
Chapter 4

Stochastic Programming

With the requirement of considering randomness, different types of stochastic
programming have been developed to suit the different purposes of manage-
ment. The first type of stochastic programming is the expected value model,
which optimizes the expected objective functions subject to some expected
constraints. The second, chance-constrained programming, was pioneered by
Charnes and Cooper [37] as a means of handling uncertainty by specifying
a confidence level at which it is desired that the stochastic constraint holds.
After that, Liu [174] generalized chance-constrained programming to the case
with not only stochastic constraints but also stochastic objectives. In practice,
there usually exist multiple events in a complex stochastic decision system.
Sometimes the decision-maker wishes to maximize the chance functions of
satisfying these events. In order to model this type of problem, Liu [166] pro-
vided a theoretical framework of the third type of stochastic programming,
called dependent-chance programming.

This chapter will give some basic concepts of probability theory and intro-
duce a spectrum of stochastic programming. A hybrid intelligent algorithm
is also documented.

4.1 Random Variables

Before introducing the concept of random variable, let us define a probability
measure by an axiomatic approach.

Definition 4.1. Let Ω be a nonempty set, and � a σ-algebra of subsets
(called events) of Ω. The set function Pr is called a probability measure if
Axiom 1. (Normality) Pr{Ω} = 1;
Axiom 2. (Nonnegativity) Pr{A} ≥ 0 for any event A;
Axiom 3. (Countable Additivity) For every countable sequence of mutually
disjoint events {Ai}, we have
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Pr

{ ∞⋃
i=1

Ai

}
=

∞∑
i=1

Pr{Ai}. (4.1)

Example 4.1. Let Ω = {ω1, ω2, · · ·}, and let � be the power set of Ω.
Assume that p1, p2, · · · are nonnegative numbers such that p1 + p2 + · · · = 1.
Define a set function on � as

Pr{A} =
∑

ωi∈A

pi, A ∈ �. (4.2)

Then Pr is a probability measure.

Example 4.2. Let Ω = [0, 1] and let � be the Borel algebra over Ω. If Pr is
the Lebesgue measure, then Pr is a probability measure.

Example 4.3. Let φ be a nonnegative and integrable function on � (the set
of real numbers) such that

∫
� φ(x)dx = 1. Then for any Borel set A, the set

function
Pr{A} =

∫
A

φ(x)dx (4.3)

is a probability measure on �.

Theorem 4.1. Let Ω be a nonempty set, � a σ-algebra over Ω, and Pr a
probability measure. Then Pr{∅} = 0 and 0 ≤ Pr{A} ≤ 1 for any event A.

Proof: Since ∅ and Ω are disjoint events and ∅ ∪ Ω = Ω, we have Pr{∅}+
Pr{Ω} = Pr{Ω} which makes Pr{∅} = 0. By the nonnegativity axiom, we
have Pr{A} ≥ 0 for any event A. By the countable additivity axiom, we get
Pr{A} = 1− Pr{Ac} ≤ 1.

Definition 4.2. Let Ω be a nonempty set, � a σ-algebra of subsets of Ω, and
Pr a probability measure. Then the triplet (Ω,�, Pr) is called a probability
space.

Definition 4.3. A random variable is a measurable function from a proba-
bility space (Ω,�, Pr) to the set of real numbers, i.e., for any Borel set B of
real numbers, the set

{ξ ∈ B} = {ω ∈ Ω
∣∣ ξ(ω) ∈ B} (4.4)

is an event.

Definition 4.4. Let f : �n → � be a measurable function, and ξ1, ξ2, · · · , ξn

random variables defined on the probability space (Ω,�, Pr). Then ξ =
f(ξ1, ξ2, · · · , ξn) is a random variable defined by

ξ(ω) = f(ξ1(ω), ξ2(ω), · · · , ξn(ω)), ∀ω ∈ Ω. (4.5)
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Definition 4.5. An n-dimensional random vector is a measurable function
from a probability space (Ω,�, Pr) to the set of n-dimensional real vectors,
i.e., for any Borel set B of �n, the set

{ξ ∈ B} =
{
ω ∈ Ω

∣∣ ξ(ω) ∈ B
}

(4.6)

is an event.

Theorem 4.2. The vector (ξ1, ξ2, · · · , ξn) is a random vector if and only if
ξ1, ξ2, · · · , ξn are random variables.

Proof: Write ξ = (ξ1, ξ2, · · · , ξn). Suppose that ξ is a random vector on the
probability space (Ω,�, Pr). For any Borel set B of �, the set B × �n−1 is
also a Borel set of �n. Thus we have{

ω ∈ Ω
∣∣ ξ1(ω) ∈ B

}
=
{
ω ∈ Ω

∣∣ ξ1(ω) ∈ B, ξ2(ω) ∈ �, · · · , ξn(ω) ∈ �}
=
{
ω ∈ Ω

∣∣ ξ(ω) ∈ B ×�n−1
} ∈ �

which implies that ξ1 is a random variable. A similar process may prove that
ξ2, ξ3, · · · , ξn are random variables. Conversely, suppose that all ξ1, ξ2, · · · , ξn

are random variables on the probability space (Ω,�, Pr). We define

� =
{
B ⊂ �n

∣∣ {ω ∈ Ω|ξ(ω) ∈ B} ∈ �} .

The vector ξ = (ξ1, ξ2, · · · , ξn) is proved to be a random vector if we can
prove that � contains all Borel sets of �n. First, the class � contains all
open intervals of �n because{

ω ∈ Ω
∣∣ ξ(ω) ∈

n∏
i=1

(ai, bi)

}
=

n⋂
i=1

{
ω ∈ Ω

∣∣ ξi(ω) ∈ (ai, bi)
} ∈ �.

Next, the class � is a σ-algebra of �n because (i) we have �n ∈ � since
{ω ∈ Ω|ξ(ω) ∈ �n} = Ω ∈ �; (ii) if B ∈ �, then {ω ∈ Ω|ξ(ω) ∈ B} ∈ �,
and

{ω ∈ Ω
∣∣ ξ(ω) ∈ Bc} = {ω ∈ Ω

∣∣ ξ(ω) ∈ B}c ∈ �
which implies that Bc ∈ �; (iii) if Bi ∈ � for i = 1, 2, · · ·, then {ω ∈ Ω|ξ(ω) ∈
Bi} ∈ � and{

ω ∈ Ω
∣∣ ξ(ω) ∈

∞⋃
i=1

Bi

}
=

∞⋃
i=1

{ω ∈ Ω
∣∣ ξ(ω) ∈ Bi} ∈ �

which implies that ∪iBi ∈ �. Since the smallest σ-algebra containing all open
intervals of �n is just the Borel algebra of �n, the class � contains all Borel
sets of �n. The theorem is proved.
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Probability Distribution

Definition 4.6. The probability distribution Φ: � → [0, 1] of a random
variable ξ is defined by

Φ(x) = Pr
{
ω ∈ Ω

∣∣ ξ(ω) ≤ x
}

. (4.7)

That is, Φ(x) is the probability that the random variable ξ takes a value less
than or equal to x.

Definition 4.7. The probability density function φ: � → [0, +∞) of a ran-
dom variable ξ is a function such that

Φ(x) =
∫ x

−∞
φ(y)dy (4.8)

holds for all x ∈ �, where Φ is the probability distribution of the random
variable ξ.

Uniform Distribution: A random variable ξ has a uniform distribution if
its probability density function is

φ(x) =

⎧⎨
⎩

1
b− a

, if a ≤ x ≤ b

0, otherwise
(4.9)

denoted by U(a, b), where a and b are given real numbers with a < b.

Exponential Distribution: A random variable ξ has an exponential
distribution if its probability density function is

φ(x) =

⎧⎪⎨
⎪⎩

1
β

exp
(
−x

β

)
, if x ≥ 0

0, otherwise
(4.10)

denoted by EXP(β), where β is a positive number.

Normal Distribution: A random variable ξ has a normal distribution if its
probability density function is

φ(x) =
1

σ
√

2π
exp
(
− (x− μ)2

2σ2

)
, x ∈ � (4.11)

denoted by N (μ, σ2), where μ and σ are real numbers.

Theorem 4.3 (Probability Inversion Theorem). Let ξ be a random variable
whose probability density function φ exists. Then for any Borel set B of �,
we have

Pr{ξ ∈ B} =
∫

B

φ(y)dy. (4.12)
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Proof: Let � be the class of all subsets C of � for which the relation

Pr{ξ ∈ C} =
∫

C

φ(y)dy (4.13)

holds. We will show that � contains all Borel sets of �. It follows from the
probability continuity theorem and relation (4.13) that � is a monotone class.
It is also clear that � contains all intervals of the form (−∞, a], (a, b], (b,∞)
and ∅ since

Pr{ξ ∈ (−∞, a]} = Φ(a) =
∫ a

−∞
φ(y)dy,

Pr{ξ ∈ (b, +∞)} = Φ(+∞)− Φ(b) =
∫ +∞

b

φ(y)dy,

Pr{ξ ∈ (a, b]} = Φ(b)− Φ(a) =
∫ b

a

φ(y)dy,

Pr{ξ ∈ ∅} = 0 =
∫
∅
φ(y)dy

where Φ is the probability distribution of ξ. Let � be the algebra consisting of
all finite unions of disjoint sets of the form (−∞, a], (a, b], (b,∞) and ∅. Note
that for any disjoint sets C1, C2, · · · , Cm of � and C = C1 ∪ C2 ∪ · · · ∪ Cm,
we have

Pr{ξ ∈ C} =
m∑

j=1

Pr{ξ ∈ Cj} =
m∑

j=1

∫
Cj

φ(y)dy =
∫

C

φ(y)dy.

That is, C ∈ �. Hence we have � ⊂ �. Since the smallest σ-algebra containing
� is just the Borel algebra of �, the monotone class theorem implies that �
contains all Borel sets of �.

Example 4.4. Let ξ be a uniformly distributed random variable on [a, b].
Then for any number c ∈ [a, b], it follows from probability inversion theorem
that

Pr{ξ ≤ c} =
∫ c

a

φ(x)dx =
∫ c

a

1
b− a

dx =
c− a

b − a
.

Independence

Definition 4.8. The random variables ξ1, ξ2, · · · , ξm are said to be
independent if

Pr

{
m⋂

i=1

{ξi ∈ Bi}
}

=
m∏

i=1

Pr{ξi ∈ Bi} (4.14)

for any Borel sets B1, B2, · · · , Bm of real numbers.
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Theorem 4.4. Let ξi be random variables with probability distributions Φi,
i = 1, 2, · · · , m, respectively, and Φ the probability distribution of the random
vector (ξ1, ξ2, · · · , ξm). Then ξ1, ξ2, · · · , ξm are independent if and only if

Φ(x1, x2, · · · , xm) = Φ1(x1)Φ2(x2) · · ·Φm(xm) (4.15)

for all (x1, x2, · · · , xm) ∈ �m.

Proof: If ξ1, ξ2, · · · , ξm are independent random variables, then we have

Φ(x1, x2, · · · , xm)= Pr{ξ1 ≤ x1, ξ2 ≤ x2, · · · , ξm ≤ xm}
= Pr{ξ1 ≤ x1}Pr{ξ2 ≤ x2} · · ·Pr{ξm ≤ xm}
= Φ1(x1)Φ2(x2) · · ·Φm(xm)

for all (x1, x2, · · · , xm) ∈ �m. Conversely, assume that (4.15) holds. Let
x2, x3, · · · , xm be fixed real numbers, and � the class of all subsets C of
� for which the relation

Pr{ξ1 ∈ C, ξ2 ≤ x2, · · · , ξm ≤ xm} = Pr{ξ1 ∈ C}
m∏

i=2

Pr{ξi ≤ xi} (4.16)

holds. We will show that � contains all Borel sets of �. It follows from the
probability continuity theorem and relation (4.16) that � is a monotone class.
It is also clear that � contains all intervals of the form (−∞, a], (a, b], (b,∞)
and ∅. Let � be the algebra consisting of all finite unions of disjoint sets
of the form (−∞, a], (a, b], (b,∞) and ∅. Note that for any disjoint sets
C1, C2, · · · , Ck of � and C = C1 ∪ C2 ∪ · · · ∪ Ck, we have

Pr{ξ1 ∈ C, ξ2 ≤ x2, · · · , ξm ≤ xm}
=

m∑
j=1

Pr{ξ1 ∈ Cj , ξ2 ≤ x2, · · · , ξm ≤ xm}
=Pr{ξ1 ∈ C}Pr{ξ2 ≤ x2} · · ·Pr{ξm ≤ xm}.

That is, C ∈ �. Hence we have � ⊂ �. Since the smallest σ-algebra containing
� is just the Borel algebra of �, the monotone class theorem implies that �
contains all Borel sets of �. Applying the same reasoning to each ξi in turn,
we obtain the independence of the random variables.

Theorem 4.5. Let ξi be random variables with probability density functions
φi, i = 1, 2, · · · , m, respectively, and φ the probability density function of
the random vector (ξ1, ξ2, · · · , ξm). Then ξ1, ξ2, · · · , ξm are independent if and
only if

φ(x1, x2, · · · , xm) = φ1(x1)φ2(x2) · · ·φm(xm) (4.17)

for almost all (x1, x2, · · · , xm) ∈ �m.
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Proof: If φ(x1, x2, · · · , xm) = φ1(x1)φ2(x2) · · ·φm(xm) a.e., then we have

Φ(x1, x2, · · · , xm)=
∫ x1

−∞

∫ x2

−∞
· · ·
∫ xm

−∞
φ(t1, t2, · · · , tm)dt1dt2 · · · dtm

=
∫ x1

−∞

∫ x2

−∞
· · ·
∫ xm

−∞
φ1(t1)φ2(t2) · · ·φm(tm)dt1dt2 · · · dtm

=
∫ x1

−∞
φ1(t1)dt1

∫ x2

−∞
φ2(t2)dt2 · · ·

∫ xm

−∞
φm(tm)dtm

= Φ1(x1)Φ2(x2) · · ·Φm(xm)

for all (x1, x2, · · · , xm) ∈ �m. Thus ξ1, ξ2, · · · , ξm are independent. Con-
versely, if ξ1, ξ2, · · · , ξm are independent, then for any (x1, x2, · · · , xm) ∈ �m,
we have Φ(x1, x2, · · · , xm) = Φ1(x1)Φ2(x2) · · ·Φm(xm). Hence

Φ(x1, x2, · · · , xm) =
∫ x1

−∞

∫ x2

−∞
· · ·
∫ xm

−∞
φ1(t1)φ2(t2) · · ·φm(tm)dt1dt2 · · · dtm

which implies that φ(x1, x2, · · · , xm) = φ1(x1)φ2(x2) · · ·φm(xm) a.e.

Example 4.5. Let ξ1, ξ2, · · · , ξm be independent random variables with prob-
ability density functions φ1, φ2, · · · , φm, respectively, and f : �m → � a mea-
surable function. Then for any Borel set B of real numbers, the probability
Pr{f(ξ1, ξ2, · · · , ξm) ∈ B} is∫ ∫

· · ·
∫

f(x1,x2,···,xm)∈B

φ1(x1)φ2(x2) · · ·φm(xm)dx1dx2 · · ·dxm.

Expected Value

Expected value is the average value of random variable in the sense of prob-
ability measure. It may be defined as follows.

Definition 4.9. Let ξ be a random variable. Then the expected value of ξ is
defined by

E[ξ] =
∫ +∞

0

Pr{ξ ≥ r}dr −
∫ 0

−∞
Pr{ξ ≤ r}dr (4.18)

provided that at least one of the two integrals is finite.

Let ξ and η be random variables with finite expected values. For any numbers
a and b, it has been proved that E[aξ + bη] = aE[ξ] + bE[η]. That is, the
expected value operator has the linearity property.

Example 4.6. Assume that ξ is a discrete random variable taking values
xi with probabilities pi, i = 1, 2, · · · , m, respectively. It follows from the
definition of expected value operator that
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E[ξ] =
m∑

i=1

pixi.

Theorem 4.6. Let ξ be a random variable whose probability density function
φ exists. If the Lebesgue integral∫ +∞

−∞
xφ(x)dx

is finite, then we have

E[ξ] =
∫ +∞

−∞
xφ(x)dx. (4.19)

Proof: It follows from Definition 4.9 and Fubini Theorem that

E[ξ]=
∫ +∞

0

Pr{ξ ≥ r}dr −
∫ 0

−∞
Pr{ξ ≤ r}dr

=
∫ +∞

0

[∫ +∞

r

φ(x)dx

]
dr −

∫ 0

−∞

[∫ r

−∞
φ(x)dx

]
dr

=
∫ +∞

0

[∫ x

0

φ(x)dr

]
dx−

∫ 0

−∞

[∫ 0

x

φ(x)dr

]
dx

=
∫ +∞

0

xφ(x)dx +
∫ 0

−∞
xφ(x)dx

=
∫ +∞

−∞
xφ(x)dx.

The theorem is proved.

Example 4.7. Let ξ be a uniformly distributed random variable on the
interval [a, b]. Then its expected value is

E[ξ] =
∫ b

a

x

b− a
dx =

a + b

2
.

Example 4.8. Let ξ be an exponentially distributed random variable
EXP(β). Then its expected value is

E[ξ] =
∫ +∞

0

x

β
exp
(
−x

β

)
dx = β.

Example 4.9. Let ξ be a normally distributed random variable N (μ, σ2).
Then its expected value is
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E[ξ] =
∫ +∞

−∞

x

σ
√

2π
exp
(
− (x− μ)2

2σ2

)
dx = μ.

Critical Values

Let ξ be a random variable. In order to measure it, we may use its expected
value. Alternately, we may employ α-optimistic value and α-pessimistic value
as a ranking measure.

Definition 4.10. Let ξ be a random variable, and α ∈ (0, 1]. Then

ξsup(α) = sup
{
r
∣∣ Pr {ξ ≥ r} ≥ α

}
(4.20)

is called the α-optimistic value of ξ; and

ξinf(α) = inf
{
r
∣∣ Pr {ξ ≤ r} ≥ α

}
(4.21)

is called the α-pessimistic value of ξ.

This means that the random variable ξ will reach upwards of the α-optimistic
value ξsup(α) at least α of time, and will be below the α-pessimistic value
ξinf(α) at least α of time.

Theorem 4.7. Let ξ be a random variable. Then we have
(a) ξinf(α) is an increasing and left-continuous function of α;
(b) ξsup(α) is a decreasing and left-continuous function of α.

Proof: (a) It is easy to prove that ξinf(α) is an increasing function of α.
Next, we prove the left-continuity of ξinf(α) with respect to α. Let {αi} be
an arbitrary sequence of positive numbers such that αi ↑ α. Then {ξinf(αi)}
is an increasing sequence. If the limitation is equal to ξinf(α), then the
left-continuity is proved. Otherwise, there exists a number z∗ such that

lim
i→∞

ξinf(αi) < z∗ < ξinf(α).

Thus Pr{ξ ≤ z∗} ≥ αi for each i. Letting i → ∞, we get Pr{ξ ≤ z∗} ≥ α.
Hence z∗ ≥ ξinf(α). A contradiction proves the left-continuity of ξinf(α) with
respect to α. The part (b) may be proved similarly.

Ranking Criteria

Let ξ and η be two random variables. Different from the situation of real
numbers, there does not exist a natural ordership in a random world. Thus
an important problem appearing in this area is how to rank random variables.
Here we give four ranking criteria.

Expected Value Criterion: We say ξ > η if and only if E[ξ] > E[η], where
E is the expected value operator of random variables.
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Optimistic Value Criterion: We say ξ > η if and only if, for some prede-
termined confidence level α ∈ (0, 1], we have ξsup(α) > ηsup(α), where ξsup(α)
and ηsup(α) are the α-optimistic values of ξ and η, respectively.

Pessimistic Value Criterion: We say ξ > η if and only if, for some prede-
termined confidence level α ∈ (0, 1], we have ξinf(α) > ηinf(α), where ξinf(α)
and ηinf(α) are the α-pessimistic values of ξ and η, respectively.

Probability Criterion: We say ξ > η if and only if Pr {ξ ≥ r} > Pr {η ≥ r}
for some predetermined level r.

Random Number Generation

Random number generation is a very important issue in Monte Carlo simu-
lation. Generally, let ξ be a random variable with a probability distribution
Φ(·). Since Φ(·) is an increasing function, the inverse function Φ−1(·) is de-
fined on [0, 1]. Assume that u is a uniformly distributed random variable on
the interval [0, 1]. Then we have

Pr
{
Φ−1(u) ≤ y

}
= Pr {u ≤ Φ(y)} = Φ(y) (4.22)

which proves that the variable ξ = Φ−1(u) has the probability distribution
Φ(·). In order to get a random variable ξ with probability distribution Φ(·),
we can produce a uniformly distributed random variable u from the interval
[0, 1], and ξ is assigned to be Φ−1(u). The above process is called the inverse
transform method. But for the main known distributions, instead of using the
inverse transform method, we have direct generating processes. For detailed
expositions, the interested readers may consult Fishman [67], Law and Kel-
ton [147], Bratley et al. [23], Rubinstein [268], and Liu [181]. Here we give
some generating methods for probability distributions frequently used in this
book.

The subfunction of generating pseudorandom numbers has been provided
by the C library for any type of computer, defined as

int rand(void)
which produces a pseudorandom integer between 0 and RAND MAX, where
RAND MAX is defined in stdlib.h as 215− 1. Thus the uniform distribution,
exponential distribution, and normal distribution can be generated by the
following way:

Algorithm 4.1 (Uniform Distribution U(a, b))
Step 1. u = rand( ).
Step 2. u← u/RAND MAX.
Step 3. Return a + u(b− a).
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Algorithm 4.2 (Exponential Distribution EXP(β))
Step 1. Generate u from U(0, 1).
Step 2. Return −β ln(u).

Algorithm 4.3 (Normal Distribution N (μ, σ2))
Step 1. Generate μ1 and μ2 from U(0, 1).

Step 2. y = [−2 ln(μ1)]
1
2 sin(2πμ2).

Step 3. Return μ + σy.

4.2 Expected Value Model

The first type of stochastic programming is the so-called expected value model
(EVM), which optimizes some expected objective function subject to some
expected constraints, for example, minimizing expected cost, maximizing ex-
pected profit, and so forth.

Now let us recall the well-known newsboy problem in which a boy operating
a news stall has to determine the number x of newspapers to order in advance
from the publisher at a cost of $c/newspaper every day. It is known that the
selling price is $a/newspaper. However, if the newspapers are not sold at the
end of the day, then the newspapers have a small value of $b/newspaper at
the recycling center. Assume that the demand for newspapers is denoted by
ξ in a day, then the number of newspapers at the end of the day is clearly
x− ξ if x > ξ, or 0 if x ≤ ξ. Thus the profit of the newsboy should be

f(x, ξ) =

{
(a− c)x, if x ≤ ξ

(b− c)x + (a− b)ξ, if x > ξ.

In practice, the demand ξ for newspapers is usually a stochastic variable,
so is the profit function f(x, ξ). Since we cannot predict how profitable the
decision of ordering x newspapers will actually be, a natural idea is to employ
the expected profit E[f(x, ξ)]. The newsboy problem is related to determining
the optimal integer number x of newspapers such that the expected profit
E[f(x, ξ)] achieves the maximal value, i.e.,⎧⎪⎨

⎪⎩
max E[f(x, ξ)]
subject to:

x ≥ 0, integer.

This is a typical example of EVM. Generally, if we want to find a decision
with maximum expected return subject to some expected constraints, then
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we have the following EVM,⎧⎪⎨
⎪⎩

max E[f(x, ξ)]
subject to:

E[gj(x, ξ)] ≤ 0, j = 1, 2, · · · , p
(4.23)

where x is a decision vector, ξ is a stochastic vector, f(x, ξ) is the return
function, gj(x, ξ) are stochastic constraint functions for j = 1, 2, · · · , p.

Definition 4.11. A solution x is feasible if and only if E[gj(x, ξ)] ≤ 0 for
j = 1, 2, · · · , p. A feasible solution x∗ is an optimal solution to EVM (4.23)
if E[f(x∗, ξ)] ≥ E[f(x, ξ)] for any feasible solution x.

In many cases, there are multiple objectives. Thus we have to employ the
following expected value multiobjective programming (EVMOP),⎧⎪⎪⎨

⎪⎪⎩
max

[
E[f1(x, ξ)], E[f2(x, ξ)], · · · , E[fm(x, ξ)]

]
subject to:

E[gj(x, ξ)] ≤ 0, j = 1, 2, · · · , p
(4.24)

where fi(x, ξ) are return functions for i = 1, 2, · · · , m.

Definition 4.12. A feasible solution x∗ is said to be a Pareto solution to
EVMOP (4.24) if there is no feasible solution x such that

E[fi(x, ξ)] ≥ E[fi(x∗, ξ)], i = 1, 2, · · · , m (4.25)

and E[fj(x, ξ)] > E[fj(x∗, ξ)] for at least one index j.

We can also formulate a stochastic decision system as an expected value goal
programming (EVGP) according to the priority structure and target levels
set by the decision-maker:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
l∑

j=1

Pj

m∑
i=1

(uijd
+
i ∨ 0 + vijd

−
i ∨ 0)

subject to:
E[fi(x, ξ)]− bi = d+

i , i = 1, 2, · · · , m
bi − E[fi(x, ξ)] = d−i , i = 1, 2, · · · , m
E[gj(x, ξ)] ≤ 0, j = 1, 2, · · · , p

(4.26)

where Pj is the preemptive priority factor which expresses the relative im-
portance of various goals, Pj � Pj+1, for all j, uij is the weighting factor
corresponding to positive deviation for goal i with priority j assigned, vij

is the weighting factor corresponding to negative deviation for goal i with
priority j assigned, d+

i ∨ 0 is the positive deviation from the target of goal
i, d−i ∨ 0 is the negative deviation from the target of goal i, fi is a function
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in goal constraints, gj is a function in real constraints, bi is the target value
according to goal i, l is the number of priorities, m is the number of goal
constraints, and p is the number of real constraints.

4.3 Chance-Constrained Programming

As the second type of stochastic programming developed by Charnes and
Cooper [37], chance-constrained programming (CCP) offers a powerful means
of modeling stochastic decision systems with assumption that the stochastic
constraints will hold at least α of time, where α is referred to as the confi-
dence level provided as an appropriate safety margin by the decision-maker.
After that, Liu [174] generalized CCP to the case with not only stochastic
constraints but also stochastic objectives.

Assume that x is a decision vector, ξ is a stochastic vector, f(x, ξ) is a re-
turn function, and gj(x, ξ) are stochastic constraint functions, j = 1, 2, · · · , p.
Since the stochastic constraints gj(x, ξ) ≤ 0, j = 1, 2, · · · , p do not define a
deterministic feasible set, it is desired that the stochastic constraints hold
with a confidence level α. Thus we have a chance constraint as follows,

Pr {gj(x, ξ) ≤ 0, j = 1, 2, · · · , p} ≥ α (4.27)

which is called a joint chance constraint.

Definition 4.13. A point x is called feasible if and only if the probability
measure of the event {gj(x, ξ) ≤ 0, j = 1, 2, · · · , p} is at least α.

In other words, the constraints will be violated at most (1 − α) of time.
Sometimes, the joint chance constraint is separately considered as

Pr{gj(x, ξ) ≤ 0} ≥ αj , j = 1, 2, · · · , p (4.28)

which is referred to as a separate chance constraint.

Maximax Chance-Constrained Programming

In a stochastic environment, in order to maximize the optimistic return with
a given confidence level subject to some chance constraint, Liu [174] gave the
following CCP: ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max
x

max
f

f

subject to:

Pr
{
f(x, ξ) ≥ f

} ≥ β

Pr {gj(x, ξ) ≤ 0, j = 1, 2, · · · , p} ≥ α

(4.29)
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where α and β are the predetermined confidence levels, and max f is the
β-optimistic return.

In practice, we may have multiple objectives. Thus we have to employ the
following chance-constrained multiobjective programming (CCMOP),

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max
x

[
max

f1

f1, max
f2

f2, · · · , max
fm

fm

]

subject to:

Pr
{
fi(x, ξ) ≥ f i

} ≥ βi, i = 1, 2, · · · , m
Pr {gj(x, ξ) ≤ 0} ≥ αj , j = 1, 2, · · · , p

(4.30)

where α1, α2, · · · , αp, β1, β2, · · · , βm are the predetermined confidence levels,
and max f i are the βi-optimistic values to the ith return functions fi(x, ξ),
i = 1, 2, · · · , m, respectively.

Sometimes, we may formulate a stochastic decision system as a chance-
constrained goal programming (CCGP) according to the priority structure
and target levels set by the decision-maker:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
x

l∑
j=1

Pj

m∑
i=1

(
uij

(
min
d+

i

d+
i ∨ 0

)
+ vij

(
min
d−

i

d−i ∨ 0

))

subject to:
Pr
{
fi(x, ξ)− bi ≤ d+

i

} ≥ β+
i , i = 1, 2, · · · , m

Pr
{
bi − fi(x, ξ) ≤ d−i

} ≥ β−
i , i = 1, 2, · · · , m

Pr {gj(x, ξ) ≤ 0} ≥ αj , j = 1, 2, · · · , p

(4.31)

where Pj is the preemptive priority factor which expresses the relative im-
portance of various goals, Pj � Pj+1, for all j, uij is the weighting factor
corresponding to positive deviation for goal i with priority j assigned, vij

is the weighting factor corresponding to negative deviation for goal i with
priority j assigned, min d+

i ∨ 0 is the β+
i -optimistic positive deviation from

the target of goal i, min d−i ∨ 0 is the β−
i -optimistic negative deviation from

the target of goal i, fi is a function in goal constraints, gj is a function in
system constraints, bi is the target value according to goal i, l is the number
of priorities, m is the number of goal constraints, and p is the number of
system constraints.

Remark 4.1. In a deterministic goal programming, at most one of positive
deviation and negative deviation takes a positive value. However, for a CCGP,
it is possible that both of them are positive.
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Minimax Chance-Constrained Programming

In a stochastic environment, in order to maximize the pessimistic return with
a given confidence level subject to some chance constraint, Liu [181] provided
the following minimax CCP model:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max
x

min
f

f

subject to:

Pr
{
f(x, ξ) ≤ f

} ≥ β

Pr {gj(x, ξ) ≤ 0, j = 1, 2, · · · , p} ≥ α

(4.32)

where α and β are the given confidence levels, and min f is the β-pessimistic
return.

If there are multiple objectives, then we may employ the following minimax
CCMOP, ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

max
x

[
min
f1

f1, min
f2

f2, · · · , min
fm

fm

]

subject to:

Pr
{
fi(x, ξ) ≤ f i

} ≥ βi, i = 1, 2, · · · , m
Pr {gj(x, ξ) ≤ 0} ≥ αj , j = 1, 2, · · · , p

(4.33)

where αj and βi are confidence levels, and min f i are the βi-pessimistic values
to the return functions fi(x, ξ), i = 1, 2, · · · , m, j = 1, 2, · · · , p, respectively.

We can also formulate a stochastic decision system as a minimax CCGP
according to the priority structure and target levels set by the decision-maker:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
x

l∑
j=1

Pj

m∑
i=1

[
uij

(
max
d+

i

d+
i ∨ 0

)
+ vij

(
max
d−

i

d−i ∨ 0

)]

subject to:
Pr
{
fi(x, ξ)− bi ≥ d+

i

} ≥ β+
i , i = 1, 2, · · · , m

Pr
{
bi − fi(x, ξ) ≥ d−i

} ≥ β−
i , i = 1, 2, · · · , m

Pr{gj(x, ξ) ≤ 0} ≥ αj , j = 1, 2, · · · , p

(4.34)

where Pj is the preemptive priority factor which expresses the relative im-
portance of various goals, Pj � Pj+1, for all j, uij is the weighting factor
corresponding to positive deviation for goal i with priority j assigned, vij

is the weighting factor corresponding to negative deviation for goal i with
priority j assigned, max d+

i ∨ 0 is the β+
i -pessimistic positive deviation from

the target of goal i, max d−i ∨ 0 is the β−
i -pessimistic negative deviation from

the target of goal i, fi is a function in goal constraints, gj is a function in
system constraints, bi is the target value according to goal i, l is the number
of priorities, m is the number of goal constraints, and p is the number of
system constraints.
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Deterministic Equivalents

The traditional solution methods require conversion of the chance constraints
to their respective deterministic equivalents. As we know, this process is
usually hard to perform and only successful for some special cases. Let us
consider the following form of chance constraint,

Pr {g(x, ξ) ≤ 0} ≥ α. (4.35)

It is clear that

(a)the chance constraints (4.28) are a set of form (4.35);
(b)the stochastic objective constraint Pr{f(x, ξ) ≥ f} ≥ β coincides with the

form (4.35) by defining g(x, ξ) = f − f(x, ξ);
(c)the stochastic objective constraint Pr{f(x, ξ) ≤ f} ≥ β coincides with the

form (4.35) by defining g(x, ξ) = f(x, ξ)− f ;
(d)the stochastic goal constraints Pr{b − f(x, ξ) ≤ d−} ≥ β and Pr{f(x, ξ)
− b ≤ d+} ≥ β coincide with the form (4.35) by defining g(x, ξ) = b −
f(x, ξ)− d− and g(x, ξ) = f(x, ξ)− b− d+, respectively; and

(e)the stochastic goal constraints Pr{b − f(x, ξ) ≥ d−} ≥ β and Pr{f(x, ξ)
−b ≥ d+} ≥ β coincide with the form (4.35) by defining g(x, ξ) = f(x, ξ)+
d− − b and g(x, ξ) = b− f(x, ξ) + d+, respectively.

This section summarizes some known results.

Theorem 4.8. Assume that the stochastic vector ξ degenerates to a random
variable ξ with probability distribution Φ, and the function g(x, ξ) has the
form g(x, ξ) = h(x)−ξ. Then Pr {g(x, ξ) ≤ 0} ≥ α if and only if h(x) ≤ Kα,
where Kα is the maximal number such that Pr {Kα ≤ ξ} ≥ α.

Proof: The assumption implies that Pr {g(x, ξ) ≤ 0} ≥ α can be written in
the following form,

Pr {h(x) ≤ ξ} ≥ α. (4.36)

For each given confidence level α (0 < α ≤ 1), let Kα be the maximal number
(maybe +∞) such that

Pr {Kα ≤ ξ} ≥ α. (4.37)

Note that the probability Pr{Kα ≤ ξ} will increase if Kα is replaced with a
smaller number. Hence Pr {h(x) ≤ ξ} ≥ α if and only if h(x) ≤ Kα.

Remark 4.2. For a continuous random variable ξ, the equation Pr {Kα ≤ ξ}
= 1− Φ(Kα) always holds, and we have, by (4.37),

Kα = Φ−1(1− α) (4.38)

where Φ−1 is the inverse function of Φ.
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Example 4.10. Assume that we have the following chance constraint,{
Pr {3x1 + 4x2 ≤ ξ1} ≥ 0.8
Pr
{
x2

1 − x3
2 ≤ ξ2

} ≥ 0.9
(4.39)

where ξ1 is an exponentially distributed random variable EXP(2) whose prob-
ability distribution is denoted by Φ1, and ξ2 is a normally distributed random
variable N (2, 1) whose probability distribution is denoted by Φ2. It follows
from Theorem 4.8 that the chance constraint (4.39) is equivalent to{

3x1 + 4x2 ≤ Φ−1
1 (1− 0.8) = 0.446

x2
1 − x3

2 ≤ Φ−1
2 (1− 0.9) = 0.719.

Theorem 4.9. Assume that the stochastic vector ξ = (a1, a2, · · · , an, b) and
the function g(x, ξ) has the form g(x, ξ) = a1x1 +a2x2 + · · ·+anxn− b. If ai

and b are assumed to be independently normally distributed random variables,
then Pr {g(x, ξ) ≤ 0} ≥ α if and only if

n∑
i=1

E[ai]xi + Φ−1(α)

√√√√ n∑
i=1

V [ai]x2
i + V [b] ≤ E[b] (4.40)

where Φ is the standardized normal distribution function.

Proof: The chance constraint Pr {g(x, ξ) ≤ 0} ≥ α can be written in the
following form,

Pr

{
n∑

i=1

aixi ≤ b

}
≥ α. (4.41)

Since ai and b are assumed to be independently normally distributed random
variables, the quantity

y =
n∑

i=1

aixi − b

is also normally distributed with the following expected value and variance,

E[y] =
n∑

i=1

E[ai]xi − E[b],

V [y] =
n∑

i=1

V [ai]x2
i + V [b].

We note that
n∑

i=1

aixi − b−
(

n∑
i=1

E[ai]xi − E[b]
)

√
n∑

i=1

V [ai]x2
i + V [b]
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must be standardized normally distributed. Since the inequality
∑n

i=1 aixi ≤
b is equivalent to

n∑
i=1

aixi − b−
(

n∑
i=1

E[ai]xi − E[b]
)

√
n∑

i=1

V [ai]x2
i + V [b]

≤ −

n∑
i=1

E[ai]xi − E[b]√
n∑

i=1

V [ai]x2
i + V [b]

,

the chance constraint (4.41) is equivalent to

Pr

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

η ≤ −

n∑
i=1

E[ai]xi − E[b]√
n∑

i=1

V [ai]x2
i + V [b]

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
≥ α (4.42)

where η is the standardized normally distributed random variable. Then the
chance constraint (4.42) holds if and only if

Φ−1(α) ≤ −

n∑
i=1

E[ai]xi − E[b]√
n∑

i=1

V [ai]x2
i + V [b]

. (4.43)

That is, the deterministic equivalent of chance constraint is (4.40). The
theorem is proved.

Example 4.11. Suppose that the chance constraint set has the following
form,

Pr {a1x1 + a2x2 + a2x3 ≤ b} ≥ 0.95 (4.44)

where a1, a2, a3, and b are normally distributed random variables N (1, 1),
N (2, 1), N (3, 1), and N (4, 1), respectively. Then the formula (4.40) yields
the deterministic equivalent of (4.44) as follows,

x1 + 2x2 + 3x3 + 1.645
√

x2
1 + x2

2 + x2
3 + 1 ≤ 4

by the fact that Φ−1(0.95) = 1.645.

4.4 Dependent-Chance Programming

In practice, there usually exist multiple events in a complex stochastic deci-
sion system. Sometimes, the decision-maker wishes to maximize the probabil-
ities of meeting these events. In order to model this type of stochastic decision
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system, Liu [166] provided the third type of stochastic programming, called
dependent-chance programming (DCP), in which the underlying philosophy
is based on selecting the decision with maximal chance to meet the event.

DCP theory breaks the concept of feasible set and replaces it with un-
certain environment. Roughly speaking, DCP involves maximizing chance
functions of events in an uncertain environment. In deterministic model,
EVM and CCP, the feasible set is essentially assumed to be deterministic
after the real problem is modeled. That is, an optimal solution is given
regardless of whether it can be performed in practice. However, the given
solution may be impossible to perform if the realization of uncertain pa-
rameter is unfavorable. Thus DCP theory never assumes that the feasible
set is deterministic. In fact, DCP is constructed in an uncertain environ-
ment. This special feature of DCP is very different from the other existing
types of stochastic programming. However, such problems do exist in the real
world.

Now we introduce the concepts of uncertain environment, event and chance
function, and discuss the principle of uncertainty, thus offering a spectrum
of DCP models. We will take a supply system, represented by Figure 4.1 as
the background.
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Fig. 4.1 A Supply System

As an illustrative example, in Figure 4.1 there are 3 inputs representing 3
locations of resources and 4 outputs representing the demands of 4 users. We
must answer the following supply problem: What is the appropriate combi-
nation of resources such that certain goals of supply are achieved?

In order to obtain the appropriate combination of resources for the supply
problem, we use 12 decision variables x1, x2, · · · , x12 to represent an action,
where x1, x2, x3, x4 are quantities ordered from input1 to outputs 1,2,3,4 re-
spectively; x5, x6, x7, x8 from input2; x9, x10, x11, x12 from input3. In practice,
some variables may vanish due to some physical constraints.

We note that the inputs are available outside resources. Thus they have
their own properties. For example, the capacities of resources are finite. Let
ξ1, ξ2, ξ3 be the maximum quantities supplied by the three resources. Then
we have the following constraint,
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x+
1 + x+

2 + x+
3 + x+

4 ≤ ξ1

x+
5 + x+

6 + x+
7 + x+

8 ≤ ξ2

x+
9 + x+

10 + x+
11 + x+

12 ≤ ξ3

xi ≥ 0, i = 1, 2, · · · , 12

(4.45)

which represents that the quantities ordered from the resources are nonneg-
ative and cannot exceed the maximum quantities, where x+

i represents xi if
xi takes positive value, and vanishes otherwise. This means that the decision
variable xi = 0 must be able to perform for any realization of stochastic
resources.

If at least one of ξ1, ξ2, and ξ3 is really stochastic, then the constraint
(4.45) is uncertain because we cannot make a decision such that it can be
performed certainly before knowing the realization of ξ1, ξ2, and ξ3. We will
call this type of constraint the uncertain environment, and in this case the
stochastic environment.

Definition 4.14. By uncertain environment we mean the following stochas-
tic constraint,

gj(x, ξ) ≤ 0, j = 1, 2, · · · , p, (4.46)

where x is a decision vector, and ξ is a stochastic vector.

In the supply system, we should satisfy the demands of the 4 users, marked
by c1, c2, c3, and c4. Then we have the following four events:

x1 + x5 + x9 = c1, x2 + x6 + x10 = c2,

x3 + x7 + x11 = c3, x4 + x8 + x12 = c4.

These equalities mean that the decision should satisfy the demands of users.
Generally, an event is defined as follows.

Definition 4.15. By event we mean a system of stochastic inequalities,

hk(x, ξ) ≤ 0, k = 1, 2, · · · , q (4.47)

where x is a decision vector, and ξ is a stochastic vector.

In view of the uncertainty of this system, we are not sure whether a deci-
sion can be performed before knowing the realization of stochastic variables.
Thus we wish to employ the following chance functions to evaluate these four
events,

f1(x) = Pr{x1 + x5 + x9 = c1}, f2(x) = Pr{x2 + x6 + x10 = c2},
f3(x) = Pr{x3 + x7 + x11 = c3}, f4(x) = Pr{x4 + x8 + x12 = c4},

subject to the uncertain environment (4.45).

Definition 4.16. The chance function of an event E characterized by (4.47)
is defined as the probability measure of the event, i.e.,
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f(x) = Pr {hk(x, ξ) ≤ 0, k = 1, 2, · · · , q} (4.48)

subject to the uncertain environment (4.46).

Usually, we hope to maximize the four chance functions f1(x), f2(x), f3(x)
and f4(x). Here we remind the reader once more that the events like
x1 + x5 + x9 = c1 do possess uncertainty because they are in an uncertain
environment. Any event is uncertain if it is in an uncertain environment!
This is an important law in the uncertain world. In fact, the randomness of
the event is caused by the stochastic parameters ξ1, ξ2, ξ3, and ξ4 in the
uncertain environment.

Until now we have formulated a stochastic programming model for the
supply problem in an uncertain environment as follows,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max f1(x) = Pr{x1 + x5 + x9 = c1}
max f2(x) = Pr{x2 + x6 + x10 = c2}
max f3(x) = Pr{x3 + x7 + x11 = c3}
max f4(x) = Pr{x4 + x8 + x12 = c4}
subject to:

x+
1 + x+

2 + x+
3 + x+

4 ≤ ξ1

x+
5 + x+

6 + x+
7 + x+

8 ≤ ξ2

x+
9 + x+

10 + x+
11 + x+

12 ≤ ξ3

xi ≥ 0, i = 1, 2, · · · , 12

(4.49)

where ξ1, ξ2, and ξ3 are stochastic variables. In this stochastic program-
ming model, some variables (for example, x1, x2, x3, x4) are stochastically
dependent because they share a common uncertain resource ξ1. This also
implies that the chance functions are stochastically dependent. We will call
the stochastic programming (4.49) dependent-chance programming (DCP).

Principle of Uncertainty

How do we compute the chance function of an event E in an uncertain envi-
ronment? In order to answer this question, we first give some definitions.

Definition 4.17. Let r(x1, x2, · · · , xn) be an n-dimensional function. The ith
decision variable xi is said to be degenerate if

r(x1, · · · , xi−1, x
′
i, xi+1, · · · , xn) = r(x1, · · · , xi−1, x

′′
i , xi+1, · · · , xn)

for any x′
i and x′′

i ; otherwise it is nondegenerate.

For example, r(x1, x2, x3, x4, x5) = (x1 + x3)/x4 is a 5-dimensional function.
The variables x1, x3, x4 are nondegenerate, but x2 and x5 are degenerate.
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Definition 4.18. Let E be an event hk(x, ξ) ≤ 0, k = 1, 2, · · · , q. The sup-
port of the event E, denoted by E∗, is defined as the set consisting of all
nondegenerate decision variables of functions hk(x, ξ), k = 1, 2, · · · , q.
For example, let x = (x1, x2, · · · , x12) be a decision vector, and let E be an
event characterized by x1 + x5 + x9 = c1 and x2 + x6 + x10 = c2. It is clear
that x1, x5, x9 are nondegenerate variables of the function x1 + x5 + x9, and
x2, x6, x10 are nondegenerate variables of the function x2 + x6 + x10. Thus
the support E∗ of the event E is {x1, x2, x5, x6, x9, x10}.
Definition 4.19. The jth constraint gj(x, ξ) ≤ 0 is called an active con-
straint of the event E if the set of nondegenerate decision variables of gj(x, ξ)
and the support E∗ have nonempty intersection; otherwise it is inactive.

Definition 4.20. Let E be an event hk(x, ξ) ≤ 0, k = 1, 2, · · · , q in the un-
certain environment gj(x, ξ) ≤ 0, j = 1, 2, · · · , p. The dependent support of
the event E, denoted by E∗∗, is defined as the set consisting of all nondegen-
erate decision variables of hk(x, ξ), k = 1, 2, · · · , q and gj(x, ξ) in the active
constraints to the event E.
Remark 4.3. It is obvious that E∗ ⊂ E∗∗ holds.

Definition 4.21. The jth constraint gj(x, ξ) ≤ 0 is called a dependent con-
straint of the event E if the set of nondegenerate decision variables of gj(x, ξ)
and the dependent support E∗∗ have nonempty intersection; otherwise it is in-
dependent.

Remark 4.4. An active constraint must be a dependent constraint.

Definition 4.22. Let E be an event hk(x, ξ) ≤ 0, k = 1, 2, · · · , q in the un-
certain environment gj(x, ξ) ≤ 0, j = 1, 2, · · · , p. For each decision x and
realization ξ, the event E is said to be consistent in the uncertain environ-
ment if the following two conditions hold: (i) hk(x, ξ) ≤ 0, k = 1, 2, · · · , q;
and (ii) gj(x, ξ) ≤ 0, j ∈ J , where J is the index set of all dependent
constraints.

Intuitively, an event can be met by a decision provided that the decision
meets both the event itself and the dependent constraints. We conclude it
with the following principle of uncertainty.

Principle of Uncertainty: The chance of a random event is the probability
that the event is consistent in the uncertain environment.

Assume that there are m events Ei characterized by hik(x, ξ) ≤ 0, k =
1, 2, · · · , qi for i = 1, 2, · · · , m in the uncertain environment gj(x, ξ) ≤ 0, j =
1, 2, · · · , p. The principle of uncertainty implies that the chance function of
the ith event Ei in the uncertain environment is

fi(x) = Pr
{

hik(x, ξ) ≤ 0, k = 1, 2, · · · , qi

gj(x, ξ) ≤ 0, j ∈ Ji

}
(4.50)
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where Ji are defined by

Ji =
{
j ∈ {1, 2, · · · , p} ∣∣ gj(x, ξ) ≤ 0 is a dependent constraint of Ei

}
for i = 1, 2, · · · , m.

Remark 4.5. The principle of uncertainty is the basis of solution procedure
of DCP that we shall encounter throughout the remainder of the book. How-
ever, the principle of uncertainty does not apply in all cases. For example,
consider an event x1 ≥ 6 in the uncertain environment x1−x2 ≤ ξ1, x2−x3 ≤
ξ2, x3 ≤ ξ3. It follows from the principle of uncertainty that the chance of
the event is Pr{x1 ≥ 6, x1 − x2 ≤ ξ1, x2 − x3 ≤ ξ2}, which is clearly wrong
because the realization of x3 ≤ ξ3 must be considered. Fortunately, such a
case does not exist in real-life problems.

General Models

In this subsection, we consider the single-objective DCP. A typical DCP is
represented as maximizing the chance function of an event subject to an
uncertain environment,

⎧⎪⎨
⎪⎩

max Pr {hk(x, ξ) ≤ 0, k = 1, 2, · · · , q}
subject to:

gj(x, ξ) ≤ 0, j = 1, 2, · · · , p
(4.51)

where x is an n-dimensional decision vector, ξ is a random vector of param-
eters, the system hk(x, ξ) ≤ 0, k = 1, 2, · · · , q represents an event E , and the
constraints gj(x, ξ) ≤ 0, j = 1, 2, · · · , p are an uncertain environment.

DCP (4.51) reads as “maximizing the probability of the random event
hk(x, ξ) ≤ 0, k = 1, 2, · · · , q subject to the uncertain environment gj(x, ξ) ≤
0, j = 1, 2, · · · , p”.

We now go back to the supply system. Assume that there is only one event
E that satisfies the demand c1 of output1 (i.e., x1 + x5 + x9 = c1). If we want
to find a decision x with maximum probability to meet the event E , then we
have the following DCP model,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

max Pr{x1 + x5 + x9 = c1}
subject to:

x+
1 + x+

2 + x+
3 + x+

4 ≤ ξ1

x+
5 + x+

6 + x+
7 + x+

8 ≤ ξ2

x+
9 + x+

10 + x+
11 + x+

12 ≤ ξ3

xi ≥ 0, i = 1, 2, · · · , 12.

(4.52)
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It is clear that the support of the event E is E∗ = {x1, x5, x9}. If x1 �= 0, x5 �=
0, x9 �= 0, then the uncertain environment is⎧⎪⎪⎨

⎪⎪⎩
x1 + x2 + x3 + x4 ≤ ξ1

x5 + x6 + x7 + x8 ≤ ξ2

x9 + x10 + x11 + x12 ≤ ξ3

xi ≥ 0, i = 1, 2, · · · , 12.

Thus the dependent support E∗∗ = {x1, x2, · · · , x12}, and all constraints are
dependent constraints. It follows from the principle of uncertainty that the
chance function of the event E is

f(x) = Pr

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x1 + x5 + x9 = c1

x1 + x2 + x3 + x4 ≤ ξ1

x5 + x6 + x7 + x8 ≤ ξ2

x9 + x10 + x11 + x12 ≤ ξ3

xi ≥ 0, i = 1, 2, · · · , 12

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

If x1 = 0, x5 �= 0, x9 �= 0, then the uncertain environment is⎧⎪⎪⎨
⎪⎪⎩

0 + x2 + x3 + x4 ≤ ξ1

x5 + x6 + x7 + x8 ≤ ξ2

x9 + x10 + x11 + x12 ≤ ξ3

xi ≥ 0, i = 1, 2, · · · , 12.

Thus the dependent support E∗∗ = {x5, x6, · · · , x12}. It follows from the
principle of uncertainty that the chance function of the event E is

f(x) = Pr

⎧⎪⎪⎨
⎪⎪⎩

x1 + x5 + x9 = c1

x5 + x6 + x7 + x8 ≤ ξ2

x9 + x10 + x11 + x12 ≤ ξ3

xi ≥ 0, i = 5, 6, · · · , 12

⎫⎪⎪⎬
⎪⎪⎭ .

Similarly, if x1 �= 0, x5 = 0, x9 �= 0, then the chance function of the event E is

f(x) = Pr

⎧⎪⎪⎨
⎪⎪⎩

x1 + x5 + x9 = c1

x1 + x2 + x3 + x4 ≤ ξ1

x9 + x10 + x11 + x12 ≤ ξ3

xi ≥ 0, i = 1, 2, 3, 4, 9, 10, 11, 12

⎫⎪⎪⎬
⎪⎪⎭ .

If x1 �= 0, x5 �= 0, x9 = 0, then the chance function of the event E is

f(x) = Pr

⎧⎪⎪⎨
⎪⎪⎩

x1 + x5 + x9 = c1

x1 + x2 + x3 + x4 ≤ ξ1

x5 + x6 + x7 + x8 ≤ ξ2

xi ≥ 0, i = 1, 2, · · · , 8

⎫⎪⎪⎬
⎪⎪⎭ .

If x1 = 0, x5 = 0, x9 �= 0, then the chance function of the event E is
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f(x) = Pr

⎧⎨
⎩

x1 + x5 + x9 = c1

x9 + x10 + x11 + x12 ≤ ξ3

xi ≥ 0, i = 9, 10, · · · , 12

⎫⎬
⎭ .

If x1 = 0, x5 �= 0, x9 = 0, then the chance function of the event E is

f(x) = Pr

⎧⎨
⎩

x1 + x5 + x9 = c1

x5 + x6 + x7 + x8 ≤ ξ2

xi ≥ 0, i = 5, 6, · · · , 8

⎫⎬
⎭ .

If x1 �= 0, x5 = 0, x9 = 0, then the chance function of the event E is

f(x) = Pr

⎧⎨
⎩

x1 + x5 + x9 = c1

x1 + x2 + x3 + x4 ≤ ξ1

xi ≥ 0, i = 1, 2, · · · , 4

⎫⎬
⎭ .

Note that the case x1 = x5 = x9 = 0 is impossible because c1 �= 0. It follows
that DCP (4.52) is equivalent to the unconstrained model “max f(x)”.

Dependent-Chance Multiobjective Programming

Since a complex decision system usually undertakes multiple events, there
undoubtedly exist multiple potential objectives (some of them are chance
functions) in a decision process. A typical formulation of dependent-chance
multiobjective programming (DCMOP) is represented as maximizing
multiple chance functions subject to an uncertain environment,

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

max

⎡
⎢⎢⎣

Pr{h1k(x, ξ) ≤ 0, k = 1, 2, · · · , q1}
Pr{h2k(x, ξ) ≤ 0, k = 1, 2, · · · , q2}
· · ·

Pr{hmk(x, ξ) ≤ 0, k = 1, 2, · · · , qm}

⎤
⎥⎥⎦

subject to:
gj(x, ξ) ≤ 0, j = 1, 2, · · · , p

(4.53)

where hik(x, ξ) ≤ 0, k = 1, 2, · · · , qi represent events Ei for i = 1, 2, · · · , m,
respectively.

It follows from the principle of uncertainty that we can construct a rela-
tionship between decision vectors and chance functions, thus calculating the
chance functions by stochastic simulations or traditional methods. Then we
can solve DCMOP by utility theory if complete information of the prefer-
ence function is given by the decision-maker or search for all of the efficient
solutions if no information is available. In practice, the decision-maker can
provide only partial information. In this case, we have to employ the inter-
active methods.
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Dependent-Chance Goal Programming

When some management targets are given, the objective function may mini-
mize the deviations, positive, negative, or both, with a certain priority struc-
ture set by the decision-maker. Then we may formulate the stochastic decision
system as the following dependent-chance goal programming (DCGP),⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
l∑

j=1

Pj

m∑
i=1

(uijd
+
i ∨ 0 + vijd

−
i ∨ 0)

subject to:
Pr {hik(x, ξ) ≤ 0, k = 1, 2, · · · , qi} − bi = d+

i , i = 1, 2, · · · , m
bi − Pr {hik(x, ξ) ≤ 0, k = 1, 2, · · · , qi} = d−i , i = 1, 2, · · · , m
gj(x, ξ) ≤ 0, j = 1, 2, · · · , p

where Pj is the preemptive priority factor, uij is the weighting factor corre-
sponding to positive deviation for goal i with priority j assigned, vij is the
weighting factor corresponding to negative deviation for goal i with priority
j assigned, d+

i ∨ 0 is the positive deviation from the target of goal i, d−i ∨ 0
is the negative deviation from the target of goal i, bi is the target value ac-
cording to goal i, l is the number of priorities, and m is the number of goal
constraints.

4.5 Hybrid Intelligent Algorithm

From the mathematical viewpoint, there is no difference between determin-
istic mathematical programming and stochastic programming except for the
fact that there exist uncertain functions in the latter. If the uncertain func-
tions can be converted to their deterministic forms, then we can obtain equiv-
alent deterministic models. However, generally speaking, we cannot do so. It
is thus more convenient to deal with them by stochastic simulations. Essen-
tially, there are three types of uncertain functions in stochastic programming
as follows:

U1 : x→ E[f(x, ξ)],

U2 : x→ Pr {gj(x, ξ) ≤ 0, j = 1, 2, · · · , p} ,
U3 : x→ max

{
f
∣∣ Pr

{
f(x, ξ) ≥ f

} ≥ α
}

.

(4.54)

Stochastic Simulation for U1(x)

In order to compute the uncertain function U1(x), we generate ωk from the
probability space (Ω,�, Pr) and produce ξk = ξ(ωk) for k = 1, 2, · · · , N .
Equivalently, we generate random vectors ξk according to the probability dis-
tribution Φ for k = 1, 2, · · · , N . It follows from the strong law of large numbers
that



4.5 Hybrid Intelligent Algorithm 51

N∑
k=1

f(x, ξk)

N
−→ U1(x), a.s. (4.55)

as N →∞. Therefore, the value U1(x) is estimated by

1
N

N∑
k=1

f(x, ξk)

provided that N is sufficiently large.

Algorithm 4.4 (Stochastic Simulation for U1(x))
Step 1. Set e = 0.
Step 2. Generate ω from the probability space (Ω,�, Pr) and produce ξ =

ξ(ω). Equivalently, generate a random vector ξ according to its
probability distribution.

Step 3. e← e + f(x, ξ).
Step 4. Repeat the second and third steps N times.
Step 5. U1(x) = e/N .

Stochastic Simulation for U2(x)

In order to compute the uncertain function U2(x), we generate ωk from the
probability space (Ω,�, Pr) and produce ξk = ξ(ωk) for k = 1, 2, · · · , N .
Equivalently, we generate random vectors ξk according to the probability dis-
tribution Φ for k = 1, 2, · · · , N . Let N ′ denote the number of occasions on
which gj(x, ξk) ≤ 0, j = 1, 2, · · · , p for k = 1, 2, · · · , N (i.e., the number of
random vectors satisfying the system of inequalities). Let us define

h(x, ξk) =

{
1, if gj(x, ξk) ≤ 0, j = 1, 2, · · · , p
0, otherwise.

Then we have E[h(x, ξk)] = U2(x) for all k, and N ′ =
∑N

k=1 h(x, ξk). It
follows from the strong law of large numbers that

N ′

N
=

N∑
k=1

h(x, ξk)

N

converges a.s. to U2(x). Thus U2(x) can be estimated by N ′/N provided that
N is sufficiently large.
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Algorithm 4.5 (Stochastic Simulation for U2(x))
Step 1. Set N ′ = 0.
Step 2. Generate ω from the probability space (Ω,�, Pr) and produce ξ =

ξ(ω). Equivalently, generate a random vector ξ according to its
probability distribution.

Step 3. If gj(x, ξ) ≤ 0 for j = 1, 2, · · · , p, then N ′ ← N ′ + 1.
Step 4. Repeat the second and third steps N times.
Step 5. U2(x) = N ′/N .

Stochastic Simulation for U3(x)

In order to compute the uncertain function U3(x), we generate ωk from the
probability space (Ω,�, Pr) and produce ξk = ξ(ωk) for k = 1, 2, · · · , N .
Equivalently, we generate random vectors ξk according to the probability dis-
tribution Φ for k = 1, 2, · · · , N . Now we define

h(x, ξk) =

{
1, if f(x, ξk) ≥ f

0, otherwise

for k = 1, 2, · · · , N , which are random variables, and E[h(x, ξk)] = α for all
k. By the strong law of large numbers, we obtain

N∑
k=1

h(x, ξk)

N
−→ α, a.s.

as N → ∞. Note that the sum
∑N

k=1 h(x, ξk) is just the number of ξk

satisfying f(x, ξk) ≥ f for k = 1, 2, · · · , N . Thus f is just the N ′th largest
element in the sequence {f(x, ξ1), f(x, ξ2), · · · , f(x, ξN )}, where N ′ is the
integer part of αN .

Algorithm 4.6 (Stochastic Simulation for U3(x))
Step 1. Generate ωk from the probability space (Ω,�, Pr) and produce ξk =

ξ(ωk) for k = 1, 2, · · · , N . Equivalently, generate random vectors ξk

according to the probability distribution for k = 1, 2, · · · , N .
Step 2. Set fi = f(x, ξk) for k = 1, 2, · · · , N .
Step 3. Set N ′ as the integer part of βN .
Step 4. Return the N ′th largest element in {f1, f2, · · · , fN} as U3(x).
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Neural Network for Approximating Uncertain Functions

Although stochastic simulations are able to compute the uncertain func-
tions, we need relatively simple functions to approximate the uncertain
functions because the stochastic simulations are a time-consuming pro-
cess. In order to speed up the solution process, neural network (NN) is
employed to approximate uncertain functions due to the following rea-
sons: (i) NN has the ability to approximate the uncertain functions by
using the training data; (ii) NN can compensate for the error of training
data (all input-output data obtained by stochastic simulation are clearly
not precise); and (iii) NN has the high speed of operation after they are
trained.

Hybrid Intelligent Algorithm

Liu [181] integrated stochastic simulation, NN and GA to produce a hybrid
intelligent algorithm for solving stochastic programming models.

Algorithm 4.7 (Hybrid Intelligent Algorithm)
Step 1. Generate training input-output data for uncertain functions like

U1 : x→ E[f(x, ξ)],

U2 : x→ Pr {gj(x, ξ) ≤ 0, j = 1, 2, · · · , p} ,
U3 : x→ max

{
f
∣∣ Pr

{
f(x, ξ) ≥ f

} ≥ α
}

by the stochastic simulation.
Step 2. Train a neural network to approximate the uncertain functions ac-

cording to the generated training input-output data.
Step 3. Initialize pop size chromosomes whose feasibility may be checked

by the trained neural network.
Step 4. Update the chromosomes by crossover and mutation operations in

which the feasibility of offspring may be checked by the trained
neural network.

Step 5. Calculate the objective values for all chromosomes by the trained
neural network.

Step 6. Compute the fitness of each chromosome according to the objective
values.

Step 7. Select the chromosomes by spinning the roulette wheel.
Step 8. Repeat the fourth to seventh steps for a given number of cycles.
Step 9. Report the best chromosome as the optimal solution.
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4.6 Numerical Experiments

In order to illustrate its effectiveness, a set of numerical examples has been
done, and the results are successful. Here we give some numerical examples
which are all performed on a personal computer with the following param-
eters: the population size is 30, the probability of crossover Pc is 0.3, the
probability of mutation Pm is 0.2, and the parameter a in the rank-based
evaluation function is 0.05.

Example 4.12. Now we consider the following EVM,⎧⎪⎨
⎪⎩

min E
[√

(x1 − ξ1)2 + (x2 − ξ2)2 + (x3 − ξ3)2
]

subject to:
x2

1 + x2
2 + x2

3 ≤ 10

where ξ1 is a uniformly distributed random variable U(1, 2), ξ2 is a normally
distributed random variable N (3, 1), and ξ3 is an exponentially distributed
random variable EXP(4).

In order to solve this model, we generate input-output data for the
uncertain function

U : (x1, x2, x3)→ E
[√

(x1 − ξ1)2 + (x2 − ξ2)2 + (x3 − ξ3)2
]

by stochastic simulation. Then we train an NN (3 input neurons, 5 hidden neu-
rons, 1 output neuron) to approximate the uncertain function U . After that, the
trained NN is embedded into a GA to produce a hybrid intelligent algorithm.

A run of the hybrid intelligent algorithm (3000 cycles in simulation, 2000
data in NN, 300 generations in GA) shows that the optimal solution is

(x∗
1, x

∗
2, x

∗
3) = (1.1035, 2.1693, 2.0191)

whose objective value is 3.56.

Example 4.13. Let us consider the following CCP in which there are three
decision variables and nine stochastic parameters,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

max f

subject to:

Pr
{
ξ1x1 + ξ2x2 + ξ3x3 ≥ f

} ≥ 0.90
Pr
{
η1x

2
1 + η2x

2
2 + η3x

2
3 ≤ 8

} ≥ 0.80
Pr
{
τ1x

3
1 + τ2x

3
2 + τ3x

3
3 ≤ 15

} ≥ 0.85
x1, x2, x3 ≥ 0

where ξ1, η1, and τ1 are uniformly distributed random variables U(1, 2),
U(2, 3), and U(3, 4), respectively, ξ2, η2, and τ2 are normally distributed
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random variables N (1, 1), N (2, 1), and N (3, 1), respectively, and ξ3, η3, and
τ3 are exponentially distributed random variables EXP(1), EXP(2), and
EXP(3), respectively,

We employ stochastic simulation to generate input-output data for the
uncertain function U : x→ (U1(x), U2(x), U3(x)), where

U1(x) = max
{
f
∣∣ Pr

{
ξ1x1 + ξ2x2 + ξ3x3 ≥ f

} ≥ 0.90
}

,

U2(x) = Pr
{
η1x

2
1 + η2x

2
2 + η3x

2
3 ≤ 8

}
,

U3(x) = Pr
{
τ1x

3
1 + τ2x

3
2 + τ3x

3
3 ≤ 15

}
.

Then we train an NN (3 input neurons, 15 hidden neurons, 3 output neurons)
to approximate the uncertain function U . Finally, we integrate the trained
NN and GA to produce a hybrid intelligent algorithm.

A run of the hybrid intelligent algorithm (5000 cycles in simulation,
3000 training data in NN, 1000 generations in GA) shows that the optimal
solution is

(x∗
1, x

∗
2, x

∗
3) = (1.458, 0.490, 0.811)

with objective value f
∗

= 2.27.

Example 4.14. Let us now turn our attention to the following DCGP,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lexmin
{
d−1 ∨ 0, d−2 ∨ 0, d−3 ∨ 0

}
subject to:

0.92− Pr{x1 + x2
4 = 4} = d−1

0.85− Pr{x2
2 + x6 = 3} = d−2

0.85− Pr{x2
3 + x2

5 + x2
7 = 2} = d−3

x1 + x2 + x3 ≤ ξ1

x4 + x5 ≤ ξ2

x6 + x7 ≤ ξ3

xi ≥ 0, i = 1, 2, · · · , 7

where ξ1, ξ2, and ξ3 are uniformly distributed random variable U [3, 5], nor-
mally distributed random variable N (3.5, 1), and exponentially distributed
random variable EXP(9), respectively.

In the first priority level, there is only one event E1 which will be fulfilled
by x1 + x2

4 = 4. It is clear that the support E∗1 = {x1, x4} and the dependent
support E∗∗1 = {x1, x2, x3, x4, x5}. Thus the dependent constraints of E1 are

x1 + x2 + x3 ≤ ξ1, x4 + x5 ≤ ξ2, x1, x2, x3, x4, x5 ≥ 0.

It follows from the principle of uncertainty that the chance function f1(x) of
E1 is
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f1(x) = Pr

⎧⎪⎪⎨
⎪⎪⎩

x1 + x2
4 = 4

x1 + x2 + x3 ≤ ξ1

x4 + x5 ≤ ξ2

x1, x2, x3, x4, x5 ≥ 0

⎫⎪⎪⎬
⎪⎪⎭ .

At the second priority level, there is an event E2 which will be fulfilled by
x2

2 + x6 = 3. The support E∗2 = {x2, x6} and the dependent support E∗∗2 =
{x1, x2, x3, x6, x7}. Thus the dependent constraints of E2 are

x1 + x2 + x3 ≤ ξ1, x6 + x7 ≤ ξ3, x1, x2, x3, x6, x7 ≥ 0.

The principle of uncertainty implies that the chance function f2(x) of the
event E2 is

f2(x) = Pr

⎧⎪⎪⎨
⎪⎪⎩

x2
2 + x6 = 3

x1 + x2 + x3 ≤ ξ1

x6 + x7 ≤ ξ3

x1, x2, x3, x6, x7 ≥ 0

⎫⎪⎪⎬
⎪⎪⎭ .

At the third priority level, there is an event E3 which will be fulfilled by x2
3 +

x2
5 + x2

7 = 2. The support E∗3 = {x3, x5, x7} and the dependent support E∗∗3

includes all decision variables. Thus all constraints are dependent constraints
of E3. It follows from the principle of uncertainty that the chance function
f3(x) of the event E3 is

f3(x) = Pr

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x2
3 + x2

5 + x2
7 = 2

x1 + x2 + x3 ≤ ξ1

x4 + x5 ≤ ξ2

x6 + x7 ≤ ξ3

x1, x2, x3, x4, x5, x6, x7 ≥ 0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

We encode a solution into a chromosome V = (v1, v2, v3, v4), and decode a
chromosome into a feasible solution in the following way,

x1 = v1, x2 = v2, x3 = v3, x4 =
√

4− v1,

x5 = v4, x6 = 3− v2
2 , x7 =

√
2− v2

3 − v2
4 .

We first employ stochastic simulation to generate input-output data for
the uncertain function U : (v1, v2, v3, v4) → (f1(x), f2(x), f3(x)). Then we
train an NN (4 input neurons, 10 hidden neurons, 3 output neurons) to
approximate it. Finally, we embed the trained NN into a GA to produce a
hybrid intelligent algorithm.

A run of the hybrid intelligent algorithm (6000 cycles in simulation, 3000
data in NN, 1000 generations in GA) shows that the optimal solution is

x∗ = (0.1180, 1.7320, 0.1491, 1.9703, 0.0000, 0.0000, 1.4063)

which can satisfy the first two goals, but the third objective is 0.05.
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