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Abstract. In this paper, we present a new public key encryption scheme
with an easy-to-understand structure. More specifically, in the proposed
scheme, for fixed group elements g1, . . . , g� in the public key a sender
computes only gr

1 , . . . , gr
� for encryption where r is a single random num-

ber. Due to this simple structure, its security proof becomes very short
(and one would easily understand the simulator’s behavior for simultane-
ously dealing with embedding a hard problem and simulating a decryp-
tion oracle). Our proposed scheme is provably chosen-ciphertext secure
under the gap Diffie-Hellman assumption (without random oracles). A
drawback of our scheme is that its ciphertext is much longer than known
practical schemes. We also propose a modification of our scheme with
improved efficiency.

1 Introduction

1.1 Background

Chosen-ciphertext security (CCA-security, for short) [15, 31] is a standard notion
of security for practical public key encryption (PKE) schemes. Furthermore, this
security also implies universally composable security [9]. Among existing CCA-
secure PKE schemes, ECIES [1] (see Appendix A) has a simple and interesting
structure. Namely, (i) its encryption algorithm calculates only gr

1 and gr
2 with

a common random r where g1 and g2 are fixed bases which are contained in
the public key, and (ii) its security can be proven with the gap Diffie-Hellman
(GDH) assumption [28] (in the random oracle model [2]). Due to this simple
structure, we can construct a practical PKE scheme, and more importantly, it is
easy, especially for non-experts, to understand the basic mechanism for handling
CCA adversaries (in the random oracle model).

The main motivation of this paper is to construct a PKE scheme which pro-
vides the above two properties in the standard model (i.e. without using random
oracles).

1.2 Our Contribution

In this paper, we propose a novel PKE scheme which has similar properties to
ECIES. Specifically, in the proposed scheme, for fixed group elements g1, . . . , g�
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in the public key a sender computes only gr
1 , . . . , g

r
� for encryption where r is

a random, and CCA-security of the proposed scheme can be proven under the
GDH assumption.

Due to the simple structure of our proposed scheme (which is similar to
ECIES), one can easily understand its essential idea for dealing with chosen-
ciphertext attacks. For example, CCA-security of the proposed scheme is opti-
mally (i.e. without any security loss) reduced to indistinguishability of a hardcore
bit of the (gap) Diffie-Hellman key. In other words, in its security proof, the sim-
ulator can perfectly respond to any decryption query without any error probabil-
ity. Especially, for starters our scheme would give an easy-to-understand insight
for designing CCA-secure PKE schemes. Specifically, in the security proof, the
simulator can perfectly respond to any decryption query by simply un-mask one
of its components with an ordinary exponentiation (not, for example, the Boneh-
Boyen-like technique [5]). Namely, since in the simulation one of components of
a decryption query must form as Ka where K is the answer of the query and a
is a secret for the simulation, the simulator can easily extract the answer K as
K = (Ka)

1
a . It is also easy to see how the given instance of the underlying hard

problem is embedded in the challenge ciphertext.
Unfortunately, this scheme is not practical as it has only one-bit plaintext

space and its ciphertext consists of k + 2 group elements (plus one bit) where
k is a security parameter, and hence our scheme has nothing advantageous to
existing practical PKE schemes in all practical aspects. In particular, the Kiltz
scheme [25] is more efficient than our scheme in terms of both data sizes and
computational costs with the same underlying assumption, i.e. the GDH assump-
tion.1 However, we stress that the main contribution of the proposed scheme is
its easy-to-understand structure for protecting chosen-ciphertext attacks.

We also give some extensions of the proposed scheme for enhancing efficiency.
By using these ideas, we can significantly reduce data sizes, and especially the
ciphertext overhead becomes only two group elements which is the same as [25]
(however, key sizes are still much longer than [25]).

1.3 Related Works

The first CCA-secure PKE scheme was proposed by Dolev, Dwork, and Naor
[15] by extending the Naor-Yung paradigm [27] which is only non-adaptively
CCA-secure. However, this scheme has a complicated structure primarily due to
the use of non-interactive zero knowledge (NIZK) proof [4].

Cramer and Shoup [13] proposed the first practical CCA-secure scheme under
the DDH assumption. This scheme was further improved by Shoup [33] and
Kurosawa and Desmedt [26]. Furthermore, Hofheinz and Kiltz [23] showed a
variant of the Cramer-Shoup scheme with a weaker assumption, i.e. the n-linear
DDH assumption.
1 In [25], security of the Kiltz scheme is discussed mainly based on the gap hashed

Diffie-Hellman (GHDH) assumption instead of the standard GDH assumption. How-
ever, as (slightly) mentioned in [25], this scheme is also provably CCA-secure under
the GDH assumption if the plaintext is only one-bit long.
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Canetti, Halevi, and Katz [11] proposed a generic method for converting an
(selectively secure) identity-based encryption scheme [6, 32] into a CCA-secure
PKE scheme, and Boneh and Katz [7] improved its efficiency. Kiltz [24] discussed
a more relaxed condition for achieving CCA-security. Boyen, Mei, and Waters [8]
proposed practical CCA-secure schemes by using the basic idea of the Canetti-
Halevi-Katz paradigm and specific properties of [35] and [5].

The above schemes, i.e. [11, 13] and their extensions, utilize powerful crypto-
graphic tools such as subset membership problems [14] or identity-based encryp-
tion [6, 32] for efficiently achieving CCA-security. Therefore, in these schemes
minimum functionality for achieving CCA-security seems unclear.

Kiltz [25] also proposed another practical CCA-secure scheme whose security
is proven under the gap hashed Diffie-Hellman (GHDH) assumption. With a
slight modification (by using the hard-core bit), this scheme is also provably
secure under the GDH assumption. Our proposed scheme is considered as a
redundant version of this scheme with an easier-to-understand structure.

In the random oracle methodology [2], it is possible to construct more efficient
CCA-secure schemes, e.g. [1, 3, 17, 18, 29] (though this methodology is known
as problematic [10]). Among these schemes, ECIES [1] has a very simple struc-
ture on which one can easily understand its essential mechanism for protecting
chosen-ciphertext attacks (in the random oracle model). Namely, in ECIES it is
impossible to properly encrypt a plaintext without submitting its corresponding
Diffie-Hellman key to a random oracle, and therefore, a simulator can respond
to any decryption query by simply picking it from random oracle queries (and
one can correctly choose the valid Diffie-Hellman key with the help of the DDH
oracle). See Appendix A for ECIES. Similarly to this, in our proposed scheme,
we can easily understand that for generating a valid ciphertext a CCA adversary
has to (implicitly) input the corresponding Diffie-Hellman key into redundant
components of the ciphertext, and that the simulator can extract it from such
redundant components. See also Sec. 6 for a more detailed description on this
observation.

2 Definitions

Here, we give definitions for CCA-security of PKE schemes and some number
theoretic assumptions, e.g. the GDH assumption. See also Appendix C for target
collision resistant hash functions and data encapsulation mechanisms (DEMs).

2.1 Public Key Encryption

The Model. A public key encryption (PKE) scheme consists of the following
three algorithms:

Setup(1k). Takes as input the security parameter 1k and outputs a decryption
key dk and a public key PK.

Encrypt(PK, M). Takes as input a public key PK and a plaintext M ∈ M,
and outputs a ciphertext ψ.
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Decrypt(dk, ψ, PK). Takes as input the decryption key dk, a ciphertext ψ, and
the public key PK, and outputs the plaintext M ∈ M or a special symbol
“⊥”.

We require that if (dk, PK) R← Setup(1k) and ψ
R← Encrypt(PK, M) then

Decrypt(dk, ψ, PK) = M .

Chosen-Ciphertext Security. CCA-security of a PKE scheme is defined using
the following game between an attack algorithm A and a challenger. Both the
challenger and A are given 1k as input.

Setup. The challenger runs Setup(1k) to obtain a decryption key dk and a
public key PK, and gives PK to A.

Query I. Algorithm A adaptively issues decryption queries ψ1, . . . , ψm. For
query ψi, the challenger responds with Decrypt(dk, ψi, PK).

Challenge. At some point, A submits a pair of plaintexts (M0, M1) ∈ M2.
Then, the challenger picks a random b ∈ {0, 1}, runs algorithm Encrypt to
obtain the challenge ciphertext ψ� R← Encrypt(PK, Mb), and gives ψ� to A.

Query II. Algorithm A continues to adaptively issue decryption queries ψm+1,
. . . , ψqD . For query ψi(�= ψ�), the challenger responds as Query I.

Guess. Algorithm A outputs its guess b′ ∈ {0, 1} for b and wins the game if
b = b′.

Let AdvPKEA denote the probability that A wins the game.

Definition 1. We say that a PKE scheme is (τ, ε, qD) CCA-secure if for all
τ -time algorithms A who make a total of qD decryption queries, we have that
|AdvPKEA − 1/2| < ε.

2.2 Number Theoretic Assumptions

The Gap (Hashed) Diffie-Hellman Assumption. Let G be a multiplicative
group with prime order p. Then, the gap Diffie-Hellman (GDH) problem in G is
stated as follows. Let A be an algorithm, and we say that A has advantage ε in
solving the GDH problem in G if

Pr[AO(g, gα, gβ) = gαβ ] ≥ ε,

where the probability is over the random choice of generators g in G, the random
choice of α and β in Zp, and the random bits consumed by A. The oracle O
denotes the DDH oracle which on input (g1, g2, g3, g4) ∈ G4, answers whether
logg1

g3 = logg2
g4 or not, and A is allowed to access O in any time and any

order.

Definition 2. We say that the (τ, ε)-GDH assumption holds in G if no τ-time
algorithm has advantage at least ε in solving the GDH problem in G.
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Occasionally we drop the τ and ε and refer to the GDH in G.
The gap hashed Diffie-Hellman (GHDH) problem [25] in G and function h :

G → D is stated as follows. Let A be an algorithm, and we say that A has
advantage ε in solving the GHDH problem in G and h if

1
2

· | Pr[AO(g, gα, gβ, h(gαβ)) = 0] − Pr[AO(g, gα, gβ , T ) = 0]| ≥ ε,

where the probability is over the random choice of generators g in G, the random
choice of α and β in Zp, the random choice of T ∈ D, and the random bits
consumed by A. The oracle O is the DDH oracle.

Definition 3. We say that the (τ, ε)-GHDH assumption holds in G and h if no
τ-time algorithm has advantage at least ε in solving the GHDH problem in G

and h.

Occasionally we drop the τ and ε and refer to the GHDH in G and h.

Hardcore Bits for the (Gap) Diffie-Hellman Key. Roughly speaking, h is
called a hardcore bit function for the (gap) Diffie-Hellman key in G if the GHDH
assumption in G and h holds under only the GDH assumption in G.

Let A be a τ -time algorithm which has advantage ε in solving the GHDH
problem in G and h : G → {0, 1}.

Definition 4. We say that function h : G → {0, 1} is a (p1, p2) hardcore bit
function in G if there exists a p1(τ)-time algorithm B which for any given A,
can solve the GDH problem with advantage p2(ε) for some polynomials p1 and p2.

See [19] for an example of hardcore bit functions for the (gap) Diffie-Hellman
key.

3 The Proposed Scheme

In this section, we give the construction of our proposed scheme (its extensions
with enhanced efficiency are given in the next section). As a basic scheme, we
start with the standard ElGamal PKE scheme [16]. Since semantic security of
the ElGamal scheme is based on only the DDH assumption (not the GDH as-
sumption), with the use of hardcore bits we modify it to have semantic security
based on the GDH assumption. See Appendix B for this semantically secure PKE
scheme. Next, we further modify this scheme to have CCA-security by using the
Dolev-Dwork-Naor paradigm [15]. Interestingly, in our proposed scheme, NIZK
proofs which is required for [15] is not necessary due to the GDH assumption.2

2 In general, for applying the technique of [15] we need NIZK proofs which make
the resulting scheme complicated, however in our scheme it is not needed since
the DDH oracle in the GDH assumption provides the necessary functionality for
proving equivalence of plaintexts of different ciphertexts without neither any further
computational assumption nor any additional ciphertext redundancy.
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3.1 The Construction

Let G be a multiplicative group with prime order p, and g ∈ G be a generator.
We assume that a group element of G is k-bit long where k is the security
parameter. Then, the construction of our proposed PKE scheme is as follows:

Setup(1k): Pick dk = (x0, . . . , xk, y0, . . . , yk, z) ∈ Z2k+3
p , and compute Xi =

gxi , Yi = gyi , and Z = gz for i = 0, . . . , k. The decryption key is dk, and the
public key is PK = (G, g, X0, . . . , Xk, Y0, . . . , Yk, Z, h) where h is a hardcore
bit function in G.

Encrypt(PK, M): For a plaintext M ∈ {0, 1}, pick a random r
R← Zp, and

compute

ψ = (gr, U r
0 , . . . , Ur

k , h(Zr) ⊕ M),

where Ui = Xi if vi = 0, or Ui = Yi if vi = 1, vi is (i + 1)-th bit of
((gr)2‖(h(Zr)⊕M)), and (W )2 denotes the binary representation of W ∈ G.
The ciphertext is ψ.

Decrypt(dk, ψ, PK): For a ciphertext ψ = (C0, C1,0, . . . , C1,k, C2), check

whether for all i = 0, . . . , k, Cui
0

?= C1,i where ui = xi if vi = 0, or ui = yi if
vi = 1 where vi is (i + 1)-th bit of ((C0)2‖C2). If not, output ⊥. Otherwise,
output M = C2 ⊕ h(Cz

0 ).

As earlier mentioned, the required operation for encryption in the proposed
scheme is only exponentiations with a common exponent r under fixed bases
(which are contained in PK).

3.2 Security

Before going into a formal security proof of the proposed scheme, we consider the
(in)security of its simplified scheme which would be helpful for understanding
the essential part of the proposed scheme. The (insecure) simplified scheme is as
follows: Suppose that the decryption key is reduced to be only dk = (x0, z) and
the public key is PK = (G, g, X0, Z, h). Let a ciphertext ψ be (gr, Xr

0 , h(Zr) ⊕
M) for a plaintext M ∈ {0, 1}. Then, if the component “Xr

0” is valid (this
can be checked by testing the consistency with (gr)x0), the receiver would be
convinced that the sender knows r since without knowing r (nor x0), it seems
hard to generate the Diffie-Hellman key gr·x0. However, this is false. Namely, once
an adversary sees a valid (challenge) ciphertext (C0, C1, C2), he can generate
another valid ciphertext (Cr′

0 , Cr′

1 , C2) without knowing logg Cr′

0 , where r′ ∈ Zp

is a random. In other words, this scheme is malleable, and hence, insecure.
Our proposed scheme is considered as an enhanced version of the above scheme

with non-malleability by using a similar technique to [15]. More specifically, in
the proposed scheme, for each encryption the sender is enforced to choose a dis-
tinct subset from {X0, . . . , Xk, Y0, . . . , Yk} (instead of single X0), and therefore,
the above attack does not work any more. Consequently, the resulting scheme
becomes CCA-secure.
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The security of the above scheme is formally addressed as follows:

Theorem 1. Let G be a multiplicative group with prime order p, and h be a
(p1, p2) hardcore bit function in G. Then, the above scheme is (p−1

1 (τ − o(τ)),
p−1
2 (εgdh), qD) CCA-secure assuming the (τ, εgdh) GDH assumption holds in G.

Proof. Assume we are given an adversary A which breaks CCA-security of the
above scheme with running time τ , advantage ε, and qD decryption queries.
We use A to construct another adversary B which, by using the DDH oracle,
distinguishes hardcore bit h of the (gap) Diffie-Hellman key in G. This suffices for
proving CCA-security of our scheme under the GDH assumption since existence
of an algorithm which distinguishes a hardcore bit of the gap Diffie-Hellman
key immediately implies existence of another algorithm which solves the GDH
problem by the definition. Define adversary B as follows:

1. For a given GDH instance (g, gα, gβ), B picks a random bit γ, and (a0, . . . , ak,
b0, . . . , bk) ∈ Z2k+2

p . Let v�
i be (i + 1)-th bit of ((gβ)2‖γ) for 0 ≤ i ≤ k.

2. B sets Z = gα, and (Xi, Yi) = (gai , (gα)bi) if v�
i = 0, or (Xi, Yi) = ((gα)ai , gbi)

if v�
i = 1, for i = 0, . . . , k.

3. B inputs public key PK = (G, g, X0, . . . , Xk, Y0, . . . , Yk, Z) and challenge
ciphertext ψ� = (gβ, (gβ)μ0 , . . . , (gβ)μk , γ) to A where μi = ai if v�

i = 0, or
μi = bi if v�

i = 1 for i = 0, . . . , k.
Notice that ψ� is a valid ciphertext for plaintext γ ⊕ h(gαβ) ∈ {0, 1}. We
also note that since the pair of plaintexts (M0, M1) which are challenged is
always (0, 1), without loss of generality B may give ψ� to A at this stage.

4. When A makes decryption query ψ = (C0, C1,0, . . . , C1,k, C2) ∈ Gk+2×{0, 1}
(if a query is not in this form, then B simply rejects it), B proceeds as follows:
(a) B determines a binary string (vi)0≤i≤k = ((C0)2‖C2), and checks whether

for all i = 0, . . . , k,

logg Ui
?= logC0

C1,i

by using the DDH oracle (See Sec. 2.2), where Ui = Xi if vi = 0, or
Ui = Yi if vi = 1. If ψ is in an invalid form, then B responds with “⊥”.

(b) If ψ is in a valid form, then B picks (one of) i such that vi �= v�
i . (We

note that there always exists at least one such i if ψ �= ψ�.) B also picks
C1,i and calculates C

1/ai

1,i = Cα
0 if vi = 0, or C

1/bi

1,i = Cα
0 if vi = 1. B

responds with M ′ = C2 ⊕ h(Cα
0 ) to A.

5. Finally, A outputs his guess b′ on γ ⊕ h(gαβ), and B outputs b′ ⊕ γ as his
guess on h(gαβ).

Obviously, the above simulation is always perfect without even any negligible
error probability. Therefore, B’s advantage is completely the same as A’s, i.e. ε.

4 A Comparison on “Easiness-to-Understand”

In this section, we discuss “easiness-to-understand” of our proposed scheme by
comparing it with the Kiltz scheme [25] and the Dolev-Dwork-Naor scheme [15]
by focusing on their techniques for responding to decryption queries.
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In our proposed scheme, for responding to a query the simulator picks a
component from the query, and un-masks it by an ordinary exponentiation.
Then, the simulator responds to the query with this result.

In the Kiltz scheme [25], there is only one redundant component in a cipher-
text (which is practical and beautiful), and the simulator always picks it for
extracting the answer of the query. However, since this construction utilizes the
Boneh-Boyen-like technique [5], it requires more complicated and non-intuitive
calculation than a single exponentiation. See, for example, Eq. (1) in the full
version of [25] for the required calculation.

In the Dolev-Dwork-Naor scheme [15], similarly to our scheme, the simulator
picks one of components of a decryption query, and simply decrypts this compo-
nent ciphertext. This is due to that the NIZK proof guarantees that all decryp-
tion results of all component ciphertexts are identitcal. Therefore, this scheme
is also considered easy-to-understand if we do not mind using an NIZK proof as
a black box. However, actually NIZK proofs require the Karp reduction from the
specific NP language (i.e. equality of plaintexts) to some NP complete language,
and furthermore, the assumption of existence of enhanced trapdoor permutations
is also necessary. Therefore, the full description of the scheme with a concrete
construction of the NIZK proof becomes more complicated than our scheme.

5 Extensions

In this section, we give some ideas for enhancing efficiency of the proposed
scheme. However, the structure of the resulting scheme becomes much less easy-
to-understand.

5.1 Compressing Keys

It is possible to compress the size of keys by using target collision resistant hash
functions (see Appendix C). Specifically, by replacing the vector (vi)0≤i≤k =
((C0)2‖C2) with another vector (v′i)0≤i≤�−1 = TCR(C0, C2) where TCR : G ×
{0, 1} → {0, 1}� is a target collision resistant hash function, sizes for both de-
cryption and public keys are reduced by approximately �/k � 1/2.3

5.2 Compressing Ciphertexts

Interestingly, our strategy of the security proof still works even if we compress
the redundant components of a ciphertext by a product as

ψ = (gr,

( ∏
vi=0

Xi ·
∏
vi=1

Yi

)r

, h(Zr) ⊕ M).

The ciphertext overhead (i.e. ciphertext size minus plaintext size) of the resulting
scheme becomes only two group elements, which is the same as the best known
schemes, e.g. [8, 25].
3 For �-bit security, the size of a group element is required to be at least 2�-bit long,

while the size of an output of TCR is required to be at least �-bit long.
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5.3 Expanding the Plaintext Space

Similarly to [25], we can expand the size of plaintexts for arbitrary length with
the GHDH assumption. Specifically, we replace the hardcore bit function h : G →
{0, 1}with another hash function h′ : G → {0, 1}ν where ν is sufficiently large, and
assume the GHDH assumption holds in G and h′. Then, by encrypting a plaintext
with CCA-secure DEM [20, 21, 22, 30] under the data encryption key h′(Zr) (in-
stead of the simple one-time pad). See Appendix C for CCA-secure DEMs.

5.4 Applying the above Extensions Together

Here, we give a concrete construction of an enhanced version of our proposed
scheme with all of the above extensions. Let G be a multiplicative group with
prime order p, and g ∈ G be a generator. Let TCR : G → {0, 1}� be a target
collision resistant hash function, and h : G → {0, 1}� be a hash function (such
that the GHDH assumption holds in G and h).4 Let (E, D) be a CCA-secure
DEM. Then, the construction of the enhanced scheme is as follows:

Setup(1k): Pick dk = (x0, . . . , x�−1, y0, . . . , y�−1, z) ∈ Z2�+1
p , and compute Xi =

gxi , Yi = gyi, and Z = gz for i = 0, . . . , � − 1. The decryption key is dk, and
the public key is

PK = (G, g, X0, . . . , X�−1, Y0, . . . , Y�−1, Z, h, TCR).

Encrypt(PK, M): For a plaintext M ∈ M, pick a random r
R← Zp, and com-

pute

ψ = (gr,

( ∏
vi=0

Xi ·
∏
vi=1

Yi

)r

, E(h(Zr), M)),

where vi is (i + 1)-th bit of TCR(gr). The ciphertext is ψ.
Decrypt(dk, ψ, PK): For a ciphertext ψ = (C0, C1, C2), check whether∏

vi=0

(Cxi
0 ) ·

∏
vi=1

(Cyi

0 ) ?= C1,

where vi is (i + 1)-th bit of TCR(C0). If not, output ⊥. Otherwise, output
M = D(h(Cz

0 ), C2).

Theorem 2. Let G be a multiplicative group with prime order p, TCR be a
(τ, εtcr) target collision resistant hash function, and (E, D) be a (τ, εdem) CCA-
secure DEM. Then, the above PKE scheme is (τ − o(τ), εghdh + εtcr + εdem, qD)
CCA-secure assuming the (τ, εghdh) GHDH assumption holds in G and h.

The proof of the theorem is given in the full version of this paper.
The above scheme is much more efficient than the basic scheme in the previous

section, and especially its ciphertext overhead is only two group elements which
is the same as the best known schemes [8, 25]. However, this scheme is not very
easy-to-understand any more, and furthermore, is still less efficient than [25] in
all practical aspects.
4 For �-bit security, length of outputs for both TCR and h are determined as �-bit long.
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6 Random Oracle Model vs. Standard Model

Here, we give a brief comparison of our proposed scheme with ECIES by focusing
on their methods for simulating decryption oracles (under the GDH assumption).
This comparison would clarify an essential difference between the random oracle
model and the standard model. In both cases the main issue is that for given gr

and gx which are contained in a decryption query and a public key, respectively,
the simulator has to somehow produce gr·x without knowing x nor r.

In the security proof of ECIES, since the data encryption key is set as K =
H(gr·x) where H is a random oracle, one cannot properly encrypt a plaintext
without submitting gr·x to H . Hence, gr·x can be extracted from H-queries. We
notice that gr·x is not embedded in the ciphertext, and consequently this trick
does not require ciphertext redundancy which results in a very short ciphertext.
See Appendix A for ECIES.

On the other hand, in the security proof of our proposed scheme (and the
Kiltz scheme [25]), the simulator cannot observe the CCA adversary’s inputs to
h, and therefore, we have to enforce the CCA adversary to embed gr·x (with
a mask) into some redundant part (i.e. (C1,0, . . . , C1,k) in ψ) of the ciphertext
instead. The simulator extracts (masked) gr·x from such a redundant part by
using an incomplete decryption key. Hence, we see that it is difficult to remove
redundancy of a ciphertext in the standard model.

Construction of redundancy free CCA-secure PKE schemes under reasonable
assumptions in the standard model is a major open problem, and even in a
relaxed notion of CCA-security, only the DDH-based scheme in [12] achieves it.
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A A Brief Review of ECIES

Here, we give a brief review of ECIES [1]. Let G be a multiplicative group with
prime order p, and g ∈ G be a generator, and H : G → {0, 1}� be a hash function,
which will be viewed as a random oracle in the security analysis. Let (E, D) is
a CCA-secure DEM (see Appendix C). Then, the construction of ECIES is as
follows:

Setup(1k): Pick z
R← Zp, and compute Z = gz. The decryption key is z, and

the public key is PK = (G, g, Z, H).
Encrypt(PK, M): For a plaintext M ∈ M, pick a random r

R← Zp, and com-
pute ψ = (gr, E(H(Zr), M)). The ciphertext is ψ.

Decrypt(dk, ψ, PK): For a ciphertextψ = (C0, C1), outputM = D(H(Cz
0 ), C1).

Proposition 1 ([34]). Let G be a multiplicative group with prime order p, H be
a random oracle, and (E, D) be a (τ, εdem) CCA-secure DEM. Then, the above
scheme is (τ − o(τ), εgdh + εdem, qD) CCA-secure assuming the (τ, εgdh) GDH
assumption holds in G.

http://eprint.iacr.org/2007/036
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An intuitive explanation of the security is as follows: Due to the standard
KEM/DEM composition theorem [33], it is sufficient to prove that the KEM
part of the above scheme is CCA-secure (since the DEM part is already CCA-
secure). Therefore, for proving security, by using a CCA adversary A against the
KEM, we will construct another algorithm B which solves the GDH problem.

For a given GDH instance (g, gα, gβ), B sets PK = (G, g, gα, H), where ran-
dom oracle H is controlled by B, and C�

0 = gβ as a challenge ciphertext. PK

and (C�
0 , K�) is given to A, where K� R← {0, 1}� and A’s goal is to correctly

guess if K� = H(gαβ) or not. For a decryption query C0, by using the DDH
oracle O, B searches an H query w which has been submitted by A such that
(g, gα, C0, w) forms a Diffie-Hellman tuple. B returns H(w) if there is such an
H query, or a random KC0 ∈ {0, 1}� otherwise. Similarly, for an H query w, by
using O, B searches a decryption query C0 which has been submitted by A such
that (g, gα, C0, w) forms a Diffie-Hellman tuple. B responds as H(w) = KC0 if
there is such a decryption query, or H(w) R← {0, 1}� otherwise. B keeps the above
answers in his memory, and returns the same answer for the same query. Since
it is information-theoretically impossible to distinguish H(gαβ) from a random
�-bit string without submitting gαβ to H , A submits it to random oracle H at
some point. Therefore, B can also output gαβ with non-negligible probability by
picking it from A’s H queries (and B can correctly select it with the help of O).

B The ElGamal PKE Scheme with the GDH Assumption

Let G be a multiplicative group with prime order p, and g ∈ G be a generator.
Then, the construction of the GDH-based semantically secure PKE scheme is as
follows:

Setup(1k): Pick z
R← Zp, and compute Z = gz. The decryption key is dk = z,

and the public key is PK = (G, g, Z, h) where h is a hardcore bit function
in G.

Encrypt(PK, M): For a plaintext M ∈ {0, 1}, pick a random r
R← Zp, and

compute ψ = (gr, h(Zr) ⊕ M). The ciphertext is ψ.
Decrypt(dk, ψ, PK): For a ciphertext ψ = (C0, C1), output M = C1 ⊕ h(Cz

0 ).

Theorem 3. Let G be a multiplicative group with prime order p, and h be a
(p1, p2) hardcore bit function in G. Then, the above scheme is (p−1

1 (τ − o(τ)),
p−1
2 (εgdh), 0) CCA-secure (i.e. semantically secure) assuming the (τ, εgdh) GDH

assumption holds in G.

Proof. Assume we are given an adversary A which breaks semantic security of
the above scheme with running time τ and advantage ε. We use A to construct
another adversary B which distinguishes hardcore bit h of the Diffie-Hellman
key in G. This suffices for proving semantic security of the above scheme under
the GDH assumption. Define adversary B as follows: For a given GDH instance
(g, gα, gβ), B sets PK = (G, g, gα, h) and ψ� = (gβ , γ) where γ is a random bit.
PK and ψ� are given to A. Finally, A outputs his guess b′ on γ ⊕ h(gαβ), and B
outputs b′ ⊕ γ as his guess on h(gαβ).
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Obviously, we can also prove semantic security of the above scheme under the
computatinal Diffie-Hellman assumption since in the above proof the DDH oracle
is never used. However, for enhancing it to have CCA-security we need the DDH
oracle.

C Cryptographic Tools

C.1 Target Collision Resistant Hash Functions

Let TCR : X → Y be a hash function, A be an algorithm, and A’s advantage
AdvTCRA be

AdvTCRA = Pr[TCR(x′) = TCR(x) ∈ Y ∧ x′ �= x| x
R← X ; x′ R← A(x)].

Definition 5. We say that TCR is a (τ, ε) target collision resistant hash function
if for all τ -time algorithm A, we have that AdvTCRA < ε.

It is obvious that any injective mapping can be used as a perfectly secure target
collision resistant hash function.

C.2 Data Encapsulation Mechanism

The Model. A data encapsulation mechanism (DEM) scheme consists of the
following two algorithms:

E(K, M) Takes as input a data encryption key K ∈ K and a plaintext M ∈ M,
and outputs a ciphertext ψ.

D(K, ψ) Takes as input a data encryption key K ∈ K and a ciphertext ψ, and
outputs the plaintext M ∈ M.

We require that if ψ ← E(K, M) then D(K, ψ) = M .

Chosen-Ciphertext Security. CCA-security of a DEM is defined using the
following game between an attack algorithm A and a challenger. Both the chal-
lenger and A are given 1k as input.

Setup. The challenger chooses a data encryption key K ∈ {0, 1}k.
Query I. Algorithm A adaptively issues decryption queries ψ1, . . . , ψm. For

query ψi, the challenger responds with D(K, ψi).
Challenge. At some point, A submits a pair of plaintexts (M0, M1) ∈ M2.

Then, the challenger picks a random b ∈ {0, 1}, runs algorithm E to obtain
the challenge ciphertext ψ�←E(K, Mb), and give ψ� to A.

Query II. Algorithm A continues to adaptively issue decryption queries ψm+1,
. . . , ψqD . For query ψi(�= ψ�), the challenger responds as Query I.

Guess. Algorithm A outputs its guess b′ ∈ {0, 1} for b and wins the game if
b = b′.

Let AdvDEMA denote the probability that A wins the game.

Definition 6. We say that a DEM is (τ, ε, qD) CCA-secure if for all τ -time algo-
rithms A who make a total of qD decryption queries, we have that |AdvDEMA −
1/2| < ε.
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