tools (e.g. whenever a subprocess is created using the two considered tools, the
concept to be instantiated is “embedded-subprocess”, not “subprocess”, since
only embedded subprocesses can be created using the two tools).

Our transformation tool uses the org.w3c.dom XML parsing library to man-
age the .bpmn input file, Protégé libraries to populate the resulting OWL A-box,
and Pellet for reasoning.

4 Use Cases

Some examples of the usefulness of semantic annotations associated with a Busi-
ness Process Knowledge Base are shown in the following scenarios.

Restricting to subclasses of semantically annotated BPD. A first usage of the
encoding of BPMN into an ontology is the possibility to impose additional re-
strictions on a BPD, or on how a BPD can be semantically labelled. These re-
strictions can be verified automatically via reasoning in the BPKM. We propose
two main forms of constraints: (1) constraints on the BPD structure, indepen-
dent from the labelling; and, (2) constraints on the structure that depend on the
business domain.

In the first case, a new constraint on the BPD structure can be imposed by
extending BPMNO with a new set of axioms that encode this restriction. For
instance, suppose that a business designer, in order to facilitate the decisions
that participants in the process have to make, wants to allow only binary ex-
clusive decisions, hence rejecting both multiple and inclusive ones. This kind
of constraint can be formalized by extending BPMNO with the following DL
axioms:

BPMNO:inclusive gateway � ⊥ /* no inclusive gateways */

BPMNO:gateway � (≤ 2)BPMNO:has gateway gate /* gateway has at most 2 outgoing gates */

In the second case (i.e. restrictions that involve the business domain), the
new constraints deal with business domain specific rules. For instance, in an on-
line shop process, the business expert may be interested, for security reasons, in
guaranteeing that processing payment data is preceded by a customer checkout
request. Such a constraint can be formalized in DL as follows:

BDO:to provide payment data � ∃BPMNO:connect−.BDO:to ask for checkout

142 C. Di Francescomarino et al.

where BPMNO:connect is the transitive closure of the connections provided by
the connecting elements.6 In other words, the transitive BPMNO:connect rela-
tionship ensures that there exists at least a path in the model connecting two
flow objects.

Searching for Crosscutting Concerns. Another possible application of seman-
tic reasoning over process ontologies is related to the documentation, manage-
ment, and evolution of the so-called crosscutting concerns (CC) in business
processes [25]. In a business process, a crosscutting concern is any relevant fea-
ture that cannot be modularized in a single unit (i.e. activity, subprocess, etc.)
of the process description. CCs are intrinsically scattered across the process and
tangled with other concerns. For example, multiple process elements usually deal
with user choices and there is no unique place where all such choices are made.
Hence, comprehension and modification of user choices management requires a
complex, time consuming understanding of the overall process and its parts.
Ontologies can help us simplify this task.

Let us consider again the On-line Shop process from which we extracted the
sub-process depicted in Figure 3. A critical design decision is how to manage the
customer’s preferences, for example in order to store and make them available
in next accesses. As observed above, this is a quite typical example of cross-
cutting concern in a business process, since the customer usually expresses her
preferences at different points in the workflow. We can mine for such points
by formulating a query matching the “customer choice” concern. Figure 5 (top
left) represents such a query in SPARQL [22]. The query matches all the places
where the “customer choice” concern is dealt with in the BP, collecting the five
tasks that represent a customer’s choice (related to products, group products,
quantity and shipping method).

In a second scenario, the business designer could explicitly look for the commu-
nication between the two pools in the On-line Shop process, so as to know all the
on-line shop activities that follow an event generated by a customer activity (e.g.
in order to apply a new event handler). Since the process as a whole is based on
the messages exchanged between the two participants, this concern is scattered
across the entire process (i.e. it is a CC). The query matching the “customer-
shop communication” concern is formulated as the SPARQL query shown at the
bottom of Figure 5. This query asks for all the on-line shop activities triggered
by (i.e. immediately following) a customer event. Similarly to the “annotatable
only by” constraints considered above, we can think to provide aid for an easier
query formulation (e.g. by means of a visual query language [25]) and result
representation (e.g. by highlighting the query results across the process), so as
to avoid exposing SPARQL directly to the final user. Once a query capturing
a CC of interest has been carefully formulated, it can be recorded as a form of
process documentation. Whenever understanding such a CC will be important
for some process design or evolution task, re-execution of the stored query will
6 The relation BPMNO:connect can be formalized by the following axioms: BPMNO:has

sequence flow source ref− 	 BPMNO:connect, BPMNO:has sequence flow target ref	
BPMNO:connect, and Trans(connect).

Reasoning on Semantically Annotated Processes 143

Fig. 5. Queries (on the left) and results (on the right)

immediately provide all involved process elements, even though they are possibly
scattered and tangled with other process features.

5 Related Work

The idea of adding formal semantics to business processes is not new and a
few approaches are already available for BPMN [26,10,27,18,5,11,24,19]. We can
roughly divide the existing proposals into two groups: (1) those adding semantics
to specify the dynamic behavior exhibited by a business process [26,27,18], and
(2) those adding semantics to specify the meaning of the entities of a BPD in
order to improve the automation of business process management [5,11,24,19].
We clearly belong to the second group.

Thomas and Fellmann [24] consider the problem of augmenting EPC process
models with semantic annotations. They propose a framework which joins process
model and ontology by means of properties (such as the “semantic type” of a
process element). This differs substantially from our proposal, which establishes
a set of subsumption (aka subclass or is-a) relations between the classes of the two
ontologies being integrated (BPMN meta-model and domain ontology), instead of
associating annotation properties to the process instances. This difference has a
direct impact on the kind of constraints that can be automatically enforced (e.g.

144 C. Di Francescomarino et al.

BPMN elements annotatable by domain concepts). In particular, our approach
supports automatic checking of the correctness of the semantic annotation. De
Nicola et al. [19] propose an abstract language (BPAL) that bridges the gap
between high-level process description (e.g. in BPMN) and executable specifi-
cation (e.g. in BPEL). The formal semantics offered by BPAL refers to notions
such as activity, decision, etc., while the problem of integrating process model
and domain ontology is not their focus. In the SUPER project [11], the SUPER
ontology is used for the creation of semantic annotations of both BPMN and
EPC process models in order to support automated composition, mediation and
execution. In [26], semantic annotations are introduced for validation purposes,
i.e. to verify constraints about the process execution semantics. Our work rep-
resents an extension of the existing literature in that we provide an ontology
integration scheme, based on hierarchical ontology merge, that supports auto-
mated verification of semantic constraints defining the correctness of semantic
process annotations. Moreover, our proposal is compatible with top-level ontolo-
gies and allows rich and expressive queries, such as those necessary to identify,
document and manage crosscutting concerns in business processes.

Other related works are in the area of crosscutting concerns in business
processes, which has been mainly investigated with reference to executable process
description languages. AO4BPEL [3] is a dynamic aspect oriented extension of
BPEL [9], designed to be as close as possible to the aspect-oriented programming
language AspectJ. Similar approaches, mainly differing from AO4BPEL for the
choice of the advice language (Java), have been proposed by Courbis and Finkel-
stein [8] and by Verheecke, Cibràn and Jonckers [2], who defined WSML (Web
Service Management Layer), based on a dynamic aspect oriented extension of
JAsCo [1]). Padus [6] by Braem et al. is another aspect-oriented BPEL extension,
without dynamic weaving and with some improvements that increase portability.

All these works mainly focus on the developers’ perspective, without consid-
ering the business designers’ one. Only a few attempts are available which try
to address the problem of crosscutting concerns in business processes at an ab-
straction level similar to the business designers’ one [17,15]. Though applied to
a formal modeling language like Petri Nets, the approach proposed by Hornung
et al. [17] supports the designer in the process modeling phase by suggesting a
list of correct and fitting process fragments for completing the business process.
It is based on business rules describing constraints on the specific business do-
main, similar to aspects, but expressed in a specific “if-then” syntax and defined
before process modeling. Another similar, rule-based approach was proposed to
support automated verification of compliance to constraints [15].

6 Conclusions

We have proposed a method to add semantic annotations to a business process,
based on a set of merging axioms that connect BPMN ontology and domain on-
tology. Semantic annotations allow formal, automated reasoning on the elements
and properties of a business process. Structural and domain specific constraints

Reasoning on Semantically Annotated Processes 145

can be expressed as axioms and can be verified as ontology consistency viola-
tions. Queries on the instances (i.e. actual process elements) can be defined to
match relevant process features, such as crosscutting concerns.

In our future work, we will simplify the task of ontology merging for the final
user by means of tools and algorithms that handle the typical inconsistencies gen-
erated in this step. We will also investigate user friendly notations for constraint
and query specification. Another direction deals with moving from specification
to executable process description languages, such as BPEL, for which the dis-
covered CCs may be mapped to AO4BPEL aspects. Finally, we will validate the
approach further, on larger case studies.

References

1. Jasco: an aspect-oriented approach tailored for component based software devel-
opment. In: AOSD, pp. 21–29 (2003)

2. Aspect-oriented programming for dynamic web service monitoring and selection.
In: Zhang, L.-J. (ed.) ECOWS, LNCS. vol. 3250, pp. 15–29. Springer, Heidelberg
(2004)

3. Mezini, M., Charfi, A.: Aspect-oriented web service composition with AO4BPEL.
In (LJ) Zhang, L.-J., Jeckle, M. (eds.) ECOWS 2004. LNCS, vol. 3250, pp. 168–182.
Springer, Heidelberg (2004)

4. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press, Cambridge (2003)

5. Beeri, C., Eyal, A., Kamenkovich, S., Milo, T.: Querying business processes. In:
VLDB 2006, pp. 343–354 (2006)

6. Braem, M., Verlaenen, K., Joncheere, N., Vanderperren, W., Van Der Straeten, R.,
Truyen, E., Joosen, W., Jonckers, V.: Isolating process-level concerns using padus.
In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp.
113–128. Springer, Heidelberg (2006)

7. Business Process Management Initiative (BPMI). Business process modeling nota-
tion: Specification (2006), http://www.bpmn.org

8. Courbis, C., Finkelstein, A.: Towards aspect weaving applications. In: ICSE 2005:
Proc. of the 27th international conference on Software engineering, pp. 69–77.
ACM, New York (2005)

9. Curbera, F., Goland, Y., Klein, Y., Leymann, F., Roller, D., Weerawarana, S.:
Business process execution language for web services. Web page. Version 1.0 (July
31, 2002)

10. Dijkman, R.M., Dumas, M., Ouyang, C.: Formal semantics and automated analysis
of bpmn process models (2007), http://eprints.qut.edu.au/archive/00005969/

11. Dimitrov, M., Simov, A., Stein, S., Konstantinov, M.: A bpmo based semantic busi-
ness process modelling environment. In: Proceedings of the Workshop on Semantic
Business Process and Product Lifecycle Management at the ESWC, CEUR-WS,
vol. 251 (2007)

12. Wetzstein, B., et al.: Semantic business process management: A lifecycle based
requirements analysis. In: Proc. of the Workshop on Semantic Business Process
and Product Lifecycle Management, CEUR Workshop Proceedings, vol. 251 (2007)

http://www.bpmn.org
http://eprints.qut.edu.au/archive/00005969/

146 C. Di Francescomarino et al.

13. Di Francescomarino, C., Ghidini, C., Rospocher, M., Serafini, L., Tonella, P.: Rea-
soning on semantically annotated processes. Technical report, FBK-irst (2008),
http://se.fbk.eu

14. Ghidini, C., Rospocher, M., Serafini, L.: A formalisation of BPMN in description
logics. Technical Report TR 2008-06-004, FBK-irst (2008)

15. Happel, H.-J., Stojanovic, L.: Ontoprocess – a prototype for semantic business
process verification using swrl rules. In: Proc. of the 3rd European Semantic Web
Conference (2006)

16. Hepp, M., Leymann, F., Domingue, J., Wahler, A., Fensel, D.: Semantic busi-
ness process management: A vision towards using semantic web services for busi-
ness process management. In: ICEBE 2005: Proceedings of the IEEE International
Conference on e-Business Engineering, pp. 535–540. IEEE Computer Society, Los
Alamitos (2005)

17. Hornung, T., Koschmider, A., Oberweis, A.: A recommender system for business
process models. In: 17th Annual Workshop on Information Technologies and Sys-
tems, Decemeber (2007)

18. Koschmider, A., Oberweis, A.: Ontology based business process description. In:
Proceedings of the CAiSE 2005 Workshops. LNCS, pp. 321–333. Springer, Heidel-
berg (2005)

19. De Nicola, A., Lezoche, M., Missikoff, M.: An ontological approach to business
process modeling. In: Proceedings of the 3rd Indian International Conference on
Artificial Intelligence (IICAI), December 2007, pp. 1794–1813 (2007)

20. Fellmann, M., Thomas, O.: Semantic epc: Enhancing process modeling using on-
tology languages. In: Proc. of the Workshop on Semantic Business Process and
Product Lifecycle Management at the ESWC, CEUR-WS, vol. 251 (2007)

21. OMG. Business process modeling notation, v1.1,
http://www.omg.org/spec/BPMN-/1.1/PDF

22. Seaborne, A., Prud’hommeaux, E.: SPARQL query language for RDF. W3C rec-
ommendation, W3C (January 2008),
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/

23. Tarr, P.L., Ossher, H., Harrison, W.H., Sutton Jr., S.M.: N degrees of separation:
Multi-dimensional separation of concerns. In: Proc. of the International Conference
on Software Engineering (ICSE), Los Angeles, CA, USA, pp. 107–119. ACM press,
New York (1999)

24. Thomas, O., Fellmann, M.: Semantic epc: Enhancing process modeling using on-
tology languages. In: Proceedings of the Workshop on Semantic Business Process
and Product Lifecycle Management (SBPM), June 2007, pp. 64–75 (2007)

25. Tonella, P., Di Francescomarino, C.: Business process concern documentation and
evolution. Technical report, FBK-irst (2008), http://se.fbk.eu

26. Weber, I., Hoffmann, J., Mendling, J.: Semantic business process validation. In:
Proceedings of the Workshop on Semantic Business Process and Product Lifecycle
Management (SBPM) (June 2008)

27. Wong, P., Gibbons, J.: A Relative Timed Semantics for BPMN (submitted, 2008),
Extended version
http://web.comlab.ox.ac.uk/oucl/work/peter.wong/pub/bpmntime.pdf

http://se.fbk.eu
http://www.omg.org/spec/BPMN-/1.1/PDF
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
http://se.fbk.eu
http://web.comlab.ox.ac.uk/oucl/work/peter.wong/pub/bpmntime.pdf

A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, pp. 147–161, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Event-Driven Quality of Service Prediction

Liangzhao Zeng, Christoph Lingenfelder, Hui Lei, Henry Chang

IBM T.J. Watson Research Center Yorktown Heights, NY 10598
{lzeng,hlei,hychang}@us.ibm.com, lin@de.ibm.com

Abstract. Quality of Service Management (QoSM) is a new task in IT-enabled
enterprises that supports monitoring, collecting and predicting QoS data. QoSM
solutions must be able to efficiently process runtime events, compute and pre-
dict QoS metrics, and provide real-time visibility and prediction of key per-
formance indicators (KPI). Currently, most QoSM systems focus on monitoring
of QoS constraints, i.e., they report what has been happened. In a way, this pro-
vides the awareness of past developments and sets the basis for decisions. How-
ever, this kind of knowledge is afterwit. For example, it cannot provide early
warnings to prevent the QoS degradation or the violation of commitments. In
this paper, we move one step forward to provide QoS prediction. We argue that
performance metrics and KPIs can be predicted based on historical data. We
present the design and implementation of a novel event-driven QoS prediction
system. Integrated into the SOA infrastructure at large, the prediction system
can process operational service events in a real-time fashion, in order to predict
or refine the prediction of metrics and KPIs.

1 Introduction

In order to function effectively in today’s business environment, organizations must
have transparent business services and know the operation performance at all levels
and at all times. This allows them to stay competitive and profitable. QoSM is a new
generation of business event processing systems that focuses on monitoring service
operations. It provides a comprehensive view of service operations in organizations.
Adopting a QoSM solution provides the following benefits:

• Increased revenue by speeding up response time, actions and regulatory changes;
• Effective risk management by providing information in the right context to facili-

tate decision making;
• Improved customer satisfaction by facilitating continuous improvement of busi-

ness services.

Currently, most QoSM solutions focus on QoS monitoring and reporting the past
and the present state of the services. In general, QoS information can be classified
into two categories, metrics and Key Performance Indicators (KPIs). Metrics are used
to measure properties of individual service instances, while KPIs are used to aggre-
gate the metrics. An example of a KPI can be the average turnaround time for service
instances in the second quarter. Both types of QoS information help to understand the

148 L. Zeng et al.

current status of service operations. However, such retrospection does not provide
enough information to understand what might happen in the future. Indeed, if a pre-
view were available, then actions to improve business performance can be performed
in advance to prevent undesired situations.

The rapidly increasing popularity of a SOA infrastructure in enterprises gives us an
incentive to integrate QoS prediction as part of the SOA infrastructure. There are two
main issues in designing and implementing such a prediction system:

• Automated data collection. The prediction system needs to collect not only historic
metric and KPI values, but also related events and environment data. It should be
noted that these events and environment data are snapshots of other variables,
which are important for prediction, as they might influence the performance result
at that timestamp or later. In most of the enterprise business intelligence projects,
about 80% of the development effort is spent on data collection and transforma-
tion. It is critical to offer a systematic approach to collect and transform the data.

• Real-time QoS prediction. It is important to provide early prediction when the
situation changes. However, prediction is not a simple computation. The complex-
ity of prediction stems from two aspects: large amounts of data need to be proc-
essed and the nature of the dependency is unknown. For example, for time series
prediction, the more relevant historic data is used, the better the quality of predic-
tion can be. In most business intelligence systems, manual programming effort is
performed to prepare the data. And usually the data are processed in a batch model,
which indicates that the system may not support prompt response to changing
situation. As the metric and KPI to be predicted can be very dynamic, it is a chal-
lenge to provide real-time prediction on QoS.

In order to tackle the above challenges, we design and implement an event-driven
QoS prediction system. It enables declarative QoS prediction in the SOA infrastruc-
ture. It employs a collection of event-analysis techniques to improve the accuracy of
predictions. In a nutshell, the main contributions of this paper are:

• QoS Prediction-enabled SOA Infrastructure. Building upon our previous work on
QoS monitoring system that report past performance results, we further enrich the
SOA infrastructure to enable QoS prediction. Such an extension enables metric and
KPI predictions without programming effort. To detect operational service events,
QoS management needs to be integrated into the SOA infrastructure at large. It is
important to leverage existing components in the SOA infrastructure, and to enable
detection and routing of the events systematically. Further, the prediction system
needs to collect historic QoS data in order to use up-to-date data to make predic-
tions. Therefore, it is also important to integrate the prediction function as part of
the monitoring infrastructure.

• Event-Driven QoS Prediction. We design a novel event-driven QoS prediction
mechanism. In order to support real-time prediction, our solution is equipped with
an event pattern processing module. First, the event-driven mechanism facilitates
the collection of data whenever they become available. The freshness of data is
critical for the precision of prediction models. Second, the event-driven mechanism
is adopted to trigger the prediction of metrics and KPIs when it is necessary, which
enables real-time or on demand prediction with minimal overhead.

 Event-Driven Quality of Service Prediction 149

The rest of this paper is organized as follows. Section 2 presents the service QoS
management programming model. Section 3 presents the overall system architecture.
Section 4 gives details on metric prediction. Section 5 discusses KPI prediction. Follow-
ing the discussion on related work in Section 6, Section 7 contains concluding remarks.

2 QoS Management Metamodel

In this section, we discuss the proposed programming model dubbed QoS Manage-
ment Metamodel (see Figure 1). In the metamodel, a ServiceMonitorCon-
text contains a collection of BusinessEvents, PerformanceMetrics and
PerformanceKPIs. A BusinessEvent describes status changes in a service. A
BusinessEvent can be raised when a service initiates an execution, wherein the
event may contains the service ID, time stamp, value of input parameters, and etc. A
PerformanceMetric describes quality of a service execution. For example, an
execution duration of a service can be a PerformanceMetric.. A Perfor-
manceKPI is the aggregation of a collection of PerformanceMetrics. For
an example, a PerformanceKPI can be the average execution
for a service in a given period. Basically, there are two aspects of the
proposed QoS management metamodel: monitoring and prediction. In the following
subsections, these two aspects are presented.

Fig. 1. Simplified Class Diagram of the QoS Management Metamodel

2.1 QoS Monitoring Aspects

QoS monitoring is the cornerstone for enabling predictions as it records what is hap-
pening. To describe the metric computation logic, we adopt Event–Condition-Action
(ECA) rules (cf. Expression 1) to describe when and how the metric values are com-
puted. Such a rule-based programming model frees users from the low-level details of
procedural logic.

()[] |Event eventPattern condition expression (1)

In an ECA rule, the event pattern component indicates business events. The condition
component in a rule is a Boolean expression specifying the circumstances to perform
the action described in the expression component. The expression consists of an asso-
ciation predicate and a value assignment expression. The association predicate speci-
fies which monitor context instance should receive the event. The operators allowed

150 L. Zeng et al.

in the predicate expressions include relational operators, event operators, scalar, vec-
tor and set operators, Boolean operators and mathematical operators. An example
ECA rule for metric computation is given in equation (2).

1 2 1 1 2 1
()[. 12] | (. .) . : () ::Event E e a MC iID e iID MC m f ee > == = (2)

In the above example, when an instance of event E1,
denoted as e, occurs, if e..a2 >12,

then the event is delivered to the instance of MC1 whose iID matches the iID field
(ID for service instance) of event instance e, and the metric value of m2 is computed
by function f1(e). When there is no matching context instance, a new monitor context
instance is created. It should be noted that the monitor context represents the process
that is being monitored. Another example ECA rule is given in equation (3). In this
example, when the value of metric MC1.m2 changes, the value of metric MC1.m3 is
updated by function f2(MC1.m1,MC1.m2).

1 2 1 3 2 1 1 21((.)[] | . : (, .) .Event changeValue MC m MC m f MC m MC m=

(3)

Usually KPI values are computed by aggregating metric values within specific time
windows. Equation (4) shows a KPI expression:

1 3 1 2
. : (. repeat[2 Week]),MC k sum MC m= (4)

In this example, the KPI
3

k is defined as the sum of metric
2

m in two calendar weeks.

Currently, two kinds of time windows are supported: (i) calendar time window, for
example, week, month, year, (ii) sliding window, for example the last ten days, and
(iii) expanding window or running total, i.e., from a past timestamp, for example from
the beginning of the year until now. For the first kind of KPI, the computation is ei-
ther triggered periodically, or computed on demand by a user’s request. The second
and third kinds of KPI usually need to be computed whenever the base metric values
are created or updated.

2.2 QoS Prediction Aspects

The prediction aspect is defined based on the monitoring model. We discuss the pre-
diction of metrics first. By default, we predict the final value of a metric, i.e., the
value the metric has at the time when the service instance is completed. Further, a
customized prediction target time can be identified as an event pattern, for example,
“E1/E2/E4”, which indicates to predict the metric value at the time when events E1,E2,
and E4 have occurred in that order.

Fig. 2. Prediction Time and Prediction Target Time

 Event-Driven Quality of Service Prediction 151

Another notion in metric prediction is the prediction time, when the system makes
the prediction. A prediction can be triggered whenever a new event occurs in a proc-
ess instance. In this case, more information has become known, and it will usually be
possible to make a more precise prediction of the metric value at prediction target
time (node 7 or node 4 in Figure 2). Usually, the prediction time will be customized
using event patterns. In the example of Figure 2, two prediction times have been de-
fined, one after the initialization event E1 and the other after the event sequence
“E1/E2/E4”. For these two times, predictive models M1 and M124 are computed respec-
tively, based on historic cases of instances that went through these sequences of
events in that order. Note that a less accurate model M4 could be built using all in-
stances that reached node 4 regardless of their paths.

If a prediction for some instance is made, the choice of predictive model depends
on the event sequence through which the instance went. If the instance is in node 1 M1
is used. In node 2 or 3 M1 must still be used, because no additional prediction time
was defined, and hence no predictive model computed. For instances in nodes 4 M124
can be used, if the instance went through node 2, otherwise M1 must still be used.

As KPIs are defined based on aggregation of metrics across a time window, the
target time of the prediction can be either a future timestamp, or a collection of future
and possibly past timestamps. Usually, when a KPI is defined based on a calendar
time window, the target prediction time is defined based on the calendar. For exam-
ple, if the KPI computes a monthly running total, the user may be most interested in
the value of the KPI at the end of the current or some future month. For the specifica-
tion of when the system makes the prediction in case of a KPI, it is usually performed
on demand, or periodically.

3 System Architecture

In this section, we present the overall system architecture (see Figure 3) that realizes
event-driven QoS management in a SOA infrastructure. Basing on the generic SOA
infrastructure, four specific components that enable QoS monitoring and prediction
are introduced.

Fig. 3. Simplified QoS Prediction-enabled SOA infrastructure

152 L. Zeng et al.

The QoS Management Model Editor provides interfaces that allow users to create a
monitor model. The QoS Observation Manager subscribes events and computes met-
ric and KPI values. The QoS Prediction Manager receives notifications and predicts
metrics and KPIs. It should be noted that we utilized Semantic Pub/Sub[9], for routing
the business events from service instances to the QoS Observation Manager semanti-
cally. In this section, we only briefly discuss the QoS monitoring. Detailed techniques
for high performance event processing for metric and KPI value computation are
given in [11]. In the next two sections, the discussion of QoS prediction is presented.

As discussed in section 2, the programming model for metric and KPI computation
is event-driven, i.e., the values are computed according to the occurrence of events.
Given the high volume of events and the complexity of the computations, the system
performance on event throughput is critical. In our design we advocate model-
analysis techniques to improve event throughput. In the build time, a series of model
analyses of the application logic are conducted to understand such factors as runtime
data-access path, data flow, and control flow. Such analyses can be used to improve
throughput in three ways: at build time it can be used to facilitate the generation of
customized code to optimize I/O and CPU usage; information about the control flow
and data flow can be used to ensure that CPU resources are used effectively by dis-
tributing event-processing computation logic evenly over time; and at runtime,
knowledge gained from the model can be used to plan multithreaded parallel event-
processing execution to reduce wait states by maximizing parallelization and reducing
the planning overhead.

It should be noted that, from a monitoring perspective, the system is only con-
cerned with the final values of metrics. However, in order to predict QoS, persistence
of both final values and the changes of values in the history of metrics are required.
Therefore, in our design, whenever a metric value is initiated or updated, a metric
change log is appended. The format of the log entries is <iID, timestamp, even-
tID, metricID, newValue>, where iID identifies a service instance (or context
instance), timestamp indicates the time when the event was received, eventID is
the ID of the event, metricID refers to the changed object, newValue represent the
metric’s new value in a lexical format (the actual data type is the metric’s data type
and can be one of Boolean, integer, decimal, string, duration, dateTime, date, or time).

As KPI values are aggregated metric values associated with time windows, real
time computation and persisting are usually required. For example, a user may request
to keep the history of a monthly (sliding-window) KPI on a daily basis, which re-
quires the system to compute the KPI values daily and persist them. In our system, we
develop a history management module to manage historical KPI values. It should be
noted that the historic value of a KPI can be used for time series KPI prediction,
which is presented in section 5.

4 Event-Driven Metric Prediction

As discussed earlier, metric values are related to the service instance. When making
the predictions of metrics, understanding the execution progress of the service is criti-
cal. And usually, as the execution is going on, more and more accurate prediction
should become possible. One of the naive solutions for understanding the execution

 Event-Driven Quality of Service Prediction 153

progress is to access the process schemas and map the execution status to their control
flow structure. However, process schemas are not always available, especially in
heterogeneous environments. In order to overcome this limitation, we propose a novel
event-driven approach. Instead of understanding the process schema, the system un-
derstands the service instance execution progress by the event sequence that occurs in
the service instance. In fact, what is happening in a service instance can be identified
as an event sequence. For example, the execution progress given by event sequence
“E1/E2/E3” must be following the one represented by “E1/E2”. Such a design allows
the system to manage a larger spectrum of services, for example legacy services that
do not have formal process schema definitions or services that do not expose their
process schemas.

Fig. 4. Metric Prediction in QoS Prediction Manager

With the event-driven mechanism, we adopt an approach based on data mining to
predict metric values for services. Our metric prediction consists of three phases:
mining data preparation, prediction model creation and prediction result scoring.
Accordingly, there are three components (see Figure 4) to realize these three func-
tions: The Log Processer processes the metric change logs and monitor data to popu-
late the mining data. It initiates processing when it receives a processing completion
notification of a service termination event from the QoS monitor manager. Once the
mining data is ready, it notifies the Prediction Model Manager. The Prediction Model
Manager determines whether the mining data is rich enough to create a
prediction model, or whether a refinement of a prediction model is required when a
prediction model already exists. When prediction models are created or refined, the
Prediction Model Manager notifies the Prediction Computation Engine that predic-
tion models are ready for prediction. When the Prediction Computation Engine re-
ceives a processing completion notification of a service termination event, it identifies
the prediction model and uses the latest independent metric values to compute the
predicted metric value. In this section, we present the details of each phase.

4.1 Mining Data Preparation

In this subsection, we first illustrate the data schema (see Figure 5) of mining data and
then present the details of data population. The data schema consists of tables Ser-
viceInstanceTable_T, ServicePerformance_T, EventSequence_T, In-

dependMetricSnapshotValue _T and a collection of views MiningData_V_i.

154 L. Zeng et al.

Fig. 5. Simplified Mining Data Schema

• ServiceInstanceTable_T. This is the service instance and service type
lookup table that is managed by the QoS monitor manager.

• ServicePerformance_T. This table schema is generated, in particular, the
column metrici is generated according to a performance metric that is associated
with the service context. In the table, iID identifies a service instance; event-
SeqID is a foreign key for table EventSeq_T, which holds an identifier for the se-
quence of all events that leads to the termination of service instance, ending in a
terminal event; metrici holds the final values of metrics (values after completion
of processing the instance’s terminal event). In our design, ServicePerfor-
mance_T is used to save final values of metrics for each service instance, by the
QoS monitor manager.

EventSeq_T. In this table, each entry indicates an event sequence that leads to
the termination of service instance execution for service type sID. This table is
populated using table MetricChangeLog_T. The detailed algorithm (see Algo-
rithm 1) is given as followed. For the sake of simplified presentation, we use proce-
dural SQL type of pseudo code to illustrate the algorithm 1. Lines 1-6 search for
distinct event instances that lead to the termination of a service instance. Lines 7-9
construct the event sequence pattern. An example of an event pattern can be
“E1/E2/E3/E2/E5”. It should be noted that the invocation of the algorithm occurs
when processing of a termination event is completed by the QoS monitor manager.

• Snapshot_T. In this table, event sequences are used to identify the snapshot of
independent metric values at prediction time. Instead of directly storing the event
sequence, two attributes eventSeqID and eventIDX are used. For example, an
event sequence with eventSeqID ES_0247 might consist of an event sequence
“E1/E2/E4/E5”. Then, for each predicted metric, there may be up to four entries in
the table, as the event sequence has four subsequences, including itself, which are
“E1”, “E1/E2”, “E1/E2/E4” and “E1/E2/E4/E5”. The entry <ES_0247, 3, E4,
M_17, TRUE>, for example, will represent the partial event sequence “E1/E2/E4”.
isTerminal indicates whether the event instance terminates the service instances.

 Event-Driven Quality of Service Prediction 155

predictedMetricID identifies the metric to be predicted. The population of the
table is based on the new entry in table EventSeq_T, wherein each subsequence of
event sequence can create an entry for the table Snapshot_T. To be more specific,
when the algorithm 1 returns a new event sequence record, then N records are in-
serted into table Snapshot_T, where N is the length of the event sequence.

INPUT: Event e, a service termination event
OUTPUT: a record in table EventSequence_T
1. EventSequence eventSeq = null;
2. Set logCollection = null
3. Select distinct m.eventTypeID, m.eventInstanceID Into logCollection

4. From MetricChangeLog_T m

5. Where m.sID = e.sID

6. Order by m.timeStamp

7. For each record in logCollection Do {
8. eventSeq = eventSeq.append(record.eventTypeID+’/”)
9. }
10. If not (eventSeq Existing In EventSeq_T) Then {
11. Insert into EventSeq_T Value (newID, eventSeq)
12. Return new (newID, eventSeq) } Else {
13. Return (eventSeqID, eventSeq)
14. }

 Algorithm 1. Populating table EventSeq_T

• IndependMetricSnapshotValue_T. In this table, iID is used to join the
table ServicePerformance_T for creating the mining data view Mining-
Data_V_i. The attribute snapshotID identifies the prediction point. im-
pendentMetrici hold the values of independent metrics at the time of the given
event sequence. This table is populated from metric table MetricChangeLog_T.
using the algorithm (see Algorithm 2). In algorithm 2 , lines 1-5 collect all the log
entries in table MetricChangeLog_T; lines 6-22 form a loop, based on the num-
ber of subsequences in eventSeq. For each subsequence, the related metric value
needs to be collected as snapshot data. In lines 7 through 11, all the entries associ-
ated with the final event of the subsequence are collected. It should be noted that
we allow repeating events in the event sequence of a service instance. For example,
in “E1/E2/E3/E2/E5”, E2 occurs twice. Then it is possible that two different event
instances of E2 appear in the metric change log, i.e., count(dis-

tinct(logCollection.eventInsanceID))>1. In such cases we need to
locate the earlier event entry first, which is done in lines 13-16. Function InsetRe-

cordToMetricSnapshotTable() is used to insert an entry to IndependMetricSnap-

shotValue_T, using the metric values in the metric change log.

156 L. Zeng et al.

INPUT: Event e, a service instance termination event; and associated record event
sequence seq in table EventSequence_T
1. Set MetricChangeLogCollection = null
2. Select * Into MetricChangeLogCollection
3. From MetricChangeLog_T m
4. Where M.sID = e.sID
5. Order by m.timeStamp
6. For (i = 1; i < eventSeq.lenght;i ++) {
7. Set logCollection = null;
8. eventTypeID = eventSeq.elementAt(i);
9. Select * into logCollection
10. From MetricChangeLogCollection M
11. Where M.eventTypeID = eventTypeID
12. IF count(distinct(logCollection.eventInsanceID))>1 Then {
13. Select min(timeStamp) As earlistTimeStamp From logCollection
14. Select * into earliestLogCollection From logCollection
15. Where timeStamp = earlistTimeStamp
16. MetricChangeLogCollection -= earliestLogCollection
17. InsetRecordToMetricSnapshotTable(eventSeq.subseq(i),

earliestLogCollection)
18. } else {
19. MetricChangeLogCollection -= logCollection
20. InsetRecordToMetricSnapshotTable(eventSeq.subseq(i), logCollection)
21. }
22. }

Algorithm 2. Populating table IndependMetricSnapshotValue_T

• MiningData_V_i. These views are generated, one for each prediction point and
predicted metric. The views join the table Snapshot_T and ServicePerfor-
mance_T. In this view, predictedMetric is the metric to be predicted, while
independentMetrici are the independent variables for creating the predictions
(see Algorithm 3)

INPUT: sID, a service type ID; and associated predicted metric ID MetricX
1. Select snapshotID into snapshotCollection
2. From Snapshot_T
3. Where Snapshot_T.sID = sID
4. For each snapshotID in snapshotCollection {
5. Create View MiningData_V_j As
6. Select sID, snapshotID, independentMetric1, …, independentMetricn, S.MetricX as

predictedMetric
7. From IndependMetricSnapshotValue_T I, ServicePerformance_T S
8. Where I.sID = sID and I.snapshotID = snapshotID and I.sID = S.sID
9. }

 Algorithm 3. Creating view MiningData_V_i

 Event-Driven Quality of Service Prediction 157

In algorithm 3, lines 1-3 identify all the snapshots for service type sID; lines 4-9 cre-
ate a view for each snapshot. This algorithm is involved when a metric is identified
for predictions or a new event sequence is discovered for the service type sID.

4.2 Prediction Model Creation

Based on the predicted metric’s data type, different prediction models are generated.
For decimal, integer, duration, time, datetime, and date type of metrics, regression is
used to create a prediction model, while for Boolean and string types of metrics, a
classification models such as decision trees are used to create predictive models.
When creating the models, the data in MiningData_V_i are split randomly for
training and testing. If there are not enough data for this approach standard statistical
techniques such as cross-validation are used. Once the Prediction Model Manager
receives the mining and testing tasks, it creates prediction models and saves them in a
Prediction Model Repository. An example model (decision tree) is shown in Figure 6.

If service.executionPrice > 2,000
 Then Service.completed = true with 85% probability

 and Service. completed = false with15% probability
If service. executionPrice < =2,000

If service.exceptionNumber < 5
 Then Service.completed = true with 75% probability

 and Service.completed = false with 25% probability
 Else Service.completed = true with 65% probability

 and Service.completed = false with 35% probability

Fig. 6. An Example of a Decision Tree

In this example, the first leave indicates when the metric executionPrice is
greater than 2,000, then with 85% probability that execution service instance will be
completed while with probability of 15% that execution service instance will not be
completed.

4.3 Prediction Scoring

When the prediction models are created, prediction scoring can be performed by the
Prediction Computation Engine, using the latest independent metric data. When the
processing of a non-termination event is completed, the QoS Monitor Manger noti-
fies the Prediction Computation Engine, with updated metric values of the service
instance. These metric values are used as inputs for the prediction model to make a
prediction. Using the above example of a prediction model, if current service execu-
tion price is 1,500 and exception number is 4, the prediction of metric completed is
true with probability of 75% and false with 25%. It should be noted that the predic-
tion scoring module also feeds a prediction model quality manager. It monitors the
accuracy of the prediction for each prediction model. In case the accuracy is decreas-
ing, it will notify the prediction model manager to re-mine the models on more
recent data.

158 L. Zeng et al.

5 KPI Prediction

We propose two approaches to perform KPI predictions, namely time series and met-
ric-aggregation. In this section, we present these two approaches in detail.

5.1 Time Series KPI Prediction

As discussed in section 3, our observation manager not only computes the KPI value,
but also manages the historic values of the KPI. These historic KPI values can be
considered to form a time series. Any standard time series prediction algorithm can be
adopted, for example exponential smoothing [16] [17] [18] or ARIMA [19]. In our
current implementation, an exponential smoothing method is adopted.

In many business applications both metrics and KPIs exhibit a periodic behavior
with seasonal cycles. Gas consumption differs by month, sales figures often depend on
the quarter or on the day of the week. Such seasonal cycles can in theory be detected
automatically, for example using Fourier Transformation. For all practical purposes it
can, however, be assumed that the user knows the length of seasonal cycles.

In our experience, in most of the cases, the seasonality of service KPIs is related to
normal calendar periods: they oscillate hourly, daily, weekly, monthly, quarterly or
yearly. A second issue occurs for running total KPIs (that aggregate with COUNT or
SUM over a window of growing size). A KPI could for example measure the total
sales in the current month, starting at a small value on the first of the month and in-
creasing throughout the month. This behavior repeats in every month, seemingly
showing a monthly seasonality. This is however not a true seasonality; in fact the
seasonality might well be weekly with higher sales on the weekends. To handle that,
we perform a differentiation, effectively defining a new KPI ‘Daily Sales’ which can
be predicted in the usual way. When the prediction of the original (running total) KPI
is done, integration is performed to compute the predicted values of the original KPI.

Figure 7 illustrates one of our KPI prediction results. Monthly sales amount history
data are used to build an exponential smoothing prediction model.

Fig. 7. An Example of a Time Series Prediction

 Event-Driven Quality of Service Prediction 159

5.2 Metric-Aggregation KPI Prediction

In this approach, KPI prediction is performed based on the prediction of base metrics.
Given to predict a KPI value in a target time, its value is based on metrics in three
kinds of service instance (see Figure 8):

A) the service instances are completed between the start time of the KPI window
and the current time,

B) the service instances are already initiated and may be completed before the
target prediction time, and

C) the service instances that may be initiated and completed between now and
the target time.

Fig. 8. Three kinds of service instances

For the completed instances metric vales have been computed by the QoS Monitor
Engine, so no predictions are necessary. For the ongoing instances, predict the base
metric values and use a classification model to predict the probability whether the
instances will be completed before the target time. For future instances, first, time
series based prediction is required to predict how many instances are expected to be
initiated between now and the target time. Second, a prediction of the percentage that
will be completed before the target time is also required.

6 Related Work

In this section, we review work in the areas of QoS management. QoS monitoring has
been widely studied in the context of middleware systems [1,10,11]. These efforts
have addressed the following issues: QoS specification to allow description of appli-
cation behavior and QoS parameters, QoS translation and compilation to translate
specified application behavior into candidate application configurations for different
resource conditions, QoS setup to appropriately select and instantiate a particular
configuration, and QoS adaptation to runtime resource fluctuations. Most efforts in
QoS-aware middleware, however, are focused on the network transport and system
level. Little work has been done at the application and business service levels.

160 L. Zeng et al.

QoS-Aware service composition [2-7,10,12,13] aims at selecting component ser-
vices to optimize the overall QoS of a service. In [2,7], the system assumes pre-
existing QoS information of components, and a future QoS metric value is predicted
as average of historic values. In [8], the formulas that compute the QoS of a workflow
based on both the QoS of component services and the workflow schemas are dis-
cussed. However, no meaningful predictions are provided in all these work. In [5], a
QoS-aggregation system is presented. It provides an editor for the QoS aggregation
function that allows users to specify QoS attributes and their aggregation formulas. It
also provides an interpreter that evaluates a workflow's global QoS. Again, it does not
provide the prediction of QoS measurement. Different from the above works, this
paper tries to tackle the prediction of QoS. The prediction of QoS enables the next
level of optimization of QoS for services.

Intelligent business processes execution analysis [14] focuses on analyzing business
process execution log, in order to provide metric prediction. It enables the automated
prediction. However, process definitions are required when performing the analyzing
the execution log. This may limit the scope of the services for which QoS manage-
ment can be deployed. Especially in a heterogeneous environment, services may not
able to expose their process definition, while about to emit the execution event to
inform about the progress. Therefore, event based prediction systems like ours are
desired. Further, the event-driven mechanism facilitates real-time prediction, which is
critical to creating higher QoS.

7 Conclusion

In this paper, we advocate prediction of the QoS for services, using the data that is
available through QoS monitoring. We design and implement a novel event-driven
QoS prediction that can support automated service metric and KPI prediction in real
time fashion. Our future work includes integrating Bayesian network prediction and
other prediction framework, as well as a careful study of the system performance.

References

1. Menasce, D.A.: QoS Issues in Web Services. IEEE Internet Computing 6(6) (2002)
2. Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J., Sheng, Q.Z.: Quality Driven Web

Services Composition. In: WWW 2003 (2003)
3. Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: An Approach for QoS-aware Ser-

vice Composition based on Genetic Algorithms. In: GECCO 2005. ACM Press, New York
(2005)

4. Canfora, G., Di Penta, M., Esposito, R., Perfetto, F., Villani, M.L.: Service composition
(re)Binding driven by application–specific qoS. In: Dan, A., Lamersdorf, W. (eds.) ICSOC
2006. LNCS, vol. 4294, pp. 141–152. Springer, Heidelberg (2006)

5. Nguyen, X.T., Kowalczyk, R., Han, J.: Using Dynamic asynchronous aggregate search for
quality guarantees of multiple Web services compositions. In: Dan, A., Lamersdorf, W.
(eds.) ICSOC 2006. LNCS, vol. 4294, pp. 129–140. Springer, Heidelberg (2006)

6. Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang, H.: QoS-
Aware Middleware for Web Services Composition. IEEE Transactions on Software Engi-
neering 30(5) (2004)

 Event-Driven Quality of Service Prediction 161

7. Cardoso, J., Sheth, A.P., Miller, J.A., Arnold, J., Kochut, K.J.: Modeling quality of service
for workflows and web service processes. Web Semantics Journal: Science, Services and
Agents on the World Wide Web Journal 1(3), 281–308 (2004)

8. Zeng, L., Lei, H., Chang, H.: Model-analysis for Business Event Processing. IBM Systems
journal (2007)

9. Zeng, L., Lei, H.: A Semantic Publish/Subscribe System. In: IEEE CEC, East (2004)
10. Gillmann, M., Weikum, G., Wonner, W.: Workflow Management with Service Quality

Guarantees. In: SIGMOD (2002)
11. Nahrstedt, K., Xu, D., Wichadakul, D., Li, B.: QoS-Aware Middleware for Ubiquitous and

Heterogeneous Environments. IEEE Comm. Magazine 39(11) (2001)
12. Zeng, L., Lei, H., Jeng, J.-J., Chung, J.-Y., Benatallah, B.: Policy-Driven Exception-

Management for Composite Web Services. In: IEEE CEC (2005)
13. Zeng, L., Jeng, J.-J., Kumaran, S., Kalagnanam, J.: Reliable Execution Planning and Ex-

ception Handling for Business Process. In: Benatallah, B., Shan, M.-C. (eds.) TES 2003.
LNCS, vol. 2819, pp. 119–130. Springer, Heidelberg (2003)

14. Castellanos, M., Casati, F., Dayal, U., Shan, M.-C.: A Comprehensive and Automated Ap-
proach to Intelligent Business Process Execution Analysis. Distributed and Parallel Data-
bases 16(3), 239–273 (2004)

15. Zeng, L., Lei, H., Chang, H.: Monitoring QoS for Web Services. In: Krämer, B.J., Lin, K.-
J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 132–144. Springer, Heidel-
berg (2007)

16. Brown, R.G.: Smoothing, Forecasting and Prediction of Discrete Time Series. Prentice-
Hall, Englewood Cliffs (1963)

17. Holt, C.C.: Forecasting seasonals and trends by exponentially weighted moving averages.
In: ONR Memorandum, vol. 52. Carnegie Institute of Technology, Pittsburgh (1957);
Available from the Engineering Library, University of Texas at Austin (1957)

18. Gardner Jr, E.S.: Exponential smoothing: The state of the art—Part II. International Jour-
nal of Forecasting 22(4), 637–666 (2006)

19. Box, G.E.P., Jenkins, G.M.: Time Series Analysis: Forecasting and Control. Holden-Day,
San Francisco (1970)

Automatic Realization of SOA Deployment
Patterns in Distributed Environments

William Arnold, Tamar Eilam, Michael Kalantar, Alexander V. Konstantinou,
and Alexander A. Totok

IBM T.J. Watson Research Center, Hawthorne, NY, USA
{barnold,eilamt,kalantar,avk,aatotok}@us.ibm.com

Abstract. Deployment patterns have been proposed as a mechanism
to support the provisioning of SOA-based services. Deployment patterns
represent the structure and constraints of composite solutions, including
non-functional properties, such as performance, availability, and security,
without binding to specific resource instances. In previous work [1], we
have presented a formal mechanism for capturing such service deploy-
ment patterns using models. Our pattern models define abstract con-
nectivity and configuration requirements which are then realized by an
existing or planned infrastructure. Realization mapping is used to en-
force policies, and is materialized at deployment time. In this paper we
extend that work to address the problem of automatic pattern realization
over a given infrastructure. We first formalize the problem and present
three variations of increasing power and complexity. We then present
a variation of a search-based graph isomorphism algorithm with exten-
sions for our pattern model semantics. Next, we show that our worst-case
exponential complexity algorithm performs well in practice, over a num-
ber of pattern and infrastructure combinations. We speculate that this
is because deployment topologies represent heavily labeled and sparse
graphs. We present a number of heuristics which we have compared ex-
perimentally, and have identified one which performs best across most
scenarios. Our algorithm has been incorporated into a large deployment
modeling platform, now part of the IBM Rational Software Architect
(RSA) tool [2].

1 Introduction

From the perspective of an SOA deployer, the service layer specifying service
hosting, connectivity, and binding can often be viewed as the tip of an iceberg.
SOA services are typically implemented as components of distributed applica-
tion platforms supported by large and complex middleware containers. These
containers are often dependent on other remote middleware servers for mes-
saging, database management, and authentication. The servers on which these
containers execute must be monitored, secured, and audited and therefore have
their own connectivity requirements. Server communication capabilities are con-
strained by the topology of the networks to which they are connected. The fact

A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, pp. 162–179, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Automatic Realization of SOA Deployment Patterns 163

that many of these communication paths are interdependent through layering [3],
but often separately managed, presents a great challenge to SOA deployers [4].

Deployment patterns [5,6,1,7,8] have been proposed as an answer to the com-
plexity of SOA deployment and the often subtle and difficult to quantify inter-
actions and trade-offs between functional requirements, performance, security,
and availability. There are several ways in which deployment patterns prove to
be helpful. First, they simplify service deployment by codifying best practices.
Second, they capture complex interdependent resource configurations that col-
lectively achieve certain non-functional infrastructure properties, such as high
availability, scalability, and security. These properties can then be used to sat-
isfy non-functional requirements (NFRs) of the services being deployed. Third,
deployment patterns capture intrinsic properties of composite services, while
allowing them to be deployed in different environments, such as development,
testing and production.

In our recent work [1] we presented a novel approach to formally captur-
ing SOA deployment patterns. Our deployment patterns represent abstract de-
ployment topologies specified at various levels of abstraction. They capture the
structure and constraints of a composite solution, without bindings to specific
resources, and without specifying provisioning actions. Deployment patterns are
instantiated by deployers through realization of patterns in deployment topolo-
gies, representing existing or desired state of the infrastructure. Using our de-
ployment platform, we enable non-expert users to safely compose and iteratively
refine deployment patterns, resulting in fully specified topologies with bindings
to specific resources. The resulting desired state topology can be validated as sat-
isfying the functional service requirements, while maintaining the non-functional
properties of the pattern.

In this paper, we turn our attention to the problem of automatic pattern
realization, which is a function that produces a valid realization of a pattern
in a given target infrastructure. There are several use cases for pattern auto-
realization. First, it can greatly simplify the work of service deployers: if a com-
posite solution’s hosting requirements are represented as a deployment pattern,
the task of solution deployment can potentially be reduced to running a simple
automatic pattern realization wizard performing automatic resource selection.
Second, it can be used for compliance purposes to verify that a given infrastruc-
ture conforms to certain organizational constraints, policies and best practices,
which are captured in deployment patterns. Third, it can enable deployment
impact analysis : the ability to plan deployment changes by playing “what-if”
scenarios and assessing the planned changes. In addition, automatic pattern re-
alization that supports infrastructure reconfiguration can be used for infrastruc-
ture provisioning, to drive reconfiguration of the infrastructure to conform to
the pattern structure and constraints.

Our approach to the automatic pattern realization problem is based on the
observation that it is reducible (with some variations) to the subgraph iso-
morphism problem [9]. We view deployment topologies as labeled graphs (aug-
mented with constraints), and infrastructure reconfiguration actions as graph edit

164 W. Arnold et al.

operations [10]. We propose to use (modified) graph matching algorithms [9] for
the pattern realization that does not allow changes to the target infrastructure,
and error-correcting graph matching algorithms [10] for the situation where in-
frastructure reconfiguration is necessary. We present an algorithm for automatic
pattern realization for the case, where no changes are allowed to the target
infrastructure. We implement the algorithm in a large deployment modeling
platform [1] and analyze its performance on a set of real-life deployment scenar-
ios. We show that the algorithm’s performance depends on the heuristic used
to navigate the problem’s search tree. We analyze performance of several such
heuristics and identify one which provides good performance across a range of
patterns and infrastructures. Our results show the practicality of using the algo-
rithm, although its worst case complexity is exponential. We speculate that this
is because deployment topologies represent heavily labeled and sparse graphs.

The paper is structured as follows. In Section 2, we describe our deployment
pattern modeling platform. In Section 3, we formalize the problem of automatic
pattern realization and introduce a number of variations. In Section 4, we present
the algorithm for automatic pattern realization in a common case, where no
changes are allowed to the target infrastructure. We analyze the behavior of
the algorithm in Section 5. Finally, we discuss related work in Section 6, and
conclude in Section 7.

2 Deployment Modeling and Validation

Our model-driven SOA deployment platform [1] supports the construction of de-
ployment models at different levels of abstraction, ranging from abstract models
(also termed, patterns) to concrete. Abstract models capture only intrinsic prop-
erties of a reusable deployment solution, they partially specify the configuration
of resources, focusing on key parameters and structures, while leaving others
to be determined at deployment time. Concrete models include detailed soft-
ware stacks and configurations; valid and complete deployment models can be
consumed by provisioning automation technologies (such as, Tivoli Provisioning
Manager (TPM) [11]) to drive automated provisioning [12]. The platform, mod-
eling concepts, and principles were introduced in [1], and are partially repeated
here for completeness. To simplify the presentation, some definitions are simpli-
fied, where this does not affect the algorithm spirit and principles. For a complete
description of the platform, modeling language, and analytic capabilities see [1].

The core model captures common aspects of deployment and configuration
syntax, structure and semantics. Core types are extended to capture domain-
specific information. Domain objects and links are contained in a Topology
which is used to represent a composite solution. Figure 1 is an example of a de-
ployment model (Topology). The Unit core type represents a unit of deployment,
which may correspond to a hardware resource (x86 Server), a software product
(Windows XP OS, WebSphere Application Server), or a software configuration
node (J2EE Datasource). Subtypes of Unit group domain-specific configuration

Automatic Realization of SOA Deployment Patterns 165

attributes.1 A Unit may represent an installed resource, or a resource to be in-
stalled. The state attribute on Units is an ordered pair which represents the initial
and desired state of a Unit. In the example, Windows2000Unit and Was6Unit
represent installed resources, and all other units are to be installed. Note that
deployment topology examples used throughout the paper tend to either be ab-
stract (not referring to specific resource types) or present low levels of SOA
infrastructures: they were chosen to be just simple enough to demonstrate the
idea of deployment pattern realization. We are continuing the work on modeling
system and software configurations containing higher levels of SOA stacks and
supporting more sophisticated considerations, such as messaging, security, high
availability, etc.

Resource dependencies and requirements on other resources are represented
by Requirement objects, contained in units. A Requirement is a tuple (tr, tl),
where tr represents that type of required resource, and tl represents the type of
relationship (link). We define three relationship types : a many-to-one hosting re-
lationship; a one-to-one dependency relationship, and a many-to-many member-
ship relationship. Relationships between Units are represented by a Link object,
which is a quadruple (u, r, v, t), where r is a Requirement contained in Unit u,
t is the type of the link (i.e., hosting, dependency, or member), and the link
connects the Requirement r and a target Unit v.

Local constraints can be defined and contained in Units, where the context of
evaluation is the containing unit, or in Requirements, where the context of eval-
uation is the associated relationship’s target unit. An example of such a local
constraint is “version ≥ 1.4” contained in a requirement of type hosting (con-
tained in the EARUnit) for a target resource of type J2EEContainer (Figure 1),
which restrict the version of the hosting application server. Note that WAS6Unit
is a subtype of AppServerUnit, thus the constraint is satisfied in the example
topology. A special Membership constraint, contained in a Requirement of type
membership, can further restrict the multiplicity of a membership relationship
instance.

Structural constraints, operating on pairs of Units can also be defined via a
Constraint Link. Two common constraint links are: Collocation and Deferred
Hosting. A Collocation constraint restricts the valid hosting of two units. It is
associated with a target type property which determines the type of the host
on which the two units’ hosting stacks must converge (anti-collocation can be
defined similarly). Deferred Hosting is a constraint that the source unit be even-
tually (indirectly) hosted on the target of the link.

Semantics and Validation. Topologies are evaluated against a set of core
platform validation rules, including a core set of local constraints (=, ≤, ≥, <,
>, . . .), the two structural constraints described above, and link validity rules
(multiplicity and endpoint types). The platform is extensible with (domain spe-
cific) validation rules and constraints (see [1]). Validation rules and constraints
produce validation statuses of three types: satisfied, undefined, and violated.
1 Some of the modeling concepts from [1] are simplified in this paper to focus on the

algorithmic aspect. In particular, we collapsed the Capability concept into Unit.

166 W. Arnold et al.

<<Unit>>
EarUnit

state = {uninstalled, installed}

<<Requirement>>
DatasourceUnit

Rel. type=dependency

<<Requirement>>
AppServerUnit

Rel. type=hosting

<<Unit>>
Was6Unit

Version=1.4
state={installed, installed}

Hosting Link

<<Unit>>
Db2DataSourceUnit

jndiName=“jdbc/plants”
state={installed, installed}

Dependency Link

<<Requirement>>
WindowsUnit

Rel. type=hosting

<<Requirement>>
Was6Unit

Rel. type=hosting

Hosting Link
jndiName=“jdbc/plants” version >= 1.4 version >= 6

version >= 5.1

<<Unit>>
Windows2000Unit

Version=5.1
state={installed, installed}

Collocation Link
Target=Was6Unit

Hosting Link

DeferredHostLink

Fig. 1. An example deployment model

Undefined statuses will be generated in incomplete topologies, where there is not
enough information to validate a rule or a constraint. For example, a Require-
ment that is not yet linked with a target unit, or a Deferred Hosting constraint
connecting two units with an incomplete software stack, will both produce an
undefined status. Violated statuses will be generated when units are improperly
connected or when an attribute on a unit has an invalid value. For example, a
link l=(u, r, v, t) that connects requirement r=(tr, tl) with a target unit v, where
t 	= tl or type(v) is not a subtype of tr will produce a violated status. Note that a
violated status can not be turned into a valid or undefined status just by adding
units and links to the topology. A topology is weakly valid if its validation does
not produce any violated statuses; valid if only satisfied statuses are produced;
and invalid otherwise. Note that complete topologies (where all attributes are
set, and all requirements are associated with links), can either be valid or invalid.
Complete and valid topologies can be consumed by a provisioning technology
for automated deployment. The topology in Figure 1 is valid and complete.

Virtual Units and Realization Links. To allow modeling at different levels
of abstraction, we introduced the concept of a Virtual Unit. A virtual unit is
one which does not directly represent an existing or an installable resource, but
instead should be realized by another (concrete) unit. Typically, virtual units
will be of an abstract type, will include attributes with unspecified values, and
will be associated with constraints. A Realization Link connects a virtual unit
with a concrete unit that forms its realization.

Topology Realization Semantics. It is convenient to separate the validation
of the realization mapping from the core validation operating on topologies with
only concrete units. The rules for locally validating realization of a virtual unit
by a concrete unit are formally defined in two stages as follows. For any two re-
quirements r=(tr, tl) and r′=(t′r, t′l), match(r, r′) iff tl = t′l and supertype(tr, t′r).
We say that a concrete unit u2 is a locally valid realization of a virtual unit u1

Automatic Realization of SOA Deployment Patterns 167

1

2

3

4T

3

4
FoldRS(T)

c2

c3

c4

c3

c2

c4

5 5

6 6
<<hosting>>

<<realization>>

<<concrete unit>>

<<constraint>>

<<virtual unit>>

<<member>>

<<dependency>>

<<h>> <<h>>

<<d>> <<d>>

<<r>>

<<r>>

<<m>> <<m>>

Fig. 2. A realization folding example

(denoted validR(u1, u2)) iff (1) supertype(type(u1), type(u2)), (2) for every at-
tribute a ∈ attributes(type(u1)), isSet(u1, a) → value (u1, a) = value(u2, a),
(3) for every constraint c ∈ constraints(u1), c(u2) = satisfied, (4) there exists
a unique mapping of the set of requirements r1, r2, . . . rn on unit u1 to a set
of distinct requirements r′i1 , r

′
i2

, . . . r′in
on unit u2 (denoted mapR

req, w.r.t. unit
realization mapping R), such that match(rk, r′ik

),2 and (5) for every constraint
c ∈ constraints(rk), c(r′ik

) ∈ {satisfied, undefined} (inclusion of the undefined
validation status accounts for the fact that r′ik

’s target may not be defined yet).
Given a topology with virtual units and realization links, it is not enough to

locally check the validity of individual realization links. For example, consider a
virtual unit u hosted on a non virtual unit v. A valid local realization of u can
map it to a non virtual unit u′ hosted on a non virtual unit v′, where v′ 	= v, thus
violating the hosting relationship many-to-one multiplicity constraint. To fully
validate realization mappings, we define the strict folded topology FoldRS(T)
of a given topology T , where, intuitively, we collapse all realized virtual units,
relationships and constraints (into the respective concrete units), and remove
unrealized virtual units (see [1] for a formal definition, and Figure 2 for an
example).

We say that a topology T forms a weakly valid topology realization iff (1) every
virtual unit is realized by at most one unit, (2) each realization link in T is locally
valid, and (3) FoldRS(T) is weakly valid. A topology T forms a valid topology
realization iff FoldRS(T) in the definition above is valid. A topology realization
is complete when all its virtual units are realized. Note that FoldRS(T), for
a complete valid (or weakly valid) topology realization T , is a more succinct
(normalized) representation of the deployment information available in T . In
particular, new links, local, and structural constraints may be introduced on
concrete and pairs of concrete units. Condition (3) prevents realizations that
violate link multiplicity constraints, and checks validity of local and structural
constrains defined on virtual units, against their corresponding realizing units.
FoldRS(T) can substitute T in an iterative, pattern based, deployment plan-
ning process. We will use FoldRS(T) later, when defining the auto-realization
algorithms. An example of topology realization is illustrated in Figure 2. Note
that the folding introduces a new membership link between units 3 and 6. This

2 To simplify the presentation of some of the definitions and algorithms, we assume
that the injective mapping mapR

req is unique. The definitions and algorithms for
pattern realization can be easily generalized to deal with multiple such mappings.

168 W. Arnold et al.

does not violate condition 3 in the definition above since the multiplicity of
membership links is many-to-many. Assuming that local constraints are all sat-
isfied on the respective concrete units, the figure represents a valid and complete
topology realization. Finally, we say that a complete topology realization T is
strict if T further satisfies the following property: for every non-constraint link
l=(u, r, v, t) ∈ T , where both units u and v are virtual, there exists a correspond-
ing link l′=(u′, r′, v′, t′) ∈ T , such that u′ = R(u), v′ = R(v), r′ = mapR

req(r),
and t = t′, where R is the realization mapping function. This property requires
effectively that no non-constraint links are “inherited” by a pair of concrete
units from the pair of virtual units that they realize, during the topology folding
process. Topology realization in Figure 2 does not satisfy this property, because
the hosting link between units 1 and 2 does not have corresponding link between
units 3 and 4.

3 Automatic Pattern Realization

In this section, we formally introduce the pattern realization problem, and several
variants of it. We discuss the motivation for the problem and its variants based
on real life use cases.

Let P be a pattern topology, where all units are virtual, and let T be a target
topology, where all units are concrete. Let R be a set of realization links between
units in P and T . We denote by P ∪ T ∪ R the topology formed by taking the
union of P , T , and R (following the common definition of graph unions). The
Pattern Realization (PR) problem is formally defined as follows.

The PR Problem. Given a pattern topology P and a target topology T ,
produce PR = T ∪ P ∪R, where R is a set of realization links between units in
P and T , and PR forms a complete weakly valid topology realization (as defined
in Section 2). �
Note that the definition above can be easily generalized, where P and/or T
contain both virtual and concrete units, and realization links. The PR prob-
lem definition is useful to describe the process of incremental elaboration and
refinement for pattern-based deployment, where a basic step maps an abstract
(pattern) topology into a concrete (but maybe incomplete) topology, in which
some of the units represent resources that are installed or “to be installed”.
Each such mapping step produces a normalized folded concrete topology that
conforms to the input pattern, and can be used as input to the next elabora-
tion and refinement step, eventually leading to a valid and complete deployment
topology that satisfies multiple required patterns and that can serve to drive
automated provisioning.

There are several variants of the problem that we find useful in real life sce-
narios. Specifically, consider a situation where the target topology T represents
an existing computing infrastructure (where all units are installed). A very com-
mon case is where no changes are allowed to the infrastructure. In such a case,
the automatic pattern realization process may be used for (1) resource selec-
tion, where a pattern topology is used to select an environment with certain

Automatic Realization of SOA Deployment Patterns 169

1

2

3

5

c1

c3

Pattern topology P

4DHC

<<h>>

c2

<<m>>

<<m>>

<<h>>

<<c.l.>>

6

8

9

11

Target topology T

10

<<h>>

<<m>>

<<h>>

7

<<h>>

<<h>>

R

T’ = P � T � R

<<hosting>>

<<realization>>

<<concrete unit>>

<<constraint>>

<<virtual unit>>

<<member>>

<<constraint link>>

6

8

9

11

FoldRS (T’)

10

<<h>>

<<m>>

<<h>>

7

<<h>>

<<h>>

c1

c3

c2

<<m>>

DHC

<<c. l.>>

Fig. 3. Example of pattern realization

characteristics that can serve as, e.g., a hosting environment for downstream
composite service deployment, or for (2) IT compliance verification, where a
computing infrastructure is continuously validated against a set of organiza-
tional constraints, policies and best practices (represented as patterns). We term
this variant of the problem Strict Pattern Realization in Infrastructure Topology
(PRIT). The Strict PRIT Problem is formally defined below.

The Strict PRIT Problem. Given a pattern topology P , and a target topology
T , produce PRIT S = P∪T∪R, where R is a set of realization links between units
in P and T , and PRIT S forms a strict valid and complete topology realization
(as defined in Section 2). �
Note that there are two differences between the PR and the Strict PRIT prob-
lems. In Strict PRIT the goal is to produce a valid topology realization (not just
weakly valid). Further, the “strictness” property mandates that effectively no
new non-constraint links are added between concrete units in the folded topology
FoldRS(PRIT S). Moreover, the only objects “inherited” by the folded topol-
ogy FoldRS(PRIT S) from the pattern topology P are constraints and constraint
links). Indeed, both these requirements stem from the fact that no changes are
allowed in the infrastructure; new links such as a new membership link be-
tween two units, imply necessary infrastructure reconfiguration. For example,
Figure 3 represents realization of pattern topology P (which contains among
other constraints, a Deferred Hosting constraint) in target topology T . Topol-
ogy T ′ = P ∪ T ∪ R is a complete valid topology realization (and thus a valid
output of the PR problem), but not a strict topology realization, because it in-
troduces a new member relationship between units 6 and 9 (in the corresponding
folded topology FoldRS(T ′)). Thus it is not a valid output of the Strict PRIT
problem.

Pattern realization with infrastructure reconfiguration. Consider a case
where a deployment pattern does not have a Strict PRIT realization in the target
infrastructure. However, if changes are allowed to the infrastructure, we may be
able to modify it in a way that the pattern’s realization in the infrastructure is
possible. In such a case, the automatic pattern realization process may be used to

170 W. Arnold et al.

Infrastructure
Topology T

�(T) = FoldRS (P(I) � T � R)

<<h>>

WindowsOS

<<h>>

OSUser
DB2System

InstallDir=C:\IBM\SQLLIB

DB2Instance
InstanceName=DB2

<<h>>

<<d>>

Instantiated Pattern P(I)

WindowsOS

<<h>>

OSUser

X86 Server

<<h>>
<<real>>

<<h>>

WindowsOS

<<h>>

OSUser
DB2System

InstallDir=

DB2Instance
InstanceName=

<<h>>

<<d>>

Reconfiguration
Pattern P

(DB2 Database)

WindowsOS

<<h>>

OSUser

X86 Server

<<h>>

<<real>>

<<h>>

DB2System
InstallDir=C:\IBM\SQLLIB

DB2Instance
InstanceName=DB2

<<h>>

<<d>>

Input I �(T)

Fig. 4. Example of valid application of a reconfiguration action to an infrastructure
topology

drive reconfiguration of the infrastructure toward a state where it conforms to the
pattern structure and constraints. We term this variant of the problem Relaxed
Pattern Realization in Infrastructure Topology (Relaxed PRIT). Note that ability
to reconfigure the infrastructure to enable pattern realization depends on the set
of allowed infrastructure reconfiguration actions. We first present a formal model
for reconfiguration actions.

Infrastructure reconfiguration actions may include adding new hardware re-
sources (e.g., adding new servers from the pool of available machines), installing
new products from the product catalog (e.g., installing DB2 Database), con-
figuring new managed middleware resources (e.g., creating a new DB2 JDBC
Provider on a WebSphere Application Server), or configuring a new relationship
between existing resources (e.g., adding existing JBoss application server to ex-
isting cluster). Note, that we only consider actions that add new resources or
resource relationships. Reconfiguration actions that remove resources (or rela-
tionships) are beyond the scope of this paper.

There are two challenges in modeling reconfiguration actions. First, presence
of certain resource types in a certain configuration state may be a precondition
for the execution of a reconfiguration action. Second, the result of these actions
may imply addition of a connected set of units and multiple relationships between
new units and existing ones. To model both action preconditions and its effects
we introduce the notion of a Parameterized Reconfiguration Pattern.

Parameterized Reconfiguration Pattern is a topology (consisting of virtual and
concrete units) where some of the attributes on concrete units may be designated
as installation parameters. Concrete units correspond to the affect of the action;
namely, resources that will be added (provisioned) as a result of the action exe-
cution. Virtual units correspond to the pre-conditions for executing the action;
for example, resources on which the new resources will be installed or created.
Installation parameters correspond to values that are received from the user at
installation time (e.g., name to be used for a newly created Database).

An Instantiated Reconfiguration Pattern P (I) is a pattern P and a set of input
parameters I, where values from I are assigned to all installation parameters
(note that default values may be used while still allowing downstream changes
at the actual time of provisioning). A bounded re-configuration action w.r.t. a

Automatic Realization of SOA Deployment Patterns 171

topology T is a triple δ = (P, I, R), where P is the pattern topology associated
with the action, I is the set of input installation parameters, and R is a realization
function from P to T . A bounded action is valid iff R is a valid and complete
realization. The effect of applying a valid bounded action δ = (P, I, R) in a target
topology T is the folded topology δ(T) = FoldRS(P (I) ∪ T ∪R). Note that we
do not require that the topology realization be strict; this allows us to add links
between existing concrete units in the target topology that represent required
resource re-configuration. Figure 4 shows an example of a valid application of
a reconfiguration action, corresponding to the installation of a DB2 Database
on a Windows operation system. In this rather simplified example of product
installation, pattern topology P consists of two concrete units (DB2System and
DB2Instance), which will be added to the topology. The set of input installation
parameters I consists of DB2 InstanceName and InstallDir. The database is
installed on a Windows operating system (represented as a virtual unit) and
requires a ‘db2admin’ OS user, which is modeled as a virtual unit upon which
the DB2Instance unit depends.

The input to the Relaxed PRIT Problem is a pattern P , a target topology T ,
and a set of allowable reconfiguration patterns Γ = {Pi|i = 1 . . .M}. To find a
realization of P , it may be necessary to first apply a sequence of reconfiguration
actions. Let ∆ = {δ1, δ2 . . . δn} be a sequence of bounded reconfiguration actions,
such that δ1=(Pi1 , I1, R1) is a valid bounded reconfiguration action applied to
T , and for k = 2, . . . n, δk=(Pik

, Ik, Rk) is a valid bounded reconfiguration action
applied to topology δk−1(. . . δ2(δ1(T))). We also define ∆(T) = δn(. . . δ2(δ1(T))).

The Relaxed PRIT Problem. Given a pattern topology P , a target topology
T , and a set of allowable reconfiguration patterns Γ , produce a valid reconfigu-
ration sequence ∆ and a topology R-PRIT S = P ∪∆(T) ∪R, such that R is a
valid strict topology realization of P in ∆(T). �
To conclude this section, we discuss the relationship between the three variants of
the pattern realization problem defined in this section (PR, Strict PRIT, and, Re-
laxed PRIT). Strict PRIT is a more strict version of the PR problem, i.e., every
(input, solution) pair of the Strict PRIT problem is also an (input, solution)
pair of the PR problem. Strict PRIT is also a more strict version of the Relaxed
PRIT problem. The Relaxed PRIT problem is parameterized by the set Γ of
allowable reconfiguration actions. If Γ = ∅ then Relaxed PRIT becomes equiv-
alent to the Strict PRIT problem. If the only allowed reconfiguration action in
the Relaxed PRIT problem is link creation between existing units, then it is
equivalent to a modification of the PR problem that requires valid (not only
weakly valid) topology realization.

4 Algorithms for Automatic Pattern Realization

Our approach to the problem of automatic pattern realization is based on the
observation that it is reducible (with some variations) to the subgraph isomor-
phism problem [9], where realization links represent the isomorphism mapping.
We view deployment topologies as labeled graphs (augmented with local and

172 W. Arnold et al.

Table 1. Algorithm for the Strict PRIT problem

[01] FindStrictPRIT(Topology P , Topology T , Map R) {
[02] if (PR = units(P)) return R; // all pattern units realized
[03] select unit u ∈ units(P) − PR; // select unrealized pattern unit (heuristic)
[04] for (unit v ∈ units(T)) { // iterate over all target units
[05] if (not(validR(u, v))) continue to next target unit; // locally invalid realization
[06] for (non-constraint link l = (u, r, u′, t) ∈ links(P))
[07] if ((u′ ∈ PR) ∧ (l′ = (v, mapR

req(r), R(u′), t) /∈ links(T)))
[08] continue to next target unit; // target unit not linked to previous choices
[09] for (non-constraint link l = (u′, r, u, t) ∈ links(P))
[10] if ((u′ ∈ PR) ∧ (l′ = (R(u′), mapR

req(r), v, t) /∈ links(T)))
[11] continue to next target unit; // target unit not linked to previous choices
[12] let T ′ = (T − {v}) ∪ {FoldRS(u → v)}
[13] ∪ {constraint links cl = (u′, u) ∨ cl = (u, u′) ∈ links(P) | u′ ∈ PR};
[14] if (T ′ is a valid topology) { // no constraints violated
[15] let R′ = FindStrictPRIT (P, T ′, R ∪ (u → v));
[16] if (R′ �= ∅) return R′; // all remaining realizations found.
[17] }
[18] }
[19] return ∅; // no realizations found (backtrack)
[20] }

structural constraints), and infrastructure reconfiguration actions as graph edit
operations [10]. We propose to use modified graph matching algorithms for the
Strict PRIT problem and error-correcting graph matching algorithms [10] for
the Relaxed PRIT problem.

There are certain properties of automatic pattern realization that differenti-
ate it from classic graph isomorphism. First, two virtual units can potentially be
realized by (mapped to) a single concrete unit. Second, local and structural con-
straints defined in the pattern topology need to be satisfied in the target topology.
In this section we present the algorithm for the Strict PRIT problem. Algorithms
and heuristics for the Relaxed PRIT problem are deferred for future publications.

Algorithm for the Strict PRIT Problem. Our algorithm for Strict PRIT is
based on the classic depth-first backtracking search subgraph isomorphism algo-
rithm [10], modified to account for the properties of SOA pattern realization not
exhibited in classic graph isomorphism. In Section 5, we analyze the complexity
of the algorithm, and present its performance evaluation.

We use the following notations in describing our algorithm. R is the realization
mapping of units in pattern P to units in target T , computed so far. PR denotes
the set of units in P that are already mapped by the realization. When a virtual
unit u is realized by a concrete unit v, FoldRS(u → v) denotes the unit v with
constraints defined on the unit u folded onto it (this includes constraints defined
in requirements contained by u folded on to the corresponding requirements in v).
Table 1 presents the algorithm in pseudo code. Function FindStrictPRIT should
be invoked with arguments {pattern topology P , target topology T , ∅}. At each
step of the recursive iteration the following is true for the arguments of the
recursive call: P is the pattern topology (unmodified), T is the folded topology
FoldRS(P ∪ T ∪ R). The output of the function is a valid strict realization
mapping of units in P to units in T , if one exists, or the empty set otherwise.
Note that this algorithm finds the first such realization mapping, if it exists. In

Automatic Realization of SOA Deployment Patterns 173

our deployment modeling prototype, we have also implemented a variation of
the algorithm that finds all such realization mappings.

The algorithm works by mapping (virtual) units in pattern topology P to
(concrete) units in target topology T , one by one. At each iteration, the algorithm
selects the next unmapped unit u in pattern P (line 3) and attempts to find a
realization mapping for it against all the target units (unit v in topology T ,
line 4). For this, it checks that the realization is locally valid (line 5), and that
for every non-constraint link in the pattern with u as source or target, and the
other endpoint already realized, there exists a corresponding link in the target
topology (lines 6–11). Note, that potentially several units in pattern topology
P can be mapped to the same unit in target topology T . If such a unit v is
found, the algorithm folds constraint links and constraints (those that now can
be folded due to the newly computed unit realization u → v) from pattern P
onto target topology T (lines 12–13). The modified topology T ′ is then validated
to check if the realization satisfies structural constraints (line 14). Incremental
validation techniques can be applied to enforce only the constraints affected.
If all constraints are valid or undefined, the unit pair (u → v) is added to the
realization mapping R, and the algorithm recurses to map the next unit in the
pattern topology (line 15). If no further unit mapping is possible, the algorithm
backtracks (line 19).

The incremental folding of constraints by the above algorithm can interact
negatively with constraints that reason about the presence of other constraints.
The above algorithm assumes that such “meta” constraints will return unknown
when the constraint they are reasoning about is missing and could be added
later in the process of realization. The performance of the algorithm will also
be affected by the computational complexity of topology validation in step 14.
Incremental validation techniques can be used to statically analyze declarative
constraints, and monitor the access patterns of opaque constraints to reduce the
number of operations per topology validation.

5 Performance Evaluation

We have implemented the FindStrictPRIT algorithm (Table 1) as an integral
part of our deployment modeling platform [1], which has been recently released
as an integral part of the IBM Rational Software Architect (RSA) tool [2]. Our
implementation includes two versions of the algorithm: the FindFirst version
finds the first realization mapping of the pattern and stops, while the FindAll
version finds all possible realization mappings. FindStrictPRIT is a search al-
gorithm that has, in the worst case, exponential complexity. However, we have
identified that its performance greatly depends on the heuristics used to navi-
gate the problem search tree. To evaluate the algorithm’s performance, we used
different combinations of heuristics to execute searches for pattern realization
for a fixed set of patterns in target topologies of varying sizes.

Pattern Topologies. We experimented with a variety of patterns including
some that are small and abstract and some that are more complex and detailed.

174 W. Arnold et al.

Table 2. Summary of Pattern Topologies

Pattern Description (number of units in the pattern)
Pattern 1 Standalone WebSphere Application Server collocated with a DB2 Instance on an x86

server; expressed using a detailed hosting stack. (12)
Pattern 2 Pattern 1 expressed using Collocation and Deferred Hosting constraints instead of a

detailed stack. (8)
Pattern 3 WebSphere cluster containing two application server members. (3)
Pattern 4 Pattern 3 with an additional Anti-Collocation constraint between the servers. (5)
Pattern 5 Pattern 3 with additional relationships to WebSphere nodes, a nodegroup and a cell.

(17)

For example, one pattern for a two-server cluster contains three units while
a more detailed version contains 17 units. In addition, some patterns include
structural constraints while others do not. A summary of patterns used in the
experiments is given in Table 2.

Target Topologies. For our experiments, we generated models of target topolo-
gies of varying sizes, designed to approximate a typical data center in which
there are a large number of servers, each hosting a particular software. Each tar-
get topology contains a variable number of servers hosting one of the following
software stacks: standalone WebSphere 6.0, DB2 8.2 Server, standalone Web-
Sphere 6.0 with DB2 8.2 Server, standalone WebSphere 6.0 with DB2 8.2 Client,
Apache, and WebSphere 6.0 ND. The WebSphere 6.0 ND stack contains multiple
application servers hosted on different nodes grouped in multiple clusters. Each
generated topology contains a fixed proportion of each type of stack. This allows
us to linearly scale the size of the target topology using a simple scaling factor.
Generation of target topologies ensures at least one match of a pattern in each
target topology, thus allowing us to separate the impact of failed realizations.

Search Heuristics. We applied heuristics to the following key decisions in the
search: (1) selection of the initial unit in the pattern to realize and (2) selection
of the next unit in the pattern to realize. We assume that given a unit from the
pattern topology, the set of units in the target topology of the same type can
be identified in constant time. We believe this to be a reasonable assumption for
infrastructures whose resources are maintained in indexed databases. In addition
to indexing by type, resources are also typically indexed by one or more key
attributes. The heuristics we tested are defined in Table 3. Those appended
with “-I ” apply to the selection of the initial unit in pattern to realize, while
those appended with “-S” apply to the selection of subsequent units to realize.
Given a pattern unit and a set of equivalent candidate target units, we select
the target unit in a random order.

Experiment Results. For each pattern we executed the FindFirst and FindAll
versions of FindStrictPRIT against target topologies ranging in size from 124
units (11 servers) units to 2764 units (210 servers). In each case we measured
the number of unit-to-unit realization attempts as a function of the size of the
target topology. We report realization attempts as a platform independent mea-
sure of the algorithm’s running time. Each test was repeated 100 times and the

Automatic Realization of SOA Deployment Patterns 175

Table 3. Summary of Heuristics

Heuristic Definition
Fixed-I (-S) The unit is selected in a fixed order from among all units (all units linked to the

currently realized units). This heuristic allows us to minimize variance in tests
of other heuristics.

Random-I (-S) The unit is selected randomly from among all units (all units linked to the
currently realized units).

StackBottom-I The unit is selected randomly from among those at the base of hosting stacks.
This heuristic tries to take advantage of the units related by hosting links.

TTypeFreq-I (-S) The unit is selected randomly from among units (units linked to the currently
realized units) with the type matching the least common type in the target
topology. This heuristic tries to minimize the search space by starting with the
least common target.

PTypeFreq-I (-S) The unit is selected randomly from among units (units linked to the currently
realized units) with the type matching the least common type in the pattern
topology. This heuristic attempts to eliminate search combinatorics caused by
common elements in the pattern by trying to select units with unique types.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

U
ni

t-
to

-U
ni

t R
ea

liz
at

io
n

A
tte

m
pt

s

Units in Target Topology

TTypeFreq-I,TTypeFreq-S
Random-I,Random-S

StackBottom-I,Random-S
PTypeFreq-I,PTypeFreq-S

Fig. 5. Number of unit-to-unit realization attempts vs. target topology size for different
heuristics, applied to Pattern 1

results averaged. Figure 5 shows a representative result for the FindFirst algo-
rithm version, used with four representative heuristic combinations, executed on
Pattern 1. In addition to showing averages, min and max values are shown for
each tested combination of heuristics.

Figure 5 reflects what we observed in most tests: that for our combinations of
patterns and target topologies, FindFirst completes in approximately constant
time independent of target topology size. We believe that this is a consequence
of the target topology indexing which, given a pattern unit type, efficiently
identifies a set of potential matches in the target topology. In such a set, many
of the returned candidate units are in complete pattern realizations. The first
complete realization can therefore be constructed in a constant number of steps.
We also observed that heuristic TTypeFreq-I was most effective at reducing the
number of unit-to-unit realizations and the variance. For those patterns where

176 W. Arnold et al.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5

Random-I,Random-S

StackBottom-I,Random-S

TTypeFreq-I,TTypeFreq-S

PTypeFreq-I,PTypeFreq-S

Theoretical Best (Pattern Size)

Fig. 6. Number of unit-to-unit realization attempts of different heuristics, relative to
the Theoretical Best one, applied to different patterns

the heuristic did not provide much advantage, the frequency of the pattern unit
types in the target topology was approximately the same for all units, minimizing
the advantage of the heuristic.

To measure the quality of TTypeFreq-I as a heuristic, we compared average
number of unit-to-unit realizations for each heuristic (averaged over all target
topologies of different sizes) to the theoretical minimum number of unit-to-unit
realizations (which is equal to the number of units in the pattern, given an
oracle that always makes the right choice). Figure 6 shows the relative number
of unit-to-unit realizations: a measure of 1 is the theoretical minimum number
of realizations. The figure shows that of the heuristics, TTypeFreq-I is usually
better than the other heuristics.

Due to a lack of space we do not present our results for the FindAll version
of the algorithm. They showed that the number of unit-to-unit realizations was
directly proportional to the expected number of complete pattern realizations for
each of the patterns in the target topologies. Further, the TTypeFreq-I heuristic
was, again, most effective.

6 Related Work

The idea of using patterns (templates) to capture important properties of a
reusable service solution and to drive its deployment and configuration has been
recently explored in the SOA research literature [5,6,1]. In [5], patterns describ-
ing conditions needed for the deployment of a service, were used for network
level service deployment in the domain of active networks. In [6], templates were
used to capture parameterized provisioning workflows, where pattern selection
is identified by mapping from a Service Level Agreement (SLA). In our work [1],
a pattern captures the structure and constraints of a composite solution, with-
out bindings to specific resources, and without specifying provisioning actions.

Automatic Realization of SOA Deployment Patterns 177

Instead, the pattern can be used in the pattern realization process, which drives
resource selection and necessary reconfiguration of the target infrastructure, cre-
ating a detailed infrastructure reconfiguration plan, if necessary. Such plan can
then be consumed by other tools such as [13,12] for provisioning.

We use (modified) graph matching algorithms [9] for pattern realiza-
tion. Graph matching has been the focus of intensive research for several
decades [14,15,16,17,18,19,20,10]. One of its drawbacks is computational com-
plexity. It is known that both subgraph isomorphism and error-correcting sub-
graph isomorphism problems are NP-complete [9]. The most common approach
for graph matching is to directly construct graph isomorphism in a procedural
manner, using depth-first backtracking search [14]. Several variations of this algo-
rithm have been proposed. Some employ additional checks such as forward check-
ing in Ullman’s algorithm [15] or lookahead procedures for backtracking [18].
Others employ different heuristics for navigating the search tree to improve al-
gorithm performance in the specific area of its application [21,20]. Our approach
belongs to the latest category.

Although general graph matching algorithms are exponential, polynomial al-
gorithms have been proposed by imposing certain restrictions on the graphs. For
example, graphs with bounded valence can be matched in polynomial time [19].
This algorithm, however, is not applicable to the pattern realization problem,
because general deployment topologies have unbounded valence (e.g., a server
cluster may contain arbitrary number of servers). Moreover, this algorithm has
poor performance in practice due to a large constant overhead. Unlike precise
algorithms for graph matching that are guaranteed to find a match if one exists,
approximate algorithms do not always find the solution but require only poly-
nomial time [22]. Applying approximate algorithms to pattern realization may
be an area of future research.

7 Conclusions and Future Work

In previous work [1], we have shown how complex SOA deployment patterns can
be effectively expressed in a formal object-relationship based modeling language.
We further showed how such pattern models can be efficiently validated through
a folding transformation into the target objects by which they are realized. In
this paper we have shown that in practice, this realization mapping can also
be efficiently computed. We defined three variations of the automatic realiza-
tion problem, and detailed the algorithm and performance of the Strict PRIT
problem. We then presented experimental results of its behavior, identifying the
TTypeFreq-I heuristic as the most effective. The algorithm and heuristic have
been incorporated into our model-driven deployment platform, which has been
released as a part of the IBM Rational Software Architect (RSA) tool [2]. In ad-
dition to resource selection, automatic pattern realization is being used to assist
in operation modeling [23]. We are in the process of extending our implementa-
tion to support Relaxed PRIT. In future SOA deployment patterns research we
plan on investigating interactive pattern realization, reverse pattern discovery,
pattern composition, and pattern maintenance.

178 W. Arnold et al.

Acknowledgements

The authors would like to thank Daniel Berg, Harm Sluiman, Andrew Tross-
man, Michael Elder, John Pershing, and Edward Snible, for providing valuable
feedback, contributing ideas, and helping to shape our vision.

References

1. Arnold, W., Eilam, T., Kalantar, M., Konstantinou, A., Totok, A.: Pattern based
SOA deployment. In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007.
LNCS, vol. 4749, pp. 1–12. Springer, Heidelberg (2007)

2. IBM: Rational Software Architect for WebSphere Software (RSA) V7.5 (September
2008)

3. Mehra, P.: Global deployment of data centers. IEEE Internet Computing 6(5)
(September 2002)

4. Brown, A.B., Keller, A., Hellerstein, J.: A model of configuration complexity and its
applications to a change management system. In: Integrated Management (2005)

5. Bossardt, M., Mühlemann, A., Zürcher, R., Plattner, B.: Pattern based service
deployment for active networks. In: ANTA (2003)

6. Ludwig, H., Gimpel, H., Dan, A., Kearney, B.: Template based automated service
provisioning supporting the agreement driven service life-cycle. In: Benatallah, B.,
Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp. 283–295. Springer,
Heidelberg (2005)

7. Redlin, C., Carlson-Neumann, K.: WebSphere Process Server and WebSphere En-
terprise Service Bus deployment patterns. Technical report, IBM (November 2006)

8. IBM: WebSphere Process Server (WPS) V6.1 (2007)
9. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of

NP-Completeness. Freeman and Company, New York (1979)
10. Messmer, B.T.: Efficient Graph Matching Algorithms. PhD thesis, University of

Bern, Switzerland (November 1995)
11. IBM: Tivoli Provisioning Manager, TPM (2006)
12. El Maghraoui, K., Meghranjani, A., Eilam, T., Kalantar, M., Konstantinou, A.:

Model driven provisioning: Bridging the gap between declarative object models and
procedural provisioning tools. In: van Steen, M., Henning, M. (eds.) Middleware
2006. LNCS, vol. 4290, pp. 404–423. Springer, Heidelberg (2006)

13. Keller, A., Hellerstein, J., Wolf, J., Wu, K.L., Krishnan, V.: The CHAMPS system:
change management with planning and scheduling. In: NOMS. IEEE Press, Los
Alamitos (2004)

14. Corneil, D., Gotlieb, C.: An efficient algorithm for graph isomorphism. Journal of
the ACM 17, 51–64 (1970)

15. Ullman, J.: An algorithm for subgraph isomorphism. Journal of the ACM 23(1),
31–42 (1976)

16. Gati, G.: Further annotated bibliography on the isomorphism disease. Journal of
Graph Theory, 96–109 (1979)

17. Kitchen, L., Rosenfeld, A.: Discrete relaxation for matching relational structures.
IEEE Transactions on Systems, Man, and Cybernetics 9(12), 869–874 (1979)

18. Haralick, R., Elliot, G.: Increasing tree search efficiency for constraint satisfaction
problems. Artificial Intelligence 14, 263–313 (1980)

Automatic Realization of SOA Deployment Patterns 179

19. Hoffman, C.: Group-Theoretic Algorithms and Graph Isomorphism. Springer, Hei-
delberg (1982)

20. Kim, W., Kak, A.: 3-D object recognition using bipartite matching embedded in
discrete relaxation. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence (PAMI) 13, 224–251 (1991)

21. Tsai, W., Fu, K.: Error-correcting isomorphisms of attributed relational graphs for
pattern recognition. IEEE Trans. on Sys., Man, and Cybernetics 9, 757–768 (1979)

22. De Jong, K., Spears, W.: Using genetic algorithms to solve NP-Complete problems.
In: Schaffer, J.D. (ed.) Genetic Algorithms, pp. 124–132. Morgan Kaufmann, San
Francisco (1989)

23. Abrams, S., Bloom, B., Keyser, P., Kimelman, D., Nelson, E., Neuberger, W., Roth,
T., Simmonds, I., Tang, S., Vlissides, J.: Architectural thinking and modeling with
the Architects’ Workbench. IBM Systems Journal 45(3) (2006)

The LLAMA Middleware Support for
Accountable Service-Oriented Architecture

Mark Panahi, Kwei-Jay Lin, Yue Zhang, Soo-Ho Chang, Jing Zhang,
and Leonardo Varela

Department of Electrical Engineering and Computer Science
University of California, Irvine

Irvine, CA 92697, USA

Abstract. Enterprises are turning to SOA for the flexible deployment
of business processes. While current monitoring tools can detect service
execution problems in an enterprise’s servers and report such problems
to human decision makers, they may not closely monitor the external
services they use, diagnose the root cause of process problems, and au-
tomatically reconfigure the process to replace faulty services. This paper
presents the LLAMA middleware support for service process monitor-
ing, run-time management, and configuration. Instances of accountabil-
ity agents are deployed to selectively monitor some services’ performance.
These agents in turn allow LLAMA’s Accountability Authority (AA) to
diagnose process problems and apply any necessary reconfiguration. The
project also builds tools to simplify the setup and deployment of LLAMA
components. Our experimental results indicate that using LLAMA con-
tributes only a modest amount of system overhead, and that the diagnosis
process is swift and sufficiently accurate.

1 Introduction

Service-oriented architecture (SOA) is a software architecture for composing
loosely-coupled services into one cohesive business process (BP) [1,2,3]. Enter-
prises can benefit from SOA to dynamically create BP’s by integrating both
legacy and new services. Some BP’s may involve external services supplied by
third-party partners/providers and invoke them with a service-level agreement
(SLA) on the QoS performance of those services.

Service providers must be held accountable for the failures in the services
they offer. However, identifying the source of SLA violations or service failures
in a BP can be difficult. BP’s can be very complicated, with many execution
branches and involving services from several different providers. Performances
from services may have dependencies; an irregular performance from one service
may cause another to fail unexpectedly. In order to investigate such problems,
the behavior of services that belong to a BP must be continuously monitored,
logged, aggregated, and analyzed [4,1]. Harnessing such vital information re-
quires intelligent support from the service infrastructure.

A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, pp. 180–194, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

The LLAMA Middleware Support for Accountable SOA 181

Given the dynamic and complex nature of many BP’s, a powerful yet effi-
cient mechanism is required to identify the source of problems when a BP has
not delivered the service performance as expected. Such an error identification
mechanism must be powerful enough to handle the complex and causal nature of
service interactions and efficient enough to cope with a large number of service
nodes without imposing significant system overhead.

In this paper, we present a middleware framework, called the inteLLigent Ac-
countability Middleware Architecture (LLAMA), for accountable service-oriented
computing. LLAMA includes three main components. The Accountability Service
Bus (ASB) transparently and selectively monitors and records services, hosts (e.g.
CPU), and network behavior information for services running on it. LLAMA also
deploys instances of monitoring Agents to observe and to inspect groups of ser-
vices. Finally, an Accountability Authority (AA) is in charge of diagnosing per-
formance problems in processes and applying desirable reconfiguration measures.
The LLAMA project also provides useful tools to simplify the setup, selection and
deployment of LLAMA components, as well as a friendly user interface to inspect
the diagnosis status of all processes.

The contribution of our research is that we have implemented LLAMA as an
intelligent SOA middleware framework to detect, diagnose and defuse QoS issues
in BP’s. Our project goes beyond current business activity monitoring (BAM)
tools to add comprehensive error identification capabilities. Some of the unique
features in LLAMA include:

1. efficient decisions to select only a subset of monitoring locations (called Ev-
idence Channels) in a BP to reduce monitoring cost and overhead [4];

2. a powerful diagnosis engine (using the Baysian network model [5]) which con-
ducts probabilistic analysis to identify the most probable service failures [4];

3. optimal Agent selection coupled with service selection so as to build BP’s
with a low overall cost including services and diagnosis [6];

4. intelligent capabilities for Agents to inspect individual service logs to confirm
if a service is indeed faulty, and if so, whether the cause was due to service
logic, host, or network behavior.

Following the work reported in [4,6], this paper concentrates on the LLAMA
architecture, its components, implementation and performance study. We mea-
sure the extent to which monitoring and inspection add overhead to system
performance. We also investigate how the accuracy of diagnosis varies according
to the amount of time and resources devoted to the diagnostic process. Our ex-
perimental results indicate that using LLAMA contributes only a very modest
amount of monitoring overhead, and the diagnosis process is swift and sufficiently
accurate given reasonable time allowed.

The paper is organized as follows. Sec. 2 reviews the concept of accountabil-
ity and challenges for building accountable SOA. Sec. 3 presents the LLAMA
accountable middleware architecture. We present a performance study of the
LLAMA implementation in Sec. 4. Related work is compared in Sec. 5.

182 M. Panahi et al.

2 Background

2.1 Challenges of Accountability in SOA

As defined in the Merriam-Webster dictionary, accountability is “an obligation or
willingness to accept responsibility or to account for one’s actions”. We apply the
concept of accountability to SOA so that all services are regulated for effective
QoS delivered to a BP, and all root causes of faulty service executions can be
clearly identified, inspected, and defused to control damage. In our work, QoS
parameters can include any attribute that can be measured and quantified, such
as timeliness, throughput, reliability, and availability.

To achieve accountability in SOA, we have identified the following challenges
introduced by SOA’s inborn characteristics: 1) An SOA accountability mecha-
nism should be capable of dealing with the causal relationship existing in service
interactions and find the root cause of a process problem. 2) Probabilistic and
statistical theory should be used to model the uncertainty inherent in network-
based workflows and server workloads. 3) The problem diagnosis mechanism
needs to scale well in large-scale distributed SOA systems. 4) To prevent ex-
cessive overhead, the amount of service performance data collected should be as
little as possible but still enough for a correct diagnosis to be made. 5) The trust-
worthiness of services needs to be continually evaluated based on accumulated
service behavior data. All these important challenges have motivated the de-
sign and development of our accountability model, algorithms, and architecture.
These issues have also been elaborated in [4].

There are different degrees to which SOA systems can achieve these goals.
At the very core, SOA systems must provide efficient monitoring feedback and
error checking facilities on deployed services. Next, accountability systems may
provide an intelligent and powerful diagnosis engine to analyze monitored data
from the execution history and process structure. Finally, a mature accountabil-
ity system must provide a means to reconfigure faulty processes and to prevent
future problems. Depending on the application needs, the diagnosis and recon-
figuration mechanism can be performed either offline or online, with the online
approach more preferred so as to promptly react to problems as they occur.

2.2 Current Monitoring Support in SOA

The enterprise service bus (ESB) is a common service integration and deploy-
ment technology for SOA [7] that has been extended to provide support for
monitoring and logging. Tools such as business activity monitoring (BAM) pro-
vide both analysis and visualization of data collected by ESB for the various
services deployed on it. Users of BAM tools can view the performance of busi-
ness processes and be alerted when problems occur. For example, a BAM tool
may answer the question: “Why is it taking an average of 10 minutes for a repre-
sentative to answer a customer’s call?” The Cape Clear BAM [8] is a commercial
solution that claims to “combine an ESB with BAM to provide greater flexibility
and ease-of-deployment within complex heterogeneous environments.” Another
example is the Saturn product working with the Mule ESB [9].

The LLAMA Middleware Support for Accountable SOA 183

While current solutions to business process monitoring and problem diagnosis
exist, they still have limitations. Current BAM tools usually report information
via a dashboard or email alerts to human decision makers, who then manually
initiate diagnosis and corrective actions. We foresee a future where enterprises
will be integrating systems involving third-party, geographically dispersed ser-
vices and components, and may wish to compose services dynamically and auto-
matically. The LLAMA framework is therefore designed to perform automated
diagnosis and reconfiguration based on either pre-specified or dynamically cal-
culated service causal relationships.

2.3 Transparency and Service Provider Participation in an
Accountability Framework

The LLAMA framework is designed to help enterprises with pinpointing re-
sponsible parties when a process execution has problems. To achieve this, trans-
parency on the (internal) state of a service provider is critical to the success
of the diagnosis. However, some service providers may not be willing to grant
this transparency to external users. Service providers therefore need to consider
the tradeoffs between transparency on one hand, and privacy and security on
the other. Providers of “healthy” services actually will benefit by allowing its
performance data to be reported in order to clear any fault responsibility. In
other words, we believe transparency may be more valuable than privacy to
most service providers.

In order to participate in the accountability framework, external service pro-
viders must install the LLAMA ASB (see Sec. 3.2) to produce an audit trail of their
services, and to allow ASB to push performance data to Agents. In LLAMA, to
give more flexibility, we design Agents to be accountability-related services that
can be deployed by service clients, service providers, or any third party providers.
The only requirement is that Agents can be selectively requested by the Account-
ability Authority to report data about services that belong to a specific process.

In the case that some service providers are not willing to release their perfor-
mance data unconditionally, LLAMA allows service providers to choose among
various levels of transparency. Simple Auditing requires the service provider
to only install the ASB layer for their services. This activates data collection for
such services. However, this data is stored within the server and only provided
to the AA, via an assigned Agent, when diagnosis is required. Dynamic Mon-
itoring requires the ASB installation to allow dynamic monitoring of services
via Agents installed by the service provider. Agents deployed need only conform
to a standard interface. Therefore, the advantage of this transparency level is
that service providers may use their own Agents to participate in the diagnosis
process. Dynamic Third-party Monitoring is similar to the previous level
except that data is collected and processed by third-party “collateral” Agents.

For the rest of this paper, we assume all external services are running on an
ASB instance and monitored by Agents deployed by LLAMA. This assumption
simplifies our discussion. Support for other transparency levels will be addressed
in the future.

184 M. Panahi et al.

3 The LLAMA Accountability Middleware Architecture

Using SOA, the choices of which service to invoke at a specific instance may be
made continuously depending on current service performance, cost, and many
other factors. For a highly dynamic environment, few frameworks in existence
are built to automate the analysis and identification of business process prob-
lems, and perform reconfigurations. In this section, we highlight the various com-
ponents and features of the LLAMA framework that make automated process
monitoring, analysis, and detection possible.

3.1 LLAMA Overview

Figure 1 shows an example of service system deployed on LLAMA. As discussed
in Sec. 2.3, all service nodes are assumed to be deployed on the ASB. In addition
to the service requester and services deployed, the Accountability Authority
(AA) and Agents are the two main LLAMA components to be discussed in
detail in the next section.

Agents are deployed on servers and selected by AA to monitor a BP. AA and
Agents collaborate to perform run-time process monitoring, root-cause diagnosis,
service network recovery, and service network optimization. Multiple Agents are
selected by AA to address scalability requirements. Each Agent is put in charge
of monitoring a subset of services (as depicted by the circles in Fig. 1) during
the execution of the service process. When undesirable process outcomes are
reported by monitors, Agents provide AA relevant service status information
that serves as evidence for AA to diagnose the root causes of run-time process
problems.

The Accountability Console provides a Web-based graphical user interface
for LLAMA. The operations in the console are classified into three types of
behaviors: 1) registering a business process and SLA requirements in AA, 2)

AA
AC

AA
Accountability
Authority

AC
Accountability
Console

Accountability
Agent

LLAMA ASB

g

Service Web Service

Service
Service

Service

Service
Service

Service Service

S i

ServiceService

Service

Service
Service

Service

Service

Fig. 1. An example layout of accountability framework

The LLAMA Middleware Support for Accountable SOA 185

Diagnosis
Result

Agent Selection and
Deployment

Process + BPELQ

Evidence Channels
Configuration on ASB

Root cause
Diagnosis

Process
Reconfiguration

Reconfigured
Process

Bayesian Network
Configuration

Evidence Channels
Selection

Process Execution

Selected Evidence
Channels

Run-time Data
from

Evidence
Channels

Fig. 2. Accountable SOA configuration and deployment flow

configuring AA parameters, and 3) reporting diagnosis results to users. The
console provides the interface between human business process managers and
the accountability framework through WSDM interfaces [10].

In addition to these components, LLAMA also has a QoS broker [11] (not
in figure) which offers process composition and QoS-based service selection, in
order to assist the service user in fulfilling user-defined end-to-end QoS require-
ments for a business process [12]. QoS broker composes BPEL processes and
defines the QoS constraint for each individual service in a process. Furthermore,
LLAMA deploys trust and reputation brokers for evaluating, aggregating, and
managing the reputation of services. A service’s reputation is considered as a
QoS parameter that affects service network composition: services with a better
reputation are more likely to be invoked by users.

Figure 2 shows the steps of the accountable SOA configuration and deploy-
ment. Given a user’s service request with a user-specified end-to-end QoS re-
quirement, the QoS Broker first composes the business process to be executed.
The QoS Broker selects individual services that make up the service process,
and identify the QoS constraint for each individual service in the process. These
are specified in a special language designed in our project, called BPELQ (for
“BPEL with QoS”), and sent to AA. In AA, the Bayesian Network for this
process is configured based on the process graph, as well as both historical and
expected service performance data [4]. AA then runs the Evidence Channel
Selection algorithm using information from the Bayesian analysis to yield the
best locations for collecting data about the process. The Agents that can best
cover the services in this process are also selected and deployed by AA [6]. In ad-
dition, the hosts of the selected evidence channels are configured on the ASBs,
ready to send monitored data at regular intervals to respective Agents.

Once the process starts to execute, performance data about services and the
process will be collected by the Evidence Channels and delivered to Agents. If any
abnormal situation is detected by an Agent, it will inform AA to trigger Root
Cause Diagnosis. AA will produce the list of the most likely faulty services
(with their respective probability readings), instruct the Agents to confirm the
service status for fault identification, and initiate a Process Reconfiguration
to resolve the problem. In this way, the framework can detect problems when
they occur, find the root cause, and select a reconfiguration plan.

186 M. Panahi et al.

Host CPU/Mem
Data Collector

Profiling Data
Dispatcher

Configuration Gateway

Integration Platform/ESB

Service Exception
Logger

B
S

A

Interceptor/Service Monitor

 Run-time Monitor and
 Problem Detection

EC Data
Analyzer

EC Data
Receiver

Agent

Diagnosis
Data Repo

Agent
Repo

Accountability Authority

Process
Administrator

Monitoring
Data

Exception
Reporter

Log

Process Recovery
Recovery plan

generator
Recovery plan

executor

Bayesian Network Diagnosis
Evidence
Channel
Selector

BN Reasoning
Engine

Service
Repo

CPTs

Diagnosis Result
Reporter

AA Setting

Process
Register

Management
Gateway

Agent Deployment

Agent
Selector

Agent
Informer Exception Receiver

Error Origin Investigator

Service log
analyzer

Host
Performance

analyzer

Run-time Data
Poller

ASB
Deployment

ASB
Configurator

Fig. 3. LLAMA accountability architecture and components

3.2 LLAMA Components

In this section, we focus our discussion on the LLAMA accountability core
(Fig. 3), comprised of the ASB, Agents, and the Accountability Authority.

Accountability Authority (AA). AA is the LLAMA component that per-
forms intelligent management for the deployment, diagnosis, and reconfiguration
of a service process. AA has the following responsibilities: (1) receive process

The LLAMA Middleware Support for Accountable SOA 187

management requests from process administrators; (2) perform initial deploy-
ment and configuration of the accountability framework once the process is sub-
mitted (in BPELQ) for management; (3) perform root-cause diagnosis when
exceptions are reported (sometimes concurrently) from Agents; (4) perform an
automated process reconfiguration to recover process execution. The primary
components of AA (in Fig. 3) are as follows.

– The Management Gateway, which serves as the portal for process admin-
istrators, allows them to submit processes and QoS constraints for account-
ability management. It also allows administrators to configure AA settings,
such as the Evidence Channel selection strategy [4]. Moreover, it reports
diagnosis results saved in the diagnosis data repository to administrators.

– At the deployment phase, the Bayesian Diagnosis Engine performs Evi-
dence Channel selection algorithms [6] to decide the most cost-effective ser-
vice data collection locations. At run-time, it performs Bayesian Network
reasoning to identify the most suspicious services that may be the root-
cause of problems. It also works with Agents to confirm the root cause and
investigate possible error sources (e.g., service logic, host, network, etc.).

– The Agent Selector decides the set of Agents with the least cost to cover
all services using good algorithms, such as the greedy set covering algorithm
in [4].

– The Agent Informer notifies Agents about their selected Evidence Chan-
nels, i.e. the services each Agent is responsible for monitoring; the type of
data to be reported; the frequency of data collection; and the criteria to
decide if a service is normal or has an exception.

– The Exception Receiver receives filtered exception data from Agents,
which usually triggers diagnosis procedures.

– The Process Recovery component generates process reconfiguration plans
and executes them by notifying the ASB, via Agents, to reroute the process
path using new services.

Accountability Agents. Agents are the intermediaries between where data is
collected (i.e., ASB) and where it must be sent for analysis and diagnosis (i.e.,
AA). They are responsible for the following tasks: (1) configure evidence channels
on ASB; (2) perform run-time data analysis based on the information pushed
by ASB; (3) report exceptions to AA; and (4) initiate error origin investigation
upon the request of AA. The components of Agents as illustrated in Figure 3
include:

– The ASB Configurator receives instructions from AA about which services
are selected as Evidence Channels. Agents in turn contact ASB where a
service is hosted and instructs ASB to send all relevant data about the
service to the Agent.

– The EC Data Receiver and Analyzer receives pushed data from Evi-
dence Channels located on ASB. It then applies exception criteria sent by
AA on the data. Any data that meet the exception criteria are forwarded to
Exception Reporter.

188 M. Panahi et al.

– The Exception Reporter promptly reports any abnormal situations de-
tected by EC Data Analyzer to AA, which initiates the diagnosis process.

– The Run-time Data Poller assists AA to confirm root cause locations
during the diagnosis process. It sends requests to ASB for data not in Ev-
idence Channels, filters those data according to the exception criteria and
sends them to AA.

– The Error Origin Investigator requests further information from ASB to
determine if the source of an error is due to network, host, or the service
itself once a problematic service is identified by AA.

LLAMA ASB . LLAMA ASB extends normal ESB capabilities by providing an
API and framework for Agents to collect service performance data. Data can be
pushed or pulled, and collected and sent at configurable intervals. LLAMA ASB
can be installed on any existing ESB framework as long as it supports service
request interception or other means of collecting service data. The following are
the features of the LLAMA ASB (Fig. 3) that give it the unique monitoring
capabilities.

– The Configuration Gateway (CGW) provides the service interface for
configuring internal LLAMA ASB capabilities by Agents. CGW is used to
configure service and host profiling data collection, including data collec-
tion and dispatch frequencies. Moreover, it allows the selection of Evidence
Channels and dynamic routing configuration.

– Profiling Interceptors intercept service request/response messages and
collect both timestamp and message output data. This data is stored in the
ASB log.

– Communication Interceptors give the LLAMA framework its reconfigu-
ration capabilities by providing the underlying mechanisms to route, forward,
and redirect service requests [13] via the configuration of the routing table
located on the ASB. It can accommodate both centralized and distributed
process control models.

– The Service Logger collects software exceptions generated from service
execution and stores them in the log. The exception log may be used for
detailed diagnosis to understand the service failure.

– The Host Data Collector collects detailed statistics about the host’s per-
formance. ASB collects CPU, memory, and network data for each host on
which it is deployed. The host data collector can be configured to collect
data at intervals specified via CGW.

– The Data Dispatcher allows ASB to manage how data is pushed to Agents
and can be configured to send data at intervals specified via CGW.

3.3 Error Origin Investigation

The LLAMA framework is unique in being able to diagnose process problems and
heal the process if necessary by triggering a reconfiguration. It is important to
pinpoint the exact cause of a process problem since it will influence the recovery

The LLAMA Middleware Support for Accountable SOA 189

process. For example, if the network is at fault, a replacement service must be
located outside of the original service’s network. Similar action is taken if the
host is at fault.

When an end-to-end QoS violation is detected during process execution, a
list of likely causes is generated from the AA Bayesian network diagnosis engine.
AA asks Agents to query data from ASB about a service, and such data is
compared with the specified criteria to determine if an instance of data is an
exception. All exceptions are gathered by Agents and sent to AA. AA then
needs to determine the root source of the error. For this the Agent’s error origin
investigator is invoked by AA and the Agent requests further information from
ASB on which the problematic service is deployed to determine the source of
error. The Agent performs this investigation by looking up both system and
service information, collected continuously by the ASB’s Host Data Collector,
based on the time at which the problematic service execution occurred. The
Agent attempts to identify error causes by examining the sources listed below,
based on some preliminary metrics.

– Service exceptions: Exceptions may be raised within a service’s own im-
plementation and may not only affect the correctness of a service’s execution,
but also could effect its performance. Such exceptions are recorded and stored
within the ASB log. During error origin investigation, the log is checked to
determine if any exceptions had been raised during the execution of the
service.

– CPU utilization: High CPU utilization on a host will cause delays in all exe-
cuting services. ASB by default collects CPU utilization data at 5 second inter-
vals (using the top Linux command) and records them in a log. For analyzing
CPU utilization, we refer to current research in load balancing literature to ar-
rive at a problematic load threshold of 95% [14]. We compare this figure with
the average CPU utilization over the time when the service was executed.

– Memory consumption: When memory consumption is high relative to
available physical memory, paging may occur thus reducing system perfor-
mance. ASB records memory consumption as a percentage of total available
physical memory at regular intervals (using the free Linux command). If
physical memory utilization exceeds 100% then we may assume that memory
consumption is a contributing factor to the service’s poor performance.

– Network and infrastructure latency: ASB records timestamps at both
the beginning and the end of service executions. Using this data, Agents
can calculate the time taken between the end of one service execution, and
the beginning of the execution of the next service in the process. This time
represents a combination of network time, as well as time spent in the com-
munication infrastructure on each respective host. Agents can leverage net-
work traffic data associated with each host (also collected by the ASB using
the ntop Linux command) to further narrow the problem source to that of
the network or host infrastructure. We apply techniques discussed in [15]
to derive thresholds to which we compare network data when error origin
investigation is invoked.

190 M. Panahi et al.

Although Agents may inspect all of the above data sources, sometimes it is
still very difficult to distinguish between the various possible sources of service
performance problems. In other words, the results from Agent investigations
are by no means completely reliable. Such investigations are based on artificial
thresholds and patterns that are empirically estimated and may vary from sys-
tem to system. On the other hand, the investigation reliability may increasingly
improve as more historical data is collected and correctly analyzed.

Once error investigation has been concluded by Agents, and the likely root
cause of a process error is reported, AA then makes a reconfiguration decision.
Various techniques for service selection and process reconfiguration [11], as well
as ASB support for reconfiguration [13] has been presented in our earlier reports.

4 Empirical Results

A prototype of LLAMA has been implemented by building the ASB as an ex-
tension to the Mule ESB, and constructing the AA and Agents. We now study
the overhead of the LLAMA prototype and the accuracy of its diagnosis process.

4.1 Example Scenario: Print and Mail

We use an example BP to test the effectiveness of the LLAMA framework. It
is a BP for targeted mass mail advertising referred to as the Print and Mail
process (Figure 4). For example, with such a BP a plumber can send fliers to all
addresses in a certain zip code where the houses are older than 20 years.

User Input

Printer
Quote

Address
Quote

BulkMail
Quote

Verfiy
Payment

Begin
Printing

Collect
Addresses

Begin Bulk
Mailing

Clear
Payment

Withdraw
Money

Deposit
Money

Fig. 4. The Print and Mail Business Process

The process begins with the user’s specifications, including address specifica-
tions and the image to provide to the printer. Next, various pricing quotes are
gathered from print vendors, address providers, and bulk mailers. The process
may retrieve quotes from several of these services in parallel to find the best
one. Once the quotes have been settled, the form of payment is verified and the
payments is made. In final stage, the bulk mail process can begin once the ad-
dresses are collected from the address vendor and the printing process has been
completed.

The LLAMA Middleware Support for Accountable SOA 191

4.2 Monitoring Overhead

Monitoring and problem diagnosis can potentially create overhead in any exe-
cuting software system. In this section, we measure the overhead of the LLAMA
framework for the Print and Mail BP. For this experiment, we deploy all ser-
vices and two Agents on a single host. Therefore, data is being collected about
all services. Moreover, six of the services are selected as Evidence Channels so
that data from these services are being continuously pushed to the Agents. We
set up three test scenarios: 1) execute the process 50 times with all profiling
interceptors turned off, ensuring that there is no data collection overhead, 2) ex-
ecute the process 50 times with all profiling interceptors activated ensuring that
all data collection is taking place, and 3) the same as scenario 2, except that
6 Evidence Channels are configured and are pushing data at 5 second intervals
to the Agents. Results from three separate runs are depicted in Table 1. These
results indicate that there is no statistically significant difference between the
first two scenarios and therefore monitoring overhead in negligible. Pushing data
to local Agents, however, can create from 1% to 7% additional overhead.

Table 1. Monitoring Overhead (average of 50 runs for each test)

Test 1 Average Test 2 Average Test 3 Average
No monitoring 29033 ms 27922 ms 28323 ms
Data collection at ASB 29053 ms 28515 ms 27862 ms
Data delivered to Agents 29354 ms 29199 ms 30437 ms

4.3 LLAMA Diagnosis Accuracy

In this section, we study how accurately LLAMA can find root causes when a
BP is reported to have unacceptable performance according to specified require-
ments. The detailed design of the diagnosis engine and parameter setup have
been reported in [4]. Here we test the actual performance in a deployed system.

To simulate performance problems, we inject 50-second delays into certain
services in the process following the pre-defined reputation of those services. For
example, if service A’s reputation is 0.9, then there is 0.1 probability of delay
injection. Since the response time of every service in our test is set to 10 seconds
or less, we choose the acceptable response time for each service to be 15 seconds.

We have tested the Bayesian network reasoning as shown in Table 2. We find
that if we inject delay to only one service, the Bayesian network reasoning can
always find the correct root cause in 2 diagnosis rounds. If we inject delay in two
services, the Bayesian engine can find out at least one root cause in 4 rounds.

We test two probability thresholds, 0.1 and 0.3, for initiating service inspec-
tion after the diagnosis report on the probability of service error. Obviously, a
lower threshold will trigger more diagnosis rounds and cause a longer diagnosis
duration. For single-cause cases, we find the threshold of 0.3 is good enough. But
for multi-cause cases, the low threshold of 0.1 can help detect more problematic

192 M. Panahi et al.

Table 2. Diagnosis Performances with Thresholds of 0.1 and 0.3

TH=0.1 cases 1 2 3 4 5 6 7 8 9 10
BP duration 1m32s 1m31s 1m40s 1m40s 2m12s 1m58s 1m33s 2m6s 2m6s 2m7s

Diag. duration 1s 1s 2s 1s 2s 3s 1s 2s 2s 2s
#Diag round 7 4 4 2 6 6 6 4 8 7

Detection ratio 1/1 1/1 1/1 1/1 1/2 2/2 2/2 1/2 3/4 2/4
TH=0.3 cases 1 2 3 4 5 6 7 8 9 10

BP duration 1m33s 1m32s 1m45s 1m38s 2m5s 1m40s 1m36s 2m6s 2m8s 2m6s
Diag. duration 1s 1s 1s 1s 2s 2s 1s 2s 2s 2s
#Diag round 3 2 3 2 3 2 2 4 3 3

Detection ratio 1/1 1/1 1/1 1/1 1/2 1/2 1/2 1/2 1/4 1/4

services. The system may not catch all problematic services in multi-cause cases
since if we inject errors in two services that are on the same path of a process,
only the first one (executed first) may be reported as the root cause. We will
continue to improve the AA’s diagnosis capability in our future work.

5 Related Work

Most enterprise software vendors have produced ESB products, including IBM,
BEA, Sonic, Iona, Oracle, Cape Clear, etc. Several open source ESB projects
have also been implemented, including Celtix, ServiceMix, Apache Synapse,
Open ESB, etc. To our knowledge, none have included the sophisticated diag-
nosis capability like in our project. Our current implementation of LLAMA has
been designed to run atop the Mule ESB [9], because it is a stable open-source
project with highly extensible features. Mule allows customized interception and
message transformation mechanisms to support profiling collection and process
reconfiguration. However, LLAMA can run on any ESB which supports some
means of collecting service invocation data.

In [16], Errandi et. al. present wsBus, a Web service middleware for reliable
and fault-tolerant computing. To handle faults, wsBus performs run-time mon-
itoring of functional and QoS aspects, as well as run-time adaptation based on
the policies specified by users. However, the monitoring and adaptation compo-
nents of wsBus are designed and executed on an individual service basis, whereas
the LLAMA framework uses the accountability model to monitor the end-to-end
quality of processes and adapt at the process level with an alternate path. In
addition, the configuration gateway and rerouting facility in the LLAMA ESB
are designed to be transparent and very efficient.

In [15], a performance metrics monitoring and analysis middleware named
Tiresias is developed to collect application level (e.g., response time) and system-
level performance metrics (e.g., CPU usage, memory usage, and network traffic).
These performance data are used to make black-box failure-prediction through
trend analysis. Our LLAMA framework differs from Tiresias in terms of data

The LLAMA Middleware Support for Accountable SOA 193

dependency reasoning and analysis since our target applications are business
processes.

Autonomic computing [17] aims to develop computing systems that can man-
age themselves given high-level objectives from administrators. The essence of
autonomic computing systems is self-management, which comprises four aspects:
self-configuration, self-optimization, self-healing, and self-protection. Account-
ability provides the solid foundation for the fully-scaled autonomic computing.
It targets the self-healing and self-optimization aspects of autonomic computing
– a system automatically detects, diagnoses, and repairs software and hardware
problems. They share the common goal of identifying, tracing, and determining
the root cause of failures in complex computing systems.

The goal of fault tolerance is to enable systems to continually operate properly.
Therefore, the major technologies to achieve fault tolerance focus on recovery
from failures. Those technologies mainly include replication, checkpointing and
recovery lines [18]. Accountability complements dependable SOA systems by
being able to identify and determine problematic services (e.g., violations of
SLAs) and then defuse the problem.

6 Conclusion

As enterprises continue to construct a larger proportion of their business processes
from outsourced third-party services, there will be an increased need to maintain
the run-time knowledge of these services in order to accurately diagnose difficult-
to-pinpoint problems when they occur. To address this emerging trend, we have
developed the LLAMA middleware framework. It includes components to help
monitor services on behalf of a process user, find the root cause of problems when
they occur, and perform reconfigurations if necessary.

Due to space constraints, we present only the overall architecture, while omit-
ting many algorithmic foundations and system details, which may be found in
our earlier reports [4,6]. From the experiments reported in this paper, we have
discovered that the LLAMA middleware creates little overhead, and provides a
reasonably accurate root cause diagnosis. We believe that this is a promising
approach toward implementing accountable SOA systems.

References

1. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented com-
puting: State of the art and research challenges. IEEE Computer 40, 38–45 (2007)

2. Bichler, M., Lin, K.J.: Service-oriented computing. IEEE Computer 39(3), 99–101
(2006)

3. Huhns, M.N., Singh, M.P.: Service-oriented computing: Key concepts and princi-
ples. IEEE Internet Computing (January-February 2005)

4. Zhang, Y., Lin, K.J., Hsu, J.Y.: Accountability monitoring and reasoning in service-
oriented architectures. Journal of Service-Oriented Computing and Applications
(SOCA) 1(1) (2007)

194 M. Panahi et al.

5. Korb, K.B., Nicholson, A.E.: Bayesian Artificial Intelligence. Chapman & Hal-
l/CRC, London (2004)

6. Zhang, Y., Panahi, M., Lin, K.J.: Service process composition with QoS and mon-
itoring agent cost parameters. In: IEEE Joint Conf. on E-Commerce Technology
(CEC 2008) and Enterprise Computing (EEE 2008) (July 2008)

7. Chappell, D.: Enterprise Service Bus. O’Reilly Media, Sebastopol (2004)
8. CapeClear: Capeclear bam (2008), http://developer.capeclear.com/
9. MuleSource: Mule 2.0 (2007), http://mule.codehaus.org/display/MULE/Home

10. Oasis: WSDM (2008), http://www.oasis-open.org/
11. Yu, T., Lin, K.J.: Service selection algorithms for composing complex services

with end-to-end QoS constraints. In: Benatallah, B., Casati, F., Traverso, P. (eds.)
ICSOC 2005. LNCS, vol. 3826, pp. 130–143. Springer, Heidelberg (2005)

12. Yu, T., Zhang, Y., Lin, K.J.: Efficient algorithms for web services selection with
end-to-end qos constraints. ACM Transactions on the Web (May 2007)

13. Lin, K.J., Panahi, M., Zhang, Y.: The design of an intelligent accountability archi-
tecture. ICEBE, 157–164 (2007)

14. Balasubramanian, J., Schmidt, D.C., Dowdy, L., Othman, O.: Evaluating the per-
formance of middleware load balancing strategies. In: EDOC 2004: Proceedings of
the Enterprise Distributed Object Computing Conference, Eighth IEEE Interna-
tional, pp. 135–146. IEEE Computer Society, Washington (2004)

15. Williams, A.W., Pertet, S.M., Narasimhan, P.: Tiresias: Black-box failure predic-
tion in distributed systems. In: The 15th International Workshop on Parallel and
Distributed Real-time Systems. IEEE, Los Alamitos (2007)

16. Erradi, A., Maheshwari, P., Tosic, V.: Policy-driven middleware for self-adaptation
of web services compositions. In: Middleware, pp. 62–80 (2006)

17. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Com-
puter 36(1), 41–50 (2003)

18. Tsai, W.T., Song, W., Paul, R., Cao, Z., Huang, H.: Services-oriented dynamic
reconfiguration framework for dependable distributed computing. In: Proceedings
of the 28th Annual International Computer Software and Applications Conference
(COMPSAC 2004), pp. 554–559 (2004)

http://developer.capeclear.com/
http://mule.codehaus.org/display/MULE/Home
http://www.oasis-open.org/

ubiSOAP: A Service Oriented Middleware for
Seamless Networking�

Mauro Caporuscio, Pierre-Guillaume Raverdy,
Hassine Moungla, and Valerie Issarny

INRIA Paris-Rocquencourt
Domaine de Voluceau - 78153 Le Chesnay, France

{First.LastName}@inria.fr

Abstract. The computing and networking capacities of today’s wire-
less portable devices allow for pervasive services, which are seamlessly
networked. Indeed, wireless handheld devices now embed the necessary
resources to act as both service clients and providers. However, the seam-
less networking of services remains challenged by the inherent mobility
and resource constraints of devices, which make services a priori highly
volatile. This paper discusses the design, implementation and experi-
mentation of the ubiSOAP service-oriented middleware, which leverages
wireless networking capacities to effectively enable the seamless network-
ing of services. ubiSOAP specifically defines a layered communication
middleware that underlies standard SOAP-based middleware, hence sup-
porting legacy services while exploiting nowadays pervasive connectivity.

1 Introduction

With network connectivity being embedded in most computing devices, net-
working environments are now pervasive. As a result, any networked device may
seamlessly consume but also provide software applications over the network.
Service-Oriented Computing (SOC) then introduces natural design abstractions
to deal with pervasive networking environments [2]. Indeed, networked software
applications may conveniently be abstracted as autonomous loosely coupled
services, which may be combined to accomplish complex tasks. In addition,
the concrete instantiation of SOC paradigms provided by Web Services (WS)
technologies by means of Web-based/XML-based open standards (e.g. WSDL,
UDDI, HTTP, SOAP) may be exploited for concrete implementation of per-
vasive services. However, while Web services standards and implementations
targeting wide-area domains are effective technologies, supporting Web service
access in pervasive networking environments is still challenging. In such kind
of networking environments, mobile applications, acting as both service con-
sumers and providers, often run on scarce resource platforms such as personal
digital assistants and mobile phones, which have limited CPU power, memory,
� This work is part of the IST PLASTIC project and has been funded by the European

Commission, FP6 contract number 026955, http://www.ist-plastic.org/

A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, pp. 195–209, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.ist-plastic.org/

196 M. Caporuscio et al.

and battery life. Moreover, these devices are usually interconnected through one
or more heterogeneous wireless links, which compared to wired networks are
characterized by lower bandwidths, higher error rates, and frequent disconnec-
tions. The former issue has led to the introduction of lightweight middleware
enabling base WS-oriented communication patterns among wireless portable de-
vices (i.e., SOAP-based messaging and dynamic service discovery) [10,1]. The
latter issue has further led to examine alternative SOAP transports [5]. How-
ever, a key feature of pervasive networking environments is the diversity of radio
links available on portable devices, which may be exploited towards seamless con-
nectivity. Specifically, as nodes get connected via multiple radio links, thorough
scheduling and handover across those links allow enhancing overall connectiv-
ity and actually making it seamless [23,18,20]. This calls for making services
network-agnostic [21], so that the underlying middleware takes care of schedul-
ing exchanged messages over the embedded links in a way that best matches
Quality of Service (QoS) requirements [4], and further ensures service conti-
nuity through vertical handover [9]. In this setting, a primary requirement for
supporting service-oriented middleware is to provide a comprehensive network-
ing abstraction that allows applications to be unaware of the actual underlying
networks while still exploiting their diversities in terms of both functional and
extra-functional properties.

This paper introduces the ubiSOAP communication middleware, which un-
derlies SOAP-based middleware and strives to provide pervasive networking to
services. Specifically, ubiSOAP defines a two-layer architecture composed of a
multi-radio networking layer and a WS-oriented communication layer, which re-
spectively provide network-agnostic connectivity and SOAP-based unicast and
group communication in pervasive networking environments. The design ratio-
nale for ubiSOAP is further discussed in the next section, while Section 3 details
its core constituents. Then, Sections 4 and 5 assess the proposed middleware,
discussing respectively ubiSOAP usage for implementing an advanced middle-
ware service (i.e., pervasive service discovery), and ubiSOAP performance based
on experiment. Finally, Section 6 concludes with a summary of our contribution
with respect to related work, and our perspectives for future work.

2 Design Rationale

With the drastic evolution of wireless technologies, software services can be-
come truly pervasive, being not solely accessed but also hosted by wirelessly
networked portable devices. As a result, legacy applications can become avail-
able anytime, anywhere, but also revisited to take full advantage of pervasive
networking. Further, new application services may emerge, in particular based
on the nomadic feature and ad hoc connectivity of wireless portable devices, as
exemplified by emergency rescue scenarios, where mobile portable hosts serve
sensing the environment and coordinating rescue actions. Still, enabling per-
vasive service provisioning on mobile hosts requires special care, as resources

ubiSOAP: A Service Oriented Middleware for Seamless Networking 197

are far more constrained than resource-rich Internet servers originally targeted
by service oriented computing and its Web Service instantiation. Further, the
mobility of wireless hosts requires special attention. Indeed, early solutions in-
troduced towards nomadic computing targeted service hosts with which con-
nectivity can eventually be restored, while this cannot be assumed in general
when services are hosted by mobile devices that connect in an ad hoc way [24].
Overcoming resource constraints of wireless devices in the support of Web ser-
vices has led to the introduction of custom SOAP engines, among which the
open source iCSOAP engine from INRIA, which was developed as part of the
WSAMI middleware1 featuring Web services for ambient intelligence [10].

Regarding mobility issues, portable devices now embed multiple radio inter-
faces, which may be combined to bring seamless networking to mobile appli-
cations [21]. Specifically, embedded networking technologies differ from several
respects, among which range, latency, bandwidth, energy consumption, financial
cost, availability and so on. Therefore, the scheduling of communications over
embedded interfaces according to application requirements can significantly in-
crease the overall QoS. The collection of wireless technologies may in particular
be considered as hierarchical wireless overlay networks, which are structured ac-
cording to respective coverage [12]. Then, the interface used for communication
may simply depend on the location of the target host. However, different network
parameters must be taken into account in the scheduling of communications, so
as to meet applications’ QoS requirements, while optimizing the overall resource
usage [18]. In particular, saving energy is critical for enhanced autonomy of hosts
and thus requires selecting as far as possible the network interface that consumes
the least energy among those eligible [20,4]. Further, vertical handover across het-
erogeneous wireless networks must be supported so as to maintain connectivity
with nodes despite their mobility across networks [23], and thus bring seamless
connectivity to/from mobile nodes.

Among one of its major goals, the ubiSOAP communication middleware aims
at effectively using the diverse networking technologies in the handling of service-
oriented communication, hence offering network-agnostic connectivity to/from
nodes. As discussed above, this requires addressing a number of critical issues
such as network availability, user and application QoS requirements and vertical
handover. The latter issue is particularly important with respect to the service
continuity requirement. In fact, when switching from a given network to one of
a different type, the device is required to change its status according to the new
environment it is entering. Indeed, changing the device’s status affects also the
status of all the devices that are currently interacting with it. Specifically, in
an all-IP networking environment, the IP address meaning is twofold: end point
identification (i.e., an IP address uniquely identifies a host in a given network)
and location identification (i.e., the network in which the host is located). Hence,
when a host changes its point of attachment (vertical handover between two
networks), the IP address must be modified (i.e., the internal status) accordingly
in order to route packets to the new network. Then, since the IP address is

1 http://www-rocq.inria.fr/arles/download/ozone/

http://www-rocq.inria.fr/arles/download/ozone/

198 M. Caporuscio et al.

the base of any application-layer connection, all the ongoing connections break
(i.e., the handover affects the status of the interacting parties). Furthermore,
as devices can bind various networks at the same time, two interacting parties
might communicate through multiple paths. Hence, choosing the best connection
path to serve a given interaction is a key issue to deal with in pervasive networks,
as this significantly affects the QoS at large (e.g., availability, performance with
respect to both resource consumption and response time, security) [3].

Multi-radio connectivity further allows deploying bridges in the network, ef-
fectively realizing a multi-network service overlay [6]. Specifically, resource-rich
nodes (e.g., laptops or even reachable stationary nodes) that embed multiple
radio interfaces may act as bridges that route messages across heterogeneous
networks. Such a feature is beneficial for pervasive services, enabling to over-
come the resource limitation and mobility of nodes and contributing to achieve
seamless service connectivity. Indeed, this allows energy-limited devices to use
the least consuming interface while being able to reach all the devices of the
overlay. Further, a networked service that changes physical network following
host mobility may still be reachable in the overlay.

Another of our goals for ubiSOAP is to support legacy Web services and thus
transparently bring the added value of today’s pervasive networking environ-
ments to existing services. This has in particular led us to layer ubiSOAP as
a specific transport for SOAP engines (e.g., Axis2, iCSOAP) and to leverage
WS-addressing to integrate multi-radio, multi-network connectivity in SOAP
headers. In this context, it is crucial to examine carefully the performance of
SOAP transports. In particular, it has been shown that the performance of de-
fault SOAP over HTTP is poor in wireless environments, further leading to
study alternative transports such as TCP and UDP [14,5]. While SOAP over
UDP clearly offers the best response time, SOAP over TCP has the advantage
of built-in reliability and is further suitable for applications with short requests.
ubiSOAP thus realizes SOAP-over-TCP unicast messaging as a tradeoffs solu-
tion, while integrating SOAP over UDP is an area for future work. Still, another
SOAP transport that is of much interest for pervasive networking environments
is multicast group communication. Indeed, group-based interactions are central
in a number of pervasive computing scenarios, due to the user-centric nature
of pervasive computing and the innate group interaction skills of people [7,22].
ubiSOAP thus features a base SOAP transport for group communication.

3 ubiSOAP Middleware for Pervasive Services

Following the above discussion, the architecture of ubiSOAP layers the follow-
ing constituents below SOAP-based middleware functionalities (see Fig. 1): (i)
multi-radio networking provides network-agnostic connectivity (see § 3.1), (ii)
multi-network routing implements a multi-network overlay (see § 3.2), and (iii)
point-to-point and group transports leverage multi-radio, multi-network message
routing, and further introduce communication primitives targeted at pervasive
computing systems (see § 3.3).

ubiSOAP: A Service Oriented Middleware for Seamless Networking 199

Fig. 1. ubiSOAP software architecture

3.1 Network-Agnostic Service Connectivity

The multi-radio networking layer of ubiSOAP provides core functionalities to
effectively manage multi-radio connectivity by providing: (i) a network-agnostic
addressing scheme together with (ii) QoS-aware network link selection.
Network-agnostic addressing. Devices embedding multiple network inter-
faces may have multiple IP addresses, at least one for each active interface. Thus,
in order to identify uniquely a given application in the network we associate to it
a Multi-Radio Network Address (MRN@). The MRN@ of an application instance
is specifically the application’s Unique ID, which resolves into the actual set of
IP addresses (precisely, network ID ⊕ IP addresses) bound to the device (at a
given time) that runs the given instance (see Fig. 2). Then, upper layers shall
use MRN@ as part of their addressing scheme (e.g., through WS-addressing in
the case of Web services), which replaces the traditional IP-based addressing
scheme. MRN@s are automatically generated and managed by the multi-radio
networking layer. Furthermore, the multi-radio networking layer allows for per-
forming a lookup operation that, starting from an MRN@, returns the set of
IP addresses actually bound to it. The basic operations provided by the multi-
radio networking layer are as follows. First, Registration allows the application
to register within the multi-radio networking layer and generates the MRN@
that uniquely identifies it. In particular, the user application provides as input
an identifier (locally unique), which is used to generate the MRN@ to be re-
turned. Then, Lookup allows user applications to retrieve the actual set of IP
addresses related to a given MRN@. If the resolution of MRN@ is not cached
or needs to be updated, a request is multicasted to all the networks currently
accessible and, if the device related to such MRN@ is reached, it will directly
reply to the requester by supplying the actual set of IP addresses. Base unicast
and multicast communication schemes are provided on top of MRN@ network-
agnostic addressing: (i) Synchronous unicast is provided by means of a packet
input/output stream that is used to read/write packets to be exchanged during
the interaction between client and server applications; and (ii) Asynchronous
multicast allows the user application to send multicast packets to all members
of a given group.

QoS-aware interface activation and network selection. Next to MRN@
addressing, it is crucial to activate and select the best possible networks (among

200 M. Caporuscio et al.

Fig. 2. ubiSOAP multi-radio multi-network connectivity using MRN@ and bridging

those available) with respect to required QoS. Interface activation allows the
user application to activate the best possible interfaces (among those available)
with respect to the required QoS. In particular, the application submits its QoS
requirement (specified as set of pairs < QoSattribute, QoSvalue >) to the multi-
radio networking layer, which in turn compares it with the QoS of each available
interface. In this case, since the interface is switched off, QoS refers to the the-
oretic values of a network interface declared by the manufacturer (e.g., GPRS
maximum bitrate = 171.2Kb/s). If the interface satisfies the requirement posed
by the application, within a given approximation expressed in percentage, it is
activated. It is also possible to define priorities upon the various quantitative
parameters, in order to specify if a given parameter is more important than
the others. Network selection is performed during the establishment of the com-
munication and takes into account the QoS attributes required by the client
application that is initiating the connection, as well as the networks active on
the server listening for incoming connections, as given by the server’s MRN@. If
the client and the server share only one network that satisfies the requirements,
it is used to carry on the interaction. On the other hand, when the two parties
share more than one network, the selection algorithm selects the one that best
meets the required QoS.

3.2 Multi-network Service Overlay

Thanks to the ubiSOAP multi-radio networking layer, communication among
nodes exploits the various network links that the nodes have in common, further
selecting the link that provides the required QoS. However, in some cases, it
might also be desirable for nodes to be able to access services that are hosted in
networks that the requesting node is not directly connected to (e.g., to provide
continuity of service despite node mobility). For this purpose, ubiSOAP intro-
duces an overlay network that bridges heterogeneous networks, thus enhancing
overall service connectivity. Specifically, nodes that are connected to two (or
more) different networks through their network interfaces can assume the role
of bridge nodes. Bridge nodes quite literally “bridge” between two separate net-
works, relaying point-to-point and multicast ubiSOAP messages across those

ubiSOAP: A Service Oriented Middleware for Seamless Networking 201

networks. Still, we assume that nodes will not request services that would re-
quire the consecutive traversal of more than five wireless networks (see [8,15] for
a detailed analysis on wireless communication) in order to access them.

Multi-network point-to-point routing. In ubiSOAP multi-network, multi-
radio environments, the network ID ⊕ IP address embedded in the MRN@ of
a host contains, along with the network address of the service host, the net-
work ID that uniquely identifies the network (e.g., a BSSID, MAC address of
the Bluetooth master, etc.) that the host resides in under its given address. For
instance, in Fig. 2, the of device Alice is connected to networks a, i, and n,
through its various network interfaces. Clearly, the device can trivially access
services hosted in these networks. However, in order to access services hosted in
the distant networks x, y, and z, the device has to route its request through an
appropriate bridge node (i.e., Bridges A, B and C, noting that each bridge node
is displayed in each network it is part of). To achieve effective routing across
bridges, we propose a straightforward approach based on the principle of Mobile
Ad hoc NETwork (MANET) routing. In this approach, bridge nodes advertise
their presence to the nodes in their corresponding networks and exchange rout-
ing information. For this purpose, bridge nodes run an instance of OLSR [11]
among each other. Instead of concrete node addresses, however, bridges store as
destinations the identifiers of the various present networks (i.e., network ID)
and as next hop the bridge that needs to be contacted next to eventually reach
the target network. Being a proactive routing protocol, this inter-bridge OLSR
instance gives each bridge the required routing information to reach all con-
nected networks. Whenever a non-bridge node wants to access a service outside
one of the networks it is itself connected to, it may simply route the request
to any bridge of choice that will then forward the request accordingly. As men-
tioned above, bridge nodes periodically advertise their presence to the nodes in
their respective networks. As a further optimization, bridge nodes may include
in their advertisements their OLSR routing tables so that non-bridge nodes may
choose bridge nodes according to metrics such as network hops, etc.

Multi-network multicast routing. It is crucial to support both point-to-point
and group interactions in the multi-radio, multi-network environment. In partic-
ular, multicasting is central to advanced middleware services like dynamic discov-
ery [25]. We thus introduce multi-network multicast routing, building upon
multicast facilities of the composed networks. The base principles of the ubiSOAP

multi-network multicast routing are depicted in Fig. 3; multicast routing is such
that within an IP network, the network’s multicast facility (i.e., IP multicast or
higher level group communication like Java Groups) is used for communication
among group members. Then, multicast messages are forwarded by ubiSOAP

bridges up to a fixed number of hops (i.e., 5 as discussed previously), while
avoiding cycles and duplication. The ubiSOAP multi-network routing facility
enables the definition of application-level groups. Specifically, application-level
groups are individually managed at the ubiSOAP middleware layer while a sin-
gle ubiSOAP multi-network group is managed in the network layer. The latter

202 M. Caporuscio et al.

Fig. 3. ubiSOAP multi-network multicast routing

is actually a composition of ubiSOAP multicast groups, one for each of the
composed networks.

3.3 Custom SOAP Transports for Pervasive Services

In order to leverage the provided multi-radio, multi-network service connectiv-
ity, ubiSOAP introduces custom SOAP transports. Specifically: (i) the provided
SOAP transport for point-to-point communication brings multi-radio multi-
network routing to legacy SOAP messaging, while (ii) the SOAP transport for
group communication enhances the SOAP API to meet the corresponding base
requirement of pervasive networking environments [13,7,5,22,25].

Point-to-point communication. The ubiSOAP point-to-point transport is
a connection-oriented transport for supporting communication between a client
and a service. This transport interacts with the multi-radio networking layer to
send and receive messages over the network based on the MRN@ that identifies
the remote party. It also interacts with the SOAP engine or the client SOAP
library to receive or dispatch SOAP messages locally. When sending a message,
the ubiSOAP point-to-point transport must first evaluate if the destination is
directly reachable (i.e., the MRN@ of the sender and of the destination share
a common network). If true, the message is then sent directly to the destina-
tion. If not, the transport retrieves the MRN@ of a ubiSOAP bridge directly
reachable, encapsulates as plain data the application’s SOAP message into a
specific forwarding message, and sends this forwarding message to the bridge.
This message is forwarded between bridges until it reaches the destination where
the application’s SOAP message is extracted and dispatched. While the client
blocks until the response is received, the forwarding message is routed between
ubiSOAP bridges using connectionless communication. The response message
may thus follow a different route. The first bridge returns the response to the
client, or terminates the connection after a given timeout.

On the service side, the ubiSOAP point-to-point transport interacts with the
SOAP engine to deliver the message to the appropriate service. For messages
that have been routed by bridges, the destination must extract the actual SOAP
message, and also set up properly the SOAP message parameters (i.e., URL

ubiSOAP: A Service Oriented Middleware for Seamless Networking 203

of the service, action to perform). This is achieved by storing (on the source
side) and retrieving (on the destination side) the relevant information in the
ubiSOAP header of the SOAP message. In particular, the set of IP addresses
associated to an MRN@ is embedded in the header of request (for the client)
and response (for the service) messages. This enables communicating devices in
different networks to keep track of mobile nodes and maintain sessions (as long
as a communication path exists). In some cases however (i.e., when both the
client and the service simultaneously change the complete set of IP addresses
associated to their MRN@), and no direct link exists), the session will close and
the client will need to perform a service discovery (See Section X) to find the
same service again and restart the communication.

Group communication. The ubiSOAP group transport is a connectionless
transport for one-way communication between multiple peers in multi-network
configurations. The ubiSOAP group transport component interacts with the
multi-radio networking layer to send group messages based on an MRN@ iden-
tifying the group, and with the SOAP engine to deliver the group’s messages to
the registered services. As noted above, groups are identified with an MRN@.
Multicast-based applications usually assume that all group members agree be-
forehand on a specific IP address for the group. We therefore also assume that all
group members use the same MRN@ for the group. While services are not able
to directly return a result to a client (one-way multicast), a service may send a
message (one-way unicast) on the group directed at a specific peer (i.e., similar
to the sendTo socket call). As group communication in the underlying multi-
radio networking layer is multicast-based, it does not guarantee the ordering or
the delivery of messages. While ordering may be easily achieved on the receiving
side, the overhead to provide group reliability is deemed too costly due to the
dynamics of pervasive networks. Also, while many mobile devices may run the
same collaborative application, a user may only be interested in interacting with
the ones at its location. Such scoping may be achieved by limiting the forwarding
of group’s messages or by adding forwarding constraints.

4 ubiSOAP in Action: Pervasive Service Discovery

ubiSOAP is being developed as part of a larger initiative on assisting the de-
velopment of dependable services for pervasive networking environments, which
is undertaken by the European IST PLASTIC project2. The PLASTIC project
specifically investigates the development of the PLASTIC platform, decompos-
ing into a development environment, service-oriented middleware and validation
framework for the target pervasive services. ubiSOAP then defines the PLAS-
TIC core middleware while advanced middleware services are being developed
on top of it to address the requirements of pervasive networking (i.e., dynamic
service discovery and composition, security and context management). Further,
the PLASTIC platform is being assessed against actual case studies in the area

2 http://www.ist-plastic.org/

http://www.ist-plastic.org/

204 M. Caporuscio et al.

of eHealth, eLearning, eBusiness and eVoting. This in particular allows us to
extensively experiment with the ubiSOAP middleware. In this section, we fo-
cus on one use of ubiSOAP that is realizing dynamic discovery of pervasive
services, which benefits from all the advanced features of ubiSOAP, i.e., group
communication, and multi-radio, multi-network message routing.

Service discovery is an essential function of SOC as it enables the runtime
association to the networked services. Three basic roles are identified for service
discovery: (i) Service provider is the role assumed by a software entity offering
a networked service; (ii) Service requester is the role of an entity seeking to
consume a specific service; (iii) Service repository is the role of an entity main-
taining information on available services and a way to access them. A service
description formalism or language to describe the functional and non-functional
properties (such as QoS, security or transactional aspects of networked services)
complemented with a service discovery protocol enables service providers, re-
questers and repositories to interact with each other. Many academic and indus-
try supported SDPs have already been proposed and leading SDPs in dynamic
environments use a pull-based approach (SLP, WS-Discovery, Jini, SSDP), of-
ten supporting both the centralized and distributed modes of interaction: clients
send requests to service providers (distributed pull-based mode) or to a third-
party repository (centralized pull-based mode) in order to get a list of services
compatible with the request attributes.

Building on the tremendous number of proposed service discovery protocols
and accounting for the specifics of pervasive computing [25], we introduce a Per-
vasive Service Discovery (PSD) Service that provides dynamic, interoperable,
context-aware service discovery. PSD is mainly a reengineering of the open source
MUSDAC multi-protocol service discovery platform3 [19] on top of ubiSOAP in
order to support service discovery in multi-radio, multi-network environments.
PSD uses a hierarchical approach for service discovery in multi-network envi-
ronments (see Fig. 4). Indeed, a (logically) centralized repository (PSD-S) co-
ordinates service discovery within an independent network, while PSD-Ss in
different networks communicate together in a fully distributed way to dissemi-
nate service information. While in MUSDAC service discovery and access were
tightly integrated, PSD-Ss are only concerned with service discovery, and rely on
ubiSOAP group communication to disseminate service information across net-
works. Changes in the multi-network topology (e.g., broken propagation paths)
are then taken care of transparently. PSD-Ss (see Fig. 4) provide an explicit
API supported by the PSD plugin that enables clients (resp. providers) in a net-
work to discover (resp. advertise) a service in the multi-network environment.
It further enables clients and providers to benefit from advanced discovery fea-
tures (e.g., context-awareness) by directly issuing requests or advertisements in
the PSDL format. Specific legacy SDP plugins register with the active SDPs
in the network, and translate requests and advertisements in legacy formats to
PSDL (e.g., SLP and UPnP in Fig. 4), which are stored in the PSD repository.
The matching engine then combines various matching algorithms [17] to support

3 http://www-rocq.inria.fr/arles/download/ubisec/

http://www-rocq.inria.fr/arles/download/ubisec/

ubiSOAP: A Service Oriented Middleware for Seamless Networking 205

Fig. 4. Pervasive Service Discovery

the various elements of the service description (for both requests and advertise-
ments), and thus provides comprehensive interoperability between SDPs. Finally,
the dissemination manager controls the dissemination of local requests and the
compilation of the results returned by distant PSD-Ss, while the location tracker
collaborates with lower-level services in the ubiSOAP middleware to maintain
the physical address of mobile services discovered in the environment.

As described above, the PSD repository stores PSDL service descriptions that
are either generated by legacy SDP plugins (e.g., UPnP2PSD plugin) or directly
registered by service providers using the PSD plugin. We use a hierarchical ser-
vice description format that actually combines a number of distinct documents
specifying different facets of the service. The PSDL description acts primarily
as a top-level container for additional files describing facets of the service. For
example, a WSDL document may be used to describe the service interface while
non-functional properties can be described using existing QoS and context mod-
els. The ubiSOAP grounding of host, that identifies the networks and IP address
at which the service’s host is network-reachable (i.e., MRN@ and mapping) is
described in such separate document thus facilitating dynamic updates.

5 Experimentation

We have implemented a prototype of the ubiSOAP middleware using Java for
both desktop (J2SE) and mobile (J2ME CDC) environments. As mentioned
previously, the ubiSOAP prototype is being extensively experimented with as
part of the PLASTIC project, and has been released under open source license4.
To assess the efficiency of the ubiSOAP middleware, we evaluate the processing
time to call a simple Echo Web service under various network configurations.
We evaluate both the time required to call the Web service the first time, which
includes the dynamic service creation/instantiation, and the time required to call
the Web service after it is deployed. Tests are performed on a Windows XP PC
with a 2.6GHz processor and 1 GB of memory for the desktop platform, and on

4 ubiSOAP is composed of the Multi-radio Networking and B3GSOAP packages avail-
able at http://www.ist-plastic.org/

http://www.ist-plastic.org/

206 M. Caporuscio et al.

a) Local b) Desktop to PDA over Bluetooth

c) PDA to Desktop over Bluetooth d) PDA to PDA over Bluetooth

e) Bluetooth versus WiFi f) Coordinating interface usage

Fig. 5. ubiSOAP performance

a HP iPaq hw6910 (Intel PXA 270 at 416 MHz) and a HP iPaq 110 (PXA310 at
624 MHz) for the mobile platforms. We further use IBMs J9 JVM (J2ME CDC
1.1), and the open source iCSOAP lightweight SOAP engine5. Results presented
are the average of 5 runs with 100 call each.

Figures 5.a) to d) assess the performance in ms, of ubiSOAP unicast trans-
port versus HTTP in the following configurations: a) both client and service
provider running on the desktop platform, b) client running on desktop and
service provider on PDA, c) client running on PDA and service provider on
desktop, and d) client and server running each on a PDA. Provided results sub-
divide into the response time of the initial call including the service instantiation
(i.e., Instantiation and call), and the average response time of subsequent calls
(i.e., Call). Configuration a) shows that the time taken for service instantiation
far exceeds the one of calls. The response time of ubiSOAP is further slightly
higher than the one of HTTP, which is due to the management of MRN@ whose
processing gets noticeable due to the fact that the communication is local. Con-
figuration b) then demonstrates that ubiSOAP outperforms HTTP by about
25% at instantiation time. This is explained by the fact that the processing
overhead (header and session management) is much lighter in ubiSOAP, and
the difference in processing is emphasized by the limited capacities of the de-
vices (slow task switching, memory access, ...). As shown by Configuration c),
in the case where the service provider runs on the desktop, HTTP performance
5 Available at http://www-rocq.inria.fr/arles/download/ozone/

http://www-rocq.inria.fr/arles/download/ozone/

ubiSOAP: A Service Oriented Middleware for Seamless Networking 207

for instantiation is slightly better, because the difference in the management of
session is negligible on the desktop, while ubiSOAP on the desktop adds the
cost of MRN@ resolution through multicast. On the other hand, the ubiSOAP

performance for calls is better, again due to lightweight session management on
the client side and the fact that the MRN@ needs only to be resolved at the first
call. Finally, Configuration d) aggregates the above results b) and c), showing
the enhanced performance of ubiSOAP over HTTP when both client and service
provider run on a PDA.

Figure 5.e) complements the above measures by showing the performance of
wireless communications between PDAs using both WiFi and Bluetooth. The
higher bandwidth of WiFi makes it obviously better positioned for handling
communication compared to Bluetooth, even for small size messages. However,
this takes into account performance only, while other criteria are of relevance
like power consumption [4], as addressed by the QoS-aware network selection
realized by the ubiSOAP multi-radio networking layer. Although the theoretical
bandwidth for Bluetooth and WiFi is significantly different, the actual band-
width available to applications depends on the hardware, drivers, and, in our
case, the Java JVM ability to cope with the load. As demonstrated in the exper-
iments, the actual bandwidth for Java applications on PDA is almost identical
for Bluetooth and WiFi.

In general, the scheduling of communication over network interfaces shall ac-
count for the QoS requirements of networked applications. Such requirement and
specifically conflicts between different applications should be taken into account
when activating/desactivating network interfaces or performing handover. We
thus have implemented a version of ubiSOAP, which deals with coordinated us-
age of the network interfaces, so that the actual network used for communication
is selected according to the applications that are currently run. Specifically, a
daemon process is introduced, which coordinates the usage of the network in-
terfaces. However, such a solution suffers from the resource availability of PDAs
that is still currently limited, and accommodates poorly the concurrent execu-
tion of applications. Indeed, as shown by results of Figure 5.f) that provides the
response time of ubiSOAP with the daemon running, while the overhead on the
desktop is reasonable, it increases dramatically when performed on the PDA due
to the constant process switching.

6 Conclusion

Service-oriented computing appears as a promising paradigm for pervasive
computing systems that shall seamlessly integrate the functionalities offered
by networked resources, both mobile and stationary, both resource-rich and
resource-constrained. In particular, the loose coupling of services makes the
paradigm much appropriate for wireless, mobile environments that are highly
dynamic. However, enabling service-oriented computing in pervasive networking
environments raises key challenges among which overcoming resource constraints
and volatility of wireless, mobile devices. This has in particular led to introduce

208 M. Caporuscio et al.

lightweight service-oriented middleware [10,2,1,16]. However, to the best of our
knowledge, none of the existing solutions comprehensively integrate the full ca-
pacity of today’s pervasive networking environments, which allow wireless de-
vices to interact via multiple network paths. Such a feature actually enables
seamless networking and in particular overcoming the nodes’ mobility through
vertical handover across networks. This further allows for tuning network usage
according to application requirements, and thus enhancing overall QoS.

Exploiting multi-radio connectivity has led to the definition of various al-
gorithms for optimizing the scheduling of communications over multiple radio
interfaces, e.g., [12,23,18,20,4]. Building on this effort, this paper has intro-
duced ubiSOAP, which implements SOAP transports that leverage multi-radio,
multi-network connectivity and may be coupled with lightweight engines like
iCSOAP [10]. As a result ubiSOAP enables the seamless networking of Web
services that may be deployed on various devices, including mobile devices like
today’s smart phones embedding multiple radio interfaces. ubiSOAP is now
being extensively experimented as part of the PLASTIC European project, be-
ing the basis for the development of various pervasive services, ranging from
middleware-layer pervasive service discovery to application-layer services in the
area of eBusiness, eHealth, eLearning and eVoting. Experiment further shows
that the performance of ubiSOAP are in general better than default SOAP-
over-HTTP transport, thanks to lightweight session management.

Our current work relates to the aforementioned experimentation of ubiSOAP

for thorough assessment prior to its release under open source license. Our future
work relates to further evolution of ubiSOAP to meet the numerous requirements
of pervasive computing. Part of this effort lies in introducing additional SOAP
transports, like an UDP-based one, which significantly improves response time,
while affecting reliability [14]. Obviously, ubiSOAP needs to be complemented
with a number of middleware services to deal with QoS; such an issue is ad-
dressed as part of the PLASTIC project where middleware solutions for security
and context awareness are being investigated. We are also examining the cou-
pling with semantic-based solutions to enable more precise, yet more flexible,
descriptions of pervasive services, as introduced in, e.g., [16].

References

1. Aijaz, F., Hameed, B., Walke, B.: Towards peer-to-peer long lived mobile Web
services. In: Proc. of IIT (2007)

2. Bellur, U., Narendra, N.C.: Towards service orientation in pervasive computing
systems. In: Proc. of ITCC (2005)

3. Caporuscio, M., Charlet, D., Issarny, V., Navarra, A.: Energetic performance of
service-oriented multi-radio networks: issues and perspectives. In: Proc. of WOSP
(2007)

4. Charlet, D., Issarny, V., Chibout, R.: Energy-efficient middleware-layer multi-radio
networking: An assessment in the area of service discovery. Comput. Netw. 52(1)
(2008)

5. Gehlen, G., Aijaz, F., Walke, B.: Mobile Web service communication over UDP.
In: Proc. of VTC (2006)

ubiSOAP: A Service Oriented Middleware for Seamless Networking 209

6. Grace, P., Coulson, G., Blair, G.S., Porter, B.: Addressing network heterogeneity
in pervasive application environments. In: Proc. of InterSense (2006)

7. Grudin, J.: Group dynamics and ubiquitous computing. Com. ACM 45(12) (2002)
8. Gupta, P., Kumar, P.: The capacity of wireless networks. IEEE Transactions on

Information Theory 46(2) (2000)
9. Huang, H., Cai, J.: Improving TCP performance during soft vertical handoff. In:

Proc. of AINA (2005)
10. Issarny, V., Sacchetti, D., Tartanoglu, F., Sailhan, F., Chibout, R., Levy, N., Ta-

lamona, A.: Developing ambient intelligence systems: A solution based on Web
services. Journal of Automated Software Engineering 12(1) (2005)

11. Jacquet, P., Mühlethaler, P., Clausen, T., Laouiti, A., Qayyum, A., Viennot, L.:
Optimized link state routing protocol for ad hoc networks. In: Proc. of INMIC
(2001)

12. Katz, R.H., Brewer, E.A.: The case for wireless overlay networks. In: Mobile Com-
puting. Kluwer Academic Publishers, Dordrecht (1996)

13. Kindberg, T., Fox, A.: System software for ubiquitous computing. IEEE Pervasive
Computing Magazine 1(1) (2002)

14. Lai, K.Y., Phan, T.K.A., Tari, Z.: Efficient SOAP binding for mobile web services.
In: Proc. of LCN (2005)

15. Li, J., Blake, C., Couto, D.S.J.D., Lee, H.I., Morris, R.: Capacity of ad hoc wireless
networks. In: Proc. of MobiCom (2001)

16. Mokhtar, S.B., Preuveneers, D., Georgantas, N., Issarny, V., Berbers, Y.: Easy:
Efficient semantic service discovery in pervasive computing environments with QoS
and context support. J. Syst. Softw. 81(5) (2008)

17. Mokhtar, S.B., Raverdy, P.-G., Urbieta, A., Cardoso, R.S.: Interoperable semantic
& syntactic service matching for ambient computing environments. In: Proc. of
AdhocAmC (2008)

18. Qureshi, A., Guttag, J.: Horde: separating network striping policy from mechanism.
In: Proc. of MobiSys (2005)

19. Raverdy, P.-G., Riva, O., de La Chapelle, A., Chibout, R., Issarny, V.: Efficient
context-aware service discovery in multi-protocol pervasive environments. In: Proc.
of MDM (2006)

20. Sorber, J., Banerjee, N., Corner, M.D., Rollins, S.: Turducken: hierarchical power
management for mobile devices. In: Proc. of MobiSys (2005)

21. Su, J., Scott, J., Hui, P., Crowcroft, J., de Lara, E., Diot, C., Goel, A., Lim, M.,
Upton, E.: Haggle: Seamless networking for mobile applications. In: Krumm, J.,
Abowd, G.D., Seneviratne, A., Strang, T. (eds.) UbiComp 2007. LNCS, vol. 4717,
pp. 391–408. Springer, Heidelberg (2007)

22. Wang, B., Bodily, J., Gupta, S.K.S.: Supporting persistent social groups in ubiq-
uitous computing environments using context-aware ephemeral group service. In:
Proc. of PerCom (2004)

23. Wang, H.J., Katz, R.H., Giese, J.: Policy-enabled handoffs across heterogeneous
wireless networks. In: Proc. of WMCSA (1999)

24. Zarras, A., Fredj, M., Georgantas, N., Issarny, V.: Engineering reconfigurable dis-
tributed software systems: Issues arising for pervasive computing. In: Butler, M.,
Jones, C.B., Romanovsky, A., Troubitsyna, E. (eds.) Rigorous Development of
Complex Fault-Tolerant Systems. LNCS, vol. 4157, pp. 364–386. Springer, Heidel-
berg (2006)

25. Zhu, F., Mutka, M.W., Ni, L.M.: Service discovery in pervasive computing envi-
ronments. IEEE Pervasive Computing 4(4) (2005)

Towards a Service-Oriented Approach for
Managing Context in Mobile Environment

Waskitho Wibisono, Arkady Zaslavsky, and Sea Ling

Caulfield School of Information Technology, Monash University
900 Dandenong Rd, Melbourne, VIC, Australia

{waskitho.wibisono,arkady.zaslavsky,chris.ling}@infotech.monash.edu.au

Abstract. The current development of context-awareness has intro-
duced various emerging research areas to reduce complexity in devel-
oping context aware applications by applying service-oriented approach
in managing context and establish context service. The establishment of
context service will enable context aware systems to access and utilize
context from context providers without paying necessary attention on
how context information are composed and managed. Frequent changes
of available context providers with different context quality are common
phenomena in mobile environment. Hence, dealing with quality of con-
text is a very important issue to provide reliable services for context man-
agement in this environment. We have identified some key requirements
to establish context service and propose a service-oriented framework to
facilitate context management in mobile environment. Furthermore we
show our approach to deal with problem in providing appropriate context
based on its quality requirements and the preferences of the correspond-
ing context request.

1 Introduction

The proliferation of mobile computing and networking technology has led to the
emergence of context-aware applications which are capable of adapting current
situations in the environment without having explicit user interventions [1]. This
phenomenon has highlighted the need to provide reusable support to facilitate
management of context independently from applications by establishing context
service [2].

Service-Oriented Computing (SOC) is a new computing paradigm to support
application development by utilizing services as its essential element [3]. This
paradigm has motivated us to use service-oriented approach to develop context
service framework for mobile environment. The development of the service will
enable context-aware applications to access and utilize context from context
sources without worrying about details of context management [2][4]. Further-
more, it will enhance the reusability of context sources for multiple applications.

Dynamic changes of available context providers that generate contexts with
different qualities are common phenomena in mobile environment. Similar con-
texts may be available concurrently; however the relevance of these contexts to

A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, pp. 210–224, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Towards a Service-Oriented Approach for Managing Context 211

context-aware applications can vary according to the individual application’s
requirements and their current situations in environment. Hence, dealing with
context quality is also a very important issue to provide a reliable service for
context-aware systems in addition to the basic context management mechanisms.

To illustrate these problems, imagine a context-aware application that help
a user to find best location for the user to do outdoor activities by provid-
ing him/her recommended locations using available environmental information
provided by the context service. To perform the task, the application submits
necessary context requests to the context service and requires a periodic update
of contexts from the preferred locations.

In mobile environment, particular environmental information such as temper-
ature, wind or tide of a particular location can be published by multiple context
providers. Therefore, similar context information may also be available with dif-
ferent quality information such as freshness or distance to the desired locations,
affected by time and location of data acquisition. Furthermore, other quality in-
formation such as precision, probability of correctness and spatial resolution can
vary based on individual data aggregation or reasoning technique being used or
due to limitation of individual sensors.

In this paper, we have identified several key requirements to establish the
context service and propose our service-oriented framework to manage contexts
in mobile environment. We adopt ConSpaF [5], a heuristic data fusion technique
for situation reasoning based on Context Spaces theory [6], as the basis to in-
fer the matching confidence between available contexts in the system and the
corresponding context request. The matching confidence represents degree that
the provided context response can attain quality requirements and preferences
defined by applications in their requests. Furthermore, we integrate the notion
of quality of context into the Context Spaces model and develop our framework
prototype as our initial step to establish a context service framework for mobile
environment.

2 Context in Mobile Environment

Various definitions have been proposed to define context in current literature.
However, the interpretation of context often depends on the domain in which
context is utilized. Schilit et.al [7] defined important aspects of context infor-
mation in mobile computing in a user-centered view, ”three important aspects of
context are: where you are, who you are with, and what resources are nearby”.
On the other hand, contexts can also represent very broad information coming
from various and dynamic sources while similar information can be provided by
different context sources with different data models [8].

Development of pervasive computing application has to deal with information
which is captured from real world by sensing devices. The captured information
may have different quality information which can be influenced by sensor limi-
tation, data transformation, aggregation or brokering [9]. On the other hand, the

212 W. Wibisono, A. Zaslavsky, and S. Ling

context quality can have significant impacts to influence applications behaviors
and their adaptations to the changing environment [10][11]. Therefore, managing
the quality of context in addition to the general context management is a very
important issue nowadays.

2.1 Quality of Context

Information about quality of context is commonly related to characteristics of
sensing devices. Different devices may produce different context with different
qualities. For example, an expensive device may be capable to produce informa-
tion with a high precision compare to low a cost device. Furthermore physical
constraint, situation of measurement, transformation process or brokering can
also influence quality of the created context information [9].

Bucholz et.al [10] defined quality of context (QoC) as ”any information that
describes the quality of information that is used as context information”. The
quality of context was also described as any inherent information that can be
used to determine the worth of information to the applications [9]. The notion
of quality of context is different from quality of service since context information
has inherent quality metric produced by context sources even when the context
is not provided to clients as a service [12].

We refer to [10][11][12] to identify important attributes which determine the
quality of context. They are:

– Freshness: defines time elapsed between the determination of context infor-
mation and its delivery. It represents the age of information.

– Precision: defines how precise the information mirrors the reality.
– Probability of Correctness: defines the correctness probability of the provided

information.
– Resolution: defines the granularity of information.
– Spatial validity : defines the spatial location in which the context information

is applicable.

In the mobile environment, contexts can be generated by distributed context
providers. Their quality values can be closely related to physical location and
can be less valuable or even not applicable to the current situation of appli-
cations. Moreover, the relevance of context for context-aware applications can
also change due to user’s mobility. For that reasons, providing context with its
quality information is essential.

3 Context Service Framework

There are several challenges that need to be dealt with when developing context
service. In this section we describe our framework and describe its constituent
components.

Towards a Service-Oriented Approach for Managing Context 213

3.1 CS-Engine Internal Services

CS Engine is the core of our framework comprising multiple services. It is re-
sponsible for facilitating context management and providing relevant context
responses for incoming context requests from applications. The services include:

– Gateway Service: This service is responsible for handling incoming context
requests from applications. A context request can be categorized into either
a direct reply or a subscription-based type of requests. For the direct-reply
request, this service can directly invoke the provisioning service to obtain the
relevant contexts from available contexts in the system. For the subscription-
based, the gateway service has to subscribe it to the messaging service.

– Messaging Service: The messaging service has to be established to enable
event-based interaction for the subscription-based request. This service will
send a notification along with the composed context response to the gateway
service if relevant context of the subscribed request is available.

– Provisioning Service: The provisioning service is responsible for compos-
ing context response for the corresponding context request. This response
can be accompanied with matching confidence values to represents degrees
that the provided context response can attain quality requirements and pref-
erences have been defined in the request. In some case the provision service
may need to invoke the reasoning service for a particular request that need
a new context to be inferred from existing contexts in the systems. The dis-
covery service may also need to be triggered to obtain update of the required
contexts depends on availability of the registered context providers.

– Reasoning Service: The reasoning service is a service for deriving high-
level context, such as to infer the occurrence of a situation given several
contexts information by numerous context providers. This component plays a
vital role in providing context in mobile environment since necessary context
information may not available and context information can be imprecise or
inconsistent.

– Brokering Service: The brokering service facilitates services and flexible
mechanisms for context providers to submit their contexts to the system.

– Storage Service : This service is responsible for managing and providing
services to access the context database. It can also be extended to deal with
security or privacy enforcement issues.

– Discovery Service : The service is responsible for managing a list of avail-
able context providers in environment. It can also be extended to have ca-
pability to notify the available context providers to update their contexts in
the system in necessary.

3.2 Service Composition

Figure 1 illustrates the service composition of the CS-Engine including its inter-
action with distributed context providers and applications. Generally, each con-
text provider has their own data capturing component and may have different

214 W. Wibisono, A. Zaslavsky, and S. Ling

Fig. 1. CS-Engine Services Composition

reasoning techniques to produce contexts from their sensor(s). To provide their
contexts to the framework, the context providers can utilize services provided
by the brokering service. To obtain context from the framework, applications
can submit their context requests to the gateway service and specify type of the
request into subscription-based or direct-reply type. Upon receiving the request,
the gateway service then decomposes the request to obtain detail of context
request including the assigned quality requirements and preferences.

For the direct-reply request, the gateway service invokes the provisioning ser-
vice to obtain context responses accordingly. For the subscription-based, the
request will be submitted to the messaging service to facilitate event-based in-
teractions for predefined criteria. Accordingly, the messaging service can organize
asynchronous interactions with the provisioning service, to obtain necessary con-
text responses. For both types of context request, the gateway service can then
deliver the provided contexts to the corresponding applications.

Generally, processes to generate context response are initiated by extracting
details of context request by the provisioning service. The service then gathers
relevant contexts from storage service. In special cases, the provisioning service
then may ask the reasoning service if it requires derivation of a new context to
fulfill context request. In other cases, the discovery service can also be triggered
to obtain the latest update contexts from available context providers in the di-
rectory list. The Figure 2 depicts the discussed services interaction for processing
both types of context requests and the Figure 3 illustrate services interaction for
composing context responses.

Towards a Service-Oriented Approach for Managing Context 215

Fig. 2. Service Interaction for processing context request

4 Modeling Context and Context Request

Providing contexts responses for numerous applications requires a formal con-
text representation to deal with heterogeneity of context sources. It will enable
a service to provide uniform access of context by both context providers and ap-
plications. Furthermore, it can also help various and independent context aware
applications to be developed with ease and enable collaborations among them.

Padovitz et.al.[5] proposed a general approach that use geometrical spaces
intuition to model context and to infer situation for context-aware environment
called Context Spaces. We use Context Spaces as the basis for context modeling,
furthermore we have also developed a model of context request as an object
consist of required context’s class and attributes to specify quality requirements
and predefined weights to specify relevance of each attributes to other attributes
in the context request. In addition, individual contribution for each attribute in
the request is also need to be specified. Finally, matching confidence values for all
of relevant contexts then can be computed. These values represent degrees that
the contexts can satisfy quality requirements and preferences of the submitted
request.

4.1 Context Spaces

The Context Spaces[6] defines situation in pervasive environment as a collection
of accepted regions in a multidimensional spaces. It also defines context attribute
as any type of data that is used in the process of situation reasoning that can
be associated with sensor data and denoted as at

i. As an example, a value of

216 W. Wibisono, A. Zaslavsky, and S. Ling

Fig. 3. Services interaction for composing context responses

sensor reading i at time t can be represented as context attribute at
i. A vector

consists of a collection of context attributes at time t forms a context state. The
context state is denoted as Ct = {at

1, a
t
2, . . . a

t
n} that represent a current state

of application while n is defined as the number of context attributes. Context
Spaces defines a real situation in context-aware environment as a situation space
and denoted as Ri = {aR

1 , aR
2 , . . . aR

n } that is a collection of n acceptable regions
corresponding to a predefined situation. A region of acceptable values can be
defined as a set that satisfy some predicates [5]. The Figure 4 illustrates this
concept and show an example of a context state being inside ((Ci) or being
outside (Cj) of a defined situation space Ri.

A heuristic based data fusion technique for situation reasoning called Con-
SpaF [5] was proposed to compute degree of support to verify situation occur-
rences for the Context Spaces model. The fusion approach assigns weights for
the corresponding regions of the situation space Ri to represent the relative im-
portance of a region to other regions to infer a situation; and individual contribu-
tions that specify individual support of a region that a corresponding situation is
occurring. Ideas of symmetrically/asymmetrically contributing of the context at-
tribute were defined. The symmetrically contributing attribute will increases the
confidence of situation occurrence if the value of a particular context attribute
is inside the corresponding region; otherwise it will decreases the confidence if it
located outside the corresponding region. On the other hand, the asymmetrically
contributing attribute will not decrease the confidence if the value of the value
of the context attribute is outside the acceptable ranges of the corresponding
region.

Towards a Service-Oriented Approach for Managing Context 217

Fig. 4. Visualitation of context state and situation space[6]

4.2 Modeling Context Request

In our approach, we combine context quality attributes with the context attribute
for our context data. It is defined as a tuple (at

i, Q) where at
i is the context

attribute at
i and Q is the set of context quality attribute-values and denoted

as a vector Q = {q1, q2, . . . qk} where k ∈ N represents the number of quality
attributes for the context attribute at

i. To model a context request, we create
an object called request space that represents a context request. The object
is composed of the corresponding context class and some additional properties
consist of regions that represent quality requirements including their assigned
weights and individual contributions. We adopt the concept of situation space in
the Context Spaces to compose the request space. The algorithm 1 shows steps
to compose a context request in our framework as illustrated Fig.5.

4.3 Inferring Degree of Matching Confidence of Available Contexts

In mobile environment, distributed context providers may produce similar con-
texts with different qualities. In this sub-section, we discuss how we deal with
this problem by adopting ConSpaF [5] data fusion technique to compute match-
ing confidence of relevant context data with the corresponding context request
concerning its quality requirements and preferences.

To measure this value, Algorithm 2 starts the process by collecting relevant
context data in the system followed by extracting their quality attributes into
a vector object called ContextQualityState. This vector represents the value of
quality attributes for the corresponding context data. To compute the degree of
matching confidence for each corresponding context data, the Algorithm 2 then
invoke Algorithm 3. This algorithm is an adoption of ConSpaF [5] data fusion
approach for situation reasoning that is utilized to infer the required matching
confidence of a particular context data with the corresponding context request.
Figure 7 depicts details steps of the discussed Algorithm 3.

218 W. Wibisono, A. Zaslavsky, and S. Ling

Fig. 5. Algorithm to compose context request

5 Implementation

In this section, we discuss our initial implementation of the framework. We have
simulated a number of distributed context providers and described a scenario
to highlight problems in providing relevant contexts in mobile environment in
a situation where multiple context providers offer similar context information
with different values and quality information.

5.1 Application Scenario

To illustrate the problems, imagine a context-aware application that helps a user
to find best location for the user to do outdoor activities by providing him/her
the choice of best locations using updates of environmental contexts. To obtain
these contexts, the application needs to compose necessary context request(s)
and subscribes the request along with the quality requirements and preferences
to the context service framework. In addition, the application may also need to
get a periodic update of necessary context information from all of preferred lo-
cations. However, specific environmental information such as temperature, wind
or tide at such a particular location in mobile environment can be generated
by multiple context providers simultaneously. Therefore, similar context infor-
mation may have different value of their quality attributes such as, freshness or
distance to desired location that relate to time and location of data acquisition;
or different values for other quality attributes as identified in section 2.1 which
can be influenced by individual aggregation and reasoning technique or the limi-
tation of sensors. In the simulation, we assume that each context provider publish
their contexts within the framework along with their quality information.

Towards a Service-Oriented Approach for Managing Context 219

Fig. 6. Algorithm to extract QoC attributes and composing context responses

Fig. 7. Algorithm to compute matching confidence

For an example, local weather stations may publish their observations every 4-6
hours while national bureau of meteorology may update their information on daily
basis. Furthermore, there may be numerous individual context providers such as
private boats or sophisticated vehicles that are equipped with environmental sen-
sors and communication system which can report occasionally weather informa-
tion using cellular network or other available connection to the system. Table 1
shows examples of similar contexts produced by distributed context providers in-
cluding their distances of observation to the required location and Table 2 shows
the corresponding quality information we use to simulate our scenario.

As we can see from the Table 2, similar contexts can have different quality
information that are influenced by factors that as we have discussed before.
For instance, information from national bureau of meteorology may have high
probability of correctness (PoC) but may have a low freshness due to its daily

220 W. Wibisono, A. Zaslavsky, and S. Ling

Table 1. Available contexts and their providers

Table 2. Quality attributes values of the available contexts

update mechanism. Moreover, the information has a lower resolution since it
covers area of 50 square kilometers or even more. On the other hand, a certain
environmental information can also varies or even change frequently in each
location within smaller areas required by applications.

Distributed local weather stations may provide their contexts that have a
spatial resolution between 10-15 square kilometers. However, the context infor-
mation they provide can have different precision or PoC in relation to individual
sensing equipments or reasoning technique they may use. In addition, distances
and freshness of their observation to particular locations required by the appli-
cation can vary. In some cases, numerous individual context providers such as
private boats that report their observations to the system might have high fresh-
ness and spatial resolution in their information, however their information can
have low PoC or precision which varies according to their sensing equipments.
In some cases, they may have closer distances and higher freshness for partic-
ular locations of the application. An application need to determine criteria for
each quality attributes in the context request. One example of specifying these
criteria is shown in Table 3.

Towards a Service-Oriented Approach for Managing Context 221

Table 3. Requirements for quality attributes

Table 4. Quality attribute preferences

An example of quality preferences of a submitted context request is illustrated
in Table 4. For each quality attribute in the context request, an application
then determines weights (from 1 to 5) to represent relative importance of an
attribute compared to other attributes of the context request. The individual
contribution for each quality attribute is also need to be specified. It defines
individual support of a quality attribute in the data fusion process to compute
the matching confidence. This table shows that the application has decided that
freshness and distance are more important compared to other quality attributes
of the submitted context request.

5.2 Initial Implementation

We have implemented the prototype of the context service framework using
Java. We have also simulated mobile context providers who provide their context
information over network into our context service framework. A client prototype
to simulate the submission of various context requests has been developed to
show capability of the framework. This is shown in Fig. 8.

The sorted computation result of matching confidence between available con-
texts and the defined context request has been defined earlier are shown in Table
5. The table shows that context data produced by provider 7 and provider 5 have
higher matching confidence for the defined context request and defined criteria
compared data from other providers. Referring to the previous tables, the QoC
information of context provided by provider 7 can fulfill all the requirements
of the context request while provider 5 can meet all requirements except the
precision requirement (< 0.3). On the other hand, information data provided
by provider 1, has the lowest matching confidence since it can only attain PoC
and precision requirements and fail to accomplish other quality requirements e.g.
distance, freshness and resolution.

The differences in matching confidence values are also influenced by the as-
signed weights, individual contributions and symmetrically contributing status
of the request as we have discussed before. Finally, by considering the specified

222 W. Wibisono, A. Zaslavsky, and S. Ling

Fig. 8. Basic experimental run

threshold of confidence level of the context request, the acceptable contexts can
then be delivered to the corresponding application.

6 Related Work

There are many existing approaches of managing context in pervasive environ-
ment that relevant to our work. Context Toolkit [13] introduced widgets as an
abstraction layer to hide the detail of low-level context sensing mechanisms and
uses aggregators to mediate interaction between application and the widgets
as well as to provide context aggregation service. Context Broker Architecture
(CoBrA)[14] is an agent-based approach for supporting context aware systems in
a smart space. CoBrA implements ontology as its data model and enable sharing
information and for reasoning the context among the agents. Context Managing
Framework (CMF)[15] uses a centralized blackboard-based approach to store
and share context from any available context source terminals. The CMF incor-
porates ontology as the basis for its context data model and provides common
vocabulary and knowledge among users.

Some existing approaches have already brought QoC issues to manage their
context. CIS [4] and CMF [15] use some QoC parameters for their query interface
to enable application to specify the minimum QoC of the request but they do not
specify how to compose context responses based on quality attributes require-
ments and preference of the application if there are multiple context providers
that offer similar contexts .

Towards a Service-Oriented Approach for Managing Context 223

Table 5. Sorted computation result

In this paper we integrate the notion of quality of context into the Context
Spaces modeling technique and propose algorithms to provide context responses
based on quality preferences and requirements of the submitted context request
from applications using a heuristic data fusion technique.

7 Conclusion

Frequent changes to incurred context providers, providing varying context qual-
ity is common in mobile environment. Hence, dealing with quality of context in
managing context is a very important issue to provide services for context-aware
systems in the mobile environment

We have proposed an initial service oriented approach to facilitate context
management in mobile environment by establishing the context service frame-
work. Our preliminary implementation shows the capability of the framework
to provide relevant context in situation where multiple context providers offer
similar contexts with different quality information.

Further investigation and development still need to be done to address
challenges to facilitate context management in mobile environment such as trust-
worthiness of context providers, context ambiguity, mobility and frequent dis-
connection of context providers and their impacts to quality of context. In the
next phase of our research, we plan to develop service for data fusion to be in-
corporated with the reasoning service and enable adaptation of the discovery
service to deal with these issues.

References

1. Baldauf, M., Dustdar, S.: A Survey on Context-Aware Systems. International Jour-
nal of Ad Hoc and Ubiquitous Computing 2(4), 263–277 (2007)

2. Lei, H., Sow, D.M., Davis II, J.S., Banavar, G., Ebling, M.R.: The Design and
Application of a Context Service. Mobile Computing and Communication Re-
view 6(4), 45–55 (2002)

224 W. Wibisono, A. Zaslavsky, and S. Ling

3. Papazoglou, M.P., Georgakopoulos, D.: Service-Oriented Computing. Communica-
tions of ACM 46(10), 25–28 (2003)

4. Judd, G., Steenkiste, P.: Providing Contextual Information to Pervasive Comput-
ing Applications. In: Proceeding of The First IEEE International Conference on
Pervasive Computing and Communications (PerCom 2003), Fort Worth, Texas,
pp. 133–142 (2003)

5. Padovitz, A., Loke, S.W., Zaslavsky, A., Burg, B., Bartolini, C.: An Approach to
Data Fusion for Context-Awareness. In: Fifth International Conference on Mod-
elling and Using Context, Paris, France, pp. 353–367 (2005)

6. Padovitz, A., Loke, S.W., Zaslavsky, A.: Toward a Theory of Context Spaces. In:
Proceedings of the Second IEEE Annual Conference on Pervasive Computing and
Communications Workshop, Orlando, Florida, pp. 38–42 (2004)

7. Schilit, B.N., Adams, N., Want, R.: Context-Aware Computing Applications. In:
IEEE Workshop on Mobile Computing Systems and Applications (WMCSA 1994),
Santa Cruz, CA, US, pp. 89–101 (1994)

8. Broens, T., Quartel, D., Sinderen, M.V.: Toward a Context Binding Transparency.
In: Proceedings of the 13th EUNICE Open European Summer School, Enschede,
The Netherland, pp. 9–16 (2007)

9. Krausse, M., Hochstatter, I.: Challenges in Modelling and Using Quality of Con-
text. In: Magedanz, T., Karmouch, A., Pierre, S., Venieris, I.S. (eds.) MATA 2005.
LNCS, vol. 3744, pp. 324–333. Springer, Heidelberg (2005)

10. Buchholz, T., Kupper, A., Schiffers, M.: Quality of Context: What It Is and Why
We Need It. In: Proceedings of the 10th International Workshop of the HP Open-
View University Association (HPOVUA), Geneva, Switzerland (2003)

11. Sheikh, K., Wegdam, M., Sinderen, M.V.: Quality of Context and Its Use for Pro-
tecting Privacy in Context Aware Systems. Journal of Software 3(3), 83–93 (2008)

12. Huebscher, M.C., McCann, J.A.: Adaptive Middleware for Context-aware Appli-
cations in Smart-homes. In: Proceedings of the 2nd workshop on Middleware for
Pervasive and Ad-Hoc Computing, Toronto, Ontario, Canada, pp. 111–116 (2004)

13. Deu, A.K., Abowd, G.D., Salber, D.: A Context-based Infrastructure for Smart
Environments. In: Proceedings of the 1st International Workshop on Managing
Interactions in Smart Environments (MANSE 1999), Dublin, Ireland, pp. 114–128
(1999)

14. Chen, H., Finin, T., Joshi, A.: An Intelligent Broker for Context Aware Systems.
In: Adjunct Proceedings of Ubicomp 2003, Seattle, USA, pp. 183–184 (2003)

15. Korpipaa, P., Mantyjarvi, J., Kela, J., Keranen, H., Malm, E.-J.: Managing Context
Information in Mobile Devices. IEEE Pervasive Computing Magazine 2(3), 42–51
(2003)

An Autonomic Middleware Solution for
Coordinating Multiple QoS Controls

Yan Liu1, Min’an Tan2, Ian Gorton3, and Andrew John Clayphan2

1 National ICT Australia, NSW, Australia
jenny.liu@nicta.com.au

2 University of New South Wales, Australia
{minant,ajc}@cse.unsw.edu.au

3 Pacific Northwest National Laboratory, U.S.A
ian.gorton@pnnl.gov

Abstract. Adaptive self-managing applications can adapt their behav-
ior through components that monitor the application behavior and
provide feedback controls. This paper outlines an autonomic approach
to coordinate multiple controls for managing service quality using exe-
cutable control models. In this approach, controls are modeled as process
models. Moreover, controls with cross-cutting concerns are provisioned
by a dedicated process model. The flexibility of this approach allows
composing new controls from existing control components. The coordi-
nation of their dependencies is performed within a unified architecture
framework for modeling, deploying and executing these models. We inte-
grate the process modeling and execution techniques into a middleware
architecture to deliver such features. To demonstrate the practical utiliza-
tion of this approach, we employ it to manage fail-over and over-loading
controls for a service oriented loan brokering application. The empirical
results further validate that this solution is not only sensitive to resolv-
ing cross-cutting interests of multiple controls, but also lightweight as it
incurs low computational overhead.

1 Introduction

As Service Oriented Architecture (SOA) becomes more widely adopted in large
software systems, the typical SOA environment has become more complex. Man-
agement of these increasingly complex environments is exacerbated by cross-
cutting components and services as well as overlapping SOA environments with
service providers beyond the administrator’s control. While some human inspec-
tion or administration tools can and should be provided, it is unrealistic to
expect that all configurations and management can be effectively handled man-
ually. Being fully dependent on manual controls would void the improvements in
timeliness and adaptivity gained with an increased level of automation. Conse-
quently, incorporating adaptive and self-managing capabilities into services [4,15]
is attracting considerable attention as a means to respond to both the functional
and environmental changes that occur after service deployment.

A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, pp. 225–240, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

226 Y. Liu et al.

In principle, a system exhibiting adaptive and self-managing capabilities
[7,11,12] consists of two parts: (1) a base system that implements the busi-
ness logic and provides concrete functionalities; and (2) a set of controls that
comprise control components for constantly monitoring the system, analyzing
the situation and deciding on the actions to affect the system’s behavior. When
the base system is composed of services in a SOA, the addition of these control
components results in adaptive and self-managing service-oriented systems.

In practice, individual control components are dedicated to a specific quality
attribute, such as load balancing for performance and scalability or failover for
reliability. These are normally constructed independently. In reality, these con-
trol components need to be coordinated at runtime to resolve their dependencies
that are incurred by cross-cutting concerns. For example, the operation to switch
to a backup service may come at a cost of performance by degrading the through-
put over a given period of time. While component-based development helps to
modularize and encapsulate adaptive and self-managing computation, there is
still tight logical coupling and interdependencies between control components.
Examples of such tight coupling include systems where the monitoring, analysis
and configuration control components explicitly invoke one another without an
intervening layer of logical abstraction. Therefore, it is essential to abstract the
controls and their dependencies so that their actual implementation is separated
from the coordination logic.

In this paper, we propose a novel architecture-based approach to represent,
execute and coordinate multiple adaptive and self-managing controls. In this ap-
proach, controls are modeled as executable process models. The process engine
is integrated with the middleware, allowing the controls to be executed by the
same middleware that hosts services. The models can be modified, composed
and deployed to the middleware at runtime without affecting the business logic
of the services. Moreover, dependencies between controls are also modeled and
coordinated using the process models. Our unified approach is realized by an ar-
chitecture framework, whose default implementation can be further customized
and extended to multiple controls. This solution is evaluated by implementing
a realistic test scenario. Quantitative measures are collected in terms of the
response time overhead, service throughput and CPU usage. The results demon-
strate that this architecture solution is lightweight and efficient.

The structure of this paper is as follows: Section 2 discusses the problem
through an illustrating example. Section 3 proposes the architectural approach
with details of its principle and technical solution. Section 4 further discusses
the techniques for coordinating control dependencies. Section 5 presents a case
study utilizing this architecture. Section 6 evaluates the overall architecture with
measures collected from a test bed. The paper concludes with Section 7.

2 The Problem

We use a typical service oriented system to illustrate the problems involved in
coordinating multiple adaptive controls. In addition, we derive the requirement of

An Autonomic Middleware Solution for Coordinating Multiple QoS Controls 227

the architectural solutions from this example. This application is a representative
enterprise integration example derived from industry best practices [6].

Consider the loan brokering application in [6], where a customer submits re-
quests for a loan quote to a loan broker. The loan broker checks the credit
worthiness of a customer using a credit agency. The request is then routed to
appropriate banks who each give a quote, and the lowest quote is returned to the
customer. This application has been deployed (see left of Fig. 1) over an Enter-
prise Service Bus (ESB) with messaging capabilities provided by Java Messaging
Services (JMS), bringing together Web Services, Plain Old Java Objects (POJO)
and remote Enterprise Java Beans (EJB). Event flow is driven by the arrival of
events. In this application as described in [6], there are two scenarios concerned
with adaptive and self-managing controls: (1) failover and (2) overload.

Failover Control. Suppose the responsiveness to requests of the credit agency
is in question, and the administrator wants to allow a graceful failover to an al-
ternative credit agency should the primary agency fail. One solution is to insert
an additional switching component between the loan broker and the credit agency
that can reroute traffic to an alternative credit agency (see Fig 1). In this solution,
a test message sensor constantly sends test messages to the credit agency to ensure
its correct operation. A notification message is sent to the switch to reroute traffic
to a backup credit agency if the test message fails. This forms a feedback control
between the test message sensor (feedback) and the switch (control). It is worth
noting that this failover occurs at the service level: the primary and secondary
services can be from different service providers across the organization boundary.
Failures at this level cannot be addressed with system level solutions, such as clus-
tering, and need to be explicitly dealt with at a higher level.

Overload Control. In addition to ensuring the robustness of the credit agency,
the administrator also wishes to prevent the loan broker from becoming saturated
with requests. As shown in the right of Fig. 1, a throttling component can be used
to regulate the flow of requests by limiting the number of concurrent requests being
processed. A traffic flow sensor is also used in this situation to detect the flow rate.
Beyond the threshold of the system’s computing capacity, higher flow rates reduce
the number of concurrent processes handling requests and vice versa.

To support ease of service evolution, the composition of control components
with existing services should be transparent to business logic. Hence the control
logic should not require modification of the original service operation. However,
in a component based implementation of the controls, flexibility is reduced as the
control logic would be embedded in the components. For example, if the criteria
to trigger the failover switch is changed, a rewrite of the basic switching and
test message components would be required to coordinate their logic. Another
possible solution is to use a “coordinating” component to control the interaction
of components in the feedback loop, but again, a change to the hard coded logic
is required to this coordinating component if the control structure changes. The
high coupling mentioned is still present.

Moreover, introducing control components also creates dependencies between
the business and management flows. For example, the loan broker needs to be

228 Y. Liu et al.

Fig. 1. Self-managing Loan Brokering Service Oriented Systems

aware of the switching component in order to send messages correctly to the
switch and not to the credit agency. As more management controls are added,
the introduced dependencies both obscure the original business flow as well as
reduce the system’s flexibility to changes in both flow types.

The desired solution should therefore address the following architectural re-
quirements: (1) represent, execute and coordinate multiple adaptive and self-
managing controls; (2) seamless integration of controls, middleware and service
business logic; (3) controls can be composed, modified and deployed at run-
time; and (4) the solution should be lightweight, otherwise it could adversely
degrade overall performance and scalability. We design an architecture frame-
work to address the above issues, since a variety of middleware mechanisms can
be leveraged to realize such a framework.

3 The Architecture

We propose a framework to address the relevant architecture issues raised in the
prior section. Conceptually, the architecture has five layers. The left of Fig. 2
demonstrates a simplified general architecture with only core components, not
specific to any control logic or middleware. The right of Fig. 2 illustrates the
customization of the architecture components to specific controls.

The framework aims to provide a modeling based approach towards coordi-
nating multiple controls in service-oriented systems. Adaptive and self-managing
controls follow logic that transitions the system from one state into another in
response to events dynamically generated at runtime. In addition, the logic rep-
resented by the models needs to be executed as well. Given this consideration,
we use process models as the tool to present and execute controls. The choice
of process models is motivated by their rich semantics, alignment with business
goals, integration with Web services and tool support for visual design. The

An Autonomic Middleware Solution for Coordinating Multiple QoS Controls 229

Fig. 2. Simplified Conceptual Architecture

process models can also be executed by process engines with middleware in-
tegration features, such as the Oracle BPM engine and JBoss jBPM. In this
paper, we use the term control model to refer to such a process model designed
and executed in a similar way to the JBoss jBPM technology [8].

At the top layer, the control models are firstly designed in diagrams. A model
includes nodes for states and transitions triggered by events. Furthermore, these
control models are not only for the purposes of presentation, but can be exe-
cuted. Source code called actions can be attached to either states or transitions
of the model. The layer below the control models comprises handlers that encap-
sulate the action code. Upon entering/leaving a state or before/after triggering
a transition, the process engine checks and executes the handler for actions.

Fig. 3. Control Models and Ac-
tion Attachment

Our architecture has default implementa-
tions for two handlers, AnalysisHandler
and ConfigInitialisingHandler, which are
responsible for managing dependencies be-
tween control models, and checking a data
cache for individual control components
respectively. Their usage is addressed in
Section 4.1. The combination of these two
layers focus on architecture requirement
one.

Fig. 3 shows a sample GUI for designing
a control model and attaching action code
to it. These actions are encapsulated in
handlers, and can be executed by a process
engine. Such an engine can be embedded at

230 Y. Liu et al.

the middleware level. Therefore, the advantage of using process models in mod-
eling controls is that controls can be visually designed and executed. In addition,
the integration of the model execution and the middleware is much simplified by
the process engine. This approach is similar to that used in tools such as JBoss
jBPM, which is a realization of a full-fledged process engine with IDE support
to design process models [8].

The component layer aims to address architecture requirement two. The re-
alization of controls depends on monitoring and actuating components, such as
software sensors to collect status data to feed into the model, and effectors to ex-
ecute actions. These components are placed into the component layer to separate
the control implementation from the business logic. The ApplicationManager is
responsible for initializing the component instances. As control components par-
ticipate in service oriented applications, each component has an unique endpoint
as its identifier, so that messages can be received from and sent to individual
components by service bus middleware.

The control layer aims to fulfill the architecture requirement that controls can
be composed, modified and deployed at runtime. Control components are de-
ployed as the unit of the ControlDeploymentPackage. Each control has a default
ControlDeploymentPackage generated by the framework. It contains methods to
access all the components involved in a control. Each ControlDeploymentPack-
age uses the ControlDeployer to deploy its components. The ControlDeployer is
responsible for (un)deploying components, creating component descriptors and
setting the implementation class for each component. This separated deployment
of the component instance from its actual implementation further enhances the
customization of the adaptive controls. This is because the modification of the
implementation does not impact the control models nor the deployment struc-
ture, and the implementation can be updated at any time. Once the deployment
is finished, an event is broadcasted to other controls about the availability of the
new control components.

The bottom layer is the middleware platform. In this paper it is a specific
Java ESB – Mule [14]. Mule platform specific mechanisms are used to devise
utilities such as concurrency configuration and event multicasting.

In summary, the architecture supports visual and declarative design of adap-
tive control logic. Controls are modeled as executable process models. These
models are executed by a dedicated process engine, which is seamlessly inte-
grated with the middleware. Hence these models can interact with service ap-
plications hosted by middleware, receiving and sending messages to realize the
control logic. In addition, the architecture supports dynamic update and deploy-
ment of controls. As a result, the overall architecture is loosely coupled between
business logic and adaptive controls. In the following sections, we further discuss
the coordination of multiple controls.

4 Techniques of Coordinating Controls

Achallenging issue to solve in this architecture is control dependencies occurring at
runtime. Controls designed and deployed independently may involve cross-cutting

An Autonomic Middleware Solution for Coordinating Multiple QoS Controls 231

concerns. For example, Fig. 1 illustrates that when the failover control takes place,
it requires the collaboration from the overload control to slow down its current
processing for the period of time that the failover is being executed.

Our architecture can address this issue by the techniques of modeling such
concerns as coordination controls. The components coordinated are the sen-
sors and effectors from individual controls. The dependencies are declared in
a control model representing the cross-cutting concern; the specific resolution
strategy, be it by heuristic hints or some form of machine learning, consists of
implementation specific handlers attached to the process nodes. This leverages
on the architecture framework presented, building on the basic idea of sensors,
effectors and coordinating components. In the following subsections, we discuss
the technical details of achieving such coordination among multiple controls.

4.1 Control Dependencies and Composition

In our approach, the dependencies of controls are declared by developers in a
dedicated coordination control, as discussed at the top layer of the architecture.
The developer registers controls with dependencies using an AnalysisHandler
that belongs to the handler layer. This coordination control is modeled and de-
ployed the same way as ordinary QoS controls. When it is deployed, another
handler, a ConfigInitialisingHandler, checks if an instance of the registered con-
trols exist. After the ConfigInitialisingHandler checks the controls and their
dependencies, the AnalysisHandler can retrieve the configuration of individual
components in one control. A configuration is part of the control layer. It is an
abstraction of what the component does. A configuration contains information
about interfaces and properties of a component. Through the configuration, the
coordination control and the AnalysisHandler can access data that the com-
ponent contains, invoke its interface on behalf of the coordination and change
property values in order to change the control parameters. Sample code is shown
in Fig 4.

Fig. 4. Code Sample

Using this approach, individual
controls are not aware of other con-
trols nor their dependencies. They
are transparently managed by co-
ordinating controls. This approach
also benefits from the architec-
ture in that a coordination control
can flexibly be composed by ex-
isting components, which allows
quick composition and prototyping
of alternative options for adaptive
and self-management strategies. An
example of composing coordina-
tion controls is given in Sec-
tion 6.1. In addition, coordination
controls can be updated, deployed

232 Y. Liu et al.

or undeployed at runtime. This equips developers with the flexibility to trial-
and-test different designs.

4.2 Control Deployment

The deployment of controls takes two steps. First, the control design models
in the format of an XML file are deployed to the process engine using an IDE
shipped with the process engine. Any action code is attached to the states or
transitions in this model. Second, the unit of deployment ControlDeployment-
Package in our architecture framework is generated, with a mapping to the
component implementation record. Following this, the ControlDeploymentPack-
age invokes the deploy() method of ControlDeployer to deploy itself, creating
instances of participating components using their descriptors.

Besides the above functionality of deployment, the architecture requires the
ability to intercept incoming requests, and modify outgoing messages. This is
also achieved through the control deployment. The control deployment auto-
matically generates intercepting components as a proxy to the intercepted com-
ponents. The intercepting component takes the identity – the unique endpoint of
the intercepted component and forwards requests to and replies from the inter-
cepted components. This feature enables the control composition by redirecting
messages to/from any other component transparently to the intercepted compo-
nents. Fig. 5 depicts components before and after the deployment of the overload
control. Details of this control are discussed in Section 5.3.

4.3 Quality Attributes and Optimization

An important architecture requirement discussed in Section 2 is that the comput-
ing overhead incurred by this architecture should be optimized. By nature of this
service oriented architecture, the optimization problem falls into the category of
minimizing messaging overhead. Research on messaging oriented middleware and
Web services has demonstrated that the communication rate and payload of the
messages have a significant impact on the overall performance and scalability of
SOAs [10]. Hence our optimization focuses on reducing the number of messages
and their payload with regards to sending collected data among control com-
ponents including sensors, data analyzers and effectors. Rather than wrapping
data as a SOAP attachment, data collected by sensors are stored in a distrib-
uted cache. Whenever necessary, a distributed cache is attached with the control
components such as software sensors. In this case, we select an open source dis-
tributed cache framework – Ehcache [13]. The performance and scalability of
Ehcache has proven to satisfy large scale distributed systems [5]. In order to
correlate data collected from different sensors, a sensor aggregation component
is created at deployment time. In this paper, a default time-based correlation
is implemented in the aggregator. The only limitation with using a distributed
cache is that the data transition is separated from the web service messages and
it is specific to the distributed cache framework.

An Autonomic Middleware Solution for Coordinating Multiple QoS Controls 233

5 Example Application

We demonstrate our architecture solution using the loan brokering services dis-
cussed in Section 2. In addition to verifying the feasibility of our architecture in
implementing a practical set of services, we also highlight the flexibility of our
architecture for trial-and-test deployments by providing two options to coordi-
nate the failover and overload controls, subsequently referred to as simple and
auction-based coordination. In this section, we discuss the specifics of the indi-
vidual components making up our implementation, as well as two coordination
heuristics employed.

5.1 Overload Control

The overload control implements the classic token-bucket algorithm for admis-
sion control. It consists of a Token Bucket Sensor, a Throttling Component, a
Throughput Sensor and a Coordination Component, as shown in Fig 5. The
Token Bucket Sensor maintains a token bucket with x tokens, where a sin-
gle token is used for each request. If no tokens are available, the request is
dropped and does not enter the system. The token bucket is refilled at rate
λ. The Throttling Component controls W , the number of concurrent requests
that can be processed. Each processed request is delayed by a throttling inter-
val I. The Throughput Sensor measures δ, the rate of requests being processed
by the system. Finally, the Coordination Component constantly aggregates the
throughput δ and the number of tokens left in the token bucket. It then feeds
the status to the control model in the process engine, and multicasts to effectors
the decision on the new values of λ, W and I accordingly. The adjustment of λ is
given by:

α ∗ W

I
+ (1− α) ∗ δ

where α is a tuning parameter to adjust the component weight.

Fig. 5. Overload Control Deployment

234 Y. Liu et al.

Fig. 6. Failover Control Deployment (switch in off1 or on2 mode)

5.2 Failover Control

The failover control shown in Fig. 6 consists of a Test Message Sensor, a Switch-
ing Component, a Resending Component and a Coordination Component. The
Test Message Sensor constantly sends test messages to the main service. It uses
the test messages to determine if the main service is active or has failed. The Co-
ordination Component constantly receives inputs from the Test Message Sensor
and adjusts the state of the Switching Component (on or off). If the main service
has failed, the Switching Component routes incoming requests to the active ser-
vice when its state is toggled to on by the Coordination Component. A Message
Correlation Interceptor maintains a queue of messages by intercepting incoming
requests to the main service. When a request is successfully routed, the request
is removed from the queue. The Resending Component sends unprocessed re-
quests from the Message Correlation Interceptor to the active services when the
Switching Component is toggled.

5.3 Coordinating Multiple Controls

To coordinate these controls, our general approach is to let the overload control
throttle the workload when failover takes place. In our implementation, two
options are provided to realise this approach.

Our implementation of the architecture is deployed as shown in Fig. 7(a),
which also shows the failover and overload controls employed. The core of the
coordination is the control model shown in Fig. 7(b). This was created using
the JBoss jBPM process model designer. As both Coordination Components
multicast their status data, the coordination between these two controls collects
updated status data from each control using its SensorAggregator and sends out
action decisions through the EffectingRouter. Handlers are attached to nodes
and transitions to realize the two control options: (1) simple coordination and
(2) auction-based coordination.

The simple coordination control tunes the concurrency level of processing
new, incoming requests in the middleware. The tuning is based on the number

An Autonomic Middleware Solution for Coordinating Multiple QoS Controls 235

(a) (b)

Fig. 7. Implemented Example Architecture (a) and Coordination Control Model (b)

of messages yet to be resent by the failover control. This control is easier to
implement, but has limitations when producing the optimal concurrency levels
for a large set of services.

In the auction-based control, requests being resent by the failover control
and new incoming requests at the overload control bid for tokens. Tokens are
dynamically allocated to requests both from failover and overload controls. Only
requests with a token can be processed, otherwise there is a wait for the next
available token. In general, the auction-based control incurs more overhead in
communication as a bid is multicast. However, the auction-based control is more
practical and suitable when it is nontrivial to tune the concurrency level of the
middleware.

Both options reuse the failover and overload controls, and it should be noted
that the control model is identical for both options. The difference is in the way
each of them process status data and the actions taken. This is reflected by the
different options having different handlers attached to the appropriate control
model nodes.

5.4 Discussions

In this example, process modeling tools and middleware mechanisms are used to
customize the general architecture to a specific implementation. As mechanisms
from middleware (such as interceptors) and modeling features from the process
engine (such as handlers) are commonly supported, other process modeling tools
and service bus middleware can be applied to the framework. The only condi-
tion however, is that the process engine should be able to communicate with
the middleware. For example, Mule provides a common interface for process
engines to access its features [14]. We could have used an Oracle BPM imple-
mentation of the interface instead of JBoss jBPM, without any change to other
implemented components. This illustrates the generic nature of our architectural
solution.

236 Y. Liu et al.

6 The Evaluation

Each option of the coordination control is measured and the results are compared
to identify key performance factors.

6.1 Testbed Setup

We deploy the loan brokering services as shown in Fig. 1 on the Mule ESB. The
credit agencies are developed as Java EJBs and deployed on a JBoss application
server. Bank services are Web services deployed on Apache Tomcat servers. The
brokering service is a Mule application, and it communicates with other services
through Mule. The adaptive controls (failover and overload) are designed using
JBoss jBPM and their models are deployed into the jBPM engine. The handlers
and control components are built upon the architecture framework discussed in
Section 3 using Java. Together with the process engine, the models and compo-
nents are deployed on Mule.

We also develop a simple workload generator which injects a number of re-
quests into the system under test with a bounded random time between request
arrivals. For example, the interval [75,200] means the request arrival time bound
is between 75 to 200 milliseconds. In order to observe performance, a simple
console showing charts of metrics was developed (see Fig. 8 for example).

The testing environment includes two identical Windows XP machines with
2.4GHzDualXeonProcessors, one hosting loanbroker services, credit agencies and
adaptive controls and theother hostingfivebank serviceswhichare identical to sim-
plify implementation. The workload generation are 500 requests with the interval
[75,225]. If the overload control is enabled, the throttling component controls W,
the number of concurrent requests that can be processed. W is set to 100 initially.

6.2 Performance Results

We test four scenarios: (1) only the overload control is enabled; (2) only the
failover control is enabled; (3) simple coordination; and (4) auction-based

Fig. 8. Overload Control Only Observation

An Autonomic Middleware Solution for Coordinating Multiple QoS Controls 237

Fig. 9. Failover Control Only Observation

Fig. 10. Simple Coordination Observation

coordination. Obviously in (3) and (4) both failover and overload controls are
enabled. The same environment configurations are used for each test. Fig. 8 to
Fig. 11 show sample performance measurements from the testing scenarios.

Fig. 8 shows that the overload control is efficient in self-management of per-
formance and scalability. It is shown on the other data chart (top right of Fig. 8)
that approximately after 20s has elapsed, the token number hits zero, meaning
there are already 100 requests being processed. From the CPU chart, it shows
that the CPU utilization starts increasing and it triggers the overload control
before 40s elapsed time. The response time chart illustrates that the overload
control takes effect around 45s elapsed time, and the response time reaches a
plateau rather than continuing to linearly increase.

Fig. 9 shows the failover control also works. At around elapsed time 140s,
the primary credit agency service is deliberately shut down, and the requests
are routed by the failover control to the secondary credit agency service. This
is consistent with the other data chart that shows the active transactions reach
the peak at around elapsed time 140s, and then degrades when the failover
occurs. The CPU resource is saturated without the overloading control and the
response time increases. These separated performance testing scenarios confirm

238 Y. Liu et al.

Fig. 11. Auction-based Coordination Observation

the motivation for coordinating two controls to yield a better quality of service.
The results from a single control indicate that the overhead of the architecture
framework itself is insiginificant, and the performance factors are determined by
the adaptive self-managing strategies.

The results of the simple coordination are shown in Fig. 10. Compared with
the case of failover control only, the coordination helps to improve the perfor-
mance. Now the response times reach the plateau and the CPU utilization is not
saturated. From the results of the auction-based coordination shown in Fig. 11,
the performance improvement is less than the simple coordination, which we at-
tribute to the additional communication overhead incurred in the auction-based
coordination as mentioned in Section 5.3. An interesting observation is the time
(annotated as T in the diagrams) spent on processing queued requests. Requests
are put in a queue by the overload control when all the tokens are consumed,
and are only processed when the token bucket is refilled and more tokens are
available. The auction-based coordination spent longer time (T) than the simple
option, which contributes to the degradation of performance.

It is worth noting that our focus is not on studying and evaluating individual
coordination controls but rather on demonstrating the practical usage of the ar-
chitecture to compose them. The difference observed by prototyping and testing
shows that our architectural solution can be applied to the development of realis-
tic self-managing service oriented systems. The resulting architecture framework
to support this solution is useful to trial different control options.

7 Related Work

Applying business process models to support self-managing software systems
has recently been investigated in various domains [2,18]. For example, Verma
and Sheth envisioned autonomic web processes [18]. Similar to the core of this
paper, they elevated autonomic computing concepts from infrastructure to a
process level. Their paper discussed existing technologies and steps needed to
shorten the gap from current process management to autonomic web processes.

An Autonomic Middleware Solution for Coordinating Multiple QoS Controls 239

In this paper, we present a practical architecture solution to integrate process
management with middleware-based services.

Extensive research has been done in the translation of business process models
to execution languages, and there has been an increasing adoption of business
process modeling (BPM) tools to coordinate business process flows, as opposed
to hard-coded application logic. A good summary of the relevant techniques
and tools is covered in [1]. As the core of our approach, control models lever-
age business process models to represent adaptive logic. It is an open research
question with regards to the integration of the semantics essential to adaptive
self-management with general business process modeling capabilities. The on-
going research in evaluating the expressiveness of business process definitions
will contribute insights to this research space [19].

A comprehensive survey [3] discussed existing technologies that could enable
dynamic composition of adaptive software. It also classified different approaches
by how, when and where composition might occur. The core of all these ap-
proaches was intercepting and redirecting interactions among program entities.
These mechanisms help to customize our architecture framework to a specific
middleware platform.

8 Conclusion

This paper proposes an approach to develop adaptive self-managing controls
for service oriented systems. The contribution of this work is twofold. Firstly,
it leverages process models to design adaptive controls with a visual context.
Moreover, an architecture framework is built to integrate the models with a
middleware platform and enable the execution of the design models. Secondly,
multiple controls can be coordinated using this solution. Different options can
quickly be prototyped by composing the coordination from existing control com-
ponents. This architecture-based solution provides benefits towards modifiabil-
ity, reusability and maintainability of self-managing service oriented systems.
The quantitative evaluation is based on a realistic enterprise service bus ap-
plication. The results demonstrate the performance efficiency of this approach.
Our on-going work involves developing tools to simulate the controls when it is
designed and deployed from the process models. The simulation tools combined
with the rest of the architecture framework further help developers test their
adaptive and self-managing controls at an early design stage.

References

1. van der Aalst, W.M.: Business process management demystified: A tutorial on mod-
els, systems and standards for workflow management. In: Lectures on Concurrency
and Petri Nets, pp. 1–65 (2004)

2. Baresi, L., Guinea, S., Pasquale, L.: Self-healing bpel processes with dynamo and
the jboss rule engine. In: ESSPE 2007: International workshop on Engineering of
software services for pervasive environments, pp. 11–20. ACM, New York (2007)

240 Y. Liu et al.

3. McKinley, P.K., Sadjadi, S.M., Kasten, E.P., Cheng, B.H.C.: Composing adaptive
software. Computer 37(7), 56–64 (2004)

4. Naccache, H., Gannod, G.C.: A self-healing framework for web services. Icws 00,
345–398 (2007)

5. Gorton, I., Wynne, A., Almquist, J., Chatterton, J.: The MeDICi Integration
Framework: A Platform for High Performance Data Streaming Applications. In:
WICSA 2008: 7th Working IEEE/IFIP Conference on Software Architecture, pp.
95–104. IEEE Computer Society, Los Alamitos (2008)

6. Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions. Addison-Wesley Professional, Reading (2003)

7. IBM. An architectural blueprint for autonomic computing. IBM Autonomic Com-
puting (2004)

8. JBoss jBPM, http://www.jboss.com/products/jbpm
9. Foster, H., Uchitel, S., Magee, J., Kramer, J.: Tool Support for Model-Based En-

gineering of Web Service Compositions. In: Proc. of Intl. Conf. on Web Services
(ICWS 2005), pp. 95–102. IEEE Computer Society, Los Alamitos (2005)

10. Juse, K., Kounev, S., Buchmann, A.: PetStore-WS Measuring the Performance
Implications of Web Services. In: CMG 2003: Proc. of the 29th International Con-
ference of the Computer Measurement Group (2003)

11. Kephart, J.O.: Research challenges of autonomic computing. In: ICSE 2005: Pro-
ceedings of the 27th international conference on Software engineering, pp. 15–22.
ACM, New York (2005)

12. Kramer, J., Magee, J.: Self-managed systems: an architectural challenge. In: FOSE
2007: 2007 Future of Software Engineering, pp. 259–268. IEEE Computer Society,
Los Alamitos (2007)

13. Luck, G., Suravarapu, S., King, G., Talevi, M.: EHCache Distributed Cache Sys-
tem, http://ehcache.sourceforge.net/

14. Mule ESB, http://mule.mulesource.org/
15. P.M., et al.: The wsdm of autonomic computing: Experiences in implementing

autonomic web services. In: SEAMS 2007: Proceedings of the 2007 International
Workshop on Software Engineering for Adaptive and Self-Managing Systems, p. 9.
IEEE Computer Society, Los Alamitos (2007)

16. Anthony, R.J.: Policy-based techniques for self-managing parallel applications.
Knowl. Eng. Rev. 21(3), 205–219 (2006)

17. Kumar, V., Cooper, B.F., Eisenhauer, G., Schwan, K.: Enabling policy-driven self-
management for enterprise-scale systems. In: HotAC II: Hot Topics in Autonomic
Computing on Hot Topics in Autonomic Computing, pp. 4–23. USENIX Associa-
tion (2007)

18. Verma, K., Sheth, A.P.: Autonomic Web Processes. LNCS. Springer, Heidelberg
(2005)

19. Zhu, L., Osterweil, L., Staples, M., Kannengiesser, U., Simidchieva, B.: Desiderata
for languages to be used in the definition of reference business processes. Interna-
tional Journal of Software and Informatics 1, 37–65 (2007)

http://www.jboss.com/products/jbpm
http://ehcache.sourceforge.net/
http://mule.mulesource.org/

Transparent Runtime Adaptability for
BPEL Processes

Adina Mosincat and Walter Binder

Faculty of Informatics, University of Lugano, Switzerland
adina.diana.mosincat@lu.unisi.ch, walter.binder@unisi.ch

Abstract. Dynamic service binding is essential for runtime adaptabil-
ity of BPEL processes, particularly in the case of service failure. BPEL’s
support for dynamic service binding is coupled with the process busi-
ness logic, requiring the process developer to deal with dynamic service
selection and failure recovery. Changing these aspects requires modifica-
tion and redeployment of all affected processes. In this paper we present
a novel infrastructure that handles dynamic (re)binding of stateful and
stateless services independently of process business logic. Our infrastruc-
ture is transparent both to the process developer and to the BPEL
engine. It offers automated failure recovery and allows for runtime cus-
tomizations, such as changes of service binding policies. We also assess
infrastructure overhead and explore the impact of service failures on sys-
tem throughput.

1 Introduction

The Business Process Execution Language (BPEL)1 is widely used for web
service composition. A process2 defines business logic by modeling message
exchange sequences in an executable manner, invoking service functionalities
described in WSDL3. Processes are executed by BPEL engines, which create
a process instance when one of the receive activities (a start activity) in the
process is triggered, and end the instance after completion of the correspond-
ing reply activity. The process instance interacts with services (partner links)
through invoke activities.

While processes benefit from service features, such as accessibility and plat-
form independence [1], they also have to deal with unpredictable changes. In
an open, dynamically changing environment such as the Web, the capability of
processes to adapt to changes in the environment is vital. For processes this
means that every process instance must be able to dynamically bind the neces-
sary services.

The changes a process should adapt to include the availability of new, better
services, but also the failure of bound services. BPEL offers constructs that can
1 http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
2 In this paper we assume that a web service composition is represented as a BPEL

process and we will refer to it as process; the term service refers to a web service.
3 http://www.w3.org/TR/wsdl20/

A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, pp. 241–255, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://www.w3.org/TR/wsdl20/

242 A. Mosincat and W. Binder

be used to implement different fault-tolerance strategies [2], and the dynamic
partner link assignment can be used to change the partner link that represents a
service in a process instance. However, it is neither possible to add new services
at runtime, nor to change the service selection strategy at runtime. Furthermore,
BPEL’s support for dynamically binding services is coupled with process business
logic.

The generic infrastructure presented in this paper addresses these issues by
separating service selection and fault handling, specified by customizable bind-
ing policies, from the process business logic. Our approach does not require
the process developer to provide fault-tolerance constructs and allows for pol-
icy updates without disrupting running processes. Our solution provides run-
time adaptability for the process by automatically transforming the process at
deployment time. The services used by the process are dynamically selected
for every process instance by a customizable selection strategy. Our approach
achieves transparency for the process developer, compatibility with standard
BPEL engines, and openness for integration with existing service discovery and
monitoring mechanisms.

An important concern when dealing with failure recovery is the state of the
failed service. While a stateless service can be replaced upon each invocation,
a service replacing a stateful service must first be brought into the right state.
One way to achieve this is to restart the process upon replacement of a stateful
service. Our solution caters to automated process restart in order to recover from
the failure of a stateful service. Existing user-defined compensation handlers are
executed before process restart.

As an example scenario, consider a process provided by a mobile network op-
erator that takes a start and a destination address and gives travel information
(directions, traffic information, weather report, points of interest along the route,
etc.). The process relies on two types of external services, S1 that translates a
textual address into GPS coordinates, and S2 that provides travel information
for a trip between two GPS coordinates. While S1 is stateless, providing a single
translation operation, S2 is stateful and requires two interactions, first the cre-
ation of a session specifying the kind of travel information the user is interested
in, and second the query (within the previously created session) for travel infor-
mation for a given trip. While S1 can be replaced with another service with the
same interface upon each invocation, replacing S2 upon query failure presumes
that first an appropriate session is created in the replacement service. Our ap-
proach handles such a situation by automatically restarting the whole process
before binding a stateful replacement service.

In the aforementioned scenario, the process is not very complex, involving
only a few service invocations. However, it may be concurrently invoked by a
large number of clients who shall experience a highly available service. As long as
there are replacement services, our infrastructure hides service failures from the
clients. Moreover, service selection and failure handling behavior can be changed
by the operator without disrupting the service offered to the clients.

Transparent Runtime Adaptability for BPEL Processes 243

The scientific contributions of this paper are threefold: (1) We introduce a
novel approach to transparently (re)binding both stateful and stateless services
for every process instance, enabling fault-tolerant process execution. (2) We pro-
vide a customizable solution for separating failure recovery and service selection
from process business logic. (3) We implemented our architecture using state-of-
the-art technologies and present detailed evaluation results, exploring the over-
head caused by our infrastructure as well as the impact of service failures on
overall system throughput.

This paper is structured as follows: Section 2 presents the architecture of our
infrastructure. In Section 3 we describe the process transformations performed at
deployment time. Section 4 explains the interactions between the BPEL engine
and our infrastructure. The customization points, binding policies and service
selection strategies, are described in Section 5. We evaluate our approach in
Section 6 and discuss related work in Section 7. Section 8 concludes this paper.

2 Architecture

Fig. 1 shows our system architecture. In this section we describe the responsi-
bilities of the Transformation Tool and of the Bind System, which includes the
Service Manager and the Bind Manager. Fig. 2 illustrates the transformations
upon process deployment. Fig. 3 defines important concepts used throughout this
paper. Some operations provided by the Bind System are presented in Fig. 4, as
far as necessary for the discussion of our system.

The Transformation Tool (TT) is responsible for automatically transforming
the process at deployment time to use our infrastructure, assuring complete
transparency to the process developer. The results of the transformation are two
processes, the transformed process and the wrapper process. The transformed

Transformation Tool

Service
Repository

External
Services

Service Manager

Bind Manager

Service Selectors

BPEL
EngineBind System

…

Policies

…

Fig. 1. System architecture

244 A. Mosincat and W. Binder

Original
Process

Transformation
Tool

Bind
System

Wrapper
Process

Transformed
Process

deploy

deploy

BPEL
Engine

Fig. 2. Process transformation at deployment time

Service Type (ST) – Unique identifier of a group of equivalent services that can
substitute for each other.

Process Name (PN) – Unique identifier of a process in the system.
Process Identifier (PID) – Unique identifier of a wrapper process instance in the

system. Instances of a transformed process have the same PID as the wrapper
process instance that has started them.

Service Identifier (SID) – Unique identifier of a service (service address4).
Action on Failure (AOF) – The action to be taken on service failure. It can take

one of the following values:
– retry – Invoke a replacement service without restarting the process; used for

stateless services or if the failure happens on the first invocation of a stateful
service.

– restart-process – Automatically restart the process and invoke a replacement
service; used for stateful services (if the failure happens after a successful
first invocation).

– throw – Throw the original service fault which may be handled by the fault
handlers defined in the original process.

Fig. 3. Definitions

process is always called from the wrapper process, which is invoked by the user.
A detailed description of the TT is given in Section 3.

The Service Manager (SM) handles the classification and dynamic selection
of services. The SM builds the service type namespace by matching equivalent
services that can substitute for each other. A service is mapped to exactly one
service type. All services of the same service type must offer the same interface.
Our current SM implementation assumes the service type information to be
specified by the service provider. The services are classified as stateful or stateless
based on information from the service provider. By default, a service is considered
stateful. Services are selected according to different ranking criteria implemented
by service selectors. Service selectors are further explained in Section 5.

4 http://www.w3.org/Submission/ws-addressing/

http://www.w3.org/Submission/ws-addressing/

Transparent Runtime Adaptability for BPEL Processes 245

Bind Manager interface:
– createPN(): PN – Returns the PN for a new process (used by the TT upon

process deployment).
– createPID(PN): PID – Returns the PID for a new instance of the process iden-

tified by the given PN; instantiates the binding policy for the process instance;
allocates storage to keep track of the process instance’s service mappings.

– deletePID(PID) – Discards PID and all associated data structures.
– getService(ST, PID): SID – If no service is mapped to the pair <PID, ST>,

returns the SID corresponding to the service of the given ST to be bound by
the process instance PID and maps the SID to the pair <PID, ST>; otherwise
returns the SID corresponding to the existing mapping for the pair <PID, ST>.
If no service exists, an exception is thrown.

– getAOF(SID, PID): AOF – Notifies the BM about the failure of the service
SID that was invoked by the process instance PID; returns the AOF according
to the binding policy; deletes the mapping for the pair <PID, ST>; adds the
service SID to the set of failed services.

Service Manager interface:
– classifyService(SID): ST – Classifies the service SID and returns the corre-

sponding ST.
– isStateful(ST): boolean – Returns true if services of the given type ST are

stateful.

Service Selector interface:
– selectService(ST, Set{SID}): SID – Returns the SID of the best ranked

service of type ST that is not in the given Set{SID}, or null if no such service
is available; invoked by the BM, passing the current set of failed services of type
ST.

Fig. 4. Parts of the Bind Manager, Service Manager, and Service Selector interfaces

The Bind Manager (BM) constitutes the interface to the process. The main
component of the BM is a web service. All interactions of the process with the
infrastructure are web service invocations, thus assuring compatibility with any
BPEL engine. The BM has the following responsibilities:

– PN creation upon process deployment (the acronyms are defined in Fig. 3).
– PID allocation upon process start.
– Binding policy: registration, mapping to PN, and instantiation upon process

start.
– Service bindings per process instance.
– Provision of the action on failure (AOF) based on the policy corresponding

to the process instance.
– Keeping track of failed services. A service is added to the set of failed services

upon failure and removed from the set after a configurable period of time.
The set is used to exclude failed services from selection for some time.

246 A. Mosincat and W. Binder

Binding policies control failure recovery and choose service selectors; they are
detailed in Section 5.

3 Transformation Tool

Fig. 2 on page 244 shows the processes resulting from the transformation that
are deployed in the BPEL engine.

The transformed process contains the business logic augmented with code
for dynamic service binding and for failure recovery. The code within the trans-
formed process allows replacing a failed service without process restart (for state-
less services and stateful services that fail on the first invocation).

The wrapper process has a predefined structure, replaces the original process,
and contains code for automated process restart upon failure of a stateful ser-
vice. If a stateful service fails on or after the second invocation from the trans-
formed process, the transformed process is brought to the initial state (i.e., it
is restarted) by the wrapper process and the service invocations are repeated
using a replacement service. PIDs are created only for instances of the wrapper
process.

In a first step, the TT registers the process to the Bind Manager (getPN())
and replaces every service used in the original process with the service type
provided by the Service Manager (classifyService(SID)). In a second step,
the following transformations take place in the original process (yielding the
transformed process):
– Every receive activity that starts a process instance is replaced with a receive

activity that takes the PID as an additional input parameter. We will refer
to the replacing receive activity as extended-receive.

– Every reply activity is replaced with a reply activity that provides an ad-
ditional parameter along with the original output parameters, the exit-code
of the transformed process. The exit-code dictates the activity to be per-
formed by the wrapper process; it can be either success or restart-process.
Reply(output) in the original process becomes reply(output,“success”)
in the transformed process.

– Every invocation of a service output←invoke(input,ST,operation) is re-
placed with a code pattern illustrated by the pseudo-code in Fig. 5. Tuples
are represented as <data1, data2>. A reply activity ends the process in-
stance, while a rethrow activity passes control to the fault handlers defined
in the original process. If no fault handler is defined, the transformed process
is terminated and the wrapper process deletes the PID before re-throwing
the exception.

The wrapper process replaces the original process and copies every receive
activity that starts an instance as well as the corresponding reply activity. The
pseudo-code in Fig. 6 presents the code within the wrapper process for a receive-
reply activity. Receive(input) and reply(output) are the BPEL activities
copied from the original process, and extended-receive is the corresponding re-
placing receive activity in the transformed process.

Transparent Runtime Adaptability for BPEL Processes 247

retry ← true ;
while retry do

retry ← false ;
SID ← invoke(< ST, PID >, BindManager, getService);
try begin

output ← invoke(input, SID, operation);
end
catchAll(exception)begin

AOF ← invoke(< SID, PID >, BindManager, getAOF);
switch AOF do

case “restart-process”: reply(< –, “restart-process” >);
case “throw”: rethrow exception;
case “retry”: retry ← true ;

end
end

end

Fig. 5. Transformation of a service invocation output←invoke(input,ST,operation)

receive(input) begin
PID ←invoke(PN, BindManager, createPID);
retry ← true ;
while retry do

retry ← false ;
try begin

< output, exit-code > ←
invoke(< input, PID >, transformedProcess, extended-receive);

end
catchAll(exception)begin

invoke(PID, BindManager, deletePID);
rethrow exception ;

end
switch exit-code do

case “success”:
invoke(PID, BindManager, deletePID);
reply(output);

case “restart-process”: retry ← true ;
end

end
end

Fig. 6. Wrapper process for a receive-reply activity

4 Interactions at Execution Time

Fig. 7 illustrates the interactions between the BPEL engine and our infrastruc-
ture at runtime for an example process with two invocations of the same stateful
service, both in case of service failure and service normal completion. Below we
outline the interactions according to the numbered steps in Fig. 7. The BPEL
engine side is represented by the wrapper process (WP) and the transformed
process (TP); our infrastructure is represented by the Bind System (BS), and
the two services, S1 and S2, are services of the same type st1. The internal in-
teractions within the BS are further detailed in Fig. 8 for an example binding
policy. For better clarity, only the most important functionalities performed in
the BS are presented in the diagram.

248 A. Mosincat and W. Binder

Fig. 7. Sequence diagram for stateful service invocations

Transparent Runtime Adaptability for BPEL Processes 249

1. Process request.
When a request for the process arrives, a new instance of the WP is created.
The BS provides pid1, allocates storage for the service bindings of the process
instance, and instantiates a binding policy. The WP creates a TP instance as
illustrated in Fig. 7 bynew(pid1). APID is allocated only for theWP instance.

2. First successful invocation of a service of type st1.
The BS checks whether there is a service mapped to the pair <pid1, st1>
and does not find any. The BS selects sid1 of type st1 using the service
selector specified by the binding policy and maps the service sid1 to the
pair <pid1, st1>.

3. First failed invocation of a service of type st1.
The BS looks up the service mapped to <pid1, st1>. As sid1 fails, the
BS adds sid1 to the set of failed services and deletes the mapping of
<pid1, st1>. The BS checks the policy for pid1 and, as sid1 is stateful,
returns AOF=restart-process. The TP instance signals the WP that it failed
with exit-code restart-process. The WP creates a new TP instance.

4. First successful re-invocation of a service of type st1.
The BS selects sid2, excluding from selection the services of type st1 that
are considered failing at the moment (sid1). The BS maps sid2 to the pair
<pid1, st1>.

5. Second successful re-invocation of a service of type st1.
The BS retrieves sid2 which has been mapped to <pid1, st1>. The TP
instance returns the computed result to the WP along with exit-code success
and completes execution. The WP notifies the BS that pid1 has finished.
The BS deletes all data associated with pid1, including the binding policy
instance. The WP forwards the result as response to the process request.

5 Dynamic Customizations – Service Selectors and
Binding Policies

In the following we address customizable service selectors and binding policies.
Dynamic service selection is based on ranking criteria implemented in service

selectors. Service selectors are deployed in the Service Manager (SM) and use
the service type classification provided by the SM. The ranking criteria imple-
mented by a service selector typically relate to non-functional properties, such
as Quality-of-Service (QoS) parameters (e.g., response time), which can be pro-
vided by monitoring mechanisms. Service selectors may use any external service
discovery mechanism. Our infrastructure eases the integration of different selec-
tion mechanisms, e.g., based on QoS selection models [3], or reputation mecha-
nisms [4,5]. A service selector is registered in the system under a unique identifier
(SelectorID). The SM must provide at least one service selector which is used
by default if no other selector is specified. The selector to be used is specified by
binding policies. When a request for a service binding arrives, the BM checks
the policy for the selector to use. A new service selector can be registered in the
system at any time and can be used in updated and new policies.

250 A. Mosincat and W. Binder

Fig. 8. Interactions between BM, binding policy, SM, and service selectors SS1 and
SS2, showing details for the steps 2, 3, and 4 of Fig. 7

The binding policy has two responsibilities, it controls the action on failure
(AOF) and chooses a service selector. A binding policy must provide the follow-
ing interface:

– attemptRecovery(ST): boolean – Returns true if the system should at-
tempt recovering from a recently occurred failure of a service of type ST.

– chooseSelector(ST): SelectorID – Returns the identifier of the service
selector to be used. A return value null chooses the default selector.

Binding policies are typically stateful objects keeping track of (and limiting)
the number of failure recovery attempts. A policy may choose failure recovery
and service selectors depending on the service type, but it is not required to
take the service type into account. According to the default policy, recovery is
attempted only once, upon the first service failure, independently of the service
type; hence, the process is restarted at most once.

A binding policy can be mapped to process names. When a PID is created,
an instance of the policy mapped to the PN is created for that PID. In this way,
policies can be changed at runtime without affecting the running instances of
the process. New process instances will use the changed policy, while the running
process instances will be still using their instances of the previous policy.

Transparent Runtime Adaptability for BPEL Processes 251

As an example for a binding policy, consider a system with two service selec-
tors, SS1 ranking services according to service response time, and SS2 ranking
services according to availability. As long as no failure has occurred, the pol-
icy chooses the selector SS1 so as to minimize response time. However, after
a failure, upon subsequent chooseSelector(ST) requests, the policy returns
SS2, because the successful execution of the process is more important than the
response time. Fig. 8 presents the interactions between the BM, the policy in-
stance, the SM, and the service selectors on a first request for a service binding
and on service failure.

6 Evaluation

In this section we evaluate the implementation of our infrastructure in two dif-
ferent settings. In the first setting, external services never fail, and we explore
the overhead caused by our infrastructure. In the second setting, invocations of
external stateful services fail with a given probability, and we investigate the
resulting decrease of system throughput due to process restart upon failure.

Our implementation uses Java 5, Apache Axis 1.4, and BPEL 2.0; as BPEL
engine we use ActiveBPEL 45; both the infrastructure and the engine are de-
ployed in an Apache Tomcat 4.1.24 installation. Our measurement machine is
an Intel Core 2 Duo (2.4GHz, 2GB RAM) running Mac OS X v10.4. We avoided
any unnecessary background processes. All measurements were repeated 15 times
and we report the median of these measurements.

Our evaluation is based on four processes of increasing complexity. These
processes interact with stateful services 1, 3, 5, resp. 10 times. In order to simu-
late possibly unreliable external services, service response time and failure prob-
ability are configurable.

Fig. 9 illustrates the results of our overhead evaluation. The overhead is pre-
sented relative to the execution time of the process in the absence of our in-
frastructure (i.e., the reference value is the execution time of the original process
without any transformation). We consider the relative overhead for a varying
service response time between 100ms and 1s.

The overhead shown in Fig. 9 is caused primarily by the interactions of the
transformed process with the BM; before each invocation of an external service,
the bound service is retrieved from the BM. In addition, the wrapper process
contributes to the overhead, too, because it calls the BM to obtain a PID and
because it has to start the transformed process. However, in the absence of
service failures, the overhead induced by the wrapper process is constant. The
highest overhead is observed for a process with a single service invocation, since
the overhead due to the wrapper process preponderates. Moreover, the first
invocation of a service of a given type causes higher workload within the BM
because of dynamic service selection.

We assume that the Bind System is deployed on the same machine as the
BPEL engine. Hence, interactions with the BM are local and relatively efficient
5 http://www.activevos.com/

http://www.activevos.com/

252 A. Mosincat and W. Binder

0%

20%

40%

60%

80%

100%

120%

100 200 300 400 500 600 700 800 900 1000

Service response time [ms]

O
ve

rh
ea

d

One service invocation

Three service invocations

Five service invocations

Ten service invocations

Fig. 9. Infrastructure overhead for 4 processes and varying service response time; ser-
vices never fail

when compared with remote invocations of external services. For a service re-
sponse time of 300ms, the overhead caused by our infrastructure is about 50%
for a process with a single service invocation, and below 30% for more complex
processes. As expected, the overhead further decreases with an increasing service
response time. For a response time of 1s, the overhead is below 20% for a process
with a single service invocation, and below 10% for more complex processes.

Fig. 10 illustrates the decrease in system throughput due to service failures,
requiring process restart. The measurement setting corresponds to a worst-case
scenario, where all services fail with a given probability and failed services are
never excluded from selection. We used a binding policy that does not limit the
number of recovery attempts in case of failure. Throughput was measured by
considering the total elapsed time for 100 process invocations (the workload was
created by 10 concurrent threads in a Java Virtual Machine, each invoking the
process 10 times). Fig. 10 presents the measured throughput relative to a setting
without service failure.

The impact of service failure on system throughput largely depends on the
process complexity. The more complex a process is, the more work may have to
be redone upon process restart. While for a simple process with a single service
invocation, a service failure probability of 10% reduces the system throughput
by less than 10%, the same service failure probability halves the throughput for a
more complex process with 10 invocations of a stateful service. Fig. 10 shows that
our approach to transparent recovery from failures of stateful services can cause
a significant throughput reduction in the case of complex processes and frequent
service failures. However, note that in a practical setting, a failed service would
be excluded from selection for a certain period of time. Furthermore, rebinding
of failed stateless services causes significantly less effort, because the process
need not be restarted.

Transparent Runtime Adaptability for BPEL Processes 253

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20%

Service failure probability

R
el

at
iv

e
th

ro
ug

hp
ut

One service invocation

Three service invocations

Five service invocations

Ten service invocations

Fig. 10. Relative throughput for 4 processes and varying service failure probability

7 Related Work

While most existing solutions for dynamically binding services are modifying
the BPEL engine [6,7], the approaches that are transparent to the engine [8]
or extend the BPEL standard [9] offer limited dynamic customizability for ser-
vice selection and binding policies. Our solution, in contrast, works with any
BPEL engine and allows for dynamic customizability. Furthermore, solutions
that also cater to fault handling deal only with stateless services [8,7], whereas
our approach specifically supports stateful services.

VieDAME [6] is an aspect-based service monitoring and selection system that
intercepts SOAP messages and dynamically replaces services used in the process.
It monitors process execution and gathers information on the QoS of services that
is stored in a database for future use. The services are selected based on defined
selectors and can be adapted to replace services that implement a different service
interface. The system requires that the services are registered in repository and
that the services to be monitored and eventually substituted are marked as
replaceable. Unlike the VieDAME system that uses an engine adapter to extend
engine functionality, our infrastructure is completely transparent to the engine.
Furthermore, VieDAME focuses on service monitoring and dynamic selection
of services, but does not explicitly address fault handling. Our system handles
failure recovery for the selected services.

Baresi et al. propose an aspect-oriented engine extension of ActiveBPEL that
provides self-healing capabilities to the process and demonstrate it in their Dy-
namo system [7]. Using two domain specific languages (WSCoL, the Web Service
Constraint Language and WSReL, the Web Service Recovery Language), the Dy-
namo framework allows for defining recovery strategies by specifying monitoring
and recovery rules. Our infrastructure allows for the best available service to be
selected for every process instance by integrating existing mechanisms for dy-
namic service selection based on QoS parameters.

254 A. Mosincat and W. Binder

A solution that proposes an extension of the BPEL standard to achieve dy-
namic binding of services on a per-instance basis is the find-and-bind mechanism
[9]. The service to be bound is searched at runtime. This solution provides the
developer with the option of deciding on the services he wants to be adapt-
able, but requires him to provide the fault handling constructs. Our approach
separates service selection and fault handling from the process business logic.

TRAP/BPEL [8] makes use of a generic proxy to discover alternative services
on failure for services that the process developer marks for monitoring. In con-
trast, our infrastructure is completely transparent to the user. Differently from
our approach, in TRAP/BPEL all service invocations are done by the proxy,
which acts as an indirection layer and allows for monitoring of the invoked ser-
vices. While the TRAP/BPEL approach is similar to ours with regard to the
separation of fault handling from process business logic, it does not provide
support for stateful services and requires restart of the proxy on policy change.

There are other more formal approaches to exception handling in processes,
such as Recovery Nets [10,11] that create models for exceptions at design time
which are then used to recover from failure. Recovery Nets leverage an extended
Petri net model, which incorporates customizable recovery policies to handle
exceptions at runtime. Recovery Nets’ aim at improving the reliability of busi-
ness processes is common to ours, but Recovery Nets focus on formal exception
modeling and on the development of recovery policies.

8 Conclusion

In this paper we have introduced a novel infrastructure for fault-tolerant execu-
tion of BPEL processes, which completely separates the process business logic
from service binding and failure recovery strategies. Our infrastructure com-
pletely hides service failures from clients, addressing failures of both stateless
and stateful services. It consists of two major parts, the Bind System to manage
service bindings for process instances, and the Transformation Tool to enhance
processes for automated failure recovery, interacting with the Bind System. Our
infrastructure is transparent to the process developer and compatible with any
standard BPEL engine. In addition, the Bind System enables dynamic changes
of service selection and fault-handling strategies without requiring any redeploy-
ment of existing processes. Thus, our system can be tuned and reconfigured at
runtime, increasing its availability. Performance evaluations have shown that our
infrastructure causes only moderate overhead if external services have an average
response time of 300ms or more.

Regarding limitations, our infrastructure currently does not support processes
that provide asynchronous operations, because upon failure of a stateful service,
the process is restarted and the reference to the operation consumer is lost.
Furthermore, a failure of the Bind System will disrupt all transformed processes.
However, the Bind System is not an external service (it is typically deployed on
the same machine that hosts the BPEL engine); our goal is to enhance fault
tolerance with respect to external services. As another limitation, our current

Transparent Runtime Adaptability for BPEL Processes 255

classification of services into service types is restrictive, because a service is
mapped to exactly one type.

With respect to ongoing research, in addition to supporting more flexible
service classification, we are working on process decomposition algorithms so as
to restart only the affected subprocess upon service failure, therefore reducing
the impact of service failure on the overall system throughput. To this end, we
are applying techniques such as SESE decomposition [12].

References

1. Alonso, G., Casati, F., Kuno, H.A., Machiraju, V.: Web Services - Concepts, Ar-
chitectures and Applications. Data-Centric Systems and Applications. Springer,
Heidelberg (2004)

2. Dobson, G.: Using WS-BPEL to Implement Software Fault Tolerance for Web Ser-
vices. In: EUROMICRO 2006: Proceedings of the 32nd EUROMICRO Conference
on Software Engineering and Advanced Applications, pp. 126–133. IEEE Computer
Society, Washington (2006)

3. Wang, X., Vitvar, T., Kerrigan, M., Toma, I.: A QoS-Aware Selection Model for
Semantic Web Services. In: ICSOC, pp. 390–401 (2006)

4. Bianculli, D., Jurca, R., Binder, W., Ghezzi, C., Faltings, B.: Automated dynamic
maintenance of composite services based on service reputation. In: Krämer, B.J.,
Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 449–455.
Springer, Heidelberg (2007)

5. Jurca, R., Binder, W., Faltings, B.: Reliable QoS monitoring based on client feed-
back. In: 16th International World Wide Web Conference (WWW 2007), pp. 1003–
1012. ACM, Banff (2007)

6. Moser, O., Rosenberg, F., Dustdar, S.: Non-intrusive monitoring and service adap-
tation for WS-BPEL. In: WWW 2008: Proceeding of the 17th international con-
ference on World Wide Web, pp. 815–824. ACM, New York (2008)

7. Baresi, L., Ghezzi, C., Guinea, S.: Towards Self-healing Composition of Services. In:
Contributions to Ubiquitous Computing, pp. 27–46. Springer, Heidelberg (2007)

8. Ezenwoye, O., Sadjadi, S.M.: TRAP/BPEL: A Framework for Dynamic Adapta-
tion of Composite Services. In: WEBIST-2007.International Conference on Web
Information Systems and Technologies (2007)

9. Karastoyanova, D., Houspanossian, A., Cilia, M., Leymann, F., Buchmann, A.:
Extending BPEL for Run Time Adaptability. In: EDOC 2005: Proceedings of the
Ninth IEEE International EDOC Enterprise Computing Conference, pp. 15–26.
IEEE Computer Society, Washington (2005)

10. Hamadi, R., Benatallah, B., Medjahed, B.: Self-adapting recovery nets for policy-
driven exception handling in business processes. Distrib. Parallel Databases 23(1),
1–44 (2008)

11. Hamadi, R., Benatallah, B.: Recovery Nets: Towards Self-Adaptive Workflow Sys-
tems. In: Zhou, X., Su, S., Papazoglou, M.P., Orlowska, M.E., Jeffery, K. (eds.)
WISE 2004. LNCS, vol. 3306, pp. 439–453. Springer, Heidelberg (2004)

12. Vanhatalo, J., Völzer, H., Leymann, F.: Faster and More Focused Control-Flow
Analysis for Business Process Models Through SESE Decomposition. In: Krämer,
B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 43–55.
Springer, Heidelberg (2007)

A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, pp. 256 – 270, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Organizational Constraints to Realizing Business Value
from Service Oriented Architectures: An Empirical

Study of Financial Service Institutions

Haresh Luthria and Fethi Rabhi

Information Systems, Technology & Management, The Australian School of Business
The University of New South Wales, Sydney, Australia

{h.luthria,f.rabhi}@unsw.edu.au

Abstract. Service-oriented architectures (SOAs) are gaining popularity as an
approach to provide flexibility and agility, not just in systems development but
also in business process management. Studies of the practical business impacts
of SOA are crucial as the number of SOA implementations grows, and are re-
quired for a better critical understanding of this popular architectural concept
that is being rapidly adopted by industry organizations. Although there is a sig-
nificant amount of ongoing research related to technology implementations of
SOAs, there is a paucity of research literature on the factors affecting the adop-
tion of service-oriented computing and the realization of business value in prac-
tice. This paper empirically examines the adoption of service-oriented
computing (SOC) as an enterprise strategy across fifteen firms, and discusses
the organizational constraints that influence the enterprise adoption and imple-
mentation of SOA. In doing so, this paper fills a crucial gap in the academic lit-
erature about the practical use of SOA as an enterprise strategy for agility, and
lays the groundwork for future work on SOA alignment with organizational
strategy. The paper also provides practitioners with guidelines for the successful
implementation of SOA to achieve business value.

Keywords: Service Oriented, SOA, SOC, Business Value, Organizational Con-
straints, Technology Adoption, Technology Diffusion.

1 Introduction

In response to dynamically changing market conditions, financial institutions are
increasingly looking for avenues of organizational agility [2]. By virtue of being the
underlying enabler of the core business processes, information technology is very
critical to achieving this agility [13]. Technology infrastructures built on service ori-
ented computing principles appear to facilitate business process and, subsequently,
organizational agility [17]. The paradigm of Service Oriented Computing (SOC)
views whole business functions as modular, standards-based software services. The
associated Service Oriented Architecture (SOA) establishes a defined relationship
between such services offering discrete business functions and the consumers of these
services, independently of the underlying technology implementation [23].

 Organizational Constraints to Realizing Business Value from SOA 257

There is a great deal of enthusiasm in the industry about this concept but the
adoption of SOA by end-user organizations is still in a relatively early stage [24].
Therefore, there is a scarcity of critical research addressing the ability of organiza-
tions to realize business value from the adoption of SOA. From a pragmatic per-
spective, there is widespread recognition of the fact that various organizational
issues need to be addressed for the successful implementation of any information
technology [14]. What is needed beyond the current research on the technology
implementations of SOA, is a focus on the study of the real-world adoption of SOA
across the enterprise and the factors that aid or impede such adoptions. This under-
standing becomes even more critical in the context of financial services institutions
since the strategic impact of information technology is very high for financial insti-
tutions, and the industry sector is at the leading edge of the adoption curve for inno-
vative technology solutions [20].

This paper empirically examines the use of SOA across fifteen firms – a mix of
banks, insurance firms, and service providers - and as part of a broader study, specifi-
cally investigates the best practices promoted by service providers, and the organiza-
tional constraints and challenges experienced by firms considering the enterprise-wide
implementation of SOA. The results provide insights into the factors that impact the
real-world adoption of SOA, thus filling a crucial gap in academic literature. The
paper also aligns organizational constraints with advocated best practices, thus pro-
viding practitioners with a guide to maximizing business value from their SOA im-
plementations.

Section 2 describes the empirical study of SOA adoption across fifteen firms and
the data collection and analysis processes used. Section 3 describes the observed
trends in the results of the use of SOA across these firms. Section 4 distils the results
of the empirical study by comparing suggested best practices for SOA adoption with
the organizational challenges faced on the ground. Finally, Section 5 summarizes the
research contribution and the business impact of the paper.

2 The Empirical Study – Data Collection and Analysis

A case study approach was chosen as the research methodology to study the align-
ment and adoption of SOA across the enterprise because, according to Benbasat et al
[3], case studies are “well-suited to capturing the knowledge of practitioners and de-
veloping theories from it”.

Fifteen firms – a mix of both financial service institutions in the banking and insur-
ance sectors, and software service providers that had a significant number of clients in
the financial services industry - were approached to understand their position on SOA.
Most of these firms were chosen based on their involvement in industry conferences
on SOA which was an indication of their interest in adopting SOA. A few, however,
were chosen on an opportunistic basis leveraging a network of contacts. Table 1 de-
scribes the industry sector and profile of the firms interviewed as well as the designa-
tion of the interviewees.

258 H. Luthria and F. Rabhi

Table 1. Summary of Firms Interviewed

Firm Sector Interviewee Profile

1 Bank Head of Strategy Large Australasian private bank

2 Bank Business development ex-
ecutive;
Technical Architect

Large U.K. based private bank

3 Bank Business development ex-
ecutive

Large Europe based private bank

4 Bank CIO India’s second largest private bank

5 Bank Enterprise Architect Mid-sized Australasian public sector bank

6 Bank Enterprise Architect Large Australasian private bank

7 Insurance 2 x Technology manager /
Architect

Mid-sized Indian private general insurance firm

8 Insurance CTO Large Indian public sector general insurance firm

9 Insurance CIO Large Australasian private insurance firm

10 Insurance Enterprise Architect Large Australasian public sector insurance firm

11 Product &
Services

CTO; VP of Strategic Ac-
counts

Small India-based ERP solutions firm

12 Product &
Services

Technical architect Large European ERP solutions firm

13 Product &
Services

Technical architect Large U.S. based software and services firm

14 Services 2 x Technical architect;
Product manager

Large India-based software services and consult-
ing firm

15 Services Principal Large multi-national consulting firm

Semi-structured interviews were conducted with business managers, enterprise ar-
chitects, and CIOs/CTOs of 13 (thirteen) of these firms. A broad set of questions
addressing specific areas of discussion (implementation details, challenges and con-
cerns, benefits realized, lessons learned) was used to guide the interviews. Wherever
possible, the interview data was augmented by documents provided by the interview-
ees. Each of the individual interviews lasted an hour with the exception of the inter-
view with Firm 5, which lasted 30 minutes.

Communications with Firms 10 and 15 were limited to electronic communication.
Firm 10 indicated that their firm did not have an explicit SOA strategy, but they were
pursuing SOA practices at a technical level by “following reasonable SOA practices
in terms of trying to keep things abstracted through the use of messaging middleware
and a messaging portal”. Firm 15 was able to supply documents describing its SOA
strategy at the business and technical levels, and provide specifics of a case study of a

 Organizational Constraints to Realizing Business Value from SOA 259

large financial services firm. Firms 10 and 15 are both included in the analysis not as
primary data but more as an emphasis to the findings from the data gathered in the
interviews with the other firms.

Fourteen of the firms interviewed were in various stages of implementing SOA,
most of them already having migrated targeted business functions to a service based
deployment. The firms were able to provide some insight into the anticipated and
observed benefits of the migration to a service-oriented approach. Firm 6 did not have
an SOA strategy and had tried unsuccessfully to migrate to a service based infrastruc-
ture. The interview provided a valuable insight into the challenges of building a busi-
ness case for SOA adoption. The product and software service providers (Firms
11-15) were able to provide an insight not only into the business drivers for their
product offerings but also their perception of the business drivers for their clients.

Transcriptions of the individual interview data were analyzed using a two-pass
method. The first pass of the analysis used thematic coding to identify broad catego-
ries of organizational issues. The second pass of analysis was performed using axial
coding and major factors were identified using meta-codes. The meta-codes were then
used to identify similar patterns across the data from the multiple firms interviewed.
The following section details the results of the data analysis identifying the major
themes of suggested best practices and organizational factors affecting the implemen-
tation, and the cross-firm patterns observed within these themes.

3 The Empirical Study - Results

Despite the many potential benefits of information technology innovations, organiza-
tions have generally found it very difficult to achieve the promised benefits [43], and
the successful implementation of SOA appears to have its fair share of challenges. It
is interesting to note that even in the limited scholarly work on the use of SOA in the
business domain, an empirical study of two European banks indicated that the “[busi-
ness] service concept was difficult to define in practice” [1].

We were able to get a significant understanding of the constraints impacting the
organizational adoption of SOA running the gamut from funding at the corporate
level to performance challenges at the implementation level. These constraints were
compared with the best practices suggested by service providers to get an understand-
ing of how firms were actually implementing these practices. The best practices are
discussed in Section 3.1, and the constraints that impact each best practice are detailed
in the following sections (Sections 3.2 – 3.8) and summarized in Table 2 at the end of
this section.

3.1 Best Practices Suggested by Service Providers

Service providers, Firms 11-15, were able to provide us an insight into what lessons
they thought they had learned from their experiences, and more importantly, mistakes,
and what they would consider best practices for a successful enterprise SOA imple-
mentation. These experiences were collectively analyzed and distilled by thematic

260 H. Luthria and F. Rabhi

categorization into a set of proposed best-practices for successful enterprise-level
SOA adoption. These best practices are summarized below:

1. Get commitment at the board level.
2. Manage expectations - Invest in SOA for the long term.
3. Align the entire organization along the SOA strategy.
4. Change the mindset of people – SOA is not about technology, it is about

transforming the business process.
5. Governance is critical.
6. Focus on training.
7. Leverage existing resources.

SOA is all pervasive, according to the Development Architect of Firm 12, and you
need to UUget commitment at the board level UU if the adoption of SOA at the enterprise
level is to be successful. Along with commitment at the board level, the UUexpectations
of people across the organization need to be managed UU. There needs to be an acknowl-
edgement that the governance and training associated with service orientation could
possible end up costing much more than the development of the services.

SOA should be viewed as an evolving process and not a silver bullet. There needs
to be a clear understanding at the senior management level that SOA is a UUlong-term
investment in time and resourcesUU, according to Firms 12 and 14. Success is more
probable when starting out with a small project to show business value before rolling
out service orientation on a larger scale, according to Firm 15.

The Development Architect of Firm 12 indicated that the commitment at the board
level needs to permeate the organization to ensure that the UUentire organization is
aligned with the SOA strategyUU. Organizations need to get “everyone on the same page
on the SOA strategy”. The theme underlining this enterprise wide alignment needs to
be that UUSOA is not about the technologyUU, it is “a way of thinking”. This requires that
people’s mindset needed to be changed to ensure that the focus of SOA adoption
should be on transforming business processes (Firms 13 and 15).

A majority of the effort in implementing SOA appears to be implementing an ap-
propriate UUgovernance UU framework in place (Firm 12), and appropriate UUtrainingUU (Firms
12-14). Business people need to be trained in Business Process Modeling and techni-
cal people in the business aspects of services in addition to the appropriate technical
training on the use of tools (Firm 14). Firm 15 indicated the need to be cognizant of
when SOA may not be appropriate. Firms 12, 13, and 15 emphasized that both busi-
ness and technology teams need to understand that SOA is not about creating new
functionality but UUleverage existing resourcesUU more effectively.

These empirically gleaned best practices, it may be argued, are fairly sound generic
software adoption guidelines and match up with what existing analytical SOA-related
literature suggests. So what does this really mean in the real world? The input from
individual firms as well as service providers’ experiences with client implementations
was analyzed independent of suggested practices to better understand how the SOA
implementations actually fared with the rollout of SOA across the enterprise. The
following sections describe this analysis in detail.

 Organizational Constraints to Realizing Business Value from SOA 261

3.2 Get Commitment at the Board Level

At the organizational level, there appears to be UUno direct business case for SOAUU, as
indicated by Firms 1, 4, 6, 7, 9, and 10. The general approach to SOA was captured
pithily by the CIO of Firm 9, who said “Using SOA increases IT value…[but] we are
implementing SOA by stealth. We have no business case for SOA.”

The data also suggests that at the very high business level or customer facing level,
the UUenterprise offerings are treated as service offerings by business unitsUU of most
firms, including Firms 2, 3, 4, 8, and 9, with the business executive at Firm 3 using
the term services interchangeably with applications. Business units view their offer-
ings as a set of services, according to Firm 3, and so cannot understand why the IT
teams are not already service oriented. At a business process level, however, there is
no service oriented thinking and it is left to the technology teams to push service
thinking up from the technology infrastructure implementing the business processes.

3.3 Manage Expectations – Invest in SOA for the Long Term

UUFunding was an issue UU for Firms 2, 6, and 9, since SOA needs a significant investment
and business users are not willing to spend money for something intangible that may
only be achieved in a few years time. The move to SOA requires significant invest-
ment in time and resources for longer-term benefits, but the technology teams in
Firms 2, 4, and 9 were faced with the difficulty of defining what the return-on-
investment (ROI) would be for SOA. According to the VP of Technology of Firm 2,
“business deadlines do not change. How do you convince business units to spend
money and time? Business units want it now. They don’t want to spend money for
something three years down the road. We had to couch [the SOA implementation] in
some other terms like infrastructure updates”.

From an implementation perspective, model based development was critical to the
success of SOA implementations according to the service providers we spoke with,
specifically Firms 12 and 13. However, there are UUno mature toolsUU to either directly
orchestrate business services to create an application or to translate the business proc-
ess models to technical services as an intermediate step. Firm 12 uses models to elicit
business requirements, but manually maps them to technical infrastructure require-
ments. According to Firm 14, which had unsuccessfully tried model based develop-
ment on client projects, “Changes in the business process are hard to reflect in
technical services. So [you end up with] two flows – business process modeling and
technical process modeling. The UUmapping is a manual effort UU. Ideally we would have
liked to model business processes, to technical services, to implementation. But
changes cycling back cause problems because [the available] tools don’t support
this”. The technical architect at Firm 2, relating a similar experience regarding their
attempted BPM adoption effort said “BPEL has inherent problems. The [software]
vendor says it all works – the model translates to the system. The reality is that the
business unit can model its process and simulate BPR scenarios, but once the devel-
opment is done, if you implement any technical change then things fall apart. BPEL
has a round trip problem as a language in supporting this real-world development
process. So now we define a business process model, and then manually translate it
to Business Requirements and Use Cases. The business analyst draws up the business

262 H. Luthria and F. Rabhi

process. The techie looks at the diagram and imports into a BPM tool. Modifications
even at the process level were a problem. The processes were modeled mostly on
paper – and then translated to BPM the tool. It served as documentation for future
maintenance but using the models is a challenge.”

Although major software vendors have rallied around the concept of service-
oriented computing [24], there still is UUno single unified view of the basic communica-
tions standards involved across the board UU [15, 19]. So despite the integration of
systems, both internal and external, being a business driver for the adoption of SOA,
integration across domains continues to be a challenge that goes beyond service think-
ing. While executives at Firms 1 and 4 were skeptical of the promise of plug-and-
play, Firms 2 and 6 were experiencing problems integrating external systems because
of differing standards. Firm 6, in facing the integration effort after an acquisition,
found that even adopting a standard like IFXFF

1
FF still did not help since the contextual or

semantic relevance of the data varied across the two systems being integrated. Service
providers like Firms 12 and 14 also indicated that the kinds of integrations they were
seeing with clients were all one-off or custom integrations. This makes it harder to
sell SOA as a plug-and-play infrastructure.

Standards notwithstanding, by virtue of crossing administrative domains with po-
tential loss of visibility and control, the new cross-organizational business models put
an increased emphasis on non-functional business requirements (generally referred to
as service quality attributes) such as performance, reliability, transactional integrity,
and security [21, 23, 28, 29]. Additionally, with the increasing number of interfaces in
a typical inter- and intra-enterprise service-oriented implementation, addressing these
systemic issues in an environment of multiple administrative domains, straightfor-
ward in theory, becomes a complex problem in practice spanning technical and busi-
ness arenas [19, 26]. In practice, many of the firms we spoke with were struggling
with the same issues, security and performance, being of the highest concern. Firm 4
found that security could grow to be a challenge not just across external domains
because, according to the CIO, a “loose confederation of services creates access and
security issues”, but also across internal domains. Reuse of services by different users
or higher-order services could potentially compromise security as well by changing
the context in which the service is used. While Firms 2, 4, 5, 7, and 11 had experi-
enced issues with performance of services because of fine grained services across
networks, Firm 14 was grappling with problems of maintaining transactional integrity
across services. What was interesting was that all of these issues were approached
from a perspective of granularity, with the firms eschewing too fine grained services
for performance, security, and transactional integrity, resulting in a UUtrade-off between
granularity and service quality attributesUU.

The use of services also involves a UUtrade-off between granularity and the potential
for reuse UU according to Firms 4, 5, 7, 9, and 11, since the coarser the service, the less
the chance to reuse the service in different business contexts or domains. Firm 5,
which appeared to have a significant and relatively successful implementation of
service-oriented systems across the enterprise compared to the other firms we inter-
viewed, was strongly concerned about the proliferation of services due to the lack of
reuse. Firm 7 initiated a service-oriented infrastructure project to address the business

1 http://www.ifxforum.org

 Organizational Constraints to Realizing Business Value from SOA 263

requirement for a consistent user experience (“360 degree view of [the] customer”)
across their three main applications dealing with health insurance, travel insurance,
and automobile insurance. The major thrust of this project, called Unified Customer
View, was viewed as “a de-duplication effort across all the three systems”. Each
system had its own web service to retrieve customer data from a back-end transac-
tional systems/applications. So the data had to be retrieved from all three systems and
merged to get a complete picture. This removal of redundancy worked well for con-
sistency in user experience, but caused a performance bottleneck since it was a single
service addressing queries from three distinct customer bases. As a compromise, the
functionality was then split across the single new service and the three older applica-
tion specific services. Basic customer details were managed via the higher level ser-
vice and the individual services were invoked only if further customer details were
required.

3.4 Align the Organization Around the SOA Strategy

One of the biggest challenges in SOA adoption is understanding which business func-
tions can actually be viewed as business services, and how this set of granular ser-
vices can be used to create a service framework [9]. The business units of Firms 2, 6,
7, 9, and 10 UUdid not understand SOAUU and were more focused, understandably, on
business requirements being met with “consistency, reliability, and uptime”. The VP
of Engineering for Firm 2 found that the organizational challenge was clearly articu-
lating to the business what SOA could help achieve. “The big problem in my personal
opinion is that if something is so great and you cannot explain it – is it really do-able?
Vendors say it is a silver bullet but cannot explain SOA in the same way to business
owners, techies, and others across organization. People are trying very hard to define
SOA, both vendors and end-users, rather than addressing business problems and real-
izing business value. You need to sell it to fund it and so people are getting lost in
defining SOA”.

At the technical infrastructure level, the UUtechnology teams are actively adopting
service-oriented practices for the most part independently of the business unitsUU.

3.5 Change the Mindset from Technology to a Business Process Focus

Despite the service mind-set of the business units, business process modeling as a
strategy was not adopted by the business units as evidenced by Firms 2 and 6. The
translation of the business service requirements to a set of technical services and
flows is done by the technology teams using a variety of modeling techniques. In
most firms, according to Firms 2, 5, 6, and 12-14, the UUbusiness services are modeled
by the technology teamsUU or representatives of the technology teams, and if needed
manually mapped to the technical service architecture. This is consistent with the one
other empirical study of the adoption of SOA [1] which found that business processes
are not included in the service definitions, which tend to be technical service imple-
mentations of the business process flow.

264 H. Luthria and F. Rabhi

T
ab

le
 2

. S
um

m
ar

y
of

 O
bs

er
ve

d
C

on
st

ra
in

ts
 to

 E
nt

er
pr

is
e

S
O

A
 A

do
pt

io
n

B
es

t
P

ra
ct

ic
e

C
on

st
ra

in
t

F
ac

ed

F
ir

m
s

T
yp

ic
al

 Q
u

ot
e(

s)

N
o

bu
si

ne
ss

 c
as

e
fo

r
S

O
A

1,

 2
, 4

, 6
, 7

,
9,

 1
0

W
e

ar
e

im
pl

em
en

ti
ng

 S
O

A
 b

y
st

ea
lt

h.
 W

e
ha

ve
 n

o
bu

si
ne

ss
 c

as
e

fo
r

S
O

A
.

G
et

 c
om

m
it

m
en

t a
t t

he

bo
ar

d
le

ve
l.

B
us

in
es

se
s

vi
ew

 th
em

se
lv

es
 a

s
be

in
g

or
ga

ni
ze

d
as

 s
er

vi
ce

s
al

re
ad

y
2,

 3
, 4

, 8
, 9

E

ac
h

bu
si

ne
ss

 c
ha

nn
el

 o
r

se
rv

ic
e

ha
s

a
de

ve
lo

pm
en

t
te

am
.

T
he

re
 i

s
an

 i
nf

ra
st

ru
ct

ur
e

te
am

 s
up

po
rt

in
g

th
es

e
se

rv
ic

es
 a

nd
 a

n
op

er
at

io
ns

 te
am

.

F
un

di
ng

 f
or

 S
O

A

2,
 6

, 9

F
un

di
ng

 i
s

a
bi

g
is

su
e.

 T
he

re
 i

s
no

 p
er

ce
iv

ed
 b

us
in

es
s

va
lu

e
[o

f
S

O
A

].
 W

ha
t

IT
 i

s
tr

yi
ng

 t
o

do
 a

nd
 w

ha
t

th
e

so
ft

w
ar

e
ca

n
ac

co
m

pl
is

h
is

 n
ot

 u
nd

er
st

oo
d.

L
ac

k
of

 s
up

po
rt

in
g

to
ol

s
2,

 1
2,

 1
3,

 1
4

V
en

do
r

to
ol

s
ar

e
co

m
pl

ex
. H

ar
d

to
 le

ar
n

an
d

us
e.

 R
ea

li
ty

 is
 n

ot
 li

ke
 th

e
hy

pe
 f

or
 th

e
to

ol
.

B
us

in
es

s
m

ap
pi

ng
 to

 te
ch

ni
ca

l
se

rv
ic

es
 is

 a
 m

an
ua

l e
ff

or
t.

2,
 5

, 6
, 1

2,

13
, 1

4
C

ha
ng

es
 i

n
th

e
bu

si
ne

ss
 p

ro
ce

ss
 a

re
 h

ar
d

to
 r

ef
le

ct
 i

n
te

ch
ni

ca
l

se
rv

ic
es

.
S

o
tw

o
fl

ow
s

ar
e

m
ai

nt
ai

ne
d

–
bu

si
ne

ss
 p

ro
ce

ss

m
od

el
in

g
an

d
te

ch
ni

ca
l p

ro
ce

ss
 m

od
el

in
g.

 T
he

 m
ap

pi
ng

 is
 a

 m
an

ua
l e

ff
or

t.

L
ac

k
of

 s
ta

nd
ar

ds

1,
 2

, 4
, 6

, 1
2,

14

[T
he

re
 a

re
]

to
o

m
an

y
st

an
da

rd
s

–
no

t
re

al
ly

 a
 W

eb
 S

er
vi

ce
s

st
ac

k
bu

t
a

m
ix

 o
f

te
ch

no
lo

gi
es

 a
nd

 s
ta

nd
ar

ds
.

T
he

 c
or

e
is

 o
ka

y
(S

O
A

P
, W

S
D

L
)

bu
t s

ta
nd

ar
ds

 a
re

 b
ad

. T
he

re
 a

re
 lo

ts
 o

f
po

li
ti

cs
 in

 s
ta

nd
ar

ds
 w

it
h

th
e

ve
nd

or
s.

T
ra

de
-o

ff
 b

et
w

ee
n

se
rv

ic
e

gr
an

ul
ar

it
y

an
d

qu
al

it
y

at
tr

ib
ut

es

2,
 4

, 5
, 7

, 9
,

11
, 1

4

N
ow

 t
hi

ng
s

ar
e

ok
ay

,
re

us
e

is
 n

ot
 v

er
y

hi
gh

.
If

 r
eu

se
 i

nc
re

as
es

 t
he

n
re

so
ur

ce
s

ho
st

in
g

th
es

e
as

se
ts

 w
il

l
be

co
m

e
ho

ts
po

ts
.

It

be
co

m
es

 a
 c

ho
ic

e
be

tw
ee

n
pe

rf
or

m
an

ce
 o

ri
en

te
d

ar
ch

it
ec

tu
re

 v
er

su
s

S
O

A
 –

 a
nd

 t
he

 g
ra

nu
la

ri
ty

 y
ou

 c
ho

os
e

de
te

rm
in

es

w
he

re
 y

ou
 la

nd
.

M
an

ag
e

ex
pe

ct
at

io
ns

 -

in
ve

st
 in

 S
O

A
 f

or
 th

e
lo

ng
-t

er
m

.

T
ra

de
-o

ff
 b

et
w

ee
n

gr
an

ul
ar

it
y

an
d

re
us

e
4,

 5
, 7

, 9
, 1

1
R

eu
se

 is
 a

 d
ou

bl
e-

ed
ge

d
sw

or
d.

 W
e

ca
nn

ot
 r

eu
se

 c
ha

ng
in

g
so

ft
w

ar
e

m
od

ul
es

.

B
us

in
es

s
un

de
rs

ta
nd

in
g

of
 S

O
A

2,

 4
, 7

, 9
, 1

0
I

do
ub

t
w

he
th

er

an
yo

ne

in

th
e

bu
si

ne
ss

w

ou
ld

 e
ve

n
un

de
rs

ta
nd

w

ha
t

"S
O

A
"

is

ab
ou

t,
or

ge

t
ex

ci
te

d
w

he
n

yo
u

m
en

ti
on

 "
A

rc
hi

te
ct

ur
e"

 a
lt

ho
ug

h
th

ey
 w

ou
ld

 b
e

ab
le

 to
 r

el
at

e
se

rv
ic

es
-o

ri
en

te
d

m
od

el
.

A
li

gn
 th

e
or

ga
ni

za
ti

on

al
on

g
th

e
S

O
A

 s
tr

at
eg

y.

S
O

A
 i

m
pl

em
en

te
d

w
it

hi
n

te
ch

no
lo

gy
 d

om
ai

n
on

ly

2,
 3

, 4
, 8

, 9

T
he

 b
us

in
es

s
co

m
m

un
it

y
ha

s
no

 u
nd

er
st

an
di

ng
 o

f
S

O
A

. T
he

y
ar

e
lo

ok
in

g
fo

r
co

ns
is

te
nc

y,
 r

el
ia

bi
li

ty
, a

nd
 u

pt
im

e.

O
w

ne
rs

hi
p

of
 s

er
vi

ce
s

2,
 4

, 9
, 1

4
It

 is
 h

ar
d

en
ou

gh
 to

 id
en

ti
fy

 th
e

bu
si

ne
ss

 o
w

ne
r

of
 a

n
ac

co
un

t o
r

ap
pl

ic
at

io
n.

 I
m

ag
in

e
do

in
g

th
at

 f
or

 a
 b

us
in

es
s

se
rv

ic
e!

C
ha

ng
e

th
e

m
in

ds
et

.
B

us
in

es
s

pr
oc

es
se

s
m

od
el

ed
 b

y
te

ch
no

lo
gy

 te
am

s.

2,
 5

, 6
, 1

2,

13
, 1

4
T

he
 b

us
in

es
s

an
al

ys
t d

ra
w

s
up

 th
e

bu
si

ne
ss

 p
ro

ce
ss

. T
he

 te
ch

ie
 lo

ok
s

at
 th

e
di

ag
ra

m
 a

nd
 i

m
po

rt
s

in
to

 a
 B

P
M

 to
ol

.

K
no

w
le

dg
e

m
an

ag
em

en
t

2,
 4

, 5
, 1

2,
 1

4
W

e
w

il
l a

lw
ay

s
ne

ed
 th

e
pe

rs
on

 w
ho

 c
re

at
ed

 th
e

se
rv

ic
es

.
G

ov
er

na
nc

e
is

 c
ri

ti
ca

l
P

ro
li

fe
ra

ti
on

 o
f

re
du

nd
an

t s
er

vi
ce

s
5,

 9
, 1

1
O

ur
 d

ev
el

op
m

en
t t

ea
m

 is
 n

ot
 c

ra
zy

 a
bo

ut
 r

eu
se

.

F
oc

us
 o

n
tr

ai
ni

ng

A
va

il
ab

il
it

y
of

 s
ki

ll
s

an
d

tr
ai

ni
ng

1,

 2
, 4

, 5
, 6

,
7,

 8
, 9

, 1
0,

12

, 1
3,

 1
4

L
oc

al
 s

ki
ll

 s
et

s
ha

ve
 n

ot
 a

bs
or

be
d

th
e

nu
an

ce
s

of
 S

O
A

, b
ut

 h
av

e
be

en
 q

ui
ck

 to
 a

bs
or

b
th

e
hy

pe
.

L
ev

er
ag

e
ex

is
ti

ng

re
so

ur
ce

s
C

on
fu

si
on

 a
ro

un
d

us
e

of
 le

ga
cy

re

so
ur

ce
s

1,
 2

, 4
, 6

, 7
,

8,
 1

2

S
O

A
 h

el
ps

 le
ga

cy
 in

te
gr

at
io

n.
 B

us
in

es
s

be
ne

fi
ts

 w
er

e
ha

rv
es

te
d

us
in

g
m

es
sa

gi
ng

 b
en

ef
it

s.

It
 is

 d
if

fi
cu

lt
 to

 m
ov

e
aw

ay
 f

ro
m

 le
ga

cy
 s

ys
te

m
s.

 T
o

m
ov

e
to

 w
ha

t [
ve

nd
or

 n
am

e]
 c

al
ls

 S
O

A
 is

 to
o

fa
r

to
o

qu
ic

k.

 Organizational Constraints to Realizing Business Value from SOA 265

An added potential complication was identified by Firm 14 which found that
“breaking application into services causes UUownership issuesUU”. If a service is created
for a business unit and can be used by other units, there is considerable debate of how
the service needs to be maintained going forward. Will the business unit that created
the service (or the business need for the service), own the service or should the com-
mon IT infrastructure team own it? If the needs of a specific user changes should the
infrastructure team change the common service or customize another incarnation of
the service? Such issues were echoed by the CIOs of both Firm 4 and Firm 9, and the
VP of Technology for Firm 2. According to the CIO of Firm 4, identifying business
ownership is critical and needed for compliance to industry regulations. “It is hard
enough to identify the business owner of an account or application. Imagine doing
that for a business service!”

3.6 Governance is Critical

The focus of service governance appears to be on knowledge management achieved
by “extensive documentation”, less on which functions need to be converted to ser-
vices and more on how the services were going to be created and maintained (Firm
12). The IP related to services – i.e., the knowledge of how the services work and
what the inter-dependencies are - was “primarily person-based” and managed via
documentation, and thisUU knowledge management of service function and impactUU was
identified as a big concern (Firms 2, 4, 5, 12, and 14).

A critical part of governance is vetting the creation of services to encourage reuse.
In practice, however, governance committees are not looking at whether a service
needs to be developed but how it will be developed. This UUlack of reuse results in a glut
of redundant servicesUU, according to Firm 5, that causes versioning and integrity issues.
Firm 9 indicated that service reuse does not work for them for a couple of reasons.
The first of these reasons was that some non-critical services had been reused in the
past in mission critical applications causing service downtime, and hence dissatisfied
customers, when the non-critical services were taken offline for maintenance. The
second reason was that the developers preferred to develop something on their own
rather than take the time to learn about an existing service and its interdependencies.
This was attributed to potential clashes in levels of criticality, pressures of business
delivery, and sheer developer propriety. In the CIO’s words, “The concern is the
speed of reaction to business requirement limits the use of SOA we would like to. We
have no vision of reuse. Given the need to react quickly we are concentrating only on
rebuilding for use.”

3.7 Focus on Training

The dependency on individual people for their implicit knowledge was also tied to a
UUconcern about availability of the right skills and trainingUU. In dealing with business
units and strategic partners of businesses, general SOA awareness training and the
move to a service mindset was critical, according to Firms 4 and 12. According to
Firm 12, 90% of the effort in implementing SOA is on governance and process engi-
neering, so technical people are not too keen on implementing SOA at an enterprise
level. Training business people in using business process modeling tools, was also

266 H. Luthria and F. Rabhi

found to be a challenge, according to Firm 2, and so the responsibility of process
modeling falls on the technology teams. This requires technical staff to have the req-
uisite “implementation and practical skills”. This requires appropriate training for
technical people on the business aspect of services and the appropriate technical train-
ing on the use of tools. Even at a purely technical level, the sheer complexity of the
vendor tools available for the development and management of services required
extensive training according to Firm 2, which had unsuccessfully attempted to roll out
business process modeling across the enterprise six years earlier. Thus, adopting a
service mindset and grooming service-savvy talent on both the business and technical
sides was a big concern universally for Firms 1, 2, 4-10, and 12-14.

3.8 Leverage Existing Resources

Our cross-firm data also appeared to highlight a UUlack of understanding of how legacy
systems could be leveraged UU in a service-oriented environment. Firms 4 and 12
strongly advocated finding ways to expose existing legacy resources as services in-
stead of building new functionality. Firm 12 was able to cite the example of a client
bank that had taken three years to build a new service based loan system and
“scrapped its old loan system…[that] had been in use for 12 years”. The lesson
learned was that key business functions provided by the existing and proven legacy
system should have been exposed as services over time one by one, thus providing a
safer and less expensive migration path to a service-oriented infrastructure. Firm 14
also indicated that many firms were attempting to leverage their legacy systems by
replacing their Enterprise Application Integration (EAI) frameworks by an Enterprise
Service Bus (ESB) and plugging legacy systems into the ESB with service wrappers.
Firm 2 was grappling with how to use legacy assets – assessing ways to do this rang-
ing from lightweight approaches like wrappers to attempting to create a full-blown
service component architecture which would result in a more complex implementa-
tion. Firm 7 was converting its legacy base iteratively to Web Services while Firm 6
could not move away from its legacy systems because the abstraction was complex.
Across the firms interviewed, there appeared to be no clear or generally accepted way
to leverage proven legacy systems.

4 Related Work

There are a few existing studies that empirically investigate the real-world implemen-
tations of SOA. Among the studies that look at organizational impacts, two vendor-
sponsored studies provide insights from client engagements. The first one by Fricko
[10], identifies the importance of addressing the organizational culture, specifically
with respect to business and technology team interaction, and reuse in the context of a
specific IBM project. The second study by Bieberstein et al [4] prescribes a spectrum
of guidelines from organizational structure to technology architecture based on the
vendors solutions.

From an adoption perspective, Yoon and Carter [30] use publicly available secon-
dary data to study the diffusion of SOA in organizations, while Ciganek et al [7, 8], in

 Organizational Constraints to Realizing Business Value from SOA 267

a study more closely related to the issues being considered in this paper, examine the
challenges of adopting Web services across four financial service firms.

The main focus of most other studies is on the value of SOA as an integration
strategy. Baskerville et al [1] focus on the strategic benefits achieved from imple-
menting SOA through the lens of the four architectural challenges faced by banks –
internal application integration, integration with partners, integration in the context of
mergers and acquisitions (M&As), and agile development. The use of SOA as an
integration framework in the context of M&As is also examined by Henningsson et al
[12]. The study reviews five companies across industry sectors, and concludes that
SOA can be used to effectively integrate disparate systems. Another study by Legner
and Heutshi [16] also examines the use of SOA as an integration mechanism in four
firms across industry sectors. While the main thrust of the results is the design of
SOA for effective systems integration, a by-product of the analysis is a suggested set
of three major activities for SOA adoption – (i) introduction of new organizational
roles and processes for governance, (ii) creation of architectural guidelines, and (iii)
the use of SOA for infrastructure projects.

5 Contribution and Business Impact

Research in the area of information technology diffusion indicates that the successful
adoption of new technology requires organizations to take an integrated approach to
organizational and technical changes introduced by the technology [19]. The technical
aspects of SOA appear to have appropriate research efforts and guidelines [23], but
there is a lack of similar structure for the examination of the pragmatic impacts of the
adoption of SOA. There is a growing understanding of the organizational processes
and characteristics that influence the adoption and implementation of technology [5,
14], but there is little understanding of how these organizational constraints may im-
pact the organizational adoption of SOA [18].

Our study adds to current knowledge by reviewing organization-wide challenges to
SOA adoption across multiple firms with a fairly broad representation within the finan-
cial services industry – banks and insurance firms, which researchers have identified as
having high dependence on technology [13, 20] - and service providers with clients in the
financial services industry. Our study also has the advantage of having a blend of com-
pany profiles to add depth to the investigation. The study looks at a mix of banks and
insurance firms, service providers and client firms, large and small firms, within an in-
dustry but across various countries and across public and private sectors. Firms 2, 3, 6,
12, 13, and 14 indicated that the SOA infrastructure deployment and management char-
acteristics were comparable across countries since the business processes were identical.
Contextual variations were limited to business rules catering to local regulations. The
profiles of the people interviewed vary from the Head of Corporate Strategy to the Tech-
nical Architect, providing a rounded perspective of the implementation of SOA. The
analysis also includes firms which ranged from those that considered their attempts at
SOA unsuccessful to others that had achieved tangible business benefits from their SOA
implementation. The interview data was thematically coded to glean what challenges the
firms faced in the process of implementing SOA, and our findings were fairly consistent
across the firms interviewed.

268 H. Luthria and F. Rabhi

Studies of the practical business impacts of SOA are crucial as the number of SOA
implementations grows, and are required for a better critical understanding of this
popular architectural concept that is being rapidly adopted by industry organizations.
These studies could well provide frameworks, guidelines, and best practices for the
effective adoption of SOA as an enterprise strategy, and more importantly what chal-
lenges to expect in trying implement these practices.

The business opportunity created by SOA revolves around the reorganization of
enterprise information resources as independent, reusable services [27], moving away
from viewing corporations as a building block of processes, and re-inventing the cor-
poration to be more a collection of services focused on comparative advantage [11,
22]. The automation of these services creates a new kind of business model, facilitat-
ing an integrated process across the enterprise ecosystem to include partners, suppli-
ers, and customers [27]. This makes it critical to have commitment across the
organization starting at the board level of the firms.

The evolution to the service paradigm is equally a business and IT transformation
[27], and the key to effectively deploying SOA across the enterprise, is to recognize
that it is an architecture that transcends technologies and could actually be independ-
ent of the underlying technologies that implement it [6]. Not many business people,
however, are familiar with the term ‘SOA’, and many firms whose SOA implementa-
tions have fallen well short of expectations possibly did not include the business as-
pects of the move to a service-based deployment [25]. This risk may be mitigated by
training both business and systems people to understand this new model, getting the
organization aligned along this model, and changing the mindset of the organization
to not only work differently but also leverage existing legacy systems.

Even as SOA is now widely recognized as having the potential to improve the re-
sponsiveness of both business and IT organizations, it seems that most organizations
that are adopting SOA do not fully understand the business potential of SOA, focus-
ing on technical implementation issues instead of the broader business service view
[27]. In this context it is imperative to bear in mind the need for skills training, appro-
priate governance controls while being cognizant of the slowly maturing technology
environment to support the migration to service orientation.

The understanding of how SOA is actually implemented on the ground, the associ-
ated implementation issues, the true business value realized, and best practices
learned are all areas in which the academic and practitioner literature could be en-
hanced. In investigating the issues impacting a services implementation, this study

(i) fills a crucial knowledge gap because there is little empirical evidence of the
practical use of SOA across the enterprise,

(ii) provides direction for future research, and
(iii) provides a set of guidelines to help practitioners implement SOA successfully

across the enterprise.

The findings of this study are part of a larger research effort to leverage the data
from the fifteen firms to understand how the enterprise SOA strategy can be aligned
with the organizational strategy. The next phase in this research effort involves a
continued analysis of the data to develop a framework for SOA implementations.

 Organizational Constraints to Realizing Business Value from SOA 269

Acknowledgements

The generous scholarship provided by the DEST-funded project ADAGE at UNSW is
gratefully acknowledged.

References

[1] Baskerville, R., et al.: Extensible Architectures: The Strategic Value of Service-Oriented
Architecture in Banking. In: Thirteenth European Conference on Information Systems,
Regensburg, Germany (2005)

[2] Beidleman, C., Ray, M.: The agility revolution. In: Cortada, J.W., Woods, J.A. (eds.) The
Quality Yearbook 1998 (1998)

[3] Benbasat, I., Goldstein, D.K., Mead, M.: The Case Research Strategy in Studies of In-
formation Systems. MIS Quarterly 11(3), 369–386 (1987)

[4] Bieberstein, N., et al.: Impact of service-oriented architecture on enterprise systems, or-
ganizational structures, and individuals. IBM Systems Journal 44(4), 691–708 (2005)

[5] Broadbent, M., Weill, P.: Improving business and information strategy alignment: learn-
ing from the banking industry. IBM Systems Journal 32(1), 162–179 (1993)

[6] Channabasavaiah, K., Holley, K., Tuggle, E.M.J.: Migrating to a service-oriented archi-
tecture. In: On demand operating environment solutions, IBM (2004)

[7] Ciganek, A.P., Haines, M.N., Haseman, W.: Horizontal and Vertical Factors Influencing
the Adoption of Web Services. In: Proceedings of the 39th Annual Hawaii International
Conference on System Sciences HICSS 2006, p. 6 (2006)

[8] Ciganek, A.P., Haines, M.N., Haseman, W.D.: Challenges of Adopting Web Services:
Experiences from the Financial Industry. In: Proceedings of the 38th Hawaii International
Conference on System Sciences (2005)

[9] Erlanger, L.: Making SOA Work. In: InfoWorld, pp. 45–52 (2005)
[10] Fricko, A.: SOAs Require Culture Change and Service Reuse. In: Business Communica-

tions Review, pp. 58–64 (2006)
[11] Hagel, J.I., Brown, J.S.: Your Next IT Strategy. Harvard Business Review, 105–113

(2001)
[12] Henningsson, S., Svensson, C., Vallen, L.: Mastering the integration chaos following fre-

quent M&As: IS Integration with SOA Technology. In: Hawaii International Conference
on System Sciences 2007, IEEE Computer Society, Big Island (2007)

[13] Jarvenpaa, S.L., Ives, B.: Information technology and corporate strategy: a view from the
top. Information Systems Research 1(4), 351–376 (1990)

[14] Lai, V.S., Guynes, J.L.: An assessment of the influence of organizational characteristics
on information technology adoption decision: a discriminative approach. IEEE Transac-
tions on Engineering Management 44(2), 146–157 (1997)

[15] Leavitt, N.: Are Web Services Finally Ready to Deliver? In: Computer, pp. 14–16 (2004)
[16] Legner, C., Heutschi, R.: SOA Adoption in Practice-Findings from Early SOA Imple-

mentations. In: Österle, H., Schelp, J., Winter, R. (eds.) Proceedings of the 15th European
Conference on Information Systems, St. Gallen, Switzerland, pp. 1643–1654 (2007)

[17] Luthria, H., Rabhi, F., Briers, M.: Investigating the Potential of Service Oriented Archi-
tectures to Realize Dynamic Capabilities. In: Asia-Pacific Service Computing Confer-
ence, The 2nd IEEE (APSCC 2007). IEEE Computer Society, Tsukuba (2007)

270 H. Luthria and F. Rabhi

[18] Luthria, H., Rabhi, F.A.: Service Oriented Computing in Practice - An Agenda for Re-
search into the Factors Influencing the Organizational Adoption of Service Oriented Ar-
chitectures. Journal of Theoretical and Applied Electronic Commerce Research (2008)

[19] Margaria, T., Steffen, B.: Service Engineering: Linking Business and IT. In: Computer
(IEEE), p. 45 (2006)

[20] McFarlan, F.W.: Information technology changes the way you compete. Harvard Busi-
ness Review 62(3), 98–103 (1984)

[21] Mukhi, N.K., Konuru, R., Curbera, F.: Cooperative Middleware Specialization for Ser-
vice Oriented Architectures. In: International World Wide Web Conference. ACM, New
York (2004)

[22] Murray, W.: Implications of SOA on business strategy and organizational design. The
SOA Magazine volume (2007)

[23] Papazoglou, M.P., et al.: Service Oriented Computing Research Roadmap. In: Dagstuhl
Seminar (2006)

[24] Quocirca SOA: Substance or Hype? Quocirca Ltd. (2005)
[25] Ricadela, A.: The Dark Side of SOA. In: Information Week, pp. 54–58 (2006)
[26] Saunders, S., et al.: The software quality challenges of service oriented architectures in e-

commerce. Software Quality Journal 14(1), 65–75 (2006)
[27] Sprott, D.: Service-Oriented Architecture: An Introduction for Managers. CBDI Journal

(2004)
[28] Stantchev, V., Malek, M.: Architectural translucency in service-oriented architectures.

IEE Proceedings - Software 153(1), 31–37 (2006)
[29] Tsai, W.T.: Service-Oriented System Engineering: A New Paradigm. In: IEEE Workshop

on Service-Oriented System Engineering (SOSE 2005). IEEE, Los Alamitos (2005)
[30] Yoon, T., Carter, P.: Investigating the Antecedents and benefits of SOA Implementation:

A Multi-Case Study Approach. In: Americas Conference on Information Systems (AM-
CIS). AIS Electronic Library, Colorado (2007)

E-Marketplace for Semantic Web Services

Witold Abramowicz, Konstanty Haniewicz, Monika Kaczmarek,
and Dominik Zyskowski

Department of Information Systems, Poznan University of Economics Al.
Niepodleglosci 10, 60-967 Poznan, Poland

{w.abramowicz,k.haniewicz,m.kaczmarek,d.zyskowski}@kie.ae.poznan.pl

Abstract. Automation of processes is a crucial factor for enterprises
operating within a modern collaborative business environment. In order
to ensure flexible operations, companies tend to build their IT systems
in accordance with the SOA paradigm and take advantage of the Se-
mantic Web technologies. The mentioned tendency especially in case of
cooperating organizations requires support for automated service discov-
ery and fast integration of discovered artefacts. Currently, one can easily
find several initiatives that aim at automation of already pointed tasks.
As a part of this work, we analyze a number of different frameworks that
implement, support and facilitate interactions inherent to Semantic Web
services and indicate their shortcomings. Having completed this survey,
we propose a general model of SWS e-marketplace taking into account
all important aspects that a featured model should provide. In order to
achieve this goal, a set of features provided by the surveyed frameworks is
compiled with a set of additional traits that were not considered before.
Moreover, the model is enriched with economical requirements driven by
service providers’ and service requesters’ needs.

1 Introduction

Automation of enterprise processes is a crucial factor for enterprises operating
within a modern collaborative business environment. In order to ensure flexible
operations, companies tend to build their IT systems in accordance with the SOA
paradigm and take advantage of the Semantic Web technologies [1]. The men-
tioned tendency especially in case of cooperating organizations requires support
for automated service discovery and fast integration of discovered artefacts.

As the conducted research and current initiatives showed, the service-oriented
computing requires an infrastructure that provides a mechanism for coordinat-
ing between service requesters and providers [2]. Such a coordination mechanism
may take different forms. Various research initiatives were undertaken in order
to provide a fully-fledged platform that would enable the automated interac-
tions between service requesters and service providers. However, majority of the
research concentrates on selected aspects of Semantic Web services (SWS) us-
age in the context of service orientation. The most active areas include service
composition, discovery, description methods or contracting.

A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, pp. 271–285, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

272 W. Abramowicz et al.

Within this work we present an abstract model of SWS e-marketplace defined
based on the observations of the SOA and Web services market evolution. We
argue that the problem of Semantic Web services provisioning requires incorpora-
tion of business-oriented point of view and that an additional set of mechanisms
should be taken into account in order to meet business expectations. Within
our approach, we do not ignore the fact that SWS are also a kind of good that
is provided and requested by some entities. Therefore, we pay special attention
to a way of describing clients’ needs and providers’ services in order to assure
possibly complete information on services offered. We also highlight the problem
of service quality representation.

A reference model of a marketplace is given for the sake of clarity and building
common understanding of concepts later discussed. The model is defined with
aid of a set of crucial concepts that were designed to be straightforward and
descriptive to convey all information needed for further reference. A study of
adoption of the concepts enumerated is presented.

The article is structured as follows. First, a necessary introduction into a re-
search domain and current trends is given, based on the experience and work
done by scientists involved in various European and worldwide initiatives revolv-
ing around a notion of Web service and its semantically annotated counterpart.
Then, a more detailed picture of the marketplace is drawn by taking into account
initiatives centred on electronic commerce in general. This is of utmost impor-
tance for the work as it is impossible to imagine a working marketplace that does
not implement a number of standards and features desired and expected to be in
place. Core functionalities are later enhanced with ones that seem to be omitted
either due to the concrete assumptions of reviewed initiatives or due to other
unknown to the authors reasons. Further on, a presentation of reference model
electronic marketplace is followed by a complete list of functionalities that char-
acterize the featured electronic marketplace is given along with discussion of its
soundness. The discussion of the soundness is set as a result of a comparison of
other initiatives of electronic marketplaces. The article concludes in a summary
of efforts and shows the directions of our future work.

2 Open Service Marketplace and Research Roadmap

As pinpointed by [3] the market of Web services evolves into a direction of the
open Web services market, as depicted in 1. This vision is also supported by the
research roadmap defined by European experts in the domain of service oriented
computing [4] as well as current trends e.g. [1] or [41]. The mentioned vision and
evolution concerns the different stages (i.e. layers) of SOA development as well
as application of Semantic Web technologies to achieve automation of certain
interactions.

Within the vision of extended SOA [3], three main layers may be distinguished.
The first one focuses on atomic services, their descriptions and basic opera-
tions such as: publication, discovery, selection and binding; producing or utilizing
their description. This layer constitutes the SOA foundation. It has already been

E-Marketplace for Semantic Web Services 273

implemented not only for the Web services but also for Semantic Web services
(e.g. DIP1 or ASG2).

Upper layers provide an additional support required for service composition
and service management. In the second layer, the composition of services requires
an existence of additional functionalities, namely: coordination of the composite
service execution, monitoring as well as conformance that are to ensure the
integrity of the composite services and finally assurance of the quality of the
composite service.

In the top layer, the organizations responsible for performing management
functions (such as QoS assurance, overall maintenance etc.) are situated. They
are called service operators, which may be service clients or composite service
creators. The aim of the third layer is also to provide a support for open service
marketplaces.

The authors [3] argue that the purpose of an open service market is to create
opportunities for buyers and sellers to meet and make business electronically, or
aggregate service supply/demand by offering added-value services and grouping
the buying power. The scope of such a service marketplace would be limited
only by the ability of enterprises to make the offer visible to other enterprises
and establish industry-specific protocols to conduct business.

Fig. 1. Extended SOA [3]

It may be argued that we are currently situated in the third layer of SOA de-
velopment, however, the question appears what form such a marketplace should
take and which functionalities it should offer. As the conducted research showed,
the service-oriented computing requires an infrastructure that provides a mech-
anism for coordinating between service requesters and providers [2]. Such a
1 http://dip.semanticweb.org
2 http://asg-platform.org

http:// dip.semanticweb.org
http://asg-platform.org

274 W. Abramowicz et al.

coordination mechanism may be implemented in various forms. Abstracting from
the model that will be used, the platform where potential business partners can
be discovered, prices can be ascertained and contracts may be signed is required.

The answer to the type of this platform may be found by reviewing the current
initiatives and trends [1],[29]-[38] and taking into account the already mentioned
research [4]. Based on current findings, we argue that the most appropriate
architecture for inter-organisational collaboration should be an e-marketplace
adopted to particular characteristics of SWS. Therefore, apart from typical SWS
interactions like composition an additional focus is paid to industry community,
business exchanges and institutional and governance aspects. The detailed de-
scription of SWS e-marketplace features is presented in the next section.

3 Electronic Marketplace of SWS - Requirements

Taking all of the already mentioned issues into account, it seems that the best
form that the open service market may take is the semantics-based e-marketplace
[17] [18] targeted at B2B interactions. As SWS are in fact the good that is may
be traded on the ontology-based e-marketplace, thus, instead of a Web services
e-marketplace a SWS e-marketplace should be addressed.

Bakos [8] defines an electronic marketplace as an inter-organizational infor-
mation system that allows the participating buyers and sellers in some market
to exchange information about process and product offerings. Other definitions
stress that e-marketplaces are intermediaries that allow buyers and sellers to
meet on an electronic platform that rests on the Internet infrastructure in or-
der to exchange information about products/services (e.g. prices, specifications),
conduct transactions online and adhere to other value-added services (e.g. set-
tlement, distribution, integration, SCM) offered by the intermediary [9].

E-marketplace activity has been evolving from the early matchmaking models
to more complex interactive and interconnected marketplaces. Following [10],
four phases of e-marketplace evolution may be distinguished. It began with the
transaction focus (the first phase) and evolved into the value-added marketplace
that offers transaction support services (the second phase). In the third phase,
the e-marketplace’s services allow for not only information exchange but also
for knowledge exchange facilitating cross-organizational collaboration. Finally,
the ability to integrate the transaction exchange, the value-add services and the
knowledge services moves the evolution of e-marketplaces into the fourth phase
called Value Trust Networks (VTN).

In the recent years, e-marketplace proved to be sound solution to promote
intra-organisational cooperation [11][12][13]. Moreover, collaboration-oriented
e-marketplaces are cited as an emerging approach to support online business-to-
business transactions [14]. As indicated in [15] the main goal of e-marketplaces
in their formation phase was to bring different trading partners together. How-
ever, the requirements on e-marketplaces already increased within this phase.
Companies demand additional features for lowering costs and for automation
and optimization of their business processes. According to this, the aim for

E-Marketplace for Semantic Web Services 275

e-marketplaces is to offer more automation and value add services, such as of-
fering services for initiation, fulfilment, and completion of trading transactions
including shipment, payment and logistic services [15].

The research in the area of e-marketplaces proved that the utilization of
ontologies facilitates the processes of e-marketplace, from matchmaking, rec-
ommendation, to negotiation [16] and helps to achieve the desired level of au-
tomation [15]. In addition, ontology allows to solve some typical problems in
e-marketplaces (see [16] for details). Taking all of the above issues in the ac-
count, it seems that the best form that the open service market may take is the
ontology-based e-marketplace targeted at B2B interactions.

The Semantic Web services e-marketplace should incorporate most function-
alities offered currently by online marketplaces like eBay, Amazon or auction
portals [17]. Functionalities like discovery, personalization, payment, delivery,
shipment tracking [19] are the must-have items on the functionality list of every
modern web-based marketplace. The minimal set of functionalities that the SWS
e-marketplace should support is as follows [14] :

– dynamic discovery of services and business processes,
– generation of reusable services and business processes,
– registering and advertising of available services and business processes in a

proper structure.

However, we argue that the e-marketplace of Semantic Web services should
posses also some additional mechanisms to meet specific requirements of the
clients and providers. According to [32], the platform should allow multiple buy-
ers and sellers to trade simultaneously and ensure an immediate reaction in
case a suitable counterpart is found. The mechanism should support trading of
heterogeneous services. In fact, a meaningful matchmaking of orders should be
realized by the market infrastructure to allow matching of services based on the
semantics of an order instead of their syntactical representation. Furthermore,
services may differ in their quality characteristics and their policies, e.g. a stock
quote service by its quote time; a billing service by its age restriction. As such,
the mechanism should support services with many attributes.

In order to meet these requirements, an e-marketplace of Semantic Web ser-
vices needs to provide a unified view of services, standard business terminology
and detailed descriptions of composite services. It is important to assure that
clients and service providers use the same vocabulary and language to describe
offered or requested services so to assure that the appropriate domain ontology
is used to annotate the selected by the e-marketplaces semantic representation
of a Web service. The market maker should secure the management and main-
tenance of underlying ontologies as they provide the right means for specifying
such semantics by featuring logic-based representation languages [32]. In order
to allow meaningful matchmaking communication with the market has to take
place on a semantic level. The usage of ontologies requires an introduction of
reasoning functionalities to the e-marketplace. However, the mechanisms offered
should be still tailored to both human user as well as machine to machine in-
teractions as even while creating the e-marketplace for Semantic Web services,

276 W. Abramowicz et al.

one has to remember to find an appropriate balance between computer automa-
tion and manual involvement. One cannot focus only and solely on automating
transactions as we cannot forget that although the SWS are making their way,
it is still a human that takes the last decision.

Another problem is associated with different levels of granularity of service de-
scription (coarse grained business services versus fine grained objects). We need
to take into account that various service providers will describe their services
(using of course the ontology provided by the e-marketplace) on the different
level of abstraction. For one service provider, for example, the right level of
abstraction will be providing their service as e.g. payment service (that implic-
itly will have such functionalities as customer verification, credit card number
verification etc.), whereas other service providers will provide only atomic func-
tionalities as customer verification, others may provide such functionalities as
taking input from customer. The mechanism on the e-marketplace should be
able to deal with this problem.

Discovery is the key functionality required in every e-marketplace. Clients
must have a tool or mechanism that helps them find a service (or their composi-
tion) according to the specification provided. Useful solution here is to categorize
the services and/or to perform a clustering over them [21]. When it comes to tra-
ditional technical solutions the most popular are these using keyword matching
algorithms and other text processing techniques. However, if we will consider the
SWS e-marketplace, the algorithms need to operate on the semantic representa-
tion of a Web service. Therefore, the appropriate ontology-based SWS discovery
mechanisms were developed [20] and are successfully utilized in various scenarios.

Personalization causes or tries to achieve the situation that every customer
of the marketplace is treated uniquely. This mechanism, in its simplest form,
is based on the system of user accounts. Such account keeps information about
user, his personal data, interests, and other related to goods offered on the mar-
ketplace. It is very important that this data is secure. Issues with personal data
can destroy trust which is later very hard to regain. The majority of market-
places takes advantage of the system of user accounts. When user logs in, the
personalized website opens for him, with tailored content as specified already in
the user profile. To achieve the personalization the SWS filtering system needs
to be implemented on the e-marketplace. It main aim is to gather the customer
profiles (either the human user or acting on his behalf software agent) and using
semantics-aware algorithms to filter the incoming stream of new SWS in order
to find the relevant ones. The Semantic Web services clustering and filtering
[22] are very helpful mechanism during the personalization of the offer as only
services fulfilling user needs are then presented.

The issue of trust, which was until now only marginally mentioned, is in
fact extremely important. Previous SOA solutions were successfully exploited
internally in enterprises. These implementations were coupling only internal Web
services or at most Web services only from a few trusted partners. With more
trustworthy Web services, one will be more enthusiastic about using services
of other parties in his own applications. Higher trust among parties effects in

E-Marketplace for Semantic Web Services 277

raised competition among service providers. Stronger competition means larger
number of offered Web services. Moreover, in electronic commerce, trust between
trading partners is considered to be just as important as in offline transactions
and in some respects more important because of the nature of the channel.

Appropriate feedback mechanisms built into the e-marketplace, which allow
participants to publicise their experiences, could improve the levels of trust be-
tween buyers and sellers and allow to update and the SWS characteristics. An
exemplary functionality that could be applied here is provided by a service pro-
filing [23]. The profiling is used to determine the values of non-functional prop-
erties of services based on their execution history data. It allows to verify the
correctness of the description provided by service providers. Moreover, as pin-
pointed by [24] in order to enable a true e-marketplace for services, there is a
need for service clients to share their knowledge so as to help each other improve
the quality of their decisions and learn from the previous interactions. In ad-
dition, e-marketplace requires ratings to attract new market opportunities and
competition thus supporting dynamic real-time advertising [24].

The service composition is a mechanism that creates value added to SWS
e-marketplace not only because it allows to fulfil clients’ requirements (through
composition of new applications), but also as new compositions become again
services offered on the market. So in this way the number of available services
is increasing all the time what makes the SWS e-marketplace more attractive
to the users. With a use of sophisticated composition algorithms and methods
[25] service chains may be created in order to fulfil complex user requirements.
Carrying out the composition of SWS automatically is not a trivial issue. There
are however many initiatives in this area. At first, enabling composite services
has largely been an ad hoc, time-consuming and error prone process involving
repetitive low-level programming. Then, the ontology-based frameworks for the
automatic composition of Web services were introduced. A few different ap-
proaches/algorithms to automate service composition, most of them being an
adaptation of planning algorithms, are used (e.g. ASG platform). Thus, there
are still many issues that need to be investigated before the SWS composition
algorithms will be taken fully advantage of by companies.

Semantic Web services e-marketplace must provide a possibility of contract-
ing between customers and sellers. Web services are the kind of intangible good,
whose main features, besides functionality, are in the performance and quality
aspects. That is why the contracting infrastructure should be available on such
a marketplace. Service level agreements should be defined with use of specific
template, provided by the marketplace authorities/owners. The usage of formal-
ized contracts prevents both sides (buyers and sellers) from any troubles in SLA
interpretation in case of conflicts. An ideal situation would be if a marketplace
was somehow connected with an infrastructure on which offered services are
run. In that case it would be easy to monitor the performance of contracted
services. Nevertheless, the storage of SLA instances in the marketplace reposi-
tory is helpful, when we take into account that both buyers and sellers measure

278 W. Abramowicz et al.

the performance of contracted services. When any violation is detected they can
refer to the agreement stored in the marketpl platformository. The template of
SLA should be constructed with regard to possible parameters to be measured,
payment methods, discounts, fines, obligations and rights of both sides. The de-
finition of such a template would be on a very general level, but to every domain
of services there would be a need to create more detailed SLA templates. The
contracting is heavily elaborated on in a number of publications and standards
(e.g. [26] [27] and WSLA3).

The process that is an important point of every deal is terms/price negotiation.
Semantic Web services are ideally designed to be negotiated. This results from
the basic idea of Semantic Web, where intelligent agents can act on human’s
behalf. So, it is possible to equip both buyer and seller with preferences related
to service delivery terms. The output of the negotiation process could be formed
as an already mentioned service level agreement. An algorithm that does not give
any advantage to buyer/seller implemented on the marketplace would enable the
negotiation between agents. The negotiation strategies and detailed discussion
on algorithms [28] are out of scope of this article.

Payment is another fundamental mechanism that every e-marketplace must
have. We can divide payment services into two categories: buyer-seller based and
third party based. First group of transactions causes the money flow between
the buyer and seller without engagement of another body. Usually, when the
agreed amount of money appears on the seller’s account, the transaction is fi-
nalized. Second category covers these with third party intermediaries. Services
such PayPal play a role of securers of the transactions. The latter category is
more popular on international marketplaces, whose users come from many dif-
ferent countries. In case of SWS e-marketplace the payment mechanism is quite
similar. However, it needs to be adapted to be used in the automatically carried
out interactions.

Delivery of goods and deal tracking are crucial on the markets of tangible
goods. They have a little bit different meaning on the market of Web services
where the service may be either consumed using the Internet or the physical
delivery needs to take place. When the deal is completed immediately, the thing
to track or to be more specific - monitor, is the Web service execution itself
(especially when it comes down to long-running Web services). On the other
hand, when the delivery of a good takes more time and engages other parties (e.g.
forwarding companies) it is very valuable for a customer to have the possibility
of checking what is currently happening with the ordered item.

In consequence the following high level architecture of the SWS e-marketplace
emerges as shown in figure 2. The main layer on which the e-marketplace is based
is the adequate Semantic Web services representations along with the adequate
reasoning possibility. The e-marketplace should support at least the following
mechanisms that should operate on the semantics: publishing/registering, dis-
covery and filtering, profiling, negotiation and contraction, composition, execu-
tion and monitoring, as well as trust and security and financial mechanisms.

3 Web Service Level Agreements Project, http://www.research.ibm.com/wsla/

http://www.research.ibm.com/wsla/

E-Marketplace for Semantic Web Services 279

Fig. 2. Required functionalities of SWS e-marketplace

4 SWS E-Marketplace Reference Model

Within this section an abstract model of the SWS e-marketplace model is pre-
sented. We define SWS e-marketplace as an intermediary that allows service
requesters and service providers to meet on an electronic platform that resides
on the Internet infrastructure in order to exchange information about services
(e.g. service description), conduct transactions online and adhere to other value-
added services offered by the intermediary. All artefacts and mechanisms on this
e-marketplace are semantic-enabled. Let SWSEM denote Semantic Web services
e-marketplace. It may be defined as follows:

SWSEM = C, SP, S, M, PR, SA
Where: C - denotes e-marketplace clients, for i = 1...k. A service client is an

entity that requests a service from a service provider (by invoking the service)
and eventually consumes the service (sending request data and/or receiving the
results). The term service client may be exchangeable used with terms service
consumer and service requester.

The discussed e-marketplace is targeted at enterprises of all shapes and sizes or
for the company internal purposes (especially those virtual ones having multiple
branches in multiple locations to be used by employees/departments etc.). On the
SWS e-marketplace organizations are treated as business users. Business users
want to streamline or enhance their business processes by using best available
pieces of software (in this case - Semantic Web services). They manifest their
needs in a form of client profile. Within our model we envision a presence of
software agents acting on behalf of clients. Such an agent must be provided with
the profile of a user, negotiation policies and constraints defining acceptable
terms of service provisioning.

SP - denotes service providers, for i = 1...p. Service providers may be divided
into two groups ASP (atomic service providers) and CSP (composite service
providers). Some providers may belong to two groups as they may offer both
atomic as well as composite services. One may say, that the special case of CSP

280 W. Abramowicz et al.

is an e-marketplace itself as it performs service composition and may offer to
clients composite services. Service providers are also represented on the SWS
e-marketplace using appropriate profile informing about the contact details as
well as Semantic Web services they provide and their quality. Application de-
velopers are sophisticated participants of SWS e-marketplace. They are familiar
with technical aspects of SWS and exactly know what they need. They are pre-
pared to describe precisely which SWS is needed in their application. Developers
need rather one-time solutions from the e-marketplace, in order to finish and run
their application. However, they may update their application if a better service
appears.

Brokers have more transactional power than single participants. We can dis-
tinguish brokers acting on providers’ and customers’ side. More popular are cus-
tomers’ side brokers. They may negotiate better terms with providers as they
usually buy. Next, brokers may resell these services with some margin. Providers’
side brokers are rare, but may appear when powerful customer emerges on the
market and his requests may not be served by single providers. However, it should
not be a case in the domain of SWS where only the scalability of computational
infrastructure constitutes the limit.

S - denotes a set of services (both atomic and composite ones, also those com-
posed by the e-marketplace itself), for i = 1...s. Atomic service is a service that
does not rely on other services during execution. In case of composite services
it is quite the opposite - they do rely on other services during their execution.
Please note, that for the e-marketplace as well as clients there is not much dif-
ference whether it is a composite or atomic service that is offered by the service
provider. Both services are black boxes and we cannot see their internal struc-
ture (the internal logic of the composition) as it is hidden to avoid being copied
by other parties and loosing the competitive advantage by the service provider.
However, the difference lies in that the composite service may be improved by
relying on different services during execution. The improvement of an atomic ser-
vice requires changing the implementation of the service (new algorithms, new
logic, new hardware etc.). The repository that would store the services descrip-
tion on both the functional as well as non-functional properties is also a part of
the SWS model. On the high level it is not important which particular language
is used to describe a service. However, the market maker needs to ensure that
all services are described using the same ontology as well as that the domain
ontologies are known to e-marketplace actors.

The services offered on SWS e-marketplace may be divided in two groups:
information services and real world services. The difference between these two
types lays in the nature of results obtained as a result of their execution. In case
of information services a piece of information is both an effect and an output
of a service execution. As an example may serve services responsible for some
computation and all those that only operate on virtual objects. In case of real
world services SWS are only the interface to real functionality that must be
provided in a real world. So, we can use SWS that is an interface to ordering a
book, but as an output we obtain a digital confirmation of a purchase, but the

E-Marketplace for Semantic Web Services 281

effect is the real book that is shipped few days later. In our understanding of
Semantic Web services we pay special attention to their description. We advocate
that the description of services offered on the SWS e-marketplace must be as
informative as possible and should cover aspects of their functionality as well as
quality.

M - denotes mechanisms (functionalities offered by the marketplace) and tools
provided to clients and service providers (for example: composition, selection,
profiling, contracting, monitoring); for i = 1...m. They were already discussed
within the previous section.

PR - denotes participation rules and a business model - all the rules that are
to organize the provisioning, supply and demand matching process, for i = 1...r.
E-marketplaces should provide their users with institutional infrastructure that
encompasses issues related to contract law, dispute resolution, and intellectual
property protection. These business rules must be enforced and monitored on
the e-marketplace. These aspects, as is shown within the next section, are dis-
regarded by most if not all of the current initiatives.

SA - supporting artefacts - all artefacts - SLAs, domain ontologies, extended
OWL-S etc. This relates to the indispensable data structures, ontologies and
languages used in the e-marketplace to process information about services, enable
transactions and support all the functionalities offered by the e-marketplace.

5 Comparison of SWS Frameworks

In order to compare proposed model with current initiatives in the Web services
provisioning, please take a look at the figure 3. This table presents the most
important aspects and their coverage by selected (S)WS market models.

Fig. 3. Comparison of SWS frameworks

282 W. Abramowicz et al.

The important conclusion is that these approaches have usually different re-
search goals. Most of them are composition- or discovery-oriented, whereas some
address more economical issues of SWS provisioning. Our SWS-EM model is
more economically oriented, but we do not ignore the technical aspects. There-
fore, some elements are marked +/- which means that the reference model
considers them, but our research goals and detailed analysis are now aimed at
missing aspects.

What is also interesting is that most approaches use their own languages for
describing services. This may be the reason that they lack generality and their
potential usage by wider communities is doubtful. Recent research [40] clearly
shows that the most popular semantic language is OWL. Therefore, the use of
OWL based service descriptions seems to be a right choice.

As also may be concluded from the table, the described functionalities of
the Semantic Web services e-marketplace do not have to be implemented from
scratch. The enumerated interactions along with several algorithms implement-
ing them [39], are already applied in business scenarios [29] or DIP. However in
order for the SWS marketplace to be successful lessons learned need to be taken
into account. In the first generation of Web services the target user was a pro-
grammer. However, right now the target users of the e-marketplaces (and also
SWS e-marketplace) are domain experts, consultants and business specialists
implementing business processes through service composition [14]. The current
description stack and interactions are tailored to the needs of the developers and
not the business people. WS and SWS should not be perceived only as program-
mable components. They are also a kind of commercial commodity provided via
the Internet with a remarkable trait of combining them in functional workflows
fulfilling the user’s need of resolving their non-trivial problems. The mechanisms
of the SWS e-marketplace should take advantage of the already existing achieve-
ments in the area of SWS interactions, however all the mechanisms need to be
adjusted to the new target user and extended with business aspects.

6 Conclusions and Future Work

The idea of the SWS e-marketplace presented in this article was developed as a
result of research carried out in the area of SOA and Web services technology.
Fully-fledged SWS e-marketplaces should provide a large set of service support
and other functionalities, e.g.:

– providing to its participants a unified view of services, standard business
terminology and detailed composite services descriptions,

– a comprehensive range of functionalities supporting trade, negotiation, finan-
cial settlements, service certification and quality assurance, rating services
and service metrics and manage the negotiation and enforcement of SLAs,

– the market maker takes the responsibility of marketplace administration and
performs maintenance tasks to ensure its quality and reliability.

The SWS e-marketplaces should be created with the cutting-edge information
technology. However, to be truly successful, they must exceed their technological

E-Marketplace for Semantic Web Services 283

roots and offer a support to the relationship management, personalization, one-
to-one marketing as well as trust and security.

Solutions available at the moment hardly meet the enumerated postulates.
Current e-marketplaces are basically simple websites storing information on
available services. There is a place for marketplace with described features as it
would create a brand new value for the users. The amount of features that the
marketplace is to be equipped with, allows for effective use, thus creating a feed-
back for the new potential users. This statement is made upon the experiences
of marketplaces of the class of eBay.com and community portals that share some
characteristics with the marketplace.

We have to clearly state that the mechanisms of the featured framework can
have some issues that can spoil all the benefits enumerated. We are aware of the
obstacles and challenges that one has to tackle when creating the e-marketplace
for Semantic Web services. The future work is to investigate in details the mech-
anisms presented in this article, elaborate on the issues of trust and security on
the SWS e-marketplace and then provide a prototypical implementation of the
proposed solution.

The current trends in the software domain should be closely watched. Cur-
rently we observe also a change in the way of the software distribution and
provisioning. There is a shift towards the software as a service model and ser-
vices and their non-functional characteristics are placed in the centre of interest.
In this situation the mechanisms offered by the SWS e-marketplace will provide
users with a required support on the global market of the future.

References

1. Hepp, M., Leymann, F., Domingue, J., Wahler, A., Fensel, D.: Semantic Business
Process Management: A Vision Towards Using Semantic Web Services for Business
Process Management. In: Proceedings of the IEEE ICEBE 2005, Beijing, China,
October 18-20, pp. 535–540 (2005)

2. Lamparter, S., Agarwal, S.: Specification of Policies for Automatic Negotiations of
Web Services. In: Hendler, L.K.A.T.F.A.J. (ed.) Semantic Web and Policy Work-
shop, held in conjunction with the 4th International Semantic Web Conference,
Galway, Ireland (2005)

3. Papazoglou, M.P., Georgakopoulos, D.: Service-oriented computing. Introduction
to the Communications of the ACM 46(10) (October 2003)

4. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-Oriented Com-
puting Research Roadmap. European Union Information Society Technologies
(IST), Directorate D

5. Li, L., Horrocks, I.: A software framework for matchmaking based on semantic
web technology. In: Proceedings of the 12th International Conference on the World
Wide Web, Budapest, Hungary (May 2003)

6. Bussler, C., Maedche, A., Fensel, D.: A Conceptual Architecture for Semantic Web
Enabled Web services. ACM Special Interest Group on Management of Data 31(4)
(December 2002)

7. Deng, S., Wu, Z., Li, Y.: ASCEND: a framework for automatic service composition
and execution in dynamic environment. In: Proceedings of International Conference
Systems, Man and Cybernetics, pp. 3457–3461 (2004)

284 W. Abramowicz et al.

8. Bakos, J.Y.: Reducing buyer search costs: Implications for electronic marketplaces.
Management Science 43(12), 1676–1692 (1997)

9. Hadaya, P.: Determinants of the future level of use of electronic marketpalces: The
case of Canadian firms. Electronic Commerce Research 6(2), 173–185

10. Raisch, W.D.: The eMarketplace: Strategies for success in B2B ecommerce. Mc-
Graw Hill, New York (2001)

11. Adams, J., Koushik, S., Vasudeva, G., Galambos, G.: Patterns for e-business - a
strategy for reuse (2001)

12. Feldman, S.: E-business: Electronic Marketplaces. IEEE Internet Computing, (4)
93–95 (2000)

13. Grey, W., Olavson, T., Shi, D.: The role of e-marketplaces in relationship-based
supply chains: a survey. IBM Systems Journal 44(1) (2005)

14. Hidalga, A.N., Zhao, L., Falcone-Sampaio, P.R.: Leveraging e-marketplaces mod-
els for Web service-based application development. In: Pages-Casas, L. (ed.) Web
services, vol. VII (2006)

15. Mueller, I., Braun, P., Rossak, W.: Integrating Mobile Agent Technology into an e-
marketplace solution: The InterMarket Marketplace: Friedrich-Schiller-University
Jena (2002)

16. Chiu, D.K.W., Poon, J.K.M., Lam, W.C., Tse, C.Y., Su, W.H.T., Poon, W.S.:
How ontologies can help in an e-marketplace. In: 13th European Conference on
Information Systems, Information Systems in Rapidly Changing Economy (ECIS
2005), Regensburg, Germany, May 26-28, 2005) (2005)

17. Lamparter, S., Schnizler, B.: Trading services in ontology-driven markets. In: The
Proceedings of the 2006 ACM symposium on Applied computing, pp. 1679–1683.
ACM Press, New York (2006)

18. Li, Z., Zhao, H., Ramanathan, S.: Pricing web services for optimizing resource
allocation - an implementation scheme. In: Web 2003, Seattle (2003)

19. Shmueli, O.: Architectures For Internal Web Services Deployment. In: Proceedings
of the 27th VLDB Conference, Roma, Italy (2001)

20. Liu, C., Peng, Y., Chen, J.: Web Services Description Ontology-Based Service Dis-
covery Model. In: IEEE/WIC/ACM International Conference on Web Intelligence
(WI 2006 Main Conference Proceedings) (WI 2006), pp. 633–636 (2006)

21. Abramowicz, W., Haniewicz, K., Kaczmarek, M., Zyskowski, D.: Architecture for
Web services filtering and clustering. In: The Proceedings of ICIW 2007, IEEE
2007 (2007)

22. Abramowicz, W., et al.: Application-oriented Web Services Filtering. In: The Pro-
ceedings of International Conference on Next Generation Web Services Practices,
pp. 63–68. IEEE, Los Alamitos (2005)

23. Abramowicz, W., et al.: Architecture for Service Profiling. In: Castellanos, M.,
Yang, J. (eds.) Proceedings of 2006 IEEE Services Computing Workshops (SCW
2006), pp. 121–127. IEEE Press, Los Alamitos (2006)

24. Maximilien, E.M., Singh, M.P.: Conceptual Model of Web services Reputation.
SIGMOD Record (2002)

25. Akkiraju, R., et al.: Combining planning with semantic matching to achieve web
service composition. In: 4th International Conference on Web Services, ICWS 2006
(2006)

26. Lamparter, S., Luckner, S., Mutschler, S.: Formal Specification of Web Service
Contracts for Automated Contracting and Monitoring. In: The Proceedings of the
40th Hawaii International Conference on System Sciences. IEEE, Los Alamitos
(2007)

E-Marketplace for Semantic Web Services 285

27. Oldham, N., Verma, K., Sheth, A., Hakimpour, F.: Semantic WS-Agreement Part-
ner Selection. In: Proc. of the 15th Int. WWW Conf., Edinburgh, UK (2006)

28. Vivying, S.Y., Cheng, V.S.Y., Hung, P.C.K., Chiu, D.K.W.: Enabling Web Services
Policy Negotiation with Privacy preserved using XACML, HICSS. In: 40th Annual
Hawaii International Conference on System Sciences (HICSS 2007), p. 33 (2007)

29. Kuropka, D., Weske, M.: Implementing a semantic service provision platform. In:
Concepts and Experiences, Wirtschaftsinformatik, vol. 1, pp. 16–24 (2008)

30. Haller, A., Cimpian, E., Mocan, A., Oren, E., Bussler, C.: WSMX - A Semantic
Service-Oriented Architecture. In: Proceedings of the IEEE International Confer-
ence on Web Services. IEEE Computer Society, Los Alamitos (2005)

31. Canfora, G., Corte, P., De Nigro, A., Desideri, D., Di Penta, M., Esposito, R.,
Falanga, A., Renna, G., Scognamiglio, R., Torelli, F., Villani, M., Zampognaro, P.:
The C-Cube framework: developing autonomic applications through web services.
SIGSOFT Softw. Eng. Notes 30, 1–6 (2005)

32. Lamparter, S., Schnizler, B.: Trading services in ontology-driven markets. In: Pro-
ceedings of the 2006 ACM symposium on Applied computing, Dijon, France. ACM,
New York (2005)

33. Lamparter, S.: Policy-based Contracting in Semantic Web Service Markets. Karl-
sruhe, Univeristy of Karlsruhe (2007)

34. Kuster, W., Koenig-Ries, B., Stern, M., Klein, M.: DIANE: an integrated approach
to automated service discovery, matchmaking and composition. In: Proceedings of
the 16th international conference on World Wide Web, Banff, Alberta, Canada.
ACM Press, New York (2007)

35. Tolksdorf, R., Bizer, C., Heese, R.: A Web Service Market Model based on Depen-
dencies. In: The Twelfth International World Wide Web Conference (WWW 2003)
(Posters), Budapest, Hungary (2003)

36. Cheng, S., Chang, C., Zhang, L., Kim, T.-H.: Towards Competitive Web Ser-
vice Market. In: Proceedings of the 11th IEEE International Workshop on Future
Trends of Distributed Computing Systems. IEEE Computer Society, Los Alamitos
(2007)

37. Brambilla, M., Ceri, M., Facca, F., Celino, I., Cerizza, D., Valle, E.D.: Model-driven
design and development of semantic Web service applications. ACM Trans. Interet
Technol. 8(3)

38. Verma, K., Sivashanmugam, K., Sheth, A., Patil, A., Oundhakar, S., Miller, J.:
METEOR-S WSDI: A Scalable P2P Infrastructure of Registries for Semantic Pub-
lication and Discovery of Web Services. Inf. Technol. and Management 6, 17–39
(2005)

39. Abamowicz, W., et al.: Automatic Web services interactions - requirements, chal-
lenges and limits from the F-WebS system perspective. In: The Proceedings of
International Conference on Next generation Web Services Practices, IEEE 2006
(2006)

40. Cardoso, J.: The Semantic Web Vision: Where Are We? IEEE Intelligent Sys-
tems 22, 84–88 (2005)

41. Barros, A., Dumas, M., Bruza, P.: The move to Web services ecosystem. BPTrends
(2005)

Business Driven SOA Customization

Pietro Mazzoleni and Biplav Srivastava

IBM T. J. Watson Research Center
Hawthorne, USA 10532

{pietro@us,sbiplav@in}.ibm.com

Abstract. Service Oriented Architecture, e.g., Web services, as building blocks
for IT based on open standards, assist enterprises become more responsive to
the changing business environment when they are implemented and used in the
context of business processes. In this direction, packaged integration platforms
like IBM’s Composite Business Services or SAP have pre-configured business
processes offered as web services. When the demand for a new capability arises, it
can be addressed by building new services or by customizing an existing service.
Service providers try to cover as much of the potential customer requirements
as possible with provided capabilities but a complete coverage is not possible as
individual industries might have unique requirements and customers can integrate
services from multiple parties. In this situation, the problem is not whether a
particular customization method will work but rather how to determine the overall
impact of a new requirement in a complex SOA environment in terms of activities
to be done and at what cost.

In this paper, we propose a solution to these problems by introducing the no-
tion of business driven customization of SOA (specifically web services). We
introduce a formal model capturing properties and relationships of business ob-
jects and business processes, and their implementing services and messages. We
also have instance-independent, impact propagation rules to encode the desir-
able customization behavior of any implementation. Now, we can capture new
requirements as change triggers in the model and using the modeled rules, can
precisely compute the scope of their overall impact spanning both business and
IT domains. Overall, we introduce the customization and impact model, describe
its implementation, and illustrate its application in an industry scenario with large
number of services with complex characteristics (SAP).

1 Introduction

Service Oriented Architecture (SOA) e.g., Web services, is the popular building blocks
for open-standards based IT today. Here, service providers publish specification of their
IT capabilities wrapped as services onto registries. The services can be discovered by
potential clients later and then invoked on the providers, all using standardized inter-
faces. They can assist businesses become more responsive to the changing business
environment when they are implemented and used in the context of business processes.

Packaged integration platforms like IBM’s Composite Business Services[1] or SAP
have pre-configured business processes expose as services. As an example, to sim-
plify the process of adopting SOA, SAP is splitting up its application functionalities

A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, pp. 286–301, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Business Driven SOA Customization 287

(e.g. ERP, CRM as well as industry specific solutions) into thousands of ready-to-
consume services. These services are grouped into sets (or bundles, in SAP terminol-
ogy) along business scenarios (e.g. complaint management or order to cash) and they
have a built-in semantics which partitions data into pre-defined changeable business
processes and business objects. Similar semantic is adopted by custom-built services as
well as partner-built services which may be created for functionality gaps that are not
covered directly by SAP. Other vendors admit industry-standard business processes like
RosettaNet, and web services are used to implement these processes. In business, there
is an increasing need for service customization as many industries as well as software
vendors are moving their architectures towards services.

Given that changes will continuously happen in any business that can affect their
business objects and business processes, we are interested in precise methods that can
characterize the impact of these changes on their services (specifically, web services)
implementation. The business changes rarely impact a single service. Today, the busi-
ness to IT alignment is implicit and it is impossible to precisely determine the major
changes from the minor ones.

Knowing the changes to be made in a complex SOA brings several advantages. On
the business side, it provides an understanding on the parts of the businesses which
could be affected by the new requirement leading to valuable insights for project plan,
cost of implementation, and best practices in building customizable Services. On the
technical side, it supports software engineers in identifying which tasks should be im-
plemented in the system. We also aim to provide methods that will help an organization
determine guidelines about when to customize an existing service versus create new
ones with richer templates so that they have a rich collection of distinguishing services
that can be highly reusable. The issues we consider are complementary to how cus-
tomization may be implemented, and hence, our approach will work with any method
for the latter in literature[2,3,4,5]. In [6], the authors propose a method to customize
Web Services published by a provider by using WS-Policy based customization points
that a consumer can select. The service with the selected customizations is now cre-
ated and hosted by the provider. The consumer can call the customized service and do
its processing. Closely related to the notion of customization are the concepts of per-
sonalization and adaptation of web services. As discussed in detail later in Section 6,
personalization deals with how to modify the content output from a web service specific
to the user at run time whereas adaptation deals with how to modify the behavior of a
deployed web service at runtime based on environmental considerations. A new service
is neither created nor deployed for the unique service request. Our contributions are that
we:

1. Introduce a business driven model for computing the scope of customization of
SOA (specifically web services)

2. Present a prototype implementation, investigate the source of complexity in the
model and discuss how it can be used to expose the trade-offs /issues in different
types of customization.

3. Show its generality and usefulness by applying the model to a complex service
scenario, i.e., SAP.

288 P. Mazzoleni and B. Srivastava

The paper is organized as follows: we start with preliminaries on service customiza-
tion, discuss a motivational scenario to bring out the issues in customization and then
present our model for customization. Next we discuss its implementation and apply to
the complex services scenario of SAP. We round up the paper by discussing the salient
features of our work, the limitations and related work.

2 Background and Motivating Scenario

2.1 Background

When a requirement for a service arises, it can be addressed by building a new service
or customizing an existing one. By customization of web services, we mean the process
by which the behavior of existing web services can be modified to meet the requester’s
requirements. Specifically, we consider customization as:

– Building parameterized service interfaces so that they can capture a wide range of
situations (template);

– Building extensibility mechanisms in the middleware (e.g., proxy) to integrate and
extend available services; to meet new requirements unanticipated by the service
provider.

– Creating a new customized service instance that is deployed specifically for the
unique service requester (and may later cater to others as needed). Customization
is expected to be an offline activity unless the middleware supports the new cus-
tomized service to be deployed on-the-fly.

While any service can be customized in theory to meet any requirement, doing it
indiscriminately runs the risk of ending up in the registry with a proliferation of service
versions that are not much distinct from each other. In practice, customization should
be used to build distinguishing services that provides a robust, reusable service port-
folio across changing requirements. Hence, when to build a new service and when to
customize from an existing service should be used as a complementary strategy.

Service providers try to cover as much of the differences as they can anticipate using
some of the following techniques:

– Parametrization. In here, the actual parameters of the service can be modified based
on the data in the arguments [7];

– Function overloading. In here, multiple instances of the same operation are defined
with different set of arguments [8];

– Templatization. In here, a service template is available to capture the typical service
of interest. Users are guided to select parameters to instantiate the template and
create the service matching their requirements [9].

However, a provider cannot anticipate all types of requirements from potential con-
sumers. The types of differences that can appear between the requirements of a requester
and the available services from provider can be along business objects, processes, ser-
vices and messages.

Business Driven SOA Customization 289

2.2 Motivating Scenario

We present a common scenario to motivate the problem. Consider a simplified business
process for product supply-chain, called General Delivery where a manufacturer M sells
products to its clients C via retailers R (see Figure 1(left)). C could place an order for
the product with R and get its delivery. R on its part can periodically place bulk orders
with M and take delivery to replenish its inventory.

Generic Order

Client

Retailer

Manufacturer

Product

Product

Bulk Generic Orders

(a) General Delivery

Custom Order

Client

Retailer

Manufacturer Custom Order

Product

(b) Custom Delivery

Fig. 1. Two differing processes in the example scenario

Suppose that often, some clients want to place custom orders which are different
from general products. A typical example is for an apparel manufacturer to allow cus-
tomers to provide their own logo on the shirts they order. The manufacturer now wants
to change the supply-chain slightly to allow these clients to be able to place their custom
orders and get the products delivered. Custom orders can still be delivered from M to C
through R. However, because custom orders take time to build, M may want to ship the
product directly to C in new business process called Custom Delivery. Such a process
for custom orders is shown in Figure 1 (right).

The changes in the scenario come from:

1. Changes in the business objects: Custom orders are now introduced.
2. Changes in the business process: The product now can be shipped to both R and C

via General Delivery and Custom Delivery processes. Orders from R can now be
both periodic for general products and unexpected for custom products.

3. The changes in the business object and processes could lead to changes in the in-
terfaces of IT services used to implement them (e.g., OrderPlacementService, Pro-
ductTrackingService) and the messages involved in their communication.

The changes 1 and 2 are business changes necessitated by world events. We want to
take them as inputs and automatically determine business and IT changes as shown in 3
for the specific Service-Oriented Architecture (SOA) implementation (at the manufac-
turer in the example).

290 P. Mazzoleni and B. Srivastava

3 Business-Driven Service Customization Model

In this section, we introduce the model capturing properties and relationships of a
business-process driven SOA implementation. The model consists of facts and rules.
Facts represent claims about the problem universe and they may be true or false. Rules
are used to encode relationships among facts and to infer new facts from the ones in the
model. Using the same model, we propose a set of rules to compute the overall impact
of a new business requirement spanning both business and IT domains.

We will use logic programming to define the model. Specifically, we used Smodels
[10], an implementation of stable model semantics [11] and well-founded semantics
[12] for normal logic programs. An answer to a problem is a set of facts, called stable
model, which tell which facts are true.

3.1 A Simplified Model for Business-Process Driven SOA Implementation

We envisage that one can define an industry in terms of a collection of scenarios de-
scribing what the enterprise does and how. There can be cross-industry scenarios which
describe the common activities any enterprise has to perform regardless of its area of
business (e.g., Annual tax filing). Then there are activities specific to particular industry
like prepare clinical trial for Healthcare or emission management for Mining.

Scenario
(E.g., Supply-chain)

Business Process
(E.g., Obtain Order)

Service Container

Business Object
(E.g., General Order)

Message Container

ImplementsImplements

Refers To

Refers To

Groups
1

N

1

N

1 M

1 M

1

N

Contains Atomic (1) /
Composes (N)

1

N

1

N

Contains Atomic (1)/
Assembles (N)

Message (s)
(E.g., General Order Message)

Service (s)
(E.g., Order Placement Service)

Scenario
(E.g., Supply-chain)

Business Process
(E.g., Obtain Order)

Service Container

Business Object
(E.g., General Order)

Message Container

ImplementsImplements

Refers To

Refers To

Groups
1

N

1

N

1 M

1 M

1

N

Contains Atomic (1) /
Composes (N)

1

N

1

N

Contains Atomic (1)/
Assembles (N)

Message (s)
(E.g., General Order Message)

Service (s)
(E.g., Order Placement Service)

Fig. 2. A simplified model for business-process driven SOA implementation

In Figure 2, we present our simplified model for business-process driven SOA im-
plementation. Note that we explicitly separate business from IT elements and we use
directional arrows to indicate dependencies between elements.

At business level, an enterprise domain is decomposed into multiple scenarios. Each
scenario is realized by one or multiple business processes (BPs) and by one or multiple
business objects (BOs). Each BP is defined with a business logic and references to BOs.

Business Driven SOA Customization 291

% Business Objects Structural Rules
1: busObj(product)
2: busObj(customerAddress)
3: busObj(retailerAddress)
4: busObj(order)
5: boDependsOnBo(order,product)
6: boDependsOnBo(order,clientAddress)
7: boDependsOnBo(order,retailerAddress)
% Business Processes Structural Rules
8: busProc(shipOrder bp)
9: busProc(receiveOrder bp)
10: busLogic(shipOrderLogic)
11: busLogic(receiveOrderLogic)
12: bpHasLo(shipOrder bp,shipOrderLogic)
13: bpHasLo(receiveOrder bp,receiveOrderLogic)
14: bpRefersToBo(receiveOrder bp,order)
15: bpRefersToBo(shipOrder bp,product)
16: bpRefersToBo(shipOrder bp,retailerAddress)

Fig. 3. Business level model elements

Each BO can be referred by multiple processes as well as by other BOs. In our model,
we denote business scenarios, BPs, business logic, and BOs as facts whereas we use
structural rules to define rules capturing relations between facts.

Example 1. Consider the General Delivery scenario presented in Figure 1. For the
sake of illustration, we can assume the domain of interest to be represented by four BOs
(product, customerAddress, retailerAddress, and order) and two BPs
called receiveOrder bp and shipOrder bp. The former BP collects new orders
whereas the latter loads existing orders and prepares new shipments. The business log-
ics of the two BPs are defined in shipOrderLogic and receiveOrderLogic
respectively. Figure 3 shows facts and structural rules composing our simple model. As
example, structural rule No. 11 tells that BP receiveOrder bp refers to (i.e. uses
as part of its logic) BO order.

At IT level, each BP is realized by a Service Container (SC) referring to one or multiple
(Web) service(s). In case a SC refers to multiple services (due to service composition),
it also connects to a logic describing the process flow among those services. In addition,
each SC refers to one or multiple Message Containers (MC) describing atomic or ag-
gregate messages that constitute its inputs and outputs. Messages are IT realizations of
BOs in specific formats of interest (e.g., order information in XML format). Once again,
we use facts to generally indicate the base element of the model (i.e. SCs, services, ser-
vice logics, MCs, and messages) and structural rules represent existing relations among
facts.

Example 2. Figure 4 shows facts and structural rules modeling the IT aspects of our
simple SOA example.

292 P. Mazzoleni and B. Srivastava

% Service Container Structural Rules
1 : srvContainer(mngReceivedOrder ws)
2 : srvContainer(processOrder ws)
3 : scImplementsBp(mngReceivedOrder ws, receiveOrder bp)
4 : scImplementsBp(processOrder ws, shipOrder bp)
5 : scDependsOnSc(processOrder ws,mngReceivedOrder ws)
6 : scHasLogic(processOrder ws,processOrderlogic)
% Message Container Structural Rules
7 : messCont(storeOrder ms)
8 : messCont(shipOrder ms)
9 : mcImplementBO(storeOrder ms,order)
10: mcImplementBO(shipOrder ms,product)
11: mcImplementBO(shipOrder ms,retailAddress)
12: scRefersToMc(mngReceivedOrder ws,storeOrder ms)
13: scRefersToMc(processOrder ws,shipOrder ms)

Fig. 4. IT level model elements

We assume two SCs exist: mngReceivedOrder ws and processOrder ws.
The first SC implements receiveOrder bp BP while the latter imple-
ments shipOrder bp BP. In the Figure, structural rule No. 5 states that
processOrder ws depends on MngReceivedOrder ws which means that the
first SC is a composed service using, among others, some of the messages referred
by the second SC. The logic of the SC is captured in processOrderlogic.

On the message side, two MCs exist, one for each SC. storeOrder ms rep-
resents the operation of accepting new orders (defined using BO order) whereas
shipOrder ms is in charge of creating a new shipment.

Our notion of SC and MS are consistent with web services standards. SC can be repre-
sented by a WSDL and stands for an atomic service or a composite service. The latter
logic can be described by abstract BPEL. The MC represent messages in WSDL both
simple and complex message types.

In our model, we intentionally kept the definitions of services and messages simple.
This is because we are interested in the relations between business and IT elements of
a SOA and not to extensively represent all details of a SOA implementation. Existing
standards, such as OWL-S[13] or broadly used ontologies like SAP Global Data Type
(GDT)[8], can be used for more refined models.

3.2 Formalizing Business Process-Driven Impact on Services

In this subsection, we extend the model to include impact rules to encode the customiza-
tion behaviors of a SOA implementation. When triggered by a new customization re-
quirement (e.g. create a new BO for custom order), those rules can precisely scope the
overall impact of the requirement to the SOA, spanning both business and IT domains.

In our model, we view customization changes as BO and BP driven impacts on im-
plementing services and messages. When a business element of the model changes, we

Business Driven SOA Customization 293

use impact rules to propagate such change across the model to identify which (business
and IT) elements will be affected.

Impact rules are defined using logic programming and reflect the dependencies de-
picted in Figure 2. An inference engine is used to compute the overall impact of a new
business requirement. The inference engine takes three inputs: a) facts and structural
rules, defined for the specific SOA implementation, b) impact rules, defined indepen-
dently from any SOA implementation and c) the new business requirements expressed
as additional facts for the model (e.g. changeBusObj(order)).

Figure 5 presents the list of impact propagation rules we defined using Smodel.
For example, rule No. 2 (changeBusObj(Y):-boDependsOnBo(X,Y),
changeBsObj(Y) would tell that if BO X depends on BO Y and BO Y changes,
then BO Y will change. In the example, X and Y are variables whose values is not de-
fined by the user but rather inferred by the engine starting from facts either in the model
or inferred from evaluating other rules.

Instead of describing each rule in detail, in what follows we use an example to de-
scribe how the rules compute the overall impact of a new customization requirement.

Example 3. Consider once again the scenario introduced in Section 2.2. The business
requirement can be modeled with two facts: changeBusObj(order), to represent
the need to distinguish between custom and general orders, and
changeBusLogic(ShipOrderLogic) to represent the change in the
business logic for handling custom orders. Note there is not a predefined
order according to which rules should be evaluated. Instead, the inference
engine analyzes all possible combinations of fact searching for stable mod-
els. On the business side, changeBusObj(order) propagates, through
impact-rules No. 2 and No. 3, to BP busProc(receiveOrder bp)
and business logic processOrderlogic. As result, the engine will
introduce two new facts: changeBusObj(receiveOrder bp) and
changeBusLogic(processOrderlogic).

On the IT side, rule No.10 propagates the impact of the change
to ProcessOrderLogic Service logic whereas rule No. 11 ex-
tends it to MC storeOrder ms . Finally rules No. 14 takes in input
changeMessCont(storeOrder ms) and propagates the impact of the re-
quirement to mngReceivedOrder ws.

As result of the inferencing process, the inference engine highlights two differ-
ent actions for the two SCs in the model: a change to the service logic of SC
processOrder ws and a change for message (storeOrder ms) in case of SC
mngReceivedOrder ws. Such advises are specific to the facts and structural rules
defined in the previous subsection and would have been different in case of a different
SOA implementation.

The impact propagation rules presented in Figure 5 represent the “sufficient but not
necessary” set of changes to be considered as result of a new business customization
requirement. It is so because all possible changes in the SOA are identified. However,
even though the scope of changes known, a system architect might decide not to take
action as result of the new business requirement based on assessments that are not cap-
tured in the model. As an example, a system architect might decide not to change a

294 P. Mazzoleni and B. Srivastava

% Business Objects Rules
1: % If a BO X changes than all BOs depending from X should change

changeBusObj(Y):-boDependsOnBo(Y,X), changeBusObj(X)
% Business Processes Rules
2: % If a BO X changes, all BPs referred by X might change

changeBusProcess(Y):-boRefersToBp(Y,X), changeBusObj(X)
3: % If a BP X changes, X’s business logic should change

changeBusLogic(Y):-changeBusProc(X), bpHasLo(X,Y)
4: % If a Business Logic X changes, the BO using X should change

changeBusProc(Y) :-changeBusLogic(X), bpHasLo(Y,X)
5: % If a BP X changes, all BPs depending from X should change

changeBusProc(Y):-bpDependsOnBp(Y,X), changeBusProc(X)
% Service Container Rules
6: % If a Service X changes, all SCs depending from X should change

changeServCont(Y):-scDependsOnSe(Y,X), changeService(X)
7: % If SC X changes, X’s service logic should change

changeServLogic(Y):-scHasSl(X,Y), changeServCont(X)
8: % If Service Logic Y changes, X’s service logic should change

changeServCont(Y) :-scHasSl(Y,X), changeServLogic(X)
9: % If SC X changes, all SCs referred by X should change

changeServCont(Y):-scDependsOnSc(Y,X), changeServCont(X)
10: % If the logic of BP X changes, the Logic of SC implementing X should change

changeServLogic(K):-changeBusLogic(Y),
% Message Container Rules
11: % If a BO X changes, all Services implementing X should change

changeMessCont(X):-changeBusObj(Y), mcImplementsBo(X,Y)
12: % If a MC X changes, all MCs depending from X should change

changeMessCont(Y):-mcDependsOnMc(Y,X), changeMessCont(X)
13: % If a Message X changes, all MCs depending from X should change

changeMessCont(X):-mcDependsOnMe(X,Y), changeMessage(Y)
14: % If a MC X changes, all SC referred by X should change

changeServCont(Y):-mcRefersTosc(Y,X), changeMessCont(X)

Fig. 5. Impact Propagation Rules

service message until it is used as part of a business process. Again, even if a BO A be-
comes irrelevant for the business, a system architect might choose not to change service
messages implementing A but simply ignore the content when appears in the services.
To better inform the system architect on the changes to be made on the SOA imple-
mentation, one can refine the model introducing the concept of “type of change”. In an
extended version of our model, business requirements will be defined not only with the
affected element (e.g. BO - product) but also with the type of change to implement (e.g.
add new BO). Similarly, impact rules will be extended to consider the type of change
when propagating a new requirement across the model.

Business Driven SOA Customization 295

4 Implementation Considerations

We now discuss how our approach for business-process driven service customization
can be implemented. Recall that the solution consists of three key components - (a)
Facts - a set of claim about BOs, BPs, and their implementing services and messages of
interest, (b) Structural rules - rules capturing properties and relationships among facts,
and (c) Impact rules - universal rules encoding the desirable propagation of customiza-
tion behavior in the model. A logic checker can work with the facts and the rules to
make decisions on what needs to be customized.

Business ProcessService (Container)

Business Object

Facts Builder

Message (Container)

Impact
RulebaseCustomization Analyzer

(1) Requirements

(3) Customization Impact

Registries

(2) Rules

(2) Facts

Business ProcessService (Container)

Business Object

Facts Builder

Message (Container)

Impact
RulebaseCustomization Analyzer

(1) Requirements

(3) Customization Impact

Registries

(2) Rules

(2) Facts

Fig. 6. A conceptual architecture for realizing Customization Analyzer

We envisage this approach to be implemented as a decision support aid as shown
in Figure 6. The user wants to enquire about the impact of some business events (re-
quirements). The Customization Analyzer translates the requirements to facts. The Fact
Builder computes facts and structural rules of the SOA instance based on existing
registries for known BOs, processes, services and messages1. The Impact Rulebase
contains the impact rules. The Customization Analyzer uses the facts and the rules col-
lectively from the requirements, the Fact Builder and the Impact Rulebase to determine
what services could be customized to meet the requirement.

We chose a logic formalism to implement our approach. An alternative would have
been to express the relationships using a graph theory formalism like that supported
in UML. Unfortunately, such formalisms need extensions to represent constraints and
were not our first preference.

Estimating the size of the model: With any model-based approach, it is always in-
sightful to know what contributes to the size of the model and use that knowledge for
solving problems of interest effectively. Let us consider the size of the model (facts and
rules) given the numbers of BOs BPs, and their implementing services and messages as

1 Current Web Services standards do not require all messages to be explicitly registered but
rather that they are addressable and accessible through Uniform Resource Identifiers. Hence,
they could be considered optional for the model.

296 P. Mazzoleni and B. Srivastava

Model Element # Facts # Structural Rules Description
BO NBO (NBO ∗ (NBO − 1))/2 BO can depend on all BOs except itself

and those that depend on it.
BP 2*NBP ((NBP ∗ (NBP − 1))/2) No. of facts includes claims for BP and its

+ NBP business logic. No. of rules analogous to BOs plus
the relation between BPs and their logic.

BP-BO - NBP *(NBO)k Assume k is an upper limit on the
number of BOs referred by a BP.

SC (2*NBP) (NBP) Assume each BP is implemented by at most one SC.
No. of facts includes claims for SC and its
composition logic.

SC-BP - NBP Assume each BP is implemented by at most one SC.
MC (2 ∗ NBO) (NBO) Assume each BO is implemented by at most one MC.

No. of facts includes claims for MC and its
aggregation logic.

MC-BO - NBO Assume each BO is implemented by at most one MC.
SC-MC - NS*(NM)k Assume k is an upper limit on the number

of MCs referred by a SC.
Message NM - Each message is claimed.
Service NS - Each service is claimed.

Service-SC - (NS)k Assume k is an upper limit on the number of
services referred by a SC’s logic.

Message-MC - (NM)k Assume k is an upper limit on the number of
messages referred by a MC’s logic.

Fig. 7. Estimated maximum (� �) number of facts and structural rules

NBO, NBP , NS and NM respectively. Table 7 presents a table estimating the maximum
possible number of rules in the model with description.

The number of impact rules is a constant, I , and is independent of the number of
entries in the registries. Adding up all the facts and rules up, size of the model is
O(NBP ∗ (NBO)k + NS ∗ (NM)k + (NS)k + (NM)k), where k represents an ap-
propriate constant. This implies that the size is dominated by the number of BOs and
how many get referenced by BPs, the number of messages and how many get referenced
by services, and the number of services.

In itself, the logic programming system we use, Smodels [10] with stable model
semantics, is quite efficient and can handle models with up to a million facts and rules
effortlessly[14]. The models in our examples are handled in less than a second. Note
that since industry information about BPs and BOs are organized along scenarios, and a
user is usually interested in a few scenarios at a time based on their expertise, it should
be generally possible to scope the model for most problems of interest.

5 Industry Case Study: Customization with SAP Services

In the introduction, we discussed how SAP is moving its architecture towards services.
Grouped into sets (called bundles), these services have built-in semantics which par-
tition data into an extensible set of BPs and BOs. In this section, we adopt SAP to

Business Driven SOA Customization 297

illustrate the application of our approach in an industry scenario with large number of
services with complex characteristics.

In our study, we implemented the ordering scenario in Section 2 using the SAP ser-
vices publicly accessible from SAP Enterprise Workplace 2. Specifically, we focused on
“Sales Order Processing”3, the set of capabilities which “allows sales representatives to
easily configure, price, and create sales orders for customers” .

To understand the level of complexity in creating an SOA solution using services like
the one offered by SAP, consider that SAP implements a large number of services cov-
ering different business processes and industry scenarios. Not only, the same process
might be offered in different variants (e.g. SAP Workplace lists 11 variants for “Sales
Order Processing”). Enterprise services from SAP might be very complex, exposing
interfaces (WSDL) with several thousands attributes in input and output. In fact, the
approach used by SAP in creating services is to include all possible variations directly
as optional elements of the service interface. In our example, if we focus on “the opera-
tions that sales employees can use to read or process data about a customer” (manage
customer in in the Workplace), we can find 15 different operations (each imple-
mented as service) for the BO called customer. Customer is a very complex object
referring to multiple data elements including, among others, company name and ad-
dress, communication data (phone, email, etc), contact person, bank details, industry
sectors, and marketing attributes. Not all 15 services uses all customer’s attributes.
In fact, as presented in Figure 8, there can be multiple versions of the same service to
perform slightly different functionalities on different subsets of the BO data element.

ServiceName Input Output
CustomerBasicDataByID
QueryResponse In

CustomerID Read Customer Address and Com-
municationData

CustomerERPBasicDataByID
QueryResponse In V1

CustomerID Read Customer Address and Com-
municationData

CustomerERPBasicDataByID
QueryResponse In V2

Range of Cus-
tomerIDs

Customer Address and Communica-
tionData

Fig. 8. SAP offers multiple version of the same service

The reason for having multiple versions of the same service is because customizing
SAP-based services to meet specific user requirements is a complex and tedious task.
The user has to (a) identify the service(s) to be enhanced, (b) extend the corresponding
BO or BP, and (c) choose among different versions of the same service to find the one
which fits better with the new requirement and (d) write the corresponding code to
model the new behavior [15]. More importantly, if the enhanced BO is used in multiple
services, developer has to manually identify and then implement the code for all affected
services to ensure consistent behavior [16].

2 https://www.sdn.sap.com/irj/sdn/esworkplace. Last access June 2008
3 http://erp.esworkplace.sap.com/socoview(bD1lbiZjPTgwMCZkPW1pbg==)/render.asp?

id=B8BE8D31D91E4B9EBAAACD83FF85A614&fragID=&packageid=
DBBB6D8AA3B382F191E0000F20F64781&iv=

298 P. Mazzoleni and B. Srivastava

1 : boDependsOnBo(customer,goodsRecipientParty)
2 : boDependsOnBo(customer,billToParty)
3 : boDependsOnBo(customer,salesTerms)
4 : boDependsOnBo(customer,bankAccount)
5 : boDependsOnBo(customer,items)
6 : mcImplementsBo(customerERPBasicDataByIDQuery sync V1,customerId)
7 : mcImplementsBo(customerERPBasicDataByIDResponse sync V1,customer)
8 : mcIsReferredbysc(customerERPBasicDataByIDQueryResponse In V1,

customerERPBasicDataByIDQuery sync V1)
9 : mcIsReferredbysc(customerERPBasicDataByIDQueryResponse In V1,

customerERPBasicDataByIDResponseMessage sync V1)
10: mcIsReferredbysc(StandardMessageFault,

customerERPBasicDataByIDQueryResponse In V1)
11: mcImplementsBo(customerERPBasicDataByIDQuery sync V2,customerId)
12: mcImplementsBo(customerERPBasicDataByIDResponse sync V2,customer)
13: mcIsReferredbysc(customerERPBasicDataByIDQuery sync V2,

customerERPBasicDataByIDQuery sync V2)
14: mcIsReferredbysc(customerERPBasicDataByIDResponse sync V2,

customerERPBasicDataByIDResponseMessage sync V2)
15: mcIsReferredbysc(standardMessageFault,

customerERPBasicDataByIDQueryResponse In V2)
16: boReferredbyBp(customer,manageCustomer)
17: scImplementsBp(customerERPBasicDataByIDQuery sync V1,manageCustomer)
18: boReferredbyBp(customer,createOrder)
19: boReferredbyBp(order,createOrder
20: scImplementsBp(customerERPBasicDataByIDQuery sync V1,manageCustomer)
21: scImplementsBp(createNewOrderService,createOrder)

Fig. 9. SAP Scenario - Facts and Structural Rules

Figure 9 shows a very small fragment of structural rules which have been
built using our system for the actual SAP services. In the Figure, a BP
createOrder creates new orders for the customer. CreateOrder composes
service customerERPBasicDataByIDQuery sync V1, from SAP, and service
createNewOrderService, from the specific back-end system used for billing.

In the example, facts and structural rules modeling the IT elements of the SOA solu-
tion have been automatically generated by parsing the interfaces of the services avail-
able in the service registry (e.g. IBM Web Service Registry and Repository - WSRR).
On the other hand, we look at process model documentation (such as the one generated
by IBM Websphere Business Modeler-WBM) to create facts and structural rules related
to the business.

In what follows, we describe, using an example, how our model can help an organi-
zation to identify all services and processes affected by a business change.

Example 4. New Requirement:Remove bank account from BO Customer as transac-
tions are always paid cash or via credit card.
Question: Which are the services to be changed as result of the requirement?

Business Driven SOA Customization 299

This question can be easily answer by our model. First, the system architect
defines the requirement as new fact for the model. In the example, the fact
changeBusObj(BankAccount) is defined. Second, the Customization Analyzer
computes the stable model given in input facts, structural and impact rules. Impact
Rule No. 1 propagates change(BankAccount) to BO Customer and from there,
rule No. 2, propagates it to BP CreateOrder. The same process is continued for the
IT elements of the model.

At anytime, the Customization Analyzer can trace the impact rules from which a
given fact is inferred. As example, it can distinguish (a) the SCs which should change
because a referred MC changes (impact rule No. 14) from (b) the SCs which should
change because the implemented BP changes (impact rule No. 8). Similarly, it can
identify which SCs are implementing a BP (structural rule No. 17 in Figure 9). A sys-
tem architect can now identify which services should be changed even thought they don’t
implement any BP (customerERPBasicDataByIDQuery sync V2 the our sce-
nario) and decide not to change them as result of the new business requirement. Such
information can also be used to identify which versions of the same service exist and
which one need to be changed to address the new requirement. This allows keeping
fewer versions of the same service and to remove them when not longer in the business.

6 Discussion and Related Work

In this section, we look at how our work can be extended and the related work. Until
now, we have described how our approach can be used to determine the extent of change
in a SOA implementation as necessitated by business requirements. Some representa-
tive approaches for customization from different disciplines are: AI [2], semantic web
[3], graph theory [4] and Petri Nets [5].

An organization is likely to integrate services from multiple parties, each with a
different approach to customization. In this context, it is very difficult to identify which
are the actual tasks to be performed on the system and to estimate the overall cost of
implementing the business requirement. Our work can be used to answer many other
IT and business questions including: (a) if some existing services will be customized,
determine what are the choices and associated costs and (b) determine whether new
IT services should be created or existing ones be customized. The two questions are
closely related as there exists multiple approaches to customize an element of the model
and each alternative might be associated with a different cost. As example, the cost of
changing the logic of a SC is different depending on if such a logic is defined externally
to the composed service using a workflow specification language (such as BPEL) or
tightly coupled (hard-coded) on it. Our approach can address this problem as the model
can be extended to consider costs and customization requirements as Facts for the IT
elements composing specific SOA implementation. The Customization Analyzer will
now be able to compute the overall cost of the new business requirement by simply
considering the cost of all affected elements. This will be a very valuable information
for the business in order to estimate the cost of the operation. The system architects can
use such information to properly choose the customization approach for the services
they integrate in a SOA solution depending on the customization requirement it might

300 P. Mazzoleni and B. Srivastava

be subjected to during its lifecycle. At the time, we recognize the need to integrate such
functionality and we plan to include cost and Customization approaches in the next
release. Some work we recently done in this space could be applied here[17].

Closely related to the notion of customization are the concepts of personalization
and adaptation of web services. In[18], the authors present a personalization approach
where a general information service can provide different types of information specific
to individual users using RSS. The generic schema is published and by selecting specific
sections, the system can personalize the content. In this approach, the service is made
specific to the user at run time and an instance of it is not created specifically for the
user. In adaptation of web services, the behavior of a deployed web service is modified
at runtime based on environmental considerations. Adapation already assumes that the
available service met requester’s requirement and we want to ensure this continues as
the environment changes. Adaptation approaches can come in two main flavors – one
where the primary aim is to compose and deploy a correct workflow, and adaptation is
viewed as an afterthought [19]; and another where adaptation issues are viewed while
composing workflows [20].

7 Conclusion

Motivated by the need to determine the overall impact of a new requirement in a com-
plex SOA environment, in this paper, we introduced the notion of business driven
customization of SOA. We introduced a formal model capturing properties and rela-
tionships of business objects and business processes, and their implementing services
and messages. We discussed the implementation of our approach in multiple setting,
and illustrate its application in an industry scenario with large number of services
with complex characteristics (SAP). Though the approach was illustrated with web ser-
vices, the approach is relevant for SOA in general. We believe that the work provides
a valuable, explicit model of alignment between business processes to service-based IT
implementations.

References

1. IBM-Global-Services: Accelerating business flexibility,while reducing costs, with composite
business services (2007),
http://www-935.ibm.com/services/us/index.wss/offering/gbs/
a1027243

2. Richards, D., Sabou, M., van Splunter, S., Brazier: Artificial intelligence: A promised land
for web services. In: The Proceedings of The 8th Australian and New Zealand Intelligent
Information Systems Conference (ANZIIS 2003), Macquarie University, Sydney, Australia,
pp. 205–210 (2003)

3. Fensel, D., Lausen, H., Polleres, A., Bruijn, J., Stollberg, M., Roman, D., Domingue, J.: En-
abling Semantic Web Services: The Web Service Modeling Ontology. Springer, Heidelberg
(2007)

4. Reichert, M., Dadam, P.: Adeptflex-supporting dynamic changes of workflows without losing
control. Journal of Intelligent Information Systems 10(2), 17–93 (1998)

http://www-935.ibm.com/services/us/index.wss/offering/gbs/a1027243
http://www-935.ibm.com/services/us/index.wss/offering/gbs/a1027243

Business Driven SOA Customization 301

5. Ellis, C., Keddara, K., Rozonberg, G.: Dynamic change within workflow systems. In:
COOCS, pp. 10–21 (1995)

6. Liang, H., Sun, W., Zhang, X., Jiang, Z.: A policy framework for collaborative web service
customization. In: Proc. SOSE (2006)

7. Amazon: Amazon web services (Last Accessed June 2008),
http://aws.amazon.com

8. Campbell, S., Mohun, V.: Mastering Enterprise SOA with SAP NetWeaver and mySAP ERP.
John Wiley & Sons, Inc., New York (2006)

9. ten Teije, A., van Harmelen, F., Wielinga, B.: Configuration of web services as parametric
design. In: Motta, E., Shadbolt, N.R., Stutt, A., Gibbins, N. (eds.) EKAW 2004. LNCS,
vol. 3257, pp. 321–336. Springer, Heidelberg (2004)

10. Niemelä, I., Simons, P.: Smodels - an implementation of the stable model and well-founded
semantics for normal lp. In: Fuhrbach, U., Dix, J., Nerode, A. (eds.) LPNMR 1997. LNCS,
vol. 1265, pp. 421–430. Springer, Heidelberg (1997)

11. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski,
R.A., Bowen, K. (eds.) Proceedings of the Fifth International Conference on Logic Program-
ming, pp. 1070–1080. The MIT Press, Cambridge (1988)

12. van Gelder, A., Ross, K., Schlipf, J.S.: The well-founded semantics for general logic pro-
grams. Journal of the ACM 38(3), 620–650 (1991)

13. Martin, D., Paolucci, M., McIlraith, S., Burstein, M., McDermott, D., McGuinness, D., Par-
sia, B., Payne, T., Sabou, M., Solanki, M., Srinivasan, N., Sycara, K.: Bringing semantics to
web services: The owl-s approach (2004)

14. East, D., Iakhiaev, M., Mikitiuk, A., Truszczyński, M.: Tools for modeling and solving search
problems. AI Commun. 19(4), 301–312 (2006)

15. Hirsch, R.: Enterprise soa explorations: Options to deal with enterprise services that don’t
meet user requirements. Blog Entry at SAP sdn (2008),
http://www.sdn.sap.com/irj/sdn/weblogs?blog=/pub/wlg/8665

16. SAP: Enterprise services enhancement guide (2007)
17. Chang, Y.C., Mazzoleni, P., Mihaila, G.A., Cohn, D.: Solving the service composition puzzle.

In: Proc. SCC (2008)
18. Abiteboul, S., Amann, B., Baumgarten, J., Benjelloun, O., Ngoc, F.D., Milo, T.: Schema-

driven customization of web services. In: Proc. VLDB (2003)
19. Au, T.C., Kuter, U., Nau, D.S.: Web service composition with volatile information. In: Inter-

national Semantic Web Conference, pp. 52–66 (2005)
20. Chafle, G., Doshi, P., Harney, J., Mittal, S., Srivastava, B.: Improved adaptation of web ser-

vice compositions using value of changed information. In: Proc. ICWS, Salt Lake City, USA
(2007)

http://aws.amazon.com
http://www.sdn.sap.com/irj/sdn/weblogs?blog=/pub/wlg/8665

Sound Multi-party Business Protocols for
Service Networks�

Michele Mancioppi1, Manuel Carro2,
Willem-Jan van den Heuvel1, and Mike P. Papazoglou1

1 INFOLAB, Dept. of Information Systems and Management,
Tilburg University, The Netherlands

{m.mancioppi,wjheuvel,mikep}@uvt.nl
2 Universidad Politécnica de Madrid

mcarro@fi.upm.es

Abstract. Service networks comprise large numbers of long-running,
highly dynamic complex end-to-end service interactions reflecting asyn-
chronous message flows that typically transcend several organizations
and span several geographical locations. At the communication level, ser-
vice network business protocols can be flexible ranging from conventional
inter-organizational point-to-point service interactions to fully blown dy-
namic multi-party interactions of global reach within which each partici-
pant may contribute its activities and services. In this paper we introduce
a formal framework enriched with temporal constraints to describe multi-
party business protocols for service networks. We extend this framework
with the notion of multi-party business protocol soundness and show
how it is possible to execute a multi-party protocol consistently in a
completely distributed manner while guaranteeing eventual termination.

1 Introduction

Today’s application-oriented services cannot scale to meet the number and na-
ture of demands already placed on them, let alone a new generation of more
complex applications involving several organizations. Most of today’s applica-
tions are based on the assumption of the ubiquitous availability of point-to-point
integration between any two interacting parties from the perspective of a single
organization. One of the main reasons is the use of orchestration languages (e.g.,
BPEL) to describe how services can interact with each other at the message
level from the perspective and under control of a single service. Moreover, the
interactions are limited to uni-cast scenarios. This is extremely restrictive for
applications characterized by wide-scale and complex dynamic interactions.

� The research leading to these results has received funding from the European
Community’s Seventh Framework Programme under the Network of Excellence
S-Cube - Grant Agreement n◦ 215483. Manuel Carro was also partially supported
by Spanish MEC project TIN2005-09207-C03 MERIT-COMVERS and project
S-0505/TIC/0407 PROMESAS.

A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, pp. 302–316, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Sound Multi-party Business Protocols for Service Networks 303

1.1 Service Networks

The full potential of services technology as a means of developing mission-critical
applications used by a wider spectrum of people and organizations will only be
realized when business processes (which are services themselves) are able to
express business collaborations and transactions that occur between multiple
business process endpoints, rather than a specific business process that is exe-
cuted from the perspective of a single party. Such collaborative, complex service
interactions typically require specifying sequences of peer-to-peer message ex-
changes between a collection of end-to-end services within stateful, long-running
interactions involving several parties. This gives raise to the concept of service
networks.

Service networks comprise large numbers of long-running, highly dynamic
complex end-to-end service interactions reflecting asynchronous message flows
that typically span several organizations and geographical locations. The term
“complex end-to-end service interaction” encompasses a succession of automated
business processes, which are involved in joint inter-company business conver-
sations and transactions across a federation of cooperating organizations. This
widens considerably the scope of service-based applications by providing the pos-
sibility of developing a whole new range of innovative service-based applications.

Service networks properly sequence service activities according to the flow de-
finitions in a process collaboration model into end-to-end service constellations,
assign work items to the appropriate human actors or groups, and ensure that
both human- and system-based activities are performed within specified time
frames. This entails multiple technical requirements, which include binding to
heterogeneous systems, synchronous and asynchronous message exchange pat-
terns, data manipulation, flow coordination, exception management, business
events, long running business transactions, and so on.

1.2 Multi-party Business Conversations in Service Networks

At the communication level, service networks essentially comprise asynchro-
nous message flows between multiple service consumers and providers. Business
conversations can be flexible, ranging from conventional inter-organizational
point-to-point service interactions (as is the norm with current orchestration
technologies) to fully blown dynamic multi-party interactions of global reach
within which each participant may contribute its activities and services.

At the communication-level, service networks exchange sequences of messages
grouped into operations, which have to be structured into complex conversa-
tions. The business logic which controls these operations is embedded into the
implementation of the interacting parties. This is due to the limitations of stan-
dards used in practice, e.g., WSDL 1.1. The new generation of Web services
standards that will be based on WSDL 2.0 will focus on custom Message Ex-
change Patterns (MEPs). MEPs are currently elementary building blocks (i.e.,
one-way messaging, request-reply, solicit-response and notification) from which
business protocols can be constructed, describing the multi-party message inter-
actions required by a business process. Ideally, MEPs should also include timing

304 M. Mancioppi et al.

start

� ��
�

order
prepared �������� order

approved

��������
change

proposed

��������

change
approved

��������

order sent��������

order
refused �������� order

cancelled
��������	
�����

order
accepted

��������
order

confirmed
��������	
�����

t1:prepare order,p1,{p2}

��

t2:approve order,p2,{p1}
��

t3:send order,p1,{p3},t2≤2 hours

��t4:order accepted,p3,{p1}

��

t5:confirm order,p1,{p2,p3}
��

t6:reject order,p3,{p1},t1≤2 hours

��

t7:submit change,p1,{p2},t2≤12 hours

��
t8:approve change,p2,{p1},t7≤12 hours

��

t9:submit order,p1,{p3},t8≤1 day

��

t10:cancel order,p1,{p3,p2},t2>1 day

��

Fig. 1. The Purchase Order business protocol

start
� ��
�

order prepared ��������

change proposed��������

��������?
order

cancelled

��������	
�����

notification
acknowledged

��������	
�����
t1:prepare order,p1,{me}

		 t2:approve order,me,{p1}

t5:confirm order,p1,{me}
��

t7:submit change,p1,{me},t2≤12 hours

��
t8:approve change,me,{p1},t7≤12 hours

t10:cancel order,p1,{me},t2>1 day

Fig. 2. The Purchase Order protocol from the perspective of the sales approver

constraints and have the expressive power necessary to describe complex series of
interactions allowing for multiple alternative message exchanges to be performed
at any given point in the execution of the MEP.

Figure 1 describes a simplified version of an end-to-end order fulfillment
process represented by means of a complex set of interacting Web services. From
a service network perspective the Purchase Order business protocol essentially
corresponds to a choreography scenario and involves message exchanges between
three parties: a buyer (p1), a sales approver (p2), and a seller (p3), described
from a global perspective. A buyer’s order conveys information about the order.
The sales approver performs credit check and stock authorization, while the final
order fulfillment and billing lies with the seller.

The previous scenario can be contrasted with the one illustrated in Figure 2
which describes the Purchase Order protocol from the sales approver’s perspec-
tive, which effectively corresponds to a service orchestration scenario, where all
information not concerning the sales approver, both about states of the protocol
and transitions, has been removed. The only message exchanges relevant for the
sales approver are the ones in which it appears as either sender or recipient of
messages. Note that in the service network business protocol where the sales
approver is listed as recipient of a message together with other participants,
information about other recipients, like transitions t5 and t10 in Figure 2, is
eliminated as it cannot be observed by the sales approver. Eliminating infor-
mation regarding transitions that do not involve the sales approver may render

Sound Multi-party Business Protocols for Service Networks 305

some states of the business protocol irrelevant. Collapsed states are labelled as
“?” in Figure 2 and are referred to as incognito states. Incognito states are
“super-states” in orchestrations which resume states in the original choreogra-
phy that are not discernible by the participant because of lack of information.
The algorithm to extract the point of view of a participant from a choreography
(and the creation of the incognito states) [1] is outside the scope of this paper.

Business protocols such as the one depicted in Figure 1 can lead to erroneous
results if not managed properly. Therefore, an important consideration is how
to factor a multi-party business protocol to achieve end-to-end conversation se-
quences that are robust and safe. Of particular importance is the use of formal
techniques to describe multi-party MEPs for service networks and verify correct
execution and temporal properties of these protocols.

In this paper we define a formal model for multi-party business protocols based
on Deterministic Finite Automata (DFA). Our model has been inspired by [2],
which we have extended to describe multi-participant orchestration business pro-
tocols and choreographies. We also introduce the notion of multi-party business
protocol soundness and show how it is possible to execute a multi-party protocol
consistently in a completely distributed and timely manner without relying on
any external synchronization mechanisms.

2 Formal Exposition of Business Protocols

This section introduces the basics of our formalization of business protocols.
We use a graph-based representation which permits us to give an intuitive and
simple semantics to the execution of runs, and which makes it easy to perform a
mapping to timed automata, which enables model checking-based verification of
temporal logic properties. Space constraints force us to be concise; the interested
reader can find more details and examples in [1].

2.1 Running Example: Purchase Order Business Protocol

Our representation of business protocols is based on DFA, which are considered
appropriate for describing message exchanges for e-commerce applications [3],
enriched with time conditions on the transitions. The states of the protocol are
mapped to states in the DFA, and the protocol evolves by traversing transitions.
Transitions are uniquely identified by their transition identifiers, and have asso-
ciated time conditions that restrict when they can be traversed. There are two
types of transitions: message-based and automatic. Message-based transitions
are associated to a message exchange between a sender and a number of recip-
ients. Automatic transitions are triggered by their associated time conditions
becoming true when time advances.

In Figure 1, the participants communicate with each other by exchanging mes-
sages. The buyer initiates the conversation (and thus it is the initiator) by sending
the message prepare order to the sales approver (transition t1). The notation

t1 : prepare order, p1, {p2}

306 M. Mancioppi et al.

means that the message-based transition t1 represents the delivery of an instance
of the message type prepare order by the participant p1 to the participant p2.
The sales approver authorizes the order and replies back to the buyer with an
approve order message (transition t2). Following this, the buyer has to dispatch
the order within two hours to the seller (transition t3) with the send order
message. If the seller accepts the order, it sends to the participants a message
order accepted (transition t4). The seller can reject an order by sending the
message reject order (transition t6) within two hours since the reception of
the message send order. If the order is accepted, the conversation ends by
traversing transition t5, where the buyer sends the message confirm order to
both seller and buyer. The buyer can, however, cancel an order that has been
rejected within one day (t10) or propose changes the order to the sales approver a
within 12 hours. In this case, the sales approver must approve the change within
12 more hours (t7 and t8). The buyer then sends another message to the seller
(t9) with the updated order for the seller to either approve or reject it.

Each message-based transition in the business protocol is univocally associ-
ated with a message type. Different message types in the business protocol are
disjoint: that is, given a message that is an instance of a message type, it is
possible to map it back to only that message type.1 Thus, recipients are able
to tell which transition has taken place simply by observing the message they
received. Each business protocol has a unique initial state, which has no incom-
ing transitions. All transitions outgoing the initial state are message-based, and
their associated time conditions are “true”. Multiple final states are allowed, and
final states are required to be absorbing (i.e. they have no outgoing transitions).

Time conditions determine when transitions can be traversed. Message-based
transitions can be traversed only if their associated time expressions evaluate to
“true” and the corresponding exchange of messages between the partners actu-
ally is actually performed. Automatic transitions are immediately traversed as
soon as their associated time expressions evaluate to “true”. Time expressions
are obtained by composing atomic predicates, such as “true” or “t3 > 2 hours”
which refer to the time at which a transition happened using directly its transi-
tion identifier (e.g., t3). In a sense this is similar to what happens in timed au-
tomata [4] (and we assume similar time expressions are used), where clocks store
information on elapsed time, and they can be reset by traversing transitions. In
our proposal, every transition has one associated timer (named as its transition
identifier) which is reset every time the transition is traversed. We will use spe-
cific time expressions to denote either absolute points in time (e.g., 12:35AM) or
durations (e.g., 2 hours), and we will let the context disambiguate if needed.

The time at which a time expression is evaluated is used as the reference
for the evaluation of atomic predicates. Atomic predicates referencing a not-

1 Requiring all message-types to be completely disjoint with each other is not a limi-
tation in the current WS landscape: message instances can be marked with custom
SOAP headers (thereby without affecting the actual contents of the message), by
embedding message identifiers, or by defining the message types as XSD type or
element definitions accompanied by XPath expressions acting as assertions.

Sound Multi-party Business Protocols for Service Networks 307

yet-taken transition evaluate to “false”, while “true” time expressions can be
omitted. Time expressions combining atomic predicates are evaluated with the
usual rules for conjunction, disjunction, and negation.

2.2 Taxonomy of Business Protocols

In this section we introduce a taxonomy of business protocols according to the
following two dimensions:

– Number of participants involved in the conversations:
two-party: two participants, or
multi-party: more than two (but finitely more) participants.

– The perspective adopted to describe the structure of the conversation:
orchestration: the conversation is described as the point of view of a par-

ticular participant (as in Figure 2), or
choreography: the conversation describes all the possible interactions that

multiple participants in a service network can have (Figure 1).

�
Participants

�

P
er

sp
ec

ti
ve

two-party/orchestration

two-party/choreography

multi-party/orchestration

multi-party/choreography

Fig. 3. Taxonomy of Business Protocols

The classification is based on
the combinations of the two para-
meters, as presented in Figure 3.
We will use this classification later
on, as different classes of busi-
ness protocols have different prop-
erties. For instance, soundness in
service networks (Section 3) is de-
fined in terms of two-party choreography and multi-party choreography business
protocols.

2.3 Execution of Business Protocols

The execution of a business protocol essentially implies traversing the states fol-
lowing the usual automata conventions, in addition to the considerations stated
in Section 2.1 regarding when a transition can be traversed according to its time
condition. A sequence of consecutive transitions that goes from the initial state
to a final state is an execution path. Examples of execution paths on the business
protocols presented in Figure 1 are the following:

ex1 := t1 → t2 → t3 → t4 → t5

ex2 := t1 → t2 → t3 → t6 → t7 → t8 → t9 → t4 → t5

There are usually multiple execution paths in the same business protocol
(actually, there may be infinite if there are loops).

A particular execution of a business protocol is called a run, and it consists of
a sequence of steps (t, τ), corresponding to the traversal of transition t at time
τ . A run rn

B of length n on the business protocol B is represented as:

rn
B := (t1, τ1) → . . . → (ti, τi) → . . . → (tn, τn)

308 M. Mancioppi et al.

where (ti, τi) → (ti+1, τi+1) represents that ti was traversed at time τi, followed
by the step (ti+1, τi+1). In a sense, runs are instances of execution paths. Different
executions that follow the same execution paths may give rise to runs that differ
on the times associated with the steps. The information available in the run
(traversed transitions, their order, and their associated time), is used to evaluate
time conditions in the remainder of the execution.

The set of all the runs that can take place on the business protocol B re-
specting the time constraints in it is denoted by RB .2 Runs in RB are said to be
accepting on B. Accepting runs have to follow the usual word accept rules for
automata (they start in the initial state, end in a final state, and every transi-
tion starts in the state the previous one ended in) and the rules concerning the
semantics of time conditions. For example, the following run is not accepting
with respect to the business protocol illustrated in Figure 1 because it violates
the time constraints associated with the transition t3:

(t1, 0h) → (t2, τ2) → (t3, 2h:30m) → (t4, τ4) → (t5, τ5)

More precisely, if we denote by ct the time conditions associated with transi-
tion t are:

– For any step (t, τ), ct must evaluate to true at time τ .
– For any two steps (ta, τa) → (tb, τb) where tb starts in state s:

• τa < τb must hold (i.e., time increases monotonically).
• If tb is message-based, no condition of any automatic transition departing

from s may have evaluated to true in the time span from τa to τb.
• If tb is an automatic transition, τb is the least time greater than τa in

which ctb
evaluated to true, and no time condition of any transition

starting at s may have evaluated to true in the time span from τa to τb.

2.4 Mapping Business Protocols to Timed Automata

Expressing and checking temporal properties, like “every possible accepting run
of the business protocol completes in at most 20 seconds”, is important to,
for example, ensuring that time-related QoS properties hold. In order to pave
the way towards model-checking of business protocols, we provide a mapping
from business protocols to timed automata. Timed automata are labelled tran-
sition system which use real-valued variables (timers) to model clocks. Timed
automata accept timed words, where some input symbols can be accepted (i.e.,
the corresponding transition is taken) only at certain points in time specified by
expressions on the timers.

The mapping, adapted from the one in [2] for two-party orchestration business
protocols, converts states of the business protocol B into states of the Equiva-
lent Timed Automaton (ETA) TB preserving the markings for initial and final
states. A timer is created for each transition using the identifier of that transi-
tion, which is reset to zero every time the transition is taken. Transitions in B

2 Borrowing terminology from automata theory, RB is the language of B.

Sound Multi-party Business Protocols for Service Networks 309

are converted into transitions in TB, labelled with the original identifier in the
business protocol. The time conditions associated with message-based transitions
are copied unmodified, but the conditions associated with automatic transitions
require some additional tweaking. It is necessary to enforce in the ETA that, in
case that several automatic transitions starting in the same state of a business
protocol can evaluate to true simultaneously, only one (e.g., the one with the
least transition identifier) is traversed.

Therefore, for an automatic transition t starting at state s we just need to
translate its associated time conditions into TB as the (logical) conjunction of the
time conditions for t and the conjunction of the negation of the time conditions
associated to any other automatic transition originating at s whose transition
identifier is smaller than t.3

The resulting ETA is deterministic. The language of TB is, by construction,
exactly RB (see Section 2.3). Thus, checking whether a run can or can not take
place on a certain business protocol boils down to checking if the run belongs to
the language of its equivalent timed automaton.

The mapping to timed automata makes it possible to analyze, among other
properties, the inclusion and equivalence of languages of business protocols, i.e.,
if a given business protocol can execute all or only some of the runs of another
protocol. Inclusion and equivalence of languages is the corner-stone for any work
on replaceability and compatibility of business protocols. Since the ETAs we
generate are deterministic,4 and they have by construction exactly the same
language of the respective business protocols, the analysis of the inclusion of
languages [4] on them solves the problem for the business protocols.

3 Sound Multi-party Business Protocols

For a given choreography business protocol (either two-party or multi-party) it is
important to ensure that can be executed in a completely distributed and timely
manner using the message exchanges in the protocol as the only communication
means. If participants exchange messages at their own discretion (e.g., outside
their time windows), the business protocol may be wrongly executed; they must
therefore know when messages can be exchanged. Business protocols in which
completely distributed execution is possible are called participant-sound.

An additional interesting property of choreography business protocols, called
time-soundness, is the ability to avoid protocol stalls that could be caused by
the discretionary ability of participants to decide whether to generate or not
messages in a business protocol. Message-based transitions define time win-
dows within which senders can generate messages with a valid timestamp. Time-
soundness guarantees that the protocol eventually concludes disregarding mes-
sages which are not generated within the appropriate time frame.

3 An example of this procedure can be found in [1].
4 Deciding of language inclusion for non-deterministic timed automata is undecidable.

However, the inclusion problem for deterministic timed automata is decidable [4].

310 M. Mancioppi et al.

�
� �

�
�
�� �s0 ��������s1 ��������������� sf

t1:m1,(p1,{p2}),true

 t2:m2,(p3,{p1}),t1<5

Fig. 4. A non participant-sound multi-party choreography business protocol

�
� �

�
�
�� �
s0 ��������s1 ��������������� sf

t1:m1,(p1,{p2,p3}),true

 t2:m2,(p3,{p1}),t1<5

Fig. 5. A participant-sound version of the protocol in Figure 4

3.1 Participant-Soundness

A participant-sound business protocol can be executed correctly using as the
only communication means among the participants the message exchanges in
the protocol. Consider the business protocol presented in Figure 4: participant
p3, which is not involved in the message exchange upon traversing transition t1,
does not know that the protocol has entered state s1 and that it is therefore
expected to generate message m2. Thus, the protocol is not participant-sound,
because if p3 relies only on the messages exchanged with the other participants, it
will not have information enough to take part in the execution without risking to
break the protocol by generating a message in the wrong moment. Consider now
Figure 5, obtained by adding p3 as recipient for the message-based transition t1.
Unlike the protocol in Figure 4, the one in Figure 5 is participant-sound: upon
the receipt of message m1, p3 knows that the protocol is now in the state s1,
and that it can generate message m2.

In order for a business protocol to be participant-sound, its participants must
be able to evaluate time conditions associated to message-based transitions in
which they act as either senders or recipients.

Recipients of message-based transitions can observe traversed transitions that
affect them by retrieving the types of the messages they receive and using the
one-to-one mapping between message types and message-based transitions (Sec-
tion 2.1). Similarly, a time condition associated with an automatic transition
(Section 2.1) defines the time windows in which that transition is immediately
traversed if the protocol is currently in its source state. Automatic transitions
do not require communication among participants: a participant infers that an
automatic transition takes place when they can evaluate their time windows and
knows that the execution is in the transition’s source state.

If a participant knows when a transition can or cannot be traversed, it is said
to be transition-aware of that transition:

Definition 1 (Transition-awareness (Working Definition)). A participant
p is transition-aware of a transition t in a business protocol B if every time t occurs
during an execution of B one of the following holds:

– t is message-based, and p is involved in it (that is, p is either sender or
recipient in t), or

– t is automatic, and p can infer that t has occurred.

Sound Multi-party Business Protocols for Service Networks 311

�
� �

�
�
�� �
s0 ��������s1 ��������s2 ��������������� sf

t1:m1,(p1,{p2}),true

 t2:m2,(p1,{p3}),true

t3:m3,(p1,{p2}),true

��
t4:t1<5 ��

Fig. 6. State-awareness with automatic transitions

Transition-awareness affects the ability of participants to evaluate time condi-
tions. A participant can evaluate a time condition if and only if it is transition-
aware of all the transition identifiers appearing in that time condition. Due to
transition-awareness, the participant always knows when the transition is tra-
versed, and can keep track of the time of the most recent occurrence to evaluate
time conditions defined on the basis of that transition.

Definition 1 is only a “working definition” because, while it delivers the in-
tuition of transition-awareness, it does not explain when participants can infer
the execution of automatic transitions. In order to formally explain this, there
is some more ground work to do.

Similarly to transition-awareness, a participant is said to be state-aware of
a state if it is aware of every time that the business protocol enters or leaves
that state. This means that the participant is being informed of all transitions
incoming and outgoing a specific state. Consider the multi-party choreography
business protocol in Figure 6. The participant p1 is state-aware of s2 because it
is aware of all transitions entering this state, all the message-based transitions
leaving it (t3), and it can evaluate when t4 can be taken because it was also aware
of transition t1, needed to evaluate the condition ct4 ≡ t1 < 5. On the other hand,
p3 is not transition-aware of t1. Therefore, it cannot evaluate correctly ct4 , and
thus it is not state-aware of s2 as it cannot tell when s2 is left through t4.

Transition- and state-awareness, which are mutually dependent, are the keys
to participant-soundness: if participants are aware of the message-based transi-
tions in which they are involved, they have enough understanding of the protocol
not to break it. The definitions of state- and transition-awareness follow:

Definition 2 (State-awareness). A participant p in a business protocol B is
state-aware of s if p is transition-aware of all transitions entering s and, for
every transition t exiting s:

– If t is message-based, then p is either the sender or a recipient of t, and p
can evaluate the time condition associated with t.

– If t is automatic, then p can evaluate the time condition associated with t.

Definition 3 (Transition-awareness). The participant p in the business pro-
tocol B is transition-aware of a transition t with source state s if and only if one
of the following conditions hold:

– t is message-based, p is sender in it, and p is state-aware of s, or
– t is message-based, and p is recipient in it, or
– t is automatic, and p is state-aware of s.

312 M. Mancioppi et al.

Definitions 2 and 3 show how awareness spreads through the executions of a
business protocol: a participant is state-aware of a state if it is transition-aware
of the transitions entering that state.5 A participant has to be state-aware of
its source state in order to be transition-aware of automatic and message-based
transitions in which it acts as the sender. A participant’s awareness of states
and transitions follows paths of awareness, made up of sequences of transitions
and states that it is aware of, throughout the executions of a protocol. The
paths always start with a message-based transition in which the participant is
a recipient, and always end with message-based transitions entering final states,
or states the participant is not aware of. The only exception to this rule are
the paths of awareness for the participant that initiates a protocol. These start
with a message-based transition originating in the initial state and where the
participant is the sender and not a recipient.

Participants need also to know when the protocol has terminated. If a partic-
ipant is not aware of the completion of a protocol run (i.e., if it does not know
that the protocol has entered a final state), it might wait forever for messages
that will never arrive. To prevent this from happening, participants are required
to be aware of all final states.

It is possible to define participant-soundness on the basis of the definition of
state-awareness:

Definition 4 (Participant-soundness). A multi-party choreography business
protocol is participant-sound if:

1. for every message-based transition t originating in a state s, the sender p of
t is state-aware of s;

2. all participants are state-aware of the final states that belong to execution
paths that contain transitions that the participants are aware of.

That is, participant-soundness expresses the capability that senders have to gen-
erate their messages within the correct time windows and that all have partici-
pants to acknowledge the termination of the protocol execution if they were apart
of it (note that it may be the case that some participants did not participate in
the execution path followed by a certain instance).

3.2 Time-Soundness
As already explained, senders of message-based transitions can decide not to
generate messages (and, thus, not to actually traverse transitions). This may
suspend the execution of protocols. Consider the protocol in Figure 7: if p2 does
not wish to generate the message m2 while the protocol is in the state s1, the
execution will never reach a final state, and therefore the protocol may stall.

Business protocols which never stall because of the participants’ discretional
ability to decide whether and when they would participate in message exchanges
5 For reasons of simplicity, the formulation of Definition 2 and 3 are such that they may

be affected by circularity in case the business protocol has loops in it. Definition of
transition- and state-awareness not affected by circularity (but for all other practical
purposes equivalent to the ones here proposed) are available in [1].

Sound Multi-party Business Protocols for Service Networks 313

�
� �

�
�
�� �
s0 ��������s1 ��������������� sf

t1:m1,(p1,{p2}),true

 t2:m2,(p2,{p1}),t1>5

Fig. 7. A business protocol which may stall in state s1 when the participant p2 decides
not to generate the message m2

�
� �

�
�
�� �
s0 ��������s1 ��������������� sf

t1:m1,(p1,{p2}),true

t2:m2,(p2,{p1}),t1>5

��
t3:t1>50 ��

Fig. 8. A time-sound version of the business protocol presented in Figure 7

are called time-sound. The implication is that a business protocol is time-sound
if, in every non-initial state of the protocol in which participants apply discre-
tionality, there is always a possibility for the protocol to proceed to a new state.
Message-based transitions leaving the initial state (like transition t1 in Figure 7)
are treated as special cases. Since the initial state has no incoming transitions,
the traversal of a message-based transition originating in the initial state always
represents the beginning of a protocol execution. Figure 8 shows a time-sound
protocol, as per Definition 5, below:

Definition 5 (Time-soundness). A business protocol is time-sound if for every
non-initial state that has at least one outgoing message-based transition, there is at
least one outgoing automatic transition whose associated time condition is satisfied
infinitely often.6

Because of the discrete time model adopted by business protocols, having in-
finitely often verifiable time conditions associated with automatic transitions
guarantees that, no matter when a state is entered, at some point in the future
one automatic transition will be traversable, and therefore the protocol execu-
tion will traverse it. While this does not prevent infinite loops from occurring, it
is enough to prevent a protocol from stalling in a specific state. Note that these
automatic transitions may very well lead the protocol to some emergency state
to escape from unexpected situations (e.g., deadlines not met).

3.3 Full Soundness

Multi-party choreography business protocols that are both participant- and time-
sound are fully sound. Fully sound business protocols exhibit a progression prop-
erty: their execution is never indefinitely blocked in a non-initial and non-final
state. This can alternatively be formulated as follows: finite runs of fully sound
business protocols complete (i.e., reach a final state) in finite time. Theorem 1
proves the property of progression.

6 That is, there exist infinitely many moments in time in which the time condition
evaluates to “true”.

314 M. Mancioppi et al.

Theorem 1 Progression of Fully Sound Business Protocols Assuming
that participants do not willingly violate time windows for message generation,
every accepting run rn

B of finite length on a multi-party service network business
protocol B reaches a final state sf in finite time. Moreover, at no step in its
execution the protocol is broken because of the generation of messages outside
their respective time-windows.

Proof. Proven by induction on the construction of an accepting run. There are
two basic cases, first and last step of the run, and an inductive one on the i-th
step of the run, with i ∈ (1, n).

– first step: since rn
B is accepting, the first step traverses a message-based

transition originating in the initial state. The time in the execution does not
start until the first transition is traversed. Consequently, this case presents
no problem. The time condition associated to a message-based transition
originating in the initial state must be “true” (Section 2.1), and thus the
initiator participant can not possibly violate the time-window for the gener-
ation of the first message.

– last step: since rn
B is accepting, the n-th (and final) step ends in a final state

of B, and the execution is completed. Since there are no transitions outgoing
final states, no messages breaking the protocol can be generated.

– inductive case: step i − 1 (i − 1 < n) ends in a state s. Since the run is
accepting, the state s is a neither initial nor final. Since s is not final, it
has at least one outgoing transition. The transition t to be traversed at
the i-th step can be either automatic or message-based. If t is automatic,
then the time condition associated with t is infinitely often satisfied due to
the time-soundness property of B. As traversing an automatic transition
does not generate any messages, no time-window can be violated. If t is a
message-based transition, the sender p of t generates the associated message
m in a finite amount of time, and this happens before the time condition of
any automatic transition is satisfied. Otherwise, an automatic transition is
traversed instead. Due to the participant-soundness of B, p can evaluate the
time-window, and thus it has all the information necessary to generate the
message without breaking the protocol.

Theorem 1 proves a fundamental result regarding fully sound business proto-
cols: runs in which participants adhere to the execution rules (i.e., do not gener-
ate messages outside the allowed time windows) always complete in finite time.
Moreover, because of the participant-soundness of the protocol, participants can
execute the protocol in a completely distributed way. This result builds on the
following assumptions:

Reliability of communication channel: sent messages are always success-
fully delivered;

Reliable time measurement: participants have consistent means of measur-
ing time, i.e., private clocks evolving at the same speed;

Time efficiency of communication channel: the messages sent are deliv-
ered instantaneously to all recipients;

Sound Multi-party Business Protocols for Service Networks 315

Reaction time of participants: participants take decisions and react with-
out delays, i.e., no noticeable computation is performed in states.

Current enterprise systems can actually offer a run-time environment in which
fully sound business protocols can be efficiently executed. Enterprise service
buses provide reliable communication channels (e.g., through implementations
of the WS-ReliableMessaging specification). Time-efficiency requirements on the
communication channel and participants’ reaction time can be achieved by em-
ploying strategies from communication networks such as Time Division Multi-
plexing, while protocols like the Internet Network Time Protocol can be used to
ensure that participants have a consistent view of time.

4 Related Work

Recently, a simplified version of BPEL 2.0, called BPELLight [5], has been pro-
posed to encode complex, executable MEPs. BPELLight extends BPEL 2.0 with
a WSDL-less interaction model that makes it possible to specify processes rep-
resenting orchestration-based MEPs independently from Web service technolo-
gies. While this proposal has the advantage of being directly executable on
suitable middleware, there is currently no direct support for model checking and
validation.

Other DFA-based formalisms have been proposed to describe asynchronous
message exchanges between two parties as orchestrations or choreographies. All
these formalisms encode message exchanges as transitions connecting states of
the protocol, and can ultimately be mapped to our formalism.

Two-party orchestration business protocols have been studied in [6,7]: for
this particular class of business protocols, very relevant problems like compat-
ibility and replaceability [2,8], evolution and migration strategies for running
instances [9], have been already addressed.

An approach to matchmaking of two-party choreography business protocols
(though not supporting time constraints) is presented in [10] as part of a search
engine for ad-hoc business processes, as well as an extraction process for
orchestration-based business protocols. These are called views and are created
from choreographic protocols.

5 Conclusions and Future Work

Current orchestration languages (e.g., BPEL) describe how services can interact
with each other at the message level from the perspective and under control of a
single service. Moreover, the interactions are limited to uni-cast scenarios. This
is extremely restrictive for applications characterized by wide-scale and complex
dynamic interactions.

In this paper we introduced an intuitive formal model for describing multi-
party service network business protocols based on Deterministic Finite Au-
tomata. In addition, we defined the notion of full soundness for multi-party

316 M. Mancioppi et al.

business protocols. Fully sound multi-party choreography business protocols rely
solely on message exchanges as the only means of communication and can be
executed consistently in a completely distributed manner, while guaranteeing
termination. Our framework allows the description of business protocols and ver-
ification of their temporal properties using model checking of timed automata.
Fully sound multi-party choreography business protocols contribute towards a
comprehensive theory of management of business protocols for service networks.

Future work on choreography business protocols will focus on the evolution
of business protocols and how it impacts time-related QoS parameters like turn
around time, transaction rates, etc. Another area of work concerns protocol
replaceability and compatibility analysis and versioning techniques for business
protocols.

References

1. Mancioppi, M.: A Formal Framework for Multi-Party Business Protocols.
CentER Discussion Paper 2008-79, Tilburg University (September 2008),
http://center.uvt.nl/pub/dp2008.html

2. Ponge, J., Benatallah, B., Casati, F., Toumani, F.: Fine-Grained Compatibility and
Replaceability Analysis of Timed Web Service Protocols. In: Parent, C., Schewe,
K.-D., Storey, V.C., Thalheim, B. (eds.) ER 2007. LNCS, vol. 4801, pp. 599–614.
Springer, Heidelberg (2007)

3. Benyoucef, M., Keller, R.K.: An Evaluation of Formalisms for Negotiations in E-
commerce. In: Kropf, P.G., Babin, G., Plaice, J., Unger, H. (eds.) DCW 2000.
LNCS, vol. 1830, pp. 45–54. Springer, Heidelberg (2000)

4. Alur, R., Dill, D.L.: A Theory of Timed Automata. Theoretical Computer Sci-
ence 126(2), 183–235 (1994)

5. Nitzsche, J., van Lessen, T., Karastoyanova, D., Leymann, F.: BPELlight. In:
Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp.
214–229. Springer, Heidelberg (2007)

6. Yellin, D.M., Strom, R.E.: Protocol Specifications and Component Adaptors. ACM
Transactions on Programming Languages and Systems 19(2), 292–333 (1997)

7. Benatallah, B., Casati, F., Toumani, F.: Representing, Analysing and Managing
Web Service Protocols. Data Knowledge Engineering 58(3), 327–357 (2006)

8. Benatallah, B., Casati, F., Toumani, F.: Analysis and Management of Web Service
Protocols. In: Atzeni, P., Chu, W.W., Lu, H., Zhou, S., Ling, T.-W. (eds.) ER
2004. LNCS, vol. 3288, pp. 524–541. Springer, Heidelberg (2004)

9. Ryu, S.H., Saint-Paul, R., Benatallah, B., Casati, F.: A Framework for Managing
the Evolution of Business Protocols in Web Services. In: Roddick, J.F., Hinze, A.
(eds.) APCCM. CRPIT, vol. 67, pp. 49–59. Australian Computer Society (2007)

10. Wombacher, A., Mahleko, B.: Finding Trading Partners to Establish Ad-hoc Busi-
ness Processes. In: Meersman, R., Tari, Z., et al. (eds.) CoopIS 2002, DOA 2002,
and ODBASE 2002. LNCS, vol. 2519, pp. 339–355. Springer, Heidelberg (2002)

http://center.uvt.nl/pub/dp2008.html

A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, pp. 317–330, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Automatic Mash Up of Composite Applications

Michael Pierre Carlson1, Anne H.H. Ngu1, Rodion Podorozhny1,
 and Liangzhao Zeng2

1 Computer Science Dept., Texas State University, San Marcos, TX 78666, USA
{mc1173,rp31,hn12}@txstate.edu

2 IBM T.J. Wastson Research Center, Yorktown Heights, NY 10598
lzeng@us.ibm.com

Abstract. The need for integration of both client and server applications that
were not initially designed to interoperate is gaining popularity. One of the rea-
sons for this popularity is the capability to quickly reconfigure a composite ap-
plication for a task at hand, both by changing the set of components and the
way they are interconnected. Service Oriented Architecture (SOA) has become
a popular platform in the IT industry for building such composite applications
recently with the integrated components being provided as web services. A key
limitation of such a web service is that it requires extra programming efforts
when integrating non web service components, which is not cost-effective.
Moreover, with the emergence of new standards, such as OSGi, the components
used in composite applications have grown to include more than just web ser-
vices. Our work enables progressive composition of non web service based
components such as portlets, web applications, native widgets, legacy systems,
and Java Beans. Further, we proposed a novel application of semantic annota-
tion together with the standard semantic web matching algorithm for finding
sets of functionally equivalent components out of a large set of available non
web service based components. Once such a set is identified the user can drag
and drop the most suitable component into an Eclipse based composition can-
vas. After a set of components has been selected in such a way, they can be
connected by data-flow arcs, thus forming an integrated, composite application
without any low level programming and integration efforts. We implemented
and conducted experimental study on the above progressive composition
framework on IBM’s Lotus Expeditor which is an extension of a Service Ori-
ented Architecture (SOA) platform called the Eclipse Rich Client Platform
(RCP) that complies with the OSGi standard.

1 Introduction

Composite applications are a line of business applications constructed by connecting,
or wiring, disparate software components into combinations that provide a new level
of function to the end user without the requirement to write any new code. The com-
ponents that are used to build a composite application are generally built within a
Service Oriented Architecture (SOA). Many of the first SOA platforms exclusively
relied on web services (WSDL-based) as components in the composite application.
The composition is done generally using process based languages such as BPEL[1] or
UML statechart [2]. The web services only integration framework requires extra

318 M.P. Carlson et al.

programming efforts when integrating with non web service components, which is not
cost effective. With the emergence of new standards, such as OSGi [3], the compo-
nents used in composite applications have grown to include more than just web ser-
vices. Components can be built from web applications, portlets, native widgets,
legacy systems, and Java Beans.

There are challenges to mashing up non-web service components into composite
applications, especially when components are developed at different times, by differ-
ent groups, using different technologies, naming conventions, and structures. Firstly, a
given enterprise may have hundreds of similar components available for mash up in a
catalog, but manually searching and finding compatible and complementary compo-
nents could be a tedious and time consuming task. For example, in a portal environ-
ment, it is possible to query the system for the available components. However, the
list that is returned is typically based on criteria that have no relevance to the applica-
tion assembler (e.g. alphabetical or last update time). Interfaces like Google Code
Search [4] allow the developers to search application code, but it does not allow them
to search using the higher level concepts of a component or a model. On the other end
of the spectrum, having to manually classify and describe every aspect of components
for browsing and searching can be a painstaking task when handling a large number
of components.

Secondly, none of the existing OSGi environments provides a way to leverage the
semantic search techniques that have been developed to assist the user in locating
compatible components for web service based composite applications. Unlike web
services, many non-web service components have graphical user interfaces built from
technologies such as portlets, Eclipse Views, and native application windows. More-
over, there is currently no standard way of categorizing and cataloging components
for use in composite application. Rather, components are discovered by assemblers
who must hunt around the web, in documentation, and searching the locally installed
system. This does not provide an easy and manageable means of finding and selecting
components. Depending on the technology used or the type of user interface being
presented, certain components may not be valid for use in a particular composite
application. Discerning this could be a difficult process up front, or could result in
repeated cycles of trial and error, especially when the target environment supports a
variety of technologies.

After suitable components have been discovered, the assembly of composite appli-
cations should not require tedious and detailed programming as required of a typical
software developer. End users, at least the savvier end users, should be able to com-
pose applications with minimal training. For a call center in an enterprise, this may
simply mean being able to assemble a composite application on the fly that takes a
caller’s information in one application and has the input reflected in other applications
that are currently running on his or her desktop for other contextual information. For
the savvy end user at home or in a small business, this may mean assembling a GPS
routing application together with the list of errands or deliveries for the day and pro-
ducing a more optimized route.

The main contributions of this paper are as follows. First it is shown that existing
techniques, technologies, and algorithms used for finding and matching web service
components (WSDL-based) can be reused, with only minor changes, for the purpose
of finding compatible and complementary non web service based components for rich

 Automatic Mash Up of Composite Applications 319

client composite applications. These components may include graphical user inter-
faces, which are not an artifact in web service components. By building on the tech-
niques initially developed for web services matching, the problems associated with
finding useful and valid components for composite applications using high level con-
cepts is possible. This enables the progressive construction of composite applications
from a catalog of available components without deep knowledge of the components in
the catalog. We demonstrated how the additional characteristics of components, spe-
cifically graphical user interface details, can be modeled, described using Semantic
Annotation for web services (SAWSDL) [5] and matched in a similar fashion to the
programmatic inputs of web service based components. Though similar in some re-
spects to web service based components, our experimental study shows that these
additional characteristics of a component allow for further match processing logic to
be used to provide much better results for the user when searching for components to
integrate into the composite application. Finally, it will be shown using sample appli-
cations and scenarios that by taking into account the unique characteristics of a com-
ponent (i.e. coexistence of user interface components), and new techniques of
merging semantic descriptions across multiple components, we can achieve a much
more accurate search result for compatible components.

The paper is organized as follows. Section 2 outlines the overall architecture of our
progressive composition framework. Section 3 details the concepts of composite ap-
plication matching, merging multiple components into a single descriptive format for
matching, and modeling of component’s GUI characteristics. Section 4 provides a set
of experiments, results, and analysis of progressive composition framework based on
semantic web matching technique with SAWSDL annotations. Section 5 describes the
related work and Section 6 provides the conclusion and future work.

2 Progressive Composite Application Framework

2.1 Application Components

The application components referred to in this paper generally contain user interfaces,
built from technologies such as JFace, JSPs, HTML, Eclipse Standard Widget Toolkit
(SWT), Swing, native windowing systems, etc. Like web services and Enterprise Java
Beans, application components can take programmatic inputs and provide program-
matic outputs. In application components, programmatic inputs will generally cause
changes in the graphical user interface, and user interaction with the graphical user
interface will cause the programmatic outputs to be fired. An example of an applica-
tion component is a Portlet [6].

We adopt the IBM Lotus Expeditor [7] platform to develop application compo-
nents and composite applications. Expeditor contains a Composite Application Infra-
structure (CAI) and an associated Composite Application Editor (CAE). CAI is the
runtime environment for the composite applications. It has two main components
called Topology Manager and PropertyBroker. The Topology Manager is responsible
for reading and interpreting the layout information stored in the composite applica-
tion. The PropertyBroker is responsible for passing messages between application
components of a composite application. The CAE editor is used to assemble, and wire

320 M.P. Carlson et al.

components into composite applications without the need for the underlying compo-
nents to be aware of each other at development time. The desired components can
simply be dragged and dropped to add them to a composite application. The adding,
removing, and wiring can be done in an iterative/progressive fashion to allow the
assembler to refine the composite application. This declarative data-flow like wiring
of components is one of the main advantages of Lotus Expeditor. The wired compo-
nents can be saved in an xml file and written to local file system, portal server, or
Lotus Domino NSF database.

The programmatic inputs and outputs of an application component in CAI are de-
scribed using WSDL. Typically the associated WSDL files for CAI components are
created when the components are installed or imported into Lotus Expeditor. In the
current implementation, the WSDL files for application components in CAI does not
include the graphical user interface type (e.g. JSP, SWT, Swing, etc.). The composite
application assembler must have previous knowledge of component interfaces they
are restricted in and the types of GUI technologies they can use. For example, if the
deployment platform does not provide support for Portlet interfaces, then an assem-
bler must know which components in the repository are built from portlets and spe-
cifically avoid those when assembling the composite application.

Lotus Expeditor also did not provide a way for finding compatible and comple-
mentary components from a catalog of existing components based on components’
capabilities. We extended the Expeditor Workbench with a new menu item called
Analyze Composite App. which will open a dialog box for user to search for the de-
sired components to use for composition. The following section illustrates in Figure 1
the sequence of screen shots in Lotus Expeditor Client workbench that resulted in a
simple HotSpotFinder composite application.

2.2 A Scenario of Developing Composite Application

Screen A shows the initial composition workbench. On the right is the panel that
shows the list of components (e.g. HotSpotFinder, GoogleMapper, CityStatePicker,
OrderTracker) that are available for composition as well as links to available remote
components. On the left is the panel that displays all the existing composite applica-
tions of a particular user (there is only one composite application available beside the
one that is being composed). The middle panel displays the in-progress composite
application. When the user clicks on Analyze Composite App. menu, a dialog box in
screen B is displayed. After the user entered the desired search criteria at the top of
screen and pressed the “Find Matches” button, screen C is displayed. By picking the
best matched component (the one with the highest score) from the palette and dropped
it on the middle panel, screen D is displayed. The middle panel now has two compo-
nents (CityStatePicker and HotSpotFinder) which were not aware of each other. At
this point, the user can right click on the in-progress composite application which will
allow selection of the “wiring” action from the menu. Screen F shows the result of
wiring the two selected components on the middle panel. The CityState Picker com-
ponent (labeled “City View”) provides a single output, labeled cityState. The Hot-
SpotFinder component provides a single input named SetLocationCityState. The
dotted line indicates that the cityState output has been linked to the SetLocationCityS-
tate input. Therefore, when the output cityState is fired, the argument of that output

 Automatic Mash Up of Composite Applications 321

Fig. 1. Sequence of steps in composing an application

will be sent as the argument to the SetLocationCityState input. The composition is
now completed and screen G displays the result of running the composed application
within the Expeditor.

3 Composite Application Matching

In this section, we demonstrate techniques, technologies, and algorithms that can be
leveraged to provide support for finding compatible components. The WSDL-based
programmatic inputs and outputs of a component in CAI can be further modeled using
semantic web techniques to enable searching using higher level concepts. Addition-
ally, the implementation technology (e.g. SWT, Swing, etc) used to create the graphi-
cal user interface can be modeled using semantic model and added to component’s
WSDL to further describe the platforms that the component can support.

The additional metadata added did not change the nature of the component’s de-
scription. Therefore existing semantic web services matching technologies and algo-
rithms can be used directly for matching the application components. One such set of

322 M.P. Carlson et al.

algorithms is described by T. Syeda-Mahmood [8]. This work describes combining
the use of semantic and ontological matching for the purposes of matching web ser-
vice components. In fact, the matching code that was used to produce the results
shown by T. Syeda-Mahmood is the same matching code that is used to conduct the
experiments in Section 4. In brief, the matching algorithm works as follows:

1. Using a single input WSDL and a collection of target WSDLs, a score is calcu-
lated based on the number of matching terms found between the input WSDL and
each target WSDL. A thesaurus, in this case WordNet [9], is used to expand the
matching to include synonyms. Thus, this phase is focused on keyword matching.

2. A second search is then invoked using the same input and targets as above. This
time the semantic annotations specified in the WSDL files are considered. The
semantic models for each component are compared using a custom ontology
matching algorithm. This algorithm takes into account the relationships between
the elements given, such as inheritance, hasPart, hasProperty, etc. A score for each
combination is calculated based on the number of attributes that are matched for
each combination.

3. The final score is calculated using a winner-takes-all approach. The maximum of
the first score and the second score is reported as the overall matching score for
each input and target combination.

Even though we can reuse much of the same logic and algorithms, there are a few
fundamental differences when dealing with non-web services based components. In
many cases, when searching for a web service, the developer is looking for APIs that
can either:

1. Match – Using the output from a single web service and finding a second web
service that can take that as input. The developer can continue this process and
string together several web services with application specific control-flow pat-
tern in order to complete a business process.

2. Compose – Starting with a known output and a known input, the developer
uses search techniques that can allow them to find one or more services that
will transform the output of the first web service into something that can be
consumed by the final web service.

The difference with respect to our composite applications is that in most cases the
goal is not to put together a single business process or tightly link fragments of soft-
ware processes with specific control flows; rather, the goal is to integrate separately
created components together “on the glass” [10] and provide the ability for those
applications to communicate or interact without prior knowledge of each other or in
any specific order. This means that a composite application may bring together a
human resources vacation planning component with a project management compo-
nent. By linking the two applications together, the project management component
could potentially use vacation data in the vacation planning component to adjust pro-
ject schedules. In no way, however, does the process of scheduling vacation need to
be modified in order to use the data. Additionally, the developer of each of these
components does not need to have knowledge of the implementation of the other
component or how to invoke the programmatic interfaces.

 Automatic Mash Up of Composite Applications 323

The markup required for composite application matching is similar to the markup
required for web services, at least with respect to data inputs and outputs. Figure 2.
shows an example of a CityStatePicker component with semantic annotation. A Ci-
tyStatePicker component allows a user to select a valid city and a state from given
lists.

 Fig. 2. WSDL with semantic markup for CityState Picker component

Lines 5 and 9 import the necessary namespaces used to add the semantic annota-
tions. Lines 15 – 17 define a new message named “cityState,” which defines the name
of the string that will be output when user interacts with this component. On line 16
you will see that this message has been annotated with a reference to an element in a
semantic model. This is shown as wssem:modelReference="TravelOnt#City" in the
WSDL file. TravelOnt is an OWL-based semantic model that is available on the web.
With this annotation, we are describing the message in terms of an OWL class in an
OWL model. Continuing along the web services methodology, this message is set as
an output of the “pubCityState” operation in a portType (lines 18 – 22) and included
in a portlet type binding (lines 23 – 35). With this markup using the standard grammar
defined by WSDL and SAWSDL, the component’s output can now be matched
against other components’ programmatic inputs using existing web service matching
technologies. By including the annotation, the matching engine is able to match based
on capabilities of the component as described in the OWL model. For example,

324 M.P. Carlson et al.

Fig. 3. OWL model for display

assume the “cityState” component were to be compared against another component
that contained the element “county.” The text-based matching would not count these
as a possible match because the two strings are not equal (i.e. “cityState” !=
“county”). However, if the “county” element had a semantic annotation of “Trave-
lOnt#County” in its modelReference attribute, the matching logic would be able to
compare the model types City and County. If the model described a relationship be-
tween a City and a County, perhaps using the hasProperty OWL attribute, it could be
determined that a city is in a county and both are part of a state. Thus, the match
would score higher because the analysis would show that these two elements are very
closely related.

Semantic annotations only work if there is a unified ontology model. Therefore, it
may be necessary to create a semantic model for the components if none exists. We
use Protégé-OWL [11] editor to create OWL-based semantic models for describing
application component’s GUI characteristics since none exists. Figure 3 shows the
simple GUI semantic model used in our framework. This model describes a single
top-level OWL class named Display. There are three subclasses of Display, namely
Device, Monitor, and Projector. Further, there are two subclasses of Device,
p352x288 and p480x320. The two resolutions for the device class describe certain
types of device interfaces. The p352x288 represents many Windows Mobile smart
phones and the p480x320 represents Apple’s first generation iPhone. The Monitor
class is further subclassed into StandardMonitor and LargeMonitor.

4 Experimental Study

To validate the suggested automatic mashup approach, several experiments were
performed. These experiments involved using 12 components created with the help of
the Java Eclipse IDE toolkit. Once created, they were installed in Lotus Expeditor.
The semantic matching algorithm to be validated was implemented as part of the
Analyze Composite Application (App.) in Lotus Expeditor workbench. A Lenovo
ThinkPad T60p running Microsoft WindowsXP SP2 served as an experimentation
platform. In the experimental test bed, the Analyze Composite App first reads the
content of the current composite application. The “View Filter” and “Display Filter”
sections in Analyze Composite App. enable the user to set the graphical user interface
search criteria. The main table displays the score associated with each of the matching
target WSDLs (i.e. component descriptions) that were in the repository. The “Find
Matches” button starts the search process. The “Use individual matching” checkbox
allows the user to specify which type of matching will be used. If checked, each of the

 Automatic Mash Up of Composite Applications 325

components’ WSDLs in the current composite application will be matched individu-
ally to the target WSDLs in the repository. If not checked, a merged WSDL across all
existing components in the current composite application will be used in the matching
process. We validated the capabilities of the approach by running five experiments on
two different composite applications. The first composite application that we studied
is hotspot tracking and the second application is an order tracking.. Similar results is
obtained from the order tracking application and thus we only report three experi-
ments that are related to hotspot tracking application. The first experiment is to vali-
date the fact that the semantic matching algorithm together with SAWSDL annotation
indeed provides a better match result than matching without using the semantic anno-
tation. The second experiment is to show increased accuracy in the search process
when using a merged WSDL. Finally, the last experiment shows the effect of adding
the GUI semantic information for the matching process.

The first experiment involves simple matching using two component WSDLs and
the semantic web matching logic described in Section 3. The input for this matching
scenario is CityStatePicker component that allows a user to first select a state from a
select box and then select a city from a second select box. After the city is selected,
the component publishes the selected city and state information. The target compo-
nent is the HotSpotFinder component. This is an Eclipse SWT Browser which ac-
cesses JiWire website for a listing of wireless internet access points in the given city
and state. When semantic web matching is applied to CityStatePicker component, a
score of 50 for HotSpotFinder is produced. In order to show the effect of the semantic
matching only, a modified version of the HotSpotFinder.wsdl is used and the same
experiment is run again. In the modified version, the identifying names such as city
and address are replaced with random strings. The resultant score which uses solely
the ontological match is 37.50 for HotSpotFinder. This lower score is likely due to the
fact that only the message elements in the WSDL file have semantic models attached
to them. Lastly, we remove all the semantic annotation in the WSDL documents so
that only pure keyword matching can be used. In this run, the matching score drops to
25. Additional changes to the WSDL that remove other city and state keywords while
preserving its functionality cause the score to drop even more. This shows that the
semantic matching algorithm is working as expected in this experiment and that we
have a valid environment for conducting other experiments.

The second experiment shows the effect of using the merged WSDL search re-
quest to find compatible components for a composite application. In this case, the
target WSDLs will be chosen from the complete collection of components available
in our framework. In order to start the composition process, we must have a starting
component. The CityStatePicker component is used as the first component. This com-
posite application is then matched against the complete catalog of components. The
results, as shown in Figure 4, tell us that the HotSpotFinder component has the high-
est score (50) and should be added to the application.

Once the HotSpotFinder component is added to the application, the analysis is run
again using a merged WSDL search request from both CityStatePicker and HotSpot-
Finder. This time the highest ranking component returned is the GoogleMapper com-
ponent. This component takes as input an address, and based on this address, the
component loads a map for the address using Google Map to provide the actual con-
tent. In fact, not only is this component now the highest scoring component, but it has

326 M.P. Carlson et al.

Fig. 4. Matching of CityStatePicker component

also shown a substantial jump from its previous score of 20 to the new score of 50.
This result indicates that the GoogleMapper component is a good candidate to add to
the application at this time. We further validated the effect of matching with a merged
WSDL request in Order Tracking composite application which won’t be shown here
due to lack of space.

The third experiment showed the effects of using GUI information for conducting
the match. We used the OrderTracking composite application to illustrate that. It is
done so because this application can be composed from components with greater
variety of interface technologies. In order to conduct this experiment, a new message
type pertinent to interface technology will be added to the search component WSDL
and each of the target components’ WSDLs. For this experiment, the Customer De-
tails component is marked as having an SWT GUI, the Order Details component is
marked as having a Portlet GUI, and the Account Details is marked as having a Web
Browser GUI. The test scenario is the same as in experiment two with the merged
WSDL search. Initially, the Orders and Order Tracking components are selected for
the composite application and a merged WSDL search is executed. By selecting one
or more of the checkboxes in Analyze Composite App. search dialog for SWT, Web,
Portlet, Native, or All, the merged search WSDL will be enhanced with this additional
criterion. In the first run we will select SWT checkbox. The match score for the Cus-
tomer Detail component has increased slightly and the scores for the other compo-
nents have decreased. Customer detail was originally the best match and it remains so
with this additional filter. Components that do not have GUI semantic annotation
won’t even appear as part of the result. This is shown in Figure 5.

Next, let us summarize the results of the experiments described above. Experiment
one has shown that the function provided by existing web services matching code can
be used in conjunction with composite applications. Because the matching logic uses
both text-based matching and semantic matching, the function can be used without
adding the semantic markup. However, as we saw in experiment one, the semantic
matching always provides better results. For example, when two components are
named differently yet provide the same functionality, the semantic matching is able to
find the match.

 Automatic Mash Up of Composite Applications 327

Fig. 5. Matching of components with GUI semantic annotation

Fig. 6. Completed HotSpotFinder application

Experiment two has shown that it is possible to build a composite application from
a collection of different components using semantic annotations and semantic web
service matching logic. While there is no automatic way to start the building process,
once a starting point is selected, the remaining compatible components begin to stand
out in the repository searches. As the HotSoptFinder application was composed, the
initial results did not show as much difference in scores as might be expected, but
with the addition of the HotSpotFinder component, we can then construct a merged

328 M.P. Carlson et al.

WSDL search request. This enables the GoogleMapper component to stand out as the
next obvious addition.

Experiment three illustrated that the score of a component can be impacted by the
addition of the GUI semantics. It can therefore be summarized that any potential meta-
data could be added to the WSDL and used in the semantic matching logic later on.

Thus, the experiments enabled us to validate the semantic service matching ap-
proach. The tool based on the approach delivered reasonable matches for service speci-
fications thus providing appropriate functional service compositions. The picture of a
completed integrated application (HotSpotFinder Application) is shown in Figure 6.

5 Related Work

There are several other similar approaches to automatic mashing of application com-
positions. Two of those include Yahoo! Pipes [12] and the various “Mashup” prod-
ucts, such as Intel Mash Maker [13] and Mash-o-matic [14]. While interesting in their
own respects, there are limitations in these technologies that are solved through the
use of composite applications running in Lotus Expeditor.

Yahoo! Pipes provides a web-based means of pulling data from various data
sources, merging and filtering the content of those sources, transforming the content,
and finally outputting the content for users to view or for use as input to other pipes.
There are several limitations in Yahoo! Pipes. The first is the limited set of inputs and
outputs. There is no way to use arbitrary inputs or outputs when using this applica-
tion. There are a limited number of input types and output types from which the user
can select. A component in a composite application should be able to accept many
different types of inputs and provide many different types of outputs. Secondly, the
flow of a pipe is static and sequential. While a user can configure many different
inputs, all of the connections are executed in a sequential manner until the single
output is reached. With composite applications, the different components in the ap-
plication can communicate with each other in any manner that the assembler chooses.
Finally, Yahoo! Pipes is a server-based technology that makes use of only a web user
interface. There is no way for a user to construct and execute a pipe without a network
connection and execute the pipe using locally stored data. A pipe can be accessed
programmatically, like a web service, but in order to execute the pipe the user must be
able to connect to the Yahoo! Pipes server. These same limitations exist in other web
portal type solutions such as iGoogle and My Yahoo.

Damia [17] extends the type of data sources that can be used for mash up to enter-
prise types such as Excel, Notes, web services repository and XML rather than just
URL based sources as in Yahoo pipes. It has a simple model of treating all data as
sequences of XML. There are three kinds of main operators, ingestion, augmentation,
and publication. Ingestion bring data sources into the system, Augmentation operator
provides extensibility to the system. It allows creation of new mash up operators and
is thus more powerful than the fixed Yahoo pipes operators. Finally, there are publica-
tion operators which transform the mashup to common output formats such as Atom,
RSS or JSON for the consumption of other components. Damia is centered on data
rather than component mashup.Another work with a somewhat similar purpose is the
COmposer of Integrated Systems (COINS) by Mark Grechanik and Kevin Conroy

 Automatic Mash Up of Composite Applications 329

[15]. The COINS enables putting together GUI-based applications exploiting an ac-
cessibility programmable interface that manipulates the user interface components
such as buttons, textfields, menu items and others. The use of the accessibility inter-
face enables the COINS system to integrate applications that comply with the acces-
sibility standard (section 508 of the rehabilitation act). Such a solution has lower
performance than using a dedicated API, yet it significantly decreases the time needed
to integrate applications (by an average of 3 times). The focus of the COINS system is
on integration. They do not deal with semantic annotation of component and finding
compatible components.

Kepler[16] is an open source scientific workflow system which allows scientists to
compose a composite application (a.k.a workflow) based on available actors. An actor
can be built from any kind of applications. However, Kepler is not based on SOA
architecture and it requires very skillful low level Java programming to convert appli-
cations into actors which can be composed within Kepler framework. Kepler is also
not meant to be used in a mobile rich client environment like Lotus Expeditor.

6 Conclusion

One of the most difficult problems faced by users in a Rich Client environment is
finding compatible and complementary components in a large catalog of components
that have been built by different groups, at different times, using different technolo-
gies and programming conventions and reuses those components as it is in a different
application. In this paper we have demonstrated that this problem can be largely
solved by applying technologies related to the semantic web and web services match-
ing and using a progressive composition framework like Lotus Expeditor. The first
technology that can be applied is Semantic Annotations for WSDL (SAWSDL), as
standardized by the W3C. By adding semantic model references to the message ele-
ments of the WSDL, the properties exposed by the component can be better described
using modeling languages. Since the modeling attributes can be added to any ele-
ments of the WSDL, the definition of the component could be further refined and
described using the concepts of SAWSDL.

The second technology group that can be applied is the searching and matching al-
gorithms created for use with web services. These algorithms provide a powerful
method for scoring the compatibility of an application component from a large set of
possible component choices based on component capabilities. This scoring simplifies
the application creation process for the composite application assembler by providing
a ranking of potential components. This allows the assembler to focus on the highest
ranked components, skipping over the lower ranked components, when considering
which items may be compatible in the application being created.

The searching process is further improved based on the fact that a composite ap-
plication can be viewed and described as a single component when searching against
a repository of components. This is done by creating a merged WSDL from each of
the component of the composite application. As seen in the experiment results, the use
of individual matching may still be valuable, especially when attempting to distin-
guish between components that score very closely to each other. A potential im-
provement to the analysis results window would be to display the score for each target

330 M.P. Carlson et al.

component using both the merged matching and individual matching, when the col-
lection of scores is relatively close.

A larger direction of future work is combining a service mashup approach with a
process based integration approach. A semantically rich process language with con-
structs for conditionals, iterations and methods for insuring reliability of an integrated
application can facilitate more complex combination of a larger set of applications. It
can also help analysis of an integration specification for general properties such as
lack of a deadlock or a cycle and problem domain specific properties such as compli-
ance of an integrated application to a set of business rules.

References

1. http://www.ibm.com/developerworks/library/specification/ws-bpel/
2. http://www.uml.org
3. OSGi originally stood for Open Service Gateway Initiative. This term is no longer used

and the alliance is now known simply as OSGi., http://www.osgi.org
4. http://www.google.com/codesearch
5. http://www.w3.org/TR/sawsdl
6. Portlets as implemented in the Java programming language are defined by JSR 168,

http://jcp.org/en/jsr/detail?id=168
7. http://www.ibm.com/software/lotus/products/expeditor
8. Syeda-Mahmood, T.S., Akkiraju, R.I.A., Goodwin, R.: Searching Service Repositories by

Combining Semantic and Ontological Matching. In: Third International Conference on
Web Services, ICWS (2005)

9. Miller, G.: WordNet: A lexical database for the English language. Communications of the
ACM (1983)

10. Phifer, G.: Portals Provide a Fast Track to SOA. Business Integration Journal (Novem-
ber/Deccenber 2005)

11. Knublauch, H., Fergerson, R., Noy, N., Musen, M.: The Protégé-OWL Plugin: An Open
Development Environment for Semantic Web Applications (2004),
http://Protege.Stanford.edu/plugins/owl/publications/ISWC200
4-protege-owl.pdf

12. http://pipes.yahoo.com/pipes/
13. http://softwarecommunity.intel.com/articles/eng/1461.htm
14. Murthy, S., Maier, D., Delcambre, L.: Mash-o-matic. In: Proceedings of the 2006 ACM

Symposium on Document Engineering, pp. 205–214 (2006)
15. Grechanik, M., Conroy, K.M.: Composing Integrated Systems Using GUI-Based Applica-

tions And Web Services. In: IEEE International Conference on Services Computing, SCC
2007 (2007)

16. Kepler Project: http://Kepler-project.org/
17. Simmen, E.D., Altinel, M., Padmanabhan, S., Singh, A.: Damia, data mashups for intranet

applications. In: Proceedings of the 2008 ACM SIGMOD international conference on
Management of data, pp. 1171–1182 (2008)

Non-desynchronizable Service Choreographies

Gero Decker1, Alistair Barros2, Frank Michael Kraft3, and Niels Lohmann4

1 Hasso-Plattner-Institute, University of Potsdam, Germany
gero.decker@hpi.uni-potsdam.de

2 SAP Research Centre, Brisbane, Australia
alistair.barros@sap.com

3 SAP AG, Walldorf, Germany
frank.michael.kraft@sap.com

4 Institut für Informatik, Universität Rostock, 18051 Rostock, Germany
niels.lohmann@uni-rostock.de

Abstract. A precise definition of interaction behavior between services
is a prerequisite for successful business-to-business integration. Service
choreographies provide a view on message exchanges and their order-
ing constraints from a global perspective. Assuming message sending
and receiving as one atomic step allows to reduce the modelers’ effort.
As downside, problematic race conditions resulting in deadlocks might
appear when realizing the choreography using services that exchange
messages asynchronously. This paper presents typical issues when desyn-
chronizing service choreographies. Solutions from practice are discussed
and a formal approach based on Petri nets is introduced for identifying
desynchronizable choreographies.

1 Introduction

The service oriented architecture (SOA) is an architectural style for building
software systems based on services. Services are loosely coupled components
described in a uniform way that can be discovered and composed. One realization
of a SOA is the web services platform architecture where services are offered as
web services [1].

In a first generation of services only pairs of request/response message ex-
changes were considered. This view is sufficient when considering simple services,
for instance, a stock information service, where the current or a past value of a
share can be requested. However, more complex interactions must be considered
in many real-world business scenarios. For instance, in a typical purchasing sce-
nario, goods can be ordered, orders can be modified or canceled, orders must be
acknowledged and delivery can be rerouted, or alternative products or quantities
are offered in out-of-stock situations. Also multi-lateral scenarios involving, for
instance, external payment, shipment and insurance services need to be consid-
ered. These scenarios involve multiple interactions and the complex dependencies
between them must be addressed.

A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, pp. 331–346, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

332 G. Decker et al.

Service choreographies are a means to specify the messages exchanged between
different services and the dependencies between them. Even multi-lateral scenar-
ios can be captured with typical languages such as the Web Service Choreography
Description Language (WS-CDL [2]). Here, interactions between services are the
atomic building blocks and ordering constraints are defined between them. That
is, sending and receiving of messages are modeled as one step. The ordering con-
straints then define what other interactions must have occurred before a certain
interaction. In the remainder we will refer to this modeling style as interaction
modeling.

Interaction modeling, as opposed to distinguishing message sending and recep-
tion as separate activities in the control flow, results in several advantages for the
modeler. (i) Control flow dependencies do not need to be specified per service,
but rather as seen from the perspective of an ideal observer. That way redun-
dant control flow relationships are avoided and the chance of modeling deadlock
situations is minimized. Furthermore, avoiding redundant structures allows for
faster model creation. (ii) Branching structures can be specified globally, that
way avoiding modeling errors caused by incompatible branching structures [3].

As a downside of interaction modeling, the intuitive interpretation that all
interactions are atomic steps hides certain challenges that arise when taking the
choreography to an asynchronous world. Especially in situations where there
exists a mutual exclusion between two interactions with different senders, i. e.
mixed choices, the asynchronous nature of message exchanges might cause severe
problems due to race conditions.

This paper addresses the issue of race problems in asynchronous settings.
It discusses typical solutions in real-world applications and presents a formal
framework for detecting and locating race conditions in service choreographies.

The remainder of this paper is structured as follows. The next section will
present a real-world example where mixed choices actually lead to deadlocks.
Section 4 lists and discusses typical solutions in practice, before Sect. 3 introduces
a formal framework for identifying and locating problematic race conditions.
Section 5 reports on related work in this area and Sect. 6 concludes.

2 Motivating Example

A purchase order process looks as follows. A buyer submits an order to a seller.
The seller returns a confirmation message to the buyer. Finally, delivery and
payment are carried out. The buyer and the seller are both realized as services.

Several situations require a deviation from this simple process. While the seller
has not sent a delivery notification and the buyer has not initiated payment
yet, the buyer has the possibility to issue a change request, e. g. demanding an
increased quantity. A change request must be acknowledged by the seller. The
buyer might as well cancel the order which in turn needs to be confirmed by the
seller. On the other hand, there might be a seller initiated change proposal, e. g.
the previous confirmation is revised by proposing a delay of the delivery date.

Non-desynchronizable Service Choreographies 333

S B

PO confirm

B S

cancel PO

B S

change req

S B

ack cancel

B S

PO

S B

delivery not.

B S

payment

S B

ack

S B

change prop

B S

prop accept

p1 p2

p4

p3

p5

p6

p7 p8

Fig. 1. Purchase order choreography

Figure 1 illustrates these interactions using the interaction Petri net notation
from [4]. Each rectangle represents the message exchange between a sender (up-
per left corner) and a receiver (upper right corner). The label at the bottom
of a rectangle indicates the message type. The circles represent places that can
contain tokens. The token flow defines the control ordering constraints between
message exchanges belonging to the same choreography instance.

The interaction Petri net assumes a world where message send and receive
happen in one atomic step. This assumption is not valid in many scenarios. In our
example, the different services might send messages concurrently. For example,
the buyer’s and seller’s decisions to send change requests or change proposals are
decoupled and therefore it is a common scenario that the services send messages
concurrently. Therefore, we need to desynchronize the choreography to properly
reflect that message sending and receiving are separate steps. Figure 2 shows a
corresponding Petri net.

The original purchase order model does not contain any obvious problems.
Each choreography instance eventually terminates in a state where there is one
token left on place p8 of the net. The desynchronized model, on the other hand,

!c

?c

Buyer

Seller

cancel
PO

?oc

!oc

PO
confirm

?ca

!ca

ack
cancel

!o

?o

PO

?cp !pa

!cp ?pa

!cr ?a

?cr !a

?d !p

!d ?p

Change
prop

Prop
accept

Change
req

Ack
Delivery
not.

Pay-
ment

b1 b2

b3

b4 b5

b6

b7 b8

s1 s2

s3

s4 s5

s6

s7 s8

Fig. 2. Desynchronized purchase order choreography

334 G. Decker et al.

contains several problems. For instance, a deadlock occurs if the buyer decides
to cancel the order and the seller proposes a change. Here, the buyer would wait
infinitely for a confirmation of the cancellation and the seller waits infinitely for
the response to his proposal.

The issues presented in this example are not specific to purchase ordering
scenarios. Similar issues can be found in many other areas of enterprise systems.
In order to detect and locate such race problems, we introduce a formal approach
in the next section.

3 Formal Model

This section will introduce a formal framework for detecting and locating prob-
lematic race conditions in service choreographies. The framework builds upon
Interaction Petri nets (IPNs), a special kind of labeled Petri nets, where a tran-
sition models the message exchange between two services. IPNs have been pro-
posed in [4]. While the example presented in Sect. 2 is bilateral, IPNs can also
be used to represent multi-lateral choreographies, i. e. more than two roles are
involved in the choreography. IPNs have the same token flow semantics as clas-
sical Petri nets [5] and concentrate on the control and message flow aspect of
choreographies.

Definition 1 (Petri Net). A Petri net is a tuple [P, T, F, m0] where P and T
are two finite disjoint sets of places and transitions, respectively, F ⊆

(
(P ×T)∪

(T × P)
)

is a flow relation, and m0 : P → IN is an initial marking.

We assume the standard firing rule of Petri nets, and write m
t−→ m′ if the mark-

ing m′ is reachable from marking m by firing transition t. Reachability can be
canonically extended to transition sequences.

Message types are first-class constructs in IPNs, allowing the distinction be-
tween, for example, acceptance and rejection messages. In the following defi-
nitions, we denote the set of all roles by R. A concrete service participating
in a choreography instance plays one or several roles, for example, “buyer” or
“seller”. The set of message types is denoted by MT .

Definition 2 (Interaction Petri Net). An Interaction Petri net (IPN) is a
tuple N = [P, T, F, m0,final , λ] where
– [P, T, F, m0] is a Petri net,
– final is a finite set of valid final markings, and
– λ : T → (R×R×MT) ∪ {τ} is a labeling function assigning a sender role,

a receiver role and a message type to a transition, or declaring it as silent
transition.

The IPN in Fig. 1, has two roles R = {B, S}, ten message types MT = {PO,
PO confirm, . . . , payment}, and [p8] (i. e., one token on place p8) is the only fi-
nal marking. With the help of final markings, we can differentiate desired final
states from unwanted deadlocks. This can be expressed with the concept of weak
termination.

Non-desynchronizable Service Choreographies 335

Definition 3 (Weak Termination). An interaction Petri net weakly termi-
nates iff, from every marking reachable from m0, a final marking mf ∈ final is
reachable.

It can be easily checked that the IPN in Fig. 1 weakly terminates; that is, the
marking [p8] can be reached from all reachable markings.

The following definition bridges service choreographies and the local views on
such a choreography, i. e. the subset of interactions and control flow dependencies
that are relevant for a given role.

Definition 4 (Role Projection). Let N1 and N2 be interaction Petri nets.
N1 is the projection of N2 for role r iff ∀t ∈ T1 : λ(t) = τ ∨ r ∈ λ(t), and there
exists a relation Q between the markings of N1 and N2 such that:

i. m01 Q m02,
ii. if m1 Q m2, m1

t→N1 m′
1 and r /∈ λ(t), then m′

1 Q m2,
iii. if m1 Q m2, m1

t→N1 m′
1 and r ∈ λ(t), then m2

t=⇒N2 m′
2 and m′

1 Q m′
2,

iv. if m1 Q m2, m2
t=⇒N2 m′

2 and r ∈ λ(t), then m1
t=⇒N1 m′

1 and m′
1 Q m′

2,
v. if m1 Q m2 and m1 ∈ final1, then m2 =⇒N2 m′

2 and m′
2 ∈ final2,

vi. if m1 Q m2 and m2 ∈ final2, then m1 =⇒N1 m′
1 and m′

1 ∈ final1,

where m =⇒ m′ denotes that there exists a (potentially empty) firing sequence of
transitions t1, . . . , tn from m to m′ where for all ti holds r /∈ λ(ti) and m

t=⇒ m′

denotes m =⇒ t→ m′. Furthermore, r ∈ λ(t) denotes that r is the sending or
receiving role of t.

Role projection ensures that the order of communication actions possible in the
local view correspond to the order of interactions as specified in the choreogra-
phy. By considering the branching structures, role projection goes beyond trace
comparison. The relation is similar to branching bisimulation [6], while there
are key differences: Whenever branching within a service depends on a choice
done by other services, no internal decision must be made. On top of that, role
projection relates the sets of final markings.

The projection algorithm in [4] preserves role projection. This algorithm
projects a choreography by applying transformation rules on the structure of
the interaction Petri net.

We assume that a service choreography is realizable [7,4]. This ensures that
there is indeed a set of local views that, assuming synchronous communication,
collectively show exactly the behavior as specified in the choreography.

An IPN Ns can be “desynchronized” to a net Na using the role projections
of Ns. Thereby, we introduce a place pα for each message type α of the IPN Ns

which models an asynchronous message channel and is connected to the sender
and receiver according to the roles. Whereas communication is atomic in Ns, the
sending and receipt of a message is x explicitly modeled by two transitions !x
and ?x of Na.

Definition 5 (Desynchronized Net). Let Ns be an IPN and R = {r1, . . . , rn}
the set of all roles involved in Ns. The IPN Na is a desynchronized net for Ns

iff, for all i = 1, . . . , n, Ni are pairwise disjoint role projections of Ns for roles
ri, and

336 G. Decker et al.

– Pa =
⋃

i Pi ∪ {pα | ∃t ∈ Ts : (λ(t) 	= τ ∧ α = λ(t))},
– Ta =

⋃
i Ti,

– Fa =
⋃

i Fi ∪ {(t, pα) | ∃x, mt (λ(t) = (ri, x, mt))}∪{(pα, t) | ∃x, mt (λ(t) =
(x, ri, mt))},

– m0a = m01 ⊕ · · · ⊕m0n,
– finala = {mf1 ⊕ · · · ⊕mfn | mfi ∈ final i}, and
– λa(t) = λi(t) iff t ∈ Ti.

The composition of markings is defined as m1 ⊕ · · · ⊕mn(p) = mi(p) iff p ∈ Pi.

The desynchronized net Na usually has more behavior than the original IPN Ns:
The atomic message transfer in Ns can be mimicked by Na by firing first the
sending and then the receiving transition. Moreover, it might also be possible
that Na can fire a transition in an intermediate state introduced by the decou-
pling of sender and receiver. If this additional behavior does not jeopardize weak
termination, Ns is desynchronizable.

Definition 6 (Desynchronizability). Let Ns be a weakly terminating IPN.
Ns is desynchronizable iff there exists a desynchronized net Na for Ns that
weakly terminates.

[p3]

[p4]

cppa

c [p6] [p8]
ca

(a) synchronous choreography

[b3,s3]

[b3,s4,cp]

[b4,s4]

[b3,s4,pa]

[b6,s3,c]

[b6,s4,cp,c]

[b6,s4,pa,c]

!cp

?cp

!pa

?pa ?pa

!c

!c

!c

!cp

[b6,s6] [b6,s8,ca] [b8,s8]
?c !ca ?ca

(b) asynchronous choreography with deadlock

Fig. 3. Reachability graphs showing the example’s race problem

The most frequent reason for non-desynchronizable choreographies are mixed
choices, where there is a conflict between transitions with different senders. As
mentioned earlier, the desynchronized example choreography (see Fig. 2) con-
tains a deadlock. Thus, the original choreography in Fig. 1 is not desynchroniz-
able. This can be detected by analyzing the reachability graphs of the nets. In
Fig. 3(a), a part of the reachability graph of the original choreography is de-
picted. In the marking [p3] the transitions c and cp are (among others) enabled.
The same situation is depicted in Fig. 3(b) for the desynchronized net. Here, the
transitions !c and !cp are enabled in [b3, s3], but can occur concurrently: neither
transition disables the other, and a deadlocking marking [b6, s4, cp, c] is reachable
when firing these transitions in either order.

Definition 7 (Conflict Transitions). Let Ns be a non-desynchronizable in-
teraction Petri net and Na a desynchronized net for Ns. Define the set of conflict
transitions TC to contain all transitions t of Na such that:

Non-desynchronizable Service Choreographies 337

A B

x

B A

y

B A

y

A B

x

!x

?y

?y

!x

?x

!y

!y

?x

A

B

x
y

Fig. 4. Structural conflicts do not necessarily lead to deadlocks

– there exists a marking m with m
∗−→ mf for a marking mf ∈ final , and

– there exists a marking m′ with m
t−→ m′ and m′ 	 ∗−→ m′

f for any m′
f ∈ final .

The set TC contains all transitions whose firings can make a final marking
unreachable. From Fig. 3(b) we can conclude that the transitions !c and !cp
are conflict transitions for the desynchronized net of Fig. 2. With state-of-the-
art Petri net model checkers such as LoLA [8], race problems can be detected
efficiently even for larger choreographies.

A B

v

B A

w

A B

x

B A

y

B A

z

p1 p2

p3 p4

p5

(a) synchronous choreography

?v ?x

!w !z

!y

xv

B

b1 b2

b5

!v !x

?w !z

?yA

a1 a2

a3 a4

a5

w z y

b3 b4

(b) desynchronized choreography

Fig. 5. Conflict transitions without structural conflict

While mixed choices are a typical reason for race problems, not all mixed
choices are problematic (see Fig. 4). Here, both services can send a message
before receiving one. However, due to the follow-up interactions, the desynchro-
nized choreography weakly terminates.

Finally, conflict transitions do not necessarily need to be in a structural con-
flict, i. e. sharing common input places. Figure 5(a) shows a synchronous chore-
ography that weakly terminates with final marking [p5]. Here, the choice whether
the transition regarding message v or the transition regarding w fires first influ-
ences what transitions will be enabled later on. If the transition involving v fires,
the transition involving z will not be enabled any longer.

The definition of conflict transitions also captures those scenarios where indi-
vidual services are able to send messages in a final marking. Figure 6(a) shows

338 G. Decker et al.

A B

v

C B

x

B A

w

B C

y

p1

p2

p3

p4

(a) synchronous choreography

A

?v !w

?x !y

w

yx

v

!v ?w

!x ?yC

B

a1 a2 a3

b1

b2

b3

c1 c2 c3

b4

(b) desynchronized choreography

Fig. 6. Deadlocks caused by firing transitions in a valid final marking

an example involving three roles and final marking [p4]. Figure 6(b) shows the
desynchronized choreography as generated by the algorithm in [4]. The final
markings for the individual role projections are [a1] and [a3] for A, [b4] for
B and [c1] and [c3] for C. This results in the valid final markings [a1, b4, c3],
[a3, b4, c1], [a1, b4, c1], and [a3, b4, c3] for the desynchronized choreography, while
only the first two markings are actually reachable. In marking [a1, b4, c3] role A is
ready to fire transition !v. Firing this transition actually leads to a marking from
where no valid final marking can be reached any more. Therefore, !v is a conflict
transition.

4 Typical Resolutions to Race Problems

The definitions from the previous section enable us to locate conflict transitions.
As a next step, one or several strategies have to be chosen to remove race prob-
lems from a choreography. Instead of formally proposing one particular strategy
or defining an algorithm to automatically choose among different possible strate-
gies, we rather sketch several strategies applied in real-world implementations
in this section. Each strategy comes with a set of implications on the business
level that need to be carefully considered before applying them.

In the remainder of this section we will use the term conflicting messages for
a pair of messages sent by different partners that correspond to a pair of conflict
transitions as defined in the previous section. Both messages must belong to the
same choreography instance.

It could be a possible strategy to resolve the choreography in such a way
that conflicting messages simply cannot occur any longer. For the example, this
would mean that there is no chance of having a delivery notification and a
cancel message been sent in the same choreography instance. This could be
achieved for instance through total sequentialization of the choreography, where
only one partner is allowed to send messages at a time. However, such a strategy
is typically not feasible in real-world scenarios. It is often desired that conflicting
messages are possible but for the case that this occurs, a predefined resolution
must be in place. Therefore, we are going to list different strategies applied in
practice that follow this approach.

Non-desynchronizable Service Choreographies 339

The following strategies can be categorized into two groups. Either (a) there
is a predefined outcome upon conflicting messages, most typically one message
is considered and the others are ignored, or there might be different outcomes
possible. Here, we can again distinguish three types: (b) one partner could be
allowed to determine the outcome and tell the other partners his decision; it
could also be defined that (c) each partner decides individually for the outcome,
or that (d) there is a negotiation regarding the desired outcome.

4.1 Precedence

The general idea is to define precedence relationships at design-time, prescrib-
ing how partners have to behave in the case of conflicting messages. Therefore,
precedence mostly falls into category (a). If a partner detects conflict messages,
he knows the outcome of this conflict and can immediately continue accordingly.
He assumes that the other partners will also detect this conflict sooner or later
and also act accordingly.

The definition of precedence relationships must not be seen as pure technical-
ity as it directly has business impact. Therefore, precedence relationships would
need to be part of interaction contracts. Regarding the definition of precedence
relationships we distinguish three different strategies.

Singular Interaction Partner Precedence. This strategy looks at individ-
ual interactions, e. g. the cancellation interaction in our example, and defines
precedence of one partner over the other. Here, we can distinguish between two
settings: (i) the buyer has precedence over the seller or (ii) the seller has prece-
dence over the buyer.

Case (i) means that if the buyer sends the cancellation, the seller has to accept
the buyer’s cancellation in any case. This means that the buyer can assume that
the cancellation message will have the desired effect, once it has been sent.
Therefore, the seller does not need to return any confirmation message in this
case. This corresponds to category (a).

In case (ii) the seller has a veto right regarding cancellation messages sent
by the buyer. The seller can accept this request and return a cancellation con-
firmation. Only now the buyer can be sure that cancellation was successful. As
an alternative, the seller could also send a cancellation rejection. Therefore, the
seller can decide on the outcome, implying category (b).

Deciding for each interaction for a partner precedence individually does not
solve race problems in the general case. If, for example, we decide that the
buyer has precedence regarding buyer initiated cancellation and the seller has
precedence regarding seller initiated change proposals, deadlocks are still possi-
ble. Now imagine the opposite setting where the seller has precedence regarding
buyer initiated cancellation and the buyer has precedence regarding seller initi-
ated change proposals. Here, the partners have veto rights for the corresponding
requests. If the buyer sends a cancellation request and the seller sends a change
proposal at the same time, the buyer will reject the change proposal as it con-
flicts with the previously sent cancellation request. The same holds true for the

340 G. Decker et al.

seller reacting to the cancellation request. After both partners have rejected the
respective requests, they can, of course, resend their requests.

Type-Based Precedence between Multiple Interactions. While the pre-
vious strategy considered interactions individually, this strategy considers prece-
dence regarding combinations of interactions. Here, the message types are
considered and always a fixed outcome is defined, therefore category (a). A
crucial aspect of this strategy is that no combination of interactions is forgotten.

A precedence rule could be that a delivery notification has precedence over
buyer initiated cancellation messages and buyer initiated change requests. On the
other hand, a buyer initiated request always has precedence over seller initiated
change proposals. Figure 7 illustrates a resolved desynchronized choreography
for this precedence rule. This resolved version weakly terminates. All transitions
that were added to the original Petri net with striped background.

!c

?c

Buyer

Seller

cancel
PO

?ca

!ca

ack
cancel

?cp !pa

!cp ?pa

!cr ?a

?cr !a

?d

!d

Change
prop

Prop
accept

Change
req

Ack
Delivery
not.

!p

?p

Pay-
ment

?d?d

?cr ?c

?cp

?pa ?c

?cr

Additional transition for removing
remaining tokens

Additional transition for receiving
preceding messages

Fig. 7. Resolved purchase order choreography

A conflict between a seller initiated change proposal and a buyer initiated
change request is resolved in the following way. In addition to being ready to
consume an acceptance message for the change proposal, the seller can also con-
sume a change request or a cancel message instead. This is manifested through
the additional transitions ?cr and ?c transitions. The change proposal message
must finally be consumed by the buyer without having any effect on the buyer.
This happens through the additional ?cp transition.

The proposed solution in Fig. 7 is still not optimal from a business point of
view. If the seller sends a change proposal while the buyer sends a change request,
the messages conflict and the seller will receive the change request and accept

Non-desynchronizable Service Choreographies 341

it. In this situation, the seller assumes that the buyer will ignore the change
proposal. However, the buyer could receive the accept message first and receive
the change proposal afterwards. Now, the buyer cannot know that this change
proposal conflicted with the change request and therefore accepts the proposal.
However, the seller is not able to receive this message and will only remove the
remaining token at the end of the choreography. From a business point of view
this behavior is undesired: the buyer has accepted a change proposal that the
seller assumes obsolete.

Another problem might arise when precedences are cyclic: Imagine there are
three partners A, B and C. A can send a message to B (interaction ab), B to C
(bc), and C to A (ca). bc has precedence over ab, ca has precedence over bc, and
ab has precedence over ca. Now a conflict involving all three interactions occurs.
Every partner thinks that his message has precedence over the message received
and simply ignores the incoming message. This again could result in a deadlock.

Situation-Based Precedence between Multiple Interactions. While pre-
cedence rules between different interactions were based on message types, this
strategy allows more fine-grained precedence rules and again falls into cate-
gory (a).

Imagine a logistics scenario where a customer lets a shipper transport his
goods. The shipper selects different carriers and creates a shipment that he sends
to the customer and which needs to be commented by the customer. At the same
time, the customer has the possibility to cancel his order. While cancellation
precedes the shipment plan interaction in the default case, this is only true for
the first two weeks after the initial order. After these two weeks have passed, the
shipment plan interaction precedes the cancellation. This might be due to the
fact that cancellation at this point in time would simply involve too much cost.
However, while the shipment plan has not been finalized yet, the customer can
still cancel the order.

An underlying assumption of this strategy is that both partners come to the
same conclusion about precedence. As time is the criterion in this example, both
need common understanding about when the two weeks have passed. Therefore,
the arrival time of the message cannot be used as criterion, as the corresponding
sender might not be able to know when this is.

4.2 Allowing Individual Decisions

Allowing individual decisions leaves it open to every partner involved to decide
for an outcome individually: category (c). In the case of a buyer initiated can-
cellation request conflicting with a seller initiated change request, there are two
alternatives for each partner:
– The seller either (S1) rejects the cancellation request and assumes that the

change request has still relevance or (S2) accepts the cancellation request
and assumes that the change request is obsolete.

342 G. Decker et al.

– The buyer either (B1) rejects the change request and assumes that the can-
cellation request has still relevance or (B2) accepts the change request and
assumes that the cancellation request is obsolete.

Out of these possibilities two are ideal outcomes: The combinations (S1)+(B2)
and (S2)+(B1) lead to the acceptance of exactly one request. Even the combi-
nation (S1)+(B1) is acceptable, as the choreography instance is exactly in the
same state as before the two requests and requests can be issued again. Maybe
this time, one of the partner succeeds with his intent.

Only the combination (S2)+(B2) is problematic as both requests were ac-
cepted and both partners assume a wrong situation. However, once an accept
message finally arrives, the conflict is detected and a resolution can be achieved
as described in the other strategies.

Although this strategy does not guarantee a proper resolution in the general
case and requires resorting to other resolution strategies, it is still worth con-
sidering as most outcomes are acceptable. A major challenge of this approach
is that the process instances need to be realigned in case a partner has already
continued, assuming his decision led to an acceptable situation. This might in-
volve compensation and becomes especially difficult if communication to other
partners is involved.

4.3 Negotiation of Outcome

Negotiation is another strategy where the outcome of conflicting messages is not
fixed, therefore category (d). Here, the different partners need to reach agree-
ment about the outcome. Such negotiation can either happen through human
intervention or automatically. Human intervention could simply involve a phone
call or an email exchange. In many cases such human intervention is actually de-
sirable. For instance, the cost of cancellation might increase depending on what
actions the partner has already performed. Therefore, it could be negotiated
whether cancellation is still desired under the new conditions.

As an alternative, a formal hand-shake to support negotiation could be fac-
tored into each partner’s process. For this, all partners need to agree on conflict-
ing messages requiring negotiation and implement common exception handling
logic. This would involve strictly sequential interactions, as partners arbitrar-
ily reciprocate to resolve the conflict. First, conflicting messages would be de-
tected by a partner and be broadcast to relevant partners. Each partners process
would be required to escalate to its common exception handling logic such that
all parts of the process impacted by the conflict are suspended. The first part
of the exception handling logic would be to determine which partner gets the
write token. This remains an open issue although some basic heuristics could be
defined, e. g. the first partner detecting the conflicting messages gets the write
token. Another serious issue is managing multiple conflicts which can arise con-
currently and determining the priority in which they should be handled. These
and other issues have been handled in techniques applied for self-stabilizing
systems [9].

Non-desynchronizable Service Choreographies 343

5 Related Work

Different service choreography languages have been proposed that follow the in-
teraction modeling style. The Web Service Choreography Description Language
(WS-CDL [2]) is a standard proposed by the World Wide Web Consortium.
Alternative proposals from academia are Let’s Dance [10] and the Interactive
Systems Description Language (ISDL [11]). The issue of race problems when
taking choreographies defined in these languages to an asynchronous world has
not been tackled so far.

There are different formal models available for describing choreographies. A
survey can be found in [12], where a distinction between automata-based, Petri-
net-based and process-algebra-based approaches is made. Most approaches in-
clude techniques for relating choreographies to models describing the behavior
of individual services. For instance, [13] use a bisimulation-like relation to check
conformance between a local model and the choreography.

There has been extensive research in the area of compatibility checking, where
the absence of deadlocks is of central importance, e. g. [14,15,16,17]. While
detecting and locating deadlocks is covered by most approaches, more novel
approaches deal with the question of automatically repairing faulty choreogra-
phies [18]. While such approaches could indeed be used to repair the chore-
ography presented in Sect. 2, any outcome would include forbidding certain
messages. Either the buyer must not send a change request or a cancellation
message, or the seller must not send a change proposal or a delivery notification.
Such a solution is primarily aimed to explain faulty choreographies by propos-
ing fixed versions, but would, of course, be inacceptable from a business point
of view.

The issue of desynchronizability is closely related to the question of synchro-
nizability of asynchronous choreographies [19]. If an asynchronous choreography
is synchronizable then the same set of choreography instances are produced un-
der asynchronous and synchronous communication semantics. If applied in a
top-down manner, i. e. a synchronous choreography is projected to an asynchro-
nous choreography, synchronizability can be used to detect race problems as
presented in this paper. However, our approach goes beyond synchronizability
analysis as it allows to locate the reasons of desynchronizability. This is im-
portant as there might be different sets of conflict transitions that might be
treated in isolation of each other, which in turn might allow for a less-invasive
resolution.

The problem of mixed choices between sending and receiving has been studied
in the context of distributed message protocols and algorithms [20]. For example,
the crosstalk algorithm adds round numbers to each sent message which help to
identify and solve conflicts. Again, such protocols do not take the content and
the original choreography into account and thus are not suitable to solve the
problem from a business point of view.

344 G. Decker et al.

Fig. 8. Screenshot of the interaction Petri net modeler and desynchronizability checker

6 Conclusion

This paper has discussed the issue of non-desynchronizability in choreographies
where message send and receive activities are considered as atomic steps. We
introduced a formal approach for detecting and locating potentially conflicting
message exchanges. This approach is based on interaction Petri nets.

We have implemented a tool that realizes this approach. As an extension to
the web-based modeling platform Oryx1, interaction Petri net stencils and a plu-
gin for desynchronizability checking were developed. Figure 8 shows a screenshot
of the tool, where the conflict transitions of the initial example are highlighted
in red and bold labels. In future work, we will extend the tool chain to de-
synchronizability analysis for iBPMN choreographies. iBPMN is an extension
for the Business Process Modeling Notation (BPMN [21]), allowing for interac-
tion modeling in a BPMN-like notation [3].

The resolution of race problems is not a pure technical issue that can be
carried out late in the actual development of services. The discussion of typical
resolution strategies in Sect. 4 has shown business implications when choosing
one strategy or another. Therefore, precedence relationships, for instance, would
have to be discussed and defined in very early choreography design stages.

The current solution to non-desynchronizable choreographies looks as follows:
An interaction model is created, then desynchronizability is verified as presented
in Sect. 3. If desynchronizability is detected the desynchronized choreography
can directly be used as starting point for implementing services or adapting
existing ones. If this is not the case, manual resolution along one of the res-
olution strategies has to be carried out for the desynchronized choreography
first.
1 See http://oryx-editor.org.

http://oryx-editor.org

Non-desynchronizable Service Choreographies 345

One might argue that we do not need interaction models all together as we
have to resort to asynchronous models anyway (in the case of non-desynchroniza-
bility), and we should rather use asynchronous models from the beginning. How-
ever, the advantages gained for the desynchronizable parts of the choreogra-
phy are already immense. Having the possibility to generate the desynchronized
model increases modeling speed.

A classification of different resolution strategies shows the vision for dealing
with non-desynchronizability. Ideally, modelers can choose from a predefined
set of strategies, being informed about the business implications of a chosen
strategy. Such a declarative approach would finally result in generating fully
resolved choreographies. With such an approach the modelers would not need to
touch the generated model any longer. Therefore, future work will center around
formally refining the different strategies and proposing a declarative framework
for the resolution of race problems.

References

1. Curbera, F., Leymann, F., Storey, T., Ferguson, D., Weerawarana, S.: Web Services
Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL,
WS-Reliable Messaging and More. Prentice Hall PTR, Englewood Cliffs (2005)

2. Kavantzas, N., Burdett, D., Ritzinger, G., Lafon, Y.: Web Services Choreography
Description Language Version 1.0, W3C Candidate Recommendation. Technical
report (2005), http://www.w3.org/TR/ws-cdl-10

3. Decker, G., Barros, A.: Interaction Modeling using BPMN. In: ter Hofstede,
A.H.M., Benatallah, B., Paik, H.-Y. (eds.) BPM Workshops 2007. LNCS, vol. 4928,
pp. 208–219. Springer, Heidelberg (2008)

4. Decker, G., Weske, M.: Local enforceability in Interaction Petri Nets. In: Alonso,
G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 305–319.
Springer, Heidelberg (2007)

5. Reisig, W.: Petri Nets. Springer, Heidelberg (1985)
6. van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimula-

tion semantics. J. ACM 43(3), 555–600 (1996)
7. Fu, X., Bultan, T., Su, J.: Conversation protocols: A formalism for specification

and analysis of reactive electronic services. Theor. Comput. Sci. 328(1-2), 19–37
(2004)

8. Schmidt, K.: LoLA: A Low Level Analyser. In: Nielsen, M., Simpson, D. (eds.)
ICATPN 2000. LNCS, vol. 1825, pp. 465–474. Springer, Heidelberg (2000)

9. Dolev, S.: Self-stabilization. MIT Press, Cambridge (2000)
10. Zaha, J.M., Barros, A., Dumas, M., ter Hofstede, A.H.M.: Let’s Dance: A language

for service behavior modeling. In: Meersman, R., Tari, Z. (eds.) OTM 2006. LNCS,
vol. 4275, pp. 145–162. Springer, Heidelberg (2006)

11. Quartel, D., Dijkman, R., van Sinderen, M.: Methodological support for service-
oriented design with ISDL. In: Proc. ICSOC 2004, pp. 1–10. ACM, New York
(2004)

12. Su, J., Bultan, T., Fu, X., Zhao, X.: Towards a theory of web service choreographies.
In: Dumas, M., Heckel, R. (eds.) WS-FM 2007. LNCS, vol. 4937, pp. 1–16. Springer,
Heidelberg (2008)

http://www.w3.org/TR/ws-cdl-10

346 G. Decker et al.

13. Busi, N., Gorrieri, R., Guidi, C., Lucchi, R., Zavattaro, G.: Choreography and
orchestration: A synergic approach for system design. In: Benatallah, B., Casati, F.,
Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp. 228–240. Springer, Heidelberg
(2005)

14. Martens, A.: Analyzing web service based business processes. In: Cerioli, M. (ed.)
FASE 2005. LNCS, vol. 3442, pp. 19–33. Springer, Heidelberg (2005)

15. Fu, X., Bultan, T., Su, J.: Analysis of interacting BPEL web services. In: Proc.
WWW 2004, pp. 621–630. ACM, New York (2004)

16. Canal, C., Pimentel, E., Troya, J.M.: Compatibility and inheritance in software
architectures. Sci. Comput. Program. 41(2), 105–138 (2001)

17. Puhlmann, F., Weske, M.: Interaction soundness for service orchestrations. In: Dan,
A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp. 302–313. Springer,
Heidelberg (2006)

18. Lohmann, N.: Correcting deadlocking service choreographies using a simulation-
based graph edit distance. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM
2008. LNCS, vol. 5240, pp. 132–247. Springer, Heidelberg (2008)

19. Fu, X., Bultan, T., Su, J.: Synchronizability of conversations among web services.
IEEE Trans. Softw. Eng. 31(12), 1042–1055 (2005)

20. Reisig, W.: Elements of Distributed Algorithms: Modeling and Analysis with Petri
Nets. Springer, Heidelberg (1998)

21. OMG: Business Process Modeling Notation (BPMN) Specification, Final Adopted
Specification. Technical report, Object Management Group, OMG (2006)

A Framework for Semantic Sensor Network
Services

Lily Li and Kerry Taylor

CSIRO ICT Centre
GPO Box 664, Canberra, ACT 2601, Australia

{lily.li, kerry.taylor}@csiro.au

Abstract. We propose that a semantic service-oriented approach is one
of the best techniques to cope with challenges in wireless sensor network
(WSN) applications. This paper offers a framework for sensor network
services that aims to improve query processing. We expect this frame-
work will address current challenges and issues preventing the wider
uptake of WSN technology. More specifically, we propose a semantic
service-oriented framework with a focus on query processing to allow
distributed end-users to request streams of interest easily and efficiently,
based on the principle of pushing the query down to the network nodes
as much as possible. As such, the lifetime and utility of the sensor net-
work will be maximised, ultimately leading to the success of WSN de-
ployments. The importance of semantics, which aims to support sensor
capability modelling and query writing has been highlighted. On the
other hand, query rewriting is emphasised followed by examples to il-
lustrate that query rewriting can significantly contribute to the overall
power efficiency of WSNs.

1 Introduction

Sensor network applications have been deployed for monitoring space, things
and the interactions of things with each other and the encompassing space [1].
Future sensor networks will have sensors with different capabilities wired into
a Sensor Web [2] to perform extensive monitoring for timely, comprehensive,
continuous and multi-modal observations [3].

Despite existing different domain-specific deployments and the heterogeneity
of sensor networks and sensing data, sensor networks share a common feature:
they all collect and periodically transmit information from some set of sensors,
and they all must carefully manage limited power and radio bandwidth to ensure
that essential information is collected and reported in a timely fashion [4]. From
a data storage point of view, one may think of a sensor network as a distributed
database that is able to conduct query processing. This has led to the design and
implementation of query processing techniques, a very popular topic in the liter-
ature [4,5,6]. However, query processing in sensor networks works differently to
that in a traditional DBMS given that the former is highly resource constrained
(e.g. limited energy, memory and computation ability). Furthermore, the vol-
ume of the sensing data can be very variable (e.g. depending on sampling rate

A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, pp. 347–361, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

348 L. Li and K. Taylor

variations) within a time period and the access to this data may be delayed arbi-
trarily due to the motion of sensors. These issues create new challenges for query
processing and more needs to be done to realise the potential for sensor network
applications. Further, as successful sensor network applications rely heavily on
effectively using a large range of heterogeneous data resources including stream-
ing data acquired from sensor networks and historical data stored in databases,
the development of a technology framework to enable this is highly demanded.

The primary contribution of this paper is an identification of the services that
may be offered to the user community of WSNs through a semantic service-
oriented framework. We focus in particular on dealing with query processing
elegantly through that framework. Employing both declarative semantics and
query rewriting techniques are important features of the framework.

It is natural to choose a declarative language [4,7,8] to describe a query, as
declarative queries offer both an easy-to-use interface and energy-efficient exe-
cution substrate [4]. More importantly, they open up the possibility for optimi-
sation algorithms to transparently handle efficient access strategies and perfor-
mance improvements enabled by taking account of current state of the sensor
network including concurrently or previously executed queries.

The paper is organised as follows. Section 2 is the brief review of related
work. Section 3 outlines the design challenges and issues. Section 4 presents our
framework that relies on a service-oriented computing approach enriched with
semantic modelling. In Section 5, the main features of the framework, semantic
query rewriting will be discussed followed by two examples to illustrate the
significant impact of query rewriting on the overall power efficiency of WSNs.
Finally, we conclude this paper in Section 6.

In this paper, terms such as sensor networks and wireless sensor networks will
be used interchangeably unless otherwise specified.

2 Related Work

Sensor networks promise to revolutionise sensing in a wide range of applica-
tion domains. However, wide acceptance and deployment has not yet been seen
mainly because current deployments are closed, single-purpose systems. Tools
and standards for easy open access are still unseen. It is well known that pro-
gramming sensor networks is very hard for end-users who have genuine applica-
tion requirements for sensor networks. On the other hand, end-users should be
shielded from the low-level details and difficulties of sensor networks. While most
of the research work in sensor networks to date has been focused on device engi-
neering design and communications and networking questions, interesting work
in the near future is most likely to be concentrated on leveraging end-users’
workloads in sensor network applications by Web services in a publish-find-bind
service-oriented fashion. End-users must be supported for easy access and more
control over the sensor network, especially with real time data manipulation.

A Framework for Semantic Sensor Network Services 349

This section presents recent work that attempts to ease non-trivial programming
and reprogramming sensor network tasks.

Different types of queries in sensor networks have been studied in [9,10].
TinyDB [6] is one of the most successful works in sensor network query process-
ing. It offers a SQL-like query interface to raw sensor data. It is advantageous
to express queries to a sensor network at a high level logical predicate language
as such an abstraction has greatly eased the use. The objective of this paper is
to make this abstraction more concise by taking query rewriting techniques into
account.

Cougar [8] adds a query layer to the protocol stack to accept queries in a
declarative language that is then optimised to generate efficient query execution
plans with in-network processing. A query plan is constructed by flow blocks.
The optimiser determines the exact number of flow blocks and interaction be-
tween them. However, as pointed out in [8], the creation of the best query plan
for an arbitrary query is a hard problem, only little work in query processing
has been done in Cougar.

Several other pioneering works have set good examples for the use of sensor
services in the presence of Web services and Semantic Web technologies. Existing
prototype applications have shown that the heavy burden of programming sensor
networks can be alleviated if the underlying infrastructure is flexible enough.
Web service technologies are one such enabler that can be used to derive more
value from sensor data by making sensor data more accessible to a wider group
of people, when combined with services for statistical modelling and machine
learning, for example. However, the current state of the art is far from the vision
of a highly available, high-performance, easy-to-use sensor web. The following is
a brief introduction to these relevant works.

Sensor Web [2], first proposed by NASA in 2001, has received tremendous
attention. It is a revolutionary concept toward achieving collaborative, coherent,
consistent and consolidated sensor data collection, fusion and distribution. The
project GeoSWIFT (http://sensorweb. geomatics.ucalgary.ca/default.html) is an
exemplar. It offers open geo-spatial sensing services for sensor web developed by
sensorWeb@GeoICT [3]. It aims to build a geo-spatial infrastructure to connect
distributed sensor networks for the sharing, access, exploitation, and analysis of
sensing information. It focuses on a web service approach to answer a request
(i.e. HTTP GET request) in an SOA style. However, it does not address efficient
query rewriting, and its query language (conjunctive attribute-value style lan-
guage) relies on a primitive data model that is not amenable to interoperability
with other services thus it suffers from common problems of WSNs.

IrisNet [11] (http://www.intel-iris.net/) is a general-purpose software infra-
structure that supports tasks common to services such as collecting, filtering,
and combining sensor feeds, and performing distributed queries (via sensor agent
nodes and organising agent nodes). It provides an opportunity to deal with a
query over the Internet. It proposes that its sensing service is capable of collecting
filtered sensor readings in a database that end-users can query. Although the
IrisNet architecture allows filtering code to be uploaded to sensing devices, there

350 L. Li and K. Taylor

is no discussion about sampling control. In order for a sensor web architecture to
be aware of energy consumption, an energy efficient design approach should be
emphasised. Furthermore, semantics has not be thoroughly explored in IrisNet.

In contrast, SONGS [12,13] advocates semantics by proposing a semantic-
service-oriented sensor information system. The system may take advantage of
application domain knowledge to optimise its resource utilisation in collecting,
storing, and processing data. As a result, the creation of a semantic information
hierarchy and the implementation of the semantic transformations are at the core
of their work. However, this work focuses on the use of a larger semantically-rich
system of sensors, into which sensor devices are embedded, but does not address
the requirements for general purpose sensor network services that support such
embedding of WSNs.

Similar efforts from the grid computing research community [14] are worth
noting too. The focus of the reported work is on sensor resource management [15]
to provide middleware support to the connection and share of heterogeneous
sensor resources. The work reported at the website (http://nicta.com.au/research
/projects/nicta open sensorweb architecture) is such an example.

From a standardisation perspective, the efforts from OpenGIS Consortium
(http://www.opengeospatial.org/) is worth mention. A package of standards
called Sensor Web Enablement (SWE) has been developed to define service-
oriented interfaces to sensor network services, most strongly influenced by
requirements arising for earth observation remote sensing services. The SWE
specifications support data and service interoperability at a syntactic level: client
tools are specifically designed to parse the standardised data model, and inter-
pretation of the content is left entirely to service providers on one hand and end-
users on the other. In order to evaluate these specifications, we deployed SWE
services over WSN data collected at an experimental site in Queensland and con-
ducted an evaluation in the context of the OGC testbed programme. SWE service
implementations from 52North were used (available from http://52north.org/).
Referring to the most relevant specification, the Sensor Planing Service (SPS)
for example, we found that it suffered from limitations such as an inability to
model the relationship between input and output parameters. The current SPS
permits neither the phrasing nor the answering of query such as “Provide the
parameter A if parameter B is greater than 5 and parameter C is prior to 2 hours
from now”; the kind of query we take for granted in modern query languages
like SQL. More information about this testbed programme can be found at the
website (http://www.opengeospatial.org/).

To our knowledge, no work has been reported in WSNs that considers the
logic structure of the problem, sensor capability and environment setting in
query rewriting. This is the first time that query rewriting has been addressed
in sensor service design.

We believe that the success of applying semantic web services to WSN ap-
plications will significantly contribute to the growing deployment of large-scale
sensor networks, and leading to a broad scope in sensor network applications.

A Framework for Semantic Sensor Network Services 351

3 Design Challenges

We discuss issues in the design of semantic sensor network services in this sec-
tion. As this paper is focused on providing semantic sensor network services
to service clients from a broad network community, we avoid discussing typical
WSN internal issues such as network connectivity, MAC protocols and routing
algorithms, but concentrate on issues related to the service design. In particu-
lar, we aim to hide those WSN-specifc issues from the broader network users,
and propose embedding query rewriting techniques within the sensor network
service to achieve this. We do not discuss broader web service issues here (such
as security, scalability and quality of service) as we anticipate that the progress
of web service research will address these issues in a more general context.

We expect a sensor network service to be the (technical) custodian of a sensor
network: to be responsible for local network management, data management,
query processing and response, and information security. We expect the service
to accept high level requests for data and for the service to be able to map that
request to answers that the sensor network can handle, while enabling the service
user to be as ignorant as possible about the sensor network capability, technology,
topology, control language and current state. This “ignorance” will enable service
clients, such as simple web pages, specialist user-oriented interactive GUIs and
composition and integration engines (including workflow engines) to interact
with a wide range of such services in a common way. Note that for our purposes
we are focusing on sensor services, not actuator services, although we include
within our scope the tasking of sensors in order to take measurements – for
example the movement or rotation of a sensor in order to take a measurement.
In the latter case, the need for movement is only implicit within the request for
data and is not a separately identified request for actuation.

3.1 Data Persistence

In common with the design principles for TinyDB [6], we believe that the man-
agement and archiving of sensor network data is the responsibility of a unitary
sensor network service, rather than some external services. This enables the
scope of a service to be represented and understood by its user community ir-
respective of the temporal nature of information. It also means that quality of
service guarantees (such as reliability, response time, cost etc.) can be offered
according to user priority, financial incentive, or other features in a uniform way.

When a sensor network service accepts a query it will need to recognise
whether it is capable of answering some or all of the query, and if so to de-
termine whether the answer could be partly or fully retrieved from persistent
data hosted by the service, presumably previously collected from the sensors
controlled by the service’s network. Alternatively, the query may be partly or
fully answered by the service recognising that its network is already configured to
collect the desired data and all it needs is to ensure is that the data is returned to
the new requestor (possibly summarised or filtered first). Finally, there may be a

352 L. Li and K. Taylor

remaining part or all of the request that can only be answered by reconfiguring
or reprogramming the sensor network.

We envisage this capability to be offered by a query-rewriting algorithm. By
describing persistent data and currently collecting data as “views”, rewriting
techniques such as [16] can be used to split an incoming query into the appro-
priate components to be handled by each aspect of the service.

3.2 Sensor Network State

Along with management of data persistence arising from sensor network mea-
surements, we would like to see a sensor network service managing internal
sensors and network state while offering a simpler stateless service for its clients.
This will make service interaction easier for the clients, and enables optimisa-
tion within the service to meet multiple client requests. For example, for mobile
sensors we would prefer a sensor request to state the spatial coordinates (and if
necessary, temporal coordinate) required for a measurement, and have the sensor
network service internally plan the optimal movement of the sensor devices to
meet multiple requests, resolving conflicts by a priority-based scheduling method
if necessary. Furthermore, we have already proposed that the service recognises
requests for reuse of data which the sensor network is previously configured to
collect: this capability could also be seen as recognition and management of
sensor network state.

3.3 Events and Responses

As hinted in the discussion about the need to offer coherent access to persistent
data, some requests for data from the service will be answerable with a syn-
chronous response. This might be appropriate for a query for last year’s average
daily rainfall, for example. Some requests will naturally behave more as a stand-
ing query (e.g. a request for next year’s average daily rainfall) and may be more
appropriately dealt with as an asynchronous response. Further, an event-driven
response (e.g. daily rainfall for the next three years, a day at a time) will also
be needed. More generally, it seems that any query may require a combination
of these approaches and an appropriate interaction design will be required.

3.4 Programming

Many modern sensor network technologies support over-the-air sensor node pro-
gramming (e.g. the TinyOs Deluge protocol [17]). A sensor network service
should be able to accept tasks from wider networks users for deployment onto
the network. However, in line with our desire to hide heterogeneity we suggest
a declarative, data-oriented interface to the wider user community is more ap-
propriate than a specialist imperative programming language. We are working
to develop a translation process from a high level declarative predicate language

A Framework for Semantic Sensor Network Services 353

phrased over a “view”, to the executable Snlog language1 of the DSN
architecture [7].

With the declarative language, it is possible to solve the problems yet unsolved
by IrisNet. In particular, we can take account of local knowledge about the cur-
rent state of the sensor network, such as network topology, residual power, alter-
native routing protocols, local redundancy, and node-specific sensing capability
to push queries into network nodes for efficient execution. Results demonstrating
this are reported later in this paper.

3.5 Capability Modelling

Whilst we wish to enable a semblance of homogeneity of sensor networks to
an outside user for ease-of-use, inevitably some fundamental differences in sen-
sor networks will remain and must be made visible to the user community to
enable their use. We expect that the capability of a network in terms of the
observable phenomena and how they might be measured must be declared by
the sensor network to its clients. Although this recognition of need is aligned
with the approach adopted through the OGC’s Sensor Web Enablement suite of
standards (http://www.opengeospatial.org/projects/groups/sensorweb), we pro-
pose that machine executable formal ontologies, such as those based on the
W3C’s Web Ontology Language (OWL) are the appropriate tools for describing
sensor network capability. By employing reasoners2, we need to rely less on both
specialised web clients (in which the knowledge of the capability is embedded in
code) and human readability (in which the knowledge relies entirely on a human
interpretation) [18].

3.6 Power Management

Power management is a critical issue in a WSN. The typical power manage-
ment design goal is to meet the required constraints while minimise the energy
consumed. Sensor applications have to make trade-offs based on the energy con-
sumption policy (Fig. 1) between the quality of a service (e.g. sensor operations)
versus conserving energy, efficiency versus power consumption. It is in the best
interest of power management to have each node transmit at the lowest possible
power while preserving network connectivity but activating only the necessary
number of sensor nodes for a particular task at any particular moment. It is ex-
pected that a dedicated power consumption policy should be enforced and met
for a specific task.

3.7 QoS

The QoS provisioning, usually described very abstractly, is a crucial issue to
provide demanded resources effectively and efficiently. Resource reservation and
1 Snlog is a dialect of Datalog developed for sensor netowrk programming. Details and

examples can be found at the website (http://db.cs.berkeley.edu/dsn/).
2 For example, Racer (http://www.racer-systems.com/products/tools/index.phtml) and

FaCT++ (http://owl.man.ac.uk /factplusplus/).

354 L. Li and K. Taylor

resource allocation should be enforced aligning with either single query or con-
tinuous query and the unique characteristics of WSNs. The QoS specification
should also be able to offer differentiated QoS and data quality to different
users.

3.8 Security

We cannot propose a shared sensor network service in the absence of addressing
the needs for sensor network security. Assuming the sensor network itself offers
some local methods for securing information within its scope (for example, [19]),
a sensor network service must be able to protect its privacy and integrity in the
wider internet context. For a shareable, reusable sensor network we propose Web
Service-style role based access control over XML structures [20] coupled with
executable privacy policies [21]. Privacy policies would apply to both persistent
and real-time data, and to both data access and to scarce resource access (e.g.
permission to program the sensor network to collect new measurements). They
could be compiled to a run-time policy-enforcement point within the sensor
network service.

4 Framework

In response to the challenges and partial solutions we have discussed in Section 3,
we propose a framework (Fig 1) in this section, relying on a service-oriented
computing approach enriched with semantic modelling. We will address the im-
portant features in the following.

1. Service-oriented computing approach
The design of the proposed framework is based on the principle of service-
oriented computing as we expect web service technologies would support high
performance, scalability, reliability and availability of sensor services. The
core of the sensor service is the service proxy, which is composed mainly of
the interaction handler, query manager, and WSN power manager. Ma-
jor components of each layer are shown in Fig. 1.

The semantic sensor service, which acts as an interface between the WSN
and the client, is in charge of the interactions between them (with inter-
action handler). Then it performs query processing (including query
rewriting and query planning, with the support of persistent store
and semantic transformation) and partial results integration - back to the
client (by query planning). The success of the above functionalities can-
not be achieved without concerning about scarce power resource. WSN power
manager is designed to cope with energy management enforced by an appro-
priate energy consumption policy and corresponding power management
strategies. Obviously, the WSN fundamentals is the foundation on that our
work is built on.

The extended framework also includes overarching concerns such as QoS,
security, and service management that apply to all components in the

A Framework for Semantic Sensor Network Services 355

WSN fundamentals

energy consumption policyWSN power
manager

power management

query rewriting

query planning

persistent store

semantic transformation

Query
manager

event & responseInteraction
handler

Q
oS

se
rv

ic
e

m
an

ag
em

en
t

se
cu

rit
y

Fig. 1. The Semantic Sensor Network Service Framework

framework, in that service management refers to the management of sen-
sor service life-cycle, including service registration, service invocation, and
service closure.

2. Semantic approach
Sensor Web clients depend on registries and ontology repositories to make use
of available sensor services. The repositories provide necessary information
about the underlying sensor networks in terms of the phenomena, observa-
tion, measurements, sensor capabilities and different models to be used to
facilitate the decision making when certain events occur. These repositories
can be classified into two categories with the static category providing essen-
tial information about sensors (e.g. sensor capabilities) and sensor networks
(e.g. sensor platforms), while the dynamic category reflecting the change of
the sensor networks, topological change, for example.

Generally, an ontology provides a medium for capturing and reusing the
knowledge and experience gained from prior efforts, it thus leads to a greater
level of automation at the semantic level. It is believed that ontologies and
related semantic techniques and technologies will allow machines to inter-
pret and understand (human-) agreements and formal policies one day in the
future. As OWL is a highly sharable and reusable form of knowledge repre-
sentation language, (sensor) ontologies will be represented in OWL. These
ontologies can encode necessary information for query rewriting. A sensor
network service should be able to describe what it can do and how to do it
(i.e. sensor capability modelling) in terms of a formal OWL ontology. The
recognition of need to provide a powerful “virtual device” (depending on
available sensing devices) with differing sensor capabilities for different tasks
(e.g. modelling or tasking) has attracted our attention. It will be included
in the future work.

Different layers in the framework work together to maintain the integrity of
sensor data and answer queries in an efficient way. Like other web services, the
semantic sensor network service can be made available to be discovered and
composed to support a wide variety of WSN deployments.

356 L. Li and K. Taylor

5 Query Rewriting

In this section, we will discuss query processing through the proposed framework,
in which employing both declarative semantics and query rewriting techniques
are important features.

By applying optimisation techniques during query processing, query rewriting
can generate a rewritten query with minimised node transmission and therefore
improved energy conservation. Below we first introduce declarative semantics,
then unification-based propagation optimisation [22,23]. It will be illustrated by
working through examples. A discussion which points out that the optimisa-
tion technique is particularly advantageous to some kinds of problems in query
processing will follow.

5.1 Declarative Semantics and Query Rewriting

It is generally accepted that some sort of knowledge (the knowledge about sen-
sors and the sensor network) can provide necessary information in query process-
ing. The knowledge consists of the sensor hardware and software characteristics.
The following code fragment (represents information about the current configu-
ration of a sensor network) is an example in the WSN programming language,
Snlog [7].

part 1:
--
% initial messages of nodes
toTransmit(@1,0).
toTransmit(@2,0).
toTransmit(@3,0).
toTransmit(@8,0).

% the residual powers of node,
residualPower(@1,509). %509units.
residualPower(@2,245).
residualPower(@3,455).
residualPower(@8,505).

% nodes’ list
mgsList(@1, [0,2,4]). %{0,2,4} node IDs
mgsList(@2, [12,15]).
mgsList(@3, []).
mgsList(@8, []).

% timer setting of nodes
timerx(@1,2,2048). % 2 minutes
timerx(@2,2,2048).
timerx(@3,2,2048).
timerx(@8,2,2048).

Now consider a sensor network program that relies on the configuration to
perform a task including message routing details, as follows.
Example 1: “Generate a sequential number and transmit it to one of its neigh-
bours (e.g. @Next), update its node list (the list of nodes that this particular
node has sent messages to) and cost accordingly.”

Suppose we have a top-level clause (i.e. the clause (1)) and the relevant clauses
defined as follows. The whole program is composed of parts 1 and 2.

A Framework for Semantic Sensor Network Services 357

part 2:
--
message(@Next,Src,Dest,X) :- generatedMgs(@Src,X), updateNode(@Src,X,Result),

nextHop(@Src,Dest,Next). %...(1)
generatedMgs(@Src,Y) :- toTransmit(@Src,X), Y is X+1,residualPower(@Src,Z), Z>500,

timer(@Src,2,TimePeriod). %...(2)
timer(@Src,TimerID,TimePeriod) :- timerx(@Src,TimerID,TimePeriod). %...(3)
updateNode(@Src,X,Result) :- mgsList(@Src,OldList), append(OldList,[X],Result),

forward(@Src,Result,Cost). %...(4)
forward(@Src,Result,NewCost) :- neighbour(@Src,Neighbours),

shortestPath(@Src,Node,Neighbours,Cost),
length(Result,Size), timer(@Src,2,TimePeriod),
NewCost is (Size*TimePeriod). %...(5)

--

– clause (1): the predicate message/4 is the logic consequence if the current
node (i.e. Src) with the generated message is X and the routing detail (i.e.
nextHop/3) is determined. That is, the next node (i.e. the Next) to send
the message to is certain. At the same time, the node list will be updated
accordingly.

– clause (2): the predicate generatedMgs/2 is defined as a increment of the
message determined by the predicate toT ransmit/2 if the residual power of
the node @Src is greater than 500 units within the given T imePeriod.

– clause (3): the predicate timer/3 is defined to convert a timerx tuple into a
timer tuple,

– clause (4): the predicate updateNode/3 is defined to update the node list.
More specifically, the newly generated message will be appended to an ex-
isting list (i.e. the OldList) and the result (i.e. Result) will be sent away to
a particular node defined by the predicate forward/3.

– clause (5): the predicate forward/3 is defined to update the cost. The new
cost equals to the product of the length of the list (i.e. the size of the Result)
and the time period (i.e. T imePeriod).
For illustration purposes, the predicates shortestPath/4, neighbour/2 and
nextHop/3 are defined as built-in predicates in Snlog.

The observation that the larger a program is, the more energy it may con-
sume drive the selection of optimisation techniques in this situation to reduce
redundancy. Two major approaches are available to be chosen from. One is “lo-
cal computation” in which the code will be injected into the nodes as it was and
the node itself is responsible for the computation (i.e. no specialisation). The
other is “global computation” in which the code will be specialised before it is
sent into a node. Our question is: “ is there any difference between these two
approaches when the power consumption of a node is concerned? ”.

Now let us look at the “global computation” scheme. We are interested in us-
ing unification-based propagation technique [22,23] for it has potential to make
a considerable improvement in terms of the performance because it is capable
of reducing most of redundant computation at compile-time so that the com-
putation complexity at nodes can be lessened or lifted greatly. We will not go
to the detail in this paper, but highlight the effect of this technique in achiev-
ing efficiency instead. A prototype was developed to allow the rewriting to be

358 L. Li and K. Taylor

achieved in an automatic manner. A systematic way about how this optimisation
technique is performed will be discussed in another paper.

With the unification-based propagation technique, the top-level clause will be
specialised into the following particular code:

the specialised code (Note that the variables have been renamed by the system):
--
message(@_G1247,1,_G1244,1):- neighbour(@1,_G1253), shortestPath(@1,_G1261,_G1253,_G1263),

nextHop(@1,_G1244,_G1247).
message(@_G1210,8,_G1207,1):- neighbour(@8,_G1216), shortestPath(@8,_G1224,_G1216,_G1226),

nextHop((@8,_G1207,_G1210).
--

This program entirely replaces both part 1 and part 2 given earlier. It is
specialised from part 2 to take account of the configuration in part 1 but is
much more compact.
Example 2: We now consider a generic program to answer a class of prob-
lems. It is: “Find regions with sensorId > $IntV ar (e.g. $IntV ar = 99) and
temperature rise of X% (e.g. 20%) in the last given time period (e.g. ∆t) ”.

Assuming a time window is denoted by [t −∆t, t], and the memory at each
node is sufficient to hold data streams during that period. One of critical steps
is to avoid sending back unnecessary messages as much as possible and to detect
unwanted messages as early as possible because the message size is a very im-
portant factor in power consumption. As such, it is clear only the sensors with
sensorId > $IntV ar will be considered further. These sensors will then check the
required temperature readings. Again, only the successful node will be asserted
to the location/1, which is defined to hold the node information. The total cost
of answering this particular query is approximated by the sum of costs at each
node to check whether it is the required sensor ID (Id = 0 at the base station).

– The top-level clause is defined as follows:

go(@Next,Id) :- zone(@Src,Id,TH:TM:TS,TimePeriod,Lb,Ub,Percent),NextHop(@Src,Dest,Next).

– the predicate zone/7 is denoted by
zone(HostId, Id, EndTime, T imeDiff, LowerBound, UpperBound, Percent). It is a rela-
tion which contains a tuple for each node. It is defined as follows:

zone(@Src,Id,TH:TM:TS,T,Lb,Ub,Percentage):-
sensorId(@Src,Id),less(Lb,Ub),
check_range(Ub,Id,Lb),
reading(@Src,Id,TH:TM:TS,TempVal_1),
integer(T),
T1 is TH*3600+TM*60+TS-T,
T2H is T1 // 3600,
T2 is T1 mod 3600,
T2M is T2 //60,
T2S is T2 mod 60,
reading(@Src,Id,T2H:T2M:T2S,TempVal_2),
TempVal_1 >= f_mult(TempVal_2,Percentage), % a built-in function in Snlog
assert(location(Src)).

– the predicate reading/4 is a relation which contains tuples of sensor readings
at each Src in the form of reading(@Src, Id, T imeStamp, T emperatureV al).
T imeStamp is expressed in the form of H :M :S.

– the predicate nextHop(@Src, Dest, Next) is a built-in.

A Framework for Semantic Sensor Network Services 359

Given the readings at all nodes (these readings have been omitted here due to
space limitation), in this example, the top-level clause is specialised by unification-
based program to: go(@ G1022,12):-nextHop(@12, G1025, G1022).

This is because among available nodes, only node 12 meets the requirement.
Clearly, the specialised top-level clause is very concise (no irrelevant information,
only need to deal with the built-in nextHop/3). The full advantages of the query
rewriting technique will be discussed next.

5.2 Discussion

Generally speaking, the specialised top-level clauses have the following advan-
tages over the original ones:

– the length of the specialised code is greatly shorter than that of the original
one.
Intuitively, this means fewer rules/facts will be fired for the same problem.
The reason behind is that much of the computation has been performed
thanks to the optimisation technique. Those predicates whose definitions
are available at compile-time, such as the residual power of nodes, should
provide sufficient information to instantiate relevant variables and the whole
process is propagated throughout the code when the bindings of variables
are computed. In the end, some computation and abstraction which can be
performed at compile-time, have been completed.

– the specialised code is more efficient than the original one in the following
aspects.
• The clause has been simplified.

By removing the superfluous call to true, the original top-level clause
have been replaced by the new clauses which are very concise. The above
specialised codes provide interesting insights into it.

• The message will be sent only to the relevant nodes rather than to all
nodes.
Note that in reality, a WSN can have many sensors. As only the specific
nodes (e.g. That is, the nodes 1 and 8 in example 1 and the node 12
in example 2) will be informed, there is no need for irrelevant nodes
to wake up. More power can be saved because of less computation and
transmission. In this way, we also achieved smart distribution of the code
throughout the network as a result of specialisation.

• The storage on nodes has been minimised considerably.
It is obviously that only the relevant nodes need to consider the storage
issue, not all nodes.

• The execution performance has been improved considerably.
Since the code has been specialised with much redundancy being re-
moved, the node will only consider the run-time.

From the above discussion it is evident that the query rewriting technique has
potential to enhance the efficiency of the WSN.

360 L. Li and K. Taylor

6 Conclusion

In this paper, we proposed a service-oriented framework to address some criti-
cal design issues and challenges of sensor network services. The sensor network
services may allow end-users not only to take advantage of QoS, security and
scalability which are promised by Web services, but query processing through
the framework as well. We focus in particular on dealing with query processing
through that framework.

We highlighted two important features of the framework. As energy efficiency
is a main concern of the sensor network deployment, energy consumption at every
phrase of the sensor network should be considered carefully. We have taken reduc-
ing redundancy as a starting point to demonstrate that applying query rewriting
techniques at compile-time can improve the performance significantly for some
problems as long as it is desirable to take advantage of the logic structure of the
problem, input and static variables known a priori. Early progress from query
rewriting has shown an efficient sensor network program can be obtained.

We plan to investigate query processing under the proposed framework in
depth. Many issues need to be solved to develop a query optimiser with the
presence of unpredictable WSN characteristics. We believe that the optimisation
technique discussed in this paper will be constructive for sensor networks to deal
with the tight energy and bandwidth limitation. We are also interested in sensor
capability modelling.

Acknowledgment

The authors would like to thank David Ratcliffe for his help on the improvement
of the unification-based propagation prototype.

References

1. Culler, D.E., Estrin, D., Srivastava, M.B.: Guest editors’ introduction: Overview
of sensor networks. IEEE Computer 37, 41–49 (2004)

2. Delin, K., Jackson, S.: The sensor web: a new instrument concept. In: Proceedings
of the SPIE International of Optical Engineering, vol. 4284, pp. 1–9 (2001)

3. Liang, S.H.L., Croitoru, A., Tao, C.V.: A distributed geospatial infrastructure for
sensor web. Computers & Geosciences 31, 221–231 (2005)

4. Gehrke, J., Madden, S.: Query processing in sensor networks. Pervasive Com-
puter 3, 46–55 (2004)

5. Bonnet, P., Gehrke, J., Seshadri, P.: Towards sensor database systems. In: Proceed-
ings of the 2nd International Conference on Mobile Data Management (January
2001)

6. Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: TinyDB: An acquisitional
query processing system for sensor networks. Transactions on Database Systems
(TODS) 30, 122–173 (2005)

A Framework for Semantic Sensor Network Services 361

7. Chu, D.C., Popa, L., Tavakoli, A., Hellerstein, J.M., Levis, P., Shenker, S., Stoica,
I.: The design and implementation of a declarative sensor network system. In: The
5th ACM Conference on Embedded Networked Sensor Systems (SenSys 2007),
Sydney, Australia, November 2007, pp. 175–188 (2007)

8. Yao, Y., Gehrke, J.: The Cougar approach to in-network query processing in sensor
networks. ACM SIGMOD Record 31, 9–18 (2002)

9. Park, K., Elmasri, R.: Query classification and storage evaluation in wireless sensor
networks. In: ICDE Workshops (2006)

10. Sadagopan, N., Krishnamachari, B., Helmy, A.: Active query forwarding in sensor
networks. Ad-Hoc Networks 3, 91–113 (2005)

11. Karp, P.B.G.B., Ke, Y., Nath, S., Seshan, S.: Irisnet: An architecture for a world-
wide sensor web. IEEE Pervasive Computing 2 (2003)

12. Liu, J., Zhao, F.: Towards semantic services for sensor-rich information systems.
In: Proceedings the 2nd IEEE/CreateNet International Workshop on Broadband
Advanced Sensor Networks (Basenets 2005), Boston, MA (October 2005)

13. Whitehouse, K., Liu, J., Zhao, F.: Semantic streams: a framework for composable
inference over sensor data. In: Römer, K., Karl, H., Mattern, F. (eds.) EWSN 2006.
LNCS, vol. 3868, pp. 5–20. Springer, Heidelberg (2006)

14. Coulson, G., Kuo, D., Brooke, J.: Sensor networks + grid computing = a new
challenge for the grid? IEEE Distributed Systems Online 7 (2006)

15. Lim, H.B., Teo, Y.M., Mukherjee, P., Lam, V.T., Wong, W.F., See, S.: Sensor grid:
Integration ofwireless sensor networks and the grid. In: LCN, pp. 91–99 (2005)

16. Compton, M.: A framework for finding equivalent rewritings. Technical report,
CSIRO ICT Centre, Australia (2008) (submitted to ICDE 2009)

17. Hui, J.W., Culler, D.: The dynamic behavior of a data dissemination protocol for
network programming at scale. In: SenSys 2004: Proceedings of the 2nd interna-
tional conference on Embedded networked sensor systems, pp. 81–94. ACM Press,
New York (2004)

18. Taylor, K., Ayyagari, A.: Research topics in semantic sensor networks: Preface to
the proceedings of the semantic sensor networks workshop. In: Cruz, I., Decker, S.,
Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.)
ISWC 2006. LNCS, vol. 4273. Springer, Heidelberg (2006)

19. Caniot, G., Lamb, P.: Key establishment in sensor networks. Technical report,
CSIRO ICT Centre Conference, Sydney (2007)

20. Lamb, P.: Arc-based XML access control for general DTDs (in preparation, 2008)
21. He, D.D., Compton, M., Taylor, K., Yang, J.: Analysing access control in collab-

orative environments with description logic. Technical report, CSIRO ICT Centre
(2008)

22. Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Heidelberg
(1987)

23. Leuschel, M.: Logic program specialisation. In: Partial Evaluation, pp. 155–188
(1998)

Context-Driven Autonomic Adaptation of SLA

Caroline Herssens1, Stéphane Faulkner2, and Ivan J. Jureta2

1 PReCISE, LSM, Université catholique de Louvain, Belgium
2 PReCISE, LSM, University of Namur, Belgium

caroline.herssens@uclouvain.be, stephane.faulkner@fundp.ac.be,
ivan.jureta@fundp.ac.be

Abstract. Service LevelAgreements (SLAs) are used in Service-Oriented
Computing to define the obligations of the parties involved in a transac-
tion. SLAs define the service users’ Quality of Service (QoS) requirements
that the service provider should satisfy. Requirements defined once may
not be satisfiable when the context of the web services changes (e.g., when
requirements or resource availability changes). Changes in the context can
make SLAsobsolete, making SLA revision necessary.Wepropose amethod
to autonomously monitor the services’ context, and adapt SLAs to avoid
obsolescence thereof.

Keywords: SLA, adaptation, service context.

1 Introduction

Web services are a response to growing needs of responsive and configurable
applications on the Internet. A service is a self-describing and self-contained
modular application designed to execute a well-delimited task, and that can be
described, published, located, and invoked over a network [20]. Web services are
supported by technologies such as SOAP, UDDI and WSDL [27] and are accessed
via a Uniform Resource Locator.

Given the growing number of available web services on the Internet, different
service providers may offer services that provide the same functionality to the
users. Such competing services can be distinguished by comparison over nonfunc-
tional characteristics, which take the form of Quality of Service (QoS). QoS is a
combination of several qualities or properties of a service, e.g., availability, secu-
rity, response time or throughput [15]. When a user requests a service to perform
some given task, a service is selected that fits the user’s QoS requirements. The
selected service is the one that meets the most adequately user’s preferences over
quality attributes that go into QoS. Once the service is selected, it is assigned
by the definition of a contract that defines a Service Level Agreement (SLA)
between the user and the provider [11,17]. SLAs are used to meet user’s require-
ments, manage user’s expectations, regulate resources and control costs [22]. In
short, SLAs are used to set the QoS level offered by the service provider to the
service user; SLAs result from a negotiation initiated between these parties [10].

However, offered and requested QoS may both vary over time. We say in this
paper that such variations occur because of changes in the context of services.

A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, pp. 362–377, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Context-Driven Autonomic Adaptation of SLA 363

Given that the term “context” can be widely understood, a definition local to
this paper is in order: context is any information about the interaction between
users and a web service, for which an SLA is specified.

Changes in the context should be reflected in the SLA governing the inter-
action. Both the offered and the requested QoS levels may vary over the course
of the interaction. Moreover, there are dependencies across different context el-
ements that indicate a propagation of variations from one element to multiple
context elements. To keep the SLA unchanged in such conditions is to make the
SLA obsolescent.

Contributions. We propose an approach that enables an autonomic adaptation
of SLA to respond to occuring context modifications. We illustrate our approach
with a case study based on European Space Agency (ESA) services used to
process information provided by the Envisat satellite. We provide conceptual
bases necessary for SLA adaptation. We classify context elements into five dis-
tinct categories: user, provider, resource, environment and web service. We also
introduce dependencies existing between elements of context enabling to prop-
agate context modifications. We then present our SLA adaptation approach.
We propose an architecture relying on an SLA manager to drive the autonomic
adaptation based on context elements. Our adaptation uses context modifica-
tions and dependencies to enable an autonomic adjustment of existing SLAs to
ensure the service conformance to user expectations. Adaptation involves the
following steps:

1. Context modifications are reported to the SLA manager that identifies
changes and starts the adaptation process.

2. Observed context variations are propagated through context dependencies
existing over different elements of context by the SLA manager.

3. Once context variations have been propagated to all context categories,
the SLA manager checks the compatibility between user expectations and
provider capabilities.

4. Upon base of the result of the compatibility checking, the SLA manager keep
the existing SLA, set up a new SLA between the user and the same provider
or select another service fitting better to user expectations.

Organization. Section 2 introduces the ESA case study used throughout the
paper. Section 3 presents the conceptual elements used to drive the SLA auto-
nomic adaptation and illustrate these concepts with the case study. Section 4
propose our SLA management architecture and assesses the different steps of our
adaptation process. The case study illustrates the adaptation process. Section 5
presents the related work; Section 6 draws conclusions and outlines future work.

2 Case Study

The European Space Agency (ESA) program on Earth observation allows re-
searchers to access and use the infrastructure operated and the data collected by

364 C. Herssens, S. Faulkner, and I.J. Jureta

Fig. 1. Graphical interface of the MERIS/MGVI service

Fig. 2. Output of the MERIS/MGVI
service

Fig. 3. Graphical interface of the EOLI-
SA service

the agency1. Our case study focuses on the information provided by the MERIS
instrument of the ENVISAT satellite. MERIS is a programmable, medium-
resolution imaging spectrometer operating in the solar reflective range. MERIS
is used in observing ocean color and biology, vegetation and atmosphere and
in particular clouds and precipitation. In relation to MERIS, a large set of web
services is made available by the ESA for access to the data the instrument sends
and access to the provided computing resources.

We are interested in the remainder about two specific services. The first pro-
vides the vegetation indexes for a given period of time and region of the world. A
vegetation index measures the amount of vegetation on the Earth’s surface. The
graphical interface used by the requester of the service is shown in Figure 1. An
illustration of the output provided for the whole world map is given in Figure 2.
The data on the vegetation index can be obtained for any time range and it
is possible to delimit the region of the world that is of interest. This service is

1 http://gpod.eo.esa.int

http://gpod.eo.esa.int

Context-Driven Autonomic Adaptation of SLA 365

subject to particular nonfunctional properties: the latency is initially situated
between 4 and 6 hours by day of the selected period due to the quantity of data
to process. Thus, the service user expects to minimize the execution time. For a
service facing such significant latency, service reliability is another critical QoS
aspect. Indeed, in case of failures, all execution steps must be started over. So,
maximizing the reliability reduce risks to have to start over. The second web
service used to illustrate our approach is the EOLI-SA service: this service is
used to calculate metadata on the products to process. For example: when you
submit a zone to process the MGVI with the ’bounding box’ argument, these
coordinates need to be transformed into the technical data of the satellite at the
time of the acquisition of the zone to process (start/stop time, orbit, lat/long,
azimuth angle, etc.). The graphical interface of the EOLI-SA service is given in
Figure 3. This service presents different nonfunctional characteristics: while it
is used by other services as the MERIS MGVI/Regional, the availability of this
EOLI-SA must be maximized in order for these services to execute successfully.

3 Conceptual Foundations

This section introduces the concepts used to drive our autonomic SLA adap-
tation. We present our notion of context, and subdivide it into categories in
Section 3.1. Section 3.2 introduces the concept of dependencies over context ele-
ments. All the concepts are illustrated through services introduced in Section 2.

3.1 Context Categories

Unexpected events can modify the current execution context and have an impact
on the performance of the services. These modifications can breach the SLA. To
adapt existing SLAs to context modifications, context elements need to be accu-
rately defined by services providers and users. We classify context elements into
several categories, shown schematically along with potential between-category
interactions in Figure 4.

User Provider

Resources

Web
Service

Environment

Fig. 4. Context categories and between-category interactions

User context. The user context covers the user’s QoS requirements. These
requirements are expressed with help of preferences over QoS values that the

366 C. Herssens, S. Faulkner, and I.J. Jureta

service must achieve but also with QoS priorities specifying which QoS properties
will be maximized over others [21]. The user context also carries information
on past executions of services, along with advertised and observed QoS values
during these executions [16]. Changes in user context may eventually induce the
definition of new SLAs between the user and the provider. The user specifies
and updates the user context.
Resources context. Web services executions are influenced by the availability
of the resources that concern the network connection between the provider and
the user but also the hardware used in executing the service and/or retrieving
its results [17]. It is clear that resource availability has a direct impact on deliv-
ered QoS, thereby affecting the satisfaction of SLA. Both the service user and
the service provider specify the resource context by providing their respective
resource-related information. They also update this information when changes
occur.
Environment context. The environment context contains information about
where the user is located [5] and about its surrounding environment like the
current weather or date [21]. This information also includes about the network,
which is not within direct control of service user or provider [9,17]. The network
that is not under the user’s or provider’s responsibility can have an immediate
impact on the service performance. The environment context depends on the
user of the service and is specified by the SLA manager.
Provider context. Provider context covers, among others, information about
the provider’s current execution load, the duration of its current opened sessions
and announced intended length of usage by the application requesting access [9].
All activities performed by the web service and its execution charge have a direct
impact on the service’s QoS. Increasing or decreasing the computation charge
may require changing the SLA. Provider context is specified and updated by the
service provider.
Web service context. The Web Service context refers to nonfunctional charac-
teristics of the service. It provides information about possible ranges of execution
time, levels of security, expected best reliability, and so on [13,21]. Latency or
security are determined by the service’s implementation, while metrics like mean
availability or reliability are obtained from its past executions. Any changes in
the web service context will affect QoS levels, leading to SLA adaptations. The
web service context is specified by the service provider.

Provider, web service and some part of the resource categories are related to
elements of the provider side and define the level of service that can be offered.
User, environment and the other part of the resource categories concern items of
the user side and determine the expected level of service. The modifications of
all elements of context categories are performed either by the service provider,
or by the service user, except for the environment context that can be affected
by external events.
Context Illustration. We illustrate in Table 1 the context elements for services
from the case study. Both services are offered by the same provider and are

Context-Driven Autonomic Adaptation of SLA 367

Table 1. Context particularities of MERIS/MGVI and EOLI-SA services

Category MERIS/MGVI Regional EOLI-SA
user context maximize reliability and minimize

execution time
maximize availability

the execution time must be inferior
to 7 hours by day of the selected
period

resources context high performance computing clus-
ter: 120 CPU, 100 terabytes stor-
age capacity, gigabit LAN

high performance computing clus-
ter: 120 CPU, 100 terabytes stor-
age capacity, gigabit LAN

environment context service user is an human service user is another web service
provider context current execution charge of the

computing cluster
current execution charge of the
computing cluster

web service context execution time: 4 and 6 hours by
day of the selected period

execution time: inferior to 1 min

reliability: upper than 95% reliability: upper than 98%
availability: upper than 92% availability: upper than 98%

executed on the same computing cluster. Their provider and resources elements
are consequently similar.

The MERIS/MGVI service has an important execution time. To prevent fail-
ures and potential restart of the execution, the user wishes both to minimize
the execution time and maximize the reliability of the web service. Moreover,
the user adds a hard constraint on the execution time, stating that it must be
inferior to 7 hours by day of the selected period. This constraint prevents an ac-
cumulation of unfulfilled requests by the MERIS/MGVI service. The EOLI-SA
service has a faster execution, its reliability is not so critical. As it is used by
other services to compute data, its availability must be maximized to increase
reliability of these other services.

3.2 Context Dependencies

Context dependencies refer to relationships that exist between distinct context
elements. For example, QoS properties supported by a service provider can be
interrelated [28] e.g.; change in the execution time can affect reliability. These
relationships can also occur over elements in different context categories – e.g.,
the execution charge of computing resources (provider context) affects various
quality characteristics of the service (web service context). To highlight such
dependencies between elements allows us to propagate failures and performance
modifications to all context categories related to the initial variation. Dependen-
cies are defined over context elements with an associated coefficient, direction
and strength. The coefficient attribute specifies that context elements involved
in the dependency are parallel or opposite, meaning that their coefficient is
positively or negatively correlated. The direction determines, which of the two
considered context elements induces the value of the other; a dependency can be
directed both ways, meaning that both context elements impact each other. The
strength, represented by a value between 1 and 10, corresponds to the importance
of the influence.

368 C. Herssens, S. Faulkner, and I.J. Jureta

While all context dependencies occurring on the same context category are al-
lowed, between-category dependencies are subject to some restrictions. We spec-
ify in Section 3.1 that part of the resources context, the provider context and the
web service context are defined by the service provider. The other part of the
resources context, the environment context and the user context are delimited
by the service user. Dependencies can not involve influence of provider context
categories to user context categories and vice versa. Dependencies are also con-
strained by the attribute direction over different categories. An improvement of
the computing resources (resources category) can induce the service quality per-
formance (web service context). Nevertheless, the service quality performance
(web service context) has no influence on the computing resources (resources
category). The impact direction of dependencies in context categories is given
below:

Resources context
↙ ↘

Provider context Environment context
↓ ↓

Web service context User context

Examples of context dependencies. Context dependencies are specified by
the SLA manager to indicate existing interactions between context elements.
Table 2 gives examples of context dependencies for MERIS/MGVI and EOLI-
SA services.

Table 2. Examples of Context Dependencies

Common dependencies of MERIS/MGVI and EOLI-SA services
Dep 1 Resources context - Web Service context

Coefficient: parallel
Direction: →
Strength: 10

Dependencies of the MERIS/MGVI service
Dep 2 Execution charge of the computing cluster (provider context) - Execution

time (web service context)
Coefficient: parallel
Direction: →
Strength: 6

Dep 3 Execution charge of the computing cluster (provider context) - Availability
(web service context)

Coefficient: opposite
Direction: →
Strength: 8

Dep 4 User bandwidth (environment context) - Transfer Time (user context)
Coefficient: parallel
Direction: →
Strength: 5

Dependencies of the EOLI-SA service
Dep 5 Availability (web service context) - Reliability (web service context)

Coefficient: parallel
Direction: ↔
Strength: 9

Dep 6 Execution charge of the computing cluster (provider context) - Availability
(web service context)

Coefficient: opposite
Direction: →
Strength: 2

Context-Driven Autonomic Adaptation of SLA 369

Dep 1 states the relationship between the resources used by the service
provider and web service performance. Indeed, the capability of the web ser-
vice is immediately linked to the resource used to compute the web service. If
the server used to compute MERIS/MGVI is down, all its performance indicators
will be affected. The EOLI-SA service is also subject to that dependency. Dep 2
underlines the impact of the execution charge of the cluster on the execution time
needed to execute the service. Increasing the execution charge of the provider
decreases resources allocated to the execution of the service and increases its
execution time. Dep 3 states that the increasing of the execution charge of the
cluster will decrease the availability of the service: if the cluster charge is full,
the MERIS/MGVI service that requires an important resources utilization will
not be given a high priority. Consequently, its availability will be reduced. Dep 4
is about the influence of the user’s bandwidth on the user’s network capacities.
If the bandwidth provided by its Internet Service Provider decreases, the service
user will amend its expected total transfer time. The EOLI-SA service is less
subject to context variations because it does not consume that much resources.
It is subject to the dependency linking its availability to its reliability: Dep 5.
This dependency is directed both ways meaning that the increasing/decreasing
of one of the quality property affectes the other. It is also subject to the Dep 6
stating that the increasing of the execution charge of the cluster causes a diminu-
tion of the availability. This dependency is the same that the one observed for
the MERIS/MGVI service but its strength is not so prominent because EOLI-
SA does not require a long execution time and is less subject to the provider’s
utilization.

4 Dynamic SLA Adaptation

We outline here our adaptation process that fits SLA established between ser-
vice user and provider to context elements variations. Section 4.1 gives a SLA
description and presents our SLA management architecture. Section 4.2 details
the different steps of our adaptation process.

4.1 Managing Service Level Agreements

Contracts between a service provider and a service user are given by SLAs [11].
An SLA covers the functional side of the service (the provided service corre-
sponds to the requested service in terms of input, output, pre- and postcondi-
tions) and concerns also the nonfunctional properties of the service. When users
can choose among a set of functionally equivalent web services, QoS consid-
erations become the key criteria for service selection. As a consequence, SLAs
must be defined and managed between service users and providers [3]. The con-
tract about non-functional properties is defined for each QoS property through a
Service Level Objective (SLO) [22]. SLOs are defined over QoS values and appro-
priate metrics. Definitions of metrics include the description of their calculation
mode and are provided by the party in charge of measurement and aggregation,

370 C. Herssens, S. Faulkner, and I.J. Jureta

i.e.; either the service provider, the service user or a third tier manager [3,29].
An SLA is then a contract between the service user and service provider about
a set of SLOs. These SLOs refer to web service and user context elements. Web
service context elements are QoS capabilities of the provider while user context
elements are quality requirements of the service user. A complete definition of a
SLA and its component is available in [23]. We work on the assumption that an
initial SLA has already been negotiated between the service user and the service
provider with a negotiation process such as the one specified in [29]. We propose
in Table 3 examples of SLAs established between providers and users for both
services presented in the case study section.

Table 3. Examples of SLAs

SLA established for the MERIS/MGVI service
SLO 1: the execution time must be between 5h and 6h by day

of the selected period
SLO 2: the reliability must be superior to 90 %
SLO 3: the availability must be superior to 80%
SLO 4: the network time must be inferior to 1’
SLA established for the EOLI-SA service
SLO 1: the execution time must be inferior to 1’30”
SLO 2: the reliability must be superior to 70%
SLO 3: the availability must be superior to 92%

To manage SLAs and their adaptation, we introduce a third-part service: the
SLA manager, in charge of the mediation between the service user and the service
provider. The adaptation process refers to automatic monitoring, enforcement
and optimization of SLAs between the services’s user(s) and provider. The SLA
manager is also responsible of the assignation of services to users. Our manage-
ment architecture is illustrated in Figure 5. We dedicate one SLA manager for
each existing cluster of web services (i.e., services that offer the same function-
ality). Gathering of functionally equivalent web services is ensured by means
of clusters of web services, that provide several web services inside a unique
wrapper, used by the clients as a standard web service [6]. We suppose than an
initial SLA has already been negotiated between the service user and the service
provider chosen with an adequate selection method [14].

The role of the SLA manager is to continuously check the conformance of the
web service to the SLA established between the user and the provider. This mon-
itoring requires a constant verification of SLOs compliance between the service
user and the service provider. To achieve this verification, context information
about the web service, the provider and the part of the resources information are
given by the provider while information related to the user context, its environ-
ment and its resources are communicated by the service user. The SLA manager
records information about all context elements and builds execution statistics
about mean observed latency, reliability or availability. The SLA manager also
monitors context dependencies with help of information provided by the user
and the provider. With such statistics and information about the execution con-
text and dependencies, the SLA manager is able to check the conformity of SLOs

Context-Driven Autonomic Adaptation of SLA 371

SLA Manager

Web Services
Cluster

Service Provider n

Service Provider 2

Service Provider 1

Service user

Web Service context
Provider context
Resource context

User context
Environment context
Resource context

SLA

SLA

Fig. 5. SLA Management Architecture

established between the service user and the service provider. If some SLOs are
breached, the SLA manager processes adaptation mechanisms to adjust the SLA,
as explained in Section 4.2.

4.2 Adapting Service Level Agreements

The SLA manager is designed to respond to eventual SLA breaches or QoS vari-
ations through different mechanisms of adaptation. Adaptation usually refers
to the alteration of an application’s behavior or interface in response to arbi-
trary context changes [2]. For web services, the adaptation must consider all
context particularities introduced in Section 3.1 as well as existing dependen-
cies over context elements presented in Section 3.2. The aim of such adaptation
mechanisms, referred as SLA adaptation, is to adjust the initial SLA to context
variations reported to the SLA manager. If the initial web service provider is no
longer able to perform its task to the quality level requested by the user, the
SLA manager proceeds to select a new provider. It establishes a new contract
between the service user and a service provider selected in the cluster of available
services.

The SLA manager process this adaptation through four steps:
1. Modification notification. The SLA adaptation process is driven by the
observation of a modification in at least one context category. Such changes
are highlighted by information provided by users and providers and statistics
made by the SLA manager. The adaptation is initiated differently following the
category of the context variation. Provider, web service and some part of the
resources context come from the service provider and their changes will modify
the service offered, while the user, the environment and the other part of the
resources context are defined by the service user and will affect the service level
expected.
2. Modification spreading. The second step of the SLA adaptation is the
propagation of observed context variation to elements of the same category and
to other relevant context categories. Spreading the modification is subject to
rules presented in Section 3.2, which define the direction of the allowed depen-
dencies. The impact of the context variations is governed by the coefficient,

372 C. Herssens, S. Faulkner, and I.J. Jureta

direction and strength attributes and reflects changes to all elements of the
concerned context categories. Context dependencies allow the SLA manager to
propagate the impact of context categories until their influence to related QoS:
all context variations are converted to elements used in the SLA contract (i.e.,
user and web service context).

3. Compatibility checking. Once all dependencies have been propagated, the
SLA manager is able to determine the final quality expectations of the user and
the web service QoS offered by the service provider. To ensure their compatibility,
the SLA manager checks context elements accounted for in the SLA – i.e., the
user and web service context. If the web service context presents abilities that
meet the expectations of the user context, these are compatible.

4. Adaptation. The last step of the process is the adaptation resulting from
compatibility checking. Three different scenarios are possible. (1) The compat-
ibility is present between web service and user context and the initial SLA is
still applicable. In this instance, the SLA is preserved between stakeholders. (2)
The compatibility is verified between web service and user context but the ini-
tial SLA no longer applies. The SLA initiates the set up of a new SLA between
the current provider and the service user. To achieve the negotiation between
the user and the provider, the manager uses a negotiation process such as the
one proposed in [29]. (3) The last possibility occurs while the compatibility be-
tween the user and the provider is not verified. The SLA manager then select
another service able to meet the quality requirements of the user context in
the web services cluster. We do not review here details of selection mechanisms
but various existing approaches [7,14,31] can be applied by the SLA manager.
The SLA is negotiated between the new provider and the service user by the
SLA manager.

Adaptation Illustration. We illustrate here adaptation steps through a par-
ticular situation involving services introduced in the case study.

Fig. 6. Current tasks of the provider

Context-Driven Autonomic Adaptation of SLA 373

The adaptation process described here occurred with an increase of the exe-
cution charge in the computing cluster. The execution charge of the computing
cluster belongs to the provider context category. The services accessing the com-
puting cluster offered by the ESA are monitored and managed through a particu-
lar access interface illustrated in Figure 6. The execution charge can significantly
increase with entrance of new requests in the computing cluster. The adapta-
tion mechanisms initiated in response to these new requests will differ with the
extent of the increasing. The adaptation process initiated by this increasing is
described through its four steps here.

The first step is the modification notification. The provider charge is moni-
tored through the application illustrated in Figure 6. With this application, the
provider is able to notice the growth of the cluster utilization. The cluster is al-
lowed to work without delays within the execution duration advertised at a fixed
level of charge. When the charge moves beyond this level, the provider notifies
the SLA manager. We observe the effect produced by two different increases:
the first case is an increase of the charge of the computing cluster for 20%; the
second involves an increase of 50%.

The second step of the adaptation process amounts to spread context modi-
fications. The dependencies are directly related to an increase of the execution
charge, i.e., Dep 2, Dep 3, Dep 6. Dep 2 induces an increase of the execution
time and Dep 3 leads to a decrease of the availability of the MERIS/MGVI ser-
vice. The Dep 6 leads to a decrease of the EOLI-SA availability. This decrease
enables Dep 5, which refers to a decrease of reliability. The effects of an increase
of the execution charge on service context of both services are: an increase of the
execution time and a decrease of the availability for the MERIS/MGVI service;
and a decrease of the availability and the reliability for the EOLI-SA service.
The web service contexts of both services resulting from increases of 20% and
50% are illustrated in Table 4.

Table 4. Web Service context of MERIS/MGVI and EOLI-SA services after an in-
creasing of the execution charge

Increasing of the execution charge of 20%
MERIS/MGVI Regional EOLI-SA
execution time: 5h and 7h hours by day of the
selected period

execution time: inferior to 1 min 10 sec

reliability: upper than 95% reliability: upper than 97%
availability: upper than 85% availability: upper than 97%
Increasing of the execution charge of 50%
MERIS/MGVI Regional EOLI-SA
execution time: 8 and 10 hours by day of the se-
lected period

execution time: inferior to 1 min 30 sec

reliability: upper than 95% reliability: upper than 80%
availability: upper than 78% availability: upper than 80%

The third step of the SLA manager’s process is the compatibility checking
between user requirements and the provider’s capabilities. With an increase of
20%, the MERIS/MGVI capabilities still meet user requirements. The EOLI-SA

374 C. Herssens, S. Faulkner, and I.J. Jureta

Table 5. SLAs resulting from the increasing of the execution charge

New SLA established for the MERIS/MGVI service with an in-
creasing of the execution charge of 20%
SLO 1: the execution time must be between 6h and 7h by day

of the selected period
SLO 2: the reliability must be superior to 90 %
SLO 3: the availability must be superior to 80%
SLO 4: the network time must be inferior to 1’
New SLA established for the EOLI-SA service with an increasing
of the execution charge of 50%
SLO 1: the execution time must be inferior to 1’30”
SLO 2: the reliability must be superior to 70%
SLO 3: the availability must be superior to 80%

is also facing the user expectations with this increase of the execution charge.
With an increase of 50%, MERIS/MGVI does not meet the constraint on the
maximum allowed execution time, so that the compatibility does not verify. In
contrast, the EOLI-SA service is still facing the user requirements and does not
break any constraint of the user.

The fourth step of the SLA manager is the adaptation. With an increase
of 20%, the MERIS/MGVI service is in scenario 2; it is compatible with user
requirements but breaches the initial SLA: its execution time is above 6 hours
by day of the selected period. The SLA between the user and the provider must
be renegotiated. This new SLA is illustrated in Table 5. The EOLI-SA service
respects the scenario 1; it is still compatible with user requirements and the initial
SLA is still applicable. The initial SLA is preserved between the user and the
provider. With an incresing of the execution charge of 50%, the MERIS/MGVI
service follows the scenario 3. The service fails to meet the constraint stating that
the execution time must be inferior to 7 hours by day of the selected period. The
SLA manager selects another service in the services cluster that is able to meet
user requirements. The EOLI-SA is in the scenario 2; it is compatible with user
expectations but the SLO 3 of its SLA is breached, the availability is inferior to
92%. A new SLA is negotiated between the service user and the provider, it is
illustrated in Table 5.

5 Related Work

Adaptation to failures and SLA violations has received attention [1,8,19,24].
However, the influence of context on SLA adaptation has not been studied
in depth. Analyzing the impact of context variations on software behavior is
a problem outlined in various other areas such as computer human interac-
tion [5], pervasive computing [18,30] and autonomic systems [2,24]. Context-
sensitivity is usually defined as an application software system’s ability to sense
and analyze context from various sources. It lets application software take dif-
ferent actions adaptively in different contexts [18]. In response to these changes,
several adaptation strategies exist [4,12]. Among them, In et al. [8] outline
the problem caused by QoS of situation-aware applications. The relationships

Context-Driven Autonomic Adaptation of SLA 375

between changes of situations and resources required to support the desired level
of QoS is not clear. They solve this problem with a situation-aware middleware
able to predict all QoS requirements of the applications and to analyze tradeoff
relationships among the different QoS requirements. The resource availability
may be changed according to dynamically varying situations. Such changes in
QoS requirements and QoS constraint violations are identified by their middle-
ware that resolves conflicts by rescheduling resources for supporting high priority
missions. In contrast to this model, our proposal relies on an existing definition
of dependencies between context elements. Moreover, in the web service area, all
resources cannot be modified or rescheduled or are even out of the scope of the
service provider or the service user. Our model adapts SLA to context changes
and does not intervene on the context elements to comply to QoS requirements.
Tosic [26] proposes an alternative to custom-made SLA, the utilization of Web
Service Offerings which is supported by an infrastructure (WSOI) and a specific
language (WSOL) [25]. Each service is proposed with some classes of service
that differ in usage privileges, service priorities, response time guaranteed and
verbosity of response information. Their approach cuts off the negotiation prob-
lem between the service provider and the service user. However, such predefined
classes of service only allow a discrete variation of QoS offered to the service
user. Classes of services are predefined, limiting their number and therefore the
adaptation possibilities.

6 Conclusions and Future Work

The management of SLAs between an user and a provider in the context of web
services is essential to enable autonomy of web service executions. It allows an
automatic resolution of conflicts occuring after web service failures or updated
expectations of the user. The first advantage of our method is the reliance on
the identification of context elements and existing dependencies between these
context elements. The context and dependencies allow the SLA manager to an-
ticipate problems. The modifications of context elements are reported to the
SLA manager by the provider and the user before the service is executed by
the service user. Thus, the SLA manager is able to anticipate and adapt conse-
quently the existing SLA or establish a contract with a new provider. The second
advantage of our method is that the SLA manager tries to preserve the existing
contract between the service provider and the service user. Long term collabo-
rations between stakeholders are protected from the continuous switching over
existing services and new services are selected only when the current provider is
not able to meet the user expectations.

Future work consists of the definition of an appropriate language that en-
ables us to integrate context and dependencies elements in existing web services
architectures and technologies.

376 C. Herssens, S. Faulkner, and I.J. Jureta

References

1. Bianculli, D., Jurca, R., Binder, W., Ghezzi, C., Faltings, B.: Automated Dynamic
Maintenance of Composite Services Based on Service Reputation. In: Krämer, B.J.,
Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 449–455.
Springer, Heidelberg (2007)

2. Bradbury, J.S., Cordy, J.R., Dingel, J., Wermelinger, M.: A Survey of Self Manage-
ment in Dynamic Software Architecture Specification. In: Proc. ACM SIGSOFT
Worksh. Self-healing systems, pp. 28–33 (2004)

3. Cappiello, C., Comuzzi, M., Plebani, P.: On Automated Generation of Web Service
Level Agreements. In: Krogstie, J., Opdahl, A.L., Sindre, G. (eds.) CAiSE 2007
and WES 2007. LNCS, vol. 4495, pp. 264–278. Springer, Heidelberg (2007)

4. Cibrán, M.A., Verheecke, B., Vanderperren, W., Suvée, D., Jonckers, V.: Aspect-
oriented Programming for Dynamic Web Service Selection, Integration and Man-
agement. World Wide Web Journal 10(3), 211–242 (2007)

5. Dey, A.K., Salber, D., Abowd, G.D.: A conceptual framework and a toolkit for
supporting the rapid prototyping of context-aware applications. Human-Computer
Interaction 16(2-4), 97–166 (2001)

6. Fernandez Vilas, J., Pazos Arias, J., Fernandez Vilas, A.: High Availability with
Clusters of Web Services. In: Yu, J.X., Lin, X., Lu, H., Zhang, Y. (eds.) APWeb
2004. LNCS, vol. 3007, pp. 644–653. Springer, Heidelberg (2004)

7. Herssens, C., Jureta, I.J., Faulkner, S.: Dealing with Quality Tradeoffs during Ser-
vice Selection. In: ICAC 2008: IEEE Int. Conf. Autonomic Comput. (2008)

8. In, H.P., Kim, C., Yau, S.S.: Q-MAR: An Adaptive QoS Management Model for
Situation-Aware Middleware. In: Yang, L.T., Guo, M., Gao, G.R., Jha, N.K. (eds.)
EUC 2004. LNCS, vol. 3207, pp. 972–981. Springer, Heidelberg (2004)

9. Julien, C.: Adaptive Preference Specifications for Application Sessions. In: Dan,
A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp. 78–89. Springer,
Heidelberg (2006)

10. Kaminski, H., Perry, M.: SLA Automated Negotiation Manager for Computing
Services. In: CEC/EEE 2006: IEEE Int. Conf. E-Commerce Tech. (2006)

11. Ludwig, H., Keller, A., Dan, A., King, R.P., Franck, R.: Web Service Level Agree-
ment (WSLA) Language Specification. IBM Corporation (2003)

12. Lundesgaard, S.A., Lund, K., Eliassen, F.: Utilising Alternative Application Con-
figurations in Context- and QoS- Aware Mobile Middleware. In: Eliassen, F., Mon-
tresor, A. (eds.) DAIS 2006. LNCS, vol. 4025, pp. 228–241. Springer, Heidelberg
(2006)

13. Maamar, Z., Mostefaoui, S.K., Yahyaoui, H.: Toward an agent-based and context-
oriented approach for Web services composition. IEEE Trans. Knowl. and Data
Eng. 17(5), 686–697 (2005)

14. Maximilien, M.E., Singh, M.P.: Toward Autonomic Web Services Trust and Selec-
tion. In: ICSOC 2004: Int. Conf. Service Oriented Comput. (2004)

15. Menascé, D.A.: QoS Issues in Web Services. IEEE Internet Computing 6(6), 72–75
(2002)

16. Muldoon, C., OHare, G., Phelan, D., Strahan, R., Collier, R.: Access: An agent
architecture for ubiquitous service delivery. In: Klusch, M., Omicini, A., Ossowski,
S., Laamanen, H. (eds.) CIA 2003. LNCS, vol. 2782, pp. 1–15. Springer, Heidelberg
(2003)

17. Myerson, J.: Use SLAs in a Web Services Context, Part 1: Guarantee your Web
Service with a SLA. IBM Research Report (2004),
http://www.ibm.com/developerworks/library/ws-sla/

http://www.ibm.com/developerworks/library/ws-sla/

Context-Driven Autonomic Adaptation of SLA 377

18. Nahrstedt, K., Dongyan, X., Wichadakul, D., Baochun, L.: QoS-aware middleware
for ubiquitous and heterogeneous environments. Comm. Mag., IEEE 19(11), 140–
148 (2001)

19. Netto, M., Bubendorfer, K., Buyya, R.: SLA-Based Advance Reservations with
Flexible and Adaptive Time QoS Parameters. In: Krämer, B.J., Lin, K.-J.,
Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 119–131. Springer, Hei-
delberg (2007)

20. Papazoglou, M.P., Georgakopoulos, D.: Introduction. Comm. ACM 46(10), 24–28
(2003)

21. Qiu, L., Chang, L., Lin, F., Shi, Z.: Context optimization of AI planning for se-
mantic Web services composition. Service Oriented Comput. and Applications 1(2),
117–128 (2007)

22. Sahai, A., Machiraju, V., Sayal, M., van Moorsel, A.P.A., Casati, F.: Automated
SLA Monitoring for Web Services. In: Feridun, M., Kropf, P.G., Babin, G. (eds.)
DSOM 2002. LNCS, vol. 2506, pp. 28–41. Springer, Heidelberg (2002)

23. Sahai, A., Durante, A., Machiraju, V.: Towards Automated SLA Management for
Web Services. Research Report HPL-2001-310 (R.1), Hewlett-Packard Laboratories
Palo Alto, July 2002 (2002),
http://www.hpl.hp.com/techreports/2001/HPL-2001-310R1.pdf

24. Skorin-Kapov, L., Matijasevic, M.: Dynamic QoS Negotiation and Adaptation for
Networked Virtual Reality Services. In: WOWMOM 2005: IEEE Int. Symp. World
of Wireless Mobile and Multimedia Networks, pp. 344–351 (2005)

25. Tosic, V., Pagurek, B., Patel, K.: WSOL - A Language for the Formal Specification
of Classes of Service for Web Services. In: ICWS 2003, IEEE Int. Conf. Web Serv.
(2003)

26. Tosic, V.: Service offerings for xml web services and their management applications.
PhD thesis (2004)

27. Walsh, A.E. (ed.): UDDI, SOAP, and WSDL: The Web Services Specification
Reference Book. Prentice Hall Professional Technical Reference, Englewood Cliffs
(2002)

28. Wang, C., Wang, G., Wang, H., Santiago, R.: Quality of Service (QoS) Contract
Specification, Establishment, and Monitoring for Service Level Management. J.
Object Tech. (2007)

29. Yan, J., Kowalczyk, R., Lin, J., Chhetri, M.B., Goh, S.K., Zhang, J.: Autonomous
Service Level Agreement Negotiation for Service Composition Provision. Future
Generation Computer Systems 23, 748–759 (2007)

30. Yau, S.S., Karim, F., Wang, Y., Wang, B., Gupta, S.K.S.: Reconfigurable Context-
Sensitive Middleware for Pervasive Computing. Pervasive Comput. 1(3), 23–30
(2002)

31. Zeng, L., Benatallah, B., Ngu, A.H., Dumas, M., Kalagnanam, J., Chang, H.: QoS-
Aware Middleware for Web Services Composition. IEEE Trans. Softw. Eng. 30(5),
311–327 (2004)

http://www.hpl.hp.com/techreports/2001/HPL-2001-310R1.pdf

Determining QoS of WS-BPEL Compositions

Debdoot Mukherjee1, Pankaj Jalote2, and Mangala Gowri Nanda1

1 IBM India Research Lab, New Delhi
{debdmukh,mgowri}@in.ibm.com

2 Indian Institute of Technology, Delhi
jalote@cse.iitd.ac.in

Abstract. With a large number of web services offering the same func-
tionality, the Quality of Service (QoS) rendered by a web service becomes
a key differentiator. WS-BPEL has emerged as the de facto industry stan-
dard for composing web services. Thus, determining the QoS of a com-
posite web service expressed in BPEL can be extremely beneficial. While
there has been much work on QoS computation of structured workflows,
there exists no tool to ascertain QoS for BPEL processes, which are se-
mantically richer than conventional workflows. We propose a model for
estimating three key QoS parameters - Response Time, Cost and Relia-
bility - of an executable BPEL process from the QoS information of its
partner services and certain control flow parameters. We have built a tool
to compute QoS of a WS-BPEL process that accounts for most workflow
patterns that may be expressed by standard WS-BPEL. Another feature
of our QoS approach and the tool is that it allows a designer to explore
the impact on QoS of using different software fault tolerance techniques
like Recovery blocks, N-version programming etc., thereby provisioning
QoS computation of mission critical applications that may employ these
techniques to achieve high reliability and/or performance.

Keywords:Quality of Service, composite web services, workflows, BPEL.

1 Introduction

Services Oriented Architecture aims to provide infrastructure for a marketplace
wherein more services will be produced by composing various web services rather
than coding programs from scratch. As in any competitive market, where a
number of offerings are available for the same functionality, Quality of Service
is slated to be the key differentiator. Knowing the QoS of the web service be-
ing composed is extremely crucial during the process of service orchestration
(binding concrete web services to tasks in the workflow). The integrator of the
WS-composition has to judiciously choose every web service that he binds to the
composition in order to attain a high level of QoS and meet his Service Level
Agreement(SLA) requirements. A tool that can estimate the QoS of the resul-
tant WS-composition, given the values of QoS parameters for constituent web
services will come in most handy for the integrator. This paper aims to provide
such a framework for QoS determination in WS-BPEL [1] processes.

A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, pp. 378–393, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Determining QoS of WS-BPEL Compositions 379

Business Process Execution Language (BPEL) has emerged as the de-facto
standard for representation of industrial workflows. BPEL has been proven to
be more expressive than traditional workflow modeling languages [2] - most of
which support only block structured flow constructs. Some of the key features
of BPEL that distinguish it from other workflow languages are: (i) Synchroniza-
tion links and the transition and join conditions that one can impose on these
links, (ii) Fault handlers and compensation handlers to support fault handling
and backward recovery of long running transactions respectively, and (iii) Event
driven programming constructs like receive, pick and event handlers.

Despite BPEL emerging as the standard for web service composition, most of
the work on QoS of composite web services has so far focused on composition
through structured workflows [3,4]. As mentioned, BPEL is semantically more
powerful than workflow languages, hence QoS computation using conventional
workflows can handle only a small subset of BPEL programs. In this paper, we
determine Reliability, Response Time and Cost of any composition expressed in
standard WS-BPEL. The model also allows adding fault tolerant constructs like
N-version programming [5], Recovery block [6], Return the Fastest Response and
Deadline Mechanism to enhance the reliability and performance of the tasks in
the BPEL composition and then determining their impact on QoS. Although the
use of fault tolerant constructs in web services have been studied in literature
[7,8,9], there has been no research that quantifies the QoS improvement that
may be brought about by these constructs.

Outline of our Approach. For determining QoS, the BPEL file is parsed to
build an activity graph that consists of activities as nodes and captures the de-
pendencies between activities that arise from the control flow structure of the
BPEL process. All QoS computations happen at the level of a node in this graph.
The dependencies of an activity are tracked in order to determine the probability
with which the activity may start execution and also the time instant in a run of
the BPEL process when it is fired. These estimates about an activity alongwith
QoS estimates of its children help us to model its QoS. A recursive algorithm
runs through the activity graph computing QoS parameters at each node and
recombining these values to arrive at reliability, response time and cost for the
overall WS-BPEL process. The entire approach has been implemented in a tool
that takes as input a BPEL process and QoS of constituent web services and
computes QoS for the composition. In this paper, we illustrate the approach
by applying it to an E-Governance application that models the passport office
workflow. Our tool also offers the flexibility to replace an invocation of a web
service by a more robust invocation of a set of web services tied via fault tolerant
constructs. QoS improvement achieved through such a design can then be pre-
cisely measured through rules defined specific to fault tolerant constructs that
aggregate QoS of constituent web services. The major contributions of the paper
include providing a QoS determination framework for WS-BPEL processes and
provisioning an environment where integrators of composite web services can try
out fault tolerant designs and gauge QoS of such processes at design time.

380 D. Mukherjee, P. Jalote, and M.G. Nanda

2 WS-BPEL (Business Process Execution Language)

WS-BPEL lays down a grammar for capturing the behavior of a business process
based on interactions between the process and its partner processes. The root
element of any WS-BPEL file is 〈process〉 - an element that outlines the scope
of the business process and encloses declarations for all partner links, variables,
handlers and an activity(this activity may in turn contain other activities). An
activity can be of two types: basic or structured.

Basic activities either describe interactions with other partners or model prim-
itive steps in the process. Basic activities include - 〈invoke〉 to call operations;
〈receive〉 and 〈reply〉 to accept and respond to inbound messages respectively;
〈assign〉 used to carry out updates on variables; 〈wait〉 to introduce delays;
〈exit〉 to immediately end the business process; 〈throw〉 and 〈rethrow〉 to signal
internal faults; and 〈empty〉 to do nothing.

Structured activities encode control-flow logic and can have other activities
nested in them. WS-BPEL enumerates seven different structured activities. A
〈sequence〉 contains one or more activities that are performed in the order in
which they appear within the 〈sequence〉 element. A 〈flow〉 provisions execution
of activities concurrently and also allows for synchronization between the activ-
ities contained in it through the notion of links. An 〈if〉 consists of one or more
conditional branches defined by the 〈if〉 and optional 〈elseif〉 elements, followed
by an optional 〈else〉 element. A 〈pick〉 waits for the occurrence of exactly one
event from a set of events and executes the activity contained within that event.
The events can either be receipt of inbound messages (〈onMessage〉) or trig-
gering of timer based alarms (〈onAlarm〉). WS-BPEL 2.0 supports three forms
of loop constructs - 〈while〉, 〈repeatUntil〉 (both checked by truth value of the
〈condition〉 set in them) and 〈forEach〉 (controlled by an implicit index variable
that is initialized to 〈startCounterV alue〉 and ends in 〈finalCounterV alue〉).

WS-BPEL’s notion of a 〈scope〉 offers the ability to specify a behavioral con-
text within which an activity may execute. A scope allows definition of variables,
partner links, message exchanges and correlation sets that are visible only within
the scope. Event handlers, fault handlers, a compensation handler, and a termi-
nation handler may also be attached to a scope.

3 A Running Example - Passport Application Service

We present an example of a passport office workflow implemented with the help
of WS-BPEL to elucidate the key concepts throughout this paper. The composite
web service for the passport workflow calls upon operations in external web
services to verify parameters such as age and date of birth whose validation is
required for issuing a passport. Age may be verified by either an education board
or a municipal office. After verification of age and address, one may proceed to
issuing a passport only if the bank payment has been made by the applicant.

A part of the BPEL process is shown graphically in Figure 1. The synchro-
nization links named X, Y and Z and the 〈transitionCondition〉s specified on

Determining QoS of WS-BPEL Compositions 381

< f l o w >

E d u c a t i o n B o a r d

 D O B V e r i f y

< i n v o k e >

< l i n k n a m e = " X " >

< t r a n s i t i o n C o n d i t i o n >
v e r i f i e d = t r u e

< i f >

< c o n d i t i o n > $ B a n k P a y m e n t = " P a i d "

< i n v o k e >
P a s s p o r t O f f i c e

M a k e P a s s p o r t

< j o i n C o n d i t i o n > ($ X o r $ Y) a n d $ Z

< l i n k n a m e = " Y " >

M u n i c i p a l B o a r d

 D O B V e r i f y

< i n v o k e >

< t r a n s i t i o n C o n d i t i o n >
v e r i f i e d = t r u e

M u n i c i p a l B o a r d

 D O B V e r i f y

< i n v o k e >

< t r a n s i t i o n C o n d i t i o n >
v e r i f i e d = t r u e

< l i n k n a m e = " Z " >

< f l o w >

< i n v o k e >

< i n v o k e >

< i n v o k e >

< i f >

P a r e n t - C h i l d

D e p e n d e n c y

A c t i v i t y G r a p h o f
P a s s p o r t O f f i c e B P E L

< i n v o k e >

< p r o c e s s >

Fig. 1. Passport Office BPEL Process

them are used to ensure that the web service to issue passport may be started
only if the furnished documents have been successfully validated. The boolean
expression on the links in the 〈joinCondition〉 at the invoke for passport issue
web service examines whether at least one age-proof is valid and the given ad-
dress proof has been verified. Our QoS model will require as input reliability,
time and cost for each of the four constituent web services and the probabilities
of success of each of the transition conditions and the if condition.

4 Determining QoS

Our QoS model estimates reliability, response time and cost for a WS-BPEL
process and is capable of dealing with the complex graph-like control flow struc-
tures, event driven programming constructs and fault handling mechanisms that
may be present in it. Since activities in WS-BPEL may be heavily intertwined
with synchronization links, one cannot perform reductions analogous to those
proposed in [3] and derive QoS of a block by simply aggregating the QoS of its
constituents. In order to infer QoS of an activity we track all the dependencies
that the activity may have and obtain their QoS. An activity A is said to be
control dependent on another activity B, if A may only start execution after
the completion of B. In WS-BPEL, a control dependency of an activity A may
be another activity B if B is either the source of an incoming link to A or B
precedes A in a sequence.

The model captures the three key QoS parameters addressed by it in the
following way:

– Reliability of a BPEL process is calculated as the probability that the process
scope will successfully complete execution.

382 D. Mukherjee, P. Jalote, and M.G. Nanda

– Response Time is a random variable characterized by values for mean and
standard deviation representing the expected time taken for completion of
the process.

– Cost of a BPEL composition is calculated as the aggregate of expected costs
of all activities contained in it, assuming that each web service invocation
incurs some fixed cost.

Inputs to the Model. Apart from the values of reliability, response time and
cost for all web service invocations of the BPEL process, the model also assumes
certain parameters that characterize the control flow of the business process to
be available as inputs. These include the probability of selecting branches or
events in if and pick activities respectively, the average number of iterations in
loops and for each catch or catchAll block the fraction of failures of its associated
scope that it successfully intercepts. Average waiting times for all 〈receive〉 ac-
tivities (that are not start activities) and all 〈onMessage〉 events that are used
to intercept inbound messages to the business process are required by the model.
All of these attributes can be determined from the execution log of the business
process.

4.1 Overall Approach

All computations in our model occur at the level of an activity or a scope or
a handler, which are various units of encapsulation of process logic in WS-
BPEL. The BPEL workflow is represented as an activity graph where the activi-
ties/scopes/handlers are represented by nodes. A node, X , in the BPEL process
is annotated by: (a) its child nodes, i.e., activities that are directly contained
by X (b) its control dependencies. Additionally, nodes for invoke activities and
scopes are annotated with catch blocks, fault handlers, event handlers and com-
pensation handlers that they may be associated with. The node corresponding
to the 〈process〉 scope forms the root node of this activity graph. Figure 1 shows
the activity graph obtained out of the passport office BPEL process.

Basic Elements of the Model. QoS computation of a BPEL process requires
that we compute for each node X in this graph - (a) P (SX): Probability that
X successfully completes execution in a single run of the process, (b) ETX :
Expected end time or the time of completion of X measured relative to the start
of the process, (c) CostX : Sum of the expected costs of all its child nodes. These
three parameters for the root node of the activity graph give reliability, response
time and cost respectively for the WS-BPEL composition.

Successful completion of a node encompasses the corresponding activity /
scope / handler delivering its desired functionality to the effect that it measures
upto the expectations of all other nodes that might be dependent on it. In deter-
mining P (SX) of a node X , we make use of P (startX) which is the probability
that the activity may start execution in a state that is semantically in accordance
with one which is expected at that point. P (startX) abstracts all effects that
the dependencies of a node X may have on P (SX). The computation of P (SX)
may involve use of P (startX) and a suitable aggregation (separately defined for

Determining QoS of WS-BPEL Compositions 383

Table 1. Algorithm QoS Computation

Algorithm setQoS(X) : Set P (S), ET and Cost for a node X

for all Z such that Z is a dependency of X do
setQoS(Z)

end for
Compute P (startX), STX and PCX

for all Z such that Z is a child of X do
setQoS(Z)

end for
Compute P (SX), ETX and CostX according to rules specific to Type of X.

each activity type) of P (S) of all activities / scopes / handlers contained in X .
Response time computation involves obtaining for each activity their start and
end times of execution in some run of the business process. STX denotes the time
instant when all dependencies of X are complete and X is ready to start. The
end times of all nodes nested within X are estimated and suitably aggregated
with STX to obtain ETX . Cost is computed more on the lines of the reduction
based approach. PCX is the conditional probability that X will start execution
in an instance of the BPEL process given that the parent of X starts execution
in the same instance. CostX for a node X is given by the sum of costs of all its
child nodes relaxed by their PCs.

Algorithm Description. After the BPEL XML document has been parsed to
prepare the activity graph, we can proceed with QoS determination. Algorithm 1
presents the recursive structure of QoS computation followed for any node in our
activity graph. If we invoke the function setQoS() on the root node, all nodes
of the activity graph are traversed. P (S), ET and Cost are set in each of them
before we obtain these parameters for the root node and hence QoS of the BPEL
process. P (S), ET of all dependencies of X are required to compute parameters
P (startX), STX that help to abstract the effects of the dependencies of X in
the QoS computation of the children of X . The termination of Algorithm 1 is
guaranteed because well-formed WS-BPEL processes cannot have control cycles
formed with the help of links (See SA00072 in [1]).

4.2 Determining P (start), Start Time (ST) and PC

The methodologies to calculate P (startX), STX and PCX for any node X re-
main the same irrespective of the type of X whereas determination of P (SX),
ETX and CostX happen according to rules defined specific to each activity type
(See Section 4.3).

The computation of P (startX) requires the probability, P (joinConditionX =
true), that the join condition (explicit or implicit) attached to the node X eval-
uates to true. A join condition is a boolean expression on the incoming links
of a WS-BPEL activity and its status decides whether the activity can start
execution. A transition condition on a link is defined at its source and refers

384 D. Mukherjee, P. Jalote, and M.G. Nanda

to the condition that must hold good for the link to attain a true value. The
probability that a link Ai assumes a true value is dependent on the successful
completion of its source activity and its transition condition being evaluated to
true. In our model, P (transitionConditionAi = true) is obtained as an input.

P (Ai = true) = P (Ssource(Ai)).P (transitionConditionAi = true) (1)

Example: In our passport application example, the link X connects the invoke
activity for DOB Verify to that for Make Passport. Thus, P (X = true) or
simply P (X) may be computed as a product of P (SinvokeDobV erify

) and the
input probability for success of the transition condition.

If we have an AND in the boolean expression of the join condition, we consider
the intersection of events that the constituent links are true and in case of OR
we determine the union of those events. To compute the probability that the
join condition for an activity evaluates to true, P (joinConditionX = true), we
convert the boolean expression into a canonical Sum of Products (SOP) form
which is evaluated with the help of the standard law of probability for union of
events, assuming that the events P (Ai = true) for all links Ai are independent. It
may be noted that in this work we only carry out a control flow analysis on WS-
BPEL processes, if we track data flow too we can do away with the assumption
of links being independent and achieve more accurate QoS estimates.

Example: We determine the probability P ((X ∪ Y) ∩Z) for the join condition
at the Make Passport invoke after we compute values of P (X), P (Y) and P (Z).

A WS-BPEL activity, X , may start execution if the following conditions are
met.

– The parent activity of X has started execution which guarantees that the
control dependencies of the parent have completed execution.

– If X is a child of a 〈sequence〉, then the prior activity (if any) in the
〈sequence〉 has successfully completed execution.

– If X contains incoming synchronization links then its join condition (im-
plicit/explicit) has been evaluated to true.

Thus, in order to compute P (startX), we take a product of the following proba-
bilities, if they are applicable: (a) P (startparentX), (b) P (S) of predecessor in se-
quence, (c) P (joinConditionX = true). Note, that we consider P (startparentX)
only if X is one of the following - (i) first activity inside a sequence, (ii) activities
inside a flow that do not have incoming links (iii) activities in all branches of
if or pick (iv) activity inside a scope. The other children of a sequence / flow
are directly or indirectly dependent on these first activities, so their dependency
on their parent gets captured in our model. Loops are handled differently (See
Section 4.3), and thus the calculation of P (start) of a child activity of a loop
does not consider P (startloop).

Example: In case of the Make Passport WS invocation, we note that only
(a) and (c) are applicable and P (startinvokeMakeP assport

) is given by P (startif).
P ((X ∪ Y) ∩ Z).

Determining QoS of WS-BPEL Compositions 385

The start time (ST) for an activity is taken to be the maximum of the end
time of its predecessor in sequence, the expected end times of all the source
activities of its incoming links and the start time of its parent. For the activities
inside message based events in pick and the receive activities (that are not start
activities, i.e., createInstance = “no”), we also add their average waiting times
to their start times.

The cost model computes for each activity the probability that its starts
given its parent has already started. This probability, referred to as PC, is used
extensively in our model for aggregation of the costs of child activities in order
to estimate the expected cost of an activity.

PCX = P (startX |startparent(X))

=
P (startX)

P (startparent(X))
Since, P (startparent(X)|startX) = 1 (2)

4.3 Activity-Wise Rules for Determining P (S), ET and Cost

In this section, we detail our formulations to estimate P (S), ET and Cost for
every WS-BPEL activity. It may be noted that for any activity reliability mod-
eling must be performed before determination of time and cost may take place.

Basic Activities. All basic activities except invoke have zero costs associated
with them and are assumed to complete successfully and instantaneously when
they start. Hence, the probability of successful completion, P (S) of a basic ac-
tivity is equal to the probability that it gets to execute, P (start) and its end
time(ET) is equal to its start time(ST). Only, ET of a wait activity is computed
differently after adding the delay specified to its ST .
Invoke. Invoke activities denote the point of calling external web services. These
may be prone to failures and have an associated latency and cost. For each invoke
activity, the model expects as input the reliability (Rws), response time (Tws)
and cost (Cws) of the web service bound to it. Rws represents the conditional
probability Rws that an invocation to an external web service fails despite the
call being made with proper arguments. Rws and Tws incorporate failures and
latencies respectively that arise both at the service site or from the network.
Now, P (startinvoke) gives the probability that the invoke activity begins in a
consistent state with proper arguments available. Thus, we may write:

P (S′
invoke) = Rws × P (startinvoke) (3)

ET ′
invoke = STinvoke + Tws (4)

Costinvoke = Cws (5)

However, an invoke activity may have catch blocks and compensation handlers
attached to it and completion of an invoke activity would encompass their com-
pletion too. Thus, we may write the expression for P (S) and ET of an invoke
activity after accounting for the attached catch blocks and compensation handler
if there are any. QoS determination for handlers is discussed later in this section.

386 D. Mukherjee, P. Jalote, and M.G. Nanda

Structured Activities. QoS computation of structured activities require de-
termination of QoS parameters of their children. We briefly describe here the
rules for estimating P (S), ET and Cost for all structured activities. Table 2
lists the equations for QoS determination in structured activities.

Table 2. QoS of Structured Activities

Activity P (S) ET Cost

Sequence P (SlastChild) ETlastChild

�
i PCchildi × Costchildi

Flow
�

∀i P (Ssinki) Max∀i(ETsinki)
�

i PCchildi × Costchildi

If
�

i P (seli) × P (Sbri)
�

i P (seli) × ETbri

�
i P (seli) × PCbri × Costbri

Pick
�

i P (seli) × P (Sevti)
�

i P (seli) × ETevti

�
i P (seli) × PCevti × Costevti

Loop P (starti) × P (Schild)n STi + n × ETchild n × Costchild

Sequence. An activity nested inside a sequence can only start if the previous
activity in the sequence has been successful. Thus, if the ith child of sequence is
executing, then all child activities from the first to the (i− 1)th can be taken to
be complete. Therefore, we can model P (S) and end time of a sequence by that
of its last child. The expected cost of a sequence is simply a weighted sum of the
expected costs of all its child activities with their PCs being the weights.
Flow. A flow activity is deemed to complete only if all activities enclosed by it
are complete. However, since the synchronization links in effect model the control
flow of execution, it may be contended that the completion of all child activities
without any outgoing links would mark the completion of the flow. Therefore,
P (S) and end time for a flow activity may be modeled as an aggregation of that
of the sinks which are children with no outgoing links. Cost of a flow is modeled
exactly the same way as that of a sequence.

Example: The flow in the passport office workflow has only one sink namely
the if activity. Thus, both P (Sflow) and ETflow will be given by those for the
if activity.
If. An if activity is complete when the activity nested in the taken branch com-
pletes. It completes immediately if no condition evaluates to true and no else
branch is specified. All QoS parameters - P (S), ET and Cost, of an if activity
are calculated as weighted sums of the values of the same for the activities con-
tained in all its branches, the weights being the probability, P (seli),with which
a branch gets selected for execution. Note that in cost modeling, the costs of the
branch activities are relaxed by their PCs while aggregation.

Example: In the If activity in our example, P (Sif) is computed by taking a
weighted sum of that of the invoke for Make Passport and an empty activity
(P (Sempty) is always 1) assumed to be present in the non-existent else branch.
Pick. Pick activities are treated in a similar way as if activities; with probabil-
ities of selection of each event being taken as input.
Loops. QoS modeling for the activity inside a loop may be performed inde-
pendently without requiring QoS information of its parent activity or activities

Determining QoS of WS-BPEL Compositions 387

outside the loop. This is facilitated by the WS-BPEL stipulation (See SA00070
in [1]) that synchronization links cannot enter into repeatable constructs by
crossing their boundaries. The various iterations of the loop are assumed to be
independent and in effect the loop construct is treated as a number of copies
of the contained child activity running in sequence. In case of while and repea-
tUntil, the number of iterations, n, is obtained as an input to the model. In a
forEach activity, the number of iterations, n, is obtained by parsing the values
of 〈finalCounterV alue〉, 〈startCounterV alue〉 and the completion condition if
specified. The special case where the loop is rolled in parallel (the parallel at-
tribute being set to true) is handled by taking time taken by one iteration only
whilst calculating response time. Again, PC of the child activity of a loop will
always evaluate to 1 because it cannot have any dependencies, so there is no
scope of relaxation of the cost of the child of a loop.

Handlers. The handlers in WS-BPEL impact QoS of scopes and invoke activ-
ities to which they may be attached. For lack of space, we present here only the
QoS modeling for fault handlers. (Refer to [10] for a discussion on Compensation
Handlers and Event Handlers)

The probability that fault handlers start execution is dependent upon the rate
of faults thrown up by the web service invocation or scopes.

FaultRateX =

{
1−Rws if X is an invoke,
1− P (SscopeChild|startscope) if X is a scope

(6)

The model assumes as input, the fraction of faults caught by each catch block
FractionCapture, out of the total number of faults produced by its scope. Thus,
the probability that a catch block starts may be given by:

P (startcatchi) = FaultRateX × FractionCapture× P (startX) (7)
where X = scope/invoke

P (S), ET and Cost of a catch block are taken to be the same as that of the
activity nested in it. The fraction of faults removed FFR by all catch blocks in
a fault handler may be computed as:

FractionFaultRemoval(FFR) =
∑
∀i

(FractionCapturei × P (Scatchi)) (8)

After taking into account the fraction of faults removed, the improved probability
of the invoke / scope will stand as below:

P (S′′
X) = P (S′

X) + FaultRateX × FFR (9)

where, X may be invoke/scope.
Time and Cost of a fault handler (FH) may be given as:

TF H = Max∀i(FractionCapturei × FaultRate × (ETcatchi − STcatchi)) (10)

CostF H = FaultRate ×
�

∀i

FractionCapturei × CostcatchActivityi (11)

388 D. Mukherjee, P. Jalote, and M.G. Nanda

Scope. The following equations model QoS of a scope in presence of fault
handlers(FH), compensation handlers (CH) and event handlers (EH). Similar
equations may be written for invoke to incorporate the effects of attached han-
dlers.

P (Sscope) = P (S′′
scope × P (SCH)× P (SEH) (12)

ETscope = Max(ET ′
child + TFH , ETCH , ETEH) (13)

Costscope = Costchild + CostFH + CostCH + CostEH (14)

The above equations when applied to the 〈process〉 (that is nothing but a special
form of scope) will give the QoS of the composite web service written in BPEL.

Suppression of Join Failures. The entire exposition above assumes that a
bpel : joinFailure is thrown whenever a join condition is not satisfied. However,
if suppressJoinFailure attribute is set to yes, failure of a join condition results
in the activity being skipped and a false status being propagated on all its
outgoing links with no fault generation. Since a skipped activity is also deemed
to be complete, the expression for the probability of successful completion is
improved by the probability of the activity being skipped.

P (S ′) = P (joinCondition = true) × P (S) + (1 − P (joinCondition = true)) (15)

However, in the evaluation of P (link = true) (See Equation 1), the probability
of successful completion of the source will substituted by old P (S) and not P (S′)
because a failed status is propagated on each of the outgoing links of a skipped
activity.

5 Impact of Fault Tolerance on QoS Computation

During orchestration of a web service composition, the designer may find that all
web services available to perform some task do not meet reliability requirements
or show huge variations in their response times. In such cases, fault tolerant
constructs may be used to create dependable web services out of undependable
ones and attain the desired reliability and performance levels. Our QoS model
and the tool supports four conventional fault tolerance (FT) techniques - N-
version programming, Recovery Blocks, Return Fastest Response and Deadline
Mechanisms - and helps in QoS determination after application of these FT-
constructs. The first two constructs focus on reliability improvement and the
latter two seek to enhance performance. Again for lack of space, we only derive
expressions for QoS computation of the Deadline Mechanism construct in this
paper (Details of the other 3 constructs can be found in [10]). The following
discussion assumes for every task in the workflow we have a set of web services
(A1, A2, . . . , An), having diverse designs, for which QoS parameters - reliability
(R), response time (T) and cost (C) are known.

Deadline mechanism supports setting deadlines for completion of tasks and
provision forking off redundant services if a primary service does not complete

Determining QoS of WS-BPEL Compositions 389

within some specified length of time. In our model, the user sets a hard deadline,
HD, for completion of a task. Moreover, the designer specifies for each alternate
web service Ai, the time instant TFAi when it may be fired if no response is
received from services that have been running. In any invocation of a Deadline
Mechanism (DM) block, the service that returns first gets counted. For each
service in a DM block, we find the probability that it returns the first response
and use these probabilities to compute the reliability and time of a DM block.

RDM =
n∑

i=0

P (T ′
Ai

= Min{T ′
A1

, T ′
A2

, . . . , T ′
An
} and T ′

Ai
< HD)×RAi (16)

where, T ′
Ai

= TAi + TFAi

TDM = Min∀i{T ′
Ai
} (17)

Again, a service inside a DM block may start only if a successful response has
not been generated by other services till the point of its firing. Thus,

P (StartAi) = P (TFAi ≥ Min{T ′
A1

, T ′
A2

, . . . , T ′
An

, HD}) (18)

Cost of a DM block is a weighted sum of the costs of all services in it, the weights
being the P (Start) of the services, i.e.,

∑n
i=0 P (StartAi)× CAi .

6 Implementation

We have implemented our QoS model for WS-BPEL 2.0 processes in a stand-
alone software using Java 1.5. The tool accepts as input a BPEL source and
parses it to ask the user for the various control flow parameters (See Inputs to
the Model in Section 4) and the values for reliability, time and cost for each web
service invocation present in it. The tool outputs the three QoS parameters for
the overall process and also shows P (S), ET and Cost for every activity. For
improving QoS through fault tolerant constructs the user has to provide WSDLs
as well as QoS values of the redundant web services and the web services to be
used for voting and assertion checking. Figure 2 shows the block diagram of our
implementation and Figure 3 shows some of the user interfaces that are a part
of the tool.

7 Related Work

Cardoso’s thesis [3] is the seminal work in literature to propose a framework for
estimation of QoS in web service processes. He proposes Stochastic Workflow
Reduction (SWR) to arrive at QoS estimates for the overall workflow, provided
the QoS values for all tasks in the workflow are known. The SWR algorithm
repeatedly applies a reduction on various structured constructs until only one
atomic task remains. He introduces reduction rules for sequential, parallel, con-
ditional, loop and fault tolerant systems. However, there is a restrictive rider

390 D. Mukherjee, P. Jalote, and M.G. Nanda

 Use r
I n t e r f a c e

X M L P a r s e r W S D L P a r s e r

B P E L P a r s e r

A c t i v i t y G r a p h
 G e n e r a t i o n

D e p e n d e n c y
 M a n a g e r

B o o l e a n
C o n d i t i o n
 P a r s e r

S e r v i c e N o d e
 G e n e r a t i o n

N V P

R F R D M

R B

Re l iab i l i t y
 M o d e l e r

 R e s p o n s e
T i m e M o d e l e r

 Cos t
 M o d e l e r

R a n d o m
V a r i a b l e
S i m u l a t o r

 A c t i v i t y G r a p h
+ C o n t r o l F l o w
 P a r a m e t e r s

S e r v i c e N o d e s
+ Q o S v a l u e s

Q o S C a l c u l a t o r

E s t i m a t e d Q o S f o r
O v e r a l l P r o c e s s +
 A c t i v i t y W i s e Q o S

S o u r c e B P E L
 P ro j ec t F i l es

C o n t r o l F l o w
 P a r a m e t e r s

Q o S V a l u e s f o r
C o m p o n e n t W S

Fig. 2. Block Diagram of Implementation

Fig. 3. User Interfaces in QoS tool

added with most of the reduction rule-sets given above. For example, in the
sequential system the start task cannot be a split and the end task cannot be
a join. Cardoso’s model adapts from the reductions used in standard reliability
theory for computing reliability of series-parallel systems [11][12]. But the model
is not capable of handling complex systems such as the one shown in Figure 4(a)
that can neither be reduced to a series nor decomposed as a parallel system.

Determining QoS of WS-BPEL Compositions 391

X O R J o i n T a s k

X O R S p l i t T a s k

C o n d i t i o n a l T a s k s

S u c h a t r a n s i t i o n
i s n o t a l l o w e d

A

B

C E

D

(a) A S y s t e m t h a t i s n e i t h e r s e r i e s n o r p a r a l l e l (b) S y n c h r o n i z a t i o n w i t h l i n k s

Fig. 4. Limitations of Structured Workflows

Again, presence of goto-like transitions that extend from one structured con-
struct to another as shown in Figure 4(b) prevent application of the proposed
reductions.

Hwang et. al. [13] propose a probabilistic framework for QoS computation. They
extend Cardoso’s model to have each QoS parameter for a web service represented
by a discrete random variable having a certain probability mass function (PMF).
Canfora et al. [14] apply Cardoso’s QoS model with minor modifications in their
middleware that uses genetic algorithms for QoS aware composition and replan-
ning. Zeng et al. [4] model composite web services as state charts and put forward
aggregation functions to ascertainQoSof execution plans. Jaeger et al. [15] propose
aggregation of QoS dimensions on the workflow patterns listed in Van der Aalst’s
seminal work [16]. The approach is an elegant one but the authors do not explain
how to dig out such workflow patterns from a process an to carry out an imple-
mentation of the same. D’Ambrogio and Bocciarelli [17] propose a model driven
approach wherein a BPEL process is described by an UML model which is then
annotated with performance data to obtain a LQN (Layered Queueing Network)
model that may be solved to predict performance. Although the process of conver-
sion of models built according to the UML Profile into BPEL has been thoroughly
described in [18], the complex control flow offered by BPEL have not been exhaus-
tively mapped back onto the UML profile. However,BPEL to UML transformation
is an active research topic [19].

8 Conclusions

We have presented a comprehensive QoS determination model for WS-BPEL
processes. Our QoS calculator provides values for reliability, response time and
cost for each activity / scope / handler. WS-BPEL is capable of expressing ar-
bitrarily complex structures with the help of synchronization links between ac-
tivities and facilitates fault handling, event driven programming and backward
recovery through compensation handlers. Although QoS research in workflows
has gained importance, no QoS estimation technique exists in literature to the
best of our knowledge, that captures graph-like control flow structures or sup-
ports the kind of behavior that is rendered through WS-BPEL handlers. Our
QoS tool enables the designer to modify parts of the BPEL process workflow

392 D. Mukherjee, P. Jalote, and M.G. Nanda

(differently organize the control flow or add/remove fault handlers and com-
pensation handlers etc.), add fault tolerance constructs to it and check for QoS
improvement.

The limitations of the model are: (i) It does not support detection of mutual
exclusiveness of links at a join making estimation of P (start) less accurate in
face of mutually exclusive paths. (ii) It does not handle isolated scopes that pro-
vide control over concurrent access of shared resources. (iii) Forced termination
behavior is not captured by the model and it does not deal with termination
handlers. All of these issues lay scope for future work in the area.

References

1. OASIS WS-BPEL Technical Committee, Web Services Business Process Execution
Language Version 2.0 (2007)

2. Wohed, P., van der Aalst, W.M.P., Dumas, M., ter Hofstede, A.H.M.: Analysis of
Web Services Composition Languages: The Case of BPEL4WS. In: Proceedings of
the 22nd International Conference on Conceptual Modeling, ER (2003)

3. Jorge, A., Cardoso, S.: Quality of Service and Semantic Composition of Workflows,
Ph.D. Thesis, University of Georgia, Athens, Georgia (2002)

4. Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang, H.:
QoS-Aware Middleware for Web Services Composition. IEEE Transactions in Soft-
ware Engineering (2004)

5. Avizienis, A., Chen, L.: On the implementation of N-version programming for
software fault tolerance during execution. In: Proceedings of IEEE COMPSAC
(1977)

6. Randell, B.: System structure for software fault tolerance. In: Proceedings of the
international conference on Reliable software (1975)

7. Dobson, G.: Using WS-BPEL to Implement Software Fault Tolerance for Web
Services. In: Proceedings of the 32nd EUROMICRO Conference on Software En-
gineering and Advanced Applications, pp. 126–133 (2006)

8. Gorbenko, A., Kharchenko, V., Popov, P., Romanovsky, A., Boyarchuk, A.: De-
velopment of Dependable Web Services out of Undependable Web Components,
School of Computing Science, University of Newcastle (2004)

9. Looker, N.M., Xu, M.J.: Increasing Web Service Dependability Through Consensus
Voting. In: Computer Software and Applications Conference (2005)

10. Mukherjee, D.: QoS in WS-BPEL Processes, M.Tech. Thesis, Department of Com-
puter Science & Engineering, Indian Institute of Technology, Delhi (2008)

11. Grant Ireson, W., Coombs Jr., C.F., Moss, R.Y.: Handbook of Reliability Engi-
neering and Management. McGraw Hill, New York (1996)

12. Hoyland, A., Rausand, M.: System Reliability Theory: Models and Statistical
Methods. John Wiley and Sons, Chichester (1994)

13. Hwang, S.-Y., Wang, H., Tang, J., Srivastava, J.: A probabilistic approach to mod-
eling and estimating the QoS of web-services-based workflows. Journal of Informa-
tion Sciences (2007)

14. Canfora, G., Penta, M.D., Esposito, R., Villani, M.L.: An approach for QoS-aware
service composition based on genetic algorithms. In: Proceedings of the 2005 con-
ference on Genetic and evolutionary computation (2005)

Determining QoS of WS-BPEL Compositions 393

15. Jaeger, M.C., Rojec-Goldmann, G., Muhl, G.: QoS Aggregation for Web Service
Composition using Workflow Patterns. In: Proceedings of the Enterprise Distrib-
uted Object Computing Conference (2004)

16. Van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow Patterns. Journal of Distributed Parallel Databases (2003)

17. D’Ambrogio, A., Bocciarelli, P.: A model-driven approach to describe and predict
the performance of composite services. In: Proceedings of the 6th international
workshop on Software and performance (2007)

18. Amsden, J., Gardner, T., Griffin, C., Iyengar, S.: Draft UML 1.4 profile for auto-
mated business processes with a mapping to BPEL 1.0 (2004)

19. Reiter, T.: Transformation of Web Service Specification Languages into UML Ac-
tivity Diagrams, Diploma thesis, University of South Australia (2005)

An Initial Approach to Explaining SLA
Inconsistencies�

Carlos Müller, Antonio Ruiz-Cortés, and Manuel Resinas

Dpto. Lenguajes y Sistemas Informáticos
ETS. Ingenieŕıa Informática - Universidad de Sevilla (Spain - España)

41012 Sevilla (Spain - España)
{cmuller, aruiz, resinas}@us.es

Abstract. An SLA signed by all interested parties must be created care-
fully, avoiding contradictions between terms, because their terms could
carry penalties in case of failure. However, this consistency checking may
become a challenging task depending on the complexity of the agree-
ment. As a consequence, an automated way of checking the consistency
of an SLA document and returning the set of inconsistent terms of the
agreement would be very appealing from a practical point of view. For
instance, it enables the development of software tools that make the cre-
ation of correct SLAs and the consistency checking of imported SLAs
easier for users. In this paper, we present the problem of explaining WS-
Agreement inconsistencies as a constraint satisfaction problem (CSP),
and then we use a CSP solver together with an explanation engine to
check the consistency and return the inconsistent terms. Furthermore, a
proof-of-concept using Choco solver in conjunction with the Palm expla-
nation engine has been developed.

Keywords: Service Level Agreement, WS-Agreement, Consistency
Checking, Debugging, Quality of Service.

1 Introduction

SLAs consist of a set of terms that include information about functional features,
non-functional guarantees, compensation, termination terms and any other
terms with relevant information to the agreement. An agreement signed by all
interested parties should be redacted carefully because a failure to specify their
terms could carry penalties to the initiating or responding party. Therefore,
agreement terms should be specified in a consistent way, avoiding contradictions
between them. However, depending on the complexity of the agreement, this may
become a challenging task. For instance, in a scenario in which a provider offers
computing services to other organizations, an SLA could be agreed that includes
non-functional attributes such as: the availability -in percentage-, the mean time
� This work has been partially supported by the European Commission (FEDER),

Spanish Government under CICYT project Web-Factories (TIN2006-00472), and
project P07-TIC-2533 funded by the Andalusian local Government.

A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, pp. 394–406, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

An Initial Approach to Explaining SLA Inconsistencies 395

between two consecutive requests of the service (MTBR) -in seconds-, and the
efficiency. Assuming that: Availability ranges between [90..100] , MTBR ranges
between ∈ [5..60] and Efficiency = Availability/MTBR. If the SLA includes a
term obligating to guarantee Efficiency > 20, at first sight the SLA is consistent.
However the highest valid value for efficiency is 100/5=20, so this term cannot
be satisfied. Therefore, a consistency checker that automatically checks the SLA
for inconsistencies between its terms would be very appealing from a practical
point of view.

Furthermore, it is of interest not only to obtain an automated way of checking
the consistency of an SLA document, but also to return an explanation if the
document is inconsistent. This explanation is the set of inconsistent terms of the
agreement. So, in the previous scenario we would obtain as debugging informa-
tion that the inconsistent terms are: [(Efficiency > 20), (Availability ∈ [90..100]),
(MTBR ∈ [5..60]), (Efficiency = Availability/MTBR)], because they are incon-
sistent terms. This automated consistency checking enables the implementation
of a software tool which makes the creation of correct SLAs and the consistency
checking of imported SLAs easier for users.

Nevertheless, as far as we know, the consistency of SLAs has been taken for
granted by most authors. In this paper, we describe a mechanism to check and
explain SLAs specified with WS-Agreement [2], which is a proposed recommen-
dation of the Open Grid Forum (OGF) which provides a schema for defining
SLAs and a protocol for creating them. To this end, we map the terms of a
subset of the WS-Agreement document into a constraint satisfaction problem
(CSP). Then we use the CSP as an input for a CSP solver with an explanation
engine, which will return the set of inconsistent constraints. Finally, we trace
back the constraints to the original SLA terms in order to give useful debugging
information to users.

As a proof-of-concept, we have developed a prototype of our consistency
analyser using Choco solver [1] in conjunction with the Palm explanation en-
gine [3]. This prototype is available for testing at http://www.isa.us.es in the
tools section.

This paper is structured as follows. Section 2 presents some background on
constraint satisfaction problems and WS-Agreement. Section 3 details the sub-
set of WS-Agreement which is used to explain the SLA inconsistencies in 3.1
and its mapping to CSP in 3.2. Section 4 describes our process to explain the
WS-Agreement* iconsistencies. Section 5 shows our proof-of-concept. Section 6
reports on the related proposals. Finally, Section 7 details our conclusions and
future work.

2 Preliminaries

2.1 Constraint Satisfaction Problems

Constraint Satisfaction Problems [8] have been the object of research in Artificial
Intelligence over the last few decades. A Constraint Satisfaction Problem (CSP)

http://www.isa.us.es

396 C. Müller, A. Ruiz-Cortés, and M. Resinas

is defined as a set of variables, each ranging on a finite domain, and a set of
constraints restricting all the values that these variables can take simultaneously.
A solution to a CSP is an assignment of a value from its domain to every variable,
in such a way that all constraints are satisfied simultaneously. These are some
basic definitions of what a CSP is.

Definition 1 (CSP). A CSP is a three–tuple of the form (V, D, C) where V 	= ∅
is a finite set of variables, D 	= ∅ is a finite set of domains (one for each variable)
and C is a constraint defined on V .

Consider, for instance, the CSP: ({a, b}, {[0..2], [0..2]}, {a + b < 4})

Definition 2 (Solution). Let ψ be a CSP, a solution of ψ is whatever valid
assignment of all elements in V that satisfies C.

In the previous example, a possible solution is (2, 0) since it verifies that 2+0 < 4.

Definition 3 (Solution space). Let ψ be a CSP of the form (V, D, C), its
solution space denoted as sol(ψ) is made up of all its possible solutions. A CSP
is satisfiable if its solution space is not empty.

sol(ψ) = {S | ∀si · si ∈ S ⇒ C(si) = true}

In the previous example there are eight solutions. The only assignment that
does not satisfy a+b < 4 is (2, 2). Nevertheless, if we replace the constraint with
a + b < −1, then the CSP is not satisfiable.

In many real-life applications, if a CSP has no solution, we would like to know
which set of constraints are responsible for this situation. This can be done by
interpreting the CSP as an explanation problem.

Definition 4 (Explanation problem). Let ε be a CSP of the form (V, D, C)
with an empty solution space: sol(ε) = ∅. It is considered to be an explanation
problem if its objective is to find a set of constraints C′ ⊂ C that cannot be
satisfied.

Definition 5 (Explanations). Let ε be an explanation problem, the resulting
set of inconsistent constraints C′ are known as the explanations for the problem.
They are divided into two parts: a subset of the original set of constraints C′ ⊂ C
and a subset of decision constraints introduced so far in the search of solutions
(dc1, ..., dck).

As defined in [3], a contradiction explanation, also known as “nogood” [7], is a
subset of the constraints of the problem that, left alone, leads to a contradiction
(no feasible solution contains a nogood).

The previous CSP example, with the constraint replaced with a + b < −1, is
not satisfiable, and by interpreting it as an explanation problem the explanation

An Initial Approach to Explaining SLA Inconsistencies 397

engine should obtain as the set of inconsistent constraints: [(a + b < −1), (a >=
0), (b >= 0)].

2.2 WS-Agreement in a Nutshell

WS-Agreement specifies an XML-based language and a protocol for advertising
the capabilities and preferences of service providers, and creating agreements
based on agreement offers. The structure of an agreement in WS-Agreement
comprises:

– Name: it identifies the agreement and can be used for reference.
– Context: it includes information such as the name of the parties and their

roles as initiator or responder in the agreement. Additionally, it can include
other important information for the agreement.

– Terms: they are grouped by the following term compositors: ExactlyOne,
OneOrMore, or All. The two main types of terms are:
• Service terms : they provide service information by means of:

∗ Service description terms and service references, which includes infor-
mation to instantiate or identify the services and operations involved
in the agreement.

∗ Service properties, which includes the measurable properties that
are used in expressing guarantee terms. They consist of a set of vari-
ables whose values can be established inside the service description
term, and whose domain can be established by the metric attribute
pointing to an external XML document.

• Guarantee terms : they describe the service level objectives (SLO) agreed
by a specific obligated party, either using a free-form element or using a
key performance indicator. It also includes the scope of the term (e.g. if it
applies to a certain operation of a service or the whole service itself), and
a qualifying condition that specifies the validity condition under which
the term is applied.

Figure 1 depicts an example of a WS-Agreement between a computing services
provider and a consumer. It defines several service properties whose domain is
specified in an external XML document (depicted in Figure 2). Note that other
XML documents, such as an XML Schema definition, could have been used
instead. The service properties defined in the WS-Agreement document of Figure
1 are the following ones:

– the availability -integer form 1 to 100-
– the mean time between two consecutive requests of the service (MTBR) -

integer greater than 1-
– the mean time to response (MTTR) -integer greater than 1-
– the initial cost for the service (InitCost) -integer greater than 1-
– the final cost for the service (Cost) -integer greater than 1-

398 C. Müller, A. Ruiz-Cortés, and M. Resinas

– the increase of the cost if the MTBR ¡ 10 (ExtraMTBRCost) -integer greater
than 1-

– the increase of the cost if the MTTR ¡ 05 (ExtraMTTRCost) -integer greater
than 1-

We have extracted the following information from the SLA:

– MTBR ∈ [5..60].
– MTTR ∈ [1..10].
– If MTBR ¿= 10 Then Availability ∈ [90..100].
– If MTBR ¡ 10 Then Availability ∈ [95..100].
– Cost = InitCost + ExtraMTBRCost + ExtraMTTRCost.
– If MTBR ¡ 10 Then ExtraMTBRCost = 15.
– If MTTR ¡ 05 Then ExtraMTTRCost = 15.
– If MTBR ¿= 10 and MTTR ¿= 05 Then ExtraMTBRCost = 0 and Ex-

traMTTRCost = 0.

3 Mapping WS-Agreement onto CSP

3.1 WS-Agreement* as a Subset of WS-Agreement

Due to theflexibility andextensibility ofWS-Agreement,we focus in this paper ona
subset of WS-Agreement that is a bit less expressive than WS-Agreement, but still
useful for our purpose. The subset of WS-Agreement is called WS-Agreement*. A
WS-Agreement* document (α) is composed of the following elements:

– Service properties must define all variables that are used in the guarantee
terms. In addition, attribute metric of the variables is mandatory. This
attribute must point to another XML document or schema that provides
the data type and a general range of values (δ) for each service property.
Figure 2 shows an example of an ad-hoc XML document that includes the
mentioned information for service properties of the example of Figure 1,
although other XML documents could be used. XML node Location (λυ) of
each variable establishes the specific XML node inside the service description
term where it is defined the value for such variable (value(λυ)).

– Terms (T) can be composed using the three term compositors defined in
WS-Agreement: All (�), ExactlyOne (⊗), and OneOrMore (⊕).

– Service description terms can be included but only to impose specific value
definitions for each variable (υ) of service properties. Other service descrip-
tion terms could be added but they are ignored when checking the SLA
consistency.

– Guarantee terms (γ) can be included. Both qualifying condition (κ) and
the SLOs (σ) must be defined as constraints on the variables defined in the
service properties, and only to those variables (i.e. κ ∈ C and σ ∈ C). The
scope of a guarantee term cannot be established, but all guarantee terms
apply to the whole service.

An Initial Approach to Explaining SLA Inconsistencies 399

<Agreement ’’id=exampleScenario’’>
<Context> ... </...>
<All>

<ServiceDescriptionTerm Name=’’ComputingService’’>
<...>

... </...>
<InitCost> 20 </...>
... </...>

</...>
</ServiceDescriptionTerm>
<ServiceProperties>

...<Variable name=’’Availability’’ metric=’’metricXML:Availability’’>
<Location> \\Availability </Location>

</Variable>
<Variable name=’’MTBR’’ metric=’’metricXML:MTBR’’>

<Location> \\MTBR </Location>
</Variable>
<Variable name=’’MTTR’’ metric=’’metricXML:MTTR’’>

<Location> \\MTTR </Location>
</Variable>
<Variable name=’’InitCost’’ metric=’’metricXML:InitCost’’>

<Location> \\InitCost </Location>
</Variable>
<Variable name=’’Cost’’ metric=’’metricXML:Cost’’>

<Location> \\Cost </Location>
</Variable>

<Variable name=’’ExtraMTBRCost’’ metric=’’metricXML:ExtraMTBRCost’’>
<Location> \\ExtraMTBRCost </Location>

</Variable>

<Variable name=’’ExtraMTTRCost’’ metric=’’metricXML:ExtraMTTRCost’’>
<Location> \\ExtraMTTRCost </Location>

</Variable>...
</ServiceProperties>
<GuaranteeTerm Name=’’MTBRDomain’’>

<SLO> MTBR >= 5 and MTBR <= 60 </...>
</GuaranteeTerm>
<GuaranteeTerm Name=’’MTTRDomain’’>

<SLO> MTTR >= 1 and MTTR <= 10 </...>
</GuaranteeTerm>
<GuaranteeTerm Name=’’CostDefinition’’>

<SLO> Cost = InitCost + ExtraMTBRCost + ExtraMTTRCost </...>
</GuaranteeTerm>
<ExactlyOne>

<GuaranteeTerm Name=’’LowerAvailabilityDomain’’>
<QualifyingCondition> MTBR >= 10 </...>
<SLO> Availability >= 90 and Availability <= 100 </...>

</GuaranteeTerm>
<GuaranteeTerm Name=’’HigherAvailabilityDomain’’>

<QualifyingCondition> MTBR < 10 </...>
<SLO> Availability >= 95 and Availability <= 100 </...>

</GuaranteeTerm>
</ExactlyOne>
<OneOrMore>

<GuaranteeTerm Name=’’MTBRIncrement’’>
<QualifyingCondition> MTBR < 10 </...>
<SLO> ExtraMTBRCost = 15 </...>

</GuaranteeTerm>
<GuaranteeTerm Name=’’MTTRIncrement’’>

<QualifyingCondition> MTTR < 05 </...>
<SLO> ExtraMTTRCost = 15 </...>

</GuaranteeTerm>
<GuaranteeTerm Name=’’CheaperCost’’>

<QualifyingCondition> MTBR >= 10 and MTTR >= 05 </...>
<SLO> ExtraMTBRCost = 0 and ExtraMTTRCost = 0 </...>

</GuaranteeTerm>
</OneOrMore>

</All>
</Agreement>

Fig. 1. Example of a WS-Agreement document with all kinds of compositors

400 C. Müller, A. Ruiz-Cortés, and M. Resinas

<metricXML>
<Availability type=’’integer’’ min=’’1’’ max=’’100’’/>
<MTBR type=’’integer’’ min=’’1’’ max=’’unbounded’’/>
<MTTR type=’’integer’’ min=’’1’’ max=’’unbounded’’/>
<InitCost type=’’integer’’ min=’’1’’ max=’’unbounded’’/>
<Cost type=’’integer’’ min=’’1’’ max=’’unbounded’’/>
<ExtraMTBRCost type=’’integer’’ min=’’1’’ max=’’unbounded’’/>
<ExtraMTTRCost type=’’integer’’ min=’’1’ max=’’unbounded’’/>

</metricXML>

Fig. 2. Ad-hoc XML document for the variable domains of Figure 1

Note that, although WS-Agreement* is not as expressive as WS-Agreement, it
does allow for the expression of complex agreements. For instance, the agreement
depicted in Figure 1 is compatible with WS-Agreement*.

Thus, we can formally define an agreement specified with WS-Agreement* as
follows:

Definition 6 (A WS-Agreement* document). A WS-Agreement* docu-
ment α is a set of variables υi, variable domains δi, and a set of terms T ,
including service description terms, guarantee terms and terms compositors as
follows:

α = (υi, . . . , υn, δi, . . . , δn, T1, . . . , Tm) , where Ti =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
λυ

γ
Ti1 � . . .� Tik

Ti1 ⊗ . . .⊗ Tik

Ti1 ⊕ . . .⊕ Tik

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
3.2 Mapping WS-Agreement* onto CSP

Figure 3 depicts the mapping (µ) of a WS-Agreement* document (α) onto an
equivalent CSP, (ψα). The variables (υ) defined inside the service properties are
the CSP variables; the variable domains (δ) included in the document specified
by the metric attribute are the CSP variable domains; and the constraints from
the service description terms (λυ), guarantee terms (γ) and term compositors
(� as a logic “AND”, ⊗ as logic “XOR”, and ⊕ as logic “OR”) are the CSP
constraints.

Thus, in general, our WS-Agreement* to CSP mapping can be defined as
follows:

Definition 7 (Mapping an WS-Agreement* to CSP). The mapping (µ :
α → ψ) of a WS-Agreement* document (α) to a CSP (ψ) can be defined as
follows:

µ(α) = µ (υ1, . . . , υn, δ1, . . . , δn, T1, . . . , Tm) =

= ({υ1, . . . , υn} , {δ1, . . . , δn} , {µT (T1, . . . , Tm)}) = ψα

An Initial Approach to Explaining SLA Inconsistencies 401

Fig. 3. Summary of WS-Agreement* to CSP mapping

where µT : T → C is a mapping function of terms into constraints defined as
follows:

µT (T) ≡

��������
�������

υ = λυ if T is a service description term (λυ)
σ if T is a guarantee term without qualifying condition (γσ)
κ ⇒ σ if T is a guarantee term with a qualifying condition (γσ,κ)�k

i=1 µT (Ti) if T is a composite term (T1 � . . . � Tk)�k
i=1 µT (Ti) ⇔ (

�k
j=1\j �=i ¬µT (Tj)) if T is a composite term (T1 ⊗ . . . ⊗ Tk)�k

i=1 µT (Ti) if T is a composite term (T1 ⊕ . . . ⊕ Tk)

��������
�������

Using this mapping, the ψα for the example of Figure 1 is mapped as follows:
ψα = ({ Availability, MTBR, MTTR, InitCost, Cost, ExtraMTBRCost, ExtraMTTRCost },

{ [1 . . . 100], [1 . . . ∞), [1 . . . ∞), [1 . . . ∞), [1 . . . ∞), [1 . . . ∞), [1 . . . ∞), },
{ InitCost = 20,

MTBR ≥ 5 and MTBR ≤ 60,

MTTR ≥ 1 and MTBR ≤ 10,

Cost = InitCost + ExtraMTBRCost + ExtraMTTRCost,

((MTBR ≥ 10) ⇒ (Availability ≥ 90 and Availability ≤ 100)) ⇔
⇔ ¬ ((MTBR ¡ 10) ⇒ (Availability ≥ 95 and Availability ≤ 100)),

(MTBR ¡ 10 ⇒ ExtraMTBRCost = 15) ∨
∨ (MTTR ¡ 5 ⇒ ExtraMTTRCost = 15) ∨
∨ ((MTBR ≥ 10 and MTTR ≥ 5) ⇒ ExtraMTBRCost = 0 and ExtraMTTRCost = 0) }

)

402 C. Müller, A. Ruiz-Cortés, and M. Resinas

The following table denotes constraints mapped from the example of Figure 1.

Table 1. Mapping example terms to CSP constraints

Example term (Ti) name Equivalent mapped (µT (Ti))
InitCost InitCost = 20

MTBRDomain MTBR ¿= 5 and MTBR ¡= 60
MTTRDomain MTTR ¿= 1 and MTTR ¡= 10
CostDefinition Cost = InitCost + ExtraMTBRCost + ExtraMTTRCost

LowerAvailabilityDomain (MTBR ≥ 10) ⇒ (Availability ≥ 90 and
Availability ≤ 100)

HigherAvailabilityDomain (MTBR ¡ 10) ⇒ (Availability ≥ 95 and
Availability ≤ 100)

MTBRIncrement (MTBR ¡ 10) ⇒ (ExtraMTBRCost = 15)
MTTRIncrement (MTTR ¡ 5) ⇒ (ExtraMTTRCost = 15)

CheaperCost (MTBR ≥ 10 and MTTR ≥ 5) ⇒
(ExtraMTBRCost = ExtraMTTRCost = 0)

ExactlyOne (LowerAvailabilityDomain ⇔ ¬ HigherAvailabilityDomain) ∧
(HigherAvailabilityDomain ⇔ ¬ LowerAvailabilityDomain)

OneOrMore MTBRIncrement ∨ MTTRIncrement ∨ CheaperCost
All InitCost ∧ MTBRDomain ∧ MTTRDomain ∧

∧ CostDefinition ∧ ExactlyOne ∧ OneOrMore

4 Checking and Explaining WS-Agreement*
Inconsistencies

Checking the consistency of WS-Agreement documents involves both syntactic
and semantic checking. The former involves checking the document against the
WS-Agreement XML Schema. The latter, however, is harder to check on and is
thus the focus of this paper.

Figure 4 depicts our consistency checking process. In this scenario, it is im-
posed by a human error, an MTBR value definition inside the service description
term with a value of 61. Thus, the ψα would not be satisfiable by the MTBR
domain definition. As depicted in Figure 4, we propose to use the agreement
specified with WS-Agreement* in conjunction with the XML document which
defines the variables metrics as the two inputs for a mapping component which
implements the mapping defined in section 3.2. Once the agreement is mapped
to a CSP, the explanation engine of the CSP explainer component will obtain
whether the SLA document is consistent or not. In the latter case, the com-
ponent sends to a tracing component the explanations for the problem. In this
case, the explanations for the problem are εMTBR: [MTBR = 61; MTBR ≥ 5
and MTBR ≤ 60]. The tracing component converts the explanations into the
equivalent inconsistent original terms in order to give useful information to users.
This is done by naming constraints mapped from an SLO as the name of the
guarantee term which includes it; and if the constraint was mapped from a value

An Initial Approach to Explaining SLA Inconsistencies 403

Fig. 4. WS-Agreement compliant process for explaining SLA inconsistencies

definition inside a service description term, we name it “SDT”, concatenate with
the name of the variable. Then, the previous explanation for MTBR would be
traced by us to the inconsistent term “SDTMTBR” constraint, showing that it is
the MTBR value assignment and the domain restriction of the “MTBRDomain”
guarantee term. The user should then grasp that the MTBR value definition is
inconsistent with the MTBR domain.

5 A Proof-of-Concept

We have developed a proof-of-concept with the Choco constraint solver [1] and
the Palm explanation engine [3]. This proof-of-concept receives two XML docu-
ments as input: the SLA WS-Agreement* document and the metric XML docu-
ment. After processing the inputs, our consistency checker returns whether the
document is consistent or not and its explanation in the latter case. We have
excluded the syntax consistency checking for simplicity.

The current Palm library included in Choco v.1.2.03 only gives complete sup-
port to integer variables and constraints with logical operators like ≥,≤, =, 	=,
. . .. Boolean operators and implications like if constraint1 then constraint2 and
assignments like var1 = var2 × var3 are excluded. Thus, to test our proof-of-
concept, we have simplified our previous SLA example as follows:

404 C. Müller, A. Ruiz-Cortés, and M. Resinas

– Variables remain equal, unlike in the previous example, because they are all
integer variables. But we choose only three of them: availability, cost and
increment, and we have added a new initial cost. The unbounded integer
domains must be bounded and we assign a maximum value of 10.000 by
default as Figure 5 depicts.

<metricXML>
<Availability type=’’integer’’ min=’’1’’ max=’’100’’/>
<Cost type=’’integer’’ min=’’1’’ max=’’10000’’/>
<Increment type=’’integer’’ min=’’1’’ max=’’10000’’/>
<InitCost type=’’integer’’ min=’’1’’ max=’’10000’’/>

</metricXML>

Fig. 5. Ad-hoc XML document for the variable domains of Figure 6

– We have removed the qualifying conditions from the guarantee terms be-
cause implications are not supported currently. As a consequence, the term
compositor elements OneOrMore and ExactlyOne do not make sense in the
simplified example, so an unique All term compositor element is included
in the new SLA. Finally we have included an inconsistency in the definition
of the value of the InitCost property. The new SLA is shown in Figure 6.

After mapping the example of Figure 6 to the equivalent CSP ψα, our proof-
of-concept processes the explanation problem and returns a minimal subset of
inconsistent constraints of the ψα. Then, it traces these constraints to the in-
consistent agreement terms. For this example, the proof-of-concept consistency
checker returns the following subset [CostLET15, CostDefinition, SDTInitCost],
because the InitCost definition inside the ServiceDescriptionTerm is incon-
sistent according to the CostDefinition and CostLET15 terms. If the user solves
the inconsistency of these terms, the checker would check again whether the new
agreement document is consistent or not and it would return the minimal subset
of inconsistent constraints in the second case.

6 Related Work

As far as we know, there are no proposals that deal with providing explanations
for the SLA inconsistencies of WS-Agreement documents. Previously, in [6], we
proposed mapping SLAs to CSPs, aimed at checking their consistency and con-
formance. However, in that paper no explanation about the inconsistency of the
terms was provided. In addition, [6] dealt with its own SLA specification instead
of using a standard format such as WS-Agreement.

Other similar work is [5], in which Oldham et al. create a description logic-
based ontology of WS-Agreement that could be used to check consistency and
conformance of SLAs using a description logic reasoner. However, the authors
do not detail what the consistency checking process is. Furthermore, they do not
support the explanations for the inconsistent terms.

An Initial Approach to Explaining SLA Inconsistencies 405

<Agreement ‘‘id=simplifiedExampleScenario’’>

<Context> ... </...>

<All>
<ServiceDescriptionTerm Name=’’ComputingService’’>

<...>
...
<InitCost> 20 </...>
<Availability> 95 </...>
<Increment> 15 </...>
...

<...>
</ServiceDescriptionTerm>

<ServiceProperties>
...

<Variable name=’’Availability’’ metric=’’metricXML:Availability’’>
<Location> \\Availability </Location>

</Variable>
<Variable name=’’Cost’’ metric=’’metricXML:Cost’’>

<Location> \\Cost </Location>
</Variable>
<Variable name=’’Increment’’ metric=’’metricXML:Increment’’>

<Location> \\Increment </Location>
</Variable>
<Variable name=’’InitCost’’ metric=’’metricXML:InitCost’’>

<Location> \\InitCost </Location>
</Variable>

...
</ServiceProperties>

<GuaranteeTerm Name=’’CostDefinition’’>
<SLO> Cost = InitCost + Increment </...>

</GuaranteeTerm>

<GuaranteeTerm Name=’’InitCostLET15’’>
<SLO> InitCost <= 15 </...>

</GuaranteeTerm>
<GuaranteeTerm Name=’’CostGET20’’>

<SLO> Cost >= 20 </...>
</GuaranteeTerm>

<GuaranteeTerm Name=’’CostLET30’’>
<SLO> Cost <= 30 </...>

</GuaranteeTerm>
</All>

</Agreement>

Fig. 6. Simplified example of a WS-Agreement* document for the proof-of-concept

7 Conclusions and Future Work

In this paper we have motivated the need for explaining inconsistencies of WS-
Agreement documents and we have presented a first approach to reach this
goal. More specifically, we present the problem of explaining WS-Agreement
inconsistencies as a constraint satisfaction problem (CSP), and then we use a
CSP solver together with an explanation engine to check the consistency and
return the inconsistent terms.

406 C. Müller, A. Ruiz-Cortés, and M. Resinas

To this end, we have defined WS-Agreement*, which is a subset of WS-
Agreement that limits the expressiveness of WS-Agreement, but still allows
defining complex SLAs such as the one depicted in Figure 1. Then, we have
detailed the mapping of WS-Agreement* to a CSP and we have described the
steps that involve the process of checking and explaining WS-Agreement incon-
sistencies. Finally, we have presented a proof-of-concept implementation that
uses the Choco solver and the Palm explanation engine to perform the explana-
tion of SLA inconsistences on a simple example.

In summary, the main contributions of this paper are the following:

1. we define a subset of WS-Agreement that can be useful for implementations
that do not require the full expressiveness of WS-Agreement;

2. we define a mapping of WS-Agreement* to CSPs that enables the use of
CSP solvers to check the consistency of SLAs;

3. we describe a CSP solver-independent process to check and explain incon-
sistencies of SLAs.

However, there are still some open issues that require further research: first,
extending the mapping to CSPs to full WS-Agreement; second, checking the
consistency of WS-Agreement with the temporal extension we detailed in [4],
and third, using the CSP solver to check not only the consistency, but also the
conformance of an agreement offer with an agreement template.

References

1. Choco constraint solver web site (2008), http://choco-solver.net/
2. OGF Grid Resource Allocation Agreement Protocol WG (GRAAP-WG). Web Ser-

vices Agreement Specification (WS-Agreement), v. gfd.107 (2007)
3. Jussien, N., Barichard, V.: The PaLM system: explanation-based constraint pro-

gramming. In: Proceedings of TRICS: Techniques foR Implementing Constraint
programming Systems, a post-conference workshop of CP 2000, Singapore, Septem-
ber 2000, pp. 118–133 (2000)

4. Müller, C., Mart́ın-Dı́az, O., Ruiz-Cortés, A., Resinas, M., Fernández, P.: Improving
Temporal-Awareness of WS-Agreement. In: Krämer, B.J., Lin, K.-J., Narasimhan,
P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 193–206. Springer, Heidelberg (2007)

5. Oldham, N., Verma, K., Sheth, A., Hakimpour, F.: Semantic WS-Agreement Partner
Selection. In: 15th International WWW Conf., pp. 697–706. ACM Press, New York
(2006)

6. Ruiz-Cortés, A., Mart́ın-Dı́az, O., Durán, A., Toro, M.: Improving the Automatic
Procurement of Web Services using Constraint Programming. Int. Journal on Co-
operative Information Systems 14(4) (2005)

7. Schiex, T., Verfaillie, G.: Nogood recording for static and dynamic constraint satis-
faction problems. In: Tools with Artificial Intelligence, TAI 1993. Proceedings, Fifth
International Conference, November 8-11, 1993, pp. 48–55 (1993)

8. Tsang, E.: Foundations of Constraint Satisfaction. Academic Press, London (1995)

http://choco-solver.net/

Ontology-Based Compatibility Checking for
Web Service Configuration Management

Qianhui Liang1 and Michael N. Huhns2

1School of Information Systems,
Singapore Management University, Singapore

2Department of Computer Science and Engineering,
University of South Carolina, USA

althealiang@smu.edu.sg,huhns@sc.edu

Abstract. Service-oriented systems are constructed using Web services
as first-class programmable units and subsystems and there have been
many successful applications of such systems. However, there is a major
unresolved problem with the software development and subsequent man-
agement of these applications and systems. Web service interfaces and
implementations may be developed and changed autonomously, which
makes traditional configuration management practices inadequate for
Web services. Checking the compatibility of these programmable units
turns out to be a difficult task. In this paper, we present a technique for
checking compatibility of Web service interfaces and implementations
based on categorizing domain ontology instances of service description
documents. This technique is capable of both assessing the compati-
bility and identifying incompatibility factors of service interfaces and
implementations. The design details of a system model for Web service
compatibility checking and the key operator for evaluating compatibility
within the model are discussed. We present simulation experiments and
analyze the results to show the effectiveness and performance variations
of our technique with different data source patterns.

Keywords: Web services compatibility, ontology, Web services configu-
ration management.

1 Introduction

As service engineering takes hold in large-scale intra- and inter-enterprise service-
oriented computing (SOC) settings, how to manage service configurations (or
differences) becomes a key enabling task for correct and effective use of dynamic
services. Service components, e.g., Web services, resemble traditional indepen-
dent software systems in being autonomous. However, they have an important
advantage over traditional systems: they are network discoverable and accessi-
ble via standardized protocols. Comparing service compatibility is the basis of

A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, pp. 407–421, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

408 Q. Liang and M.N. Huhns

configuration management for Web services, as it is the key to successful engi-
neering of the third generation of Web services, such as (1) forming a consensus
about each other’s behavioral differences and similarities, and (2) robust service
composition by self-organizing similar services into teams [1].

Configuration management practices in traditional software engineering
[2,3,5][13,14,15] are insufficient for Web services. One major reason is that the
autonomous development and deployment of services does not constrain the ser-
vice engineering and management activities within a tightly-coupled and closely
administered environment as is typically expected for traditional local compo-
nents or controlled distributed components. For example, in a service-oriented
environment, two very different service providers may independently evolve the
same service interface. They may also develop and change service implemen-
tations according to the evolved version of the interface. Given the fact that
changes to Web services are not performed by people that are bound by the
same organizational constraints, it is important to discover and maintain a con-
sistent mechanism to track the compatibility or incompatibility of the services.
Such a mechanism will have a major impact on the reuse of services and on main-
taining a consistent understanding of the evolutions made by different parties in
a holistic way.

In this paper, we first present a conceptual system model for service objects
to facilitate compatibility checking in a service-oriented environment. We then
present a technique that conforms to this model to be used for the compatibility
checking of Web service interfaces and implementations, which are possibly de-
veloped by different teams or completely independent providers. The technique
enables consistent Web service configuration management in an enterprise or
open service-oriented environment. This technique can be used to (1) retrieve
Web service interfaces or implementations that are compatible with a given ser-
vice object, and (2) identify distinct incompatibility factors of service interfaces
and implementations. The technique is based on a domain ontology instance
categorization tool, which categorizes terms from service description documents.
The technique defines several semantic rules, which are designed to be applied
to the term categorization results for assessing compatibility and identifying in-
compatibility factors of service objects. We present the experiments and results,
and demonstrate the effectiveness of our approach on checking compatibilities
of services.

The remainder of the paper is organized as follows: Section 2 is related work.
Section 3 describes the idea of compatibility checking of Web services and a con-
ceptual system model for organizing service objects and checking compatibility
of service objects within this model. Section 4 discusses the technical details of
an ontology instance categorization tool, presents the scheme of using ontology
categorization for service compatibility checking, and further elaborates how to
use the semantic results to distinguish various incompatibility factors. Section 5
illustrates the experiments and provides an analysis of the experimental results,
while Section 6 concludes the paper.

Ontology-Based Compatibility Checking for Web Service 409

2 Related Work

Automatic service discovery and selection is a key aspect for composing Web
services dynamically in SOC. Current approaches to automating discovery and
selection make use of only structural and functional aspects of the Web services.
We believe that behavioral selection of Web services should be used to provide
more precise results. Service behavior is difficult to specify prior to service ex-
ecution and instead is better described based on experience with the service
execution. In earlier work, we presented an approach to service selection and
maintenance-inspired by agile software development techniques-that is based on
behavioral queries specified as test cases. Behavior is evaluated through the
analysis of execution values of functional and non-functional parameters. The
tests can also be used to assess performance and reliability. Therefore, in addi-
tion to behavioral selection, our framework allowed for real-time evaluation of
non-functional quality-of-service parameters, scalability, and dynamism [4]. Our
work reported herein focuses on the compatibility issues of service evolution with
multiple providers.

Ontology studies for semantic Web services can be categorized as ontology
matching, ontology mapping, and ontology merging. Techniques and algorithms
have been proposed to match concepts among heterogeneous ontologies in a
tree-like structure or a graph-like structure [9,10,11]. A majority of the matching
techniques proposed are schema-based and discover similarities from linguistic or
(and) structural characterizations. Platforms and frameworks that provide an in-
tegrated environment to facilitate easy use of these matching techniques are also
reported. Our compatibility checking system relies on a probabilistic ontology
categorization technique. Similar to GLUE [12], the categorization technique is
also instance based. In contrast to GLUE, the aim of our ontology categorization
technique is to provide a strong evidence for Web service compatibility instead
of producing a merged ontology.

As the adoption rate of service-oriented computing and Web services continues
to grow, topics pertinent to service engineering are attracting increasing inter-
est. The materialized form of services is software products, which are required
to go through a number of general engineering activities. The bottom line of
service engineering, therefore, is a process similar to the Software Development
Life Cycle (SDLC), which consists of design, build, test, and maintainance. One
important aspect of the process is how to record the changes so that consis-
tency and compatibility is guaranteed for interactions between service users and
providers. A few industry papers present best practices in Web service versioning
[6,7]. Frank et al. [8] also present a proxy-based Web service hosting environ-
ment with routing points to handle requests of different versions. They have
separate versioning for service interfaces and service implementations. The aim
of our work on compatibility checking is to address the most basic issue of Web
service versioning and to lay the foundation for research on Web service-specific
versioning systems.

410 Q. Liang and M.N. Huhns

All the research issues studied in the above related work can be attributed
to one fact, i.e., unlike traditional software, services are published and shared
across the Web. As a result, the changes and evolution of service interfaces and
implementations are not controlled by a single authority. As more services that
serve the same purpose become available, improved versions of the services will
be an increasingly complex problem to solve. For example, two important and
open issues to be addressed for Web service versioning is how compatibility of
services can be determined in the presence of heterogeneous descriptions and
how versions of services can be constructed based on compatibility.

3 Web Service Compatibility and Versioning

In this section, we introduce our compatibility model of Web service interfaces
and implementations.

3.1 Web Service Compatibility Model

To study the compatibility of service interfaces and service implementations, we
propose a schema that models the following two categories of information, each
of which is represented as a class in the model:

– The classes of objects useful for compatibility checking
– The families that collect related objects.

Object classes include a selection of elements defined in WSDL and UDDI, i.e.,
businessService, operation, tModel, and categoryBag. The classes are de-
fined in the schema in Listing 1. Objects of these classes are referred to as service
objects. The first three classes all derive from a class of Versioned objects. We treat
compatibility of service interfaces and service implementations as two separate
but related issues. We also consider versioning of service operations. Therefore,
we use the above service objects in our model to differentiate levels of compati-
bility checking that may contribute to Web service configuration management.

Attributes of a class can be single-valued, such as release and time of the
Versioned class. Attributes can also be set-valued, such as iTypes of TModel
class. Compatible objects are linked together. The previous object and the next
object in the same link are pointed to by attributes of nextCompa and prevCompa
of a particular object. The number of trailing objects is recorded in tail.

The class of CheckingSystem represents the entire repository established for
the compatibility checking purpose, which contains all objects of all classes.
The attribute of portTypeRoots, tModelRoots, businessServiceRoots are the
roots of the linked compatible objects. It also has three Check constraints in
CheckingSystem. The first Check constraint specifies that each TModel object
must be categorized with one CategoryBag object. The second Check constraint
specifies that each TModel must have at least one PortType object defined in
it. The third Check constraint specifies that each object of BusinessService
object must implement at least one TModel object.

Ontology-Based Compatibility Checking for Web Service 411

Listing 1

{
Versioned: class (

release: Integer,
build: Integer,
time: TimeStamp)

NameOwner: class (
name: String,
owner: String)

Operation:
subclass of Versioned, NameOwner (
operation: XML,
nextCompa: InterfaceOperationType,//defined in WSDL20
prevCompa: InterfaceOperationType,
tail: int)

TModel:
subclass of Versioned, NameOwner (
tModel: XML,
cBags: set of CategrotyBag,
iTypes: set of InterfaceType,//defined in WSDL20
nextCompa: TModel,//defined in UDDI3
prevCompa: TModel,
tail: int)

CategoryBag:
subclass of NameOwner (
categoryBag: XML,
tModel: TModel)

BusinessService:
Subclass of Versioned, NameOwner (
bindingTModels: set of TModel,
nextCompa: BusinessService,//defined in UDDI3
prevCompa: BusinessService,
tail: int)

CheckingSystem: class (
operations: set of Operation,
tModels: set of TModel,
businessServices: set of BusinessService
categoryBags: set of CategoryBag
check

(for-all tm in tModels)
(there-exists b in categoryBags)

check
(for-all tm in tModels)
(there-exists i in iTypes)

check
(for-all bs in businessServices)
(there-exists tm in tModels))
}

412 Q. Liang and M.N. Huhns

3.2 System Model

We now describe the structure of our compatibility-checking system. Listing 2
defines the system model of the compatibility checking system. checkingSystem
is an instance of class CheckingSystem. It contains version families composed of
objects of class Operation, TModel, and BusinessService. We have used the
concept of version family when designing our compatibility-checking system. Our
purpose is to categorize the object space into a number of compatible groups. A
version family is a group of objects of the same class selected based on certain
properties [18]. These compatible objects (belonging to the version) are linked
together.

The system must be capable of refining the compatibility classification by
selection of version families. We use version selection rules for this purpose.
These rules operate on version families and select one or more members from
the families. In particular, the selection rules of compatibility checking return a
set selected from the compatible objects. These objects may or may not belong
to the same family, depending on the requirement of the checking task. Several
examples are given in Listing 2.

The select operation in Listing 2 outputs the latest tModel object in a
tModel version family. selectCompatibles operation outputs all tModel ob-
jects in a version family that are compatible with a given tModel object. The
incompatiblewith operator outputs 0 if the first operand is compatible with
the second operand. Otherwise, it outputs some positive number that identifies
incompatibility causes if the first operand is incompatible with the second. The
technique to implement the incompatiblewith operator is discussed in Section
4. selectCompatibleRoot finds the tModel root that has the largest number of
objects in its tail.

Listing 2

checkingSystem: system model from CheckingSystem (
operations = {"Root1_operations", "Root2_operations, }
tModels = { "Root1_tModels", "Root2_tModels", }
businessServices = {"Root1_businessServices", "Root2_businessServices", }
categoryBags = {"Finance", })

select tModel from f: family of TModel
in checkingSystem.tModels (
(for-all mf in f)

(tModel.release>=mf.release))
selectCompatibles set of tModel from f: family of TModel given tm class of TModel

in checkingSystem.tModels (
(for-all tModel)

(incompatiblewith(tModel,tm)=0)
selectCompatibleRoot tModel from selectedRoots: family of TModel

in checkingSystem.tModels (
(for-all root in selectedRoots)

(tModel.tail >= root.tail))

Ontology-Based Compatibility Checking for Web Service 413

4 Compatibility Checking by Ontology Categorization

In this section, we describe how the operator of incompatiblewith used in
selectCompatibles in Listing 2 is realized by (1) using an ontology catego-
rization technique to categorize important terms in the descriptions of Web
services, and (2) assessing service compatibility according to semantic rules
and the categorization results of terms. In Section 4.1, we first review the
ontology categorization technique that has been designed in our earlier work
[17].

4.1 Basics of Ontology Categorization

Web service information resources are documents that contain descriptive in-
formation about the semantics of Web services. We focus on semi-structured
documents, including WSDL and OWL-S documents, as sources for checking
their compatibility. We are interested in the portion of service descriptions that
carries semantics related to the domain and will be useful in checking service
compatibility. In WSDL documents, we use the names of service interfaces, op-
erations, input, output, and elements of input and output, and about implemen-
tation descriptions in terms of binding protocols. In OWL-S documents, we have
used ServiceProfile and ServiceGrounding, which we consider most relevant to
domain knowledge.

Terms are first extracted from the service descriptions. Next, pre-processing
is performed on the extracted terms. After that, the terms are used to establish
a probabilistic model for ontology instance categorization. The categorization
model is adapted from existing classification techniques found in the information
retrieval area. It consists of two parts: (1) SVMV-based and (2) co-occurrence-
based. Both parts of the model perform categorization based on the similarity
ranking of terms in an independent manner. Their results are then merged using
a simple voting scheme. The model is used to decode heterogeneous descrip-
tions continuously and enhance the categorization basis by learning new service
descriptions.

We have adapted SVMV, as a model of probabilistic text categorization,
to derive the probability that a description d is categorized into a category
c, i.e., p(c|d). We adapt SVMV by introducing relationship patterns that per-
tain to service descriptions. For example, we consider the relationship between
InterfaceOperationType and input, InterfaceOperationType and output,
and InterfaceType and Operation.

In co-occurrence analysis, a description document is represented by a ma-
trix of co-occurrence frequencies. We establish asymmetric links for each pair of
terms. A cluster function defines the term similarity weights by the combined
weight of both term tj and tk in document i and the inverse document fre-
quency. To perform co-occurrence analysis, the asymmetric co-occurrence analy-
sis function [17] is adapted for service descriptions. Our adaptation mainly con-
cerns the definition of similarity weights and the calculation of the weighting
factor.

414 Q. Liang and M.N. Huhns

4.2 Compatibility Checking

The incompatiblewith operator is evaluated by our system in the following way:
categorize the values of a number of selected key tags in the corresponding XML
constructs within the service descriptions and analyze the categorization results
according to semantic rules. The key tags are selected from the conceptual defin-
itions of services in a given upper service ontology, e.g., OWL-S. Table 1 lists all
the objects and their key tags. Please notice that this forms a hierarchy of rel-
evant tags for Operation, TModel, and BusinessService, which are consistent
with the hierarchy of the checking system model described in Section 3.

For Operation objects, operation names, input element names, and output
element names are the considered tags. For TModel objects, in addition to the
name itself, all operations referred to by the definition of this TModel shall
also be considered. For BusinessService objects, in addition to the name
of this BusinessService, all TModel objects that are referred to by this
BusinessService object are also included. We can see the tags are identified in
a recursive way.

Table 1. Objects and their Key Tags

ObjectClass KeyTags

Operation (Operation) name
Input element name(s) and types(s)
Output element name(s) and types(s)

TModel (TModel) name
Operations

BusinessService (BusinessService) name
TModels

We use the following two sets of recursive rules to check compatibility of two
objects of the same class using the ontology categorization tool summarized in
Section 4.1. A rule engine based on the semantic service description language
SWRL is used for implementing and executing the rules.

Rule set 1, which is used to deal with primary objects = {
Rule 1 : For a particular tag that is simple and single valued, (primary)

objects A and B that directly contain this tag are compatible bi-directionally
regarding this tag if and only if their corresponding values of that tag are cate-
gorized together.

Rule 2 : For a particular tag that is simple and multi-valued, (primary)
object B is compatible to (primary) object A regarding this tag if and only if
object B’s value set is a subset of object A’s value set, where both A and B
directly contain this tag.

Rule 3 : incompatiblewith on primary object B and primary object A is
evaluated to be 0 if and only if regarding all selected tags object B is compatible
with service A.}

Ontology-Based Compatibility Checking for Web Service 415

Rule set 2, which is used to deal with complex objects = {
Rule 4 : For a particular tag that is of simple type and single valued,

(complex) objects A and B that directly contain this tag are compatible bi-
directionally regarding this tag if and only if their corresponding values of that
tag are categorized together.

Rule 5 : For a particular tag that is of simple type and multi-valued,
(complex) object B is compatible to complex object A regarding this tag if and
only if object B’s value set is a subset of object A’s value set, where both A and
B directly contain this tag.

Rule 6 : incompatiblewith on complex object B and complex object A
is evaluated to be 0 if and only if (1) for each selected containing simple tag,
object B is compatible to object A regarding the tag, and (2) for each containing
complex tags that are present in both objects, incompatiblewith on object B and
object A is evaluated to be 0 and (3) for all selected containing complex tags,
the constituent object set of object B is a superset of the constituent object set
of object A.}

We refer to primary objects as objects defined in the checking system model
that do not contain other objects defined in the model. Complex objects are
objects defined in the checking system model that contain other objects defined
in the model. Referring to Table 1, objects of Operation are primary objects
and those of TModel and BusinessService are complex objects. In set 1, rule 1
is used to check the compatibility of each pair of simple single-valued attributes
that belongs to the two primary objects to be compared. Rule 2 is used to check
the compatibility of each pair of simple multivalued attributes that belong to
two primary objects to be compared. Rule 3 is used to determine if one primary
object is compatible with another primary object based on the result of rule 1
and rule 2.

In set 2, rule 4 is used to check the compatibility of each pair of simple
single-valued attributes that belongs to the two complex objects to be compared.
Rule 5 is used to check the compatibility of each pair of simple multi-valued
attributes that belongs to the two complex objects to be compared. Rule 6 is
used to determine if one complex object is compatible with another complex
object based on the result of rule 4 and rule 5. For complex object a to be
compatible with complex object b, all simple attributes of a must be compatible
with their counterparts in b and all its complex attributes must be compatible
with their counterpart in b or such complex attributes in a are not in existence in
b. The relationship compatible with is unidirectional. To give an example, let
us assume there are s1 and s2 both of BusinessService, and o1 and o2 both of
Operation in the checking system. If o1 constitutes s1 and o1 and o2 constitute
s2, s2 is compatible with s1. But s1 is not compatible with s2.

4.3 Incompatibility Factors

Our compatibility-checking system is designed to not only assess the compati-
bility of the objects, but also output the incompatibility factor(s) if needed. In
Table 2, we summarize independent factors that may affect the compatibility of

416 Q. Liang and M.N. Huhns

Table 2. Independent Factors that May Affect the Compatibility of Web Services

ObjectClass ID Factor Compatibility

Operation CN Change (Operation) Name P
CEN Change Input and Output Element Name(s) P
CET Change Input and Output Element Types(s) NP
RAE Remove/Add Input and Output Element(s) NP

TModel CTN Change of (TModel) Name P
AO Add new Operation P
RO Remove Operation NP
CO Compatibility of Operation(s) referred by this object

BusinessService CBN Change of (BusinessService) Name P
CE Change of (BusinessService) Endpoint NP
CT Compatibility of TModel(s) referred by this object

Web services. These factors are referred to as individual factor. We have relaxed
the definitions of compatibility and incompatibility from traditional software
engineering, because services are no longer developed by a single development
team as proprietary software assets. P in the table represents compatible and
NP represents incompatible. If the compatibility cannot be determined, but is
dependent on the compatibility of the factor itself, the cell is left blank.

We have designed the following rule set, i.e., Rule set 3, which is used to judge
the factor that has caused incompatibility of two service objects, referred to as
incompatibility factor.

Rule set 3 = {
Rule 7 : For a particular tag that is of simple type and single valued,

objects A and B that directly contain this tag are incompatible bi-directionally
and this tag is output as a causal incompatibility factor, if and only if their
corresponding values of that tag are not categorized together.

Rule 8 : For a particular tag that is of simple type and multi-valued,
object B is incompatible to object A and this tag is output as the causal incom-
patibility factor if and only if object B’s value set is a superset of object A’s
value set, where both A and B directly contain this tag.

Rule 9 : Complex object B is incompatible to complex object A if and
only if for any containing complex tags that are present in both objects, the
constituent object of object B is incompatible to object A and the causal incom-
patibility factor of the constituent objects will be output as one casual incom-
patibility factor for objects A and B.}

In set 3, rules 7 and 8 are used to identify incompatibility factors contributed
by the simple attributes directly contained in the service objects. In particular,
if the service objects are not categorized together on a tag, this tag is one casual
incompatibility factor of the two objects. Rule 9 is used to identify incompat-
ibility factors contributed by their containing service objects. In other words,
incompatibility factors will propagate from one class of objects to another, as
far as the latter has composition or aggregation relationships to the former. Let

Ontology-Based Compatibility Checking for Web Service 417

us assume again there are s1 and s2 both of BusinessService, and o1 and o2
both of Operation in the checking system. o1 and o2 are constituent objects of
s1 and s2, respectively. If f1 is a causal incompatibility factor between o1 and
o2, it is also a causal incompatibility factor between s1 and s2.

5 Experiments and Analysis

We have considered in our experiments all the individual factors listed in Table 2
and the factors that are composed of possible combinations of multiple individual
factors, referred to as joint factors. In our experiments, 600 Web services have
been obtained from the following resources. We chose these resources because
they are available publicly and are representative of different service domains.
From these original Web services, we have formed a collection of 3200 Web
services. These services are all mutations of the original services.
The Web service directories and indices are listed below:

– www.xmethods.com,
– www.bindingpoint.com,
– www.webservicelist.com,
– www.servicesweb.org/rubrique.en.php3?id rubrique=14
– Web sites of four companies that publish their Web services: eBay, Amazon,

PayPal, and http://www.xignite.com/

For all experiments, Web services are selected to form sets of various sizes. For
each set, we have selected services in such a way that among all pairs within a set
(1) for 20% of the pairs, the first service is compatible with the second service,
and (2) for the remaining 80% of the pairs, the first service is incompatible with
the second service. We imagine as more and more service providers contribute
to the choices for services, which results in an increase of competition of the
service market, the ratio of compatible services to incompatible services will also
increase. Therefore, we not only test the ratio of 20%-80%, we also test 30%-
70%, and 60%-40%. Distributions of both compatible and incompatible objects
over all possible factors including individual and joint factors generally follow
a uniform distribution. The detailed distributions of service compositions over
incompatibility factors are listed in Table 3. Due to space constraints, we only
show a part of our experiments and results.

We refer to the sets of service objects for testing the performance of compati-
bility checking in our experiments as a service set. In our experiments, we always
create 10 different service sets so that the same experiment can be repeated 10
times. The result shown is the average performance over all service sets. As part
of the preparation of the experiments, we partition a service set into a base set
and comparison set, which comprise 30% and 70% of all the objects in the service
set, respectively. A compatibility checking task is defined as the following: for a
service picked from the base set, retrieve all services in the comparison set that
are compatible with it and output the incompatibility factors of incompatible
services.

418 Q. Liang and M.N. Huhns

Table 3. Distributions of Service Compositions over Incompatibility Factors

ObjectClass IndividualFactorID JointFactorID Per −cen −tile (%)

A B C D E F G

Operation CN(notCEN) 7 0 20 5 10 7 10
CEN(notCN) 7 30 20 5 10 7 10

CN − CEN 6 0 20 10 0 6 0
CET 30 23 13 40 40 20 40
RAE 30 24 13 40 40 20 40

CET − RAE 20 23 14 0 0 40 0
TModel CTN 5 0 15 3 7 5 5

AO 5 20 15 4 8 5 5
CTN − AO 5 0 15 8 0 5 5

RO 40 30 20 60 60 20 60
CO − P 5 10 20 5 5 5 5
CO − NP 40 40 15 20 20 60 20

BusinesssService CBN 10 15 30 5 15 10 10
CE 40 35 20 60 60 20 60

CT − P 10 15 30 15 5 10 10
CT − NP 40 35 20 20 20 60 20

We perform experiments to measure the performance of the compatibility
checking against different compositions of compatible and incompatible factors
in service sets of 2000 service objects. We performed 600 (i.e., 30% of 2000)
tasks per service set and there are all together 6000 tasks across all 10 service
sets. In particular, we study how our checking system performs against differ-
ent ratios of individual compatibility and joint compatibility factors. We draw
precision and recall in percentile for compatible service retrieving, where Preci-
sion is represented as number of true compatible assessments/(number of true
compatible assessments + number of false compatible assessments) and Recall
is defined as the number of true compatible assessments+/(number of true com-
patible assessments + number of false incompatible assessments). The result is
shown in figure 1. In the left part of figure 1, three lines give the performance
over the compositions for column of Percentile A, B, and C in Table 3. As the
compatibility ratio increases, the line moves right and up depicting an improved
effectiveness of the system (precision of 13% for A compared with precision of
18% for C for recall of 100%). Although this result is straightforward, we use
it to show that the system shall show more promising results with the further
adaptation of SOA and component based application building. In particular, we
observe that our technique favours data sources with a relatively large portion
of compatible service objects and that are less skewed. This makes it suitable for
service compatibility checking tasks, because service data objects are very likely
to follow such a pattern.

In the right part of figure 1, three lines represent the performance over the
compositions listed in A, D, and E of Percentile column. We are using this ex-
periment to show that as the incompatibility and compatibility factors move

Ontology-Based Compatibility Checking for Web Service 419

Compatibility Assessment Performance

0

0.2

0.4

0.6

0.8

1

0.
05 0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8 1

Recall

P
re

ci
si

o
n A

B

C

Compatibility Assessment Performance

0

0.2

0.4

0.6

0.8

1

0.
05 0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8 1

Recall

P
re

ci
si

o
n A

D

E

Fig. 1. Compatibility assessment performance for A, B, C, and A, D, E in table 3

from single to joint, or from simple to complex, the performance of the check-
ing system degrades. For example, for recall rate of 100%, precision for E, A,
and D are 19.6%, 13%, and 12.7%. As we can see, among E, A, and D, E
has the highest percentage of individual compatibility factors and lowest (zero)
percentage of joint compatibility factors. D has the highest percentage of joint
compatibility factors. Joint compatibility factors on one hand shall increase the
possibility that services are assessed as false negative due to the compatibility
assessment mechanism of our design, and therefore, result in loss of the recall.
On the other hand, it decreases the possibility that services are assessed as false
positive and, therefore, results in improved precision. Service users are probably
more concerned with precision. We can conclude that with higher percentage of
individual factors, our technique tends to provide results that are more likely to
satisfy service users in compatibility checking.

We also give the average correct identification rate for incompatibility factor
identification in figure 2. The average correct identification rate is defined as
(identification tasks percentage of identified factors)/number of identification
tasks. The three bars in the left part of figure 2 represent the identification
performance over the compositions listed in A, B, and C of Percentile column of
in Table 3. As the data sources become less skewed, i.e., the ratio of compatible
and incompatible objects increases, the categorization technique performs better;
therefore, the correct identification rate improves as well (from 73.3% to 80.1%).
In the right part of figure 2, the bars represent the identification performance
over the compositions listed in F, A, and G of Percentile column of in Table 3. As
the ratio of objects with joint incompatibility factors decreases, the complexity
of identification of incompatibility is reduced because fewer tags are required
to be categorized exactly. In this case, some identification results that used to
earn only partial credits due to the wrong categorization of one joint factor can
now earn full credits. Therefore, the system shows a better identification rate.
In the figure, the rate increases from 70.2% to 82.6%. This result provides a
useful implication to companies practicing service evolution: For the purpose of
better service compatibility checking, incompatible changes are recommended to
be introduced one-by-one. It is not recommended to wait a long while and then
to introduce them in a batch process.

420 Q. Liang and M.N. Huhns

Incompatibility Factor Identification
Performance

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

A B C

Composition

C
o

rr
ec

t
Id

en
ti

fi
ca

ti
o

n

R
at

e
Incompatibility Factor Identification

Performance

0.6

0.65

0.7

0.75

0.8

0.85

F A G

Composition

C
o

rr
ec

t
Id

en
ti

fi
ca

ti
o

n

R
at

e

Fig. 2. Incompatibility factor identification performance for A, B, C and A, F, G in
Table 3

6 Conclusions

In this paper, we describe an approach to checking Web service compatibility
for Web service configuration management based on categorizing domain ontol-
ogy instances extracted from service descriptions. The design details of a system
model for Web service compatibility checking and the key operator for evaluating
compatibility within the model are discussed. The contribution of the paper is to
consider the engineering aspect of Web services that are due to autonomous and
distributed design and development of the services, i.e., to meet the challenge
within a service configuration system framework of engineering service compati-
bilities that may result from changes or parallel and independent service creation
by other parties.

We are in the process of improving the basic categorization tool. Interesting
issues include how to make it even more effective for different types of service
descriptions, how to transfer such performance improvement to the compatibility
checking system, and how service users’ preferences can be incorporated into the
categorization tool and the compatibility checking system.

References

1. Huhns, M.N.: A Research Agenda for Agent-Based Service-Oriented Architectures.
In: Klusch, M., Rovatsos, M., Payne, T.R. (eds.) CIA 2006. LNCS, vol. 4149, pp.
8–22. Springer, Heidelberg (2006)

2. Roekind, M.J.: The source code control system. IEEE Trans. on Software Engi-
neering 1(4), 364–370 (1975)

3. Kramer, J., Magee, J.: The Evolving Philosophers Problem: Dynamic Change Man-
agement. IEEE Trans. on Software Engineering 16(11) (1990)

4. Gutierrez, R., Mendoza, B., Huhns, M.N.: Behavioral Queries for Service Selection:
An Agile Approach to SOC. In: Proc. IEEE International Conference on Web
Services. IEEE Press, Salt Lake City (2007)

Ontology-Based Compatibility Checking for Web Service 421

5. Schmerl, B.R., Marlin, C.D.: Versioning and consistency for dynamically com-
posed configurations. In: Conradi, R. (ed.) ICSE-WS 1997 and SCM 1997. LNCS,
vol. 1235, pp. 49–65. Springer, Heidelberg (1997)

6. Brown, K., Ellis, M.: Best practices for Web service versioning,
http://www.ibm.com/developerworks/webservices/library/ws-version

7. Anand, S., et al.: Best Practices and Solutions for Managing Versioning of SOA
Web Services, http://webservices.sys-con.comread/143883.htm

8. Frank, D., Lam, L., Fong, L., Fang, R., Vignola, C.: An Approach to Hosting Ver-
sioned Web Services. In: Proc. IEEE International Conference on Services Com-
puting. IEEE Press, Los Alamitos (2007)

9. Do, H.H., Melnik, S., Rahm, E.: Comparison of schema matching evaluations. In:
Proc. workshop on Web and Databases. IEEE Press, Los Alamitos (2002)

10. Madhavan, J., Bernstein, P.A., Rahm, E.: Generic Schema Matching with Cupid.
In: Proc. of the 27th VLDB Conference. Springer, Heidelberg (2001)

11. Huang, J., Dang, J., Huhns, M.N.: Ontology Reconciliation for Service-Oriented
Computing. In: Proc. IEEE International Conference on Services Computing. IEEE
Press, Los Alamitos (2006)

12. Doan, A., Madhavan, J., Dhamankar, R., Domingos, P., Halevy, A.: Learning to
match ontologies on the Semantic Web. The VLDB Journal 12, 303–319 (2003)

13. Nierstrasz, O., Gibbs, S., Tsichritzis, D.: Component-oriented software develop-
ment. Communications of the ACM 127 (1992)

14. Yellin, D.M., Strom, R.E.: Protocol Specifications and Component Adaptors. ACM
Trans. on Programming Languages and Systems 19(2), 292–333 (1997)

15. Georgiadis, I., Magee, J., Kramer, J.: Self Organising Software Architectures for
Distributed Systems. In: Proc. the first workshop on Self-healing systems (2002)

16. Liu, Y.D., Smith, S.F.: A Formal Framework for Component Deployment. In: Proc.
the 21st annual ACM SIGPLAN conference on Object-oriented programming sys-
tems, languages, and applications, pp. 325–344 (2006)

17. Liang, Q., Lam, H.: Web Service Matching By Ontology Instance Categorization.
In: Proc. International Conference on Services Computing. IEEE Press, Los Alami-
tos (2008)

18. Wiebe, D.: Generic Software Configuration Management: Theory and Design. PhD
thesis, published as Technical Report 90-07-03. Department of Computer Science,
University of Washington (1990)

http://www.ibm.com/developerworks/webservices/library/ws-version
http://webservices.sys-con.comread/143883.htm

SOAlive Service Catalog: A Simplified Approach
to Describing, Discovering and Composing

Situational Enterprise Services

Ignacio Silva-Lepe, Revathi Subramanian, Isabelle Rouvellou,
Thomas Mikalsen, Judah Diament, and Arun Iyengar

IBM T.J. Watson Research Center, 19 Skyline Drive, Hawthorne NY 10532, USA
{isilval,revathi,rouvellou,tommi,djudah,aruni}@us.ibm.com

http://www.research.ibm.com/

Abstract. SOAlive aims at providing a community-centric, hosted envi-
ronment and, in particular, at simplifying the description and discovery
of situational enterprise services via a service catalog. We argue that a
service community has an impact not only on users and services, but also
on the environment itself. Specifically, our position is that a service cat-
alog adds value to users, and is itself enriched, by its incorporation into
a community-centric service hosting environment. In addition, analyses
of web services directories suggest that a catalog service for enterprise
services can be better provided by using a simpler content model that
better fits REST, taking advantage of collaborative practices to annotate
catalog entries with informal semantic descriptions via tagging, provid-
ing a mechanism for embedding invocations of discovered services, and
allowing syntactic descriptions to be refined via usage monitoring. The
SOAlive service catalog defines a flexible content model, a discovery func-
tion that navigates the cloud of tag annotations associated with services
in a Web 2.0 fashion, and a service description refinement function that
allows the actual use of a service to refine the service description stored
in the catalog.

Keywords: Service catalog, situational enterprise service, software as a
service, service engineering, service assembly, SOA runtime.

1 Introduction

As the field of service-oriented computing evolves, we observe a number of trends.
In no particular order, one trend is the exposition of Web Services via REST1

APIs. Another trend is the development of web applications using dynamic pro-
gramming languages and frameworks, e.g., JavaScript with AJAX, and PHP.
These languages enable rapid development and testing, provide expressive and
1 REST (Representational State Transfer) builds on the HTTP protocol principles to

define an architectural style where entities, containers and behaviors can be seen
as resources that are accessible via a uniform interface consisting of a fixed set of
verbs [5,15].

A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, pp. 422–437, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.research.ibm.com/

SOAlive Service Catalog 423

powerful frameworks, and lead to the use of abstractions that are closer to the
problem domain [8]. A third trend is the use of Web 2.0-style social and col-
laborative filtering practices such as bookmarking and tagging, as found in Web
2.0 services such as del.icio.us or flickr, where tagging is used to annotate
shared content.

Situational enterprise services, as instances of situational applications [2], also
result from these trends. An enterprise service (sometimes referred to as a sit-
uational enterprise service) is a small, primarily browser-based, situational ap-
plication, typically exposing a REST interface through which it is invoked, for
instance, a travel authorization application. More specifically, an enterprise ser-
vice does not use a rigorous language, such as WSDL, to define its interface. In
addition, it seems natural to take advantage of the sort of informal semantics
that are conveyed by tagging, as opposed to using rigorous ontologies, to pro-
vide semantic descriptions of enterprise services. It is important to make it easy
and painless for developers of enterprise services to: (1) publish and advertise
services, (2) discover services, and (3) invoke or compose discovered services.

SOAlive aims at providing a community-centric, hosted environment that sup-
ports the development, deployment and management of enterprise services, and
that provisions the required deployment and execution middleware. In particu-
lar, SOAlive aims at simplifying the description, discovery and composition of
situational enterprise services via a service catalog. In [14], service communities
are introduced as the combination of social and business communities with the
purpose of exchanging services. In particular, service communities establish a dy-
namic platform where services of interest are contributed, grouped, consumed,
and managed [3].

We argue that a service community has an impact not only on users and
services, but also on the platform itself. Specifically, our position is that a service
catalog adds value to users, and is itself enriched, by its incorporation into a
community-centric service hosting environment. That is, users benefit more from
a service catalog that is part of a service community than from an isolated
service directory or even a limited form of service marketplace. Likewise, a service
catalog that is incorporated into a service community environment can take
advantage of service deployment and usage to improve on the quantity and
quality of the information it provides.

Furthermore, the SOAlive service catalog aims at benefiting from some of the
lessons learned from web services directories. In [6], Legner presents an analy-
sis of web services directories that are based on the UDDI standard. Some of
her observations and conclusions are: (1) “Despite the fact that private UDDI
registries allow for advanced categorization and identification schemes, the in-
vestigated Web services intermediaries use rather simplistic search and catego-
rization mechanisms”, (2) “Unlike in other electronic markets, we were not able
to observe increasing personalization and customization of the Web services of-
ferings”, (3) “Using the StrikeIron Marketplace API, software vendors are able
to embed service invocations in their applications”, and (4) “More sophisti-
cated classification schemes which reflect the vocabulary of the target consumers

424 I. Silva-Lepe et al.

are, in combination with complete and reliable service descriptions, a prerequisite
for the discovery of suitable Web services”.

All of this suggests that a catalog service for enterprise services can be better
provided by: (1) using a simpler content model that better fits REST, instead of
imposing a more complex model, such as UDDI, which relies on more complete
technical specifications of services, (2) taking advantage of collaborative practices
to annotate catalog entries with informal semantic descriptions via tagging, (3)
providing a mechanism for embedding invocations of discovered services, and
(4) using tagging as above, and allowing minimal syntactic descriptions to be
initially entered, which can then be refined via usage monitoring. In this paper,
we introduce the SOAlive service catalog, which provides a set of functions that
satisfy these requirements.

The SOAlive service catalog defines a flexible content model that (1) requires
little or no up-front user input, (2) can evolve over time, either automatically or
from user input such as user-provided tags, and (3) facilitates the composition
of services by generating snippets of invocation code that can be inserted into
services under development that invoke discovered services. This content model
is designed to contain both syntactic as well as informal semantic descriptions of
enterprise services. The service catalog also provides a discovery function that
navigates the cloud of tag annotations associated with services in a Web 2.0
fashion. Finally, the service catalog provides a service description refinement
function that allows the actual use of a service to refine the service description
stored in the catalog.

The remainder of this paper is organized as follows. Section 2 provides a short
overview of the SOAlive hosted environment. Section 3 introduces the SOAlive
service catalog and its content model. Section 4 provides more details on service
discovery, and Section 5 focuses on the service description refinement function
of the catalog. Section 6 describes one possible implementation of the catalog.
Section 7 discusses related work. Finally, section 8 concludes the paper.

2 SOAlive Overview

SOAlive provides a hosted environment for developing, deploying and executing
enterprise services. The diagram in Fig. 1 highlights these aspects with a focus
on the interactions with the catalog.

At development time, a user can discover services, which can be composed
into other services being developed via the use of code snippets generated by the
catalog. Here, because the catalog is community-centric, users benefit from the
usage and bookmarking of services by other users in the community to improve
their discovery experience.

At deployment time, a user relies on the hosted environment, specifically the
application manager, to publish his services to the catalog and to install them
on the runtime that is provisioned by the hosted environment as well. Here,
because the application manager and the catalog are integrated into the same
hosted environment, deployed services are automatically published without any
more intervention from the user.

SOAlive Service Catalog 425

SOAlive

CATALOG

 CONTENT

WikipediaApp

OfficeMonitorApp

BluePagesApp

WordNetApp

BOOKMARKS Tags

WikipediaApp: wikipedia REST word

OfficeMonitorApp: ofiice monitor composable

WordNetApp: REST word sense

BluePagesApp: bluepages REST

APPLICATION
MANAGER

RUNTIME

monitor log

analyz
e

refine

monitor log

analyz
e

refine

WikipediaApp

OfficeMonitorAp
pBluePagesApp

WordNetApp

End User (Browser)

App Developer (Eclipse)

publish

install

invoke app via
REST call

invoke

intercept

refine
description

deploy

discover

compose

Fig. 1. SOAlive overview

At run time, service invocations, in addition to being routed to the target
service, are also intercepted by the runtime. The runtime includes a monitor
component that forwards the intercepted invocations to a logging component.
Independently, a component that analyzes and processes the logged invocations
interacts with the catalog to define and refine service descriptions. Here, because
the runtime and the catalog are integrated into the same hosted environment,
service invocations can be mined to extract valuable information that can be
used in the definition and refinement of the corresponding service’s description.

At any given time, users can also browse the catalog and, in a Web 2.0 fash-
ion, share their discoveries of useful services by adding to the catalog bookmarks
that are annotated with tags of their choice. This further improvement on the
quantity and quality of the information provided by the catalog is a conse-
quence of its community-centric nature and its integration into a service hosting
environment.

3 SOAlive Service Catalog

The SOAlive service catalog is a core service in the SOAlive hosted environment.
One main function of the catalog is to store descriptions of artifacts it knows
about. As we shall see however, the catalog is not just a passive store of de-
scriptive information. As the descriptions of the known artifacts are entered, the
catalog can extract additional information from these descriptions in order to
improve on them. Also, as the known artifacts are used, the catalog can process
logged information about service invocations, to enhance the descriptions of
those services.

426 I. Silva-Lepe et al.

3.1 Catalog Artifacts

As a hosted environment, SOAlive supports not only the deployment, execution
and management of services but also their development. As such, the SOAlive
catalog is concerned with the description of not only services, but also of other
artifacts that are used in the composition and development of services. An ar-
tifact that can be described in the SOAlive catalog is either a service that is
deployed on SOAlive and is being managed by the SOAlive Application Man-
ager, a module that is maintained in the SOAlive repository2, or an external
artifact. Deployed services can in turn be:

– Callable: These are services for which the catalog can include documen-
tation which can be used to enable composition, e.g., a credit check service
that can be composed into a larger mortgage approval service.

– Browsable: These are services that can be discovered in the catalog and
invoked by just knowing the endpoint information, e.g., a retailer UI which
can be acccessed by a simple HTTP GET with the artifact’s URL.

Modules in the SOAlive repository can in turn be:

– Deployable: These are self-contained artifacts that can be deployed on
their own, such as ProjectZero [11] applications or SCA [13] composites.

– Composable: These are artifacts that cannot be deployed in isolation,
such as utility classes, ProjectZero application fragments, or SCA compo-
nent implementations. Composable artifacts are typically composed to form
deployable artifacts. As an example, a Bite extension activity [1] is a com-
posable module that must be included as part of a larger flow in order to be
deployed.

An external artifact is not hosted on SOAlive, e.g., an enterprise user directory
service, but its description can also be in the catalog so that other SOAlive
applications can discover and use it. This way, users can also benefit from book-
marking and tagging services that are not hosted by SOAlive. In many cases,
SOAlive will host a proxy to an external service. This way, SOAlive can also
monitor the use of external services in order to refine their description (see
Section 5).

Catalog entries for artifacts are created by system entities such as the SOAlive
Application Manager or the SOAlive Repository, or by an admin authority in
the case of external artifacts, on behalf of a SOAlive user.

3.2 Content Model

The SOAlive catalog maintains two kinds of artifact information: (1) the main
description that is initialized at the time the artifact is published, often including
information provided by the artifact’s author, and (2) bookmarks (or references
to artifacts) on behalf of users other than the artifact’s author.
2 The SOAlive Repository allows users to store and share application artifacts as

modules. Modules are packaged into archive files files (e.g., zips and jars), and the
SOAlive Repository provides an interface for uploading and downloading modules.

SOAlive Service Catalog 427

Main Description. The main description of an artifact includes its name,
owner identification, version number and visibility rules, all of which the catalog
can provide default values for. The visibility rules are used for access control and
can default to public, meaning any user can view and access the artifact. The
description also includes a relative URI that is used as an endpoint reference,
either as the URL of a deployed service, or as the URI of the artifact in the
SOAlive repository. In addition, the main description of an artifact inculdes a
syntactic as well as an informal semantic description.

Syntactic Description. The syntactic description of a deployed or a deployable
service is maintained as a stylized RESTful documentation of the interface ex-
posed by the service. This interface enumerates the resources exposed by a service
and, for each resource, information about its methods’ data format, success and
error codes, as well as typical examples of request and response. Representative
examples of RESTful documentation that can be used in the syntactic descrip-
tion of a service in SOAlive are Project Zero’s RESTdoc [11] and WADL [12].
The syntactic description of a composable artifact depends on the type of the ar-
tifact and so the catalog cannot assume any pre-determined schema or grammar.
For instance, if the composable artifact represents a Bite extension activity [1],
its syntactic descrption can be given by a piece of textual XML, or by a JSON
serialized object containing the attributes that pertain to the extension activity.

Informal Semantic Description. To a modern developer it would seem natural
to be able to use collaborative filtering practices to publish and discover hosted
enterprise services in a hosted environment such as SOAlive. To this end, the
SOAlive catalog allows the inclusion of tags as an informal semantic description
of a service, or an artifact in general. As in other Web 2.0 services, such as
del.icio.us and flickr, tags used to annotate catalog artifacts induce a tag
cloud that can then be used to navigate the space of artifacts.

Unlike other Web 2.0 services however, developers of enterprise services will
be interested not only in the services that they have bookmarked but also in any
service that is visible to them, regardless of who has published it or bookmarked
it. For instance, if I am developing a mortgage application that requires the use
of a credit check service, I would like to be able to discover, using a Web 2.0
mechanism such as a tag cloud, any service that may have been published to
the hosted environment that may perform a credit check function. Therefore,
the tag cloud available to a SOAlive developer should include any tag that an-
notates any service or artifact in the catalog. And as it is not uncommon for
tag clouds in traditional collaborative filtering systems to become very large, it
seems reasonable to expect a lower bound on the size of our tag cloud to be in
the order of hundreds of tags.

To help in reducing the size of its tag cloud, the SOAlive catalog provides a
tag consolidation facility. This facility relies on the ability to collect groups of
tags given by some relationship amongst tags and then define the tag cloud as
the collection of the representatives for each group of tags. In particular, tag
grouping can be given by the hypernym relationship between the meanings or
senses of any two tags. A tag group’s representative in this case is given by

428 I. Silva-Lepe et al.

the tag in the group for which there is no hypernym in the tag cloud. In turn,
tag meaning or sense can be obtained from a public lexical database such as
WordNet [4].

More specifically, when a developer publishes an artifact to the catalog and
annotates it with tags, if any such tag t1 is given a sense s3, then the catalog
looks in the tag cloud for a tag t0 whose sense s0 is the hypernym of s. If t0 is found
then t1 is added to t0’s group or hierarchy. If t0 is not found in the tag cloud but it
exists in the lexical database, then both t0 and t1 are added to the tag cloud under
the same group. We refer to t0 as a derived tag, given that it was not explicitly
entered by a user but rather derived by the tag consolidation facility. In addition,
if t0 did not exist in the tag cloud, and there is a tag t2 in the tag cloud whose
sense is a hyponym of s0, then t0 and t1 are added under the same group as t2. For
instance, suppose that a tag investment exists in the catalog as an annotation to
a service that was published by a user u1. When user u2 publishes a service and
annotates it with tag banking, the catalog determines that finance has a sense
that is a hypernym of both investment and banking, adds finance, and groups
both investment and banking under it. Later, when the tag cloud is displayed, it
will show finance as a top level tag in the tag cloud.

Tag grouping using hierarchies provides a simple way to consolidate the size
of the tag cloud, and to generalize the search for an artifact. For instance, af-
ter investment is grouped under finance, a search for artifacts under finance
will yield all entries that are tagged with any hyponym of finance, including
investment and banking, which were entered by different users. Notice that al-
though funding is also a hyponym of finance, if it does not actually annotate
any service in the catalog, it won’t be part of the tag cloud and thus it won’t be
considered during the search. Finally, the SOAlive catalog also defines a number
of system-architected tags to annotate artifacts according to their type. These
tags include callable, browsable, deployable, and composable. These tags also
include the corresponding pseudo-derived tags deployed and in-repo (this last
one to annotate any module in the repository).

Bookmarks. Bookmarking is another kind of collaborative filtering practice
that a modern developer expects to be able to use to collect references to services
of interest and to annotate those references with meaningful tags. Bookmarks
can enrich the description of a given enterprise service S by allowing one or more
users to refer to S with their own tags. This way, a hosted, community-centric
platform such as SOAlive promotes collective informal semantic descriptions of
enterprise services4.

The SOAlive catalog allows users to define and maintain bookmarks to col-
lect references to services of interest, and to annotate those references with
meaningful tags. Users can also browse other users’ bookmarks; this contributes
to making the SOAlive catalog a community-centric environment (not unlike
del.icio.us and flickr) where developers share not only service offerings but
3 Notice that it is also possible not to associate a sense with a tag, in which case such

a tag does not participate in any grouping.
4 Notice that a single user need only maintain a single bookmark per distinct service S.

SOAlive Service Catalog 429

also knowledge about other users’ services that can be used for a particular
purpose. The use of bookmarks also provides increased personalization of the
SOAlive catalog by giving a user a view of the catalog contents through his or
her bookmarks.

3.3 Code Snippet Generation

One goal of including a syntactic description of an artifact in its catalog main
description is to provide support in the composition of services that use the
artifact. From the RESTful documentation of a service it is straightforward to
generate a code snippet that performs a simple invocation of the service from
Javascript, Java or Groovy. For example, the following code snippet template
can be used to invoke a service from Javascript, provided the fields that have the
<_cg_ ... > pattern are filled out. These fields can be supplied by a sufficiently
complete syntactic description of the service.

var xhr = createXHR();
xhr.onreadystatechange = function() {

if (xhr.readyState == 4) {
if (xhr.status == <_cg_successCode>)
{

var response = xhr.responseText;
} else {

<_cg_comment:_cg_errorCodes>
alert("Error getting data from the server");

}
}

}

xhr.open("POST", <_cg_url>, true);
xhr.setRequestHeader(’Content-Type’, <_cg_format>);
var post_body = null;
<_cg_populate_body_from_example>
xhr.send(post_body);

Notice that, in particular, this code snippet does not perform any processing
of the response. In general, there can be enough variability in what such a code
snippet can do to make it infeasible for the catalog to attempt at a generic code
snippet generation feature. Instead, the approach taken by the SOAlive cata-
log is to provide a plugin mechanism that allows a catalog-based tool developer
to inject any arbitrary code snippet generator that uses the contents of a ser-
vice’s syntactic description as input. As a baseline, the SOAlive catalog includes
a default plugin that generates simple code snippets for Javascript, Java and
Groovy.

3.4 Discussion

As we have seen, the SOAlive catalog uses a simple content model that is suitable
for describing enterprise services that are defined in terms of REST resources.
This content model places minimal requirements on the author of a service, a

430 I. Silva-Lepe et al.

relative URI is enough as an initial description. Given a sufficiently complete
syntactic description, in the form of RESTful documentation, the SOAlive cata-
log can provide support for embedding invocations of selected services by means
of code snippet generation. The SOAlive catalog also takes advantage of collabo-
rative practices to annotate service descriptions with informal semantic descrip-
tions via tagging. The collection of all tags that annotate any artifact known to
the catalog, published by any user, becomes a catalog-wide tag cloud that can
then be used, as we shall see in the following section, to discover any artifact
in the catalog. Finally, minimal syntactic descriptions can be made more com-
plete and reliable by the use of a description refinement facility that the catalog
provides as a way to enhance the content model. Section 5 elaborates on this
refinement facility.

4 Discovery

As illustrated earlier, suppose that a credit check service has been published
to the SOAlive catalog by Bob, and it can be used in the composition of a
mortgage enterprise service being developed by Fred. In order for the credit
check service to be effectively and efficiently composed into the mortgage ser-
vice, the SOAlive catalog needs to provide a service discovery function that
considers any service or artifact in the catalog, and is intuitive to Web 2.0 kinds
of users.

The SOAlive discovery function is designed to allow a user to discover a catalog
entry by drilling down on the tag cloud. That is, a user selects a tag from the tag
cloud, which brings up all the catalog entries that contain the selected tag. Notice
that if the selected tag t has any hyponyms in the tag cloud, then all tags in the
hierarchy rooted at t will be considered when selecting catalog entries. That is,
the selected entries will be all those that contain any tag in the hierarchy rooted
at t. At this point the discovery function also displays a drill cloud, which is a
tag cloud containing only tags in the current entry selection. The user can then
select another tag from the drill cloud to further narrow down the contents of
the entry selection. This procedure can be repeated until there is only one entry
left or there are no more tags in the drill cloud. This procedure is an adaptation
of [9].

However, notice that in [9] there is a separate drill cloud for each of a fixed
number of categories, e.g., a keyword cloud and an author cloud. In addition,
drill clouds are populated from the current selection of search results, which
is initially obtained by using a domain-specific search form. In our case, the
starting point of a search is the main tag cloud. In addition, tags do not fall
under any given set of fixed categories; rather, tags are grouped according to
their lexical sense. In some sense, our tag cloud can be thought of consisting of
a dynamically changing set of categories, one for each top level tag at a given
point in time. Thus, instead of trying to define separate drill clouds, a single
drill cloud is used that collects all tags associated with any catalog entry in the
current entry selection.

SOAlive Service Catalog 431

More precisely, the drill down discovery procedure consists of the following
steps:

1. currentTag ← Select5 tag from main tag cloud
2. currentTags ← {currentTag}
3. entrySelection ← {entry| for some t ∈ currentTags hierarchy, t annotates

entry}
4. do

(a)
(

drillCloud ← {tag|tag annotates some entry ∈ entrySelection}
−currentTags

)
(b) currentTag ← Select tag from drillCloud
(c) currentTags ← currentTags + {currentTag}

(d)
(

entrySelection ← {entry|entry ∈ entrySelection and
for t ∈ currentTags, t annotates entry}

)
until entrySelection is singleton or user selects one entry explicitly

Given that the main tag cloud collects all tags that annotate any entry in
the catalog, this procedure considers all such entries when starting a search.
In our scenario, as Fred knows a credit check service has been published that
he would like to invoke from his mortgage service, he looks in the tag cloud
and clicks on deployed. This brings all services with tags deployed, callable
and browsable, given that these last two tags have been entered for several
other deployed services, including credit check, and given that these two tags
are hyponyms of deployed. Fred then selects callable, as he knows he wants to
incorporate the credit check service by adding a call to it to his code. At that
point he notices a credit tag in the drill cloud and selects it, narrowing down
the entry selection enough to make it easy to find the credit check service. At
this point, Fred can also examine further details about the credit check service,
including its RESTful documentation, after which he decides this is the service he
wants to invoke. Finally, at this point Fred can also obtain the simple JavaScript
code snippet that performs the invocation, includes it in his code and makes a
few changes to handle the response.

5 Service Description Refinement

As Legner [6] suggests, complete and reliable service descriptions are a pre-
requisite for the discovery of suitable (Web) services. On the other hand, it is
important to make it easy and painless for enterprise service developers to pub-
lish, advertise and discover services. In addition, since typically an enterprise
service exposes a REST interface through which it is invoked, as opposed to
using a rigorous language, such as WSDL, to define its interface, there seems to
be less of a motivation for a developer to provide an interface, not to mention a
complete and rigorous one. Also, although the RESTful documentation of a ser-
vice may not be mandatory, the more complete it is, the better the code snippet

5 This selection is performed by the user via some appropriate user interface.

432 I. Silva-Lepe et al.

that can be generated. This would suggest to a developer a requirement on the
development host (and its catalog in particular) that the documentation itself be
generated. Furthermore, given the makeup of RESTdoc in particular, it seems
feasible to infer the various documentation items (e.g., format, parameters) by
example from successful as well as unsuccessful invocations of a service. In other
words, given a log of service invocations that include: the URL of the service, in-
vocation method, format, parameter values, and success or error codes, it seems
feasible to synthesize the RESTdoc documentation or interface of the service.

The SOAlive catalog includes a service description refinement function that
allows the actual use of a service to refine the service description stored in the
SOAlive catalog. This in turn allows the catalog to produce an increasingly
accurate service description, without requiring the service provider to specify a
highly detailed service description. The basic mechanism of service description
refinement is a Monitor, Log, Analyze and Refine loop.

– Monitor. This is an interceptor that is registered with the SOAlive in-
frastructure, and that forwards service requests and responses to the log.

– Log. As requests and responses arrive, the log extracts and collects infor-
mation such as: request and response timestamps, identity of client, request
method, request and response formats, parameters the service was invoked
with, return value, sucess or error codes, and parent request correlator (that
can be used to trace a chain of requests).

– Analyze. On a thread separate to that of monitoring and logging, each
log record is analyzed to determine what information in the log, if any, can
contribute to the refinement of the service description. This analysis boils
down to determining whether or not a log item has been accounted for in
the service description. Items such as request format or error code may be
as simple as determining whether they are included in a list. Other items,
such as parameter values for requests that result in an error may depend on
how the refine step accounted for them.

– Refine. Service refinement targets both the syntactic and the semantic de-
scriptions of a service. Syntactic description items include data format (such
as JSON or XML), success and error codes, example request parameters, and
example response values. Data format, and even sucess and error codes, are
typically given by a relatively small (certainly finite) set of values. So in this
case it makes sense to simply accumulate logged values into the description.
Successful request parameters and response values, on the other hand, would
not make sense to simply accumulate. Here, it makes more sense to learn an
abstract description of the values seen so far. In the case of XML-formatted
requests, an XML schema seems adequate. For JSON-formatted requests, al-
though it is not a type-checked language, a similar descriptive schema could
be abstracted from incoming request examples. Parameter values in requests
that result in an error are more challenging. In addition to a schema that
describes possible error values, it would also be useful for a user to know
what actual values resulted in error. So the refinement must strike a balance
between collecting too much raw data or abstracting it too much.

SOAlive Service Catalog 433

Service refinement can also be thought of as either intra-service or inter-service.
Intra-service refinement targets the syntactic description of a single service.
With inter-service refinement, the logged data pertain to more than one ser-
vice. For instance, a parent request correlator can be used to refine the seman-
tic description a service. Specifically, if the service that made the invocation is
known, then its tags can be used as input to augment the tags of the invoked
service. Here, a similarity metric (such as semantic distance) could be used to
determine which tags from the invoking service to keep and which to discard.

6 Implementation

An implementation of the SOAlive hosted environment is available that supports
the main aspects of developing, deploying and executing enterprise services.

CATALOG

Content Store

Main Content
Resource

Bookmark
Resource

User

App Manager

Discovery
Resource

Bookmark View

Tag Cloud
 View

Content View

Discover

Manage
Apps

Manage
Bookmarks

Invocation Log
Description
Refinement

Runtime

Fig. 2. SOAlive Catalog Architecture

The diagram in Fig. 2 illustrates the SOAlive catalog architecture. The service
catalog is implemented as a number of REST resources that are also accessed
locally by the application manager. In addition, the runtime and the service re-
finement function communicate indirectly via the log. The exposed REST APIs
include create, read, update and delete operations for main content and book-
marks. There is also a REST API for discovery that retrieves the tag cloud and
that returns a bookmark selection and corresponding drill cloud given a number
of selected tags. In the current implementation, the actual drill down procedure
is performed on the client via an encapsulated piece of JavaScript. A web-based
graphical user interface (GUI) to the SOAlive hosted environment incorporates
access to the catalog via its REST APIs. This GUI is illustrated in Fig. 3. Using

434 I. Silva-Lepe et al.

a general search tab or a application manager or bookmark-specific search tab, a
user can start a tag cloud-based drill down discovery of a desired service. Current
selections are shown on the right side of the pane, where actions to perform on
each selections include showing the service interface as RESTdoc, from which a
code snippet can be generated for any operation of any of the service’s resources,
as shown in Fig. 3.

Fig. 3. SOAlive Graphical User Interface

The service refinement function is currently under development. The monitor
and log portions of this function have already been incorporated into the SOAlive
hosted environment, whereas a design of the analyze and refine portions is being
completed, an outline of which is presented in section 5.

To illustrate the functions of the SOAlive catalog end to end, we now elaborate
on the credit check service example that we first introduced in Section 3. Bob
publishes a credit check service to SOAlive with the tag credit. This service
gets published to the catalog. Users can now discover this service in many ways.
A search on the term credit or finance (a tag derived from credit by the tag
consolidation facility, see Section 3) or composable (a system-architected tag,
see also Section 3) can help users find this service. Jim is composing a mortgage

SOAlive Service Catalog 435

approval service. He finds the credit check service and asks for a code snippet to
include in his application. At this point, the credit check service’s description is
very minimal, and the catalog is able to provide very minimal code. Jim manages
to fill in the gaps. He publishes his mortgage approval service to the catalog. The
mortgage approval service is a very popular service and so the usage of the credit
check service increases. Jane is composing a car loan approval service and is also
in need of a credit check service. When Jane finds the same credit check service
in the catalog and asks for help with code, she gets invocation code that is
complete with error codes, success codes, examples, etc.

7 Related Work

Enterprise service discovery can be thought of as a recommendation system,
where the discovery function recommends an initial selection of catalog entries
based on a choice of tags. In [16], Zhao et al present a recommendation system
based on collaborative tagging behaviors. There, two users are considered similar
not only if they rate (or tag) items similarly (i.e., syntactically), but also if
they have similar conginitions over these items. For instance if two users tag
an item with the tags photo and picture, respectively, they could be considered
similar even if their tags do not match exactly. This idea can also be applied to
discovering items (entreprise services in particular) where even if an exact match
query on a set of tags yields no results, a similarity-based match may yield a
possible result. In this case, the set of tags are selected from the tag cloud.
Catalog entries are then retrieved that match not only selected tags but also
tags that are similar (via their hypernym/hyponym relationship in particular).

Web 2.0 techniques, such as wiki-based maintenance, are also related to ser-
vice description. In [10], Paoli et al present an approach to describing (web)
services that uses a UDDI registry complemented by a wiki-based semantic an-
notation subsystem. A developer publishes a service to the UDDI registry and
“is encouraged to augment it by intuitive keywords found in the ontology”. This
in turn results in the generation of a wiki page containing the developer’s key-
words as well semantic links obtained by automatic reasoning from the ontology.
This wiki page can then be used by other developer or business analysts for
discovery and understanding. We notice however that this work depends “on
an already existing and widely used taxonomy developed for the environmental
information system of Baden-Wuerttemberg”. We believe that more lightweight
Web 2.0 techniques such as social and collaborative filtering are better suited to
the cataloguing and discovery of situational enterprise services, given their more
dynamic and community-based nature.

Semantic personalization has previously been used in service discovery. Lord
et al [7] propose a solution to the task of discovering semantic web services
in a Bioinformatics Grid domain. This solution consists of a UDDI registry,
augmented by a personalised view service and a semantic find service. The per-
sonalised view service provides a way to add user-specific metadata and thus
filter the results returned by a query. The semantic find service relies on domain
ontologies and a description logic reasoner. The personalised view service can be

436 I. Silva-Lepe et al.

used in isolation or in combination with the semantic find service. This work also
depends on a rigorous, UDDI-based, syntactic description of services. In addi-
tion, while an ontology-based semantic description is suitable to this work, given
its specific Bioinformatics Grid domain, it is less suitable to the more generic
and Web 2.0-based domain of situational enterprise services. We should point
out that by allowing the bookmarking and tagging of catalog entries, given its
Web 2.0 motivation, the SOAlive service catalog is in effect providing a person-
alization approach to describing enterprise services.

8 Conclusions

The SOAlive service catalog provides a simplified approach to describing and dis-
covering situational enterprise services. It incorporates support for light-weight
description and discovery of enterprise services into the SOAlive community-
centric service hosting environment. As we have seen, this incorporation not
only improves the functionality of the SOAlive hosted environment but it also
enriches the service catalog itself. Specifically, discovery is enhanced by its asso-
ciation with the environment’s service deployment function and by the feedback
from the service community supported by the hosted environment. Service re-
finement is enhanced by its integration with the environment’s runtime that
intercepts service invocations.

The service catalog, by its integration into the SOAlive hosted environment
as a number of REST resources, becomes an enterprise service itself, one that
is available to the other services hosted by the environment. This has the unin-
tended consequence that services hosted by the SOAlive hosted environment can
mash up the function of the catalog and extend its functionality. For instance,
a simple enterprise service can provide user information for the developer of a
hosted service by invoking the catalog’s REST API, looking up the owner of the
hosted service, and looking up detailed information for the owner in an enterprise
user directory that is registered into the catalog as an external service.

The SOAlive service catalog’s content model and code snippet generation
function are designed with simplicity and extensibitlity in mind. This should
prove useful as we look towards federation with heterogeneous catalogs, as well
as towards integrating the catalog with other environments, which may have
specific code snippet generation requirements.

References

1. Curbera, F., Duftler, M., Khalaf, R., Lovell, D.: Bite: Workflow Composition for
the Web. In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS,
vol. 4749, pp. 94–106. Springer, Heidelberg (2007)

2. Wikipedia definition. Situational application,
http://en.wikipedia.org/wiki/Situational application

3. Desai, N., Mazzoleni, P., Tai, S.: Service Communities: A Structuring Mechanism
for Service-Oriented Business Ecosystems. In: DEST 2007: Digital EcoSystems and
Technologies Conference (2007)

http://en.wikipedia.org/wiki/Situational_application

SOAlive Service Catalog 437

4. Fellbaum, C. (ed.): WordNet: An Electronic Lexical Database. MIT Press, Cam-
bridge (1998)

5. Fielding, R.T.: Architectural Styles and the Design of Network-based Software
Architectures. PhD thesis, University of California, Irvine (2000)

6. Legner, C.: Is there a Market for Web Services? - An Analysis of Web Services Di-
rectories. In: Proceedings of Mashups 2007, 1st International Highlightr Workshop
on Web APIs and Services Mashups, Vienna, Austria (September 2007)

7. Lord, P., Wroe, C., Stevens, R., Goble, C., Miles, S., Moreau, L., Decker, K., Payne,
T., Papay, J.: Semantic and personalised service discovery. In: Proc. UK e-Science
All Hands Meeting 2003, EPSRC, pp. 787–794 (2003) ISBN 1-904425-11-9

8. Michael Maximilien, E., Wilkinson, H., Desai, N., Tai, S.: A domain-specific lan-
guage for web apis and services mashups. In: Krämer, B.J., Lin, K.-J., Narasimhan,
P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 13–26. Springer, Heidelberg (2007)

9. Newton, G.: Drill Clouds for Search Refinement. Blog by Glen Newton (Oc-
tober 2007), http://zzzoot.blogspot.com/2007/10/drill-clouds-for-search-
refinement-id.html

10. Paoli, H., Schmidt, A., Lockemann, P.C.: User-driven semantic wiki-based business
service description. In: 3rd International Conference on Semantic Technologies (I-
Semantics 2007), Graz (2007)

11. ProjectZero. RESTful Documentation:
http://www.projectzero.org/~/wiki/bin/view/Documentation/
CoreDevelopersGuideRESTdoc

12. WADL Specification, https://wadl.dev.java.net/#spec
13. SCA Specification, http://www.oasis-opencsa.org/sca/
14. Tai, S., Desai, N., Mazzoleni, P.: Service communities: Applications and middle-

ware. In: SEM 2006: Proceedings of the 6th International Workshop on Software
Engineering and Middleware, pp. 17–22. ACM, New York (2006)

15. Multiple wiki authors. REST for the Rest of Us,
http://wiki.opengarden.org/REST/REST for the Rest of Us

16. Zhao, S., Du, N., Nauerz, A., Zhang, X., Yuan, Q., Fu, R.: Improved Recommenda-
tion based on Collaborative Tagging Behaviors. In: Proceedings of the International
ACM Conference on Intelligent User Interfaces (IUI 2008), Canary Islands, Spain
(2008)

http://zzzoot.blogspot.com/2007/10/drill-clouds-for-search-refinement-id.html
http://zzzoot.blogspot.com/2007/10/drill-clouds-for-search-refinement-id.html
http://www.projectzero.org/~/wiki/bin/view/Documentation/CoreDevelopersGuideRESTdoc
http://www.projectzero.org/~/wiki/bin/view/Documentation/CoreDevelopersGuideRESTdoc
https://wadl.dev.java.net/#spec
http://www.oasis-opencsa.org/sca/
http://wiki.opengarden.org/REST/REST_for_the_Rest_of_Us

WorldTravel: A Testbed for Service-Oriented
Applications

Peter Budny, Srihari Govindharaj, and Karsten Schwan

Center for Experimental Research in Computer Systems
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332, USA

{peterb,srihari,schwan}@cc.gatech.edu

Abstract. This paper describes the “WorldTravel” service-oriented ap-
plication and testbed. The purpose of the testbed is to provide to re-
searchers an open source venue for experimenting with and evaluating
ideas, methods, and implementation options for service-oriented archi-
tectures and applications. Built upon standard service technologies, the
WorldTravel testbed offers implementations of services and service inter-
actions specific to the WorldTravel application, comprised of (1) a sub-
stantive back-end that includes a simple airline pricing/ticketing engine,
with a representative flight database, both structured similarly to those
used by companies actually offering such services, (2) a front-end for
travel services interacting with mid-tier request processing and routing
services, and (3) load traces from the corresponding business applications
that are used to drive the use of WorldTravel and its services.

We call WorldTravel a testbed rather than benchmark because its
design permits extension at both the front-end, e.g., to add interesting
new services like weather information about possible travel destinations,
and at the back-end, e.g., to add payment services. This paper identifies
the need for testbeds like WorldTravel, considers the attributes required
of such testbeds, describes our current testbed in detail, and presents an
initial testbed evaluation. It also describes the actual production-quality
system on which WorldTravel is based.

1 Introduction

To pursue research in “service-oriented” architectures and applications (SOA),
it is important to have available representative service examples and implemen-
tations, an analogous example being the well-known RUBiS eBay-like bench-
mark used to evaluate ideas and implementation methods for multi-tier web
services [1,2]. RUBiS provides a representative back-end database, implemen-
tations of front- and mid-tier services that carry out tasks like searching for
items and bidding on them, and load traces for front-ends that use these ser-
vices. Since RUBiS is open source, researchers can extend or change it, using
it to evaluate implementation ideas or methods for alternative ways to invoke
services [1] and/or implement them, etc. In contrast, the well-known SPEC

A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, pp. 438–452, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

WorldTravel: A Testbed for Service-Oriented Applications 439

benchmark for evaluating compiler technologies and TPC benchmarks for file
systems, transactional services, and web services have as a principal goal to
evaluate existing implementations and assess or compare their performance or
reliability attributes.

Our goal is to enable research in service-oriented architectures, infrastructures
that support their concepts, and applications based on these concepts. Toward
those ends, this paper provides a novel testbed, called WorldTravel, which per-
mits researchers to experiment with the SOA technologies of interest to them,
construct their own SOA applications extending the front-end or back-end ser-
vices of WorldTravel, and use WorldTravel load data to evaluate their implemen-
tations. Specific functionalities of WorldTravel highlighted in this paper are its
methods for synchronous vs. asynchronous service interactions, the distinction
of front-end from back-end services and the various service interactions across
these different kinds of services, and the testbed’s extensibility with respect to
adding new services or changing existing ones. In addition, we differentiate the
services-based approach used in WorldTravel from that taken in multi-tier web
service testbeds like RUBiS [2], and articulate the need for testbeds like it.

In the remainder of the paper, we first define in Section 2 what we mean
by “service-oriented architecture” with respect to the WorldTravel testbed, and
separate it from related concepts like “Web Services”. Section 3 examines other
potential testbeds to determine what qualities and attributes a successful test-
bed should exhibit. Section 4 explains the system we have chosen to model: an
airline fare pricing engine. Section 5 details the implementation of WorldTravel.
Sections 6 and 7 demonstrate how WorldTravel meets the previously-defined
qualities and attributes of a successful testbed. Section 8 discusses future work
to be done on WorldTravel and concludes the paper.

2 Service-Oriented Architecture

Service-oriented architecture, or SOA, is an architectural design pattern in which
an application is composed of loosely-coupled components that export and im-
port services [3]. A service is a function in which the request is posed as a
question, and the response is the answer to that question. In SOA, each service
is specialized to only answer certain types of questions. Applications are built by
composing services with each other statically or, more interestingly, at runtime.

SOA is the architectural equivalent of abstraction. Since each service provider
solves a single problem, this makes it possible to build interesting applications
that perform complex tasks by letting service providers at lower levels solve some
of the problems, thereby freeing the upper-level from having to worry about these
problems.

In the rest of this section we will refine the concept of “service-oriented archi-
tecture” as we use it with the testbed we propose. Our intent is not to constrain
users to a single definition but rather to clarify the broad mindset taken as we
designed the testbed.

440 P. Budny, S. Govindharaj, and K. Schwan

2.1 SOA and Web Services

Since SOA applications typically run in Internet settings, the term SOA is often
linked with “Web Services”, the latter characterizable in multiple ways:

1. web services, noun – a collection of standards including SOAP, XML, WSDL,
UDDI, and WS-*;

2. web service, noun – an architectural design pattern in which programmatic
interfaces allow two applications to communicate directly to each other;
[Web service standards (1.) are being created to support web service archi-
tectures (2.).]

3. web service, noun, adj. – an application constructed using web service stan-
dards (1.) or web service architecture (2.).

Perhaps most commonly, the term “web service” is used somewhat narrowly to de-
scribe “an application designed as a SOA and implemented with ‘web service’ stan-
dards”. When used in this sense, web services are a proper subset of SOA.

2.2 Defining SOA

Having addressed web services, we next discuss the specific qualities beyond the
notion of web services associated with SOA, in part to address some common
misconceptions that derive from the fact that SOA implementations often use
web services [4].

Concept. An application is service-oriented iff it uses certain standards.
Reality. SOA indicates the style in which components of a solution are tied

together, while standards define specific implementations for doing so. Al-
though standards encourage competition and interoperability by making it
easy to switch service providers, this concept is often negated by the use of
proprietary standards for the interconnection of services to promote vendor
lock-in.

Concept. SOAs communicate using XML.
Reality. SOAs can be built using any format to exchange messages and data,

where such alternatives are often used for reasons of improved performance
(e.g., binary formats [5,6,7]) or to support legacy applications.

Concept. SOA precludes the use of RPC [8], RMI [9], or REST [10].
Reality. Each of these invocation protocols have attributes that make inte-

grating them into a SOA difficult, yet such integration is often done. RPC
and RMI are tightly-coupled compile- or link-time protocols integrated into
the middleware methods used by distributed applications. This makes them
most suitable for somewhat ‘static’ components of these applications (e.g.,
core back-end services like the database accesses in RUBiS), and while SOA
encourages adaptability, services invoked using RPC or RMI can certainly
be substituted with only moderate effort. REST, on the other hand, en-
courages transferring data using state, which makes ensuring idempotency
difficult (see Idempotent requests), but is inherently well-suited for stateful
services. With care, it can also be used to implement stateless services.

Concept. SOAs implement service discovery or a service registry.

WorldTravel: A Testbed for Service-Oriented Applications 441

Reality. Runtime service discovery and subsequent service use face difficul-
ties in that it is not reasonable to assume that all providers of services are
‘equal’. As a result, there is much recent research on dealing with service
equivalence or translation, resulting in ontology-based methods for under-
standing degrees of similarity or equality and semantic web-based methods
for doing so [11,12]. Beyond such functional equivalences, also of interest are
performance or reliability differences between services, addressed in part by
recent work on standards in the domain of autonomic computing [13,14].

The high level features of SOA described above are implemented using several
basic techniques:

Composition. SOA is a form of distributed computing in which subtasks are
distributed and treated as blackbox operations, possibly even handled by
third parties. Applications are structured by abstracting and composing ser-
vices vertically to provide desired higher level functionality.1 Composition
is intended to be dynamic, but issues persist concerning the viability and
generalizability of dynamic composition for commercial applications with
required service guarantees.

Descriptive requests. Queries in a SOA should describe the problem to be
answered, not how to solve it programmatically. This means that queries
in SOAs should only be interpretable as questions, not as procedures [16].
(SQL, for instance, is not service-oriented; every SQL command contains a
verb (e.g., SELECT, INSERT, DELETE, etc.) and describes how to manipulate
data. A hypothetical service-oriented database manipulation language would
instead have ‘question’ words like “what” or “how many”.)

Idempotent requests. Since a service answers a question, it is expected that
the answer should not change between requests. However, services will have
finite, dynamic resources, which means that a response involving a resource
may change when the underlying resource has been modified. For stateful
services, responses may differ due to changes of internal states caused by
previous requests, but responses must still be idempotent for a combination
of a request, the state at the time of the request, and the resources involved.

Structured responses. A service’s response must be structured data which
answers the question posed by a request. Arbitrary, unstructured data cannot
make up the entire response.

3 Utility of a SOA Testbed

We developed the WorldTravel testbed for multiple reasons. First, it can provide
a useful basis for experimentation, both with new services and service–service
interactions and with new methods that improve SOA implementations (e.g.,

1 In contrast, horizontal composition, as exemplified by load balancing, MapRe-
duce [15], and many other well-known techniques, is used most often as a way of en-
hancing performance, and is orthogonal to SOA; horizontal composition/distribution
can be used both within a service and between equivalent services.

442 P. Budny, S. Govindharaj, and K. Schwan

improved discovery methods, improved invocation methods, etc.). We also hope
to provide researchers with an environment in which such ideas can be com-
pared, in performance and/or usefulness, but it remains difficult to assess the
performance effects of functionality like runtime service discovery and use, since
‘typical’ behaviors for such actions are not yet known. On the other hand, just
as compiler developers agree on certain workloads to be representative of certain
environments (e.g., selecting certain SPEC benchmarks), for testbeds like World-
Travel, useful request traces and request loads can be derived both from standard
Internet measurements (e.g., diurnal changes in request behavior [17,18]) and in
our case, from load information provided by our corporate partner, Travelport.
A final purpose of the WorldTravel SOA testbed is for it to give rise to a set
of testbeds (developed outside our group) that will display common, defining
characteristics of SOAs.

3.1 Other Potential Testbeds

We are not aware of other SOA testbeds, but point the reader to the following
related efforts that have helped shape WorldTravel and its implementation.

RUBiS is an online auction simulation modeled after eBay [2]. It is built
using a standard three-tier architecture, has a sample database and offers rep-
resentative load traces. Since RUBiS is focused on a single application, bidding,
opportunities exist to extend its back-end (e.g., payment methods) or front-end
(e.g., comparative bidding), but such extensions are difficult to perform because
they must be intimately integrated into the RUBiS implementation. We note
that there are other applications like RUBiS for Java-based multi-tier web ser-
vice implementations, available from companies like IBM, but since they rely
on IBM’s Websphere middleware, they are not suited for constructing a suitable
testbed. Finally, earlier versions of applications like RUBiS are even simpler (e.g.,
PetStore) and are also not useful building blocks for our work.

Java Adventure Builder is a sample application demonstrating web service
standards on the J2EE platform [19]. We considered using it as a basis for our
work, but it does not offer the abstraction necessary to be considered service-
oriented; rather, it is structured using a tightly-coupled three-tier architecture.
Further, because it is built solely on web service standards, exploring alterna-
tive standards in its context would imply a complete re-implementation of its
functionality. Lastly, the data set provided with it is quite small and is not
representative of a fully functioning SOA.

Nutch is a search engine based on Lucene Java, an indexing and search
back-end [20]. Search engines certainly constitute an interesting class of service
providers, but the open source Nutch implementation does not use service-based
interactions with the associated web crawler. Instead, it requires the index to
be produced by users based on crawling their own set of websites. It does offer
some plug-ins for media-type parsing, data retrieval, querying and clustering, but
those plug-ins do not use standard service interfaces or SOA methods. Finally, it
does not offer other interesting interfaces, such as those concerning ad generation

WorldTravel: A Testbed for Service-Oriented Applications 443

and placement, etc. Hadoop is a related effort that enables end-users to construct
their own MapReduce functions to assist in fast, scalable searching [21].

Intel Mash Maker is a tool for allowing non-expert users to create mashups, or
queries on two or more related data sets [22]. Although it is primarily designed
to take in semi-structured data, it could also take in fully-structured data (i.e.,
consume services). It could also be construed as a service provider in its own
right. However, its implementation within a single web browser reduces it to
being a single service consumer/provider, rather than being a complete SOA.
The fact that it is not open source discourages its use research environments.

Yahoo! Pipes is a web application providing users with simple building blocks
to aggregate web feeds, web pages, and other services, manipulate and com-
bine content to create new web applications, and publish the resulting appli-
cations [23]. Like Mash Maker, it can take in structured data, and it provides
services by offering them in a publicly-available fashion. However, it has a limited
set of sources for structured data; data from other sources can only be fetched
as unstructured strings. Further, since only basic data manipulation functions
are provided, it would be difficult to build a practical business application with
the available functions. It is also not open source and is hosted solely by Yahoo!,
therefore limiting its use in research environments.

Apache Tuscany is an infrastructure for creating SOAs based on specifications
defined by the Open SOA Collaboration [24], but is not itself a SOA or a service-
oriented application.

httperf and StreamGen are tools focused on specific functionality useful for
testbeds like WorldTravel, benchmarks like RUBiS, and streaming applications
like those developed in the multimedia domain [25] and for database query-
structured business monitoring or compliance codes [26,27,28]. Their role is to
make it easy to generate request streams using standard loads (e.g., normal or
Poisson distributions) and/or to offer non-standard loads acquired from trace
files in a standard form. We use both in our research and with WorldTravel.

3.2 Criteria for a Testbed

In accordance with the issues raised in the previous section, we articulate the fol-
lowing criteria for our WorldTravel and other useful SOA testbeds. They should:
– be executable, complex, functional applications built from multiple compos-

able units where each unit should be a service provider and/or consumer,
and every service provider should be meaningful on its own, separately from
the services built on top of it;

– be extensible, particularly because a key element of SOA is its support for
composition of services to provide new functionality; thus, for our SOA test-
bed, it should be easy to construct new applications in its context and with
its implementation;

– come with large data sets, to better represent realistic commercial applica-
tions that deal with large volumes of data;

– be open source;
– be reusable, not purposed for a single experiment or class of experiments;

444 P. Budny, S. Govindharaj, and K. Schwan

– be easy to integrate with other tools, monitors, and benchmarks, and easy
to change to permit experimentation with alternative composition methods,
new discovery methods, etc.; and

– not rely heavily on specific standards, so they can support and be used to
evaluate alternatives.

4 Reference System

As a reference domain, we use the airline travel industry; specifically, systems
that price and book airline tickets [29], which are termed global distribution
systems (GDS). A GDS provides services that include pricing and ticket sales
for major airlines, independent travel agents, select airline sites (e.g., Delta Air
Lines in the case of our corporate partner, Travelport), and travel websites like
Expedia or Orbitz, the latter permitting customers to independently search for
suitable fares and purchase airline tickets.

4.1 About Airline Fares

Prices for airline flights are not static; they are calculated dynamically from
rules. These rules are collected and published several times daily. During the
∼ 11 months in which tickets for a flight are available, airlines modify the rules
governing the pricing of that flight to reflect supply and demand. In addition,
pricing rules utilize run-time input such as:
– the date and time of the desired flight;
– the travel class (i.e., first, business, or economy, which are normally broken

into as many as 20 “buckets”);
– the number of seats currently available; and
– various discounts and restrictions that may apply (e.g., senior citizen dis-

counts, advance purchase requirements, blackout dates, etc.).
Pricing a flight is a matter of finding the combination of discounts and restric-
tions that yield the lowest price. In fact, the GDS may be liable for any differences
in price from what the airline quotes as the correct price. Responses must be
returned within a well-defined time and with well-defined complexity (e.g., num-
ber of fare options returned) governed by SLAs negotiated with services that use
the GDS (e.g., Priceline).

4.2 About Worldspan

Our particular architecture comes from Worldspan by Travelport, a GDS whose
users include Delta Air Lines, Expedia, Orbitz, Hotwire, and Priceline. These re-
tailers use Worldspan to calculate ticket prices, check seat availability, and book
and purchase tickets. Worldspan in turn relies on airline fare consolidators to
provide a data feed for updates to pricing rules, and also communicates directly
with airlines to check seat availability and book tickets.

Worldspan serves an average of 11.6 million requests per day, with an average
response time of ∼ 2 seconds. The data set is 3 GB for domestic (i.e., U.S.

WorldTravel: A Testbed for Service-Oriented Applications 445

(a) Worldspan’s internal architecture (b) WorldTravel’s GDS architecture

Fig. 1. WorldTravel uses a simplified version of Worldspan’s architecture

and Canada) pricing data, which is updated three times daily, and 13 GB for
international, updated five times daily.2

Worldspan’s architecture is based around a 1500-node farm used to process
pricing queries; each node runs two query processes. Pricing data is stored in
four load-balanced SQL database servers, which are accessed in two different
ways. First, after updating the database with new prices, data for frequently-
used markets is loaded into a 1.5 GB cache file which is then pushed to the
nodes in the farm. This cache file is read into shared memory and is used by the
two query processes. Second, the databases serve requests on-line for data not
contained in the cache file.

5 Implementation

The WorldTravel testbed is based on a simplified version of Worldspan and the
systems with which it interacts. It has been designed to meet the aforementioned
goals of a SOA testbed.

The WorldTravel design and implementation are deliberately straightforward
and limited in scope and complexity. For instance, query processes do not have
caches, so that data is pulled from the database on every request. This also
makes it easy to experiment with alternative caching methods and implemen-
tations. The GDS also does not have the ability to process data updates or
sell tickets, which makes it possible to experiment with alternative ticketing or
payment services. The front-end uses a standard web server, but the mid-tier
request distribution service uses open source web technologies rather than the
proprietary middleware from Delta Air Lines used in our earlier work [30] or
IBM’s commercial MQ middleware used by Worldspan [31].

WorldTravel is currently available at http://www.cc.gatech.edu/systems/
projects/worldtravel/.
2 International pricing queries also require the domestic data, so the data for interna-

tional queries is actually 16GB and updated eight times daily.

http://www.cc.gatech.edu/systems/
projects/worldtravel/

446 P. Budny, S. Govindharaj, and K. Schwan

5.1 Overview

As a service-oriented application, we make a distinction between a travel website,
which provides an interface for users to easily search for fares, and a GDS, which
performs the task of pricing fares. A GDS may provide the same information
to many different websites or to other clients, and the price of a flight can be
calculated by anyone with access to the data. The result is a strong incentive
for use by multiple end-user services (e.g., those provided by Expedia, Priceline,
and the airlines).

One of the complexities of service-oriented applications is that it may be
unknown how long a request will take to process. As a result, asynchronous op-
erations are common in SOA. Acknowledging this fact and for generality, World-
Travel implements multiple communication methods between services: (1) asyn-
chronous with polling, (2) asynchronous with call-backs (i.e., event-based), and
(3) synchronous, implemented as a wrapper around a polling interface. The ser-
vices we implemented in WorldTravel all use asynchronous communication with
call-backs, which frees the applications from having to keep state about ongoing
queries and makes it easier to scale them. It also lets us potentially deliver re-
sponses to a different node than the one that originated the request, thus further
enhancing scalability. The synchronous wrapper, on the other hand, is provided
for simple applications to use, and frees them from having to handle multiple
connections, instead enabling a simple call-and-response invocation style much
like HTTP or other web protocols.

To protect Worldspan’s intellectual property, we have applied transformations
to the data they have provided so that it cannot be used to price actual flights.
Ersatz prices are generated and can be used by other services (e.g., payment
services or price comparison services). Unlike Worldspan’s optimized implemen-
tation, which is tuned using domain knowledge about the pricing rules, the price
search we have implemented is much more straightforward. This gives users the
freedom to tune the engine as desired (e.g., by optimizing the search order, mul-
tithreading, etc.). This is because our primary goal is to provide a representative
workload on a system constructed using SOA principles; while prices calculated
by WorldTravel may be artificial due to the data transformations, the system
as a whole still exhibits the same characteristics as Worldspan’s functioning
application.

WorldTravel is implemented as several distinct components. A minimum set-
up requires five nodes: three for the GDS (database server, query node, and load
balancer), one for the travel website, and one for the load generator. The load
balancer and travel website are implemented in Apache Geronimo; the query
node in plain Java. The database server we use is MySQL, but any compatible
database can be substituted.

5.2 GDS

The GDS consists of a database, one or more query nodes, and a load balancer.
The load balancer acts as the front-end of the pricing service, accepting requests

WorldTravel: A Testbed for Service-Oriented Applications 447

and returning responses once they have been calculated. Inside the GDS, the
load balancer communicates asynchronously with the query nodes via queues.
The use of queuing to pass queries from the load balancer to query nodes and
back is again modeled on Worldspan’s architecture, which uses reliable queues
to guarantee message delivery. By using multiple queues and a “partitioning”
load balancer, Worldspan can also segment their query nodes for specialization
(e.g., differing caches representing different markets).

5.3 Travel Website

The WorldTravel travel website is a generic clone of websites like Expedia or
Orbitz. The website is also asynchronous, much like a real travel website. Upon
submitting a pricing request, users are shown a page asking them to wait, which
periodically refreshes to check if a response has arrived at the web server. If so,
the response is processed and displayed; if not, the wait page is displayed again.

5.4 Customer

The customer is represented by a load generator, which generates requests to
the travel website. The loads come from request traces provided by Worldspan,
and they reflect some of the complexities particular to travel websites, such as
geographical searches that vary based on time of day due to global users being
in disparate time zones.

6 Testbed Analysis

By choosing a reference application and designing a system with the criteria
mentioned earlier in mind, we are able to produce a system capable of serving
as a SOA testbed. WorldTravel successfully emulates a complex, multi-layer
system, structured using service-oriented architecture, which means the GDS
and the travel website are each independent implementations, meaningful and
useful without other applications using them or based on them. A multitude of
interesting extensions and changes are possible, as discussed next.

WorldTravel can be expanded in many ways, and it offers rich possibilities
for composition with other services. The testbed can be extended with front-end
services or other well-known tools, such as Java Adventure Builder, Intel Mash
Maker, Nutch, etc., or with creative new applications. One idea currently being
pursued by our group is the addition of services like event ticketing and hotel
booking, to create a system which can handle multiple reservations (e.g., an event
ticket, a hotel, and a flight) in a transactional manner, guaranteeing that simul-
taneous reservations will be booked successfully. In addition, several components
used at Worldspan are absent in our current testbed. They include back-end ser-
vices like seat availability, ticket purchasing, and pricing rule updating. These,
as well as internal components like data caching and load segmentation, can
be added to expand the scope and depth of the simulation. Its composability

448 P. Budny, S. Govindharaj, and K. Schwan

with other services at both the front- and back-ends is what makes WorldTravel
suitable to act as a SOA testbed.

A variety of useful experiments can be built on top of WorldTravel. As a
whole, WorldTravel can be used for research into the complexities of designing
and managing SOA systems, such as SLA management and enforcement, service
discovery and equivalency, etc. The load data provided with WorldTravel has
interesting properties that are well suited to experiments with load distribution
and autonomic management [32]. Finally, the services provided by WorldTravel
can be composed with other services, and are suitable for research into dynamic
composition, as is done by Yahoo! Pipes, for example.

WorldTravel is built with open source technologies, to enable changes and ex-
tensions to its implementation. This includes Apache Geronimo, JMS, MySQL,
etc. Its transparent design encourages modification and integration with other
tools and applications, such as monitoring infrastructures used to conduct ex-
periments or enable system performance tracking and management.

In order to serve as a testbed for a broad range of SOA implementations, World-
Travel uses a generic architecture and refrains from tightly integrating with any
specific platforms, tools, or standards. Specifically, we have not adopted web
service standards (WS-*); the system can be integrated with these standards as
validation of their applicability and utility, but does not rely on them, thereby
making WorldTravel suitable for evaluating future standards, as well. A few spe-
cific standards used in WorldTravel include: XML, to encode requests and re-
sponses, which will enable future extensions that analyze and modify the semantic
information contained within; SOAP, as a communications protocol; and WSDL,
to identify service endpoints. Each of these standards were chosen to maximize
utility and simplify the implementation of WorldTravel, but none are essential to
its operation; each can be substituted in order to evaluate alternative standards
or to integrate with other tools and applications which use different standards.

Perhaps most importantly, WorldTravel is distributed with a large data set
generously provided by Worldspan. This includes anonymized pricing data that
covers several major airlines, regional airlines, and small competitive low-cost
airlines. The total size of this data is > 1 GB. When we implement data updates,
Worldspan will also provide us with additional data representative of typical
update feeds. Finally, Worldspan has also provided request traces, which are
used to generate realistic traffic patterns on the travel website and the GDS.

7 Experimental Evaluation

In addition to describing how WorldTravel is designed to meet the abstract cri-
teria for an effective testbed, we must also demonstrate that it represents some
of the complexities of commercial applications, making it useful as a SOA test-
bed. This task is complicated by the fact that some behaviors do not manifest
themselves without additional software and architecture, such as caching, load
segmentation, and more advanced query processing. However, the data used with
WorldTravel has intrinsic properties, and we can demonstrate that the World-
Travel implementation displays behaviors that relate to these properties. This

WorldTravel: A Testbed for Service-Oriented Applications 449

Table 1. Number of fares filed per market

Origin airport Destination airport Number of fares
HNL (Honolulu, HI) SEA (Seattle, WA) 4338
HNL (Honolulu, HI) PDX (Portland, OR) 3996
OGG (Kahului, HI) SEA (Seattle, WA) 3840
OGG (Kahului, HI) PDX (Portland, OR) 3782
HNL (Honolulu, HI) SAN (San Diego, CA) 3607
OGG (Kahului, HI) SAN (San Diego, CA) 3540
KOA (Kailua-Kona, HI) SEA (Seattle, WA) 3538

...
RNO (Reno, NV) WRL (Worland, WY) 1
SJU (San Juan, PR) YQK (Kenora, ON, Canada) 1
STS (Santa Rosa, CA) TUP (Tupelo, MS) 1
STS (Santa Rosa, CA) TYS (Knoxville, TN) 1
STS (Santa Rosa, CA) VPS (Eglin AFB, FL) 1
STT (St. Thomas, USVI) YQK (Kenora, ON, Canada) 1
YEV (Inuvik, NWT, Canada) YOQ (Ottowa, ON, Canada) 1

makes WorldTravel suitable for testing solutions pertaining to client request–
driven applications with varying response costs and complexities.

One such property is that not all markets (that is, pairs of origin and destina-
tion airports) have the same number of fares filed. Airlines may file short-lived
fares in small markets as a way of enacting discount sales.3 They may also file
many fares in a single market to implement complex pricing rules. A quick ex-
amination of the database, shown in Table 1, shows that this distribution of
fares among markets exhibits a strong geographical bias; the markets with the
most fares in the database are all Hawaiian airports, while the markets with the
fewest fares are mostly small airports.

We construct a simple test in which we measure the time taken by a query
node to process a request, indexed by the number of matching fares available
in the database. We augment WorldTravel to report the amount of time spent
handling a request in the query processor. For the experiment, we randomly
choose markets to request, testing both markets which have few airlines filing
fares (typically 1 to 3 airlines) and which have many airlines filing fares (increas-
ing as the number of fares increases, up to 7). After an initial request to ensure
that the data has been cached by the database, we make several requests and
calculate the average processing time. Table 2 on the next page shows the results
of this experiment.

The results demonstrate a correlation between the number of fares filed in
the requested market and the time required to process a request. Since there
3 This is possible even when there is no direct flight between the two airports; pricing

data and flight data are strictly separate. A single fare may be used to price multiple
flights with connections, while a single itinerary may be priced as a combination of
fares representing one or more connections.

450 P. Budny, S. Govindharaj, and K. Schwan

Table 2. Time taken to process a request versus market

(a) Markets with the most airlines pub-
lishing fares

Number Avg. time to
Market of fares process(ms)

AVL–LEX 50 40.8
GEG–IND 100 42.8
GSO–YTO 200 47.3
BOI–SJU 305 51.0
HNL–MEM 402 53.2
EWR–OGG 518 58.5
LIH–PDX 1891 105.2

(b) Markets with the fewest airlines pub-
lishing fares

Number Avg. time to
Market of fares process(ms)

TWF–VLD 50 40.0
SJU–SLK 100 40.5
MBS–OGG 200 43.3
OGG–VPS 302 47.7
BTR–OGG 405 49.7
JHM–PDX 506 52.8
ITO–PDX 1748 99.3

is also a correlation between market geography and number of fares filed, we
can conclude that the processing time for a request is affected by the market
of the request. This could be exploited to provide different processing methods
for requests that are expected to require more processing time based on their
geography. Indeed, Worldspan sees this effect on a much greater scale: queries for
international markets have up to four times as much data, and their processing
times are significantly higher. In their production system, therefore, Worldspan
separates international queries from domestic queries and uses faster machines
to process international queries in order to avoid service timeouts.

The simple experiment discussed above demonstrates that the WorldTravel
testbed exhibits behavior much like Worldspan’s application. This constitutes
initial evidence that the testbed is suitable for testing and analyzing techniques
and solutions of use to to Worldspan and other real-world systems.

8 Conclusions and Future Work

This paper presents the WorldTravel testbed for SOA architecture investigations
and for constructing and experimenting with SOA applications. The paper de-
fines “service-oriented architecture” and its distinction from “web services”, and
it shows that the WorldTravel testbed can act both as a clean model for SOA
and as a common ground for promoting and understanding future research and
applications in this domain. The WorldTravel simulation system is based on an
actual class of commercial applications in the airline travel industry, and it is
constructed to exemplify the characteristics of SOA. An analysis of the current
testbed demonstrates that it meets key SOA requirements.

Because we have simplified Worldspan’s architecture in order to realize an eas-
ily distributed and extensible system, there are many opportunities for extending
it. They include both those used in commercial settings like at Worldspan and
new creative front- or back-end services that expand the testbed with new fea-
tures and additional functionality. Also missing for this initial implementation
is an evaluation of its composability with existing SOA-based services, includ-

WorldTravel: A Testbed for Service-Oriented Applications 451

ing those that are publicly available. We are currently undertaking this task.
Further, we will also attempt to integrate other applications often cited as be-
ing service-oriented, such as Java Adventure Builder or Intel Mash Maker, to
demonstrate that many service-oriented applications can be integrated into the
testbed. Finally, we will explore how the various standards for managing SOAs
(e.g., web service standards, Tuscany, etc.) can be applied to the testbed.

Acknowledgments

We are most grateful to Sameh Abdelaziz and his team at Worldspan for their
partnership and cooperation in allowing us access to their systems, and for pro-
viding us with documentation about the airline industry, sample data, and re-
quest traces that capture the complexity of the problems occurring in realistic
enterprise applications. The authors would also like to thank Richard Bailey for
his help in proofreading the paper.

References

1. Cecchet, E., Marguerite, J., Zwaenepoel, W.: Performance and scalability of EJB
applications. In: Proceedings of the 17th ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, pp. 246–261 (2002)

2. Rice University (RUBiS), http://rubis.objectweb.org/
3. Rotem-Gal-Oz, A.: What is SOA anyway? http://rgoarchitects.com
4. Kodali, R.R.: What is service-oriented architecture? JavaWorld.com (June 2005)
5. Bustamante, F., Eisenhauer, G., Schwan, K., Widener, P.: Efficient wire formats for

high performance computing. In: Supercomputing, ACM/IEEE 2000 Conference,
p. 39 (2000)

6. Chiu, K., Devadithya, T., Lu, W., Slominski, A.: A binary XML for scientific appli-
cations. In: E-SCIENCE 2005: Proceedings of the First International Conference on
e-Science and Grid Computing, pp. 336–343. IEEE Computer Society, Washington
(2005)

7. Seshasayee, B., Schwan, K., Widener, P.: SOAP-binQ: High-performance SOAP
with continuous quality management. In: Distributed Computing Systems, Pro-
ceedings. 24th International Conference, pp. 158–165 (2004)

8. Nelson, B.J.: Remote procedure call. PhD thesis, Carnegie Mellon University, Pitts-
burgh, PA, USA (1981)

9. Sun Microsystems (Remote method invocation),
http://java.sun.com/javase/technologies/core/basic/rmi/index.jsp

10. Fielding, R.T.: Representational state transfer (REST). In: Architectural Styles
and the Design of Network-based Software Architectures. University of California,
Irvine (2000)

11. Clerkin, P., Cunningham, P., Hayes, C.: Ontology discovery for the semnatic web
using hierarchical clustering (2001)

12. Sycara, K., Paolucci, M., Ankolekar, A., Srinivasan, N.: Automated discovery, in-
teraction and composition of Semantic Web services. In: Web Semantics: Science,
Services and Agents on the World Wide Web, pp. 27–46 (2003)

http://rubis.objectweb.org/
http://rgoarchitects.com
http://java.sun.com/javase/technologies/core/basic/rmi/index.jsp

452 P. Budny, S. Govindharaj, and K. Schwan

13. Zhang, L., Ardagna, D.: SLA based profit optimization in autonomic computing
systems. In: ICSOC 2004: Proceedings of the 2nd international conference on Ser-
vice oriented computing, pp. 173–182. ACM, New York (2004)

14. Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Pruyne, J.,
Rofrano, J., Tuecke, S., Xu, M.: Web services agreement specification (WS-
Agreement)

15. Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large clusters.
In: OSDI 2004: Proceedings of the 6th conference on Symposium on Opearting
Systems Design & Implementation, p. 10. USENIX Association, Berkeley (2004)

16. He, H.: What is service-oriented architecture. XML.com (September 2003)
17. Shannon, C., Moore, D., Keys, K., Fomenkov, M., Huffaker, B., Claffy, K.: The

internet measurement data catalog. SIGCOMM Comput. Commun. Rev. 35(5),
97–100 (2005)

18. Sripanidkulchai, K., Maggs, B., Zhang, H.: An analysis of live streaming workloads
on the internet. In: IMC 2004: Proceedings of the 4th ACM SIGCOMM conference
on Internet measurement, pp. 41–54. ACM, New York (2004)

19. Sun Microsystems (Java adventure builder reference application),
https://adventurebuilder.dev.java.net/

20. Apache Software Foundation (Nutch), http://lucene.apache.org/nutch/
21. Apache Software Foundation (Hadoop), http://hadoop.apache.org/core/
22. Ennals, R.J., Garofalakis, M.N.: MashMaker: Mashups for the masses. In: SIG-

MOD 2007: Proceedings of the 2007 ACM SIGMOD international conference on
Management of data, pp. 1116–1118. ACM, New York (2007)

23. Yahoo! (Yahoo! Pipes), http://pipes.yahoo.com/
24. Apache Software Foundation (Apache Tuscany),

http://incubator.apache.org/tuscany/
25. Li, M.L., Sasanka, R., Adve, S., Chen, Y.K., Debes, E.: The alpbench benchmark

suite for complex multimedia applications. Iiswc 0, 34–45 (2005)
26. Kumar, V., Cai, Z., Cooper, B.F., Eisenhauer, G., Schwan, K., Mansour, M.,

Seshasayee, B., Widener, P.: Implementing diverse messaging models with self-
managing properties using IFLOW. In: IEEE International Conference on Auto-
nomic Computing, ICAC 2006, pp. 243–252 (2006)

27. Mosberger, D., Jin, T.: Httperf—a tool for measuring web server performance.
SIGMETRICS Perform. Eval. Rev. 26(3), 31–37 (1998)

28. Mansour, M., Wolf, M., Schwan, K.: StreamGen: A workload generation tool for
distributed information flow applications. In: ICPP 2004: Proceedings of the 2004
International Conference on Parallel Processing, pp. 55–62. IEEE Computer Soci-
ety, Washington (2004)

29. Mansour, M., Schwan, K., Abdelaziz, S.: I-Queue: Smart queues for service manage-
ment. In: ICSOC 2004: Proceedings of the 2nd international conference on Service
oriented computing, pp. 252–263. ACM, New York (2006)

30. Kumar, V., Cooper, B.F., Cai, Z., Eisenhauer, G., Schwan, K.: Resource-aware dis-
tributed stream management using dynamic overlays. In: ICDCS 2005: Proceedings
of the 25th IEEE International Conference on Distributed Computing Systems, pp.
783–792. IEEE Computer Society, Washington (2005)

31. IBM (WebSphere MQ), http://www-306.ibm.com/software/integration/wmq/
32. Kumar, V., Schwan, K., Iyer, S., Chen, Y., Sahai, A.: The state-space approach

to SLA-based management. In: IEEE/IFIP Network Operation & Management
Symposium, NOMS (2008)

https://adventurebuilder.dev.java.net/
http://lucene.apache.org/nutch/
http://hadoop.apache.org/core/
http://pipes.yahoo.com/
http://incubator.apache.org/tuscany/
http://www-306.ibm.com/software/integration/wmq/

TCP-Compose� – A TCP-Net Based Algorithm for
Efficient Composition of Web Services Using

Qualitative Preferences�

Ganesh Ram Santhanam, Samik Basu, and Vasant Honavar

Department of Computer Science, Iowa State University, Ames IA 50011, USA
{gsanthan,sbasu,honavar}@cs.iastate.edu

Abstract. In many practical applications, trade-offs involving
non-functional attributes e.g., availability, performance play an important
role in selecting component services in assembling a feasible composition,
i.e., a composite service that achieves the desired functionality. We present
TCP-Compose�, an algorithm for service composition that identifies, from
a set of candidate solutions that achieve the desired functionality, a set of
composite services that are non-dominated by any other candidate with
respect to the user-specified qualitative preferences over non-functional
attributes. We use TCP-net, a graphical modeling paradigm for repre-
senting and reasoning with qualitative preferences and importance. We
propose a heuristic for estimating the preference ordering over the differ-
ent choices at each stage in the composition to improve the efficiency of
TCP-Compose�. We establish the conditions under which TCP-Compose� is
guaranteed to generate a set of composite services that (a) achieve the
desired functionality and (b) constitute a non-dominated set of solutions
with respect to the user-specified preferences and tradeoffs over the non-
functional attributes.

1 Introduction

Service-oriented computing [1,2,3] offers a powerful approach to assemble com-
plex distributed applications from independently developed software components
in many application domains such as e-Science, e-Business and e-Government.
Consequently, there is a growing body of work on specification, discovery, se-
lection, and composition of services. The focus of this paper is on service com-
position, i.e., the problem of assembling a composite service (goal service) from
component services from functional and non-functional specifications.

Functional requirements specify the desired goal service functionality. Bar-
ring a few notable exceptions [4,5,6,7], much of the work on service composition
has focused on algorithms for assembly of composite services from functional
specifications. Some of the major approaches to service composition based on

� This work is supported in part by NSF grants CNS0709217, CCF0702758 and
IIS0711356.

A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, pp. 453–467, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

454 G.R. Santhanam, S. Basu, and V. Honavar

functional specifications include: AI planning [8,9,10,11], labeled transition sys-
tems [12,13,14], Petri nets [15], among others. (The interested reader is referred
to [16,17,18] for surveys).

Non-functional requirements refer to aspects such as security, reliability, per-
formance, and cost of the goal service. For example, among the composite ser-
vices that achieve the desired functionality, a user might prefer a more secure
service over a less secure one; or one with a lower cost over one with a higher
cost. Such preferences may be quantitative or qualitative. In many settings, a
user might need to trade off one non-functional attribute against another (e.g.,
performance against cost); In others, it might be useful to assign relative impor-
tance to different non-functional attributes (e.g., security being more important
than performance). Hence, there is an urgent need for principled methods that
incorporate consideration of user-specified preferences with respect to the non-
functional attributes, and the relative importance of the different non functional
attributes. Of particular interest are algorithms that ensure that a set of solu-
tions generated constitute a non-dominated set. We say that a set N of composite
services is a non-dominated set if there is no composite service that is not in N
that is strictly preferred over one or more of the composite services in N with
respect to a set of user-specified preferences over non-functional attributes (and
their relative importance).

Against this background, we present a procedure, TCP-Compose� for generat-
ing, given (i) a set of functional specifications; (ii) a set of preferences with re-
spect to non-functional attributes and their relative importance; (iii) a repository
of candidate services with specified input-output behaviors and non-functional
attributes; and (iv) any sound algorithm for assembling, from a repository of
component services: a set of composite services that (a) achieve the desired func-
tionality and (b) are non-dominated with respect to the user-specified preferences
over non-functional attributes by any other composite service in the solution set
of the algorithm used for functional specification based service composition.

TCP-Compose� makes use of Tradeoff-enhanced Conditional Preference Net-
work (TCP-net) [19], a variant of Conditional Preference Network [20], a frame-
work for representing and reasoning with qualitative preferences. CP -net
provides a compact representation of user-specified preferences with respect to
non-functional attributes, by taking advantage of the independence or condi-
tional independence of user preferences with respect to an attribute from prefer-
ences with respect to other attributes. TCP -net extends the CP-net framework
by allowing the specification of the relative importance of different attributes
(e.g., security is more important than cost).

TCP-Compose� uses a heuristic estimate of the preference ordering of alternative
partial solutions to a service composition problem that corresponds to different
choices of each component service, to improve the efficiency of search for a set of
non-dominated solutions. We establish the conditions under which the proposed
algorithm is guaranteed to find a set of non-dominated compositions with respect
to user-specified qualitative preferences over possible values of each non-functional
attribute and the relative importance of different non-functional attributes.

TCP-Compose� – A TCP-Net Based Algorithm 455

s0BookBuy

BookPay

Shipment

ShipmentPay

{b1,b2}

{p1,p2,p3}

{s1,s2}

{q1,q2,q3}

s1

s2

s3

Fig. 1. Goal Service

The rest of the paper is organized as follows: Section 2 introduces the problem
of service composition from user-specified functional and non-functional specifi-
cations; Section 3 describes the key aspects of CP-net and TCP-net formalisms
used for representing and reasoning about user preferences with respect to the
non-functional attributes and their relative importance, and outlines the appli-
cation of TCP-nets to guide service composition based on non-functional re-
quirements; Section 4 describes the algorithm TCP-Compose� and establishes the
conditions under which TCP-Compose� is guaranteed to find the set of non-
dominated compositions with respect to user-specified qualitative preferences
over possible values of each non-functional attribute and the relative importance
of different non-functional attributes; Section 5 concludes with a summary, dis-
cussion of related work, and an outline of some directions for further research.

2 Problem Specification

We introduce the problem of service composition from user-specified functional
and non-functional requirements using a simple example. Suppose a user is inter-
ested in assembling a goal service G shown in Fig. 1 from a repository of services
R = {b1, b2, p1, p2, p3, s1, s2, q1, q2, q3}–where bi’s are book buying services, si’s
are shipment services and pi’s and qi’s are payment services that can work with
bi’s and si’s respectively. Suppose (p3, q2), (b2, s2), (b2, q2), (b2, q3) are function-
ally incompatible and hence cannot be used together in any valid composition.
The goal service should allow the user to buy book(s) from an online store, pay
the store through a credit card service, arrange for shipping the book through a
shipment service and pay for the shipping. In Fig. 1, each of the steps in the goal
service is annotated with the set of services from the repository that provide the
respective functionality.

What we have so far is an informal specification of a service composition task
based on user-specified functional requirements. We now turn to specification
of user preferences with respect to three non-functional attributes: reliability,
security, and availability of the goal service denoted by R, S, and A respectively.

456 G.R. Santhanam, S. Basu, and V. Honavar

Table 1. Domain Definition

Preference Variable Domain of Preference Variable

Reliability(R) {LR, HR}
Security (S) {LS , MS , HS}
Availability(A) {LA, HA}

R A

S

HR LR HA LA

LS MS HS

HS MS LS

HR

LR

(a) CP-net: Preferences

R A

S

HA LAHR LR

LS MS HS

HS MS LS

HR

LR

(b) TCP-net: Preferences and Importance

Fig. 2. Example CP-net and TCP-net

Suppose the available services can have Low (LR) or High (HR) reliability; Low
(LS), Medium (MS) or High (HS) security; and Low (LA) or High (HA) avail-
ability as shown in Table 1. Assume that the following non-functional attributes
are known of each of the component services: b1 : LR, b2 : HR, p1 : LS, p2 :
MS , p3 : HS , s1 : LA, s2 : HR, q1 : LS, q2 : MS, q3 : HS .

Now suppose that the user’s preference with respect to security level is not
independent of the reliability of the service. Suppose further that when the
reliability is low, the user prefers high security; and when reliability is high
the user is willing to settle for lower security (say, because of the prohibitive
cost of achieving both high security and reliability); Suppose further that the
user prefers high availability to low availability irrespective of the reliability and
security of the service. Such information can be represented concisely using a
CP-net with three nodes denoting the three attributes R, S, and A. The single
headed arrows (e.g., from R to S) denote dependence among user preferences
with respect to the attributes under consideration. The qualitative preferences
of the user with respect to each attribute (conditioned on the preferences over
attributes that such preference is dependent on) are specified by the conditional
preference table (CPT) that annotate each node (Fig. 2(a)). Suppose further
that the user attaches greater importance to availability relative to security. Such
assertions of relative importance of one attribute over another are represented
using double headed arrows in TCP-net shown in Fig. 2(b). The information
regarding preferences with respect to R, S, and A in Fig. 2(b) are the same as
those shown in Fig. 2(a).

Given the preferences with respect to the non-functional attributes and their
relative importance, our task is to identify from the solution space, i.e., the set
of composite services that satisfy the user-specified functional requirements, a
subset that forms a non-dominated set with respect to a set of user-specified

TCP-Compose� – A TCP-Net Based Algorithm 457

preferences over non-functional attributes (and tradeoffs among them) that are
captured by a TCP-net. It should be noted that a unique optimal composition
exists only when the corresponding TCP-net induces a total ordering over the
set of candidate feasible composite services, that is, the set of composite services
that satisfy the user-specified functionality. TCP-Compose� does not assume the
existence of a total order induced by the TCP-net over user-specified preferences
and relative importance among attributes. Instead, we return a set of feasible
composite services that constitute a non-dominated set with respect to the TCP-
net that reflects the users preferences and tradeoffs with respect to the non-
functional attributes.

3 Representing Preferences Using CP-Nets and
TCP-Nets

We first introduce the basic notions of preference relation, preferential indepen-
dence under the ceteris paribus1 semantics and the notion of relative importance
among variables. We start with a set of preference variables V = {X1, . . . Xn}
with finite domains D(X1), . . . D(Xn).

An outcome o is a complete assignment of all variables Xi in V . The set of
outcomes is O ⊆ D(X1)×D(X2)× . . .×D(Xn). A preference ranking is a total
preorder over the set of outcomes O. We denote the fact that outcome o1 ∈ O is
at least as preferred (strictly preferred) to outcome o2 ∈ O by o1 � o2(o1 � o2).
We denote the fact that the user is indifferent between outcomes o1 and o2 by
o1 ∼= o2 if neither o1 � o2 nor o2 � o1.
Preferential Independence. In order to understand the need for preferential
independence, we note that the set of possible outcomes is exponential in the
number of preference variables n (where n = |V |). Further, the set of possible
total preorders is doubly exponential in n. A set of variables X ⊆ V is prefer-
entially independent of Y = V −X if for all possible values of Y , the preference
order among various assignments to X is the same. Formally, a set of variables
X is preferentially independent of the set of variables Y = V − X iff for all
x1, x2 ∈ D(X); y1, y2 ∈ D(Y) (where we use D(·) to denote the domain of set
of variables also), we have: x1y1 � x2y1 iff x1y2 � x2y2. We say that x1 is
preferred to x2 ceteris paribus (all else being equal).
Conditional Preferential Independence. Let X, Y, Z be a partition of V
and let x1, x2 ∈ D(X); y1, y2 ∈ D(Y) and z ∈ D(Z). X and Y are condition-
ally preferentially independent of each other given z iff, ∀x1, x2, y1, y2 we have:
x1y1z � x2y1z iff x1y2z � x2y2z.
Relative Importance. In Fig. 2(a), we observe that the variables availability
and reliability are preferentially independent. Thus, the CP-net, does not assert
whether an outcome with high availability and low reliability is preferred to one
with low availability and high reliability: all we know from the CP-net is that
higher availability and higher reliability are preferred. If we have the additional
1 Ceteris paribus is a Latin phrase that means ”all other things being equal”.

458 G.R. Santhanam, S. Basu, and V. Honavar

information that although reliability and availability are preferentially indepen-
dent, reliability is more important to the user than availability, we can infer that
given a choice, the user would settle for lower availability instead of compromis-
ing on reliability. Formally, let X and Y be a pair of preferentially independent
variables given V −{X, Y }. We say that X is relatively more important than Y ,
denoted by X � Y , if

∀w. w ∈ D(W), where W = V − {X, Y }, ∀x1, x2 ∈ D(X), ∀ya, yb ∈ D(Y)
x1 � x2 ⇒ x1yaw � x2ybw.

Note that the preference x1yaw � x2ybw holds even if yb � ya, since any
change for the worse in Y is preferred to any change for the worse in X . A
conditional version of relative importance is defined analogously as follows. Let
X and Y be a pair of preferentially independent variables given V − {X, Y }
and z ∈ D(Z). We say that X is conditionally relatively more important than Y
given z, denoted by X�zY , if the following holds:

∀w. w ∈ D(W), where W = V − ({X, Y } ∪ Z), Z ⊆ W
∀x1, x2 ∈ D(X), ∀ya, yb ∈ D(Y) : (x1 � x2 given zw) ⇒ x1yazw � x2ybzw.

3.1 TCP-Nets

TCP-nets [21,19], extend the CP-net representation by incorporating the rel-
ative importance among pairs of attributes. The nodes of a TCP-net are the
preference attributes V , and there are three types of edges. The first type of
edge is a directed edge (single headed arrow) from X to Y used to model prefer-
ential dependence of Y on X . Such an edge asserts the preferential dependence
of an attribute Xi on the assignment of its parents Pa(Xi). Each node (prefer-
ence attribute) Xi that has a non empty set of parents Pa(Xi) influencing its
preferences is annotated with the conditional preference relation called condi-
tional preference table CPT (Xi). More formally, for each assignment of Pa(Xi),
CPT (Xi) specifies a total order over D(Xi). The second type of edge is a double
headed arrow which captures the relative importance among a pair of attributes,
i.e. if there is such an edge from X to Y then X is relatively more important
than Y . The third type of edge is an undirected edge which captures the condi-
tional relative importance between X and Y given Z. We refer to [19] for formal
definitions of TCP-nets.

Definition 1 (Completion). [19] The completion of a partial assignment z
is defined as a complete assignment or an outcome consistent with z, denoted
Comp(z). By consistency, we mean that if a preference attribute Xi has a valu-
ation vi in z then the valuation of Xi is also vi in Comp(z).

Definition 2 (Most Preferred Completion). [19] The most preferred com-
pletion of a partial assignment z, denoted PrefComp(z,N) is defined as a com-
pletion of z that is preferentially optimal with respect to the TCP-Net N , i.e.
� o ∈ O : o � PrefComp(z,N) such that o is a completion of z and consistent
with z.

TCP-Compose� – A TCP-Net Based Algorithm 459

Remarks

1. We restrict our discussion to the class of conditionally acyclic TCP-nets that
have been shown to be satisfiable with respect to a preference relation [19].

2. Given a conditionally acyclic TCP-net, it is possible to order the set of all
outcomes O [19]. In other words, there exists a total order (that can be ob-
tained using a topological sort) of the set of outcomes O that is consistent
with the given TCP-net. However, several orderings of O can be consistent
with a given conditionally acyclic TCP-net. For example, in a total preorder,
there could be an outcome o such that �o′ � o with respect to N , but one
cannot define o as the unique most preferred outcome. In our example, con-
sidering tuples of valuations of the non-functional attributes of a service, if
the user did not give the information that R is relatively more important than
A, then we would not be able to assert a preference among compositions with
outcomes o1 = (HR, LS, HA) and o2 = (LR, HS , LA) (where subscripts de-
note the corresponding non-functional attributes reliability (R), security (S)
and availability (A)). In this case, the user may like the composition system
to return both the compositions if both o1 and o2 are non-dominated, i.e.,
�o′ � o1 and �o′ � o2. The algorithm we present, TCP-Compose� guarantees
that in the absence of a unique total order over the outcomes, the outcome
corresponding to each composition in the solution set is non-dominated by
the outcome corresponding to any other feasible composition.

3. We also note that there is another variant of the TCP-net, known as UCP-
nets [19] that capture quantitative preferences and relative importance in-
formation using utility functions. However, since we are not dealing with
quantitative preferences, we stick to the basic qualitative TCP-nets.

3.2 Utilizing TCP-Nets in Web Service Composition

We now proceed to describe how TCP-nets can be used to model qualitative
preferences during Web service composition. For this we will use dominance

queries [19] of the form o
?
� o′ with respect to N (in other words whether o

is preferred to or dominates o′). The problem of Web service composition is to
assemble a composite service that achieves a desired functionality from a set of
component services. More precisely, we have:

Definition 3 (Web service composition problem). Given a target or goal
service G and a repository of available services R = {W1, W2 . . . Wn}, Web
service composition amounts to creating a set of composite services C =
{C1, C2 . . . Cm} such that ∀i ≤ m, Ci = Wi1 ⊕Wi2 . . .⊕Wik

and ∀l ≤ ik, Wl ∈ R
such that Ci is functionally equivalent 2 to the G, denoted by Ci ≡ G. In the
above, ⊕ is the composition operator for composing two services.
2 Functional equivalence can be defined in many ways depending on the particular

formalism used to describe the services. For example, if labeled transition systems are
used for describing the services, checking the functional equivalence of a composite
service to a goal service reduces to checking the bisimulation equivalence of the
corresponding labeled transition systems [12,13].

460 G.R. Santhanam, S. Basu, and V. Honavar

Note that ⊕ is a generic composition operator and Wi1 , Wi2 . . . Wik
is an

arbitrary ordering of the components in Ci such that Wij is selected before Wij+1

in constructing Ci. We now proceed to describe an approach for using the TCP-
net representation of user-specified non-functional requirements to guide service
composition using any of the standard methods that can generate compositions
that satisfy user-specified functional requirements.

4 TCP-Compose�

We present an algorithm, TCP-Compose�, that uses a preference guided heuristic
to come up with the most preferred compositions among the candidates.

4.1 Search Space of TCP-Compose�

We cast the problem of assembling from a set of available component services, a
composite service with the desired functionality as a state space search problem.
The empty composition ⊥ is the start state; the set of feasible extensions using
one of the available components from any given state define the successors of
that state; and the set of feasible candidate compositions correspond to the goal
states. The cost function at any state is given by the preference valuation of the
partial composition corresponding to that state.

Definition 4 (Feasible Extension). A feasible extension to a partial compo-
sition P is defined as a partial composition P ′ = P ⊕Wi, Wi ∈ R such that the
partial composition P ′ is functionally equivalent to a part of the goal service.

Let N be a TCP-net with a set of preference attributes V = {X1, X2, . . . Xp}
with finite domains D(X1), D(X2), . . . D(Xk) respectively where each preference
attribute corresponds to a non-functional attribute of a composition. We assume
that such a TCP-net specification is given by the user as input to the algorithm
TCP-Compose�.

Each of the leaf nodes is a goal node and corresponds to valid or feasible candi-
date composite services that are functionally equivalent to the goal service. Note
that the the nodes of the tree may have varying but finite branching factors. Fig. 3
illustrates the search space for our goal service given in Fig. 1 with respect to the
TCP-net given in Fig. 2. The shaded nodes correspond to partial compositions
that were actually expanded further. The numbers in the boxes next the nodes
show the order in which the corresponding nodes are expanded. The nodes that
are not shaded are generated but not further pursued by the algorithm: For ex-
ample, although TCP-Compose� explores partial composition b1 ⊕ p1, its feasible
extension b1⊕p1⊕s1 is not explored. The annotation V al denotes the preference
valuation and β denotes the most preferred completion of the partial composition
corresponding to each node. They are formally defined below.

Definition 5 (Preference Valuation). Preference valuation is a function F :
W ×X →

⋃
(D(Xi)∪{−}), where W = {W1, W2 . . . Wn}, X =

⋃
Xi. The value

{−} denotes that the valuation of the corresponding attribute is unknown. We

TCP-Compose� – A TCP-Net Based Algorithm 461

b1

b1p2b1p1

b2

b1p3 b2p2b2p1 b2p3

b1p3s1 b1p3s2 b2p1s1 b2p2s1 b2p3s1

b1p3s2q1 b1p3s2q3

Val = (LR,-,HA) Val = (HR,-,HA)

β = (LR,HS,HA) β = (HR,LS,HA)

Val = (LR,LS,HA)
β = (LR,LS,HA)

Val = (LR,MS,HA)
β = (LR,MS,HA)

Val = (LR,HS,HA)
β = (LR,HS,HA)

Val = (HR,LS,HA)
β = (HR,LS,HA)

Val = (HR,MS,HA)
β = (HR,MS,HA)

Val = (HR,HS,HA)
β = (HR,HS,HA)

Val = (LR,HS,LA)
β = (LR,HS,LA)

Val = (LR,HS,HA)
β = (LR,HS,HA)

Val = (HR,LS,LA)
β = (HR,LS,LA)

Val = (HR,MS,LA)
β = (HR,MS,LA)

Val = (HR,HS,LA)
β = (HR,HS,LA)

Val = (LR,LS,HA)
β = (LR,LS,HA)

Val = (LR,HS,HA)
β = (LR,HS,HA)

Most Preferred, Non-dominated Goal Nodes

2

1

3

2

4
56

7

Val = (-,-,-)
β = (HR,LS,HA)

b2p1s1q1

Val = (HR,LS,LA)
β = (HR,LS,LA)

6

78

Fig. 3. Search Space for TCP-Compose� when the TCP-net does not induce a total order
over the set of valuations

denote the valuation of an attribute Xi in a Web service W as F (W)(Xi) =
vi, vi ∈ D(Xi) ∪ {−}. We define the valuation of an attribute Xi in a composi-
tion of two services Wi, Wj as F (Wi⊕Wj)(Xi) = F (Wi)(Xi)�F (Wj)(Xi), where

F (Wi)(Xp) � F (Wj)(Xp) =
{

F (Wj)(Xp), F (Wi)(Xp) � F (Wj)(Xp)
F (Wi)(Xp), otherwise.

The preference valuation of a partial composition P = W1⊕W2⊕ . . .Wl with re-
spect to an attribute Xp is defined inductively as F (P)(Xp) = F (W1)(Xp) �
F (W2)(Xp) . . . � F (Wl)(Xp). We also denote the preference valuation (over
all attributes) of a partial composition P as the tuple V al(P) = (F (P)(Xi),
F (P)(X2) . . . F (P)(Xk)).

Thus, the preference valuation of a partial composition with respect to a non-
functional attribute corresponds to the least preferred valuation of that attribute
among the participating component services in the composition. For example,
in Fig. 3 the valuation of the partial composition b2 ⊕ p1 ⊕ s1 with respect to
the attribute availability (A) is low (LA) because the component s1 has low
availability although the component b2 has high availability.

Definition 6 (Most Preferred Completion). The most preferred comple-
tion of a preference valuation of a partial composition P is defined as a complete
assignment to all attributes X1, X2, . . . Xk, β(P) = PrefComp(V al(F (P)),N)
where the function PrefComp is as defined in Def.2.

462 G.R. Santhanam, S. Basu, and V. Honavar

Algorithm 1. TCP-Compose� (N , ϕ, G, R)
1. Compute heuristic ρ ← h(ϕ)
2. for all P ∈ ρ do
3. if (P ≡ G and � Q ∈ θ : β(Q) � β(P)) then
4. θ ← θ ∪ {P}
5. ϕ ← ϕ − {P}
6. for all Q ∈ θ do
7. if β(P) � β(Q) then
8. θ ← θ − {Q}
9. end if

10. end for
11. else
12. Find the next set of feasible partial compositions expanding P

ψ ← {Pi | Pi = P ⊕ Wi, Wi ∈ R and P ⊕ Wi ≡ G}
13. ϕ ← ϕ ∪ ψ − {P}
14. end if
15. end for
16. if (ϕ = φ) then
17. return θ
18. end if
19. TCP-Compose� (N , ϕ, G, R)

Intuitively, it is easy to see why β(Pi) is a heuristic estimate of the most
preferred composition that can be realized by extending the given Pi. In our
search for compositions, β(Pi) denotes the estimate of most preferred feasible
candidate composite service that is equivalent to the goal service that is realizable
from the current partial composition Pi.

Definition 7 (Heuristic Function h). We define the heuristic function h as
h : 2P → 2P , where P is a set of partial compositions and S := h(ϕ), S ⊆ ϕ ⊆ P
is such that ∀P0 ∈ S and ∀Pi ∈ ϕ, β(Pi) 	� β(P0). We also define h(φ) = ⊥
and ⊥⊕Wi ≡ Wi.

The above definition of the heuristic function h makes it clear that, for any set of
partial compositions ϕ, h(ϕ) is the set of partial compositions whose valuations
are non-dominated by the valuation of any other partial composition in ϕ.

Algorithm 1 shows the listing for TCP-Compose�. The main idea behind
TCP-Compose� is to use a best first search strategy to find a set of non-dominated
feasible candidate compositions equivalent to the goal service. To guide the
search, the algorithm applies the heuristic function h to the set of partial com-
positions under consideration. The algorithm is initially invoked with the pa-
rameters (N , φ, G, R). The set of partial compositions under consideration for
expansion are maintained in ϕ, and the algorithm uses h(ϕ) to select the set of
non-dominated compositions ρ to expand (line 1). Next, for each of the com-
positions in the non-dominated set ρ, if there is a candidate composition P
which is functionally equivalent to the goal service, then the algorithm adds P
to the solution set θ, provided none of the existing solutions already in θ strictly

TCP-Compose� – A TCP-Net Based Algorithm 463

dominate it (lines 2 - 5). If P now strictly dominates any of the existing solutions
in θ then those candidate solutions are removed from θ (lines 6 - 10). For partial
compositions that are not candidate compositions in ρ, the algorithm proceeds
to compute the set of feasible extensions and adds them to ϕ (lines 11 and 14).
The algorithm terminates with the set of candidate solutions θ if there are no
more compositions to explore (lines 16 - 18), and finally, the process is repeated
(line 19) until there are no more compositions left to explore.

We now proceed to describe how the algorithm explores the search space
when the TCP-net does not induce a total order on the set of non-functional
attribute valuations. In the search space illustrated in Fig. 3 in the first run, when
expanding the root node there are two possible partial compositions namely b1
and b2 respectively. Note that the valuations of partial compositions b1, b2 are
incomparable with respect to the TCP-net N , and in the second run, both the
partial compositions in ϕ are expanded. In runs 3, 4 and 5 the compositions
b2 ⊕ p1, b2 ⊕ p2, b2 ⊕ p3 are expanded, as their valuations strictly dominated
others in their respective iterations. However, in the sixth run, the algorithm
again finds that the non-dominated compositions b1 ⊕ p2 and b2 ⊕ p1 ⊕ s1 are
incomparable, and hence expands both. Notice that when expanding b2⊕p1⊕s1,
the feasible extensions also have the component s1 (we assumed that b2, s2 are
functionally incompatible and cannot be composed together) which has lower
reliability and availability, but there is a still a possibility of a service with b1
ending up with a candidate composition with high availability. In the seventh
run, the algorithm identifies b2 ⊕ p1 ⊕ s1 ⊕ q1 as a solution, and finally in the
eighth run the algorithm terminates with both the candidate compositions b1 ⊕
p3⊕ s2⊕ q3 and b2⊕ p1⊕ s1⊕ q1 as the non-dominated candidate compositions.
This illustrates how the less preferred compositions like b1 ⊕ p1 are actually not
explored by the algorithm, consequently pruning of the search space.

4.2 Properties of TCP-Compose�

We show that the algorithm TCP-Compose� is guaranteed to return the set of
composite services each of which is functionally equivalent to the user-specified
goal service that constitute a non-dominated set with respect to a set of user
preferences over the non-functional attributes.

Lemma 1. For any partial composition P, β(P) � β�(P), where β� gives the
valuation of the actual most preferred feasible composition starting with P.

Proof. Suppose by contradiction, there exists a partial composition P and a
β� such that β�(P) � β(P). This implies that there is a feasible candidate
composition C starting from the partial composition P such that V al(C) � β(P),
or there is a sequence of feasible extensions from P to C such that V al(C) �
PrefComp(V al(P),N) with respect to N , by the definition of β(P). This clearly
contradicts the definition of PrefComp(V al(P),N). �

Theorem 1. TCP-Compose� is guaranteed to return the set of feasible composite
services that constitute a non-dominated set with respect to a given TCP-net.

464 G.R. Santhanam, S. Basu, and V. Honavar

Proof (Sketch, by contradiction)
Suppose TCP-Compose� does not terminate with the set of non-dominated

candidate compositions. There are three cases to consider.

1. TCP-Compose� terminates with a set of compositions such that one of the
solutions returned by TCP-Compose� is a not feasible composition. This con-
tradicts the Step 3 of the algorithm where the terminating condition is clearly
only satisfied for feasible compositions.

2. TCP-Compose� fails to terminate. This is not possible because although the
algorithm is recursive, the search tree is finite, and in each iteration, previ-
ously examined partial compositions are not revisited.

3. Starting with a partial composition P, TCP-Compose� terminates with a set
of candidate compositions such that one of the solutions corresponds to a
feasible candidate composition C′ with a sub-optimal preference valuation
V al(C′), i.e. β�(P) � V al(C′), where β� gives the actual most preferred
feasible composition starting with P.

By Lemma 1, at each step, β(P) � β�(P) � V al(C′) ⇒ β(P) � V al(C′).
So in the last step just before termination, by the definition of the heuristic
function h and Line 1 of TCP-Compose�, the algorithm would have chosen
to expand the composition P rather than the partial composition that just
preceded C′. Hence, the algorithm could not have terminated with any com-
position C′ such that β�(P) � V al(C′), and hence it would return only
non-dominated candidate compositions.

This proves that TCP-Compose� is guaranteed to return the set of feasible compos-
ite services that constitute a non-dominated set with respect to a given TCP-net.

�

5 Summary and Discussion

Most of the work on service composition has focused on algorithms for as-
sembling, from a set of available component services, a composite service that
achieves the user-specified functionality. However, in many applications, pref-
erences over non-functional attributes e.g., availability, performance as well as
tradeoffs among them can influence the choice of the component services in as-
sembling a composite service that achieves the desired functionality. Hence, there
is a growing interest in techniques that incorporate such non-functional consid-
erations into service composition. For example, Zeng et al. [4,5] have explored
linear programming methods for optimizing the choice of services based on non-
functional attributes based on user-specified weights and utility functions. Yu
et al. [6] have explored a formulation of service composition as a combinator-
ial optimization (multi-choice multi-dimensional 0-1 Knapsack problem) and as
a graph search problem wherein the non-functional constraints are encoded by
the edges in the graph. Berbner et al. [7] have proposed a heuristic approach,
using simulated annealing and integer programming, for selecting services based
on non-functional attributes. Each of these approaches assume a quantitative

TCP-Compose� – A TCP-Net Based Algorithm 465

measure of preference over alternative valuations of non-functional attributes.
This is tantamount to assuming the existence of a cardinal utility function [22].
Eliciting such a utility function, over multiple not necessarily independent at-
tributes, from users presents a significant challenge in practice. Hence, methods
that can utilize qualitative information regarding preferences over non-functional
attributes are of significant interest.

Against this background, we have presented TCP-Compose�, a procedure for
generating, given (i) a set of functional specifications; (ii) a set of preferences
with respect to non-functional attributes and their relative importance; (iii)
a repository of candidate services with specified input-output behaviors and
non-functional attributes; and (iv) any sound algorithm for assembling, from a
repository of component services: a set of composite services that (a) achieve
the desired functionality and (b) are non-dominated with respect to the user-
specified preferences over non-functional attributes by any other composite ser-
vice in the solution set of the algorithm used for functional specification based
service composition. TCP-Compose� uses TCP-net, a graphical modeling par-
adigm for representing and reasoning with qualitative preferences and impor-
tance of alternative partial solutions to a service composition problem that
corresponds to different choices of each component service. An important fea-
ture of TCP-Compose� is that it offers a generic approach to augment any of a
broad range of available algorithms for assembling feasible composite services
that achieve the user-specified functionality with the ability to consider qualita-
tive preferences and tradeoffs over non-functional attributes of the desired goal
service.

Schropfer et al. [23] have recently proposed a TCP-net based formulation of
qualitative user preferences over non-functional attributes for ranking and select-
ing individual services. In contrast, the focus of TCP-Compose� is on the assembly
of a set of composite services that constitute a non-dominated set with respect to
a set of user-specified preferences and tradeoffs over non-functional attributes.

Shaparau et al. [11] have proposed an algorithm for contingent planning with
goal preferences which can also be used for service composition. The planning
algorithm requires the user to specify explicit preferences over goals. This is tan-
tamount to explicitly specifying an ordering over all feasible composite services.
Hence, this approach is likely to be impractical in settings where the number
of component services in the repository is large. In contrast, the approach used
in TCP-Compose� requires the user to specify only the preferences and trade-
offs over the non-functional attributes that in turn induce a preference over the
feasible composite services.

Work in progress is aimed at the implementation and experimental evaluation
of TCP-Compose� on a range of benchmark problems of varying complexity. Some
interesting directions for further research include: investigation of approaches for
handling of global non-functional constraints (e.g., no composite service which
has security level below a specified threshold is acceptable); customized versions
of TCP-Compose� that take advantage of specific representations and algorithms
used in the search for feasible solutions.

466 G.R. Santhanam, S. Basu, and V. Honavar

References

1. Bichler, M., Lin, K.J.: Service-oriented computing. Computer 39(3), 99–101 (2006)
2. Papazoglou, M.: Service-oriented computing: concepts, characteristics and direc-

tions. In: Proceedings of the Fourth International Conference on Web Information
Systems Engineering, pp. 3–12. IEEE Computer Society, Los Alamitos (2003)

3. Huhns, M.P., Singh, M.P.: Service-oriented computing: Key concepts and princi-
ples. Internet Computing 9(1), 75–81 (2005)

4. Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J., Sheng, Q.Z.: Quality driven
web services composition. In: Proceedings of the 12th international conference on
World Wide Web, pp. 411–421. ACM, New York (2003)

5. Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang, H.:
Qos-aware middleware for web services composition. IEEE Transactions on Soft-
ware Engineering 30(5), 311–327 (2004)

6. Yu, T., Lin, K.J.: Service selection algorithms for composing complex services with
multiple qos constraints. In: Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC
2005. LNCS, vol. 3826, pp. 130–143. Springer, Heidelberg (2005)

7. Berbner, R., Spahn, M., Repp, N., Heckmann, O., Steinmetz, R.: Heuristics for
qos-aware web service composition. In: Proceedings of the IEEE International Con-
ference on Web Services - ICWS 2006, pp. 72–82 (2006)

8. Pistore, M., Traverso, P., Bertoli, P.: Automated composition of web services by
planning in asynchronous domains. In: Fifteenth International Conference on Au-
tomated Planning and Scheduling, p. 211 (2005)

9. Traverso, P., Pistore, M.: Automated composition of semantic web services into
executable processes. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.)
ISWC 2004. LNCS, vol. 3298, pp. 380–394. Springer, Heidelberg (2004)

10. Sirin, E., Parsia, P., Wu, D., Hendler, J., Nau, D.: Htn planning for web service
composition using shop2. Journal of Web Semantics 1(4), 377–396 (2004)

11. Shaparau, D., Pistore, M., Traverso, P.: Contingent planning with goal preferences.
In: Proceedings, The Twenty-First National Conference on Artificial Intelligence.
AAAI Press, Menlo Park (2006)

12. Pathak, J., Basu, S., Lutz, R., Honavar, V.: Selecting and composing web services
through iterative reformulation of functional specifications. In: Proceedings of the
18th International Conference on Tools with Artificial Intelligence, pp. 445–454.
IEEE Computer Society, Los Alamitos (2006)

13. Pathak, J., Basu, S., Honavar, V.: On context-specific substitutability of web ser-
vices. In: Proceedings of the International Conference on Web Services, pp. 192–
199. IEEE Computer Society, Los Alamitos (2007)

14. Pathak, J., Basu, S., Honavar, V.: Composing web services through automatic re-
formulation of service specifications. In: Proceedings of the 5th IEEE International
Conference on Services Computing (to appear, 2008)

15. Hamadi, R., Benatallah, B.: A petri net-based model for web service composi-
tion. In: Proceedings of the 14th Australasian database conference, pp. 191–200.
Australian Computer Society, Inc. (2003)

16. Dustdar, S., Schreiner, W.: A survey on web services composition. International
Journal on Web and Grid Services 1(1), 1–20 (2005)

17. Pathak, J., Basu, S., Honavar, V.: Assembling composite web services from au-
tonomous components. In: Maglogiannis, I., Karpouzis, K., Soldatos, J. (eds.)
Emerging Artificial Intelligence Applications in Computer Engineering. IOS Press,
Amsterdam (in press, 2008)

TCP-Compose� – A TCP-Net Based Algorithm 467

18. Pistore, M., Marconi, A., Bertoli, P., Traverso, P.: Automated composition of web
services by planning at the knowledge level. In: Nineteenth International Joint
Conference on Artificial Intelligence, pp. 1252–1259 (2005)

19. Brafman, R.I., Domshlak, C., Shimony, S.E.: On graphical modeling of preference
and importance. Journal of Artificial Intelligence Research 25, 389–424 (2006)

20. Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H., Poole, D.: Cp-nets: A tool
for representing and reasoning with conditional ceteris paribus preference state-
ments. Journal of Artificial Intelligence Research 21, 135–191 (2004)

21. Brafman, R.I., Domshlak, C., Shimony, S.E.: Introducing variable importance
tradeoffs into cp-nets. In: Proceedings of Uncertainity in Artificial Intelligence,
pp. 69–76 (2002)

22. Keeney, R.L., Raiffa, H.: Decisions with multiple objectives: Preferences and value
trade-offs (1993)

23. Schropfer, C., Binshtok, M., Shimony, S.E., Dayan, A., Brafman, R., Offermann,
P., Holschke, O.: Introducing preferences over nfps into service selection in soa.
In: Non Functional Properties and Service Level Agreements in Service Oriented
Computing Workshop (2007)

A Runtime Quality Architecture for
Service-Oriented Systems

Daniel Robinson and Gerald Kotonya

Computing Department, Lancaster University, Lancaster, LA1 4WA, UK
{robinsdb, gerald}@comp.lancs.ac.uk

Abstract. System quality aspects such as dependability, adaptability to
a changing runtime environment, and concerns such as cost and provider
reputation, are increasingly important in a competitive software service
market. Service-oriented system quality is not just a function of the qual-
ity of a provided service, but the interdependencies between services, the
resource constraints of the runtime environment and network outages.
This makes it difficult to anticipate how these factors might influence
system behaviour, making it difficult to specify the right system envi-
ronment in advance. Current quality management schemes for service-
oriented systems are inadequate for ensuring runtime system quality as
they focus on static service properties, rather than emergent properties.
They also offer the consumer only limited control over the quality of
service. This paper describes a novel consumer-centred runtime archi-
tecture that combines service monitoring, negotiation, forecasting and
vendor reputation, to provide a self-managing mechanism for ensuring
runtime quality in service-oriented systems.

Keywords: Service-Oriented Architecture, Negotiation, Monitoring,
Quality of Service, Software Composition.

1 Introduction

Service-oriented architectures support dynamic composition and reconfiguration
of software systems by making advertised functionality and behaviour available
on an “as-needed” basis [1]. This model of software deployment offers signifi-
cant benefits over the traditional model of software deployment as a product,
including reduced capital investment, dynamic integration and rapid deployment
of platform and network-independent systems [2,3]. However, as the nature of
service-oriented applications continues to vary and the demands on them grow,
features such as dependability, adaptability to a changing runtime environment,
and concerns such as cost and provider reputation are becoming increasingly
important consumer quality considerations.

Current service quality management schemes are largely concerned with pre-
dicting system properties based on the static properties of its components [4].
However, the dynamic nature of a system composed from services requires a
dynamic runtime approach which is able to detect and respond to emergent
problems in the service execution environment, and to the problems that may

A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, pp. 468–482, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Runtime Quality Architecture for Service-Oriented Systems 469

arise as a result of different services being composed together. Secondly, current
quality schemes offer the consumer only limited control over the quality of a ser-
vice and therefore the system. In summary, the current software service quality
frameworks offer the consumer:

• Limited consumer control over service quality. The third-party nature of
software services means that a consumer has little control over the quality of
services outside the static service level agreement (SLA). SLAs are intended
to define the scope, level, and quality of an externally provided service to-
gether with associated responsibilities. However, they are difficult to enforce,
hard to integrate with specific consumer quality strategies and provide no
obvious way of ensuring runtime system quality.

• Poor support for runtime quality. Whilst there are initiatives for monitoring
and reporting service quality failings [5,6], monitoring alone is inadequate
for ensuring runtime quality. To ensure runtime quality, monitoring must be
supported with effective (re)negotiation and recovery strategies.

• Limited support for customisation. Current quality assurance approaches for
service-oriented systems are restricted to specific quality assurance schemes,
limiting their scope for experimentation and customisation (i.e. variability
in quality contexts).

• Poor support for resource-restricted systems. Quality assurance is particu-
larly challenging for systems that operate in resource-restricted environments
[7]. Not only must a service have an acceptable level of quality; it must be
possible to integrate and orchestrate it within the constraints of the runtime
environment.

We have developed a self-configuring quality framework that uses an adaptable
service brokerage architecture, to integrate consumer strategies with monitoring,
(re)negotiation, forecasting and provider reputation as a means for ensuring
runtime quality. The rest of this paper is organised as follows: Section 2 reviews
current approaches for addressing quality in service-oriented systems. Section 3
describes the architecture of our quality framework. Section 4 describes service
strategy formulation and management. Section 5 uses a small case study to
illustrate the framework. Section 6 reviews the framework and provides some
conclusions.

2 Background

Service-oriented systems are distributed and composed from numerous services
which can be discovered and replaced at runtime. It is possible for several ser-
vice providers to offer services with common functionality, but with different
non-functional qualities. Qualities can be considered as constraints over the func-
tionality of a service [8].

A characteristic of distributed systems is the volatility of service quality [9].
It is therefore important that mechanisms are in place for managing the overall

470 D. Robinson and G. Kotonya

system quality [10]. Traditionally, quality of service (QoS) has been associated
with telephony and computer networking, specifying requirements on the data
flowing across the network (such as latency, jitter, number of dropped packets
etc.). To ensure quality in service-oriented systems, application-level QoS must
also be considered [11].

2.1 Service Description, Discovery and Selection

There are several initiatives to improve the characterisation of services by in-
cluding non-functional aspects in their description. These include semantic ap-
proaches, such as the Web Service Modeling Ontology (WSMO) [9] and Ontology
Web Language for Services (OWL-S) [12], and non-semantic approaches such as
WS-Agreement [13].

WSMO and OWL-S both share a similar goal, which is to aid the automation
of service discovery, selection, composition, substitution, and invocation through
richer semantics [14]. WS-Agreement is a Web service protocol used in industry
for establishing an agreement between a service provider and consumer.

When integrated with the service discovery process [12], these initiatives en-
able service providers to differentiate themselves from other providers of similar
services. Service consumers are then able to discover and select providers that
best satisfy their non-functional requirements. However, such initiatives are lim-
ited if there are no services which satisfy consumer requirements, as consumers
must either select the closest match or go without service. Consumers are also
required to trust that providers will provide services as advertised.

2.2 Service Reputation Systems

Reputation systems, such as feedback mechanisms used by online auction sites,
are designed to address issues of trust between parties who have not dealt with
one another before. Reputation systems can be used to help manage quality in
service-oriented systems, by helping to distinguish between low and high quality
service providers [15].

A reputation-based approach to service selection is described in [16] which uses
software agents that share QoS information with one another, based on their in-
teractions with the services they are attached to. Initially, each provider has
the same (or no) reputation. Over time, poor service providers develop a poor
reputation which makes them less likely to be selected for use by the agents.
A reputation-enhanced service discovery protocol is discussed in [17]. This en-
ables service consumers to consider QoS issues when making service selection
decisions, with fewer assumptions about the trustworthiness and reliability of
providers.

Reputation systems enhance service discovery and selection processes, by
incorporating feedback on providers as part of the service selection criteria.
This requires consumers to expend valuable resources auditing the received
QoS of consumed services, and then providing feedback to a reputation system.

A Runtime Quality Architecture for Service-Oriented Systems 471

Reputation systems are also limited when there are no services which satisfy
consumer requirements.

2.3 Service Negotiation

Service negotiation can bring software composed from services closer to meeting
consumer requirements, through the formation of SLAs between service providers
and consumers. Service providers can also benefit from negotiation, by utilising
spare resources to provide a better QoS to those consumers who are prepared to
pay an additional cost.

The negotiation of SLAs has been an active research area in the Web service
community for several years. WS-Agreement [13] enables the specification of an
agreement between a service provider and consumer, and provides a protocol for
the creation of an agreement using agreement templates. The Web Service Level
Agreement (WSLA) [18] is a similar initiative for defining SLAs, and describes
how SLAs may be monitored for compliance. SLA negotiation has also seen
considerable interest in the agent [16,19] and grid [20] communities.

Current initiatives are primarily concentrated on the negotiation of single
services, and have not focused much on the negotiation of end-to-end QoS con-
straints [19]. Current initiatives also lack the ability themselves to effectively
monitor service agreements for compliance.

2.4 Service Monitoring

Monitors are required to determine if services actually meet the terms and con-
ditions agreed between service consumers and providers [21]. Monitors are also
used to detect emergent properties that arise as a consequence of services inter-
acting with each other through composition. Service providers can also impose
conditions of use upon a service consumer, which may be monitored for com-
pliance. The motivation for monitoring is to enable the quality management of
services and service compositions, in response to problems such as networking
issues, changes in the environment and emergent system properties.

Monitoring approaches used in service-oriented systems include: open and
closed-loop control systems [6], assertion-based techniques [22] and approaches
using late-binding and reflection [5]. Open and closed-loop techniques are used
by service providers to stabilise service-oriented software, by collecting runtime
information on services and feeding it to service controllers. In assertion-based
approaches, pre-conditions and post-conditions are asserted on services and their
non-functional properties, such as business processes, communication protocol
preferences, organisational licensing and authentication.

Current initiatives to monitoring are largely manual activities. For example,
service compositions specified as BPEL processes and annotated by a system
designer with comments describing the monitoring to be performed [22], make it
difficult to support quality management in a meaningful way. Such approaches
are limited in handling problematic services, and do not support advanced tech-
niques such as service renegotiation.

472 D. Robinson and G. Kotonya

3 Quality Architecture

Fig. 1 shows the architecture of our proposed quality framework. The frame-
work has been developed using the Jini1 SOA, but is flexible enough to be
applied to other SOAs such as Web services. This flexibility is achieved through
implementation-specific connection interfaces. The Jini SOA was chosen primar-
ily for its service discovery mechanism, relatively small footprint, and to facilitate
the evaluation of the framework in resource-constrained environments.

Monitoring

Measurement

Auditing

Forecasting

Brokerage

Negotiation

SLA Creation / Evaluation

Resource Management

Service
Consumer(s)

Reputation

Rating

Service
Response

Jini SOA

Service
Provider(s)

Invoke
Service

Ratings

Query
Ratings

Consumer
Templates

SLA

Web Services SOA

Provider
Templates

Service
Response

Provider
Rating

SLA

Monitor
Results

Connector

Java Interfaces

Connector

WS Interfaces

Fig. 1. Framework overview

The quality framework comprises mechanisms for discovering, brokering, mon-
itoring and rating services and their providers (see Fig. 1). The next sections
discuss each of these in turn.

3.1 Brokerage Architecture

Existing brokerage models [23,19] focus on particular methods of negotiation, and
are not engineered to be integrated with monitoring and reputation processes. We
have developed a brokerage approach which provides a structural framework for
integrating different methods of negotiation, monitoring and reputation, and sup-
porting the requirements of automated service negotiation and renegotiation in
SOA. Our brokerage model, shown in Fig. 2, is based on a factory architecture
which creates individual brokers for service consumers and providers on demand.

A service provider uses the service discovery mechanism to locate a brokerage
service provider, which in turn supplies it with a broker. The service provider
supplies the broker with templates describing the negotiation models to use,
decision algorithms and strategies for creating and evaluating proposals. These

1 Jini – Sun Microsystems SOA: http://www.jini.org/

http://www.jini.org/

A Runtime Quality Architecture for Service-Oriented Systems 473

Brokerage Brokerage
Service

Service
Provider

Broker

Engine

Broker

Engine

Broker

Engine

Service

Service

Service
Consumer

requests
broker

requests
broker

requests
broker

provides
negotiation
models and
strategies

provides
negotiation
models and
strategies

provides
negotiation
models and
strategies

discovers
brokers

negotiates

negotiates

Service
Provider

Reputation

Rating

Engine

Negotiation Engine

Proposal Engine

Resource
Management

processes messages
using negotiation models

creates and evaluates
proposals using strategies
and reputation information

queries ratings

Fig. 2. Service brokerage architecture

templates are provided to an engine builder interface, which provides the bro-
ker with an engine for processing negotiation messages and service proposals.
Providers also provide additional information enabling their brokers to perform
service resource management on their behalf. For most types of negotiation,
provider brokers enter a passive waiting state until they receive negotiation re-
quests from consumer brokers.

Consumers locate service brokers similarly to service providers. However, there
is no service resource management performed on the consumer side. Once ini-
tialised, consumer brokers typically enter an active state and use the service
discovery mechanism to seek out brokerages that contain brokers of the service
types required by the consumer, up to a specified limit. There are many differ-
ent models of negotiation and types of negotiation decision algorithms. Fixed-
pricing, auction, reverse auction and bargaining negotiation models are identified
in [24]. Barter/bargaining models, request for quotes (RFQs) and auctions are
identified in [25].

The framework architecture is pluggable, enabling a variety of negotiation
models, decision algorithms and proposal strategies to be used. The framework
currently supports two negotiation models. The first is a fixed-price negotiation
model (cf. catalogue shopping) with a decision algorithm that accepts only if
all qualities are within their respective range as specified by the strategy. The
second type is a bargaining model based on static strategies. With the bargain-
ing model, consumer brokers negotiate a single quality at a time. The counter
proposal from the provider broker contains not only its offer for that quality, but
offers for any other qualities which are related to that quality. To avoid deadlock,
consumer brokers must determine any other qualities which have changed since
the last proposal, and agree not to negotiate them later in the session. Once
the consumer broker has finished negotiating with the set of discovered provider

474 D. Robinson and G. Kotonya

brokers for each service, each possible composition is ranked, and the service
proposals for the most acceptable composition are accepted. The remaining pro-
posals are rejected but are recorded in a negotiation cache. The negotiation cache
enables brokers to record the negotiation behaviour and proposals provided by
other brokers they have previously interacted with. The negotiation process is
initiated and led by the service consumer (see activity diagram in Fig. 3).

Evaluate Offer

Discover Brokers

Select Next Broker

Open Negotiation

Select Next Quality

Select Next Service
To Negotiate

Accept Service Proposals of Most Acceptable Composition

Reject Other Proposals

Update
Negotiation Cache

Store Final Proposal

Rank All Compositions

Send Service
References to Consumer

Offer ReceivedRequest Offer

all services negotiated

next service

all qualities negotiated

next quality

all brokers negotiated with

next broker

quality offer acceptable

quality offer unacceptable

Fig. 3. Negotiation process implemented by engine in Fig. 2

Brokers share a common negotiation protocol for exchanging service propos-
als. The negotiation protocol currently supported by the framework is based on
the primitives and protocol described in [24].

3.2 Monitoring Process

The framework actively monitors the quality of negotiated services for viola-
tions and failings at runtime. Changes in service quality are continuously evalu-
ated against system composition acceptability levels, and an early renegotiation
and replacement automatically initiated for failing services. Monitors are im-
plemented as dynamic proxies (cf. decorator pattern), allowing for the creation
of monitors at runtime which transparently intercept requests and responses
between consumers and providers.

We have adopted a passive monitoring mechanism, which has the advantage
that no additional load is placed on the consumer or provider of a service. In
addition, the provider cannot differentiate between consumer and monitor re-
quests (see Fig. 4). The monitoring service also provides a mechanism for au-
diting data collected by another party. The advantage with this approach is
that the consumer does not have to expend additional resources performing au-
diting. However, the consumer expends additional resources in collecting data
and providing it to the auditing service. Another provided approach enables a
service to be monitored independently (cf. probed) from the service consumer.
This provides an advantage for the consumer, but places additional load on the

A Runtime Quality Architecture for Service-Oriented Systems 475

Monitoring
Service

Service
Provider

Service

Service

Service
Provider

invokes
service

invokes
service

Service
Consumer

audit results

Monitor

Measurer

Auditor

Monitor

Measurer

Auditor

etc.

invokes service

invokes service

requests
monitors

Auditor

Forecaster

Fig. 4. Service monitoring architecture

provider. Furthermore, the provider may be able to distinguish monitor requests
from consumer requests, and respond to each differently.

Auditors compare measured service qualities to those specified in the service
contract. If a measured quality does not conform to its contracted value and
constraints, the audit signals a failed quality contract violation. When consumers
are informed of detected problems, they instruct their broker to renegotiate a
new contract. If renegotiation fails, brokers attempt to secure service from an
alternate provider (see Fig. 5).

The auditing data provided to the consumer has an overall result. If a pre-
invocation service audit has passed, the consumer informs the monitor to invoke
the service. If it has failed, the consumer can elect not to invoke the service and
request its broker to renegotiate the problematic service. If a post-invocation
service audit has passed, the consumer informs the monitor to continue mon-
itoring the service. If it has failed, the consumer can again request its broker
to renegotiate. When requesting renegotiation, the consumer provides its broker
with a service contract created from the auditing data, which forms the basis
for any renegotiation attempt.

When renegotiating a failed quality, the consumer broker assumes the provider
broker is unable to guarantee a value better than the value which caused the
audit to fail. Instead, the consumer broker expects some offer of improvement in
another service quality or qualities. Improvements in other qualities should raise
the overall acceptability of the renegotiated service to a more acceptable level.
The consumer broker compares the acceptability of the renegotiated service pro-
posal, with the proposals made by any other provider brokers in its negotiation
cache. If the renegotiated service proposal is still the most acceptable, the con-
sumer broker accepts the renegotiated proposal and continues using the service.

476 D. Robinson and G. Kotonya

Monitoring

Monitor

Brokerage

Consumer Broker Provider Broker

Service

audit results

service
invocations

service
invocations

SLA updates

Service
Consumer

Service
Provider

renegotiations

selection / discovery of alternate broker

SLA
updates renegotiation

requests

SLA
updates

Fig. 5. Monitoring and renegotiation

If the renegotiated service proposal is no longer the most acceptable, the con-
sumer broker attempts to gain service from an alternate provider, and rejects
the renegotiated service proposal if successful.

Forecasting is an additional process which complements the auditing performed
by service monitors. Service consumers specify the type of forecasting model to be
used, and any additional parameters and values. During the audit, trends in mea-
sured service qualities are forecast. This enables the auditor to estimate in advance
when a given service quality is about to fail. If a particular quality is estimated
to fail, the audit signals a failing quality. If no contract violation is detected, and
no problems are forecast, the audit signals an acceptable service. The framework
currently provides forecasting models based on moving averages and exponential
smoothing (such forecasting techniques are discussed in [26]).

3.3 Reputation Process

The reputation service provides a method for service consumers to rate the ser-
vices of providers they have used. A service instance is rated once by a consumer,
and is done once the service has been unleased. Services are unleased when either
a contract is violated, or the service lease expires. All ratings received for the
same provider and service type are combined, to develop the overall reputation
for the provider’s ability to supply that particular service type in accordance
with negotiated contracts.

The reputation service provides a query method to determine the overall rat-
ing of a provider for a given service type. Consumer brokers use this method to
limit negotiation sessions to those providers which have an acceptable level of
reputation (as defined in the strategy provided by the consumer). If a consumer
has previously used the service(s) of a particular provider, the consumer’s own
rating is combined with the global rating provided by the reputation service,
according to weights specified in the consumer’s strategy. Provider brokers also

A Runtime Quality Architecture for Service-Oriented Systems 477

query for any rating a consumer may have given its provider in the past, before
agreeing to provide a service to the consumer.

4 Service Strategy and Management

We have implemented strategy templates, based on a quality ontology which
enables services to be described and negotiated in terms of their non-functional
qualities and constraints. Non-functional attributes are specified using metadata
interfaces, which enable a design by contract [27] approach.

Both consumer and provider strategies include three attributes which de-
scribe how any available reputation information should be used. The reputation
threshold is used by consumer brokers to limit negotiation to those providers
who have a level of reputation above a certain value. The threshold is also used
by provider brokers, to limit negotiation to those consumers who have previously
rated the provider above a certain value. The other two attributes are proposal
weight and reputation weight, which are used when computing the overall ac-
ceptability of an offer. These attributes respectively indicate the importance of a
service proposal, when compared to the reputation of the consumer or provider
which made the proposal. Consumer strategies include two further attributes,
personal experience and global experience, to weight the consumer’s own experi-
ence of a particular provider and service against the experience provided by other
consumers.

4.1 Service Acceptability

Each quality, operation and service in a strategy template is given a weighting
from 0.0 to 1.0, so that the sum of all service- and operation-level qualities is 1.0
(the ideal QoS). The acceptability of a single quality proposal Qa is calculated
using the following formula, based on the acceptability formula given in [25], but
extended to factor in the weight of a single quality Qw as it pertains to an overall
QoS. Let Qp be the value proposed for the quality, Ql the least acceptable value
for that quality and Qm the most acceptable value for that quality.

Qa =
∣∣∣∣ Qp −Ql

Qm −Ql

∣∣∣∣ ∗Qw

The formula is used for proposed values which fall within the range of ac-
ceptable values defined by the least and most acceptable values. Whether these
are high or low values depends on whether greater or lesser values are more
acceptable or less acceptable e.g. for a response time quality, a greater number
may be less acceptable and a smaller number more acceptable. This equation is
extended if reputation information is available for the creator of the proposal.
If there exists any prior personal experience of the proposal creator, the reputa-
tion R is computed from both the global rating Rg provided by the reputation
service, and the local personal experience Rl. Let Gw be the weight assigned to
global experience and Lw be the weight assigned to local personal experience,

478 D. Robinson and G. Kotonya

so that 0 ≤ Gw ≤ 1 and 0 ≤ Lw ≤ 1, and Gw + Lw = 1.0. The overall rating R
is then defined as:

R = (Rg ∗Gw) + (Rl ∗ Lw)

The total quality acceptability Qta is then calculated as follows. Let Pw be
the weight of the proposal and Rw the weight of the reputation information, so
that 0 ≤ Pw ≤ 1 and 0 ≤ Rw ≤ 1, and Gw + Pw = 1.0.

Qta = (Qa ∗ Pw) + (R ∗Rw)

4.2 Service Composition

The framework is capable of negotiating a composition, but is not responsible for
the actual composing of services (this activity is left to the service consumer).
Each service in the required composition is individually-weighted, enabling the
specification of compositions where one service is more critical than another. Cal-
culating the acceptability of every possible composition is an NP-hard problem.
For example, if a composition with 3 different services is required and there are
10 providers for each type of service, 103 composition comparisons are required
in order to calculate the acceptability of every possible composition. Provider
reputation can be used to limit negotiation to a subset of the available providers,
but the linear programming approach still does not scale. Every additional ser-
vice in a composition introduces another order of magnitude to the number of
compositions which must be compared. There are several proposed solutions to
this optimisation problem [23].

5 Case Study

We have developed a small case study to evaluate the framework and to visualise
the framework processes and system quality at runtime. Simulated consumer
devices, each with different resource constraints and requirements, execute a
navigation application comprised of location, traffic, weather, street maps, and
information services.

First, the system invokes the location service to obtain the location of the con-
sumer. The location data is passed on to the maps, weather and traffic services to
obtain graphical maps, weather and traffic information within an n metre radius
of the consumer. Traffic and map information are integrated to highlight traffic
conditions on the roads. The map information can also be used to request infor-
mation on places of interest (e.g. restaurants, shops, parking, tourist attractions
etc.). The consumers of this application each simulate a navigation device, such
as a mobile phone, internet tablet, or automobile navigation system. Variances
in consumer requirements mean that different providers are more acceptable to
different consumers. In addition, the runtime environments of the different con-
sumers vary from remote locations to busy metropolitan areas, meaning that
invoking services will result in widely different responses.

A Runtime Quality Architecture for Service-Oriented Systems 479

Several providers of each service type are registered with the Jini discovery
service. Each provider offers services with arbitrary differences in levels of QoS
and cost, making some providers more acceptable than others for the different
consumer devices. Once SLAs have been negotiated for each service type in the
navigation composition, monitors are attached and each service in the navigation
process is invoked as required.

Providers are doped in a variety of ways, so that they occasionally violate
negotiated SLA qualities. Monitors detect these violations by auditing service
invocations and forecasting trends. Once notified of a violation, consumers in-
struct their brokers to renegotiate the SLA if the monitored QoS is still within
acceptable limits. If the monitored QoS is not within acceptable limits, if rene-
gotiation is unsuccessful or if the service continues to deteriorate, the consumer
may switch to an alternate provider if available, depending on its strategy.

5.1 Visualising Framework Processes

Software has been developed for visualising the framework processes at runtime.
The negotiation viewer displays the consumers actively negotiating a service or
service composition. The viewer provides a means to view negotiation sessions
between each consumer broker and the provider brokers they negotiate with.

Fig. 6 shows a negotiation session between a consumer device and a MapSer-
vice provider. The final proposal was rejected as another provider was more

Fig. 6. Negotiation session viewer

480 D. Robinson and G. Kotonya

(a) Service invocation acceptability (b) Monitor event viewer

Fig. 7. Example simulation views

acceptable. The first table column contains the negotiation primitive of each ne-
gotiation message; the second column contains the timestamp; the third column
contains the universally-unique identifier (UUID) of the message; the fourth col-
umn indicates whether the message was sent or received by the consumer broker;
and the fifth column contains the UUID of the message being responded to (if
any). The user can view the contents of any message and service proposal.

The user can also view and compare negotiated service proposals from each
provider of a particular service, and view the invoked acceptability of individual
services (see service example in Fig. 7a) and service compositions.

The monitor viewer (see Fig. 7b) shows each consumer currently executing ser-
vices. Each table entry represents a single monitoring event. The entry includes
the UUID and type of the service monitored, the service operation invoked, the
quality audited (profiled RAM usage and response time in the example), the
SLA quality value, the observed quality value, when the audit occurred, and au-
dit result. The observed and forecast values for different qualities are plotted on
a chart where trends in service qualities can be observed over time. Consumers
react to failed/failing services by requesting their brokers to renegotiate, and
may switch provider if renegotiation fails (as shown on Fig. 7a).

The user is also able to view the current and historical reputation of each
provider of each service type, based on the ratings from consumers.

A Runtime Quality Architecture for Service-Oriented Systems 481

6 Conclusions

This paper has presented a runtime quality architecture for service-oriented sys-
tems, that uses a novel service brokerage model to provide a framework for
integrating consumer strategies with different negotiation and monitoring tech-
niques. The framework enables consumers to negotiate service agreements which
are closer to their requirements, and compensates providers accordingly. Services
are monitored during runtime for compliance with the negotiated agreements.
Problematic services are renegotiated, or alternate sources of service provision
are sought. Our approach does not provide a definitive solution to all quality
assurance problems that plague service-oriented systems. However, we believe it
offers a real alternative to current quality frameworks and provides some answers
to the problems that we set out at the beginning of this paper.

Current quality management initiatives allow the consumer only limited con-
trol over the quality of provided services; we have developed a framework that
allows consumers to specify quality-weighted services and to associate these with
consumer strategies. Effective runtime quality assurance must combine monitor-
ing with effective recovery and self-management strategies. We have developed a
portable self-managing quality architecture, that uses a lightweight service bro-
kerage model to integrate pluggable monitoring and negotiation with consumer
quality strategies for ensuring runtime quality. Lastly, we have demonstrated the
effectiveness of the quality architecture with the simulation of a small resource-
constrained example. We are currently investigating improvements to the frame-
work to support runtime quality more efficiently in resource-constrained system
environments.

We are also looking at better ways of expressing and incorporating fallback
mechanisms as part of the consumer strategy, and better ways of integrating a
quality of service ontology. Fallback mechanisms would provide the consumer
with the ability to function in the event that certain framework components or
services are unavailable.

References

1. Turner, M., Budgen, D., Brereton, P.: Turning software into a service. Com-
puter 36(10), 38–44 (2003)

2. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice
Hall PTR, Upper Saddle River (2005)

3. Sommerville, I.: 31. In: Software Engineering, 8th edn. Addison Wesley, Reading
(2006)

4. Lüders, F., Flemström, D., Wall, A.: Software component services for embedded
real-time systems. In: Proc. Fifth Conference on Software Engineering Research
and Practice in Sweden, Väster̊as, Sweden, Mälardalen University, October 2005,
pp. 123–128 (2005)

5. Baresi, L., Ghezzi, C., Guinea, S.: Smart monitors for composed services. In: IC-
SOC 2004: Proceedings of the 2nd international conference on Service oriented
computing, pp. 193–202. ACM Press, New York (2004)

6. Hoffman, B.: Monitoring, at your service. Queue 3(10), 34–43 (2005)

482 D. Robinson and G. Kotonya

7. Milanovic, N., Richling, J., Malek, M.: Lightweight services for embedded systems.
Wstfeus 00, 40 (2004)

8. O’Sullivan, J., Edmond, D., Hofstede, A.T.: What’s in a service? Towards accurate
description of non-functional service properties. Distrib. Parallel Databases 12(2-
3), 117–133 (2002)

9. Toma, I., Foxvog, D., Jaeger, M.C.: Modeling QoS characteristics in WSMO. In:
MW4SOC 2006: Proceedings of the 1st workshop on Middleware for Service Ori-
ented Computing (MW4SOC 2006), pp. 42–47. ACM Press, New York (2006)

10. Menascé, D.A., Ruan, H., Gomaa, H.: QoS management in service-oriented archi-
tectures. Perform. Eval. 64(7-8), 646–663 (2007)

11. Woodside, C.M., Menascé, D.A.: Guest editors’ introduction: Application-level
QoS. IEEE Internet Computing 10(3), 13–15 (2006)

12. Martin, D.L., et al.: Bringing semantics to web services: The OWL-S approach.
In: Cardoso, J., Sheth, A.P. (eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 26–42.
Springer, Heidelberg (2005)

13. Andrieux, A., et al.: Web services agreement specification (WS-Agreement), version
2006-09-07. Technical report, Global Grid Forum (2006)

14. O’Sullivan, J.: Towards a Precise Understanding of Service Properties. PhD thesis,
Queensland University of Technology (2006)

15. Jøsang, A., Ismail, R., Boyd, C.: A survey of trust and reputation systems for
online service provision. Decis. Support Syst. 43(2), 618–644 (2007)

16. Maximilien, E.M., Singh, M.P.: Toward autonomic web services trust and selec-
tion. In: ICSOC 2004: Proceedings of the 2nd international conference on Service
oriented computing, pp. 212–221. ACM Press, New York (2004)

17. Wishart, R., Robinson, R., Indulska, J., Josang, A.: SuperstringRep: reputation-
enhanced service discovery. In: ACSC 2005: Proceedings of the Twenty-eighth Aus-
tralasian conference on Computer Science, pp. 49–57. Australian Computer Society,
Inc., Darlinghurst (2005)

18. Ludwig, H., et al.: Web service level agreement (WSLA) language specification
(2003), http://www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf

19. Yan, J., et al.: Autonomous service level agreement negotiation for service compo-
sition provision. Future Gener. Comput. Syst. 23(6), 748–759 (2007)

20. Czajkowski, K., Foster, I.T., Kesselman, C., Sander, V., Tuecke, S.: Snap: A proto-
col for negotiating service level agreements and coordinating resource management
in distributed systems. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.)
JSSPP 2002. LNCS, vol. 2537, pp. 153–183. Springer, Heidelberg (2002)

21. Benjamim, A.C., Sauvé, J., Cirne, W., Carelli, M.: Independently auditing service
level agreements in the grid. In: Proceedings of the 11th HP OpenView University
Association Workshop, HPOVUA (2004)

22. Baresi, L., Ghezzi, C., Guinea, S.: Towards self-healing service compositions. In:
PRISE 2004, First Conference on the PRInciples of Software Engineering, Buenos
Aires, Argentina (November 2004)

23. Menascé, D.A., Dubey, V.: Utility-based QoS brokering in service oriented archi-
tectures. ICWS 0, 422–430 (2007)

24. Li, H.: Automated E-business Negotiation: Model, Life Cycle and System Archi-
tecture. PhD thesis, University of Florida (2001)

25. Lock, R.: TRANSACT (Tool for Real-time Automated Negotiation of Secure Au-
thorisation ContracTs). PhD thesis, Lancaster University (2005)

26. Wolski, R.: Dynamically forecasting network performance using the network
weather service. Cluster Computing 1(1), 119–132 (1998)

27. Meyer, B.: Applying “design by contract”. Computer 25(10), 40–51 (1992)

http://www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf

QoS Policies for Business Processes in Service
Oriented Architectures

Fabien Baligand1,2,�, Nicolas Rivierre1,�, and Thomas Ledoux2

1 France Telecom - R&D / MAPS / AMS,
38-40 rue du general Leclerc, 92794 Issy les Moulineaux, France

fabien.baligand@gmail.com, nicolas.rivierre@orange-ftgroup.com
2 OBASCO Group, EMN / INRIA, Lina

Ecole des Mines de Nantes,
4, rue Alfred Kastler, F - 44307 Nantes cedex 3, France

thomas.ledoux@emn.fr

Abstract. The advent of Service Oriented Architectures tends to pro-
mote a new kind of software architecture where services, exposing fea-
tures accessible through highly standardized protocols, are composed in
a loose coupling way. In such a context, where services are likely to be
replaced or used by a large number of clients, the notion of Quality
of Service (QoS), which focuses on the quality of the relationship be-
tween a service and its customers, becomes a key challenge. This paper
aims to ease QoS management in service compositions through a bet-
ter separation of concerns. For this purpose, we designed QoSL4BP, a
domain-specific language which allows QoS policies specification for busi-
ness processes. More specifically, the QoSL4BP language is designed to
allow an architect to specify QoS constraints and mechanisms over parts
of BPEL compositions. This language is executed by our ORQOS plat-
form which cooperates in a non-intrusive way with orchestration engines.
At pre-deployment time, ORQOS platform performs service planning de-
pending on services QoS offers and on the QoS requirements in QoSL4BP
policies. At runtime, QoSL4BP policies allow to react to QoS variations
and to enact QoS management related mechanisms.

1 Introduction

QoS management in service compositions presents multiple challenges both sta-
tically and at runtime. Static time occurs before a composition is deployed on
the orchestration engine. This step requires the selection of services whose QoS
offers can satisfy the QoS requirements of the composition [18]. Because the
number of functionally equivalent services is likely to grow larger over the Web,
it becomes crucial for architects to have methods and tools allowing them to
specify, compute and guarantee QoS of their compositions [7]. Runtime occurs
while the composition is executed on the orchestration engine. At this step, QoS
� This work was partially supported by the FAROS research project funded by the

French RNTL.

A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, pp. 483–497, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

484 F. Baligand, N. Rivierre, and T. Ledoux

of services may vary. Such variations are likely to violate guarantees and lead to
variations of the composite service level that need to be dynamically counter-
balanced [4]. Furthermore, in addition to performance, QoS requirements such
as security, reliable messaging and transaction, which rely on WS-* protocols,
are major QoS features in service composition that must be addressed [8]. Many
solutions offer some interesting methods and tools for QoS management, but we
think that none of them takes into account five criteria that seem particularly
relevant to the issue of QoS management:

– Reuse of existing standards criterion focuses on the capacity of ap-
proaches to leverage standards like BPEL language or Service Level Agree-
ment (SLA) [4]. On the whole, although BPEL is almost always used, few
approaches reuse works around SLA.

– Separation of concerns criterion aims to evaluate how service composition
and QoS management logics are isolated one from another. Although many
approaches promote a better separation of concerns, very few concretely
achieve a precise analyze of roles as well as their domains of concern. This
often leads to tangled logics or intrusive platforms [16,2], hence reducing
maintainability and reusability.

– Coverage of QoS management criterion evaluates how much of QoS
domain the solution handles. More specifically, QoS domain includes perfor-
mance properties [18,7], such as availability or throughput, as well as non
functional properties, like security or reliable messaging [9]. We noted that
approaches tackle a wide variety of properties in regard to QoS but few
or none actually consider both performance properties and non functional
mechanisms (such as security). With emerging works around SLA, taking
into account these various properties tends to become necessary for anyone
who deals with QoS in business processes.

– Dynamicity criterion shows how approaches can handle QoS management
statically, at runtime or both. The study of this criterion tends to show that
approaches are fairly dedicated to either static time [7] or runtime [18], hence
reducing the scope of applications of these solutions.

– Expressivity criterion evaluates how rich and complex the interfaces of-
fered by the approaches for QoS specification are. Although some approaches
include a language to specify QoS management, the expressivity of these lan-
guages can be either restrictive [12], or complex to handle [16].

Our approach aims to bring solutions to the challenges of QoS management
in SOA by creating a Domain-specific Language (DSL). This language, called
“QoSL4BP” (Quality of Service for Business Process), is executed by our plat-
form, namely “ORQOS” (ORchestration Quality Of Service), that performs both
at pre-deployment time (for static QoS verification) and at runtime (for dynamic
QoS adaptation), as detailed in [1]. The remainder of the paper is organized as
follows: Section 2 presents the key decisions for the design of our approach. Sec-
tion 3 presents a scenario from telecommunication world. Section 4 describes
the QoSL4BP language, and Section 5 details its execution model. Section 6 dis-
cusses the related works. Finally, Section 7 concludes and outlines future work.

QoS Policies for Business Processes in Service Oriented Architectures 485

2 Motivation

Study of roles. To materialize QoS management and service composition con-
cerns, we identify roles surrounding service compositions, as depicted in Figure 1.
Among these roles, the “Composition Architect” role is in charge of the devel-
opment and of maintaining the functional part of the service composition using
BPEL language. The “Integrator Architect” role is in charge of managing the
QoS of the service composition by binding the potential Service Providers to the
service composition and by managing the relation with each Service Provider. In
particular, the Integrator Architect has to negotiate contracts with each Service
Provider in order to find appropriate candidates implementing the interfaces
provided by the Composition Architect. He can also specify fine-grained require-
ments on certain parts of the composition and perform QoS related mechanisms
like security or replanning strategies on some limited scopes of the composition.
For that matter, he requires a “grey box” vision of the service composition, con-
sisting in workflow activities and messages being exchanged. This role is bring to
additional QoS requirements to improve QoS or gain profits. For services whose
SLA is missing, he can attach QoS offers so that service planning can still be
performed. Also, he can specify specific strategies for service planning statically
and at runtime, hence reducing the computation cost.

Fig. 1. Roles in service compositions

Domain Study of QoS Management. QoS management requires a variety
of treatments and data that characterizes the Integrator Architect role and en-
compasses the study domain we are interested to capture.

Data related to QoS Management in Business Processes. As depicted in
Figure 2, the data related to our domain encapsulates the data belonging to the
SLA domain, to the WS-* mechanisms domain, and to the BPEL domain. A
SLA specifies the QoS between a client and a provider. In particular, we focussed
on the WS-Agreement standard which is composed of terms referencing a party
and a SLO acting as an offer guaranteed by the targeted party. A SLO specifies
either a performance constraint or WS-* mechanisms. WS-* mechanisms domain
refers to the standards described in the Web Service Architecture such as WS-
Security or WS-ReliableMessaging. Finally, BPEL domain is reified into basic or
composite BPEL activities which may be linked to partners as well as may contain

486 F. Baligand, N. Rivierre, and T. Ledoux

Fig. 2. Data related to QoS Management in Business Processes

additional parameters useful for QoS computation (e.g rate of path selection in
Switch activities or the average number of loops in Loop activities).

Treatments related to QoS Management in Business Processes. The Integrator
Architect role is bound to a variety of tasks that are described as treatments in
our domain study. Such treatments are depicted on Figure 3. First, the Integrator
Architect is in charge of SLA management with the partners of the business
process (client and Service Providers). This implies selection of QoS offers that
guarantee the service level specified in the business processes. The Integrator
Architect also deals with QoS observation through QoS monitoring and BPEL
parameters supervision. Finally, he manages WS-* mechanisms enactment as
described by the WS-* standards.
Domain Specific Language Orientation. To provide the IntegratorArchitect
rolewith a programmatic interface, we chose to design a Domain Specific Language
(DSL) [10] capturing the domain of QoS management in business processes.A DSL
is a high-level language providing constructs appropriate to a particular class of
problems. Domain expertise is made explicit in the language abstractions and di-
rectly supported through its implementation rather than coded by the program-
mer. The avoidance of low-level source code in itself improves program robustness.
More importantly, the use of domain-specific constructs enables or facilitates pre-
cise, domain-specific verifications of properties, such as termination properties or
critical safety properties, which would be impossible or costly to perform on code
written in a general-purpose language. By integrating the concepts of the domain
we analyzed, our DSL aims to provide the Integrator Architect role with high level
descriptions for QoS management in business processes.

QoS Policies for Business Processes in Service Oriented Architectures 487

Fig. 3. Activities related to QoS Management in Business Processes

Non Intrusivity. Our contribution lays on the principle of separation of con-
cerns by isolating the logic responsible for QoS management in a DSL from
the business process logic. However, the execution of these two logics requires
a recomposition method. In order to be able to reuse both the BPEL language
as well as the BPEL platforms, we chose not to modify neither the BPEL lan-
guage nor an existing BPEL platform. Thus, our strategy consists in binding
the two languages via loose coupling. Indirections are inserted into the code of
the primary concern (i.e BPEL document) in order to call the QoS logic. Such
a strategy aims to be non intrusive with existing languages and platforms.

3 Case Study

Scenario. Depicted in Figure 4, the “Urban Trip Planner” (UTP) scenario is an
example1 of Web Service orchestration, that we used to exemplify our approach.
The UTP service aims to plan trips in big cities by delivering the complete
transportation route and commutes list as well as a map showing the path from
the last station to the final destination. The UTP Service is composed of mul-
tiple services. It requires both a destination and a device identification number
as inputs. Next, the request is sent to two different services in parallel. These
services belong to a flow activity named “LocationScope”. The first service uses
the device identification number and returns the client current location (for in-
stance, using a Wifi access point location service). The second service takes
the destination in input and returns the exact address, using the Yellow Pages

1 Although being an imaginary use case, this scenario corresponds to issues that com-
panies like France Telecom have to deal with.

488 F. Baligand, N. Rivierre, and T. Ledoux

Fig. 4. UTP Service Composition

service. Upon reception of both replies, the UTP service sends both addresses to
a Transportation service that returns the route details. The final station address
and the destination address are sent to a Grapher service that delivers a map of
the path from the station to the destination. Eventually, both the route details
and the map are returned to the user.
QoS Requirements. The Integrator Architect may specify multiple require-
ments related to QoS management. For example: Global QoS Offers. The
Integrator Architect wants to guarantee the UTP service QoS to UTP clients.
For service selection, the Integrator Architect choose to apply more constrained
requirements to make a profit and to ensure that the QoS offers are respected. He
also wants to set up a reliable messaging mechanism with the client. If these re-
quirements are not maintained at runtime, replanning must be triggered. Miss-
ing SLA. The transportation service is unique (RATP service) and does not
provide QoS offers. However, the Integrator Architect found out empirically that
its QoS exhibits a response time less than 5 ms, a throughput over 200 requests
per minute and a cost equal to 10 cents per call. He has to isolate this service and
make up QoS offers. Should the QoS of the service vary, then UTP service should
fail. LocationScope Specific Management. In order to reduce the computa-
tion task of guaranteeing the global QoS, the Integrator Architect requires that
the composite activity “LocationScope” handles its own QoS. In particular, it
should handle service planning and replanning. Also, an encryption mechanism
is required with the partners of the activities included in “LocationScope” to
preserve confidentiality of exchanged messages. Grapher Service Rationing.
In order to reduce the selection process for this service, the Integrator Architect
asks an additional constraint to set a maximum cost for the Grapher service.

4 A Language for QoS Policies Specification

Design. The QoSL4BP language was elaborated, based on our domain study.
Thus, QoSL4BP language includes a data model that reifies the information

QoS Policies for Business Processes in Service Oriented Architectures 489

associated with this domain, as well as primitives which capture the mechanisms
described in this domain. To design the QoSL4BP language, we focus on a couple
of properties.

First, QoSL4BP is conceived as a high-level and declarative language. Such a
property implies that the programmer manipulates concepts close to the domain
idioms and is not required to deal with complex control of algorithms. To ensure
that, QoSL4BP enables specification of QoS objectives and its expressivity is
limited to a set of relevant mechanisms and data. Thus, QoSL4BP language
aims to bring an appropriate balance between rich expressivity and complexity.

Secondly, QoSL4BP language brings a clear separation between static and dy-
namic specifications by isolating the specifications into two sections. This hybrid
approach helps bringing more dynamicity in order to handle QoS management
effectively both at pre-deployment time and at runtime. QoSL4BP language pro-
vides support for QoS management at diverse granularity levels (whole business
process, basic or composite activities), which helps to rationalize QoS manage-
ment. To increase homogeneity and reusability, the QoSL4BP specifications are
contained in modules called “policies”. Finally, QoSL4BP language possesses
some guarantees relevant to QoS management in business processes. For brevity’s
sake, we do not provide details about them in this paper. However, these guar-
antees ensure BPEL and QoSL4BP logics synchronisation, BPEL activity types
verification (basic or composite activities), policy composition (when two policies
interact, specifications of the policy whose target granularity is the finest over-
ride those of the policy whose rather granularity is coarser), exception handling
and termination.

Structure. The structure of QoSL4BP policies is shown in Figure 5. They are
made of three sections: the section SCOPE describes the BPEL activities tar-
get whose QoS management logic is attached to, whereas the sections INIT and
RULES respectively contain the static and dynamic logics specification. Thus,
INIT specifications are executed at pre-deployment time and RULES specifica-
tions are executed at runtime. Instructions of the section RULES can be written
as “condition-action” rules.

The data model of QoSL4BP language emerges from the domain study, de-
picted in Figure 2. Based on this study, we choose BPEL activities and SLA
information as structuring elements for the data model of QoSL4BP language.
BPEL activities are used both to specify the SCOPE section of the policy and
to designate the target instructions in the INIT and RULES sections. In partic-
ular, in QoSL4BP, a BPEL activity may be linked to one or several partners,

POLICY "policy_name" = {
SCOPE = { BPEL_activities_selection } // Target Specification
INIT = { (static_instr) + } // Static Logic Specification
RULES = { (dynamic_instr) + // Dynamic Logic Specification

(condition -> dynamic_instr) +
}

}

Fig. 5. QoSL4BP Policy Structure

490 F. Baligand, N. Rivierre, and T. Ledoux

hence allowing to easily attach some QoS offers, requirements or mechanisms.
To enable the programmer to efficiently point out BPEL activities in a business
process, QoSL4BP offers a specific semantic including some activity composition
operators. SLA information enables to specify QoS data related to QoS per-
formance or mechanisms. In QoSL4BP, a SLA consists in a collection of terms. A
term is made of one QoS constraint and of a party responsible for the QoS con-
straint. A QoS constraint can considered either as an offer or as a requirement
depending if the constraint is guaranteed to an external party or if an external
asks for the constraint to be applied. Constraints can be specialized either into
a performance constraint (e.g Response time less than 10 ms) or into a QoS
mechanism (e.g encryption using the “RSA algorithm”).

Similarly to the data model, the primitives emerge from the domain study
and aim to provide the Integrator Architect with expressivity to perform the
activities depicted in Figure 3. Primitives appear in Figure 6 and are cate-
gorized depending on their concern and on the parties involved: The primi-
tives SET OFFER and SET REQUIREMENT makes it possible to set QoS
constraints which are processed at service selection, performed using primi-
tive PLANNING. Services can be manually set or obtained using the BIND
and BOUND primitives. READ CLIENT and READ PROVIDER allow to read
constraints from accepted SLA. The primitives SENSOR and MONITOR re-
turn monitored QoS values at runtime. VIOLATION ACTIVITY and VIOLA-
TION PROVIDER allows to verify whether the requirements of a SLA are not
violated. The primitives PERFORM CLIENT and PERFORM ACTIVITY al-
low to specify a WS-* mechanism to perform either with the client, or with one
to several activities. THROW and CATCH are means to manage exceptions.
Illustrations with UTP Scenario. For brevity’s sake, we exhibit only two out
of the four policies. Figure 7 exhibits the policy “selection RATP” corresponding
to the QoS requirement called Missing SLA. This policy applies to the “Invoke-
Transportation” activity. At pre-deployment time, some QoS offers are attached
to this activity and the service is bound to the partnerlink “WS RATP”. At

Fig. 6. QoSL4BP Primitives

QoS Policies for Business Processes in Service Oriented Architectures 491

POLICY "selection_RATP" = {
SCOPE = { INVOKE["InvokeTransportation"] }
INIT = {

SET_OFFER(([RESPONSETIME < 5], [THROUGHPUT > 200], [COST < 10])) ;
BIND(JOIN_ACTIVITY, "WS_RATP") ;

}
RULES = {

VIOLATION_ACTIVITY(JOIN_ACTIVITY) -> {
THROW("UTP Service QoS cannot be maintained any longer.") ;

}
}

}

Fig. 7. “selection RATP” Policy

runtime, if the QoS requirements for the “LocationScope” activity are violated,
then the UTP service should send an exception.

Figure 8 exhibits the policy “location security” corresponding to the QoS
requirement LocationScope Specific Management. This policy applies to
the “LocationScope” flow activity. At pre-deployment time, some QoS offers
and requirements are attached to this activity. Service planning is performed
on the target activity using a constraint programming algorithm (CP) [11]. At
runtime, two encryption mechanisms are performed for the invoke activities of
“LocationScope”. Should a security exception be raised, then it should be logged
and the UTP service should send an exception. Also, if the QoS requirements
for the “LocationScope” activity are violated, then service replanning is to be
performed. Should this replanning fail, then it should be logged and the UTP
service should send an exception.

5 Execution Model

Global process. Figure 9 depicts the global process of QoSL4BP policies exe-
cution, including three steps. Before this process takes place, the Composition
Architect must provide a BPEL document and a set of generic WSDL describing
the functional interface of each service involved in the composition. The Inte-
grator Architect specifies QoSL4BP policies and a list of Service Providers for
each service of the composition.

(1) First, the static specifications (from the INIT section) are executed by
ORQOS. The values are set for the initial states of the system (offers and require-
ments of activities, BPEL parameters). At this step, ORQOS performs service
planning to find a set of initial Service Providers. This results either in a failure
or a successful attempt for service planning. (2) The second step also occurs
before the deployment of the BPEL composition. It aims to modify the BPEL
document by weaving indirections (or “hooks”) calling ORQOS platform at spe-
cific points requiring QoS policies execution. (3) Final step occurs at runtime,
when the composition is executed by clients and calls Service Providers. At this
step, ORQOS platform is called by the hooks from the BPEL document. It also
intercepts messages between the composition and its partners to perform the
appropriate treatments (monitoring, security, service replanning, etc.).

492 F. Baligand, N. Rivierre, and T. Ledoux

Fig. 8. “location security” Policy

Fig. 9. Global Process

Static planning. First, the BPEL composition is translated into a tree, as
shown in Figure 10. Composite activities are translated into nodes whereas basic
activities become leaves. The values specified in the INIT section of policies (QoS
offers, requirements, etc.) are attached to the elements of this tree. Using a tree
as a model to reflect on QoS of the composition allows to efficiently associate
QoS information and structure of this information.

Next, the tree is decomposed into multiple sub trees: for each element con-
taining QoS offers, this element and its potential leaves are detached to become
a new sub tree. This transformation is also depicted in Figure 10. Such decom-
position allows to reduce the planning computation effort due to the fact that
activities containing QoS offers act as guarantees to the rest of the composition.

QoS Policies for Business Processes in Service Oriented Architectures 493

Thus, the maximal computational complexity is
∑n

i=0 s
ci which is in Θ(s

max(ci))
(with n the number of sub trees, ci, iε[1, n] the number of leaves in the sub tree
i, and s the average number of Service Providers).

Finally, service planning is performed in each sub tree using QoS offers and
requirements, SLA data of each Service Provider, as well as composition rules
as described in [5]. Although ORQOS may implement any existing algorithm,
it offers so far two algorithms, using constraint programming and backtracking.
Constraint programming is performed by translated each sub tree into a con-
straint network then by using a constraint solver tool. Backtracking algorithm is
performed by exhaustively trying each SLA offer of Service Provider and testing
against QoS requirements from the bottom to the top of each sub tree, back and
forth when it fails.

Preparation of the composition. At pre-deployment time, some hooks are
weaved before and after each BPEL activity. These hooks consist in invoke activ-
ities calling an ORQOS platform Web service interface. This enables to execute
policies without modifying the BPEL engine. Next, in order to perform some
mechanisms (e.g monitoring or security), ORQOS platform requires to inter-
cept the messages exchanged between the composition and its partners. For this
purpose, ORQOS platform acts as a proxy. In particular, partnerlinks of the
BPEL document are redirected to the ORQOS platform and includes header
identification information so that ORQOS can bind received messages with their
activities.

Fig. 10. Transcription and Decomposition

494 F. Baligand, N. Rivierre, and T. Ledoux

Dynamic Execution. The execution of QoSL4BP policies processes the
RULES sections of the policies at runtime. Synchronization between BPEL and
policies is achieved by the hooks weaved at pre-deployment time. Rules are ex-
ecuted before and after each activity since the QoS state of the system is likely
to change after the execution of the targeted activity, called “Join Activity”
similarly to “Join Point” in Aspect Oriented Programming [13]. To perform the
mechanisms specified in the rules, ORQOS platform integrates already existing
components such as Apache WSS4J, Sandesha and WSAG4J which implements
WS-Security, WS-ReliableMessaging and WS-Agreement SLA management log-
ics respectively.

6 Related Works

Reuse of existing standards. Except AgFlow [17,18] and WS-Binder [14,4],
few approaches reuse SLA works to handle QoS in compositions. In [18] the
authors tackle the issue of replanning as a graph search problem, using integer
programming technique for service selection. Their method allows to select, for
each abstract service of a workflow, a concrete service so that their QoS ag-
gregation is optimized and that the global constraints are satisfied. WS-Binder
performs service planning, and it allows to specify and to compose domain spe-
cific QoS properties. Our approach reuses both SLA semantic (QoS offers and
requirements integrated in QoSL4BP language) and tools (WS-Agreement pro-
tocol implementation). It provides the Integrator Architect with flexibility to
decide about the triggering decision and about the BPEL activities where ser-
vice replanning should occur.
Separation of concerns. Each platform that handles QoS in service composi-
tions has to deal with QoS management concern and business process concern
collaboration. Some approaches, such as DYNAMO [2,3] and MASC [16], fo-
cus on how to isolate the specifications of these logics. DYNAMO provides two
languages, WSCoL (Web Services Constraint Language) and WSReL (Web Ser-
vice Recovery Language), that aim to allow the specification of monitoring and
reactions in BPEL processes. In MASC (Manageable and Adaptive Service Com-
positions), the authors bring an Event-Condition-Action based language called
WS-Policy4MASC allowing to specify adaptation strategies in service compo-
sitions. However, the tools in charge of the execution of these specifications
are tangled up which prevent from reusing BPEL engines without modification.
Other works, like TRAP/BPEL [12] or WS-Binder, isolate both the specifica-
tions and the execution tools. TRAP/BPEL is based on Transparent shaping [15]
which aims to bring new behaviors in a non intrusive way by inserting hooks call-
ing the logic of these behaviors at runtime. Our approach is based on a similar
strategy that allows both specifications (BPEL and QoSL4BP) and implemen-
tation platforms (BPEL engine and ORQOS platform) to be kept isolated. This
strategy increases logic and platform maintenance, evolutivity and reusability.

QoS Policies for Business Processes in Service Oriented Architectures 495

Furthermore, because separation of concerns is a major focus in our work, we
created the Integrator Architect role and emphasized its domain of concern.
Coverage of QoS management. On the whole, platforms focus either on per-
formance properties concerns (AgFlow and ORBWork [7,6]) either on non func-
tional concerns such as security or reliable messaging (AO4BPEL [8,9]). ORB-
Work propose mathematical models for workflow QoS computation to predict
QoS, using an algorithm consisting of a set of graph reduction rules which are
defined for time, cost, reliability and fidelity metrics. In AO4BPEL, the authors
have elaborated a language named “Aspect Oriented for Business Process Execu-
tion Language” (AO4BPEL) to bring AOP mechanisms to the BPEL language.
By using the SLA as a fundamental basis for our language, our approach aims to
provides answer to any QoS concern that can be described by a Service Level Ob-
jective (either performance properties or WS-* mechanisms). Also, because poli-
cies are attached to BPEL activities, this enables to apply QoS management to
various granularity levels (whole composition, set of activities, basic activity).
Dynamicity. Many approaches (WS-Binder, AO4BPEL, DYNAMO) perform
QoS management only during the execution of the business processes and do not
consider QoS at pre-deployment time. However, ORBWork brings QoS guaran-
tees or perform service planning at pre-deployment time but do not consider
QoS at runtime. Also, AgFlow and WS-Binder platforms offer static solutions
for service planning at pre-deployment time, as well as strategies for adaptation
at runtime. By handling both predeployment time and runtime for QoS man-
agement, our approach aims to provide the Integrator Architect with abilities to
compute global service planning statically and to specify fine-grained strategies
for dynamic service replanning.
Expressivity. Solutions like AO4BPEL, DYNAMO or MASC provide languages,
while some others, such as WS-Binder or AgFlow, have the QoS management logic
directly integrated in their platforms. DYNAMO offers to manipulate supervi-
sion and recovery with its two languages in a declarative mode. MASC provides
a language that aims to answer to a wide variety of concerns, which introduces
complexity. AO4BPEL reuses AspectJ syntax, XPath and BPEL language to al-
low the user to specify BPEL adaptation aspect in a imperative mode. To pro-
vide a relevant expressivity and to encapsulate efficiently QoS management con-
cerns, QoSL4BP language was designed as a declarative language based on a pre-
cise study of the domain of QoS management in business processes. In particular,
it enables to specify using SLA and BPEL activities information, and its expres-
sivity is limited to a reasonable amount of primitives, making it efficient to use yet
relatively easy to learn.

7 Conclusion

In this paper, we presented a language and a platform addressing QoS manage-
ment in business processes, both at predeployment time and at runtime. Our lan-
guage called “QoSL4BP” (Quality of Service Language for Business Processes)
allows an architect to specify QoS policies over scopes of BPEL compositions.

496 F. Baligand, N. Rivierre, and T. Ledoux

Static and dynamic execution of the QoSL4BP language are performed by our
platform “ORQOS” (ORchestration Quality of Service), designed to be non in-
trusive with already existing infrastructures and languages. At pre-deployment
time, ORQOS selects a set of services whose QoS offers match the QoS re-
quirements attached to the BPEL activities of the composition. At runtime,
ORQOS platform monitors the QoS of services and performs actions such as
selecting different Service Providers, throwing BPEL exceptions, or performing
WS-* mechanisms, as specified in QoSL4BP policies.

Although solutions to deal with QoS management in business processes al-
ready exist, our approach aims to answer to some issues often encountered by
these solutions. First, it focuses on reusing most of the already existing SOA
standards such as BPEL, SLA and WS-* norms. It aims to provide a better
separation of concern by achieving a precise study of the domain of QoS man-
agement and by encapsulating this domain in QoSL4BP language as well as in
ORQOS platform (which is non intrusive with BPEL engines). Our approach
tends to allow the architect to manipulate both QoS performance properties
and QoS non functional properties such as security, at pre-deployment and at
runtime. Finally, QoSL4BP is designed as a declarative policy-based language
that allows to manipulate concepts close to the domain idioms without being
required to deal with complex control of algorithms.

In future works, we plan to enhance QoSL4BP language by addressing a larger
number of QoS dimensions and mechanisms, and by studying the issue of policy
composition that occurs when at least two policies scopes intersect. We also plan
to investigate formal semantics of QoSL4BP language, as well as its re-design
using WS-Policy standard.

References

1. Baligand, F.: PhD thesis, Une Approche Déclarative pour la Gestion de la Qualité
de Service dans les Compositions de Services (June 2008)

2. Baresi, L., Guinea, S.: Dynamo and self-healing bpel compositions. In: ICSE COM-
PANION 2007: Companion to the proceedings of the 29th International Conference
on Software Engineering, pp. 69–70. IEEE Computer Society, Washington (2007)

3. Baresi, L., Guinea, S., Plebani, P.: Ws-policy for service monitoring. In: Bussler,
C.J., Shan, M.-C. (eds.) TES 2005. LNCS, vol. 3811, pp. 72–83. Springer, Heidel-
berg (2006)

4. Canfora, G., Di Penta, M., Esposito, R., Perfetto, F., Villani, M.L.: Service com-
position (re)binding driven by application-specific qos. In: Dan, A., Lamersdorf,
W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp. 141–152. Springer, Heidelberg (2006)

5. Cardoso, J., Miller, J., Sheth, A., Arnold, J.: Modeling quality of service for work-
flows and web service processes (2002)

6. Cardoso, J., Miller, J., Sheth, A., Arnold, J.: Modeling quality of service for work-
flows and web service processes. Technical Report UGACS-TR-02-002, Computer
Science Department, University of Georgia (2002)

7. Cardoso, J., Sheth, A., Miller, J., Arnold, J., Kochut, K.: Quality of service for
workflows and web service processes. Web Semantics: Science, Services and Agents
on the World Wide Web 1(3), 281–308 (2004)

QoS Policies for Business Processes in Service Oriented Architectures 497

8. Charfi, A., Mezini, M.: Aspect-oriented web service composition with AO4BPEL.
In: Zhang, L.-J., Jeckle, M. (eds.) ECOWS 2004. LNCS, vol. 3250, pp. 168–182.
Springer, Heidelberg (2004)

9. Charfi, A., Schmeling, B., Heizenreder, A., Mezini, M.: Reliable, secure, and trans-
acted web service compositions with ao4bpel. In: Proceedings of the 4th IEEE
European Conference on Web Services (ECOWS) (December 2006)

10. Consel, C.: Charles Consel. In: Lengauer, C., Batory, D., Consel, C., Odersky, M.
(eds.) Domain-Specific Program Generation. LNCS, vol. 3016, pp. 19–29. Springer,
Heidelberg (2004)

11. Dechter, R.: Constraint Processing. Morgan Kaufmann Publishers, San Francisco
(2003)

12. Ezenwoye, O., Sadjadi, S.M.: Trap/bpel: A framework for dynamic adaptation of
composite services. Technical Report FIU-SCIS-2006-06-02 (2006)

13. Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Loingtier, J.-
M., Irwin, J.: Aspect-oriented programming. In: Aksit, M., Matsuoka, S. (eds.)
ECOOP 1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

14. Penta, M.D., Esposito, R., Villani, M.L., Codato, R., Colombo, M., Nitto, E.D.:
Ws binder: a framework to enable dynamic binding of composite web services. In:
SOSE 2006: Proceedings of the 2006 international workshop on Service-oriented
software engineering, pp. 74–80. ACM, New York (2006)

15. Sadjadi, S.M., McKinley, P.K., Cheng, B.H.C., Stirewalt, R.E.K.: Trap/j: Trans-
parent generation of adaptable java programs. In: Meersman, R., Tari, Z. (eds.)
OTM 2004. LNCS, vol. 3291, pp. 1243–1261. Springer, Heidelberg (2004)

16. Tosic, V., Erradi, A., Maheshwari, P.: Ws-policy4masc - a ws-policy extension used
in the masc middleware. In: IEEE SCC, pp. 458–465. IEEE Computer Society, Los
Alamitos (2007)

17. Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J., Sheng, Q.Z.: Quality driven
web services composition. In: WWW 2003: Proceedings of the 12th international
conference on World Wide Web, pp. 411–421. ACM, New York (2003)

18. Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang,
H.: Qos-aware middleware for web services composition. IEEE Trans. Softw.
Eng. 30(5), 311–327 (2004)

Deriving Business Service Interfaces in Windows
Workflow from UMM Transactions

Marco Zapletal

Institute of Software Technology and Interactive Systems, Vienna University of
Technology, Austria

marco@ec.tuwien.ac.at

Abstract. Modeling inter-organizational business processes identifies
the services each business partner has to provide and to consume as
well as the flow of interactions between them. A model-driven approach
to inter-organizational business processes allows abstracting from the un-
derlying IT platform and, thereby, guarantees to survive changes in tech-
nology. UN/CEFACT’s Modeling Methodology (UMM), which is defined
as a UML profile, is currently one of the most promising approaches for
modeling platform-independent business collaborations. However, well
defined mappings to most of the current state-of-the-art candidate plat-
forms are still missing. A candidate platform of growing interest is the
Windows Workflow Foundation (WF). In this paper, we outline a map-
ping from the basic UMM building blocks, i.e. business transactions, to
business service interfaces (BSI) implemented in WF.

1 Motivation

Business-to-Business (B2B) electronic commerce presupposes the integration of
inter-organizational systems. In recent years, service-oriented computing has be-
come the next evolutionary step in connecting autonomous enterprise systems.
Service-orientation is considered as an enabler for aligning services in a business
sense with their technical implementation. If each business partner, however,
defines the service interactions with other partners in isolation, interoperabil-
ity is unlikely. Consequently, B2B requires an approach that describes business
collaborations from a global perspective. Furthermore, business logic should be
abstracted from implementation specifics. UN/CEFACT’s Modeling Methodol-
ogy (UMM) [1] is a UML-based modeling language following this approach. It
describes business collaborations from a neutral point of view by specifying the
services each partner has to provide and to consume as well as the flow between
them. A UMM model is not bound to any specific implementation platform.
However, in order to realize a business service interface based on UMM, map-
pings to specific target platforms have to be provided. A typical candidate are
Web Services based on the Business Process Execution Language (BPEL), which
we already discussed in [2]. In addition to the pure Web Services stack, the Win-
dows Workflow Foundation (WF) is a strong candidate for the implementation
of business service interfaces. In this paper we show the transformation of UMM

A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, pp. 498–504, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Deriving Business Service Interfaces in Windows Workflow 499

business transactions to business service interfaces (BSI) realized in WF. The
flow within the BSI is defined using WF’s sequential workflow language. The
interface to the workflow, however, is composed of well-defined business ser-
vices implemented using Web Service specifications. Our model-driven approach
yields three major benefits: First, business partners may agree on a global model
serving as a kind of contract on the process. Second, the resulting business ser-
vice interfaces of collaborating roles are complementary to each other ensuring
their interoperability. Third, the graphical UMM representation abstracts from
the complexity of a business service interface, which becomes evident in the
workflow model.

Due to space limitations, we do not cover UMM business transactions in this
paper, but refer to its long version that is published as a technical report [3].

2 The Transformation Process

In this section, we elaborate on the transformation from a global UMM business
transaction model to partner-specific BSI’s implemented in WF. For describing
the mapping, we concentrate on the initiators’s part of the process. Evidently,
the responder’s business service interface is complementary to the one of the ini-
tiator. In other words, when the initiator invokes something, the responder has to
receive something. Thus, the order of sending and receiving business documents
has to be reversed. The same applies for the handling of acknowledgments.

We detail the mapping by means of figure 1 depicting the derived business
service interface for the initiator implemented in WF. The WF process is defined
as a sequential workflow resulting in 11 major steps (A-K), whereby steps F to J

ReceiveWasteMovem
entForm (A)

<< receive activity >>

RetriesLeft (B) << while >>

EventScope (C) << event handling scope >>

BT_Sequence (D) << sequence >>

receiveRequestDocu
ment (E)

<< send activity >>

WaitForAckReceipt
(F)

<< listen >>

WaitForAckProcessin
g (G)

<< listen >>

WaitForResponse (H)
<< listen >>

SendAckReceipt (I)
<< sequence >>

SendAckProcessing (J)
<< sequence >>

CheckIfRetryCou
d d ()ntExceeded (K)

<< if else >>

Fig. 1. The initiator’s business service interface implemented in WF

500 M. Zapletal

contain nested activities. If not explicitly noted else, all used activity types are
contained in WF’s basic activity library.
Step A: Interacting with the business application. At the very beginning,
the initiator’s BSI receives the request document from the business application.
Receiving the document is implemented by a handle external event activity.
This presupposes that the business application is implemented in .NET as well.
If this is not the case, the handle external event activity may be substituted
by a receive activity for enabling cross-platform communication - for example
realized by Web Service calls.
Step B: Checking the available retries. According to UMM business trans-
action semantics, the initiator has to re-start a business transaction in case of
time-outs. A time-out occurs if a business document or a business signal is not
received within an expected time frame. The maximum amount of retries is spec-
ified by the tagged value retry count in UMM. In WF, we use a while activity to
repeat the execution of the business transaction if required. The while activity
(B in figure 1) has to be executed until either the retry count is exceeded or the
business transaction is considered as successful. Thus, we define the loop’s condi-
tion as retryCount >= 0 || businessTransactionSuccessful, whereby both
parameters are defined as normal .NET variables within the workflow. In case
the business transaction is successful, the last action within the while loop sets
the variable businessTransactionSuccesful to true (step H).
Steps C and D: Listening to business signals during the regular pro-
cess flow. The only activity within the while activity is an event handling scope
activity. This activity type allows to act upon events concurrently to the ex-
ecution of the regular process flow. In UMM business transactions, business
partner’s may receive time-out exceptions or failed business control exceptions
from their counterpart at any time during the course of a business transaction.
Consequently, we use the event handling scope activity for receiving and process-
ing business signals concurrently to the regular process flow. The event handling
scope activity may have several event handlers attached - one for each event (i.e.,
business signal). Due to space limitations, we do not discuss event handlers in
this paper, but refer to its long version [3]. Within the event handling scope the
sequence activity (D in figure 1) serves as a container for the activities realizing
the message exchange with the responder’s BSI (steps E to J).
Step E: Sending the request document. Step E communicates the request
document from the initiator’s to the responder’s BSI. On the initiator’s side, the
service call is implemented using the send activity. Note, that receive request

document (E in figure 1) is indeed a send activity, which refers to the operation
offered by the responder. The call is performed asynchronously, which means
that the workflow continues immediately. The semantics of an asynchronous
operation call by a send activity correspond to a truly fire-and-forget behavior.
This entails that the client does not even receive a fault message from the service
in case of an exception.

This behavior is in line with the semantics of asynchronous UMM business
transactions patterns. Thereby, business document exchanges are completely

Deriving Business Service Interfaces in Windows Workflow 501

asynchronous in order to avoid blocking behavior of business service interfaces.
Nevertheless, interacting business service interfaces share the same understand-
ing about the state of a business document exchange by communicating business
signals as shown in the following steps.
Step F: Waiting for the acknowledgment of receipt. After sending the re-
quest document, the initiator waits for a business signal of type acknowledgment
of receipt from the responder’s BSI. According to UMM business transaction
semantics, an acknowledgment of receipt is issued after a received business doc-
ument passes grammar-, schema-, and sequence validation.

Figure 2 shows the required activities of step F in detail. The initiator expects
the acknowledgment of receipt from the responder’s BSI to confirm that the
business document passed the syntactical checks. The listen activity in step F
has two branches. The left branch is activated when the initiator’s business
service interface receives the acknowledgment of receipt. If the acknowledgment,
however, is not picked up within the agreed time frame, the right branch is
activated. The listen activity is responsible for activating that branch, whose
trigger event occurs first. The remaining branches are canceled.

In order to expose a service for receiving the acknowledgment, the first activ-
ity in the left branch is a receive activity (F1). The receive activity is bound to an
operation called receive acknowledgment of receipt. We define this operation
in a service contract particularly for business signals. This service contract is not
restricted to any business context and may be globally defined for business trans-
actions. In this paper, we assume that at least the initiator and the responder
bind their BSI’s to this service contract for exchanging business signals.

The receive activity is followed by an activity that is responsible for checking
the contents of the received acknowledgment (F2). Similar to the service contract
for business signals, these checks may be identical for the same type of business
signal across different business transactions. Thus, we propose to implement the
required checks and constraints in a custom activity type. The custom activity
check ack receipt may then be re-used in different WF business service inter-
faces. If, by any reason, checking the acknowledgment of receipt fails, the custom
activity throws an exception.

In the right branch, the first activity is a delay activity (F3). It monitors
the agreed time to acknowledge receipt. If exceeded, the delay activity triggers
a time event which makes the listen activity activating the right branch (and
consequently deactivating the left branch). In this case, the business transaction
has to be re-started due to a time-out exception. In order to re-start the business
transaction the current run has to be canceled and the condition of the while
activity, which monitors the retries, has to be evaluated again. This behavior is
accomplished by the throw activity (F4) following the delay activity. The throw
activity actuates a time-out detected exception that is caught by a fault handler
attached to the while activity. Please note that handling faults is not covered in
this paper.
Step G: Waiting for the acknowledgment of processing. In this step
the initiator expects an acknowledgment of processing as shown in figure 3. It

502 M. Zapletal

F1

F2

F3

F4

F2

Fig. 2. Step F: Waiting for the
acknowledgement of receipt

G1

G2

G3

G4

G2

Fig. 3. Step G: Waiting for the
acknowledgement of processing

H1 H2 H3

H4

Fig. 4. Step H: Waiting for the response document

I1

I2

Fig. 5. Step I: Sending the acknowl-
edgment of receipt

J1

J2

J3

J4

Fig. 6. Step J: Sending the acknowledg-
ment of processing

Deriving Business Service Interfaces in Windows Workflow 503

confirms that the request document was successfully handed over to the respon-
der’s business application for further processing. This implies that the business
document was delivered to the business application, where it passed additional
validation rules.

In terms of the activity flow, handling acknowledgments of processing and their
contingent time-outs is similar to the tasks processing acknowledgments of
receipts. In the left branch, the steps G1 and G2 model the reception and the
checks for a received acknowledgment, whereas the right branch (G3 and G4) han-
dles the time-out. The agreed time-out monitored by the delay activity (G3) cor-
responds to the time to acknowledge processing as defined by the UMM business
transaction. The acknowledgment of processing affirms the initiator that the re-
sponder is able to process the request document and will respond to it.
Step H: Waiting for the response document. Similar to steps F and G,
waiting for the response document is implemented by a listen activity (H). In
case of handling response documents two or more branches are required. Since
we may expect time-outs for business documents as well, we define one branch
for monitoring the maximum agreed time limit as agreed in the UMM model.
The cutout in figure 4 shows that the right branch keeps track of the time limit.
If no response document is received within the agreed time to perform, the delay
activity (H3) triggers a time event and the throw activity (H4) terminates the
current cycle.

Two-way UMM business transactions support one to many response document
types. Consequently, a business service interface requires one to many branches
for the receiving business documents - one for each business document type. In
our example, we specify two possible response documents - one representing a
positive response and the other one a negative response to the request document.
Accordingly, the business service interface requires two branches to receive both
business document types (see figure 4). A positive response triggers the execution
of the left branch containing the receive activity H1. Similarly, the receive activity
H2 listens to negative response documents.
Step I: Sending the acknowledgment of receipt. Before the receipt of
the response document is acknowledged, the business service interface needs to
perform grammar-, schema-, and sequence validation. Since these are generic
validation routines we employ the concept of custom activities. If the business
document passes the checks in step (I1 in figure 5), the send activity (I2) confirms
the successful receipt by communicating an acknowledgment of receipt to the
responder’s BSI.
Step J: Sending the acknowledgment of processing. After the proper
receipt of the response document is affirmed, the initiator’s BSI hands over
the document to the business application for further processing. We assume
that the business application hosts the business service interface. Therefore,
we implement the communication between those systems using a call external
method activity (J1 in figure 6). Once the business application is delivered, the
business application verifies that the document is processable according to pre-
defined business rules.

504 M. Zapletal

If no exception is thrown by the business application, the BSI sends an ac-
knowledgment of processing (J2) denoting that the verification was successful.
The following delay activity (J3) keeps the business transaction alive in order
to allow the responder to issue a time-out exception or a failed business control
exception. The former is communicated by the responder, if the acknowledgment
of processing is not received in time by its business service interface. The latter
one is thrown, if an acknowledgment is received, which is not processable. How
long the business transaction is kept alive is calculated by adding the time to
acknowledge processing of the response document to the time when the receipt
of the response document was acknowledged. Finally, the custom activity J4 sets
the variable businessTransactionSuccessful to true, so that the condition of
the while activity (C) is not met any longer.
Step K: Checking the retry count. Before the business transaction is even-
tually finished, the business service interface must check if the retry count has
not exceeded. Note, the loop continues until the retry count is equal or greater
than zero. If the retry count is decremented to -1 at the end of the last attempt,
the condition of the while activity is not met any longer and the control flow
reaches step K. Therefore, the if/else activity in step K queries if the retry count
is greater or equal to zero. If true, the business transaction was evidently suc-
cessful and the execution of the business service interface finishes. Otherwise,
a retry count exceeded exception is thrown and the business transaction failed.
Due to space limitations, we do not include a figure for this step.

3 Conclusion

UMM is a platform-independent modeling language for collaborative business
processes. In order to deploy UMM models to specific target platforms corre-
sponding mappings have to be defined. This paper contributes a UMM to Win-
dows Workflow binding. The generated code is in fact ready to compile. Before
executing the workflow, the following tasks remain: (i) declarative configurations
of service endpoints, (ii) hosting the workflow, (iii) binding its internal interfaces
to a business application.

References

1. UN/CEFACT: UN/CEFACT’s Modeling Methodology (UMM), UMM Meta Model
- Foundation Module, Public Draft V2.0 (2008)

2. Hofreiter, B., Huemer, C., Liegl, P., Schuster, R., Zapletal, M.: Deriving executable
BPEL from UMM Business Transactions. In: Proc. of the IEEE Intl. Conf. on Ser-
vices Computing (SCC 2007). IEEE CS, Los Alamitos (2007)

3. Zapletal, M.: Deriving business service interfaces in Windows Workflow from
UMM transactions - long version. Technical report, Institute of Software Tech-
nology and Interactive Systems, Vienna University of Technology, Austria (2008),
http://publik.tuwien.ac.at/files/PubDat 166624.pdf

http://publik.tuwien.ac.at/files/PubDat_166624.pdf

From Business Process Models to Web Services
Orchestration: The Case of UML 2.0 Activity

Diagram to BPEL

Man Zhang and Zhenhua Duan

Institute of Computer Theory & Technology, Xidian University,
Xi’An, 710071, P.R. China

zhangman705@gmail.com, zhhduan@mail.xidian.edu.cn

Abstract. The Business Process Execution Language for Web Services
(BPEL) has emerged as the de facto standard for implementing business
processes. At the same time, Model Driven Architecture (MDA) is being
applied to the field of business process engineering by separating business
logic from the underlying platform technology. However, due to the chal-
lenge of mapping graph-oriented modeling languages to block-structured
ones and the informal description of UML 2.0 Activity Diagram (AD)
and BPEL, transforming AD models to executable BPEL code is not
trivial. This paper proposes an approach to transform AD to BPEL and
paves the way for further general transformation between graph-oriented
and block-structured process modeling languages.

1 Introduction

The Business Process Execution Language for Web Services (BPEL) [1] has
emerged as the de facto standard for implementing business processes. At the
same time, Business Process Management (BPM) has made traditional process-
aware information systems completely distributed, global and closely integrated
with Web services. It can be concluded that in the near future a wide vari-
ety of process-aware information systems will be realized using BPEL. On the
other hand, Model Driven Architecture (MDA) is being applied to the field of
business process engineering by separating business logic from the underlying
platform technique. The core paradigm of MDA is the model transformation
from Platform-Independent Models (PIM) to Platform-Specific Models (PSM).
Particularly, in BPM’s perspective, PIM is established through business process
modeling languages while PSM is represented as runtime platform executable
code, such as BPEL.

Complete business process models consist of a process model to describe the
execution logic, an information model for the data types, an organizational model
with some involved roles, and possibly other models [2]. In this paper, we focus
on the execution logic, i.e. a model’s control flow.

Graph-oriented BPM languages have become mature and been utilized by
many existing systems. Among them, UML 2.0 Activity Diagram (AD) [3] has

A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, pp. 505–510, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

506 M. Zhang and Z. Duan

attained wide adoption and is supported by abundant software tools. There
have been some research work on transforming AD into executable BPEL code
[2,4,5,7,8,9]. However, they are suffering from the following limitations:

1) They need human intervention to identify activity patterns in AD models.
Some approaches define UML profiles specific for structured activities in BPEL.
For instance, UML 2.0 profile for BPEL proposed in [4] enables the graphical
representation of BPEL with UML 2.0. However, it uses heavily stereotypes and
requires quite amount of manual work. Another UML 2.0 based mapping of
mobile processes to executable BPEL described in [5] can automatically identify
two structured activity patterns, but for others it still needs human intervention.

2) They are not applicable to AD models with arbitrary topology. Most of such
methods can handle only a limited subset of AD. Various restrictions are im-
posed on the structures of models, of which the most restrictive one is structured
limitation [6]. Techniques for translating unstructured flowcharts into structured
ones have been used to translate unstructured process diagrams into equivalent
structured ones in [2,7,8]. However, these methods only address a piece of the
puzzle of the transformation. Once parallel split and synchronization are involved
these techniques are not efficient.

3) They do not make full use of two modeling structures of BPEL: block-
structured and graph-based ones. Mendling et al. summarized four strategies of
transformation of graph-oriented process modeling languages into BPEL in [9]:
the first and second ones transform acyclic models by relying intensively on flow
and control links, and the third one identifies block-structured patterns and folds
them incrementally. Although the fourth strategy tries to use both of them, no
concrete algorithms are presented. In addition, all of the four strategies have
restrictions on the structures of source models.

These limitations are not surprising since transforming AD models to BPEL
code is not trivial work. First, AD and BPEL belong to two fundamentally
different classes of languages: AD is graph-oriented, allowing links between nodes
in arbitrary topology, while BPEL is mainly block-structured; Secondly, model
transformation of full AD requires formal semantics to express its meaning with
greater precision than it is available today. Similarly, formalization of BPEL is
also in the initial state of development [7].

In this paper, we propose a novel transformation to achieve completeness,
automation, and full exploitation of the two modeling structures of BPEL under
some conditions. Here completeness means that any meaningful AD can be trans-
formed into BPEL code. It should be noted that our AD models only capture the
basic control flow patterns defined in [10] in order to avoid the subtleties of full
AD. The automation is realized by decomposing an AD model into regions and
identifying structural patterns separately. By identifying block-structured pat-
terns as often as possible, the readability of generated BPEL code is improved.
With regards to the BPEL behavior model, we simplified the BPEL specification
to contain only those elements needed to describe the execution logic extracted
from the process model.

From Business Process Models to Web Services Orchestration 507

This paper is organized as follows. Section 2 introduces the subset of full AD
we can handle as the basis of our process modeling language. Section 3 describes
the transformation technique in detail. Finally conclusion and future work are
outlined in the last section.

2 Semantically Sound AD Models

Here, we select a subset of AD’s meta-model, in which unnecessary elements for
modeling the control flow have been removed. According to the meta-model, an
AD model consists of ControlFlows, ExecutableNodes (which refer to the nec-
essary basic activities in BPEL), and ControlNodes. Six types of ControlNodes
are distinguished: InitialNode, FinalNode, DecisionNode, MergeNode, ForkNode
and JoinNode. Here the semantics of all the elements are inherited from the token
flow semantics UML 2.0 adopts [3]. Furthermore, we impose some restrictions:
DecisionNodes can only start a single flow and MergeNodes always have only one
active flow arriving; ForkNodes must start all its concurrent flows and JoinNodes
can only be triggered by the arrival of all its incoming flows. These restrictions
imply that our AD models only capture the basic six control flow patterns, as
mentioned above. In the following, without loss of generality, we assume that all
AD models are structurally sound, i.e., they contain exactly one InitialNode and
one FinalNode and for every node, there is a path from the InitialNode to the
FinalNode going through this node.

When trying to achieve completeness, we should be convinced that transform-
ing process models which cannot be executed normally in real world is meaning-
less. Based on this point, we introduce the property ”semantically sound”.

Definition 1 Semantically sound. A structurally sound AD model is seman-
tically sound if and only if all its possible executions terminate successfully. An
execution terminates successfully if no other tokens are present in the process
model as soon as the FinalNode consumes a token [11].

To capture the common structural characteristics of semantically sound AD
models, we first induce the concept single-entry-single-exit(SESE) region. Infor-
mally speaking, an SESE region is a set of nodes and edges such that there is
exactly on entry edge entering the region, and exactly one exit edge leaving the
region. We can decompose an AD model using the technique of SESE decompo-
sition [12] into SESE regions. For an SESE region R, we represent the regions
immediately enclosed in R as the child regions of R. For the decomposition to be
unique, every region should be canonical. Roughly speaking, a canonical region
requires that if a region contains child regions all in sequence it must contain
child regions as many as possible; see cf. [12] for precise definition for SESE and
canonical region.

Given the unique decomposition of a semantically sound AD model, every
region can fall into one of the following three categories: 1) sequential region:
a region having no ForkNodes and JoinNodes as its ControlNodes; 2) parallel
region: a region having no DecisionNodes and MergeNodes as its ControlNodes,
and no ControlFlows constructing a cycle; 3) overlapped region: we use the

508 M. Zhang and Z. Duan

Fig. 1. A pseudo overlapped region and it functionally equivalent structured form

left part of Figure 1 to depict it, which shows a pseudo region whose partial
control flows are under determination. It should be noted that when we identify
the category of a region, its child regions are treated as ExecutableNodes and
their internal structures are out of account.

The round rectangles represent child regions. As the figure shows, there are
m ForkNodes and n MergeNodes, denoted by fi(i = 1, 2, ..., m) and mj(j =
1, 2, ..., n) respectively. Two types of doted edges exist: edges without an ar-
row denoted by cf ′ and edges with an arrow denoted by cf ′′. Let CF ′

i be the
set of n outgoing edges of fi, CF ′′

i be the set of m incoming edges of mj ,
CF ′ = ∪i=1,2,...,mCF ′

i and CF ′′ = ∪j=1,2,...,nCF ′′
j .The set of control flows

under determination, denoted by CF , are decided by connecting one of edges
in CF ′ to one of edges in CF ′′. If CF is formed according to a family of bi-
jective functions gi : CF ′

i −→ {cf ′′
1,i1

, cf ′′
2,i2

, ..., cf ′′
j,ij

, ..., cf ′′
n,in

} (i = 1, 2, ..., m,

j = 1, 2, ..., n) such that for any gk and gl(1 ≤ k ≤ m, 1 ≤ l ≤ m) kj 	= lj , the
generated region is overlapped.

3 Pattern Based Transformation from Semantically
Sound AD Models to BPEL Code

Given the unique decomposition of a semantically sound AD model, the transfor-
mation can be iteratively operated on the model. For a region, the transformation
only focuses on it and its child regions. Once its pattern has been identified, the
relevant BPEL code for it will be generated, and then the region will be reduced
to an abstract node. For the clarity of representation, we call the abstract node
medi-node, to which the corresponding BPEL code is attached.

For the readability of generated code, we try to transform as many regions
as possible into block-structured BPEL activities, while the remaining regions
could be isolated to limited ranges. Therefore we establish four kinds of pat-
terns: structured pattern for block-structured BPEL activities, unstructured se-
quential, unstructured parallel and overlapped pattern. The last three ones are
applied to those regions the first pattern cannot handle. In the following, trans-
formation methods for the four patterns will be explained in turn.

From Business Process Models to Web Services Orchestration 509

1. Structured pattern. This pattern is defined for those regions that can be
suitably mapped to one of the five structured constructs: Sequence, If, Flow,
While and RepeatUntil. They all have directly relevant block-structured activi-
ties in BPEL 2.0, hence the mappings are straightforward.
2. Unstructured sequential pattern. Those sequential regions which the
structured pattern cannot tackle with are handled by this pattern. Informally
speaking, this kind of regions contains either improperly nested DecesionNodes
and MergeNodes or unstructured cyclic flows, even both. In this paper we use
an approach proposed in [13] based on continuation semantics for this pattern.
Although this solution is intended to untangle unstructured cyclic flows, study
shows that it works well for the unstructured sequential regions without unstruc-
tured cycles. With the assistance of continuation semantics, an unstructured se-
quential region can be mapped to its functionally equivalent BPEL code, which
could yield the same output as the original model when provided with the same
input data. For space limitation, the detailed algorithm is omitted here.
3. Unstructured parallel pattern. This pattern is applicable to those parallel
regions which cannot be transformed to Flow activity using the structured pat-
tern. Informally speaking, they have improperly nested ForkNodes and JoinN-
odes. We could easily tame them by mapping all its child regions to BPEL
activities nested in a Flow activity and mapping all the edges to control links.
However, analysts or programmers may be confused with the generated code full
of control links owing to lack of readability. In order to generate as few control
links as possible, we try to preserve two structured patterns: Sequence and Flow
as much as possible.

For space limitation, only the main idea is briefly described. We first generate
a link for each edge connecting a ForkNode to a JoinNode (The ForkNode’s im-
mediately predecessor acts as the link’s source and the JoinNode’s immediately
successor as its target), and then remove the edge from the region. Afterwards
we apply SESE decomposition on the altered region over again. If new child
regions are produced, they can be matched to Sequence or Flow pattern.
4. Over-lapped pattern. As the name shows, this pattern is for over-lapped
regions. We turn an over-lapped region into its functionally equivalent structured
form by duplicating the medi-nodes between MergeNodes and the JoinNodes
and switching these two kinds of ControlNodes. Recall the pseudo region in the
left part of Figure 1, its functionally equivalent structured region is shown in
the right part. Apparently the premise of transformation is that those control
flows under determination are formed according to valid connecting functions.
Afterwards the new region can be easily handled using the structured pattern.
This method is easy to practice but at the expense of code redundancy.

The whole algorithm starts transformation from those regions only having
one ExecutableNode by turning them into medi-nodes, and then gradually folds
outer regions into medi-nodes by matching them to the four patterns above, until
there is only one single medi-node left. At that time the BPEL code attached to
it is the desired resulting code.

510 M. Zhang and Z. Duan

4 Conclusion and Further Work

In this paper, we presented the transformation of AD process models into exe-
cutable BPEL code. First, we make our transformation complete by exploiting
the characteristic of semantically sound AD models. Secondly, by adopting SESE
decomposition and separate pattern based analysis the transformation process
is automated. Thirdly, two modeling structures of BPEL are fully utilized in the
transformation. Furthermore, we emphasize the readability of generated code
throughout the process. In the future, we will try to extend our method to more
general control-flow models.

References

1. OASIS: Web Services Business Process Execution Language Version 2.0 (April 11,
2007), http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

2. Hauser, R., Koehler, J.: Compiling Process Graphs into Executable Code. In: Kar-
sai, G., Visser, E. (eds.) GPCE 2004. LNCS, vol. 3286, pp. 317–336. Springer,
Heidelberg (2004)

3. OMG: UML 2.0 Superstructure (8/8/05),
http://www.omg.org/cgi-bin/doc?ptc/2004-10-02

4. Ambühler, T.: UML 2.0 Profile for WS-BPEL with Mapping to WS-BPEL. Uni-
versität Stuttgart (2005)

5. Pajunen, L., Ruokonen, A.: Modeling and generating mobile business process. In:
Proc. ICWS 2007 (2007)

6. Kiepuszewski, B., ter Hofstede, A.H.M., Bussler, C.: On Structured Workflow
Modelling. In: Wangler, B., Bergman, L.D. (eds.) CAiSE 2000. LNCS, vol. 1789.
Springer, Heidelberg (2000)

7. Koehler, J., Hauser, R., Sendall, S., Wahler, M.: Declarative techniques for model-
driven business process integration. IBM Systems Journal 44(1), 47–65 (2005)

8. Zhao, W., Hauser, R., Bhattacharya, K., Bryant, B.R., Cao, F.: Compiling business
processes: untangling unstructured loops in irreducible flow graphs. IJWGS 2(1),
68–91 (2006)

9. Mendling, J., Lassen, K.B., Zdun, U.: Transformation strategies between block-
oriented and graphoriented process modelling languages. In: Multikonferenz
Wirtschaftsinformatik 2006. Band 2, pp. 297–312 (2006)

10. Russell, N., ter Hofstede, A.H.M., van der Aalst, W.M.P., Mulyar, N.: Workflow
Control-Flow Patterns: A Revised View. BPM Center Report BPM-06-22, BPM-
center.org (2006)

11. Hauser, R., Friess, M., Küster, J.M., Vanhatalo, J.: An incremental approach to
the analysis and transformation of workflows using region trees. IEEE Transactions
on Systems, Man, and Cybernetics - Part C: Applications and reviews 38(3) (May
2008)

12. Vanhatalo, J., Völzer, H., Leymann, F.: Faster and more focused control-flow analy-
sis for business process models through sese decomposition. In: Krämer, B.J., Lin,
K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 43–55. Springer,
Heidelberg (2007)

13. Koehler, J., Hauser, R.: Untangling Unstructured Cyclic Flows – A Solution Based
on Continuations. In: Meersman, R., Tari, Z. (eds.) OTM 2004. LNCS, vol. 3290,
pp. 121–138. Springer, Heidelberg (2004)

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.omg.org/cgi-bin/doc?ptc/2004-10-02

Batch Invocation of Web Services in BPEL Process

Liang Bao, Ping Chen, Xiang Zhang, Sheng Chen, Shengming Hu, and Yang Yang

Software Engineering Institute, Xidian University.
Xi’an, 710071, China

{baoliangbox,zximportant,kkchensheng,yyqinghuan}@gmail.com,
{chenping,shmhu}@sei.xidian.edu.cn

Abstract. This paper presents our approach for optimizing the execution of
BPEL (Business Process Execution Language) process by leveraging the features
of enterprise intranet and introduces batBPEL, a tool for batch invocations of web
services in BPEL process. The approach focuses on the decrease of connections
by forming batch invocation request of web services in BPEL process. Some em-
pirical experiments and evaluations show and prove the efficiency of our method
and related algorithms.

1 Introduction

Nowadays, Web services are emerging as a prevalent paradigm for implementing the
SOA[1] concept by developing and deploying business processes within and across
enterprises. Since the agility and flexibility of business processes become more and
more important, the Web Services Business Process Execution Language[2](BPEL for
short)is in the very act of becoming the industrial standard for modeling Web services
based business processes.

As an increasing number of business processes are modeled using BPEL, it is critical
to guarantee the execution performance of a business process. Many optimization meth-
ods have been introduced, such as IBM Symphony project for decentralized process
execution [3] and our earlier work for data-race free optimization[4].

However, all of these methods mentioned above are process-centered and fail to
leverage the special features(such as operating system, networking etc.) that exist within
the environment of an enterprise or organization to gain better performance. One of
these features is that most applications are running on a fast and reliable intranet net-
work. This implies that the conclusion “the time-cost to establish a new connection is
far more expensive than that of transmitting a large trunk of data” holds under this cir-
cumstance. In this paper, we design and implement a framework named batBPEL(batch
BPEL) that leverage this straightforward but important conclusion to speed up the ex-
ecution of a BPEL process. The approach focuses on the decrease of connections by
forming batch invocation request of web services in BPEL process. Some actual exper-
iments prove that this solution can increase the throughput and decrease the execution
time of different processes significantly.

A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, pp. 511–516, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

512 L. Bao et al.

2 Overview

In this section, we introduce our overall design of batBPEL. The architecture illustrated
in Fig.1 describes the basic structure and interactions of batBPEL, which comprises the
following components:

Static Analyzer: this component applies analysis techniques to a given BPEL process
and forms the batch groups.

Invocation Interception: its task is to intercept the invocation of Web services in
BPEL process, and to look up the batch groups and notify the client side service agent
with the invocation and batch information.

Client Side Service Agent(Client Agent): after receiving the information sent by in-
vocation interception, the client side service agent forms a batch invocation request.

Server Side Service Agent(Server Agent): when the request is received, the server side
service agent un-marshals the request, identifies, separates and dispatches the request
into many web service invocations.

Invocation Result Cache: once receives the response, the client agent un-marshals
and separates it. The invocation result required at this time is returned to the BPEL
engine directly, and other results are put into the invocation result cache for later use.

Fig. 1. The architecture of batBPEL

3 Static Analysis

Before a BPEL process is executed in the process engine, it is loaded into a static an-
alyzer first. The analyzer consists of four modules, namely“BPEL Reader”, “BCFG
Generator”, “ADG Generator” and “Batch Analyzer” respectively, which is shown in
Fig.2. When a BPEL process is loaded, the BPEL Reader will read it and transform it
into our memory structure of BPEL process(i.e. customized Java classes), which is im-
plemented by JAXB(Java native XML APIs in JDK 6.0). The whole analysis procedure
is totally sequential, the detailed discussion can be found in[5].

BCFG Generator: The key task of this component is to load the memory representa-
tion of BPEL process generated by BPEL reader and transform it into a corresponding
BCFG(BPEL Control Flow Graph) representation.

Batch Invocation of Web Services in BPEL Process 513

Fig. 2. Static analyzer

ADG Generator: Load the memory representation of BCFG and transform it into a
corresponding ADG(Activity Dependence Graph) representation.

Batch Analyzer: Enforce static slicing algorithm[6] to the ADG formed above, gen-
erate a legal sequence of execution(a sample) and apply our batch algorithm to it[5].

4 Invocation Interception

When an invoke activity in a batch group is executed, batBPEL need to be notified
with related invocation information. This is archived by introducing an invocation in-
terception module in it. The implementation of such interception is based on a modified
version of BPEL engine named ActiveBPEL [7], which uses AspectJ [8] to introduce
invocation interception as cross-cutting concerns(inspired by [9]).

Since we are only interested in the Web service invocation, we have decided to in-
tercept the process when it performs invoke activities. In order to do so we set pointcuts
before and after the engine calls the execute method on these activities.

5 Service Agent

By definition, the main responsibilities of the service agents(both client and server
agent) are two folds: (1) pack one or more invocation information up and form a sin-
gle invocation request and (2) read and parse the packaged invocation request, dispatch
the different invocations(for server agent) or save the different results in the invocation
cache(for client agent).

5.1 Client Side Service Agent

Client side service agent(client agent for short) is located in the same host as the process
engine is. The client agent is structured around four key components: (i) request inter-
ception, (ii) batch marshaller, (iii) batch un-marshaller and (vi) service invocation cache
reader/writer.

The core function of request interception component is SOAP request monitoring
and interception.In batBPEL, it is implemented by Apache Synapse, which is an open
source XML and Web services management and integration broker that can form the
basis of an SOA and Enterprise Service Bus (ESB). We use it here to perform SOAP
message interception.

514 L. Bao et al.

5.2 Server Side Service Agent

Server side service agent(server agent for short) is located in the same host as the service
container is. Fig. 3 gives a detailed architecture of it. The batch un-marshaller and batch
marshaller are both mediators implemented in Java class, just like their counterparts in
client agent. When a batch invocation arrives, the batch un-marshaller and invocation
dispatcher are added to separate and dispatch the batch invocation request to desired
web services. The whole process is totally concurrent. Once all of these invocations are
returned, the related results are collected and formed a single response by marshaller. It
is then pushed to the intranet as a batch invocation result.

Fig. 3. Server agent

6 Experiment and Evaluation

In this section we report the comprehensive performance gain that brought by batch
invocation from both the service and BPEL process level.

The typical setting for evaluation is a cluster of Intel Pentium based Windows ma-
chines(2.8G, 512MB RAM) connected by a 100 Mb/s LAN. Fig. 4 shows the compar-
ison of the execution time duration on the service level between the batch method and
the conventional invocation method. The duration presented in the figure marked orig-
inal includes fifty invocations. Every five invocations are packed into one invocation
when batch method is exploited, and accordingly, the client invokes the server for ten
times. When the message size is less than 50 KBytes — the most case for message size,
the batch method is about four times fast than the traditional method. The acceleration
factor deteriorates slightly when the message size is bigger than 100 KBytes as data
marshal and un-marshal take relatively longer time.

The duration for executing a service, which varies from many seconds to many hours
or even days, and the impact of it that will be explored statically, is not taken into
account in Fig. 4. It is worth nothing at this point that batBPEL that utilizes batch
invocation can speed up the execution of BPEL process appreciably.

Table 1 displays the process level comparisons between these two invocation para-
digms with the focus on invocations and execution duration. Among all the processes
we have investigated, six of them are represented. These processes can be mainly cat-
egorized into three types: computation-intensive, service-invocation-intensive and the
compound of them. The Office Automation(OA) and Draining System(DS) process be-
long to the first type; the Tool Integration(TI) and Travel Reserve(TR) fall into the sec-
ond category; and the other two processes — Online Book Purchase(OBP) and Train
Tickets(TT) pertain to the last type.

Batch Invocation of Web Services in BPEL Process 515

Fig. 4. Service level comparison

Table 1. Process level comparison

process original invokes batch invokes original duration(s) batch duration(s)
OA 79 63 231.23 207.5
DS 103 81 287.93 242.7
TI 183 144 436 315
TR 94 71 108.9 97.4

OBP 23 22 34.63 33.1
TT 52 39 60.83 45.2

As what can be observed in table 1, while the batch invocation opportunities for the
first type is minor, it increases pronouncedly for the second type, which is what BPEL
targets for. Take the TI process for example, when it is executed conventionally, which
incurs one service invocation when an invoke activity [2] is interpreted, 183 invocations
occurred. The batch invocation paradigm, however, requires only 144 invocations. The
performance gain for this process is around 28 percent.

By analyzing all the data gathered between our users and batBPEL, we found that
the performance gain, which is process dependent, ranges from 5 percent to 30 percent.
Moreover, the complex and sophisticated process, such as banking and telecommuni-
cation systems that contain thousands of activities and have twisted control flow, enjoy
more performance improvement.

7 Related Works

So far as we know, there are no related works on this topic. However, there are some
works on execution optimization of BPEL process, such as IBM Symphony and our
earlier work on data-race free optimization of BPEL process. In Symphony project,
some techniques partition a composite web service written as a single BPEL program
into an equivalent set of decentralized processes, with the goal of minimizing commu-
nication costs and maximizing the throughput of multiple concurrent instances of the
input program. Our earlier approach focuses on the adapted static optimization methods
of BPEL process.

Besides, there has been considerable research effort paid to BPEL. WofBPEL [10]
translates BPEL processes to Petri nets and imposes existing Petri nets analysis

516 L. Bao et al.

techniques to perform static analysis on processes. [11] modifies the CWB to support
BPE-calculus by means of PAC to ensure that each link has one source and target activ-
ity exactly, and to guarantee that the process is free of deadlocks. Mads [12] describes
some region-based memory techniques for programs that perform dynamic memory
allocation and de-allocation.

8 Conclusion and Future Works

In this paper, we advocate batch invocations of Web services in BPEL process by
static analysis and dynamic invocation interceptions. Furthermore, we implement our
batBPEL that support high performance BPEL execution in the enterprise intranet en-
vironment. Our further work includes improvement of our static analysis algorithm and
a careful study of the system.

References

1. Papazoglou, M.: Service-oriented computing: Concepts, characteristics and directions. In:
4th International Conference on Web Information Systems Engineering (WISE), New York,
pp. 3–12. IEEE Press, Los Alamitos (2003)

2. Jordan, D.: Web services business process execution language version 2.0. OASIS Specifica-
tion (2007)

3. Nanda, M.G., Karnik, N.: Synchronization analysis for decentralizing composite web ser-
vices. ACM, New York (2003)

4. Sheng Chen, L.B., Chen, P.: Optbpel: A tool for performance optimization of bpel process.
LNCS. Springer, Heidelberg (2008)

5. Bao, L., Zhang, X.: Batch invocation of web services in bpel process(detatiled version)
(2008), http://www.soacn.org

6. Krinke, J.: Static slicing of threaded programs. In: ACM SIGPLAN/SIGSOFT, pp. 35–42
(1998)

7. Endpoints, A.: Activebpel engine architecture(version 4.1) (2008),
http://www.activebpel.org/docs/architecture.html

8. Kiczales, G., Griswold, E.H.,, W.G.: An overview of aspectj. In: Knudsen, J.L. (ed.) ECOOP
2001. LNCS, vol. 2072, pp. 327–353. Springer, Heidelberg (2001)

9. Courbis, C., Finkelstein, A.: Towards aspect weaving applications. In: International Confer-
ence on Software Engineering(ICSE), pp. 69–77. ACM Press, New York (2005)

10. Ouyang, C., Verbeek, E., van der Aalst, W.M.P., Breutel, S., Dumas, M., ter Hofstede,
A.H.M.: Wofbpel: A tool for automated analysis of bpel processes. In: Benatallah, B., Casati,
F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp. 484–489. Springer, Heidelberg
(2005)

11. Koshkina, M., B.F.: Modelling and verifying web service orchestration by means of the con-
currency workbench. TAV-WEB Proceedings/ACM SIGSOFT 29–5(5) (2004)

12. Mads Tofte, J.P.T.: Region-based memory management. Information and Computation 132,
109–197 (1997)

http://www.soacn.org
http://www.activebpel.org/docs/architecture.html

Formation of Service Value Networks for Decentralized
Service Provisioning

Sebastian Speiser, Benjamin Blau, Steffen Lamparter, and Stefan Tai

Karlsruhe Service Research Institute (KSRI), Universität Karlsruhe (TH), Germany
firstname.lastname@ksri.uni-karlsruhe.de

Abstract. The provisioning of complex services requires tight collaboration
between diverse service providers and their customers harmonizing supply and
demand chains to a highly flexible, dynamic and decentralized service value net-
work. Peers in such a network autonomously delegate (sub-)tasks which cannot
be done efficiently by themselves to other more suitable peers in their commu-
nity. In this paper, we propose an architecture for such service communities that
features decentralized service provisioning based on current Web technologies. In
this context, we present an algorithm for efficient service value network formation
and show by means of a simulation that sufficiently sized service networks can
fulfill practically all customer requests. When compared to the optimal (central)
case, there is a modest price increase for the customers but the overall welfare
decreases only insignificantly.

1 Introduction

Complex (or composite) services ”typically involve the assembly and invocation of
many pre-existing services possibly found in diverse enterprises [1],” and thus, a net-
work of service providers and consumers. In services-led economies, these networks
increasingly are loosely-coupled configurations of legally independent firms.

The formation of such a network is driven by the value that it generates for its cus-
tomers. With increasing competition and specialization in the services sector, and the
continuous introduction of new services offerings, value-driven network formation and
transformation is of predominant importance. Dynamic service value networks are often
considered as the only strategic alternative to provide complex services [2,3,4].

Service networks describe the possible cooperations between legally independent
actors that enable co-generation of value by fulfilling complex customer requests. Due
to low lock-in and lock-out costs, service value networks are characterized by a high
rate of fluctuation of service providers, making it difficult to maintain a consistent,
centralized service repository.

Consequently, this paper analyzes the formation of service value networks in a de-
centralized service provisioning environment. Based on customers’ requests for the
completion of complex tasks, peers in such a network autonomously delegate (sub-)
tasks to other service providers within their partner networks. This iterative process
fosters the evolution of a network-based value generation driven by customers’ needs
and co-opetition of specialized service providers.

A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, pp. 517–523, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

518 S. Speiser et al.

In this paper, we propose an architecture for such service networks that features
decentralized service provisioning based on current Web technologies. In this context,
we present an algorithm for efficient service value network formation and show by
means of a simulation that sufficiently sized service networks can fulfill practically all
customer requests. When compared to the optimal (central) case, there is a modest price
increase for the customers but the overall welfare decreases only insignificantly.

Several decentralized service discovery mechanisms have been presented in litera-
ture. Most of them distribute service descriptions over several peers and use an indexing
mechanism to efficiently route the queries through the P2P network (e.g. [5,6]). How-
ever, building and maintaining such indexes contradicts our assumption that each peer
in the network has only knowledge about his direct neighbors and usually peers are not
willing to share this knowledge since it can be an important business asset.

There are a few approaches that explicitly consider a network of providers, e.g. [7].
However, the algorithms assume peers with different capacity (i.e. available resources)
but the same homogeneous functionality (such as computing power). Since in our net-
work the services are highly specialized and therefore provide different functionality,
these algorithms are not directly applicable.

The paper is structured as follows. In Section 2 we define our model of composed ser-
vices and service value networks. Based thereon in Section 3 we introduce our proposed
algorithms for decentralized service provisioning. Section 4 describes a simulation of
the algorithms and compares them to centralized approaches. We conclude and give
an outlook on future work in Section 5. An extended version of this paper with more
details can be found in [8].

2 Service Value Networks

In this section we introduce a formal model that is the foundation for our understanding
of service value networks (SVNs). First we define a service specification which deter-
mines how atomic services are combined to form more complex composed services.
Afterwards service providers and customers are introduced that are connected in a ser-
vice network. For the fulfillment of service requests the SVNs are dynamically formed
and create a value that is defined in the end of this section.

Service Specification. Services that cannot be decomposed in smaller sub-services are
called atomic. In contrast a composed service is equivalent to its component services
that can in turn again be atomic or composed. Let S be the set of all services. The set
of ordered pairs ES represents the component relationship meaning that s1 ∈ S is a
component service of s2 ∈ S, iff (s1, s2) ∈ ES . The directed graph GS = (S, ES) is
called service specification. We require Gs to be acyclic. Furthermore we define the two
disjoint sets of atomic services Sa = {s ∈ S | �s′ ∈ S : (s′, s) ∈ ES} and composed
services Sc = S \ Sa. We define the complexity of a service s as the number of basic
services that are required to create an equivalent service.

Service Provider. Each service provider p is able to execute the services denoted by
his capability set φp ⊆ S. For the execution of a service s ∈ φp the provider is charged
with internal costs, determined by his cost function cp : S −→ R. As a provider aims

Formation of Service Value Networks for Decentralized Service Provisioning 519

at making a profit he charges a price that adds a margin to his costs, given by the mar-
gin function mp : R −→ R. The charged price for s ∈ S is fp(s) = mp(cp(s)). The
provider is able to subcontract services to a set of cooperating service providers, denoted
as Vp. The costs for p when subcontracting s are given by cp(s) = minp′∈Vp fp′(s).

A provider p maintains a function dp : S −→ {false, true} for all services that
he can either offer himself or in cooperation. The function returns true for services that
should be decomposed and false for services that are executed or delegated as a whole.

Customer. Besides service providers we consider the set of service customers W that
consume services but do not provide any services nor forward requests. A customer
w ∈ W has a valuation for the services he requests, given by his utility function
uw : S −→ R. Service requests are sent to w’s partner network Vw ⊆ P .

Service Value Network. The relationships between customers, providers and among
providers are represented by the directed graph G = (P ∪ W, E) where an edge
(x, y) ∈ E denotes that x sends requests to y. The edges are given by the partner
networks as E = {(x, y) ∈ (P ∪ W) × P | y ∈ Vx}. The graph G is called service
network. The customer that requests a service and the providers that are involved in the
fulfillment of the request form a service value network. As this process is invoked for
every service request it is a dynamic formation.

Let P ′ ⊂ P ∪ W be the set of participants in a service value network fulfilling
the request for service s by customer w. Service delegations are represented as tuples
(p1, p2, s) ⊂ P ′ × P ′ × S, meaning that p1 delegates service s to p2. Internal execu-
tions are also treated as service delegations with p1 = p2. Let E′ be the set of all service
delegations then the directed graph G′ = (P ′, E′) denotes the service value network.
For the reader’s convenience we define the following three sets for a service value net-
work: (I) The customer’s request RG′ = {(w, p, s) ∈ E′ | w ∈ W}, (II) the internal
executions IG′ = {(p1, p2, s) ∈ E′ | p1 = p2}, and (III) the set of service cooperations
DG′ = E′ \ (RG′ ∪ IG′).

Welfare in Service Value Networks. The welfare co-generated in a service value net-
work is given by the sum of received values for all participants. For a service value
network G′ = (P ′, E′) which serves customer w with service s, we define the welfare
wfG′ = uw(s)−

∑
(p,p,s′)∈IG′ cp(s′). This shows that the welfare can be maximized if

the internal costs that occur during the execution of a service are minimized. For each
service delegation (p1, p2, s

′) ∈ DG′ the payment of fp2(s′) increases p2’s value by the
same amount as it decreases p1’s value. Therefore payments do not influence the wel-
fare, except in the case where the total price is above the customer’s valuation meaning
that no transaction will take place and thus no value at all is generated.

3 Network Formation and Service Delivery Algorithms

The algorithms can be divided into two groups. The first initializes and maintains the
data structures a provider keeps to determine the best executions strategies for each
service. Based on this data the second group generates concrete offers upon service
requests.

520 S. Speiser et al.

Every new provider p that joins the service value network assigns all services s ∈ S
to himself with costs of ∞. Then he updates the services in his capability set to have
a price given by his internal costs plus his margin (∀s ∈ φp : fp(s) := mp(cp(s))).
Afterwards the providers notifies his partner network about his capabilities.

A provider p that receives a notification about the capability of p′ to deliver s at price
fp′ , first checks if the new price is better than his current costs. If this is the case he
updates the preferred provider for the service and sets the costs to the received price.
He also updates the price fp(s) he charges for the service to be the new costs plus his
margin. Then he updates his cost structure.

This function is done by first notifying the partner network about the new capability
respectively the new price. Then it is checked checked if the updated service is part of
composed services. In that case for each composed service the sum of the prices for the
components is compared to the current total price. If a decomposition is cheaper this is
saved in the provider’s data structure and the cost structure is updated recursively for
the composed services.

When a provider p is requested a concrete offer for a service s then p simply adds his
margin on top of his costs associated with s. The associated costs are calculated with
the following three cases. If s is marked for decomposed execution, it costs the sum of
the recursively calculated costs of its components. If p is the preferred provider for s,
the internal costs are taken. Else an offer from the provider that p has assigned for s is
requested.

Correctness and Scalability. Initially a provider assigns all services to himself and
memorizes as costs either his internal costs or infinity for services that he is not capa-
ble of doing. In the succeeding phase the provider broadcasts his capabilities. We can
assume that each provider adds a margin that leads to increasing prices (∀x ∈ R, p ∈
P : mp(x) > x). Therefore at some point providers will dismiss further notifications
based on their price. The notification phase is very similar to the Routing Information
Protocol (RIP) [9]. With RIP routers on the internet exchange information about which
networks they can reach. The costs are measured as the number of intermediary routers
that are used by a router to reach the network. The different network speeds are equiv-
alent to the margins charged by providers. RIP has proven to be correct by operating
reliably the internet and other networks. However it has some scalability issues and is
therefore replaced more and more by link-state based routing protocols. These protocols
are not applicable to our problem domain, as they require that providers can gather com-
plete topological information about the service network, including the margins of other
providers. This is not a realistic option. The scalability issues will not be a problem in the
near future as the service networks are supposed to be much smaller than the internet.

Routers operating with RIP resend their routing information every 30 seconds and
delete routes that are not confirmed by such resendings. In this way the protocol deals
with the removal of links or routers. This can also be applied to our algorithms in order
to react to price increases or false advertisements. False advertisements are notifications
of providers that they can deliver a service for a given price but always return higher
prices in the offer phase. Other providers can detect such a behavior and remove the
provider from their partner network.

Formation of Service Value Networks for Decentralized Service Provisioning 521

In the offer making phase a provider knows exactly if he should decompose a service
and to which other providers services are delegated. This efficiency for the frequent ser-
vice offers is bought with increased costs for the propagation of changes in the service
value network.

4 Network Simulation

We ran simulations of service value networks in order to compare them to an approach
with a central registry. The following questions are analyzed with the simulation results:

1. What is the performance of the notification algorithm?
2. How many service requests can be fulfilled?
3. How large is the price increase for customers?
4. What is the impact on the welfare?

For the experiment we first create a service specification consisting of ns services.
Each of the np providers is capable of doing a randomly selected service s with internal
costs randomly selected between 0.2 · complexity(s) and 0.8 · complexity(s).
It is insured that every service has at least one provider. A provider p is assigned the
margin function mp(x) = (1+Mp)·x, where Mp is randomly chosen for every provider
between 10% and 20%. The partner network is created by establishing 0.05 ·n2

p random
partnerships. The customer’s valuation of a service s is given by complexity(s).

For the evaluation of our approach we compare it to the case where a central service
registry exists. This can be modelled as a provider that has partnerships with all other
providers and charges no margin. The registry is able to serve a customer all services
with optimal price. In some comparisons we assume that the registry also knows about
the internal costs of individual providers and can therefore provide service executions
with optimal welfare.

We ran the experiment with ns = 50 services and varied the number of providers
from 50 to 400 in steps of 25. We repeated this 100 times for each np and based on the
average values, we came to the following results.

Performance of Algorithm (Question 1). The number of notifications that are sent
between providers until all service pricing information is exchanged grows with speed
of O(n3). As the number of providers also grows, this means an average number of
O(n2) notifications per provider. Therefore the algorithm can be considered efficient.

Decentral Execution Ratio (Question 2). The decentral execution ratio is the prob-
ability that a request to a random provider for a random service results in a price that
is lower than the valuation of the service. This ratio converges fast to the optimal value
of 100% and is even for small numbers of providers (np ≤ 100) in an acceptable range
between 80% and 90%.

Price Increase for Customer (Question 3). We see in Figure 1 that the price increase
for a customer requesting a random service from a random provider gets smaller with
increasing size of the service network. In our simulation there is an inherent reason why

522 S. Speiser et al.

 0.28

 0.3

 0.32

 0.34

 0.36

 0.38

 0.4

 50 100 150 200 250 300 350 400

 0.0025

 0.003

 0.0035

 0.004

pr
ic

e
in

cr
ea

se
 fo

r
cu

st
om

er

w
el

fa
re

 d
ec

re
as

e

n providers

price increase
welfare decrease

Fig. 1. Price increase for customer and welfare decrease for varying np from 50 to 400

a zero price increase is not possible: every provider can execute himself only one ser-
vice and therefore has to delegate all other services, which means for almost all requests
at least two providers are involved that both charge a margin. In the central case we as-
sumed that the registry does not charge money and can therefore offer the best available
price. The operation of such a central registry however is associated with costs that have
to be reimbursed either by charging a margin or receiving payments from the service
providers which will increase their costs. Therefore we conclude that with increasing
service network size the prices get more competitive compared to a central scenario.

Welfare Decrease (Question 4). The participants in a service network are self-
interested. The proposed algorithms aim at keeping prices low in order to stay com-
petitive while ensuring that a given margin is earned. Our main concern is how the
welfare of a decentral formed service value network is compared to a centrally planed
cooperation. We observed in the simulation that the average welfare decrease over all
services and providers behaves similar to the price increase (see Figure 1). However the
decrease is always very small (below 0.6%) even for small networks.

We showed that the algorithm is efficient and delivers results that are competitive to
a central approach with a registry that operates for free, which is optimal but unrealistic.
Although customers have to pay slightly higher prices, practically all requests can be
fulfilled without a significant welfare decrease. We also observed that a larger service
network is better both for the customer and the overall welfare.

5 Conclusion

In this paper we considered the problem of decentralized service value network for-
mation. We provided an algorithm that distributes a service request over a network of

Formation of Service Value Networks for Decentralized Service Provisioning 523

self-interested, non-cooperative service providers and thereby creates an efficient ser-
vice value network. The algorithm is novel compared to existing approaches as peers
in the network do not have to provide any information about their business network to
their customers. Thereby, new business models for service intermediaries are enabled,
whose only business asset is a strong partner network. We showed by means of a sim-
ulation that the algorithm is tractable for reasonable sized scenarios as the number of
required notifications in a network with n providers is O(n3). In addition, the results
show that the algorithm performs quite well in terms of welfare decrease and price
increase compared to a central scenario. In fact, the total loss in welfare is below 0.6%.

There are several directions in which we plan to extend this work. First, we plan to
replace the current uniform distribution used to create the service network with a power-
law distribution which seems to be a more realistic assumption for social networks as
well as Web environments [10]. We plan an analytical and experimental evaluation how
this change impacts the performance of our algorithms. Second, we plan to extend the
algorithms for quality of service aspects. Modeling the trade-off between quality and
price requires the introduction of multi-attribute price and value functions. Third, we
plan to assess whether introducing a market mechanism such as a path auction might
further increase the efficiency of the service allocation.

Acknowledgement. This work was partially funded by the German Research Foun-
dation (DFG) in scope of the Graduate School Information Management and Market
Engineering.

References

1. Papazoglou, M.: Web Services: Principles and Technologies. Prentice Hall, Englewood Cliffs
(2007)

2. Tapscott, D., Lowy, A., Ticoll, D.: Digital Capital: Harnessing the Power of Business Webs.
Harvard Business School Press (2000)

3. Hagel III, J.: Spider versus Spider. The McKinsey Quarterly (1), 4–5 (1996)
4. Steiner, F.: Formation and Early Growth of Business Webs: Modular Product Systems in

Network Markets. Physica-Verlag, Heidelberg (2004)
5. Schmidt, C., Parashar, M.: A peer-to-peer approach to web service discovery. World Wide

Web Journal 7(2) (2004)
6. Vu, L.H., Hauswirth, M., Aberer, K.: Towards P2P-based Semantic Web Service Discov-

ery with QoS Support. In: Workshop on Business Processes and Services (BPS), pp. 18–31
(2006)

7. de Weerdt, M., Zhang, Y., Klos, T.: Distributed task allocation in social networks. In: AA-
MAS 2007, pp. 1–8 (2007)

8. Speiser, S., Blau, B., Lamparter, S., Tai, S.: Formation of service value networks for decen-
tralized service provisioning. Technical report, KSRI, Universität Karlsruhe, TH (2008)

9. Hedrick, C.: Routing Information Protocol. RFC 1058 (Historic) (June 1988) Updated by
RFCs 1388, 1723

10. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the internet topol-
ogy. In: SIGCOMM 1999, pp. 251–262 (1999)

Towards Automated WSDL-Based Testing of
Web Services�

Cesare Bartolini1, Antonia Bertolino1, Eda Marchetti1, and Andrea Polini1,2

1 Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”
Consiglio Nazionale delle Ricerche
Via Moruzzi 1 - 56124 Pisa, Italy

2 Dipartimento di Matematica ed Informatica
University of Camerino

Via Madonna delle Carceri, 9 - 62032 Camerino, Italy
{cesare.bartolini, antonia.bertolino, eda.marchetti,

andrea.polini}@isti.cnr.it

Abstract. With the emergence of service-oriented computing, proper
approaches are needed to validate a Web Service (WS) behaviour. In
the last years several tools automating WS testing have been released.
However, generally the selection of which and how many test cases should
be run, and the instantiation of the input data into each test case, is still
left to the human tester.

In this paper we introduce a proposal to automate WSDL-based test-
ing, which combines the coverage of WS operations with data-driven test
case generation. We sketch the general architecture of a test environment
that basically integrates two existing tools: soapUI, which is a popular tool
for WS testing, and TAXI, which is a tool we have previously developed
for the automated derivation of XML instances from a XML Schema.

The test suite generation can be driven by basic coverage criteria and
by the application of some heuristics, aimed in particular at systemati-
cally combining the generated instance elements in different ways, and
at opportunely varying the cardinalities and the data values used for the
generated instances.

1 Introduction

Service-oriented Architecture (SOA) is the emerging paradigm for the develop-
ment of distributed applications that are easy to integrate and flexible to fast
changes of the environment and of user needs.

The escalation of Web Service (WS) technology is now evident to everyone.
All major IT vendors, such as IBM, Tibco, Software AG, Oracle, just to cite the
top competitors, have made huge investments into SOA in the last years.

Moreover service providers from virtually any domain, banks, governments,
hospitals, academies, travel agencies, and so on, are progressively shifting to-
wards the on-line service-market.
� The authors wish to thank Antonino Sabetta for his help in defining the test cases.

This work was supported by the TAS3 Project (EU FP7 CP n. 216287).

A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, pp. 524–529, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Towards Automated WSDL-Based Testing of Web Services 525

The net effect of this IT technology trend is that unavoidably business and
social welfare are more and more depending on the proper functioning of services
delivered over the Net. WS trustworthiness is a modern buzzword to qualify those
characteristics that allow a client to put justified reliance on a provided service,
against accidental or intentional faults. Because of their pervasive distribution,
WSs must offer very strict guarantees in this regard, even for services that are
not dealing with safety-critical or money-critical applications.

For this reason, it is imperative that WSs are thoroughly tested before de-
ployment. Essentially, a WS collects a set of functions, whose invocation syntax
is defined in the associated WSDL document. The adoption of open standard
specifications for the WS interface has been instrumental to achieve interoper-
ability and is at the basis of several available testing tools. The WSDL formalized
description of service operations and of their input and output parameters can
be in fact taken as a reference for black box testing at the service interface. In
the last years a wealth of WSDL-based WS test tools has been developed [5,8].
In general such tools can automatically derive skeletons of WS test cases and
provide support for their execution and result analysis. Nevertheless they do not
provide support for input data selection, for which they still rely on the human
tester’s intervention.

To us, it is somewhat surprising that till today WS test automation is not pushed
further than this, since in principle the XML-based syntax of WSDL documents
could support fully automated WS test generation by means of traditional syntax-
based testing approaches. In this direction, we have defined a framework for “turn-
key” generation of WS test suites1, in which we combine coverage ofWS operations
(as provided by soapUI) with data-driven test case generation.

In this paper we illustrate the feasibility of the idea by means of a proof-of-
concept implementation that integrates soapUI and TAXI. The latter is a tool
we have previously developed [9] for the automated derivation of XML instances
from a XML Schema. The idea, in comparison with soapUI and other existing
WS test tools, is to derive from the WSDL interface of a WS, in a completely
automated way, a test suite that thoroughly exercises the WS operations by
systematically varying the possible input message structures and values.

The paper is structured as follows. In the next section we present the en-
visaged approach to fully automated WSDL-based testing; in Sec. 3 we then
illustrate some feedbacks from our preliminary hands-on experience. Related
work is briefly surveyed in Sec. 4 and conclusions are drawn in Sec. 5.

2 Approach

Our methodology aims at generating a set of SOAP messages sufficient to cover
the whole interface provided by a WSDL file. Specifically, the tasks which must
be carried out are:

1 To be precise the test suites and test cases we derive only refer to input messages and
data; the test oracle has still to be defined by the tester.

526 C. Bartolini et al.

1. WSDL Analysis: A parser reads the WSDL specification and extracts in-
formation on operations, messages and data structures.

2. SOAP Envelope Derivation: Some tool is used to generate a skeleton of
the SOAP message.

3. Message Parts Definition: For each data structure in the WSDL specifi-
cation, different message instances are generated.

4. Envelopes Composition: The bogus data in the envelope skeletons are
replaced with the actual derived instances.

5. Messages Sending and Results Analysis: The tester, or a batch script,
sends the envelopes to the WS under test and collects the outputs for future
inspection.

This methodology is eligible for combining different components to perform
some of the above mentioned activities; in particular, we have selected soapUI
and TAXI as two of them. The proposed architecture is sketched below.

The soapUI tool is responsible of the SOAP envelope skeleton derivation.
TAXI is in charge of the actual message definition, and to do this it must extract
the XML Schema data from the WSDL file (a modified version of the software or
a preproduction script can be used for this purpose). The XML instances derived
by TAXI and the envelope skeletons generated by soapUI can be assembled and
sent to the WS. The results of the WS invocation are presented to the tester, or
checked against provided expected output annotations (as done by soapUI). The
whole process can be automated via a wrapping tool and the incorporation of
suitable test strategies. We envisage that the generation of the SOAP messages
can be carried out with various coverage criteria such as Operation Coverage,
Message Coverage and so on, producing different degrees of detail.

2.1 soapUI

soapUI [5] is a tool developed by Eviware Software AB, available both in free
and improved commercial versions. It assists programmers in developing SOAP-
based web services. In particular, within the proposed methodology it allows
the developer to generate stubs of SOAP calls for the operations declared in a
WSDL file. Additionally, it is possible to use soapUI to send SOAP messages to
the web service and display the outputs; this can be used for preliminary testing
purposes.

Alternatively, for the purposes of this research it is possible to use any other
tool capable of generating SOAP envelopes from WSDL files, such as Altova
XMLSpy [1].

2.2 TAXI

TAXI (Testing by Automatically generated XML Instances) [3,4,9] is a tool
able to generate XML instances compliant with a given XML Schema. It has
been conceived so as to cover all interesting combinations of the schema by
adopting a systematic black-box criterion. For this reason, TAXI applies the

Towards Automated WSDL-Based Testing of Web Services 527

well-known Category Partition (CP) technique [6] to the XML Schema. CP
provides a stepwise intuitive approach to identify the relevant input parameters
and environment conditions and combine their significant values into an effective
test suite.

TAXI activity starts with the analysis of an input XML Schema. The imple-
mentation of CP requires the analysis of the XML Schema and the extraction
of the useful information.

choice elements are processed by generating instances with every possible child.
Multiple choice elements produce a combinatorial number of instances. This
ensures that the set of sub-schemas represents all possible structures deriv-
able from choice.

Element occurrences are analyzed, and the constraints are determined, from
the XML Schema definition. Boundary values for minOccurs and maxOccurs
are defined.

all elements result in a random sequence of the all children elements for generat-
ing the instance. This new sequence is then used during the values assignment
to each element.

Exploiting the information collected so far and the structure of the (sub)schema,
TAXI derives a set of intermediate instances by combining the occurrence values
assigned to each element.

The final instances are derived from the intermediate ones by assigning values
to the various elements. Two approaches can be adopted: values can be picked
from an associated database or generated randomly if no value is associated to an
element in the database. Since the number of instances with different structures
could be huge, in the current implementation TAXI only selects one value per
element for each instance.

3 Preliminary Evaluation

To measure the feasibility and strength of the proposed approach, our method-
ology has been trialed for testing a WS which queries a publications database.

Using the WSDL available description we derived systematically a test suite
along the steps presented in Sec. 2, and we compared it against a manually
generated one, mimicking a human tester using the soapUI tool.

Both test suites consisted exclusively of XSD-compliant messages, and in-
cluded both data actually taken from the publications database, and fictitious
names or keywords. The two test suites have been used for testing the web ser-
vices and the results have been collected. The first obtained feedbacks made
clear that the manual test suite completely ignored certain classes of problem
of the tested WS, while they evidenced a good performance of our approach in
finding more problems.

In particular this experiment gave us the opportunity to detect bugs which
had not popped out before. These errors were related to some parameters which
were not passed to the search function.

528 C. Bartolini et al.

The in-use version of the web service software had been thoroughly tested and
is “bug-free enough” for ordinary use, while the version used for this experiment
contains several improvements which still have to be integrated into the in-
use application. Several manual tests had been previously run against the new
features, but they were not sufficient to highlight the errors we found with a
proof-of-concept of our methodology.

In conclusion, the experiments showed out that our systematic automated
approach can provide a test suite which is more effective than the one which
is created manually. In particular, having a test suite which covers such a wide
range of variability in the structure and the values of the data would require a
huge effort if done manually, even starting from a basis of automatically gener-
ated skeletons such as those provided by soapUI. Even though we have not yet
performed a formal benchmark evaluation, the effort and time required appear
drastically reduced using this methodology.

4 Related Work

There is today a list of good tools that can be used and have been adapted to
test web services. Just to mention a few interesting ones, there are soapUI [5],
PushToTest [8], SOATest [7]. Tipically such tools are extremely effective in sup-
porting the various testing activities and in increasing the productivity of testers.
Nevetheless they mainly focus on management and execution of test cases and
none of them tries to automatically provide test design and generation. Such a
step is still mainly on the shoulder of testers and is strongly related to their abil-
ity. In particular none of the tools we analyzed take advantage of the availability
of service models expressed in computer readable format suitable for automatic
manipulation. In particular we refer here to the availability of XML-based de-
scription of service operation data models.

To the best of our knowledge, the only work which addresses issues similar
to ours is [2], which also proposes XML-based test data generation and test
operation generation. However, the work only outlines the possible perspectives
of WSDL-based testing, but does not provide a tool, nor does it rely on standard
test approaches. In our approach, instead, we intend to offer a “turn-key” tool
which, by exploiting the existing TAXI tool, focuses on a systematic generation
of test cases based on the Category Partition algorithm.

Finally, automatic generation of instances from XML Schemas its nowadays
a feature of some, even commercial, tools [1,10]. Therefore our approach could
be pursued even using other XML instance generation tools.

5 Conclusions and Future Work

Testing of Web Services is a challenging activity. Many characteristics (run-
time discovery, multi-organization integration) of this new paradigm and its
related technologies certainly contribute to make testing much more difficult.
Nevertheless there are other characteristics that could be fruitfully exploited

Towards Automated WSDL-Based Testing of Web Services 529

for testing purposes. Among these, the representation of data in a computer
readable format (typically XML-based) facilitates the automatic derivation of
data instances to be used for testing invocations.

Starting from this consideration we presented a methodology to automati-
cally derive test messages from WSDL descriptions. Such messages include data
representing possible values that a real implementation of the service should be
able to handle. We proposed that the generated data instances are encapsulated
in correct SOAP envelopes that can be used to invoke a service implementation.
Furthermore, by use of our tool TAXI, we proposed to exploit the characteristics
of an XML Schema-based data description to automatically apply well known
testing methods such as Category Partition and boundary value selection. This
would result in the derivation of a test suite of messages that are representative
of the space of possible messages.

The described methodology is still undergoing development and validation.
Main tasks for the future include: To perform focussed and extensive evaluations
in order to identify fault categories that are easily discovered and better define
the usage scope; to extend the embedded TAXI functionalities so as to also
generate non-compliant test cases that can support robustness testing of the
invoked service; to complete the approach implementation and make it available
as a free tool to the community for download and experimentation.

References

1. Altova. XML Spy, http://www.altova.com/products/xmlspy/xml editor.html
2. Bai, X., Dong, W., Tsai, W.-T., Chen, Y.: WSDL-based automatic test case gen-

eration for web services testing. In: Proc. of IEEE Int. Work. SOSE, Washington,
DC, USA, pp. 215–220. IEEE Computer Society, Los Alamitos (2005)

3. Bertolino, A., Gao, J., Marchetti, E., Polini, A.: Systematic generation of XML
instances to test complex software applications. In: Guelfi, N., Buchs, D. (eds.)
RISE 2006. LNCS, vol. 4401, pp. 114–129. Springer, Heidelberg (2007)

4. Bertolino, A., Gao, J., Marchetti, E., Polini, A.: Automatic test data generation
for XML Schema based partition testing. In: Proc. Int. Work. on Automation of
Software Test (ICSE 2007 companion), Minneapolis, Minnesota, USA (May 2007)

5. Eviware. soapUI; the Web Services Testing tool (accessed May 30, 2008),
http://www.soapui.org/

6. Ostrand, T.J., Balcer, M.J.: The category-partition method for specifying and gen-
erating fuctional tests. Commun. ACM 31(6), 676–686 (1988)

7. Parasoft. SOATest (accessed June 3, 2008),
http://www.parasoft.com/jsp/products/home.jsp?product=SOAP

8. PushToTest. PushToTest TestMaker (accessed June 3, 2008)
http://www.pushtotest.com/Docs/downloads/features.html

9. TAXI. Testing by automatically generated XML instances (2007),
http://labse.isti.cnr.it/index.php?option=com content&task=view&
id=94&Itemid=49

10. Toxgene. Toxgene (2005), http://www.cs.toronto.edu/tox/toxgene/

http://www.altova.com/products/xmlspy/xml_editor.html
http://www.soapui.org/
http://www.parasoft.com/jsp/products/home.jsp?product=SOAP
http://www.pushtotest.com/Docs/downloads/features.html
http://labse.isti.cnr.it/index.php?option=com_content&task=view&id=94&Itemid=49
http://labse.isti.cnr.it/index.php?option=com_content&task=view&id=94&Itemid=49
http://www.cs.toronto.edu/tox/toxgene/

Automated Service Composition with Adaptive
Planning�

Sandrine Beauche1 and Pascal Poizat1,2

1 INRIA/ARLES project-team, France
{sandrine.beauche,pascal.poizat}@inria.fr

2 IBISC FRE 3910 CNRS – Université d’Évry Val d’Essonne, France

Abstract. Service-Oriented Computing is a cornerstone for the realiza-
tion of user needs through the automatic composition of services from
service descriptions and user tasks, i.e., high-level descriptions of the user
needs. Yet, automatic service composition processes commonly assume
that service descriptions and user tasks share the same abstraction level,
and that services have been pre-designed to integrate. To release these
strong assumptions and to augment the possibilities of composition, we
add adaptation features into the service composition process using se-
mantic descriptions and adaptive extensions to graph planning.

Keywords: Services, Task-Oriented Computing, Composition, Software
Adaptation, Planning, Workflow Languages, Tools.

1 Introduction

Task-Oriented Computing (TOC) envisions a user-friendly world where user
tasks would be achieved by the automatic assembly of resources available in
the environment. Service-Oriented Computing (SOC) is a cornerstone towards
the realization of this vision, through the abstraction of heterogeneous resources
as services. Yet, services being elements of composition developed by different
third-parties, their reuse and assembly naturally raises composition mismatch
issues [1]. Moreover, the TOC vision yields a higher description level for the
composition requirements, i.e., the user task(s), as the user only has an abstract
vision of her/his needs which are usually not described at the service level.

To illustrate these issues, we use a running example [2], inspired by [3], which
exposes a set of available services described with a conversation, a capability,
inputs and outputs (Figs. 1 and 2). Conversations describe how to use services,
while capabilities are semantic annotations that enable automatic reasoning for
discovery and composition. In our work, conversations are described with a
generic workflow language, YAWL, for which transformations from/to BPEL
have been defined [4]. The Amazon service can be used to look for an eBook
and provides a capability called BookSearch with a conversation (sequence) over

� This work is supported by the project “PERvasive Service cOmposition” (PERSO)
of the French National Agency for Research, ANR-07-JCJC-0155-01.

A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, pp. 530–537, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Automated Service Composition with Adaptive Planning 531

Begin
(Seq)

receive
login

receive reply receive
(Seq)
End

Begin
(Proc) (Proc)

End

Amazon : BookSearch

customerId
UId:

title
bookTitle:

customerId
UId:

result:
bodySearch

itemSearch itemSearch logout

Fig. 1. Amazon service conversation (YAWL)

reply

Paypal : OnlinePayment

result: autorization

CCInfo: creditCard
orderTotal: orderTotal

doDirectPayment

result: PRC

token: token
MobiPocket : eBookDownload

MPS : OnlinePayment

result: autorization

creditCard
creditCard:

PId: productId
amount: amount

@eBook : eBookStore

cardInfo: creditCard

pproof: token

eBookTitle: title
buyer: customerId

receive
download
reply

download

log
receive reply

debit debit

replyreceive
purchase purchase

receive
doDirectPayment

receive

Fig. 2. Service conversations (communication part, YAWL)

three operations: login and logout, with a customer identifier (customerId) as
input (in message part UId), and itemSearch with a book title (title) as input
(in message part bookTitle) and a structured information on the search result
(bodySearch) as output (in message part result). Additionally, Paypal and MPS
can be used for payment, while @eBook can be used to search and pay at once.
Finally, MobiPocket can be used to download an eBook in PRC format.

Still, the user knows neither the service capabilities, nor the data that should
be exchanged between them to achieve service composition. The user only has
a high-level view of her/his needs (user task): a capability, the inputs (s)he is
ready to provide and the outputs (s)he expects. In the example, (s)he requires an
eBookRetrieve capability, to provide title, customerId, and creditCard information,
and finally get an eBook in PRC format. There is clearly a (vertical) mismatch
between the user’s needs and the service descriptions.

Additionally, the services have been developed by different third-parties. One
may expect to compose them, while from the input/output perspective they
could not be chained as-is. For example, Amazon should be composed with Paypal
or MPS but part of the input data they require (respectively orderTotal and
amount+productId) does not correspond to what one gets from a call to Amazon
(bodySearch). This illustrates a (horizontal) mismatch.

These two dimensions of interoperability, namely horizontal (communication
protocol and data flow between services) and vertical matching (correspondence
between an abstract user task and concrete service capabilities) should be sup-
ported in the composition process.

532 S. Beauche and P. Poizat

The rest of this paper is organized as follow. Section 2 motivates the use of
planning and adaptation, and discusses related work. Then, in Section 3, we
present the principles of our approach for which more details can be found in [2],
and we end with conclusions.

2 Discussion and Related Work

On the one hand, planning, is increasingly applied in SOC due to its support for
automatic service composition from underspecified requirements [5]. Chaining-
based planning composes services from provided and expected data, while hi-
erarchical planning supports the decomposition of abstract requirements into
concrete sets of tasks. Still, planning is not able to solve horizontal mismatch.
On the other hand, software adaptation [1], is used to augment the possibility
for component reusability and assembly, thanks to the automatic generation of
software pieces, called adaptors, solving mismatch out in a non intrusive way. In
this article we propose to combine planning and adaptation techniques.

Automatic composition is an important issue in SOC and numerous works
have addressed this over the last years [6–13]. Various criteria could be used to
differentiate these works, yet, due to our motivations, we will focus on issues
related to user task requirements, vertical, and horizontal adaptation.

While both data input/output and capability requirements should be sup-
ported to ensure composition is correct wrt. the user needs, only [12, 13] do,
while [7–11] support data only and [6] supports capabilities only. As far as adap-
tation is concerned, [9–12] support a form of horizontal (data) adaptation, using
semantics associated to data; and [7] a form of vertical (capability abstraction)
adaptation, due to its hierarchical planning inheritance. In our proposal, we
combine the two techniques to achieve both adaptation kinds.

Few works explicitly add adaptation features to SOC [4, 14]. They adopt a dif-
ferent and complementary view wrt. ours since their objective is not to integrate
adaptation within the service composition process in order to increase the com-
position possibilities, but rather to tackle protocol adaptation between clients
and services, e.g., to react to service replacement. Indeed, the most advanced
software adaptation works [15, 16, 1] solve protocol mismatch between a fixed set
of components, but tackle neither the discovery of the required components nor
the composition towards user needs.

More information on planning and related work can be found in [2].

3 Adaptive Planning Composition

The basis of our work is the extension of the GraphHTN hierarchical planning
technique [17] with horizontal adaptation features, and its application for service
composition. Comprehensive information about the extension is given in [2].

We rely on two structures to support adaptation. Horizontal adaptation is
supported by relations in an ontology of data types, in a structure we call Data
Semantic Structure (DSS). It associates a set of concepts with a composition

Automated Service Composition with Adaptive Planning 533

amount orderTotal price bodySearch

productIdautorization

price

productproductauth
token

Fig. 3. DSS example

+

;

+

//

entertain

eBookRetrieveVideoGame

...

eBookDownload

Subscribe eBookStore

OnlinePaymentBookSearch

(a)

M

//

M

2 MobiPocket

@eBook
1

1

Amazon
1

2

Paypal MPS

;

(b)

Fig. 4. CSS and l-CSS example (marking is used in graphplan building wrt. Fig. 5)

relation (�) – supporting (de)composition of data – and a simulation relation
(�) – supporting data replacement. Using the DSS of our example (Fig. 3),
we see that a token could be decomposed into an authorization and a productId
(or the other way round) and that a price could replace an orderTotal as input
for a service. Vertical adaptation is supported by a hierarchical (tree) structure
describing relations between capabilities, that we call Capability Semantic Struc-
ture (CSS). It expresses (i) decomposition relations between abstract capabilities
and more concrete ones, and (ii) ordering constraints between capabilities. The
CSS nodes are either capabilities or control structures: sequence (;), choice (+)
and parallel (//). In our example (Fig 4(a)), eBookStore is a capability which
can be performed directly by a service, or that can be decomposed as the parallel
execution of BookSearch and OnlinePayment capabilities.

Given a user task, a set of services, and both a DSS and a CSS, we proceed as
follows. The CSS is first used to select, on the basis of their capabilities, services
that could be used in the composition. Accordingly, the CSS is labelled with
these services (l-CSS). A graph planning structure, named graphplan, is then
computed. It chains services capabilities based on input/output dependencies
and l-CSS constraints. Finally the graphplan is analyzed to retrieve all service
compositions corresponding to the user task (which can be none).

Service Discovery and l-CSS Computation. The CSS is first restricted to
the subtree with the user task capability as root. An abstract capability node
is replaced by a method node (M) which denotes a choice: it can be either in-
stantiated directly by some service or its definition (i.e., its subtree) can. In
Figure 4(a), eBookStore may be either obtained by calling @eBook or by com-
posing in parallel Amazon (capability BookSearch) and Paypal or MPS (capability
OnlinePayment). A capability node is replaced by the service that supports it (or

534 S. Beauche and P. Poizat

Amazon

MobiPocket

Amazon Amazon

@eBook@eBook

customerId

bodySearch

customerId

token

bodySearch

title

creditCard

customerId

token

bodySearch

customerId

PRC
exclusion

title

creditCard

step 1 step 2 step 3

identity operation
MobiPocket

@eBook token

title

creditCard

PRC

title

creditCard

Fig. 5. Adaptive graphplan building (no data adaptation)

@eBook

@eBook

MobiPocket

MPS

Amazon
customerId

cast

title

token

cast

creditCard

price

productId

token

title

bodySearch

customerId customerId

bodySearch

title

productId

price

token

orderTotal
amount

customerId

bodySearch

title

productId

token

step 2step 1

Paypal

Amazon bodySearch

creditCard

price

creditCard orderTotal

creditCardexclusion

identity operation

decomp.

Fig. 6. Adaptive graphplan building (with data adaptation, principle)

siblings under a M node if several services apply, as for OnlinePayment). Finally,
branches without service instances are discarded and control nodes with only
one child are simplified. The l-CSS for our example is presented in Figure 4(b).

Graphplan Building with Vertical Adaptation. The graphplan is a struc-
ture with alternating fact (data) and action (service calls) layers. Dependencies
between data and services are represented with arcs. The initial data layer corre-
sponds to the user-provided inputs. The graphplan is then built (Fig. 5) chaining
services (i) if their input data is available and (ii) following the orderings imposed
by the l-CSS. Once a service is selected, it is tagged in the l-CSS (Fig. 4(b)) and
its outputs are added to the next data layer. Identity operations are used to keep
data from one data layer to the next one. As an example, the chaining of @eBook
at step 1 enables the chaining of MobiPocket at step 2 (see Figs. 4(b) and 5).
This would yield a correct composition, still, that should not contain Amazon
that has been chained at step 1. To deal with such cases, exclusion relations are
used to prevent services with exclusive capabilities in the l-CSS to appear in
the same solution. Exclusions are propagated all along the graphplan. Since our
objective is to generate all possible compositions, we stop the building when the
maximum solution length, calculated with the l-CSS (here, 3), is reached.

Adding Horizontal Adaptation to the Picture. Let us now suppose we
are after step 1 of Figure 5 and continue in Figure 6. According to the l-CSS

Automated Service Composition with Adaptive Planning 535

Begin
(Proc)

Begin
(Seq)

eBookRetrieve
receive

eBookRetrieve
reply

(Seq)
End

(Proc)
End

assignassignassign assign

Amazon Paypal assign assign MobiPocketassignassign assign

In

OuttitlecustomerId

In.customerId In.title

creditCard

In.creditCard

Out.PRC

PRC

see Fig. 8

autorization

token. token.

productId

productauth

price
bodySearch.

product
bodySearch.

price productId orderTotal

price

decomp cast comp

Fig. 7. A composition for user task (eBookRetrieve, {title, customerId, creditCard},
{PRC}) (YAWL)

(Fig. 4(b)), Paypal should be applicable. Yet, it is not, as it requires the un-
available orderTotal data. However, looking at the DSS (Fig. 3), we see that
this can be obtained from price which in turn can be obtained using decompo-
sition of bodySearch, which is available. The idea for horizontal adaptation is
to add such data transformations in the graphplan building process. Supported
transformations are the DSS ones: decomp(d,D) if D = {di | d � di}) (decompo-
sition), comp(D,d) if D = {di | d�di}) (composition), and cast(d1,d2) if d1 � d2
(cast). Interestingly, one can have a task vision of these, e.g., task cast above has
precondition d1 and postcondition d2. Data adaptation planning steps are per-
formed at the end of the basic planning steps and are directed toward the set of
data missing for applicable services (here, {orderTotal} for Paypal and {amount,
productId} for MPS).

Plan Extraction and Orchestration Generation. Plan extraction is ac-
hieved backtracking the graphplan from the user task output data. The l-CSS is
used for filtering at extraction time and to ensure that extracted plans respect
the CSS constraints. Three plans are generated for our example:

– @eBook;MobiPocket (in bold in Fig. 5),
– Amazon;decomp(bodySearch,{productId,price});cast(price,orderTotal);Paypal;

comp({autorization,productId},token);MobiPocket (in bold in Fig. 6), and
– Amazon;decomp(bodySearch,{productId,price});cast(price,orderTotal);

cast(orderTotal,amount);MPS;comp({autorization,productId},token);MobiPocket.

Plans are then transformed into YAWL orchestrators, as demonstrated for the
second plan in Figure 7. Orchestrators have a single operation, named accord-
ing to the user task capability. Variables are used for semantic data types (e.g.,
title) and for messages (e.g., AmazonloginIn, or AloginIn in Fig. 8). Plan control
structures are expressed using sequence and flow. Conversations of selected ser-
vices are integrated reversing them, a receive/reply couple being replaced by an
invoke. Finally, assignments are used to encode cast, comp, and decomp tasks.

536 S. Beauche and P. Poizat

assign invoke
login

assign
itemSearch
invoke assign assign invoke

logout

customerId

UId

title

AloginIn.

AloginIn

bookTitle

AitemSearchIn

AitemSearchOutAitemSearchIn.

result
AitemSearchOut.

bodySearch

customerId

AlogoutIn.
UId

AlogoutIn

Fig. 8. Amazon conversation integration (YAWL)

4 Conclusion

In this paper we have proposed a technique that integrates adaptation features in
the service composition process. We support both horizontal and vertical adapta-
tion, which has been achieved combining semantic descriptions and hierarchical
planning. We are also able to generate different composition solutions to the user
task requirements, while ensuring they are correct from both data and seman-
tics points of view. Our technique is fully automated thanks to GraphAdaptor, a
prototype tool which takes as input a set of description files for user task, ser-
vice and semantic structures, and outputs a YAWL file for each possible service
composition. The main perspective of this work is the extension of our service
model with conversations over capabilities and security features.

References

1. Canal, C., Poizat, P., Salaün, G.: Model-based Adaptation of Behavioural Mis-
matching Components. IEEE Transactions on Software Engineering 34(4), 546–563
(2008)

2. Beauche, S., Poizat, P.: Automated Service Composition with Adaptive Planning
(long version). In: Poizat, P. Web page

3. Marconi, A., Pistore, M., Poccianti, P., Traverso, P.: Automated Web Service Com-
position at Work: the Amazon/MPS Case Study. In: Proc. of ICWS 2007 (2007)

4. Brogi, A., Popescu, R.: Automated Generation of BPEL Adapters. In: Dan, A.,
Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp. 27–39. Springer, Heidel-
berg (2006)

5. Peer, J.: Web Service Composition as AI Planning – a Survey. Technical report,
University of St.Gallen (March 2005)

6. Berardi, D., Giacomo, G.D., Lenzerini, M., Mecella, M., Calvanese, D.: Synthesis
of Underspecified Composite e-Services based on Automated Reasoning. In: Proc.
of ICSOC 2004, pp. 105–114. ACM, New York (2004)

7. Klush, M., Gerber, A., Schmidt, M.: Semantic Web Service Composition Planning
with OWLS-Xplan. In: Proc. of the AAAI Fall Symposium on Agents and the
Semantic Web (2005)

8. Brogi, A., Popescu, R.: Towards Semi-automated Workflow-based Aggregation of
Web Services. In: Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005.
LNCS, vol. 3826, pp. 214–227. Springer, Heidelberg (2005)

9. Constantinescu, I., Binder, W., Faltings, B.: Service Composition with Directories.
In: Löwe, W., Südholt, M. (eds.) SC 2006. LNCS, vol. 4089, pp. 163–177. Springer,
Heidelberg (2006)

Automated Service Composition with Adaptive Planning 537

10. Liu, Z., Ranganathan, A., Riabov, A.: Modeling Web Services using Semantic
Graph Transformation to Aid Automatic Composition. In: Proc. of ICWS 2007
(2007)

11. Benigni, F., Brogi, A., Corfini, S.: Discovering Service Compositions that Feature
a Desired Behaviour. In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC
2007. LNCS, vol. 4749, pp. 56–68. Springer, Heidelberg (2007)

12. Ben Mokhtar, S., Georgantas, N., Issarny, V.: COCOA: COnversation-based Ser-
vice Composition in PervAsive Computing Environments with QoS Support. Jour-
nal of Systems and Software 80(12), 1941–1955 (2007)

13. Pistore, M., Traverso, P., Bertoli, P., Marconi, A.: Automated Synthesis of Com-
posite BPEL4WS Web Services. In: Proc. of ICWS 2006 (2006)

14. Motahari-Nezhad, H.R., Benatallah, B., Martens, A., Curbera, F., Casati, F.: Semi-
Automated Adaptation of Service Interactions. In: Proc. of WWW 2007, pp. 993–
1002. ACM, New York (2007)

15. Inverardi, P., Tivoli, M.: Deadlock Free Software Architectures for COM/DCOM
Applications. Journal of Systems and Software 65(3), 173–183 (2003)

16. Bracciali, A., Brogi, A., Canal, C.: A Formal Approach to Component Adaptation.
Journal of Systems and Software 74(1), 45–54 (2005)

17. Lotem, A., Nau, D.S., Hendler, J.A.: Using Planning Graphs for Solving HTN
Planning Problems. In: Proc. of AAAI/IAAI 1999 (1999)

A Planning-Based Approach for the Automated
Configuration of the Enterprise Service Bus

Zhen Liu, Anand Ranganathan, and Anton Riabov

IBM T.J. Watson Research Center
{zhenl,arangana,riabov}@us.ibm.com

Abstract. The Enterprise Service Bus facilitates communication be-
tween service requesters and service providers. It supports the deploy-
ment of “message flows” from a service requester to one or more service
providers. These message flows incorporate different functions such as
routing, transformation, mediation, security and logging. In this paper,
we propose an AI Planning-based approach for the automated construc-
tion of message flows between requesters and providers based on high-
level goals specified by the enterprise architect or administrator. This
automated construction of flows can be used either in the design phase
where a developer or architect is designing the message flows, or it can
be used during runtime for the automated reconfiguration or adaptation
of the flows in response to changed requirements. The planning model is
based on tags, where goals, components, and links in the message flow
are described using sets of tags. We describe the planning model and a
case study that demonstrates the power of our approach in constructing
flows in response to high-level requirements.

1 Introduction

The Enterprise Service Bus (or ESB) is emerging as a service-oriented infrastruc-
ture component that makes large-scale implementation of the SOA principles
manageable in a heterogeneous world. It facilitates mediated interactions be-
tween service endpoints. The Enterprise Service Bus supports event-based inter-
actions as well as message exchange for service request handling.

One of the key challenges in the ESB lies in the construction of valid “message
flows” between the service requesters and the service providers that perform the
required set of mediation operations. Examples of such mediation operations in-
clude the routing of the messages to different end-points (e.g. for load balancing),
transforming the messages to overcome differences in data schemas or semantics,
different kinds of mediations such as splitting or combining messages, verifying
security credentials, logging the messages, looking up the service reference using
a registry, etc. Typically, a developer or an architect has to design each flow
manually taking into account the specific requirements for that flow. This can
be quite tedious and difficult when there are multiple options for each operation
(such as different ways of transforming or logging the messages). The manual

A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, pp. 538–544, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Planning-Based Approach for the Automated Configuration 539

approach to building the flows is also more prone to errors. Another source of
difficulty is that the message flows may have to be manually reconstructed when
there is a change in the data schema at any of the end-points, or when the
requirements in terms of mediation operations change.

In this paper, we propose a methodology for the automated construction
of message flows between the requesters and providers. This involves having
a reusable set of components and sub-flows that perform different kinds of medi-
ation operations. These components and sub-flows can be combined together and
parameterized in different ways depending on high-level mediation requirements
for the final flow. The automated composition allows the user to specify the set
of high-level operations and have a message flow be generated automatically.

The key technology behind the automated composition of the message flows is
an efficient AI Planning-based approach that constructs the flows given high-level
goals specified by an enterprise architect or administrator. Our AI Planner [1]
uses a tag-based model of the links in the message flow, the different components
and of the goals. In this tag-based model, the inputs and outputs of different
components are associated with semantic metadata in the form of a set of tags
(or keywords) that are drawn from a taxonomy of tags. This taxonomy can, in
fact, be a folksonomy that is built through the collaborative efforts of different
developers and architects. Similarly, the high-level goals for the composition can
also be described as a set of tags. An example high-level goal may consist of
the following tags: RequestLogging, ServiceProxy, ServiceX, RegistryY, AccessControl.
These tags together represent a requirement for a flow from a requester to a
ServiceX that goes through a proxy which looks up the reference (or address)
of the service in a RegistryY. The flow should also log all request messages and
verify that that the requester has access to the service. Our planner can take
this goal, along with tag-based descriptions of different components, to compose
a flow that performs these different mediation operations. In some cases, it may
come up with multiple flows, and then it uses a provided metric to rank the
different plans (such as the resource utilization of the plan).

The automated construction of flows can be used either in the design phase
where a developer is designing the message flows, or it can be used during run-
time for the automated reconfiguration or adaptation of the flows in response to
changing requirements. In this paper, we describe a case study with a set of com-
ponents that can be composed into different flow. We also provide performance
results for our planner in this domain.

2 Message Flows in the Enterprise Service Bus

In our work, we model message flows between service providers and requesters
as directed acyclic graphs (DAGs), where the vertices represent different com-
ponents and the edges represent dataflow links. Each component performs some
kind of mediation operation. Request messages flow from the requesters to the
providers, and response messages flow in the reverse direction. Note that the

540 Z. Liu, A. Ranganathan, and A. Riabov

Fig. 1. Architecture for Automatic Composition

request and the response message flows can have very different structures, with
different components performing different mediation operations.

Fomally, a flow is a graph G(V, E) where G is a DAG (Directed Acyclic
Graph). Each vertex vi ∈ V is a component. Each edge (u, v) represents a logical
flow of messages from u to v. If there is an edge (u, v), then it means that an
output message produced by u is sent as an input message to v. For now, we
assume that a vertex has only one incoming edge to it.

Figure 1 shows the architectural elements supporting automatic composition.
The planner automatically composes the message flows given high-level goals in
the form of sets of tags. These goals may be provided by developers or architects
when they are composing new flows between endpoints in the ESB. The planner
may also be invoked during runtime, when the goals (or requirements) of existing
flows change, and these existing flows need to be replaced by new flows that obey
the new requirements.

The planner obtains tag-based descriptions of different components from a
component repository. Note that this component repository consists only of me-
diation components that can be deployed in the ESB. This repository is different
from a Service Directory that stores references to service end-points. The Service
Directory may be used by components in the ESB to look up service providers
that satisfy certain properties.

3 Tag-Based Model of Components and Goals

Let T = {t1, t2, . . . , tk} be the set of tags in our system. A tag hierarchy, H , is
a directed acyclic graph (DAG) where the vertices are the tags, and the edges
represent “sub-tag” relationships. It is defined as H = (T, S), where T is the set
of tags and S ⊆ T × T is the set of sub-tag relationships. If a tag t1 ∈ T is a
sub-tag of t2 ∈ T , denoted t1 ≺ t2, then all resources annotated by t1 can also be
annotated by t2. An example of a sub-tag relationship is LoadBalancingSelection
≺ ServiceSelection. For convenience, we assume that ∀t ∈ T, t ≺ t.

A Planning-Based Approach for the Automated Configuration 541

Fig. 2. Tag-Based description of a 3-way Load-balancing Service Selector component.
The component has one input port where it receives messages. It forwards this message
onto one of 3 output ports, each of which is connected to a possibly different service
provider. The identities of these 3 service providers is determined by the values of the
parameters (?service1, ?service2, ?service3). All variables in the input, parameters and
outputs are associated with their type.

In our approach, tags are used to describe each data link in a message flow is
associated with a set of tags. The tags describe the semantics of the messages
that flow in the link, as well the actual syntax (using tags that correspond to
names of types).

3.1 Component Model

Our model uses the tags in a folksonomy to associate format and semantic infor-
mation with the input message requirements, the configuration parameters and
the output messages of components. Our model also includes the use of variables
to describe how the semantic properties of the data are propagated from the in-
put and configuration parametersto the output message. This helps in capturing
the notion of semantic propagation, i.e. the semantic description of the output
of a component depends on the semantics of the input.

542 Z. Liu, A. Ranganathan, and A. Riabov

Figure 2 provides an example description of the SelectService component that
selects one of 3 service providers based on load-balancing requirements. This
component has one input port, 3 parameters and 3 output ports.

The folksonomy-based description of the SelectService includes a variable called
?inputMessageLogged, which is defined to be of type InputLogPerformed. The vari-
able ?inputMessageLogged may be bound to any sub-tag of InputLogPerformed (such
as InputMessageLogged and InputMessageNotLogged). This is an example of how our
model captures semantic propagation; the output packet is annotated by the
same input information about whether the input message was logged or not.

3.2 Composition

The tag-based model allows determining whether a data link, produced by some
sub-flow, or a parameter value, can be given as input to another component.
The syntax and semantics of a data link, a, can be described by a set of tags,
d(a). An input message constraint, I is defined as a set of tags and variables.
We define that d(a) matches an input constraint, I (denoted by d(a) � Io), iff

1. For each tag in I, there exists a sub-tag that appears in d(a).
2. For each variable in I, there exists a tag in d(a) to which the variable can

be bound. Note that variables can be bound to any sub-tag of their types.
After a match is found for each input to a component, the tag-description

of the output message of the component is then formed by replacing all the
variables in the output description by the tags to which they were bound in the
input side. The use of variables allows us to describe how the semantic properties
of the data are propagated from the input to the output packet.

3.3 Goals and Planning

A goal is also described as a set of tags. The goal is satisfied by a flow that
produces a message flow with a data link that matches the goal tags.

In order to compose flows given an end-user goal as a set of tags and the descrip-
tions of components, we use a planner based on the SPPL formalism. SPPL [1] is
a variant of PDDL (Planning Domain Definition Language) and is specialized for
describing stream-based planning tasks (a stream can be considered to be a special
kind of a data link). At a high level, the planner works by checking if a set of links
available in the current state can be used to construct an input to a component,
and if so, it generates a new data link corresponding to the output. It performs
this process recursively and keeps generating new links until it produces one that
matches the goal pattern, or until no new unique links can be produced.

4 Case-Study

We developed a prototype implementation of our automatic composition
approach running on IBM’s Websphere Message Broker. For this purpose, we
created tag-based descriptions of 60 different mediation components that were

A Planning-Based Approach for the Automated Configuration 543

deployed on the bus. These components could be composed into different kinds
of message flows that followed different mediation patterns. Examples of the
patterns included a service proxy pattern (where a proxy component performed
a service endpoint lookup in a registry for request messages), a service selector
pattern (where a service selector component routed request messages to dif-
ferent implementations of the same service interface) and a service normalizer
pattern (where a service selector component routed request messages to differ-
ent services with different interfaces and transformation components changed
the format appropriately). Each of these basic patterns could be enhanced with
additional functionalities such as logging of input messages, access control, log-
ging of transformed messages, service lookups in different registries, etc. In our
descriptions of the different components, we associated different tags with the
different patterns, the different enhanced functionalities as well as different ways
of configuring the basic patterns (such as using different service registries or
different service selection criteria like load-balancing or content-based routing).

We have a tag-cloud based interface where tags corresponding to composable
flows are displayed and selectable by the end-user as part of his goal. The planner
may often come up with multiple flows for the same goal (especially if the goal
contains few tags and is hence under-constrained). In this case, the lowest cost
message flow is displayed to the end-user, although the user can view the alter-
native flows in the interface. In our setup, each component is associated with a
cost, and the cost of a message flow is the sum of the costs of the constituent
components. By default, all the components have the same cost; this results in
the shortest message flows being shown to the user.

5 Related Work and Conclusion

The most closely related works are in the area of web service composition. Many
different kinds of web service models have been proposed in prior work, and these
models have been used for discovery and automatic composition. Some of these
approaches use ontologies and associated standards such as OWL-S to describe
components used in composition [2,3,4]. The key difference in our approach is
that message flows in the ESB are generally data processing flows, where the
the models of the components must be able to express message mediation and
transformation operations, but need not model the state of the component itself.
For describing the messages themselves, we use a much simpler tag-based model
that reduces the knowledge engineering work required upfront for composition
(compared to the more complex models suggested in prior work).

In conclusion, we have described propose an AI Planning-based approach for
the automated management and configuration of the ESB. In this approach,
message flows between requesters and providers are constructed automatically
from high-level goals specified by an enterprise architect or administrator. This
automated construction of flows can be used either in the design phase where an
architect or developer is designing the message flows, or it can be used during
runtime for the automated reconfiguration or adaptation of the flows in response
to changed requirements.

544 Z. Liu, A. Ranganathan, and A. Riabov

References

1. Riabov, A., Liu, Z.: Planning for stream processing systems. In: AAAI (2005)
2. Narayanan, S., McIlraith, S.: Simulation, verification and automated composition

of web services. In: WWW (2002)
3. Traverso, P., Pistore, M.: Automated composition of semantic web services into

executable processes. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.)
ISWC 2004. LNCS, vol. 3298, pp. 380–394. Springer, Heidelberg (2004)

4. Heflin, J., Munoz-Avila, H.: LCW-based agent planning for the semantic web. In:
Ontologies and the Semantic Web, AAAI Workshop (2002)

Verifying Interaction Protocol Compliance of Service
Orchestrations�

Andreas Schroeder and Philip Mayer

Ludwig-Maximilians-Universität München, Germany
{schroeda,mayer}@pst.ifi.lmu.de

Abstract. An important aspect of service-oriented computing is the ability to
invoke services without knowledge of the actual implementation. This requires
at least a description of the service interface; better yet is a specification of the
complete interaction protocol. This applies to atomic services as well as service
compositions. In both cases, however, guaranteeing that a service complies with
the promised interaction protocol is crucial for deadlock-free communication. In
this paper, we present an analysis method and tool for verifying compliance of
service orchestrations with service interaction protocols given as UML models.
Our method is part of a larger suite of methods and tools for model driven de-
velopment of service oriented architectures covering code generation for the Web
service stack and other service platforms: MDD4SOA.

1 Introduction

A core aspect of Service-Oriented Computing (SOC) is enabling (semi-) automatic dis-
covery and composition of services. To achieve this aim, services are accompanied with
a description of their interface, consisting of a description of accepted and sent mes-
sages and its interaction protocol detailing which interactions with the service are legal
at a certain point in a conversation. Interaction protocols greatly help in assembling
services and enable more thorough mechanical checkings of whether services fit to-
gether. However, for this checking to be helpful, it is crucial that service orchestrations
conform to their interaction protocols; otherwise, services may be proven incompati-
ble although fitting, or even worse, services may be considered compatible when they
are not. Therefore, tools for checking the conformance of service implementation (in
our case, the orchestration) and service description (i.e., the interaction protocol) are
urgently needed.

In this paper, we present an approach for checking the conformance of service or-
chestrations given as UML activity diagrams and interaction protocols given as UML
protocol state machines. We use the UML as it constitutes the lingua franca of soft-
ware engineers, and furthermore allows to follow a model driven approach: to create
platform independent software models that can be transformed into platform specific
realizations.

The remainder of this paper is structured as follows. First, we give a brief overview
over our UML profile for services in Sec. 2. In Sec. 3, we detail the basic ideas of

� This work has been partially supported by the EC project SENSORIA, IST-2005-016004.

A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, pp. 545–550, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

546 A. Schroeder and P. Mayer

Fig. 1. Thesis Management: Service Orchestration

our refinement analysis, and describe an accompanying tool. Finally, we present related
work in Sec. 4, and conclude in Sec. 5.

The work presented in this paper has been developed in the EU project SENSO-
RIA, which aims at developing a novel comprehensive approach to the engineering of
service-oriented software systems. More about SENSORIA may be found in [14].

2 Modelling Services with UML4SOA

Our UML profile UML4SOA [9] enables convenient modelling of service-oriented sys-
tems on a platform independent level. So far, UML4SOA included stereotypes for mod-
elling (a) service orchestrations only, and was extended for the purpose of conformance
checking to address (b) service architecture modelling with UML composite structure
diagrams, and (c) service interface descriptions using class diagrams (for the static part)
and protocol state machines (for the dynamic part).

Service Orchestration. UML4SOA includes a profile for modelling service orchestra-
tions with UML activity diagrams. The profile employs native UML2 elements where
possible, e.g. for modelling branches, loops, and parallel control flow, and extends the
UML2 with service-specific concepts like service calls as well as event- and compen-
sation handling. For details on the extension for service orchestration, see [9].

Fig. 1 shows the orchestration of the student thesis management example taken from
[9]. It models the process of handling a student thesis from the initial topic provided
by a tutor, through managing the ongoing thesis writing process, to the final assessment
and notification.

Service Composition Structure. The service composition structure describes the par-
ticipants in a service oriented architecture and how services may be used by partici-
pants. For this, we use UML2 composite structure diagrams. To specify the services of
a SOA, UML4SOA follows the UML2 component-based design approach: �service�-
stereotyped Ports represent services, and �service provider�- stereotyped Components
represent service providers, that is to say, software entities that expose and offer services
to other software entities.

Verifying Interaction Protocol Compliance of Service Orchestrations 547

Service Interfaces. While the service composition structure gives an overview over the
SOA infrastructure, it does not describe the interfaces of the involved services. For this
task, we use UML2 class diagrams to model service providers, their services, provided
operations, and required callbacks. Going beyond static service descriptions, we use
UML2 protocol state machines to describe behavioural aspects of service interfaces.
In this way, the intended usage can be specified more precisely than by relying on
operation names and message types as done e.g. in WSDL.

UML protocol state machines (PrSM) are used to describe valid interaction se-
quences of a port with finite state machines consisting of protocol states and protocol
transitions between them. Transitions of PrSMs may contain a precondition, event, and
postcondition. In UML4SOA, we use events to model incoming and outgoing messages.
Pre- and postconditions are not considered yet, but may be in the future.

Fig. 2(a) shows the protocol offered to a thesis tutor by the thesis management
service provider. It specifies that the provider first requires to �receive� a newTopic
message, and only allowing status queries (performed by �receive� getStatus and
�send�/�reply� getStatus from the service) from a tutor once the topic was picked
up by a student, which is invisible to the tutor an hence �internal�. In addition to the
correct protocol, we introduced a �receive� transition from and to topicPosted with
the reception of a postTopic message, hence requiring that the topic for a thesis may be
posted arbitrarily often; obviously, the orchestration does not satisfy this requirement,
which is discovered by the conformance verification tool, as discussed in Sec. 3.

3 Analysing Service Orchestrations

Once a service orchestration and its service interface is modelled, the question arises
whether the orchestration conforms to the defined protocol – which is part of the pub-
lished service description. In more formal terms, the question is whether the orchestra-
tion constitutes a valid refinement of the protocol.

For this, we implemented an approach that (1) allows to select service providers and
services for checking, (2) analyses the associated service orchestrations and interac-
tion protocols for syntactic consistency, (3) allows to select failure configurations, (4)
generates modal input/output labelled transition systems (modal I/O LTS, see [8] for the
complete formal framework) from both service orchestrations and interaction protocols,
(5) performs the conformance analysis and (6) outputs the results graphically.

Selecting service providers and services. The MDD4SOA conformance checker ac-
cepts UML XMI files and allows users to select, from the model, the services and ser-
vice providers they would like to validate.

Checking Syntactic Consistency. Since not all UML activity diagrams may be trans-
lated into a modal I/O LTS, the MDD4SOA analysis tool checks the syntactic consis-
tency of a given service orchestration before performing any refinement analysis, and
informs the service engineer about syntactic inconsistencies found in the model. We
cover general consistency constraints such as forbidding non-executable activities and
MDD4SOA specific constraints restricting the branching and forking structure.

548 A. Schroeder and P. Mayer

Selecting Failure Configurations. Before performing the conformance analysis, the
tool allows the user to choose possible erroneous service interactions, i.e. service inter-
actions that may fail due to unavailability of the communication partner or transmission
errors. By this, the user is able to adjust the generated LTS and hence analyse the service
orchestration conformance with varying fault assumptions. This feature emerged from
practice, as conformance to reasonable service protocols is only achievable if some
service interactions are assumed as being reliable.

Generating Modal I/O LTS. In order to reach an answer to the question of protocol
conformance, a common semantic basis for service orchestrations and interaction pro-
tocols must be found. We chose as this common basis modal I/O LTS. Since the simple
UML protocol state machines we use in our approach can be easily translated to modal
I/O LTS, one half of the transformation is very straightforward.

Service orchestration models on the other hand use a subset of UML activity diagram
constructs as well as the stereotypes introduced by UML4SOA. We defined a translation
of service orchestration models to modal I/O LTS by following the widespread inter-
pretation of activity diagrams as Petri nets in the sense that a state is a set of markers,
and markers can be roughly interpreted as Petri net tokens (cf. Fig. 2(b) for an extract
of the LTS generated for the thesis management orchestration).

The modal I/O LTS that is constructed from a service orchestration S roughly con-
sists of states representing possible execution states of S, and transitions from one ex-
ecution state to its successor for each service interaction or event that may occur. An
execution state of S consists of the orchestration S with markers of different kinds (e.g.
“program counter” markers, “active” markers on currently processed scopes, or “com-
pleted” markers attached to activity nodes).

Performing Conformance Analysis. Now that both service orchestration and interac-
tion protocol are represented as modal I/O LTS, we can verify whether a refinement
exists using observational modal refinement as defined in [8].

Observational modal refinement is computed in the MDD4SOA conformance analy-
sis tool by – starting from the pair of initial orchestration and protocol states – enumer-
ating all alternative successor pairs using and-or trees. If a pair of states is found during
process which violates the observational modal refinement conditions in one step (by
not providing a required action or performing an illegal action), this fact is memorized
within the and-or tree, and propagated to its predecessor nodes in a final step. All prop-
agated paths that lead (together with others or alone) to a falsification of the initial pair
represent execution traces that must be reported to the user, as they constitute violation
traces of the refinement between interaction protocol and service orchestration.

Graphical Output. Considering the thesis management example, Fig. 2(c) shows how
an error trace is displayed: the service orchestration does not support the reception of
postTopic after it was once received. The analysis result states that the service orches-
tration fails to support the reception of a postTopic message once it completed the first
postTopic receive activity.

The MDD4SOA conformance analysis tool is an open source Eclipse plugin avail-
able at mdd4soa.eu. The MDD4SOA tool suite also features code generation tools
that allow the generation of e.g. BPEL/WSDL code from UML4SOA models.

mdd4soa.eu

Verifying Interaction Protocol Compliance of Service Orchestrations 549

topicPosted

topicAccepted

retrievingStatus

<<internal>>

<<receive>>

newTopic() /

<<send>>
<<reply>>

getStatus() /

<<receive>>

getStatus() /

<<internal>><<internal>>

<<receive>>

newTopic() /

(a) Wrong Tutor Protocol (b) Orchestration LTS (c) Resulting Analysis Output

Fig. 2. Analysing with UML4SOA

4 Related Work

Several proposals exists for modelling service-oriented systems defining own UML
profiles for SOA or proposing a proprietary approach. For a comparison of these ap-
proaches to our UML4SOA profile, see [9].

Several other approaches to activity diagram semantics exist, of which a compre-
hensive overview can be found in [12]. Other tools for refinement analysis based on
bisimulation exist, e.g. Ticc [1] and Chic [4], where the latter is also applicable to Web
services [3]. Both tools however define their own textual notations for modelling.

Other approaches to analyzing services often focus on BPEL [5,7,6], XLANG [15] or
own notations (based on petri nets, e.g. [13], finite state machines, e.g. [2], or process-
calculi, e.g. [11]), entailing platform lock-in or a steeper learning curve for software
engineers compared to our UML-based approach, respectively. Furthermore, most ap-
proaches focus the analysis of single services (e.g. verifying internal consistency of
single BPEL processes) or on composability of services (e.g. checking whether a com-
position of BPEL processes is deadlock-free or satisfies other properties). However,
conformance of services to behavioural descriptions will constitute a vital part in ser-
vice engineering and deployment [11,10]. This may be related to the fact that the Web
service stack does not yet offer means for behavioural description of Web services.

A particular close approach to ours is [15], which generates behavioural descriptions
of orchestrations instead of checking their conformance. This is an interesting approach
that however does not support top-down service engineering (first creating the descrip-
tion, then the realization) as a conformance verification approach does.

5 Conclusion

In this paper, we have addressed the problem of checking compliance of service orches-
trations with their interactions protocols. We employ modal observational refinement
based on a modal I/O LTS semantics of service orchestrations and service protocols,
which allows to display informative error traces to the service engineer. Our work is

550 A. Schroeder and P. Mayer

built on an extension for UML2, the UML4SOA profile, which includes stereotypes for
specifying both static and dynamic aspects of service compositions.

As conformance between service orchestration and interaction protocol is of cru-
cial importance for (semi-) automatic service composition, we believe that the provided
ability to mechanically verify and confirm that an orchestration follows its promised in-
teraction protocol significantly eases achieving error-free communication between ser-
vices. With the UML4SOA profile and the MDD4SOA tool suite, our approach offers
straightforward modelling, checking, and generation of SOA artefacts.

References

1. Adler, B.T., de Alfaro, L., da Silva, L.D., Faella, M., Legay, A., Raman, V., Roy, P.: Ticc: A
Tool for Interface Compatibility and Composition. In: Ball, T., Jones, R.B. (eds.) CAV 2006.
LNCS, vol. 4144, pp. 59–62. Springer, Heidelberg (2006)

2. Berardi, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Mecella, M.: Automatic Com-
position of E-Services that Export Their Behavior. In: Orlowska, M.E., Weerawarana, S.,
Papazoglou, M.P., Yang, J. (eds.) ICSOC 2003. LNCS, vol. 2910, pp. 43–58. Springer, Hei-
delberg (2003)

3. Beyer, D., Chakrabarti, A., Henzinger, T.A.: Web service interfaces. In: 14th Int. Conf. on
World Wide Web, pp. 148–159. ACM, New York (2005)

4. Beyer, D., Chatterjee, K., Henzinger, T.A., Mang, F.Y.C.: Chic: Checker for Interface Com-
patibility, www.eecs.berkeley.edu/∼arindam/chic

5. Foster, H., Uchitel, S., Magee, J., Kramer, J.: Compatibility Verification for Web Service
Choreography. In: 3rd Int. Conf. on Web Services, pp. 738–741. IEEE, Los Alamitos (2004)

6. Fu, X., Bultan, T., Su, J.: Analysis of Interacting BPEL Web Services. In: 3rd Int. Conf. on
Web Services, pp. 621–630. IEEE, Los Alamitos (2004)

7. Kovács, M., Gönczy, L.: Simulation and Formal Analysis of Workflow Models. In: 5th Int.
Workshop. on Graph Transformation and Visual Modeling Techniques. Electronic Notes in
Theoretical Computer Science, pp. 215–224. Elsevier, Amsterdam (2006)

8. Larsen, K., Nyman, U., Wasowski, A.: Modal I/O Automata for Interface and Product Line
Theories. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 64–79. Springer, Heidel-
berg (2007)

9. Mayer, P., Schroeder, A., Koch, N.: UML4SOA: Model-Driven Service Orchestration. In:
12th Int. Enterprise Computing Conf. IEEE, Los Alamitos (2008)

10. Meredith, L.G., Bjorg, S.: Contracts and Types. Comm. ACM 46(10), 41–47 (2003)
11. Salan, G., Bordeaux, L., Schaerf, M.: Describing and Reasoning on Web Services Using

Process Algebra. In: 3rd Int. Conf. on Web Services, pp. 43–50. IEEE, Los Alamitos (2004)
12. Störrle,H.:StructuredNodes inUML 2.0Activities.Nord. J. ofComput. 11(3), 279–302(2004)
13. van der Aalst, W., Weske, M.: The P2P approach to interorganizational workflows. In: Dit-

trich, K.R., Geppert, A., Norrie, M.C. (eds.) CAiSE 2001. LNCS, vol. 2068, pp. 140–155.
Springer, Heidelberg (2001)

14. Wirsing, M., Clark, A., Gilmore, S., Hölzl, M., Knapp, A., Koch, N., Schroeder, A.:
Semantic-based development of service-oriented systems. In: Najm, E., Pradat-Peyre, J.-F.,
Donzeau-Gouge, V.V. (eds.) FORTE 2006. LNCS, vol. 4229, pp. 24–45. Springer, Heidel-
berg (2006)

15. Wombacher, A., Mahleko, B.: Finding trading partners to establish ad-hoc business
processes. In: Meersman, R., Tari, Z., et al. (eds.) CoopIS 2002, DOA 2002, and ODBASE
2002. LNCS, vol. 2519, pp. 339–355. Springer, Heidelberg (2002)

www.eecs.berkeley.edu/~arindam/chic

Specify Once Test Everywhere: Analyzing Invariants to
Augment Service Descriptions for Automated Test

Generation

Amit Paradkar� and Avik Sinha

IBM T J Watson Research Center, 19 Skyline Drive, Hawthorne, NY, USA 10532
{paradkar,aviksinha}@us.ibm.com

Abstract. We present a technique which enables a novel specify once, test every-
where paradigm by exploiting invariants in a reference ontology. In our approach,
each service operation is described in an IOPE paradigm: Input, Output, Precondi-
tion and Effect. Our approach augments the service description by creating addi-
tional service fault specifications to describe the exceptional behaviors which may
arise as a result of invariant violations. We describe our invariant analysis tech-
nique and present experimental results which justifies the underlying intuition.

Keywords: Invariants analysis, Service Functional Testing, Automated Test
Generation.

1 Introduction

Service oriented architectures (SOA), and Semantic Web Services are specified using
standards such as OWL-S and WSDL [1] and consists of service descriptions in terms of
Inputs, Outputs, Preconditions, and Effects (IOPEs). Complete specification of seman-
tic service contracts entails specification of exceptional behavior as well. Furthermore,
the same fault may be returned by more than one services. Oftentimes, these faults
originate from an invariant on the system state. Identification of preconditions for fault
messages which originate from system state invariants may be an onerous task for a
service specifier. Furthermore, testing of such web services poses challenges because
of the need to ensure that services which may violate such invariants have a correct
behavior.

In the past, we reported a technique for Automated test generation for semantic web
services described using IOPE[7]. However, this technique does not exploit the infor-
mation provided in the invariants in the reference ontology. In this paper, we introduce
a novel approach which exploits the invariants in a reference ontology to augment a
service description with additional fault messages. In particular, the specific contri-
butions of this paper are:

1. A novel technique to perform analysis of invariants on the reference ontology and
the IOPE model of services that manipulate the instances of classes of the reference
ontology to derive appropriate additional alternate faults for relevant services.

� Contact author.

A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, pp. 551–557, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

552 A. Paradkar and A. Sinha

projects 0..*

D1: budget > 0 [rInvDeptBudget]
D3: budget > sum(tp.budget|tp in projects)[rNSF]
name Key [rDuplicataKey, rMandatorykey]

budget > 0 [rInvProjectBudget]
name key [rDuplicateKey, rMandatoryKey]
Department context

Department

name*
budget

Project

budget
name*

Funded By

department 1

Fig. 1. Reference Ontology for DPSpec

2. Results of an experiment using several service descriptions which demonstrate the
benefits of using such approach during two phases of service development lifecycle:
service description and service testing.

The rest of this paper is organized as follows: Section 2 describes our invariant analy-
sis technique. Section 4 reviews the work related to ours and finally Section 5 summa-
rizes the work and provides directions for future work.

2 Analysis of Invariants

Figure 1 shows a graphical representation of the reference ontology for a simple web
service, called DPSpec, which manages Departments and Projects within a department.

It consists of 2 classes: Department and Project along with the properties as
shown. Classes Department, and Project have object property FundedBy with
cardinality constraints as shown. The reference model also has several invariants de-
scribed using SWRL [3]. For example, invariant labeled D1 states that the budget
attribute of the Department class has to be positive. Another interesting invariant D3
states that the budget of a Department should be sufficient to fund the cumulative
budgets of its Projects.

Figure 2 describes some of the operations in DPSpec as specified by the modeler
(before the augmented alternate flows derived during invariant analysis). For example,
operation Create Department takes two inputs: dName and dBudget and re-
turns as output: rc. The pre-condition for the operation is TRUE and its effect is of
creating a Department instance and initializing its attributes to the supplied values.
Each operation has a default successful behavior and potentially several faults each rep-
resenting an exceptional behavior. The operation Modify Department has a nor-
mal flow guarded by the condition that ensures that a department object which satisfies
the search criteria exists; along with appropriate state updates. An alternate flow is ex-
ecuted if no department object satisfying the search criteria is found and results in a
WSDL:fault. Operation Move Project allows to move a project from an existing
department to another one.

Information present in the invariants on a reference ontology may not be consis-
tent with the information provided in the service operations model. Assuming that the

Specify Once Test Everywhere: Analyzing Invariants to Augment Service 553

Operation Create Department
in String dName
in Double dBudget
FLOW rOK IF

TRUE
effects {d:=Create(Department)

d.name := pName
d.budget := pBudget}

Operation Modify Department
in String pName
in String pNewName
in Double pBudget
FLOW rOK IF

∃ d:Department•d.name = pName
effects {d.name := pNewName

d.budget := pBudget}
FLOW rDeptNotFound IF

∀ d:Department• d.name �= pName
fault {message:=No such department}

Operation Move Project
in String pD1Name
in String pD2Name
in String pPName
FLOW rOK IF

∃ d1,d2:Department,
p:Project•{d1.name =pD1Name}∧
{d2.name = pD2Name}∧
{p ∈ d1.projects ∧
p.name = pPName}

effects
{CreateLink(Fundedby, d2,p)
DeleteLink(Fundedby, d1,p)}

Operation Modify Project
...

Fig. 2. Operations for Web Service DPSpec

information in the invariants is correct, the inconsistencies could be resolved by either
adding more flows (with new guard conditions) to the service operations model or by
adding new effect statements to the operation model. In this paper, we focus on the first
class of repair actions since these affect the test generation process. The second class
of repair action is an indication of a genuine model error that needs to be fixed by the
modeler.

2.1 Relating Operations and Invariants

To facilitate the necessary analysis, we need to establish the relationship among the
invariants on reference ontology and the service operations since both these artifacts
refer to the entities in the same reference ontology. Our invariant analysis technique
accomplishes this task by first computing a tripartite graph, called SOROINGraph, in
which the set of operations, the set of Reference Ontology entities(Classes and Proper-
ties), and the set of Invariants each form a partition. An operation node has an edge
to a reference ontology entity if the operation manipulates (either creates, updates
or deletes) the entity. Such an edge is labeled with 1) the nature of the manipulation
(Create/Update/Delete), 2) the set of attributes of the concerned entity being initial-
ized/modified, and 3) the navigation path - the chain of class accesses - used to reach
the instance being manipulated. An invariant has an edge to a reference ontology entity
if the invariant refers to it. Such an edge is labeled with the referred attributes and the
navigation path used to reach each attribute.

Our analysis exploits the SOROINGraph to identify the set of potential operations
affected by an invariant. This is done by traversing the edge from an invariant to the

554 A. Paradkar and A. Sinha

reference ontology entities referred in it and then following the edges from the reference
ontology entities to the operations that modify those entities. Thus, invariant D1 refers
to class Department and attribute budget which in turn are modified by operations
Create Department and Modify Department.

2.2 Deriving Flow Conditions

The next step is to create a predicate which reflects the conditions under which the
invariant will be violated. We will illustrate the approach through several examples.

Our approach starts with the simplest class of invariants: those which do not in-
volve navigation or aggregate functions. For example, the invariant D1 has the fol-
lowing form: ∀d1 : Department •d1.budget ≥ 0. Service operation Create
Department has a effect statement d.budget = pBudget. Our approach exploits
the SOROINGraph to recognize that invariant D1 affects Create Department, and
substitutes the variable d for the quantified variable d1 in D1. Furthermore, the assign-
ment of pBudget in the effect statement is accounted for by rewriting d.budget
with pBudget. The predicate that leads to violation of the invariant D1 is given by
negating the resulting predicate (thus converting the universal quantification into an ex-
istential one). The resulting predicate is: ∃d : Department •pBudget ≥ 0. The
expression within the scope of the quantifier is independent of the quantified variable
d, and further simplification results in expression pBudget ≥ 0, which is used as a
guard condition for an augmented service operation flow named rInvDeptBudget
for Create Department.

The key invariants on class C are addressed by identifying the service operations
which either create an instance of C (and hence initialize the key attribute) or modify an
instance of C by modifying its key attribute. For each such operation, two alternate flows
are identified: one which checks for the attribute value being duplicate (for unique-
ness) and another which checks for the attribute value being null (for mandatory).
Thus, for Create Department, two alternate flows with faults - rKeyExists
and rKeyNull - are created with guard conditions: ∃d : Department •d.name =
pName and pName = NULL respectively.

The result of applying the rewrite rule for an invariant with aggregate operation
SUM (invariant D3 in DPSpec), and which affects a service operation with Create
Link effect (Move Project) is given below. The invariant D3 has the following
form: ∀d : Department • d.budget ≥ sum (tp.budget | [tp : Project ∈
d.projects]). The Create Link effect of Move Project is given by Create
Link (Funded By, d2, p). We recognize that the association Funded By is ac-
cessed in the invariant by the navigation d.projects, thus we substitute all instances
of the quantifier variable d in D3 with the instance variable d2 in the effect. Further-
more, the effect of the Create Link with Project p is accounted for by adding the
p.budget to the SUM expression. . The resulting predicate is given by: ∃ d2.budget
< sum (tp.budget | [tp : Project ∈ d2.projects]) +
p.budget.

Unfortunately, considering all the predicates (and thus the alternate flows) obtained
during this process may lead to infeasible alternate flows. For example, consider the
predicate obtained as a result of applying the SUM invariant and Remove Link rule

Specify Once Test Everywhere: Analyzing Invariants to Augment Service 555

to service operation Move Project: d1.budget < sum (tp.budget | [tp :
Project ∈ d1.projects]) − p.budget. Given that d1.budget ≥ sum
(tp.budget | [tp : Project ∈ d1.projects]) holds (because the invari-
ant was satisfied before the Remove Link), and that p.budget > 0 (due to the in-
variant on the budget attribute of Project class), the predicate for the computed
alternate flow above cannot be satisfied. We use constraint solvers to statically remove
such infeasible alternate flows.

3 Experiments

In order to assess the effectiveness and efficiency gained in model description through
the invariants analysis we ran an experiment. For the experiment we obtained web ser-
vice descriptions for five applications with varying net number of operations. The IOPE
description for each service, were manually derived. A reference ontology was popu-
lated based on the understanding of the systems. Invariants were modeled for each of the
services following which “invariant analyses” were performed. The efficiency benefit
comes from the reduction in the net size of the descriptions. Specification of the in-
variants eliminates specification of fault behavior in the individual service descriptions
because such information can be automatically populated through invariant analysis.
The reduced size of the description increases its maintainability and also brings in a
reduction in cost when the service descriptions are manually administered. To measure
this effect, physical and logical sizes of the descriptions were measured before and after
the invariants analysis. Physical size of a description is measured by counting the total
number of tokens in the description whereas its logical size is measured by counting the
possible results of invoking the service. This count could be statically determined from
a description as follows:

logical size =
∑

Operations

Number of WSDL faults in an Operation + 1

The percent reduction in size of the description is used to measure the efficiency bene-
fit(T).

T =
S1− S0

S0
× 100%

S0 is the physical size or the logical size of the description and S1 is the size of the
enhanced model.

The effectiveness in test generation comes from the fact that the test generation
processes are guided by coverage of the model. Thus if, for instance, one is using
“boundary value testing” as his test generation process, the coverage criteria is deter-
mined by determining the boundaries of the variables of interest. In black box testing of
web services, such variables are determined from their descriptions. Thus if the descrip-
tion does not explicitly refer to the variables of interest, they don’t become subject of
“boundary value testing”. The effectiveness benefit(F) of invariant analysis is computed
as follows:

F =
f1− f0

f0
× 100%

556 A. Paradkar and A. Sinha

Table 1. Experiment Measurements

Service No. of Oprns No. of Invrnts TP TL FBV T FECT

ATM 3 1 83.33% 28.57% 33.33% 0.00%
Dept Project 4 1 64.71% 33.33% 37.50% 0.00%
Hotel Reservation 4 2 110.34% 50.00% 100.00% 100.00%
Purchase Order 7 2 108.11% 35.71% 28.57% 10.71%
Library 8 2 143.10% 110.00% 31.25% 31.25%

f0 is number of faults targeted by a test suite when it is generated using the actual
model and likewise, f1 is number of faults targeted when the test suite is generated
using the enhanced model. In order to evaluate the effectiveness of the invariant analysis
on test case generation, we generated test cases for the web service description using
boundary value testing(BVT) [4] and equivalence class testing(ECT) [4] using the both
the original and the enhanced model. In BVT, the boundary variables are identified by
examining the guards on the flows of the operations. The boundary values for such
variables were determined based on the types. in ECT, the process is similar, except
that the boundary values are determined based on equivalence classes.

The results of our measurements are summarized in Table 1. In Table 1, the suffix
BV T denotes the results for boundary value testing and the suffix ECT denotes the
results for equivalence class testing. Also, the suffix P denotes the result for physical
size and the suffix L denotes the result for logical size.

As is evident from the measurements the efficiency benefits are higher for services
with higher number of operations. This follows the intuition that by concentrating the
information one can reduce the effort in modeling of individual operations significantly.
This strengthens our hypothesis HT .

Effectiveness benefits, on the other hand, depend on the kind of domain invariants.
If the domain invariant does not affect the variables in the guard of the operation but
affect its effects, then the F is maximized. This is so because both BV T and ECT
generate test cases based on free variables in the flow conditions and therefore they
fail to consider the variables in effect of the operation. Following invariant analysis,
the flow conditions are modified to include the variables in the effect that are under the
influence of some invariants. Consequently, post-enhancement BV T and ECT target
higher number of faults.

4 Related Work

Our work of invariant analysis is in the spirit of consistency analysis of specifications.
Several works in the area of consistency analysis and fixing inconsistencies have been
reported in the past. We briefly review the most relevant ones here. Nentwich et al.
[5] introduced the concept of consistency analysis for XML documents based on rules
defined in a XML based notation called xlinkit. The xlinkit rules allow users to spec-
ify consistency constraints among XML schema elements. xlinkit also has a consis-
tency checker component which takes as input an XML document(s) which it checks
for violation of the specified consistency constraints. Nentwich et al. [6] extended the

Specify Once Test Everywhere: Analyzing Invariants to Augment Service 557

consistency analysis in xlinkit to incorporate fixing of the reported inconsistencies.
Egyed [2] reported an approach for fixing inconsistencies across a set of artifacts of
a UML design model. The artifacts being considered are class diagrams, statechart dia-
grams, and sequence diagrams.

5 Conclusions and Future Work

This paper presented an approach which enables a novel specify once, test everywhere
paradigm by exploiting invariants in a reference ontology. In this approach, each ser-
vice operation is described in an IOPE paradigm: Input, Output, Precondition and Ef-
fect. Our technique augments the service description by creating additional service fault
The augmented service operation model is then used during subsequent test generation.
We described the techniques used in our invariants analysis approach and presented
experimental results which justifies the underlying intuition.

There are several future directions we would like to pursue. We would like to conduct
empirical studies both in industrial and academic settings to evaluate the our approach
along the dimensions of useability and effectiveness. Since our approach is a form of
consistency analysis for service models, we would like to extend it to the other class of
invariants which need modifications to the effect part of the service model.

References

1. T.O.S. Coalition. Owl-s: Semantic markup for web services (2003)
2. Egyed, A.: Fixing inconsistencies in uml design models. In: ICSE 2007: Proceedings of the

29th international conference on Software Engineering, pp. 292–301 (2007)
3. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: Swrl: A seman-

tic web rule language combining owl and ruleml (2004)
4. Jorgensen, P.: Software Testing: A Craftman’s Approach. CRC Press, Inc., Boca Raton (2001)
5. Nentwich, C., Capra, L., Emmerich, W., Finkelstein, A.: Xlinkit: a consistency checking and

smart link generation service. ACM Trans. Interet Technol. 2(2), 151–185 (2002)
6. Nentwich, C., Emmerich, W., Finkelstein, A.: Consistency management with repair actions.

In: ICSE 2003: Proceedings of the 25th International Conference on Software Engineering,
pp. 455–464 (2003)

7. Paradkar, A., Sinha, A., Williams, C., Johnson, R., Outterson, S., Shriver, C., Liang, C.: Au-
tomated functional conformance test generation for semantic web services. In: ICWS 2007.
IEEE International Conference on Web Services, pp. 110–117 (2007)

A Model-Driven Approach to Dynamic
and Adaptive Service Brokering Using Modes

Howard Foster1, Arun Mukhija2,
David S. Rosenblum2, and Sebastian Uchitel1

1 London Software Systems, Dept. of Computing, Imperial College London,
180 Queen’s Gate, London SW7 2BZ, UK

{hf1,su2}@doc.ic.ac.uk
2 London Software Systems, Dept. of Computer Science, University College London,

Gower Street, London WC1E 6BT, UK
{a.mukhija,d.rosenblum}@cs.ucl.ac.uk

Abstract. Industry and academia are exploring ways to exploit the ser-
vices paradigm to assist in the challenges of software self-management.
In this paper we present a novel approach which aims to bring these
two fields closer by specifying the requirements and capabilities within
a UML2 model architecture style and illustrating how these model el-
ements are used to generate specifications for dynamic runtime service
brokering given different modes of a software system. The approach is
implemented in a tool suite integrated into the Eclipse IDE with a pro-
totype runtime service broker engine.

1 Introduction

Software architectures have typically been specified for a static configuration,
where static means that the initial configuration defines a single relationship
model between various components in the architecture. With the use of a service-
oriented architecture (SOA) style for loosely-coupled reusable software compo-
nents (typically by technology independence) there is an interest to dynamically
configure relationships between these components such that the architecture
configuration changes as the system requirements or environment changes (re-
configuration). We introduced the notion of service modes in service-oriented
computing in [2] which outlined an approach to defining, abstracting and gen-
erating deployment artifacts from component models specified using the mode
style. Additionally, dynamic reconfiguration of service architectures also requires
that a series of services representing the same functional (or non-functional) re-
quirements may be dynamically composed in to the network of services. As a
part of the Dino project [9], we are working on addressing a number of challenges
faced by the dynamic and adaptive composition of services in open dynamic en-
vironments. Our collective aim in this project is to provide technologies, tools
and runtime systems for comprehensively supporting all stages of service en-
gineering (i.e. requirements, discovery, selection, binding, delivery, monitoring
and adaptation). In this paper we describe an integrated approach to dynamic
service compositions and architecture reconfigurations.

A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, pp. 558–564, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Model-Driven Approach to Dynamic and Adaptive Service Brokering 559

2 Background and Related Work

A mode, in the context of Service-Oriented Computing (SoC), abstracts a set
of services that collaborate towards a common goal [5]. A mode can be used to
identify which services are required in states of a system, and assist in specify-
ing service composition requirements through component state changes. Modes
can specifically be used towards addressing reconfiguration issues within a self-
managed system. Self-management is typically described as a combination of
self-assembly, self-healing and self-optimisation. Self-management of systems is
not a new idea, with ideas from both the cybernetics and system theory worlds.
However in SoC specifically, a dynamic service brokering solution needs to ad-
dress issues like how to specify the Quality-of-Service (QoS) requirements and
capability, and how to select the most appropriate service provider among several
functionally-equivalent providers based on the QoS offered. An example service
broker engine is called Dino [9]. Dino provides a runtime infrastructure consisting
of a number of brokers. These brokers are responsible for, among other things,
service discovery and selection on behalf of service requesters. Integrating ser-
vice modelling, self-management concepts and dynamic service brokering aims
at enhancing service engineering to cater for change, adaptive and extendible
service solutions.

Related work is split between the modelling and brokering aspects of our work.
For modelling requirements of services and SOA there has been several UML pro-
files proposed in [6,1,7,8]. These profiles generally provide a set of stereotypes
that represent features of service artifacts, including a service specification (inter-
face), gateway (ports) and orchestrated collaboration (behaviour specifications).
What is generally missing from these existing profile approaches is the ability
to identify the requirements and capabilities of services and then to elaborate
on the dynamic changes anticipated for self-management. In terms of dynamic
service brokering, most of the work on runtime infrastructure for service compo-
sition assumes that the global view of an abstract service composition is available
centrally, such as the work by Yu et al. [10] and Zeng et al. [11]. In our approach,
we do not make such assumptions, and instead allow decentralized composition
of services, making use of extended modelling profiles to capture the dynamic
change requirements anticipated for self-management.

3 Overview of Approach and Case Study

Our approach is illustrated in Figure 1. Firstly, service engineers create a set
of architecture models in UML2 using a Modes Profile to stereotype particular
elements needed for service brokering requirements. These models are then used
in a second step, to extract the mode related elements from the model and
generate inputs to service brokers (in the form of requirements and capability
documents). The inputs are passed to a service broker to prepare the required
services for matching (both functionally and non-function aspects). Additionally,
service provider capabilities can be registered with the broker to announce new

560 H. Foster et al.

Fig. 1. Approach to Model-Driven Dynamic Service Brokering Requirements with
Modes

Fig. 2. Mode Scenarios for Vehicle and Remote Service Collaboration

service offerings. Lastly, the broker can be invoked with service parameters to
execute a given service call using a matched service linked with the broker.

To guide our work we used a case study based upon a set of requirements
formed from those reported as part of a European Union project called SEN-
SORIA [7], our role is to support the deployment and re-engineering aspects of
this case study and in particular, to provide a self-management approach. In this
case study are a number of scenarios relating to a Vehicle Services Platform and
the interactions, events and constraints that are posed on this services archi-
tecture. One particular scenario focuses upon Driving Assistance (illustrated in
Figure 2), and a navigation system which undertakes route planning and user-
interface assistance to a vehicle driver. Modes are used to describe the changes
between various states of the vehicle services system.

4 Capturing the Architecture Models and Modes

Using the modelling concepts of UML2 and Modes, we created a UML2 Modes
Profile which assists Service Engineers in identifying mode collaborations, or-
ganised hierarchically using Mode Packages. Note that this profile extends and
depends on the SENSORIA UML for SoC profile [7], for general service stereo-
types (such as service, provider, requester etc). The stereotypes for the UML2
Modes Profile are defined in [3], however, here we provide a brief overview. In

A Model-Driven Approach to Dynamic and Adaptive Service Brokering 561

this paper we concentrate on architecture, configuration and dynamic service
brokering requirements, and as such, examples of behaviour specification and
transformation is left as future work.

UML Models and ModePackage. A UML2 model is a package representing a
(hierarchical) set of elements that together describe the physical system being
modeled. We define a ModePackage stereotype as an extension of this definition
with a stereotype to designate that a package is being described for a system
mode configuration, events and signals.

ModeCollaboration and ModeBinding. A ModeCollaboration extends a UML2
Collaboration containing a Composite Structure Diagram (CSD) to represent
the collaborating service components relationships in this mode and one or
more ModeInteraction or ModeActivity diagrams. Within each ModeCollabo-
ration CSD, the UML2 element of Connector is stereotyped as a ModeBinding.
A ModeBinding represents a required connection (or instantiation) in order to
carry out the mode behaviour as described in a collaboration interaction set.

ModeInteraction and ModeActivity. A ModeInteraction contains a single inter-
action (sequence) diagram and optionally a single communication diagram. The
sequence diagram is a message sequence chart describing the sequence of interac-
tions between service components in the mode collaboration. A communication
diagram provides an alternative view of the sequence logic for the mode interac-
tions, in a sense a ”bird’s eye” view of the way the service components collaborate
for a given configuration.

ModeConstraint. Constraining changes to a Modes-based architecture and ser-
vice composition can be achieved in two ways. Firstly, in a ModeCollaboration
specification, a ModeBinding can be constrained with a ModeConstraint, cate-
gorised by a further constraint stereotype. We extend a recommendation profile

Fig. 3. Composite Structure Diagram (ModeCollaboration) for Slave (Convoy) Com-
ponent Configuration and alternatives for Planning and Detour Modes

562 H. Foster et al.

of the Object Management Group (OMG) in [4]. Additionally, architectural
constraints may be specified in the Object Constraint Language (OCL) or an-
other constraint based language. The constraint language adopted becomes an
implementation-dependent aspect of analysing or extracting from models in
UML2. An example constraint for service ResponseTime, applied to a Mod-
eCollaboration, is illustrated in Figure 3.

5 Requirements and Capabilities Specification for
Dynamic Brokering

Dino provides a specification language for describing both functional and non-
functional properties of service requirements and capabilities [9]. The specifica-
tion language provided by Dino builds on the advances already made in the field
of semantic specifications of services. Some of the popular efforts in this direc-
tion include, OWL-S, SA-WSDL, and WSMO. The main purpose of the Dino
specification language is to provide the mode information for different service
requirements and capabilities. For practical reasons, we have chosen to specify
functional service descriptions using OWL-S in the current Dino broker imple-
mentation. This is because OWL-S is a mature standard for semantic service
specifications, and a number of tools supporting this standard are available.
For specifying the non-functional properties of services, none of the existing se-
mantic service standards were found to be completely satisfactory. Therefore,
we have developed our own specification language for describing non-functional
properties of services, which relies on a standard QoS ontology. Examples of

<ReqDoc name="Driving-Assistant">
<mode name="planning">

<service name="GPS" functional="gps-req.owl" qos="gps-req.qos"/>
<service name="Map" functional="map-req.owl" qos="map-req.qos"/>

</mode>
<mode name="convoy">

<service name="RPS" functional="rps-req.owl" qos="rps-req.qos"/>
</mode>
<mode name="detour">

<service name="HES" functional="hes-req.owl" qos="hes-req.qos"/>
</mode>

</ReqDoc>

<CapDoc name="Driving-Assistant">
<mode name="planning, convoy, detour">

<service name="RPS" functional="rps-cap.owl" qos="rps-cap.qos"/>
</mode>

</CapDoc>

Fig. 4. Requirements (ReqDoc) and Capabilities (CapDoc) of Driving Assistance
Modes

A Model-Driven Approach to Dynamic and Adaptive Service Brokering 563

non-functional properties include response time, availability, security etc. De-
tails of the specification language for describing non-functional properties in
Dino can be found in a previous paper [9]. Figure 4 shows an example require-
ments specification document for the Driving Assistance case study. As discussed
earlier, Driving Assistance has three possible modes: planning, convoy and de-
tour. Driving Assistance requires different services in all three different modes.
However, the service provided by Driving Assistance in all three different modes
remains the same, i.e. the route planning service, also shown in Figure 4.

A Dino broker can be hosted on a trusted third party node, or even on the
same node as a service requester. Any number of Dino brokers can be deployed
in an environment, as required for scalability. The brokers perform three main
scenarios. Firstly, the service requester can invoke the Dino broker at runtime
and forward its requirements specification document to the broker. Secondly, the
Dino broker can discover candidate services and perform matchmaking based
upon the requirements and thirdly, a service can be delivered either directly
from the service provider, or through the Dino broker.

5.1 Extracting Service Requirements and Capabilities

To refine the specification for extracting service requirements and capabilities, we
have three main element lists: a set of mode packages, a set of mode collaborations
and a set of mode components (services). As described earlier in this section, the
Dino broker considers two types of service requirements; 1) required services
for a given mode and 2) provided services to announce capabilities that can be
matched for a mode of operation. Identifying the type of a service in the mode
model relies on alternative properties. The type, requester or provider, can be
determined either by direct or profiled stereotype on a given component. The
usage of a particular service is analysed by considering the ports and connectors
of the component. Identifying the type and usage allows us to generate functional
and non-functional broker inputs.

Functional Broker Inputs. If the service component has a provided interface, then
each operation type, id and name is appended to the Dino Service representation
as provided operations. For a provider of operations, building the Dino Service
operations is relatively straightforward. However for a requester type service, the
connector between service requester and provider instances must be referenced.
Non-Functional Broker Inputs. We also support extracting ModeConstraints
for service bindings, or more specifically a quality of service attribute applied
to assembly connectors between two or more components. A ModeConstraint is
expected to be expressed in a particular format. The QoSRequired constraint
consists of two key aspects. Firstly, that it has applied the QoSRequired stereo-
type from the QoS Profile, and secondly that it specifies an OCL statement
which constraints the binding operation. We have developed a prototype tool
suite to mechanically support the approach steps described in this paper as part
of our service engineering tool suite, known as WS-Engineer, which is available
from http://www.doc.ic.ac.uk/ltsa/wsengineer.

564 H. Foster et al.

6 Conclusions and Future Work

We believe that the notion of Service Modes helps service engineers abstract
appropriate elements, behaviour and policy from the services domain, and can
facilitate the specification of appropriate control over both architectural change
and service behaviour. In this paper we have presented our approach to the
modelling of service-oriented computing component architectures using an ab-
straction of modes to represent the changes in such an architecture. Using a
UML2 Modes Profile allowed us to define different capabilities and requirements
for dynamic service brokering. Our future work will explore how mode config-
urations and their constraints are analysed for completeness and correctness.
We are also seeking to implement the generation of service orchestrations and
choreography from service mode behaviour specifications. This work has been
partially sponsored by the EU funded project SENSORIA (IST-2005-016004).
David Rosenblum holds a Wolfson Research Merit Award from the Royal Society.

References

1. Ermagan, V., Krüger, I.H.: A uml2 profile for service modeling. In: Engels, G.,
Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS, vol. 4735, pp.
360–374. Springer, Heidelberg (2007)

2. Foster, H., Uchitel, S., Kramer, J., Magee, J.: Towards self-management in service-
oriented computing with modes. In: Workshop on Engineering Service-Oriented
Applications, Vienna, Austria (2007)

3. Foster, H., Uchitel, S., Kramer, J., Magee, J.: Leveraging Modes and UML2 for
Service Brokering Specifications. In: 4th Model-Driven Web Engineering Workshop
(MDWE), Toulouse, France (2008)

4. Object Management Group. Uml profile for modeling quality of service and fault
tolerance characteristics and mechanisms. Proposal-AD/02-01/07 (2002)

5. Hirsch, D., Kramer, J., Magee, J., Uchitel, S.: Modes for software architectures. In:
Third European Workshop on Software Architecture. Springer, Heidelberg (2006)

6. Johnston, S.: Uml 2.0 profile for software services (2005),
http://www-128.ibm.com/developerworks/rational/library/05/419soa

7. Koch, N., Mayer, P., Heckel, R., Gonczy, L., Montangero, C.: D1.4b: Uml for
service-oriented systems. Technical report (October 2007)

8. Machado, R.J., Fernandes, J.M., Monteiro, P., Rodrigues, H.: Transformation of
uml models for service-oriented software architectures. In: Proceedings of the 12th
IEEE International Conference and Workshops on Engineering of Computer-Based
Systems, Washington, DC, USA, pp. 173–182 (2005)

9. Mukhija, A., Dingwall-Smith, A., Rosenblum, D.S.: QoS-aware service composition
in Dino. In: Proceedings of the 5th IEEE European Conference on Web Services
(ECOWS 2007) (November 2007)

10. Yu, T., Lin, K.-J.: A broker-based framework for QoS-aware web service composi-
tion. In: Proceedings of the International Conference on e-Technology, e-Commerce
and e-Service (EEE 2005) (March-April 2005)

11. Zeng, L., Benatallah, B., Ngu, A., Dumas, M., Kalagnanam, J., Chang, H.: QoS-
aware middleware for web services composition. IEEE Transactions on Software
Engineering 30(5), 311–327 (2004)

http://www-128.ibm.com/developerworks/rational/library/05/419soa

A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, pp. 565–571, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Integrated Security Context Management of Web
Components and Services in Federated Identity

Environments

Apurva Kumar

IBM India Research Lab. 4, Block C Vasant Kunj Institutional Area,
New Delhi, India-110070
kapurva@in.ibm.com

Abstract. The problem of providing unified web security management in an
environment with multiple autonomous security domains is considered. Secu-
rity vendors provide separate security management solutions for cross-domain
browser based and web service based interactions. This is partly due to the fact
that different web standards dominate in each space. E.g. Security Assertion
Markup Language (SAML) which is an important standard in cross domain sin-
gle sign on (SSO) specializes in browser based access while WS-* standards
focus on security needs of web services. However, cross domain web services
are often invoked in context of a secure browser session. Considering these
interactions in isolation will lead to a fractured security solution. This paper
proposes a solution that provides seamless transfer of security context across
various types of cross-domain web interactions.

1 Introduction

Web is increasingly becoming the dominant channel for customer interaction with
service providers. Providers compete with each other to enable the widest range of
services on their websites. However, very few providers are diverse enough to be able
to satisfy a wide range of services without interacting with their partners. The interac-
tion can either be an explicit redirection to a partner or it could involve implicit invo-
cation of web interfaces exposed by the partner. Needless to say, such interactions
should be both secure as well as trusted by partnering organizations. One of the fun-
damental problems in designing such security solutions is the lack of a common
source of identity information.

Federated identity management solutions address the problem by having authenti-
cation and attribute authorities that are trusted by all partners. Such solutions provide
secure token exchange mechanisms to convey assertions about authenticated identity
to multiple service providers.

At present, there are two standardization efforts in this space. Security Assertion
Markup Language (SAML) [1,2] is an important and widely used federated identity
management standard from OASIS Security Services Technical Committee. The sin-
gle most important problem that SAML tries to solve is the Web Browser Single
Sign-On (SSO) problem. A set of WS standards (WS-Security [3], WS-Trust [4],

566 A. Kumar

WS-SecureConversation [5] and WS-Federation) collectively address the problem in
web services domain. Since the two solutions address problems from seemingly dif-
ferent domains: machine to machine interactions and browser based interactions it
might seem reasonable that organizations use both of them independently depending
on the type of interaction.

However, very often, interactions between machines are driven by a human action
of clicking a link or button on a website. If such interactions pass through organiza-
tion boundaries, it is often important to propagate the security context. If the security
context of the browser interaction is not passed to a web service invoked at a partner
organization, it will lead to inferior solutions that compromise privacy or result in un-
necessarily increased trust level between partners. Such factors will certainly limit the
capacity of web as a medium for carrying out secure business transactions. In this pa-
per we take an example of a telecom service provider to illustrate how existing solu-
tions do not provide satisfactory solution for the problem. We propose a solution that
extends the SAML browser based SSO use case to incorporate additional requirement
arising out of the more complex interactions required in the trust model. The solution
is based on introducing a new type of assertion called a ‘Resource Request Assertion
(RRA)’.

2 Case Study of a Telecom Service Provider

2.1 Problem Description

Consider a telecom service provider (denoted as SP) having a customer portal where
it allows its customers to purchase content (e.g. ring tones, wallpapers, music etc). SP
does not host its own content but depends on a content provider (CP). CP supports
advanced algorithms for rating of content based on subscriber usage. The agreed
revenue model is that CP will charge SP based on the usage profile of the customer,
charging less for a heavy (frequent) user and more for a light user. Communication
between the two organizations is through two web services exposed by the CP for:
browsing/rating service and purchase service.

When a customer logs on to the SP portal and wants to view a page of contents be-
fore purchase, the browsing/rating CP web service is invoked and the customer iden-
tity is passed as a parameter. The prices displayed to the customer are set by SP based
on rating information received from CP for the customer. As customer continues
browsing this interface is invoked multiple times by the SP portal application. The
customer then chooses to purchase a content in response to which SP charges the cus-
tomer and sends a request to the purchase interface of the CP web service. In re-
sponse, CP provides a download URL to SP. The download URL is in CP domain.

To manage these transactions securely, the two parties approach another service
provider (IDP) which provides identity management solutions. They agree on trusting
IDP for authentication and as an authority for issuing, validating and exchanging to-
kens. The IDP sets up a customer repository which is maintained synchronized with
the customer master (e.g. a CRM database) of SP. The identity provider website also
provides web registration facility to customers of SP.

 Integrated Security Context Management of Web Components and Services 567

For CP, its content is the key and it wants to ensure that SP should not be in a posi-
tion to take advantage of the charging model. For SP, its subscriber base is the key as-
set and it wants to ensure that its subscriber details are not misused or divulged to
other parties. We now consider some solutions based on available federated identity
management technologies.

In the following discussions, we assume there are four types of links on the SP
website. GUEST links are the only ones which can be browsed without sign in.
BROWSE links are those that require access to browse/rating web service from CP.
PURCHASE links are those which require access purchase web service from CP.
DOWNLOAD links are those which are redirected to CP website for downloading
purchased content.

2.1.1 Solution Approach 1: SP Asserts Customer Identity
IDP proposes the following first solution in which it handles browser and web service
interactions using a uniform approach, but independent of each other. For browser
based interaction, the federated identity is that of the end user. For web service based
transactions, the authenticated identity is an application ID, which identifies an SP
application that invokes the web service exposed by the CP.

Figure 1 shows the steps executed in a typical user session in which user browses
and then selects a content to purchase and download. These steps are described below:

Step 1: Customer connects to the SP website and browses.

Step 2: On clicking at a BROWSE link, the browser is redirected to the IDP website.
An authentication request is encoded in the redirection URL.

Step 3: The IDP site throws a password challenge page to the customer.

Step 4: The user credentials are validated by the IDP and a token is issued. The token
is digitally signed by the IDP. Also a security context is created for the user. The to-
ken is embedded in an HTML page returned to the browser (e.g. as a hidden form
control).

Step 5: An auto-submit script causes the token to be HTTP POSTed to a URL in SP
domain which is a consumer of assertions provided by the IDP.

Step 6: The token is validated and a new security context is created at SP for the cus-
tomer and the customer is logged in. The originally requested URL is retrieved and
forwarded to the SP application. In processing the BROWSE request, the SP applica-
tion needs to invoke the CP browsing/rating web service. Since all customer requests
are routed through the same application, the application is already signed in with the
IDP and shares a security context with the web service (e.g. through a WS-
SecureConversation [5] secure context token, SCT). The CP web service is invoked
and the customer identity is passed as a parameter.

Step 7: CP confirms the security context is valid and then processes the request. The
customer identity is used to provide rating based on customer usage. SP uses the re-
sult of the web service, maps rating points to prices and displays the catalogue/content
to the customer. Steps 6-7 might be repeated multiple times, till the user decides to
buy an item.

568 A. Kumar

Step 8: The customer selects a content item and clicks on PURCHASE link. The SP
web application initiates a charging request for the customer (e.g. by calling a web
service in its own domain). After successful charging, SP invokes the purchase web
service of the CP. The security context (e.g. based on an SCT) used in Step 6 is used.

Step 9: The CP returns the download URL in its own domain, which is displayed as a
link on the SP website to the customer.

Step 10: The customer follows the link and is redirected to the CP website.

Steps 11-14: The sign on steps 1-4 are repeated for CP. However, this time authenti-
cation of customer is not required, since the browser already has a security context
with the IDP. Once the token is verified by CP, it allows the user to access the
content.

Summary. In an SAML based solution, steps 1-5 correspond to SAML Browser SSO
profile [2]. Steps 6-7 correspond to accessing the browsing/rating web service. Step 8-9
corresponds to accessing the purchase web service. Step 10-14 correspond to download-
ing the content after the SAML browser SSO profile is repeated with the CP.

Fig. 1. Case Study: Sequence of events in solution approach 1

Analysis of Trust Model. The customer identity used by IDP can be a pseudonym
rather than an identifier relevant to the business, thus the approach does not risk pri-
vacy of SP customer data. However, the trust model does not work quite so well for
the CP. In Steps 6 and 8, it has to trust SP assertion about the identity of the customer.
The revenue model is based on both the volume of each content item purchased as
well as the purchaser. In this model, for the same sequence of contents downloaded
the revenue for CP will be more if the content is accessed by light users as opposed to
frequent users. If CP has to trust identity supplied by SP, it is possible for SP to re-
place light users by heavy users while asserting identity, thus bringing down the cost
to be paid to CP.

SP Domain

 GUEST

 BROWSE

 PURCHASE

 DOWN
 LOAD

CHARGING

Customer (Browser)

IDP Domain

 SSO SERVICE

CP Domain

 BROWSE

 PURCHASE

 DOWN
 LOAD

 1 2

3

45

 6 7

8

9

 1011

12

13 14

 Integrated Security Context Management of Web Components and Services 569

2.2 Solution Approach 2: CP Controls Content Delivery

To address the above problem, IDP proposes an alternative approach in which CP
controls delivery of content by sending it directly to the customer. This solution goes
through the following flow:

Steps 1-8: Same as approach 1.

Step 9: CP returns the download URL (which is in its own domain) to SP. It also as-
sociates the URL with the pseudonym in the request.

Step 10: Customer accesses the DOWNLOAD link on SP website and is redirected to
the CP website.

Steps 11-14: The sign on steps 1-4 are repeated for CP. Same as approach 1.

Step 15: CP sends an attribute request to the IDP with the pseudonym corresponding
to the accessed URL for retrieving mobile number of the customer.

Step 16: The user is asked to confirm the mobile number for which the content was
requested. Once user confirms, the content is delivered directly to the mobile device.

Analysis of Trust Model. This approach meets requirements for the CP since it is able
to ensure that the content is delivered to a mobile number of the user asserted by the
SP. However, this approach requires that CP has access to mobile numbers of SP sub-
scribers. Since CP already has the usage profile for the customers, this knowledge al-
lows CP to target subscribers of SPs network through other channels.

2.3 Need for Resource Request Assertion

Both the solutions described though feasible do not satisfy all the requirements of col-
laborating parties. The basic issue is that when a web service is called in the context
of a browser SSO session, there is no secure means of passing the identity information
from browser to the service. The problem arises because the access from SP to CP is
direct without involvement of the IDP or the browser.

As a trusted party, it would have been ideal if IDP had certified that the
browse/purchase URL for which the web service has been invoked was accessed by
the customer. We call a statement binding an authenticated subject with a resource as
a Resource Request Assertion (RRA). However, this type of assertion is not included
in the assertions types available in major federated identity management standards.
E.g. SAML supports authentication, authorization and attribute assertions.

We now outline strategy for solving the integrated browser SSO and web service
security problem. First, we should use extensibility of XML based federated identity
standards to define a new assertion type: resource request assertion. Next, we should
incorporate request and response messages for the new token in the browser based
SSO flow. Finally, we use this token to propagate browser security context to the web
service. In the following section we propose a solution based on this strategy.

570 A. Kumar

3 Proposed Approach for Integrated Web Security Context
Management

In the proposed approach (Figure 2), we use a Resource Request Assertion (RRA).

Step 1-7: Identical to approach 1. The BROWSE links are accessed as before.

Step 8: Customer selects a content item and clicks on PURCHASE link.

Step 9: The browser is redirected to the IDP website with a request for an RRA token.
The requested link can be passed in the name field of the subject element in an SAML
exchange.

Step 10: IDP verifies that a login context for the user exists. It then retrieves the re-
quested URL and presents a page to the customer to confirm that he has requested ac-
cess to the URL.

Step 11: User confirms the access request. IDP issues a signed RRA token which
binds the URL with the authenticated subject (user). The token also contains the time
of the request as well as validity period. It embeds the token in an HTML FORM con-
trol and returns the form to the browser.

Step 12: An auto-submit script is executed on the browser which POSTs the form to
the assertion consumer service of SP.

Step 13: The assertion consumer service forwards the request to the SP application af-
ter inserting the RRA token as an HTTP header. During processing of the request, the
SP application needs to invoke the CP purchase web service to get the content URL.
As in solution 1, we assume that the web application is already logged in to use the
web service through IDP. The SP web application initiates a charging request for the
customer (e.g. by calling a web service in its own domain). Finally the purchase inter-
face of web service is invoked. The RRA token in the HTTP header of the request is
used to obtain a new security context based on the existing one. Details are omitted
due to space limitation, but this is done using WS-Trust token exchange facility.

Step 14: CP associates the new security context with the user (customer) identifier in the
RRA token. It confirms that the user identifier passed in the purchase request matches
with that in the token. This is the key step instrumental in solving the trust problem of
solution approach 1. After this verification the request is allowed to proceed as earlier.
Finally the download URL of the content is returned as a result of the call.

Step 15-19: Identical to Steps 10-14 in solution approach 1. The user clicks the
download URL to be redirected to the SP DOWNLOAD page. The normal SAML
browser SSO profile is executed between CP and IDP. Finally, the user is allowed to
download the content.

Summary. In an SAML based solution, Steps 1-5 correspond to SAML Browser SSO
profile for signing on SP website. Steps 6-7 correspond to accessing the brows-
ing/rating web service. Step 8-12 corresponds to issue of an RRA token. This
exchange is very similar to the browser SSO exchange. Steps 13-14 correspond to
invoking the purchase web service at the CP. Steps 15-19 correspond to downloading
the content after the SAML browser SSO profile is repeated with the CP.

 Integrated Security Context Management of Web Components and Services 571

.
Fig. 2. Case Study: Sequence of events in proposed solution for integrating Web Security Con-
text Management

4 Conclusion

We demonstrate by means of a realistic case study, the problems that can arise in se-
curity solutions which ignore links between browser based and machine to machine
communications. We propose a new type of assertion, called the Resource Request
Assertion (RRA), which binds a subject with one or more requested resources (e.g. an
HTTP URL). We use RRA as the means of controlling security context of a web ser-
vice interaction on the basis of the browser security context. We use SAML as the
browser SSO protocol and WS-SecureConversation and WS-Trust for web services
security context management to provide a concrete framework for implementation of
the solution. The RRA concept is powerful and it should be possible to use it to define
other trust models not necessarily restricted to the federated identity domain.

References

1. Cantor, S., et al.: Assertions and Protocols for the OASIS Security Assertion Markup Lan-
guage (SAML) V2.0,
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf

2. Hughes, J., et al.: Profiles for the OASIS Security Assertion Markup Language (SAML) V2.0,
http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-
2.0-os.pdf

3. Nadalin, A., et al.: Web Services Security: SOAP Message Security 1.0, WS-Security 2004
(2004), http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
soap-message-security-1.0.pdf

4. Anderson, S., et al.: Web Services Trust Language (WS-Trust) (February 2005),
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/
ws-trust/ws-trust.pdf

5. Anderson, S., et al.: Web Services Secure Conversation Language (WS-SecureConversa-
tion) (February 2005),
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/
ws-secon/ws-secureconversation.pdf

SP Domain

 GUEST

 BROWSE

 PURCHASE

 DOWN
 LOAD

CHARGING

Customer (Browser)

IDP Domain

 SSO SERVICE

CP Domain

 BROWSE

 PURCHASE

 DOWN
 LOAD

9

8 1116

17

19 10 12 12

13

14

15 18

Predicting and Learning Executability of
Composite Web Services

Masahiro Tanaka and Toru Ishida

Department of Social Informatics, Kyoto University
Kyoto 606-8501 Japan

mtanaka@ai.soc.i.kyoto-u.ac.jp, ishida@i.kyoto-u.ac.jp

Abstract. Configuring a composite Web service by setting endpoints
reduces the cost of development, but raises the probability of a request
message triggering runtime execution failures. Previous works on vali-
dation of composite Web services are not useful because the application
developer cannot modify atomic/composite services and the specifica-
tions needed for validation are not always available. Therefore, in this
paper, we address two issues: predicting the executability of compos-
ite Web services for each request message, and acquiring input speci-
fications to improve the prediction. To resolve these issues, we model
atomic/composite services in a formal specification. Moreover, we apply
constraint acquisition algorithm to acquire input specifications of atomic
Web services. We conduct an experiment in which the proposed method
is applied to a composite Web service in practical use. The result shows
that our method can detect almost all messages that will trigger execu-
tion failure at a rather early stage of specification acquisition.

1 Introduction

Various organizations have released Web services and standardized the inter-
faces of Web services. This makes it possible to develop composite Web services
in the following way. The designer of a composite Web service provides his/her
composite Web service in WS-BPEL or OWL-S through the combination of ab-
stract atomic Web services, for which only the interfaces, and not the endpoints,
are defined. We refer to such a composite Web service as an abstract composite
Web service. The application developer simply sets endpoints for the abstract
atomic Web services forming the abstract composite service; this identifies the
concrete atomic Web services that will be actually invoked. We refer to such an
implemented composite Web service as a concrete composite Web service.

However, a concrete composite Web service developed in the above way may
suffer runtime failure. WSDL definitions for the abstract atomic Web service de-
fine only types of values of request messages, but do not define their valid range.
Thus the execution of a concrete composite Web service which contains atomic
Web services may fail for some request messages if it is configured by setting
endpoints for the abstract atomic Web services. When a request message triggers
execution failure of any atomic Web service in the composite Web service, the
cost of executing all prior atomic Web services that is wasted.

A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, pp. 572–578, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Predicting and Learning Executability of Composite Web Services 573

Previous works have proposed methods with verification techniques such as
petri net[1] and model checking[2,3] in order to prevent execution failure. How-
ever, these previous works are not useful because providers of concrete atomic
Web services, designers of abstract composite Web services, and application de-
velopers reside in different organizations. Even if an application developer verifies
a concrete composite Web and determines that it might suffer runtime failure,
he/she can modify neither the concrete atomic Web services nor the abstract
composite Web service. Moreover, the application developer cannot always per-
form the verification because the specifications of concrete Web services required
for the verification are often unavailable.

Therefore, in this paper, we address the following issues:

– To ensure that a composite Web service is executable, we need to predict the
executability of the composite Web service for each request message based
on as much specifications as is known.

– To improve the accuracy of executability prediction, we need to acquire the
specifications of concrete atomic Web services based on a success/failure of
execution for each request message.

To predict executability, we model atomic and composite Web services in a
formal specification. Moreover, we apply a constraint acquisition algorithm[4] to
acquiring the input specifications of concrete atomic Web services.

2 Formal Specification to Model Web Services

To predict the executability of a composite Web service, we need specifications
about input/output relation (Request message to response message mapping)
and input specification (Request message validity) for each constituent atomic
Web services.

To allow the above specifications to be checked, we model an atomic service
as a module in the formal algebraic specification CafeOBJ[5], that consists of
the following two operations.

domain-service-name This operation represents the input specification. This
takes a request message to the Web service and returns true or false. True
means executable and false means not executable.

execute-service-name This operation represents the input/output relation. This
takes a request message to an atomic Web service and returns the response
message of the atomic Web service.

We note, however, the input specification and input/output relations are not
always completely known. Moreover, in general, it is impossible to describe the
input/output relations completely. This is why we describe constraints on values
or types of elements of request/response messages as far as are known.

Figure 1 shows the specifications of a machine translator Web service. First
the definitions of data types and messages are imported (line 2). The response

574 M. Tanaka and T. Ishida

1: mod TRANSLATOR {
2: pr(LANGUAGE + TRANSLATOR-REQUEST + TRANSLATOR-RESPONSE)
3:
4: op domain-translator : TranslatorRequest -> Bool

5: op execute-translator : TranslatorRequest
-> TranslatorResponse

6:
7: var e : TranslatorRequest
8:

9: -- Source language must be English or Japanese
10: eq domain-translator(e) =
11: 1*(e) == english or 1*(e) == japanese .
12: -- Language of result is specified by target language
13: eq get-language(execute-translator(e)) = 2*(e).

14: }

Fig. 1. Specification of a machine translator service

message named TranslatorResponse is a string which is the result of the trans-
lation into the target language. Next, the two operations which represent input
specification and input/output specification are declared (lines 4-5). Finally, ax-
ioms are described as equations following eq (lines 10-11,13). In this example,
the first axiom states that the first value of the request message (source lan-
guage) must be English or Japanese. The second axiom states that the Web
service translates a given string into the language that is specified by the second
value of the request message (target language). “n*” is an operation on N-tuple
which extracts the nth value.

Predicting the executability of a composite Web service requires the specifica-
tions of the composite Web service. Our approach is to create the specifications
of a composite Web service by combining the specifications of its constituent
atomic Web services.

In OWL-S or WS-BPEL, a composite Web service has nested structures. A
control construct block contains atomic Web services or other control construct
blocks. We follow this and recursively define the specifications of control construct
blocks. To allow this, we consider a control construct block as a Web service and
define it using the request/response message, the input specification, and the in-
put/output relation. The block that contains all other blocks and atomic Web
services corresponds to the composite Web service. We define two operations to
represent the input specification and the input/output relation in the specifica-
tion of each control construct block. Dataflows and constraints based on features
of control constructs are represented as axioms in the specification.

3 Acquiring Input Specifications

Complete specifications of Web services for the prediction are not always known,
especially in the case ofWeb services.Therefore,we propose amethod that acquires
the input specifications of atomic Web services to improve prediction accuracy.

In our model described in the previous section, input specifications of a
Web service are represented as a logical formula. Thus we adopt the constraint

Predicting and Learning Executability of Composite Web Services 575

acquisition algorithm[4] to acquire the input specifications because the result of
the acquisition can be represented as a logical formula in the formal specification.

In our method, a request message to an atomic Web service and the suc-
cess/failure of the execution of the message are given to the constraint acquisition
algorithm as a training example. The acquisition result can be easily transformed
into descriptions in the formal specification by defining logical formulas in the
formal specification that correspond to predefined predicates.

We explain below how to model the input specifications to apply the constraint
acquisition algorithm. First we define a request message to a service which has
k elements as I = {x1, ..., xk}. Next we define predicates which represent input
constraints. For the sake of simplicity, we assume that the predicates have one
or two variables. We refer to a unary constraint on an input value xi to ith
parameter as bi. We also refer to a binary constraint on input values xi, xj to
ith and jth parameters as b(i,j).

bi and b(i,j) can be defined as bi : xi ∈ class or xi /∈ class and bi,j : {xi, xj} ∈
class1 ×class2 or {xi, xj} /∈ class1 ×class2 respectively. class, class1 and class2
represent any class. xi ∈ class indicates that xi is an instance of class. class1 ×
class2 represents a Cartesian product set of class1 and class2. Constraint library
Bs contains bi and b(i,j) for all known classes or pairs of classes.

The constraint acquisition algorithm works based on the above formalization.
When a positive example is given, the constraint acquisition algorithm adds to
formula K (K = true in the initial state) the conjunction of negation of all
constraints in the constraint library that the example does not satisfy. When
a negative example given, it adds to K the disjunction of all constraints in the
constraint library that the example does not satisfy. The acquisition result is the
conjunction of literals that should be set to true in order to satisfy K.

In general, the set of literals that satisfy K is not unique. Thus we consider
the possible sets of literals that satisfy K as a set of hypotheses, H , and define a
partial order ≺ between hypotheses in H as follows: hi ≺ hj ≡ (∀x ∈ X)[hi(x) =
true → hj(x) = true]. X is a set of possible values of a request message. hi(x) =
true means that the atomic Web service is executable for request message x ∈ X
under the hypothesis hi. Our method performs prediction by reducing operation
domain-service-name under all hg defined as follows: {hg ∈ H |hg 	≺ (∀h ∈ H)}.
Our method cancels execution only if the results of reducing under all hg are
false. This is because our prediction of executability involves detecting request
messages that would cause service execution to certainly fail.

4 Experiment

We conducted an experiment to show how much our method can improve the effi-
ciency of executing a composite Web service. We applied our method to a compos-
ite Web service shown in Fig. 2, which is for translation used in Language Grid[6]

The details of the process of the composite Web service are as follows:

1. Split the string given as a request message into words using Morphological
Analyzer (MA)

576 M. Tanaka and T. Ishida

Split While

While

Join

Morphological
Analyzer

(MA)

Technical Term
Dictionary

(Dic)

Term
Replacement

(TR)

Machine
Translator1

(MT1)

Machine
Translator 2

(MT2)

Fig. 2. Composite service for translation in a special domain

2. Concurrently execute the followings:
(a) Translate all the words by Technical Term Dictionary (Dic)
(b) Translate all the words by Machine Translator 1 (MT1)
(c) Translate the string given as a request message by Machine Translator

2 (MT2)
3. Term Replacement (TR) replaces words in the string translated by MT2

with corresponding words translated by Dic

Suppose MA, MT1 and MT2 have the following input specifications.

– MA : Fail if any language other than Japanese or English is specified for the
language of the given string.

– MT1, MT2 : Fail if the specified source language is different from the actual
language of the given string or the given string is longer than 100 characters.

These input specifications lead to the possible failure of execution of the com-
posite Web service as shown below.

– When the source language is neither Japanese nor English, MA fails and the
cost of MA execution goes counted as waste.

– When the given string is longer than 100 characters, MT2 fails and the cost
of one execution of MA and MT2 and the iterated execution of MT1 and
Dic is counted as waste.

– When the given string has words in multiple languages (e.g. Japanese sen-
tences often contain English words.), MT1 fails because the actual language
of some of the given words differ from the source language specified. In this
case, the cost of one execution of MA and MT2 and the iterated execution
of MT1 and Dic are counted as waste as in the previous case.

We applied our method under the conditions described above. We assume that
all input specifications of the atomic Web services are unknown in the initial
state. Moreover, we defined predicates for the constraint acquisition algorithm.
The predicates involve the input specifications of MA, MT1 and MT2. They

Predicting and Learning Executability of Composite Web Services 577

0

5

10

15

20

25

30

35

40

0 10 20 30 40

of Wasteful Execution

(Composite / Before)

of Wasteful Execution

(Composite / After)

0

100

200

300

400

500

600

700

800

0 10 20 30 40

of Wasteful Execution

(Atomic / Before)

of Wasteful Execution

(Atomic / After)

(b)
(a) # of Execution of

Composite Service

of Execution of

Composite Service

Fig. 3. Number of wasteful execution of atomic/composite services

represent classes for the source language, the target language, and the actual
language of the given string (three classes for each) as described in Section 3. In
this experiment, we also defined predicates to represent given string length (two
classes: short and long). We generated request messages of all combinations of
the classes for each element and executed the composite Web service by giving
the messages in random order.

We counted failure of the execution of the composite Web service due to failure
of any of the atomic Web services as one of the wasteful executions of the compos-
ite Web service. Similarly, we counted the sum of the executions of atomic Web
services until one of the atomic Web service failed as the number of wasteful exe-
cutions of atomic Web services. Figure 3(a)(b) compares the numbers of wasteful
executions of the atomic/composite Web services shown in Fig. 2 before and after
applying our method, respectively.

The figures show that the rate of increase in the number of wasteful executions
saturates as the number of execution increases and more input specifications
are acquired. In particular, Fig. 3(a) shows that our method works well in our
example because it prevents some atomic Web services from being iteratively
executed after the failure of some atomic Web service. This is very effective in
reducing the cost of executing atomic Web services.

5 Conclusion

In this paper, we proposed a method for predicting the executability of composite
Web services in order to reduce the cost of wasteful executions of atomic Web
services. The major contributions of our method are as follows:

– We showed a model of Web services in a formal specification and applied
it to predict the executability of a composite Web service for each request
message by using a theorem prover.

– We applied the constraint acquisition algorithm in order to acquire input
specifications of atomic Web services and showed that it improves the pre-
diction of executability.

578 M. Tanaka and T. Ishida

We conducted an experiment in which our method was applied to a composite
Web service in practical use. The results showed that our method could detect
almost all request messages that would cause execution failure. Compared to
previous works, we assume that the application developer cannot modify concrete
atomic Web services or abstract composite Web services because the stakeholders
are in different organizations. This paper is the first work that focuses on the
point and tries to reduce the wasteful execution of Web services by predicting
the executability of each request message.

Acknowledgments

This works was partially supported by Grant-in-Aid for JSPS Fellows and Global
COE Program “Informatics Education and Research Center for Knowledge-
Circulating Society”.

References

1. Narayanan, S., McIlraith, S.A.: Simulation, verification and automated composition
of web services. In: The 11th International Conference on World Wide Web (WWW
2002), pp. 77–88 (2002)

2. Ankolekar, A., Paolucci, M., Sycara, K.: Towards a formal verification of owl-s
process models. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC
2005. LNCS, vol. 3729, pp. 37–51. Springer, Heidelberg (2005)

3. Fu, X., Bultan, T., Su, J.: Analysis of interacting bpel web services. In: The 13th
conference on World Wide Web (WWW 2004), pp. 621–630 (2004)

4. Bessière, C., Coletta, R., O’Sullivan, B., Paulin, M.: Query-driven constraint acqui-
sition. In: The 20th International Joint Conference on Artificial Intelligence (IJCAI
2007), pp. 50–55 (2007)

5. Futatsugi, K., Nakagawa, A.: An overview of cafe specification environment-an al-
gebraic approach for creating, verifying, and maintaining formal specifications over
networks. In: The 1st International Conference on Formal Engineering Methods, pp.
170–181 (1997)

6. Ishida, T.: Language grid: An infrastructure for intercultural collaboration. In:
IEEE/IPSJ Symposium on Applications and the Internet (SAINT 2006), pp. 96–100
(2006)

Authorization Policy Based Business
Collaboration Reliability Verification

Haiyang Sun1, Xin Wang2, Jian Yang1, and Yanchun Zhang2

1 Department of Computing, Macquarie University,
Sydney, NSW2109, Australia
{hsun,jian}@ics.mq.edu.au

2 School of Computer Science and Mathematics, Victoria University,
Melbourne, Victoria, Australia

xin@csm.vu.edu.au, Yanchun.zhang@vu.edu.au

Abstract. Collaborative business can become unreliable in terms of au-
thorization policy conflicts, for example, when (1) incorrect role assign-
ment or modification occurs in a service within one organization or (2)
messages transferred from one organization are accessed by unqualified
roles in other collaborating business partners. Therefore reliability veri-
fication based on access policies is critical for business collaboration. In
this paper, a role authorization model, Role-Net, is developed based on
Hierarchical Colored Petri Nets (HCPNs) to specify and manage role
authorization in business collaboration and to verify collaboration relia-
bility according to partners’ authorization policies.

1 Introduction

Emerging web service and business process technologies have provided tech-
nological support for business collaboration across organization boundaries [1].
However, security concerns have become one of the main barriers that prevent its
widespread adoption [2]. Models and methods are therefore required to manage
secured business collaboration.

Role Based Access Control (RBAC) [3] is a popular security paradigm where
users are assigned with roles in order to gain certain permissions to access mes-
sages or perform tasks. Hence, RBAC is normally used to define authorization
policy for managing tasks in an organization [4]. However, in collaborative busi-
ness environment, organization not only requires the correct role assignment to
access messages for its own services, but also the right role to access the mes-
sages it passes to its collaborating partners. But business collaboration is peer
based and services are autonomous. Authorization policies defined for individual
organizations normally can not be seen by others. Therefore, in order to guar-
antee that the messages transferred among organizations can be accessed by the
qualified roles in business collaboration, each organization need to send its col-
laborators the required role information together with messages to be accessed
at collaborators’ service. Based on this assumption, a message transferred and
processed between services can be associated with two types of roles: one is the

A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, pp. 579–584, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

580 H. Sun et al.

access role of the current service, the other is the required role for the next ser-
vice. The authorization policies in various organizations can then be coordinated
to enforce access control in business collaboration.

Even with the above assumed setting, business collaboration can still become
unreliable in terms of authorization policy conflicts occurred within or across
organizations. For example, (1) within one organization, any message shall be
associated with a required role before it can be processed in a service, and an
actual role assigned to process the message in the service. If this ’required role’
is not consistent with the role assignment for this coming message in the service,
we can conclude that the role assignment is incorrect and authorization policy
has conflict. Let us look at another example. (2) Business partners are peers
with their own authorization policies that are agnostic to each other. Therefore,
without central control, it is difficult to guarantee that the message is accessed
by the qualified roles in business partners’ service. Therefore, in this paper, we
propose a Role-Net model which is developed based on Hierarchical Colored
Petri Nets (HCPNs). Role-Net provides a verification mechanism to detect the
authorization policy conflicts within or across organizations.

The rest of paper is organized as follows. In section 2, we introduce the struc-
ture of Role-Net, followed by presenting the execution policy. Related work is
discussed in section 4 while conclusion is presented in section 5.

2 Structure of Role-Net

Role-Net is a role-authorization oriented, petri-net based model to simulate busi-
ness collaboration for each participating organization. A Role is modeled as a
RO-Token in Role-Net. Its movement among consecutive transitions thereby
models the role assignment at specific services, which consequently generates a
role flow. However, before a Place, the RO-Token is called Operational Role
which represents the role who accesses and modifies the message at previous
service; while after a place the RO-Token represents Required Role which is
used to describe the set of roles required in the next service. AO-Token is an-
other type of token operated in Role-Net, whose movement represents message
flow. (The petri net terminology, e.g., Place and Transition, will be explained in
following sections).

Role-Net is separated into two layers to model the inter-organizational role
authorization in business collaboration. (1) The upper layer of Role-Net is used
to describe the role-based authorization policy within local organization only. (2)
The lower layer of one organization’s Role-Net models the authorization policy
of the services of the collaborators’ with which the organization is interacting. In
other words, if the service in local organization requires business interaction with
its collaborators, the local organization’s projection on collaborators’ Role-Net
will be modeled as the lower layer of local organization’s Role-Net. We present
the formal definition of Role-Net’s two layers as follows:

Definition 1. The upper layer of organization Gi’s Role-Net is a tuple ρupper
Gi

= (Pupper
Gi , T upper

Gi , Fupper
Gi , Γ upper

Gi , ∆upper
Gi , Θupper

Gi , Ωupper
Gi), where:

Authorization Policy Based Business Collaboration Reliability Verification 581

– Pupper
Gi is a set of places in upper layer of Gi’s Role-Net which graphically

are represented as circles in Fig. 1 and model the state of collaboration.
– T upper

Gi is a set of transitions graphically represented as dark bars in upper
layer of Role-Net in Fig. 1. Transitions are used to model services and im-
plement corresponding functions. Pupper

Gi ∩T upper
Gi = NULL.

– Fupper
Gi =(pu×V×tu)∪(tu×V×pu) is the flow relation between places and

transitions representing the execution order of services in business collab-
oration, where pu∈Pupper

Gi , tu∈T upper
Gi , and V is the sets of variables V=

{x,y,...} to represent the tokens.
– Γ upper

Gi (pu, a, r)→Boolean is a correlation function to evaluate the rela-
tionship of RO-Token and AO-Token at specific place, where a∈AO-Token,
r∈RO-Token, and pu∈Pupper

Gi
. Γ upper

Gi guarantees that the AO-Token can only
be moved with assigned RO-Tokens at specific places.

– ∆upper
Gi (pu, a, r)→rε is a function to change RO-Token from representing

role (operational role r) that accessed the AO-Token at previous transition
to indicating the roles (required roles rε) which are needed by the next tran-
sition, according to role authorization policies, where pu∈Pupper

Gi
, a∈AO-

Token, r,rε ∈RO-Token.
– Θupper

Gi (tu, ϕ, rε)→Boolean is comparison function, where tu∈T upper
Gi , rε∈

RO-Token, and ϕ is a threshold variable representing the role element se-
lected from the set γ. γ is the set of roles that are permitted to access and mod-
ify the AO-Token in the transition at upper layer of Gi’s Role-Net, named as
available role set. The TRUE result of Θupper

Gi function reflects the existence
of qualified roles for specific transition t.

– Ωupper
Gi (tuβ , a) → L is refinement function on transition tuβ to connect Role-

Net’s lower layer, where tuβ∈T upper
Gi

represents transition including link be-
tween two layers of Role-Net. L={g(x), {e(x),ρlower

Gi
,r(x)}} x∈V. g(x) is a

function to evaluate the token and decide which ρlower
Gi

shall be initiated in
other collaborators. e(x) and r(x) are the guard functions of relevant lower
layers to evaluate whether or not the ρlower

Gi
is available to initiate and exit.

Definition 2. The lower layer of organization Gi’s Role-Net is a tuple ρlower
Gi

= (P lower
Gi , T lower

Gi , F lower
Gi , Γ lower

Gi ,Ψ lower
Gi

), where:

– P lower
Gi , T lower

Gi , F lower
Gi , Γ lower

Gi are as same as relevant elements in upper
layer of Role-Net.

– Ψ lower
Gi

(tl, a, rε)→(b, Rε) is a switch function to transfer the value of AO-
Token and RO-Token from input of the transition in lower layer to output of
the transition, where tl∈T lower

Gi , a, b∈AO-Token (a	=b), rε, Rε∈RO-Token
(rε is required roles transferred from Role-Net’s upper layer to lower layer. Rε

is the operational role in lower layer and is returned from Role-Net’s lower
layer to upper layer. When Rε arrives at the upper layer, it is an input to
Θupper

Gi to detect the qualified role set). Any modification on AO-Token and
RO-Token is unknown to organization Gi’ since it only observes the behavior
of its collaborators through this lower layer of Role-Net. Hence, the switch
function is only used to transfer the value of AO-Token and RO-Token after
they have been modified according to collaborator’s polices.

582 H. Sun et al.

Fig. 1. Role-Net of Organization A

In Fig. 1, we illustrate a Role-Net of organization A (OA) which is separated
into two payers. The upper layer models application process at OA side while
lower layer simulates the projection of OA on organization B (OB)’s Role-Net.
They are linked by Refinement Function at the transition which is represented
as service 2. b and c in the figure are AO-Tokens which indicate the message
transferred in the business collaboration. r1, r2, rε

1, and Rε
1 are RO-Tokens while

r1, r2 and Rε
1 represent operational roles for each service and rε

1 is required role.

3 Execution Policy of Role-Net

There are two types of tokens that are operated within a Role-Net: the Application-
Oriented Token (AO-Token) and the Role-Oriented Token (RO-Token) whose
movements correspond to the message flow and role flow. The AO-Token will move
together with the relevant RO-Token to correlate the message flow and role flow,
which can guarantee that the desired message can only be accessed by the specific
roles at the designated service. The execution policies of Role-Net are described as
follows:

– Token at Place
(1)Each RO-token is correlated to a specific AO-token. The Correlation func-
tion ΓGi in upper layer and lower layer of Role-Net will check the correlation
of these two types of tokens at each place. If a RO-Token and an AO-Token are
received separately, the Place will abandon the token as an unexpected role
or message respectively. (2) (i) Before Places in upper layer, the RO-Token r
represents theOperational role that has accessed the correlatedmessage at pre-
vious Transition. After Places in upper layer, the RO-Token rε will represent
the Required role which will be required by the next transition. The Function
∆upper

Gi will deal with the transfer of RO-Token at each Place in upper layer.
(ii) The place in lower layer is used to receive the AO-Token and RO-Token
from upper layer, and return the two correlated tokens together to upper layer
after they are processed by the services of the collaborating partners.

Authorization Policy Based Business Collaboration Reliability Verification 583

– Token at Transition in Upper Layer of Organization Gi’s Role-Net.
(1) If the link between upper layer and lower layer of Role-Net exists, AO-
Token and RO-Token rε representing Required Roles will move together to
the lower layer of Role-Net as cross-organizational message transfer. The re-
finement function Ωupper

Gi is used to identify the lower layer of organization
Gi’s Role-net ρlower

Gi
(the lower layer of local organization’s Role-Net repre-

sents the local organization’s view on its collaborator’s Role-Net). When the
modified AO-Token and RO-Token return from the lower layer, the transi-
tion in upper layer then invokes the Comparison Function Θupper

Gi to identify
the qualified roles. (2) Θupper

Gi function is implemented to detect the qual-
ified roles when Required Role rε arrives at transition in upper layer with
AO-Token (no link between lower layer and upper layer in this transition) or
returned RO-Token Rε arrives at the transition with AO-Token from lower
layer (link between lower layer and upper layer exists in this transition).
(i) Each transition in upper layer of Organization Gi’s Role-Net has a set of
available roles γ which are qualified to access message in this transition. How-
ever, depending on the properties of message and role authorization policies,
all or part of them may not be authorized to process message at runtime.
Therefore, a threshold ϕ is dynamically decided by choosing roles from γ
at each transition. (If the transition in upper layer of Role-Net has link to
lower layer, then ϕ is selected from Rε and is input in function Θupper

Gi to
verify whether the AO-Token is modified by the Required Role rε at collab-
orator’s Role-Net). (ii) If rε’s element equals to the threshold ϕ, the role in
threshold will be moved to the set � as qualified role to access the message in
this transition and the threshold will be degraded for the next role in γ. The
comparison will continue until all role elements in Required Roles rε and γ
(or Rε) have been dealt with. (iii) Finally, if � is not empty, then the role
elements in this set will be authorized the permission to access the messages
in this service. The RO-Token will thus represent the role that actually ac-
cesses the message and is moved with AO-Token together to the next places.
If � is empty, then there is no qualified role to deal with this message at this
service. The process will be suspended due to the authorization policy con-
flicts. Therefore, by comparing ϕ with each role element in Required Roles rε,
we can verify authorization policy based business collaboration reliability.

– Token at Transition in Lower Layer of organization Gi’s Role-Net.
Ψ lower

Gi
in the transition of lower layer of organization Gi’s Role-Net is used to

transfer the value of AO-Token and RO-Token. The switch function Ψ lower
Gi

can not identify how the value of AO-Token and RO-Token are changed in
the transition, since local organization Gi is agnostic to its collaborator’s
internal process, including which role is assigned to process the message.
Hence, these modifications on AO-Token and RO-Token are implemented
according to collaborator’s own authorization policies, and Ψ lower

Gi
in lower

layer of local organization Gi’s Role-Net can only identify and exchange the
result of modification on tokens.

584 H. Sun et al.

4 Related Work

Research has been done in the area of role authorization in business collabo-
ration. The authors in [5] focused on extending the specification WS-BPEL [6]
with role authorization constraints in business collaboration. Liu and Chen [7]
developed another extended RBAC model, WS-RBAC. Three new elements were
introduced into the original RBAC model, namely enterprise, business process
and web services. Knorr in [8] has proposed a role based access control method
through Petri Net workflows. Role authorization rights were granted according
to the state of the workflow. However, they are still insufficient in: (1) describing
role authorization in business collaboration with regard to the organization’s
peer nature; (2) detecting role authorization errors and verifying business col-
laboration reliability in terms of role authorization.

5 Conclusion

Business collaboration can become unreliable in terms of authorization policy
conflicts. Current approaches can not provide model to simulate role authoriza-
tion in business collaboration, nor verification mechanism to enforce collabora-
tion reliability in terms of authorization policy. In this paper, we provide a role
authorization model (Role-Net) to verify authorization policy based business
collaboration reliability.

References

[1] Papazoglou, M.P., Georgakopoulos, D.: Service-oriented computing: Introduction.
Communications of the ACM 46-10, 24–28 (2003)

[2] Wang, X., Zhang, Y., Shi, H., Yang, J.: BPEL4RBAC: An Authorisation Specifica-
tion for WS-BPEL. In: Bailey, J., Maier, D., Schewe, K.-D., Thalheim, B., Wang,
X.S. (eds.) WISE 2008. LNCS, vol. 5175, pp. 381–395. Springer, Heidelberg (2008)

[3] Ferraiolo, D., Cugini, J., Kuhn, R.: Role Based Access Control:Features and Mo-
tivations. In: Proceedings of Annual Computer Security Applications Conference.
IEEE Computer Society Press, Los Alamitos (1995)

[4] Wang, H., Cao, J., Zhang, Y.: A flexible payment scheme and its role-based access
control. IEEE Transactions on Knowledge and Data Engineering 17(3), 425–436
(2005)

[5] Bertino, E., Crampton, J., Paci, F.: Access Control and Authorization Constraints
for WS-BPEL. In: Proceedings of ICWS (2006)

[6] OASIS Web Services Business Process Execution Language (WS-BPEL) Technical
Committee. Web services business process execution language version 2.0, ws-bpel
(2007),
http://docs.oasis-open.org/wsbpel/2.0/cs01/wsbpel-v2.0-cs01.html

[7] Liu, P., Chen, Z.: An Access Control Model for Web Services in Business Process.
In: Proceedings of WI (2004)

[8] Knorr, K.: Dynamic Access Control through Petri Net Workflows. In: Proceedings
of ACSAC (2000)

http://docs.oasis-open.org/wsbpel/2.0/cs01/wsbpel-v2.0-cs01.html

VGC: Generating Valid Global Communication
Models of Composite Services Using Temporal

Reasoning

Nalaka Gooneratne, Zahir Tari, and James Harland

School of Computer Science and Information Technology
RMIT University,

Melbourne 3001, Australia
{nalaka.gooneratne,zahir.tari,james.harland}@rmit.edu.au

Abstract. As the range of services available on the Web increase, new
value added services can be created by composing existing ones. It is
then vital to ensure that compositions of web services are free from er-
rors such as deadlocks and synchronisation conflicts. Current techniques
are lacking in this regard because they either (i) do not consider all the
different types of temporal relationships that exist between interactions,
or (ii) do not support all types of interactions (i.e. only send and receive,
not service and invoke). In this paper we introduce an approach that
overcomes these problems. First, a communication model is generated
by composing interactions of constituent services. Then, the temporal
relationships between all the interactions of the communication model
are found using a reasoning mechanism. While doing so, these relation-
ships are compared against those specified in descriptions of interaction
protocols, to detect any deadlocks or synchronisation conflicts.

1 Introduction

An interaction protocol (of a web service) describes all the interactions as well as
the temporal relationships (i.e. ordering constraints) between interactions. These
interactions are of four types [4]: send, receive, invoke and service. These can be
divided into two classes: (i) interactions that take place at time points (send and
receive) and (ii) interactions that take place during time intervals (invoke and
service). Existing techniques that generate valid global communication models of
composite services have limitations, as they either do not consider the temporal
aspects of interactions [3] (e.g. - time taken and different types of temporal
relationships) or they only consider specific interactions like send and receive [4].
Modeling either an invoke or a service interaction with a send and a receive can
be problematic when the same parameter is dispatched or accepted more than
once [4]. Phantom deadlocks can be detected and (real) deadlocks may be missed
when temporal aspects of interactions are ignored.

Themodel depicted inFigure 1a canbe formedbycomposing the interactionpro-
tocols of three services (i.e. ComputerSales-I, Shipping-I and Insurance-I), when

A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, pp. 585–591, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

586 N. Gooneratne, Z. Tari, and J. Harland

Provide Insurance
Quote

1

Order
Specifications

Get Insurance
Quote

Get Insurance
Policy

Get Consignment
Note

Invoice
1

2 3

4

5

Shipping
Request

Shipping
Quote

Get Insurance
Quote

1 32

Consignment
Note

4

Provide Insurance
Quote

2

Policy Activation
Request

Policy
Reference No

4

Shipping
Quote

5

Insurance-I

Computer
Sales-I

Shipping-I

3

(a) Temporal aspects of Interactions not considered
Provide Insurance

Quote

1

Order
Specifications

Get Insurance
Quote

Get Insurance
Policy

Get Consignment
Note

Invoice1

2 3

4

5

Shipping
Request

Shipping
Quote

Get Insurance
Quote

1 32

Consignment
Note

4

Provide Insurance
Quote

2

Policy Activation
Request

Policy
Reference No

4

Shipping
Quote

5

Insurance-I

Computer
Sales-I

Shipping-I

3

(b) Temporal aspects of Interactions considered

Fig. 1. Global Communication Models

the temporal aspects of interactions are not considered. A solid circle represents a
“send” (interaction), an empty circle a “receive”, and a solid square a “service” and
an empty square an “invoke”. On the other hand, the model depicted in Figure 1b
can be generated if the temporal aspects of interactions are considered. This model
is free of deadlocks and synchronisation conflicts because both the order in which
the interactions are performed as well as the ordering constraints in the interaction
protocols of the constituent services do not conflict.

VGC: Generating Valid Global Communication Models 587

This paper proposes a technique called VGC that addresses the stated issues.
VGC generates valid global communication models by composing interactions
protocols. First, conversations are formed by composing the interactions of con-
stituent services. Then, sets of conversations that consist of all the interactions
of constituent services are formed to ensure that a derived global communica-
tion model is free of unspecified receptions or transmissions [4]. Such sets of
conversations are referred to as Complete Conversation Sets (CCS). Next, the
temporal relationships between the interactions of a CCS are found using an
Interval Time Logic (ITL)-based transitive temporal reasoning mechanism [1].
While doing so, deadlocks and synchronisation conflicts that could occur are
detected by identifying inconsistencies in the temporal relationships. An incon-
sistency occurs if the temporal relationships between any two interactions (of a
global communication model) conflict with those of an interaction protocol (of
a constituent service). Finally, a concise specification of a global communication
model is obtained by grouping the temporal relationships between interactions.

2 The Proposed VGC Approach

VGC makes the following assumptions: (i) the constituent services of a composite
service are located using a service discovery technique [2] and (ii) the interac-
tion protocols of services are specified using WS-π-calculus [3]. WS-π-calculus
supports all four types of interactions and accurately models the temporal rela-
tionships between them. Given a set interaction protocols (say { px, . . ., py}) of
constituent services (say sx, . . ., sy) of a composite service (say cs), the proposed
technique generates a specification of a valid global communication model gc of
cs. VGC is divided into four steps.

STEP 1. First, all the conversations that could take place between the con-
stituent services are determined and stored in a set of Conversation Lists. A con-
versation indicates how two or more interactions of constituent services should
be composed and ensures that parameters can be exchanged between composed
interactions.

Definition 1 (Conversation). Given two distinct services sa and sb with in-
teractions ia (of sa), ib and i′b (of sb), we have:

1. ia and ib form a conversation if ia can be composed with ib
2. ia, ib and i′b form a conversation if ia can be composed with ib and i′b

Next, we introduce the concept of an execution path, which defines a sequence
of interactions that can be used to achieve a functionality provided by a web
service. Each web service could consist of multiple execution paths.

Definition 2 (Execution Path). An execution path EP of a WS-π interac-
tion protocol P is a sub-process of P, where EP contains the first and the final
interactions of P, and it does not contain any choice construct.

588 N. Gooneratne, Z. Tari, and J. Harland

As the service definitions may contain choice constructs, it is important to ensure
that interactions are not taken from different execution paths. This is because
interactions from different paths cannot be performed together in a single execu-
tion of a service (as they correspond to different choices made during execution).
For this reason we need to work with combinations of execution paths, rather
than the direct definitions of each service.

Definition 3 (Combination of Execution Paths(CEP)). Let cs be a com-
posite service formed with the constituent services {s1, . . ., sn}, where each si

contains a set of execution paths Ei. A CEP is a tuple [e1, . . ., en], where each
execution path ei ∈ Ei.

Next, a Conversation List is generated for each CEP. Such a list stores all the
conversations that can take place between interactions of the execution paths in
a CEP.

STEP 2. Sets of conversations that form Complete Conversation Sets (CCSs) are
located from each Conversation List. A CCS is a set of conversations containing
all the interactions of a CEP. Let f() be a function that returns the set of
interactions included in an execution path or a conversation (which we will call
an interaction function). Given a CEP P and a set of conversations C, where
P={e1, . . ., en } and C={c1, . . ., cm}, C is a CCS of P if

f(e1) ∪ . . . ∪ f(en) ≡ f(c1) ∪ . . . ∪ f(cm) and
1 ≤ i, j ≤ m, f(ci) ∩ f(cj) = ∅ (1)

A CCS ensures that a global communication model does not have any misses or
overlaps. A miss occurs in a global communication model if this doesn’t contain
all the interactions of a CEP. An overlap occurs if either multiple interactions
accept a single dispatched parameter or parameters dispatched by multiple in-
teractions are accepted by a single interaction. Deadlocks and unspecified recep-
tions occur in global communication models if there are overlaps or misses [4].
We model a Conversation List L as a graph G=〈V, E〉, where V is a set of
conversations and E is a set of edges that connects conversations which have
common interactions. Then, sets of vertices that model CCSs are derived from
such graphs.

Definition 4 (Set of Vertices Modeling a CCS). Given a graph G gen-
erated for a Conversations List L, the corresponding CEP P and an interaction
function f , a set of vertices V′ = {v1, . . . vn} of a sub-graph G′=〈V′, E′〉 of G
model a CCS if V′ ⊆V, E′=∅ and f(v1) ∪ . . . ∪ f(vn) = f(P).

STEP 3. In the third step, those CCSs forming global communication models
with errors (i.e. deadlocks, synchronisation) are located. This is performed by
comparing the temporal relationships between the interactions of a global com-
munication model against those specified in interaction protocols of constituent
services. The relationships between interactions are found using the reasoning
mechanism described in [1], and these are stored in a Relations List.

VGC: Generating Valid Global Communication Models 589

STEP 4. A specification of a global communication model is derived from a
CCS. Concise and accurate specifications are required when executing composite
services. These specifications are derived from the details in Relations Lists.

Detecting Deadlocks and Synchronisation Conflicts

This section describes a novel technique that checks whether a valid global com-
munication can be derived from a CCS. A conversation between interactions ia
and ib, or ia, ib and ic dictates that the temporal relationship(s) between them
should be = (ia, ib)1 for the former case, and si(ia, ib) and fi(ia, ic) for the latter.
Our approach takes these temporal relationships that exist between interactions
because of conversations and the relationships defined in the descriptions of con-
stituent services, and reasons about the relationships between all the interactions
of a CEP using the transitive temporal reasoning mechanism described in [1].

Let us consider three time interval-based interactions ia, ib and ic with known
temporal relationships between ia and ib, and ib and ic. The technique in [1] de-
termines the transitive relationship between ia and ic. For example, if s(ia, ib) ∪
m(ib, ic) holds, then the transitive relationship between ia and ic would be either
oi, d, f , o or s.

A deadlock or a synchronisation conflict occurs in a global communication
model if a relationship derived by this mechanism conflicts with another. Let us
consider the following CCS to illustrate the use of this approach: [cs2, in2], [cs3,
in3, i5], [cs3, sh1, sh4], [sh2, in1][sh3, in4]. Figure 2 depicts a global communica-
tion model derived from this CCS. This model contains a synchronisation conflict
because the reasoning mechanism determines that the relationship between sh1
and cs4 should be b(sh1, cs4)2 and the conversation between cs4, sh1 and sh4
dictates that s(sh1, cs4).

Given a CEP P and a CCS C derived from P, VGC derives the temporal
relationships between each pair of interactions (say i and i′) based on those that
exist between the conversations in C, where i ∈ pi, pi ∈ P, i′ ∈ I and I = {P\pi}.
These relationships are derived using the proposed transitive temporal reasoning
mechanism. While doing so, VGC checks if each derived temporal relationship
conflicts with those specified in each pi of P. If they conflict, a global commu-
nication model free of deadlocks or synchronisation conflicts cannot be derived
from the given CCS.

VGC uses a Relations List to record the temporal relationships and later
checks if they conflict. At the start, this list contains specifications of temporal
relationships between the interactions of constituent services as well as those
that implicitly exist between the interactions that are included in conversations
of a CCS. Each relation in this list is specified as an Interval Time Logic (ITL)
1 The following notations are used to specify the different types of in [1]: o - overlaps,

oi - overlapped-by, s - starts, si - started-by, d - during, di - contains, f - finishes,
fi - finished-by, m - meets, mi - met-by, b - before, bi - after and = - equals.

2 b(sh1, cs4) according to the conversations between cs2 and in2 (= (cs2, in2)) and in1

and sh2 (= (in1, sh2)) and interaction protocols of Shipping-I and ComputerSales-I
(b(sh1, sh2) and s(cs2, cs4)).

590 N. Gooneratne, Z. Tari, and J. Harland

Provide Insurance
Quote

1

Order
Specifications

Get Insurance
Quote

Get Insurance
Policy

Get Consignment
Note

Invoice1

2 3

4

5

Shipping
Request

Shipping
Quote

Get Insurance
Quote

1 32

Consignment
Note

4

Provide Insurance
Quote

2

Policy Activation
Request

Policy
Reference No4

Shipping
Quote

5

Insurance-I

Computer
Sales-I

Shipping-I

3

Synchronisation
Conflict

Fig. 2. A Global Communication Model with a Synchronisation Conflict

axiom modelling a relationship between two interactions. VGC then determines
all the two-hop transitive temporal relationships that are extracted from the
execution paths. Given two interactions, say ia and ib, a two-hop transitive
temporal relationship exists between ia and ib if there is an interaction (say
ic), where the relationships between ia and ic, and ic and ib are known. Once
each of these two-hop transitive temporal relationships are determined, they are
compared against those in the Relations List. If the relationships do not conflict,
those derived are included in the list. Otherwise, the algorithm will not be able
to compute a global communication model with free errors (i.e. - deadlocks or
synchronisation conflicts).

3 Conclusion

This paper gave details of VGC - an approach to construct valid global com-
munication models for composite services. Existing approaches have limitations,
as they either do not consider the temporal aspects of interactions or only con-
sider send and receive interactions. VGC requires interaction protocols to be
described with WS-π-calculus. This provides an advantage over existing solu-
tions for service description because WS-π-calculus accurately models the tem-
poral relationships between interactions. Specifications of global communication
models are derived using a four step process. First, conversations are formed by
composing interactions of constituent services. Two interactions are composable
if the parameters and the channels used to perform them match and they are of
compatible types. In the second step, combinations of conversations that form
global communication models are located. Then, deadlocks and synchronisation

VGC: Generating Valid Global Communication Models 591

conflicts are detected by reasoning about the temporal relationships between
interactions (of a global communication model). A detailed version of this paper
which includes a case study that analyses the correctness and soundness of the
proposed approach using a sample scenario is available. Our future work will
focus on the analysis of the devised approaches using real-world scenarios.

Acknowledgments

We would like to thank the ARC (Australian Research Council) for the support
given towards this work, under the Linkage Project no. LP0667600 titled “An
Integrated Infrastructure for Dynamic and Large Scale Supply Chain”.

References

1. Allen, J.F.: Maintaining Knowledge about Temporal Intervals. Communications of
the ACM 26(11), 832–843 (1983)

2. Gooneratne, N., Tari, Z.: Matching Independent Global Constraints for Composite
Web Services. In: Proceedings of the 17th International World Wide Web Confer-
ence, pp. 765–774 (2008)

3. Gooneratne, N., Tari, Z., Harland, J.: Verification of Web Service Descriptions using
Graph-based Traversal Algorithms. In: Proceedings of the 22nd Annual Symposium
on Applied Computing, pp. 1385–1392 (2007)

4. Woodman, S., Palmer, D., Shrivastava, S., Wheater, S.: Notations for the Specifica-
tion and Verification of Composite Web Services. In: Proceedings of the 8th Inter-
national Enterprise Distributed Object Computing Conference, pp. 35–46 (2004)

A Framework for Advanced Modularization
and Data Flow in Workflow Systems

Niels Joncheere, Dirk Deridder, Ragnhild Van Der Straeten,
and Viviane Jonckers

System and Software Engineering Lab (SSEL)
Vrije Universiteit Brussel

Pleinlaan 2, 1050 Brussels, Belgium
{njonchee,dderidde,rvdstrae,vejoncke}@vub.ac.be

Abstract. Workflows have become a popular technique for describing
processes in many different application domains, including Computer
Aided Engineering (CAE). State-of-the-art workflow languages lack the
necessary modularization techniques and data flow capabilities to ex-
press processes in a way that facilitates their design, evolution and reuse.
In this paper, we aim to tackle this problem by presenting a concep-
tual framework for advanced modularization and data flow in work-
flow systems, which is independent of specific modeling approaches and
technologies.

1 Introduction

Workflows have long been a popular technique for describing processes in a
number of application domains, such as business process management and web
service orchestration. More recently, they have started to be applied in scientific
computing and Computer Aided Engineering (CAE). Workflow languages for
each of these application domains have been developed.

As processes become more complex, mechanisms are needed to manage this
complexity in order to facilitate the processes’ design, evolution and reuse. Tra-
ditionally, workflow languages tackle this problem by allowing to decompose
workflows into separate modules such as sub-workflows. However, these modules
are often strongly tied to the workflow in which they are used, resulting in limited
reusability. In addition, most approaches do not support modularizing concerns
that crosscut a workflow (such as authentication, transaction management, and
logging), and approaches that do [1,2,3] are limited in their expressiveness.

In scientific computing and CAE, the volume, complexity, and heterogeneity
of data in processes is much larger than in other application domains. This means
that workflows in these domains contain much more data flow: they deal with
data transfer from persistent storage to the resources that will process the data,
partition data in preparation of parallel processing, and handle transformation
of data when different processing steps require different data formats. This data
perspective [4] is insufficiently supported by current workflow approaches.

A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, pp. 592–598, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Framework for Advanced Modularization and Data Flow 593

The goal of our approach is to improve separation of concerns [5] in workflow
languages by tackling both the lack of modularization of the main concern and
the lack of modularization of crosscutting concerns [6] using a single, general
workflow construct. More specifically, we revalue the sub-workflow construct
as a powerful means for workflow modularization. Based on our collaboration
with industrial partners in Computer Aided Engineering, we also aim to provide
better support for the data perspective.

This paper presents our conceptual framework for advanced modularization
and data flow in workflow systems. Section 2 describes our modularization mech-
anism, and Section 3 describes our data flow mechanism. Section 4 presents
related work, and Section 5 states our conclusions.

2 Modularization Mechanism

Traditionally, sub-workflows are used to decompose the main concern of a work-
flow into smaller modules, thus facilitating evolution and reuse of these modules.
The main workflow contains a composite task that specifies — at design time
— which sub-workflow should be invoked. When the workflow is enacted, the
sub-workflow will be executed. Although this mechanism is a good means for
managing workflow complexity, it is not always present in popular workflow
languages such as BPEL [7].

While our approach supports this basic mechanism, it improves on it by al-
lowing sub-workflows to be attached to main workflows in a way which inverts
the flow of control: it allows specifying at which points in a main workflow a
sub-workflow should commence and cease execution, without explicitly specify-
ing this in the main workflow. Thus, we facilitate adding concerns that were not
considered when the main workflow was designed, and facilitate comprehending,
maintaining, reusing, and removing concerns that are specified using such sub-
workflows. For example, this mechanism can be used to invoke an authentication
sub-workflow before each invocation of a certain service, even though the work-
flow that invokes this service was not designed with authentication in mind. This
inversion of control is similar to traditional aspect-oriented techniques [8], but
unlike aspects, sub-workflows are not separate language constructs introduced
solely for the sake of encapsulating crosscutting concerns. Such a symmetri-
cal [9,10] approach reduces the number of language constructs, and is expected
to facilitate the adoption of our approach in industrial environments.

In order to allow specifying such symmetrical workflow compositions, we in-
troduce the notion of control ports. Control ports are the entry and exit points
of a task’s control flow; each task has exactly one control input port and one con-
trol output port. A workflow’s control flow perspective is specified by connecting
the control output port of the workflow’s start event to the control input port
of a task, and connecting the control output ports of all tasks to the control
input ports of other tasks or end events. Just like tasks, workflows have exactly
one control input and output port; these are the entry and exit points of the
workflows’ control flow. We visualize control ports by extending the YAWL [11]

594 N. Joncheere et al.

Fig. 1. Using a connector for symmetrical workflow composition (left) and for connect-
ing a task to a workflow (right)

notation with small circles at the sides of tasks and workflows. Control input
ports are marked with the letter I, while control output ports are marked with
the letter O. The upper part of Figure 1 shows a workflow called WorkflowA,
which has a control input port (at its left side) and a control output port (at
its right side). Additionally, all elements of the workflow, such as TaskB, have
control ports as well, which are connected in order to specify the workflow’s
control flow perspective.

Analogous to the way they are employed in component based software engineer-
ing [12] and aspect-oriented programming [10], we introduce connectors to con-
nect workflows to each other. In Figure 1, Connector1 specifies that WorkflowB
needs to be connected to WorkflowA. The connector also specifies that, when
WorkflowA is enacted, its control flow should be redirected to WorkflowB when it
reaches the control input port of TaskB. If control flow should be split, one should
use the SPLITTING keyword instead of the REDIRECTING keyword. Addition-
ally, the connector specifies that, when the execution of WorkflowB has finished,
control flow should resume at the control input port of TaskB. The net result of
this connector is that WorkflowBwill be executed before TaskA.

In our example, control flow is redirected and resumed at the same control port
in WorkflowA. However, this need not be the case. For example, if the connector
would specify that WorkflowB should resume at the control output port of TaskB,
the net result of the connector would be that WorkflowB is executed instead of
TaskB. In an initial phase, our system will support all the workflows’ control ports
as resuming points in order to maximize connector expressivity. However, some
resuming points may yield undesirable workflow behavior (such as infinite loops).
Therefore, future work will be directed at producing safe connector patterns.

The traditional composite task construct is still available in our approach, but
we do not require the composite task to be hard-wired to a concrete workflow

A Framework for Advanced Modularization and Data Flow 595

at design time: a connector can be used to wire the composite task to a concrete
workflow. This reduces the coupling between a workflow that contains a com-
posite task and the concrete workflows that will implement this composite task.
In Figure 1, Connector2 specifies that TaskA in WorkflowB should be connected
to WorkflowA. When WorkflowB’s control flow reaches TaskA, WorkflowA will
be executed, and when its execution is finished, the control flow will continue
with the remainder of WorkflowB. In fact, such a connection can be made even
if TaskA is a regular task instead of a composite task. In that case, WorkflowA
would be executed instead of TaskA.

Connectors are specified separate from the workflows they connect. This re-
duces the coupling between sub-workflows and main workflows, and improves
the reusability of sub-workflows by making them independent of the context to
which they might be applied. This also means that a workflow can assume the
role of sub-workflow in one composition, while assuming the role of main work-
flow in another. Figure 1 illustrates this: in Connector1, WorkflowA assumes the
role of main workflow, and in Connector2, WorkflowB assumes the role of main
workflow. Of course, it would not make sense to have both connectors in the
same workflow composition, as this would yield an infinite loop.

3 Data Perspective

Most state-of-the-art workflow languages are not designed with the data per-
spective in mind. Data is typically accessible by groups of tasks using some basic
scoping mechanism, or is simply passed along with the control flow. The data
and control flow perspectives are tightly integrated, and their independence is
concealed. The concepts modeled in these perspectives, as well as their indepen-
dence get blurred and distorted. Existing workflow research [13] has recognized
the need to uphold this independence. Therefore, we improve on existing lan-
guages by specifying data flow and control flow separately.

A first concept we introduce to this end is data ports. Each task can have an
arbitrary number of data input ports and data output ports, which represent the
input and output parameters of a task, respectively. Each of a workflow’s ports
has a unique name, and specifies the types of data transfer that it supports,
which are either pass-by-value, pass-by-reference, or streaming. Depending on
the application domain, a data port can specify the type of its data (for example
using XML Schema). Analogous to tasks, workflows have an arbitrary number
of data input and output ports as well.

Secondly, we introduce a first-class data flow construct, which is visualized
as a special kind of arrow that connects the data output port of one task to
the data input port of another. The basic case of the construct specifies data
transfer between two tasks. The data flow specifies the type of transfer that will
actually be used (pass-by-value, pass-by-reference, or streaming — which should
be compatible with the connected data ports), and depending on this type,
specifies where data should be stored intermediately. For example, the data flow
can specify that a data output port’s data should be passed by reference to a

596 N. Joncheere et al.

Fig. 2. Data transfer and transformation

certain data input port, while storing the actual data in a certain database. A
more advanced case of the data flow construct specifies data transformation:
instead of simply transferring data, the user can specify the way in which data
should be transformed during its transfer. Using these two cases of our first-class
data flow construct, one can express all data transfer patterns defined in [4].

The upper part of Figure 2 provides an example using a workflow named
WorkflowA. Data ports are visualized by extending the YAWL notation with
small rectangles at the sides of tasks and workflows. Data input ports are
marked with the letter I, while data output ports are marked with the letter
O. WorkflowA contains a data transformation named Transformation between
the data output port of TaskA and one of the data input ports of TaskC, and an
anonymous data transfer between the data output port of TaskB and the other
data input port of TaskC. The data flows are visualized by extending the YAWL
notation with thick arrows; the transformation is differentiated from the transfer
by the square in the middle of its arrow.

By default, the workflow’s tasks’ unconnected data ports are implicitly ex-
posed as the workflow’s data ports. This is shown in the example by the dashed
lines, which are not part of the notation. If a more advanced mapping between
the workflow’s tasks’ data ports and the workflow’s data ports is desired, it can
be specified in the workflow, but this is not visualized using the notation.

The data transformation construct greatly simplifies CAE workflows, as these
typically contain a large amount of data transformation logic. Depending on the
application domain, a specific engine for our language might support a number
of built-in transformation strategies, such as XSLT transformations for XML
data, but in general, the user can specify data transformation strategies by
using the workflow language itself: because data transformations are first-class,
data transformations can be composites, and can be connected to a workflow
using a connector. Figure 2 illustrates this scenario by showing a connector that
links Transformation to a workflow named WorkflowB, which is not shown.
WorkflowB can be any workflow that has exactly one data input port and one
data output port. When Transformation is executed, its incoming data will be
sent to WorkflowB’s data input port, and its outgoing data will be retrieved from
WorkflowB’s data output port.

A Framework for Advanced Modularization and Data Flow 597

4 Related Work

The Abstract Grid Workflow Language (AGWL) [14] is an interesting approach
which also identifies the need for an powerful, separate data perspective. How-
ever, the approach does not address the requirement of separation of concerns.

Data flow languages [15] have long been available as a paradigm for express-
ing computations according to its data perspective. However, existing workflow
research [13,14] has shown that having only a single workflow perspective is in-
sufficient. Nevertheless, the data perspective of our approach can be seen as a
coarse grained data flow language where tasks are the macro actors.

In the modeling community, UML activity diagrams [16] have been developed
as a means of expressing workflows. Data flow can be modeled separate from
control flow using pins, and there is a distinction between streaming and non-
streaming data transfer. However, the approach does not consider separation of
concerns or the specific needs of data-intensive applications.

5 Conclusions

In this paper, we propose a conceptual framework for advanced modulariza-
tion and data flow in workflow systems. We describe a workflow language which
introduces four language elements: control ports, data ports, data flow, and con-
nectors. A workflow’s data flow is specified separate from its control flow by
connecting tasks’ data ports using a first-class data flow construct. Connectors
allow expressing that a task in one workflow should be executed by another work-
flow, in a way that minimizes dependencies between these workflows and thus
facilitates their independent evolution and reuse. Additionally, connectors allow
connecting data flow constructs to workflows. The inversion-of-control connec-
tor allows augmenting a workflow with concerns that were not considered when
it was designed, and again facilitates independent evolution and reuse of these
workflows.

Many of the concepts we introduce are not present in current workflow ap-
proaches. In particular, our inversion-of-control mechanism is significantly more
powerful than existing aspect-oriented approaches for workflows [1,2,3]. Future
work will be directed at providing a proof-of-concept implementation for our
approach.

Acknowledgements

The research presented in this paper is funded by the Research Foundation –
Flanders through the DyBroWS project.

References

1. Charfi, A., Mezini, M.: Aspect-oriented web service composition with AO4BPEL.
In: Zhang, L.-J., Jeckle, M. (eds.) ECOWS 2004. LNCS, vol. 3250, pp. 168–182.
Springer, Heidelberg (2004)

598 N. Joncheere et al.

2. Courbis, C., Finkelstein, A.: Towards aspect weaving applications. In: Proceedings
of the 27th International Conference on Software Engineering (ICSE 2005), St.
Louis, MO, USA. ACM Press, New York (2005)

3. Braem, M., Verlaenen, K., Joncheere, N., Vanderperren, W., Van Der Straeten, R.,
Truyen, E., Joosen, W., Jonckers, V.: Isolating process-level concerns using Padus.
In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp.
113–128. Springer, Heidelberg (2006)

4. Russell, N., ter Hofstede, A.H.M., Edmond, D., van der Aalst, W.M.P.: Workflow
data patterns. QUT Technical Report FIT-TR-2004-01, Queensland University of
Technology, Brisbane, Australia (2004)

5. Parnas, D.L.: On the criteria to be used in decomposing systems into modules.
Communications of the ACM 15(12), 1053–1058 (1972)

6. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.M.,
Irwin, J.: Aspect-oriented programming. In: Aksit, M., Matsuoka, S. (eds.) ECOOP
1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

7. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu,
K., Roller, D., Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: Business
Process Execution Language for Web Services: Version 1.1 (2003),
http://www.ibm.com/developerworks/library/specification/ws-bpel/

8. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An
overview of AspectJ. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072, pp.
327–354. Springer, Heidelberg (2001)

9. Tarr, P., Ossher, H., Harrison, W., Stanley, M., Sutton, J.: N degrees of separation:
Multi-dimensional separation of concerns. In: Proceedings of the 21st International
Conference on Software Engineering (ICSE 1999), Los Angeles, CA, USA, pp. 107–
119. IEEE Computer Society, Los Alamitos (1999)

10. Suvée, D., De Fraine, B., Vanderperren, W.: A symmetric and unified approach to-
wards combining aspect-oriented and component-based software development. In:
Gorton, I., Heineman, G.T., Crnković, I., Schmidt, H.W., Stafford, J.A., Szyper-
ski, C., Wallnau, K. (eds.) CBSE 2006. LNCS, vol. 4063, pp. 114–122. Springer,
Heidelberg (2006)

11. van der Aalst, W.M.P., ter Hofstede, A.H.M.: YAWL: Yet Another Workflow Lan-
guage. Information Systems 30(4), 245–275 (2005)

12. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Disci-
pline. Prentice Hall, Upper Saddle River (1996)

13. Axenath, B., Kindler, E., Rubin, V.: AMFIBIA: A meta-model for the integration
of business process modelling aspects. International Journal of Business Process
Integration and Management 2(2), 120–131 (2007)

14. Fahringer, T., Pllana, S., Villazon, A.: AGWL: Abstract Grid Workflow Language.
In: Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2004.
LNCS, vol. 3038, pp. 42–49. Springer, Heidelberg (2004)

15. Johnston, W.M., Hanna, J.R.P., Millar, R.J.: Advances in dataflow programming
languages. ACM Computing Surveys 36(1), 1–34 (2004)

16. Object Management Group: UML superstructure, version 2.1.2 (2007),
http://www.omg.org/spec/UML/2.1.2/

http://www.ibm.com/developerworks/library/specification/ws-bpel/
http://www.omg.org/spec/UML/2.1.2/

Model Identification for Energy-Aware Management of
Web Service Systems

Mara Tanelli1,2, Danilo Ardagna1, Marco Lovera1, and Li Zhang3,�

1 Dipartimento di Elettronica e Informazione,
Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy

{tanelli,ardagna,lovera}@elet.polimi.it
2 Dipartimento di Ingegneria dell’Informazione e Metodi Matematici,

Università degli studi di Bergamo, Via Marconi 5, 24044, Dalmine (BG), Italy
3 IBM Research, T.J. Watson Research Center, Yorktown Heights, NY 10598

zhangli@us.ibm.com

Abstract. In SOA environments, service providers need to comply with the ser-
vice level objectives stipulated in contracts with their customers while minimiz-
ing the operating costs of the physical infrastructure, mainly related to energy
costs. The problem can be effectively formalized by using system identification
and control theory: the service levels are translated into set-points for the response
times of the hosted applications, and performance are traded-off with energy sav-
ing objectives based on suitable models for server dynamics. As the behavior
of the incoming workload changes significantly within a single business day,
control-oriented system identification approaches are very promising to model
such systems, especially at a very fine grained time scales and in transient condi-
tions. In this paper Linear Parameter Varying (LPV) state space system identifica-
tion algorithms are analyzed for modeling Web services systems. The suitability
of LPV models is investigated and their performance assessed by experimental
data.

1 Introduction

Energy management is rapidly becoming a priority in the design and operation of com-
plex service-based information systems, as the impact of energy consumption associ-
ated with IT infrastructures increases. The growth in the number of servers and the
increasing complexity of the network infrastructure have caused an enormous spike in
electricity usage. IT analysts predict that, by 2012, up to 40% of IT budget will be con-
sumed by energy costs, [12]. This trend is striving green computing activities in the
industry research agenda (see for example IBM’s project Big Green [8] and HP’s Green
up initiative [7]).

In the context of Web services and SOA based systems, service centers need to com-
ply also to the Service Level Agreements (SLAs) stipulated with their customers. At run

� The work of M. Tanelli and M. Lovera has been partially supported by MIUR project “New
methods for Identification and Adaptive Control for Industrial Systems.” The work of D.
Ardagna has been partially supported by the EU FP7 Q-ImPrESS project.

A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, pp. 599–606, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

600 M. Tanelli et al.

time, service requestors address their invocation to the most suitable provider according
to their Quality of Service (QoS) preferences. QoS requirements are difficult to satisfy
because of the high variability of Internet workloads. It is difficult to estimate work-
load requirements in advance, as they may vary by several orders of magnitude within
the same business day, [6]. To handle workload variations, many service centers em-
ploy autonomic techniques [4,18] such that resources are dynamically allocated among
running Web services based on short-term demand estimates. The goal is to meet the
application requirements while adapting the IT system. This leads to the study of how
to efficiently use resources and reduce energy consumption.

Early autonomic techniques switched servers on and off based on the service cen-
ter workload, [4]. More recent proposals, see e.g. [13,10], have started reducing the
frequency of operation of servers by exploiting the Dynamic Voltage Scaling (DVS)
mechanisms implemented in new servers. DVS varies both CPU supply voltage and
operating frequency. The adoption of DVS is very promising, as power consumption is
proportional to the cube of the operating frequency, while servers performance varies
linearly with the operating frequency. Furthermore, DVS does not introduce any system
overhead (vice versa, hibernating and restoring a server require time and energy).

Several research contributions have proposed autonomic self-managing techniques
and can be classified mainly in two categories: (i) utility-based optimization techniques,
and (ii) feedback control-theoretic approaches. Utility-based approaches have been in-
troduced to optimize the degree of user satisfaction by expressing their goals in terms of
user-level performance metrics. Typically, the system is described by means of a perfor-
mance model based on queueing theory, embedded within an optimization framework.
Utility based approaches can handle multiple decision variables (e.g., admission con-
trol, application placement, load balancing, etc.) but are based on the assumption that
the system is at steady state. Hence, these techniques are effective on a medium term
control time horizon, e.g., half an hour, [4], [13]. Vice versa, genuine control-theoretic
approaches can accurately model system transients and can adjust the system configu-
ration within a very short time frame. Thus, control-theoretic approaches are effective
over fine grained time horizons, e.g., minutes and, furthermore, can effectively employ
DVS as control variable and formally guarantee both closed-loop stability and perfor-
mance specifications.

In this paper, the adoption of Linear Parametrically Varying (LPV) models for the
performance control of Web services will be addressed. A LPV model is linear in the
parameters and a vector of scheduling variables enters the system matrices in an affine or
linear fractional way ([11,19,16]). Such a representation for general nonlinear
systems can be useful in view of control design using modern robust control and gain-
scheduling control techniques [3]. Models are identified from experimental data mea-
sured on a micro-benchmarking Web service application, adopting DVS of CPUs as
control variable.

The structure of the paper is as follows. Section 2 provides a review of the literature,
while Section 3 formally states the problem addressed in this paper and introduces the
needed notation. Section 4 briefly describes discrete time state space dynamical models
and illustrates the LPV models adopted in this work. Experimental results are presented
in Section 5. Conclusions are finally drawn in Section 6.

Model Identification for Energy-Aware Management of Web Service Systems 601

2 Related Work

Autonomic management of service center infrastructure is receiving great interest by
the control theory research community. The first control-oriented contributions applied
to the management of Web services are reported in [1,15], and use feedback control to
limit the utilization of bottleneck resources by means of admission control and resource
allocation. In the practice of control engineering, when a single control system must be
designed to guarantee closed-loop operation of a given plant in many different operating
conditions, two broad classes of methods are available: gain scheduling and adaptive
control.

The gain scheduling approach to the problem can be summarised as follows: find one
or more scheduling variables which can completely parameterise the operating space
of interest for the system to be controlled; define a parametric family of linearised mod-
els for the plant associated with the set of operating points of interest; finally, design
a parametric controller which can both ensure the desired control objectives in each
operating point and an acceptable behaviour during (slow) transients between one oper-
ating condition and the other. A wide body of design techniques is now available for this
problem (see, e.g., [3]), which can be reliably solved provided that a suitable model in
parameter-dependent form has been derived. This modelling problem, however, raises
a number of significant issues. While the literature on non-linear identification can now
provide advanced tools for the estimation of a wide variety of model classes, in such a
case it would be useful to separate conventional input variables from scheduling vari-
ables (i.e., variables defining the operating point of the plant), by letting them enter the
model in distinct ways. LPV models have been recently proposed as a way of dealing
with this kind of problems and have been adopted recently in [13] to implement an
autonomic controller able to provide performance guarantees by means of DVS.

With respect to that approach, where input/output (I/O) LPV identification was con-
sidered, the method adopted here is more appropriate to provide system models tailored
to LPV control design, as they are directly identified in state space form and avoid all
the issues - not addressed in [13] - related with equivalence notions between I/O and
state space LPV realizations, [17]. Furthermore, state space LPV identification allows
a straightforward extension to the multiple input, multiple output case, which is needed
if more than one class of customers needs to be taken into account.

Control theoretic approaches are suitable to model Web systems both in stationary
and transient conditions. In the queueing theory literature, some recent proposals ad-
dress the problem of modelling queue network transient behaviour by means of Markov
models in order to study burstiness and long range dependency in system workloads
[5,14]. The main limitation of Markovian models is their complexity, which makes,
even for very simple systems, e.g., a first come first served (FCFS) single server queue,
the number of parameters to be determined quite large. These models suffer for high
computation overhead and, hence, are presently not suitable for the implementation of
real-time controllers.

3 Problem Statement

In this paper, a CPU bounded Web service application will be considered where, without
loss of generality, the resource scheduler implements a FCFS policy (LPV models can

602 M. Tanelli et al.

consider also other scheduling policies, e.g., processor sharing or generalized processor
sharing). In the remainder of the paper the following notation will be adopted:

– ∆t: sampling interval;
– k: discrete time index over the interval [k∆t, (k + 1)∆t];
– λk: requests arrival rate at the server in the k-th interval;
– sk: requests service time, i.e., overall CPU time needed to process a request in the

k-th interval;
– Rk: average server response time in the k-th interval, i.e., the overall time a request

stays in the system.

We assume that sk is inversely proportional to the physical server CPU frequency. As
such, when physical servers are endowed with DVS capabilities, the effect of - say -
lowering the CPU frequency when a light workload is present in the system causes
an increase of the effective CPU time needed to serve a request [10]. This assump-
tion is supported by current technology trends, since in modern systems (e.g., AMD
Operon 2347HE Barcelona core) CPUs and RAM clock can be scaled independently
(otherwise, RAM access could become a bottleneck and CPUs could stall for memory
accesses). If we denote with fk the ratio of the frequency applied during the time in-
terval k to the physical server maximum frequency, the effective service time can be
defined as sf,k = sk/fk.

The goal of this paper is to derive a dynamic model of an application server ca-
pable of capturing system behaviour at a very fine-grained time resolution (seconds),
with an accuracy suitable for control purposes. This identification process provides a
control-oriented dynamical description of the server behavior and it is the first step to
be achieved in order to design a closed-loop controller for service center infrastruc-
tures able to meet SLAs requirements while minimizing energy costs. The design of the
closed-loop controller is the focus of our ongoing work. The adoption of control ori-
ented techniques is motivated since the workload of SOA systems is characterized by
highly varying conditions [18]. The LPV framework is adopted since it seems very
promising for modeling such systems. Furthermore once the modelling and control
problem in the LPV framework is solved, the closed-loop system will not require to
be complemented with workload predictors, whose design is hard to carry out, as the
best models have been shown to require nonlinear and non-stationary workload descrip-
tion [2]. In fact, the workload variability is embedded in the LPV system representation,
which tunes on-line both the model and the control action taking into explicit account
the current workload condition.

4 Identification of Discrete-Time State Space Models

The problem of model identification can be formulated as the one of deriving a math-
ematical representation for the behaviour of a physical system on the basis of input-
output data collected in dedicated experiments. As far as linear models are concerned,
the main “ingredients” of an identification problem are essentially: 1) a definition of
the class of models to be considered and 2) a suitable algorithm for the estimation of
the model parameters on the basis of the available data. Classical model identification
problems for Single-Input Single-Output time-invariant systems are formulated using
models in input-output form (i.e., difference equations relating the measured input and

Model Identification for Energy-Aware Management of Web Service Systems 603

output variables in a direct way), the parameters of which are estimated using least
squares techniques. Whenever Multiple-Input Multiple-Output and/or time-varying sys-
tems must be dealt with, state-space representations turn out to be a more flexible and
reliable model class. In this work discrete-time linear state-space models will be con-
sidered, in the innovation form:

xk+1 = Akxk + Bkuk + Kkek

yk = Ckxk + Dkuk + ek,
(1)

where x ∈ Rn is the state vector, u ∈ Rm is the vector of control inputs and y ∈ Rl

is the vector of measured outputs and e is a white process noise. More precisely, with
reference to the specific modelling problem considered in this study, uk = sf,k and
yk = Rk, i.e., the goal of the model identification problem considered in this paper is
to derive a state-space model describing the dynamic relationship between the effective
service time and the server response time. In (1) generically time-varying state space
matrices {Ak, Bk, Ck, Dk} have been considered. In what follows we will introduce
different, additional assumptions on the time-variability of the model dynamics, suit-
ably tailored for the model identification problems associated with the management of
Web services.

More precisely, the generic time-variability will be restricted to the LPV class. LPV
systems are linear time-varying plants whose state space matrices are fixed functions of
some vector of varying parameters. LPV model identification algorithms are available
in the literature both for input-output and state-space representations of parametrically-
varying dynamics. In this work state-space LPV models will be adopted:

xk+1 = A(δk)xk + B(δk)uk

yk = C(δk)xk + D(δk)uk,
(2)

where δ ∈ Rs is the parameter vector. For the sake of simplicity, in the following we
will deliberately focus on purely deterministic models, i.e., we will ignore the presence
of the noise terms in the model representation. It is important to point out, however,
that the theory underlying the parameter estimation algorithms used in this work can
effectively deal with the presence of process and measurement noise [19]. It is often
necessary to introduce additional assumptions regarding the way in which δk enters the
system matrices. The most common are the following:

1. Affine parameter dependence (LPV-A), where A(δk) = A0 + A1δ1,k + . . . +
Asδs,k and similarly for B, C and D. δi,k, i = 1, . . . , s denotes the i-th component
of vector δk. This form can be immediately generalised to polynomial parameter
dependence.

2. Input-affine parameter dependence (LPV-IA): this is a particular case of the LPV-
A parameter dependence in which only the B and D matrices are considered as
parametrically-varying, while A and C are assumed to be constant: A = A0, C =
C0.

Identifying LPV models in general state space form is a difficult task. It is usually con-
venient to consider first the simplest form, i.e., the LPV-IA one, as its parameters can
be retrieved by using subspace model identification (SMI) algorithms for linear time
invariant systems (which are significantly easier to use and available in commercial

604 M. Tanelli et al.

software packages) by suitably extending the input vector. In this work the MOESP
class of SMI algorithms [20] has been considered. The classical way to perform lin-
ear system identification is by minimizing the error between the real output and the
predicted output of the model. A similar approach can be used for LPV state-space
systems of the form (2). Letting the system matrices of (2) be completely described
by a set of parameters θ, identification can be carried out by minimizing the cost
function VN (θ) :=

∑N
k=1 ||yk − ŷk(θ)||22 = ET

N (θ)EN (θ) with respect to θ, where

ET
N(θ) =

��
y1 − ŷ1(θ)

�T

· · ·
�
yN − ŷN (θ)

�T �
, while yk denotes the measured output

and ŷk(θ) denotes the output of the LPV model to be identified. In general, the mini-
mization of VN (θ) is a nonlinear, nonconvex optimization problem. Many algorithms
have been proposed, in this work the gradient search method based on the Levenberg-
Marquardt algorithm has been adopted [11].

5 Experimental Results

In the experimental framework, a workload generator and a micro-benchmarking Web
service application have been used. The workload generator is based on a custom exten-
sion of the Apache JMeter 2.3.1 workload injector, which allows to generate workload
according to an open model [9] with a Poisson arrival process. The Web service is a Java
servlet designed to consume a fixed amount of CPU time generated according to deter-
ministic (for identification purposes), Poisson, Pareto and log-normal distributions (for
validation). The adoption of a micro benchmarking application allows the validation
of the effectiveness of our approach both for workload intensive and for computation-
ally intensive applications. Furthermore, the CPU time standard deviation of the micro
benchmarking application has been varied in order to verify if LPV models perfor-
mance depends on the variability of the CPU time distribution: the standard deviation
σ[s] has been chosen as q times the average of the service time distribution E[s], i.e.,
σ[s] = q E[s], where q was set equal to 2, 4 and 6. For model validation, the incoming
workload reproduces a 24 hour trace obtained from a large Internet Web site. The log
was collected on a hourly basis. The workload injector is configured to follow a Pois-
son process with request rate changing every minute where the requests rate is obtained
from the log trace superimposed with a Gaussian noise proportional to the workload
intensity, as in [10].

To quantitatively evaluate the models, two metrics have been considered: the percent-

age Variance Accounted For (VAF), defined as V AF =
(
1− V ar[yk−�yk(θ)]

V ar[y(k)]

)
, where yk

is the measured signal (i.e., application response time), and ŷk(θ) is the output obtained
from the simulation of the identified model, and the percentage average simulation error

eavg, computed as eavg =
(

E[|yk−�yk(θ)|]
E[|yk|]

)
.

The identification data were processed to extract the average values over a sampling
interval ∆t = 10s and two LPV second order models, one with p1 = λ s and the other
with p2 = [λ s (λ s)2] have been identified (see Figure 1(b) for a plot of a detail of the
results). The plot shows that the models are capable of providing a response time which
correctly follows the peaks of the measured one. Results reported in Table 1 also show
that the performance of LPV models are almost independent on the value of q, i.e., the
models are robust to the variability of the service time distribution.

Model Identification for Energy-Aware Management of Web Service Systems 605

(a) (b)

Fig. 1. (a) Time history of the request rate applied during a validation test; (b) Detail of the
measured (solid line) and the response time obtained with ∆t = 10 s an LPV model with p1 =
λ s (dashed line) and p2 = [λ s (λ s)2] (dash-dotted line) on identification data in with q = 4

Table 1. Performance of the identified models with ∆t = 10s on validation data

Valid. Performance - LPV q=2 q=4 q=6
∆t = 10 s (p1) (p2) (p1) (p2) (p1) (p2)

VAF 58.31% 74.14% 54.01% 71.50% 58.85% 74.52%
eavg 25.70% 18.36% 20.30% 7.40% 31.87% 31.67%

6 Concluding Remarks and Future Work

This paper presents the results obtained in the application of LPV model identification
techniques for the performance control of Web services. Specifically, the suitability
of subspace LPV methods has been checked against experimental data measured on a
custom implementation of a workload generator and a micro-benchmarking Web ser-
vice application. Future work will develop along two directions: on the modelling side,
we aim to further validate our approach on real applications and to extend the models
considering a multi-class framework in virtualized environments, whereas on the con-
trol design side, work will be devoted to devise both admission control policies and
response time regulation in the LPV framework.

References

1. Abdelzaher, T., Shin, K.G., Bhatti, N.: Performance Guarantees for Web Server End-
Systems: A Control-Theoretical Approach. IEEE Trans. on Parallel and Distributed Sys-
tems 15(2) (March 2002)

2. Andreolini, M., Casolari, S.: Load prediction models in web-based systems. In: Proc. of the
1st international conference on Perf. evaluation methodologies and tools, Pisa, Italy (2006)

3. Apkarian, P., Adams, R.J.: Advanced Gain-Scheduling Techniques for Uncertain Systems.
IEEE Trans. on Control System Technology 6, 21–32 (1998)

4. Ardagna, D., Trubian, M., Zhang, L.: SLA based resource allocation policies in autonomic
environments. Journal of Parallel and Distributed Computing 67(3), 259–270 (2007)

606 M. Tanelli et al.

5. Casale, G., Mi, N., Smirni, E.: Bound Analysis of Closed Queueing Networks with Workload
Burstiness. In: Proc. of SIGMETRICS (2008)

6. Chase, J.S., Anderson, D.C.: Managing Energy and Server Resources in Hosting Centers. In:
ACM Symposium on Operating Systems principles (2001)

7. HP. Green up initiative,
http://www.hp.com/hpinfo/newsroom/feature-stories/
2007/07-360-greenup.html

8. IBM. Project Big Green,
http://www-03.ibm.com/press/us/en/photo/21514.wss

9. Kleinrock, L.: Queueing Systems. John Wiley and Sons, Chichester (1975)
10. Kusic, D., Kandasamy, N.: Risk-Aware Limited Lookahead Control for Dynamic Resource

Provisioning in Enterprise Computing Systems. In: ICSOC 2006 Proc. (2006)
11. Lee, L.H., Poolla, K.: Identification of linear parameter-varying systems using nonlinear pro-

gramming. ASME J. of Dynamic Systems, Measurement and Control 121(1), 71–78 (1999)
12. Metha, V.: A Holistic Solution to the IT Energy Crisis (2007),

http://greenercomputing.com/
13. Qin, W., Wang, Q.: Modeling and control design for performance management of web servers

via an LPV approach. IEEE Trans. on Control Systems Tech. 15(2), 259–275 (2007)
14. Riska, A., Squillante, M., Yu, S.Z., Liu, Z., Zhang, L.: Matrix-Analytic Analysis of a

MAP/PH/1 Queue Fitted to Web Server Data. In: Latouche, G., Taylor, P. (eds.) Matrix-
Analytic Methods: Theory and Applications, pp. 335–356. World Scientific, Singapore
(2002)

15. Robertsson, A., Wittenmark, B., Kihl, M., Andersson, M.: Admission control for web server
systems - design and experimental evaluation. In: 43rd IEEE Conference on Decision and
Control (2004)

16. Tanelli, M., Ardagna, D., Lovera, M.: LPV model identification for power management of
web service systems. In: 2008 IEEE Multi-conference on Systems and Control, San Antonio,
USA (2008)

17. Toth, R., Felici, F., Heuberger, P.S.C., Van den Hof, P.M.J.: Discrete time LPV I/O and state
space representations, differences of behavior and pitfalls of interpolation. In: Proc. of the
2007 European Control Conference, Kos, Greece (2007)

18. Urgaonkar, B., Pacifici, G., Shenoy, P.J., Spreitzer, M., Tantawi, A.N.: Analytic modeling of
multitier Internet applications. ACM Transaction on Web 1(1) (January 2007)

19. Verdult, V.: Nonlinear System Identification: A State-Space Approach. PhD thesis, Univer-
sity of Twente, Faculty of Applied Physics, Enschede, The Netherlands (2002)

20. Verhaegen, M.: Identification of the deterministic part of MIMO state space models given in
innovations form from input output data. Automatica 30, 61–74 (1994)

http://www.hp.com/hpinfo/newsroom/feature-stories/2007/07-360-greenup.html
http://www.hp.com/hpinfo/newsroom/feature-stories/2007/07-360-greenup.html
http://www-03.ibm.com/press/us/en/photo/21514.wss
http://greenercomputing.com/

LASS – License Aware Service Selection:
Methodology and Framework

G.R. Gangadharan1, Marco Comerio2, Hong-Linh Truong3,
Vincenzo D’Andrea4, Flavio De Paoli2, and Schahram Dustdar3

1 Telematica Institute, Enschede, The Netherlands
gr@telin.nl

2 University of Milano - Bicocca, Milano, Italy
{comerio,depaoli}@disco.unimib.it

3 Vienna University of Technology, Vienna, Austria
{truong,dustdar}@infosys.tuwien.ac.at

4 University of Trento, Trento, Italy
dandrea@disi.unitn.it

Abstract. A service provider defines individual services with corre-
sponding service licenses which consumers should follow. Often, service
consumers are interested in selecting a service based on certain licensing
clauses. For a set of requested licensing clauses by a consumer, there can
be several licenses that differ in the set of offered license specifications.
Thus, a license aware service selection process includes the discovery of
a set of services that meets certain functional parameters and, in addi-
tion, the process evaluates these services in order to identify the ones
that fulfill a set of license specifications as requested by a consumer. In
this paper, we present a methodology and framework for service selec-
tion process, based on matching the offered licensing specifications by
providers with the requested licensing specifications by consumers1.

1 Introduction

Selecting different services to fulfill a consumer’s need is a fundamental issue
that has attracted much research efforts. Most existing works concentrate on
developing selection techniques based on functional properties (FPs) and non-
functional properties (NFPs). However, the selection of a service usage is also
dependent on other clauses, such as scope of rights and warranties, that are
important in deciding whether a service should be used. One of the relevant
issues from this perspective is the role of service licensing in service selection.
A service license includes all transactions between the licensor and the licensee,
in which the licensor agrees to grant the licensee the right to use and access
the service under predefined terms and conditions. Various aspects of service
licensing are described in [1].

1 This work is partially supported by the IST COMPAS project, funded by the Euro-
pean Commission, FP7-ICT-2007-1 contract number 215175.

A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, pp. 607–613, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

608 G.R. Gangadharan et al.

We propose to extend the traditional FPs and NFPs based service selection
process with an additional selection based on licenses. In our previous work on
license-aware selection [2], we discussed steps in license-aware service selection
and introduced the ranking of services by applying degree and distance indicators
to scope of rights and financial terms in service licenses. This paper proposes an
extension of the work discussed in [2] by introducing an approach for enhancing
service selection with a novel process based on matching the offered licensing
specifications with the requested licensing specifications that takes into account
not only Scope of Rights and Financial Terms but also Warranty, Indemnity,
Limitation of Liability and Evolution clauses. We also introduce in detail the
steps in license-aware service selection, including selection algorithm, and present
a framework realizing the service selection process.

2 License Aware Service Selection (LASS) Methodology

The LASS methodology includes the phases of Matching Evaluation and Filter-
ing. The Matching Evaluation phase computes two different indicators (Degree
and Distance) between the clauses of offered license specifications and the clauses
of requested license specifications. The Degree shows if an offer matches a re-
quest and is expressed by a value in the range [0..1], where 0 means ‘no match’
and 1 means ‘exact match’. The Distance indicator is used to capture additional
information about the matching. In the case of ‘exact match’, it points out how
much the offer dominates the request (Distance ≥ 0) and in the case of ‘no
match’, how much the offer is far from satisfying the request (Distance ≤ 0).

Evaluating the values for license specifications involves the following kinds of
data: (i) Scope of Rights clauses expressed as distinct values (e.g., adaptation,
composition, and derivation); (ii) Financial Terms and Warranty clauses ex-
pressed in a range of values; (iii) Indemnity and Limitation of Liability clauses
expressed as a set of qualitative values; (iv) Evolution clauses expressed as an
integer values.

The evaluation of Degree and Distance indicators for Scope of Rights and
Financial Terms is explained in [2].

Warranty clauses can be expressed by consumers using the constraint oper-
ators ≥ or ≤ (for example, amount ≤ 2 Euros) or an interval of values (for
example, 97% ≤ availability rate ≤ 99%). The service provider usually publishes
a service license with the specifications of the offered Warranties expressed as an
interval of values. The Degree and Distance indicators are evaluated according
to the constraint operators of the requested license specifications. Examples of
these formulas are discussed in [3].

A service license also specifies Indemnity and Limitation of liability clauses.
Indemnity clauses specify the provision of defense by the licensor to the licensee.
An example is the Third Party Infringements Claims clause that represents
the statement provided by the licensor to the licensee to protect against the
claims of a third party if any infringements over the intellectual property rights
arise. Limitation of liability clauses limit the liability of the licensor and the

LASS – License Aware Service Selection: Methodology and Framework 609

licensee under the license agreement. An example is the Non-Network Errors
clause specifying that the licensor will not be liable if any problem with the
network occur during the service provisioning. For Indemnity and Limitation of
liability clauses the Degree is set to 1 if the requested clause matches exactly
with the offered one and it is set to 0 elsewhere. These clauses differ from the
ones on Scope of Rights because subsumption cannot be used. For this reason,
the Distance is always set to 0.

The last kind of data that our methodology is able to manage is Evolution
clauses that specify the modifications on the license by future releases or versions
of the service. Examples are the Maximum Upgrades and the Maximum Versions
clauses that indicate the allowed number of upgrades and versions of the service
before the license becomes invalid. As these clauses are expressed as a fixed
integer number, the Degree is equal to 1 if the requested value is ≤ than the
offered value and it is set to 0 elsewhere. The Distance indicator is evaluated
subtracting the requested value from the offered value.

The second phase of the LASS methodology, consists of three activities. The
first activity is in charge of discarding unsuitable services and starts consider-
ing the Degree evaluated for each license clause. A service whose license has
a clause with Degree equal to 0 is discarded and no longer considered in the
selection process. Thus, the number of candidate services in the set of func-
tionally matched services can reduced. If all services are discarded (no services
are able to satisfy the requested license specifications), a service with a license
closer to a consumer’s requested specifications will be recommended. The service
recommended to a consumer is selected based on the Distance indicator. The
consumer can accept or deny the recommended service (as not exactly satisfying
the requested license specifications). The second activity of the Filtering phase
is in charge of evaluating net indicators for each license, which is a distinguish-
ing characteristic of our approach. The Net Degree provides information about
how much an offered license matches a requested license. The Net Distance pro-
vides additional information about how the required clauses are matched. Details
about how to calculate Net Degree and Net Distance are described in [2].

Finally, in the Filtering phase the list of services is sorted according to their
Net Degree values. If two or more services have equal Net Degree value, their
Net Distance values are considered for ranking.

Service license selection algorithm is listed in Algorithm 1. The inputs pro-
vided by a consumer are a set of requested functionalities F and the requested
license clauses lc.

Let F = {f1, f2, · · · , fn} denotes a set of functional parameters. Functional pa-
rameters, specified by consumers, represent the requested operations performed
by services. For each fi, we assume that there exists a category of services, ti,
that offers the functionality specified by fi.

Let T = {t1, t2, · · · , tn} denotes categories of services associated to F , where
ti provides the functionality required by fi. Given a ti ∈ T , there exists many
services belonging to this service type, each offering the functionality fi but with

610 G.R. Gangadharan et al.

possibly different implementations and associated licenses. We denote this set of
services with S(ti) = {S1, S2, · · · , Sm}.

Let Λ(S(ti)) = {L(S1), L(S2), · · · , L(Sn)} be the set of licenses in which L(Si)
indicates the license associated with the service Si. Let lc be the requested license
specifications that need to be considered along the selection process. Let Υ (ti)
be a set of filtered services having the requested license clauses that match with
the offered license specifications. Our objective is to select a service license in
Λ(S(ti)) that best matches lc.

Algorithm 1. Service License Selection
1: for all ti ∈ T do
2: for all Sj ∈ S(ti) do
3: Degree(L(Sj)) ← DgEval(lc, L(Sj))
4: Distance(L(Sj)) ← DsEval(lc, L(Sj))
5: end for
6: Υ (ti) ← Filter(S(ti))
7: Recommend a service closer to lc if Υ (ti) = φ
8: Ψ(S(ti)) ← PsiEval(Υ (ti))
9: ∆(S(ti)) ← DeltaEval(Υ (ti))

10: Ξ(ti) ← Rank(Ψ(S(ti)),∆(S(ti)))
11: end for

The algorithm starts (lines 3-4) with the evaluation of the clauses. Degree and
Distance indicators for a requested clause specified in lc and an offered clause
specified in L(Sj) are evaluated as described previously. Line 6 discards services
having offered license specifications that do not match any requested clauses.
The services that are not discarded are saved in Υ (ti). The algorithm proceeds
checking if the set of filtered services is empty (line 7). The emptiness of this
set indicates that S(ti) does not contain services that are able to satisfy the
requested license specifications mentioned in lc. In this case, a service closer to
the request is recommended. The consumer can decide to terminate the process
or to accept the proposed service (changing his/her license specifications). The
algorithm proceeds (lines 8-9) evaluating Net Degree (Ψ) and Net Distance (∆)
in order to link each services in Υ (ti). The services in Υ (ti) are ordered based
on Ψ and ∆. A set of ranked services are placed in Ξ(ti) (line 10).

3 License Aware Service Selection (LASS) Framework

LASS framework supports the selection of services based on licensing speci-
fication in addition to performing service selection with functional and non-
functional properties. Based on the FPs, NFPs, and licensing specifications by a
service consumer, the LASS framework selects a service that best matches with
the requested specifications. The LASS framework tries to find if any service

LASS – License Aware Service Selection: Methodology and Framework 611

advertisements given by providers match the request of consumers in service
functionality at first, then followed to match the specified NFPs. There may
be always the possibility of more than one services, offering similar function-
ality that differ in their licenses. Figure 1 depicts the LASS framework which
comprises of the following components.

– User Interface: supports consumers to specify FPs, NFPs, and license clauses
based on which services would be selected.

– Service Selection Request Handler: receives FPs, NFPs, and license specifi-
cations from consumers.

– FP/NFP Selector: discovers a set of services satisfying the required func-
tional and non-functional parameters. The techniques for selecting web ser-
vices based on FPs and NFPs are not the focus of this paper and they
are built on well-established works and considered as plug-ins of the LASS
framework.

– License Selector: discovers a set of services based on matching the offered li-
censing specifications of functionally matching services against the requested
licensing specifications. This component includes the algorithm introduced
in this paper.

– Service Information: an XML-based repository where information associated
with services are stored. In our framework, we utilize SEMF [4] which is
able to manage different types of web service related information, including
license and QoS.

For a given functionality (expressed by a set of functional parameters), NFPs,
and a set of requested license specifications, the framework performs license-
aware selection of services in the following two steps.

1. A set of services are retrieved that match with functional parameters and
NFPs.

2. These set of services having offered license specifications are filtered in order
to retrieve a set of services that satisfy the requested license specifications.

4 Related Work and Discussions

The increasing availability of services that offer similar functionalities requires
to enhance the traditional functionality-based service selection process [5,6] with
an additional selection phase that identifies the services that better fulfill a set
of NFPs requested by the actual user.

The selection of services based on non-functional specifications has been stud-
ied intensively by the research community. Several approaches are based on
semantically rich descriptions of non-functional parameters. The approach pro-
posed in [7] represents a solution for matching NFPs of web services represented
using WS-Policy. In [8], declarative logic-based matching rules and optimiza-
tion methods are applied for optimal service selection. A dynamic web service

612 G.R. Gangadharan et al.

User Interface

Service Selection Request Handler

FP/NFP Selector

License Selector

S
e
rv

ic
e

In
fo

rm
a
ti
o
n

FP/NFP and Req.

License Specfn.

FP and NFP

Requested License

Specifications

S
e
rv

ic
e
s

m
a
tc

h
in

g

re
q
.
lic

e
n
s
e

s
p
e
c
if
ic

a
ti
o
n
s

FP/NFP

FP/NFP filtered

services

FP/NFP filt.

services &

Req. Lic. Specfns.

Services filtered by

Licenses

Fig. 1. License aware service selection (LASS) framework

selection based on semantic interpretation of offered service capabilities and the
parameters specifying the actual request is proposed in [9].

There are also several proposals to address service selection without the use
of semantics. A modified logic scoring preference method of evaluating non-
functional aspects is proposed in [10]. A framework supporting brokers in select-
ing web services based on the required QoS for autonomic grid environments is
proposed in [11].

In our earlier work [3], we have presented a semantic approach for selection
of services by evaluating both qualitative and quantitative NFPs. In this paper,
we have extended our approach described in [3] that can be used for selection
of services whose descriptions are not semantic (as in the case of ODRL-S de-
scriptions). Moreover, we evaluate the degree of match when service offers are
expressed as interval of values, thereby overcoming a limitation of [3]. This makes
the process of service selection more realistic allowing the description of NFPs
that can assume any value in the given interval.

To the best of our knowledge, there exists no work on selection of services
based on their license specifications. Google2 and Yahoo!3 search engines provide
advanced options to retrieve contents based on requested licenses. However, these
options restrict consumers with limited specifications of licenses.

2 http://www.google.com/advanced search?hl=en
3 http://search.yahoo.com/web/advanced?ei=UTF-8

http://www.google.com/advanced_search?hl=en
http://search.yahoo.com/web/advanced?ei=UTF-8

LASS – License Aware Service Selection: Methodology and Framework 613

5 Concluding Remarks

Being a way to manage the intellectual rights between service consumers and
service providers, licenses are critical to be considered in services. In this paper,
we have illustrated a novel methodology for selection of services by matchmaking
of license clauses requested by a consumer and offered by several providers.
Our LASS methodology describes the selection of services based on all possible
clauses of licenses. Following the LASS methodology, we have presented the
LASS framework that integrates the process of license aware service selection
with functional and non-functional properties. We are currently extending the
framework to allow for specifying multiple functionalities, each functionality with
differing license specifications and then finding a composite service associated
with a composite service license that meets the requested license specifications.

References

1. Gangadharan, G.R., Weiss, M., D’Andrea, V., Iannella, R.: Service License Com-
position and Compatibility Analysis. In: Krämer, B.J., Lin, K.-J., Narasimhan, P.
(eds.) ICSOC 2007. LNCS, vol. 4749, pp. 257–269. Springer, Heidelberg (2007)

2. Gangadharan, G.R., Comerio, M., Truong, H.L., D’Andrea, V., De Paoli, F., Dust-
dar, S.: License-aware Service Selection. In: Proc. of the IEEE Conf. on Enterprise
Computing, E-Commerce and E-Services, EEE 2008 (2008)

3. Comerio, M., De Paoli, F., Maurino, A., Palmonari, M.: NFP-aware Semantic Web
Services Selection. In: Proceedings of the 11th IEEE International Enterprise Dis-
tributed Object Computing Conference, EDOC (2007)

4. Treiber, M., Truong, H.L., Dustdar, S.: SEMF - Service Evolution Management
Framework. In: Proc. of the 34th Euromicro Conf. on Software Engineering and
Advanced Applications (2008)

5. Brogi, A., Corfini, S.: Behaviour-aware Discovery of Web service Compositions.
International Journal of Web Services Research 4(3) (2007)

6. Aversano, L., Canfora, G., Ciampi, A.: An Algorithm for Web service Discovery
through their Composition. In: Proceedings of the IEEE International Conference
on Web Services, ICWS (2004)

7. Verma, K., Akkiraj, R., Goodwin, R.: Semantic Matching of Web Service Policies.
In: Proc. of the Second Intl. Workshop on Semantic and Dynamic Web Processes
(2005)

8. Lamparter, S., Ankolekar, A., Studer, R., Grimm, S.: Preference-based Selection
of Highly Configurable Web Services. In: Proc. of the 16th Intl. Conf. on World
Wide Web (2007)

9. Friesen, A., Namiri, K.: Towards Semantic Selection for B2B Integration. In: Pro-
ceedings of the 12th International Conference on Web Engineering (2006)

10. Reiff-Marganiec, S., Yu, H.Q., Tilly, M.: Service Selection based on Non-Functional
Properties. In: Proceedings of the NFPSLA-SOC Workshop (ICSOC 2007) (2007)

11. Anselmi, J., Ardagna, D., Cremonesi, P.: A QoS-Based Selection Approach of Au-
tonomic Grid Services. In: Proceedings of the 2007 workshop on SOCP (2007)

Integrated and Composable Supervision
of BPEL Processes

Luciano Baresi, Sam Guinea, and Liliana Pasquale

Politecnico di Milano - Dipartimento di Elettronica e Informazione
via Golgi, 40 – 20133 Milano, Italy

{baresi,guinea,pasquale}@elet.polimi.it

Abstract. In the past few years many supervision techniques were de-
veloped to provide reliable business processes and guarantee the estab-
lished SLAs. Since none of them provided a definitive solution, the paper
proposes a new composable approach, where a single framework provides
the glue for different probing, analysis, and recovery capabilities. The pa-
per introduces the framework and exemplifies its main features.

1 Introduction

Since the uptake of service technology as a means to develop complex distributed
systems, monitoring and recovery tools have played a very significant role. In
this paper we refer to the combination of the two as supervision, and concentrate
on systems designed using BPEL (Busines Process Execution Language [4]).

In the past years many supervision techniques were developed, with different
requirements they deem important. As for monitoring, the authors themselves
have proposed two very different solutions. The first is Dynamo [3], a synchronous
and assertion-based approach to monitoring. Even if it is very intrusive, since
the process is blocked every time it performs a service invocation, it is able to
discover anomalous behaviors as soon as they occur. The second is ALBERT [1],
an asynchronous approach based on temporal logic. It is less intrusive, since all
the assertions are checked in a separate thread but it can capture anomalies
only when the process has already proceeded beyond the point in which they
were generated. Other works, like VieDAME [7], check non functional properties
(e.g., response time, accuracy) by analyzing the messages the process exchanges
with partner services. If we move to recovery, the authors have tackled it with
WSReL [2], which offers a set of pre-defined atomic recovery actions (e.g., service
substitution, email notification, rollback), that can be mixed to create complex
recovery strategies. Other approaches focused on service substitution, applying
dynamic binding techniques, as proposed by Colombo et al. [5], or using an
AOP-based extension of ActiveBPEL, as proposed by Moser et al. [7].

Although each of these approaches is particularly effective in its own sub-
domain, none of them provides a holistic solution that easily accommodates all
different clients, in terms of qualities of interest and required analysis. Instead
of searching for one definitive solution, we provide an integrated framework in

A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, pp. 614–619, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Integrated and Composable Supervision of BPEL Processes 615

which diverse solutions can be combined to exploit their main advantages and
meet different users’ needs.

Our vision of a unified framework builds upon the decoupling of data col-
lection, monitoring, and recovery. Data collection is independent of the types
of supervision approaches combined. Monitoring uses these data to check func-
tional and non-functional properties, while recovery uses them, together with
the monitoring results, to attempt to fix the process, produce a log, or perform
post-mortem activities to prevent them from happening again.

The paper is organized as follows. Section 2 presents our integrated framework
and shows. Section 3 describes some example rules for the interplay of data
collection, monitoring, and recovery. Section 4 concludes the paper.

2 Integrated Supervision Framework

When conceiving our framework, we wanted to satisfy different requirements. It
had to support different quality dimensions and different analyses. Synchronous
analysis can be used to evaluate punctual process properties (e.g., the response
time of partner services). Asynchronous analysis can be exploited to measure
temporal process properties (e.g., the number of times a synchronous check is
violated). Post-mortem analysis can be used to construct a symptom model of
process failures. Our framework should apply suitable recoveries with different
timeliness depending on the analysis that signaled the violation.

The distinction among data collection, monitoring and recovery allowed us to
conceive a neater architecture. Data collection fosters the neat separation be-
tween monitoring and recovery activities. We support internal data, which carry
the internal state of the process, external data, which provide information from
the surrounding environment, and historical data, which represent information
collected in past executions. Different monitoring approaches are also able to
share partial results and collaborate towards a more complete final assessment.
Our framework can trigger corrective actions on the same process instance, on
different instances (of different processes), and also on the process definition. To
this end, we allow the interplay between synchronous and asynchronous actions
and we provide conflict resolution mechanisms associating them to a priority.

Figure 1 shows the overall architecture of our solution. Each BPEL Engine is
an instance of ActiveBPEL Community Edition Engine augmented with AOP
(aspect-oriented) probes to collect process state data. The Data Manager is
responsible for collecting external data, and for retrieving and storing historical
data from/in the Data Repository. The Monitoring Farm holds the monitoring
plug-ins we want to use, while the Recovery Farm holds the recovery capabilities.

The Event Controller is the central element of our architecture and it is based
on rule engine technology [6]. It is in charge of activating external and historical
data collection, as well as any monitoring and recovery activity. While internal
variables are passively received from the AOP probes embedded in ActiveBPEL,
external and historical variable collection, like also monitoring and recovery ac-
tivities, are triggered when the process starts or when it reaches a particular

616 L. Baresi, S. Guinea, and L. Pasquale

BPEL
Engine

Recovery Farm

Monitoring
Farm

Event
Controller

Data
Manager

Data
Repository

Supervision Manager

Run time
Architecture

Management
Level

1
2.1

3.1

3.2

2.2

4.1

4.2 (a)

4.2 (b)4.2 (c)

Fig. 1. The Unified Framework

state. This is achieved by defining rules on the data contained in the working
memory, that is, process state data, external and historical variables, collected
through the Data Manager, and analysis results.

Our framework also provides a configuration tool called Supervision Manager,
used to configure the various components of the framework. In particular, it
configures the AOP probes to collect internal data, the Event Controller, to
retrieve external and historical data, and defines how monitoring and recovery
are activated. Finally, it also sets the Monitoring Farm with the constraints each
plug-in is supposed to check.

The numbered arrows of Figure 1 explain how the framework works. Before
starting the execution of any process, the Supervision Manager configures the
different components to allow them to correctly perform supervision tasks. After
this, every time an executing process terminates an activity, the AOP probes
collect internal data and give them to the Event Controller (transition 1), which
inserts them in its embedded working memory. The data available in the working
memory of the Event Controller can always activate suitable rules to require the
Data Manager to retrieve external or historical data (transition 2.1) and store
them in its working memory (transition 2.2).

3 Example Configuration Rules

This Section shows some configuration rules to exemplify how the framework
works. The following rule shows how to collect an external variable.

rule "external_data_collection"
no-loop true
when

Integrated and Composable Supervision of BPEL Processes 617

p : ProcessState(process = "SMS_Process",
engineID = "localhost:8080", instanceID = -1,
username = "jack.burton", /process/sequence/Invoke_SMS_Send)

then
ExternalVariable e = DataCollector.pull(wsdl, operationName, input);
insert(e);

The external variable is collected when process SMS Process reaches activity
/process/sequence/Invoke SMS Send and ProcessStatep appears in the work-
ing memory. Since we currently support external probes implemented as Web ser-
vices, we need the endpoint reference (wsdl), the name of the operation to invoke
(operationName),and its input parameters (input).The datum is then inserted in
the working memory through operation insert, defined in the then clause. Notice
that the input parameters given to an external probe can include any data present
at that time in the working memory of the Event Controller.

Besides data collection and storage, rules are also responsible for dispatching
data to interested monitoring plugins (transition 3.1). This feeds the creation of
special dispatching rules in the Event Controller ’s rule engine. For each moni-
toring plugin being used, designers must then express the actual assertions they
want them to check. Each expression is given in the language used by the plugin.

The following rule uses ALBERT to asynchronously check whether the ac-
curacy of a service endpoint is greater than a predefined threshold. It passes
ALBERT all necessary data to perform monitoring: the current partner service
endpoint (variable pLink) and its current accuracy (variable mResult) calcu-
lated by VieDAME. Variable pState detects the process location in which the
monitoring result and the service endpoint need to be forwarded.

rule "ALBERT data"
when
pState : ProcessState(processName == SMS_Process,

location == "/process/sequence/Receive_SMS_Notification") &&
pLink : PartnerLink(processName == SMS_Process,

location == "/process/sequence/Receive_SMS_Notification",
pLinkN : name == "SMS_sending")

mResult : MonitoringResult(
pluginName == "VieDAME", n : rule == "accuracy",
processName=="SMS_Process",
location == "/process/sequence/Receive_SMS_Notification")

then
List<Datum> data = new ArrayList<Datum>();
data.add(n, mResult);
data.add(pLinkN:pLink);
dispatchData("ALBERT", pState, data);

ALBERT checks the following rule:

processName: SMS_Process
rule: onEvent(/process/sequence/Receive_SMS_Notification) ->

$accuracy/partnerLink[@name == $SMS_sending/name]
/endpoint[@value == $SMS_sending/address]/accuracy > THRESHOLD;

618 L. Baresi, S. Guinea, and L. Pasquale

where $accuracy contains the monitoring results provided by VieDAME, while
$SMS sending contains the partner link being used by process SMS Process.

As soon as a monitoring result is produced by the Monitoring Farm, it is sent
to the Event Controller to insert it in its working memory (transition 3.2). These
new data can fire rules that request the Recovery Farm to apply some recovery
actions (transition 4.1) to modify the executing process instances, change how
the Event Controller works, or modify the checks performed by the monitoring
plug-ins (transition 4.2). At this point, the Event Controller has all the mon-
itoring results and can activate different recovery strategies by communicating
with the Recovery Farm. The recovery plugins in the Recovery Farm can access
the process internals using AOP probes. In our current implementation we pro-
vide the same set of recovery actions defined in [2], to tune the overall degree of
monitoring, both in terms of activities being performed and approaches being
used, and also asynchronous recovery, to work on process definitions directly and
change how future process instances are configured.

Synchronous recovery needs the process to be blocked the process execution
until it completes, while asynchronous recovery can be performed in parallel with
the process activities till the process reaches a specific target location. In has to
stop until recovery completes. If there are multiple asynchronous recoveries ready
to be executed, the Event Controller chooses among them depending on their pri-
ority level as well as on the strategy the framework must use to interpret these
priority values. For example, if the designer decides to use an exclusive strategy, a
recovery with the highest priority disables all the others. This strategy is realized
by assigning the same activation-group attribute to potentially conflicting rules.
The activation-group attribute guarantees that only the rule with highest priority
is executed. If the designer decides to go with an all strategy, all recoveries are ex-
ecuted and the order is given by their priority values. Recovery strategies with the
same priority level can execute in any order. If the designer decides not to provide
priorities, recovery strategies can be executed in any order.

The following rule defines a recovery for when the previous ALBERT rule
is not verified (variable malbert). This recovery has the effect of changing
the process definition, substituting a partnerLink with the one suggested by
VieDAME to have the best accuracy (variable mviedame).

rule ’SMS_asynch_substitute’
activation-group "async_substitution"
salience 2
when

malbert : MonitoringResult(plug-in == "ALBERT",
processName == "SMS_Process",
location == "/process/sequence/Receive_SMS_Notification",
result == false) &&

mviedame : MonitoringResult(plug-in == "VieDAME",
type == "bestAccuracy"
processName=="SMS_Process",
location == "/process/sequence/Receive_SMS_Notification")

then

Integrated and Composable Supervision of BPEL Processes 619

recovery.setProcess(’SMS_Process’);
recovery.setTargetState(’/process/sequence/Invoke_SMS_Service’);
recovery.asynchSubstitute(mviedame.getPartnerLinkName,
mviedame.getWsdl(), mviedame.getOperation(), mviedame.getInput(),
mviedame.getTransformationRule());

The asynchronous recovery is assigned a priority of 2 (salience) and anactivation-
-group named async Substitution, and it is configured to execute before activity
/process/sequence/Invoke SMS Service. The recovery consists in an
invocation of method asynchSubstitute provided by our framework. We pass to
the recovery method the information gathered from ViEDAME, as well as an indi-
cation of the process on which the recovery has to take place (SMS Process).

4 Conclusions and Future Work

We propose a flexible and customizable supervision framework for BPEL pro-
cesses, integrating different monitoring and recovery techniques. The framework
architecture conceptually decouples data collection, monitoring, and recovery.
Leveraging rule engine technology we dispatch data to various monitoring com-
ponents, aggregate different monitoring results, and choose the most appropriate
recovery. In our future work, we will investigate high level supervision languages
and tools that can help hide the complexities that lie in the definition of the
rules used by our Event Controller. We also want to discover suitable ways to
synthesize these rules starting from requirements and SLA standards.

References

1. Baresi, L., Bianculli, D., Ghezzi, C., Guinea, S., Spoletini, P.: Validation of Web
Wervice Compositions. IET Software 1(6), 219–232 (2007)

2. Baresi, L., Guinea, S.: A Dynamic and Reactive Approach to the Supervision of
BPEL Processes. In: Proceedings of the 4th India Software Engineering Conference
(2008)

3. Baresi, L., Guinea, S.: Towards Dynamic Monitoring of WS-BPEL Processes. In:
Proceedings of the 3rd International Conference on Service Oriented Computing,
Amsterdam, The Netherlands, December 12-15, pp. 269–282

4. OASIS, Business Process Execution Language for Web Services, Version 1.1
5. Colombo, M., Di Nitto, E., Mauri, M.: SCENE: A Service Composition Execution

Environment Supporting Dynamic Changes Disciplined Through Rules. In: Proceed-
ings of the 3rd International Conference on Service Oriented Computing, Chicago,
IL, USA, December 4-7, 2006, pp. 191–202 (2006)

6. Proctor, M., et al.: Drools, http://www.jboss.org/drools/
7. Moser, O., Rosenberg, F., Dustdar, S.: Non-intrusive monitoring and service adap-

tation for WS-BPEL. In: Proceedings of the 17th International Conference on World
Wide Web, Beijing, China, April 21-25, 2008, pp. 815–824 (2008)

http://www.jboss.org/drools/

Optimised Semantic Reasoning for Pervasive
Service Discovery

Luke Steller and Shonali Krishnaswamy

Faculty of Information Technology, Monash University, Melbourne, Australia
laste4@student.monash.edu.au,

Shonali.Krishnaswamy@infotech.monash.edu

Abstract. A key challenge in delivering mobile services is to improve the
relevance of discovered services, as mobile environments are very dynamic
with rapid changes to user context. This paper presents m-Tableaux - an
to optimised semantic reasoning approach to support pervasive service
discovery which aims to efficiently leverage the computational resources
available of mobile devices. We present performance evaluation of the
m-Tableaux optimisation strategies which clearly demonstrate its oper-
ational feasibility on a mobile device.

1 Introduction and Related Work

A mobile user arriving in Sydney airport can currently utilise kiosk touch screens
to search for stores and points of interest in the airport. The increasing compu-
tational capacity of small devices such as PDAs and mobile phones provide new
opportunities for “on board” service discovery taking user context and request
complexity into consideration, rather than limited and inconvenient fixed point
kiosks. There are two models for discovery in this context: 1. the kisosk becomes
a centralised high-end server which performs all matching on behalf of the user
or 2. a decentralised model where the kiosk acts only as a repository of informa-
tion and the user’s device performs all matching “on-board”, on a needs basis.
We advocate the decentralised model for environments where a central authority
does not exist or does not want the responsibility of providing and maintaining
a centralised service and the user’s do not want to incur the costs in using such
a service.

While current service discovery architectures such as Jini [1] and UPnP [2] use
either interface or string based syntactic matching, there is a growing emergence
of DAML-S/OWL-S semantic matchmakers such as CMU Matchmaker [3] and
DIANE [4] which support varying levels of semantic reasoning, but require a cen-
tralised high-end node to perform reasoning. The reasoners which matchmaking
architectures use, such as FaCT++ [5] and RacerPro [6]), quickly give “Out of
Memory” errors when ported directly to resource limited devices in their current
form. In this paper, we present our mTableaux algorithm with incorporates op-
timisation strategies to enable reasoning on resource constrained mobile devices.
Section 2 describes our architecture and our mTableaux algorithm, section 3
provides a performance evaluation and in section 4 we conclude the paper.

A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, pp. 620–625, 2008.
� Springer-Verlag Berlin Heidelberg 2008

Optimised Semantic Reasoning for Pervasive Service Discovery 621

2 Resource-Aware and Cost-Efficient Pervasive Service
Discovery

Our decentralised pervasive service discovery architecture is illustrated in figure
1, which resides on the user’s resource constrained device. The remainder of this
paper concentrates on the semantic mTableaux, while the adaptive discovery
manager is future work.

Semantic Reasoner
mTableaux

Context
Manager

Adaptive Discovery
ManagerService

Request DB of OWL
Ontologies

Service
Requester

Fig. 1. Pervasive Service Discovery Architecture

2.1 Semantic Reasoners

The effective employment of semantic languages requires the use of semantic rea-
soners such as Pellet [7], FaCT++ [5] and RacerPro [6]. Most of these reasoners
utilise the widely used Tableaux [8] algorithm. DL Tableaux reasoners, such as
Pellet, reduce all reasoning tasks to a consistency check. Tableaux is a branching
algorithm, in which disjunctions form combinations of branches in the tree. If
all branches contain a clash, meaning a fact and its negation are both asserted,
then a clash exists for all models of the knowledge base. Inferred membership
for an individual I to class type RQ: I ∈ RQ, is checked by asserting that I is a
member of the negation of RQ. If a clash exists for all models of the knowledge
base then the membership is proven.

This paper concentrates on strategies to optimise the Tableaux algorithm to
enable reasoning on small/resource constrained devices with significant improve-
ments to response time and avoiding “Out of Memory” errors as encountered in
[9]. Our mTableaux algorithm relates to optimising membership type checks (I
∈ RQ). It involves a range of optimisation strategies such as: 1. selective appli-
cation of consistency rules, 2. skipping disjunctions, 3. establishing pathways of
individuals and disjunctions which if applied would lead to potential clashes and
associating weights values to these elements such that the most likely disjunc-
tions are applied first, by 3a. ranking individuals and 3b. ranking disjunctions.

Application of consistency rules to a subset of individuals only, reduces the
reasoning task. Consider the universal quantifier construct of the form ∀R.C
= { b.(a, b) ∈ R �b C} [10], where R denotes a relation and C denotes a
class concept, which implies object fillers for R must be of type C. We define
the individual subset to I and those individuals which fill R for I. Disjunctions
are only applied when they contain a concept which is contained within or can
be unfolded from the request type RQ, including quantifier role filler types. A
weighted queue is established to rank individuals and disjunctions such that
the highest are applied first. Rankings are established by recursively checking

622 L. Steller and S. Krishnaswamy

the class types contained in a disjunction to see whether these potentially lead
to future clash. In the next section we more formally describe each of these
strategies.

2.2 mTableaux Strategies

Selective Consistency: Let S denote a set of individuals e which can have com-
pletion rules applied to them, S ≡ {e1, e2, en}. S initially contains individual I.
Let avR denote the distinct set of roles r contained in any universal quantifier
construct which will be applied to any individual e in S, where avR ≡ {r1 ,r2
, rm). Add any object individual o which fills any role r contained within avR,
to S. The same strategy is recursively applied to all individuals added to S, or
whenever a new universal quantifier is applied to an individual in S. For example
consider that individual LaserPrinter1 has a role hasComm which contains the
individual Modem1. Initially LaserPrinter1 is contained in S, and the assertion
of ∀hasComm.¬(Modem), results in Modem1 also being added to S.

Disjunction Skipping: Where a service request RQ is a conjunction class type,
let T denote the set of conjunct terms t, where T ≡ {t1, t2, tn}. Let DS denote
a set of types derived from RQ. For each ti in T, add it to DS as well as all
expressions which can be unfolded from ti. Where any universal or existential
quantifier, or cardinality restriction is encountered, add its role filler type C and
all expressions which can be unfolded from C. During reasoning apply only those
disjunctions D, containing disjunct terms d, where any d is contained within DS,
otherwise skip it. For example, where RQ ≡ SupportsModem

⋂
SupportsColour,

and SupportsModem ≡ ∃hasComm.Modem, DS ≡ {SupportsModem, Support-
sColour, Modem}.

Weighted Individuals and Disjunctions: A single weighted queue QI of individ-
uals i is established and each individual has a weighted queue QD of disjunctions
d, such that QD ≡ {i1, i2, in} and QD ≡ {d1, d2, dm} and there are n QDs.
Each element i and d, is associated with a weight value which is used to rank the
elements in decending order. Disjunctions with the highest weight in the QD,
which relates to the individual with the highest weight in QI, are applied first.
For any disjunct type element c of a disjunction D relating to individual I (rank
disjunctions) or any type c applied to individual I (arising from the application
of a disjunction) which did not give rise to a clash (rank individuals), search for
a pathway to a potential clash. This occurs by checking to see if the application
of any expression which can be unfolded from c, may give rise to a future clash.
Where c unfolds into a disjunction or conjunction, the negation of their consti-
tute elements is checked for in individual I. Where the expression is a universal
quantifier, each object individual for I is checked for a potential clash for the
quantifier’s role filler. If potential clash path is detected the weight of all indi-
viduals and disjunctions involved in the path is increased. For example, for the
disjunction. D ≡ SupportsModem

⋃
SupportsColour where SupportsModem ≡

∀hasComm.Modem and Individual I has the type ¬Modem a potential clash is
found and the weighting for disjunction D and individual I is increased in their
queues, QD and QI respectively.

Optimised Semantic Reasoning for Pervasive Service Discovery 623

3 Implementation and Performance Evaluation

In this section we provide two case studies in order to evaluate our mTableaux
algorithm. In case study 1, Bob is walking around at his university campus
and wishes to locate a fax machine. This was implemented into an ontology
containing 141 classes, 337 individuals and 126 roles. In the second case study
Bob, in a foreign city centre, wants to find a movie cinema with an Internet café.
The ontologies for this scenario contain 204 classes, 241 individuals and 93 roles.

We implemented the selective consistency, rank individuals, rank disjunctions
and skip disjunctions strategies defined in the previous section, in the Pellet
v1.5 reasoner. We selected Pellet because it is open source and implemented
in java, allowing for easy portibility to small devices. Pellet supports OWL-DL
with SHOIN expressivity. Table 1 presents a request for each case study and
a positive/matching A and negative/non-matching B service individual, to be
compared with each request.

Table 1. Type checks

Case Request Individual Expected Result

1 Fax Laser Printer A: #LaserPrinter1 Match
B: #LaserPrinter2 No Match

2 Movie Cinema A: #MovieCinema1 Match
B: #MovieCinema2 No Match

Each of the four match checks in table 1 was executed 16 times using various
randomly selected combinations of our optimisation strategies, as outlined in
table 2. Test 16 represents normal execution of the Tableaux algorithm, with
none of our optimisations strategies enabled.

Table 2. Optimisation tests

Test # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

C: Selective Consistency � � � � � � � �
S: Skip Disjunctions � � � � � � � �
D: Rank Disjunctions � � � � � � � �
I: Rank Individuals � � � � � � � �

We performed an evaluation on a HP iPAQ hx2700 PDA, with Intel PXA270
624Mhz processor, 64MB RAM, J2SE JVM, allocated 15MB of memory. Suc-
cessfully executed tests returned the expected result shown in table 1. Figure 2
shows two graphs, which each show the consistency time to perform a type mem-
bership check for individual A and B against the request for the tests in table

624 L. Steller and S. Krishnaswamy

Fig. 2. Processing time taken to perform each test

2, for case study 1 and 2, respectively. Test 16, with no optimisations resulted
in the “Out Of Memory” exception, necessitating our optimisations.

The figure shows that mTableaux optimisation can complete case study 1 and
2 in 18 and 35-70 seconds, respectively. This illustrates significant performance
improvements in both scenarios. The selective consistency and skip disjunctions
strategies were the most effective when used together. However, while we found
that rank disjunctions and inviduals did reduce the number of branches applied,
these did not significantly reduce reasoning time. Results also showed that the
optimisations were less effective in improving performance for non-matching indi-
viduals B than matching individuals A, because the algorithm continues applying
branches and completion rules until a clash is found.

Figure 3 illustrates the overhead cost incurred by each optimisation strategy.

Fig. 3. Optimisation overhead breakdown. Each test was conducted for matching in-
dividual A and non-matching individual B.

We observed that selective consistency and skip disjunctions incurred low
overhead, especially when used together. Rank disjunction overhead was signif-
icantly higher for tests 8 and 9 for both case studies due to the skip disjunction
strategy being disabled, resulting in more disjunctions to evaluate. In addition
to these results, we present a comparison between mTableaux, Pellet and Racer
Pro in [11] which shows mTableaux out performs these, without reducing recall
or precision.

Optimised Semantic Reasoning for Pervasive Service Discovery 625

4 Conclusion and Future Work

mTableaux was shown to significantly improve the performance of pervasive
discovery reasoning tasks in two case studies, enabling them to be completed
on small resource constrained devices. In future work we are leveraging our
rank disjunctions and individuals strategies to adaptively reduce the number of
branches applied when resources become low, to provide a less accurate result
with a level of confidence to avoid “Out Of Memory” errors.

References

1. Arnold, K., O’Sullivan, B., Scheifler, R.W., Waldo, J., Woolrath, A.: The Jini
Specification. Addison-Wesley, Reading (1999)

2. UPnP. Universal Plug and Play (UPnP), [cited March 12, 2007] (2007),
http://www.upnp.org

3. Srinivasan, N., Paolucci, M., Sycara, K.: Semantic Web Service Discovery in the
OWL-S IDE. In: 39th Hawaii International Conference on System Sciences, 2005,
Hawaii (2005)

4. Küster, U., König-Ries, B., Klein, M.: Discovery and Mediation using DIANE
Service Descriptions. In: Second Semantic Web Service Challenge 2006 Workshop,
Budva, Montenegro, June 15-16 (2006)

5. FaCT++ [cited May 1, 2007] (2007), http://owl.man.ac.uk/factplusplus
6. RacerPro. [cited May 23, 2007] (2007), http://www.racer-systems.com
7. Pellet (2003), http://www.mindswap.org/2003/pellet
8. Horrocks, I., Sattler, U.: A Tableaux Decision Proceedure for SHOIQ. In: 19th

Int. Joint Conf. on Artificial Intelligence (IJCAI 2005), Morgan Kaufmann, San
Francisco (2005)

9. Kleemann, T.: Towards Mobile Reasoning. In: International Workshop on Descrip-
tion Logics (DL 2006), Windermere, Lake District, UK, May 30 - June 1 (2006)

10. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The
Description Logic Handbook: Theory, Implementation, and Applications. Cam-
bridge University Press, Cambridge (2003)

11. Steller, L., Krishnaswamy, S.: Pervasive Service Discovery: mTableaux Mobile Rea-
soning. In: International Conference on Semantic Systems (I-Semantics). Graz,
Austria (2008)

http://www.upnp.org
http://owl.man.ac.uk/factplusplus
http://www.racer-systems.com
http://www.mindswap.org/2003/pellet

COSMA – An Approach for Managing SLAs in
Composite Services

André Ludwig and Bogdan Franczyk

University of Leipzig
Information Systems Institute

Marschnerstr. 31, 04109 Leipzig, Germany
{ludwig,franczyk}@wifa.uni-leipzig.de

Abstract. Service provisioning is largely built on agreements specify-
ing the mutual responsibilities of service providers and their customers
with respect to functional and non-functional parameters. Current SLA
management approaches, i.e. WSLA, WS-Agreement, or WSOL, provide
extensive SLA language formalizations and management frameworks.
However, they focus on bi-lateral service requester/provider constella-
tions neglecting the SLA management requirements of composite service
providers, i.e. managing SLAs with atomic service providers and with
composite service requesters and aligning both with each other. A SLA
management solution for composite services has to consider the contri-
bution of sourced services - formalized in their (atomic) SLAs (ASLA)
- in the management of the provided service - formalized in its respec-
tive (composite) SLA (CSLA). This paper presents the novel COmposite
Sla MAnagement (COSMA) approach for an integrated management of
atomic and composite SLAs during their entire lifecycle. It can be uti-
lized for controlling the relationships between ASLAs/CSLAs and thus
serves as the basis for managing and optimizing the SLAs involved in
composite services.

1 Introduction

Service-oriented computing (SOC) has emerged as the most promising design
paradigm for next-generation distributed information systems. The vision that
goes along with SOC is that once standards have established themselves and
become widely adopted by service providers and requesters, a globally avail-
able infrastructure for hosting and accessing services will be created [1]. This
infrastructure will allow service providers to offer multiple services with individ-
ually adapted service capabilities to their changing customers that can dynami-
cally and on-demand bind these services into their own applications; thus forming
a market of services. The advent of service markets on the basis of the SOC para-
digm will pave the way for a service-oriented business model which is referred to
as composite service provider (CSP) [2]. A composite service provider requests
services from external service providers (atomic services) and provides these
services according to a process flow as composite service to service requesters.

A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, pp. 626–632, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

COSMA – An Approach for Managing SLAs in Composite Services 627

In this constellation, a composite service provider acts as an independent, self-
interested business entity, motivated to fulfil own goals, i.e. be profitable and
maximize customer satisfaction.

In order to control the interface between service requesters and providers,
a contractual basis in form of service level agreements (SLA) is needed. Cur-
rent SLA management approaches applicable for SOC environments, i.e. WSLA
[3], WS-Agreement [4], or WSOL [5], provide extensive SLA language formal-
izations and management frameworks. However, they focus on bi-lateral service
requester/provider constellations neglecting the SLA management requirements
of composite service providers, i.e. managing SLAs with atomic service providers
and with composite service requesters and aligning both with each other. A SLA
management solution for composite services has to consider the contribution of
sourced services - formalized in their (atomic) SLAs (ASLA) - in the management
of the provided service - formalized in its respective (composite) SLA (CSLA).
Since composite services are created on-the-fly also their SLA management must
be realized on-the-fly. Manual SLA management is not appropriate for composite
service providers and automation support is required, i.e. for creation, monitor-
ing and evaluation of SLAs.

In this paper, an approach for the management of SLAs involved in composite
services during their entire lifecycle is presented (COSMA - COmposite Sla MAn-
agement). COSMA can be utilized for controlling the relationships between SLAs
and thus serves as a basis for managing and optimizing the dynamics between SLAs
of composite services. The paper is structured as follows: section 2 presents the
central idea behind the COSMA approach and briefly presents its constitutional
elements. Section 3 refers to a use case and demonstrator. Section 4 concludes the
paper.

2 Composite SLA Management Approach (COSMA)

The central idea behind the COSMA approach is the integration of all SLAs a
composite service provider has to deal with into one composite SLA manage-
ment document. This composite SLA management document, which is defined
as COSMAdoc, contains all contractual information of all involved SLAs and
in addition the relationships and dependencies that exist between the different
aspects of atomic and composite SLAs. On the basis of a COSMAdoc, the SLA
management system of a CSP is able to understand how atomic SLAs contribute
to the provision of the composite SLA. This knowledge enables a CSP to control
and optimize its SLA management activities in providing a composite service.
This includes, in particular, planning and negotiating SLAs, monitoring and
evaluating SLAs (cf. SLA lifecycle as outlined in [6]). The COSMA approach
consists of the following three parts:

– COSMAdoc: A generic information model that integrates contractual data,
SLA management data, and elements for the expression of dependencies and
relationships between SLA elements.

628 A. Ludwig and B. Franczyk

– COSMAframe: A conceptual framework that outlines the components that
are necessary for the management of the composite SLA lifecycle on the
basis of a COSMAdoc instance.

– COSMAlife: An integrated set of SLA management practices that use COS-
MAdoc instances to cover the phases of the SLA lifecycle.

COSMAframe, COSMAdoc, and COSMAlife are embedded into an operation
and management system (OMS) of a CSP, i.e. platform as proposed in [7].

2.1 Information Model COSMAdoc

As the informational heart of COSMA, COSMAdoc provides a generic infor-
mation model that encapsulates contractual and management information of
SLAs. It comprises a set of SLA documents (CSLA and ASLAs) and elements
for the expression of relationships and dependencies between those SLAs. For
every composite service an individual instance of COSMAdoc is created and
bound with the service. For all management activities defined in COSMAlife,
the COSMAdoc instance is used. Different components of COSMAframe exe-
cute their tasks on the basis of the COSMAdoc instance; thus, it is the basis
for performing complete, composition-wide SLA negotiations and compliance
evaluations. COSMAdoc serves as an internal composite SLA management tool
used by a CSP; embedded SLA documents carry only contractual data and can
be exposed to involved parties without publishing COSMAdoc instance-internal
management information. At the top-level, COSMAdoc consists of the following
six core sections (Fig. 1):

– Header: The purpose of the Header section is to declare contextual infor-
mation and parameters for the COSMAdoc instance (description, owner,
version number, definition of semantic models and languages).

– ServiceComposition: The ServiceComposition section includes the orchestra-
tion script. Since the script expresses the general relationships and structure
between all involved services, it governs the mapping and dependencies be-
tween SLA parameters of composite and atomic SLAs.

– SlaSetAssembly: The purpose of the SlaSetAssembly section is to capture all
SLAs involved in a composite service. A SLA element carries the contrac-
tual information between the involved two parties. It carries no information
that may be used by the CSP to manage the mapping of ASLA elements
to CSLA elements. Hence, each SLA document can be used to represent
a public agreement between the involved two parties and can be accessed
by both parties. This ensures separation of concerns and provides a sound
contractual basis by means of a valid SLA document. The COSMAdoc SLA
model is based on the comprehensive WS-Agreement SLA model [4] for bi-
lateral agreements. The COSMAdoc SLA model comprises of the sections
Name, Context, Terms as defined in WS-Agreement and extends the speci-
fication with diverse aspects, i.e. MonitoringTerms, NegotiationTerms, and
FinancialTerms in the Terms section.

COSMA – An Approach for Managing SLAs in Composite Services 629

COSMAdoc

attributes

Header

ServiceComposition

SlaSetAssembly Sla

attributes

Name

Context

Terms

SlaSetUsageValidation
default

conditional

SlaSetDataValidation
default

conditional

AggregationFormulas

GuaranteeTerms

FinancialTerms

MonitoringTerms

Fig. 1. COSMAdoc information model

– SlaSetUsageValidation: The SlaSetUsageValidation section is used to define
specific requirements and constraints on the SLA elements of the SlaSe-
tAssembly. These requirements and constraints regard only the content us-
age of the involved SLA documents (not the data). For instance, elements of
a SLA can be declared as mandatory, negotiable, or optional. The technique
used to identify elements of the SLA is the definition of pointers. Predicates
can be defined as default or depending on a condition.

– SlaSetDataValidation: While the SlaSetUsageValidation section controls the
usage of the involved SLA elements, the SlaSetDataValidation controls the
data of the SLA elements. It provides means to explicitly enforce, validate,
and check the data values of the involved SLAs by defining predicates on
them, i.e. setMaxValue, setValueRange etc. Since most of the data validation
restrictions on the contents of a CSLA result from the contents of ASLAs,
predicates on CSLA elements may refer to aggregation formulas that calcu-
late the value from other ASLA elements. Thus, a predicate with a link to
an aggregation formula connects and restricts values of SLAs, i.e. defined in
GuaranteeTerms, with aggregation formulas defined in the AggregationFor-
mulas section (cf. Fig. 2).

– AggregationFormulas: Formulas stored in the AggregationFormulas section
reflect the relationships and dependencies between SLA elements in compos-
ite services. Aggregation formulas can use all types of algorithmic operators
and reference SLA elements using pointers. The complexity of these formulas

630 A. Ludwig and B. Franczyk

...

formula

restriction(element, formula)

restriction

SLA element
Value

QualifyingCondition
GuaranteeTerms ServiceLevelObjective ...

...SlaSetDataValidation constraint action

...AggregationFormulas Formula Id

Fig. 2. Connecting SLA elements, aggregation formulas, and predicates

depends on the structure of the service composition script and the number
and type of SLA parameters. Generic aggregation patterns for different SLA
parameters were proposed i.e. in [9].

2.2 Conceptual Framework COSMAframe

COSMAframe is a conceptual framework that outlines the components that are
required for an automated processing of COSMAdoc instances. COSMAframe
presents these components in terms of their generic interfaces, basic behaviours,
and functions. COSMAframe consists of the following components (cf. Fig. 3):

– The COSMA Manager is the central management component that triggers all
components depending on the necessary steps within the SLA lifecycle. It is
the central port of COSMAframe towards external components and provides
a COSMAdoc validation interface that processes COSMAdoc aggregation
formulas and predicates.

– The COSMAdoc Creator is responsible for creation of COSMAdoc instances.
Based on a given generic service composition script provided by an exter-
nal Service Composer, it creates composition-specific COSMAdoc instances
using a composition decomposer.

– The composition-specific COSMAdoc instance is integrated by the COS-
MAdoc Integrator. The COSMAdoc Integrator adds different SLA contents,
like quality of service parameters or financial parameters, to the included
SLA documents. Afterwards, the component inserts different types of re-
strictions that evolve from the structure of the service composition script
and the types of SLA parameters to the COSMAdoc instance.

– COSMAdoc instances are stored in the COSMAdoc Repository.
– The COSMAdoc Validator and Violation Detector compares service level

measurements against service level objectives defined in ASLAs. It normal-
izes and aggregates the monitoring data across all ASLAs using stored ag-
gregation formulas and is then able to state whether service levels of the
CSLA are violated or not. If a SLA violation is detected, a proposal how to
deal with the violation is created and returned to the COSMA Manager.

COSMA – An Approach for Managing SLAs in Composite Services 631

COSMAframe

Service Enactment and Monitoring Engine

<<component>>

COSMA Manager

OMS Deductive Database

<<component>>

COSMAdoc Repository

<<component>>

COSMAdoc Validator and Violation Detector

Service Composer Negotiation Engine

<<component>>

COSMAdoc Creator

<<component>>

COSMAdoc Integrator

<<component>>

OMS
ServiceComposition DDBQuery

COSMAHandler

Negotiation ServiceEnactment ServiceMonitoring

Fig. 3. Components of COSMAframe and external components

External components, i.e. Service Composer, Negotiation Engine etc., are de-
scribed on the Adaptive Services Grid project website [7].

2.3 Composite SLA Management Lifecycle Mechanisms of
COSMAlife

COSMAlife presents a set of composite SLA management mechanisms that cover
different phases of the SLA lifecycle presented in [9]. The focus in COSMAlife is
given to phases SLA creation and negotiation and SLA monitoring and evalua-
tion. Briefly, a successful COSMAlife run-through conists of three steps: (1) cre-
ating and integrating, (2) negotiating, and (3) enacting/monitoring/validating
a COSMAdoc instance. First, the COSMAdoc Creator creates a composition-
specific instance from the generic COSMAdoc template. It uses an internal com-
position decomposer to atomize the generic service composition script into its
generic composition patterns. Afterwards, the COSMAdoc Integrator integrates
SLA content pre-settings, the service composition script, and SLA parameter-
specific usage and data validation restrictions. Second, a Negotiation Engine
determines the concrete atomic service implementations to use in the composite
service (the Negotiation Engine hosts negotiation agents, whereas each nego-
tiation agent negotiates a single SLA document). To ensure that the negotia-
tion outcomes of ASLA negotiation processes are optimized with regard to the
CSLA negotiation, the Negotiation Engine iteratively uses a validation inter-
faces provided by the COSMA Manager which processes predicates/aggregation
formulas of the COSMAdoc instance. Third, after enactment of the compos-
ite service, monitoring and evaluation of the involved SLAs is executed. The
COSMA Manager receives monitoring results from the Monitoring Engine (as
specified in COSMAdoc) and sends these data to the COSMA Validator and
Violation Detector for validation. In case of SLA violations, proposals for conse-
quential actions are determined. The component uses the AggregationFormulas
of COSMAdoc to detect service level violations and decide on the best type of
action.

632 A. Ludwig and B. Franczyk

3 Use Case and Demonstrator

In order to illustrate the application of the COSMA approach and to support
the understanding of COSMAdoc, COSMAframe, and COSMAlife, a use case
was developed. The use case is published in [10]. In addition, a demonstrator
was developed which implements the key elements of COSMA.

4 Conclusions

The paper addressed the topic of managing the dynamics of SLAs in composite
services. For this, the novel composite SLA management approach COSMA was
outlined in brief. With COSMA, a composite service provider can control and op-
timize its SLA management activities, pro-actively plan financial consequences,
and dynamically calculate the expected service level objectives from dynamically
varying service composition scripts. COSMA represents a conceptual approach
for management of SLAs in composite services and is to be interpreted as a
starting point that must be extended and adapted to individual requirements of
arbitrary scenarios. Thus, the proposed, theoretical approach has to be tested
extensively and employed on a number of different scenarios.

References

1. Papazoglou, M.P.: Web Services: Principles and Technology. Prentice Hall, Essex
(2007)

2. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web services: concepts, architec-
tures and applications. Springer, New York (2004)

3. Keller, A., Ludwig, H.: The WSLA Framework: Specifying and Monitoring Service
Level Agreements for Web Services. J. of Network and Systems Management 11,
57–81 (2003)

4. Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Nakata, T., Pruyne,
J., Rofrano, J., Tuecke, S., Xu, M.: Web Service Agreement Specification (WS-
Agreement), http://www.gridforum.org/documents/GFD.107.pdf

5. Tosic, V., Patel, K., Pagurek, B.: WSOL - Web Service Offerings Language. In:
Bussler, C.J., McIlraith, S.A., Orlowska, M.E., Pernici, B., Yang, J. (eds.) CAiSE
2002 and WES 2002. LNCS, vol. 2512, pp. 57–67. Springer, Heidelberg (2002)

6. Ludwig, A., Braun, P., Kowalczyk, R., Franczyk, B.: A Framework for Automated
Negotiation of Service Level Agreements in Service Grids. In: Bussler, C.J., Haller,
A. (eds.) BPM 2005. LNCS, vol. 3812, pp. 89–101. Springer, Heidelberg (2006)

7. Integrated Project Adaptive Services Grid (ASG), http://www.asg-platform.org
8. Momotko, M., Gajewski, M., Ludwig, A., Kowalczyk, R., Kowalkiewicz, M., Zhang,

J.Y.: Towards adaptive management of QoS-aware service compositions. J. of Mul-
tiagent and Grid Systems 3, 299–312 (2007)

9. Jaeger, M.C., Rojec-Goldmann, G., Muehl, G.: QoS aggregation for Web service
composition using workflow patterns. In: 8th International IEEE Enterprise Distrib-
uted Object Computing Conference (EDOC 2004), Monterey, pp. 149–159 (2004)

http://www.gridforum.org/documents/GFD.107.pdf
http://www.asg-platform.org

A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, pp. 633–648, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Resource Calculations with Constraints, and Placement
of Tenants and Instances for Multi-tenant SaaS

Applications

Thomas Kwok and Ajay Mohindra

IBM Research Division
Thomas J. Watson Research Center

19 Skyline Drive, Hawthorne, NY 10532
{kwok,ajaym}@us.ibm.com

Abstract. Cost of customization, deployment and operation of a software appli-
cation supporting multiple tenants can be lowered through multi-tenancy in a
new application business model called Software as a Service (SaaS). However,
there are a number of technical challenges that need to be tackled before these
benefits can be realized. These challenges include calculations of resource re-
quirements for multi-tenants with applied constraints in a shared application in-
stance, the optimal placement of tenants and instances with maximum cost
savings but without violating any requirements of service level agreements for
all tenants in a set of servers. Moreover, previously reported capacity planning
and resource allocation methods and tools are not tenant aware. This paper will
address and provide novel solutions to these challenges. We also describe the
first of a kind, a multi-tenant placement tool for application deployment in a
distributed computing environment.

Keywords: capacity planning, resource allocation and management, tenant
placement, constraint, multi-tenant, software as a service, SaaS.

1 Introduction

Recently, a new business model of software applications called Software as a Service
(SaaS), which offers benefits of lower cost of customization, deployment and operation
over the Internet has evolved [1-3]. In general, SaaS is associated with business software
applications that are Web-based, deployed and operated as a hosted service accessed by
users over the Internet. Multi-tenants in addition to multi-users support, installation of
application on a managed Internet data center with remote management capability are a
few characteristics of a multi-tenant SaaS application [4-8]. In the SaaS business model,
the ownership of technology infrastructure and management responsibility of the applica-
tion has moved to application service providers (ASPs) from tenants. The multi-tenant
SaaS model benefits ASPs by reducing hosting costs as the same application is shared
among multi-tenants. It also benefits tenants through eliminating their costs of owning
and managing the infrastructure and applications. Tenants can gain immediate access to
the latest information technology (IT) innovations and improvements provided by the

634 T. Kwok and A. Mohindra

Fig. 1. Four levels of the multi-tenant support model in an application layer

ASP without spending their own IT budgets. In the SaaS business model, usages of the
application can either be on a per user basis or pay as you go basis.

In a multi-tenant SaaS model, the multi-tenant support can be applied to four dif-
ferent software layers: application, middleware, virtual machine (VM) and operating
system [4]. For the application layer, there are four levels of the multi-tenant support
model as shown in Figure 1 [5]. Level 1 has a separate instance for each tenant’s
customized code base and it is similar to the ASP model. Level 2 also has a separate
instance for each tenant but all instances come from a single code base with configu-
ration options. With a single application code base to support several tenants, the total
deployment time is shorter. Level 3 has a single instance for all tenants with configur-
able metadata for each tenant. In this level, the updating of application features and
functions are simpler and centralized because there is only one instance of a single
source code base. Level 4 has a load-balanced farm of identical instances with con-
figurable metadata for its tenants. There are many benefits of multi-tenant application
deployment in Levels 3 and 4. The main benefits are the reduction of IT expenses,
and cost savings in software license fees and hardware expenses by reducing the
number of development, staging, training, disaster recovery servers. Other benefits
are in deployment, provision, on-board and maintenance by reducing IT processes,
such as server and application setup and configuration, and reducing support staffs in
server and application tuning, backup, patch and upgrade. Costs in cooling and
HVAC, power and lighting are reduced due to fewer servers [9].

However, several initial setup and configuration steps have to be carried out in or-
der for the application to support multi-tenants in a SaaS operational structure [8].
There are also a number of challenges that require solutions before full benefits of
multi-tenant application deployment can be realized. First, it is difficult to calculate
resource requirements for each additional new tenant with a number of new users, and
at the same time meeting constraints for all tenants in a shared application instance.
Second, limiting factors or bottlenecks on computing resources required for multiple
instances, each with multi-tenants having different constraints, have to be determined.

 Resource Calculations with Constraints, and Placement of Tenants 635

Third, an administrator needs the advice on the placement of a group of multi-tenant
applications on a set of servers without violating any service level agreement (SLA)
requirements of all tenants. Fourth, the placement of tenants and instances in a dis-
tributed computing environment has to be automated. Fifth, cost savings among dif-
ferent multi-tenant placements have to be compared and optimized even though there
are many variables involved. Other challenges are multi-tenant data models, tenant
isolation and security related issues. This paper will address and provide novel solu-
tions to the first four challenges. We also describe the first of a kind, a placement tool
for multi-tenant application deployment in the third level of the multi-tenant support
model.

2 Prior Related Work

Capacity planning and resource allocations to satisfy application requirements, and
resource constrained project scheduling are a generalization of the static job shop
problem, and have been reviewed thoroughly by researchers [10-12]. Most of these
studies are based on traditional exact methods, priority rule schedule [13] and meta-
heuristic approach [14]. A priority rule schedule consists of two parts, a priority rule
and a scheduling scheme. In the meta-heuristic approach, an activity list is usually
first created. Then, a neighboring schedule is identified by changing the order of tasks
in the list. A quality of service (QoS) based resource allocation model has also been
used to make sure that different constraints of concurrently running applications are
satisfied [15]. However, all these research reports are not tenant aware, and do not
take into account characteristics of multi-tenant application with a single instance
supporting multi-tenants. Calculations of computing resources, such as central proc-
essing units (CPU) and memory, required for an instance supporting multi-users are
rather straight forward and simple [10]. Calculations of resources required for an
instance supporting multi-tenants with multi-users in each tenant are new and compli-
cated. Up to now, there is no reported multi-tenant resource data model that can be
used to calculate resource requirements for multi-tenants in a shared instance. Again,
calculations of the maximum number of users in an instance on any server of specific
resources without violating any SLA requirements for a single tenant has been out-
lined [11]. Calculations of maximum numbers of users and tenants on a shared in-
stance in any server of specific resources satisfying all constraints listed on SLAs of
all tenants are new and complicated.

A hierarchical and extensible resource management system has been built to allow
the execution of multiple scheduling paradigms concurrently [16]. A number of
commercial software tools for capacity planning, resource allocation and performance
analysis for multiple applications on a set of servers are also available [16,17]. How-
ever, these commercial tools do not apply to the placement of tenants and instances
for multi-tenant SaaS applications. They primarily focus on the placement of applica-
tions to available servers based on physical resources. Since they do not know how
much resource requirements for a shared instance with additional tenants and con-
straints, a new application instance is always created and deployed for each new ten-
ant. Furthermore, most manual resource capacity estimates on servers that work
satisfactorily are those that are oversized and thus more expensive [9].

636 T. Kwok and A. Mohindra

3 Resource Calculations for Multi-users and Multi-tenants

An application can demand a number of computing resources, such as CPU, memory,
storage disk and network bandwidth, from physical hardware of the host server in a
distributed computing environment. There are several different characteristics of these
computing resources. A hard disk is considered the primary permanent storage device.
An application instance requires an initial amount of storage, such as initialization of
tables. These tables are shared among tenants and users. Additional amount of storage
is required to store data for each additional tenant or user, such as adding additional
tables and/or rows in different tables. Thus, storage usage can be assumed to be load
dependent and proportional to numbers of tenants or users. Similarly, significant
amount of memory in dynamic random access memory (DRAM) is consumed by an
instance even if there is no active tenant or user. There are paged and non-paged
memory. Non-paged memory consists of a range of virtual addresses guaranteed to be
in DRAM at all times, and paged memory can be swapped to slower system re-
sources, such as hard disk. As a result, it is very difficult to accurately project mem-
ory usage based on the number of tenants and users in a shared instance. Above all,
many applications cannot run when the system is out of memory. Thus, only the
maximum memory usage can be assumed slightly dependent on the number of tenants
and users. Hence, an estimated upper limit on memory usage is often used. In some
advance VMs, each instance may be able to use multiple CPUs if the host hardware
physically contains multiple CPUs. Unlike storage and memory, CPU usage with
same clock speed and same amount of Levels 1, 2 and 3 static RAM (SRAM) caches
can be assumed to be linearly proportional to the number of active tenants and users
because the processing speed of a CPU depends on both clock speed and cache.

For practical reasons, CPU and storage are used to illustrate calculations of re-
source requirements in this paper. For an instance supporting multi-users, calculations
are rather straight forward and simple [10]. Let r be the number of users, and C(r) and
M(r) be the CPU and storage required by an instance with multi-users, respectively.
Then,

C(r) = fCU(r) .
M(r) = M0 + fMU(r) .

(1)

where fCU(r) and fMU(r) are functions of r, assuming that the CPU instance is idle if
there is no active user. M0 is a constant representing overhead storage used by the
instance without any users. However, calculations of resources required for a shared
instance supporting multi-tenants and multi-users are new and complicated. Let t be
the number of tenants in a shared instance and n be the total number of users. Then,

C(n,t) = fCU(n) + fCT(t) .
M(n,t) = M0 + fMU(n) + fMT(t) .

(2)

where fCT(t) and fMT(t) are functions of t. These two functions are additional CPU
and storage required to isolated tenants from each other in a shared instance. For a
special case where there are two tenants t = 2 and the number of users in the two
tenants are both equal to r such that n = 2r. Let us compare resources required in this

 Resource Calculations with Constraints, and Placement of Tenants 637

special case deployed in two different computing environments. First, in two applica-
tion instances, each with a tenant and r users, and from Equations (1):

2C(r,1) = 2C(r) = 2fCU(r) .
2M(r,1) = 2M(r) = 2M0 + 2fMU(r) .

(3)

Second, in one application instance with two tenants and r users in each tenant, and
from Equations (2):

C(2r,2) = fCU(2r) + fCT(2) .
M(2r,2) = M0 + fMU(2r) + fMT(2) .

(4)

Assuming fCU(r) and fMU(r) are linearly proportional to r, taking the first order ap-
proximation:

fCU(2r) = 2fCU(r) .
fMU(2r) = 2fMU(r) .

(5)

Since a certain amount of storage is shared by both tenants, and additional amount of
storage required to isolate tenants from each other is relative small in a shared in-
stance, then:

fMT(2) << M0 . (6)

According to Equations (5) and (6):

fCU(2r) + fCT(2) > 2fCU(r) .
M0 + fMU(2r) + fMT(2) << 2M0 + 2fMU(r) .

(7)

Thus from Equations (3), (4) and (7):

C(2r,1) > 2C(r,1) .
M(2r,2) << 2M(r,1) . (8)

As a result, there are relatively large savings in those resources shared by multi-
tenants, such as storage and memory, but at the same time a little bit more usage of
resources, such as CPU and network bandwidth, for deploying multi-tenants in a
shared instance. Accordingly, many tenants should be deployed in a shared instance
instead of only one tenant per instance in a server for a multi-tenant SaaS application.

4 Resource Data Models for Multi-tenants in a Shared Instance

Up to now, there is no reported computing resource data model for multi-tenants in a
shared application instance. Functions fCU(n), fMU(n), fCT(t) and fMT(t) can be in the
form of curves or tables of measured data. Equations based partially on theory and
partially on these empirical data can be obtained by fitting these curves or tables with
interpolation or extrapolation algorithms [18]. These semi-empirical equations can be
linear, polynomial, power, exponential, logarithmic or any other types depending on
fractions of different activities, such as Web, computation, transaction and database,
involved in the application. Hypothetical data of storage requirements as a function of

638 T. Kwok and A. Mohindra

Fig. 2. Hypothetical data of storage requirements as a function of active and passive users, and
tenants

users and tenants in a shared instance are shown in Figure 2. Assuming that storage
usage by each user is independent from other users, and from the total number of
users, semi-empirical parameters based on the first order approximation are obtained
by fitting solid curves in Figure 2. However, storage usage by each tenant may in-
crease with the total number of tenants in the shared instance because additional stor-
age is required to isolate each tenant from the increasing number of other tenants.
Thus, semi-empirical parameters based on the second order approximation are ob-
tained by fitting the dotted curve in Figure 2.

As shown in Figure 2, passive users also demand storage usage but their usage is
much less than that of active users. This is also true for memory usage. Let x be the
concurrent user or peak load rate of an application instance and y be the utilization
rate of a server. Lowering the utilization rate below 1.0 will provide higher service
reliability and increase uptime, which will eliminate or reduce fines caused by missed
SLA requirements. Let u and p be total numbers of active and passive users in a
shared instance, respectively. Thus,

u = n * x .
p = n * (1.0 – x) . (9)

According to Equations (2) and (9), the total storage required by t tenants with total
number of users n in a shared instance is given by

M(n,t) = (fMU(u) + fMU(p) + M0 + fMT(t)) / y . (10)

where fMU(u) and fMU(p) are obtained from two solid curves while M0 and fMT(t) are
obtained from the dotted curve. As shown in Figure 2, M0 is the intercept on the Y-
axis when t = 0 or 1 as an application instance either requires no tenant or a minimum
of one tenant for initialization. Similarly, the total CPU required by t tenants with
total number of users n in a shared instance is given by

C(n,t) = (fCU(u) + fCT(t)) / y . (11)

 Resource Calculations with Constraints, and Placement of Tenants 639

assuming that the CPU instance is idle if there is no active user. Other computing
resources, such as memory and network bandwidth, required by multi-tenants in a
shared instance can be calculated in similar ways using either Equations (10) or (11).

5 Constraints on a Multi-tenant Application Instance

From previous two sections, calculated computing resources, such as CPU and stor-
age, based on the number of users and tenants in a shared instance are the basic or
minimum requirements of available resources in any server on which the shared in-
stance would run. However, there are also a number of constraints on limiting the
maximum number of users and tenants on this shared instance running in any server
of specific resource. These constraints can be response time, availability, user arrival
and page view rates, business transaction rate, request and transfer rates for database,
input and output operational rates on file system, as well as disaster recovery, cost and
reporting metrics, in SLA specifications. Operating the shared instance within these
constraints will reduce or eliminate fines caused by missed SLA requirements.

Fig. 3. Hypothetical data of response time as functions of user and tenant numbers

Again, calculations of the maximum number of users on an instance in any server
of specific resources without violating any SLA requirements have been outlined
[11]. However, calculations of maximum numbers of users and tenants on a shared
instance running in any server of specific resources satisfying all constraints listed on
SLA specifications of all tenants are new and complicated. For practical reasons,
response time is used to illustrate calculations of resource requirements with applied
constraints in this paper. Hypothetical data of response time limiting the maximum
number of users and tenants on a shared instance in any server of specific resources is
shown in Figure 3. Semi-empirical parameters based on the exponential approxima-
tion are obtained by fitting these two curves. Let the constraint on response time listed
on SLA specifications be 500 ms, then the maximum number of users allowed in an
instance with only 1 tenant is around 92x103 while that in a shared instance with 50
tenants is around 75x103. The maximum number of users on a shared instance with t
tenants can be found by interpolation or extrapolation of these two curves [18]. The

640 T. Kwok and A. Mohindra

maximum number of users and tenants allowed in a shared instance running on any
server of specific resources for other constraints listed on SLA specifications of all
tenants can be carried out in a similar way.

The algorithm for multi-tenant resource calculations with applied constraints is il-
lustrated with block diagrams in Figure 4. There are three main parts of this algo-
rithm. Let J be the total number of resource types and its index j is from 1 to J. For
practical reasons, only two resource types (J=2), CPU C(j=1) and storage M(j=2), are
used to demonstrate multi-tenant resource calculations in this paper. Other resource
parameters, such as network bandwidth and memory, can be added into these calcula-
tions in similar ways. Let S be the total number of available servers and its index s is
from 1 to S. In the first part, the multi-tenant active placement sensor will provide
information on current resource usages of tenants Ti with users Ni in each i of shared
instances I of applications A, as well as residual resources in available servers S. This
first part is to calculate resource demands due to new tenants ∆Ti with new users ∆Ni

on an active instance i of an application a in a specific server s. Let C0i(N+∆N,T+∆T)
and M0i(N+∆N,T+∆T) represent two sets of resource demand vectors for minimum
CPU and storage requirements due to additional tenants ∆T and additional users ∆N
on an instance i of an application a in a server s. According to Equations (2),

Fig. 4. An algorithm for multi-tenancy resource calculations with applied constraints

C0i(N+∆N,T+∆T) = C0i(N+∆N) + C0i(T+∆T);
M0i(N+∆N,T+∆T) = M0i(N+∆N) + M0 + M0i(T+∆T); i ∈ I .

(12)

The second part is to calculate resource demand vectors due to each of tenants T+∆T
with users N+∆N in an active instance i with each k of a set of applied constraints K,

 Resource Calculations with Constraints, and Placement of Tenants 641

such as response time and transaction rate. Then, the maximum resource demand
vectors are selected from k = 1 to K and t = 1 to T + ∆T:

Cmax,i(N+∆N,T+∆T) = Max{C0i(N+∆N,T+∆T),Cki(t)}; ∀ k ∈ K .
 Mmax,i(N+∆N,T+∆T) = Max{M0i(N+∆N,T+∆T),Mki(t)}; ∀ t ∈ T+∆T .

(13)

where Cki(t) and Mki(t) are resource demand vectors of CPU and storage due to con-
straint k on tenant t of instance i. The third part is to re-calculate a set of resource
demand vectors for each i of shared instances I with tenants T+∆T and users N+∆N.
Then, the resource demand for a server s is calculated by sum over i = 1 to I and a =
1 to A on each s of available servers S. The residual resource of a server s is given by
Equations (14):

Cresidual(s) = Cinitial(s) - ∑ia Cmax,i(N+∆N,T+∆T); s ∈ S .
Mresidual(s) = Minitial(s) - ∑ia Mmax,i(N+∆N,T+∆T) ; ∀ i ∈ I, ∀ a ∈ A .

(14)

where Cinitial(s) and Minitial(s) are the initial resource of CPU and storage in a server
s, respectively. Cresidual(s) and Mresidual(s) are the residual resource in CPU and stor-

age in a server s, respectively if additional tenants ∆Ti and users ∆Ni are deployed in
its shared instance i of an application a. The initial source must meet or exceed the
total resource demand of a server s for each j of all resource types J. The effective
residual resource score Eresidual(s) for all resource types J in a specific server s can
then be calculated using several different methods. In our multi-tenant resource
placement tool, a total score over all resource types J with their weighting factors wj
between 0.0 and 1.0 is used. From equations (14):

Eresidual(s) = wj=1 * Cresidual(s) + wj=2 * Mresidual(s) + ... ; s ∈ S .
∑j wj = 1.0; ∀ j ∈ J .

(15)

Priority rules can be used to set weighting factors wj of resource type j in the order of
its importance and contributions to the effective residual resource score in the list of
resource types J. Finally, specific server s* with minimum effective residual resource

score is selected for deployment of additional tenants ∆Ti and users ∆Ni in its shared
instance i of an application a.

6 The Multi-tenant Placement Model

The placement of multiple applications in a set of available servers with optimization
is illustrated in Case 1 of Figure 5. There are six available servers, namely S1, S2, S3,
S4, S5 and S6 with different initial resources and five applications, namely A1, A2,
A3, A4 and A5. Four instances of the same application A1, namely I1, I2, I3 and I4,
have been deployed on S1, S2 and S4. Instances of applications A2, A3, A4 and A5
have also been deployed on S2, S3 and S5. The principle rule of optimization in the
placement is to deploy a new instance on the server with the smallest residual re-
source left after meeting the resource requirement of this new instance. As a result,
larger chunks of residual resource will be retained in other servers for later use by an

642 T. Kwok and A. Mohindra

Fig. 5. Comparison of our new multi-tenant placement model with other previously reported
placement models for multiple applications

application instance with a higher resource demand. First, let us assume that these
application instances in Case 1 only support multi-users but not multi-tenants. Thus, a
new instance I5 of A1 has to be created and deployed for a new tenant T5 even
though there are existing instances I1, I2, I3 and I4 of the same application A1 run-
ning in S1, S2 and S4. Obviously, servers that have large enough residual resource to
meet the resource requirement of I5 are S3, S5 and S6. With optimization, the tradi-
tional placement methods [12-14] or commercial products [16,17] will deploy I5 on
S5 to leave larger chunks of residual resource on S3 and S6.

Now, let us assume that all these applications also support multi-tenants in addition
to multi-users. Once again, traditional placement methods [12-14] or commercial
products [16,17] with optimization will still deploy I5 on S5. However, the placement
result using our new multi-tenant placement model is very different. As illustrated in
Case 2, we may not need to create a new instance I5 of A1 for a new tenant T5 be-
cause there are existing instances I1, I2, I3 and I4 of the same application A1 running
on S1, S2 and S4. First, we need to test whether the residual resource in one of servers
S1, S2 and S4 would be large enough to meet the expanded resource requirement of
I1, I2, I3 or I4 with an additional new tenant T5. As shown in Case 2, the expanded
resource requirement of I1 with two tenants T1 and T5 will be within the resource
limit on S1 while that of I2 with two tenants T2 and T5 will exceed the resource limit
on S2. The expanded resource requirement of either I3 or I4 with two tenants T3 and
T5 or T4 and T5 will also exceed the resource limit on S4. Obviously, our multi-
tenant placement model with optimization will deploy the new tenant T5 into the
instance I1 as the second tenant without creating another application instance I5. Case
3 illustrates the placement of another new tenant T6 for an application A1. Once
again, the expanded resource requirement of I1 with three tenants T1, T5 and T6 will
exceed the resource limit on S1 while that of I2 with two tenants T2 and T6 will be

 Resource Calculations with Constraints, and Placement of Tenants 643

within the resource limit on S2 this time because the resource requirement for T6 is
smaller than that of T5. The expanded resource requirement of either I3 or I4 with
two tenants T3 and T6 or T4 and T6 will also exceed the resource limit on S4. Instead
of creating a new instance I6, this new tenant T6 for an application A1 will be placed
on an existing instance I2 as the second tenant.

7 The Framework and Algorithm of a Multi-tenant Placement
Tool

In an Internet data center, multiple SaaS offerings of application instances are active
on shared physical resources, such as CPU and storage, of a set of computing servers
in a distributed computing environment. When new tenants subscribe to a new SaaS
offering, these new tenants need to be assigned to new or specific active instances
under constraints due to SLA specifications of all tenants. Any server devoted to a
new offering must have the required capacity of computing resource to host a new
instance or an active instance with additional tenants and users without compromising
SLA requirements of all tenants. Moreover, security restrictions on tenants in a shared
instance cannot be violated. However, traditional application placement tools are not
tenant aware [16,17]. Their approaches primarily focus on static or dynamic place-
ment of applications to available servers based on their physical resources with or
without load balance or rebalance. In these placement tools, a new application in-
stance is always created and deployed for a new tenant. They cannot assign a new
tenant into an active instance because they do not know how much extra resource
requirements of an active instance with additional tenants and users.

An architectural framework of our multi-tenant placement tool is shown as block
diagrams in Figure 6. This framework provides capabilities of multi-tenant resource
calculations with applied constraints and the placement of tenants and instances for

Fig. 6. An architecture framework of a multi-tenancy placement tool

644 T. Kwok and A. Mohindra

multi-tenant application deployment. It consists of one output and three input mod-
ules, six essential functional modules and a multi-tenant database. The flow diagrams
in Figure 6 also show the logical flows of information among modules and database.
The “New Multi-tenant Application” module provides graphical user interface (GUI)
and scripts for an administrator to input specifications and multi-tenant data models of
a new software application or to modify existing ones. The “New Tenants and Users”
module provides GUI for an administrator to enter numbers of new tenants and users
in each tenant, and select the application required for deployment. The administrator
also enters the SLA specification for each new tenant. The “Multi-tenant Application
and SLA specification, & Data Model Container” module holds, stores, retrieves and
deliveries these multi-tenant data from and to other modules and the multi-tenant
database. The “Run Time Data Monitor” module constantly monitors and collects
resource usage profile of each active instance in each server. It also provides informa-
tion on performance parameters and utilization rate of each server. The “Multi-tenant
Active Placement Sensor” calculates resource usages of each active instance and
residual resource of each server. The “Placement Matrix Generator” constructs and
stores resource usage and residual matrices. The dimension of these matrices is two
with J x I, where J is the number of resource types and I is the number of instances in
a server. The initial resource matrix Oinitial(j,s) and residual resource matrix Ore-

sidual(j,s) of resource type j and server s are then constructed based on information
from the active placement sensor. They are used in Equations 15 of Section 5. The
“SLA Constraint Generator” module constructs and stores constraints due to SLA
requirements for new tenants, and retrieves constraints for active tenants on a shared
instance in a specific server s. The “Resource Calculations with Constraints” module

Fig. 7. A multi-tenancy placement algorithm

 Resource Calculations with Constraints, and Placement of Tenants 645

calculates required physical resources, such as CPU, memory, storage and network
bandwidth, with applied constraints for new and active tenants in a shared instance on
a specific server as described in Sections 3, 4 and 5. This is to make sure that SLA
requirements are meet for all tenants in a shared instance. Moreover, cross tenant
security restrictions are not violated, such as prohibition of tenant T1 and T2 deployed
in the same application instance I1 and/or on the same server S1.

The “Multi-tenant Placement Tool” module constructs a package for placements of
new tenants on specific instances and/or new instances on specific servers for multi-
tenant application deployment according to our proposed multi-tenant placement
model described in Section 6. The flow chart of a multi-tenant placement algorithm is
shown in Figure 7. First, resource usage of all instances I, initial and residual re-
sources of all available servers S are calculated based on information from the active
placement sensor. Second, the maximum resource demand for each shared instance i
with tenants T+∆T and constraints K are calculated as described in Section 5. Third,
the total resource demand for each server s with its shared instance i of tenants T+∆T
and its other instances I-1 are calculated. Fourth, a particular server s* with its par-
ticular instance i* of tenants T+∆T is located because its residual resource is the
minimum among all servers s, and within its resource limit. Fifth, a new instance i* is
created for new tenants ∆T if a particular s* is not found. Sixth, a particular server s*
with the new instance i* is located because its residual resource is the minimum
among all servers s with the same new instance i*, and within its resource limit. Fi-
nally, a new instance i* is created in a new server s* for new tenants ∆T if a particular
s* is still not found.

8 Implementation and Industrial Experiences

Most features and functions of the multi-tenant placement tool described in this paper
have been implemented in Java. A generic sorting algorithm has been used to match
the demand list from high to low with the residual source list from low to high. The
residual source list is sorted once again after each match or placement. Optimizations
based on the placement of one, two or three tenants at a time have been investigated.
This multi-tenant placement tool is being integrated within the provisioning subsys-
tem of an IBM internal project. Since the tool is integrated in a fully automated end-
to-end provisioning, it saves time for administrators, increases their efficiency and
productivity in managing the placement of tenants and instances for multi-tenant
application deployment by simplifying and automating the placement processes. Its
performance with two applied constraints, CPU and storage, as a function of new
tenants or servers is shown in Figure 8. The number of new tenants equals the number
of servers while the number of active tenants equals to half the number of servers.
The CPU spent on the placement algorithm is found to depend on the number of new
and active tenants, and the number of servers. Our preliminary data based just on one
set of data has indicated that the CPU spent on the placement increases linearly with
the number of new tenants or servers up to 100 tenants or servers. Results from more
data sets will be collected in the future. Our preliminary results have confirmed the
stability and usefulness of this multi-tenant placement tool. This tool has shown to
minimize the number of servers deployed, resulting in maximum cost savings, in a

646 T. Kwok and A. Mohindra

Fig. 8. The performance of multi-tenant placement tool

distributed computing environment. It has also shown to meet constraints of all ten-
ants, and provide higher service reliability and increase uptime.

For our industrial experiences, we have found that it is very time consuming and
tedious to measure tenant or user specific resource data for a new multi-tenant appli-
cation. It will be useful if we can calculate new resource data based on available re-
source data of other active multi-tenant applications using their activity correlation
functions. We have also found that it is hard to accurate project memory requirement
for multiple tenants in a shared instance. As a result, an estimated upper limit on
memory requirement is often used. Our preliminary results have revealed that several
crucial constraints, such as response time and transaction rate, always play important
roles in determining multi-tenant resource requirements. They have also indicated
that limiting factors or bottlenecks in multi-tenant applications depend on its comput-
ing activities, such as Web, transaction, computing and database. Moreover, users of
this multi-tenant placement tool have request additional functions, such as adding an
additional placement rule to assign each server with a minimum load, merging several
instances of the same application in a server into one, and migrating tenants among
instances. They would also like to use this placement tool to tell whether a specific
application would benefit from the multi-tenant deployment.

9 Conclusion and Discussion

In this paper, we have outlined calculations of resource requirements for multiple
tenants in a shared application instance with applied constraints using our hypotheti-
cal multi-tenant resource data models. We have also described novel methods for the
optimal placement of tenants and instances based on our proposed multi-tenant
placement model without violating any SLA requirements of all tenants in a set of
servers. We have architected and implemented the first of a kind, a multi-tenant
placement tool for application deployment using a minimum number of servers, and
thus with maximum cost savings in a distributed computing environment. However,
other challenges, such as database security and data isolation, tenant view filter and
data encryption, remain un-tackled. In the future, these challenges should be
addressed with proved solutions.

 Resource Calculations with Constraints, and Placement of Tenants 647

Characteristics of multi-tenancy in four different software layers: application, mid-
dleware, VM and operating system, are important factors in studying and understand-
ing limiting factors or bottlenecks in multi-tenant SaaS applications. Based on our
intuitions, the resource sharing and cost savings are relatively high for multiple ten-
ants in a shared instance while the security isolation is high and performance impact
is low for multiple instances or VMs per server. In the future, this multi-tenant place-
ment tool can be used to verify these multi-tenant characteristics once multi-tenant
resource usage data on these four different layers have been measured.

Acknowledgments. The authors would like to thank A. Karve for his work on the
integration of this multi-tenant placement tool with other IBM internal projects. The
authors would also like to thank J. Batstone for her support.

References

1. Iod: Sotware as a Service, Director Publications Ltd., London (2002)
2. Iyar, S.: Why Buy the Cow, Santa Clara (2007)
3. Kobilsky, N.: SAP CRM on-demand, SAP Forum (2006)
4. Gianforte, G.: Multiple-Tenancy Hosted Applications: The Death and Rebirth of the Soft-

ware Industry. RightNow Technologies Inc. (2005), http://wwww.rightnow.com
5. Chong, F., Gianpaolo, C., Wolter, R.: Multi-Tenant Data Architecture, Microsoft Corpora-

tion (2006), http://www.msdn2.microsoft.com/
6. Fisher, S.: The Architecture of the Apex Platform, salesforce.com’s Platform for Building

On-Demand Applications. In: Proc. of the 29th IEEE Int’l Conference on Software Engi-
neering, p. 3. IEEE Press, New York (2007)

7. Guo, J.G., Sun, W., Huang, Y., Wang, Z.H., Gao, B.: A Framework for Native Multi-
Tenancy Application Development and Management. In: Proc. of the 9th IEEE Int’l Con-
ference on E-Commerce Technology, pp. 551–558. IEEE Press, New York (2007)

8. Kwok, T., Nguyen, T., Lam, L.: A Software as a Service with Multi-Tenancy Support for
an Electronic Contract Application. In: Proc. of IEEE Int’l Conference on Services Com-
puting, pp. 28–33. IEEE Press, New York (2008)

9. Mendoza, A.: Utility Computing Technologies, Standards, and Strategies. Artech House
Publishers, Norwood (2007)

10. Herroelen, W., Reyck, B.D., Demeulemeester, E.: Resource-Constrained Project Schedul-
ing: A Survey of Recent Developments. Computers and Operations Research 25(4), 279–
302 (1998)

11. Brucker, P., Drexel, A., Mohring, R., Neumann, K., Pesch, E.: Resource-Constrained Pro-
ject Scheduling: Notation, Classification, Models and Methods. European Journal of Op-
erational Research 112, 3–41 (1999)

12. Hartmann, S., Kolisch, R.: Experimental Evaluation of State-of-the-Art Heuristics for Re-
source-Constrained Project Scheduling Problem. European Journal of Operational Re-
search 127, 394–407 (2000)

13. Kolisch, R.: Efficient Priority Rules for the Resource-Constrained Project Scheduling
Problem. Journal of Operations Management 14, 179–192 (1996)

14. Bouleimen, K., Lecocq, H.: A New Efficient Simulated Annealing Algorithm for the Re-
source-Constrained Project Scheduling Problem and its Multiple Mode Version. European
Journal of Operational Research 149, 268–281 (2003)

648 T. Kwok and A. Mohindra

15. Rajkumar, R., Lee, C., Lehoczky, J., Siewiorek, D.: A Resource Allocation Model for QoS
Management. In: Proc. of the 18th IEEE Real-Time Systems Symposium, pp. 298–307.
IEEE Press, New York (1997)

16. Islam, N., Prodromidis, A., Squillante, M., Fong, L., Gopal, A.: Extensible Resource Man-
agement for Cluster Computing. In: Proc. of the 17th Int’l Conference on Distributed
Computing Systems, pp. 561–568. IEEE Press, New York (1997)

17. Bagchi, S., Hung, E., Iyengar, A., Vogl, N., Wadia, N.: Capacity Planning Tools for Web
and Grid Environments. In: Proc. of the 1st Int’l Conference on Performance Evaluation
Methodologies and Tools, pp. 25–34. ACM Press, New York (2006)

18. Bhatti, M.A.: Practical Optimization Methods. Springer, New York (2000)

A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, pp. 649–663, 2008.
© Springer-Verlag Berlin Heidelberg 2008

SPIN: Service Performance Isolation Infrastructure in
Multi-tenancy Environment

Xin Hui Li, Tian Cheng Liu, Ying Li, and Ying Chen

IBM China Research Lab, Software Park
Beijing 100193, China

{lixinhui,liutc,lying,yingchen}@cn.ibm.com

Abstract. The flourish of SaaS brings about a pressing requirement for Multi-
tenancy to avoid dedicated installation for each tenant and benefit from reduced
service delivery costs. Multi-tenancy’s intention is to satisfy requests from dif-
ferent tenants concurrently by a single service instance over shared hosting re-
sources. However, extensive resource sharing easily causes inter-tenant
performance interference. Therefore, Performance isolation is crucial for Multi-
tenancy environment to prevent the potentially bad behaviors of one tenant
from adversely affecting the performance of others in an unpredictable manner
and prevent the unbalanced situation where some tenants achieve very high per-
formance at the cost of others. Current technologies fail to achieve the goals of
both performance isolation and resource share. This paper proposes a Service
Performance Isolation Infrastructure (SPIN) which allows extensive resource
sharing on hosting systems. Once some aggressive tenants interfere with others’
performance, SPIN gives anomaly report, identifies the aggressive tenants, and
enables a self-adaptive moderation to remove their negative impacts on others.
We have implemented SPIN prototype and demonstrate its isolation efficiency
on the Trade6 benchmark which is revised to support Multi-tenancy. SPIN fits
industry practice for a performance overhead less than 5%.

Keywords: Multi-tenancy, performance monitoring, resource accounting and
management, byte code instrumentation.

1 Introduction

Software-as-a-service (SaaS) [1] permits customers to consume software applications
in a hosting mode as an emerging software delivery model with the capabilities of
lowering total cost of ownership, fast enablement, and seamless scale-up per business
needed, especially by Small and Medium Businesses (SMB). SaaS is typically associ-
ated with "multi-tenant architecture", which is a prerequisite for a SaaS application [2,
3]. Traditionally, there would be only one instance of an application running on a
server, and this instance would only serve one customer, organization, or company
(tenant). In the SaaS world, giving each tenant a dedicated server is a huge waste of
resources and service providers want to put as many tenants on the same server as
possible. Multi-tenancy aims to enable a service environment that user requests from
different tenants are served concurrently by the least amount of hosted service

650 X.H. Li et al.

instances running on the shared hardware and software infrastructure. It requires de-
ployment of a much smaller infrastructure, in contrast to having a dedicated installa-
tion for each tenant, which bring in a number of benefits including improved profit
margin for service provider through reduced delivery costs and decreased service
subscription costs for clients.

Multi-tenancy has two different maturity patterns: the first pattern supports each
tenant with its dedicated service instance over a shared hardware, Operating System
(OS) or a middleware server in a hosting environment whereas the second pattern can
support all tenants by a single service instance over shared hosting resources. The
second pattern is more consistent with the intention of Multi-tenancy. In the environ-
ment of pattern two, the tenant would naturally desire to access and use the service as
if there were dedicated ones. However, extensive resource sharing easily causes inter-
tenant interference on performance. To evolve from pattern one to pattern two and
achieve more efficient Multi-tenancy hosting, performance isolation is crucial to pre-
vent the potentially bad behaviors of one tenant from adversely affecting the perform-
ance of others in an unpredictable manner and prevent the unbalanced situation where
some tenants achieve very high performance at the cost of others.

At present, virtualization technology is used to enable the isolation needed by
Multi-tenancy and isolation management [4, 5, 6]. Some directly depend on Virtual
Machines to create service hosting environments that provide logical boundaries be-
tween tenants. Although these works can help to adapt current software and hardware
for Multi-tenancy with the least cost, virtualization technology belongs to the pattern
one and is not able to cater for the demands of Multi-tenancy. They restrict resource
sharing between different tenants and cause additional management cost.

There are improvements on the original adoption of virtual machine to reduce the
amount of exclusive and dedicated computing resource. SWSoft’s Virtuozzo product
[7] is an example of that technology. This architecture allows service partitions to be
created and configured differently from one another. Although it is tremendously
valuable to SaaS hosters for optimizing their machine allocation, especially for these
ISVs having the same system requirements, virtual service partition in general is not
an effective method for Multi-tenancy, since it needs a different service instance for
each partition and does not support multi-tenants to share all resources of hosting
platform.

Normally, hosting systems have sufficient resources to meet basic requirements of
tenants, but they can not provide enough resources to meet everything that every
tenant might want with variations on the workload from some aggressive tenants. The
performance experienced by the workload from a given tenant suffers from such re-
source unavailability. We call this situation as Instable state where the hosting sys-
tems have acted their processing capability to the full extent, even exhaustingly to
crash, but can not satisfy requests of every tenant. With this in mind, we advocate a
service performance isolation infrastructure (SPIN) which achieves efficient isolation
and extensive resource sharing simultaneously. SPIN makes anomaly detection for
instable state, identifies aggressive tenants, and enables the multi-tenancy system to
self-adaptively remove negative impacts of the aggressive tenants on others. SPIN has
been implemented as a Plug-in, independent of server and service implementations.
The practice of SPIN in the revised Trade6 [8] demonstrates its accuracy of anomaly
report, effectiveness of performance isolation and little perturbation to the running

 SPIN: Service Performance Isolation Infrastructure in Multi-tenancy Environment 651

service (less than 5% performance overhead). The implementation and experiment of
SPIN is made based on Web service, a specific kind of popular service.

The rest of this paper proceeds as follows. Section 2 studies the requirements on
performance isolation infrastructure and design of SPIN. Section 3 describes our
prototype implementation. Section 4 evaluates the effect of SPIN with business ser-
vice benchmark. Finally, Sections 5 and 6 discuss related work and conclusions.

2 Service Performance Isolation Infrastructure (SPIN)

In this section, we first outline the requirements of performance isolation in the com-
plex multi-tenant environments. We then examine how to meet these requirements in
our design.

Isolation. The infrastructure should prevent aggressive tenants from interfering with
others. Request from different tenant will trigger different execution in the backend
modules because the instances of these modules are shared among all the tenants
sharing the same suite of resources. For this propose, it is necessary to account re-
source usage for different tenants during their access the shared modules to under-
stand the performance factors of hosting platform. It is not permitted for some
aggressive tenants to encroach resources and cause others’ performance decreasing.

Efficiency. The infrastructure should maximize the overall utilization of resources on
hosting platform, which is the intention to induce Multi-tenancy. This might be
achieved by placing a loose upper bound on resource usage of different tenants. Pre-
reservation of resources [4, 9, 10] can not satisfy this point. This goal is motivated by
the fact that systems are likely to have sufficient resources to meet basic requirements
of tenants, but they probably do not have sufficient resources to meet everything that
tenants might want.

Self-adaptability. The infrastructure should not require user intervention or manual
tuning. This goal is motivated by the large number of tenants which a hoster may
serves as well as the wide range of services and system configurations likely to be
involved.

To meet the above requirements, three principal functionalities, performance
anomaly detection, system monitoring and adaptation decision, are provided in SPIN:

The anomaly detection functionality of SPIN is responsible for signaling the oc-
currence of instable status in the execution environment. The anomaly detection facil-
ity identifies and analyzes any significant variations happening on the performance
metrics, especially the variations those might potentially affect the system’s behavior
in the immediate future. In this way, the infrastructure can preemptively adapt the
system to prevent predicted performance problems from actually occurring.

Although some work [11,12,13,14] has been made on the performance of service
system in the passed years, there are primarily two points preventing these technolo-
gies applied in our anomaly detection. One point is their dependency on threshold. It
is difficult to give threshold values in a deterministic and automatic way since the
presence of Multi-tenancy brings out the complexity and randomness into present
service system. The other point is that they pay no attention on the prediction of

652 X.H. Li et al.

instability. In practice, it is more important to predict and avoid problems on resource
usage in the near future than to remove the negative impact already caused.

The monitoring functionality is responsible for collecting runtime data from the
service components and their execution environment. On one hand, the data are used
for detecting performance anomalies in service hosting platform. On the other hand,
resource consumptions of each tenant must be accounted to identify which tenant is
aggressive and whether the system serves that tenant with effective resource usage.

Under the complex Multi-tenancy environment, existing resource accounting tech-
nologies are impracticable. They [15,16,17,18] uses processes or threads as the ac-
counting unit, while the real-life service applications run with multiple threads’
concurrent execution. An individual thread may traverse various modules of services
in the system. Further more, in the widely used thread pool one thread at one time
serves one service and it will serve another service soon. And one instance of service
serves several tenants and its execution is unaware to underlying thread or process.

The adaptation decision functionality of the infrastructure applies optimal solu-
tions to those detected or predicted performance problems. If the state is instable, we
identify the aggressive tenants from others based on their abnormal resources usage.
Optimal moderation policy will be adopted automatically to isolate the negative effect
and prevent the interference with other tenants.

SPIN starts System monitor and anomaly detection from the beginning. Anomaly
detection is made on the data got by system monitor and reports anomaly state of the
single service instance near before instability's happening. Simultaneously, the re-
source consumptions on the hosting system are also monitored and accounted on each
tenant’s behalf during their service usage. Once anomaly report is given, the resource
consumption trend of different tenants is analyzed to identify which tenant's behavior
causes the instability. Then, adaptive decision function is activated and moderation
policy is executed automatically on the identified tenant to remove its negative effect
on the performance of other tenants. These main functionalities are discussed in de-
tails over the following sections.

2.1 Anomaly Detection Model

For SPIN, we propose a new model to achieve sensitive anomaly detection. Wallace
has proven in his paper [4] that the relationship between the mean arrival rate of ser-
vice requests and the mean service rate is proven tightly correlated with the stability
of system. If the difference between the arrival rate and service rate is positive, the
system is stable and the request arrivals do not beyond the processing capability of the
system; otherwise, the system is instable. In this model, the value of difference is used
to execute the anomaly detection instead of the dependency on any threshold. Besides
Queueing Theory, the model adopts a combination of Discrete Wavelet Transform
(DWT) multi-resolution analysis [19] and Autoregressive (AR) model [20] to make a
prediction on the difference value. It is named with WAQ accordingly. In this way,
instability of service system in the short term is predictable, which provides conven-
ience for system moderation and is favorable to health maintenance. Followings are
the detailed calculation process.

 SPIN: Service Performance Isolation Infrastructure in Multi-tenancy Environment 653

For model WAQ, the following data items are got by monitoring as the inputs:

(,) 0,1,2,...,i ic t i k= (a)

Where represents the number of requests that enter the service system at sampling
time ,

(,) 0,1, 2,...,i ib t i k=

(b)

Where represents the number of requests that have been processed at sampling
time ,

From the above data items (a) and (b), we can derive the pure increasing rate by
Equation (1):

1

, 1,2,3,...,i i
i

i i

c b
x i k

t t −

−= =
−

(1)

Let series {Xi} i= 1,2,..,k be the input of prediction model. In the prediction model,
the original discrete series of pure increasing rate is firstly decomposed into approxi-
mate series and several detail series. The result of single branch reconstruction of
each decomposed series is more unitary than the original series in frequency, and it
can be easy to predict by autoregressive method. At last, the prediction value of in-
creasing rate can be obtained by synthesis of each reconstructed series’ prediction
result [20]. The prediction process works as follows:

Firstly, and are got respectively by Mallat Algorithm [21] as
the approximate series and detail series at resolution level j. In this way, the original
series {Xi} i= 1,2,..,k is transformed into a set of stationary series and AR model is a
powerful tool for prediction of such series [22]. The predicting expressions can be
expressed as Equation (2) and (3):

, 1 , 1
1

1,2,...
p

j k i j k i
i

a a jφ+ − +
=

= =∑

(2)

, 1 , 1
1

1,2,...
p

j k i j k i
i

d d jφ+ − +
=

= =∑

(3)

Where and are the prediction values of approximate series and detail
series at resolution level j respectively. is the corresponding coefficients of

AR(p). Then, and are reconstructed respectively from
and by Mallat Algorithm.

As Equation (4) presents, is derived as the prediction value of time from
the original increasing rate series {Xi}.

~ ~ ~ ~ ~

1 1, 1 2, 1 , 1 , 1...k k k j k j kx d d d a+ + + + += + + + + (4)

654 X.H. Li et al.

If >0, the system will be instable at the time and the anomaly report is
sent out.

2.2 System Monitoring

System Monitoring function of SPIN gets inputs to feed Anomaly Detection Model
and accounts resource usage on behalf of each tenant. When Anomaly Detection
Model triggers an anomaly report, aggressive tenants will be identified according to
the characteristics of their resource consumption.

Model inputs are got by accounting how many requests come to the server and are
processed every sampling interval. Following sections introduce the design of SPIN
on resource accounting for each tenant.

2.2.1 Resource Consumption Accounting on Behalf of Tenants
In SPIN, we adopt a new mechanism to monitor resource usage within the service
execution and allow the proper assignment of resource usage to tenants. The design of
monitoring mechanism is guided by two key constraints. The first is that the monitor
function must keep active during the normal service execution to provide the ability
of resource consumption tracking and therefore have minimal discernible impact to
the service’s runtime performance. As for the resources we focus, CPU and memory
are our primary focus. The second constraint originates from the fact that hoster plat-
form is dynamically deployed with object code service applications. This means that
there is no opportunity to use the source code to implement the function of monitor-
ing. Meanwhile, we do not make any modification on service container regarding the
applicability of SPIN in practice.

The whole monitor is event based. Two kinds of events are triggered and listened:
one is triggered by entry or exit of a service boundary, the other event is produced
when some resource is consumed, like the allocation of memory.

For every boundary change event, present executing service is put into a stack,
named accounting stack, for resource accounting. The accounting stack is designed to
easily find present running tenant on which resource is accounted. Otherwise we have
to get the whole stack of thread and walk it down to find the present executing service
and tenant. Massive performance overhead will be induced into service running to
frequently get stack data and walk stack.

For every resource consumption event caught, the top unit is gotten from the ac-
counting stack as the owner of the resource consumption. In other words, the account-
ing stack is active at the time of resource being consumed and used as the context
within which to determine accountability. Section 3 discusses the specifics of the
implementation of accounting stack and accounting process.

2.2.2 Aggressive Tenants Identification
After the anomaly report, it is needed to identify aggressive tenants who are apt to
consuming resources faster than others. They consume resource with a trend of
growth, even snatch resource from other tenants and cause the degradation of others.
The identification is made offline for performance consideration.

For each tenant, all the accounting events are recorded. Based on these events, the
time series of each tenant’s resource consumption is provided to users. Because the

 SPIN: Service Performance Isolation Infrastructure in Multi-tenancy Environment 655

absolute volume of resource consumption of different tenants can fall in different
scale ranges, the percentage of each tenant's consumption in all is calculated and used
to execute clearly comparison among all tenants.

We rank tenants according to the ratio of resource volumes between two consecu-
tive accounting events (For convenience of description, the events are presented by ti
and ti-1, i>=1, and the volumes of the two events are presented by Vti and Vti-1.), find
the tenants with maximum ranks and report the tenant as aggressive ones. Because
resource usage can be different from one request to another, the ratio value of one
tenant may fluctuate up and down. We uses a decay factor f, where 0 <f < 1 to adjust
for the jitter. We considers only those tenants whose volumes satisfy Vti > (1-f)*Vti-1
on consecutive accounting events as potential candidates. The decay factor keeps the
ratio value of tenants that shrink a little in this accounting time, but which may ulti-
mately be growing. We find that the decay factor is increasingly important as the size
of the resource accounts decreases. Choosing the decay factor balances between too
much information and not enough.

To rank tenants, we firstly calculate the growth factor (G) of each accounting event
as Gti = Pti*(R-1), where P is the number of accounting event (ti) that Vti has been
potentially growing and R is the ratio of Vti at this event and Vti-1 at the previous
event such that R>1, since R>1, G>0. Each tenant’s rank Rti is calculated by accumu-
lating the growth factors G over several accounting events such that absolute growth
is rewarded (Rti = Rti+Gti) and decay is penalized (Rti= Rti-|Gti|). Higher ranks repre-
sent a higher likelihood that the corresponding volume of the tenant grows aggres-
sively. Since we only report tenants that have been potentially growing for some
minimum number of events, we do not report the tenant related with a rise appearing
firstly in a series.

2.3 Adaptation Decision

Design of moderation policy is not the focus of this paper, but SPIN indeed provides
an open infrastructure to adopt freely policy for the moderation of service behavior to
requests from aggressive tenants. It helps to set and enforce effectively proper policy
to limit or isolate the negative effect of aggressive tenants on others.

3 Implementation of SPIN

In this section, the challenges met during our implementation of System Monitoring
are described considering the goals of not modifying source code and providing a
runtime monitoring with low performance overhead. Implementations of the other
two functions focus on the algorithms in Section 2 and are omitted here to save space.
System Monitor function is executed by two main phases, the instrumentation phase
and the data collection phase. The instrumentation phase consists of bytecode instru-
mentation of the services and operations to be monitored. The data collection phase
consists of running the program, gathering resource usage data, and accounting the
consumption on proper tenants. They are respectively introduced in the following two
sections.

656 X.H. Li et al.

3.1 Instrumentation to Maintain Accounting Stack

The Accounting Stack is implemented through the instrumentation of all service inter-
face methods’ entry and exit points with specific method calls. For every tenant, an
accounting stack is built at the first time this tenant sends request for service usage. In
the instrumentation phase, bytecodes of the services to be monitored is manipulated to
insert the methods that maintain the Accounting Stack. On a Web service’s entry a
stack frame containing boundary information is pushed onto the Accounting Stack.
On a Web service’s exit a stack frame is popped from the stack. For every resource
consumption event, resource consumed is accounted on owner of present accounting
stack. In this way, a complete record is kept on the service chain accessed by this
tenant and resource usage during the service time. It should be noted that we perform
the instrumentation integrated with service lifecycle as a part of service deploy proc-
ess. An array of statically allocated stack elements is employed here to avoid dynamic
memory allocation and de-allocation during the push and pop operations. This help to
address the efficiency concerns.

3.2 Data Collection by Resource Consumption Agent

Accounting Stack calculates the accounting unit. Meanwhile, determining resource
consumption and billing the current accounting unit are the responsibilities of Re-
source Consumption Agent. We have built prototypes for two important resources,
CPU and the Java heap.

The center of Resource consumption agent is a native agent with architecture pre-
sented in Figure 1. Two trackers are built to collect CPU usage and Memory usage
respectively. CPU Tracker probes CPU for calculation of cycles by sampling. Every a
sampling interval, the consumption of CPU in this interval are accumulated and ac-
counted on the Current Accounting Tenant (CAT) which is reserved in Accounting

Accounting
Stack

JVMTI
BCI

ObjectFree
hook

Push/Pop
Service ID

vmObjectAlloc
hook

Object
<init>

callback

newarray
bytecode
callback

cl
as

sl
oa

d

Object Allocated
Object
Freed

Current
Tenant

Service Implementation

CAU Change
callback

Memory Tracker CPU Tracker

Tenant/Service ID, MemoryAlloc, MemoryFree, MemoryNet, CPUTime, CPUInst
Tenant/Service ID, MemoryAlloc, MemoryFree, MemoryNet, CPUTime, CPUInst

JVMTI
BCI

Fig. 1. Java Native Agent

 SPIN: Service Performance Isolation Infrastructure in Multi-tenancy Environment 657

Stack. Similarly, Memory tracker tracks memory allocation and de-allocation. We
implement trackers by a Java Virtual Machine Tool Interface (JVMTI) agent. JVM TI
[23] provides a set of standard interfaces for tracking object lifecycles and the state of
JVM. A JVM TI agent can be notified of interesting occurrences through events and
can control the service application through many functions, either in response to
events or independent of them.

Special attention should be paid to the accounting of reusable resource, like mem-
ory allocated on Java Heap. The memory allocated will be reclaimed if it is no longer
used. Each time an object is allocated, the object is also tagged with the ID of the
accounting tenant. Tracking object deallocation is relatively simpler: JVM TI pro-
vides an event callback, i.e. ObjectFree, which notifies us every time an object is
freed. On an object free event, we retrieve the tag of the freed object to determine the
accounting tenant that was charged for this object. The memory consumption of that
tenant is decreased accordingly.

Another point needs attention is the JNI cost caused by Accounting Stack which
must communicate any change in the CAT to the Resource Consumption Agent.
While our Agent runs in native space and as such the CAT must be made available in
native space. To reduce the cost, we have used java.nio.ByteBuffer, whose instance is
allocated outside the garbage-collected heap and can be accessed from both Java and
native code. The use of ByteBuffer has been proved much more efficient to copy the
CAU into native space than a Java native method does. On each object allocation, the
Resource Accounting Agent retrieves the current accounting tenant from the Byte-
Buffer and charges it for the allocation.

4 Experiments and Evaluation

IBM Trade6 works as a performance benchmark and Web service sample application
by providing a real-world workload, enabling performance research and verification
test of the service Platform. It models an electronic stock brokerage providing Web
services-based online securities trading. Routine stock operations, such as selling,
watching holdings, and so on, are encapsulated into Web services and accessed by
client at the runtime. We have revised Trade 6 to enable Multi-tenancy and adopt it in
our experiments to SPIN’s effectiveness on performance isolation and measure over-
head of SPIN implementation.

Experiment Configuration: We deployed Trade6 backend Web services on a
2.66GHz desktop with 2GB RAM, Windows XP, WebSphere Application Server
V6.1, and DB2 V8.2. WebSphere Application Server is configured to use 1G heap.
Trade 6 provides a stress client to simulate workload and service requests and we put
it on another desktop with the same configuration parameters. The two machines are
connected by 100Mbps LAN.

Experiment Scenario: We simulate the case that Trade6 serves five tenants, identi-
fied as tenant 0 to tenant 4. At the beginning, requests from 5 tenants are balanced, i.e.
the request numbers of different tenants are identical. After 2 minutes, the request
number from tenant 0 is increased largely so that the increase has negative impact on
performance of other tenant or even pushes the whole system to the edge of crashing.
What we want to see from this experiment is how SPIN can help in such scenario.

658 X.H. Li et al.

Following sections give detailed experiment data and explanation on anomaly report,
isolation effectiveness and performance overhead of SPIN.

4.1 Anomaly Report

The experiment concerns firstly anomaly detection of WAQ model. Two time series
alpha (Fig.2 (a)) and beta (Fig.2 (b)) are got by monitoring with a sampling interval
of 100 milliseconds. The alpha series and beta series are respectively the arrival proc-
ess and service process of hosting system. Series y=alpha-beta (Fig.2 (c)) represents
the changes on processing capability of service system over time. Some bursts occur
around the time points 300, 600, 1000, 1600, and 2000.

Fig. 2. Time series of service request arrival (a), request processing (c), and pure request in-
crease (c) with settings of 2000 thread and 1500 times iterations

In our analysis, decomposition is made on the series at the resolution level one for
clear experiment. WAQ threw out anomaly report after 190000 milliseconds since the
start of the benchmark. In comparison, we do not adopt any moderation in the first
running and find the service system finally collapse after about 20000 milliseconds
later than the anomaly report.

Figure 3 presents that the predicted curve consists well with the monitored one,
which demonstrates that WAQ can predict the changes both in arrival rate and service
rate efficiently, no matter how wild fluctuations are. The accuracy of presented pre-
diction (see Tab.1) is studied in terms of MRE (Mean Relative Error) [20]. Table.1
illustrates that the precision improves as the order of AR used in WAQ increases.
Here we think that the parameter of order is properly set to “50” for the high precision
and smaller computational complexity of WAQ.

 SPIN: Service Performance Isolation Infrastructure in Multi-tenancy Environment 659

Fig. 3. Comparison of pre-series and post-series with ARP(15)

Table 1. MRE of Arrival Rate with different AR(p)

2.25%3.08%4.68%6.34%20.11. %36.94%MRE

AR(60)AR(50)AR(40)AR(30)AR(15)AR(5)

2.25%3.08%4.68%6.34%20.11. %36.94%MRE

AR(60)AR(50)AR(40)AR(30)AR(15)AR(5)

4.2 Isolation of Aggressive Tenant

After the anomaly report, the trace file written by system monitoring during service
access is analyzed and resource volume of each tenant is collected. Figure 4 presents
how CPU consumptions of every tenant change from the start to the anomaly report
time. Other resources, such as memory, are omitted here to save space. In the forepart
of the curves, each tenant consumes similar CPU cycles. A sudden rise occurs on the
curve from the time of 1340. Tenant 0 is identified as the aggressive tenant because
its consumptions of CPU cycles show the fastest increasing rate.

0

500

1000

1500

2000

1

1

9

4

1

2

0

1

1

2

0

8

1

2

1

5

1

2

2

2

1

2

2

9

1

2

3

6

1

2

4

3

1

2

5

0

1

2

5

7

1

2

6

4

1

2

7

1

1

2

7

8

1

2

8

5

1

2

9

2

1

2

9

9

1

3

0

6

1

3

1

3

1

3

2

0

1

3

2

7

1

3

3

4

1

3

4

1

1

3

4

8

1

3

5

5

1

3

6

2

1

3

6

9

1

3

7

6

1

3

8

3

1

3

9

0

1

3

9

7

1

4

0

4

Time(*100 Millisecond)

C
y
c
l
e
s
(
*
1
0
0
0
0
0
0
)

tenant0 tenant1 tenant2 tenant3 tenant4

Fig. 4. CPU consumption curve for each tenant

With the rise of tenant 0, obvious drops lie on other tenants’ consumption which
decreases to almost 0 near the anomaly report time, 1407. Tenant 0 has already im-
pacted negatively on other tenants. Without SPIN, the duration of this status will
finally lead the non-aggressive tenants into the danger of starvation and service sys-
tem into crash. The SPIN implementation adopts a direct policy to restrict and serve

660 X.H. Li et al.

0

200

400

600

800

1000

1200

1400

1600

1

1

9

4

1

2

0

2

1

2

1

0

1

2

1

8

1

2

2

6

1

2

3

4

1

2

4

2

1

2

5

0

1

2

5

8

1

2

6

6

1

2

7

4

1

2

8

2

1

2

9

0

1

2

9

8

1

3

0

6

1

3

1

4

1

3

2

2

1

3

3

0

1

3

3

8

1

3

4

6

1

3

5

4

1

3

6

2

1

3

7

0

1

3

7

8

1

3

8

6

1

3

9

4

1

4

0

2

1

4

1

0

1

4

1

8

1

4

2

6

1

4

3

4

1

4

4

2

1

4

5

0

1

4

5

8

Time(*100 Millisceond)

C
y
c
l
e
s
(
*
1
0
0
0
0
0
0
)

tenant0 tenant1 tenant2 tenant3 tenant4

Fig. 5. CPU consumption curve with the moderation function open of SPIN

the requests from tenant 0 in the inverse ratio of its rise. Figure 5 presents the curve
under the same simulation of workload with the moderation of SPIN open. The
growth of Tenant 0 is limited not to reach the dangerous peak. The CPU consump-
tions of other tenants originally decrease and generally experience rallies. The per-
centages of non-aggressive tenants’ consumption taking in all basically recover to the
balanced state, which demonstrates the effectiveness of SPIN to keep performance
isolation in Multi-tenancy environment. In practice, it is suggested to adopt a modera-
tion policy consistent with SLA of different tenants.

4.3 Performance Overhead

To understand performance overhead brought into the original execution of service
system, we watch the values of average response time before and after adoption of
SPIN. To observe the values under different scales of workload, we tune two parame-
ters, the number of threads (simulated clients) executing service access and iterations
times executed in each thread. Performance overhead is calculated as (Ti-To)/To for
each different setting of the two parameters, where Ti and To are the average response
time with SPIN and original benchmark respectively.

Figure 6 presents the overhead histograms with various settings of thread number
(the parameter of iteration times is set to 2000) and interaction times (the parameter of
thread number is set to 1500). For each setting, the benchmark runs 10 times, and the
final results are obtained by calculating the geometric mean of the median of setting.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1000 1100 1200 1300 1400 1500 1600 1700 1800 1900

Thread Number

O
v
e
r
h
e
a
d

(
%
)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1500 1600 1700 1800 1900 2000 2100 2200 2300 2400

Iteration Number

O
v
e
r
h
e
a
d

(
%
)

Fig. 6. Overhead histograms with various thread number and various interaction times

 SPIN: Service Performance Isolation Infrastructure in Multi-tenancy Environment 661

Overhead values with different settings are all less than 5%, which presents little
negative impact caused by SPIN and its practicability under product environment.

5 Related Works

Performance isolation is not a new idea [24]. Jordan et al. [25] applies the concept of
a Java resource accounting interface to isolate applications inside a JVM at the granu-
larity of isolates to J2EE platforms. In comparison, our work focuses on performance
isolation of tenants on the same copy of service. Work in [25] still depends on the
resource reservation approaches and thresholds setting to limit the performance fac-
tors of isolations. Isolation for single Java virtual machines have been studied exten-
sively [26, 27] and they focus on the security of multi-task in one JVM.

Authors in [11, 12] apply Queuing Theory in the study of Web service and adopt
response time, throughout and reliability to evaluate performance of a service system.
Three birth-death (BD) models are introduced in [13] to prove results on system
throughput with the condition that the parameters of BD process have the same ratio.
Renaud et al [14] address failure rate for the Web services market using Markov chain
and Queueing Theory. They do not concentrate on the identifying how and when a
service system becomes instable, but the comprehensive evaluation of performance.

In addition, there are some prior works for dealing with performance problems in
server applications. That include request deletion in web servers [28], request prioriti-
zation or frame dropping in multi-media or real-time applications [29], and the crea-
tion of system level constructs supporting these application-level actions [30,31].
They share with adaptive techniques the use of runtime system monitoring and of
dynamically reacting to certain monitoring events, but they differ in that focus is put
on the decision of proper moderation policy. No attention is paid by them on the
anomaly detection of service system. Moreover, they do not care about the resource
monitoring at levels other than Process.

6 Conclusion and Future work

SPIN is purposed in this paper to achieve performance isolation of Multi-tenants on
the service hosting platform with the maximum resource share. By a detection inde-
pendent of any threshold, SPIN gives anomaly report in advance of the instability of
service system. Resources, like CPU, consumed during service access are accounted
on behalf of each tenant. Tenants whose consumption presents a trend of continuous
growth are identified as aggressive ones that moderation will execute on. SPIN has
been implemented open to self-tuning moderation without relying on user’s input or
directions. Practice of SPIN in Trade6 which has been revised to Multi-tenancy model
demonstrates its accuracy of anomaly detection, effectiveness of isolation, and the
low performance overhead (less than 5%).

Next step, we plan to adapt SPIN for SLA of different tenants. We will build sepa-
rate anomaly detection for various tenants. Especially, proper moderation policy
needs to design considering various SLA.

662 X.H. Li et al.

References

1. Carraro, G., Chong, F.: Software as a Service (SaaS): An Enterprise Perspective, Micro-
soft2. Corporation (October 2006), http://msdn2.microsoft.com/

2. Gianforte, G.: Multiple-Tenancy Hosted Applications: The Death and Rebirth of the Soft-
ware Industry. RightNow Technologies Inc. (2005), http://www.rightnow.com

3. Chong, F., Carraro, G., Wolter, R.: Multi-Tenant Data Architecture, Microsoft Corporation
(2006), http://msdn2.microsoft.com/

4. Tsai, C.-H., Ruan, Y., Sahu, S., Shaikh, A., Shin, K.G.: Virtualization Based Techniques
for Enabling Multi-tenant Management Tools. DSOM, 171–182 (2007)

5. Czajkowski, G., Daynes, L.: Multitasking without compromise: a virtual machine evolu-
tion. In: Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA
2001 (November 2001)

6. Foster, I., Kesselman, C.: The Grid: Blueprint for a New Computing Infrastructure. Mor-
gan Kaufmann, San Francisco (1999)

7. SWSoft, Virtuozzo, http://www.sw-soft.com/virtuozzo
8. IBM. WebSphere Application Server, Trade6 benchmark,

https://www14.software.ibm.com/wbapp/iwm/web/preLogin.do?sou
rce=trade6

9. Waldspurger, C.A.: Memory resource management in vmware esx server. SIGOPS Operat-
ing Systems Review 36, 181–194 (2002)

10. Jones, S.T., Arpaci-Dusseau, A.C., Arpaci-Dusseau, R.H.: Geiger: Monitoring the buffer
cache in a virtual machine environment. In: The 12th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS-XII), pp.
14–24 (2006)

11. Hopp, W.J.: Single Server Queueing Models. In: Chhajed, D., Lowe, T. (eds.) When Intui-
tion Fails: Insights From Basic Operations Management Models and Principles. Springer,
Heidelberg (scheduled for publication, 2007)

12. Hall, R.W.: Queueing methods for services and manufacturing. Prentice-Hall, Englewood
Cliffs (1990)

13. Feng, W.: Improving Service for Service Systems with Different Arriving Rate, PDCATa-
pos. In: Proceedings of the Fourth International Conference on Volume, pp. 315–318 (Au-
gust 2003)

14. Renaud, O., Starck, J.L., Murtagh, F.: Wavelet-based Forecasting of short and long mem-
ory time series [EB/OL]

15. Czajkowski, G., Eicken, T.V.: Internet Servers, Safe-Language Extensions, and Structured
Resource Control. In: Proceedings of the Technology of Object-Oriented Languages and
Systems, Nancy, France, pp. 295–304 (1999)

16. Hulaas, J., Kalas, D.: Monitoring of Resource Consumption in Java-based Application
Servers. In: Proceedings of the 10th HP OpenView University Association Plenary Work-
sop (HPOVUA 2003), Geneva, Swizerland (2003)

17. Liang, S., Viswanathan, D.: Comprehensive Profiling Support in the Java Virtual Machine.
In: Proceedings of the 5th USENIX Conference on Object-Oriented Technologies and Sys-
tems (COOTS 1999), San Diego, CA, pp. 229–240 (1999)

18. Sutherland, D.F., Greenhouse, A., Scherlis, W.L.: The Code of Many Colors: Relating
Threads to Code and Shared State. ACM SIGSOFT Software Engineering Notes 28(1),
77–83 (2002)

19. Liu, Z.-X.: Short-term load forecasting method based on wavelet and reconstructed phase
space. Machine Learning and Cybernetics 8, 4813–4817 (2005)

 SPIN: Service Performance Isolation Infrastructure in Multi-tenancy Environment 663

20. XiangXu, B., XinMing, Y., Hai, J.: Network Traffic predicting based on wavelet transform
and autoregressive model. In: Tsui, F.-C., Sun, M., Li, C.-C., Sclabassi, R.J. (eds.) Recur-
rent neural networks and discrete wavelet transform for time series modeling and predic-
tion, ICASSP, vol. 5(9-12), pp. 3359–3362 (May 1995)

21. Akaike, H.: Fitting autoregressive models for prediction. Annals of the Institute of Statisti-
cal Mathematics 23(1) (December 1971)

22. Mallat, S.G.: A Theory for Multiresolution Signal Decomposition: The Wavelet Represen-
tation. IEEE Transactions on pattern analysis and machine intelligence 11(7), 674–693
(1989)

23. Sun Microsystems, Inc. JVM Tool Interface (JVMTI), http://java.sun.com/-
j2se/1.5.0/docs/guide/jvmti/

24. Barham, P., Dragovic, B., Fraser, K., et al.: Xen and the art of virtualization. In: Proceed-
ings of the 19th ACM Symposium on Operating Systems Principles, SOSP 2003 (2003)

25. Jordan, M.J., Czajkowski, G., Kouklinski, K., et al.: Extending a J2EETM Server with
Dynamic and Flexible Resource Management International Middleware Conference, Mid-
dleware 2004 (2004)

26. Czajkowski, G.: Application isolation in the Java Virtual Machine. In: Proceedings of the
15th ACM SIGPLAN conference on Object-oriented programming, systems, languages,
and applications, OOPSLA 2000 (2000)

27. Back, G., Hsieh, W., Lepreau, J.: Processes in KaffeOS: Isolation, Resource Management,
and Sharing in Java. In: Proceedings of the 4th International Conference on Operating Sys-
tem Design and Implementation (OSDI), San Diego, CA, pp. 334–346 (2000)

28. Provos, N., Lever, C.: Scalable Network I/O in Linux. In: Proceedings of the USENIX
Technical Conference, FREENIX track (2000)

29. Sundaram, V., Chandra, A., Goyal, P., et al.: Application performance in the QLinux mul-
timedia operating system. In: Proceedings of the 8th ACM International Conference on
Multimedia 2000 (2000)

30. Poellabauer, C., Schwan, K., West, R., et al.: Flexible User/Kernel Communication For
Real-Time Applications In Elinux. In: Proceedings of the Workshop on Real Time Operat-
ing Systems and Applications (2000)

31. West, R., Schwan, K.: Dynamic Window-Constrained Scheduling for Multimedia Applica-
tions. In: Proceedings of the IEEE International Conference on Multimedia Computing and
Systems, ICMCS 1999 (1999)

Management as a Service for IT Service
Management

Bo Yang, Hao Wang, and Ying Chen

IBM China Research Lab., Beijing 100193, China
{yangbbo,wanghcrl,chenying}@cn.ibm.com

Abstract. With the advent of the distributed computing model, IT ser-
vice management has to face ranging from simple point products to entire
enterprise frameworks to address the various multi-device systems man-
agement challenges. The existing technology offerings rarely solve the
entire problem because they are expensive to purchase, difficult to imple-
ment, and do not incorporate the full range of features and functions to
meet the systems management requirements today’s organizations face.
Now, with low-cost information appliances creeping their way into the data
center, the only way to truly address today’s heterogeneous IT challenge
is to enable systems management capabilities at the service level. IT pro-
fessionals should be able to simply take management service and accumu-
lated knowledge to improve management performance. A new approach to
IT service management is emerging that enables this level of integration.
Management as a service (MaaS) enable IT service management to build
network management appliances, services and knowledge repository that
are extremely flexible and capable of evolving as customer needs evolve.
MaaS implementations unify different systems management features and
products into a common management environment that spans all system
management types. MaaS-based management service offer greater flexi-
bility and more cost-effective implementation than any enterprise frame-
work can achieve. MaaS helps to make full use of the benefits offered by
enterprise’s converged network by identifying and resolving problems more
quickly, more accurately, less expensively, and with more visibility than si-
los might be able to achieve on enterprise own.

1 Introduction

Agility of a company’s response to customer demand has been recognized as a
critical success factor to meet the global competition in current market environ-
ment [1][2]. More and more complex IT service assets that supporting business
application require an automatic and flexible ability to react to the dynamic
market environment, which forces companies to improve their efficiency and
flexibility on IT service management. A key challenge for dynamic IT service
management is that IT infrastructure is highly complex and configurable, and
business requirement often have dynamic change on IT component configura-
tions, which require administrator who in change of IT service management has

A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, pp. 664–677, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Management as a Service for IT Service Management 665

high professional skill about IT infrastructure in physical layer and business ap-
plication in logical layer. With ever-growing complexity in the IT enterprise,
IT departments have to face requirement of improving the alignment of IT ef-
forts to business needs and managing the efficient providing of IT services with
guaranteed quality [3].

To support this business requirement, more and more enterprises are adopting
best practice standards in service management such as IT Infrastructure Library
(ITIL) [4]. Configuration Management Database [5], CMDB, is considered as a
best practice in the U.K. government’s ITIL. It is used to store significant com-
ponents information of the IT infrastructure [6][7][8] that helps an organization
understand the IT service assets and track their configuration. Several vendors
claim to provide a ready-made CMDB, such as BMC, Tideway, EMC and so on.
It is common to see these vendors collaborate with the larger service players like
IBM and HP who brand these solutions as their own implementations. Thus,
CMDB has already been considered to be a provider that support vision on IT
infrastructure information in industry field.

However, there is still no solutions for IT professionals manage IT service
smartly. With ever-growing complexity in the IT infrastructure, even if all the
information of the systems and operations are recorded, IT management person-
als can only get confused and be lost in the trivial details. IT service administra-
tor has to face solution training for various problems in IT service management
continually when business application updated. The investment on management
system is always increasing with business application change.

With the question of how software delivers its functionality to users[9], Soft-
ware as a service [10] (SaaS) envisages a demand-led software market in which
businesses assemble and provide services when needed to address a particu-
lar requirement. The SaaS vision is a vital contribution to current thinking
about software development and delivery that has arisen in the Web services
and electronic-business communities.[11]

In this paper, just like as SaaS, management as a service (MaaS) is proposed to
focuse on separating the possession and ownership of IT service management from
its use. Delivering management function as a set of distributed services that can
be configured and bound at delivery time can overcome many current limitations
constraining management software use, deploy, and evolution. In addition, MaaS
has a special feature unlike SaaS is that it will provide the content service that
help IT professionals to improve IT service management quality. Experience and
knowledge about IT service management will be accumulated within MaaS. The
knowledge can be reused and shared in different environment when they have been
verified in prior cases by IT professionals and subject matter expert (SME).

2 Current IT Service Management

Configuration management database (CMDB) is provided to serve as a reposi-
tory and information retrieval tool for services as IT infrastructure model, and
also as a platform for information integration between the other ITSM processes.

666 B. Yang, H. Wang, and Y. Chen

Although CMDB provides the inventories for managing IT configuration items
effectively, it has not revealed the context hiding in the complex and huge IT con-
figuration items management. The current CMDB framework has not satisfied
the requirement of business application in next step such as mapping between
application and IT infrastructure, reuse of management knowledge and impact
analysis [12].

In fact, in a modern enterprise environment, IT components do not provide
business value by themselves, but in concert with each other the business realizes
benefits [13]. So, grouping one or more components into business applications
from the complex and huge configuration items on a higher level is more helpful
to IT service management than just report the component’s configurations in
CMDB.

Business applications are important as they intend to represent the business
purpose and function across one or more enterprises, according to business ap-
plication defined rules and policies. In CMDB, a business application typically
defines the individual business service components, relationships among these
components and the configurations of them. As shown in Fig. 1, IT service com-
ponents of various IT infrastructure will be collected and integrated in CMDB,
and these data is utilized to support IT service management for specified busi-
ness application. This requirement of business application management brings a
challenge that how to management the business application and filter the noise
data from huge and complex configuration items data in CMDB, and extract
the proper configuration items and their relationships about the special busi-
ness application to a more simplify and effective view of business configuration
management for management personal.

Fig. 1. Information integration and utility for IT service management with CMDB

Management as a Service for IT Service Management 667

Business application definition demands professional and rather experienced
experts to define business application domain, such as what are the main com-
ponents in the business application, what are the key configurations for man-
agement, etc. One of the key open challenges to experts is performing dynamic
configuration management for highly configurable business application with dy-
namic user preferences. IT services are typically highly configurable, with sig-
nificant service customization possibilities and a choice of business application
purpose, e.g. CRM/Home banking, naturally each with its own application con-
figuration. Customization is critical for them to be able to differentiate them-
selves from competing business services and offer a better service experience to
their customers. Application administrator themselves have certain preferences
on which service items and configurations they want to use and their preferences
may change dynamically. Given their significance, there is a strong need to sup-
port application-oriented data services for user preference [14][15][16]. However,
we are still lack of efficient methods for the representation and management on
user-preference in IT service management.

Current ITSM architecture uses processes to integrate disconnected tools and
configuration information into an end-to-end solution. It provides the framework
to optimize the use of people, process, information and technology to deliver
quality services to support business goals rather than focuses on disconnected
technologies and tools. However, as we discussed above, current architecture
lacks a systematic means to address an important aspect in ITSM - managing
the knowledge separated in various tools and the minds of domain experts.

3 Sample MaaS Scenario

The following scenario demonstrates the ideas inherent in the management as a
service concept.

In Fig. 2, SME individuals, communities with different skill levels and focuses
get involved in service tasks through the Management Service Center platform.
They provide the knowledge and solution for various business problems. Service
Center staffs manage multiple remote customer sites, process service requests
and conduct complex, knowledge intensive tasks, while customer employed ad-
ministrator performs the routine management tasks for his organization.

At the customer site, a management appliance is deployed. It provides ba-
sic management functions for customer employed staffs to conduct routine IT
management tasks. As an appliance, it hides the complexity of deploying and
managing the management software itself.

Customer admin can access the global service catalog through the appliance
to subscribe advanced management functions, or request services from the ser-
vice center. The appliance will also be an agent for collecting the necessary
information for required services.

For the management service center, the staffs can manage multiple customer
sites remotely through the service portal. They can deliver advanced manage-
ment services to customers by using advanced management functions and the

668 B. Yang, H. Wang, and Y. Chen

Fig. 2. Deliver management as a service

knowledge base. Some required functions to enable the services will be deployed
to the appliance dynamically.

The service center is also the platform to involve external communities to
serve the customers. It can integrate services through the web to complement
existing services and it can involve selected expert communities for specific tasks.
Meanwhile, the service center will manage the service delivery process with good
governance.

4 Implementation of the MaaS for ITSM

In this section, a proof of concept (PoC) project BIANCHIN is developed to
validate the vision of management as a service (MaaS), as shown in Fig. 3. It is
built on the Eclipse Toolkit with Java technology, and implements a container for
data capture platform, information extract, business application topology design
and visualization, SME’s knowledge management and impact analysis service for
system management in global within distributed computing environment.

4.1 Data Capture Platform

This platform is in charge of collecting IT infrastructure data from various do-
mains including configuration, operation, business-level performance indicators
and others. Two adapter-based mechanisms, data federation and snapshot, are

Management as a Service for IT Service Management 669

Fig. 3. BIANCHIN framework for MaaS

designed in the platform. For data already discovered and stored in existing mon-
itoring tools such as IBM Tivoli Monitoring product and IBM Tivoli Application
Discovery Dependency Manager (TADDM) [13], adapters can be developed for
data federation. For other necessary data not stored in any existing data reposi-
tories, snapshot adapters can be developed and plugged in to broaden the width
of data collection. The Data Capture Engine controls the data capture process.
It decides which adapters should be enabled or not to control the capture scope.
It also controls the frequency of data capture by trigging the adapters at different
time points according to a pre-defined schedule.

4.2 Information Extract

IT infrastructure data collected from various data sources are mainly for show-
ing the details of IT service components such as configuration items (CIs) and
their relationships, normally not reflecting a special business application and its
topology. The data available in an enterprise with complicated IT environment
is always too huge and complex to management. What data should be provided
for managing business applications, which one is in the charge of administrator,
is still a pain point for ITSM.

670 B. Yang, H. Wang, and Y. Chen

In BIANCHIN, information extract module provides a platform to help ad-
ministrator to specify the data set that belong to a certain business application.
Once defined, the target management domain (subset of IT infrastructure data)
can be reused for various management task associated to the business applica-
tion. And it is knowledge that can be shared with other administrators in the
same management domain for improve management efficiency, because target
management domain definition is a time-consuming work that requiring high
skill on IT infrastructure analysis.

4.3 Business Application Topology Design and Visualization

Business application topology vision is very helpful to user to visualize a map-
ping from business application to IT infrastructure, which provides a view to
know what hardware, software, middle-ware, service are dependent by the appli-
cation. Then a management on financial, security, resource, etc. can be operated
well-founded. Moreover, it provides a potential asset report to IT infrastructure
investor about the IT service utilization on the business application.

BIANCHIN provide a customized IT infrastructure topology layout for var-
ious management scenarios. End-user can design their preference visualization
about the target management domain. It allows data filter in different topology
to highlight key components related to specified application, transfer different
layout between various user preference styles.

4.4 SME’s Knowledge Management

Knowledge Repository and Knowledge Management module provide a service to
accumulate and share with SME’s knowledge about IT service management. The
knowledge coming from SME is stored in the knowledge asset repository. These
assets serve as basic constructing pieces to build more specific and meaningful
forms of knowledge for various operational tasks. The knowledge for different
management task groups is organized as knowledge management categories such
as problem determination, configuration recommendation and impact analysis.
For example, a service outage can be defined as a problem data pattern along
with a symptom description in the knowledge asset repository. The pattern de-
tection facility can automatically discover from the captured data to notify if
the problem occurs. Once the problem is detected, data comparison facility can
figure out the most possible root causes of the problem by presenting the changes
between the current version and the latest healthy version. Once the root cause
is confirmed as a combination of incorrect or conflicting system configurations, it
can be recorded as another data pattern as a root cause to the known problem.
The management staffs can associate the root cause data pattern with the prob-
lem data pattern as well as textual descriptions and the fixing solution in the
knowledge asset repository. And then, when the problem happens in the future,
the system can automatically check if it is caused by the same reason and if
does.

Management as a Service for IT Service Management 671

4.5 Management Services Center

As mentioned above, IT service management is becoming more complex in dis-
tributed IT infrastructure than before. It need more experience and knowledge
coming from high skill staffs for improving management quality and efficiency.
Take management as a service provides a cooperation framework for sharing
management knowledge with more quickly, more accurately, less expensively
than silos might be able to achieve on enterprise own.

Management services center in BIANCHIN for different management task
groups is organized as IT service management categories such as monitoring,
impact analysis, problem determination and report service. Those services can
be invoked when perform a remote IT service management work with SME
knowledge on demand for various management scenario. They can be embedded
in web-based management platform, SOA-based management application and
so on.

5 Case Study

The example selected to demonstrate the cooperation of IT service manage-
ment based on management services within solution matter experts (SMEs)
that sharing the management knowledge for a special business application, “On-
line Trade”, a benchmark of distributed J2EE business application. The services
provide a platform for IT service topology of a business application, and deliver-
ing the topology defined by application experts to the business impact analysis
SMEs. Then, with knowledge integration on various impact rules of business im-
pact by IA SMEs, an impact analysis service is invoked for analyzing a starting
point change, such as a database server outage, operation system patch, etc. It
returns the impact scope including hardware, software, service, application and
so on. Moreover, the reason can be attached on the report because of the SME’s
impact rules. This function was originally implemented in expert system within
the scope of problem determination project. Then it was decided to reuse it as
a service in SOA.

5.1 Extracting Business Application Management Domain

Within the CMDB of IT service management, the target components of busi-
ness application that will be monitor and management were mix with other
redundant IT service components as shown in Fig. 4, so the first step in ITSM
was to extract target management domain from the complex environment with
thousands of IT service components and to place it in a separately compliable
module with its own components division. This work needs special skill that
the operator is very familiar with the target application domain, especially the
topology of IT infrastructure about the application. The candidates might be
the engineer who designed the application, who deployed the application and the
execution administrator. In the ”Online Trade” application case, the application

672 B. Yang, H. Wang, and Y. Chen

Web
Server

User Interface of
Service

App.
Server

DB
Server

Users

IT Infrastructure
Discovery

IT Service Components Extract

Application

Application

Fig. 4. IT service components extract for business application from IT infrastructure
of “Online Trade”

is extracted that contains 32 components from 73 IT service components, and
73 relationships from 122 relationships.

Besides the target components extraction, a service of customized business
application topology vision for different context is import for special scenario.
Different angle of view will highlight some specified details to help audience to
understand the target object easily. Especially, the user preference style will make
user to learn efficiently that will improve the communication within different
users based on the same data set with user-preference visualized layout. As
shown in Fig. 5, a bottom-up business application topology layout and a top-
town layout from application indicate two management scenarios. The former is
the system administrator’s preference layout, and the later would be helpful for
application administrators.

5.2 Impact Analysis Rules Management

A distributed business application always includes various components for
composing a complex function for special business purpose. It may be include
hardware components (host, hard disk, memory, CPU, etc.), operating system
(Windows, Linux, UNIX, etc.), database (DB2, Oracle, MySQL, etc.), applica-
tion server (Websphere Server, J2EE server, WebLogic server, etc.), software
module (J2EE module, IIS module, Web module, etc.) and so on. As to impact

Management as a Service for IT Service Management 673

Visualization Layout

Fig. 5. Customized Business Application Topology Design GUI

rule, there is no an omniscient to define all rules about various fields. Hardware
engineer should be the best candidate to define the impact rules about hardware
components such as memory problem might cause blue screen problem. And
windows SP2 patch will impact all software running on it because it will cause
windows operating system reboot. Till now, those knowledge stored in different
SMEs, and do not incorporate the full range of features and functions to meet
the systems management requirements today’s organizations face.

Management as a service is not only provide service to remote system manage-
ment, but also sharing the management knowledge in various SMEs’ knowledge
for dealing with emerging complex business application.

In our case, different knowledge coming from various SME are combined in
impact analysis knowledge repository. The BIANCHIN provide impact analysis
service with professional knowledge to solve management problem. Customers
can invoke the service and associated knowledge to archive their management
purpose.

An impact analysis rule in BIANCHIN consisted of five parts, rule name,
source, target, relationship, condition and impact. Rule name is a simple de-
scription about the impact rule. Relation denotes that a dependency between
source point and target point in IT service components. Condition is the fire
point of the rule, such as condition in rule 1 shown in Fig. 6., “source=normal;
target=impacted” means that “if Application server that runs on a windows
computer system, and the windows computer system is impacted” is true, then
the rule will be fired, and the application server will be impacted too, which is
as a impact result in the rule.

674 B. Yang, H. Wang, and Y. Chen

Impact Analysis Rules

Fig. 6. Knowledge management module of impact analysis rules

With the rule management in BIANCHIN as shown in Fig.6, various SME
can cooperate with each other for editing and verifying the rules through In-
ternet in global, which accumulates the rules coming from SME to knowledge
repository for various business solutions. In the case, they could be OS patch
impact analysis, DB2 maintenance impact analysis, hardware updating impact
analysis and so on.

5.3 Invoke Impact Analysis Service

After user import the target management domain that defined by domain experts
and knowledge base coming from SME, impact analysis service can be invoked
to deduce a impact scope for a specified starting point. In BIANCHIN, it has
been packaged in applet, and use the sample code as follow to invoke the service
for web application.

<appletarchive=“lib/ImpactAnalysis.jar, lib/jxl-2.4.2-s.jar, lib/UIframework.
jar, lib/sdl1.0-s.jar” code=“com.ibm.research.component.ImpactAnalysisApplet.
class” codebase=“.” service url = “http://192.168.100.33:8080/axis2/services/
IAService /ieInterface” width=“980” height=“680” align=“center”> </applet>

The above sample code shown that an SOA-based approach, impact analysis
service “http://192.168.100.33:8080/axis2/services/IAService/ieInterface”is in-
voked for deducing the impact scope with the starting point and SME knowledge
automatically.

For example, a management operation request will cause windows operating
system outage on component “WAS-APPTEST”in Fig. 7. Expected components
that will be impacted are mark with red cube when the “Impact Assessment”is

Management as a Service for IT Service Management 675

Starting
Point

Fig. 7. Impact assessment from a specified starting point in target management
domain

finished. There are 9 components will be impacted because of the starting point
operation in the target application domain with 32 components. From the start-
ing point, computer “WAS-APPTEST”will be impacted because the windows op-
erating system running on it is outage. A websphere application server runs on
“WAS-APPTEST”will be impacted because the computer is impacted. Then the
components “tradeEJB.jar”, “tradeWebModule”, “tradeJ2EEapplication”will be
impacted because they were deployed on the websphere application server. Farther
on, a business application “Online Trade”will be impacted because its components
have been impacted.

This case provides a whole picture for user to review what will happen when
a component is changed, which will help to do a just operation more quickly,
more accurately, less expensively, and with more visibility than silos might be
able to achieve on enterprise own.

6 Discussion and Future Work

In this paper, we present a vision of management as a service for improving IT
service management performance, and a case of impact analysis service in MaaS
is shown that the performance of system management is not only depends on the

676 B. Yang, H. Wang, and Y. Chen

software system of management, but also the knowledge in administrator and
experts. People need to change their mindsets. IT service management solution
has to think in terms of providing a service itself, not just providing technology.
Take management as a service will identify and resolve management problems
more quickly, more accurately, less expensively, and with more visibility than
silos might be able to achieve on enterprise own.

Although MaaS has some problems need to identify and solve, such as in
our case, impact analysis service, how to evaluate the quality of knowledge,
how to acknowledge and benefit the SME who contribute their knowledge, how
to authorized the knowledge and data can be used in properly, are still open
questions. As an emerging solution for improving IT service management in
global enterprise, MaaS has shown some potential chance in current dynamic
market environment.

Management as a service (MaaS) allows companies to maintain full inter-
nal control of their IT investment and existing infrastructure while outsourcing
the day-to-day management and monitoring of their infrastructure such as the
operating system, database, networking and application layer.

MaaS vision manages and supports distributed business application in enter-
prise that includes IT infrastructure such as operating system, application and
database layers, providing experts’ knowledge to ensure that IT infrastructure
is performing optimally.

MaaS extends into four levels of service - conveniently packaged and eas-
ily scalable to help administrator adopt remote management for routine and
time-sensitive tasks. Remote management assistance service can be used as a
consultant service for explore more business chance. With continual knowledge
accumulation on seamless management and technical support by the SMEs -
these packages ensure that end-user experience and key business functions are
improved continually. Finally, all these come to end-user at an affordable cost
without maintaining complex management system reside in user’s enterprise.

Acknowledgement

We thank the members of the IBM GTS for their comments coming from cus-
tomers’ feedback on IT service management. We also thank the members of the
visualization team in IBM CRL for their useful discussions concerning GUI design
and ITSM team for the ongoing development of a service-oriented prototype.

References

1. Changchien, S.W., Shen, H.Y.: Supply chain reengineering using a core process
analysis matrix and object-oriented simulation. Information & Management 39(5),
345–358 (2002)

2. Liu, J., Zhang, S., Hu, J.: A case study of an inter-enterprise workflow-supported
supply chain management system. Information & Management 42(3), 441–454
(2005)

Management as a Service for IT Service Management 677

3. HP BTO software: Optimize the business outcome of IT, White paper, 4AA0-
8911ENW (2006), http://www.hp.com

4. Information Technology Service Management (ITSM) (2005),
http://www.cce.umn.edu/professionalcertification/itil/

5. Madduri, H., Shi, S.S.B., Baker, R., Ayachitula, N., Shwartz, L., Surendra, M.,
Corley, C., Benantar, M., Patel, S.: A configuration management database archi-
tecture in support of IBM Service Management. IBM Systems Journal 46(33),
441–457 (2007)

6. Berkhout, M., Harrow, R., Johnson, B., Lacy, S., Lloyd, V., Page, D., van Goethem,
M., van den Bent, W.G.: Service Support: Service Desk and the Process of In-
cident Management, Problem Management, Configuration Management, Change
Management and Release Management. The Stationery Office, London (2000)

7. Chen, P.Y., Kataria, G., Krishnan, R.: On Software Diversification, Correlated
Failures and Risk Management. SSRN (April 2006),
http://ssrn.com/abstract=906481

8. Van Bon, J., Kemmerling, G., Pondman, D.: IT Service Management: An Intro-
duction. Van Haren Publishing (September 2002)

9. Brereton, O.P., Budgen, D.: Component-Based Systems: A Classification of Issues,
Computer, pp. 54–62 (November 2000)

10. Bennett, K.H., et al.: An Architectural Model for Service-Based Software with
Ultra-Rapid Evolution. In: Proc. Int’l Conf. Software Maintenance (ICSM 2001),
pp. 292–300. IEEE CS Press, Los Alamitos (2001)

11. David, M.T., Brereton, B.P.: Turning Software into a Service. Computer, 38–44
(October 2003)

12. Sall, M.: IT Service Management and IT Governance: Review, Comparative Analy-
sis and their Impact on Utility Computing. HPL-2004-98, Technical Reports,
Hewlett-Packard Company (June 2004)

13. Moeller, M., James, J., Choilawala, M., Kadijevic, P., Charles, R., Satagopan,
K.: Deployment Guide Series. IBM Tivoli Change and Configuration Management
Database Configuration Discovery and Tracking v1.1, SG24-7264-00, Redbooks,
IBM, Inc. (November 2006)

14. Chen, Z.Y., Li, T.: Addressing diverse user preferences in SQL-query-result nav-
igation. In: Proceedings of the 2007 ACM SIGMOD international conference on
Management of data table of contents, Beijing, Chinan, Beijing, Chinan, pp. 641–
652 (2007)

15. Jung, S.Y., Hong, J.H., Kim, T.S.: A statistical model for user preference. IEEE
Transactions on Knowledge and Data Engineering 17(6), 834–843 (2005)

16. Wong, S.K.M., Lingras, P.: Representation of Qualitative User Preference by Quan-
titative Belief Functions. IEEE Transactions on Knowledge and Data Engineer-
ing 6(1), 72–78 (1994)

http://www.hp.com
http://www.cce.umn.edu/professionalcertification/itil/
http://ssrn.com/abstract=906481

A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, pp. 678–690, 2008.
© Carnegie Mellon University 2008

SMART: Application of a Method for Migration of
Legacy Systems to SOA Environments

Sriram Balasubramaniam, Grace A. Lewis, Ed Morris, Soumya Simanta,
and Dennis Smith

Software Engineering Institute, Carnegie Mellon University, Pittsburgh, Pa 15213
{sri,glewis,ejm,ssimanta,dbs}@sei.cmu.edu

Abstract. Migration of legacy systems to service-oriented environments has
been achieved within a number of domains, including banking, insurance,
manufacturing, and development tools, showing that the promise is beginning
to be fulfilled. While migration to Service-Oriented Architecture (SOA) envi-
ronments can have significant value, any specific migration requires a concrete
analysis of the feasibility, risk and cost involved. The Service Migration and
Reuse Technique (SMART) is a family of processes to help organizations in
making initial decisions about the feasibility of exposing legacy systems as ser-
vices within a SOA environment. This paper summarizes the SMART-MP
(SMART – Migration Planning) process which provides a plan for the migra-
tion of selected components to services and identifies the scope for a pilot ef-
fort. It presents an application of SMART-MP and also outlines emerging new
SMART family members that have resulted from experiences in applying
SMART-MP.

Keywords: SOA Migration, service selection, reuse of legacy components,
SOA migration strategy.

1 Introduction

Service-Oriented Architecture (SOA) has become an increasingly popular mechanism
for achieving interoperability between systems. Because it has characteristics of loose
coupling, published interfaces, and a standard communication model, SOA enables
existing legacy systems to expose their functionality as services, presumably without
making significant changes to the legacy systems. Migration of legacy systems to
SOA environments has been achieved within a number of domains, including bank-
ing, insurance, manufacturing, electronic payment, and development tools, showing
that the promise is beginning to be fulfilled [1, 2, 3, 4]. While migration can have
significant value, any specific migration requires a concrete analysis of the feasibility,
risk and cost involved.

One of the most attractive promises of moving to an SOA environment is that it
enables reuse of legacy systems, thereby providing a significant return on the invest-
ment in these systems. However, migrating legacy systems is neither automatic nor
easy. Traditional reuse challenges apply to SOA environments, but are affected in
both positive and negative ways by the granularity of what is exposed through reuse

 SMART: Application of a Method for Migration of Legacy Systems 679

[5]. Reuse in the SOA context is typically most effective when services correspond to
coarse-grained business or mission functionality, i.e. order placement or flight path
calculation, where all underlying technical details are encapsulated by a standard
service interface.

The Service Migration and Reuse Technique (SMART) is a family of processes that
helps organizations to make initial decisions about the feasibility of exposing legacy
system functionality as services within an SOA environment [6, 7]. The most common
implementation, SMART-MP (Migration Pilot), focuses on identifying the scope for a
pilot effort. It offers a realistic view of the potential challenges, constraints and trade-offs
that an organization may encounter when migrating to SOA environments.

SMART-MP is the method that was described in earlier SMART references and it
remains the most often used member of the SMART family [7]. SMART-MP was
developed in response to a situation that is common in the US Department of Defense,
where organizations are tasked to provide services for which other organizations will
develop service consumers in the form of end-user applications, portals, or systems.
SMART-MP has evolved significantly since its initial introduction including the re-
finement of its underlying conceptual model, refinement of the questionnaire that
supports it, tool support, addition and refinement of tasks, and the application of les-
sons learned from past engagements. Applications of SMART-MP have led to the
development of other members of the SMART family, including one that specifically
addresses the situation where a single organization develops services and service
consumers, as well as the infrastructure, which is more common in industry. How-
ever, given that services typically come from legacy systems, elements of SMART-
MP are highly applicable in this situation as well.

The rest of this paper is organized as follows. Section 2 presents the SMART-MP
process. Section 3 presents the results of a SMART-MP engagement. Section 4 out-
lines other members of the SMART family. Section 5 presents a summary and con-
clusions. Section 6 presents related work.

2 Service Migration and Reuse Technique – Migration Planning
 (SMART-MP)

SMART-MP is an approach for making decisions on the migration of legacy systems
to SOA environments. To make effective decisions, relevant and non-relevant legacy
components need to be identified and decisions need to be made using a “hands-on”,
contextual analysis. Estimates of cost and risk, as well as the confidence of estimates,
are required for each legacy component. It analyzes the viability of reusing legacy
components as the basis for services by answering these questions:

• Does it make sense to migrate the legacy system to services?
• What services make sense to develop?
• What components can be used to implement these services?
• What changes to components are needed to accomplish the migration?
• What would be an ideal pilot project?
• What migration strategies are most appropriate?
• What are the preliminary estimates of cost and risk?

680 S. Balasubramaniam et al.

2.1 Four Elements of SMART-MP

SMART-MP consists of four elements:

1. SMART-MP Process. A systematic process that gathers information about the
legacy components, the candidate services and the target SOA environment;
analyzes the gap between the current and future state; and develops an initial
migration strategy.

2. Service Migration Interview Guide (SMIG). The SMIG is the codification of
risks and issues associated to migration to SOA environments that guides the
discussions during the initial SMART process activities. It contains more than
60 categories of questions that gather information about the migration context,
the legacy components, the candidate services, and the target SOA environment.
Answers to these questions will help determine the degree of difficulty and level
of effort required to migrate legacy components into services, as well as poten-
tial migration issues. The use of this instrument assures broad coverage and con-
sistent analysis of difficulty, risk, and cost issues. An example of the SMIG
questions for Describe Target SOA Environment, as well as some of the poten-
tial migration issues related to these questions, is provided in Table 1.

3. SMART Tool. Using the SMIG as a framework, the tool automates data collec-
tion, relates answers to questions to potential risks to mitigation strategies to
produce a draft migration strategy and migration issues list, and consolidates
data from multiple engagements for trend analysis.

Table 1. Sample SMIG Questions and Potential Migration Issues

 SMART: Application of a Method for Migration of Legacy Systems 681

4. Artifact Templates. Templates for output products are created as part of the
process. There are a variety of templates, including Migration Issues List, Busi-
ness Process-Service Mapping, Service Table, Component Table, Service-
Component Alternatives Table and Migration Strategy.

2.2 The SMART-MP Process

The SMART-MP process has six activities, and one major decision point, as illus-

trated in Fig. 1. The activities are iterative—data gathered in one activity may provide

questions that require revisiting an earlier activity for additional information.

Establish Context

Establish Context has the goal of understanding the business and technical context for
migration, including a high level understanding of stakeholder goals, the business
context, candidate services, and legacy systems.

Migration Feasibility Decision Point

After the Establish Context activity, there is an explicit decision point to determine if
the legacy system is a good candidate for migration to services. If the legacy system is
not a good candidate, it will save time and money to simply stop at this point.

Define Candidate Services

The goal of this activity is to select a small number of services (usually 3 to 4), from
the initial list of candidate services that had been identified as part of Establish Con-
text. Good candidate services are ones that perform concrete functions, that have clear
inputs and outputs, and that can be reused across a variety of potential service con-
sumers. These candidate services are now specified more completely to include a
definition of service inputs and outputs, and quality of service (QoS) requirements.

Describe Existing Capability

The goal of this activity is to gather information about the legacy system components
that contain the functionality to meet the needs of the selected services. Technical per-
sonnel are questioned about system aspects such as: descriptive data about legacy com-
ponents, architecture views, design paradigms, system quality, and change history.

Describe Target SOA Environment

This activity gathers information about the target SOA environment for the selected
services including:

• Major components of the SOA environment
• Impact of specific technologies and standards used in the environment
• Guidelines for service implementation
• State of target environment
• Interaction patterns between services and the environment
• QoS expectations and execution environment for services

682 S. Balasubramaniam et al.

Fig. 1. The Generic SMART Process

Analyze the Gap

This activity provides preliminary estimates of the effort, risk and cost to expose
functionality from the candidate legacy components as services, given the candidate
service requirements and target SOA characteristics. The discussion of the changes
that are necessary for each component is used as the input to calculate these prelimi-
nary estimates. In some cases, additional analysis methods such as evaluation of code
quality using code analysis tools or architecture reconstruction may be needed [8, 9].

The Service-Component Alternatives artifact is created during this activity to illus-
trate the potential sources for functionality to satisfy service requirements.

Develop Strategy

The information gathered in the previous activities generates migration issues that
need to be addressed by the migration strategy, which for SMART-MP includes the
selection and setup of an initial pilot project. This information also provides the basis
for estimates of cost, effort and risk of migration, which will place constraints on the
migration strategy. This activity develops a Migration Strategy that may include:

• Feasibility, risk and options for proceeding with the migration effort
• Identification of a pilot project to migrate a simple service (or set of services)
• Order in which to create additional services
• Guidelines for identification and creation of services
• Specific migration paths to follow
• Needs for additional information or training

 SMART: Application of a Method for Migration of Legacy Systems 683

3 Application of SMART-MP to a Mission Status System

The following is a summary of the application of SMART-MP to a DoD Mission
Status System (MSS). Each sub-section corresponds to a step of the SMART-MP
process.

3.1 Establish Context

A DoD organization has been tasked with developing services that can be used by
multiple mission planning and execution applications.

The Mission Status System (MSS) targeted for migration is a system for compari-
son of a planned mission against current mission state to determine if corrective ac-
tions should be taken. The system obtains plan data and situational awareness data
from a Planning System (PS) that belongs to the same organization. PS currently runs
on the same machine as MSS and there is tight coupling between the two systems.

From a business perspective, a long term goal has been the migration of MSS to
services. From a technical perspective, the driver is to make the developed services
available to all planning and execution systems.

A standard Web Services environment has been selected as the target SOA envi-
ronment, but it is not clear that this will be the future environment for the developed
services—it will most likely be a DoD proprietary SOA infrastructure. However, by
performing and executing this pilot, valuable insight on the migration process will be
gained, and the overall process, as well as at least a significant part of the analysis
will be able to be carried forward.

The short-term goal for the migration is to demonstrate the feasibility of one MSS
component as a service to be used by one mission planning and execution system
within four months. The long-term goal is to migrate the full system to services in two
years.

The following set of candidate services was developed:

• AvailablePlans: Provides list of available plans that are being reasoned about.
• TrackedTasksPerPlan: Provides list of tasks that are being tracked for a certain

plan.
• TaskStatus: Provides the status for a given task in a given plan.
• SetTaskAlert: Alerts when a given task in a given plan satisfies a certain condition.

These services were selected because their functionality is generic enough that it
can be used by other known mission planning and execution systems.

3.2 Migration Feasibility Decision Point

Based on the data obtained at this stage, a decision was made to continue with the rest
of the SMART analysis. This was based on the following factors:

• the availability of stakeholders from the service provider and a service consumer
• a good understanding of MSS
• the request-response nature of the identified services
• a reasonable initial mapping of services to components

684 S. Balasubramaniam et al.

3.3 Define Candidate Services

The list of services identified in the previous step was considered reasonable for
analysis. Inputs and outputs were next identified in detail for each of these services.

Migration issues identified during this activity included:

• The SetTaskAlert service requires the handling of events in service-oriented envi-
ronments which is something that has been recently introduced in SOA 2.0 [10].
The implementation of SetTaskAlert would require either the service provider or
the infrastructure to store the address of the service consumer so that it knows who
to alert, and requires the service consumer to be set up such that it can receive
alerts.

• It is unclear how the alert mechanism is going to be implemented.
• The complexity of the data representation of alert conditions is high.

3.4 Describe Existing Capability

MSS is written in C++, C# and Managed C++ in a Visual Studio 2005 development
environment. It runs on a Windows XP platform. The size of the full system is ap-
proximately 13,000 lines of code. The amount of code considered for migration de-
pends on the scope of the migration effort, although most of the code is being targeted
for migration in the future. Code documentation was rated between Fair and Good by
its developers.

Several architecture views were presented that were useful for understanding the
system—high-level context diagram, component-and-connector view, module view,
and runtime view.

3.5 Describe Target SOA Environment

As mentioned earlier, the target SOA environment for the migration is standard Web
Services. It was decided to use an existing setup based on Microsoft IIS and
ASP.NET.

3.6 Analyze the Gap

During this activity, the developers were asked to describe the details of the changes
that would have to be made to the code given the service requirements, the service
inputs and outputs, as well as the characteristics and components of the target SOA
environment. They were then asked to provide an estimate of the effort required to
make these changes. No code analysis or architecture reconstruction was necessary
because the original developers were involved in the process, their input was credible,
and the architecture documentation and knowledge of the application were acceptable.

3.7 Develop Strategy

Given the identified migration issues and preliminary estimates of cost and risk, the
following migration strategy was developed.

 SMART: Application of a Method for Migration of Legacy Systems 685

1. Define scope of initial migration for short-term feasibility demonstration. During
the Analyze the Gap activity with developers of both the legacy system and the
service consumer system, different options for migration for the short-term feasi-
bility experiments were presented, as shown in Table 2.

Table 2. Alternatives for Short-Term Feasibility Demonstration

Migration Alternative
Effort

(person-
weeks)

1. Implement SetTaskAlert service using a Query Language package developed
for use in another system (Option 2)

24

2. Implement SetTaskAlert service using functionality in the legacy system
(Option 1)

20

3. Do not implement the SetTaskAlert service 11

4. Do not implement the SetTaskAlert service and do not separate out from PS 7

2. Define scope of subsequent iterations.
3. Finalize service inputs and outputs. Concretely define the service inputs and out-

puts from the Service Table need to be concretely in WSDL documents.
4. Gather information about the publish-subscribe component to be used as the

mechanism for alert capability.
5. Create a service reference architecture. A service reference architecture to be fol-

lowed by all services provides a framework for service development, the reusabil-
ity of common service operations, and the isolation of service code from changes
due to the differences between short-term and long-term goals for MSS. An ex-
ample of a service reference architecture is shown in Figure 2.

6. Adjust Estimates. After making final decisions on scope, inputs, outputs and re-
quirements are further defined, and the estimates are adjusted.

Fig. 2. Service Reference Architecture for MSS Services

686 S. Balasubramaniam et al.

7. Create MSS Services using the Service Reference Architecture.
8. Document Lessons Learned.

3.8 Highlights of Results

The organization implemented alternative 4 from the list of recommended alternatives
in Table 2. This option included developing the following services: AvailablePlans,
TrackedTasksPerPlan, and TaskStatus. This option also did not implement the Set-
TaskAlert service because the event processing technology was still immature, migra-
tion issues from the application of SMART-MP highlighted a set of risks that were
not justifiable to take at this point, and the organization had a short schedule on which
to complete an initial demonstration.

The three services were implemented successfully on an experimental SOA in-
frastructure using the selected Web Services infrastructure in less than the esti-
mated time. The SMART-MP engagement had estimated that these services could
be developed in 7 weeks. The services actually took about 5 weeks to develop. The
quicker than anticipated schedule can be attributed to the strong familiarity of the
developers with the original code, the fact that the high risk items were deferred,
and to the fact that the analysis from the SMART-MP process was more detailed
than they had anticipated, and as a result it served as a blueprint for the develop-
ment of the services.

The services may be re-hosted on another target SOA infrastructure in the future.
Because the organization isolated the service code layer, data access layer and service
interface layer, as recommended in the migration strategy, potential future re-hosting
to a different SOA infrastructure may be accomplished without starting all over again.

4 Evolution of the SMART Family

SMART has been applied in four different organizations across six projects. In deal-
ing with actual SMART engagements, we found that while SMART-MP provides
support for helping an organization plan an initial SOA strategy and pilot implemen-
tation, there was a range of other types of needs that organizations have in getting
started with SOA.

As a result, we began to identify different members of the SMART Family to help
organizations that are dealing with different sets of issues. To address these broader
issues we tailored SMART by extending the SMIG interview questions while main-
taining the same basic structured process. The SMART Family is the formalization of
this tailoring into a family of SOA techniques that practitioners can selectively em-
ploy depending on how far along they are in their SOA implementation. All members
of the SMART Family follow the same generic process illustrated in Figure 1. What
varies between members is the emphasis placed on each of the steps, the set of ques-
tions extracted from the overall SMIG, and the outputs of each step. The SMART
family is illustrated in Figure 3.

SMART-MP (Migration Pilot) is the original member of the SMART family that has
been described earlier in this report. It identifies a pilot project that will help shape a

 SMART: Application of a Method for Migration of Legacy Systems 687

migration strategy for an organization, along with an understanding of cost and risk
involved moving forward.

SMART-SMF (Service Migration Feasibility) is targeted at organizations that are
new to SOA and are probably not ready for a pilot project. The end goal is to deter-
mine if it makes sense for the organization to adopt SOA, to understand migration
options, and to start putting together a migration strategy that may include the execu-
tion of other members of the SMART Family.

SMART-ESP (Enterprise Service Portfolio) is targeted at organizations that want to
take a look across all their legacy systems to identify potential services. The end goal
is the creation of an enterprise service portfolio and the mapping of these services to
legacy systems.

SMART

SMART-SMF

Service Migration Feasibility
Helps an organization establish
the feasibility of migration to an

SOA environment and creates a
high-level migration strategy if it is

feasible

SMART-MP

Migration Pilot
Helps an organization select a

pilot project that includes a
migration strategy with

understanding of costs and risks
involved

SMART-ESP

Enterprise Service Portfolio
Helps an organization select and
create services from its systems

portfolio

SMART-ENV

SOA Environment
Helps an organization

understand a target SOA
environment in detail, including
associated costs and risks of
migrating to that environment

SMART-SYS

SOA-Based Systems Development
Helps an organization understand a

complete SOA-based system—services,
consumers, environment—including risk

and cost data

Fig. 3. SMART Family

SMART-ENV (Environment) is targeted at organizations that have identified a target
SOA environment (or have been mandated a target SOA environment) but do not
understand the implications of migrating to this environment. The end goal is the
characterization of the target SOA environment, including preliminary costs and risks
of migrating to that environment.

SMART-SYS (System) is targeted at organizations tasked with the development of a
complete service-oriented system that potentially includes the identification and crea-
tion of services, the development or acquisition of a SOA infrastructure, and the de-
velopment of service consumers. The end goal is a superset of the goals of the
previous SMART family members.

688 S. Balasubramaniam et al.

5 Conclusions and Next Steps

SOA offers significant potential for leveraging investments in legacy systems by
providing a modern interface to existing capabilities, as well as exposing legacy func-
tionality to a greater number of users. In migrating legacy components to services,
there is a need for detailed analysis to determine the feasibility of exposing legacy
functionality as services. This analysis has to include the identification of needs of the
target SOA environment, a clear distinction between the needs that can be satisfied by
the legacy system and those that cannot be satisfied, and a systematic analysis of
changes that need to be made to fit into the target SOA environment.

SMART-MP analyzes the viability of reusing legacy components as the basis for
services by answering these questions:

• Does it make sense to migrate the legacy system to services?
• What services make sense to develop?
• What components can be used to implement these services?
• What changes to components are needed to accomplish the migration?
• What would be an ideal pilot project?
• What migration strategies are most appropriate?
• What are the preliminary estimates of cost and risk?

SMART-MP provides an approach to collect data that will enable answering these
questions. This paper has presented the evolved SMART process as well as the results
of its application to a specific real world experience. The paper outlines new members
of the SMART family that have been developed as a result of specific engagements.
Details and experiences with the application of these family members will be pre-
sented in future work.

6 Related Work

There is a large amount of work related to migration of systems to SOA environ-
ments. SMART falls in the category of techniques that take a strategic approach to
SOA adoption, in which business goals and drivers are taken into consideration when
making migration decisions to a SOA environment. Other related work includes:

• Ziemann et. al. agree that “rather than being of a purely technical nature, the
challenges in this area are related to business engineering: How can a sub-
functionality be identified as a potential service, or how can business process
models be derived from a legacy system." They propose a business-driven leg-
acy-to-SOA approach based on enterprise modeling that considers both the busi-
ness and legacy system aspects [11].

• IBM has a method called Service Oriented Modeling and Analysis (SOMA) that
focuses on full system development but has some portions that address legacy re-
use: "SOMA facilitates integration with techniques for analyzing legacy applica-
tions, custom and packaged, to identify, specify and realize services for use in a
service-oriented architecture. It breaks out the business functions of each existing
application, identifying candidate services that can be used to realize business

 SMART: Application of a Method for Migration of Legacy Systems 689

goals under the new architecture. It also identifies potentially problematic areas
and highlights areas where new services need to be developed or sourced from
an external provider." [12].

• Cetin et. al. propose a mashup-based approach for migration of legacy software
to pervasive service-oriented computing platforms [5]. The interesting aspect
about this work is the inclusion of presentation services, which is not typical. The
approach is a combination of top-down, starting from business requirements, and
bottom-up, looking at legacy code. Business requirements are mapped to services
and integrated through a mashup server, which then eliminates the need for de-
veloping specific applications to access the services.

There is also work related specifically to the identification of services in legacy
code. For example, in the context of Web Services, Aversano et. al. propose an ap-
proach that combines information retrieval tracing with structural matching of the
target WSDL with existing methods [13]. It performs library schema extraction and
then feature extraction to build a WSDL document from the legacy code. Then, it
compares the generated WSDL document with the target WSDL document using
structural matching. Also in the context of Web Services, Sneed proposes an approach
that consists of salvaging the legacy code, wrapping the salvaged code and making
the code available as a web service [14]. In the salvaging step he proposes a technique
for extracting services based on identifying business rules that produce a desired
result.

References

1. Chung, S., Young, P., Nelson, J.: Service-Oriented Software Reengineering: Bertie3 as
Web Services. In: Proceedings of the 2005 IEEE International Conference on Web Ser-
vices (ICWS 2005), Orlando, FL, USA, July 11-15, 2005. IEEE Computer Society, Los
Alamitos (2005)

2. Polmann, M., Schonefeld, M.: An Evolutionary Integration Approach using Dynamic
CORBA in a Typical Banking Environment. In: The Case Studies Workshop of the Sixth
European Conference on Software Maintenance and Reengineering, Budapest, Hungary,
March 11-13 (2002)

3. Radha, V., Gulati, V., Thapar, R.: Evolution of Web Services Approach in SFMS – A Case
Study. In: Proceedings of the IEEE International Conference on Web Services (ICWS
2004), San Diego, CA, USA, July 6-9 (2004)

4. Zhang, J., Chung, J., Chang, C.: Migration to Web Services Oriented Architecture – A
Case Study. In: Proceedings of the 2004 ACM Symposium of Applied Computing, Nico-
sia, Cyprus, March 14 -17, 2004. ACM Press, New York (2004)

5. Morisio, M., Ezran, M., Tully, C.: Success and Failure Factors in Software Reuse. IEEE
Transactions on Software Engineering 28(4), 340–357 (2002)

6. Lewis, G., Morris, E., Smith, D., Simanta, S.: SMART: Analyzing the Reuse Potential of
Legacy Components in a Service-Oriented Architecture Environment, CMU/SEI-2008-
TN-008, Software Engineering Institute (May 2008)

7. Lewis, G., Morris, E., Smith, D.: Analyzing the Reuse Potential of Migrating Legacy
Components to a Service-Oriented Architecture. In: Proceedings of the 10th European
Conference on Software Maintenance and Reengineering (CSMR 2006), Bari, Italy,
March, 22 (2006)

690 S. Balasubramaniam et al.

8. Kazman, R., O’Brien, L., Verhoef, C.: Architecture Reconstruction Guidelines, 2nd edn.,
CMU/SEI-2002-TR-034, Software Engineering Institute (November 2003)

9. O’Brien, L., Stoermer, C., Verhoef, C.: Software Architecture Reconstruction: Practice
Needs and Current Approaches, CMU/SEI-2002-TR-024, Software Engineering Institute
(August 2002)

10. Violino, B.: How To Plan for SOA 2.0”, Baseline [online magazine], (March 8, 2007)
(cited April 27, 2007),
http://www.baselinemag.com/article2/0,1540,2102088,00.asp

11. Ziemann, J., Leyking, K., Kahl, T., Werth, D.: SOA Development Based on Enterprise
Models and Existing IT Systems. In: Cunningham, P. (ed.) Exploiting the Knowledge
Economy: Issues, Applications and Case Studies. IOS Press, Amsterdam (2006)

12. IBM Business Consulting Services. IBM Service-Oriented Modeling and Architecture
(2005),
http://www-935.ibm.com/services/us/gbs/bus/pdf/g510-5060-
ibm-service-oriented-modeling-arch.pdf

13. Aversano, L., Di Penta, M., Palumbo, C.: Identifying Services from Legacy Code: An In-
tegrated Approach. Presentation at the Working Session on Maintenance and Evolution of
SOA-Based Systems (MESOA 2007). In: 23rd IEEE International Conference on Software
Maintenance (ICSM 2007), Paris, France, October 4 (2007)

14. Sneed, H.: Integrating Legacy Software into a Service Oriented Architecture. In: Proceed-
ings of the 10th European Conference on Software Maintenance (CSMR 2006), March 22-
24, 2006. IEEE Computer Society Press, Bari (2006)

A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, pp. 691–707, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Discovering and Deriving Service Variants from Business
Process Specifications*

Karthikeyan Ponnalagu and Nanjangud C. Narendra

IBM India Research Lab, Bangalore, India
{karthikeyan.ponnalagu,narendra}@in.ibm.com

Abstract. Software service organizations typically develop custom solutions
from scratch in each project engagement. This is not a scalable proposition,
since it depends too heavily on labor alone. Rather, creating and reusing soft-
ware “assets” is more scalable and profitable. One prevalent approach to build-
ing software solutions is to use service-oriented architecture (SOA) to compose
software services to support business processes. In this context, the key to reus-
ing assets is to discover (from existing assets in a portfolio) or derive service
variants to meet the requirements of a stated business process specification. To
that end, this paper presents our Variation-Oriented Service Design (VOSD) al-
gorithm for the same. Via IBM’s Rational Software Architect modeling tool, we
also demonstrate the practical usefulness of our algorithm via a prototype im-
plementation in the insurance domain.

Keywords: Service-oriented Architecture, Business Process, Reuse.

1 Introduction and Motivation

Software service organizations developing custom business solutions are being faced
with the increased need to effectively reuse existing assets and thereby enhance profit-
ability. The emergence of service oriented architecture (SOA) [5], with its emphasis on
loose coupling and dynamic binding of services, promises to enable more effective reuse
by developing business processes as loosely-coupled collections of services modeled as
reusable assets. However, one major obstacle against the realization of this vision is the
cost involved in modeling and manipulating service variants in order to meet varied
business process specifications. Currently this practice is carried out manually, making it
cumbersome and error-prone. To that end, in this paper we present an algorithm called
Variation Oriented Service Design (VOSD), which automatically discovers (from reus-
able assets in a portfolio) and/or derives (in case the reusable asset is not available) ser-
vice variants from a portfolio of existing services to meet a stated business process
specification. Our approach leverages from our earlier Variation-Oriented Engineering
methodology (VOE) [3], which is an end-to-end approach spanning business processes to
their SOA implementation to formally model and develop these variants, so that the reuse
of solutions with variants can be facilitated.

* Thanks to Dipayan Gangopadhyay, Biplav Srivastava and Islam Elgedawy for their feedback.

692 K. Ponnalagu and N.C. Narendra

Variation Modeling via
VOE

Portfolio of
Process Models &
Service Variants

New and Existing
Reusable Assets

Service Variant Discovery
(Matching)

New Business
Process

Specification

Service Variant Derivation
(VOSD)

Fig. 1. Integrated Service Variant Discovery and Derivation Approach

This paper is an extension of an earlier paper [7], which introduced our basic
VOSD algorithm. That paper, however, only focused on deriving service variants
from stated business process specifications; in this paper, we extend the algorithm in
[7] to the problem of selecting the appropriate (variant of) services in a portfolio, said
variants being stored in a manner consistent with VOE principles. Service variant
derivation is resorted to only if the appropriate variant is not available. We also dem-
onstrate that this extension is non-trivial, and show how the meta-modeling approach
in VOE is able to assist in automatic service variant discovery. Our overall approach
is illustrated in Figure 1. Throughout the paper, we illustrate our algorithm on a sim-
ple yet realistic running example (drawn from a real-life project engagement) in the
insurance domain. We also demonstrate our algorithm on a prototype implementation
using IBM’s Rational Software Architect (RSA) modeling tool, thereby demonstrat-
ing its practical usefulness (please note, however, that our algorithm is independent of
the modeling tool used).

This paper is organized as follows. We will first describe our running example. We
then describe some preliminary concepts on which our integrated approach is based. We
then describe our integrated VOSD discovery + derivation algorithm. We will then illus-
trate our algorithm on the running example via the RSA tool (however, our algorithm is
not dependent on RSA, and can be implemented on any UML-based modeling tool). The
paper will finally conclude with discussions on related & future work.

2 Running Example

Let us assume a basic insurance claims process solution, Sol1, which has been im-
plemented for a customer, as in Figure 2. The net output of the execution of this
process is an evaluation of the applicant’s claim; if the claim is accepted, the output
would also include information on the payment to be made to the applicant. For this
paper, we focus on the Verify Claim sub-process; in this sub-process, the Determin-
eLiability and PotentialFraudCheck services are first executed in parallel, and send
their results to Claim Investigation service. A final review of the verified claim is then
implemented by FinalReview service.

 Discovering and Deriving Service Variants from Business Process Specifications 693

1.2
Verify
Claim

1.3
Claim Analysis

& Report

0.Insurance
Claim

1.1.1
Receive
Claim

1.2.1
Determine

Liability

1.2.2
Potential

Fraud
Check

1.2.3
Claim

Investig-
ation

1.2.4
Final

Review

1.3.1
Analyze
Injuries

1.3.2
Analyze

&
Estimate

Loss

1.3.3
Record
Details

1.3.4
Claims
Report

&
Payment

1.1
Record
Claim

1.1.2
Enter
Claim
Details

N.B: Services 1.2.1 and 1.2.2 executed
in parallel

Fig. 2. Basic Insurance Claims Process – Solution Sol1

Let us assume that the same solution should now be tailored for a second customer
to produce Sol2, with the following changed requirements:

• Improve cycle time for Verify Claim sub-process – for a new class of “high
priority” applicants not previously served

• Improve fraud checking – a new and improved fraud checking module to be
incorporated, given the fact these are now high-value claims

Based on these inputs, the following variations to Sol1 are anticipated:

• DetermineLiability & PotentialFraudCheck services to be outsourced for im-
proved speed

• Also, PotentialFraudCheck service should be modified to take into account ex-
tent of liability – this would eventually involve changes in its business logic

• New Liability+FraudChecks service to be added

Let us assume that these variations would result in solution Sol2, as shown in
Figure 3.

1.2
Verify

Claim (v2)

1.3
Analyze Claim &

Report

0.Insurance
Claim (v2)

1.1.1
Receive
Claim

1.2.1 v2
Liability +

Fraud
Checks

1.2.2 v2
Claim

Investigation

1.2.4
Final

Review

1.3.1
Analyze
Injuries

1.3.2
Analyze &
Estimate

Loss

1.3.3
Record
Details

1.3.4
Claims

Report &
Payment

1.1
Record
Claim

1.1.2
Enter Claim

Details

1.2.2.1
Determine

Liability

1.2.2.2
Potential Fraud

Check

N.B: Services 1.2.2.1 and 1.2.2.2 executed sequentially!!

Fig. 3. Modified Insurance Claims Process – Solution Sol2

694 K. Ponnalagu and N.C. Narendra

The original inputs and outputs for the services to be modified in Sol1 are as in
Figure 4.

Determine
Liability

Customer
Info

Claim
Info

Liability
Info Claim

Investigation

Claim
Eligibility

Info

Potential Fraud
Check

Result

Customer
Info

Claim
Info

Fig. 4. Original Services from Sol1

The modifications for Sol2 are shown in Figure 5.

Liability + Fraud Checks
(new service to be generated)

CustInfo

ClaimInfo

Determine
Liability

Potential Fraud
Check (modified for

processing
Liability Info)

Result

CustInfo

LiabilityInfo

Result

ClaimInfo

LiabilityInfo

CustInfo

ClaimInfo

LiabilityInfo

Fig. 5. Modified Services for Sol2

Upon examination of Figures 4 and 5, the following question arises: how do we
decide that the DetermineLiability and PotentialFraudCheck services need to be se-
quentialized while they were originally executing in parallel? Also, how do we deter-
mine what the inputs and outputs of Liability+FraudChecks service should be?
Current practice would be to determine the answers to these questions based on a
combination of visual inspection (perhaps based on modeling the business processes
in a process modeling tool) and manual calculation.

From a software engineering perspective, however, such an approach is cumber-
some and time-consuming, and hence does not scale to large business processes. Ad-
ditionally, such a calculation is in general non-trivial. For example, if a service Sk
were to be sequentially inserted between Si and Sj, this may involve the introduction
of new control and data dependencies among Si, Sj and Sk. The question that then
arises, is how should the functionality of Si and Sj be modified? That is, some outputs
of Si may need to be redirected to Sj; also, some inputs of Sj may have to be obtained
from Sk. The introduction of Sk may also create new outputs, which would have to be
redirected to Sj, thereby necessitating an enhancement of the functionality of Sj, i.e.,
the source code of the service Sj will need to be modified. This can be observed from

 Discovering and Deriving Service Variants from Business Process Specifications 695

the example of inserting the Liability+FraudChecks service between DetermineLi-
ability and PotentialFraudCheck services. Now, when the number of such business
process-level changes grows, determining all the sevice-level code changes becomes a
major design exercise that can only be eased and speeded up via automation. Hence
the need for an algorithm such as VOSD.

3 Preliminaries

3.1 Meta Model-Based Representation of Variations

We leverage the metamodel introduced in [3] that allows one to separately model the
static and variable parts of any software component (service or business process) for
our VOSD algorithm. This metamodel consists of the following parts, and is depicted
in Figure 6:

• Variation Points - these are the points in the component where variations can be
introduced. They are in turn of two types. Implementation variation
points are the points in the component where the implementations of certain
methods can be modified, without affecting the externally observable behavior of
the component. Whereas, specification variation points are the
points at the interface of the component which can be modified. This may neces-
sitate changes to the internal implementation of the component, which are speci-
fied via implementation variation points. Specification variations could therefore
involve adding new input/output data, and/or removing input/output data to the
component.

• Variation Features – these further refine variation points, by specifying the ac-
tion semantics of the variation and its specific applicability. The same variation
point can admit more than one variation feature, and one variation feature can be
applied to many variation points.

Meta Model

Initial Solution Derived Solution

Variant
Part

Service-level Variation

Static
Part

Variation Feature applied to a Variation Point

Process-level Variation

Implementation Variation Point

Specification Variation Point

Implementation Variation Point

Specification Variation Point

Fig. 6. VOE Meta-Model

696 K. Ponnalagu and N.C. Narendra

This meta model will be further specialized to instantiate conceptual models for
modeling service-level and business process-level variations. These conceptual mod-
els can then be treated as design templates from which actual variation-oriented de-
sign can be accomplished. Hence for our running example, an example of a variation
point would be a method in DetermineLiability service for calculating insurance li-
ability. A variation feature would be an action to replace that method by a different
method. The actual service variant would be the modified DetermineLiability service.1

3.2 Modeling Business Process and Service Level Variations

Based on the metamodel from [3], we broadly categorize variations in a business
process-based solution into two cases. Service-level Variations are variations at the
level of individual services. They can in turn be classified into two sub-cases.

• Service implementation (ServImpl) variations model changes only to the internal
service implementations, without requiring changes to their interfaces, and this is
realized via implementation variation points. An example would be to modify the
internal fraud checking method in PotentialFraudCheck service.

• Service Interface (ServIntf) variations model changes to the interfaces of the
services, which will also require implementation changes – this is realized via
specification variation points. An example would be to add the outputs custInfo
and claimInfo to DetermineLiability service. This would also require concomitant
ServImpl variations, as follows:

o Input data received by the service – this could arise due to the following
triggers. First, a change in the output data sent by a previously executed
service, which is to be consumed by the service in question; second, a
change in the input data needed by a service to be executed later - this
data may have to be transmitted by the service in question, perhaps after
modification.

o Output data sent by the service - this would be a trigger for modifica-
tions to the services to be executed next, i.e., those that are dependent on
the service in question.

Process-level variations are variations in the application flow of the business process.
These are realized via combinations of ServImpl and ServIntf variations, and can be
classified as follows:
• AddSeqSvc: a service Sj is added between Si and Sk. If this does not cause any

modifications to the inputs of Sk and outputs of Si, then the output methods of Si
and input methods of Sk have to be redirected towards Sj – this can be realized as
ServImpl variation, since this will involve modifying the input and output meth-
ods for the services Si and Sk. However, if modifications are required, then this
will be realized as a ServIntf variation on Si and/or Sk, and needs to be modeled
as such. An example is to add a suitably modified PotentialFraudCheck service
between DetermineLiability service & Liability+FraudChecks service.

1 Please note that our approach resembles inheritance-based variations from the object-oriented

(OO) domain only in the implementation variation points; otherwise, the well-known “open to
extension - closed to modification” principle prevalent in the OO domain does not apply for
specification variation points.

 Discovering and Deriving Service Variants from Business Process Specifications 697

• DeleteSvc: service Si+1 (predecessor is Si and successor is Si+2) is deleted. If this
does not cause any modifications to the outputs of Si or the inputs of Si+2, then the
output methods of Si and input methods of Si+2 need to be redirected towards each
other. However, if modifications are required, this will require ServIntf variation
on Si and Si+2, and needs to be modeled as such.

• AddParSvc: Add service in parallel – a service Sj is added between Si and Sk in
parallel – this would require ServIntf variations to Si and Sk. If this does not cause
any modifications to the inputs of Sk and outputs of Si, then additional methods
would need to be added to each service to accommodate the new service Si – this
would be an ServImpl variation. However, if modifications are required, then this
will be realized as ServIntf variations on Si and Sk, and needs to be modeled as
such.

• AddFlow: Add dependency between two services – akin to adding an edge in the
business process – this will be a ServIntf variation, requiring interface changes to
the services.

• DelFlow: Delete dependency between two services – akin to deleting an edge in
the business process – this is similar to AddFlow, in that it would require a Serv-
Intf variation.

4 Integrated VOSD Algorithm

Before we describe our algorithm, we first informally introduce a process and its
associated services, before giving a formal definition. Briefly, a process is defined as
consisting of four parts: (a) a set of associated service models, (b) data dependencies
between the services based on the execution of preceding services (also called pro-
duced data dependencies), (c) data dependencies between the services based on the
input model of preceding services (also called received data dependencies), and (d)
control flow dependencies that provides the choreography of the services. Please note
that this definition is quite realistic from a business perspective. Most business ana-
lysts in software organizations (who are not expected to possess programming exper-
tise) would typically represent a business process as a collection of services with their
respective inputs and outputs, and then augment it with control flow and data depend-
encies among pairs of services that do not share the predecessor/successor relation-
ship. Therefore, such business analysts would also find it easy to distinguish between
received and produced data dependencies, which is crucial for our algorithm (as we
will see later in this section).

4.1 Formal Process and Service Model

We define a process P = {S, E, D, C}, wherein

S = {S1.. Sn) is the set of services that participate in P

S ⊂ U, where U is the total portfolio of services (and their associated variations) for
that particular domain of P.

698 K. Ponnalagu and N.C. Narendra

E = ij∀ {Eij}, {iff Si ⎯→⎯eij Sj = true}, is the set of all produced data dependencies

of service Sj with Si, where ji ≠

Eij, with the value of true, lets us know that the data produced by the execution of Si,
irrespective of Si‘s input is part of the data dij that needs to be passed from Si to Sj.

D = ij∀ {Dij}, {iff Si ⎯→⎯dij Sj = true }, is the set of all received data dependencies

of service Sj on Si, where ji ≠ . Here Service Si needs to pass its input data without

modifications to Service Sj. This is represented by Dij with the value of true.

The distinction between produced and received data dependencies is absolutely cru-
cial, since this will help in the case of removal of Si from the process flow P or se-
quential inclusion of a new Service Sx between Si and Sj (i.e., DelSvc- and
AddSeqSvc-type variations – see Section 3.2), as we will illustrate later in this Sec-
tion with the help of the running example of Section 2.

C = ij∀ {Cij}, {iff Si ⎯→⎯
Cij

 Sj = true}, where ji ≠ , is the set of control flow

dependencies between Si and Sj, where Cij is either true or false, based on whether Si
controls the execution of Sj, i.e., iff Si precedes Sj in terms of control flow.

Only with the value of Cij being true, can we know that a service Si precedes the Ser-
vice Sj in the business process. Only with this information, can we expect Service Si
to pass on the received data Dj for Service Sj from Service Sj’s predecessor services.
On the other hand, Cij having a value of false means Sj would execute in parallel with
respect to Sj and Si is not expected to carry any additional data for Sj.

We also define a service S via its inputs and output sets respectively, i.e.

S = {Din, Dout}, where {Din} = Set of input Data required for invoking S, and {Dout}
= Set of Output Data expected after invoking S.

To illustrate via our running example, from Figure 2, let Start Service = S0, which is
the initial service that provides all the inputs for subsequent services; let Determin-
eLiability = S1, PotentialFraudCheck = S2, ClaimInvestigation = S3, Liabil-
ity+FraudChecks = S4. The service definitions for our running example are listed
here below.

S0 = {Din = Dout = {CustInfo, ClaimInfo}}

S1 = {Din = {CustInfo, ClaimInfo}, Dout = {LiabilityInfo}}

S2 = {Din = {CustInfo, ClaimInfo}, Dout = {Result}}

S3 = {Din = {LiabilityInfo, Result}, Dout = {LiabilityInfo, Result}}

Let us consider Figure 4 (for original process) and Figure 5 (for variant process) and
only those services highlighted in those two diagrams for illustration. Let us refer to
the processes, respectively, as Pold and Pnew. Hence the process in Figure 4 can be
formally modeled as:

 Discovering and Deriving Service Variants from Business Process Specifications 699

Pold = {S, E, D, C}

Where S = {S0, S1, S2, S3) //used to derive new services or contains variants

E = {e13,e23}, where e13= e23 = true

D = {d01,d02, }, where d01=d02 = {Custinfo, Claiminfo}

C = {c01,c02,c13,c23}

c01 = c02 = c13 = c13 = true

With respect to D in the original process (i.e., received data dependencies), Ser-
vices S1 and S2 are dependent on S0 via received data and control dependencies
(i.e., S1 and S2 can execute only upon successful execution of S0). Similarly Ser-
vice S3 is dependent on both S1 and S2 via received data, produced data and con-
trol dependencies.

Now let us look at the process depicted in Figure 5, i.e., the variant process. It can
be represented as below.

Pnew = {S, E, D, C}

Here, S = {S0, S1, S2, S3, S4} // we need to derive or discover these

E = { e12, e24,} Where e12, e24= true

D = {d04, d41,d12,d24,d43}

d04 = d41 ={custinfo, claiminfo}

d12 = {custinfo,Claiminfo,liabilityinfo}

d24 = d43 = {liabilityinfo, result}

Similarly C = { c04,c41,c12,c24,c43}

Where c04,c41,c12,c24,c43 = true

4.2 Algorithm Description

We assume the following inputs to our VOSD algorithm: New Process Model = NP,
Functionally closer, existing process Model from portfolio = OP, Associated set of
services for OP from the portfolio = S, set of process tasks mapped from NP to ser-
vices in S = Smod, set of process tasks not mapped from NP = Snew, and finally, varia-
tion models for all the services in the portfolio (modeled as per VOE principles from
Section 3.2).

Before we present the algorithm, however, we first describe a function called
Matching which implements service variant discovery from existing service variants
in the portfolio. This function will be invoked by the VOSD algorithm as its first step.
The inputs to Matching are: (i) the selected task in NP for which the appropriate
service variant needs to be determined, (ii) a selected service variant S’ in OP (which
belongs to the set Smod) which needs to be matched against (i). The Matching func-
tion returns one of the following outputs: either (a) FALSE, i.e., no match occurs; or
(b) TRUE, along with the appropriate (variation point, variation feature) pair of the
selected service variant.

700 K. Ponnalagu and N.C. Narendra

BEGIN Matching
Variation Model Vm new VariationModel (S’);
//Lists all variation points and variation features applicable to S’
For each Variation Point
{
 For each Variation Feature applicable at that Variation Point
 {
 Vm.getVariant(VariationPoint);
//Choose the variation point corresponding to the service variant.
 If (No such variation point exists)

{
return (“FALSE”);
exit(-1);

 }
 Vm.getVariantFeature(VariationPoint, Variant);
// Check whether there is an actual service variant available in the portfolio of reusable
assets. If so, this function returns the actual variation feature, or exits with failure.
 If (No such variant is available)

{
return (“FALSE”);
exit(-1);

 }
return (ServiceVariant, VariationPoint, VariationFeature);
//Finally returns the service variant along with its variation point and variation feature
END Matching

Algorithm: VOSD

1. Pick a task from NP. Verify and compare the input and outputs for it and its cor-
responding identified Service in Smod

2. If Matching, go to Step 1 for next task. If this is the Last Task then Exit. Other-
wise, go to Step 3.

3. Get the service Variation Model. Find the associated Variation Points and Vari-
ants for that Service based on the conflict.

a. Ensure the service is declared Variant (VP exists)

b. Ensure the associated Operation is declared Variant (VP exists).

c. If neither a nor b occurs, exit with message (“Variation Failed”). If no
Variation model available (this will be the case for new services in
Snew), go to step 5.

4. Select the Variant from the selected list in step 3, that obeys the following prop-
erties.

a. it addresses the change identified from NP

b. it matches on the listed Variation Features

If Variant exists, return (“Variant Available”) ; else go to step 5

5. Invoke DeriveServices //This is the service variant derivation step

 Discovering and Deriving Service Variants from Business Process Specifications 701

At the end of execution of this algorithm, either we will get an implemented service
variant from the portfolio or a skeleton variant related to an existing implementation
through the algorithm DeriveServices.

Algorithm: DeriveServices
(i) Get Pnew,Pold,
Service S1[] = Pnew.getS();

// Abstract Services , links to S2.
Service S2[] = Pold.getS();
 // Returns Actual Services

Service Snew[] = S2[] – S1[]
// Services to be created for Pnew

Service Sold[] = S1[] ∩ S2[] // Services to be modified
(ii) createNewServices(Pnew,, Snew)
(iii) deriveServiceVariants(Pnew,Pold)

 (iv) InstantiateServices(Snew[])

We will elaborate steps (ii), (iii) and (iv) of the DeriveServices algorithm here. Cre-
ateNewServices() first creates all the new services that are required in the new proc-
ess. By creation of services, we mean a consolidated list of references with respect to
other service’s inputs and outputs. This approach is required, as at this point of time,
we expect many of the services to go through a variation phase which will impact
their input/output interface models to suit the new process. Hence once all the varia-
tions are identified for all the services, the input/output model can be used for actual
instantiation of the corresponding services, which we will see later in this section. The
CreateNewServices() algorithm is given below.

createNewServices(Process Pnew, Service[] Snew)
 //Get Each Snew[i] for I = 1 .. n.,
 // where n is the total no. of services
 Service S= Snew[]. getNext() //
 S = CreateService(S,Pnew)
 CreateService(S,Pnew) //Creates new services
 Service Ssource[] = Pnew,getE().getAllSource(S);

//returns all services, whose execution, Service S depends on
for all Services Ssource i = 1..n.
 If(Ssource[i] ! in Sold[]) continue;
 AddProducedinputs(Snew[i],Ssource[i])
 Service Ssource[] = Pnew.getD().getAllSource(S)
 for all Services Ssource i = 1..n. {
 If (Ssource[i] ! in Sold[]) continue;

 AddReceivedinputs(Snew[i],Ssource[i])};

Now let us discuss the step DeriveServiceVariants, in which all the existing services
of old process that are required in the new process are first verified for need of varia-
tion and appropriately their input/output model is defined accordingly. For this also,
we consider the values of E and D of the process Pnew. One thing worth mentioning is,
that an iteration on E, will affect only the dependent services, while an iteration on D
can affect both the services corresponding to the variable Dij. This step is elaborated
here.

702 K. Ponnalagu and N.C. Narendra

Int n = Enew.getSize(); Int j = Dnew.getSize();
For (int i = 0; i<n;i++)
{

Service S = Enew[i].getSource();
Service t = Enew[i].getTarget();
// Each value of Enew[i], represents a class that supports methods that returns the source
and target services
If (Snew.contains(t)) continue; //Already created
Else // ModifyService
AddProducedInputs(t,s);
// Add data that are produced by service s to the input list of service t

}
For (int i = 0; i<j;i++)
{

Service S =Dnew[i].getSource();
Service t = Dnew[i].getTarget();
If (Snew.contains(t)) continue; //Already created
Else // ModifyService
AddReceivedInputs(t,s);
// Add data that are received as Inputs by s to the input list of t and output list of d

}

The final step of the algorithm is InstantiateServices(), which actually instantiates
the services of the new process Pnew. This is illustrated below, along with two methods
for adding received and produced inputs as per E and D dependencies, respectively.

addreceivedinputs(t,s)
{

s.addoutputs(s.getinputs());
// This method in the source service Structure s - adds its input data into its Output Model.

t.addinputs(s.getinputs(t));
// This method gets only those inputs that the target service t does not have
// for example S4 just wants liabilityinfo from S2 and not Custinfo,cliaminfo

}
addproducedinputs(t,s)
{

t.addinputs(s.getoutputs(s));
// add only those data that are produced by s; for example liabilityinfo produced by S1 is
added but not custinfo and claiminfo.

}
InstantiateServices(Service Snew[])

{
// Here we actually derive service variants based on input output list consolidated with above steps

 int n = s2.getSize();
for (int k = 0;, k <n; k++)
{

create(S2[k]);
// This method retrieves the Input and Output Model for each of the Service
S2[k] and instantiates the references based on other services

 }
}

 Discovering and Deriving Service Variants from Business Process Specifications 703

5 Illustration on the Running Example

Referring to our running example, this Section describes a prototype implementation
to the illustration of our algorithm. The prototype was implemented as a transforma-
tion plugin in IBM’s Rational Software Architect v7.0.

Recall that we have declared earlier the following for the associated services for
Verify claim: Start Service = S0, DetermineLiability = S1, PotentialFraudCheck =
S2, ClaimInvestigation = S3, Liability+FraudChecks = S4. Let us first start with the
illustration on Service S4. From step 1,3 and 5 in VOSD and from step (i) in Derive-
Services , we know that Snew = {S4}. As we mentioned in Section 4, we can define
S4 in terms of (Din, Dout)

With respect to Step (ii) in DeriveServices algorithm, this needs to be created based
on the execution/data dependencies: E = { e12, e24,} Where e12, e24= true. D = {d04,
d41,d12,d24,d43}. d04 = d41 ={custinfo, claiminfo}. d12 = {custinfo,Claiminfo,liabilityinfo}.
d24 = d43 = {liabilityinfo, result}. Hence for S4 as target, the Set E of Pnew provides S2,
whose execution provides a part of the inputs for S4. The Set D provides two sets of
received inputs from Services S0 and S2, which at this point are just existing services.
Hence Din of S4 = (Received Input of S0, Received Input of S2, Processed data
from S2 }

As can be seen here, we do not actually store the values, but only the references of
the above variables, as S0 and S2 are still to be modified for the new prcess flow Pnew
and the context of S4s creation is for Pnew and not for Pold. But as one completes the
algorithm and instantiates S4, it will contain the following: Din of S4 = {Custinfo,
Claiminfo, Liability Info, Result} that is instantiated from the above equation. Simi-
larly, one can derive the following: Dout of S4 = {Custinfo, Claiminfo, Liability
Info, Result}. The first two data derived from d41 and last two data derived from d43.
With this definition, Pold consists of the following implemented services.

S0 = {Min, Mout, Mproc}, where Min= Mout = {SetCustinfo(), SetClaimInfo()},
and Mproc = null

S1 = {Min,Mout,Mproc}, where Min = {SetCustinfo(). setClaimInfo()}, Mout =
{getLiabilityInfo()}, and Mproc = {processLiabilityInf()}

S2 = {Min, Mout, Mproc}, where Min = {SetCustInfo(),SetClaimInfo()}, Mout =
{getResult()}, and Mproc = {fraudcheck()}

S3 = {Min, Mout, Mproc}, where Min = {setliabilityInfo(),SetResult()}, Mout =
{getLiabilityInfo(), GetResult()}, and Mproc = {investigateClaim()}

The available Variant Model for the LiabilityInfo Service in Pold in the prototype
implementation is depicted in Figure 7. From step 2 of the VOSD algorithm, Service
S2 is declared as a variant. From Step 3 of the algorithm, we can see from Figure 7
that the available variation feature matches with the expected output data model that
supports creation of two new methods, with the names of the operations and their
associated parameter values confirming the matching. Now, in the case of Service S3,
from step 3 of the VOSD algorithm and this variation model, we could see that there
is no variation feature available. (In practical cases, there is possibility that the avail-
able variation features even if any, may not match the expected variant required for

704 K. Ponnalagu and N.C. Narendra

Fig. 7. Variant Model for Pold

Fig. 8. Transformation Plugin

Pnew) Hence from step 4 of the algorithm, we invoke the DerviceServices algorithm
and derive the new variant for S3.

Our transformation plugin is depicted in Figure 8, where the user can invoke the
service derivation transformation, and subsequently provide the process model Pnew as
the input to the transformation.

 Discovering and Deriving Service Variants from Business Process Specifications 705

We summarize the services for Pnew, below, with variations listed in bold-italic font:

S0 = {Min, Mout, Mproc}; where Min = Mout = {SetCustinfo(), SetClaimInfo()} and
Mproc = null

S1 = {Min,Mout,Mproc}, where Min = {SetCustinfo(). setClaimInfo()}, Mout = {get-
LiabilityInfo(),getCustinfo(),GetClaiminfo}, and Mproc = {processLiabilityInf()}

S2={Min,Mout,Mproc}, where Min = {Set-
CustInfo(),SetClaimInfo(),setLiabilityInfo()}, Mout = {getLiability-
Info(),,getResult()}, and Mproc = {fraudcheck()}

S3 = {Min, Mout, Mproc}, where Min = {setliabilityInfo(),SetResult()}, Mout = {get-
LiabilityInfo(), GetResult()}, and Mproc = {investigateClaim()}

Figure 9 depicts the output of our integrated VOSD algorithm, displaying Pold and

Pnew, with Pnew (circled in red) named as a variant of Pold.

Fig. 9. Output of Integrated VOSD Algorithm

6 Related Work

The importance of a systematic approach towards service identification from business
process specifications has been highlighted in [8], which bolsters the need for our
VOSD algorithm. One of the early formalizations of the variation-oriented analysis
and design (VOAD) principle can be found in [1]. Our paper incorporates and extends

706 K. Ponnalagu and N.C. Narendra

these ideas by applying it to the specific case of business process-based solutions and
deriving associated service variations. Another relevant paper is [4], which presents a
design method called Grammar-Oriented Object Design (GOOD), which provides a
means for the business analyst to declaratively specify the requirements of a dynami-
cally reconfigurable software architecture driven by business-process architectures.
Another approach similar to ours is presented in [2]; however, that paper primarily
concentrates on detailing various ServImpl-type variations expressed via the object-
oriented concept of inheritance (i.e., interfaces are considered to be invariant). In
contrast, our approach uses SOA principles to provide a far greater range of variabil-
ity, as already explained earlier in Section 3. In a similar vein, IBM’s Model-driven
Business Transformation (MDBT) approach [6] proposes a model-driven approach,
based on OMG’s MDA (http://www.omg.org/mda/) approach, for transforming busi-
ness requirements into IT solutions. Our approach is similar, but we focus on trans-
forming business processes into their constituent service specifications.

7 Conclusions and Future Work

In this paper, we have addressed the crucial problem of rapidly comparing an ex-
tended template business process (defined for a different context; defined for different
customer requirements) with an existing business process that is already implemented
as a choreography of collection of services; thereby enhancing reuse of these services
by appropriate modification and thereby gaining flexibility with minimal additional
effort. As part of this effort, we have described our integrated algorithm for discover-
ing (from a portfolio of reusable assets) and deriving service variants for stated busi-
ness process specifications, which we have called Variation-Oriented Service Design
(VOSD). Via IBM’s RSA Modeling Tool, we have also demonstrated our algorithm
on a realistic running example in the insurance domain. Our prototype implementa-
tion proves the practical usefulness of our algorithm; hence our primary future work is
to implement our algorithm along with our industry partners on real-life customer
engagements.

References

[1] Arsanjani, A., Zedan, H., Alpigini, J.: Externalizing Component Manners to Achieve
Greater Maintainability through a Highly Reconfigurable Architectural Style. In: Proceed-
ings of International Conference on Software Maintenance (ICSM) 2002. IEEE Computer
Society, Los Alamitos (2002)

[2] Schneiders, Puhlmann, F.: Variability Mechanisms in E-Business Process Families. In:
Proceedings of Business Information Systems, BIS 2006 (2006)

[3] Narendra, N.C., Ponnalagu, K., Srivastava, B., Banavar, G.S.: Variation-Oriented Engi-
neering (VOE): Enhancing Reusability of SOA-based Solutions. In: Proceedings of SCC
2008. IEEE Computer Society, Los Alamitos (to appear, 2008)

[4] Arsanjani, A.: Empowering the Business Analyst for On Demand Computing. IBM Sys-
tems Journal 44(1) (2005)

[5] Singh, M.P., Huhns, M.N.: Service Oriented Computing, 1st edn. Wiley-VCH Publishers,
Chichester (2004)

 Discovering and Deriving Service Variants from Business Process Specifications 707

[6] Kumaran, S.: Model-driven Enterprise. In: Proceedings of the Global EAI (Enterprise Ap-
plication Integration) Summit, pp. 166–180 (2004)

[7] Ponnalagu, K.: Deriving service variants from business process specifications. In: Proceed-
ings of ACM Compute (2008),
http://portal.acm.org/ft_gateway.cfm?id=1341776&type=pdf&col
l=&dl=GUIDE&CFID=25839879&CFTOKEN=86101169

[8] Hubbers, J.-W., Ligthart, A., Terlouw, L.: Ten Ways to Identify Services. SOA Magazine
(accessed May 21, 2008), http://www.soamag.com/I13/1207-1.asp

Market Overview of Enterprise Mashup Tools

Volker Hoyer1,2 and Marco Fischer1

1 SAP Research CEC St. Gallen, 9000 St. Gallen, Switzerland
2 University of St. Gallen, 9000 St. Gallen, Switzerland

{volker.hoyer,marco.fischer}@sap.com

Abstract. A new paradigm, known as Enterprise Mashups, has been
gain momentum during the last years. By empowering actual business
end-users to create and adapt individual enterprise applications, En-
terprise Mashups implicate a shift concerning a collaborative software
development and consumption process. Upcoming Mashup tools prove
the growing relevance of this paradigm in the industry, both in the con-
sumer and enterprise-oriented market. However, a market overview of
the different tools is still missing. In this paper, we introduce a clas-
sification of Mashup tools and evaluate selected tools of the different
clusters according to the perspectives general information, functionality
and usability. Finally, we classify more than 30 tools in the designed
classification model and present the observed market trends in context
of Enterprise Mashups.

Keywords: Enterprise Mashups, Internet of Services (IoS), Market
Overview, Classification.

1 Introduction and Motivation

The networked information economy in the 21th century is characterized by
a common-based peer production which represents a new model of economic
production. According to Yochai Benkler who coined the term, ”it refers to
production systems that depend on individual action that is self-explained and
decentralized rather than hierarchically assigned” [1]. Thereby, the creative en-
ergy of large number of people (”Wisdom of Crowds”) is used to react flexible on
continuous dynamic changes of the business environment. In the software devel-
opment and consumption process, you can observe early signs of this common-
based peer production as well. Known as Enterprise Mashups, the actual business
end-users are empowered to adapt their individual business workplaces according
to their individual and heterogeneous needs [2]. Driven by the consumer-oriented
market, the Mashups paradigm is picked up in the enterprise context during the
last two years.

Market research companies like Gartner [3], Forester [4] or the Economic In-
telligence Unit [5] forecast a growing relevance of this paradigm in the next years.
However, an overview of the upcoming Enterprise Mashup market regarding the
provided functionality is missing. This article is devoted to a systematic analysis
of the Mashup market to provide an overview of the current status.

A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, pp. 708–721, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Market Overview of Enterprise Mashup Tools 709

The reminder of this paper is structured as follows: Chapter two deals with a
clear definition of the Enterprise Mashup paradigm. In chapter three, we present
a model to classify Mashup tools according to the dimension functionality (editor
and catalogue) and target group (consumer and enterprise). By means of eight
case studies, chapter four analyses existing tools for the identified clusters. In
addition, the developed classification model is applied. Finally, chapter five closes
this article with a brief summary and an outlook of identified trends in the
Enterprise Mashup market.

2 Terms and Research Approach

2.1 Enterprise Mashups - Definition and Characteristics

In literature, the exact definition of Enterprise Mashups or in general Mashups
is open to debate. To build our research on a scientific foundation, we have inves-
tigated existing definitions by an in-depth literature analysis. Besides references
from scientific articles published in international journals or conference proceed-
ings, we also consider the current situation in the industry which has driven the
paradigm. Regarding from a technical ([6], [7], [8], [9] ,[10]), business ([11], [12],
[13]), application ([14], [15]), consulting ([16], [17]), software vendor ([18], [19],
[20]]) and community (Wikipedia [21]) perspective, we analyse 16 definitions.

First of all, there exists no general difference between definitions used in the
scientific community and in the industrial world which has driven the terminol-
ogy so far. The authors of the scientific papers define the term Mashup by their
own and don’t quote a primary reference. In almost all definitions, the resource
composition style is named as the central characteristic of Mashups. They only
differ from which resources are mashed. Besides content or data ([9], [11], [12],
[13], [15], [19], [20], [21]) according to the Web 2.0 data-centric approach, tra-
ditional application functionalities are also mentioned as Web-based resources
([18], [14], 30]). The history of the term itself is referred by many authors to the
music hip hop style. Starting in the early 1970s, hip hop artists began mixing
and matching beats from various sources, and then layering their own rhythmic
vocals on top. This new art form proved highly popular with young people, and
now constitutes one of the industry’s most lucrative genres.

After a wide dissemination of the first consumer-oriented Mashups, the para-
digm is also picked up in the context of enterprise applications. Even if software
vendors [19] and some scientific authors introduced the term Enterprise Mashups
[7], there exists no general difference to the original Mashup definition. Only the
relation to existing concepts, in particular the Service-Oriented Architecture and
the Web 2.0 philosophy are mentioned additionally. At the interface of this two
converging principles, Enterprise Mashups put a visual face to the heavyweight
Service-Oriented Architecture [18], [6], [7], [8] and can be interpreted as an evolu-
tion of SOA [18]. Therewith, they represent one technology to build ”situational
applications” [18] within hours to react flexible on changing business environ-
ments and follow an end-user centric approach [6].

710 V. Hoyer and M. Fischer

Summering up and based on the literature review, we take the following sum-
mary as foundation for this work: ”An Enterprise Mashups is a Web-based re-
source that combines existing resources, be it content, data or application func-
tionality, from more than one resource in enterprise environments by empowering
the actual end-users to create and adapt individual information centric and sit-
uational applications.”.

2.2 Lightweight Resource Composition

In context of Enterprise Mashups a clear and wide established terminology is
missing both in the industry as well as in the academic world. In the following
section we present the significant components and terms used in the discussion of
Enterprise Mashups. Figure 1 depicts the two different lightweight composition
styles (wiring and piping) and classifies them in an Enterprise Mashup Stack [2]
that is based on three layers: Resources, Widgets and Mashups.

Fig. 1. Lightweight Composition with Enterprise Mashups (Piping vs. Wiring) [2]

Resources. The lowest layer contains the actual Web resources, be it content,
data or application functionality. They represent the core building blocks of En-
terprise Mashups and are the differentiator of the resource-centric paradigm. Ac-
cording to the lightweight Representational State Transfer (REST) architecture
style [22], each Web-based resource can be addressed by a Universal Resource
Identifier (URI). The resources itself are sourced via a well-defined public inter-
face, the so called Application Programming Interfaces (APIs). They encapsulate
the actual implementation from the specification and allow the loosely coupling
of existing Web-based resources.

Widgets. Widgets represent application domain functions or information spe-
cific functions and put a visual face on the underlying resources. They are sourced

Market Overview of Enterprise Mashup Tools 711

via public APIs, and are responsible for providing graphical, simple and efficient
user interaction mechanisms that abstract from the technical description (func-
tional and non-functional) of the Web-based resources. The term used is widget,
but some vendors are also using the wording gadget or badget.

Mashup. By assembling and composing a collection of widgets stored in a cata-
logue or repository, end-users are able to define the behavior of the actual appli-
cation according to their individual needs. By aggregation and linking content of
different resources in a visual and intuitive way, the end-users are empowered to
create their own workspace which fits best to solve their heterogeneous business
problems. No skills in programming concepts are required.

The central driver of Enterprise Mashups is the lightweight resource compo-
sition style by reusing building blocks in different contexts [2]. As depicted in
Figure 1, the composition takes place both on the resource layer (piping) and on
the widget (wiring) layer. In reference to the UNIX shell pipeline concept, the
piping composition integrates a number of heterogeneous Web-based resources
defining composed processing data chains/ graphs concatenating successive re-
sources. The output of each process is direct input to the next one. Aggregation,
transformation, filter and sort functions adapt, mix and manipulate the content,
data and application functionality of the Web-based resources. On the widget
layer, the actual end-user is able to wire existing widgets together by intercon-
necting visually their input and output parameters.

2.3 Research Approach

This section is devoted to the presentation of the research approach applied.
The goal of the research is to provide an overview about Enterprise Mashup
tools. Based on an intensive analysis of more than 30 Mashup tools, we design
a Mashup classification model to classify the heterogeneous tools. Thereby the
analysis is done by means of three main criteria. First, a general information
part consists of vendor information and about the tool itself (e.g., Mashup type
and addressed target group). Second, the Mashup tools are analysed concerning
their functionality (catalogue, mass collaboration and lightweight composition
style [2]). Third, an analysis of the usability gives an answer how user-friendly a
Mashup tool is. The developed classification model is applied by classify different
Mashup tools. In addition, case studies for each cluster of the model describe
the functionality of existing tools. Summering up, identified and observed market
trends are presented.

3 Classification Model

After presenting the underlying research approach, this section presents a de-
signed Mashup classification model. By means of an intensive analysis of differ-
ent tools we identify two main differentiators: functionality/ property and target
group.

712 V. Hoyer and M. Fischer

3.1 Functionality/ Property

Due to the innovative characteristic of Mashup tools, the provided functionalities
cover a wide area reaching from catalogue to more visually editor functions.

Catalogue. A catalogue is a collection or library of existing resources and wid-
gets dependent on which layer (resource or widget) you operate. By describing
the resources by the resource provider or also by the actual end-user following the
Web 2.0 philosophy, the user is enabled to search for relevant resources accord-
ing to his individual and heterogeneous need. In addition to these organizational
tasks, catalogues have also to mediate between the different resources types. As
mentioned before, the power of the Enterprise Mashup paradigm is based on the
integration and easily connection of different resource types might it be Web
pages (HTML), Web Services (WSDL), databases or enterprise applications. In
general, a catalogue is sub-divided into repository and adapter:
– An adapterintegrates existing resources in Mashup environments by mediate

between different resource types both on syntactic and semantic level. To con-
nect the resources, the adapter maps to a common protocol and internal for-
mat. For example, adapters scrape information from unstructured Web pages
expressed in HTML or integrate complex Web Services with several input and
output parameters into the Mashup environment by reducing the parameters.

– A repository organizes the growing number of resources and widgets in the
Internet of Services. First of all, it comprises a registry in order to make
them all retrievable via one single point of access. A user is so enabled to
browse the existing widgets and resources. Also the efficient management
and governance (e.g., service level agreement to ensure quality-of-service
interaction) is part of the structural organization of a Mashup repository.
The ad-hoc lightweight composition requires also a user-driven organization
following the Web 2.0 philosophy. In that sense, end-users are enabled to
rate, describe or recommend services.

Editor. An editor allows creating, modifying and aggregating of individual soft-
ware applications by connecting resources retrievable from the catalogue. To
address end-users characterized with no or only limited programming skills, the
editor abstracts from the underlying programming interfaces through intuitive
visual design environments following a ”programming with the mouse” princi-
ple. The creating of ad-hoc enterprise applications is done within minutes or even
hours instead of days or months. In contrast to traditional development environ-
ments focusing on actual programmers, Mashup editors don’t separate between
the design and runtime phase. These two phases are converging. According to the
layer concept of the Enterprise Mashup Stack presented in chapter two, Mashup
editors focus either on a presentation layer or on a transformation/ aggregation
layer:

– Transformation/ Aggregation. combine data and content according to
the lightweight resource composition style (piping) by reusing building blocks
in different contexts. Information is sourced from several resources compa-
rable with traditional EAI tools.

Market Overview of Enterprise Mashup Tools 713

– Presentation layer tools present content from disparate sources together
in a unified view and run the composition. In that sense, the presentation
tools focus by default explicitly on end-users and use the transformed and
aggregated resources.

3.2 Target Group

In addition to the actual functionality of Mashup tools, we have to distinguish
from the addressed target group. Driven by the consumer oriented market in
the last years tools focus more and more on enterprise requirements which are
different to the consumer requirements.

Consumer Mashups. A consumer Mashup tool is mainly aimed at individuals
to easily create Mashups for private use, e.g. personalized browser page. The
consumer Mashup is perhaps the best know type of Mashups. Consumer Mashups
combine data elements from multiple sources, hiding this behind a simple unified
graphical interface. Instead of opening several Web pages to view, for example,
the weather forecast, the news and your private emails, the consumer is able to
create an individual start page pulling the information from different sources.

Enterprise Mashups. They combine existing resources, be it content, data or
application functionality, from more than one source in enterprise environments.
In contrast to consumer Mashups, enterprise environments implicate additional re-
quirements like security, quality or availability. In additional, Enterprise Mashups
focus on integrating existing back-end systems. So, Enterprise Mashups have enor-
mous potential to allow more rapid and much less expensive development of appli-
cations by emphasizing assembly over development, economies of scale by enabling
high levels of reuse, and the consequentability to rapidly get software solutionswith
the right data in the right place at the right time.

4 Market Overview Mashup Tools

In chapter four, we provide a market overview of existing Mashup tools by means
of the presented classification model. Several vendors provide more than one fea-
ture; in this case we classify tools according to one capability in the case studies.

4.1 Case Studies: Consumer Market

Adapter. Dapper entered the Mashup market in 2005. Dapper’s core business
is to provide public Web-based Software as a Service (SaaS) tool for generating
feeds from any Web page (e.g., RSS, XML, JSON, etc.). Dapper Factory1 lets
user extract and structure data from around the Web, and then create services
based around this structured information. Dapper is aimed at consumer and ex-
pand their ability to integrate Web content into their personal live. Additionally,

1 http://www.dapper.net/

http://www.dapper.net/

714 V. Hoyer and M. Fischer

Fig. 2. Netvibes Ecosystem

Dapper provides a Web community, where user can access and share Dapper de-
livered feeds. Therefore is Dapper also a repository, but the main functionality is
the Web-based wizard. For now, Dapper is a free and entirely Web-based service
though they intend on providing revenue generators in the near future with an
enterprise license.

Repository. Netvibes2 is one of the pioneers of personalized browser pages (pre-
sentation layer), and includes a huge repository of predefined resources. Netvibes
let you assemble widgets, feeds, social networks, email, videos and blogs on one
fully-customizable page. Netvibes introduced a beta version of the same name
in 2006 and is much like iGoogle, and Microsoft Live, but has much less adver-
tising and much more focus on the widgets, which are stored in the repository.
Furthermore Netvibes Ecosystem3 is a collection of user submitted modules or
widgets. Widgets can be tagged, rated or commented and are findable through
categories (e.g. business, news, education and so on) or browser search.

Transformation/ Aggregation. Microsoft develops, manufactures, licenses,
and supports a wide range of software products for computing device. Microsoft
decided to launch their first Mashup product in 2005, and recognized early, that
there could be a potential in the market. Microsoft provides with Popfly4 a public
3D Web-based consumer tool with a Mashup Creator to combine and aggregate
widgets with the lightweight resource composition style (piping). Popfly has a rich
user interface based on the Silverlight technology. Behind is a social network called
Popfly Space for sharing, rating, and commenting user contributed Mashups. For
this reason, Popfly is an editor as well as a repository of existing resources.

Presentation. Google Inc. offers with iGoogle5 a presentation tool for the
Mashup market. Google’s consumer platform aims to centralize all personal in-
formation in a personalized browser page. iGoogle includes the capability to
add RSS feeds and Google gadget, similar to those available on Google desktop.
Some of the themes are animated depending on weather conditions or the time

2 http://www.netvibes.com/
3 http://eco.netvibes.com/
4 http://www.popfly.com/
5 http://www.google.com/ig

http://www.netvibes.com/
http://eco.netvibes.com/
http://www.popfly.com/
http://www.google.com/ig

Market Overview of Enterprise Mashup Tools 715

Fig. 3. Microsoft Popfly

in different areas. Furthermore the Google Gadgets API is public and allows
anyone to develop a iGoogle gadget. Since May 2007, Google integrates a Gad-
get Maker, where users can create a special gadget that does not require the
use of the Gadgets API. Thus iGoogle is a combination between a repository
and front-end tool, but the main capability is to present content from different
sources.

4.2 Case Studies: Enterprise Market

Adapter. Kapow Technologies is a standing vendor in the Mashup market,
which already launched its product in 2001. Therefore, Kapow has been in pro-
duction at many large consumer sites and enterprises for years. Kapow provides
both an open community known as OpenKapow6 as well as a desktop-based
Mashup adapter called Kapow Mashup Server7. This commercial adapter fo-
cuses on information access, augmentation and scraping off Web-based informa-
tion. Kapow uses robots to convert unstructured data form various sources into
information feeds. Kapow’s key feature is to turn Web pages into data sources
with a wide range of data outputs (e.g., XML, HTML, CSV, and JSON).

Repository. IBM is a multinational computer technology and consulting corpo-
ration which manufactures and sells computer hardware and software, and offers
6 http://openkapow.com/Default.aspx
7 http://www.kapowtech.com/products.html

http://openkapow.com/Default.aspx
http://www.kapowtech.com/products.html

716 V. Hoyer and M. Fischer

Fig. 4. IBM Mashup Hub

infrastructure services, hosting services in areas ranging from mainframe comput-
ers to nanotechnology. IBM launched with the Mashup Starter Kit its first Mashup
Product in 2006. IBM Mashup Starter Kit consists of two technologies, and one
of them is IBM’s Mashup Hub8. Mashup Hub is primary a catalogue of feeds and
widgets, which can be input for another IBM product QEDWiki. The repository
allows to tag and rate resources and the aid of guided process flows for ease of
use. IBM’s Mashup Hub is also a Web-based editor to create feeds from different
sources, (e.g., XML, SQL queries, spreadsheet) and supports therefore feed gen-
eration for enterprise data sources, which finally stored in the repository.

Transformation/ Aggregation. Yahoo provides a wide array of Internet ser-
vices that cater to most online activities. They entered 2006 with its Web ap-
plication product Yahoo! Pipes 9 in the Mashup market. Yahoo! Pipes provides
a graphical user interface for building applications that aggregate Web feeds as
depicted in Figure 5, Web pages, and other services, creating Web-based appli-
cations from various sources, and publishing those applications. Development is
based on dragging resources from a toolbox and dropping them in work area,
specifying data input, interconnecting gadgets through ”pipes” and specifying
data output format. At the moment Pipes has limitations for enterprise use, but
it can handle simple business needs by now.

Presentation. The company JackBe was founded in 2002 as an AJAX widget
company to later find itself targeting the IT enterprise market. JackBe launched
8 http://services.alphaworks.ibm.com/mashuphub/
9 http://pipes.yahoo.com/pipes/

http://services.alphaworks.ibm.com/mashuphub/
http://pipes.yahoo.com/pipes/

Market Overview of Enterprise Mashup Tools 717

Fig. 5. Yahoo Pipes

with Presto a series of Enterprise Mashup solutions, consist of four components.
In this case we cater to JackBe’s front-end tool Presto Edge Enterprise Mashup
Server10. Presto Edge allows publishing of Web services and provides collabora-
tion and execution on the presentation layer. Sources, e.g. from another JackBe
tool can easily piece together to a new application. JackBe also offers predefined
solutions in security, administration and management capabilities.

4.3 Market Overview

After presenting selected Mashups tools for the different clusters according to
the designed classification model, we classify more than 30 Mashup tools, shown
in Figure 6. Several vendors provide more than one capability according to the
classification model and therefore these vendors are classified in multiple clusters.
For example, IBM QEDWiki is mentioned as an editor and a catalogue.

The market overview identifies a huge amount of vendors, which cavort in the
Mashup space. Tools and services like Pageflakes, iGoogle aimed at consumer
and non-technical users to create and publish their own Mashups. Consumer can
easily generate own personalized browser pages with news, feeds and different
gadgets. But Mashups seem to be not only a bauble for consumer, more and more
enterprise vendors enter the market from the application integration, information

10 http://www.jackbe.com/products/edge.php

http://www.jackbe.com/products/edge.php

718 V. Hoyer and M. Fischer

Fig. 6. Classification of Mashup Tools

integration, rich Internet application and enterprise portal markets. In the last
two and a half years enterprises like Microsoft, IBM and Serena placed new
products into the Mashup market. But this is just the beginning, because the
market is still in a state flux.

Additionally the trend of extremely individualized worker [23] means that en-
terprises also must observe public Mashup technologies to measure their potential
for enterprise use. Interest in Mashup tools is also affecting the horizontal portal
market and multiple portal vendors already support Mashups to a limited degree
[24]. Furthermore CRM and ERP software enterprises, which are not mentioned in
the figure above, integrate Mashup solutions in their existing enterprise software
(e.g., vtiger, Salesforce.com, or Oracle). Thus, non Mashup specialists come into
the market and Mashup tools getting closer to mainstream business use - they are
moving into the enterprise as mentioned before. Companies have significant chal-
lenges to integrate information from various resources and Mashups can be an
answer of this problem. They recognize the theoretical potential behind Mashup
tools and plan to use them in the next years anymore [5]. In addition to positives of
the market, enterprises should be aware, that Enterprise Mashup tools still in its
infancy and aspects like security, administration, new and necessary IT strategies
are not in detail discussed or implemented by now.

Market Overview of Enterprise Mashup Tools 719

5 Conclusion

The opportunity of remixing internal and external resources more rapid and
with much less expensive development into entirely new applications has cap-
tured the software industry. Niche players, visioniers and challengers provide a
wide range of different Mashup tools and platforms to grip market share. This
market overview analyses several tools and offers an overview of the existing
market with the assistance of a Mashup classification model. The analysis shows
that Enterprise Mashups still in flux and the market will be in move over the
next years. New enterprises will enter the market, because Mashup tools affect
the whole software industry. A new report from Forrester Research predicts that
Mashups will be coming to the enterprise in a big way with a USD 700 Mio mar-
ket by 2013 [4]. Additionally the way workers view their workplace is changing.
New employees have different skills and expectations, because they are grow up
with IT and know how to customize and individualize almost everything [25].

Nevertheless, there are still issues and lacks in existing tools, like a missing
screenflow design, semantic aspects and the covering of enterprise typical require-
ments like security or reliability. In frame of the EU funded project FAST [26]11,
we are currently developing a new visual environment following a user-centric ap-
proach that will facilitate the development of complex widgets required in business
environments. Besides these technical challenges, the project focuses on the cre-
ation of business relevant widgets. As identified in the evaluation of the different
Mashup tools, the actual content encapsulated by widgets is still missing. In fu-
ture, a growing number of business widgets will be a critical success factor for a
wide dissemination of the Mashup paradigm in corporate environments.

Acknowledgments. This paper has been created closely to research activities
during the EU-funded project FAST (INFSO-ICT-216048) [26].

References

1. Benkler, Y.: The Wealth of Networks. How Social Production Transforms Markets
and Freedom. Yale University Press, New Haven (2006)

2. Hoyer, V., Stanoevska-Slabeva, K., Janner, T., Schroth, C.: Enterprise Mashups:
Design Principles towards the Long Tail for User Needs. In: IEEE International
Conference on Services Computing (SCC), vol. 2, pp. 601–602 (2008)

3. Bradley, A., Gootzit, D.: Who’s Who in Enterprise Mashup Technologies. Gartner
Research (2007)

4. Young, G., Daley, E., Gualtieri, M., Lo, H., Ashour, M.: The Mashup Opportunity.
Forrester (2008)

5. The Economist Intelligence Unit: Serious Business - Web 2.0 goes Corporate. The
Economist Intelligence Unit (2007)

6. Liu, X., Hui, Y., Sun, W., Liang, H.: Towards service composition based on mashup.
In: Proceedings of the IEEE International Conference on Service Computing (SCC
2007), pp. 332–339 (2007)

11 http://fast.morfeo-project.eu/

http://fast.morfeo-project.eu/

720 V. Hoyer and M. Fischer

7. Janner, T., Canas, V., Hierro, J., Licano, D., Reyers, M., Schroth, C., Soriano, J.,
Hoyer, V.: Enterprise Mashups: Putting a face on next generation global SOA. In:
Benatallah, B., Casati, F., Georgakopoulos, D., Bartolini, C., Sadiq, W., Godart,
C. (eds.) WISE 2007. LNCS, vol. 4831, Springer, Heidelberg (2007)

8. Soriano, J., Lizcano, D., Canas, M., Reyes, M., Hierro, J.: Foster Innovation in a
Mashup-oriented Enterprise 2.0 Collaboration Environment. System and Informa-
tion Sciences Notes 1(1), 62–68 (2007)

9. Kultathuramaiyer, N.: Mashups: Emerging application development paradigm for
a digital journal. Journal of Universal Computer Science 13(4), 531–542 (2007)

10. Daniel, F., Matera, M., Yu, J., Benatallah, B., Saint-Paul, R., Casati, F.: Under-
standing UI Integration. A Survey of Problems, Technologies, and Opportunities.
IEEE Internet Computing 11(3), 59–66 (2007)

11. Dearstyne, B.: Blogs, mashups, wikis oh my. Information Management Jour-
nal 41(4), 24–33 (2007)

12. O’Brien, D., Fritzgerald, B.: Mashups, remixes and copyright law. Internet Law
Bulletin 9(2), 17–19 (2007)

13. Gerber, R.: Mixing it up on the web: Legal issues arising from the internet mashup.
Intellectual Property and Technology Law Journal 18(8), 11–14 (2007)

14. Miller, C.: A beast in the field: The google maps mashup at gis/2. Cartographica -
The International Journal for Geographic Information and Geovisualization 41(3),
187–199 (2007)

15. Cho, A.: An introduction of mashups for health libranrians. Journal of the Cana-
dian Health Libraries Association 28(1), 19–22 (2007)

16. The Economist: Mashing the web. The Economist - Special Section 376(8444), 4
(2005)

17. Hof, R.: Mix, match, and mutate. Business Week Magazine (2005)
18. Watt, S.: Mashups - the evolution of the soa, part 2: Situational applications and

the mashup ecosystem (2007),
http://www.ibm.com/developerworks/webservices/library/
ws-soa-mashups2/

19. Clarkin, L., Holmes, J.: Enterprise mashups. The Architecture Journal 13 (2007)
20. Salesforce: Mashups: The what and why (2007),

http://wiki.apexdevnet.com/index.php/
21. Wikipedia: Mashups (2008), http://en.wikipedia.org/
22. Fielding, R.: Architectural styles and the design of network-based software archi-

tectures. Ph.D. Thesis (2000)
23. Morello, D., Burton, B.: Future Worker 2015. Extreme Individualization. In: Gar-

nter Symposium ITxpo, Orlando (2005)
24. Gootzit, D., Phifer, G., Valdes, R.: Magic Quadrant for horizontal Portal Products.

Garnter Research (2007)
25. Cherbakov, L., Bravery, A., Goodman, B., Pandya, A., Bagget, J.: Changing the

corporate it development model: Tapping the power of grassrots computing. IBM
System Journals 46(4) (2007)

26. FAST: EU Project FAST (INFSO-ICT-216048) (2008),
http://fast.morfeo-project.eu/

http://www.ibm.com/developerworks/webservices/library/ws-soa-mashups2/
http://www.ibm.com/developerworks/webservices/library/ws-soa-mashups2/
http://wiki.apexdevnet.com/index.php/
http://en.wikipedia.org/
http://fast.morfeo-project.eu/

Market Overview of Enterprise Mashup Tools 721

Appendix: Evaluation Matrix

Evaluation Criteria D
ap

pe
r

Fa
ct

or
y

iG
oo

gl
e

IB
M

M
as

hu
p

H
ub

Ja
ck

B
e

P
re

st
o

E
dg

e

K
ap

ow
M

as
hu

p
Se

rv
er

M
ic

ro
so

ft
P
op

fly

N
et

vi
be

s

Y
ah

oo
P

ip
es

Product Information
Mashup Type

Editor x x x x x
Catalogue x x x x x x x

Target Group
Consumer x x x x x
Enterprise x x x x

Functionality
Mashup Catalogue

Number of resourcesa
2.000 n.a. 150 n.a. 6.000 150 172.000 1.000

Number of resource typesb 7 4 6 5 7 3 3 4
Query and search capabilities x x x x x x x x
Creation of widgets x x x x x x x
External catalogues x

Mass Collaboration
Tagging x x x n.a. x x x x
Rating x x n.a. x x x
FAQ x x x x x x x x
Blog x x x x x x x
Forum x x x x x x x x

Lightweight Composition
Screenflow design
Visual Wiring x x
Visual Piping x x x

Usability
End-User Interface

Ease of use x x x x x x
Drag-and-Drop x x x x
Guided process flows x x x x x x x
Performance <2 sec <2 sec <1 sec <1 sec <1 sec <2 sec <1 sec <2 sec

Help
Demos x x x x x x x x
Tutorials x x x x x x

a
Estimated number

b
Resource types can be: Widgets, ATOM, CSV, data base, HTML, JSON, RSS, WSDL, XML, etc.

A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, pp. 722–723, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Siena: From PowerPoint to Web App in 5 Minutes

David Cohn1, Pankaj Dhoolia2, Fenno Heath III1, Florian Pinel1, and John Vergo1

1 IBM T.J. Watson Research Center
{dcohn,theath,pinel,jvergo}@us.ibm.com

2 IBM India Research Lab
pdhoolia@in.ibm.com

Abstract. Siena lets users design web applications using commonly available
PowerPoint as the modeling/development tool. From PowerPoint, users can
model business artifacts and processes, transform applications to a standard rep-
resentation and then immediately deploy and execute these composite applica-
tions on a model execution engine.

Fig. 1. Siena Architecture

Characteristics and Architecture

By contrast with traditional Business Process Management (BPM) tools, Siena pro-
vides a flexible method for developing BPM applications that let innovators focus on
business transformation and adapt to changes rapidly:

• A radically simplified modeling tool based on PowerPoint empowers any business
user to model and manage the entire lifecycle of BPM applications.

• A standard, human-readable XML representation facilitates the persistence and
sharing of BPM application definitions.

 Siena: From PowerPoint to Web App in 5 Minutes 723

• The Siena Runtime Container, a web 2.0 model execution engine running on
Apache Tomcat, allows for rapid solution development and deployment.

Fig. 1 describes the overall Siena architecture. Clients communicate with deployed
BPM applications using a browser and REST or Web Services. As part of provision-
ing these services, the Siena runtime does the following:

• Manage applications (Administration Services).
• Persist, access and manage business artifacts (Information Services).
• Execute business flows and state machines (Behavior Services).
• Monitor business performance (Performance Services).
• Consume services from other applications (External Services).

Fig. 2 and Fig. 3 examine the end-to-end transformation of an artifact lifecycle. Us-
ers start by drawing a state diagram for their business artifact in PowerPoint. The de-
ployed application automatically offers persistence and transition services.

Fig. 2. Artifact Lifecycle in PowerPoint and in Composite Application XML Definition

Fig. 3. Execution of Artifact Transition Services

The demonstration showcases the creation of business artifacts and component ser-
vices, the invocation of external services, and the deployment and testing of the re-
sulting composite applications.

Exploration of Discovered Process Views in
Process Spaceship

Hamid R. Motahari Nezhad1, Boualem Benatalah1, Fabio Casati2,
Regis Saint-Paul3, Periklis Andristsos2, and Adnene Guabtni1

1 Comp. Sci. and Eng., The University of New South Wales, Australia
2 Dept of Inform. and Comm. Tech., The University of Trento, Italy

3 CREATE-NET International Research Center, Trento Italy

1 Introduction

Business processes are important for streamlining the operations of public and pri-
vate enterprises. Over the last decade, capabilities arising from advances in online
technologies, especially ServiceOrientedArchitectures (SOA), enabled enterprises
to increase productivity, simplify automation, and extend the execution if busi-
ness processes to various systems in the enterprise. While business process man-
agement systems, which allow for modeling, analysis, and management of business
processes, are relatively successful, currently, they only cover a fraction of business
processes in the enterprise. One challenge in modern enterprises is that information
about business process execution is maintained over multiple heterogeneous sys-
tems (e.g., email systems, ERP, document management systems, etc), and rarely
there exists a central workflow log, where all process execution information can be
found. The next challenge is that the traditional one-view-fits-all fashion of process
definition does not scale, as different users may have their own perspective of the
business process execution in the enterprise. In such environments, not only one
but a space of processes can be defined corresponding to the perspectives of differ-
ent users or systems involved in the process.

We define process views as an abstract representation of a process, from the
perspective of a user or a system, in terms of tasks and their relationships, i.e.,
control and data flow, and properties such as participating roles, and execution
times. Process views can be defined at various levels of abstractions (high level
or detailed). Furthermore, we define a process space as the superimposition of
a set of process views in the enterprise, at various levels of abstractions, over
heterogeneous information systems containing process execution information.

We have developed Process Spaceship for the discovery of process views from
process related data sources [2]. Unlike process discovery from wokflow logs [3],
where the process instances1 are known and the problem is that of discov-
ering the process definitions, in process spaces, the new challenge is that of
events correlation, i.e., identifying which set of events in application logs are
related to the same process instance. Events correlation in SOA can be done
following various patterns, e.g., based on the content (data attributes) of events
1 A process instances specifies a set of messages that are exchanged to fulfill a certain

goal.

A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, pp. 724–725, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Exploration of Discovered Process Views in Process Spaceship 725

or their timestamp [1]. In principle, there are more than on way of correlating
events into process instances, corresponding to various process views that can
be defined in the enterprise. We define correlation condition as binary predicate
over the attributes of event content (e.g., orderID=orderID) to specify if two
events correspond to the same process instance. Correlation conditions could
be atomic (defined over a pair of attributes) or composite (consists of several
atomic conditions). We have proposed a set of algorithms and heuristics to dis-
cover interesting correlation conditions following a level-wise approach starting
from atomic conditions followed by the discovery of composite conditions [2].

2 Demonstration Scenario

We demonstrate two features of Process Spaceship: (i) explorative process views
discovery, and (ii) process space navigation. For the sake of working in the con-
text of a concrete example, we use the logs of interactions of a set of Web services
in a supply chain scenario as the input. The system has been developed in Java,
and uses HP SOA Manager to monitor service interactions.

Explorative discovery of process views. The explorative discovery of process
views in Process Spaceship starts with capturing information that the user might
have about how events are correlated in the input data sources. This include se-
lection of attributes that are potentially used in correlation, and if known, the
correlation pattern. Based on this information, a set of basic process views are
discovered and presented to the user, among which she may select the ones that
are of her interest. Depending on the input data, and the correlation pattern(s)
that is(are) used for correlation, the basic views may be composed to form com-
posite process views. These views contain larger processes, compared to the basic
ones. This procedure can continue until a process view corresponding to the busi-
ness process of the enterprise is discovered. However, only user-selected views
are kept and used as a basis for discovering larger, more abstract views.

Process Space Navigation. The discovered process views (in an explorative
manner or automatic way) are organized in a process map, where each process
is represented by a node and is linked to other process views, which have have
part-of or subsumed relationship with it. We demonstrate how this organization
facilitates navigation of process views, and also the use of various perspectives
that Process Spaceship provides for end users.

References

1. Barros, A., Decker, G., Dumas, M., Weber, F.: Correlation patterns in service-
oriented architectures. In: Dwyer, M.B., Lopes, A. (eds.) FASE 2007. LNCS,
vol. 4422, pp. 245–259. Springer, Heidelberg (2007)

2. Motahari, H., et al.: Proce Spaceship: Discovering process views in process spaces.
Technical Report UNSW-CSE-TR-0721, The University of New South Wales (2007)

3. van der Aalst, W., et al.: Workflow mining: a survey of issues and approaches. DKE
Journal 47(2), 237–267 (2003)

ROME4EU: A Web Service-Based
Process-Aware System for Smart Devices�

Daniele Battista2, Massimiliano de Leoni1, Alessio De Gaetanis2,
Massimo Mecella1, Alessandro Pezzullo2, Alessandro Russo2,

and Costantino Saponaro2

1 Dipartimento di Informatica e Sistemistica
SAPIENZA - Università di Roma, Rome, Italy

{deleoni,mecella}@dis.uniroma1.it
2 Faculty of Computer Engineering

SAPIENZA - Università di Roma, Rome, Italy

Nowadays, process-aware information systems (PAISs) are widely used for the
management of “administrative” processes characterized by clear and well-defined
structure. Besides such scenarios, PAISs can be used also in mobile and pervasive
scenarios, such as in coordinating operators during emergency situations [1]. In
these pervasive settings, due to highly mobility, operators have to be equipped with
small devices, such as PDAs, and to communicate through ad-hoc networks.

At the best of our knowledge, all of available PAISs allow currently to ex-
ecute on smart devices only client applications, such as work-list handlers for
accepting/refusing the assigned tasks. The engines at the heart of PAISs, which
are in charge of assigning tasks to process participants, are still designed to be
executed on standard desktop machines. Therefore, the current PAISs cannot
really work in pervasive and highly mobile scenarios where the entire system
has to be deployed on the spot and running on smart devices. The possibility
of having a remote coordination center where a PAIS engine is running is not
really feasible. Assigning tasks to team members and orchestrating the process
execution remotely would require to exist an underlying infrastructure reliable
and fast. That is not the case in these settings where the best case would be
having a GPRS/UMTS connection. Furthermore, the Hurricane Catrina expe-
rience has taught us that if every team used such an infrastructure, it would be
going to fall down or would become too slow.

In the light of this, we have developed a PAIS, namely ROME4EU (The Ro-
man Orchestration Mobile Engine for Emergency Units) 1, whose engine resides
on the MS Windows Mobile PDA of the team leader. Modern PDAs are be-
coming increasingly powerful and, hence, able to execute complex applications.
Team Members are also equipped with PDAs and their work is coordinated
by the PAIS running on the team leader PDA. That makes ROM4EU really
applicable in pervasive scenarios.

In ROME4EU, process schemas are defined in the form of Activity Diagrams
enriched for describing all the different aspects: definition of tasks in term of
� This work is supported by the European Commission through the FP6-2005-IST-5-

034749 project WORKPAD.
1 http://www.dis.uniroma1.it/pub/mecella/projects/ROME4EU/

A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, pp. 726–727, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

ROME4EU: A Web Service-Based Process-Aware System 727

pre- and post-conditions, the control and data flow, as well as the assignment
of tasks to appropriate members. Task are associated to a set of conditions to
hold in order that they are assignable to participants. Conditions are defined
on control and data flow (e.g., a previous task has to be finished, a variable
needs to get assigned a specific range of values, etc.). Every task can be only
assigned to a certain member that provides certain capabilities. We model that
by binding each and every task to a set of capabilities. Moreover, every member
declares to furnish certain capabilities. Considering the control and data flow,
the ROME4EU engine assigns every task to a certain member providing all capa-
bilities required. At client side, every member uses a task handler to be notified
of tasks assignment and to start the proper application for their execution. The
same application is also used to perform the log-in phase, where members specify
the capabilities they can provide and to show the information coming from the
ROME4EU engine about the process to carry on.

ROME4EU overtakes interesting challenges, such as how to concretely design
and develop a PAIS running on smart devices connected in mobile networks,
considering that this network class provides reduced communication bandwidth
and low reliability. Furthermore, smart devices are battery operating and, thus,
the engine has to deal with the issue of minimizing the power consumption. It
is worthy mentioning that reduced screen sizes limit the amount of information
which can be visualized at the same time.

ROME4EU follows an approach comparable to BPEL4People [2] where task-
list handlers are exposed as web-service endpoints and seen from the BPEL-
based engine viewpoint as mere services to be integrated . Unfortunately, at our
knowledge, no BPEL4People implementation is targeted to smart devices so far.

Technical Solutions. ROME4EU is completely developed on the .NET Com-
pact Framework. The interaction between the engine and clients is based on web-
service invocations. Specifically, we used [3] and extended it to handle complex
data types, required for exchanging process variables, and one-way invocations.
The latter feature is quite important in (unreliable) Mobile Settings, where it is
difficult and battery consuming to keep alive SOAP connections for long times.
The engine is based on a porting of the BPEL engine Sliver [4] in MS .NET C#,
which has been later extended to integrate the aforementioned WS middleware.

References

1. Catarci, T., de Leoni, M., Marrella, A., Mecella, M., Salvatore, B., Vetere, G., Dust-
dar, S., Juszczyk, L., Manzoor, A., Truong, H.: Pervasive Software Environments
for Supporting Disaster Responses. IEEE Internet Computing 12, 26–37 (2008)

2. Kloppmann, M., Koenig, D., Leymann, F., Pfau, G., Richayzen, A., von Rigen, C.,
Schmidt, P., Trickovic, I.: WS-BPEL Extension of People - BPEL4People (July 2005)

3. Nicoloudis, N., Pratistha, D.: .NET Compact Framework Mobile Web Server Archi-
tecture (2003) Prompted on June 8th, 2008,
http://msdn2.microsoft.com/en-us/library/aa446537.aspx

4. Hackmann, G., Haitjema, M., Gill, C., Roman, G.C.: Sliver: A BPEL Workflow
Process Execution Engine for Mobile Devices. In: Dan, A., Lamersdorf, W. (eds.)
ICSOC 2006. LNCS, vol. 4294, pp. 503–508. Springer, Heidelberg (2006)

http://msdn2.microsoft.com/en-us/library/aa446537.aspx

WS-Engineer 2008
A Service Architecture, Behaviour and Deployment

Verification Platform

Howard Foster

Department of Computing, Imperial College London,
180 Queen’s Gate, London SW7 2BZ, UK

howard.foster@imperial.ac.uk
http://www.ws-engineer.net

Abstract. In this demonstration we present the LTSA WS-Engineer
Tool Suite. WS-Engineer1 started as a formal service composition analy-
sis tool for service orchestrations based upon the Labelled Transition
Analyser (LTSA). Since its introduction in 2006, the tool suite has grown
to consider several areas of service composition engineering, including
architecture, behaviour and deployment. The tool is integrated into the
Eclipse and IBM Rational Software Architect IDEs.

1 The WS-Engineer Approach

Our initial tool support [1] and expanding approach in service composition
analysis, takes a 2-dimensional view of service composition analysis. In a first
dimension it considers core service composition artifacts being; orchestrations
(service processes), service interfaces, choreography (global partner policies for
interactions) and resources (architecture dependent features of service compo-
sitions). From a second dimension it considers the analysis features of service
compositions including; design, implementation, architecture configuration and
deployment. Thus, service engineers can use the approach to safety check designs
for service orchestrations and choreography, or alternatively the deployment of
collaborating processes and their architecture configuration in service choreogra-
phy, or any aspect against the other in the matrix. We believe such an approach
provides a much richer coverage of service composition development, accessible
to engineers such that they can analyse compositions from different viewpoints
(depending on the context of analysis). An overall integrated service behaviour
analysis approach is suggested in Figure 1. The core of the approach is trans-
forming some design or implementation artifact to relevant and detailed mod-
els (Labelled Transition Sstems) for analysis (Model Generation). We consider
analysis of service orchestrations and choreography given input as design speci-
fications (e.g. MSCs, UML2 and xADL2 models), implementations (in the form
of WS-BPEL and WS-CDL policies) and service component interfaces (in the

1 Sponsored by the EU funded project SENSORIA (IST-2005-016004) and by IBM
Eclipse Innovation Awards (2006/07).

A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, pp. 728–729, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

WS-Engineer 2008 729

Fig. 1. WS-Engineer Approach to Service Composition Analysis

form of WSDL documents). Analysis in the approach provides features to com-
pare each of these either as model validation (through animation) or verification
through model property traces. Each feature considers behaviour analysis for a
different element of service compositions which we aim to clearly demonstrate.

2 The Demonstration

The demonstration illustrates several integrated key features of WS-Engineer,
themed in a way that follows conceptual design, implementation and deployment
of service compositions. The example is focused on a single case study yet with
multiple properties (engineering concerns) covered through different techniques
using formal analysis. To begin with the user specifies a high-level design (in
UML sequence charts) and implementations in WS-BPEL. Verification shows
any violations with a weak bi-simulation between the models of processes in the
service composition. Corrective actions are illustrated. The user then proceeds
to specify a service choreography specification (in WS-CDL) and performs a
similar verification against design and implementation. Towards deployment of
these artifacts, the user builds a service deployment diagram for architecture
configuration (highlighting service host resource constraints) of the compositions,
specifies the WS-BPEL implementations and performs a check on behaviour and
resource usage. Similarly a set of violations are raised and corrective actions
illustrated. All three verifications steps aim to provide greater assurance prior to
deployment and runtime of service compositions. Additionally we will highlight
some future work on dynamic service compositions using our concepts of Service
Modes and a prototype dynamic service broker.

References

1. Foster, H., Uchitel, S., Magee, J., Kramer, J.: Ws-engineer:tool support for model-
based engineering of web service compositions and choreography. In: IEEE Interna-
tional Conference on Software Engineering (ICSE 2006), Shanghai, China. IEEE,
Los Alamitos (2006)

MetaCDN: Harnessing Storage Clouds for High
Performance Content Delivery

James Broberg1 and Zahir Tari2

1 Department of Computer Science and Software Engineering, The University of
Melbourne, Australia

2 Department of Computer Science and Information Technology, RMIT University,
Australia

Abstract. Content Delivery Networks (CDNs) such as Akamai and Mir-
ror Image place web server clusters in numerous geographical locations
to improve the responsiveness and locality of the content it hosts for
end-users. However, their services are priced out of reach for all but the
largest enterprise customers. An alternative approach to content delivery
could be achieved by harnessing existing infrastructure provided by ‘stor-
age cloud’ providers, at a fraction of the cost. MetaCDN is a system that
leverages several existing ‘storage clouds’, creating an integrated overlay
network that provides a low cost, high performance content delivery net-
work for content creators. MetaCDN intelligently places content onto one
or many storage providers based on the quality of service, coverage and
budget preferences of participants.

The MetaCDN System

Numerous ‘storage cloud’ providers (or ‘Storage as a Service’) exist that can
provide coverage in several continents, offering Service Level Agreement backed
performance and uptime promises for their services. Customers are charged based
on their utilisation of storage and transfer of content, which is typically in the
order of cents per gigabyte. Whilst these emerging services have reduced the
cost of content storage and delivery by several orders of magnitude, they can be
difficult to use for non-developers, as each service is best utilised via unique web
services or programmer API’s. Furthermore, a customer may need coverage in
more locations than offered by a single provider. To overcome this, MetaCDN
utilises numerous storage providers in order to create an overlay network that
can be used as a high performance, reliable and geographically distributed CDN.

The MetaCDN system integrates with each storage provider via a connector
that provides an abstraction to hide the complexity arising from the differing
provider interfaces. An abstract class, DefaultConnector, is defined that pre-
scribes the basic functionality that each provider could be expected to support,
that must be implemented for all existing and future connectors. These include
basic operations like creation, deletion and renaming of files and folders. If an
operation is not supported on a particular service, then the connector for that
service should throw a FeatureNotSupportedException.

A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, pp. 730–731, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

MetaCDN: Harnessing Storage Clouds 731

Amazon S3 Coral CDNNirvanix SDN AOL XDrive

Mosso CloudFS

Other sources...Java SDK
Open Source

JetS3t toolkit
Java SDK
Nirvanix, Inc

Nirvanix SDK
Java proxy
MetaCDN.org

Coral Proxy

Java stub
MetaCDN.org

AmazonS3Connector
Java stub
MetaCDN.org

NirvanixConnector
Java stub
MetaCDN.org

CoralConnector
Java stub
MetaCDN.org

XYZConnector

MetaCDN

MetaCDN
Manager

MetaCDN QoS
Monitor

MetaCDN
Allocator

Java (JSF/EJB) based portal
Support HTTP POST
New/view/modify deployment

Web Portal
RESTful Web Service
Programmatic access

Web Service

User 1 User n User 1 User n

Fig. 1. MetaCDN

The service (depicted in Figure 1) is presented to end-users as a web portal
for small or ad-hoc deployments (which is the focus of this paper) or as SOAP
and RESTful Web Services (currently under development) for integration of
customers with more complex and frequently changing content delivery needs.
The web portal was developed using Java Enterprise and Java Server Faces (JSF)
technologies, with a MySQL back-end to store user accounts, deployments, and
the capabilities and pricing of service providers.

The MetaCDN system offers a number of functions via the web portal inter-
face1, including: the creation of an account in the MetaCDN system, where a
user registers their details, as well as credentials for any service providers they
wish to utilise; manual deployment of content to geographical regions of the
user’s choice; deployment of file replicas to numerous geographically distributed
locations based on a user’s storage and transfer budget; viewing and modify-
ing existing content deployment; and viewing the physical location of deployed
content replicas as a Google Maps overlay.

A number of features are currently under active development, including: match-
ing and deployment of file replicas to storage providers based on quality of service
parameters like uptime, average throughput and average response time for end-
users located in specific geographical areas; a single URL and namespace for up-
loaded files, with automatic client redirection to optimal replicas; deploying large
files using Bittorrent as well as HTTP; and making all MetaCDN functionality
available via SOAP and RESTful Web Services.

This work is supported by Australian Research Council (ARC) as part of the
Discovery Grant ‘Coordinated and Cooperative Load Sharing between Content
Delivery Networks’ (DP0881742, 2008-2010).

1 A screencast of the web interface is available at http://www.metacdn.org

Yowie: Information Extraction in a Service
Enabled World

Marek Kowalkiewicz and Konrad Jünemann

SAP Research, 133 Mary Street, Brisbane, Australia
{marek.kowalkiewicz,konrad.juenemann}@sap.com

Abstract. Service Oriented Computing is a potential enabler for pop-
ular applications of Named Entity Recognition and Information Extrac-
tion. In this demo we show an example of such an application and discuss
how Service Oriented Architecture (SOA) makes the application fully
flexible and easily extensible. The application brings SOA close to the
end-user and gives possibilities hardly possible with other approaches.

Keywords: SOA applications, natural language processing.

1 Introduction

The domain of Natural Language Processing (NLP) has reached a state of matu-
rity where commercial applications are possible and reliability of such applications
becomes acceptable. Although some of the areas of NLP, for instance Information
Extraction (IE) or Named Entity Recognition (NER), are particularly advanced
[1,2], there still is no popular “killer application” that can demonstrate high po-
tential of NLP. That holds for both enterprise and non-enterprise world.

There are some examples of NER applied in popular applications. However,
these systems are not extensible by end-users in any way, and there is no possi-
bility to (a) enable recognition of new types of entities or (b) provide users with
other, alternative actions that can be performed with the recognized entities.
As there are more and more information processing services available both in
Internet and in enterprise software, SOA can provide a solution to this problem.

Ability to add new types of entity recognition on top of standard ones is
especially important in enterprise context. Date, place name, or human name
recognition, often provided by NLP systems, can be extended with features such
as product name (code), customer name or contract number recognition, provid-
ing much more automation to the enterprise world. Ability to offer new services
that process entities brings benefits to both enterprise and non-enterprise worlds.

Since relevance of actions and services, together with their rankings, varies
based on numerous factors, high flexibility and ability to add and replace system
components become useful. In this demonstration we showcase Yowie, a NER
system built following SOA guidelines. Thanks to SOA, Yowie is fully extensible
and can make use of external services.

A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, pp. 732–733, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Yowie: Information Extraction in a Service Enabled World 733

2 Description of the System

Yowie provides a link between business productivity software and external ser-
vices local desktop, enterprise systems and Internet vendors. The link that Yowie
provides is based on the assumption that certain fragments of text documents
contain enough information to create automatic links to data objects and ser-
vices available in external systems.

Yowie consists of four main components: (1) a set of plugins, responsible for
accessing local applications and communicating with Yowie, (2) a core, acting
as a mediator between all other components, (3) a set of extractors, recognizing
entities in documents, and (4) a set of service wrappers providing access to ser-
vices and information related to extracted entities. The components are loosely
coupled and each of them can be easily replaced. The main novel characteristics
of Yowie include:

Integration of NER and IE services. Yowie can integrate various NER and
IE services in one application following the SOA paradigm. Other existing
approaches are either hard coded or do not integrate various services at all;

NER and IE: entry points for service consumption. NER and IE can be
used for service selection. Yowie is an example of an application that can
consume services offered by a service broker and choose the relevant ones;

A potential for an SOA-enabled killer application. By integrating NER,
IE, and SOA in end-user applications, Yowie has a potential of becoming
popular and being a visible example of SOA in end-user applications.

3 Functions and Features to be Demonstrated

During the demo we will showcase functionality of Yowie. During the presenta-
tion we will focus on one Yowie plugin, Yowie for MS Outlook. We are going to
demonstrate the following.

– Ability to recognize various types of entities in processed documents using
a simple email as an example.

– Ability to provide end users with related services (local, Web, and enterprise
services). For each of the recognized entities we will show information and
service access provided by Yowie.

– Ability to add or replace recognizers for new types of named entities. Yowie
can be easily extended by adding new services that recognize named entities.

– Ability to add or replace offered services based on recognized entities. New
services that use recognized entities can be easily added to the system.

References

1. Maynard, D., Tablan, V., Ursu, C., Cunningham, H., Wilks, Y.: Named Entity
Recognition from Diverse Text Types. Recent Advances in NLP (2001)

2. Nahm, U., Mooney, R.: Text Mining with IE. In: Proc. of the AAAI 2002 Spring
Symposium on Mining Answers from Texts and Knowledge Bases (2002)

Author Index

Abramowicz, Witold 271
Andristsos, Periklis 724
Arbab, Farhad 70
Ardagna, Danilo 599
Arnold, William 162

Balasubramaniam, Sriram 678
Baligand, Fabien 483
Bao, Liang 511
Baresi, Luciano 614
Barros, Alistair 331
Bartolini, Cesare 524
Basu, Samik 453
Battista, Daniele 726
Beauche, Sandrine 530
Benatalah, Boualem 724
Bertino, Elisa 116
Bertolino, Antonia 524
Binder, Walter 241
Blau, Benjamin 517
Broberg, James 730
Budny, Peter 438

Caporuscio, Mauro 195
Carlson, Michael Pierre 317
Carro, Manuel 302
Casati, Fabio 724
Chang, Henry 147
Chang, Soo-Ho 180
Chen, Ping 511
Chen, Sheng 511
Chen, Ying 649, 664
Clayphan, Andrew John 225
Cohn, David 722
Comerio, Marco 607

D’Andrea, Vincenzo 607
Dasgupta, Gargi 54
de Gaetanis, Alessio 726
de Leoni, Massimiliano 726
De Paoli, Flavio 607
Decker, Gero 331
Deridder, Dirk 592
Dhoolia, Pankaj 722
Di Francescomarino, Chiara 132

Diament, Judah 422
Duan, Zhenhua 505
Dustdar, Schahram 607

Eilam, Tamar 162
Ezenwoye, Onyeka 54

Faulkner, Stéphane 362
Ferguson, Donald F. 4
Ferrini, Rodolfo 116
Fischer, Marco 708
Fong, Liana 54
Foster, Howard 558, 728
Foster, Ian 3
Franczyk, Bogdan 626

Gangadharan, G.R. 607
Ghidini, Chiara 132
Gooneratne, Nalaka 585
Gorton, Ian 225
Govindharaj, Srihari 438
Gowri Nanda, Mangala 378
Guabtni, Adnene 724
Guinea, Sam 614

Han, Jun 5
Haniewicz, Konstanty 271
Harland, James 585
He, Qiang 22
Heath III, Fenno 722
Herssens, Caroline 362
Honavar, Vasant 453
Hoyer, Volker 708
Hu, Shengming 511
Huhns, Michael N. 407

Ishida, Toru 572
Issarny, Valerie 195
Iyengar, Arun 422

Jalote, Pankaj 378
Jin, Hai 22
Joncheere, Niels 592
Jonckers, Viviane 592
Jünemann, Konrad 732
Jureta, Ivan J. 362

736 Author Index

Kaczmarek, Monika 271
Kalantar, Michael 162
Kalayci, Selim 54
Konstantinou, Alexander V. 162
Kotonya, Gerald 468
Kowalkiewicz, Marek 732
Kraft, Frank Michael 331
Krishnaswamy, Shonali 620
Kumar, Apurva 565
Kwok, Thomas 633

Lamparter, Steffen 517
Lazovik, Alexander 70
Ledoux, Thomas 483
Lei, Hui 147
Lewis, Grace A. 678
Leymann, Frank 100
Li, Lily 347
Li, Xin Hui 649
Li, Ying 649
Liang, Qianhui 407
Lin, Kwei-Jay 180
Ling, Sea 210
Lingenfelder, Christoph 147
Liu, Tian Cheng 649
Liu, Yan 225
Liu, Zhen 538
Lohmann, Niels 331
Lovera, Marco 599
Ludwig, André 626
Luthria, Haresh 256

Mancioppi, Michele 302
Maraikar, Ziyan 70
Marchetti, Eda 524
Mateescu, Radu 84
Mayer, Philip 545
Mazzoleni, Pietro 286
Mecella, Massimo 726
Mikalsen, Thomas 422
Mohindra, Ajay 633
Morris, Ed 678
Moser, Simon 100
Mosincat, Adina 241
Motahari Nezhad, Hamid R. 724
Moungla, Hassine 195
Mukherjee, Debdoot 378
Mukhija, Arun 558
Müller, Carlos 394

Narendra, Nanjangud C. 691
Ngu, Anne H.H. 317
Nourine, Lhouari 38

Paci, Federica 116
Panahi, Mark 180
Papazoglou, Mike P. 302
Paradkar, Amit 551
Pasquale, Liliana 614
Pezzullo, Alessandro 726
Phan, Tan 5
Pinel, Florian 722
Podorozhny, Rodion 317
Poizat, Pascal 84, 530
Polini, Andrea 524
Ponnalagu, Karthikeyan 691

Rabhi, Fethi 256
Ragab Hassen, Ramy 38
Ranganathan, Anand 538
Raverdy, Pierre-Guillaume 195
Resinas, Manuel 394
Riabov, Anton 538
Rivierre, Nicolas 483
Robinson, Daniel 468
Rosenblum, David S. 558
Rospocher, Marco 132
Rouvellou, Isabelle 422
Ruiz-Cortés, Antonio 394
Russo, Alessandro 726

Sadjadi, S. Masoud 54
Saint-Paul, Regis 724
Salaün, Gwen 84
Santhanam, Ganesh Ram 453
Saponaro, Costantino 726
Schneider, Jean-Guy 5
Schroeder, Andreas 545
Schwan, Karsten 438
Serafini, Luciano 132
Silva-Lepe, Ignacio 422
Simanta, Soumya 678
Sinha, Avik 551
Smith, Dennis 678
Speiser, Sebastian 517
Srivastava, Biplav 286
Steller, Luke 620
Subramanian, Revathi 422
Sun, Haiyang 579
Sun, Yuqing 116
Sundaresan, Neel 2

Author Index 737

Tai, Stefan 517
Tan, Min’an 225
Tanaka, Masahiro 572
Tanelli, Mara 599
Tari, Zahir 585, 730
Taylor, Kerry 347
Tonella, Paolo 132
Totok, Alexander A. 162
Toumani, Farouk 38
Truong, Hong-Linh 607

Uchitel, Sebastian 558

van den Heuvel, Willem-Jan 302
Van Der Straeten, Ragnhild 592
Vanhatalo, Jussi 100
Varela, Leonardo 180
Vergo, John 722
Viswanathan, Balaji 54
Völzer, Hagen 100
Vosshall, Peter 1

Wang, Hao 664
Wang, Xin 579
Wibisono, Waskitho 210
Wilson, Kirk 5

Yan, Jun 22
Yang, Bo 664
Yang, Jian 579
Yang, Yang 511
Yang, Yun 22

Zapletal, Marco 498
Zaslavsky, Arkady 210
Zeng, Liangzhao 147, 317
Zhang, Jing 180
Zhang, Li 599
Zhang, Man 505
Zhang, Xiang 511
Zhang, Yanchun 579
Zhang, Yue 180
Zyskowski, Dominik 271

	Title Page
	Preface
	Organization
	Table of Contents
	Web Scale Computing: The Power of Infrastructure as a Service
	Services in the Long Tail World: Challenges and Opportunities
	Services for Science
	Managing and Internet Service Bus
	Quality-Driven Business Policy Specification and Refinement for Service-Oriented Systems
	Introduction
	A Motivating Example
	Business Case: The Mortgage Loan Approval Business Process
	MortgageLoan: The Mortgage Loan Approval Application
	Rules, Regulations and SwinBank Business Policies
	Realization of Quality-Oriented Business Policies

	The HOPE Framework
	Domain Quality Models
	The Application Entity Model
	Quality Objectives and Policies

	Generating WS-Policy Assertions
	Mapping an Abstract Functions toWS-Security Assertions
	Mapping Function Binding to WS-SecurityPolicy Binding Assertions
	An Example Assertion Generation

	Prototype Tool
	Related Work
	Conclusions and Future Work
	References

	Adaptation of Web Service Composition Based on Workflow Patterns
	Introduction
	Related Work
	A Motivating Example
	Adaptation for Composite Service Based on Workflow Patterns
	Sequence Pattern
	Parallel Patterns
	Other Patterns

	Adaptation Method
	Experimental Evaluation
	Conclusion and Future Work
	References

	Protocol-Based Web Service Composition
	Introduction
	Preliminaries
	Web Services Composition
	Decidability Problem and Composition Algorithm
	Experimental Evaluation
	Conclusion
	References

	Design and Implementation of a Fault Tolerant Job Flow Manager Using Job Flow Patterns and Recovery Policies
	Introduction
	Job Flow and Fault Tolerant Patterns
	Job Flow Patterns
	Fault Tolerant Patterns

	Architecture Overview
	Detailed Design
	Prototypical Implementation
	Experimental Results
	Proxy Overhead and Opportunistic Behavior Analysis
	Fault-Recovery Scenarios and Experimental Results

	Related Work
	Conclusion and Future Work
	References

	Building Mashups for the Enterprise with SABRE
	Introduction
	Related Work
	Mashup Platforms
	Service Coordination

	Mashups Versus Service-Oriented Computing
	Specifying Mashup Logic with Reo
	Building the Sports-Fan Dashboard in SABRE

	Behavioural Specification of Service Using Constraint Automata
	Interfacing Web Services with the Sports-Fan Dashboard

	Implementation
	Conclusion and Future Work
	References

	Adaptation of Service Protocols Using Process Algebra and On-the-Fly Reduction Techniques
	Introduction
	ServiceModel
	Adaptation Contracts
	Adaptor Generation and Verification
	Principles of the Encoding into LOTOS
	On-the-Fly Adaptor Generation
	Adaptor Verification

	Adaptor Implementation
	Related Work
	Concluding Remarks
	References

	AutomaticWorkflow Graph Refactoring and Completion
	Introduction
	Preliminaries
	Workflow Graphs
	Inclusive OR-Gateways
	The Soundness Property

	Automatic Refactoring ofWorkflow Graphs
	The Refined and the Normal Process Structure Trees
	Refactoring Based on the RPST

	Automatic Completion ofWorkflow Graphs
	Completion by Refactoring
	Existence of Completions
	Computation of the Completion in the General Case

	Conclusion
	References

	Authorization and User Failure Resiliency for WS-BPEL Business Processes
	Introduction
	Running Example
	RBAC-WS-BPEL Authorization Model
	Process User Failure Resiliency
	Computational Complexity of Checking User Failure Resiliency

	Constraints Evaluation and Planning
	System Architecture
	Experimental Evaluation
	Related Work
	Conclusions
	References

	Reasoning on Semantically Annotated Processes
	Introduction
	The Approach
	The Business Process Knowledge Base
	An Ontology for BPMN
	Representing Criteria for Correct Semantic Annotations
	Representing a Semantically Annotated BPD in an OWL A-Box
	Automatically Encoding a BPD into an A-box

	Use Cases
	Related Work
	Conclusions
	References

	Event-Driven Quality of Service Prediction
	Introduction
	QoS Management Metamodel
	QoS Monitoring Aspects
	QoS Prediction Aspects

	System Architecture
	Event-Driven Metric Prediction
	Mining Data Preparation
	Prediction Model Creation
	Prediction Scoring

	KPI Prediction
	Time Series KPI Prediction
	Metric-Aggregation KPI Prediction

	Related Work
	Conclusion
	References

	Automatic Realization of SOA Deployment Patterns in Distributed Environments
	Introduction
	Deployment Modeling and Validation
	Automatic Pattern Realization
	Algorithms for Automatic Pattern Realization
	Performance Evaluation
	Related Work
	Conclusions and Future Work
	References

	The LLAMA Middleware Support for Accountable Service-Oriented Architecture
	Introduction
	Background
	Challenges of Accountability in SOA
	Current Monitoring Support in SOA
	Transparency and Service Provider Participation in an Accountability Framework

	The LLAMA Accountability Middleware Architecture
	LLAMA Overview
	LLAMA Components
	Error Origin Investigation

	Empirical Results
	Example Scenario: Print and Mail
	Monitoring Overhead
	LLAMA Diagnosis Accuracy

	Related Work
	Conclusion
	References

	ubiSOAP: A Service Oriented Middleware for Seamless Networking
	Introduction
	Design Rationale
	ubiSOAP Middleware for Pervasive Services
	Network-Agnostic Service Connectivity
	Multi-network Service Overlay
	Custom SOAP Transports for Pervasive Services

	ubiSOAP in Action: Pervasive Service Discovery
	Experimentation
	Conclusion
	References

	Towards a Service-Oriented Approach for Managing Context in Mobile Environment
	Introduction
	Context in Mobile Environment
	Quality of Context

	Context Service Framework
	CS-Engine Internal Services
	Service Composition

	Modeling Context and Context Request
	Context Spaces
	Modeling Context Request
	Inferring Degree of Matching Confidence of Available Contexts

	Implementation
	Application Scenario
	Initial Implementation

	Related Work
	Conclusion
	References

	An Autonomic Middleware Solution for Coordinating Multiple QoS Controls
	Introduction
	TheProblem
	TheArchitecture
	Techniques of Coordinating Controls
	Control Dependencies and Composition
	Control Deployment
	Quality Attributes and Optimization

	Example Application
	Overload Control
	Failover Control
	Coordinating Multiple Controls
	Discussions

	The Evaluation
	Testbed Setup
	Performance Results

	Related Work
	Conclusion
	References

	Transparent Runtime Adaptability for BPEL Processes
	Introduction
	Architecture
	Transformation Tool
	Interactions at Execution Time
	Dynamic Customizations – Service Selectors and Binding Policies
	Evaluation
	Related Work
	Conclusion
	References

	Organizational Constraints to Realizing Business Value from Service Oriented Architectures: An Empirical Study of Financial Service Institutions
	Introduction
	The Empirical Study – Data Collection and Analysis
	The Empirical Study - Results
	Best Practices Suggested by Service Providers
	Get Commitment at the Board Level
	Manage Expectations – Invest in SOA for the Long Term
	Align the Organization Around the SOA Strategy
	Change the Mindset from Technology to a Business Process Focus
	Governance is Critical
	Focus on Training
	Leverage Existing Resources

	Related Work
	Contribution and Business Impact
	References

	E-Marketplace for Semantic Web Services
	Introduction
	Open Service Marketplace and Research Roadmap
	Electronic Marketplace of SWS - Requirements
	SWS E-Marketplace Reference Model
	Comparison of SWS Frameworks
	Conclusions and Future Work
	References

	Business Driven SOA Customization
	Introduction
	Background and Motivating Scenario
	Background
	Motivating Scenario

	Business-Driven Service Customization Model
	A Simplified Model for Business-Process Driven SOA Implementation
	Formalizing Business Process-Driven Impact on Services

	Implementation Considerations
	Industry Case Study: Customization with SAP Services
	Discussion and Related Work
	Conclusion
	References

	Sound Multi-party Business Protocols for Service Networks
	Introduction
	Service Networks
	Multi-party Business Conversations in Service Networks

	Formal Exposition of Business Protocols
	Running Example: Purchase Order Business Protocol
	Taxonomy of Business Protocols
	Execution of Business Protocols
	Mapping Business Protocols to Timed Automata

	Sound Multi-party Business Protocols
	Participant-Soundness
	Time-Soundness
	Full Soundness

	Related Work
	Conclusions and Future Work
	References

	Automatic Mash Up of Composite Applications
	Introduction
	Progressive Composite Application Framework
	Application Components
	A Scenario of Developing Composite Application

	Composite Application Matching
	Experimental Study
	Related Work
	Conclusion
	References

	Non-desynchronizable Service Choreographies
	Introduction
	Motivating Example
	Formal Model
	Typical Resolutions to Race Problems
	Precedence
	Allowing Individual Decisions
	Negotiation of Outcome

	Related Work
	Conclusion
	References

	A Framework for Semantic Sensor Network Services
	Introduction
	Related Work
	Design Challenges
	Data Persistence
	Sensor Network State
	Events and Responses
	Programming
	Capability Modelling
	Power Management
	QoS
	Security

	Framework
	Query Rewriting
	Declarative Semantics and Query Rewriting
	Discussion

	Conclusion
	References

	Context-Driven Autonomic Adaptation of SLA
	Introduction
	Case Study
	Conceptual Foundations
	Context Categories
	Context Dependencies

	Dynamic SLA Adaptation
	Managing Service Level Agreements
	Adapting Service Level Agreements

	Related Work
	Conclusions and Future Work
	References

	Determining QoS of WS-BPEL Compositions
	Introduction
	WS-BPEL (Business Process Execution Language)
	A Running Example - Passport Application Service
	Determining QoS
	Overall Approach
	Determining P(start), Start Time (ST) and PC
	Activity-Wise Rules for Determining P(S), ET and Cost

	Impact of Fault Tolerance on QoS Computation
	Implementation
	Related Work
	Conclusions
	References

	An Initial Approach to Explaining SLA Inconsistencies
	Introduction
	Preliminaries
	Constraint Satisfaction Problems
	WS-Agreement in a Nutshell

	Mapping WS-Agreement onto CSP
	WS-Agreement* as a Subset of WS-Agreement
	Mapping WS-Agreement* onto CSP

	Checking and Explaining WS-Agreement* Inconsistencies
	A Proof-of-Concept
	Related Work
	Conclusions and Future Work
	References

	Ontology-Based Compatibility Checking for Web Service Configuration Management
	Introduction
	Related Work
	Web Service Compatibility and Versioning
	Web Service Compatibility Model
	System Model

	Compatibility Checking by Ontology Categorization
	Basics of Ontology Categorization
	Compatibility Checking
	Incompatibility Factors

	Experiments and Analysis
	Conclusions
	References

	SOAlive Service Catalog: A Simplified Approach to Describing, Discovering and Composing Situational Enterprise Services
	Introduction
	SOAlive Overview
	SOAlive Service Catalog
	Catalog Artifacts
	Content Model
	Code Snippet Generation
	Discussion

	Discovery
	Service Description Refinement
	Implementation
	Related Work
	Conclusions
	References

	WorldTravel: A Testbed for Service-Oriented Applications
	Introduction
	Service-Oriented Architecture
	SOA and Web Services
	Defining SOA

	Utility of a SOA Testbed
	Other Potential Testbeds
	Criteria for a Testbed

	Reference System
	About Airline Fares
	About Worldspan

	Implementation
	Overview
	GDS
	Travel Website
	Customer

	Testbed Analysis
	Experimental Evaluation
	Conclusions and Future Work
	References

	TCP-Compose* – A TCP-Net Based Algorithm for Efficient Composition of Web Services Using Qualitative Preferences
	Introduction
	Problem Specification
	Representing Preferences Using CP-Nets and TCP-Nets
	TCP-Nets
	Utilizing TCP-Nets in Web Service Composition

	TCP-Compose*
	Search Space of TCP-Compose*
	Properties of TCP-Compose*

	Summary and Discussion
	References

	A Runtime Quality Architecture for Service-Oriented Systems
	Introduction
	Background
	Service Description, Discovery and Selection
	Service Reputation Systems
	Service Negotiation
	Service Monitoring

	Quality Architecture
	Brokerage Architecture
	Monitoring Process
	Reputation Process

	Service Strategy and Management
	Service Acceptability
	Service Composition

	Case Study
	Visualising Framework Processes

	Conclusions
	References

	QoS Policies for Business Processes in Service Oriented Architectures
	Introduction
	Motivation
	Case Study
	A Language for QoS Policies Specification
	Execution Model
	Related Works
	Conclusion
	References

	Deriving Business Service Interfaces in Windows Workflow from UMM Transactions
	Motivation
	The Transformation Process
	Conclusion
	References

	From Business Process Models to Web Services Orchestration: The Case of UML 2.0 Activity Diagram to BPEL
	Introduction
	Semantically Sound AD Models
	Pattern Based Transformation from Semantically Sound AD Models to BPEL Code
	Conclusion and Further Work
	References

	Batch Invocation of Web Services in BPEL Process
	Introduction
	Overview
	Static Analysis
	Invocation Interception
	Service Agent
	Client Side Service Agent
	Server Side Service Agent

	Experiment and Evaluation
	Related Works
	Conclusion and Future Works
	References

	Formation of Service Value Networks for Decentralized Service Provisioning
	Introduction
	Service Value Networks
	Network Formation and Service Delivery Algorithms
	Network Simulation
	Conclusion
	References

	Towards Automated WSDL-Based Testing of Web Services
	Introduction
	Approach
	soapUI
	TAXI

	Preliminary Evaluation
	Related Work
	Conclusions and Future Work
	References

	Automated Service Composition with Adaptive Planning
	Introduction
	Discussion and Related Work
	Adaptive Planning Composition
	Conclusion
	References

	A Planning-Based Approach for the Automated Configuration of the Enterprise Service Bus
	Introduction
	Message Flows in the Enterprise Service Bus
	Tag-Based Model of Components and Goals
	Component Model
	Composition
	Goals and Planning

	Case-Study
	Related Work and Conclusion
	References

	Verifying Interaction Protocol Compliance of Service Orchestrations
	Introduction
	Modelling Services with UML4SOA
	Analysing Service Orchestrations
	Related Work
	Conclusion
	References

	Specify Once Test Everywhere: Analyzing Invariants to Augment Service Descriptions for Automated Test Generation
	Introduction
	Analysis of Invariants
	Relating Operations and Invariants
	Deriving Flow Conditions

	Experiments
	Related Work
	Conclusions and Future Work
	References

	A Model-Driven Approach to Dynamic and Adaptive Service Brokering Using Modes
	Introduction
	Background and Related Work
	Overview of Approach and Case Study
	Capturing the Architecture Models and Modes
	Requirements and Capabilities Specification for Dynamic Brokering
	Extracting Service Requirements and Capabilities

	Conclusions and Future Work
	References

	Integrated Security Context Management of Web Components and Services in Federated Identity Environments
	Introduction
	Case Study of a Telecom Service Provider
	Problem Description
	Solution Approach 2: CP Controls Content Delivery
	Need for Resource Request Assertion

	Proposed Approach for Integrated Web Security Context Management
	Conclusion
	References

	Predicting and Learning Executability of Composite Web Services
	Introduction
	Formal Specification to Model Web Services
	Acquiring Input Specifications
	Experiment
	Conclusion
	References

	Authorization Policy Based Business Collaboration Reliability Verification
	Introduction
	Structure of Role-Net
	Execution Policy of Role-Net
	Related Work
	Conclusion
	References

	VGC: Generating Valid Global Communication Models of Composite Services Using Temporal Reasoning
	Introduction
	The Proposed VGC Approach
	Conclusion
	References

	A Framework for Advanced Modularization and Data Flow in Workflow Systems
	Introduction
	Modularization Mechanism
	Data Perspective
	Related Work
	Conclusions
	References

	Model Identification for Energy-Aware Management of Web Service Systems
	Introduction
	Related Work
	Problem Statement
	Identification of Discrete-Time State Space Models
	Experimental Results
	Concluding Remarks and Future Work
	References

	LASS – License Aware Service Selection: Methodology and Framework
	Introduction
	License Aware Service Selection (LASS) Methodology
	License Aware Service Selection (LASS) Framework
	Related Work and Discussions
	Concluding Remarks
	References

	Integrated and Composable Supervision of BPEL Processes
	Introduction
	Integrated Supervision Framework
	Example Configuration Rules
	Conclusions and Future Work
	References

	Optimised Semantic Reasoning for Pervasive Service Discovery
	Introduction and Related Work
	Resource-Aware and Cost-Efficient Pervasive Service Discovery
	Semantic Reasoners
	mTableaux Strategies

	Implementation and Performance Evaluation
	Conclusion and Future Work
	References

	COSMA – An Approach for Managing SLAs in Composite Services
	Introduction
	Composite SLA Management Approach (COSMA)
	Information Model COSMAdoc
	Conceptual Framework COSMAframe
	Composite SLA Management Lifecycle Mechanisms of COSMAlife

	Use Case and Demonstrator
	Conclusions
	References

	Resource Calculations with Constraints, and Placement of Tenants and Instances for Multi-tenant SaaS Applications
	Introduction
	Prior Related Work
	Resource Calculations for Multi-users and Multi-tenants
	Resource Data Models for Multi-tenants in a Shared Instance
	Constraints on a Multi-tenant Application Instance
	The Multi-tenant Placement Model
	The Framework and Algorithm of a Multi-tenant Placement Tool
	Implementation and Industrial Experiences
	Conclusion and Discussion
	References

	SPIN: Service Performance Isolation Infrastructure in Multi-tenancy Environment
	Introduction
	Service Performance Isolation Infrastructure (SPIN)
	Anomaly Detection Model
	System Monitoring
	Adaptation Decision

	Implementation of SPIN
	Instrumentation to Maintain Accounting Stack
	Data Collection by Resource Consumption Agent

	Experiments and Evaluation
	Anomaly Report
	Isolation of Aggressive Tenant
	Performance Overhead

	Related Works
	Conclusion and Future work
	References

	Management as a Service for IT Service Management
	Introduction
	Current IT Service Management
	Sample MaaS Scenario
	Implementation of the MaaS for ITSM
	Data Capture Platform
	Information Extract
	Business Application Topology Design and Visualization
	SME’s Knowledge Management
	Management Services Center

	Case Study
	Extracting Business Application Management Domain
	Impact Analysis Rules Management
	Invoke Impact Analysis Service

	Discussion and Future Work
	References

	SMART: Application of a Method for Migration of Legacy Systems to SOA Environments
	Introduction
	Service Migration and Reuse Technique – Migration Planning (SMART-MP)
	Four Elements of SMART-MP
	The SMART-MP Process

	Application of SMART-MP to a Mission Status System
	Establish Context
	Migration Feasibility Decision Point
	Define Candidate Services
	Describe Existing Capability
	Describe Target SOA Environment
	Analyze the Gap
	Develop Strategy
	Highlights of Results

	Evolution of the SMART Family
	Conclusions and Next Steps
	Related Work
	References

	Discovering and Deriving Service Variants from Business Process Specifications
	Introduction and Motivation
	Running Example
	Preliminaries
	Meta Model-Based Representation of Variations
	Modeling Business Process and Service Level Variations

	Integrated VOSD Algorithm
	Formal Process and Service Model
	Algorithm Description

	Illustration on the Running Example
	Related Work
	Conclusions and Future Work
	References

	Market Overview of Enterprise Mashup Tools
	Introduction and Motivation
	Terms and Research Approach
	Enterprise Mashups - Definition and Characteristics
	Lightweight Resource Composition
	Research Approach

	Classification Model
	Functionality/ Property
	Target Group

	Market Overview Mashup Tools
	Case Studies: Consumer Market
	Case Studies: Enterprise Market
	Market Overview

	Conclusion
	References
	Appendix: Evaluation Matrix

	Siena: From PowerPoint to Web App in 5 Minutes
	Exploration of Discovered Process Views in Process Spaceship
	Introduction
	Demonstration Scenario
	References

	ROME4EU: A Web Service-Based Process-Aware System for Smart Devices
	References

	WS-Engineer 2008
	The WS-Engineer Approach
	The Demonstration
	References

	MetaCDN: Harnessing Storage Clouds for High Performance Content Delivery
	Yowie: Information Extraction in a Service Enabled World
	Introduction
	Description of the System
	Functions and Features to be Demonstrated
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

