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Preface

Real-life decisions are usually made in the state of uncertainty. How do we
model optimization problems in uncertain environments? How do we solve
these models? The main purpose of the book is just to provide uncertain
programming theory to answer these questions.

By uncertain programming we mean the optimization theory in uncer-
tain environments. Stochastic programming, fuzzy programming and hybrid
programming are subtopics of uncertain programming.

This book provides a self-contained, comprehensive and up-to-date presen-
tation of uncertain programming theory, including numerous modeling ideas
and applications in system reliability design, project scheduling problem,
vehicle routing problem, facility location problem, and machine scheduling
problem.

Numerous intelligent algorithms such as genetic algorithms and neural net-
works have been developed by researchers of different backgrounds. A natu-
ral idea is to integrate these intelligent algorithms to produce more effective
and powerful algorithms. In order to solve uncertain programming models, a
spectrum of hybrid intelligent algorithms are documented in the book. The
author also maintains a website at http://orsc.edu.cn/liu to post the C++
source files of simulations, genetic algorithms, neural networks, and hybrid
intelligent algorithms.

For this new edition the entire text has been totally rewritten. More im-
portantly, hybrid variable and hybrid programming are completely new.

It is assumed that readers are familiar with the basic concepts of mathe-
matical programming, and elementary knowledge of C++ language. In order
to make the book more readable, some background topics that will be useful
in reading the book are also presented. The book is suitable for researchers,
engineers, and students in the field of operations research, information sci-
ence, management science, system science, computer science, and engineering.
The readers will learn numerous new modeling ideas and effective algorithms,
and find this work a stimulating and useful reference.
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Chapter 1
Mathematical Programming

As one of the most widely used techniques in operations research, mathemat-
ical programming is defined as a means of maximizing a quantity known as
objective function, subject to a set of constraints represented by equations
and inequalities. Some known subtopics of mathematical programming are
linear programming, nonlinear programming, multiobjective programming,
goal programming, dynamic programming, and multilevel programming.

It is impossible to cover in a single chapter every concept of mathematical
programming. This chapter introduces only the basic concepts and techniques
of mathematical programming such that readers gain an understanding of
them throughout the book.

1.1 Single-Objective Programming

The general form of single-objective programming (SOP) is written as follows,⎧⎪⎨
⎪⎩

max f(x)
subject to:

gj(x) ≤ 0, j = 1, 2, · · · , p
(1.1)

which maximizes a real-valued function f of x = (x1, x2, · · · , xn) subject to
a set of constraints gj(x) ≤ 0, j = 1, 2, · · · , p.

Definition 1.1. In SOP (1.1), we call x a decision vector, and x1, x2, · · · , xn

decision variables. The function f is called the objective function. The set

S =
{
x ∈ �n

∣∣ gj(x) ≤ 0, j = 1, 2, · · · , p
}

(1.2)

is called the feasible set. An element x in S is called a feasible solution.

Definition 1.2. A feasible solution x∗ is called the optimal solution of SOP
(1.1) if and only if

f(x∗) ≥ f(x) (1.3)

for any feasible solution x.

B. Liu: Theory and Practice of Uncertain Programming, STUDFUZZ 239, pp. 1–8.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009



2 1 Mathematical Programming

One of the outstanding contributions to mathematical programming was
known as the Kuhn-Tucker conditions. In order to introduce them, let us
give some definitions. An inequality constraint gj(x) ≤ 0 is said to be active
at a point x∗ if gj(x∗) = 0. A point x∗ satisfying gj(x∗) ≤ 0 is said to be
regular if the gradient vectors ∇gj(x) of all active constraints are linearly
independent.

Let x∗ be a regular point of the constraints of SOP (1.1) and assume that
all the functions f(x) and gj(x), j = 1, 2, · · · , p are differentiable. If x∗ is a
local optimal solution, then there exist Lagrange multipliers λj , j = 1, 2, · · · , p
such that the following Kuhn-Tucker conditions hold,⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∇f(x∗) −

p∑
j=1

λj∇gj(x∗) = 0

λjgj(x∗) = 0, j = 1, 2, · · · , p
λj ≥ 0, j = 1, 2, · · · , p.

(1.4)

If all the functions f(x) and gj(x), j = 1, 2, · · · , p are convex and differen-
tiable, and the point x∗ satisfies the Kuhn-Tucker conditions (1.4), then it
has been proved that the point x∗ is a global optimal solution of SOP (1.1).

Linear Programming

If the functions f(x), gj(x), j = 1, 2, · · · , p are all linear, then SOP (1.1) is
called a linear programming.

The feasible set of linear programming is always convex. A point x is called
an extreme point of convex set S if x ∈ S and x cannot be expressed as a
convex combination of two points in S. It has been shown that the optimal
solution to linear programming corresponds to an extreme point of its feasible
set provided that the feasible set S is bounded. This fact is the basis of the
simplex algorithm which was developed by Dantzig [52] as a very efficient
method for solving linear programming.

Roughly speaking, the simplex algorithm examines only the extreme points
of the feasible set, rather than all feasible points. At first, the simplex algo-
rithm selects an extreme point as the initial point. The successive extreme
point is selected so as to improve the objective function value. The procedure
is repeated until no improvement in objective function value can be made.
The last extreme point is the optimal solution.

Nonlinear Programming

If at least one of the functions f(x), gj(x), j = 1, 2, · · · , p is nonlinear, then
SOP (1.1) is called a nonlinear programming.

A large number of classical optimization methods have been developed to
treat special-structural nonlinear programming based on the mathematical
theory concerned with analyzing the structure of problems.
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Now we consider a nonlinear programming which is confronted solely with
maximizing a real-valued function with domain �n. Whether derivatives are
available or not, the usual strategy is first to select a point in �n which is
thought to be the most likely place where the maximum exists. If there is no
information available on which to base such a selection, a point is chosen at
random. From this first point an attempt is made to construct a sequence
of points, each of which yields an improved objective function value over its
predecessor. The next point to be added to the sequence is chosen by ana-
lyzing the behavior of the function at the previous points. This construction
continues until some termination criterion is met. Methods based upon this
strategy are called ascent methods, which can be classified as direct methods,
gradient methods, and Hessian methods according to the information about
the behavior of objective function f . Direct methods require only that the
function can be evaluated at each point. Gradient methods require the eval-
uation of first derivatives of f . Hessian methods require the evaluation of
second derivatives. In fact, there is no superior method for all problems. The
efficiency of a method is very much dependent upon the objective function.

Integer Programming

Integer programming is a special mathematical programming in which all of
the variables are assumed to be only integer values. When there are not only
integer variables but also conventional continuous variables, we call it mixed
integer programming. If all the variables are assumed either 0 or 1, then the
problem is termed a zero-one programming. Although integer programming
can be solved by an exhaustive enumeration theoretically, it is impractical to
solve realistically sized integer programming problems. The most successful
algorithm so far found to solve integer programming is called the branch-and-
bound enumeration developed by Balas (1965) and Dakin (1965). The other
technique to integer programming is the cutting plane method developed by
Gomory (1959).

1.2 Multiobjective Programming

SOP is related to maximizing a single function subject to a number of con-
straints. However, it has been increasingly recognized that many real-world
decision-making problems involve multiple, noncommensurable, and conflict-
ing objectives which should be considered simultaneously. As an extension,
multiobjective programming (MOP) is defined as a means of optimizing mul-
tiple objective functions subject to a number of constraints, i.e.,⎧⎪⎨

⎪⎩
max [f1(x), f2(x), · · · , fm(x)]
subject to:

gj(x) ≤ 0, j = 1, 2, · · · , p
(1.5)
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where fi(x) are objective functions, i = 1, 2, · · · , m, and gj(x) ≤ 0 are system
constraints, j = 1, 2, · · · , p.

When the objectives are in conflict, there is no optimal solution that si-
multaneously maximizes all the objective functions. For this case, we employ
a concept of Pareto solution, which means that it is impossible to improve
any one objective without sacrificing on one or more of the other objectives.

Definition 1.3. A feasible solution x∗ is said to be a Pareto solution if there
is no feasible solution x such that

fi(x) ≥ fi(x∗), i = 1, 2, · · · , m (1.6)

and fj(x) > fj(x∗) for at least one index j.

If the decision maker has a real-valued preference function aggregating the
m objective functions, then we may maximize the aggregating preference
function subject to the same set of constraints. This model is referred to as
a compromise model whose solution is called a compromise solution.

The first well-known compromise model is set up by weighting the objective
functions, i.e., ⎧⎪⎪⎨

⎪⎪⎩
max

m∑
i=1

λifi(x)

subject to:
gj(x) ≤ 0, j = 1, 2, · · · , p

(1.7)

where the weights λ1, λ2, · · · , λm are nonnegative numbers with λ1 + λ2 +
· · ·+λm = 1. Note that the solution of (1.7) must be a Pareto solution of the
original one.

The second way is related to minimizing the distance function from a
solution (f1(x), f2(x), · · · , fm(x)) to an ideal vector (f∗

1 , f∗
2 , · · · , f∗

m), where
f∗

i are the optimal values of the ith objective functions without considering
other objectives, i = 1, 2, · · · , m, respectively, i.e.,⎧⎪⎨

⎪⎩
min

√
(f1(x) − f∗

1 )2 + · · · + (fm(x) − f∗
m)2

subject to:
gj(x) ≤ 0, j = 1, 2, · · · , p.

(1.8)

By the third way a compromise solution can be found via an interactive
approach consisting of a sequence of decision phases and computation phases.
Various interactive approaches have been developed in the past literature.

1.3 Goal Programming

Goal programming (GP) was developed by Charnes and Cooper [38] and
subsequently studied by many researchers. GP can be regarded as a special
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compromise model for multiobjective programming and has been applied in
a wide variety of real-world problems.

In multiobjective decision-making problems, we assume that the decision-
maker is able to assign a target level for each goal and the key idea is to
minimize the deviations (positive, negative, or both) from the target levels.
In the real-world situation, the goals are achievable only at the expense of
other goals and these goals are usually incompatible. Therefore, there is a
need to establish a hierarchy of importance among these incompatible goals
so as to satisfy as many goals as possible in the order specified. The general
form of GP is written as follows,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
l∑

j=1
Pj

m∑
i=1

(uijd
+
i ∨ 0 + vijd

−
i ∨ 0)

subject to:
fi(x) − bi = d+

i , i = 1, 2, · · · , m
bi − fi(x) = d−i , i = 1, 2, · · · , m
gj(x) ≤ 0, j = 1, 2, · · · , p

(1.9)

where Pj is the preemptive priority factor which expresses the relative im-
portance of various goals, Pj � Pj+1, for all j, uij is the weighting factor
corresponding to positive deviation for goal i with priority j assigned, vij is
the weighting factor corresponding to negative deviation for goal i with pri-
ority j assigned, d+

i ∨ 0 (i.e., the maximum value of d+
i and 0) is the positive

deviation from the target of goal i, d−i ∨ 0 (i.e., the maximum value of d−i
and 0) is the negative deviation from the target of goal i, fi is a function
in goal constraints, gj is a function in system constraints, bi is the target
value according to goal i, l is the number of priorities, m is the number of
goal constraints, and p is the number of system constraints. Sometimes, the
objective function of GP (1.9) is written as

lexmin

{
m∑

i=1

(ui1d
+
i ∨ 0 + vi1d

−
i ∨ 0), · · · ,

m∑
i=1

(uild
+
i ∨ 0 + vild

−
i ∨ 0)

}

where lexmin represents lexicographically minimizing the objective vector.
Linear GP can be successfully solved by the simplex goal method. The

approaches of nonlinear GP are summarized by Saber and Ravindran [270]
and the efficiency of these approaches varies. They are classified as follows: (a)
simplex-based approach, whose main idea lies in converting the nonlinear GP
into a set of approximation linear GPs which can be handled by the simplex
goal method; (b) direct search approach [49], in which the given nonlinear GP
is translated into a set of SOPs, and then the SOPs are solved by the direct
search methods; (c) gradient-based approach [152][270], which utilizes the
gradient of constraints to identify a feasible direction and then solves the GP
based on the feasible direction method; (d) interactive approach [309][226],
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which can yield a satisfactory solution in a relatively few iterations since the
decision-maker is involved in the solution process; and (e) genetic algorithm
[86], which can deal with complex nonlinear GP but have to spend more CPU
time.

1.4 Dynamic Programming

Let us denote a multistage decision process by [a, T (a, x)], where a is called
state, T (a, x) is called a state transition function, and x is called decision
vector. It is clear that the state transition function depends on both state
a and decision vector x. We suppose that we have sufficient influence over
the process so that at each stage we can choose a decision vector x from
the allowable set. Assume that there are N stages in the time horizon, and
let xi be the decision vector at the ith stage. Then we have the following
sequence,

a1 = a0, (an initial state)

ai+1 = T (ai, xi), i = 1, 2, · · · , N − 1.

We are concerned with processes in which the decision vectors xi’s are chosen
so as to maximize a criterion function R(a1, a2, · · · , aN ; x1, x2, · · · , xN ). A
decision is called optimal if it maximizes the criterion function.

In view of the general nature of the criterion function R, the decision vec-
tors xi’s are dependent upon the current state of the system as well as the
past and future states and decisions. However, there are some criterion func-
tions which have some special structures so that the decision is dependent
only on the current state. In this special but extremely important case, the
optimal policy is characterized by Bellman’s principle of optimality: An opti-
mal policy has the property that whatever the initial state and initial decision
are, the remaining decision must constitute an optimal policy with regard to
the state resulting from the first decision.

Fortunately, many important criteria have the vital property of divorc-
ing the past from the present. In general, it is easy to predict this property
from the nature of the original multistage decision process. For example,
let us consider a problem of maximizing the following special-structured
function

R(a1, a2, · · · , aN ; x1, x2, · · · , xN ) =
N∑

i=1

ri(ai, xi) (1.10)

subject to gi(ai, xi) ≤ 0 for i = 1, 2, · · · , N . Let fn(a) be the maximum values
of criterion function R, starting in state a at the stage n, n = 1, 2, · · · , N ,
respectively. Then by Bellman’s principle of optimality, we have
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

fN(a)= max
gN (a,x)≤0

rN (a, x)

fN−1(a)= max
gN−1(a,x)≤0

{
rN−1(a, x) + fN (T (a, x))

}
· · ·

f1(a)= max
g1(a,x)≤0

{
r1(a, x) + f2(T (a, x))

}
.

(1.11)

Please mention that,

max
x1,x2,···,xN

R(a1, a2, · · · , aN ; x1, x2, · · · , xN ) = f1(a0). (1.12)

The system of equations (1.11) is called dynamic programming (DP) by
Richard Bellman [12] which can be simply written as⎧⎪⎪⎪⎨

⎪⎪⎪⎩
fN (a)= max

gN (a,x)≤0
rN (a, x)

fn(a)= max
gn(a,x)≤0

{
rn(a, x) + fn+1(T (a, x))

}
n≤ N − 1.

(1.13)

In order to obtain the optimal solutions in reasonable time for real practical
problems, we should develop effectively computational algorithms for DP. To
explore the general DP algorithms, readers may consult the book by Bertsekas
and Tsitsiklis [16] in which numerous different ways to solve DP problems
have been suggested.

1.5 Multilevel Programming

Multilevel programming (MLP) offers a means of studying decentralized de-
cision systems in which we assume that the leader and followers may have
their own decision variables and objective functions, and the leader can only
influence the reactions of followers through his own decision variables, while
the followers have full authority to decide how to optimize their own objective
functions in view of the decisions of the leader and other followers.

We now assume that in a decentralized two-level decision system there is
one leader and m followers. Let x and yi be the decision vectors of the leader
and the ith followers, i = 1, 2, · · · , m, respectively. We also assume that the
objective functions of the leader and ith followers are F (x, y1, · · · , ym) and
fi(x, y1, · · · , ym), i = 1, 2, · · · , m, respectively.

In addition, let the feasible set of control vector x of the leader be
determined by

G(x) ≤ 0 (1.14)

where G is a vector-valued function of decision vector x and 0 is a vector
with zero components. Then for each decision x chosen by the leader, the
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feasibility of decision vectors yi of the ith followers should be dependent on
not only x but also y1, · · · , yi−1, yi+1, · · · , ym, and generally represented by

gi(x, y1, y2, · · · , ym) ≤ 0 (1.15)

where gi are vector-valued functions, i = 1, 2, · · · , m, respectively.
Assume that the leader first chooses his decision vector x, and the followers

determine their decision array (y1, y2, · · · , ym) after that. In order to find
the optimal decision vector of the leader, we have to use the following bilevel
programming,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
x

F (x, y∗
1, y

∗
2, · · · , y∗

m)

subject to:
G(x) ≤ 0
(y∗

1, y
∗
2, · · · , y∗

m) solves problems (i = 1, 2, · · · , m)⎧⎪⎨
⎪⎩

max
yi

fi(x, y1, y2, · · · , ym)

subject to:
gi(x, y1, y2, · · · , ym) ≤ 0.

(1.16)

Definition 1.4 Let x be a fixed decision vector of the leader. A Nash equi-
librium of followers with respect to x is the feasible array (y∗

1, y
∗
2, · · · , y∗

m)
such that

fi(x, y∗
1, · · · , y∗

i−1, yi, y
∗
i+1, · · · , y∗

m) ≤ fi(x, y∗
1, · · · , y∗

i−1, y
∗
i , y

∗
i+1, · · · , y∗

m)

for any feasible array (y∗
1, · · · , y∗

i−1, yi, y
∗
i+1, · · · , y∗

m) and i = 1, 2, · · · , m.

Definition 1.5 Suppose that x∗ is a feasible decision vector of the leader
and (y∗

1, y
∗
2, · · · , y∗

m) is a Nash equilibrium of followers with respect to x∗.
We call (x∗, y∗

1, y
∗
2, · · · , y∗

m) a Stackelberg-Nash equilibrium to MLP (1.16) if
and only if

F (x, y1, y2, · · · , ym) ≤ F (x∗, y∗
1, y

∗
2, · · · , y∗

m) (1.17)

for any feasible x and Nash equilibrium (y1, y2, · · · , ym) with respect to x.

Ben-Ayed and Blair [14] showed that MLP is an NP-hard problem. In
order to solve MLP, a lot of numerical algorithms have been developed, for
example, implicit enumeration scheme (Candler and Townsley [34]), the kth
best algorithm (Bialas and Karwan [18]), parametric complementary pivot
algorithm (Bialas and Karwan [18]), one-dimensional grid search algorithm
(Bard [8][10]), branch-and-bound algorithm (Bard and Moore [9]), the
steepest-descent direction (Savard and Gauvin [277]), and genetic algorithm
(Liu [170]).



Chapter 2
Genetic Algorithms

Genetic algorithm (GA) is a stochastic search method for optimization prob-
lems based on the mechanics of natural selection and natural genetics (i.e.,
survival of the fittest). GA has demonstrated considerable success in pro-
viding good solutions to many complex optimization problems and received
more and more attentions during the past three decades. When the objective
functions to be optimized in the optimization problems are multimodal or the
search spaces are particularly irregular, algorithms need to be highly robust
in order to avoid getting stuck at a local optimal solution. The advantage
of GA is just able to obtain the global optimal solution fairly. In addition,
GA does not require the specific mathematical analysis of optimization prob-
lems, which makes GA easily coded by users who are not necessarily good at
mathematics and algorithms.

One of the important technical terms in GA is chromosome, which is usu-
ally a string of symbols or numbers. A chromosome is a coding of a solution of
an optimization problem, not necessarily the solution itself. GA starts with an
initial set of randomly generated chromosomes called a population. The num-
ber of individuals in the population is a predetermined integer and is called
population size. All chromosomes are evaluated by the so-called evaluation
function, which is some measure of fitness. A new population will be formed
by a selection process using some sampling mechanism based on the fitness
values. The cycle from one population to the next one is called a generation.
In each new generation, all chromosomes will be updated by the crossover
and mutation operations. The revised chromosomes are also called offspring.
The selection process selects chromosomes to form a new population and the
genetic system enters a new generation. After performing the genetic system
a given number of cycles, we decode the best chromosome into a solution
which is regarded as the optimal solution of the optimization problem.

GA has been well-documented in the literature, such as in Holland [96],
Goldberg [89], Michalewicz [230], Fogel [69], Koza [137][138], Liu [181], and
have been applied to a wide variety of problems. The aim of this section
is to introduce an effective GA for solving complex optimization problems.

B. Liu: Theory and Practice of Uncertain Programming, STUDFUZZ 239, pp. 9–17.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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Moreover, we design this algorithm for solving not only single-objective opti-
mization but also multiobjective programming, goal programming, and mul-
tilevel programming. Finally, we illustrate the effectiveness of GA by some
numerical examples.

2.1 Representation Structure

A key problem of GA is how to encode a solution x = (x1, x2, · · · , xn) into a
chromosome V = (v1, v2, · · · , vm). That is, we must construct a link between
a solution space and a coding space. The mapping from the solution space
to coding space is called encoding. The mapping from the coding space to
solution space is called decoding.

It is clear that the representation structure is problem-dependent. For
example, let (x1, x2, x3) be a solution vector in the solution space{

x1 + x2
2 + x3

3 = 1
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

(2.1)

We may encode the solution by a chromosome (v1, v2, v3) in the coding space

v1 ≥ 0, v2 ≥ 0, v3 ≥ 0. (2.2)

Then the encoding and decoding processes are determined by the link

x1 =
v1

v1 + v2 + v3
, x2 =

√
v2

v1 + v2 + v3
, x3 = 3

√
v3

v1 + v2 + v3
. (2.3)

2.2 Handling Constraints

In mathematical programming, if there are some equality constraints, for
example,

hk(x) = 0, k = 1, 2, · · · , q, (2.4)

we should eliminate the q equality constraints by replacing q variables of them
with the representation of the remaining variables, where the representation
is obtained by solving the system of equalities in the constraints.

If we cannot do so, we may eliminate the equality constraints by La-
grangian method based on the idea of transforming a constrained problem
into an unconstrained one.

2.3 Initialization Process

We define an integer pop size as the number of chromosomes and initialize
pop size chromosomes randomly. Usually, it is difficult for complex optimiza-
tion problems to produce feasible chromosomes explicitly.
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Assume that the decision-maker can predetermine a region which contains
the optimal solution (not necessarily the whole feasible set). Such a region is
also problem-dependent. At any rate, the decision-maker can provide such a
region, only it may be a bit too large. Usually, this region will be designed
to have a nice sharp, for example, a hypercube, because the computer can
easily sample points from a hypercube.

We generate a random point from the hypercube and check the feasibility
of this point. If it is feasible, then it will be accepted as a chromosome. If not,
then we regenerate a point from the hypercube randomly until a feasible one
is obtained. We can make pop size initial feasible chromosomes

V1, V2, · · · , Vpop size

by repeating the above process pop size times.

2.4 Evaluation Function

Evaluation function, denoted by Eval(V ), is to assign a probability of re-
production to each chromosome V so that its likelihood of being selected is
proportional to its fitness relative to the other chromosomes in the popula-
tion. That is, the chromosomes with higher fitness will have more chance to
produce offspring by using roulette wheel selection.

Let V1, V2, · · · , Vpop size be the pop size chromosomes at the current gener-
ation. One well-known evaluation function is based on allocation of reproduc-
tive trials according to rank rather than actual objective values. No matter
what type of mathematical programming it is, it is reasonable to assume
that the decision-maker can give an order relationship among the pop size
chromosomes V1, V2, · · · , Vpop size such that the pop size chromosomes can be
rearranged from good to bad (i.e., the better the chromosome is, the smaller
the ordinal number it has). For example, for a single-objective maximizing
problem, a chromosome with larger objective value is better; for a multiob-
jective programming, we may define a preference function to evaluate the
chromosomes; for a goal programming, we have the following order relation-
ship for the chromosomes: for any two chromosomes, if the higher-priority
objectives are equal to each other, then, in the current priority level, the one
with minimal objective value is better. If two different chromosomes have the
same objective values at every level, then we are indifferent between them.
For this case, we rearrange them randomly.

Now let a parameter a ∈ (0, 1) in the genetic system be given (for example,
a = 0.05). We can define the rank-based evaluation function as follows,

Eval(Vi) = a(1 − a)i−1, i = 1, 2, · · · , pop size. (2.5)

Note that i = 1 means the best individual, i = pop size the worst one.
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2.5 Selection Process

The selection process is based on spinning the roulette wheel pop size times.
Each time we select a single chromosome for a new population. The roulette
wheel is a fitness-proportional selection. No matter what type of evalua-
tion function is employed, the selection process is always stated as follows:

Algorithm 2.1 (Selection Process)
Step 1. Calculate the cumulative probability qi for each chromosome Vi,

q0 = 0, qi =
i∑

j=1

Eval(Vj), i = 1, 2, · · · , pop size.

Step 2. Generate a random number r in (0, qpop size].
Step 3. Select the chromosome Vi such that qi−1 < r ≤ qi.
Step 4. Repeat the second and third steps pop size times and obtain

pop size copies of chromosome.

Please note that in the above selection process we do not require the
condition qpop size = 1. In fact, if we want, we can divide all qi’s, i =
1, 2, · · · , pop size, by qpop size such that qpop size = 1 and the new proba-
bilities are also proportional to the fitnesses. However, it does not exert any
influence on the genetic process.

2.6 Crossover Operation

We define a parameter Pc of a genetic system as the probability of crossover.
This probability gives us the expected number Pc · pop size of chromosomes
undergoing the crossover operation.

In order to determine the parents for crossover operation, let us do the
following process repeatedly from i = 1 to pop size: generating a random
number r from the interval [0, 1], the chromosome Vi is selected as a parent
if r < Pc. We denote the selected parents by V ′

1 , V ′
2 , V ′

3 , · · · and divide them
into the following pairs:

(V ′
1 , V ′

2), (V ′
3 , V ′

4), (V ′
5 , V ′

6), · · ·

Let us illustrate the crossover operator on each pair by (V ′
1 , V ′

2). At first, we
generate a random number c from the open interval (0, 1), then the crossover
operator on V ′

1 and V ′
2 will produce two children X and Y as follows:

X = c · V ′
1 + (1 − c) · V ′

2 , Y = (1 − c) · V ′
1 + c · V ′

2 . (2.6)
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If the feasible set is convex, this crossover operation ensures that both children
are feasible if both parents are. However, in many cases, the feasible set is not
necessarily convex, nor is it hard to verify the convexity. Thus we must check
the feasibility of each child before accepting it. If both children are feasible,
then we replace the parents with them. If not, we keep the feasible one if
it exists, and then redo the crossover operator by regenerating a random
number c until two feasible children are obtained or a given number of cycles
is finished. In this case, we only replace the parents with the feasible children.

2.7 Mutation Operation

We define a parameter Pm of a genetic system as the probability of mutation.
This probability gives us the expected number of Pm·pop size of chromosomes
undergoing the mutation operations.

In a similar manner to the process of selecting parents for crossover op-
eration, we repeat the following steps from i = 1 to pop size: generating a
random number r from the interval [0, 1], the chromosome Vi is selected as a
parent for mutation if r < Pm.

For each selected parent, denoted by V = (v1, v2, · · · , vm), we mutate it
in the following way. Let M be an appropriate large positive number. We
choose a mutation direction d in �m randomly. If V + M · d is not feasible,
then we set M as a random number between 0 and M until it is feasible. If
the above process cannot find a feasible solution in a predetermined number
of iterations, then we set M = 0. Anyway, we replace the parent V with its
child

X = V + M · d. (2.7)

2.8 General Procedure

Following selection, crossover, and mutation, the new population is ready
for its next evaluation. GA will terminate after a given number of cyclic
repetitions of the above steps or a suitable solution has been found. We now
summarize the GA for optimization problems as follows.

Algorithm 2.2 (Genetic Algorithm)
Step 1. Initialize pop size chromosomes at random.
Step 2. Update the chromosomes by crossover and mutation operations.
Step 3. Calculate the objective values for all chromosomes.
Step 4. Compute the fitness of each chromosome via the objective values.
Step 5. Select the chromosomes by spinning the roulette wheel.
Step 6. Repeat the second to fifth steps for a given number of cycles.
Step 7. Report the best chromosome as the optimal solution.
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Remark 2.1. It is well-known that the best chromosome does not necessarily
appear in the last generation. Thus we have to keep the best one from the
beginning. If we find a better one in the new population, then we replace the
old one with it. This chromosome will be reported as the optimal solution
after finishing the evolution.

2.9 Numerical Experiments

Example 2.1. Now we use GA to solve the following maximization problem,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max
√

x1 +
√

x2 +
√

x3

subject to:
x2

1 + 2x2
2 + 3x2

3 ≤ 1
x1, x2, x3 ≥ 0.

(2.8)

We may encode a solution x = (x1, x2, x3) into a chromosome V = (v1, v2, v3),
and decode the chromosome into the solution in the following way,

x1 = v1, x2 = v2, x3 = v3.

It is easy to know that the feasible coding space is contained in the following
hypercube

� =
{
(v1, v2, v3)

∣∣ 0 ≤ v1 ≤ 1, 0 ≤ v2 ≤ 1, 0 ≤ v3 ≤ 1
}

which is simple for the computer because we can easily sample points from
it. We may take

v1 = U(0, 1), v2 = U(0, 1), v3 = U(0, 1) (2.9)

where the function U(a, b) generates uniformly distributed variables on the
interval [a, b] and will be discussed in detail later. If this chromosome is
infeasible, then we reject it and regenerate one by (2.9). If the generated
chromosome is feasible, then we accept it as one in the population. After
finite times, we can obtain 30 feasible chromosomes. A run of GA with 400
generations shows that the optimal solution is

(x∗
1, x

∗
2, x

∗
3) = (0.636, 0.395, 0.307)

whose objective value is 1.980.

Example 2.2. GA is also able to solve the following nonlinear goal
programming,
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lexmin {d−1 ∨ 0, d−2 ∨ 0, d−3 ∨ 0}
subject to:

3 − √
x1 = d−1

4 −
√

x1 + 2x2 = d−2
5 −

√
x1 + 2x2 + 3x3 = d−3

x2
1 + x2

2 + x2
3 ≤ 100

x1, x2, x3 ≥ 0.

We may encode a solution x = (x1, x2, x3) into a chromosome V = (v1, v2, v3),
and decode the chromosome into the solution in the following way,

x1 = v1, x2 = v2, x3 = v3.

Since the feasible coding space is contained in the following hypercube

� =
{
(v1, v2, v3)

∣∣ 0 ≤ v1 ≤ 10, 0 ≤ v2 ≤ 10, 0 ≤ v3 ≤ 10
}

,

we may take v1 = U(0, 10), v2 = U(0, 10), and v3 = U(0, 10), and accept
it as a chromosome if it is feasible. It is clear that we can make 30 feasible
chromosomes in finite times. A run of GA with 2000 generations shows that
the optimal solution is

(x∗
1, x

∗
2, x

∗
3) = (9.000, 3.500, 2.597)

which satisfies the first two goals, but the last objective is 0.122.

Example 2.3. For the following bilevel programming model,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
x

F (x, y∗
1, y

∗
2, · · · , y∗

m)

subject to:
G(x) ≤ 0
(y∗

1, y
∗
2, · · · , y∗

m) solves problems (i = 1, 2, · · · , m)⎧⎪⎨
⎪⎩

max
yi

fi(x, y1, y2, · · · , ym)

subject to:
gi(x, y1, y2, · · · , ym) ≤ 0,

(2.10)

we define symbols

y−i = (y1, · · · , yi−1, yi+1, · · · , ym), i = 1, 2, · · · , m. (2.11)

For any decision x revealed by the leader, if the ith follower knows the strate-
gies y−i of other followers, then the optimal reaction of the ith follower is
represented by a mapping yi = ri(y−i), which should solve the subproblem
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⎧⎪⎨
⎪⎩

max
yi

fi(x, y1, y2, · · · , ym)

subject to:
gi(x, y1, y2, · · · , ym) ≤ 0.

(2.12)

In order to search for the Stackelberg-Nash equilibrium, Liu [170] designed a
GA to solve multilevel programming. We first compute the Nash equilibrium
with respect to any decision revealed by the leader. It is clear that the Nash
equilibrium of the m followers will be the solution (y1, y2, · · · , ym) of the
system of equations

yi = ri(y−i), i = 1, 2, · · · , m. (2.13)

In other words, we should find a fixed point of the vector-valued function
(r1, r2, · · · , rm). In order to solve the system of equations (2.13), we should
design some efficient algorithms. The argument breaks down into three cases.

(a) If we have explicit expressions of all functions ri, i = 1, 2, · · · , m, then
we might get an analytic solution to the system (2.13). Unfortunately, it is
almost impossible to do this in practice.

(b) The system (2.13) might be solved by some iterative method that
generates a sequence of points yk = (yk

1 , yk
2 , · · · , yk

m), k = 0, 1, 2, · · · via the
iteration formula

yk+1
i = ri(yk

−i), i = 1, 2, · · · , m (2.14)

where yk
−i = (yk

1 , · · · , yk
i−1, y

k
i+1, · · · , yk

m). However, generally speaking, it is
not easy to verify the conditions on the convergence of the iterative method
for practical problems.

(c) If the iterative method fails to find a fixed point, we may employ GA
to solve the following minimization problem,

min R(y1, y2, · · · , ym) =
m∑

i=1

‖yi − ri(y−i)‖ (2.15)

If an array (y∗
1, y

∗
2, · · · , y∗

m) makes R(y∗
1, y

∗
2, · · · , y∗

m) = 0, then y∗
i = ri(y∗

−i),
i = 1, 2, · · · , m and (y∗

1, y
∗
2, · · · , y∗

m) must be a solution of (2.13). If not, then
the system of equations (2.13) is inconsistent. In other words, there is no
Nash equilibrium of followers in the given bilevel programming. Although
this method can deal with general problem, it is a slow way to find a Nash
equilibrium.

After obtaining the Nash equilibrium for each given decision vector of the
leader, we may compute the objective value of the leader for each given
control vector according to the Nash equilibrium. Hence we may employ the
GA to search for the Stackelberg-Nash equilibrium.

Now we consider a bilevel programming with three followers in which the
leader has a decision vector (x1, x2, x3) and the three followers have decision
vector (y11, y12, y21, y22, y31, y32),
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
x1,x2,x3

y∗
11y

∗
12 sin x1 + 2y∗

21y
∗
22 sin x2 + 3y∗

31y
∗
32 sin x3

subject to:
x1 + x2 + x3 ≤ 10, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0
(y∗

11, y
∗
12, y

∗
21, y

∗
22, y

∗
31, y

∗
32) solves the problems⎧⎪⎨

⎪⎩
max

y11,y12
y11 sin y12 + y12 sin y11

subject to:
y11 + y12 ≤ x1, y11 ≥ 0, y12 ≥ 0⎧⎪⎨

⎪⎩
max

y21,y22
y21 sin y22 + y22 sin y21

subject to:
y21 + y22 ≤ x2, y21 ≥ 0, y22 ≥ 0⎧⎪⎨

⎪⎩
max

y31,y32
y31 sin y32 + y32 sin y31

subject to:
y31 + y32 ≤ x3, y31 ≥ 0, y32 ≥ 0.

A run of GA with 1000 generations shows that the Stackelberg-Nash
equilibrium is

(x∗
1, x

∗
2, x

∗
3) = (0.000, 1.936, 8.064),

(y∗
11, y

∗
12) = (0.000, 0.000),

(y∗
21, y

∗
22) = (0.968, 0.968),

(y∗
31, y

∗
32) = (1.317, 6.747)

with optimal objective values

y∗
11y

∗
12 sinx∗

1 + 2y∗
21y

∗
22 sin x∗

2 + 3y∗
31y

∗
32 sin x∗

3 = 27.822,

y∗
11 sin y∗

12 + y∗
12 sin y∗

11 = 0.000,

y∗
21 sin y∗

22 + y∗
22 sin y∗

21 = 1.595,

y∗
31 sin y∗

32 + y∗
32 sin y∗

31 = 7.120.



Chapter 3
Neural Networks

Neural network (NN), inspired by the current understanding of biological NN,
is a class of adaptive systems consisting of a number of simple processing ele-
ments, called neurons, that are interconnected to each other in a feedforward
way. Although NN can perform some human brain-like tasks, there is still a
huge gap between biological and artificial NN. An important contribution of
NN is the ability to learn to perform operations, not only for inputs exactly
like the training data, but also for new data that may be incomplete or noisy.
NN has also the benefit of easy modification by retraining with an updated
data set. For our purpose, the significant advantage of NN is the speed of
operation after it is trained.

3.1 Basic Concepts

The artificial neuron simulates the behavior of the biological neuron to make
a simple operation of a weighted sum of the incoming signals as

y = w0 + w1x1 + w2x2 + · · · + wnxn (3.1)

where x1, x2, · · · , xn are inputs, w0, w1, w2, · · · , wn are weights, and y is
output. Figure 3.1 illustrates a neuron.

In most applications, we define a memoryless nonlinear function σ as an
activation function to change the output to

Fig. 3.1 An Artificial
Neuron
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y = σ (w0 + w1x1 + w2x2 + · · · + wnxn) . (3.2)

The choice of the activation functions depends on the application area. In
this book we employ the sigmoid function defined as

σ(x) =
1

1 + e−x
(3.3)

whose derivative is

σ′(x) =
e−x

(1 + e−x)2
. (3.4)

They are shown in Figure 3.2.

Fig. 3.2 Sigmoid Func-
tion and Derivative
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Let us consider an NN with one hidden layer, in which there are n neurons
in the input layer, m neurons in the output layer, and p neurons in the hidden
layer which is pictured in Figure 3.3. Then the outputs of the neurons in the
hidden layer are
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x1
i = σ

⎛
⎝ n∑

j=1

w0
ijxj + w0

i0

⎞
⎠ , i = 1, 2, · · · , p. (3.5)

Thus the outputs of the neurons in the output layer are

yi =
p∑

j=1

w1
ijx

1
j + w1

i0, i = 1, 2, · · · , m. (3.6)

The coefficients w0
ij , i = 1, 2, · · · , p, j = 0, 1, · · · , n in (3.5) and w1

ij , i =
1, 2, · · · , m, j = 0, 1, · · · , p in (3.6) are called the network weights.

3.2 Function Approximation

NN is clearly a nonlinear mapping from the input space to the output space. It
has been proved that any continuous nonlinear function can be approximated
arbitrarily well over a compact set by an NN consisting of one hidden layer
provided that there are sufficiently many neurons in the hidden layer.

Assume that f : �n → �m is a continuous nonlinear function. We hope
to train an NN to approximate the function f(x). For an NN with a fixed
number of neurons and architecture, the network weights may be arranged
into a vector w. Let F (x, w) be the output of mapping implemented by the
NN.

The training process is to find an appropriate weight vector w that provides
the best possible approximation of f(x). Let

(x∗
1, y

∗
1), (x∗

2, y
∗
2), · · · , (x∗

N , y∗
N )

be a set of training input-output data on f(x). We wish to choose a weight
vector w so that the output F (x, w) is “close” to the desired output y∗

i for
the input x∗

i . That is, the training process is to find the weight vector w that
minimizes the following error function,

Err(w) =
1
2

N∑
i=1

‖F (x∗
i , w) − y∗

i ‖2. (3.7)

3.3 Neuron Number Determination

Since the function f is a mapping from �n to �m, the number of input
neurons is always n, and the number of output neurons is always m. Thus
the main problem is to determine the best number of hidden neurons.

Although any continuous function can be approximated with an arbitrary
accuracy by an NN with infinite neurons in the hidden layer, it is practically
impossible to have infinite hidden neurons. On the one hand, too few hidden
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neurons make the NN lack of generalization ability. On the other hand, too
many hidden neurons increase the training time and response time of the
trained NN. A lot of methods have been proposed for determining the number
of hidden neurons, some add hidden neurons, and other delete hidden neurons
during the training process.

3.4 Backpropagation Algorithm

The values of the weights represent all memory of the NN. During the training
phase of an NN, the values of weights are continuously updated by the train-
ing process until some termination criterion is met. In other words, learning
in NN is a modification process of the values of weights so as to bring the
mapping implemented by the NN as close as possible to a desired mapping.
It may also be viewed as an optimization problem of selecting weights to
minimize the error between the target output and the actual output.

Backpropagation algorithm is an effective learning algorithm. It is es-
sentially a gradient method. Here we introduce the backpropagation algo-
rithm for the NN with one hidden layer. Assume that there are N samples
(x∗

k1, x
∗
k2, · · · , x∗

kn; y∗
k1, y

∗
k2, · · · , y∗

km) for k = 1, 2, · · · , N .
We first initialize the weight vector w at random, set ∆w1

ij = 0 for i =
1, 2, · · · , m, j = 0, 1, · · · , p, ∆w0

ij = 0 for i = 1, 2, · · · , p and j = 0, 1, · · · , n,
and the adaptive parameter λ = 1. Then we adjust the weights by an on-line
learning process. When the k-th sample is used, the outputs of the hidden
neurons are

x1
ki = σ

⎛
⎝ n∑

j=1

w0
ijx

∗
kj + w0

i0

⎞
⎠ , i = 1, 2, · · · , p,

and the outputs of the NN are

yki =
p∑

j=1

w1
ijx

1
kj + w1

i0, i = 1, 2, · · · , m.

In order to speed up the learning process, we use an improved error function

Ek =
1
2

m∑
i=1

[
λ(y∗

ki − yki)2 + (1 − λ)Φ(y∗
ki − yki)

]
(3.8)

where Φ(x) = ln(cosh(βx))/β and β is a constant, for example, β = 4/3.
Thus the equations for weight change are given as follows: For the

hidden-output weights w1
ij , i = 1, 2, · · · , m, j = 0, 1, · · · , p, we have

∆w1
ij ← −α

∂Ek

∂w1
ij

+ η∆w1
ij = αC1

i x1
kj + η∆w1

ij (3.9)
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where

C1
i = λ(y∗

ki − yki) + (1 − λ) tanh(β(y∗
ki − yki)), x1

k0 = 1.

For the input-hidden weights w0
ij , i = 1, 2, · · · , p, j = 0, 1, · · · , n, we have

∆w0
ij ← −α

∂Ek

∂w0
ij

+ η∆w0
ij = αC0

i x∗
kj + η∆w0

ij (3.10)

where

C0
i =

(
1 −

(
x1

ki

)2) m∑
l=1

C1
l w1

li, x∗
k0 = 1,

α and η are numbers between 0 and 1, for example, α = 0.05, η = 0.01.
After training the NN one time over all input-output data, we calculate the

total error E = E1+E2+ · · ·+EN . If the error E is less than a predetermined
precision E0 (for example, 0.05), then the NN is considered trained well.
Otherwise, we set λ = exp(−1/E2) and repeat the learning process until
E < E0.

Algorithm 3.1 (Backpropagation Algorithm)
Step 1. Initialize weight vector w, and set λ = 1 and k = 0.
Step 2. k ← k + 1.
Step 3. Adjust the weight vector w according to (3.9) and (3.10).
Step 4. Calculate the error Ek according to (3.8).
Step 5. If k < N , go to Step 2.
Step 6. Set E = E1 + E2 + · · · + EN .
Step 7. If E > E0, then k = 0, λ = exp(−1/E2) and go to Step 2.
Step 8. End.

3.5 Numerical Experiments

The NN architecture used in this section is the network with one hidden layer
which is pictured in Figure 3.3. The NN will be used for approximating some
continuous functions.

Example 3.1. Let us design an NN to approximate the continuous function,

f(x1, x2, x3, x4) = sin x1 + sinx2 + sinx3 + sinx4

defined on [0, 2π]4. In order to approximate the function f(x1, x2, x3, x4)
by an NN, we generate 3000 input-output data. Then we train an NN (4
input neurons, 10 hidden neurons, 1 output neuron) by the backpropagation
algorithm. The sum-squared error of the trained NN is 0.51, and the average
error is 0.01.
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Example 3.2. Consider the vector-valued continuous function,

f(x1, x2, x3, x4, x5, x6) =

⎛
⎜⎝
x1 ln x2 + x2 ln x3

x3 ln x4 + x4 ln x5

x5 ln x6 + x6 ln x1

⎞
⎟⎠

defined on the region [1, 5]6. We generate 3000 training data for the function
f(x). Then we train an NN (6 input neurons, 15 hidden neurons, 3 output
neurons) to approximate the function. A run of backpropagation algorithm
shows that the sum-squared error of the trained NN is 6.16, and the average
error is 0.05.

Example 3.3. Consider the function

f(x1, x2, x3, x4) =
x1

1 + x1
+

x2

1 + x2
+

x3

1 + x3
+

x4

1 + x4

defined on [0, 2]. Assume that the input-output data for the function f(x)
are randomly generated on [0, 2] with a uniformly distributed noise U(−a, a),
where U(−a, a) represents the uniformly distributed variable on the interval
[−a, a]. That is, for each input x, the output y = f(x) + U(−a, a).

We produce 2000 input-output data {(x∗
i , y

∗
i )|i = 1, 2, · · · , 2000} with noise

U(−a, a) for the function f(x). The backpropagation algorithm may obtain
an NN (4 input neurons, 6 hidden neurons, 1 output neuron) to approximate
the function f(x) according to the noise data.

Let F (x, w∗) be the output of mapping implemented by the NN. We gen-
erate 1000 test noise data {(x∗

i , y
∗
i )|i = 2001, 2002, · · · , 3000}, then we have

the errors shown in Table 3.1.

Table 3.1 Sum-Squared Errors

Noise
1
2

3000∑
i=2001

|F (x∗
i , w∗) − f(x∗

i )|2 1
2

3000∑
i=2001

|y∗
i − f(x∗

i )|2

U(−0.05, 0.05) 0.362 0.389
U(−0.10, 0.10) 1.333 1.643
U(−0.20, 0.20) 4.208 6.226
U(−0.30, 0.30) 7.306 14.01
U(−0.40, 0.40) 14.74 24.90

Note that the errors in the first column are less than that in the second
column. This means that the trained NN can compensate for the error of the
noise training data.



Chapter 4
Stochastic Programming

With the requirement of considering randomness, different types of stochastic
programming have been developed to suit the different purposes of manage-
ment. The first type of stochastic programming is the expected value model,
which optimizes the expected objective functions subject to some expected
constraints. The second, chance-constrained programming, was pioneered by
Charnes and Cooper [37] as a means of handling uncertainty by specifying
a confidence level at which it is desired that the stochastic constraint holds.
After that, Liu [174] generalized chance-constrained programming to the case
with not only stochastic constraints but also stochastic objectives. In practice,
there usually exist multiple events in a complex stochastic decision system.
Sometimes the decision-maker wishes to maximize the chance functions of
satisfying these events. In order to model this type of problem, Liu [166] pro-
vided a theoretical framework of the third type of stochastic programming,
called dependent-chance programming.

This chapter will give some basic concepts of probability theory and intro-
duce a spectrum of stochastic programming. A hybrid intelligent algorithm
is also documented.

4.1 Random Variables

Before introducing the concept of random variable, let us define a probability
measure by an axiomatic approach.

Definition 4.1. Let Ω be a nonempty set, and � a σ-algebra of subsets
(called events) of Ω. The set function Pr is called a probability measure if
Axiom 1. (Normality) Pr{Ω} = 1;
Axiom 2. (Nonnegativity) Pr{A} ≥ 0 for any event A;
Axiom 3. (Countable Additivity) For every countable sequence of mutually
disjoint events {Ai}, we have

B. Liu: Theory and Practice of Uncertain Programming, STUDFUZZ 239, pp. 25–56.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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Pr

{ ∞⋃
i=1

Ai

}
=

∞∑
i=1

Pr{Ai}. (4.1)

Example 4.1. Let Ω = {ω1, ω2, · · ·}, and let � be the power set of Ω.
Assume that p1, p2, · · · are nonnegative numbers such that p1 + p2 + · · · = 1.
Define a set function on � as

Pr{A} =
∑

ωi∈A

pi, A ∈ �. (4.2)

Then Pr is a probability measure.

Example 4.2. Let Ω = [0, 1] and let � be the Borel algebra over Ω. If Pr is
the Lebesgue measure, then Pr is a probability measure.

Example 4.3. Let φ be a nonnegative and integrable function on � (the set
of real numbers) such that

∫
� φ(x)dx = 1. Then for any Borel set A, the set

function
Pr{A} =

∫
A

φ(x)dx (4.3)

is a probability measure on �.

Theorem 4.1. Let Ω be a nonempty set, � a σ-algebra over Ω, and Pr a
probability measure. Then Pr{∅} = 0 and 0 ≤ Pr{A} ≤ 1 for any event A.

Proof: Since ∅ and Ω are disjoint events and ∅ ∪ Ω = Ω, we have Pr{∅} +
Pr{Ω} = Pr{Ω} which makes Pr{∅} = 0. By the nonnegativity axiom, we
have Pr{A} ≥ 0 for any event A. By the countable additivity axiom, we get
Pr{A} = 1 − Pr{Ac} ≤ 1.

Definition 4.2. Let Ω be a nonempty set, � a σ-algebra of subsets of Ω, and
Pr a probability measure. Then the triplet (Ω,�, Pr) is called a probability
space.

Definition 4.3. A random variable is a measurable function from a proba-
bility space (Ω,�, Pr) to the set of real numbers, i.e., for any Borel set B of
real numbers, the set

{ξ ∈ B} = {ω ∈ Ω
∣∣ ξ(ω) ∈ B} (4.4)

is an event.

Definition 4.4. Let f : �n → � be a measurable function, and ξ1, ξ2, · · · , ξn

random variables defined on the probability space (Ω,�, Pr). Then ξ =
f(ξ1, ξ2, · · · , ξn) is a random variable defined by

ξ(ω) = f(ξ1(ω), ξ2(ω), · · · , ξn(ω)), ∀ω ∈ Ω. (4.5)
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Definition 4.5. An n-dimensional random vector is a measurable function
from a probability space (Ω,�, Pr) to the set of n-dimensional real vectors,
i.e., for any Borel set B of �n, the set

{ξ ∈ B} =
{
ω ∈ Ω

∣∣ ξ(ω) ∈ B
}

(4.6)

is an event.

Theorem 4.2. The vector (ξ1, ξ2, · · · , ξn) is a random vector if and only if
ξ1, ξ2, · · · , ξn are random variables.

Proof: Write ξ = (ξ1, ξ2, · · · , ξn). Suppose that ξ is a random vector on the
probability space (Ω,�, Pr). For any Borel set B of �, the set B × �n−1 is
also a Borel set of �n. Thus we have{

ω ∈ Ω
∣∣ ξ1(ω) ∈ B

}
=
{
ω ∈ Ω

∣∣ ξ1(ω) ∈ B, ξ2(ω) ∈ �, · · · , ξn(ω) ∈ �
}

=
{
ω ∈ Ω

∣∣ ξ(ω) ∈ B × �n−1
}

∈ �

which implies that ξ1 is a random variable. A similar process may prove that
ξ2, ξ3, · · · , ξn are random variables. Conversely, suppose that all ξ1, ξ2, · · · , ξn

are random variables on the probability space (Ω,�, Pr). We define

� =
{
B ⊂ �n

∣∣ {ω ∈ Ω|ξ(ω) ∈ B} ∈ �
}

.

The vector ξ = (ξ1, ξ2, · · · , ξn) is proved to be a random vector if we can
prove that � contains all Borel sets of �n. First, the class � contains all
open intervals of �n because{

ω ∈ Ω
∣∣ ξ(ω) ∈

n∏
i=1

(ai, bi)

}
=

n⋂
i=1

{
ω ∈ Ω

∣∣ ξi(ω) ∈ (ai, bi)
}

∈ �.

Next, the class � is a σ-algebra of �n because (i) we have �n ∈ � since
{ω ∈ Ω|ξ(ω) ∈ �n} = Ω ∈ �; (ii) if B ∈ �, then {ω ∈ Ω|ξ(ω) ∈ B} ∈ �,
and

{ω ∈ Ω
∣∣ ξ(ω) ∈ Bc} = {ω ∈ Ω

∣∣ ξ(ω) ∈ B}c ∈ �

which implies that Bc ∈ �; (iii) if Bi ∈ � for i = 1, 2, · · ·, then {ω ∈ Ω|ξ(ω) ∈
Bi} ∈ � and{

ω ∈ Ω
∣∣ ξ(ω) ∈

∞⋃
i=1

Bi

}
=

∞⋃
i=1

{ω ∈ Ω
∣∣ ξ(ω) ∈ Bi} ∈ �

which implies that ∪iBi ∈ �. Since the smallest σ-algebra containing all open
intervals of �n is just the Borel algebra of �n, the class � contains all Borel
sets of �n. The theorem is proved.
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Probability Distribution

Definition 4.6. The probability distribution Φ: � → [0, 1] of a random
variable ξ is defined by

Φ(x) = Pr
{
ω ∈ Ω

∣∣ ξ(ω) ≤ x
}

. (4.7)

That is, Φ(x) is the probability that the random variable ξ takes a value less
than or equal to x.

Definition 4.7. The probability density function φ: � → [0, +∞) of a ran-
dom variable ξ is a function such that

Φ(x) =
∫ x

−∞
φ(y)dy (4.8)

holds for all x ∈ �, where Φ is the probability distribution of the random
variable ξ.

Uniform Distribution: A random variable ξ has a uniform distribution if
its probability density function is

φ(x) =

⎧⎨
⎩

1
b − a

, if a ≤ x ≤ b

0, otherwise
(4.9)

denoted by U(a, b), where a and b are given real numbers with a < b.

Exponential Distribution: A random variable ξ has an exponential
distribution if its probability density function is

φ(x) =

⎧⎪⎨
⎪⎩

1
β

exp
(

−x

β

)
, if x ≥ 0

0, otherwise
(4.10)

denoted by EXP(β), where β is a positive number.

Normal Distribution: A random variable ξ has a normal distribution if its
probability density function is

φ(x) =
1

σ
√

2π
exp

(
− (x − µ)2

2σ2

)
, x ∈ � (4.11)

denoted by N (µ, σ2), where µ and σ are real numbers.

Theorem 4.3 (Probability Inversion Theorem). Let ξ be a random variable
whose probability density function φ exists. Then for any Borel set B of �,
we have

Pr{ξ ∈ B} =
∫

B

φ(y)dy. (4.12)
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Proof: Let � be the class of all subsets C of � for which the relation

Pr{ξ ∈ C} =
∫

C

φ(y)dy (4.13)

holds. We will show that � contains all Borel sets of �. It follows from the
probability continuity theorem and relation (4.13) that � is a monotone class.
It is also clear that � contains all intervals of the form (−∞, a], (a, b], (b, ∞)
and ∅ since

Pr{ξ ∈ (−∞, a]} = Φ(a) =
∫ a

−∞
φ(y)dy,

Pr{ξ ∈ (b, +∞)} = Φ(+∞) − Φ(b) =
∫ +∞

b

φ(y)dy,

Pr{ξ ∈ (a, b]} = Φ(b) − Φ(a) =
∫ b

a

φ(y)dy,

Pr{ξ ∈ ∅} = 0 =
∫
∅
φ(y)dy

where Φ is the probability distribution of ξ. Let � be the algebra consisting of
all finite unions of disjoint sets of the form (−∞, a], (a, b], (b, ∞) and ∅. Note
that for any disjoint sets C1, C2, · · · , Cm of � and C = C1 ∪ C2 ∪ · · · ∪ Cm,
we have

Pr{ξ ∈ C} =
m∑

j=1

Pr{ξ ∈ Cj} =
m∑

j=1

∫
Cj

φ(y)dy =
∫

C

φ(y)dy.

That is, C ∈ �. Hence we have � ⊂ �. Since the smallest σ-algebra containing
� is just the Borel algebra of �, the monotone class theorem implies that �
contains all Borel sets of �.

Example 4.4. Let ξ be a uniformly distributed random variable on [a, b].
Then for any number c ∈ [a, b], it follows from probability inversion theorem
that

Pr{ξ ≤ c} =
∫ c

a

φ(x)dx =
∫ c

a

1
b − a

dx =
c − a

b − a
.

Independence

Definition 4.8. The random variables ξ1, ξ2, · · · , ξm are said to be
independent if

Pr

{
m⋂

i=1

{ξi ∈ Bi}
}

=
m∏

i=1

Pr{ξi ∈ Bi} (4.14)

for any Borel sets B1, B2, · · · , Bm of real numbers.
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Theorem 4.4. Let ξi be random variables with probability distributions Φi,
i = 1, 2, · · · , m, respectively, and Φ the probability distribution of the random
vector (ξ1, ξ2, · · · , ξm). Then ξ1, ξ2, · · · , ξm are independent if and only if

Φ(x1, x2, · · · , xm) = Φ1(x1)Φ2(x2) · · · Φm(xm) (4.15)

for all (x1, x2, · · · , xm) ∈ �m.

Proof: If ξ1, ξ2, · · · , ξm are independent random variables, then we have

Φ(x1, x2, · · · , xm)= Pr{ξ1 ≤ x1, ξ2 ≤ x2, · · · , ξm ≤ xm}
= Pr{ξ1 ≤ x1} Pr{ξ2 ≤ x2} · · ·Pr{ξm ≤ xm}
= Φ1(x1)Φ2(x2) · · · Φm(xm)

for all (x1, x2, · · · , xm) ∈ �m. Conversely, assume that (4.15) holds. Let
x2, x3, · · · , xm be fixed real numbers, and � the class of all subsets C of
� for which the relation

Pr{ξ1 ∈ C, ξ2 ≤ x2, · · · , ξm ≤ xm} = Pr{ξ1 ∈ C}
m∏

i=2

Pr{ξi ≤ xi} (4.16)

holds. We will show that � contains all Borel sets of �. It follows from the
probability continuity theorem and relation (4.16) that � is a monotone class.
It is also clear that � contains all intervals of the form (−∞, a], (a, b], (b, ∞)
and ∅. Let � be the algebra consisting of all finite unions of disjoint sets
of the form (−∞, a], (a, b], (b, ∞) and ∅. Note that for any disjoint sets
C1, C2, · · · , Ck of � and C = C1 ∪ C2 ∪ · · · ∪ Ck, we have

Pr{ξ1 ∈ C, ξ2 ≤ x2, · · · , ξm ≤ xm}

=
m∑

j=1
Pr{ξ1 ∈ Cj , ξ2 ≤ x2, · · · , ξm ≤ xm}

=Pr{ξ1 ∈ C} Pr{ξ2 ≤ x2} · · ·Pr{ξm ≤ xm}.

That is, C ∈ �. Hence we have � ⊂ �. Since the smallest σ-algebra containing
� is just the Borel algebra of �, the monotone class theorem implies that �
contains all Borel sets of �. Applying the same reasoning to each ξi in turn,
we obtain the independence of the random variables.

Theorem 4.5. Let ξi be random variables with probability density functions
φi, i = 1, 2, · · · , m, respectively, and φ the probability density function of
the random vector (ξ1, ξ2, · · · , ξm). Then ξ1, ξ2, · · · , ξm are independent if and
only if

φ(x1, x2, · · · , xm) = φ1(x1)φ2(x2) · · · φm(xm) (4.17)

for almost all (x1, x2, · · · , xm) ∈ �m.
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Proof: If φ(x1, x2, · · · , xm) = φ1(x1)φ2(x2) · · · φm(xm) a.e., then we have

Φ(x1, x2, · · · , xm)=
∫ x1

−∞

∫ x2

−∞
· · ·
∫ xm

−∞
φ(t1, t2, · · · , tm)dt1dt2 · · · dtm

=
∫ x1

−∞

∫ x2

−∞
· · ·
∫ xm

−∞
φ1(t1)φ2(t2) · · · φm(tm)dt1dt2 · · · dtm

=
∫ x1

−∞
φ1(t1)dt1

∫ x2

−∞
φ2(t2)dt2 · · ·

∫ xm

−∞
φm(tm)dtm

= Φ1(x1)Φ2(x2) · · · Φm(xm)

for all (x1, x2, · · · , xm) ∈ �m. Thus ξ1, ξ2, · · · , ξm are independent. Con-
versely, if ξ1, ξ2, · · · , ξm are independent, then for any (x1, x2, · · · , xm) ∈ �m,
we have Φ(x1, x2, · · · , xm) = Φ1(x1)Φ2(x2) · · · Φm(xm). Hence

Φ(x1, x2, · · · , xm) =
∫ x1

−∞

∫ x2

−∞
· · ·
∫ xm

−∞
φ1(t1)φ2(t2) · · · φm(tm)dt1dt2 · · · dtm

which implies that φ(x1, x2, · · · , xm) = φ1(x1)φ2(x2) · · · φm(xm) a.e.

Example 4.5. Let ξ1, ξ2, · · · , ξm be independent random variables with prob-
ability density functions φ1, φ2, · · · , φm, respectively, and f : �m → � a mea-
surable function. Then for any Borel set B of real numbers, the probability
Pr{f(ξ1, ξ2, · · · , ξm) ∈ B} is∫ ∫

· · ·
∫

f(x1,x2,···,xm)∈B

φ1(x1)φ2(x2) · · · φm(xm)dx1dx2 · · ·dxm.

Expected Value

Expected value is the average value of random variable in the sense of prob-
ability measure. It may be defined as follows.

Definition 4.9. Let ξ be a random variable. Then the expected value of ξ is
defined by

E[ξ] =
∫ +∞

0
Pr{ξ ≥ r}dr −

∫ 0

−∞
Pr{ξ ≤ r}dr (4.18)

provided that at least one of the two integrals is finite.

Let ξ and η be random variables with finite expected values. For any numbers
a and b, it has been proved that E[aξ + bη] = aE[ξ] + bE[η]. That is, the
expected value operator has the linearity property.

Example 4.6. Assume that ξ is a discrete random variable taking values
xi with probabilities pi, i = 1, 2, · · · , m, respectively. It follows from the
definition of expected value operator that
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E[ξ] =
m∑

i=1

pixi.

Theorem 4.6. Let ξ be a random variable whose probability density function
φ exists. If the Lebesgue integral∫ +∞

−∞
xφ(x)dx

is finite, then we have

E[ξ] =
∫ +∞

−∞
xφ(x)dx. (4.19)

Proof: It follows from Definition 4.9 and Fubini Theorem that

E[ξ]=
∫ +∞

0
Pr{ξ ≥ r}dr −

∫ 0

−∞
Pr{ξ ≤ r}dr

=
∫ +∞

0

[∫ +∞

r

φ(x)dx

]
dr −

∫ 0

−∞

[∫ r

−∞
φ(x)dx

]
dr

=
∫ +∞

0

[∫ x

0
φ(x)dr

]
dx −

∫ 0

−∞

[∫ 0

x

φ(x)dr

]
dx

=
∫ +∞

0
xφ(x)dx +

∫ 0

−∞
xφ(x)dx

=
∫ +∞

−∞
xφ(x)dx.

The theorem is proved.

Example 4.7. Let ξ be a uniformly distributed random variable on the
interval [a, b]. Then its expected value is

E[ξ] =
∫ b

a

x

b − a
dx =

a + b

2
.

Example 4.8. Let ξ be an exponentially distributed random variable
EXP(β). Then its expected value is

E[ξ] =
∫ +∞

0

x

β
exp

(
−x

β

)
dx = β.

Example 4.9. Let ξ be a normally distributed random variable N (µ, σ2).
Then its expected value is
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E[ξ] =
∫ +∞

−∞

x

σ
√

2π
exp

(
− (x − µ)2

2σ2

)
dx = µ.

Critical Values

Let ξ be a random variable. In order to measure it, we may use its expected
value. Alternately, we may employ α-optimistic value and α-pessimistic value
as a ranking measure.

Definition 4.10. Let ξ be a random variable, and α ∈ (0, 1]. Then

ξsup(α) = sup
{
r
∣∣ Pr {ξ ≥ r} ≥ α

}
(4.20)

is called the α-optimistic value of ξ; and

ξinf(α) = inf
{
r
∣∣ Pr {ξ ≤ r} ≥ α

}
(4.21)

is called the α-pessimistic value of ξ.

This means that the random variable ξ will reach upwards of the α-optimistic
value ξsup(α) at least α of time, and will be below the α-pessimistic value
ξinf(α) at least α of time.

Theorem 4.7. Let ξ be a random variable. Then we have
(a) ξinf(α) is an increasing and left-continuous function of α;
(b) ξsup(α) is a decreasing and left-continuous function of α.

Proof: (a) It is easy to prove that ξinf(α) is an increasing function of α.
Next, we prove the left-continuity of ξinf(α) with respect to α. Let {αi} be
an arbitrary sequence of positive numbers such that αi ↑ α. Then {ξinf(αi)}
is an increasing sequence. If the limitation is equal to ξinf(α), then the
left-continuity is proved. Otherwise, there exists a number z∗ such that

lim
i→∞

ξinf(αi) < z∗ < ξinf(α).

Thus Pr{ξ ≤ z∗} ≥ αi for each i. Letting i → ∞, we get Pr{ξ ≤ z∗} ≥ α.
Hence z∗ ≥ ξinf(α). A contradiction proves the left-continuity of ξinf(α) with
respect to α. The part (b) may be proved similarly.

Ranking Criteria

Let ξ and η be two random variables. Different from the situation of real
numbers, there does not exist a natural ordership in a random world. Thus
an important problem appearing in this area is how to rank random variables.
Here we give four ranking criteria.

Expected Value Criterion: We say ξ > η if and only if E[ξ] > E[η], where
E is the expected value operator of random variables.
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Optimistic Value Criterion: We say ξ > η if and only if, for some prede-
termined confidence level α ∈ (0, 1], we have ξsup(α) > ηsup(α), where ξsup(α)
and ηsup(α) are the α-optimistic values of ξ and η, respectively.

Pessimistic Value Criterion: We say ξ > η if and only if, for some prede-
termined confidence level α ∈ (0, 1], we have ξinf(α) > ηinf(α), where ξinf(α)
and ηinf(α) are the α-pessimistic values of ξ and η, respectively.

Probability Criterion: We say ξ > η if and only if Pr {ξ ≥ r} > Pr {η ≥ r}
for some predetermined level r.

Random Number Generation

Random number generation is a very important issue in Monte Carlo simu-
lation. Generally, let ξ be a random variable with a probability distribution
Φ(·). Since Φ(·) is an increasing function, the inverse function Φ−1(·) is de-
fined on [0, 1]. Assume that u is a uniformly distributed random variable on
the interval [0, 1]. Then we have

Pr
{
Φ−1(u) ≤ y

}
= Pr {u ≤ Φ(y)} = Φ(y) (4.22)

which proves that the variable ξ = Φ−1(u) has the probability distribution
Φ(·). In order to get a random variable ξ with probability distribution Φ(·),
we can produce a uniformly distributed random variable u from the interval
[0, 1], and ξ is assigned to be Φ−1(u). The above process is called the inverse
transform method. But for the main known distributions, instead of using the
inverse transform method, we have direct generating processes. For detailed
expositions, the interested readers may consult Fishman [67], Law and Kel-
ton [147], Bratley et al. [23], Rubinstein [268], and Liu [181]. Here we give
some generating methods for probability distributions frequently used in this
book.

The subfunction of generating pseudorandom numbers has been provided
by the C library for any type of computer, defined as

int rand(void)
which produces a pseudorandom integer between 0 and RAND MAX, where
RAND MAX is defined in stdlib.h as 215 − 1. Thus the uniform distribution,
exponential distribution, and normal distribution can be generated by the
following way:

Algorithm 4.1 (Uniform Distribution U(a, b))
Step 1. u = rand( ).
Step 2. u ← u/RAND MAX.
Step 3. Return a + u(b − a).



4.2 Expected Value Model 35

Algorithm 4.2 (Exponential Distribution EXP(β))
Step 1. Generate u from U(0, 1).
Step 2. Return −β ln(u).

Algorithm 4.3 (Normal Distribution N (µ, σ2))
Step 1. Generate µ1 and µ2 from U(0, 1).

Step 2. y = [−2 ln(µ1)]
1
2 sin(2πµ2).

Step 3. Return µ + σy.

4.2 Expected Value Model

The first type of stochastic programming is the so-called expected value model
(EVM), which optimizes some expected objective function subject to some
expected constraints, for example, minimizing expected cost, maximizing ex-
pected profit, and so forth.

Now let us recall the well-known newsboy problem in which a boy operating
a news stall has to determine the number x of newspapers to order in advance
from the publisher at a cost of $c/newspaper every day. It is known that the
selling price is $a/newspaper. However, if the newspapers are not sold at the
end of the day, then the newspapers have a small value of $b/newspaper at
the recycling center. Assume that the demand for newspapers is denoted by
ξ in a day, then the number of newspapers at the end of the day is clearly
x − ξ if x > ξ, or 0 if x ≤ ξ. Thus the profit of the newsboy should be

f(x, ξ) =

{
(a − c)x, if x ≤ ξ

(b − c)x + (a − b)ξ, if x > ξ.

In practice, the demand ξ for newspapers is usually a stochastic variable,
so is the profit function f(x, ξ). Since we cannot predict how profitable the
decision of ordering x newspapers will actually be, a natural idea is to employ
the expected profit E[f(x, ξ)]. The newsboy problem is related to determining
the optimal integer number x of newspapers such that the expected profit
E[f(x, ξ)] achieves the maximal value, i.e.,⎧⎪⎨

⎪⎩
max E[f(x, ξ)]
subject to:

x ≥ 0, integer.

This is a typical example of EVM. Generally, if we want to find a decision
with maximum expected return subject to some expected constraints, then
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we have the following EVM,⎧⎪⎨
⎪⎩

max E[f(x, ξ)]
subject to:

E[gj(x, ξ)] ≤ 0, j = 1, 2, · · · , p
(4.23)

where x is a decision vector, ξ is a stochastic vector, f(x, ξ) is the return
function, gj(x, ξ) are stochastic constraint functions for j = 1, 2, · · · , p.

Definition 4.11. A solution x is feasible if and only if E[gj(x, ξ)] ≤ 0 for
j = 1, 2, · · · , p. A feasible solution x∗ is an optimal solution to EVM (4.23)
if E[f(x∗, ξ)] ≥ E[f(x, ξ)] for any feasible solution x.

In many cases, there are multiple objectives. Thus we have to employ the
following expected value multiobjective programming (EVMOP),⎧⎪⎪⎨

⎪⎪⎩
max

[
E[f1(x, ξ)], E[f2(x, ξ)], · · · , E[fm(x, ξ)]

]
subject to:

E[gj(x, ξ)] ≤ 0, j = 1, 2, · · · , p
(4.24)

where fi(x, ξ) are return functions for i = 1, 2, · · · , m.

Definition 4.12. A feasible solution x∗ is said to be a Pareto solution to
EVMOP (4.24) if there is no feasible solution x such that

E[fi(x, ξ)] ≥ E[fi(x∗, ξ)], i = 1, 2, · · · , m (4.25)

and E[fj(x, ξ)] > E[fj(x∗, ξ)] for at least one index j.

We can also formulate a stochastic decision system as an expected value goal
programming (EVGP) according to the priority structure and target levels
set by the decision-maker:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
l∑

j=1
Pj

m∑
i=1

(uijd
+
i ∨ 0 + vijd

−
i ∨ 0)

subject to:
E[fi(x, ξ)] − bi = d+

i , i = 1, 2, · · · , m
bi − E[fi(x, ξ)] = d−i , i = 1, 2, · · · , m
E[gj(x, ξ)] ≤ 0, j = 1, 2, · · · , p

(4.26)

where Pj is the preemptive priority factor which expresses the relative im-
portance of various goals, Pj � Pj+1, for all j, uij is the weighting factor
corresponding to positive deviation for goal i with priority j assigned, vij

is the weighting factor corresponding to negative deviation for goal i with
priority j assigned, d+

i ∨ 0 is the positive deviation from the target of goal
i, d−i ∨ 0 is the negative deviation from the target of goal i, fi is a function



4.3 Chance-Constrained Programming 37

in goal constraints, gj is a function in real constraints, bi is the target value
according to goal i, l is the number of priorities, m is the number of goal
constraints, and p is the number of real constraints.

4.3 Chance-Constrained Programming

As the second type of stochastic programming developed by Charnes and
Cooper [37], chance-constrained programming (CCP) offers a powerful means
of modeling stochastic decision systems with assumption that the stochastic
constraints will hold at least α of time, where α is referred to as the confi-
dence level provided as an appropriate safety margin by the decision-maker.
After that, Liu [174] generalized CCP to the case with not only stochastic
constraints but also stochastic objectives.

Assume that x is a decision vector, ξ is a stochastic vector, f(x, ξ) is a re-
turn function, and gj(x, ξ) are stochastic constraint functions, j = 1, 2, · · · , p.
Since the stochastic constraints gj(x, ξ) ≤ 0, j = 1, 2, · · · , p do not define a
deterministic feasible set, it is desired that the stochastic constraints hold
with a confidence level α. Thus we have a chance constraint as follows,

Pr {gj(x, ξ) ≤ 0, j = 1, 2, · · · , p} ≥ α (4.27)

which is called a joint chance constraint.

Definition 4.13. A point x is called feasible if and only if the probability
measure of the event {gj(x, ξ) ≤ 0, j = 1, 2, · · · , p} is at least α.

In other words, the constraints will be violated at most (1 − α) of time.
Sometimes, the joint chance constraint is separately considered as

Pr{gj(x, ξ) ≤ 0} ≥ αj , j = 1, 2, · · · , p (4.28)

which is referred to as a separate chance constraint.

Maximax Chance-Constrained Programming

In a stochastic environment, in order to maximize the optimistic return with
a given confidence level subject to some chance constraint, Liu [174] gave the
following CCP: ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max
x

max
f

f

subject to:

Pr
{
f(x, ξ) ≥ f

}
≥ β

Pr {gj(x, ξ) ≤ 0, j = 1, 2, · · · , p} ≥ α

(4.29)



38 4 Stochastic Programming

where α and β are the predetermined confidence levels, and max f is the
β-optimistic return.

In practice, we may have multiple objectives. Thus we have to employ the
following chance-constrained multiobjective programming (CCMOP),

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max
x

[
max

f1

f1, max
f2

f2, · · · , max
fm

fm

]

subject to:

Pr
{
fi(x, ξ) ≥ f i

}
≥ βi, i = 1, 2, · · · , m

Pr {gj(x, ξ) ≤ 0} ≥ αj , j = 1, 2, · · · , p

(4.30)

where α1, α2, · · · , αp, β1, β2, · · · , βm are the predetermined confidence levels,
and max f i are the βi-optimistic values to the ith return functions fi(x, ξ),
i = 1, 2, · · · , m, respectively.

Sometimes, we may formulate a stochastic decision system as a chance-
constrained goal programming (CCGP) according to the priority structure
and target levels set by the decision-maker:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
x

l∑
j=1

Pj

m∑
i=1

(
uij

(
min
d+

i

d+
i ∨ 0

)
+ vij

(
min
d−

i

d−i ∨ 0

))

subject to:
Pr
{
fi(x, ξ) − bi ≤ d+

i

}
≥ β+

i , i = 1, 2, · · · , m
Pr
{
bi − fi(x, ξ) ≤ d−i

}
≥ β−

i , i = 1, 2, · · · , m
Pr {gj(x, ξ) ≤ 0} ≥ αj , j = 1, 2, · · · , p

(4.31)

where Pj is the preemptive priority factor which expresses the relative im-
portance of various goals, Pj � Pj+1, for all j, uij is the weighting factor
corresponding to positive deviation for goal i with priority j assigned, vij

is the weighting factor corresponding to negative deviation for goal i with
priority j assigned, min d+

i ∨ 0 is the β+
i -optimistic positive deviation from

the target of goal i, min d−i ∨ 0 is the β−
i -optimistic negative deviation from

the target of goal i, fi is a function in goal constraints, gj is a function in
system constraints, bi is the target value according to goal i, l is the number
of priorities, m is the number of goal constraints, and p is the number of
system constraints.

Remark 4.1. In a deterministic goal programming, at most one of positive
deviation and negative deviation takes a positive value. However, for a CCGP,
it is possible that both of them are positive.
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Minimax Chance-Constrained Programming

In a stochastic environment, in order to maximize the pessimistic return with
a given confidence level subject to some chance constraint, Liu [181] provided
the following minimax CCP model:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max
x

min
f

f

subject to:

Pr
{
f(x, ξ) ≤ f

}
≥ β

Pr {gj(x, ξ) ≤ 0, j = 1, 2, · · · , p} ≥ α

(4.32)

where α and β are the given confidence levels, and min f is the β-pessimistic
return.

If there are multiple objectives, then we may employ the following minimax
CCMOP, ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

max
x

[
min
f1

f1, min
f2

f2, · · · , min
fm

fm

]

subject to:

Pr
{
fi(x, ξ) ≤ f i

}
≥ βi, i = 1, 2, · · · , m

Pr {gj(x, ξ) ≤ 0} ≥ αj , j = 1, 2, · · · , p

(4.33)

where αj and βi are confidence levels, and min f i are the βi-pessimistic values
to the return functions fi(x, ξ), i = 1, 2, · · · , m, j = 1, 2, · · · , p, respectively.

We can also formulate a stochastic decision system as a minimax CCGP
according to the priority structure and target levels set by the decision-maker:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
x

l∑
j=1

Pj

m∑
i=1

[
uij

(
max
d+

i

d+
i ∨ 0

)
+ vij

(
max
d−

i

d−i ∨ 0

)]

subject to:
Pr
{
fi(x, ξ) − bi ≥ d+

i

}
≥ β+

i , i = 1, 2, · · · , m
Pr
{
bi − fi(x, ξ) ≥ d−i

}
≥ β−

i , i = 1, 2, · · · , m
Pr{gj(x, ξ) ≤ 0} ≥ αj , j = 1, 2, · · · , p

(4.34)

where Pj is the preemptive priority factor which expresses the relative im-
portance of various goals, Pj � Pj+1, for all j, uij is the weighting factor
corresponding to positive deviation for goal i with priority j assigned, vij

is the weighting factor corresponding to negative deviation for goal i with
priority j assigned, max d+

i ∨ 0 is the β+
i -pessimistic positive deviation from

the target of goal i, max d−i ∨ 0 is the β−
i -pessimistic negative deviation from

the target of goal i, fi is a function in goal constraints, gj is a function in
system constraints, bi is the target value according to goal i, l is the number
of priorities, m is the number of goal constraints, and p is the number of
system constraints.
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Deterministic Equivalents

The traditional solution methods require conversion of the chance constraints
to their respective deterministic equivalents. As we know, this process is
usually hard to perform and only successful for some special cases. Let us
consider the following form of chance constraint,

Pr {g(x, ξ) ≤ 0} ≥ α. (4.35)

It is clear that

(a)the chance constraints (4.28) are a set of form (4.35);
(b)the stochastic objective constraint Pr{f(x, ξ) ≥ f} ≥ β coincides with the

form (4.35) by defining g(x, ξ) = f − f(x, ξ);
(c)the stochastic objective constraint Pr{f(x, ξ) ≤ f} ≥ β coincides with the

form (4.35) by defining g(x, ξ) = f(x, ξ) − f ;
(d)the stochastic goal constraints Pr{b − f(x, ξ) ≤ d−} ≥ β and Pr{f(x, ξ)

− b ≤ d+} ≥ β coincide with the form (4.35) by defining g(x, ξ) = b −
f(x, ξ) − d− and g(x, ξ) = f(x, ξ) − b − d+, respectively; and

(e)the stochastic goal constraints Pr{b − f(x, ξ) ≥ d−} ≥ β and Pr{f(x, ξ)
−b ≥ d+} ≥ β coincide with the form (4.35) by defining g(x, ξ) = f(x, ξ)+
d− − b and g(x, ξ) = b − f(x, ξ) + d+, respectively.

This section summarizes some known results.

Theorem 4.8. Assume that the stochastic vector ξ degenerates to a random
variable ξ with probability distribution Φ, and the function g(x, ξ) has the
form g(x, ξ) = h(x)−ξ. Then Pr {g(x, ξ) ≤ 0} ≥ α if and only if h(x) ≤ Kα,
where Kα is the maximal number such that Pr {Kα ≤ ξ} ≥ α.

Proof: The assumption implies that Pr {g(x, ξ) ≤ 0} ≥ α can be written in
the following form,

Pr {h(x) ≤ ξ} ≥ α. (4.36)

For each given confidence level α (0 < α ≤ 1), let Kα be the maximal number
(maybe +∞) such that

Pr {Kα ≤ ξ} ≥ α. (4.37)

Note that the probability Pr{Kα ≤ ξ} will increase if Kα is replaced with a
smaller number. Hence Pr {h(x) ≤ ξ} ≥ α if and only if h(x) ≤ Kα.

Remark 4.2. For a continuous random variable ξ, the equation Pr {Kα ≤ ξ}
= 1 − Φ(Kα) always holds, and we have, by (4.37),

Kα = Φ−1(1 − α) (4.38)

where Φ−1 is the inverse function of Φ.
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Example 4.10. Assume that we have the following chance constraint,{
Pr {3x1 + 4x2 ≤ ξ1} ≥ 0.8
Pr
{
x2

1 − x3
2 ≤ ξ2

}
≥ 0.9

(4.39)

where ξ1 is an exponentially distributed random variable EXP(2) whose prob-
ability distribution is denoted by Φ1, and ξ2 is a normally distributed random
variable N (2, 1) whose probability distribution is denoted by Φ2. It follows
from Theorem 4.8 that the chance constraint (4.39) is equivalent to{

3x1 + 4x2 ≤ Φ−1
1 (1 − 0.8) = 0.446

x2
1 − x3

2 ≤ Φ−1
2 (1 − 0.9) = 0.719.

Theorem 4.9. Assume that the stochastic vector ξ = (a1, a2, · · · , an, b) and
the function g(x, ξ) has the form g(x, ξ) = a1x1 +a2x2 + · · ·+anxn − b. If ai

and b are assumed to be independently normally distributed random variables,
then Pr {g(x, ξ) ≤ 0} ≥ α if and only if

n∑
i=1

E[ai]xi + Φ−1(α)

√√√√ n∑
i=1

V [ai]x2
i + V [b] ≤ E[b] (4.40)

where Φ is the standardized normal distribution function.

Proof: The chance constraint Pr {g(x, ξ) ≤ 0} ≥ α can be written in the
following form,

Pr

{
n∑

i=1

aixi ≤ b

}
≥ α. (4.41)

Since ai and b are assumed to be independently normally distributed random
variables, the quantity

y =
n∑

i=1

aixi − b

is also normally distributed with the following expected value and variance,

E[y] =
n∑

i=1
E[ai]xi − E[b],

V [y] =
n∑

i=1
V [ai]x2

i + V [b].

We note that
n∑

i=1
aixi − b −

(
n∑

i=1
E[ai]xi − E[b]

)
√

n∑
i=1

V [ai]x2
i + V [b]
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must be standardized normally distributed. Since the inequality
∑n

i=1 aixi ≤
b is equivalent to

n∑
i=1

aixi − b −
(

n∑
i=1

E[ai]xi − E[b]
)

√
n∑

i=1
V [ai]x2

i + V [b]

≤ −

n∑
i=1

E[ai]xi − E[b]√
n∑

i=1
V [ai]x2

i + V [b]

,

the chance constraint (4.41) is equivalent to

Pr

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

η ≤ −

n∑
i=1

E[ai]xi − E[b]√
n∑

i=1
V [ai]x2

i + V [b]

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

≥ α (4.42)

where η is the standardized normally distributed random variable. Then the
chance constraint (4.42) holds if and only if

Φ−1(α) ≤ −

n∑
i=1

E[ai]xi − E[b]√
n∑

i=1
V [ai]x2

i + V [b]

. (4.43)

That is, the deterministic equivalent of chance constraint is (4.40). The
theorem is proved.

Example 4.11. Suppose that the chance constraint set has the following
form,

Pr {a1x1 + a2x2 + a2x3 ≤ b} ≥ 0.95 (4.44)

where a1, a2, a3, and b are normally distributed random variables N (1, 1),
N (2, 1), N (3, 1), and N (4, 1), respectively. Then the formula (4.40) yields
the deterministic equivalent of (4.44) as follows,

x1 + 2x2 + 3x3 + 1.645
√

x2
1 + x2

2 + x2
3 + 1 ≤ 4

by the fact that Φ−1(0.95) = 1.645.

4.4 Dependent-Chance Programming

In practice, there usually exist multiple events in a complex stochastic deci-
sion system. Sometimes, the decision-maker wishes to maximize the probabil-
ities of meeting these events. In order to model this type of stochastic decision
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system, Liu [166] provided the third type of stochastic programming, called
dependent-chance programming (DCP), in which the underlying philosophy
is based on selecting the decision with maximal chance to meet the event.

DCP theory breaks the concept of feasible set and replaces it with un-
certain environment. Roughly speaking, DCP involves maximizing chance
functions of events in an uncertain environment. In deterministic model,
EVM and CCP, the feasible set is essentially assumed to be deterministic
after the real problem is modeled. That is, an optimal solution is given
regardless of whether it can be performed in practice. However, the given
solution may be impossible to perform if the realization of uncertain pa-
rameter is unfavorable. Thus DCP theory never assumes that the feasible
set is deterministic. In fact, DCP is constructed in an uncertain environ-
ment. This special feature of DCP is very different from the other existing
types of stochastic programming. However, such problems do exist in the real
world.

Now we introduce the concepts of uncertain environment, event and chance
function, and discuss the principle of uncertainty, thus offering a spectrum
of DCP models. We will take a supply system, represented by Figure 4.1 as
the background.
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Fig. 4.1 A Supply System

As an illustrative example, in Figure 4.1 there are 3 inputs representing 3
locations of resources and 4 outputs representing the demands of 4 users. We
must answer the following supply problem: What is the appropriate combi-
nation of resources such that certain goals of supply are achieved?

In order to obtain the appropriate combination of resources for the supply
problem, we use 12 decision variables x1, x2, · · · , x12 to represent an action,
where x1, x2, x3, x4 are quantities ordered from input1 to outputs 1,2,3,4 re-
spectively; x5, x6, x7, x8 from input2; x9, x10, x11, x12 from input3. In practice,
some variables may vanish due to some physical constraints.

We note that the inputs are available outside resources. Thus they have
their own properties. For example, the capacities of resources are finite. Let
ξ1, ξ2, ξ3 be the maximum quantities supplied by the three resources. Then
we have the following constraint,
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x+
1 + x+

2 + x+
3 + x+

4 ≤ ξ1

x+
5 + x+

6 + x+
7 + x+

8 ≤ ξ2

x+
9 + x+

10 + x+
11 + x+

12 ≤ ξ3

xi ≥ 0, i = 1, 2, · · · , 12

(4.45)

which represents that the quantities ordered from the resources are nonneg-
ative and cannot exceed the maximum quantities, where x+

i represents xi if
xi takes positive value, and vanishes otherwise. This means that the decision
variable xi = 0 must be able to perform for any realization of stochastic
resources.

If at least one of ξ1, ξ2, and ξ3 is really stochastic, then the constraint
(4.45) is uncertain because we cannot make a decision such that it can be
performed certainly before knowing the realization of ξ1, ξ2, and ξ3. We will
call this type of constraint the uncertain environment, and in this case the
stochastic environment.

Definition 4.14. By uncertain environment we mean the following stochas-
tic constraint,

gj(x, ξ) ≤ 0, j = 1, 2, · · · , p, (4.46)

where x is a decision vector, and ξ is a stochastic vector.

In the supply system, we should satisfy the demands of the 4 users, marked
by c1, c2, c3, and c4. Then we have the following four events:

x1 + x5 + x9 = c1, x2 + x6 + x10 = c2,

x3 + x7 + x11 = c3, x4 + x8 + x12 = c4.

These equalities mean that the decision should satisfy the demands of users.
Generally, an event is defined as follows.

Definition 4.15. By event we mean a system of stochastic inequalities,

hk(x, ξ) ≤ 0, k = 1, 2, · · · , q (4.47)

where x is a decision vector, and ξ is a stochastic vector.

In view of the uncertainty of this system, we are not sure whether a deci-
sion can be performed before knowing the realization of stochastic variables.
Thus we wish to employ the following chance functions to evaluate these four
events,

f1(x) = Pr{x1 + x5 + x9 = c1}, f2(x) = Pr{x2 + x6 + x10 = c2},

f3(x) = Pr{x3 + x7 + x11 = c3}, f4(x) = Pr{x4 + x8 + x12 = c4},

subject to the uncertain environment (4.45).

Definition 4.16. The chance function of an event E characterized by (4.47)
is defined as the probability measure of the event, i.e.,
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f(x) = Pr {hk(x, ξ) ≤ 0, k = 1, 2, · · · , q} (4.48)

subject to the uncertain environment (4.46).

Usually, we hope to maximize the four chance functions f1(x), f2(x), f3(x)
and f4(x). Here we remind the reader once more that the events like
x1 + x5 + x9 = c1 do possess uncertainty because they are in an uncertain
environment. Any event is uncertain if it is in an uncertain environment!
This is an important law in the uncertain world. In fact, the randomness of
the event is caused by the stochastic parameters ξ1, ξ2, ξ3, and ξ4 in the
uncertain environment.

Until now we have formulated a stochastic programming model for the
supply problem in an uncertain environment as follows,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max f1(x) = Pr{x1 + x5 + x9 = c1}
max f2(x) = Pr{x2 + x6 + x10 = c2}
max f3(x) = Pr{x3 + x7 + x11 = c3}
max f4(x) = Pr{x4 + x8 + x12 = c4}
subject to:

x+
1 + x+

2 + x+
3 + x+

4 ≤ ξ1

x+
5 + x+

6 + x+
7 + x+

8 ≤ ξ2

x+
9 + x+

10 + x+
11 + x+

12 ≤ ξ3

xi ≥ 0, i = 1, 2, · · · , 12

(4.49)

where ξ1, ξ2, and ξ3 are stochastic variables. In this stochastic program-
ming model, some variables (for example, x1, x2, x3, x4) are stochastically
dependent because they share a common uncertain resource ξ1. This also
implies that the chance functions are stochastically dependent. We will call
the stochastic programming (4.49) dependent-chance programming (DCP).

Principle of Uncertainty

How do we compute the chance function of an event E in an uncertain envi-
ronment? In order to answer this question, we first give some definitions.

Definition 4.17. Let r(x1, x2, · · · , xn) be an n-dimensional function. The ith
decision variable xi is said to be degenerate if

r(x1, · · · , xi−1, x
′
i, xi+1, · · · , xn) = r(x1, · · · , xi−1, x

′′
i , xi+1, · · · , xn)

for any x′
i and x′′

i ; otherwise it is nondegenerate.

For example, r(x1, x2, x3, x4, x5) = (x1 + x3)/x4 is a 5-dimensional function.
The variables x1, x3, x4 are nondegenerate, but x2 and x5 are degenerate.
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Definition 4.18. Let E be an event hk(x, ξ) ≤ 0, k = 1, 2, · · · , q. The sup-
port of the event E, denoted by E∗, is defined as the set consisting of all
nondegenerate decision variables of functions hk(x, ξ), k = 1, 2, · · · , q.

For example, let x = (x1, x2, · · · , x12) be a decision vector, and let E be an
event characterized by x1 + x5 + x9 = c1 and x2 + x6 + x10 = c2. It is clear
that x1, x5, x9 are nondegenerate variables of the function x1 + x5 + x9, and
x2, x6, x10 are nondegenerate variables of the function x2 + x6 + x10. Thus
the support E∗ of the event E is {x1, x2, x5, x6, x9, x10}.

Definition 4.19. The jth constraint gj(x, ξ) ≤ 0 is called an active con-
straint of the event E if the set of nondegenerate decision variables of gj(x, ξ)
and the support E∗ have nonempty intersection; otherwise it is inactive.

Definition 4.20. Let E be an event hk(x, ξ) ≤ 0, k = 1, 2, · · · , q in the un-
certain environment gj(x, ξ) ≤ 0, j = 1, 2, · · · , p. The dependent support of
the event E, denoted by E∗∗, is defined as the set consisting of all nondegen-
erate decision variables of hk(x, ξ), k = 1, 2, · · · , q and gj(x, ξ) in the active
constraints to the event E.

Remark 4.3. It is obvious that E∗ ⊂ E∗∗ holds.

Definition 4.21. The jth constraint gj(x, ξ) ≤ 0 is called a dependent con-
straint of the event E if the set of nondegenerate decision variables of gj(x, ξ)
and the dependent support E∗∗ have nonempty intersection; otherwise it is in-
dependent.

Remark 4.4. An active constraint must be a dependent constraint.

Definition 4.22. Let E be an event hk(x, ξ) ≤ 0, k = 1, 2, · · · , q in the un-
certain environment gj(x, ξ) ≤ 0, j = 1, 2, · · · , p. For each decision x and
realization ξ, the event E is said to be consistent in the uncertain environ-
ment if the following two conditions hold: (i) hk(x, ξ) ≤ 0, k = 1, 2, · · · , q;
and (ii) gj(x, ξ) ≤ 0, j ∈ J , where J is the index set of all dependent
constraints.

Intuitively, an event can be met by a decision provided that the decision
meets both the event itself and the dependent constraints. We conclude it
with the following principle of uncertainty.

Principle of Uncertainty: The chance of a random event is the probability
that the event is consistent in the uncertain environment.

Assume that there are m events Ei characterized by hik(x, ξ) ≤ 0, k =
1, 2, · · · , qi for i = 1, 2, · · · , m in the uncertain environment gj(x, ξ) ≤ 0, j =
1, 2, · · · , p. The principle of uncertainty implies that the chance function of
the ith event Ei in the uncertain environment is

fi(x) = Pr
{

hik(x, ξ) ≤ 0, k = 1, 2, · · · , qi

gj(x, ξ) ≤ 0, j ∈ Ji

}
(4.50)
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where Ji are defined by

Ji =
{
j ∈ {1, 2, · · · , p}

∣∣ gj(x, ξ) ≤ 0 is a dependent constraint of Ei

}
for i = 1, 2, · · · , m.

Remark 4.5. The principle of uncertainty is the basis of solution procedure
of DCP that we shall encounter throughout the remainder of the book. How-
ever, the principle of uncertainty does not apply in all cases. For example,
consider an event x1 ≥ 6 in the uncertain environment x1−x2 ≤ ξ1, x2−x3 ≤
ξ2, x3 ≤ ξ3. It follows from the principle of uncertainty that the chance of
the event is Pr{x1 ≥ 6, x1 − x2 ≤ ξ1, x2 − x3 ≤ ξ2}, which is clearly wrong
because the realization of x3 ≤ ξ3 must be considered. Fortunately, such a
case does not exist in real-life problems.

General Models

In this subsection, we consider the single-objective DCP. A typical DCP is
represented as maximizing the chance function of an event subject to an
uncertain environment,

⎧⎪⎨
⎪⎩

max Pr {hk(x, ξ) ≤ 0, k = 1, 2, · · · , q}
subject to:

gj(x, ξ) ≤ 0, j = 1, 2, · · · , p
(4.51)

where x is an n-dimensional decision vector, ξ is a random vector of param-
eters, the system hk(x, ξ) ≤ 0, k = 1, 2, · · · , q represents an event E , and the
constraints gj(x, ξ) ≤ 0, j = 1, 2, · · · , p are an uncertain environment.

DCP (4.51) reads as “maximizing the probability of the random event
hk(x, ξ) ≤ 0, k = 1, 2, · · · , q subject to the uncertain environment gj(x, ξ) ≤
0, j = 1, 2, · · · , p”.

We now go back to the supply system. Assume that there is only one event
E that satisfies the demand c1 of output1 (i.e., x1 + x5 + x9 = c1). If we want
to find a decision x with maximum probability to meet the event E , then we
have the following DCP model,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

max Pr{x1 + x5 + x9 = c1}
subject to:

x+
1 + x+

2 + x+
3 + x+

4 ≤ ξ1

x+
5 + x+

6 + x+
7 + x+

8 ≤ ξ2

x+
9 + x+

10 + x+
11 + x+

12 ≤ ξ3

xi ≥ 0, i = 1, 2, · · · , 12.

(4.52)
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It is clear that the support of the event E is E∗ = {x1, x5, x9}. If x1 �= 0, x5 �=
0, x9 �= 0, then the uncertain environment is⎧⎪⎪⎨

⎪⎪⎩
x1 + x2 + x3 + x4 ≤ ξ1
x5 + x6 + x7 + x8 ≤ ξ2
x9 + x10 + x11 + x12 ≤ ξ3
xi ≥ 0, i = 1, 2, · · · , 12.

Thus the dependent support E∗∗ = {x1, x2, · · · , x12}, and all constraints are
dependent constraints. It follows from the principle of uncertainty that the
chance function of the event E is

f(x) = Pr

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x1 + x5 + x9 = c1
x1 + x2 + x3 + x4 ≤ ξ1
x5 + x6 + x7 + x8 ≤ ξ2
x9 + x10 + x11 + x12 ≤ ξ3
xi ≥ 0, i = 1, 2, · · · , 12

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

If x1 = 0, x5 �= 0, x9 �= 0, then the uncertain environment is⎧⎪⎪⎨
⎪⎪⎩

0 + x2 + x3 + x4 ≤ ξ1
x5 + x6 + x7 + x8 ≤ ξ2
x9 + x10 + x11 + x12 ≤ ξ3
xi ≥ 0, i = 1, 2, · · · , 12.

Thus the dependent support E∗∗ = {x5, x6, · · · , x12}. It follows from the
principle of uncertainty that the chance function of the event E is

f(x) = Pr

⎧⎪⎪⎨
⎪⎪⎩

x1 + x5 + x9 = c1
x5 + x6 + x7 + x8 ≤ ξ2
x9 + x10 + x11 + x12 ≤ ξ3
xi ≥ 0, i = 5, 6, · · · , 12

⎫⎪⎪⎬
⎪⎪⎭ .

Similarly, if x1 �= 0, x5 = 0, x9 �= 0, then the chance function of the event E is

f(x) = Pr

⎧⎪⎪⎨
⎪⎪⎩

x1 + x5 + x9 = c1
x1 + x2 + x3 + x4 ≤ ξ1
x9 + x10 + x11 + x12 ≤ ξ3
xi ≥ 0, i = 1, 2, 3, 4, 9, 10, 11, 12

⎫⎪⎪⎬
⎪⎪⎭ .

If x1 �= 0, x5 �= 0, x9 = 0, then the chance function of the event E is

f(x) = Pr

⎧⎪⎪⎨
⎪⎪⎩

x1 + x5 + x9 = c1
x1 + x2 + x3 + x4 ≤ ξ1
x5 + x6 + x7 + x8 ≤ ξ2
xi ≥ 0, i = 1, 2, · · · , 8

⎫⎪⎪⎬
⎪⎪⎭ .

If x1 = 0, x5 = 0, x9 �= 0, then the chance function of the event E is
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f(x) = Pr

⎧⎨
⎩

x1 + x5 + x9 = c1
x9 + x10 + x11 + x12 ≤ ξ3
xi ≥ 0, i = 9, 10, · · · , 12

⎫⎬
⎭ .

If x1 = 0, x5 �= 0, x9 = 0, then the chance function of the event E is

f(x) = Pr

⎧⎨
⎩

x1 + x5 + x9 = c1
x5 + x6 + x7 + x8 ≤ ξ2
xi ≥ 0, i = 5, 6, · · · , 8

⎫⎬
⎭ .

If x1 �= 0, x5 = 0, x9 = 0, then the chance function of the event E is

f(x) = Pr

⎧⎨
⎩

x1 + x5 + x9 = c1
x1 + x2 + x3 + x4 ≤ ξ1
xi ≥ 0, i = 1, 2, · · · , 4

⎫⎬
⎭ .

Note that the case x1 = x5 = x9 = 0 is impossible because c1 �= 0. It follows
that DCP (4.52) is equivalent to the unconstrained model “max f(x)”.

Dependent-Chance Multiobjective Programming

Since a complex decision system usually undertakes multiple events, there
undoubtedly exist multiple potential objectives (some of them are chance
functions) in a decision process. A typical formulation of dependent-chance
multiobjective programming (DCMOP) is represented as maximizing
multiple chance functions subject to an uncertain environment,

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

max

⎡
⎢⎢⎣

Pr{h1k(x, ξ) ≤ 0, k = 1, 2, · · · , q1}
Pr {h2k(x, ξ) ≤ 0, k = 1, 2, · · · , q2}

· · ·
Pr {hmk(x, ξ) ≤ 0, k = 1, 2, · · · , qm}

⎤
⎥⎥⎦

subject to:
gj(x, ξ) ≤ 0, j = 1, 2, · · · , p

(4.53)

where hik(x, ξ) ≤ 0, k = 1, 2, · · · , qi represent events Ei for i = 1, 2, · · · , m,
respectively.

It follows from the principle of uncertainty that we can construct a rela-
tionship between decision vectors and chance functions, thus calculating the
chance functions by stochastic simulations or traditional methods. Then we
can solve DCMOP by utility theory if complete information of the prefer-
ence function is given by the decision-maker or search for all of the efficient
solutions if no information is available. In practice, the decision-maker can
provide only partial information. In this case, we have to employ the inter-
active methods.
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Dependent-Chance Goal Programming

When some management targets are given, the objective function may mini-
mize the deviations, positive, negative, or both, with a certain priority struc-
ture set by the decision-maker. Then we may formulate the stochastic decision
system as the following dependent-chance goal programming (DCGP),⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
l∑

j=1
Pj

m∑
i=1

(uijd
+
i ∨ 0 + vijd

−
i ∨ 0)

subject to:
Pr {hik(x, ξ) ≤ 0, k = 1, 2, · · · , qi} − bi = d+

i , i = 1, 2, · · · , m
bi − Pr {hik(x, ξ) ≤ 0, k = 1, 2, · · · , qi} = d−i , i = 1, 2, · · · , m
gj(x, ξ) ≤ 0, j = 1, 2, · · · , p

where Pj is the preemptive priority factor, uij is the weighting factor corre-
sponding to positive deviation for goal i with priority j assigned, vij is the
weighting factor corresponding to negative deviation for goal i with priority
j assigned, d+

i ∨ 0 is the positive deviation from the target of goal i, d−i ∨ 0
is the negative deviation from the target of goal i, bi is the target value ac-
cording to goal i, l is the number of priorities, and m is the number of goal
constraints.

4.5 Hybrid Intelligent Algorithm

From the mathematical viewpoint, there is no difference between determin-
istic mathematical programming and stochastic programming except for the
fact that there exist uncertain functions in the latter. If the uncertain func-
tions can be converted to their deterministic forms, then we can obtain equiv-
alent deterministic models. However, generally speaking, we cannot do so. It
is thus more convenient to deal with them by stochastic simulations. Essen-
tially, there are three types of uncertain functions in stochastic programming
as follows:

U1 : x → E[f(x, ξ)],

U2 : x → Pr {gj(x, ξ) ≤ 0, j = 1, 2, · · · , p} ,

U3 : x → max
{
f
∣∣ Pr

{
f(x, ξ) ≥ f

}
≥ α

}
.

(4.54)

Stochastic Simulation for U1(x)

In order to compute the uncertain function U1(x), we generate ωk from the
probability space (Ω,�, Pr) and produce ξk = ξ(ωk) for k = 1, 2, · · · , N .
Equivalently, we generate random vectors ξk according to the probability dis-
tribution Φ for k = 1, 2, · · · , N . It follows from the strong law of large numbers
that
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N∑
k=1

f(x, ξk)

N
−→ U1(x), a.s. (4.55)

as N → ∞. Therefore, the value U1(x) is estimated by

1
N

N∑
k=1

f(x, ξk)

provided that N is sufficiently large.

Algorithm 4.4 (Stochastic Simulation for U1(x))
Step 1. Set e = 0.
Step 2. Generate ω from the probability space (Ω,�, Pr) and produce ξ =

ξ(ω). Equivalently, generate a random vector ξ according to its
probability distribution.

Step 3. e ← e + f(x, ξ).
Step 4. Repeat the second and third steps N times.
Step 5. U1(x) = e/N .

Stochastic Simulation for U2(x)

In order to compute the uncertain function U2(x), we generate ωk from the
probability space (Ω,�, Pr) and produce ξk = ξ(ωk) for k = 1, 2, · · · , N .
Equivalently, we generate random vectors ξk according to the probability dis-
tribution Φ for k = 1, 2, · · · , N . Let N ′ denote the number of occasions on
which gj(x, ξk) ≤ 0, j = 1, 2, · · · , p for k = 1, 2, · · · , N (i.e., the number of
random vectors satisfying the system of inequalities). Let us define

h(x, ξk) =

{
1, if gj(x, ξk) ≤ 0, j = 1, 2, · · · , p
0, otherwise.

Then we have E[h(x, ξk)] = U2(x) for all k, and N ′ =
∑N

k=1 h(x, ξk). It
follows from the strong law of large numbers that

N ′

N
=

N∑
k=1

h(x, ξk)

N

converges a.s. to U2(x). Thus U2(x) can be estimated by N ′/N provided that
N is sufficiently large.
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Algorithm 4.5 (Stochastic Simulation for U2(x))
Step 1. Set N ′ = 0.
Step 2. Generate ω from the probability space (Ω,�, Pr) and produce ξ =

ξ(ω). Equivalently, generate a random vector ξ according to its
probability distribution.

Step 3. If gj(x, ξ) ≤ 0 for j = 1, 2, · · · , p, then N ′ ← N ′ + 1.
Step 4. Repeat the second and third steps N times.
Step 5. U2(x) = N ′/N .

Stochastic Simulation for U3(x)

In order to compute the uncertain function U3(x), we generate ωk from the
probability space (Ω,�, Pr) and produce ξk = ξ(ωk) for k = 1, 2, · · · , N .
Equivalently, we generate random vectors ξk according to the probability dis-
tribution Φ for k = 1, 2, · · · , N . Now we define

h(x, ξk) =

{
1, if f(x, ξk) ≥ f

0, otherwise

for k = 1, 2, · · · , N , which are random variables, and E[h(x, ξk)] = α for all
k. By the strong law of large numbers, we obtain

N∑
k=1

h(x, ξk)

N
−→ α, a.s.

as N → ∞. Note that the sum
∑N

k=1 h(x, ξk) is just the number of ξk

satisfying f(x, ξk) ≥ f for k = 1, 2, · · · , N . Thus f is just the N ′th largest
element in the sequence {f(x, ξ1), f(x, ξ2), · · · , f(x, ξN )}, where N ′ is the
integer part of αN .

Algorithm 4.6 (Stochastic Simulation for U3(x))
Step 1. Generate ωk from the probability space (Ω,�, Pr) and produce ξk =

ξ(ωk) for k = 1, 2, · · · , N . Equivalently, generate random vectors ξk

according to the probability distribution for k = 1, 2, · · · , N .
Step 2. Set fi = f(x, ξk) for k = 1, 2, · · · , N .
Step 3. Set N ′ as the integer part of βN .
Step 4. Return the N ′th largest element in {f1, f2, · · · , fN} as U3(x).
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Neural Network for Approximating Uncertain Functions

Although stochastic simulations are able to compute the uncertain func-
tions, we need relatively simple functions to approximate the uncertain
functions because the stochastic simulations are a time-consuming pro-
cess. In order to speed up the solution process, neural network (NN) is
employed to approximate uncertain functions due to the following rea-
sons: (i) NN has the ability to approximate the uncertain functions by
using the training data; (ii) NN can compensate for the error of training
data (all input-output data obtained by stochastic simulation are clearly
not precise); and (iii) NN has the high speed of operation after they are
trained.

Hybrid Intelligent Algorithm

Liu [181] integrated stochastic simulation, NN and GA to produce a hybrid
intelligent algorithm for solving stochastic programming models.

Algorithm 4.7 (Hybrid Intelligent Algorithm)
Step 1. Generate training input-output data for uncertain functions like

U1 : x → E[f(x, ξ)],

U2 : x → Pr {gj(x, ξ) ≤ 0, j = 1, 2, · · · , p} ,

U3 : x → max
{
f
∣∣ Pr

{
f(x, ξ) ≥ f

}
≥ α

}
by the stochastic simulation.

Step 2. Train a neural network to approximate the uncertain functions ac-
cording to the generated training input-output data.

Step 3. Initialize pop size chromosomes whose feasibility may be checked
by the trained neural network.

Step 4. Update the chromosomes by crossover and mutation operations in
which the feasibility of offspring may be checked by the trained
neural network.

Step 5. Calculate the objective values for all chromosomes by the trained
neural network.

Step 6. Compute the fitness of each chromosome according to the objective
values.

Step 7. Select the chromosomes by spinning the roulette wheel.
Step 8. Repeat the fourth to seventh steps for a given number of cycles.
Step 9. Report the best chromosome as the optimal solution.
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4.6 Numerical Experiments

In order to illustrate its effectiveness, a set of numerical examples has been
done, and the results are successful. Here we give some numerical examples
which are all performed on a personal computer with the following param-
eters: the population size is 30, the probability of crossover Pc is 0.3, the
probability of mutation Pm is 0.2, and the parameter a in the rank-based
evaluation function is 0.05.

Example 4.12. Now we consider the following EVM,⎧⎪⎨
⎪⎩

min E
[√

(x1 − ξ1)2 + (x2 − ξ2)2 + (x3 − ξ3)2
]

subject to:
x2

1 + x2
2 + x2

3 ≤ 10

where ξ1 is a uniformly distributed random variable U(1, 2), ξ2 is a normally
distributed random variable N (3, 1), and ξ3 is an exponentially distributed
random variable EXP(4).

In order to solve this model, we generate input-output data for the
uncertain function

U : (x1, x2, x3) → E
[√

(x1 − ξ1)2 + (x2 − ξ2)2 + (x3 − ξ3)2
]

by stochastic simulation. Then we train an NN (3 input neurons, 5 hidden neu-
rons, 1 output neuron) to approximate the uncertain function U . After that, the
trained NN is embedded into a GA to produce a hybrid intelligent algorithm.

A run of the hybrid intelligent algorithm (3000 cycles in simulation, 2000
data in NN, 300 generations in GA) shows that the optimal solution is

(x∗
1, x

∗
2, x

∗
3) = (1.1035, 2.1693, 2.0191)

whose objective value is 3.56.

Example 4.13. Let us consider the following CCP in which there are three
decision variables and nine stochastic parameters,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

max f

subject to:

Pr
{
ξ1x1 + ξ2x2 + ξ3x3 ≥ f

}
≥ 0.90

Pr
{
η1x

2
1 + η2x

2
2 + η3x

2
3 ≤ 8

}
≥ 0.80

Pr
{
τ1x

3
1 + τ2x

3
2 + τ3x

3
3 ≤ 15

}
≥ 0.85

x1, x2, x3 ≥ 0

where ξ1, η1, and τ1 are uniformly distributed random variables U(1, 2),
U(2, 3), and U(3, 4), respectively, ξ2, η2, and τ2 are normally distributed
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random variables N (1, 1), N (2, 1), and N (3, 1), respectively, and ξ3, η3, and
τ3 are exponentially distributed random variables EXP(1), EXP(2), and
EXP(3), respectively,

We employ stochastic simulation to generate input-output data for the
uncertain function U : x → (U1(x), U2(x), U3(x)), where

U1(x) = max
{
f
∣∣ Pr

{
ξ1x1 + ξ2x2 + ξ3x3 ≥ f

}
≥ 0.90

}
,

U2(x) = Pr
{
η1x

2
1 + η2x

2
2 + η3x

2
3 ≤ 8

}
,

U3(x) = Pr
{
τ1x

3
1 + τ2x

3
2 + τ3x

3
3 ≤ 15

}
.

Then we train an NN (3 input neurons, 15 hidden neurons, 3 output neurons)
to approximate the uncertain function U . Finally, we integrate the trained
NN and GA to produce a hybrid intelligent algorithm.

A run of the hybrid intelligent algorithm (5000 cycles in simulation,
3000 training data in NN, 1000 generations in GA) shows that the optimal
solution is

(x∗
1, x

∗
2, x

∗
3) = (1.458, 0.490, 0.811)

with objective value f
∗

= 2.27.

Example 4.14. Let us now turn our attention to the following DCGP,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lexmin
{
d−1 ∨ 0, d−2 ∨ 0, d−3 ∨ 0

}
subject to:

0.92 − Pr{x1 + x2
4 = 4} = d−1

0.85 − Pr{x2
2 + x6 = 3} = d−2

0.85 − Pr{x2
3 + x2

5 + x2
7 = 2} = d−3

x1 + x2 + x3 ≤ ξ1

x4 + x5 ≤ ξ2

x6 + x7 ≤ ξ3

xi ≥ 0, i = 1, 2, · · · , 7

where ξ1, ξ2, and ξ3 are uniformly distributed random variable U [3, 5], nor-
mally distributed random variable N (3.5, 1), and exponentially distributed
random variable EXP(9), respectively.

In the first priority level, there is only one event E1 which will be fulfilled
by x1 + x2

4 = 4. It is clear that the support E∗
1 = {x1, x4} and the dependent

support E∗∗
1 = {x1, x2, x3, x4, x5}. Thus the dependent constraints of E1 are

x1 + x2 + x3 ≤ ξ1, x4 + x5 ≤ ξ2, x1, x2, x3, x4, x5 ≥ 0.

It follows from the principle of uncertainty that the chance function f1(x) of
E1 is
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f1(x) = Pr

⎧⎪⎪⎨
⎪⎪⎩

x1 + x2
4 = 4

x1 + x2 + x3 ≤ ξ1
x4 + x5 ≤ ξ2
x1, x2, x3, x4, x5 ≥ 0

⎫⎪⎪⎬
⎪⎪⎭ .

At the second priority level, there is an event E2 which will be fulfilled by
x2

2 + x6 = 3. The support E∗
2 = {x2, x6} and the dependent support E∗∗

2 =
{x1, x2, x3, x6, x7}. Thus the dependent constraints of E2 are

x1 + x2 + x3 ≤ ξ1, x6 + x7 ≤ ξ3, x1, x2, x3, x6, x7 ≥ 0.

The principle of uncertainty implies that the chance function f2(x) of the
event E2 is

f2(x) = Pr

⎧⎪⎪⎨
⎪⎪⎩

x2
2 + x6 = 3

x1 + x2 + x3 ≤ ξ1
x6 + x7 ≤ ξ3
x1, x2, x3, x6, x7 ≥ 0

⎫⎪⎪⎬
⎪⎪⎭ .

At the third priority level, there is an event E3 which will be fulfilled by x2
3 +

x2
5 + x2

7 = 2. The support E∗
3 = {x3, x5, x7} and the dependent support E∗∗

3
includes all decision variables. Thus all constraints are dependent constraints
of E3. It follows from the principle of uncertainty that the chance function
f3(x) of the event E3 is

f3(x) = Pr

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x2
3 + x2

5 + x2
7 = 2

x1 + x2 + x3 ≤ ξ1
x4 + x5 ≤ ξ2
x6 + x7 ≤ ξ3
x1, x2, x3, x4, x5, x6, x7 ≥ 0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

We encode a solution into a chromosome V = (v1, v2, v3, v4), and decode a
chromosome into a feasible solution in the following way,

x1 = v1, x2 = v2, x3 = v3, x4 =
√

4 − v1,

x5 = v4, x6 = 3 − v2
2 , x7 =

√
2 − v2

3 − v2
4 .

We first employ stochastic simulation to generate input-output data for
the uncertain function U : (v1, v2, v3, v4) → (f1(x), f2(x), f3(x)). Then we
train an NN (4 input neurons, 10 hidden neurons, 3 output neurons) to
approximate it. Finally, we embed the trained NN into a GA to produce a
hybrid intelligent algorithm.

A run of the hybrid intelligent algorithm (6000 cycles in simulation, 3000
data in NN, 1000 generations in GA) shows that the optimal solution is

x∗ = (0.1180, 1.7320, 0.1491, 1.9703, 0.0000, 0.0000, 1.4063)

which can satisfy the first two goals, but the third objective is 0.05.



Chapter 5
Fuzzy Programming

Fuzzy programming offers a powerful means of handling optimization prob-
lems with fuzzy parameters. Fuzzy programming has been used in different
ways in the past. Liu and Liu [184] presented a concept of expected value
operator of fuzzy variable and provided a spectrum of fuzzy expected value
models which optimize the expected objective functions subject to some ex-
pected constraints. In addition, Liu and Iwamura [168][169] introduced a
spectrum of fuzzy maximax chance-constrained programming, and Liu [171]
constructed a spectrum of fuzzy minimax chance-constrained programming
in which we assume that the fuzzy constraints will hold with a given credibil-
ity level. Liu [172] provided a fuzzy dependent-chance programming theory
in order to maximize the chance functions of satisfying some events.

5.1 Fuzzy Variables

The concept of fuzzy set was initialized by Zadeh [325] in 1965. Fuzzy set
theory has been well developed and applied in a wide variety of real prob-
lems. In order to measure a fuzzy event, Zadeh [328] proposed the concept
of possibility measure in 1978. Although possibility measure has been widely
used, it is not self-dual. However, a self-dual measure is absolutely needed
in both theory and practice. In order to define a self-dual measure, Liu and
Liu [184] presented the concept of credibility measure in 2002. In addition, a
sufficient and necessary condition for credibility measure was given by Li and
Liu [160]. Credibility theory was founded by Liu [186] in 2004 and refined by
Liu [189] in 2007 as a branch of mathematics for studying the behavior of
fuzzy phenomena.

Let Θ be a nonempty set, and � the power set of Θ. Each element in � is
called an event. In order to present an axiomatic definition of credibility, it
is necessary to assign to each event A a number Cr{A} which indicates the
credibility that A will occur. In order to ensure that the number Cr{A} has
certain mathematical properties which we intuitively expect a credibility to
have, we accept the following four axioms:

B. Liu: Theory and Practice of Uncertain Programming, STUDFUZZ 239, pp. 57–82.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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Axiom 1. (Normality) Cr{Θ} = 1.

Axiom 2. (Monotonicity) Cr{A} ≤ Cr{B} whenever A ⊂ B.

Axiom 3. (Self-Duality) Cr{A} + Cr{Ac} = 1 for any event A.

Axiom 4. (Maximality) Cr {∪iAi} = supi Cr{Ai} for any events {Ai} with
supi Cr{Ai} < 0.5.

Definition 5.1. (Liu and Liu [184]) The set function Cr is called a cred-
ibility measure if it satisfies the normality, monotonicity, self-duality, and
maximality axioms.

Example 5.1. Let Θ = {θ1, θ2}. For this case, there are only four events:
∅, {θ1}, {θ2}, Θ. Define Cr{∅} = 0, Cr{θ1} = 0.7, Cr{θ2} = 0.3, and Cr{Θ} =
1. Then the set function Cr is a credibility measure because it satisfies the
first four axioms.

Example 5.2. Let Θ be a nonempty set. Define Cr{∅} = 0, Cr{Θ} = 1 and
Cr{A} = 1/2 for any subset A (excluding ∅ and Θ). Then the set function
Cr is a credibility measure.

Example 5.3. Let µ be a nonnegative function on � (the set of real numbers)
such that supµ(x) = 1. Then the set function

Cr{A} =
1
2

(
sup
x∈A

µ(x) + 1 − sup
x∈Ac

µ(x)
)

(5.1)

is a credibility measure on �.

Theorem 5.1. Let Cr be a credibility measure. Then Cr{∅} = 0 and 0 ≤
Cr{A} ≤ 1 for any A ∈ �.

Proof: It follows from Axioms 1 and 3 that Cr{∅} = 1−Cr{Θ} = 1− 1 = 0.
Since ∅ ⊂ A ⊂ Θ, we have 0 ≤ Cr{A} ≤ 1 by using Axiom 2.

Theorem 5.2. Let Θ be a nonempty set, � the power set of Θ, and Cr the
credibility measure. Then for any A, B ∈ �, we have

Cr{A ∪ B} = Cr{A} ∨ Cr{B} if Cr{A ∪ B} ≤ 0.5, (5.2)

Cr{A ∩ B} = Cr{A} ∧ Cr{B} if Cr{A ∩ B} ≥ 0.5. (5.3)

The above equations hold for not only finite number of events but also infinite
number of events.

Proof: If Cr{A ∪ B} < 0.5, then Cr{A} ∨ Cr{B} < 0.5 by using Axiom 2.
Thus the equation (5.2) follows immediately from Axiom 4. If Cr{A∪B} = 0.5
and (5.2) does not hold, then we have Cr{A} ∨ Cr{B} < 0.5. It follows from
Axiom 4 that
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Cr{A ∪ B} = Cr{A} ∨ Cr{B} < 0.5.

A contradiction proves (5.2). Next we prove (5.3). Since Cr{A ∩ B} ≥ 0.5,
we have Cr{Ac ∪ Bc} ≤ 0.5 by the self-duality. Thus

Cr{A ∩ B}= 1 − Cr{Ac ∪ Bc} = 1 − Cr{Ac} ∨ Cr{Bc}
= (1 − Cr{Ac}) ∧ (1 − Cr{Bc}) = Cr{A} ∧ Cr{B}.

The theorem is proved.

Theorem 5.3. (Liu [186], Credibility Subadditivity Theorem) The credibility
measure is subadditive. That is,

Cr{A ∪ B} ≤ Cr{A} + Cr{B} (5.4)

for any events A and B. In fact, credibility measure is not only finitely
subadditive but also countably subadditive.

Proof: The argument breaks down into three cases.
Case 1: Cr{A} < 0.5 and Cr{B} < 0.5. It follows from Axiom 4 that

Cr{A ∪ B} = Cr{A} ∨ Cr{B} ≤ Cr{A} + Cr{B}.

Case 2: Cr{A} ≥ 0.5. For this case, by using Axioms 2 and 3, we have
Cr{Ac} ≤ 0.5 and Cr{A ∪ B} ≥ Cr{A} ≥ 0.5. Then

Cr{Ac}= Cr{Ac ∩ B} ∨ Cr{Ac ∩ Bc}
≤ Cr{Ac ∩ B} + Cr{Ac ∩ Bc}
≤ Cr{B} + Cr{Ac ∩ Bc}.

Applying this inequality, we obtain

Cr{A} + Cr{B}= 1 − Cr{Ac} + Cr{B}
≥ 1 − Cr{B} − Cr{Ac ∩ Bc} + Cr{B}
= 1 − Cr{Ac ∩ Bc}
= Cr{A ∪ B}.

Case 3: Cr{B} ≥ 0.5. This case may be proved by a similar process of
Case 2. The theorem is proved.

Definition 5.2. Let Θ be a nonempty set, � the power set of Θ, and Cr a
credibility measure. Then the triplet (Θ,�, Cr) is called a credibility space.

Definition 5.3. A fuzzy variable is defined as a (measurable) function from
a credibility space (Θ,�, Cr) to the set of real numbers.
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Definition 5.4. Let f : �n → � be a function, and ξ1, ξ2, · · · , ξn fuzzy vari-
ables on the credibility space (Θ,�, Cr). Then ξ = f(ξ1, ξ2, · · · , ξn) is a fuzzy
variable defined as

ξ(θ) = f(ξ1(θ), ξ2(θ), · · · , ξn(θ)) (5.5)

for any θ ∈ Θ.

Definition 5.5. An n-dimensional fuzzy vector is defined as a function from
a credibility space (Θ,�, Cr) to the set of n-dimensional real vectors.

Theorem 5.4. The vector (ξ1, ξ2, · · · , ξn) is a fuzzy vector if and only if
ξ1, ξ2, · · · , ξn are fuzzy variables.

Proof: Write ξ = (ξ1, ξ2, · · · , ξn). Suppose that ξ is a fuzzy vector. Then
ξ1, ξ2, · · · , ξn are functions from Θ to �. Thus ξ1, ξ2, · · · , ξn are fuzzy variables.
Conversely, suppose that ξ1, ξ2, · · · , ξn are fuzzy variables defined on the cred-
ibility space (Θ,�, Cr). It is clear that (ξ1, ξ2, · · · , ξn) is a function from the
credibility space (Θ,�, Cr) to �n. Hence (ξ1, ξ2, · · · , ξn) is a fuzzy vector.

Membership Function

Definition 5.6. Let ξ be a fuzzy variable defined on the credibility space
(Θ,�, Cr). Then its membership function is derived from the credibility
measure by

µ(x) = (2Cr{ξ = x}) ∧ 1, x ∈ �. (5.6)

Example 5.4. By an equipossible fuzzy variable on [a, b] we mean the fuzzy
variable whose membership function is given by

µ1(x) =

{
1, if a ≤ x ≤ b

0, otherwise.

Example 5.5. By a triangular fuzzy variable we mean the fuzzy variable
fully determined by the triplet (r1, r2, r3) of crisp numbers with r1 < r2 < r3,
whose membership function is given by

µ2(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x − r1

r2 − r1
, if r1 ≤ x ≤ r2

x − r3

r2 − r3
, if r2 ≤ x ≤ r3

0, otherwise.

Example 5.6. By a trapezoidal fuzzy variable we mean the fuzzy variable
fully determined by quadruplet (r1, r2, r3, r4) of crisp numbers with r1 < r2 <
r3 < r4, whose membership function is given by
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Fig. 5.1 Membership Functions µ1, µ2 and µ3

µ3(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x − r1

r2 − r1
, if r1 ≤ x ≤ r2

1, if r2 ≤ x ≤ r3

x − r4

r3 − r4
, if r3 ≤ x ≤ r4

0, otherwise.

Theorem 5.5. (Credibility Inversion Theorem) Let ξ be a fuzzy variable with
membership function µ. Then for any set B of real numbers, we have

Cr{ξ ∈ B} =
1
2

(
sup
x∈B

µ(x) + 1 − sup
x∈Bc

µ(x)
)

. (5.7)

Proof: If Cr{ξ ∈ B} ≤ 0.5, then by Axiom 2, we have Cr{ξ = x} ≤ 0.5 for
each x ∈ B. It follows from Axiom 4 that

Cr{ξ ∈ B} =
1
2

(
sup
x∈B

(2Cr{ξ = x} ∧ 1)
)

=
1
2

sup
x∈B

µ(x). (5.8)

The self-duality of credibility measure implies that Cr{ξ ∈ Bc} ≥ 0.5 and
supx∈Bc Cr{ξ = x} ≥ 0.5, i.e.,

sup
x∈Bc

µ(x) = sup
x∈Bc

(2Cr{ξ = x} ∧ 1) = 1. (5.9)

It follows from (5.8) and (5.9) that (5.7) holds.
If Cr{ξ ∈ B} ≥ 0.5, then Cr{ξ ∈ Bc} ≤ 0.5. It follows from the first case

that

Cr{ξ ∈ B}= 1 − Cr{ξ ∈ Bc} = 1 − 1
2

(
sup

x∈Bc

µ(x) + 1 − sup
x∈B

µ(x)
)

=
1
2

(
sup
x∈B

µ(x) + 1 − sup
x∈Bc

µ(x)
)

.

The theorem is proved.
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Independence

The independence of fuzzy variables has been discussed by many authors
from different angles. Here we use the condition given by Liu and Gao [206].

Definition 5.7. The fuzzy variables ξ1, ξ2, · · · , ξm are said to be
independent if

Cr

{
m⋂

i=1

{ξi ∈ Bi}
}

= min
1≤i≤m

Cr {ξi ∈ Bi} (5.10)

for any sets B1, B2, · · · , Bm of real numbers.

Theorem 5.6. Let µi be membership functions of fuzzy variables ξi, i =
1, 2, · · · , m, respectively, and µ the joint membership function of fuzzy vector
(ξ1, ξ2, · · · , ξm). Then the fuzzy variables ξ1, ξ2, · · · , ξm are independent if
and only if

µ(x1, x2, · · · , xm) = min
1≤i≤m

µi(xi) (5.11)

for any real numbers x1, x2, · · · , xm.

Proof: Suppose that ξ1, ξ2, · · · , ξm are independent. It follows that

µ(x1, x2, · · · , xm)=

(
2Cr

{
m⋂

i=1

{ξi = xi}
})

∧ 1

=
(

2 min
1≤i≤m

Cr{ξi = xi}
)

∧ 1

= min
1≤i≤m

(2Cr{ξi = xi}) ∧ 1 = min
1≤i≤m

µi(xi).

Conversely, for any real numbers x1, x2, · · · , xm with Cr{∩m
i=1{ξi = xi}} <

0.5, we have

Cr

{
m⋂

i=1

{ξi = xi}
}
=

1
2

(
2Cr

{
m⋂

i=1

{ξi = xi}
})

∧ 1

=
1
2
µ(x1, x2, · · · , xm) =

1
2

min
1≤i≤m

µi(xi)

=
1
2

(
min

1≤i≤m
(2Cr {ξi = xi}) ∧ 1

)

= min
1≤i≤m

Cr {ξi = xi} .

It follows that ξ1, ξ2, · · · , ξm are independent. The theorem is proved.
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Theorem 5.7. (Extension Principle of Zadeh) Let ξ1, ξ2, · · · , ξn be inde-
pendent fuzzy variables with membership functions µ1, µ2, · · · , µn, respec-
tively, and f : �n → � a function. Then the membership function µ of
ξ = f(ξ1, ξ2, · · · , ξn) is derived from the membership functions µ1, µ2, · · · , µn

by
µ(x) = sup

x=f(x1,x2,··· ,xn)
min

1≤i≤n
µi(xi). (5.12)

Proof: It follows from Definition 5.6 that the membership function of ξ =
f(ξ1, ξ2, · · · , ξn) is

µ(x)= (2Cr {f(ξ1, ξ2, · · · , ξn) = x}) ∧ 1

=

⎛
⎝2Cr

⎧⎨
⎩

⋃
x=f(x1,x2,··· ,xn)

{ξ1 = x1, ξ2 = x2, · · · , ξn = xn}

⎫⎬
⎭
⎞
⎠ ∧ 1

=

(
2 sup

x=f(x1,x2,··· ,xn)
Cr{ξ1 = x1, ξ2 = x2, · · · , ξn = xn}

)
∧ 1

=

(
2 sup

x=f(x1,x2,··· ,xn)
min

1≤k≤n
Cr{ξi = xi}

)
∧ 1 (by independence)

= sup
x=f(x1,x2,··· ,xn)

min
1≤k≤n

(2Cr{ξi = xi}) ∧ 1

= sup
x=f(x1,x2,··· ,xn)

min
1≤i≤n

µi(xi).

The theorem is proved.

Example 5.7. By using Theorem 5.7, we may verify that the sum of inde-
pendent equipossible fuzzy variables ξ = (a1, a2) and η = (b1, b2) is also an
equipossible fuzzy variable, and

ξ + η = (a1 + b1, a2 + b2).

Their product is also an equipossible fuzzy variable, and

ξ · η =
(

min
a1≤x≤a2,b1≤y≤b2

xy, max
a1≤x≤a2,b1≤y≤b2

xy

)
.

Example 5.8. The sum of independent triangular fuzzy variables ξ =
(a1, a2, a3) and η = (b1, b2, b3) is also a triangular fuzzy variable, and

ξ + η = (a1 + b1, a2 + b2, a3 + b3).

The product of a triangular fuzzy variable ξ = (a1, a2, a3) and a scalar number
λ is
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λ · ξ =

{
(λa1, λa2, λa3), if λ ≥ 0

(λa3, λa2, λa1), if λ < 0.

That is, the product of a triangular fuzzy variable and a scalar number is
also a triangular fuzzy variable. However, the product of two triangular fuzzy
variables is not a triangular one.

Example 5.9. The sum of independent trapezoidal fuzzy variables ξ =
(a1, a2, a3, a4) and η = (b1, b2, b3, b4) is also a trapezoidal fuzzy variable,
and ξ + η = (a1 + b1, a2 + b2, a3 + b3, a4 + b4). The product of a trapezoidal
fuzzy variable ξ = (a1, a2, a3, a4) and a scalar number λ is

λ · ξ =

{
(λa1, λa2, λa3, λa4), if λ ≥ 0

(λa4, λa3, λa2, λa1), if λ < 0.

That is, the product of a trapezoidal fuzzy variable and a scalar number is
also a trapezoidal fuzzy variable.

Example 5.10. Let ξ1, ξ2, · · · , ξn be independent fuzzy variables with mem-
bership functionsµ1, µ2, · · · , µn, respectively, and f : �n → � a function.Then
for any set B of real numbers, the credibility Cr{f(ξ1, ξ2, · · · , ξn) ∈ B} is

1
2

(
sup

f(x1,x2,··· ,xn)∈B

min
1≤i≤n

µi(xi) + 1 − sup
f(x1,x2,··· ,xn)∈Bc

min
1≤i≤n

µi(xi)

)
.

Expected Value

For fuzzy variables, there are many ways to define an expected value operator.
The most general definition of expected value operator of fuzzy variable was
given by Liu and Liu [184]. This definition is not only applicable to continuous
fuzzy variables but also discrete ones.

Definition 5.8. (Liu and Liu [184]) Let ξ be a fuzzy variable. Then the ex-
pected value of ξ is defined by

E[ξ] =
∫ +∞

0
Cr{ξ ≥ r}dr −

∫ 0

−∞
Cr{ξ ≤ r}dr (5.13)

provided that at least one of the two integrals is finite.

Example 5.11. Let ξ be the equipossible fuzzy variable (a, b). If a ≥ 0, then
Cr{ξ ≤ r} ≡ 0 when r < 0, and

Cr{ξ ≥ r} =

⎧⎪⎨
⎪⎩

1, if r ≤ a

0.5, if a < r ≤ b

0, if r > b,
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E[ξ] =

(∫ a

0
1dr +

∫ b

a

0.5dr +
∫ +∞

b

0dr

)
−
∫ 0

−∞
0dr =

a + b

2
.

If b ≤ 0, then Cr{ξ ≥ r} ≡ 0 when r > 0, and

Cr{ξ ≤ r} =

⎧⎪⎨
⎪⎩

1, if r ≥ b

0.5, if a ≤ r < b

0, if r < a,

E[ξ] =
∫ +∞

0
0dr −

(∫ a

−∞
0dr +

∫ b

a

0.5dr +
∫ 0

b

1dr

)
=

a + b

2
.

If a < 0 < b, then

Cr{ξ ≥ r} =
{

0.5, if 0 ≤ r ≤ b

0, if r > b,

Cr{ξ ≤ r} =

{
0, if r < a

0.5, if a ≤ r ≤ 0,

E[ξ] =

(∫ b

0
0.5dr +

∫ +∞

b

0dr

)
−
(∫ a

−∞
0dr +

∫ 0

a

0.5dr

)
=

a + b

2
.

Thus we always have the expected value (a + b)/2.

Example 5.12. The triangular fuzzy variable ξ = (a, b, c) has an expected
value E[ξ] = (a + 2b + c)/4.

Example 5.13. The trapezoidal fuzzy variable ξ = (a, b, c, d) has an expected
value E[ξ] = (a + b + c + d)/4.

Example 5.14. Let ξ be a continuous nonnegative fuzzy variable with mem-
bership function µ. If µ is decreasing on [0, +∞), then Cr{ξ ≥ x} = µ(x)/2
for any x > 0, and

E[ξ] =
1
2

∫ +∞

0
µ(x)dx.

Example 5.15. Let ξ be a continuous fuzzy variable with membership func-
tion µ. If its expected value exists, and there is a point x0 such that µ(x) is
increasing on (−∞, x0) and decreasing on (x0, +∞), then

E[ξ] = x0 +
1
2

∫ +∞

x0

µ(x)dx − 1
2

∫ x0

−∞
µ(x)dx.

Example 5.16. The definition of expected value operator is also applicable
to discrete case. Assume that ξ is a simple fuzzy variable whose membership
function is given by



66 5 Fuzzy Programming

µ(x) =

⎧⎪⎪⎨
⎪⎪⎩

µ1, if x = x1
µ2, if x = x2
· · ·
µm, if x = xm

(5.14)

where x1, x2, · · · , xm are distinct numbers. Note that µ1 ∨ µ2 ∨ · · · ∨ µm = 1.
Definition 5.8 implies that the expected value of ξ is

E[ξ] =
m∑

i=1

wixi (5.15)

where the weights are given by

wi =
1
2

(
max

1≤j≤m
{µj|xj ≤ xi} − max

1≤j≤m
{µj |xj < xi}

+ max
1≤j≤m

{µj|xj ≥ xi} − max
1≤j≤m

{µj |xj > xi}
)

for i = 1, 2, · · · , m. It is easy to verify that all wi ≥ 0 and the sum of all
weights is just 1.

Example 5.17. Consider the fuzzy variable ξ defined by (5.14). Suppose
x1 < x2 < · · · < xm. Then the expected value is determined by (5.15) and
the weights are given by

wi =
1
2

(
max
1≤j≤i

µj − max
1≤j<i

µj + max
i≤j≤m

µj − max
i<j≤m

µj

)

for i = 1, 2, · · · , m.

Example 5.18. Consider the fuzzy variable ξ defined by (5.14). Suppose
x1 < x2 < · · · < xm and there exists an index k with 1 < k < m such that

µ1 ≤ µ2 ≤ · · · ≤ µk and µk ≥ µk+1 ≥ · · · ≥ µm.

Note that µk ≡ 1. The expected value E[ξ] is

µ1

2
x1+

k−1∑
i=2

µi − µi−1

2
xi+

(
1 − µk−1 + µk+1

2

)
xk+

m−1∑
i=k+1

µi − µi+1

2
xi+

µm

2
xm.

Remark 5.1. Let ξ and η be independent fuzzy variables with finite expected
values. Then for any numbers a and b, we have

E[aξ + bη] = aE[ξ] + bE[η]. (5.16)

This property is called the linearity of expected value operator of fuzzy
variables.
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Critical Values

In order to rank fuzzy variables, we may use two critical values: optimistic
value and pessimistic value.

Definition 5.9. (Liu [181]) Let ξ be a fuzzy variable, and α ∈ (0, 1]. Then

ξsup(α) = sup
{
r
∣∣ Cr {ξ ≥ r} ≥ α

}
(5.17)

is called the α-optimistic value to ξ; and

ξinf(α) = inf
{
r
∣∣ Cr {ξ ≤ r} ≥ α

}
(5.18)

is called the α-pessimistic value to ξ.

Example 5.19. Let ξ be an equipossible fuzzy variable on [a, b]. Then its
α-optimistic and α-pessimistic values are

ξsup(α) =

{
b, if α ≤ 0.5
a, if α > 0.5,

ξinf(α) =

{
a, if α ≤ 0.5
b, if α > 0.5.

Example 5.20. Let ξ = (r1, r2, r3) be a triangular fuzzy variable. Then its
α-optimistic and α-pessimistic values are

ξsup(α) =

{
2αr2 + (1 − 2α)r3, if α ≤ 0.5
(2α − 1)r1 + (2 − 2α)r2, if α > 0.5,

ξinf(α) =

{
(1 − 2α)r1 + 2αr2, if α ≤ 0.5
(2 − 2α)r2 + (2α − 1)r3, if α > 0.5.

Example 5.21. Let ξ = (r1, r2, r3, r4) be a trapezoidal fuzzy variable. Then
its α-optimistic and α-pessimistic values are

ξsup(α) =

{
2αr3 + (1 − 2α)r4, if α ≤ 0.5
(2α − 1)r1 + (2 − 2α)r2, if α > 0.5,

ξinf(α) =

{
(1 − 2α)r1 + 2αr2, if α ≤ 0.5
(2 − 2α)r3 + (2α − 1)r4, if α > 0.5.

Theorem 5.8. Let ξ be a fuzzy variable. Then we have
(a) ξinf(α) is an increasing and left-continuous function of α;
(b) ξsup(α) is a decreasing and left-continuous function of α.

Proof: (a) It is easy to prove that ξinf(α) is an increasing function of α.
Next, we prove the left-continuity of ξinf(α) with respect to α. Let {αi} be
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an arbitrary sequence of positive numbers such that αi ↑ α. Then {ξinf(αi)}
is an increasing sequence. If the limitation is equal to ξinf(α), then the left-
continuity is proved. Otherwise, there exists a number z∗ such that

lim
i→∞

ξinf(αi) < z∗ < ξinf(α).

Thus Cr{ξ ≤ z∗} ≥ αi for each i. Letting i → ∞, we get Cr{ξ ≤ z∗} ≥ α.
Hence z∗ ≥ ξinf(α). A contradiction proves the left-continuity of ξinf(α) with
respect to α. The part (b) may be proved similarly.

Ranking Criteria

Let ξ and η be two fuzzy variables. Different from the situation of real num-
bers, there does not exist a natural ordership in a fuzzy world. Thus an
important problem appearing in this area is how to rank fuzzy variables.
Here we give four ranking criteria.

Expected Value Criterion: We say ξ > η if and only if E[ξ] > E[η], where
E is the expected value operator of fuzzy variable.

Optimistic Value Criterion: We say ξ > η if and only if, for some prede-
termined confidence level α ∈ (0, 1], we have ξsup(α) > ηsup(α), where ξsup(α)
and ηsup(α) are the α-optimistic values of ξ and η, respectively.

Pessimistic Value Criterion: We say ξ > η if and only if, for some prede-
termined confidence level α ∈ (0, 1], we have ξinf(α) > ηinf(α), where ξinf(α)
and ηinf(α) are the α-pessimistic values of ξ and η, respectively.

Credibility Criterion: We say ξ > η if and only if Cr {ξ ≥ r} > Cr {η ≥ r}
for some predetermined level r.

5.2 Expected Value Model

Assume that x is a decision vector, ξ is a fuzzy vector, f(x, ξ) is a return
function, and gj(x, ξ) are constraint functions, j = 1, 2, · · · , p. Let us examine
the following “fuzzy programming”,⎧⎪⎨

⎪⎩
max f(x, ξ)
subject to:

gj(x, ξ) ≤ 0, j = 1, 2, · · · , p.

(5.19)

Similar to stochastic programming, the model (5.19) is not well-defined be-
cause (i) we cannot maximize the fuzzy quantity f(x, ξ) (just like that we
cannot maximize a random quantity), and (ii) the constraints gj(x, ξ) ≤
0, j = 1, 2, · · · , p do not produce a crisp feasible set.
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Unfortunately, the form of fuzzy programming like (5.19) appears fre-
quently in the literature. Fuzzy programming is a class of mathematical
models. Different from fashion or building models, everyone should have the
same understanding of the same mathematical model. In other words, a math-
ematical model must have an unambiguous explanation. The form (5.19) does
not have mathematical meaning because it has different interpretations.

In order to obtain the decision with maximum expected return, Liu and
Liu [184] provided a spectrum of fuzzy expected value model (EVM),⎧⎪⎨

⎪⎩
max E[f(x, ξ)]
subject to:

E[gj(x, ξ)] ≤ 0, j = 1, 2, · · · , p

(5.20)

where x is a decision vector, ξ is a fuzzy vector, f(x, ξ) is the return function,
and gj(x, ξ) are the constraint functions, j = 1, 2, · · · , p.

In many cases, we may have multiple return functions. Thus we have to
employ fuzzy expected value multiobjective programming (EVMOP),⎧⎪⎨

⎪⎩
max [E[f1(x, ξ)], E[f2(x, ξ)], · · · , E[fm(x, ξ)]]
subject to:

E[gj(x, ξ)] ≤ 0, j = 1, 2, · · · , p

(5.21)

where fi(x, ξ) are return functions, i = 1, 2, · · · , m.
In order to balance the multiple conflicting objectives, we may employ the

following fuzzy expected value goal programming (EVGP),⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
l∑

j=1
Pj

m∑
i=1

(uijd
+
i ∨ 0 + vijd

−
i ∨ 0)

subject to:
E[fi(x, ξ)] − bi = d+

i , i = 1, 2, · · · , m

bi − E[fi(x, ξ)] = d−i , i = 1, 2, · · · , m

E[gj(x, ξ)] ≤ 0, j = 1, 2, · · · , p

(5.22)

where Pj is the preemptive priority factor which expresses the relative im-
portance of various goals, Pj � Pj+1, for all j, uij is the weighting factor
corresponding to positive deviation for goal i with priority j assigned, vij

is the weighting factor corresponding to negative deviation for goal i with
priority j assigned, d+

i ∨ 0 is the positive deviation from the target of goal
i, d−i ∨ 0 is the negative deviation from the target of goal i, fi is a function
in goal constraints, gj is a function in real constraints, bi is the target value
according to goal i, l is the number of priorities, m is the number of goal
constraints, and p is the number of real constraints.
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5.3 Chance-Constrained Programming

Assume that x is a decision vector, ξ is a fuzzy vector, f(x, ξ) is a return
function, and gj(x, ξ) are constraint functions, j = 1, 2, · · · , p. Since the fuzzy
constraints gj(x, ξ) ≤ 0, j = 1, 2, · · · , p do not define a deterministic feasible
set, a natural idea is to provide a confidence level α at which it is desired
that the fuzzy constraints hold. Thus we have a chance constraint as follows,

Cr {gj(x, ξ) ≤ 0, j = 1, 2, · · · , p} ≥ α. (5.23)

Sometimes, we may employ the following separate chance constraints,

Cr {gj(x, ξ) ≤ 0} ≥ αj , j = 1, 2, · · · , p (5.24)

where αj are confidence levels for j = 1, 2, · · · , p.

Maximax Chance-Constrained Programming

Liu and Iwamura [168][169] suggested a spectrum of fuzzy CCP. When we
want to maximize the optimistic return, we have the following fuzzy CCP,⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max
x

max
f

f

subject to:

Cr
{
f(x, ξ) ≥ f

}
≥ β

Cr {gj(x, ξ) ≤ 0, j = 1, 2, · · · , p} ≥ α

(5.25)

where α and β are the predetermined confidence levels, and max f is the
β-optimistic return.

If there are multiple objectives, then we have a chance-constrained multi-
objective programming (CCMOP),⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

max
x

[
max

f1

f1, max
f2

f2, · · · , max
fm

fm

]

subject to:

Cr
{
fi(x, ξ) ≥ f i

}
≥ βi, i = 1, 2, · · · , m

Cr{gj(x, ξ) ≤ 0} ≥ αj , j = 1, 2, · · · , p

(5.26)

where α1, α2, · · · , αp, β1, β2, · · · , βm are the predetermined confidence levels,
and max f i are the βi-optimistic values to the return functions fi(x, ξ), i =
1, 2, · · · , m, respectively.

We can also formulate the fuzzy decision system as a minimin chance-
constrained goal programming (CCGP) according to the priority structure
and target levels set by the decision-maker:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
x

l∑
j=1

Pj

m∑
i=1

(
uij

(
min
d+

i

d+
i ∨ 0

)
+ vij

(
min
d−

i

d−i ∨ 0

))

subject to:
Cr
{
fi(x, ξ) − bi ≤ d+

i

}
≥ β+

i , i = 1, 2, · · · , m

Cr
{
bi − fi(x, ξ) ≤ d−i

}
≥ β−

i , i = 1, 2, · · · , m

Cr {gj(x, ξ) ≤ 0} ≥ αj , j = 1, 2, · · · , p

(5.27)

where Pj is the preemptive priority factor which expresses the relative im-
portance of various goals, Pj � Pj+1, for all j, uij is the weighting factor
corresponding to positive deviation for goal i with priority j assigned, vij

is the weighting factor corresponding to negative deviation for goal i with
priority j assigned, min d+

i ∨ 0 is the β+
i -optimistic positive deviation from

the target of goal i, min d−i ∨ 0 is the β−
i -optimistic negative deviation from

the target of goal i, fi is a function in goal constraints, gj is a function in
real constraints, bi is the target value according to goal i, l is the number
of priorities, m is the number of goal constraints, p is the number of real
constraints.

Minimax Chance-Constrained Programming

In fact, maximax CCP models are essentially a type of optimistic models
which maximize the maximum possible return. This section introduces a
spectrum of minimax CCP constructed by Liu [171], which will select the
alternative that provides the best of the worst possible return.

If we want to maximize the pessimistic return, then we have the following
minimax CCP, ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max
x

min
f

f

subject to:

Cr
{
f(x, ξ) ≤ f

}
≥ β

Cr {gj(x, ξ) ≤ 0, j = 1, 2, · · · , p} ≥ α

(5.28)

where min f is the β-pessimistic return.
If there are multiple objectives, we may employ the following minimax

CCMOP, ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max
x

[
min
f1

f1, min
f2

f2, · · · , min
fm

fm

]

subject to:

Cr
{
fi(x, ξ) ≤ f i

}
≥ βi, i = 1, 2, · · · , m

Cr {gj(x, ξ) ≤ 0} ≥ αj , j = 1, 2, · · · , p

(5.29)
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where αj and βi are confidence levels, and min f i are the βi-pessimistic values
to the return functions fi(x, ξ), i = 1, 2, · · · , m, respectively.

According to the priority structure and target levels set by the decision-
maker, the minimax CCGP is written as follows,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
x

l∑
j=1

Pj

m∑
i=1

[
uij

(
max
d+

i

d+
i ∨ 0

)
+ vij

(
max
d−

i

d−i ∨ 0

)]

subject to:
Cr
{
fi(x, ξ) − bi ≥ d+

i

}
≥ β+

i , i = 1, 2, · · · , m

Cr
{
bi − fi(x, ξ) ≥ d−i

}
≥ β−

i , i = 1, 2, · · · , m

Cr {gj(x, ξ) ≤ 0} ≥ αj , j = 1, 2, · · · , p

(5.30)

where Pj is the preemptive priority factor which expresses the relative im-
portance of various goals, Pj � Pj+1, for all j, uij is the weighting factor
corresponding to positive deviation for goal i with priority j assigned, vij

is the weighting factor corresponding to negative deviation for goal i with
priority j assigned, max d+

i ∨ 0 is the β+
i -pessimistic positive deviation from

the target of goal i, max d−i ∨ 0 is the β−
i -pessimistic negative deviation from

the target of goal i, bi is the target value according to goal i, l is the number
of priorities, and m is the number of goal constraints.

Crisp Equivalents

One way of solving fuzzy CCP is to convert the chance constraint

Cr {g(x, ξ) ≤ 0} ≥ α (5.31)

into its crisp equivalent and then solve the equivalent crisp model by the
traditional solution process. Please note that

(a) the system constraints Cr{gj(x, ξ) ≤ 0} ≥ αj , j = 1, 2, · · · , p are a set of
form (5.31);

(b) the objective constraint Cr{f(x, ξ) ≥ f} ≥ β coincides with the form
(5.31) by defining g(x, ξ) = f − f(x, ξ);

(c) the fuzzy constraint Cr{f(x, ξ) ≤ f} ≥ β coincides with the form (5.31)
by defining g(x, ξ) = f(x, ξ) − f ;

(d) Cr{b − f(x, ξ) ≤ d−} ≥ β and Cr{f(x, ξ) − b ≤ d+} ≥ β coincide
with the form (5.31) by defining g(x, ξ) = b − f(x, ξ) − d− and g(x, ξ) =
f(x, ξ) − b − d+, respectively; and

(e) Cr{b − f(x, ξ) ≥ d−} ≥ β and Cr{f(x, ξ) − b ≥ d+} ≥ β coincide
with the form (5.31) by defining g(x, ξ) = f(x, ξ) + d− − b and g(x, ξ) =
b − f(x, ξ) + d+, respectively.

This section presents some useful results.
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Theorem 5.9. Assume that the fuzzy vector ξ degenerates to a fuzzy variable ξ
with continuous membership function µ, and the function g(x, ξ) has the form
g(x, ξ) = h(x)−ξ. Then Cr{g(x, ξ) ≤ 0} ≥ α if and only if h(x) ≤ Kα, where

Kα =

{
sup

{
K|K = µ−1(2α)

}
, if α < 1/2

inf
{
K|K = µ−1(2(1 − α))

}
, if α ≥ 1/2.

(5.32)

Proof: It is easy to verify the theorem by the relation between credibility
measure and membership function.

Theorem 5.10. Assume that the function g(x, ξ) can be rewritten as,

g(x, ξ) = h1(x)ξ1 + h2(x)ξ2 + · · · + ht(x)ξt + h0(x)

where ξk are trapezoidal fuzzy variables (rk1, rk2, rk3, rk4), k = 1, 2, · · · , t,
respectively. We define two functions h+

k (x) = hk(x) ∨ 0 and h−
k (x) =

−(hk(x) ∧ 0) for k = 1, 2, · · · , t. Then we have
(a) when α < 1/2, Cr{g(x, ξ) ≤ 0} ≥ α if and only if

(1 − 2α)
t∑

k=1

[
rk1h

+
k (x) − rk4h

−
k (x)

]

+2α
t∑

k=1

[
rk2h

+
k (x) − rk3h

−
k (x)

]
+ h0(x) ≤ 0;

(5.33)

(b) when α ≥ 1/2, Cr{g(x, ξ) ≤ 0} ≥ α if and only if

(2 − 2α)
t∑

k=1

[
rk3h

+
k (x) − rk2h

−
k (x)

]

+(2α − 1)
t∑

k=1

[
rk4h

+
k (x) − rk1h

−
k (x)

]
+ h0(x) ≤ 0.

(5.34)

Proof: It is clear that the functions h+
k (x) and h−

k (x) are all nonnegative
and hk(x) = h+

k (x) − h−
k (x). Thus we have

g(x, ξ)=
t∑

k=1
hk(x)ξk + h0(x)

=
t∑

k=1

[
h+

k (x) − h−
k (x)

]
ξk + h0(x)

=
t∑

k=1

[
h+

k (x)ξk + h−
k (x)ξ′k

]
+ h0(x)

where ξ′k are also trapezoidal fuzzy variables,

ξ′k = (−rk4, −rk3, −rk2, −rk1), k = 1, 2, · · · , t.

By the addition and multiplication operations of trapezoidal fuzzy variables,
the function g(x, ξ) is also a trapezoidal fuzzy variable determined by the
quadruple
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g(x, ξ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t∑
k=1

[
rk1h

+
k (x) − rk4h

−
k (x)

]
+ h0(x)

t∑
k=1

[
rk2h

+
k (x) − rk3h

−
k (x)

]
+ h0(x)

t∑
k=1

[
rk3h

+
k (x) − rk2h

−
k (x)

]
+ h0(x)

t∑
k=1

[
rk4h

+
k (x) − rk1h

−
k (x)

]
+ h0(x)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

.

It follows that the results hold.

5.4 Dependent-Chance Programming

Liu [172] provided a fuzzy dependent-chance programming (DCP) theory
in which the underlying philosophy is based on selecting the decision with
maximum credibility to meet the event.

Basic Concepts

Uncertain environment, event and chance function are key elements in the
framework of DCP in a stochastic environment. Let us redefine them in fuzzy
environments.

Definition 5.10. By uncertain environment (in this case the fuzzy environ-
ment) we mean the fuzzy constraints represented by

gj(x, ξ) ≤ 0, j = 1, 2, · · · , p (5.35)

where x is a decision vector, and ξ is a fuzzy vector.

Definition 5.11. By event we mean a system of fuzzy inequalities,

hk(x, ξ) ≤ 0, k = 1, 2, · · · , q (5.36)

where x is a decision vector, and ξ is a fuzzy vector.

Definition 5.12. The chance function of an event E characterized by (5.36)
is defined as the credibility measure of the event E, i.e.,

f(x) = Cr{hk(x, ξ) ≤ 0, k = 1, 2, · · · , q} (5.37)

subject to the uncertain environment (5.35).

The concepts of the support, dependent support, active constraint, and de-
pendent constraint are the same with those in stochastic case. Thus, for
each decision x and realization ξ, an event E is said to be consistent in the
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uncertain environment if the following two conditions hold: (i) hk(x, ξ) ≤ 0,
k = 1, 2, · · · , q; and (ii) gj(x, ξ) ≤ 0, j ∈ J , where J is the index set of all
dependent constraints. In order to compute the chance function of a fuzzy
event, we need the following principle of uncertainty.

Principle of Uncertainty: The chance of a fuzzy event is the credibility
that the event is consistent in the uncertain environment.

Assume that there are m events Ei characterized by hik(x, ξ) ≤ 0, k =
1, 2, · · · , qi for i = 1, 2, · · · , m in the uncertain environment gj(x, ξ) ≤ 0, j =
1, 2, · · · , p. The principle of uncertainty implies that the chance function of
the ith event Ei in the uncertain environment is

fi(x) = Cr
{

hik(x, ξ) ≤ 0, k = 1, 2, · · · , qi

gj(x, ξ) ≤ 0, j ∈ Ji

}
(5.38)

where Ji are defined by

Ji =
{
j ∈ {1, 2, · · · , p}

∣∣ gj(x, ξ) ≤ 0 is a dependent constraint of Ei

}
for i = 1, 2, · · · , m.

General Models

A typical formulation of DCP in a fuzzy environment is given as follows:⎧⎪⎨
⎪⎩

max Cr {hk(x, ξ) ≤ 0, k = 1, 2, · · · , q}
subject to:

gj(x, ξ) ≤ 0, j = 1, 2, · · · , p

(5.39)

where x is an n-dimensional decision vector, ξ is a fuzzy vector, the event E is
characterized by hk(x, ξ) ≤ 0, k = 1, 2, · · · , q, and the uncertain environment
is described by the fuzzy constraints gj(x, ξ) ≤ 0, j = 1, 2, · · · , p.

Fuzzy DCP (5.39) reads as “maximizing the credibility of the fuzzy event
hk(x, ξ) ≤ 0, k = 1, 2, · · · , q subject to the uncertain environment gj(x, ξ) ≤
0, j = 1, 2, · · · , p”.

Since a complex decision system usually undertakes multiple tasks, there
undoubtedly exist multiple potential objectives. A typical formulation of fuzzy
dependent-chance multiobjective programming (DCMOP) is given as follows,⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

max

⎡
⎢⎢⎣

Cr {h1k(x, ξ) ≤ 0, k = 1, 2, · · · , q1}
Cr {h2k(x, ξ) ≤ 0, k = 1, 2, · · · , q2}

· · ·
Cr {hmk(x, ξ) ≤ 0, k = 1, 2, · · · , qm}

⎤
⎥⎥⎦

subject to:
gj(x, ξ) ≤ 0, j = 1, 2, · · · , p

(5.40)
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where hik(x, ξ) ≤ 0, k = 1, 2, · · · , qi represent events Ei for i = 1, 2, · · · , m,
respectively.

Dependent-chance goal programming (DCGP) in fuzzy environment may
be considered as an extension of goal programming in a complex fuzzy deci-
sion system. When some management targets are given, the objective func-
tion may minimize the deviations, positive, negative, or both, with a certain
priority structure. Thus we can formulate a fuzzy decision system as a DCGP
according to the priority structure and target levels set by the decision-maker,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
l∑

j=1
Pj

m∑
i=1

(uijd
+
i ∨ 0 + vijd

−
i ∨ 0)

subject to:
Cr {hik(x, ξ) ≤ 0, k = 1, 2, · · · , qi} − bi = d+

i , i = 1, 2, · · · , m

bi − Cr {hik(x, ξ) ≤ 0, k = 1, 2, · · · , qi} = d−i , i = 1, 2, · · · , m

gj(x, ξ) ≤ 0, j = 1, 2, · · · , p

where Pj is the preemptive priority factor which expresses the relative impor-
tance of various goals, Pj � Pj+1, for all j, uij is the weighting factor cor-
responding to positive deviation for goal i with priority j assigned, vij is the
weighting factor corresponding to negative deviation for goal i with priority j
assigned, d+

i ∨ 0 is the positive deviation from the target of goal i, d−i ∨ 0 is
the negative deviation from the target of goal i, gj is a function in system con-
straints, bi is the target value according to goal i, l is the number of priorities,
m is the number of goal constraints, and p is the number of system constraints.

5.5 Hybrid Intelligent Algorithm

In order to solve general fuzzy programming models, we must deal with the
following three types of uncertain function:

U1 : x → E[f(x, ξ)],
U2 : x → Cr {gj(x, ξ) ≤ 0, j = 1, 2, · · · , p} ,

U3 : x → max
{
f
∣∣ Cr

{
f(x, ξ) ≥ f

}
≥ α

}
.

(5.41)

Fuzzy Simulation for U1(x)

In order to compute the expected value U1(x), the following procedure may
be used. We randomly generate θk from the credibility space (Θ,�, Cr),
write νk = (2Cr{θk}) ∧ 1 and produce ξk = ξ(θk), k = 1, 2, · · · , N , re-
spectively. Equivalently, we randomly generate ξk and write νk = µ(ξk) for
k = 1, 2, · · · , N , where µ is the membership function of ξ. Then for any
number r ≥ 0, the credibility Cr{f(x, ξ) ≥ r} can be estimated by

1
2

(
max

1≤k≤N

{
νk

∣∣ f(x, ξk) ≥ r
}

+ min
1≤k≤N

{
1 − νk

∣∣ f(x, ξk) < r
})
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and for any number r < 0, the credibility Cr{f(x, ξ) ≤ r} can be estimated
by

1
2

(
max

1≤k≤N

{
νk

∣∣ f(x, ξk) ≤ r
}

+ min
1≤k≤N

{
1 − νk

∣∣ f(x, ξk) > r
})

provided that N is sufficiently large. Thus U1(x) may be estimated by the
following procedure.

Algorithm 5.1 (Fuzzy Simulation for U1(x))
Step 1. Set e = 0.
Step 2. Randomly generate θk from the credibility space (Θ,�, Cr), write

νk = (2Cr{θk})∧1 and produce ξk = ξ(θk), k = 1, 2, · · · , N , respec-
tively. Equivalently, randomly generate ξk and write νk = µ(ξk) for
k = 1, 2, · · · , N , where µ is the membership function of ξ.

Step 3. Set two numbers a = f(x, ξ1) ∧ f(x, ξ2) ∧ · · · ∧ f(x, ξN ) and b =
f(x, ξ1) ∨ f(x, ξ2) ∨ · · · ∨ f(x, ξN ).

Step 4. Randomly generate r from [a, b].
Step 5. If r ≥ 0, then e ← e + Cr{f(x, ξ) ≥ r}.
Step 6. If r < 0, then e ← e − Cr{f(x, ξ) ≤ r}.
Step 7. Repeat the fourth to sixth steps for N times.
Step 8. U1(x) = a ∨ 0 + b ∧ 0 + e · (b − a)/N .

Fuzzy Simulation for U2(x)

In order to compute the uncertain function U2(x), we randomly generate θk

from the credibility space (Θ,�, Cr), write νk = (2Cr{θk}) ∧ 1 and produce
ξk = ξ(θk), k = 1, 2, · · · , N , respectively. Equivalently, we randomly generate
ξk and write νk = µ(ξk) for k = 1, 2, · · · , N , where µ is the membership
function of ξ. Then the credibility U2(x) can be estimated by the formula,

1
2

(
max

1≤k≤N

{
νk

∣∣ gj(x, ξk) ≤ 0
j = 1, 2, · · · , p

}
+ min

1≤k≤N

{
1 − νk

∣∣ gj(x, ξk) > 0
for some j

})
.

Algorithm 5.2 (Fuzzy Simulation for U2(x))
Step 1. Randomly generate θk from the credibility space (Θ,�, Cr), write

νk = (2Cr{θk})∧1 and produce ξk = ξ(θk), k = 1, 2, · · · , N , respec-
tively. Equivalently, randomly generate ξk and write νk = µ(ξk) for
k = 1, 2, · · · , N , where µ is the membership function of ξ.

Step 2. Return U2(x) via the estimation formula.
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Fuzzy Simulation for U3(x)

In order to compute the uncertain function U3(x), we randomly generate θk

from the credibility space (Θ,�, Cr), write νk = (2Cr{θk}) ∧ 1 and produce
ξk = ξ(θk), k = 1, 2, · · · , N , respectively. Equivalently, we randomly generate
ξk and write νk = µ(ξk) for k = 1, 2, · · · , N , where µ is the membership
function of ξ. For any number r, we set

L(r) =
1
2

(
max

1≤k≤N

{
νk

∣∣ f(x, ξk) ≥ r
}

+ min
1≤k≤N

{
1 − νk

∣∣ f(x, ξk) < r
})

.

It follows from monotonicity that we may employ bisection search to find the
maximal value r such that L(r) ≥ α. This value is an estimation of U3(x).
We summarize this process as follows.

Algorithm 5.3 (Fuzzy Simulation for U3(x))
Step 1. Randomly generate θk from the credibility space (Θ,�, Cr), write

νk = (2Cr{θk})∧1 and produce ξk = ξ(θk), k = 1, 2, · · · , N , respec-
tively. Equivalently, randomly generate ξk and write νk = µ(ξk) for
k = 1, 2, · · · , N , where µ is the membership function of ξ.

Step 2. Find the maximal value r such that L(r) ≥ α holds.
Step 3. Return r.

Hybrid Intelligent Algorithm

Now we integrate fuzzy simulation, NN and GA to produce a hybrid intelli-
gent algorithm for solving fuzzy programming models.

Algorithm 5.4 (Hybrid Intelligent Algorithm)
Step 1. Generate training input-output data for uncertain functions like

U1 : x → E[f(x, ξ)],

U2 : x → Cr {gj(x, ξ) ≤ 0, j = 1, 2, · · · , p} ,

U3 : x → max
{
f
∣∣ Cr

{
f(x, ξ) ≥ f

}
≥ α

}
by the fuzzy simulation.

Step 2. Train a neural network to approximate the uncertain functions ac-
cording to the generated training input-output data.

Step 3. Initialize pop size chromosomes whose feasibility may be checked
by the trained neural network.

Step 4. Update the chromosomes by crossover and mutation operations and
the trained neural network may be employed to check the feasibility
of offsprings.
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Step 5. Calculate the objective values for all chromosomes by the trained
neural network.

Step 6. Compute the fitness of each chromosome by rank-based evaluation
function based on the objective values.

Step 7. Select the chromosomes by spinning the roulette wheel.
Step 8. Repeat the fourth to seventh steps a given number of cycles.
Step 9. Report the best chromosome as the optimal solution.

5.6 Numerical Experiments

In order to illustrate its effectiveness, a set of numerical examples has been
done, and the results are successful. Here we give some numerical examples
which are all performed on a personal computer with the following param-
eters: the population size is 30, the probability of crossover Pc is 0.3, the
probability of mutation Pm is 0.2, and the parameter a in the rank-based
evaluation function is 0.05.

Example 5.22. Consider first the following single-objective fuzzy EVM,⎧⎪⎨
⎪⎩

max E
[√

|x1 + ξ1| + |x2 + ξ2| + |x3 + ξ3|
]

subject to:
x2

1 + x2
2 + x2

3 ≤ 10

where ξ1, ξ2 and ξ3 are triangular fuzzy variables (1, 2, 3), (2, 3, 4), and
(3, 4, 5), respectively.

In order to solve this model, we first generate input-output data for the
uncertain function

U : x → E
[√

|x1 + ξ1| + |x2 + ξ2| + |x3 + ξ3|
]

by fuzzy simulation. Then we train an NN (3 input neurons, 5 hidden
neurons, 1 output neuron) to approximate the function U(x). After that,
the trained NN is embedded into a GA to produce a hybrid intelligent
algorithm.

A run of the hybrid intelligent algorithm (6000 cycles in simulation, 2000
data in NN, 1000 generations in GA) shows that the optimal solution is

x∗
1 = 1.8310, x∗

2 = 1.8417, x∗
3 = 1.8043

whose objective value is 3.80.

Example 5.23. Let us consider the following single-objective fuzzy CCP,
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⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

max f

subject to:

Cr
{√

x1 + ξ1 +
√

x2 + ξ2 +
√

x3 + ξ3 ≥ f
}

≥ 0.9

Cr
{√

(x1 + ξ1)2 + (x2 + ξ2)2 + (x3 + ξ3)2 ≤ 6
}

≥ 0.8

x1, x2, x3 ≥ 0

(5.42)

where ξ1, ξ2 and ξ3 are assumed to triangular fuzzy variables (0, 1, 2), (1, 2, 3)
and (2, 3, 4), respectively.

In order to solve this model, we generate training input-output data for
the uncertain function U : x → (U1(x), U2(x)), where

U1(x) = max
{
f
∣∣ Cr

{√
x1 + ξ1 +

√
x2 + ξ2 +

√
x3 + ξ3 ≥ f

}
≥ 0.9

}
,

U2(x) = Cr
{√

(x1 + ξ1)2 + (x2 + ξ2)2 + (x3 + ξ3)2 ≤ 6
}

.

Then we train an NN (3 input neurons, 6 hidden neurons, 2 output neurons)
to approximate the uncertain function U . Finally, we integrate the trained
NN and GA to produce a hybrid intelligent algorithm.

A run of the hybrid intelligent algorithm (6000 cycles in simulation,
2000 training data in NN, 1500 generations in GA) shows that the optimal
solution is

(x∗
1, x

∗
2, x

∗
3) = (1.9780, 0.6190, 0.0000)

with objective value f
∗

= 5.02.

Example 5.24. We now consider the following CCGP model,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lexmin
{
d−1 ∨ 0, d−2 ∨ 0, d−3 ∨ 0

}
subject to:

Cr
{
3 − (x2

1ξ1 + x2τ1 + x3η
2
1) ≤ d−1

}
≥ 0.90

Cr
{
4 − (x1ξ2 + x2

2τ
2
2 + x3η2) ≤ d−2

}
≥ 0.85

Cr
{
6 − (x1ξ

2
3 + x2τ3 + x2

3η3) ≤ d−3
}

≥ 0.80
x1 + x2 + x3 = 1
x1, x2, x3 ≥ 0

(5.43)

where ξ1, ξ2, ξ3 are fuzzy variables with membership functions exp[−|x − 1|],
exp[−|x − 2|], exp[−|x − 3|], τ1, τ2, τ3 are triangular fuzzy variables (1, 2, 3),
(2, 3, 4), (3, 4, 5), η1, η2, η3 are trapezoidal fuzzy variables (2, 3, 4, 5), (3, 4, 5, 6),
(4, 5, 6, 7), respectively.

In order to solve this problem, we employ fuzzy simulation to generate
input-output data for the uncertain function U : x → (U1(x), U2(x), U3(x)),
where
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U1(x) = max
{
d
∣∣ Cr

{
x2

1ξ1 + x2τ1 + x3η
2
1 ≥ d

}
≥ 0.90

}
,

U2(x) = max
{
d
∣∣ Cr

{
x1ξ2 + x2

2τ
2
2 + x3η2 ≥ d

}
≥ 0.85

}
,

U3(x) = max
{
d
∣∣ Cr

{
x1ξ

2
3 + x2τ3 + x2

3η3 ≥ d
}

≥ 0.80
}

.

Then we train an NN (3 input neurons, 8 hidden neurons, 3 output neurons)
to approximate the uncertain function U . Note that

d−1 = [3 − U1(x)] ∨ 0, d−2 = [4 − U2(x)] ∨ 0, d−3 = [6 − U3(x)] ∨ 0.

Finally, we integrate the trained NN and GA to produce a hybrid intelligent
algorithm.

A run of the hybrid intelligent algorithm (5000 cycles in simulation,
3000 training data in NN, 3000 generations in GA) shows that the optimal
solution is

(x∗
1, x

∗
2, x

∗
3) = (0.2910, 0.5233, 0.1857)

which can satisfy the first two goals, but the negative deviation of the third
goal is 0.57.

Example 5.25. Let us now turn our attention to the following DCGP,
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lexmin
{
d−1 ∨ 0, d−2 ∨ 0, d−3 ∨ 0

}
subject to:

0.95 − Cr{x1 + x2
3 = 6} = d−1

0.90 − Cr{x2 + x2
5 = 5} = d−2

0.85 − Cr{x4 + x2
6 = 4} = d−3

x1 + x2 ≤ ã

x3 + x4 ≤ b̃

x5 ≤ c̃

x6 ≤ d̃

xi ≥ 0, i = 1, 2, · · · , 6

where ã, b̃, c̃ are triangular fuzzy variables (3,4,5), (2,3,4), (0,1,2), respectively,
and d̃ is a fuzzy variable with membership function µd̃(r) = 1/[1 + (r − 1)2].

In the first priority level, there is only one event denoted by E1 in the fuzzy
environment, which should be fulfilled by x1 + x2

3 = 6. It is clear that the
support E∗

1 = {x1, x3} and the dependent support E∗∗
1 = {x1, x2, x3, x4}. It

follows from the principle of uncertainty that the chance function f1(x) of
the event E1 is

f1(x) = Cr

⎧⎪⎪⎨
⎪⎪⎩
x1 + x2

3 = 6
x1 + x2 ≤ ã

x3 + x4 ≤ b̃
x1, x2, x3, x4 ≥ 0

⎫⎪⎪⎬
⎪⎪⎭ .



82 5 Fuzzy Programming

At the second priority level, there is an event E2 which will be fulfilled
by x2 + x2

5 = 5. The support E∗
2 = {x2, x5} and the dependent support

E∗∗
2 = {x1, x2, x5}. It follows from the principle of uncertainty that the chance

function f2(x) of the event E2 is

f2(x) = Cr

⎧⎪⎪⎨
⎪⎪⎩
x2 + x2

5 = 5
x1 + x2 ≤ ã
x5 ≤ c̃
x1, x2, x5 ≥ 0

⎫⎪⎪⎬
⎪⎪⎭ .

At the third priority level, there is an event E3 which will be fulfilled by
x4 + x2

6 = 4. The support E∗
3 = {x4, x6} and the dependent support

E∗∗
3 = {x3, x4, x6}. It follows from the principle of uncertainty that the chance

function f3(x) of the event E3 is

f3(x) = Cr

⎧⎪⎪⎨
⎪⎪⎩
x4 + x2

6 = 4
x3 + x4 ≤ b̃

x6 ≤ d̃
x3, x4, x6 ≥ 0

⎫⎪⎪⎬
⎪⎪⎭ .

We encode a solution by a chromosome V = (v1, v2, v3), and decode it into a
feasible solution in the following way,

x1 = v1, x2 = v2, x3 =
√

6 − v1

x4 = v3, x5 =
√

5 − v2, x6 =
√

4 − v3

which ensures that x1 + x2
3 = 6, x2 + x2

5 = 5 and x4 + x2
6 = 4.

At first, we employ fuzzy simulation to generate input-output data for the
chance function

U : (v1, v2, v3) → (f1(x), f2(x), f3(x)) .

Then we train an NN (3 input neurons, 8 hidden neurons, 3 output neurons)
to approximate it. Finally, we embed the trained NN into a GA to produce
a hybrid intelligent algorithm.

A run of the hybrid intelligent algorithm (5000 cycles in simulation, 2000
data in NN, 1000 generations in GA) shows that the optimal solution is

x∗ = (0.2097, 3.8263, 2.4063, 0.6407, 1.0833, 1.8328)

which can satisfy the first and second goals, but the third objective is 0.25.



Chapter 6
Hybrid Programming

In many cases, fuzziness and randomness simultaneously appear in a system.
In order to describe this phenomena, a fuzzy random variable was introduced
by Kwakernaak [142] as a random element taking “fuzzy variable” values. By
fuzzy random programming we mean the optimization theory in fuzzy ran-
dom environments. Liu and Liu [198] presented a spectrum of fuzzy random
expected value model (EVM), Liu [179] initialized a general framework of
fuzzy random chance-constrained programming (CCP), and Liu [180] intro-
duced the concepts of uncertain environment and chance function for fuzzy
random decision problems, and constructed a theoretical framework of fuzzy
random dependent-chance programming (DCP).

A random fuzzy variable was proposed by Liu [181] as a fuzzy element
taking “random variable” values. By random fuzzy programming we mean
the optimization theory in random fuzzy environments. Liu and Liu [200]
introduced a spectrum of random fuzzy EVM, Liu [181] proposed the random
fuzzy CCP, and Liu [185] presented a spectrum of random fuzzy DCP in which
the underlying philosophy is based on selecting the decision with maximum
chance to meet the event.

More generally, a hybrid variable was introduced by Liu [187] as a measur-
able function from a chance space to the set of real numbers. Fuzzy random
variable and random fuzzy variable are instances of hybrid variable. In or-
der to measure hybrid events, a concept of chance measure was introduced
by Li and Liu [161]. This chapter will assume the hybrid environment and
introduce a spectrum of hybrid programming. In order to solve general hy-
brid programming, we will integrate hybrid simulation, neural network (NN)
and genetic algorithm (GA) to produce a hybrid intelligent algorithm, and
illustrate its effectiveness via some numerical examples.

6.1 Hybrid Variables

Let us start this section with the concept of chance space. Essentially, a
chance space is the product of credibility space and probability space.

B. Liu: Theory and Practice of Uncertain Programming, STUDFUZZ 239, pp. 83–110.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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Definition 6.1. (Liu [187]) Suppose that (Θ,�, Cr) is a credibility space and
(Ω,�, Pr) is a probability space. The product (Θ,�, Cr) × (Ω,�, Pr) is called
a chance space.

The universal set Θ × Ω is clearly the set of all ordered pairs of the form
(θ, ω), where θ ∈ Θ and ω ∈ Ω. What is the product σ-algebra � × �?
What is the product measure Cr × Pr? Let us discuss these two basic
problems.

What Is the Product σ-Algebra �× �?

Definition 6.2. (Liu [189]) Let (Θ,�, Cr) × (Ω,�, Pr) be a chance space. A
subset Λ ⊂ Θ × Ω is called an event if

Λ(θ) =
{
ω ∈ Ω

∣∣ (θ, ω) ∈ Λ
}

∈ � (6.1)

for each θ ∈ Θ.

Example 6.1. Empty set ∅ and universal set Θ × Ω are clearly events.

Example 6.2. Let X ∈ � and Y ∈ �. Then X × Y is a subset of Θ × Ω.
Since the set

(X × Y )(θ) =

{
Y, if θ ∈ X

∅, if θ ∈ Xc

is in the σ-algebra � for each θ ∈ Θ, the rectangle X × Y is an event.

Theorem 6.1. (Liu [189]) Let (Θ,�, Cr)×(Ω,�, Pr) be a chance space. The
class of all events is a σ-algebra over Θ × Ω, and denoted by �×�.

Proof: At first, it is obvious that Θ×Ω ∈ �×�. For any event Λ, we always
have

Λ(θ) ∈ �, ∀θ ∈ Θ.

Thus for each θ ∈ Θ, the set

Λc(θ) =
{
ω ∈ Ω

∣∣ (θ, ω) ∈ Λc
}

= (Λ(θ))c ∈ �

which implies that Λc ∈ � × �. Finally, let Λ1, Λ2, · · · be events. Then for
each θ ∈ Θ, we have( ∞⋃

i=1

Λi

)
(θ) =

{
ω ∈ Ω

∣∣ (θ, ω) ∈
∞⋃

i=1

Λi

}
=

∞⋃
i=1

{
ω ∈ Ω

∣∣ (θ, ω) ∈ Λi

}
∈ �.

That is, the countable union ∪iΛi ∈ �×�. Hence �×� is a σ-algebra.
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What Is the Product Measure Cr × Pr?

Product probability is a probability measure, and product credibility is a
credibility measure. What is the product measure Cr × Pr? We will call it
chance measure and define it as follows.

Definition 6.3. (Li and Liu [161]) Let (Θ,�, Cr) × (Ω,�, Pr) be a chance
space. Then a chance measure of an event Λ is defined as

Ch{Λ} =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

sup
θ∈Θ

(Cr{θ} ∧ Pr{Λ(θ)}),

if sup
θ∈Θ

(Cr{θ} ∧ Pr{Λ(θ)}) < 0.5

1 − sup
θ∈Θ

(Cr{θ} ∧ Pr{Λc(θ)}),

if sup
θ∈Θ

(Cr{θ} ∧ Pr{Λ(θ)}) ≥ 0.5.

(6.2)

Theorem 6.2. Let (Θ,�, Cr)×(Ω,�, Pr) be a chance space and Ch a chance
measure. Then we have

Ch{∅} = 0, (6.3)

Ch{Θ × Ω} = 1, (6.4)

0 ≤ Ch{Λ} ≤ 1 (6.5)

for any event Λ.

Proof: It follows from the definition immediately.

Theorem 6.3. Let (Θ,�, Cr)×(Ω,�, Pr) be a chance space and Ch a chance
measure. Then for any event Λ, we have

sup
θ∈Θ

(Cr{θ} ∧ Pr{Λ(θ)}) ∨ sup
θ∈Θ

(Cr{θ} ∧ Pr{Λc(θ)}) ≥ 0.5, (6.6)

sup
θ∈Θ

(Cr{θ} ∧ Pr{Λ(θ)}) + sup
θ∈Θ

(Cr{θ} ∧ Pr{Λc(θ)}) ≤ 1, (6.7)

sup
θ∈Θ

(Cr{θ} ∧ Pr{Λ(θ)}) ≤ Ch{Λ} ≤ 1 − sup
θ∈Θ

(Cr{θ} ∧ Pr{Λc(θ)}). (6.8)

Proof: It follows from the basic properties of probability and credibility that

sup
θ∈Θ

(Cr{θ} ∧ Pr{Λ(θ)}) ∨ sup
θ∈Θ

(Cr{θ} ∧ Pr{Λc(θ)})

≥ sup
θ∈Θ

(Cr{θ} ∧ (Pr{Λ(θ)} ∨ Pr{Λc(θ)}))

≥ sup
θ∈Θ

Cr{θ} ∧ 0.5 = 0.5
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and
sup
θ∈Θ

(Cr{θ} ∧ Pr{Λ(θ)}) + sup
θ∈Θ

(Cr{θ} ∧ Pr{Λc(θ)})

= sup
θ1,θ2∈Θ

(Cr{θ1} ∧ Pr{Λ(θ1)} + Cr{θ2} ∧ Pr{Λc(θ2)})

≤ sup
θ1 
=θ2

(Cr{θ1} + Cr{θ2}) ∨ sup
θ∈Θ

(Pr{Λ(θ)} + Pr{Λc(θ)})

≤ 1 ∨ 1 = 1.

The inequalities (6.8) follows immediately from the above inequalities and
the definition of chance measure.

Theorem 6.4. (Li and Liu [161]) The chance measure is increasing. That
is,

Ch{Λ1} ≤ Ch{Λ2} (6.9)

for any events Λ1 and Λ2 with Λ1 ⊂ Λ2.

Proof: Since Λ1(θ) ⊂ Λ2(θ) and Λc
2(θ) ⊂ Λc

1(θ) for each θ ∈ Θ, we have

sup
θ∈Θ

(Cr{θ} ∧ Pr{Λ1(θ)}) ≤ sup
θ∈Θ

(Cr{θ} ∧ Pr{Λ2(θ)}),

sup
θ∈Θ

(Cr{θ} ∧ Pr{Λc
2(θ)}) ≤ sup

θ∈Θ
(Cr{θ} ∧ Pr{Λc

1(θ)}).

The argument breaks down into three cases.
Case 1: sup

θ∈Θ
(Cr{θ} ∧ Pr{Λ2(θ)}) < 0.5. For this case, we have

sup
θ∈Θ

(Cr{θ} ∧ Pr{Λ1(θ)}) < 0.5,

Ch{Λ2} = sup
θ∈Θ

(Cr{θ} ∧ Pr{Λ2(θ)}) ≥ sup
θ∈Θ

(Cr{θ} ∧ Pr{Λ1(θ)} = Ch{Λ1}.

Case 2: sup
θ∈Θ

(Cr{θ} ∧ Pr{Λ2(θ)}) ≥ 0.5 and sup
θ∈Θ

(Cr{θ} ∧ Pr{Λ1(θ)}) < 0.5.

It follows from Theorem 6.3 that

Ch{Λ2} ≥ sup
θ∈Θ

(Cr{θ} ∧ Pr{Λ2(θ)}) ≥ 0.5 > Ch{Λ1}.

Case 3: sup
θ∈Θ

(Cr{θ} ∧ Pr{Λ2(θ)}) ≥ 0.5 and sup
θ∈Θ

(Cr{θ} ∧ Pr{Λ1(θ)}) ≥ 0.5.

For this case, we have

Ch{Λ2}=1−sup
θ∈Θ

(Cr{θ}∧Pr{Λc
2(θ)}) ≥ 1−sup

θ∈Θ
(Cr{θ}∧Pr{Λc

1(θ)}) = Ch{Λ1}.

Thus Ch is an increasing measure.
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Theorem 6.5. (Li and Liu [161]) The chance measure is self-dual. That is,

Ch{Λ} + Ch{Λc} = 1 (6.10)

for any event Λ.

Proof: For any event Λ, please note that

Ch{Λc} =

⎧⎨
⎩

sup
θ∈Θ

(Cr{θ} ∧ Pr{Λc(θ)}), if sup
θ∈Θ

(Cr{θ} ∧ Pr{Λc(θ)}) < 0.5

1 − sup
θ∈Θ

(Cr{θ} ∧ Pr{Λ(θ)}), if sup
θ∈Θ

(Cr{θ} ∧ Pr{Λc(θ)}) ≥ 0.5.

The argument breaks down into three cases.
Case 1: sup

θ∈Θ
(Cr{θ} ∧ Pr{Λ(θ)}) < 0.5. For this case, we have

sup
θ∈Θ

(Cr{θ} ∧ Pr{Λc(θ)}) ≥ 0.5,

Ch{Λ}+Ch{Λc} = sup
θ∈Θ

(Cr{θ}∧Pr{Λ(θ)})+1− sup
θ∈Θ

(Cr{θ}∧Pr{Λ(θ)}) = 1.

Case 2: sup
θ∈Θ

(Cr{θ} ∧ Pr{Λ(θ)}) ≥ 0.5 and sup
θ∈Θ

(Cr{θ} ∧ Pr{Λc(θ)}) < 0.5.

For this case, we have

Ch{Λ}+Ch{Λc} = 1−sup
θ∈Θ

(Cr{θ}∧Pr{Λc(θ)})+sup
θ∈Θ

(Cr{θ}∧Pr{Λc(θ)}) = 1.

Case 3: sup
θ∈Θ

(Cr{θ} ∧ Pr{Λ(θ)}) ≥ 0.5 and sup
θ∈Θ

(Cr{θ} ∧ Pr{Λc(θ)}) ≥ 0.5.

For this case, it follows from Theorem 6.3 that

sup
θ∈Θ

(Cr{θ} ∧ Pr{Λ(θ)}) = sup
θ∈Θ

(Cr{θ} ∧ Pr{Λc(θ)}) = 0.5.

Hence Ch{Λ} + Ch{Λc} = 0.5 + 0.5 = 1. The theorem is proved.

Theorem 6.6. (Li and Liu [161]) For any event X × Y , we have

Ch{X × Y } = Cr{X} ∧ Pr{Y }. (6.11)

Proof: The argument breaks down into three cases.
Case 1: Cr{X} < 0.5. For this case, we have

sup
θ∈X

Cr{θ} ∧ Pr{Y } = Cr{X} ∧ Cr{Y } < 0.5,

Ch{X × Y } = sup
θ∈X

Cr{θ} ∧ Pr{Y } = Cr{X} ∧ Pr{Y }.

Case 2: Cr{X} ≥ 0.5 and Pr{Y } < 0.5. Then we have

sup
θ∈X

Cr{θ} ≥ 0.5,
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sup
θ∈X

Cr{θ} ∧ Pr{Y } = Pr{Y } < 0.5,

Ch{X × Y } = sup
θ∈X

Cr{θ} ∧ Pr{Y } = Pr{Y } = Cr{X} ∧ Pr{Y }.

Case 3: Cr{X} ≥ 0.5 and Pr{Y } ≥ 0.5. Then we have

sup
θ∈Θ

(Cr{θ} ∧ Pr{(X × Y )(θ)}) ≥ sup
θ∈X

Cr{θ} ∧ Pr{Y } ≥ 0.5,

Ch{X × Y } = 1 − sup
θ∈Θ

(Cr{θ} ∧ Pr{(X × Y )c(θ)}) = Cr{X} ∧ Pr{Y }.

The theorem is proved.

Example 6.3. It follows from Theorem 6.6 that for any events X × Ω and
Θ × Y , we have

Ch{X × Ω} = Cr{X}, Ch{Θ × Y } = Pr{Y }. (6.12)

Theorem 6.7. (Li and Liu [161], Chance Subadditivity Theorem) The chance
measure is subadditive. That is,

Ch{Λ1 ∪ Λ2} ≤ Ch{Λ1} + Ch{Λ2} (6.13)

for any events Λ1 and Λ2. In fact, chance measure is not only finitely subad-
ditive but also countably subadditive.

Proof: The proof breaks down into three cases.
Case 1: Ch{Λ1 ∪ Λ2} < 0.5. Then Ch{Λ1} < 0.5, Ch{Λ2} < 0.5 and

Ch{Λ1 ∪ Λ2}= sup
θ∈Θ

(Cr{θ} ∧ Pr{(Λ1 ∪ Λ2)(θ)})

≤ sup
θ∈Θ

(Cr{θ} ∧ (Pr{Λ1(θ)} + Pr{Λ2(θ)}))

≤ sup
θ∈Θ

(Cr{θ} ∧ Pr{Λ1(θ)} + Cr{θ} ∧ Pr{Λ2(θ)})

≤ sup
θ∈Θ

(Cr{θ} ∧ Pr{Λ1(θ)}) + sup
θ∈Θ

(Cr{θ} ∧ Pr{Λ2(θ)})

= Ch{Λ1} + Ch{Λ2}.

Case 2: Ch{Λ1 ∪ Λ2} ≥ 0.5 and Ch{Λ1} ∨ Ch{Λ2} < 0.5. We first have

sup
θ∈Θ

(Cr{θ} ∧ Pr{(Λ1 ∪ Λ2)(θ)}) ≥ 0.5.

For any sufficiently small number ε > 0, there exists a point θ such that

Cr{θ} ∧ Pr{(Λ1 ∪ Λ2)(θ)} > 0.5 − ε > Ch{Λ1} ∨ Ch{Λ2},

Cr{θ} > 0.5 − ε > Pr{Λ1(θ)},

Cr{θ} > 0.5 − ε > Pr{Λ2(θ)}.
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Thus we have

Cr{θ} ∧ Pr{(Λ1 ∪ Λ2)c(θ)} + Cr{θ} ∧ Pr{Λ1(θ)} + Cr{θ} ∧ Pr{Λ2(θ)}
= Cr{θ} ∧ Pr{(Λ1 ∪ Λ2)c(θ)} + Pr{Λ1(θ)} + Pr{Λ2(θ)}
≥ Cr{θ} ∧ Pr{(Λ1 ∪ Λ2)c(θ)} + Pr{(Λ1 ∪ Λ2)(θ)} ≥ 1 − 2ε

because if Cr{θ} ≥ Pr{(Λ1 ∪ Λ2)c(θ)}, then

Cr{θ} ∧ Pr{(Λ1 ∪ Λ2)c(θ)} + Pr{(Λ1 ∪ Λ2)(θ)}
= Pr{(Λ1 ∪ Λ2)c(θ)} + Pr{(Λ1 ∪ Λ2)(θ)}
= 1 ≥ 1 − 2ε

and if Cr{θ} < Pr{(Λ1 ∪ Λ2)c(θ)}, then

Cr{θ} ∧ Pr{(Λ1 ∪ Λ2)c(θ)} + Pr{(Λ1 ∪ Λ2)(θ)}
= Cr{θ} + Pr{(Λ1 ∪ Λ2)(θ)}
≥ (0.5 − ε) + (0.5 − ε) = 1 − 2ε.

Taking supremum on both sides and letting ε → 0, we obtain

Ch{Λ1 ∪ Λ2} = 1 − sup
θ∈Θ

(Cr{θ} ∧ Pr{(Λ1 ∪ Λ2)c(θ)})

≤ sup
θ∈Θ

(Cr{θ} ∧ Pr{Λ1(θ)}) + sup
θ∈Θ

(Cr{θ} ∧ Pr{Λ2(θ)})

= Ch{Λ1} + Ch{Λ2}.

Case 3: Ch{Λ1 ∪ Λ2} ≥ 0.5 and Ch{Λ1} ∨ Ch{Λ2} ≥ 0.5. Without loss of
generality, suppose Ch{Λ1} ≥ 0.5. For each θ, we first have

Cr{θ} ∧ Pr{Λc
1(θ)} = Cr{θ} ∧ Pr{(Λc

1(θ) ∩ Λc
2(θ)) ∪ (Λc

1(θ) ∩ Λ2(θ))}

≤ Cr{θ} ∧ (Pr{(Λ1 ∪ Λ2)c(θ)} + Pr{Λ2(θ)})

≤ Cr{θ} ∧ Pr{(Λ1 ∪ Λ2)c(θ)} + Cr{θ} ∧ Pr{Λ2(θ)},

i.e., Cr{θ}∧ Pr{(Λ1 ∪ Λ2)c(θ)} ≥ Cr{θ}∧ Pr{Λc
1(θ)} − Cr{θ} ∧Pr{Λ2(θ)}. It

follows from Theorem 6.3 that

Ch{Λ1 ∪ Λ2} = 1 − sup
θ∈Θ

(Cr{θ} ∧ Pr{(Λ1 ∪ Λ2)c(θ)})

≤ 1 − sup
θ∈Θ

(Cr{θ} ∧ Pr{Λc
1(θ)}) + sup

θ∈Θ
(Cr{θ} ∧ Pr{Λ2(θ)})

≤ Ch{Λ1} + Ch{Λ2}.

The theorem is proved.
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Hybrid Variables

Recall that a random variable is a measurable function from a probability
space to the set of real numbers, and a fuzzy variable is a function from a
credibility space to the set of real numbers. In order to describe a quantity
with both fuzziness and randomness, we introduce the concept of hybrid
variable as follows.

Definition 6.4. (Liu [187]) A hybrid variable is a measurable function from
a chance space (Θ,�, Cr)× (Ω,�, Pr) to the set of real numbers, i.e., for any
Borel set B of real numbers, the set

{ξ ∈ B} = {(θ, ω) ∈ Θ × Ω
∣∣ ξ(θ, ω) ∈ B} (6.14)

is an event.

Remark 6.1. A hybrid variable degenerates to a fuzzy variable if the value
of ξ(θ, ω) does not vary with ω. For example,

ξ(θ, ω) = θ, ξ(θ, ω) = θ2 + 1, ξ(θ, ω) = sin θ.

Remark 6.2. A hybrid variable degenerates to a random variable if the value
of ξ(θ, ω) does not vary with θ. For example,

ξ(θ, ω) = ω, ξ(θ, ω) = ω2 + 1, ξ(θ, ω) = sin ω.
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Remark 6.3. A hybrid variable ξ(θ, ω) may also be regarded as a func-
tion from a credibility space (Θ,�, Cr) to the set {ξ(θ, ·)|θ ∈ Θ} of random
variables. Thus ξ is a random fuzzy variable defined by Liu [181].

Remark 6.4. A hybrid variable ξ(θ, ω) may be regarded as a function from
a probability space (Ω,�, Pr) to the set {ξ(·, ω)|ω ∈ Ω} of fuzzy variables.
If Cr{ξ(·, ω) ∈ B} is a measurable function of ω for any Borel set B of real
numbers, then ξ is a fuzzy random variable in the sense of Liu and Liu [199].

Model I

If ã is a fuzzy variable and η is a random variable, then the sum ξ = ã + η is
a hybrid variable. The product ξ = ã · η is also a hybrid variable. Generally
speaking, if f : �2 → � is a measurable function, then

ξ = f(ã, η) (6.15)

is a hybrid variable. Suppose that ã has a membership function µ, and η has
a probability density function φ. Then for any Borel set B of real numbers,
we have

Ch{f(ã, η) ∈ B} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sup
x

(
µ(x)

2
∧
∫

f(x,y)∈B

φ(y)dy

)
,

if sup
x

(
µ(x)

2
∧
∫

f(x,y)∈B

φ(y)dy

)
< 0.5

1 − sup
x

(
µ(x)

2
∧
∫

f(x,y)∈Bc

φ(y)dy

)
,

if sup
x

(
µ(x)

2
∧
∫

f(x,y)∈B

φ(y)dy

)
≥ 0.5.

More generally, let ã1, ã2, · · · , ãm be fuzzy variables, and let η1, η2, · · · , ηn be
random variables. If f : �m+n → � is a measurable function, then

ξ = f(ã1, ã2, · · · , ãm; η1, η2, · · · , ηn) (6.16)

is a hybrid variable. The chance Ch{f(ã1, ã2, · · · , ãm; η1, η2, · · · , ηn) ∈ B}
may be calculated in a similar way provided that µ is the joint membership
function and φ is the joint probability density function.

Model II

Let ã1, ã2, · · · , ãm be fuzzy variables, and let p1, p2, · · · , pm be nonnegative
numbers with p1 + p2 + · · · + pm = 1. Then
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ξ =

⎧⎪⎪⎨
⎪⎪⎩

ã1 with probability p1

ã2 with probability p2
· · ·
ãm with probability pm

(6.17)

is clearly a hybrid variable. If ã1, ã2, · · · , ãm have membership functions
µ1, µ2, · · · , µm, respectively, then for any Borel set B of real numbers, we
have

Ch{ξ ∈ B} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sup
x1,x2··· ,xm

((
min

1≤i≤m

µi(xi)
2

)
∧

m∑
i=1

{pi | xi ∈ B}
)

,

if sup
x1,x2··· ,xm

((
min

1≤i≤m

µi(xi)
2

)
∧

m∑
i=1

{pi | xi ∈ B}
)

< 0.5

1 − sup
x1,x2··· ,xm

((
min

1≤i≤m

µi(xi)
2

)
∧

m∑
i=1

{pi | xi ∈ Bc}
)

,

if sup
x1,x2··· ,xm

((
min

1≤i≤m

µi(xi)
2

)
∧

m∑
i=1

{pi | xi ∈ B}
)

≥ 0.5.

Model III

Let η1, η2, · · · , ηm be random variables, and let u1, u2, · · · , um be nonnegative
numbers with u1 ∨ u2 ∨ · · · ∨ um = 1. Then

ξ =

⎧⎪⎪⎨
⎪⎪⎩

η1 with membership degree u1

η2 with membership degree u2

· · ·
ηm with membership degree um

(6.18)

is clearly a hybrid variable. If η1, η2, · · · , ηm have probability density functions
φ1, φ2, · · · , φm, respectively, then for any Borel set B of real numbers, we have

Ch{ξ ∈ B} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
1≤i≤m

(
ui

2
∧
∫

B

φi(x)dx

)
,

if max
1≤i≤m

(
ui

2
∧
∫

B

φi(x)dx

)
< 0.5

1 − max
1≤i≤m

(
ui

2
∧
∫

Bc

φi(x)dx

)
,

if max
1≤i≤m

(
ui

2
∧
∫

B

φi(x)dx

)
≥ 0.5.
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Model IV

In many statistics problems, the probability density function is completely
known except for the values of one or more parameters. For example, it
might be known that the lifetime ξ of a modern engine is an exponentially
distributed random variable with an unknown expected value β. Usually,
there is some relevant information in practice. It is thus possible to specify
an interval in which the value of β is likely to lie, or to give an approximate
estimate of the value of β. It is typically not possible to determine the value
of β exactly. If the value of β is provided as a fuzzy variable, then ξ is a
hybrid variable. More generally, suppose that ξ has a probability density
function

φ(x; ã1, ã2, · · · , ãm), x ∈ � (6.19)

in which the parameters ã1, ã2, · · · , ãm are fuzzy variables rather than crisp
numbers. Then ξ is a hybrid variable provided that φ(x; y1, y2, · · · , ym) is
a probability density function for any (y1, y2, · · · , ym) that (ã1, ã2, · · · , ãm)
may take. If ã1, ã2, · · · , ãm have membership functions µ1, µ2, · · · , µm, respec-
tively, then for any Borel set B of real numbers, the chance Ch{ξ ∈ B} is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sup
y1,y2··· ,ym

((
min

1≤i≤m

µi(yi)
2

)
∧
∫

B

φ(x; y1, y2, · · · , ym)dx

)
,

if sup
y1,y2,··· ,ym

((
min

1≤i≤m

µi(yi)
2

)
∧
∫

B

φ(x; y1, y2, · · · , ym)dx

)
< 0.5

1 − sup
y1,y2··· ,ym

((
min

1≤i≤m

µi(yi)
2

)
∧
∫

Bc

φ(x; y1, y2, · · · , ym)dx

)
,

if sup
y1,y2,··· ,ym

((
min

1≤i≤m

µi(yi)
2

)
∧
∫

B

φ(x; y1, y2, · · · , ym)dx

)
≥ 0.5.

Hybrid Vectors

Definition 6.5. An n-dimensional hybrid vector is a measurable function
from a chance space (Θ,�, Cr) × (Ω,�, Pr) to the set of n-dimensional real
vectors, i.e., for any Borel set B of �n, the set

{ξ ∈ B} =
{
(θ, ω) ∈ Θ × Ω

∣∣ ξ(θ, ω) ∈ B
}

(6.20)

is an event.

Theorem 6.8. The vector (ξ1, ξ2, · · · , ξn) is a hybrid vector if and only if
ξ1, ξ2, · · · , ξn are hybrid variables.
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Proof: Write ξ = (ξ1, ξ2, · · · , ξn). Suppose that ξ is a hybrid vector on
the chance space (Θ,�, Cr) × (Ω,�, Pr). For any Borel set B of �, the set
B × �n−1 is a Borel set of �n. Thus the set{

(θ, ω) ∈ Θ × Ω
∣∣ ξ1(θ, ω) ∈ B

}
=
{
(θ, ω) ∈ Θ × Ω

∣∣ ξ1(θ, ω) ∈ B, ξ2(θ, ω) ∈ �, · · · , ξn(θ, ω) ∈ �
}

=
{
(θ, ω) ∈ Θ × Ω

∣∣ ξ(θ, ω) ∈ B × �n−1
}

is an event. Hence ξ1 is a hybrid variable. A similar process may prove that
ξ2, ξ3, · · · , ξn are hybrid variables.

Conversely, suppose that all ξ1, ξ2, · · · , ξn are hybrid variables on the
chance space (Θ,�, Cr) × (Ω,�, Pr). We define

� =
{
B ⊂ �n

∣∣ {(θ, ω) ∈ Θ × Ω|ξ(θ, ω) ∈ B} is an event
}

.

The vector ξ = (ξ1, ξ2, · · · , ξn) is proved to be a hybrid vector if we can
prove that � contains all Borel sets of �n. First, the class � contains all
open intervals of �n because{

(θ, ω)
∣∣ ξ(θ, ω) ∈

n∏
i=1

(ai, bi)

}
=

n⋂
i=1

{
(θ, ω)

∣∣ ξi(θ, ω) ∈ (ai, bi)
}

is an event. Next, the class � is a σ-algebra of �n because (i) we have �n ∈ �
since {(θ, ω)|ξ(θ, ω) ∈ �n} = Θ × Ω; (ii) if B ∈ �, then{

(θ, ω) ∈ Θ × Ω
∣∣ ξ(θ, ω) ∈ B

}
is an event, and

{(θ, ω) ∈ Θ × Ω
∣∣ ξ(θ, ω) ∈ Bc} = {(θ, ω) ∈ Θ × Ω

∣∣ ξ(θ, ω) ∈ B}c

is an event. This means that Bc ∈ �; (iii) if Bi ∈ � for i = 1, 2, · · · , then
{(θ, ω) ∈ Θ × Ω|ξ(θ, ω) ∈ Bi} are events and{

(θ, ω) ∈ Θ × Ω
∣∣ ξ(θ, ω) ∈

∞⋃
i=1

Bi

}
=

∞⋃
i=1

{(θ, ω) ∈ Θ × Ω
∣∣ ξ(θ, ω) ∈ Bi}

is an event. This means that ∪iBi ∈ �. Since the smallest σ-algebra con-
taining all open intervals of �n is just the Borel algebra of �n, the class �
contains all Borel sets of �n. The theorem is proved.

Hybrid Arithmetic

Definition 6.6. Let f : �n → � be a measurable function, and ξ1, ξ2, · · · , ξn

hybrid variables on the chance space (Θ,�, Cr) × (Ω,�, Pr). Then ξ =
f(ξ1, ξ2, · · · , ξn) is a hybrid variable defined as
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ξ(θ, ω) = f(ξ1(θ, ω), ξ2(θ, ω), · · · , ξn(θ, ω)), ∀(θ, ω) ∈ Θ × Ω. (6.21)

Example 6.4. Let ξ1 and ξ2 be two hybrid variables defined as follows,

ξ1 ∼
{

N (u1, σ
2
1) with membership degree 0.7

N (u2, σ
2
2) with membership degree 1.0,

ξ2 ∼
{

N (u3, σ
2
3) with membership degree 1.0

N (u4, σ
2
4) with membership degree 0.8.

Then the sum of ξ1 and ξ2 is

ξ ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

N (u1 + u3, σ
2
1 + σ2

3) with membership degree 0.7
N (u1 + u4, σ

2
1 + σ2

4) with membership degree 0.7
N (u2 + u3, σ

2
2 + σ2

3) with membership degree 1.0
N (u2 + u4, σ

2
2 + σ2

4) with membership degree 0.8.

Example 6.5. Let ξ1 and ξ2 be two hybrid variables defined as follows,

ξ1 =

{
(a1, a2, a3, a4) with probability 0.3
(b1, b2, b3, b4) with probability 0.7,

ξ2 =

{
(c1, c2, c3, c4) with probability 0.6
(d1, d2, d3, d4) with probability 0.4.

Then the sum of ξ1 and ξ2 is

ξ1 + ξ2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(a1 + c1, a2 + c2, a3 + c3, a4 + c4) with probability 0.18
(a1 + d1, a2 + d2, a3 + d3, a4 + d4) with probability 0.12
(b1 + c1, b2 + c2, b3 + c3, b4 + c4) with probability 0.42
(b1 + d1, b2 + d2, b3 + d3, b4 + d4) with probability 0.28.

Expected Value

Li and Liu [161] suggested the following definition of expected value operator
of hybrid variables.

Definition 6.7. Let ξ be a hybrid variable. Then the expected value of ξ is
defined by

E[ξ] =
∫ +∞

0
Ch{ξ ≥ r}dr −

∫ 0

−∞
Ch{ξ ≤ r}dr (6.22)

provided that at least one of the two integrals is finite.

Example 6.6. If a hybrid variable ξ degenerates to a random variable η, then

Ch{ξ ≤ x} = Pr{η ≤ x}, Ch{ξ ≥ x} = Pr{η ≥ x}, ∀x ∈ �.
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It follows from (6.22) that E[ξ] = E[η]. In other words, the expected value
operator of hybrid variable coincides with that of random variable.

Example 6.7. If a hybrid variable ξ degenerates to a fuzzy variable ã, then

Ch{ξ ≤ x} = Cr{ã ≤ x}, Ch{ξ ≥ x} = Cr{ã ≥ x}, ∀x ∈ �.

It follows from (6.22) that E[ξ] = E[ã]. In other words, the expected value
operator of hybrid variable coincides with that of fuzzy variable.

Example 6.8. Let ã be a fuzzy variable and η a random variable with finite
expected values. Then the hybrid variable ξ = ã + η has expected value
E[ξ] = E[ã] + E[η].

Theorem 6.9. Let ξ be a hybrid variable with finite expected values. Then
for any real numbers a and b, we have

E[aξ + b] = aE[ξ] + b. (6.23)

Proof: Step 1: We first prove that E[ξ + b] = E[ξ] + b for any real number
b. If b ≥ 0, we have

E[ξ + b] =
∫ +∞

0
Ch{ξ + b ≥ r}dr −

∫ 0

−∞
Ch{ξ + b ≤ r}dr

=
∫ +∞

0
Ch{ξ ≥ r − b}dr −

∫ 0

−∞
Ch{ξ ≤ r − b}dr

= E[ξ] +
∫ b

0
(Ch{ξ ≥ r − b} + Ch{ξ < r − b})dr

= E[ξ] + b.

If b < 0, then we have

E[aξ + b] = E[ξ] −
∫ 0

b

(Ch{ξ ≥ r − b} + Ch{ξ < r − b})dr = E[ξ] + b.

Step 2: We prove E[aξ] = aE[ξ]. If a = 0, then the equation E[aξ] = aE[ξ]
holds trivially. If a > 0, we have

E[aξ] =
∫ +∞

0
Ch{aξ ≥ r}dr −

∫ 0

−∞
Ch{aξ ≤ r}dr

=
∫ +∞

0
Ch{ξ ≥ r/a}dr −

∫ 0

−∞
Ch{ξ ≤ r/a}dr

= a

∫ +∞

0
Ch{ξ ≥ t}dt − a

∫ 0

−∞
Ch{ξ ≤ t}dt

= aE[ξ].
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If a < 0, we have

E[aξ] =
∫ +∞

0
Ch{aξ ≥ r}dr −

∫ 0

−∞
Ch{aξ ≤ r}dr

=
∫ +∞

0
Ch{ξ ≤ r/a}dr −

∫ 0

−∞
Ch{ξ ≥ r/a}dr

= a

∫ +∞

0
Ch{ξ ≥ t}dt − a

∫ 0

−∞
Ch{ξ ≤ t}dt

= aE[ξ].

Step 3: For any real numbers a and b, it follows from Steps 1 and 2 that

E[aξ + b] = E[aξ] + b = aE[ξ] + b.

The theorem is proved.

Critical Values

In order to rank hybrid variables, Li and Liu [161] presented the following
definition of critical values of hybrid variables.

Definition 6.8. Let ξ be a hybrid variable, and α ∈ (0, 1]. Then

ξsup(α) = sup
{
r
∣∣ Ch {ξ ≥ r} ≥ α

}
(6.24)

is called the α-optimistic value to ξ, and

ξinf(α) = inf
{
r
∣∣ Ch {ξ ≤ r} ≥ α

}
(6.25)

is called the α-pessimistic value to ξ.

The hybrid variable ξ reaches upwards of the α-optimistic value ξsup(α), and
is below the α-pessimistic value ξinf(α) with chance α.

Example 6.9. If a hybrid variable ξ degenerates to a random variable η, then

Ch{ξ ≤ x} = Pr{η ≤ x}, Ch{ξ ≥ x} = Pr{η ≥ x}, ∀x ∈ �.

It follows from the definition of critical values that

ξsup(α) = ηsup(α), ξinf(α) = ηinf(α), ∀α ∈ (0, 1].

In other words, the critical values of hybrid variable coincide with that of
random variable.

Example 6.10. If a hybrid variable ξ degenerates to a fuzzy variable ã, then

Ch{ξ ≤ x} = Cr{ã ≤ x}, Ch{ξ ≥ x} = Cr{ã ≥ x}, ∀x ∈ �.
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It follows from the definition of critical values that

ξsup(α) = ãsup(α), ξinf(α) = ãinf(α), ∀α ∈ (0, 1].

In other words, the critical values of hybrid variable coincide with that of
fuzzy variable.

Theorem 6.10. Let ξ be a hybrid variable. Then we have
(a) ξsup(α) is a decreasing and left-continuous function of α;
(b) ξinf(α) is an increasing and left-continuous function of α.

Proof: (a) It is easy to prove that ξinf(α) is an increasing function of α.
Next, we prove the left-continuity of ξinf(α) with respect to α. Let {αi} be
an arbitrary sequence of positive numbers such that αi ↑ α. Then {ξinf(αi)}
is an increasing sequence. If the limitation is equal to ξinf(α), then the left-
continuity is proved. Otherwise, there exists a number z∗ such that

lim
i→∞

ξinf(αi) < z∗ < ξinf(α).

Thus Ch{ξ ≤ z∗} ≥ αi for each i. Letting i → ∞, we get Ch{ξ ≤ z∗} ≥ α.
Hence z∗ ≥ ξinf(α). A contradiction proves the left-continuity of ξinf(α) with
respect to α. The part (b) may be proved similarly.

Ranking Criteria

Let ξ and η be two hybrid variables. Different from the situation of real
numbers, there does not exist a natural ordership in a hybrid world. Thus
an important problem appearing in this area is how to rank hybrid variables.
Here we give four ranking criteria.

Expected Value Criterion: We say ξ > η if and only if E[ξ] > E[η].

Optimistic Value Criterion: We say ξ > η if and only if, for some prede-
termined confidence level α ∈ (0, 1], we have ξsup(α) > ηsup(α), where ξsup(α)
and ηsup(α) are the α-optimistic values of ξ and η, respectively.

Pessimistic Value Criterion: We say ξ > η if and only if, for some prede-
termined confidence level α ∈ (0, 1], we have ξinf(α) > ηinf(α), where ξinf(α)
and ηinf(α) are the α-pessimistic values of ξ and η, respectively.

Chance Criterion: We say ξ > η if and only if, for some predetermined
levels r, we have Ch {ξ ≥ r} > Ch {η ≥ r}.

6.2 Expected Value Model

In order to obtain the decision with maximum expected return subject to
expected constraints, this section introduces the following hybrid EVM,
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⎧⎪⎨
⎪⎩

maxE[f(x, ξ)]
subject to:

E[gj(x, ξ)] ≤ 0, j = 1, 2, · · · , p

(6.26)

where x is a decision vector, ξ is a hybrid vector, f is the objective function,
and gj are the constraint functions for j = 1, 2, · · · , p.

In practice, a decision maker may want to optimize multiple objectives.
Thus we have the following hybrid expected value multiobjective program-
ming (EVMOP),⎧⎪⎨

⎪⎩
max [E[f1(x, ξ)], E[f2(x, ξ)], · · · , E[fm(x, ξ)]]
subject to:

E[gj(x, ξ)] ≤ 0, j = 1, 2, · · · , p

(6.27)

where fi(x, ξ) are objective functions for i = 1, 2, · · · , m, and gj(x, ξ) are
constraint functions for j = 1, 2, · · · , p.

In order to balance the multiple conflicting objectives, a decision-maker
may establish a hierarchy of importance among these incompatible goals so
as to satisfy as many goals as possible in the order specified. Thus we have a
hybrid expected value goal programming (EVGP),⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
l∑

j=1

Pj

m∑
i=1

(uijd
+
i ∨ 0 + vijd

−
i ∨ 0)

subject to:
E[fi(x, ξ)] − bi = d+

i , i = 1, 2, · · · , m

bi − E[fi(x, ξ)] = d−i , i = 1, 2, · · · , m

E[gj(x, ξ)] ≤ 0, j = 1, 2, · · · , p

(6.28)

where Pj is the preemptive priority factor which expresses the relative im-
portance of various goals, Pj � Pj+1, for all j, uij is the weighting factor
corresponding to positive deviation for goal i with priority j assigned, vij

is the weighting factor corresponding to negative deviation for goal i with
priority j assigned, d+

i ∨ 0 is the positive deviation from the target of goal
i, d−i ∨ 0 is the negative deviation from the target of goal i, fi is a function
in goal constraints, gj is a function in real constraints, bi is the target value
according to goal i, l is the number of priorities, m is the number of goal
constraints, and p is the number of real constraints.

6.3 Chance-Constrained Programming

Assume that x is a decision vector, ξ is a hybrid vector, f(x, ξ) is a return
function, and gj(x, ξ) are constraint functions, j = 1, 2, · · · , p. Since the hy-
brid constraints gj(x, ξ) ≤ 0, j = 1, 2, · · · , p do not define a deterministic
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feasible set, it is naturally desired that the hybrid constraints hold with chance
α, where α is a specified confidence level. Then we have a chance constraint as
follows,

Ch {gj(x, ξ) ≤ 0, j = 1, 2, · · · , p} ≥ α. (6.29)

Maximax Chance-Constrained Programming

If we want to maximize the optimistic value to the hybrid return subject to
some chance constraints, we have the following hybrid maximax CCP,⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max
x

max
f

f

subject to:

Ch
{
f(x, ξ) ≥ f

}
≥ β

Ch {gj(x, ξ) ≤ 0} ≥ αj , j = 1, 2, · · · , p

(6.30)

where αj and β are specified confidence levels for j = 1, 2, · · · , p, and max f
is the β-optimistic return.

In practice, we may have multiple objectives. We thus have the following
hybrid maximax chance-constrained multiobjective programming (CCMOP),⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

max
x

[
max

f1

f1, max
f2

f2, · · · , max
fm

fm

]

subject to:

Ch
{
fi(x, ξ) ≥ f i

}
≥ βi, i = 1, 2, · · · , m

Ch {gj(x, ξ) ≤ 0} ≥ αj , j = 1, 2, · · · , p

(6.31)

where βi are predetermined confidence levels for i = 1, 2, · · · , m, and max f i

are the β-optimistic values to the return functions fi(x, ξ), i = 1, 2, · · · , m,
respectively.

If the priority structure and target levels are set by the decision-maker,
then we have a minimin chance-constrained goal programming (CCGP),⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
x

l∑
j=1

Pj

m∑
i=1

(
uij

(
min
d+

i

d+
i ∨ 0

)
+ vij

(
min
d−

i

d−i ∨ 0

))

subject to:
Ch
{
fi(x, ξ) − bi ≤ d+

i

}
≥ β+

i , i = 1, 2, · · · , m

Ch
{
bi − fi(x, ξ) ≤ d−i

}
≥ β−

i , i = 1, 2, · · · , m

Ch {gj(x, ξ) ≤ 0} ≥ αj , j = 1, 2, · · · , p

(6.32)

where Pj is the preemptive priority factor which expresses the relative im-
portance of various goals, Pj � Pj+1, for all j, uij is the weighting factor
corresponding to positive deviation for goal i with priority j assigned, vij
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is the weighting factor corresponding to negative deviation for goal i with
priority j assigned, min d+

i ∨ 0 is the β+
i -optimistic positive deviation from

the target of goal i, min d−i ∨ 0 is the β−
i -optimistic negative deviation from

the target of goal i, bi is the target value according to goal i, and l is the
number of priorities.

Minimax Chance-Constrained Programming

If we want to maximize the pessimistic value subject to some chance con-
straints, then we have the following hybrid minimax CCP,⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max
x

min
f

f

subject to:

Ch
{
f(x, ξ) ≤ f

}
≥ β

Ch {gj(x, ξ) ≤ 0} ≥ αj , j = 1, 2, · · · , p

(6.33)

where αj and β are specified confidence levels for j = 1, 2, · · · , p, and min f
is the β-pessimistic return.

If there are multiple objectives, then we have the following hybrid minimax
CCMOP, ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

max
x

[
min
f1

f1, min
f2

f2, · · · , min
fm

fm

]

subject to:

Ch
{
fi(x, ξ) ≤ f i

}
≥ βi, i = 1, 2, · · · , m

Ch {gj(x, ξ) ≤ 0} ≥ αj , j = 1, 2, · · · , p

(6.34)

where min f i are the βi-pessimistic values to the return functions fi(x, ξ),
i = 1, 2, · · · , m, respectively.

We can also formulate a hybrid decision system as a hybrid minimax CCGP
according to the priority structure and target levels set by the decision-maker:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
x

l∑
j=1

Pj

m∑
i=1

[
uij

(
max
d+

i

d+
i ∨ 0

)
+ vij

(
max
d−

i

d−i ∨ 0

)]

subject to:
Ch
{
fi(x, ξ) − bi ≥ d+

i

}
≥ β+

i , i = 1, 2, · · · , m

Ch
{
bi − fi(x, ξ) ≥ d−i

}
≥ β−

i , i = 1, 2, · · · , m

Ch {gj(x, ξ) ≤ 0} ≥ αj , j = 1, 2, · · · , p

(6.35)

where Pj is the preemptive priority factor which expresses the relative im-
portance of various goals, Pj � Pj+1, for all j, uij is the weighting factor
corresponding to positive deviation for goal i with priority j assigned, vij

is the weighting factor corresponding to negative deviation for goal i with



102 6 Hybrid Programming

priority j assigned, max d+
i ∨ 0 is the β+

i -pessimistic positive deviation from
the target of goal i, max d−i ∨ 0 is the β−

i -pessimistic negative deviation from
the target of goal i, bi is the target value according to goal i, and l is the
number of priorities.

6.4 Dependent-Chance Programming

This section provides hybrid DCP in which the underlying philosophy is based
on selecting the decision with maximum chance to meet the event. Uncertain
environment and chance function are key elements in DCP. Let us redefine
them in hybrid decision systems, and introduce the principle of uncertainty.

By uncertain environment (in this case the hybrid environment) we mean
the hybrid constraints represented by

gj(x, ξ) ≤ 0, j = 1, 2, · · · , p (6.36)

where x is a decision vector, and ξ is a hybrid vector. By event we mean the
system of inequalities

hk(x, ξ) ≤ 0, k = 1, 2, · · · , q. (6.37)

The chance function of an event E characterized by (6.37) is defined as the
chance measure of the event E , i.e.,

f(x) = Ch{hk(x, ξ) ≤ 0, k = 1, 2, · · · , q} (6.38)

subject to the uncertain environment (6.36).
For each decision x and realization ξ, an event E is said to be consistent in

the uncertain environment if the following two conditions hold: (i) hk(x, ξ) ≤
0, k = 1, 2, · · · , q; and (ii) gj(x, ξ) ≤ 0, j ∈ J , where J is the index set of all
dependent constraints.

Principle of Uncertainty: The chance of a hybrid event is the chance
measure value that the event is consistent in the uncertain environment.

Assume that there are m events Ei characterized by hik(x, ξ) ≤ 0, k =
1, 2, · · · , qi for i = 1, 2, · · · , m in the uncertain environment gj(x, ξ) ≤ 0, j =
1, 2, · · · , p. The principle of uncertainty implies that the chance function of
the ith event Ei in the uncertain environment is

fi(x) = Ch
{

hik(x, ξ) ≤ 0, k = 1, 2, · · · , qi

gj(x, ξ) ≤ 0, j ∈ Ji

}
(6.39)

where Ji are defined by

Ji =
{
j ∈ {1, 2, · · · , p}

∣∣ gj(x, ξ) ≤ 0 is a dependent constraint of Ei

}
for i = 1, 2, · · · , m.
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General Models

In order to maximize the chance of event in an uncertain system, we may use
a hybrid DCP as follows:⎧⎪⎨

⎪⎩
max Ch {hk(x, ξ) ≤ 0, k = 1, 2, · · · , q}
subject to:

gj(x, ξ) ≤ 0, j = 1, 2, · · · , p

(6.40)

where x is an n-dimensional decision vector, ξ is a hybrid vector, the event E is
characterized by hk(x, ξ) ≤ 0, k = 1, 2, · · · , q, and the uncertain environment
is described by the hybrid constraints gj(x, ξ) ≤ 0, j = 1, 2, · · · , p.

If there are multiple events in the uncertain environment, then we have the
following hybrid dependent-chance multiobjective programming (DCMOP),⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

max

⎡
⎢⎢⎣

Ch {h1k(x, ξ) ≤ 0, k = 1, 2, · · · , q1}
Ch {h2k(x, ξ) ≤ 0, k = 1, 2, · · · , q2}

· · ·
Ch {hmk(x, ξ) ≤ 0, k = 1, 2, · · · , qm}

⎤
⎥⎥⎦

subject to:
gj(x, ξ) ≤ 0, j = 1, 2, · · · , p

(6.41)

where the events Ei are characterized by hik(x, ξ) ≤ 0, k = 1, 2, · · · , qi, i =
1, 2, · · · , m, respectively.

Hybrid dependent-chance goal programming (DCGP) is employed to for-
mulate hybrid decision systems according to the priority structure and target
levels set by the decision-maker,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
l∑

j=1
Pj

m∑
i=1

(uijd
+
i ∨ 0 + vijd

−
i ∨ 0)

subject to:
Ch {hik(x, ξ) ≤ 0, k = 1, 2, · · · , qi} − bi = d+

i , i = 1, 2, · · · , m

bi − Ch {hik(x, ξ) ≤ 0, k = 1, 2, · · · , qi} = d−i , i = 1, 2, · · · , m

gj(x, ξ) ≤ 0, j = 1, 2, · · · , p

where Pj is the preemptive priority factor which expresses the relative im-
portance of various goals, Pj � Pj+1, for all j, uij is the weighting factor
corresponding to positive deviation for goal i with priority j assigned, vij

is the weighting factor corresponding to negative deviation for goal i with
priority j assigned, d+

i ∨ 0 is the positive deviation from the target of goal i,
d−i ∨ 0 is the negative deviation from the target of goal i, gj is a function in
system constraints, bi is the target value according to goal i, l is the number
of priorities, m is the number of goal constraints, and p is the number of
system constraints.
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6.5 Hybrid Intelligent Algorithm

Liu [189] first designed hybrid simulations to estimate the uncertain functions
like

U1 : x → E[f(x, ξ)],
U2 : x → Ch {gj(x, ξ) ≤ 0, j = 1, 2, · · · , p} ,

U3 : x → max
{
f
∣∣ Ch

{
f(x, ξ) ≥ f

}
≥ α

}
.

(6.42)

Hybrid Simulation for U1(x)

In order to compute U1(x), we randomly generate θ1, θ2, · · · , θN from the
credibility space (Θ,�, Cr), and ω1, ω2, · · · , ωN from the probability space
(Ω,�, Pr). For each θk, we estimate the probabilities like

Pr{f(x, ξ(θk, ·)) ≥ r}, Pr{f(x, ξ(θk, ·)) < r}

by the technique of stochastic simulation via the samples ω1, ω2, · · · , ωN . For
any number r ≥ 0, the value Ch{f(x, ξ) ≥ r} is⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

max
1≤k≤N

Cr{θk} ∧ Pr{f(x, ξ(θk, ·)) ≥ r},

if max
1≤k≤N

Cr{θk} ∧ Pr{f(x, ξ(θk, ·)) ≥ r} < 0.5

1 − max
1≤k≤N

Cr{θk} ∧ Pr{f(x, ξ(θk, ·)) < r},

if max
1≤k≤N

Cr{θk} ∧ Pr{f(x, ξ(θk, ·)) ≥ r} ≥ 0.5

(6.43)

and for any number r < 0, the value Ch{f(x, ξ) ≤ r} is⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

max
1≤k≤N

Cr{θk} ∧ Pr{f(x, ξ(θk, ·)) ≤ r},

if max
1≤k≤N

Cr{θk} ∧ Pr{f(x, ξ(θk, ·)) ≤ r} < 0.5

1 − max
1≤k≤N

Cr{θk} ∧ Pr{f(x, ξ(θk, ·)) > r},

if max
1≤k≤N

Cr{θk} ∧ Pr{f(x, ξ(θk, ·)) ≤ r} ≥ 0.5.

(6.44)

The expected value is then obtained by the following process.

Algorithm 6.1 (Hybrid Simulation for U1(x))
Step 1. Set e = 0.
Step 2. Generate θ1, θ2, · · · , θN from the credibility space (Θ,�, Cr).
Step 3. Generate ω1, ω2, · · · , ωN from the probability space (Ω,�, Pr).
Step 4. a = min

1≤k≤N,1≤j≤N
f(x, ξ(θk, ωj)), b = max

1≤k≤N,1≤j≤N
f(x, ξ(θk, ωj)).

Step 5. Randomly generate r from [a, b].
Step 6. If r ≥ 0, then e ← e + Ch{f(x, ξ) ≥ r} by using (6.43).
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Step 7. If r < 0, then e ← e − Ch{f(x, ξ) ≤ r} by using (6.44).
Step 8. Repeat the fifth to seventh steps for N times.
Step 9. E[f(ξ)] = a ∨ 0 + b ∧ 0 + e · (b − a)/N .

Hybrid Simulation for U2(x)

In order to compute the uncertain function U2(x), we randomly generate
θ1, θ2, · · · , θN from the credibility space (Θ,�, Cr), and ω1, ω2, · · · , ωN from
the probability space (Ω,�, Pr). For each θk, we estimate

Pr{gj(x, ξ(θk, ·)) ≤ 0 for all j}, Pr{gj(x, ξ(θk, ·)) > 0 for some j}

by stochastic simulation via the samples ω1, ω2, · · · , ωN . Then U2(x) is⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

max
1≤k≤N

Cr{θk} ∧ Pr{gj(x, ξ(θk, ·)) ≤ 0 for all j},

if max
1≤k≤N

Cr{θk} ∧ Pr{gj(x, ξ(θk, ·)) ≤ 0 for all j} < 0.5

1 − max
1≤k≤N

Cr{θk} ∧ Pr{gj(x, ξ(θk, ·)) > 0 for some j},

if max
1≤k≤N

Cr{θk} ∧ Pr{gj(x, ξ(θk, ·)) ≤ 0 for all j} ≥ 0.5.

(6.45)

We summarize this process as follows.

Algorithm 6.2 (Hybrid Simulation for U2(x))
Step 1. Generate θ1, θ2, · · · , θN from the credibility space (Θ,�, Cr).
Step 2. Generate ω1, ω2, · · · , ωN from the probability space (Ω,�, Pr).
Step 3. Employ stochastic simulation to estimate Pr{gj(x, ξ(θk, ·)) ≤

0 for all j} and Pr{gj(x, ξ(θk, ·)) > 0 for some j} via the samples
ω1, ω2, · · · , ωN .

Step 4. Output the chance U2(x) via (6.45).

Hybrid Simulation for U3(x)

In order to compute U3(x), we randomly generate θ1, θ2, · · · , θN from the
credibility space (Θ,�, Cr), and ω1, ω2, · · · , ωN from the probability space
(Ω,�, Pr). For each θk, we estimate

Pr{f(x, ξ(θk, ·)) ≥ r}, Pr{f(x, ξ(θk, ·)) < r}

by stochastic simulation via the samples ω1, ω2, · · · , ωN . For any number r,
we set
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L(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

max
1≤k≤N

Cr{θk} ∧ Pr{f(x, ξ(θk, ·)) ≥ r},

if max
1≤k≤N

Cr{θk} ∧ Pr{f(x, ξ(θk, ·)) ≥ r} < 0.5

1 − max
1≤k≤N

Cr{θk} ∧ Pr{f(x, ξ(θk, ·)) < r},

if max
1≤k≤N

Cr{θk} ∧ Pr{f(x, ξ(θk, ·)) ≥ r} ≥ 0.5.

(6.46)

It follows from the monotonicity of L(r) that we may employ bisection search
to find the maximal value r such that L(r) ≥ α. This value is an estimation
of f . We summarize this process as follows.

Algorithm 6.3 (Hybrid Simulation for U3(x))
Step 1. Generate θ1, θ2, · · · , θN from the credibility space (Θ,�, Cr).
Step 2. Generate ω1, ω2, · · · , ωN from the probability space (Ω,�, Pr).
Step 3. a = min

1≤k≤N,1≤j≤N
f(x, ξ(θk, ωj)), b = max

1≤k≤N,1≤j≤N
f(x, ξ(θk, ωj)).

Step 4. Set r = (a + b)/2.
Step 5. Compute L(r) by (6.46).
Step 6. If L(r) > α, then set a = r. Otherwise, set b = r.
Step 7. If |a − b| > ε (a predetermined precision), then go to Step 4.
Step 8. Output r as the critical value.

Hybrid Intelligent Algorithm

In order to solve hybrid programming models, we may integrate hybrid sim-
ulation, NN and GA to produce a hybrid intelligent algorithm as follows,

Algorithm 6.4 (Hybrid Intelligent Algorithm)
Step 1. Generate training input-output data for uncertain functions like

U1 : x → E[f(x, ξ)],
U2 : x → Ch {gj(x, ξ) ≤ 0, j = 1, 2, · · · , p} ,

U3 : x → max
{
f
∣∣ Ch

{
f(x, ξ) ≥ f

}
≥ α

}
by the hybrid simulation.

Step 2. Train a neural network to approximate the uncertain functions ac-
cording to the generated training input-output data.

Step 3. Initialize pop size chromosomes whose feasibility may be checked
by the trained neural network.

Step 4. Update the chromosomes by crossover and mutation operations in
which the feasibility of offspring may be checked by the trained
neural network.
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Step 5. Calculate the objective values for all chromosomes by the trained
neural network.

Step 6. Compute the fitness of each chromosome according to the objective
values.

Step 7. Select the chromosomes by spinning the roulette wheel.
Step 8. Repeat the fourth to seventh steps for a given number of cycles.
Step 9. Report the best chromosome as the optimal solution.

6.6 Numerical Experiments

We now provide some numerical examples to illustrate the effectiveness of
hybrid intelligent algorithm.

Example 6.11. Consider the following hybrid EVM⎧⎪⎨
⎪⎩

min E
[√

(x1 − ξ1)2 + (x2 − ξ2)2 + (x3 − ξ3)2
]

subject to:
|x1| + |x2| + |x3| ≤ 4

where ξ1, ξ2 and ξ3 are hybrid variables defined as

ξ1 ∼ U(ρ − 1, ρ), with ρ = (−2, −1, 0),
ξ2 ∼ U(ρ, ρ + 1), with ρ = (−1, 0, 1),
ξ3 ∼ U(ρ + 1, ρ + 2), with ρ = (0, 1, 2).

In order to solve this model, we first generate input-output data for the
uncertain function

U : x → E
[√

(x1 − ξ1)2 + (x2 − ξ2)2 + (x3 − ξ3)2
]

by hybrid simulation. Then we train an NN (3 input neurons, 5 hidden neu-
rons, 1 output neuron) to approximate the uncertain function U . Lastly,
the trained NN is embedded into a GA to produce a hybrid intelligent
algorithm.

A run of the hybrid intelligent algorithm (1000 cycles in hybrid simulation,
2000 data in NN, 400 generations in GA) shows that the optimal solution is

x∗ = (−1.3140, 0.2198, 2.4662)

whose objective value is 1.5059.

Example 6.12. Let us consider the following hybrid CCP,
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max f

subject to:

Ch
{
ξ1x1x3 + ξ2x2x4 ≥ f

}
≥ 0.90

Ch {(ξ3 + x1 + x2)(ξ4 + x3 + x4) ≤ 30} ≥ 0.85
x1, x2, x3, x4 ≥ 0

where ξ1, ξ2, ξ3, ξ4 are hybrid variables defined as

ξ1 ∼ N (ρ, 1), with µρ(x) = [1 − (x − 1)2] ∨ 0,

ξ2 ∼ N (ρ, 1), with µρ(x) = [1 − (x − 2)2] ∨ 0,

ξ3 ∼ N (ρ, 1), with µρ(x) = [1 − (x − 3)2] ∨ 0,

ξ4 ∼ N (ρ, 1), with µρ(x) = [1 − (x − 4)2] ∨ 0.

In order to solve this model, we produce input-output data for the uncertain
function U : x → (U1(x), U2(x)), where

U1(x) = max
{
f
∣∣ Ch

{
ξ1x1x2 + ξ2x3x4 ≥ f

}
≥ 0.90

}
,

U2(x) = Ch {(ξ3 + x1 + x2)(ξ4 + x3 + x4) ≤ 30} ,

by the hybrid simulation. Based on the input-output data, we train an NN
(4 input neurons, 8 hidden neurons, 2 output neurons) to approximate the
uncertain function U . After that, the trained NN is embedded into a GA to
produce a hybrid intelligent algorithm.

A run of the hybrid intelligent algorithm (5000 cycles in simulation,
3000 training data in NN, 600 generations in GA) shows that the optimal
solution is

(x∗
1, x

∗
2, x

∗
3, x

∗
4) = (0.000, 1.303, 0.000, 1.978)

whose objective value is 2.85. Moreover, we have

Ch {ξ1x
∗
1x

∗
3 + ξ2x

∗
2x

∗
4 ≥ 2.85} ≈ 0.90,

Ch {(ξ3 + x∗
1 + x∗

2)(ξ4 + x∗
3 + x∗

4) ≤ 30} ≈ 0.85.

Example 6.13. This is a hybrid DCP which maximizes the chance of an
uncertain event subject to a deterministic constraint,⎧⎪⎨

⎪⎩
max Ch {ξ1x1 + ξ2x2 + ξ3x3 ≥ 5}
subject to:

x2
1 + x2

2 + x2
3 ≤ 4

where ξ1, ξ2, ξ3 are hybrid variables defined as
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ξ1 ∼ N (ρ, 1), with µρ(x) = 1/[1 + (x − 1)2],
ξ2 ∼ N (ρ, 1), with µρ(x) = 1/[1 + (x − 2)2],
ξ3 ∼ N (ρ, 1), with µρ(x) = 1/[1 + (x − 3)2].

We produce a set of input-output data for the uncertain function

U : (x1, x2, x3) → Ch {ξ1x1 + ξ2x2 + ξ3x3 ≥ 5}

by the hybrid simulation. According to the generated data, we train a feed-
forward NN (3 input neurons, 5 hidden neurons, 1 output neuron) to approx-
imate the uncertain function U . Then we integrate the trained NN and GA
to produce a hybrid intelligent algorithm.

A run of the hybrid intelligent algorithm (6000 cycles in simulation, 2000
data in NN, 500 generations in GA) shows that the optimal solution is

(x∗
1, x

∗
2, x

∗
3) = (0.6847, 1.2624, 1.3919)

whose chance is 0.9.

Example 6.14. We consider the following hybrid DCGP,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lexmin
{
d−1 ∨ 0, d−2 ∨ 0, d−3 ∨ 0

}
subject to:

0.88 − Ch {x1 + x5 = 1} = d−1
0.85 − Ch {x2 + x3 = 2} = d−2
0.82 − Ch {x4 + x6 = 3} = d−3
x2

1 ≤ ξ1

x2
2 + x2

3 + x2
4 ≤ ξ2

x2
5 + x2

6 ≤ ξ3

where ξ1, ξ2, ξ3, ξ4 are hybrid variables defined as follows,

ξ1 ∼ EXP(ρ), with µρ(x) = [1 − (x − 6)2] ∨ 0,

ξ2 ∼ EXP(ρ), with µρ(x) = [1 − (x − 30)2] ∨ 0,

ξ3 ∼ EXP(ρ), with µρ(x) = [1 − (x − 18)2] ∨ 0.

At the first priority level, there is one event denoted by E1, which will be
fulfilled by x1 + x5 = 1. It is clear that the support E∗

1 = {x1, x5} and
the dependent support E∗∗

1 = {x1, x5, x6}. It follows from the principle of
uncertainty that the chance function of the event E1 is

f1(x) = Ch

⎧⎨
⎩

x1 + x5 = 1
x2

1 ≤ ξ1
x2

5 + x2
6 ≤ ξ3

⎫⎬
⎭ .
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At the second priority level, there is an event E2 which will be fulfilled
by x2 + x3 = 2. The support E∗

2 = {x2, x3} and the dependent support
E∗∗
2 = {x2, x3, x4}. It follows from the principle of uncertainty that the chance

function of the event E2 is

f2(x) = Ch
{

x2 + x3 = 2
x2

2 + x2
3 + x2

4 ≤ ξ2

}
.

At the third priority level, there is an event E3 which will be fulfilled by
x4 + x6 = 3. The support E∗

3 = {x4, x6} and the dependent support E∗∗
3 =

{x2, x3, x4, x5, x6}. It follows from the principle of uncertainty that the chance
function of the event E3 is

f3(x) = Ch

⎧⎨
⎩

x4 + x6 = 3
x2

2 + x2
3 + x2

4 ≤ ξ2
x2

5 + x2
6 ≤ ξ3

⎫⎬
⎭ .

In order to solve the hybrid DCGP model, we encode a solution by a chromo-
some V = (v1, v2, v3). Thus a chromosome can be converted into a solution
by

x1 = v1, x2 = v2, x3 = 2 − v2, x4 = v3, x5 = 1 − v1, x6 = 3 − v3.

We generate a set of input-output data for the uncertain function U :
(v1, v2, v3) → (f1(x), f2(x), f3(x)) by the hybrid simulation. Then we train
a feedforward NN to approximate the uncertain function U . After that, the
trained NN is embedded into a GA to produce a hybrid intelligent algorithm.
A run of the hybrid intelligent algorithm (6000 cycles in simulation, 3000
data in NN, 1000 generations in GA) shows that the optimal solution is

x∗ = (0.4005, 1.0495, 0.9505, 1.7574, 0.5995, 1.2427)

which can satisfy the first two goals, but the third objective is 0.05. In fact,
we also have

f1(x∗) ≈ 0.88, f2(x∗) ≈ 0.85, f3(x∗) ≈ 0.77.



Chapter 7
Uncertain Programming

Uncertainty theory, founded by Liu [189] in 2007, is a branch of mathematics
based on normality, monotonicity, self-duality, and countable subadditivity
axioms. By uncertain programming we mean the optimization theory in gen-
erally uncertain environments. This chapter introduces the concept of uncer-
tain variable and provides a general framework of uncertain programming.

7.1 Uncertain Variables

Let Γ be a nonempty set, and � a σ-algebra over Γ . Each element Λ ∈ �
is called an event. In order to present an axiomatic definition of uncertain
measure, it is necessary to assign to each event Λ a number �{Λ} which
indicates the level that Λ will occur. In order to ensure that the number
�{Λ} has certain mathematical properties, Liu [189] presented the following
four axioms:

Axiom 1. (Normality) �{Γ} = 1.

Axiom 2. (Monotonicity) �{Λ1} ≤�{Λ2} whenever Λ1 ⊂ Λ2.

Axiom 3. (Self-Duality) �{Λ} +�{Λc} = 1 for any event Λ.

Axiom 4. (Countable Subadditivity) For every countable sequence of events
{Λi}, we have

�

{ ∞⋃
i=1

Λi

}
≤

∞∑
i=1

�{Λi}. (7.1)

Definition 7.1. (Liu [189]) The set function � is called an uncertain mea-
sure if it satisfies the normality, monotonicity, self-duality, and countable
subadditivity axioms.

Example 7.1. Probability measure, credibility measure and chance measure
are instances of uncertain measure.

B. Liu: Theory and Practice of Uncertain Programming, STUDFUZZ 239, pp. 111–128.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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Example 7.2. Let Γ = {γ1, γ2, γ3}. For this case, there are only 8 events.
Define

�{γ1} = 0.6, �{γ2} = 0.3, �{γ3} = 0.2,

�{γ1, γ2} = 0.8, �{γ1, γ3} = 0.7, �{γ2, γ3} = 0.4,

�{∅} = 0, �{Γ} = 1.

It is clear that the set function � is neither probability measure nor credi-
bility measure. However, � is an uncertain measure because it satisfies the
four axioms.

Example 7.3. (Liu [195]) Suppose g(x) is a nonnegative and integrable
function on � such that

∫
� g(x)dx ≥ 1. Then for any Borel set Λ, the set

function

�{Λ} =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∫
Λ

g(x)dx, if
∫

Λ

g(x)dx < 0.5

1 −
∫

Λc

g(x)dx, if
∫

Λc

g(x)dx < 0.5

0.5, otherwise

(7.2)

is an uncertain measure on �. If
∫
� g(x)dx = 1, then � is just a probability

measure on �.

Example 7.4. (Liu [191]) Suppose f(x) is a nonnegative function and g(x)
is a nonnegative and integrable function satisfying

sup
x∈�

f(x) +
∫
�

g(x)dx = 1. (7.3)

Then for any Borel set Λ of real numbers, the set function

�{Λ} =
1
2

(
sup
x∈Λ

f(x) + sup
x∈�

f(x) − sup
x∈Λc

f(x)
)

+
∫

Λ

g(x)dx (7.4)

is an uncertain measure on �.

Theorem 7.1. Suppose that � is an uncertain measure. Then �{∅} = 0
and 0 ≤�{Λ} ≤ 1 for any event Λ.

Proof: It follows from Axioms 1 and 3 that �{∅} = 1 −�{Γ} = 1 − 1 = 0.
It follows from Axiom 2 that 0 ≤�{Λ} ≤ 1 because of ∅ ⊂ Λ ⊂ Γ .

Theorem 7.2. Suppose that� is an uncertain measure. Then for any events
Λ1 and Λ2, we have

�{Λ1} ∨�{Λ2} ≤�{Λ1 ∪ Λ2} ≤�{Λ1} +�{Λ2}. (7.5)



7.1 Uncertain Variables 113

Proof: The left-hand inequality follows from the monotonicity axiom and
the right-hand inequality follows from the countable subadditivity axiom im-
mediately.

Theorem 7.3. Suppose that� is an uncertain measure. Then for any events
Λ1 and Λ2, we have

�{Λ1} +�{Λ2} − 1 ≤�{Λ1 ∩ Λ2} ≤�{Λ1} ∧�{Λ2}. (7.6)

Proof: The right-hand inequality follows from the monotonicity axiom and
the left-hand inequality follows from the self-duality and countable subaddi-
tivity axioms, i.e.,

�{λ1 ∩ Λ2}= 1 −�{(Λ1 ∩ Λ2)c} = 1 −�{Λc
1 ∪ Λc

2}
≥ 1 − (�{Λc

1} +�{Λc
2})

= 1 − (1 −�{Λ1}) − (1 −�{Λ2})

=�{Λ1} +�{Λ2} − 1.

The inequalities are verified.

Definition 7.2. (Liu [189]) Let Γ be a nonempty set, � a σ-algebra over Γ ,
and � an uncertain measure. Then the triplet (Γ,�,�) is called an uncer-
tainty space.

Definition 7.3. (Liu [189]) An uncertain variable is a measurable function
from an uncertainty space (Γ,�,�) to the set of real numbers, i.e., for any
Borel set B of real numbers, we have

{ξ ∈ B} = {γ ∈ Γ
∣∣ ξ(γ) ∈ B} ∈ �. (7.7)

Example 7.5. Random variable, fuzzy variable and hybrid variable are in-
stances of uncertain variable.

Definition 7.4. An n-dimensional uncertain vector is a measurable function
from an uncertainty space (Γ,�,�) to the set of n-dimensional real vectors,
i.e., for any Borel set B of �n, the set

{ξ ∈ B} =
{
γ ∈ Γ

∣∣ ξ(γ) ∈ B
}

(7.8)

is an event.

Theorem 7.4. The vector (ξ1, ξ2, · · · , ξn) is an uncertain vector if and only
if ξ1, ξ2, · · · , ξn are uncertain variables.

Proof: Write ξ = (ξ1, ξ2, · · · , ξn). Suppose that ξ is an uncertain vector on
the uncertainty space (Γ,�,�). For any Borel set B of �, the set B × �n−1

is a Borel set of �n. Thus the set
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{
γ ∈ Γ

∣∣ ξ1(γ) ∈ B
}

=
{
γ ∈ Γ

∣∣ ξ1(γ) ∈ B, ξ2(γ) ∈ �, · · · , ξn(γ) ∈ �
}

=
{
γ ∈ Γ

∣∣ ξ(γ) ∈ B × �n−1
}

is an event. Hence ξ1 is an uncertain variable. A similar process may
prove that ξ2, ξ3, · · · , ξn are uncertain variables. Conversely, suppose that
all ξ1, ξ2, · · · , ξn are uncertain variables on the uncertainty space (Γ,�,�).
We define

� =
{
B ⊂ �n

∣∣ {γ ∈ Γ |ξ(γ) ∈ B} is an event
}

.

The vector ξ = (ξ1, ξ2, · · · , ξn) is proved to be an uncertain vector if we can
prove that � contains all Borel sets of �n. First, the class � contains all open
intervals of �n because{

γ
∣∣ ξ(γ) ∈

n∏
i=1

(ai, bi)

}
=

n⋂
i=1

{
γ
∣∣ ξi(γ) ∈ (ai, bi)

}

is an event. Next, the class � is a σ-algebra of �n because (i) we have �n ∈ �
since {γ|ξ(γ) ∈ �n} = Γ ; (ii) if B ∈ �, then{

γ ∈ Γ
∣∣ ξ(γ) ∈ B

}
is an event, and

{γ ∈ Γ
∣∣ ξ(γ) ∈ Bc} = {γ ∈ Γ

∣∣ ξ(γ) ∈ B}c

is an event. This means that Bc ∈ �; (iii) if Bi ∈ � for i = 1, 2, · · · , then
{γ ∈ Γ |ξ(γ) ∈ Bi} are events and{

γ ∈ Γ
∣∣ ξ(γ) ∈

∞⋃
i=1

Bi

}
=

∞⋃
i=1

{γ ∈ Γ
∣∣ ξ(γ) ∈ Bi}

is an event. This means that ∪iBi ∈ �. Since the smallest σ-algebra con-
taining all open intervals of �n is just the Borel algebra of �n, the class �
contains all Borel sets of �n. The theorem is proved.

Identification Function

A random variable may be characterized by a probability density function,
and a fuzzy variable may be described by a membership function. This section
will introduce an identification function to characterize an uncertain variable.

Definition 7.5. (Liu [191]) An uncertain variable ξ is said to have an iden-
tification function (λ, ρ) if
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(i) λ(x) is a nonnegative function and ρ(x) is a nonnegative and integrable
function such that

sup
x∈�

λ(x) +
∫
�

ρ(x)dx = 1; (7.9)

(ii) for any Borel set B of real numbers, we have

�{ξ ∈ B} =
1
2

(
sup
x∈B

λ(x) + sup
x∈�

λ(x) − sup
x∈Bc

λ(x)
)

+
∫

B

ρ(x)dx. (7.10)

Some uncertain variables do not have their own identification functions. In
other words, it is not true that every uncertain variable may be represented
by an appropriate identification function.

Remark 7.1. The uncertain variable with identification function (λ, ρ) is
essentially a fuzzy variable if

sup
x∈�

λ(x) = 1.

For this case, λ is a membership function and ρ ≡ 0, a.e.

Remark 7.2. The uncertain variable with identification function (λ, ρ) is
essentially a random variable if∫

�
ρ(x)dx = 1.

For this case, ρ is a probability density function and λ ≡ 0.

Remark 7.3. Let ξ be an uncertain variable with identification function
(λ, ρ). If λ(x) is a continuous function, then we have

�{ξ = x} =
λ(x)

2
, ∀x ∈ �. (7.11)

Remark 7.4. Let µ be a membership function, and φ a probability density
function. Then for each α ∈ [0, 1], the function (λ, ρ) with

λ = (1 − α)µ, ρ = αφ (7.12)

is an identification function of some uncertain variable.

Uncertain Arithmetic

Definition 7.6. Suppose that f : �n → � is a measurable function, and
ξ1, ξ2, · · · , ξn uncertain variables on the uncertainty space (Γ,�,�). Then
ξ = f(ξ1, ξ2, · · · , ξn) is an uncertain variable defined as

ξ(γ) = f(ξ1(γ), ξ2(γ), · · · , ξn(γ)), ∀γ ∈ Γ. (7.13)
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The reader may wonder whether ξ(γ1, γ2, · · · , γn) defined by (7.13) is an
uncertain variable. The following theorem answers this question.

Theorem 7.5. Let ξ be an n-dimensional uncertain vector, and f : �n → �
a measurable function. Then f(ξ) is an uncertain variable.

Proof:Assume thatξ is anuncertain vector on the uncertainty space (Γ,�,�).
For any Borel set B of �, since f is a measurable function, the f−1(B) is a Borel
set of �n. Thus the set{

γ ∈ Γ
∣∣ f(ξ(γ)) ∈ B

}
=
{
γ ∈ Γ

∣∣ ξ(γ) ∈ f−1(B)
}

is an event for any Borel set B. Hence f(ξ) is an uncertain variable.

Expected Value

Expected value is the average value of uncertain variable in the sense of
uncertain measure, and represents the size of uncertain variable.

Definition 7.7. (Liu [189]) Let ξ be an uncertain variable. Then the expected
value of ξ is defined by

E[ξ] =
∫ +∞

0
�{ξ ≥ r}dr −

∫ 0

−∞
�{ξ ≤ r}dr (7.14)

provided that at least one of the two integrals is finite.

Theorem 7.6. Let ξ be an uncertain variable with finite expected value. Then
for any real numbers a and b, we have

E[aξ + b] = aE[ξ] + b. (7.15)

Proof: Step 1: We first prove that E[ξ + b] = E[ξ] + b for any real number
b. If b ≥ 0, we have

E[ξ + b] =
∫ +∞

0
�{ξ + b ≥ r}dr −

∫ 0

−∞
�{ξ + b ≤ r}dr

=
∫ +∞

0
�{ξ ≥ r − b}dr −

∫ 0

−∞
�{ξ ≤ r − b}dr

= E[ξ] +
∫ b

0
(�{ξ ≥ r − b} +�{ξ < r − b})dr

= E[ξ] + b.

If b < 0, then we have

E[aξ + b] = E[ξ] −
∫ 0

b

(�{ξ ≥ r − b} +�{ξ < r − b})dr = E[ξ] + b.
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Step 2: We prove E[aξ] = aE[ξ]. If a = 0, then the equation E[aξ] = aE[ξ]
holds trivially. If a > 0, we have

E[aξ] =
∫ +∞

0
�{aξ ≥ r}dr −

∫ 0

−∞
�{aξ ≤ r}dr

=
∫ +∞

0
�{ξ ≥ r/a}dr −

∫ 0

−∞
�{ξ ≤ r/a}dr

= a

∫ +∞

0
�{ξ ≥ t}dt − a

∫ 0

−∞
�{ξ ≤ t}dt

= aE[ξ].

If a < 0, we have

E[aξ] =
∫ +∞

0
�{aξ ≥ r}dr −

∫ 0

−∞
�{aξ ≤ r}dr

=
∫ +∞

0
�{ξ ≤ r/a}dr −

∫ 0

−∞
�{ξ ≥ r/a}dr

= a

∫ +∞

0
�{ξ ≥ t}dt − a

∫ 0

−∞
�{ξ ≤ t}dt

= aE[ξ].

Step 3: For any real numbers a and b, it follows from Steps 1 and 2 that

E[aξ + b] = E[aξ] + b = aE[ξ] + b.

The theorem is proved.

Critical Values

Definition 7.8. (Liu [189]) Let ξ be an uncertain variable, and α ∈ (0, 1].
Then

ξsup(α) = sup
{
r
∣∣� {ξ ≥ r} ≥ α

}
(7.16)

is called the α-optimistic value to ξ, and

ξinf(α) = inf
{
r
∣∣� {ξ ≤ r} ≥ α

}
(7.17)

is called the α-pessimistic value to ξ.

Theorem 7.7. Let ξ be an uncertain variable. Then ξsup(α) is a decreasing
function of α, and ξinf(α) is an increasing function of α.

Proof: It follows from the definition immediately.
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Ranking Criteria

Let ξ and η be two uncertain variables. Different from the situation of real
numbers, there does not exist a natural ordership in an uncertain world.
Thus an important problem appearing in this area is how to rank uncertain
variables. Here we give four ranking criteria.

Expected Value Criterion: We say ξ > η if and only if E[ξ] > E[η].

Optimistic Value Criterion: We say ξ > η if and only if, for some prede-
termined confidence level α ∈ (0, 1], we have ξsup(α) > ηsup(α), where ξsup(α)
and ηsup(α) are the α-optimistic values of ξ and η, respectively.

Pessimistic Value Criterion: We say ξ > η if and only if, for some prede-
termined confidence level α ∈ (0, 1], we have ξinf(α) > ηinf(α), where ξinf(α)
and ηinf(α) are the α-pessimistic values of ξ and η, respectively.

Chance Criterion: We say ξ > η if and only if, for some predetermined
levels r, we have � {ξ ≥ r} >� {η ≥ r}.

7.2 Expected Value Model

In order to obtain the decision with maximum expected return subject to
expected constraints, we have the following uncertain EVM,⎧⎪⎨

⎪⎩
maxE[f(x, ξ)]
subject to:

E[gj(x, ξ)] ≤ 0, j = 1, 2, · · · , p

(7.18)

where x is a decision vector, ξ is a uncertain vector, f is the objective func-
tion, and gj are the constraint functions for j = 1, 2, · · · , p.

In practice, a decision maker may want to optimize multiple objectives.
Thus we have the following uncertain expected value multiobjective program-
ming (EVMOP),⎧⎪⎨

⎪⎩
max [E[f1(x, ξ)], E[f2(x, ξ)], · · · , E[fm(x, ξ)]]
subject to:

E[gj(x, ξ)] ≤ 0, j = 1, 2, · · · , p

(7.19)

where fi(x, ξ) are objective functions for i = 1, 2, · · · , m, and gj(x, ξ) are
constraint functions for j = 1, 2, · · · , p.

In order to balance the multiple conflicting objectives, a decision-maker
may establish a hierarchy of importance among these incompatible goals so
as to satisfy as many goals as possible in the order specified. Thus we have
an uncertain expected value goal programming (EVGP),
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
l∑

j=1

Pj

m∑
i=1

(uijd
+
i ∨ 0 + vijd

−
i ∨ 0)

subject to:
E[fi(x, ξ)] − bi = d+

i , i = 1, 2, · · · , m

bi − E[fi(x, ξ)] = d−i , i = 1, 2, · · · , m

E[gj(x, ξ)] ≤ 0, j = 1, 2, · · · , p

(7.20)

where Pj is the preemptive priority factor which expresses the relative im-
portance of various goals, Pj � Pj+1, for all j, uij is the weighting factor
corresponding to positive deviation for goal i with priority j assigned, vij

is the weighting factor corresponding to negative deviation for goal i with
priority j assigned, d+

i ∨ 0 is the positive deviation from the target of goal
i, d−i ∨ 0 is the negative deviation from the target of goal i, fi is a function
in goal constraints, gj is a function in real constraints, bi is the target value
according to goal i, l is the number of priorities, m is the number of goal
constraints, and p is the number of real constraints.

7.3 Chance-Constrained Programming

Assume that x is a decision vector, ξ is an uncertain vector, f(x, ξ) is a re-
turn function, and gj(x, ξ) are constraint functions, j = 1, 2, · · · , p. Since the
uncertain constraints gj(x, ξ) ≤ 0, j = 1, 2, · · · , p do not define a determin-
istic feasible set, it is naturally desired that the uncertain constraints hold
with chance α, where α is a specified confidence level. Then we have a chance
constraint as follows,

� {gj(x, ξ) ≤ 0, j = 1, 2, · · · , p} ≥ α. (7.21)

Maximax Chance-Constrained Programming

If we want to maximize the optimistic value to the uncertain return subject
to some chance constraints, we have the following uncertain maximax CCP,⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max
x

max
f

f

subject to:

�
{
f(x, ξ) ≥ f

}
≥ β

� {gj(x, ξ) ≤ 0} ≥ αj , j = 1, 2, · · · , p

(7.22)

where αj and β are specified confidence levels for j = 1, 2, · · · , p, and max f
is the β-optimistic return.

In practice, we may have multiple objectives. We thus have the follow-
ing uncertain maximax chance-constrained multiobjective programming (CC-
MOP),
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max
x

[
max

f1

f1, max
f2

f2, · · · , max
fm

fm

]

subject to:

�
{
fi(x, ξ) ≥ f i

}
≥ βi, i = 1, 2, · · · , m

� {gj(x, ξ) ≤ 0} ≥ αj , j = 1, 2, · · · , p

(7.23)

where βi are predetermined confidence levels for i = 1, 2, · · · , m, and max f i

are the β-optimistic values to the return functions fi(x, ξ), i = 1, 2, · · · , m,
respectively.

If the priority structure and target levels are set by the decision-maker,
then we have a minimin chance-constrained goal programming (CCGP),⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
x

l∑
j=1

Pj

m∑
i=1

(
uij

(
min
d+

i

d+
i ∨ 0

)
+ vij

(
min
d−

i

d−i ∨ 0

))

subject to:
�
{
fi(x, ξ) − bi ≤ d+

i

}
≥ β+

i , i = 1, 2, · · · , m

�
{
bi − fi(x, ξ) ≤ d−i

}
≥ β−

i , i = 1, 2, · · · , m

� {gj(x, ξ) ≤ 0} ≥ αj , j = 1, 2, · · · , p

(7.24)

where Pj is the preemptive priority factor which expresses the relative im-
portance of various goals, Pj � Pj+1, for all j, uij is the weighting factor
corresponding to positive deviation for goal i with priority j assigned, vij

is the weighting factor corresponding to negative deviation for goal i with
priority j assigned, min d+

i ∨ 0 is the β+
i -optimistic positive deviation from

the target of goal i, min d−i ∨ 0 is the β−
i -optimistic negative deviation from

the target of goal i, bi is the target value according to goal i, and l is the
number of priorities.

Minimax Chance-Constrained Programming

If we want to maximize the pessimistic value subject to some chance con-
straints, we have the following uncertain minimax CCP,⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max
x

min
f

f

subject to:

�
{
f(x, ξ) ≤ f

}
≥ β

� {gj(x, ξ) ≤ 0} ≥ αj , j = 1, 2, · · · , p

(7.25)

where αj and β are specified confidence levels for j = 1, 2, · · · , p, and min f
is the β-pessimistic return.

If there are multiple objectives, then we have the following uncertain min-
imax CCMOP,
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max
x

[
min
f1

f1, min
f2

f2, · · · , min
fm

fm

]

subject to:

�
{
fi(x, ξ) ≤ f i

}
≥ βi, i = 1, 2, · · · , m

� {gj(x, ξ) ≤ 0} ≥ αj , j = 1, 2, · · · , p

(7.26)

where min f i are the βi-pessimistic values to the return functions fi(x, ξ),
i = 1, 2, · · · , m, respectively.

We can also formulate a uncertain decision system as an uncertain minimax
CCGP according to the priority structure and target levels set by the decision-
maker:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
x

l∑
j=1

Pj

m∑
i=1

[
uij

(
max
d+

i

d+
i ∨ 0

)
+ vij

(
max
d−

i

d−i ∨ 0

)]

subject to:
�
{
fi(x, ξ) − bi ≥ d+

i

}
≥ β+

i , i = 1, 2, · · · , m

�
{
bi − fi(x, ξ) ≥ d−i

}
≥ β−

i , i = 1, 2, · · · , m

� {gj(x, ξ) ≤ 0} ≥ αj , j = 1, 2, · · · , p

(7.27)

where Pj is the preemptive priority factor which expresses the relative im-
portance of various goals, Pj � Pj+1, for all j, uij is the weighting factor
corresponding to positive deviation for goal i with priority j assigned, vij

is the weighting factor corresponding to negative deviation for goal i with
priority j assigned, max d+

i ∨ 0 is the β+
i -pessimistic positive deviation from

the target of goal i, max d−i ∨ 0 is the β−
i -pessimistic negative deviation from

the target of goal i, bi is the target value according to goal i, and l is the
number of priorities.

7.4 Dependent-Chance Programming

This section provides uncertain DCP in which the underlying philosophy is
based on selecting the decision with maximum chance to meet the event. A
generally uncertain DCP has the following form,⎧⎪⎨

⎪⎩
max � {hk(x, ξ) ≤ 0, k = 1, 2, · · · , q}
subject to:

gj(x, ξ) ≤ 0, j = 1, 2, · · · , p

(7.28)

where x is an n-dimensional decision vector, ξ is a uncertain vector, the event
E is characterized by hk(x, ξ) ≤ 0, k = 1, 2, · · · , q, and the uncertain environ-
ment is described by the uncertain constraints gj(x, ξ) ≤ 0, j = 1, 2, · · · , p.

If there are multiple events in the uncertain environment, then we have the
followinguncertaindependent-chancemultiobjectiveprogramming (DCMOP),
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⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

max

⎡
⎢⎢⎣
� {h1k(x, ξ) ≤ 0, k = 1, 2, · · · , q1}
� {h2k(x, ξ) ≤ 0, k = 1, 2, · · · , q2}

· · ·
� {hmk(x, ξ) ≤ 0, k = 1, 2, · · · , qm}

⎤
⎥⎥⎦

subject to:
gj(x, ξ) ≤ 0, j = 1, 2, · · · , p

(7.29)

where the events Ei are characterized by hik(x, ξ) ≤ 0, k = 1, 2, · · · , qi, i =
1, 2, · · · , m, respectively.

Uncertain dependent-chance goal programming (DCGP) is employed to
formulate uncertain decision systems according to the priority structure and
target levels set by the decision-maker,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
l∑

j=1
Pj

m∑
i=1

(uijd
+
i ∨ 0 + vijd

−
i ∨ 0)

subject to:
� {hik(x, ξ) ≤ 0, k = 1, 2, · · · , qi} − bi = d+

i , i = 1, 2, · · · , m

bi −� {hik(x, ξ) ≤ 0, k = 1, 2, · · · , qi} = d−i , i = 1, 2, · · · , m

gj(x, ξ) ≤ 0, j = 1, 2, · · · , p

where Pj is the preemptive priority factor which expresses the relative impor-
tance of various goals, Pj � Pj+1, for all j, uij is the weighting factor cor-
responding to positive deviation for goal i with priority j assigned, vij is the
weighting factor corresponding to negative deviation for goal i with priority j
assigned, d+

i ∨ 0 is the positive deviation from the target of goal i, d−i ∨ 0 is
the negative deviation from the target of goal i, gj is a function in system con-
straints, bi is the target value according to goal i, l is the number of priorities,
m is the number of goal constraints, and p is the number of system constraints.

7.5 Uncertain Dynamic Programming

Stochastic dynamic programming has been studied widely in the literature. In
human decision processes such as diagnosis, psychotherapy, and even design,
some parameters may be regarded as uncertain variables. In order to model
generally uncertain decision processes, this book proposes a general principle
of uncertain dynamic programming, including expected value dynamic pro-
gramming, chance-constrained dynamic programming and dependent-chance
dynamic programming.

Expected Value Dynamic Programming

Consider an N -stage decision system in which (a1, a2, · · · , aN ) represents
the state vector, (x1, x2, · · · , xN ) the decision vector, (ξ1, ξ2, · · · , ξN ) the
uncertain vector. We also assume that the state transition function is
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an+1 = T (an, xn, ξn), n = 1, 2, · · · , N − 1. (7.30)

In order to maximize the expected return over the horizon, we may use the
following expected value dynamic programming,⎧⎪⎪⎪⎨

⎪⎪⎪⎩
fN (a)= max

E[gN (a,x,ξN )]≤0
E[rN (a, x, ξN )]

fn(a)= max
E[gn(a,x,ξn)]≤0

E[rn(a, x, ξn) + fn+1(T (a, x, ξn))]

n≤ N − 1

(7.31)

where rn are the return functions at the nth stages, n = 1, 2, · · · , N , respec-
tively, and E denotes the expected value operator. This type of uncertain
(especially stochastic) dynamic programming has been applied to a wide va-
riety of problems, for example, inventory systems.

Chance-Constrained Dynamic Programming

In order to maximize the optimistic return over the horizon, we may use the
following chance-constrained dynamic programming,⎧⎪⎪⎪⎨

⎪⎪⎪⎩
fN (a)= max

�{gN (a,x,ξN )≤0}≥α
rN (a, x, ξN )

fn(a)= max
�{gn(a,x,ξn)≤0}≥α

{rn(a, x, ξn) + fn+1(T (a, x, ξn))}

n≤ N − 1

(7.32)

where the functions rn are defined by

rn(a, x, ξn) = sup
{
r
∣∣�{rn(a, x, ξn) ≥ r} ≥ β

}
(7.33)

for n = 1, 2, · · · , N . If we want to maximize the pessimistic return over the
horizon, then we must define the functions rn as

rn(a, x, ξn) = inf
{
r
∣∣�{rn(a, x, ξn) ≤ r} ≥ β

}
(7.34)

for n = 1, 2, · · · , N .

Dependent-Chance Dynamic Programming

In order to maximize the chance over the horizon, we may employ the fol-
lowing dependent-chance dynamic programming,⎧⎪⎪⎪⎨

⎪⎪⎪⎩
fN (a)= max

gN (a,x,ξN )≤0
�{hN(a, x, ξN ) ≤ 0}

fn(a)= max
gn(a,x,ξn)≤0

{�{hn(a, x, ξn) ≤ 0} + fn+1(T (a, x, ξn))}

n≤ N − 1
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where hn(a, x, ξn) ≤ 0 are the events, and gn(a, x, ξn) ≤ 0 are the uncertain
environments at the nth stages, n = 1, 2, · · · , N , respectively.

7.6 Uncertain Multilevel Programming

In order to model generally uncertain decentralized decision systems, this book
proposes three types of uncertain multilevel programming, including expected
value multilevel programming, chance-constrained multilevel programming
and dependent-chance multilevel programming, and provides the concept of
Stackelberg-Nash equilibrium to uncertain multilevel programming.

Expected Value Multilevel Programming

Assume that in a decentralized two-level decision system there is one leader
and m followers. Let x and yi be the control vectors of the leader and the
ith followers, i = 1, 2, · · · , m, respectively. We also assume that the objec-
tive functions of the leader and ith followers are F (x, y1, · · · , ym, ξ) and
fi(x, y1, · · · , ym, ξ), i = 1, 2, · · · , m, respectively, where ξ is an uncertain
(random, fuzzy, hybrid) vector.

Let the feasible set of control vector x of the leader be defined by the
expected constraint

E[G(x, ξ)] ≤ 0 (7.35)

where G is a vector-valued function and 0 is a zero vector. Then for each de-
cision x chosen by the leader, the feasibility of control vectors yi of the ith fol-
lowers should be dependent on not only x but also y1, · · · , yi−1, yi+1, · · · , ym,
and generally represented by the expected constraints,

E[gi(x, y1, y2, · · · , ym, ξ)] ≤ 0 (7.36)

where gi are vector-valued functions, i = 1, 2, · · · , m, respectively.
Assume that the leader first chooses his control vector x, and the followers

determine their control array (y1, y2, · · · , ym) after that. In order to max-
imize the expected objective of the leader, we have the following expected
value bilevel programming,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
x

E[F (x, y∗
1, y

∗
2, · · · , y∗

m, ξ)]

subject to:
E[G(x, ξ)] ≤ 0
(y∗

1, y
∗
2, · · · , y∗

m) solves problems (i = 1, 2, · · · , m)⎧⎪⎨
⎪⎩

max
yi

E[fi(x, y1, y2, · · · , ym, ξ)]

subject to:
E[gi(x, y1, y2, · · · , ym, ξ)] ≤ 0.

(7.37)
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Definition 7.9. Let x be a feasible control vector of the leader. A Nash equi-
librium of followers is the feasible array (y∗

1, y
∗
2, · · · , y∗

m) with respect to x if

E[fi(x, y∗
1, · · · , y∗

i−1, yi, y
∗
i+1, · · · , y∗

m, ξ)]
≤ E[fi(x, y∗

1, · · · , y∗
i−1, y

∗
i , y

∗
i+1, · · · , y∗

m, ξ)]
(7.38)

for any feasible array (y∗
1, · · · , y∗

i−1, yi, y
∗
i+1, · · · , y∗

m) and i = 1, 2, · · · , m.

Definition 7.10. Suppose that x∗ is a feasible control vector of the leader
and (y∗

1, y
∗
2, · · · , y∗

m) is a Nash equilibrium of followers with respect to x∗.
We call the array (x∗, y∗

1, y
∗
2, · · · , y∗

m) a Stackelberg-Nash equilibrium to the
expected value bilevel programming (7.37) if and only if

E[F (x, y1, y2, · · · , ym, ξ)] ≤ E[F (x∗, y∗
1, y

∗
2, · · · , y∗

m, ξ)] (7.39)

for any feasible control vector x and the Nash equilibrium (y1, y2, · · · , ym)
with respect to x.

Chance-Constrained Multilevel Programming

In order to maximize the optimistic return subject to the chance constraint,
we may use the following chance-constrained bilevel programming,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
x

max
F

F

subject to:

�{F (x, y∗
1, y

∗
2, · · · , y∗

m, ξ) ≥ F} ≥ β

�{G(x, ξ) ≤ 0} ≥ α

(y∗
1, y

∗
2, · · · , y∗

m) solves problems (i = 1, 2, · · · , m)⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max
yi

max
fi

f i

subject to:

�{fi(x, y1, y2, · · · , ym, ξ) ≥ f i} ≥ βi

�{gi(x, y1, y2, · · · , ym, ξ) ≤ 0} ≥ αi

(7.40)

where α, β, αi, βi, i = 1, 2, · · · , m are predetermined confidence levels.

Definition 7.11. Let x be a feasible control vector of the leader. A Nash
equilibrium of followers is the feasible array (y∗

1, y
∗
2, · · · , y∗

m) with respect to
x if

f i(x, y∗
1, · · · , y∗

i−1, yi, y
∗
i+1, · · · , y∗

m)

≤ f i(x, y∗
1, · · · , y∗

i−1, y
∗
i , y

∗
i+1, · · · , y∗

m)
(7.41)

for any feasible array (y∗
1, · · · , y∗

i−1, yi, y
∗
i+1, · · · , y∗

m) and i = 1, 2, · · · , m.

Definition 7.12. Suppose that x∗ is a feasible control vector of the leader
and (y∗

1, y
∗
2, · · · , y∗

m) is a Nash equilibrium of followers with respect to x∗.
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The array (x∗, y∗
1, y

∗
2, · · · , y∗

m) is called a Stackelberg-Nash equilibrium to the
chance-constrained bilevel programming (7.40) if and only if,

F (x, y1, y2, · · · , ym) ≤ F (x∗, y∗
1, y

∗
2, · · · , y∗

m) (7.42)

for any feasible control vector x and the Nash equilibrium (y1, y2, · · · , ym)
with respect to x.

In order to maximize the pessimistic return, we have the following minimax
chance-constrained bilevel programming,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
x

min
F

F

subject to:

�{F (x, y∗
1, y

∗
2, · · · , y∗

m, ξ) ≤ F} ≥ β

�{G(x, ξ) ≤ 0} ≥ α

(y∗
1, y

∗
2, · · · , y∗

m) solves problems (i = 1, 2, · · · , m)⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max
yi

min
fi

f i

subject to:

�{fi(x, y1, y2, · · · , ym, ξ) ≤ f i} ≥ βi

�{gi(x, y1, y2, · · · , ym, ξ) ≤ 0} ≥ αi.

(7.43)

Dependent-Chance Multilevel Programming

Let H(x, y1, y2, · · · , ym, ξ) ≤ 0 and hi(x, y1, y2, · · · , ym, ξ) ≤ 0 be the tasks
of the leader and ith followers, i = 1, 2, · · · , m, respectively. In order to max-
imize the chance functions of the leader and followers, we have the following
dependent-chance bilevel programming,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
x
�{H(x, y∗

1, y
∗
2, · · · , y∗

m, ξ) ≤ 0}
subject to:

G(x, ξ) ≤ 0
(y∗

1, y
∗
2, · · · , y∗

m) solves problems (i = 1, 2, · · · , m)⎧⎪⎨
⎪⎩

max
yi
�{hi(x, y1, y2, · · · , ym, ξ) ≤ 0}

subject to:
gi(x, y1, y2, · · · , ym, ξ) ≤ 0.

(7.44)

Definition 7.13. Let x be a control vector of the leader. We call the array
(y∗

1, y
∗
2, · · · , y∗

m) a Nash equilibrium of followers with respect to x if

�{hi(x, y∗
1, · · · , y∗

i−1, yi, y
∗
i+1, · · · , y∗

m, ξ) ≤ 0}
≤�{hi(x, y∗

1, · · · , y∗
i−1, y

∗
i , y

∗
i+1, · · · , y∗

m, ξ) ≤ 0}
(7.45)
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subject to the uncertain environment gi(x, y1, y2, · · · , ym, ξ) ≤ 0, i = 1, 2, · · · ,
m for any array (y∗

1, · · · , y∗
i−1, yi, y

∗
i+1, · · · , y∗

m) and i = 1, 2, · · · , m.

Definition 7.14. Let x∗ be a control vector of the leader, and (y∗
1, y

∗
2, · · · , y∗

m)
a Nash equilibrium of followers with respect to x∗. Then (x∗, y∗

1, y
∗
2, · · · , y∗

m) is
called a Stackelberg-Nash equilibrium to the dependent-chance bilevel program-
ming (7.44) if and only if,

�{H(x, y1, y2, · · · , ym, ξ) ≤ 0} ≤�{H(x∗, y∗
1, y

∗
2, · · · , y∗

m, ξ) ≤ 0}

subject to the uncertain environment G(x, ξ) ≤ 0 for any control vector x and
the Nash equilibrium (y1, y2, · · · , ym) with respect to x.

7.7 Ψ Graph of Uncertain Programming

There are many possible ways that we can classify uncertain programming
models. For example, we may classify them according to the state of knowl-
edge about information, modeling structure, and uncertainty-handling phi-
losophy. Let us now briefly outline some important aspects to be considered
when discussing each of these.
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Information

Structure

........

....

EVM
........
....

CCP
........
....

DCP

.............Stochastic

.............Fuzzy

.............Hybrid

.............

Uncertain .............

SOP
.............MOP

.............GP
.............DP

.............MLP

Fig. 7.1 Ψ Graph for Uncertain Programming Classifications. Any type of un-
certain programming may be represented by the Ψ graph which is essentially a
coordinate system (Philosophy, Structure, Information). For example, the plane
“P=CCP” represents chance-constrained programming; the plane “I=Stochastic”
represents stochastic programming; the point “(P,S,I)=(DCP, GP, Fuzzy)” repre-
sents fuzzy dependent-chance goal programming.
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1. State of knowledge about information
a. Stochastic variable
b. Fuzzy variable
c. Hybrid variable
d. Uncertain variable

2. Modeling structure
a. Single-objective programming
b. Multiobjective programming
c. Goal programming
d. Dynamic programming
e. Multilevel programming

3. Uncertainty-handling philosophy
a. Expected value model
b. Chance-constrained programming
c. Dependent-chance programming



Chapter 8
System Reliability Design

One of the approaches to improve system reliability is to provide redundancy
for components in a system. There are two ways to provide component redun-
dancy: parallel redundancy and standby redundancy. In parallel redundancy,
all redundant elements are required to operate simultaneously. This method
is usually used when element replacements are not permitted during the sys-
tem operation. In standby redundancy, one of the redundant elements begins
to work only when the active element fails. This method is usually employed
when the replacement is allowable and can be finished immediately.

The system reliability design problem is to determine the optimal number
of redundant elements for each component so as to optimize some system
performance.

8.1 Problem Description

Assume that a system consists of n components, and the ith components
consist of xi redundant elements, i = 1, 2, · · · , n, respectively. For example,
Figure 8.1 shows a bridge system in which we suppose that redundant ele-
ments are in standby for the first and second components, and are in parallel
for the third to fifth components.

The first problem is how to estimate the system lifetime when the value of
the vector x = (x1, x2, · · · , xn) is determined. For such a given decision vector
x, suppose that the redundant elements j operating in components i have
lifetimes ξij , j = 1, 2, · · · , xi, i = 1, 2, · · · , n, respectively. For convenience,
we use the vector

ξ = (ξ11, ξ12, · · · , ξ1x1 , ξ21, ξ22, · · · , ξ2x2 , · · · , ξn1, ξn2, · · · , ξnxn)

to denote the lifetimes of all redundant elements in the system. For parallel
redundancy components, the lifetimes are

Ti(x, ξ) = max
1≤j≤xi

ξij , i = 1, 2, · · · , n.

B. Liu: Theory and Practice of Uncertain Programming, STUDFUZZ 239, pp. 129–137.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 8.1 A Bridge System

For standby redundancy components, the lifetimes are

Ti(x, ξ) =
xi∑

j=1

ξij , i = 1, 2, · · · , n.

How do we calculate the system lifetime T (x, ξ)? It is problem-dependent.
For the bridge system shown in Figure 8.1, since the system works if and only
if there is a path of working components from the input of the system to the
output, the system lifetime is

T (x, ξ) = max

⎧⎪⎪⎨
⎪⎪⎩

T1(x, ξ) ∧ T4(x, ξ)
T2(x, ξ) ∧ T5(x, ξ)

T2(x, ξ) ∧ T3(x, ξ) ∧ T4(x, ξ)
T1(x, ξ) ∧ T3(x, ξ) ∧ T5(x, ξ)

⎫⎪⎪⎬
⎪⎪⎭ .

8.2 Stochastic Models

In practice, the lifetime ξ of elements is usually a random vector. Thus the
component lifetimes Ti(x, ξ) and system lifetime T (x, ξ) are also random
variables for i = 1, 2, · · · , n.

Stochastic Expected Lifetime Maximization Model

One of system performances is the expected lifetime E[T (x, ξ)]. It is obvious
that the greater the expected lifetime E[T (x, ξ)], the better the decision x.

Let us consider the bridge system shown in Figure 8.1. For simplicity, we
suppose that there is only one type of element to be selected for each
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Table 8.1 Random Lifetimes and Prices of Elements

Type 1 2 3 4 5
Lifetime EXP(20) EXP(30) EXP(40) EXP(50) EXP(60)

Price 50 60 70 80 90

component. The lifetimes of elements are assumed to be exponentially dis-
tributed random variables EXP(β) shown in Table 8.1. The decision vector
may be represented by x = (x1, x2, · · · , x5), where xi denote the numbers of
the i-th types of elements selected, i = 1, 2, · · · , 5, respectively.

Another important problem is to compute the cost spent for the system.
It follows from Table 8.1 that the the total cost

C(x) = 50x1 + 60x2 + 70x3 + 80x4 + 90x5.

If the total capital available is 600, then we have a constraint C(x) ≤ 600.
For the redundancy system, since we wish to maximize the expected life-

time E[T (x, ξ)] subject to the cost constraint, we have the following stochas-
tic expected lifetime maximization model,⎧⎪⎪⎪⎨

⎪⎪⎪⎩

max E[T (x, ξ)]
subject to:

C(x) ≤ 600
x ≥ 1, integer vector.

(8.1)

Hybrid Intelligent Algorithm

In order to solve this type of model, we may employ the hybrid intelligent
algorithm documented in Chapter 4 provided that the initialization, crossover
and mutation operations are revised as follows.

Generally speaking, we use an integer vector V = (x1, x2, · · · , xn) as
a chromosome to represent a solution x, where xi are positive integers,
i = 1, 2, · · · , n. First we set all genes xi as 1, i = 1, 2, · · · , n, and form a
chromosome V . Then we randomly sample an integer i between 1 and n, and
the gene xi of V is replaced with xi +1. We repeat this process until the chro-
mosome V is proven to be infeasible. We take the last feasible chromosome
as an initial chromosome.

We do the crossover operation on V1 and V2 in the following way. Write

V1 =
(
x

(1)
1 , x

(1)
2 , · · · , x(1)

n

)
, V2 =

(
x

(2)
1 , x

(2)
2 , · · · , x(2)

n

)
and randomly generate two integers between 1 and n as the crossover points
denoted by n1 and n2 such that n1 < n2. Then we exchange the genes of
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the chromosomes V1 and V2 between n1 and n2 and produce two children as
follows,

V ′
1 =

(
x

(1)
1 , x

(1)
2 , · · · , x

(1)
n1−1, x

(2)
n1

, · · · , x(2)
n2

, x
(1)
n2+1, · · · , x(1)

n

)
,

V ′
2 =

(
x

(2)
1 , x

(2)
2 , · · · , x

(2)
n1−1, x

(1)
n1

, · · · , x(1)
n2

, x
(2)
n2+1, · · · , x(2)

n

)
.

If the child V ′
1 is infeasible, then we use the following strategy to repair it and

make it feasible. At first, we randomly sample an integer i between 1 and n,
and then replace the gene xi of V ′

1 with xi − 1 provided that xi ≥ 2. Repeat
this process until the revised chromosome V ′

1 is feasible. If the child V ′
1 is

proven to be feasible, then we revise it in the following way. We randomly
sample an integer i between 1 and n, and the gene xi of V ′

1 will be replaced
with xi +1. We repeat this process until the revised chromosome is infeasible,
and take the last feasible chromosome as V ′

1 . A similar revising process will
be made on V ′

2 .
For each selected parent V = (x1, x2, · · · , xn), we mutate it by the fol-

lowing way. We randomly choose two mutation positions n1 and n2 be-
tween 1 and n such that n1 < n2, then we set all genes xj of V as 1 for
j = n1, n1 + 1, · · · , n2, and form a new one

V ′ = (x1, · · · , xn1−1, 1, · · · , 1, xn2+1, · · · , xn).

We will modify V ′ by the following process. We randomly sample an integer
i between n1 and n2, and the gene xi of V ′ will be replaced with xi + 1.
We repeat this process until the revised chromosome is infeasible. Finally, we
replace the parent V ′ with the last feasible chromosome.

Optimal Solution of Model (8.1)

In order to solve the stochastic expected lifetime maximization model (8.1),
we deal with the uncertain function

U : x → E[T (x, ξ)]

by stochastic simulation. Then, we embed the stochastic simulation into a GA
and produce a hybrid intelligent algorithm. A run of the hybrid intelligent
algorithm (5000 cycles in simulation and 1000 generations in GA) shows that
the optimal solution is

x∗ = (1, 3, 1, 1, 2)

whose expected system lifetime is E[T (x∗, ξ)] = 62.5, and total cost is
C(x∗) = 560.



8.2 Stochastic Models 133

Stochastic α-Lifetime Maximization Model

The second type of system performance is the α-lifetime defined as the largest
value T satisfying Pr

{
T (x, ξ) ≥ T

}
≥ α, where α is a predetermined confi-

dence level.
This section will model redundancy optimization under this criterion. Con-

sider the bridge system shown in Figure 8.1. The aim is to determine the
optimal numbers of the redundant elements so as to maximize the α-lifetime
under the cost constraint. Zhao and Liu [330] presented the following stochas-
tic α-lifetime maximization model,⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

maxT

subject to:

Pr
{
T (x, ξ) ≥ T

}
≥ α

C(x) ≤ 600
x ≥ 1, integer vector.

(8.2)

For each observational vector ξ of lifetimes of elements, we may estimate the
system lifetime T (x, ξ). We use the stochastic simulation to deal with the
uncertain function

U : x → max
{
T
∣∣ Pr

{
T (x, ξ) ≥ T

}
≥ α

}
.

Then the stochastic simulation is embedded into a GA to form a hybrid
intelligent algorithm.

When α = 0.9, a run of the hybrid intelligent algorithm (5000 cycles in
simulation and 1000 generations in GA) shows that the optimal solution is

x∗ = (3, 2, 1, 2, 1)

with 0.9-system lifetime T
∗

= 25.7, and the total cost C(x∗) = 590.

Stochastic System Reliability Model

The third type of system performance is the system reliability Pr{T (x, ξ) ≥
T 0}, which is the probability that the system lifetime is greater than or equal
to the given time T 0.

If one wants to maximize the system reliability under a cost constraint,
then use the following stochastic system reliability model,⎧⎪⎪⎪⎨

⎪⎪⎪⎩

max Pr{T (x, ξ) ≥ T 0}
subject to:

C(x) ≤ 600
x ≥ 1, integer vector.

(8.3)
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In order to solve this model, we have to deal with the uncertain function

U : x → Pr{T (x, ξ) ≥ T 0}

by stochastic simulation. Then we embed the stochastic simulation into a GA
to produce a hybrid intelligent algorithm.

A run of the hybrid intelligent algorithm (15000 cycles in simulation and
300 generations in GA) shows that the optimal solution is

x∗ = (4, 1, 1, 2, 1)

with Pr{T (x∗, ξ) ≥ T 0} = 0.85, and the total cost C(x∗) = 580.

8.3 Fuzzy Models

Although stochastic programming has been successfully applied in redun-
dancy optimization, many problems require subjective judgment either due
to the lack of data or due to the extreme complexity of the system. This fact
motives us to apply fuzzy programming to redundancy optimization problems
in which the lifetimes of elements are treated as fuzzy variables.

Fuzzy Expected Lifetime Maximization Model

Let us reconsider the bridge system shown in Figure 8.1. The lifetimes of
elements are assumed to be triangular fuzzy variables shown in Table 8.2.
The decision vector is represented by x = (x1, x2, · · · , x5), where xi denote
the numbers of the i-th types of elements selected, i = 1, 2, · · · , 5, respectively.
It follows from Table 8.2 that the the total cost

C(x) = 50x1 + 60x2 + 70x3 + 80x4 + 90x5.

If the total capital available is 600, then we have a constraint C(x) ≤ 600.
For such a standby redundancy system, we define expected lifetime as

E[T (x, ξ)]. If we wish to maximize the expected lifetime E[T (x, ξ)], then
we have the following fuzzy expected lifetime maximization model (Zhao and
Liu [333]),

Table 8.2 Fuzzy Lifetimes and Prices of Elements

Type 1 2 3 4 5
Lifetime (10, 20, 40) (20, 30, 50) (30, 40, 60) (40, 50, 60) (50, 60, 80)

Price 50 60 70 80 90
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max E[T (x, ξ)]
subject to:

C(x) ≤ 600
x ≥ 1, integer vector.

(8.4)

A run of the hybrid intelligent algorithm (15000 cycles in simulation, 300
generations in GA) shows that the optimal solution is

x∗ = (2, 4, 1, 1, 1)

whose expected system lifetime is E[T (x∗, ξ)] = 60.7, and the total cost is
C(x∗) = 580.

Fuzzy α-Lifetime Maximization Model

By α-lifetime we mean the largest value T satisfying Cr
{
T (x, ξ) ≥ T

}
≥ α,

where α is a predetermined confidence level.
If the decision maker wants to maximize the α-lifetime subject to the cost

constraint, then we have the following fuzzy α-lifetime maximization model
(Zhao and Liu [333]), ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

max T

subject to:

Cr
{
T (x, ξ) ≥ T

}
≥ α

C(x) ≤ 600
x ≥ 1, integer vector.

(8.5)

When α = 0.8, a run of the hybrid intelligent algorithm (15000 cycles in
simulation and 300 generations in GA) shows that the optimal solution is

x∗ = (2, 4, 1, 1, 1)

whose 0.8-system lifetime T
∗

= 53.1, and the total cost C(x∗) = 580.

Fuzzy System Reliability Model

By system reliability we mean Cr{T (x, ξ) ≥ T 0}, i.e., the credibility that the
system lifetime is greater than or equal to the given time T 0.

If one wants to maximize the system reliability under a cost constraint,
then use the following fuzzy system reliability model (Zhao and Liu [333]),⎧⎪⎪⎪⎨

⎪⎪⎪⎩

max Cr{T (x, ξ) ≥ T 0}
subject to:

C(x) ≤ 600
x ≥ 1, integer vector.

(8.6)
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When T 0 = 50, a run of the hybrid intelligent algorithm (15000 cycles in
simulation and 300 generations in GA) shows that the optimal solution is

x∗ = (2, 4, 1, 1, 1)

with Cr{T (x∗, ξ) ≥ T 0} = 0.95 and the total cost C(x∗) = 580.

8.4 Hybrid Models

In a classical system reliability design problem, the element lifetimes are as-
sumed to be random variables or fuzzy variables. Although this assumption has
been accepted and accorded with the facts in widespread cases, it is not appro-
priate in a vast range of situations. In many practical situations, the fuzziness
and randomness of the element lifetimes are often mixed up with each other.
For example, the element lifetimes are assumed to be exponentially distributed
random variables with fuzzy parameters. In this case, fuzziness and random-
ness of the element lifetimes are required to be considered simultaneously and
the effectiveness of the classical redundancy optimization theory is lost.

Hybrid Expected Lifetime Maximization Model

Now we suppose that the element lifetimes are hybrid variables. For this case,
the system lifetime T (x, ξ) is also a hybrid variable. If we wish to maximize
the expected lifetime E[T (x, ξ)], then we have the following hybrid expected
lifetime maximization model,⎧⎪⎪⎪⎨

⎪⎪⎪⎩
maxE[T (x, ξ)]
subject to:

C(x) ≤ C

x ≥ 1, integer vector

(8.7)

where C is the total capital.

Hybrid α-Lifetime Maximization Model

We define the largest value T satisfying Ch
{
T (x, ξ) ≥ T

}
≥ α as the α-

lifetime of the system, where α is a predetermined confidence level. If the
decision maker wants to maximize the α-lifetime subject to the cost con-
straint, then we have the following hybrid α-lifetime maximization model,⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

max T

subject to:

Ch
{
T (x, ξ) ≥ T

}
≥ α

C(x) ≤ C

x ≥ 1, integer vector

(8.8)

where C is the total capital.
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Hybrid System Reliability Model

By system reliability we mean Ch{T (x, ξ) ≥ T 0}, i.e., the chance that the
system lifetime is greater than or equal to the given time T 0. If one wants to
maximize the system reliability under a cost constraint, then use the following
hybrid system reliability model:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

maxCh{T (x, ξ) ≥ T 0}
subject to:

C(x) ≤ C

x ≥ 1, integer vector

(8.9)

where C is the total capital.

8.5 Exercises

Problem 8.1. Design a hybrid intelligent algorithm to solve hybrid models
for system reliability design problem (for example, some elements have fuzzy
lifetimes and some have random lifetimes).

Problem 8.2. Build uncertain models for system reliability design problem
(for example, the lifetimes of elements are uncertain variables with identi-
fication function (λ, ρ)), and design a hybrid intelligent algorithm to solve
them.



Chapter 9
Project Scheduling Problem

Project scheduling problem is to determine the schedule of allocating re-
sources so as to balance the total cost and the completion time. Uncertainty
always exists in project scheduling problem due to the vagueness of project
activity duration times. This chapter will introduce some optimization mod-
els for uncertain project scheduling problems.

9.1 Problem Description

Project scheduling is usually represented by a directed acyclic graph where
nodes correspond to milestones, and arcs to activities which are basically
characterized by the times and costs consumed.
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Fig. 9.1 A Project Graph

Let � = (�,�) be a directed acyclic graph, where � = {1, 2, · · · , n, n + 1}
is the set of nodes, � is the set of arcs, (i, j) ∈ � is the arc of the graph �
from nodes i to j. It is well-known that we can rearrange the indexes of the
nodes in � such that i < j for all (i, j) ∈ �.

B. Liu: Theory and Practice of Uncertain Programming, STUDFUZZ 239, pp. 139–146.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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Before we begin to study project scheduling problem with stochastic ac-
tivity duration times, we first make some assumptions: (a) all of the costs
needed are obtained via loans with some given interest rate; and (b) each
activity can be processed only if the loan needed is allocated and all the
foregoing activities are finished.

In order to model the project scheduling problem, we introduce the fol-
lowing indices and parameters:

ξij : uncertain duration time of activity (i, j) in �;
cij : cost of activity (i, j) in �;
r: the interest rate;
xi: integer decision variable representing the allocating time of all loans

needed for all activities (i, j) in �.

For simplicity, we also write ξ = {ξij : (i, j) ∈ �}, x = (x1, x2, · · · , xn).
Denote Ti(x, ξ) as the starting time of all activities (i, j) in �. According to
the assumptions, the starting time of the total project should be

T1(x, ξ) = x1. (9.1)

The starting time of activities (i, j) in � should be

Ti(x, ξ) = xi ∨ max
(k,i)∈�

{Tk(x, ξ) + ξki} , i = 2, 3, · · · , n. (9.2)

The completion time of the total project is

T (x, ξ) = max
(k,n+1)∈�

{Tk(x, ξ) + ξk,n+1} . (9.3)

Therefore, the total cost of the project can be written as

C(x, ξ) =
∑

(i,j)∈�
cij (1 + r)�(T (x,ξ)−xi (9.4)

where �a� represents the minimal integer greater than or equal to a.

9.2 Stochastic Models

In this section, we assume that all duration times are all random variables,
and introduce stochastic expected cost minimization model, α-cost minimiza-
tion model and probability maximization model.

Stochastic Expected Cost Minimization Model

If we want to minimize the expected cost of the project under the expected
completion time constraint, we may construct the following stochastic ex-
pected cost minimization model (Ke and Liu [123]),
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min E[C(x, ξ)]
subject to:

E[T (x, ξ)] ≤ T 0

x ≥ 0, integer vector

(9.5)

where T 0 is the due date of the project, T (x, ξ) and C(x, ξ) are the comple-
tion time and total cost defined by (9.3) and (9.4), respectively.

Example 9.1. Now let us consider a project scheduling problem shown in
Figure 9.1. The duration times and the costs needed for the relevant activities
in the project are presented in Table 9.1, and the monthly interest rate r =
0.006 according to some practical case. Note that the activity duration times
are assumed to be normally distributed random variables N (µ, σ2).

Table 9.1 Random Duration Times and Costs of Activities

Arc
Duration

Cost Arc
Duration

CostTime Time
(Month) (Month)

(1,2) N (9, 3) 1500 (1,3) N (5,2) 1800
(1,4) N (10,3) 430 (2,5) N (6, 2) 1600
(3,5) N (8, 2) 800 (3,6) N (8, 2) 500
(3,7) N (9, 3) 2000 (4,7) N (6, 1) 2100
(5,8) N (10, 2) 550 (6,8) N (15,3) 530
(7,8) N (11, 2) 630

Now we are requested to finish the project within 32 months, i.e., T 0 = 32
(month). A run of the hybrid intelligent algorithm (5000 cycles in simulation,
4000 generations in GA) shows that the expected cost E[C(x∗, ξ)] = 14345,
the expected completion time E[T (x∗, ξ)] = 30.4, and the optimal schedule
for the project is shown in Table 9.2.

Table 9.2 Schedule of Expected Cost Model

Date 1 6 12 13 17 18
Node 1 3 2,4 6 7 5
Loan 3730 3300 3700 530 630 550

Stochastic α-Cost Minimization Model

The α-cost of a project is defined as min
{
C̄| Pr{C(x, ξ) ≤ C̄} ≥ α

}
, where α

is a predetermined confidence level. If we want to minimize the α-cost of the
project under the completion time chance constraint with a predetermined
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confidence level β, we have the following stochastic α-cost minimization
model (Ke and Liu [123]),⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min C̄

subject to:
Pr{C(x, ξ) ≤ C̄} ≥ α

Pr{T (x, ξ) ≤ T 0} ≥ β

x ≥ 0, integer vector

(9.6)

where T 0 is the due date of the project, T (x, ξ) and C(x, ξ) are the comple-
tion time and total cost defined by (9.3) and (9.4), respectively.

Example 9.2. If α = 0.9, β = 0.9 and T 0 = 32 (month), then a run of
the hybrid intelligent algorithm (5000 cycles in simulation, 4000 generations
in GA) shows that the α-cost C∗ = 14502, Pr{C(x∗, ξ) ≤ C∗} = 0.901,
Pr{T (x∗, ξ) ≤ T 0} = 0.905, and the optimal schedule is presented in
Table 9.3.

Table 9.3 Schedule of α-Cost Minimization Model

Date 1 5 12 13 18
Node 1 3 2,4 6 5,7
Loan 3730 3300 3700 530 1180

Probability Maximization Model

If we want to maximize the probability that the total cost should not exceed a
predetermined level C0 subject to the chance constraint Pr{T (x, ξ) ≤ T 0} ≥
β, then we have the following probability maximization model (Ke and Liu
[123]), ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

maxPr
{
C(x, ξ) ≤ C0

}
subject to:

Pr{T (x, ξ) ≤ T 0} ≥ β

x ≥ 0, integer vector

(9.7)

where T (x, ξ) and C(x, ξ) are the completion time and total cost defined by
(9.3) and (9.4), respectively.

Example 9.3. If C0 = 14530, T 0 = 32 and β = 0.9, then a run of the
hybrid intelligent algorithm (5000 cycles in simulation, 4000 generations in
GA) shows that the probability Pr{C(x∗, ξ) ≤ C0} = 0.912, Pr{T (x∗, ξ) ≤
T 0} = 0.906 and the optimal schedule is presented in Table 9.4.
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Table 9.4 Schedule of Probability Maximization Model

Date 1 6 10 11 13 17 18
Node 1 3 2 4 6 7 5
Loan 3730 3300 1600 2100 530 630 550

9.3 Fuzzy Models

This section will assume that the activity duration times are all fuzzy vari-
ables rather than random ones, and introduce fuzzy expected cost minimiza-
tion model, α-cost minimization model and credibility maximization model.

Fuzzy Expected Cost Minimization Model

If we want to minimize the expected cost of the project under the expected
completion time constraint, we may construct the following fuzzy expected
cost minimization model (Ke and Liu [125]),⎧⎪⎪⎪⎨

⎪⎪⎪⎩

min E[C(x, ξ)]
subject to:

E[T (x, ξ)] ≤ T 0

x ≥ 0, integer vector

(9.8)

where T 0 is the due date of the project, T (x, ξ) and C(x, ξ) are the comple-
tion time and total cost defined by (9.3) and (9.4), respectively.

Example 9.4. Now let us consider a project scheduling problem shown in
Figure 9.1. The duration times and the costs needed for the relevant activities
in the project are presented in Table 9.5, and the monthly interest rate r =
0.006. Note that the activity duration times are assumed to be triangular
fuzzy variables.

Table 9.5 Fuzzy Duration Times and Costs of Activities

Arc
Duration

Cost Arc
Duration

CostTime Time
(Month) (Month)

(1,2) (7, 9, 12) 1500 (1,3) (3,5,7) 1800
(1,4) (7,10,12) 430 (2,5) (4,6,9) 1600
(3,5) (6,8,11) 800 (3,6) (6,8,10) 500
(3,7) (6,9,12) 2000 (4,7) (5,6,8) 2100
(5,8) (8,10,12) 550 (6,8) (13,16,18) 530
(7,8) (9,11,13) 630
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Table 9.6 Schedule of Expected Cost Model

Date 1 7 12 13 14 18 19
Node 1 3 6 4 2 7 5
Loan 3730 3300 530 2100 1600 630 550

Now we are requested to finish the project within 32 months, i.e., T 0 = 32
(month). A run of the hybrid intelligent algorithm (5000 cycles in simulation,
4000 generations in GA) shows that the expected cost E[C(x∗, ξ)] = 14286,
the expected completion time E[T (x∗, ξ)] = 30.4, and the optimal schedule
for the project is shown in Table 9.6.

Fuzzy α-Cost Minimization Model

The α-cost of a project is defined as min
{
C̄|Cr{C(x, ξ) ≤ C̄} ≥ α

}
, where α

is a predetermined confidence level. If we want to minimize the α-cost of the
project under the completion time chance constraint with a predetermined
confidence level β, we have the following fuzzy α-cost minimization model
(Ke and Liu [125]), ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min C̄

subject to:
Cr{C(x, ξ) ≤ C̄} ≥ α

Cr{T (x, ξ) ≤ T 0} ≥ β

x ≥ 0, integer vector

(9.9)

where T 0 is the due date of the project, T (x, ξ) and C(x, ξ) are the comple-
tion time and total cost defined by (9.3) and (9.4), respectively.

Example 9.5. If α = 0.9, β = 0.9 and T 0 = 32 (month), then a run of the
hybrid intelligent algorithm (5000 cycles in simulation, 4000 generations inGA)
shows that theα-costC∗ = 14331,Cr{C(x∗, ξ) ≤ C∗} = 0.913,Cr{T (x∗, ξ) ≤
T 0} = 0.917, and the optimal schedule is presented in Table 9.7.

Table 9.7 Schedule of α-Cost Minimization Model

Date 1 6 13 14 15 20 21
Node 1 3 4 2 6 7 5
Loan 3730 3300 2100 1600 530 630 550

Credibility Maximization Model

If we want to maximize the credibility that the total cost should not ex-
ceed a predetermined level C0 subject to the chance constraint Cr{T (x, ξ)
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≤ T 0} ≥ β, then we have the following credibility maximization model (Ke
and Liu [125]), ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

max Cr
{
C(x, ξ) ≤ C0

}
subject to:

Cr{T (x, ξ) ≤ T 0} ≥ β

x ≥ 0, integer vector

(9.10)

where T (x, ξ) and C(x, ξ) are the completion time and total cost defined by
(9.3) and (9.4), respectively.

Example 9.6. If C0 = 14370, T 0 = 32 and β = 0.9, then a run of the
hybrid intelligent algorithm (5000 cycles in simulation, 4000 generations in
GA) shows that the credibility Cr{C(x∗, ξ) ≤ C0} = 0.95, Cr{T (x∗, ξ) ≤
T 0} = 0.95 and the optimal schedule is presented in Table 9.8.

Table 9.8 Schedule of Credibility Maximization Model

Date 1 6 13 14 19
Node 1 3 4,6 2 5,7
Loan 3730 3300 2630 1600 1180

9.4 Hybrid Models

We suppose that the duration times are hybrid variables, and introduce
hybrid expected cost minimization model, α-cost minimization model and
chance maximization model.

Hybrid Expected Cost Minimization Model

If we want to minimize the expected cost of the project under the expected
completion time constraint, we may construct the following hybrid expected
cost minimization model,⎧⎪⎪⎪⎨

⎪⎪⎪⎩

min E[C(x, ξ)]
subject to:

E[T (x, ξ)] ≤ T 0

x ≥ 0, integer vector

(9.11)

where T 0 is the due date of the project, T (x, ξ) and C(x, ξ) are the comple-
tion time and total cost defined by (9.3) and (9.4), respectively.

Hybrid α-Cost Minimization Model

The α-cost of a project is defined as min
{
C̄|Ch{C(x, ξ) ≤ C̄} ≥ α

}
, where

α is a predetermined confidence level. If we want to minimize the α-cost of
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the project under the completion time chance constraint with predetermined
confidence level β, we have the following hybrid α-cost minimization model
(Ke and Liu [124]), ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min C̄

subject to:
Ch{C(x, ξ) ≤ C̄} ≥ α

Ch{T (x, ξ) ≤ T 0} ≥ β

x ≥ 0, integer vector

(9.12)

where T 0 is the due date of the project, T (x, ξ) and C(x, ξ) are the comple-
tion time and total cost defined by (9.3) and (9.4), respectively.

Chance Maximization Model

If we want to maximize the chance that the total cost should not exceed a
predetermined level C0 subject to the chance constraint Ch{T (x, ξ) ≤ T 0} ≥
α, then we have the following chance maximization model,⎧⎪⎪⎪⎨

⎪⎪⎪⎩

maxCh
{
C(x, ξ) ≤ C0

}
subject to:

Ch{T (x, ξ) ≤ T 0} ≥ α

x ≥ 0, integer vector

(9.13)

where T (x, ξ) and C(x, ξ) are the completion time and total cost defined by
(9.3) and (9.4), respectively.

9.5 Exercises

Problem 9.1. Design a hybrid intelligent algorithm to solve hybrid models
for project scheduling problem (for example, the duration times are random
and costs are fuzzy).

Problem 9.2. Build uncertain models for project scheduling problem (for
example, the duration times are uncertain variables with identification func-
tion (λ, ρ)), and design a hybrid intelligent algorithm to solve them.



Chapter 10
Vehicle Routing Problem

Vehicle routing problem (VRP) is concerned with finding efficient routes,
beginning and ending at a central depot, for a fleet of vehicles to serve a
number of customers. See Figure 10.1.

Fig. 10.1 A Vehicle
Routing Graph
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Due to its wide applicability and economic importance, VRP has been
extensively studied. Practically, there are uncertain factors in VRP, such
as demands of customers, travel times between customers, customers to be
visited, locations of customers, capacities of vehicles, and number of vehi-
cles available. This fact provides a motivation to study uncertain VRP. This
chapter introduces some typical models for VRP.

10.1 Problem Description

We assume that: (a) a vehicle will be assigned for only one route on which
there may be more than one customer; (b) a customer will be visited by one
and only one vehicle; (c) each route begins and ends at the depot; and (d) each

B. Liu: Theory and Practice of Uncertain Programming, STUDFUZZ 239, pp. 147–155.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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customer specifies its time window within which the delivery is permitted or
preferred to start.

Let us first introduce the following indices and model parameters:
i = 0: depot;
i = 1, 2, · · · , n: customers;
k = 1, 2, · · · , m: vehicles;
Dij : the travel distance from customers i to j, i, j = 0, 1, 2, · · · , n;
Tij : the uncertain travel time from customers i to j, i, j = 0, 1, 2, · · · , n;
Si: the unloading time at customer i, i = 1, 2, · · · , n;
[ai, bi]: the time window of customer i, where ai and bi are the beginning

and end of the time window, i = 1, 2, · · · , n, respectively.
In this book, the operational plan is represented by Liu’s formulation [181]

via three decision vectors x, y and t, where
x = (x1, x2, · · · , xn): integer decision vector representing n customers with

1 ≤ xi ≤ n and xi �= xj for all i �= j, i, j = 1, 2, · · · , n. That is, the sequence
{x1, x2, · · · , xn} is a rearrangement of {1, 2, · · · , n};

y = (y1, y2, · · · , ym−1): integer decision vector with y0 ≡ 0 ≤ y1 ≤ y2 ≤
· · · ≤ ym−1 ≤ n ≡ ym;

t = (t1, t2, · · · , tm): each tk represents the starting time of vehicle k at the
depot, k = 1, 2, · · · , m.

We note that the operational plan is fully determined by the decision
vectors x, y and t in the following way. For each k (1 ≤ k ≤ m), if yk = yk−1,
then vehicle k is not used; if yk > yk−1, then vehicle k is used and starts from
the depot at time tk, and the tour of vehicle k is 0 → xyk−1+1 → xyk−1+2 →
· · · → xyk

→ 0. Thus the tours of all vehicles are as follows:

Vehicle 1: 0 → xy0+1 → xy0+2 → · · · → xy1 → 0;
Vehicle 2: 0 → xy1+1 → xy1+2 → · · · → xy2 → 0;

· · ·
Vehicle m: 0 → xym−1+1 → xym−1+2 → · · · → xym → 0.

(10.1)

It is clear that this type of representation is intuitive, and the total number
of decision variables is n + 2m − 1. We also note that the above decision
variables x, y and t ensure that: (a) each vehicle will be used at most one
time; (b) all tours begin and end at the depot; (c) each customer will be
visited by one and only one vehicle; and (d) there is no subtour.

Let fi(x, y, t) be the arrival time function of some vehicles at customers i
for i = 1, 2, · · · , n. We remind readers that fi(x, y, t) are determined by the
decision variables x, y and t, i = 1, 2, · · · , n. Since unloading can start either
immediately, or later, when a vehicle arrives at a customer, the calculation of
fi(x, y, t) is heavily dependent on the operational strategy. Here we assume
that the customer does not permit a delivery earlier than the time window.
That is, the vehicle will wait to unload until the beginning of the time window
if it arrives before the time window. If a vehicle arrives at a customer after
the beginning of the time window, unloading will start immediately. For each
k with 1 ≤ k ≤ m, if vehicle k is used (i.e., yk > yk−1), then we have
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fxyk−1+1(x, y, t) = tk + T0xyk−1+1 (10.2)

and
fxyk−1+j (x, y, t) =fxyk−1+j−1(x, y, t) ∨ axyk−1+j−1

+Sxyk−1+j−1 + Txyk−1+j−1xyk−1+j

(10.3)

for 2 ≤ j ≤ yk − yk−1. It follows from the uncertainty of travel times Tij ’s
that the arrival times fi(x, y, t), i = 1, 2, · · · , n are uncertain variables fully
determined by (10.2) and (10.3).

Let g(x, y) be the total travel distance of all vehicles. Then we have

g(x, y) =
m∑

k=1

gk(x, y) (10.4)

where

gk(x, y) =

⎧⎨
⎩D0xyk−1+1 +

yk−1∑
j=yk−1+1

Dxjxj+1 + Dxyk
0, if yk > yk−1

0, if yk = yk−1

for k = 1, 2, · · · , m.

10.2 Stochastic Models

Now we assume that the travel times are random variables, and introduce
stochastic distance minimization model and probability maximization model.

Stochastic Distance Minimization Model

If we hope that all customers are visited within their time windows with a
confidence level α, then we have the following chance constraint,

Pr {ai ≤ fi(x, y, t) ≤ bi, i = 1, 2, · · · , n} ≥ α. (10.5)

If we want to minimize the total travel distance of all vehicles subject to
the time window constraint, then we have the following stochastic distance
minimization model (Liu and Lai [183]),⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min g(x, y)
subject to:

Pr {ai ≤ fi(x, y, t) ≤ bi, i = 1, 2, · · · , n} ≥ α

1 ≤ xi ≤ n, i = 1, 2, · · · , n
xi �= xj , i �= j, i, j = 1, 2, · · · , n
0 ≤ y1 ≤ y2 ≤ · · · ≤ ym−1 ≤ n

xi, yj, i = 1, 2, · · · , n, j = 1, 2, · · · , m − 1, integers.

(10.6)
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Hybrid Intelligent Algorithm

In order to solve the stochastic models, we may employ the hybrid intelligent
algorithm documented in Chapter 4 provided that the representation struc-
ture, initialization, crossover and mutation operations are revised as follows.

We represent an operational plan by the chromosome V = (x, y, t), where
the genes x, y, t are the same as the decision vectors. Without loss of gener-
ality, we also assume that the time window at the depot is [a, b]. This means
that the gene t will be restricted in the hypercube [a, b]m.

Let us show how to initialize a chromosome randomly. For gene x, we
define a sequence {x1, x2, · · · , xn} with xi = i, i = 1, 2, · · · , n, and repeat the
following process from j = 1 to n: generating a random position n′ between j
and n, and exchanging the values of xj and xn′ . It is clear that {x1, x2, · · · , xn}
is just a random rearrangement of {1, 2, · · · , n}. Then we obtain a gene x =
(x1, x2, · · · , xn). For each i with 1 ≤ i ≤ m− 1, we set yi as a random integer
between 0 and n. Then we rearrange the sequence {y1, y2, · · · , ym−1} from
small to large. We thus have a gene y = (y1, y2, · · · , ym−1). Finally, for each i
with 1 ≤ i ≤ m, we set ti as a random number on the time window [a, b]. Then
we get a gene t = (t1, t2, · · · , tm). If the generated chromosome V = (x, y, t)
is proven to be feasible, then it is accepted as a chromosome; otherwise we
repeat the above process until a feasible chromosome is obtained.

Let us illustrate the crossover operator on the pair V1 and V2. We denote
V1 = (x1, y1, t1) and V2 = (x2, y2, t2). First, we generate a random number
c from the open interval (0, 1) and define

t′1 = c · t1 + (1 − c) · t2, t′2 = (1 − c) · t1 + c · t2.

The two children V ′
1 and V ′

2 are produced by the crossover operation as
follows: V ′

1 = (x1, y2, t
′
1) and V ′

2 = (x2, y1, t
′
2).

We mutate the chromosome V = (x, y, t) in the following way. For the
gene x, we randomly generate two mutation positions n1 and n2 between 1
and n, and rearrange the sequence {xn1 , xn1+1, · · · , xn2} at random to form
a new sequence {x′

n1
, x′

n1+1, · · · , x′
n2

}. We thus obtain a new gene

x′ = (x1, · · · , xn1−1, x
′
n1

, x′
n1+1, · · · , x′

n2
, xn2+1, · · · , xn).

Similarly, for gene y, we generate two random mutation positions n1 and n2
between 1 and m − 1, and set yi as a random integer number y′

i between 0
and n for i = n1, n1 + 1, · · · , n2. We then rearrange the sequence

{y1, · · · , yn1−1, y
′
n1

, y′
n1+1, · · · , y′

n2
, yn2+1, · · · , ym−1}

from small to large and obtain a new gene y′. For the gene t, we choose a
mutation direction d in �m randomly. If t + M · d is not in the time window
[a, b]m, then we set M as a random number between 0 and M until it is in
[a, b]m, where M is a predetermined step length. If the above process cannot
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Table 10.1 Travel Distance Matrix

LCTs 0 1 2 3 4 5 6 7
1 18
2 14 20
3 14 34 15
4 21 55 41 28
5 17 49 43 36 21
6 21 57 55 51 36 16
7 18 49 52 51 43 22 13
8 14 22 35 44 55 41 43 32

Table 10.2 Random Travel Time Matrix (µ, σ2)

LCTs 0 1 2 3
1 (50,25)
2 (10,5) (40,20)
3 (50,25) (10,5) (40,20)
4 (50,25) (35,17) (35,17) (30,15)
5 (50,25) (15,7) (40,20) (5,2)
6 (15,7) (40,20) (10,5) (45,22)
7 (50,25) (15,7) (45,22) (10,5)
8 (50,25) (10,5) (35,17) (30,15)

LCTs 4 5 6 7
5 (30,15)
6 (35,17) (40,20)
7 (30,15) (10,5) (40,20)
8 (10,5) (30,15) (35,17) (35,17)

yield a gene t in [a, b]m in a predetermined number of iterations, then we set
M = 0. We replace the parent gene t with its child t′ = t + M · d.

Example 10.1. We assume that there are 8 customers labeled “1, 2, · · · , 8”
in a company and one depot labeled “0”. We assume that the travel distances
among the depot and customers are listed in Table 10.1.

The travel times among the depot and customers are all normally dis-
tributed variables N (µ, σ2), which are given in Table 10.2.

The time windows of customers are shown in Table 10.3.
We suppose that the unloading times (Si, i = 1, 2, · · · , 8) at locations are

all 15 minutes.
We assign a confidence level α = 0.80 at which all customers are visited

within their time windows. If we want to minimize the total travel distance
of all vehicles subject to the chance constraint, then we have a stochastic
distance minimization model. A run of the hybrid intelligent algorithm (10000
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Table 10.3 Time Windows of Customers

i [ai, bi] i [ai, bi] i [ai, bi]
1 [09 : 30, 14 : 10] 2 [09 : 20, 11 : 00] 3 [09 : 40, 11 : 10]
4 [09 : 20, 13 : 00] 5 [09 : 10, 15 : 20] 6 [08 : 20, 10 : 00]
7 [09 : 40, 12 : 10] 8 [09 : 20, 10 : 00]

cycles in simulation, 5000 generations in GA) shows that the best operational
plan is:

Vehicle 1: depot→ 6 → 7 → depot, starting time = 8:45;
Vehicle 2: depot→ 3 → depot, starting time = 9:17;
Vehicle 3: depot→ 8 → 1 → 2 → 5 → 4 → depot, starting time = 8:35.

The total travel distance of the three vehicles is 221. Furthermore, when the
obtained operational plan is performed, we have

Pr {ai ≤ fi(x∗, y∗, t∗) ≤ bi, i = 1, 2, · · · , 8} = 0.85.

Probability Maximization Model

If we hope that total travel distance does not exceed a fixed number g, then we
have a distance constraint g(x, y) ≤ g. If we want to maximize the probability
that all customers are visited within their time windows subject to the distance
constraint, then we have the following probability maximization model,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

maxPr {ai ≤ fi(x, y, t) ≤ bi, i = 1, 2, · · · , n}
subject to:

g(x, y) ≤ g

1 ≤ xi ≤ n, i = 1, 2, · · · , n
xi �= xj , i �= j, i, j = 1, 2, · · · , n
0 ≤ y1 ≤ y2 ≤ · · · ≤ ym−1 ≤ n

xi, yj, i = 1, 2, · · · , n, j = 1, 2, · · · , m − 1, integers.

(10.7)

Example 10.2. We set g = 240. A run of the hybrid intelligent algorithm
(10000 cycles in simulation, 5000 generations in GA) shows that the best
operational plan is:

Vehicle 1: depot→ 1 → 3 → 2 → depot, starting time = 8:51;
Vehicle 2: depot→ 6 → 5 → 7 → 4 → depot, starting time = 9:04;
Vehicle 3: depot→ 8 → depot, starting time = 8:58.

When the obtained operational plan is performed, the total travel distance
is 232, and

Pr {ai ≤ fi(x∗, y∗, t∗) ≤ bi, i = 1, 2, · · · , 8} = 0.88.
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10.3 Fuzzy Models

Here we assume that the travel times are fuzzy variables instead of stochastic
variables. Since the travel times are fuzzy variables, every customer will be
visited at a fuzzy time.

Fuzzy Distance Minimization Model

If we hope that all customers are visited within their time windows with a
confidence level α, then we have the following chance constraint,

Cr {ai ≤ fi(x, y, t) ≤ bi, i = 1, 2, · · · , n} ≥ α. (10.8)

If we want to minimize the total distance traveled of all vehicles subject
to time window constraints, then we have the following fuzzy distance mini-
mization model (Zheng and Liu [336]),⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min g(x, y)
subject to:

Cr {ai ≤ fi(x, y, t) ≤ bi, i = 1, 2, · · · , n} ≥ α

1 ≤ xi ≤ n, i = 1, 2, · · · , n
xi �= xj , i �= j, i, j = 1, 2, · · · , n
0 ≤ y1 ≤ y2 ≤ · · · ≤ ym−1 ≤ n

xi, yj , i = 1, 2, · · · , n, j = 1, 2, · · · , m − 1, integers.

Example 10.3. Let us consider a fuzzy vehicle routing problem shown in
Figure 10.1. We assume that the distance matrix is listed in Table 10.1 and
the time windows customers are given in Table 10.3. We also assume that

Table 10.4 Fuzzy Travel Time Matrix

LCTs 0 1 2 3
1 (25,50,75)
2 (5,10,15) (20,40,60)
3 (25,50,75) (5,10,15) (20,40,60)
4 (25,50,75) (17,35,53) (17,35,53) (15,30,45)
5 (25,50,75) (7,15,23) (20,40,60) (2,5,8)
6 (7,15,23) (20,40,60) (5,10,15) (22,45,68)
7 (25,50,75) (7,15,23) (22,45,68) (5,10,15)
8 (25,50,75) (5,10,15) (17,35,53) (15,30,45)

LCTs 4 5 6 7
5 (15,30,45)
6 (17,35,53) (20,40,60)
7 (15,30,45) (5,10,15) (20,40,60)
8 (5,10,15) (15,30,45) (17,35,53) (17,35,53)
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the travel times among the deport and customers are all triangular fuzzy
variables as shown in Table 10.4. Finally, we suppose that the unloading
times at the 8 locations are all 15 minutes.

If the confidence level α is 0.80, then a run of the hybrid intelligent algo-
rithm (10000 cycles in simulation, 5000 generations in GA) shows that the
best operational plan is:

Vehicle 1: depot→ 6 → 7 → 4 → 5 → depot, starting time = 9:44;
Vehicle 2: depot→ 8 → depot, starting time = 8:48;
Vehicle 3: depot→ 2 → 3 → 1 → depot, starting time = 9:21.

The total distance travelled by the three vehicles is 224. Furthermore, when
the operational plan is performed, we have

Cr {ai ≤ fi(x∗, y∗, t∗) ≤ bi, i = 1, 2, · · · , 8} = 0.87.

Credibility Maximization Model

If we hope that total travel distance does not exceed a fixed number g, then we
have a distance constraint g(x, y) ≤ g. If we want to maximize the credibility
that all customers are visited within their time windows subject to the distance
constraint, then we have the following credibility maximization model,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

maxCr {ai ≤ fi(x, y, t) ≤ bi, i = 1, 2, · · · , n}
subject to:

g(x, y) ≤ g

1 ≤ xi ≤ n, i = 1, 2, · · · , n
xi �= xj , i �= j, i, j = 1, 2, · · · , n
0 ≤ y1 ≤ y2 ≤ · · · ≤ ym−1 ≤ n

xi, yj, i = 1, 2, · · · , n, j = 1, 2, · · · , m − 1, integers.

(10.9)

Example 10.4. We set g = 240. A run of the hybrid intelligent algorithm
(10000 cycles in simulation, 5000 generations in GA) shows that the best
operational plan is

Vehicle 1: depot→ 8 → 1 → 3 → depot, starting time = 8:55;
Vehicle 2: depot→ 6 → 5 → 4 → 7 → depot, starting time = 8:51;
Vehicle 3: depot→ 2 → depot, starting time = 9:21.

When the optimal operational plan is performed, the total travel distance is
231, and

Cr {ai ≤ fi(x∗, y∗, t∗) ≤ bi, i = 1, 2, · · · , 8} = 0.96.

10.4 Hybrid Models

Now we suppose that the travel times are hybrid variables, and introduce
hybrid distance minimization model and chance maximization model.
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Hybrid Distance Minimization Model

If we hope that all customers are visited within their time windows with
confidence level α, then we have the following chance constraint,

Ch {ai ≤ fi(x, y, t) ≤ bi, i = 1, 2, · · · , n} ≥ α. (10.10)

If we want to minimize the total travel distance of all vehicles subject to the
time window constraint, then we have the following hybrid distance mini-
mization model,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min g(x, y)
subject to:

Ch {ai ≤ fi(x, y, t) ≤ bi, i = 1, 2, · · · , n} ≥ α

1 ≤ xi ≤ n, i = 1, 2, · · · , n
xi �= xj , i �= j, i, j = 1, 2, · · · , n
0 ≤ y1 ≤ y2 ≤ · · · ≤ ym−1 ≤ n

xi, yj , i = 1, 2, · · · , n, j = 1, 2, · · · , m − 1, integers.

(10.11)

Chance Maximization Model

If we hope that total travel distance does not exceed a fixed number g, then
we have a distance constraint g(x, y) ≤ g. If we want to maximize the chance
that all customers are visited within their time windows subject to the dis-
tance constraint, then we have the following chance maximization model,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

maxCh {ai ≤ fi(x, y, t) ≤ bi, i = 1, 2, · · · , n}
subject to:

g(x, y) ≤ g

1 ≤ xi ≤ n, i = 1, 2, · · · , n
xi �= xj , i �= j, i, j = 1, 2, · · · , n
0 ≤ y1 ≤ y2 ≤ · · · ≤ ym−1 ≤ n

xi, yj , i = 1, 2, · · · , n, j = 1, 2, · · · , m − 1, integers.

(10.12)

10.5 Exercises

Problem 10.1. Design a hybrid intelligent algorithm to solve hybrid models
for vehicle routing problem (for example, the travel times are random and
travel distances are fuzzy).

Problem 10.2. Build uncertain models for vehicle routing problem (for ex-
ample, the travel times are uncertain variables with identification function
(λ, ρ)), and design a hybrid intelligent algorithm to solve them.



Chapter 11
Facility Location Problem

Facility location problem is to find locations for new facilities such that the
conveying cost from facilities to customers is minimized. Facility location
problem has been studied for half a century because of its widely practical
application backgrounds.

In practice, some factors such as demands, allocations, even locations of
customers and facilities are usually changing. In an uncapacitated facility
location problem, the customers are supplied by the nearest factory. However,
in a capacitated problem, the customers may not be supplied by the nearest
factory only. In order to solve this type of problem, this chapter introduces
some optimization models for uncertain capacitated facility location problem.

11.1 Problem Description

In order to model facility location problem, we use the following indices,
parameters, and decision variables:

i = 1, 2, · · · , n: facilities;
j = 1, 2, · · · , m: customers;
(aj , bj): location of customer j, 1 ≤ j ≤ m;
ξj : uncertain demand of customer j, 1 ≤ j ≤ m;
si: capacity of facility i, 1 ≤ i ≤ n;
(xi, yi): decision vector representing the location of facility i, 1 ≤ i ≤ n;
zij : quantity supplied to customer j by facility i after the uncertain de-

mands are realized, 1 ≤ i ≤ n, 1 ≤ j ≤ m.

11.2 Stochastic Models

We write the demand vector ξ = (ξ1, ξ2, · · · , ξm). For convenience, we also
write

(x, y) =

⎛
⎜⎜⎝

x1 y1
x2 y2
· · · · · ·
xn yn

⎞
⎟⎟⎠ , z =

⎛
⎜⎜⎝

z11 z12 · · · z1m

z21 z22 · · · z2m

· · · · · · · · · · · ·
zn1 zn2 · · · znm

⎞
⎟⎟⎠ . (11.1)

B. Liu: Theory and Practice of Uncertain Programming, STUDFUZZ 239, pp. 157–165.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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For each ω ∈ Ω, ξ(ω) is a realization of random vector ξ. An allocation z
is said to be feasible with respect to ω if and only if⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

zij ≥ 0, i = 1, 2, · · · , n, j = 1, 2, · · · , m
n∑

i=1
zij = ξj(ω), j = 1, 2, · · · , m

m∑
j=1

zij ≤ si, i = 1, 2, · · · , n.

(11.2)

We denote the feasible allocation set by

Z(ω) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

z
∣∣

zij ≥ 0, i = 1, 2, · · · , n, j = 1, 2, · · · , m
n∑

i=1
zij = ξj(ω), j = 1, 2, · · · , m

m∑
j=1

zij ≤ si, i = 1, 2, · · · , n

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (11.3)

Note that Z(ω) may be an empty set for some ω.
For each ω ∈ Ω, the minimal cost is the one associated with the best

allocation z, i.e.,

C(x, y|ω) = min
z∈Z(ω)

n∑
i=1

m∑
j=1

zij

√
(xi − aj)2 + (yi − bj)2 (11.4)

whose optimal solution z∗ is called the optimal allocation. If Z(ω) = ∅, then
the demands of some customers are impossible to be met. As a penalty, we
define

C(x, y|ω) =
m∑

j=1
max

1≤i≤n
ξj(ω)

√
(xi − aj)2 + (yi − bj)2. (11.5)

Stochastic Expected Cost Minimization Model

Since the demands are stochastic variables, the conveying cost C(x, y|ω) is
also a stochastic variable. In order to evaluate the location design, we use its
expected cost

E[C(x, y|ω)] =
∫ ∞

0
Pr
{
ω ∈ Ω

∣∣ C(x, y|ω) ≥ r
}

dr. (11.6)

In order to minimize the expected cost, Zhou and Liu [337] presented the
following expected cost minimization model for stochastic facility location
problem, ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
min
x,y

∫ ∞

0
Pr
{
ω ∈ Ω

∣∣ C(x, y|ω) ≥ r
}

dr

subject to:
gj(x, y) ≤ 0, j = 1, 2, · · · , p

(11.7)
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where gj(x, y) ≤ 0, j = 1, 2, · · · , p represent the potential region of locations
of new facilities and C(x, y|ω) is defined by (11.4).

This model is different from traditional stochastic programming models
because there is a sub-problem in it, i.e.,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
n∑

i=1

m∑
j=1

zij

√
(xi − aj)

2 + (yi − bj)
2

subject to:
n∑

i=1
zij = ξj(ω), j = 1, 2, · · · , m

m∑
j=1

zij ≤ si, i = 1, 2, · · · , n

zij ≥ 0, i = 1, 2, · · · , n, j = 1, 2, · · · , m.

(11.8)

Note that in (11.8) the parameters xi, yi and ξj(ω) are fixed real numbers for
i = 1, 2, · · · , n, j = 1, 2, · · · , m. It is clearly a linear programming which may
be solved by the simplex algorithm.

Example 11.1. Assume that there are 3 new facilities whose capacities
are (s1, s2, s3) = (70, 80, 90), and 8 customers whose demands are uniformly
distributed random variables. The locations (aj , bj) and demands U(li, ui),
j = 1, 2, · · · , 8 of customers are given in Table 11.1.

Table 11.1 Locations and Random Demands of Customers

j (aj , bj) ξj j (aj , bj) ξj

1 (28, 42) (14,17) 5 (70, 18) (21,26)
2 (18, 50) (13,18) 6 (72, 98) (24,28)
3 (74, 34) (12,16) 7 (60, 50) (13,16)
4 (74, 6) (17,20) 8 (36, 40) (12,17)

A run of the hybrid intelligent algorithm (5000 cycles in simulation, 300
generations in GA) shows that the optimal locations of the 3 facilities are⎛

⎝x∗
1, y

∗
1

x∗
2, y

∗
2

x∗
3, y

∗
3

⎞
⎠ =

⎛
⎝29.92, 43.19

70.04, 17.99
72.02, 98.02

⎞
⎠

whose expected conveying cost is 1259.

Stochastic α-Cost Minimization Model

Now we define the α-cost as the minimum number C such that

Pr{C(x, y|ω) ≤ C} ≥ α. (11.9)
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If we want to minimize the α-cost, then we have the following stochastic
α-cost minimization model (Zhou and Liu [337]),⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min
x,y

C

subject to:

Pr
{
ω ∈ Ω

∣∣ C(x, y|ω) ≤ C
}

≥ α

gj(x, y) ≤ 0, j = 1, 2, · · · , p

(11.10)

where f is the α-cost and C(x, y|ω) is defined by (11.4).

Example 11.2. Here we suppose that the 0.9-cost is to be minimized. A
run of the hybrid intelligent algorithm (5000 cycles in simulations and 300
generations in GA) shows that the optimal locations of the 3 facilities are⎛

⎝x∗
1, y

∗
1

x∗
2, y

∗
2

x∗
3, y

∗
3

⎞
⎠ =

⎛
⎝31.00, 43.08

70.04, 17.92
71.98, 97.99

⎞
⎠

whose 0.9-cost is 1313.

Probability Maximization Model

If we hope to maximize the probability that the conveying cost will not exceed
a given level C0, then we have a probability maximization model (Zhou and
Liu [337]), ⎧⎪⎨

⎪⎩
max
x,y

Pr
{
ω ∈ Ω

∣∣ C(x, y|ω) ≤ C0
}

subject to:
gj(x, y) ≤ 0, j = 1, 2, · · · , p

(11.11)

where C(x, y|ω) is defined by (11.4).

Example 11.3. Now we want to maximize the probability that the trans-
portation cost does not exceed 1300. A run of the hybrid intelligent algorithm
(5000 cycles in simulation, and 300 generations in GA) shows that the optimal
locations of the 3 facilities are⎛

⎝x∗
1, y

∗
1

x∗
2, y

∗
2

x∗
3, y

∗
3

⎞
⎠ =

⎛
⎝30.21, 42.75

70.47, 17.94
72.03, 97.98

⎞
⎠

whose probability is 0.86.

11.3 Fuzzy Models

In this section, expert knowledge is used to estimate the demands. Thus we
have facility location problem with fuzzy demands.
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Fuzzy Expected Cost Minimization Model

In this section, we suppose that ξj are fuzzy demands of customers j defined
on the credibility space (Θ,�, Cr), j = 1, 2, · · · , m, respectively, and denote
ξ = (ξ1, ξ2, · · · , ξn).

For each θ ∈ Θ, ξ(θ) is a realization of fuzzy vector ξ. We denote the
feasible allocation set by

Z(θ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

z
∣∣

zij ≥ 0, i = 1, 2, · · · , n, j = 1, 2, · · · , m
n∑

i=1
zij = ξj(θ), j = 1, 2, · · · , m

m∑
j=1

zij ≤ si, i = 1, 2, · · · , n

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (11.12)

Note that Z(θ) may be an empty set for some θ.
For each θ ∈ Θ, the minimal conveying cost from facilities to customers is

C(x, y|θ) = min
z∈Z(θ)

n∑
i=1

m∑
j=1

zij

√
(xi − aj)2 + (yi − bj)2 (11.13)

whose optimal solution z∗ is called the optimal allocation. If Z(θ) = ∅, then
the demands of some customers are impossible to be met. As a penalty, we
define

C(x, y|θ) =
m∑

j=1
max

1≤i≤n
ξj(θ)

√
(xi − aj)2 + (yi − bj)2. (11.14)

Note that the conveying cost C(x, y|θ) is a fuzzy variable. In order to
evaluate the location design, we use its expected cost

E[C(x, y|θ)] =
∫ ∞

0
Cr
{
θ ∈ Θ

∣∣ C(x, y|θ) ≥ r
}

dr. (11.15)

In order to minimize the expected cost, Zhou and Liu [339] presented
the following expected cost minimization model for fuzzy capacitated facility
location problem, ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
min
x,y

∫ ∞

0
Cr {θ ∈ Θ|C(x, y|θ) ≥ r} dr

subject to:
gj(x, y) ≤ 0, j = 1, 2, · · · , p

(11.16)

where gj(x, y) ≤ 0, j = 1, 2, · · · , p represent the potential region of locations
of new facilities and C(x, y|θ) is defined by (11.13).

Example 11.4. Now we assume that there are 8 customers whose locations
and trapezoidal fuzzy demands are given in Table 11.2, and 3 facilities with
capacities 70, 80 and 90.
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Table 11.2 Locations and Fuzzy Demands of Customers

j (aj , bj) ξj j (aj , bj) ξj

1 (28, 42) (14,15,16,17) 5 (70, 18) (21,23,24,26)
2 (18, 50) (13,14,16,18) 6 (72, 98) (24,25,26,28)
3 (74, 34) (12,14,15,16) 7 (60, 50) (13,14,15,16)
4 (74, 6) (17,18,19,20) 8 (36, 40) (12,14,16,17)

A run of the hybrid intelligent algorithm (10000 cycles in fuzzy simulation,
1000 generations in GA) shows that the optimal locations of the 3 facilities
are ⎛

⎝x∗
1, y

∗
1

x∗
2, y

∗
2

x∗
3, y

∗
3

⎞
⎠ =

⎛
⎝30.34, 42.50

70.14, 17.97
71.99, 98.04

⎞
⎠

whose expected conveying cost is 1255.

Fuzzy α-Cost Minimization Model

Now we define the α-cost as the minimum number f such that

Cr{C(x, y|θ) ≤ f} ≥ α.

If we want to minimize the α-cost, then we have a fuzzy α-cost minimization
model (Zhou and Liu [339]),

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min
x,y

f

subject to:

Cr
{
θ ∈ Θ

∣∣ C(x, y|θ) ≤ f
}

≥ α

gj(x, y) ≤ 0, j = 1, 2, · · · , p

(11.17)

where f is the α-cost and C(x, y|θ) is defined by (11.13).

Example 11.5. Let us minimize the 0.9-cost. A run of the hybrid intelligent
algorithm (10000 cycles in fuzzy simulation, 1000 generations in GA) shows
that the optimal locations of the 3 facilities are

⎛
⎝x∗

1, y
∗
1

x∗
2, y

∗
2

x∗
3, y

∗
3

⎞
⎠ =

⎛
⎝30.39, 43.49

70.10, 17.64
71.98, 98.03

⎞
⎠

whose 0.9-cost is 1354.
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Credibility Maximization Model

If we hope to maximize the credibility that the conveying cost does not exceed
a given level C0, then we have a credibility maximization model (Zhou and
Liu [339]), ⎧⎪⎨

⎪⎩
max
x,y

Cr
{
θ ∈ Θ

∣∣ C(x, y|θ) ≤ C0
}

subject to:
gj(x, y) ≤ 0, j = 1, 2, · · · , p

(11.18)

where C(x, y|θ) is defined by (11.13).

Example 11.6. Assume C0 = 1350. A run of the hybrid intelligent algorithm
(10000 cycles in fuzzy simulation, 1000 generations in GA) shows that the
optimal locations of the 3 facilities are⎛

⎝x∗
1, y

∗
1

x∗
2, y

∗
2

x∗
3, y

∗
3

⎞
⎠ =

⎛
⎝32.18, 42.04

70.15, 17.81
72.04, 98.09

⎞
⎠

whose credibility is 0.87.

11.4 Hybrid Models

In this section, we suppose that the demands of customers are hybrid variables
defined on (Θ,�, Cr) × (Ω,�, Pr).

For each (θ, ω) ∈ Θ × Ω, the value ξ(θ, ω) is a realization of hybrid vector
ξ. We denote the feasible allocation set by

Z(θ, ω) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

z
∣∣

zij ≥ 0, i = 1, 2, · · · , n, j = 1, 2, · · · , m
n∑

i=1
zij = ξj(θ, ω), j = 1, 2, · · · , m

m∑
j=1

zij ≤ si, i = 1, 2, · · · , n

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (11.19)

Note that Z(θ, ω) may be an empty set for some (θ, ω).
For each (θ, ω) ∈ Θ × Ω, the minimal conveying cost from facilities to

customers is

C(x, y|θ, ω) = min
z∈Z(θ, ω)

n∑
i=1

m∑
j=1

zij

√
(xi − aj)2 + (yi − bj)2 (11.20)

whose optimal solution z∗ is called the optimal allocation. If Z(θ, ω) = ∅,
then the demands of some customers are impossible to be met. As a penalty,
we define

C(x, y|θ, ω) =
m∑

j=1
max

1≤i≤n
ξj(θ, ω)

√
(xi − aj)2 + (yi − bj)2. (11.21)
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Note that the conveying cost C(x, y|θ, ω) is a hybrid variable. In order to
evaluate the location design, we use its expected cost

E[C(x, y|θ, ω)] =
∫ ∞

0
Ch
{
(θ, ω) ∈ Θ × Ω

∣∣ C(x, y|θ, ω) ≥ r
}

dr.

Hybrid Expected Cost Minimization Model

In order to minimize the expected cost, we have the following expected cost
minimization model for hybrid capacitated facility location problem,⎧⎪⎪⎪⎨

⎪⎪⎪⎩
min
x,y

∫ ∞

0
Ch {(θ, ω) ∈ Θ × Ω|C(x, y|θ, ω) ≥ r} dr

subject to:
gj(x, y) ≤ 0, j = 1, 2, · · · , p

(11.22)

where gj(x, y) ≤ 0, j = 1, 2, · · · , p represent the potential region of locations
of new facilities and C(x, y|θ, ω) is defined by (11.20).

Hybrid α-Cost Minimization Model

Now we define the α-cost as the minimum number f such that

Ch{C(x, y|θ, ω) ≤ f} ≥ α.

If we want to minimize the α-cost, then we have a hybrid α-cost minimization
model, ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min
x,y

f

subject to:

Ch
{
(θ, ω) ∈ Θ × Ω

∣∣ C(x, y|θ, ω) ≤ f
}

≥ α

gj(x, y) ≤ 0, j = 1, 2, · · · , p

(11.23)

where f is the α-cost and C(x, y|θ, ω) is defined by (11.20).

Chance Maximization Model

If we hope to maximize the chance that the conveying cost does not exceed
a given level C0, then we have a chance maximization model,⎧⎪⎨

⎪⎩
max
x,y

Ch
{
(θ, ω) ∈ Θ × Ω

∣∣ C(x, y|θ, ω) ≤ C0
}

subject to:
gj(x, y) ≤ 0, j = 1, 2, · · · , p

(11.24)

where C(x, y|θ, ω) is defined by (11.20).
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11.5 Exercises

Problem 11.1. Design a hybrid intelligent algorithm to solve hybrid models
for facility location problem (for example, the demands of customers are
random and the locations of customers are fuzzy).

Problem 11.2. Build uncertain models for facility location problem (for
example, the demands of customers are uncertain variables with identification
function (λ, ρ)), and design a hybrid intelligent algorithm to solve them.



Chapter 12
Machine Scheduling Problem

Machine scheduling problem is concerned with finding an efficient schedule
during an uninterrupted period of time for a set of machines to process a set
of jobs. Much of research work has been done on this type of problem during
the past five decades.

12.1 Problem Description

In a machine scheduling problem, we assume that (a) each job can be pro-
cessed on any machine without interruption; and (b) each machine can pro-
cess only one job at a time.

Let us first introduce the following indices and parameters.
i = 1, 2, · · · , n: jobs;
k = 1, 2, · · · , m: machines;
ξik: uncertain processing time of job i on machine k;
Di: the due date of job i, i = 1, 2, · · · , n.
The schedule is represented by Liu’s formulation [181] via two decision

vectors x and y, where
x = (x1, x2, · · · , xn): integer decision vector representing n jobs with 1 ≤

xi ≤ n and xi �= xj for all i �= j, i, j = 1, 2, · · · , n. That is, the sequence
{x1, x2, · · · , xn} is a rearrangement of {1, 2, · · · , n};

y = (y1, y2, · · · , ym−1): integer decision vector with y0 ≡ 0 ≤ y1 ≤ y2 ≤
· · · ≤ ym−1 ≤ n ≡ ym.

We note that the schedule is fully determined by the decision vectors x
and y in the following way. For each k (1 ≤ k ≤ m), if yk = yk−1, then
machine k is not used; if yk > yk−1, then machine k is used and processes
jobs xyk−1+1, xyk−1+2, · · · , xyk

in turn. Thus the schedule of all machines is
as follows:

Machine 1: xy0+1 → xy0+2 → · · · → xy1 ;
Machine 2: xy1+1 → xy1+2 → · · · → xy2 ;

· · ·
Machine m: xym−1+1 → xym−1+2 → · · · → xym .

(12.1)

Let Ci(x, y, ξ) be the completion times of jobs i, i = 1, 2, · · · , n, respec-
tively. They can be calculated by the following equations,

B. Liu: Theory and Practice of Uncertain Programming, STUDFUZZ 239, pp. 167–177.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009



168 12 Machine Scheduling Problem

Cxyk−1+1(x, y, ξ) = ξxyk−1+1k (12.2)

and
Cxyk−1+j (x, y, ξ) = Cxyk−1+j−1(x, y, ξ) + ξxyk−1+jk (12.3)

for 2 ≤ j ≤ yk − yk−1 and k = 1, 2, · · · , m.
We denote the tardiness and makespan of the schedule (x, y) by f1(x, y, ξ)

and f2(x, y, ξ), respectively. Then we have

f1(x, y, ξ) = max
1≤i≤n

{Ci(x, y, ξ) − Di} ∨ 0, (12.4)

f2(x, y, ξ) = max
1≤k≤m

Cxyk
(x, y, ξ). (12.5)

12.2 Stochastic Models

In this section, we introduce an expected time goal programming model for
parallel machine scheduling problems proposed by Peng and Liu [254].

Stochastic Expected Time Goal Programming

In order to balance the above conflicting objectives, we may have the following
target levels and priority structure.

At the first priority level, the expected tardiness E[f1(x, y, ξ)] should not
exceed the target value b1. Thus we have a goal constraint

E[f1(x, y, ξ)] − b1 = d+
1

in which d+
1 ∨ 0 will be minimized.

At the second priority level, the expected makespan E[f2(x, y, ξ)] should
not exceed the target value b2. That is, we have a goal constraint

E[f2(x, y, ξ)] − b2 = d+
2

in which d+
2 ∨ 0 will be minimized.

Then according to the priority structure, we have the following stochastic
expected time goal programming model:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lexmin
{
d+
1 ∨ 0, d+

2 ∨ 0
}

subject to:
E[f1(x, y, ξ)] − b1 = d+

1

E[f2(x, y, ξ)] − b2 = d+
2

1 ≤ xi ≤ n, i = 1, 2, · · · , n
xi �= xj , i �= j, i, j = 1, 2, · · · , n
0 ≤ y1 ≤ y2 · · · ≤ ym−1 ≤ n

xi, yj , i = 1, 2, · · · , n, j = 1, 2, · · · , m − 1, integers.

(12.6)



12.2 Stochastic Models 169

Hybrid Intelligent Algorithm

The hybrid intelligent algorithm documented in Chapter 4 may solve this
model provided that the initialization, crossover and mutation operations
are revised as follows.

We encode a schedule into a chromosome V = (x, y), where x, y are the
same as the decision vectors. For the gene section x, we define a sequence
{x1, x2, · · · , xn} with xi = i, i = 1, 2, · · · , n. In order to get a random rear-
rangement of {1, 2, · · · , n}, we repeat the following process from j = 1 to n:
generating a random position n′ between j and n, and exchanging the values
of xj and xn′ . For each i with 1 ≤ i ≤ m − 1, we set yi as a random integer
between 0 and n. Then we rearrange the sequence {y1, y2, · · · , ym−1} from
small to large and thus obtain a gene section y = (y1, y2, · · · , ym−1). We can
ensure that the produced chromosome V = (x, y) is always feasible.

Let us illustrate the crossover operator on the pair V1 and V2. We denote
V1 = (x1, y1) and V2 = (x2, y2). Two children V ′

1 and V ′
2 are produced by

the crossover operation as follows: V ′
1 = (x1, y2) and V ′

2 = (x2, y1). Note
that the obtained chromosomes V ′

1 = (x1, y2) and V ′
2 = (x2, y1) in this way

are always feasible.
We mutate the parent V = (x, y) in the following way. For the gene x,

we randomly generate two mutation positions n1 and n2 between 1 and n,
and rearrange the sequence {xn1 , xn1+1, · · · , xn2} at random to form a new
sequence {x′

n1
, x′

n1+1, · · · , x′
n2

}, thus we obtain a new gene section

x′ = (x1, · · · , xn1−1, x
′
n1

, x′
n1+1, · · · , x′

n2
, xn2+1, · · · , xn).

Similarly, for the gene y, we generate two random mutation positions n1
and n2 between 1 and m − 1, and set yi as a random integer number y′

i

between 0 and n for i = n1, n1 + 1, · · · , n2. We then rearrange the sequence
y1, · · · , yn1−1, y

′
n1

, y′
n1+1, · · · , y′

n2
, yn2+1, · · · , ym−1 from small to large and ob-

tain a new gene section y′. Finally, we replace the parent V with the offspring
V ′ = (x′, y′).

Example 12.1. Assume that there are 8 jobs and 3 machines. The processing
times of jobs on different machines are all uniformly distributed random
variables. The random processing times and due dates are listed in Table 12.1.

We suppose that the target levels of expected tardiness and expected
makespan are b1 = 0 and b2 = 43. A run of the hybrid intelligent algo-
rithm (10000 cycles in simulation, 1000 generations in GA) shows that the
optimal schedule is

Machine 1: 1 → 5 → 3;
Machine 2: 6 → 7 → 2;
Machine 3: 8 → 4

which can satisfy the two goals.
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Table 12.1 Random Processing Times and Due Dates

Jobs Random Processing Times Due Dates
Machine 1 Machine 2 Machine 3

1 (10, 16) (11, 15) (12, 17) 30
2 (10, 18) (10, 16) (12, 18) 150
3 (12, 16) (11, 16) (12, 18) 105
4 (18, 24) (20, 23) (20, 25) 130
5 (10, 15) (12, 17) (10, 15) 60
6 (10, 18) (12, 17) (12, 20) 30
7 (10, 16) (10, 14) (10, 13) 75
8 (15, 20) (14, 20) (12, 16) 50

Stochastic Chance-Constrained Goal Programming

We assume the following priority structure. At the first priority level, the
tardiness f1(x, y, ξ) should not exceed the target value b1 with a confidence
level α1. Thus we have a goal constraint

Pr
{
f1(x, y, ξ) − b1 ≤ d+

1

}
≥ α1

in which d+
1 ∨ 0 will be minimized.

At the second priority level, the makespan f2(x, y, ξ) should not exceed
the target value b2 with a confidence level α2. Thus we have a goal constraint

Pr
{
f2(x, y, ξ) − b2 ≤ d+

2

}
≥ α2

in which d+
2 ∨ 0 will be minimized.

Then we have the following CCGP model for parallel machine scheduling
problem (Peng and Liu [254]),⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lexmin{d+
1 ∨ 0, d+

2 ∨ 0}
subject to:

Pr
{
f1(x, y, ξ) − b1 ≤ d+

1

}
≥ α1

Pr
{
f2(x, y, ξ) − b2 ≤ d+

2

}
≥ α2

1 ≤ xi ≤ n, i = 1, 2, · · · , n
xi �= xj , i �= j, i, j = 1, 2, · · · , n
0 ≤ y1 ≤ y2 · · · ≤ ym−1 ≤ n

xi, yj , i = 1, 2, · · · , n, j = 1, 2, · · · , m − 1, integers.

(12.7)

Example 12.2. Suppose that the target levels of tardiness and makespan
are b1 = 0 and b2 = 43 with confidence levels α1 = 0.95 and α2 = 0.90.
A run of the hybrid intelligent algorithm (10000 cycles in simulation, 1000
generations in GA) shows that the optimal schedule is
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Machine 1: 5 → 1 → 3;
Machine 2: 7 → 6 → 2;
Machine 3: 8 → 4

which can satisfy the first goal, but the second objective is 0.52.

Stochastic Dependent-Chance Goal Programming

Suppose that the management goals have the following priority structure.
At the first priority level, the probability that the tardiness f1(x, y, ξ) does

not exceed the given value b1 should achieve a confidence level α1. Thus we
have a goal constraint

α1 − Pr {f1(x, y, ξ) ≤ b1} = d−1

in which d−1 ∨ 0 will be minimized.
At the second priority level, the probability that the makespan f2(x, y, ξ)

does not exceed the given value b2 should achieve a confidence level α2. Thus
we have a goal constraint

α2 − Pr {f2(x, y, ξ) ≤ b2} = d−2

in which d−2 ∨ 0 will be minimized.
Then we have the following DCGP model formulated by Peng and Liu [254],⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lexmin{d−1 ∨ 0, d−2 ∨ 0}
subject to:

α1 − Pr {f1(x, y, ξ) ≤ b1} = d−1
α2 − Pr {f2(x, y, ξ) ≤ b2} = d−2
1 ≤ xi ≤ n, i = 1, 2, · · · , n
xi �= xj , i �= j, i, j = 1, 2, · · · , n
0 ≤ y1 ≤ y2 · · · ≤ ym−1 ≤ n

xi, yj , i = 1, 2, · · · , n, j = 1, 2, · · · , m − 1, integers.

(12.8)

Example 12.3. Suppose that the upper bounds of tardiness and makespan
are b1 = 0 and b2 = 43, and the target levels are α1 = 0.95 and α2 = 0.90.
A run of the hybrid intelligent algorithm (10000 cycles in simulation, 1000
generations in GA) shows that the optimal schedule is

Machine 1: 1 → 5 → 3;
Machine 2: 6 → 2 → 7;
Machine 3: 8 → 4

which can satisfy the first goal, but the second objective is 0.05.
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12.3 Fuzzy Models

In this section, we assume that the processing times are fuzzy variables, and
construct fuzzy models for machine scheduling problems.

Fuzzy Expected Time Goal Programming

In order to balance the conflicting objectives, we may have the following
target levels and priority structure:

At the first priority level, the expected tardiness E[f1(x, y, ξ)] should not
exceed the target value b1. Thus we have a goal constraint

E[f1(x, y, ξ)] − b1 = d+
1

in which d+
1 ∨ 0 will be minimized.

At the second priority level, the expected makespan E[f2(x, y, ξ)] should
not exceed the target value b2. That is, we have a goal constraint

E[f2(x, y, ξ)] − b2 = d+
2

in which d+
2 ∨ 0 will be minimized.

Then we have the following fuzzy expected time goal programming model
for the parallel machine scheduling problem (Peng and Liu [255]),⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lexmin
{
d+
1 ∨ 0, d+

2 ∨ 0
}

subject to:
E[f1(x, y, ξ)] − b1 = d+

1

E[f2(x, y, ξ)] − b2 = d+
2

1 ≤ xi ≤ n, i = 1, 2, · · · , n
xi �= xj , i �= j, i, j = 1, 2, · · · , n
0 ≤ y1 ≤ y2 · · · ≤ ym−1 ≤ n

xi, yj , i = 1, 2, · · · , n, j = 1, 2, · · · , m − 1, integers.

(12.9)

Example 12.4. Assume that there are 8 jobs and 3 machines. The trape-
zoidal fuzzy processing times and the due dates are listed in Table 12.2.

Suppose that b1 = 0 and b2 = 45. A run of the hybrid intelligent algorithm
(10000 cycles in fuzzy simulation, 500 generations in GA) shows that the
optimal schedule is

Machine 1: 1 → 3 → 5;
Machine 2: 6 → 7 → 2;
Machine 3: 4 → 8

which can satisfy the two goals.
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Table 12.2 Fuzzy Processing Times and Due Dates

Jobs Fuzzy Processing Times Due Dates
Machine 1 Machine 2 Machine 3

1 (10, 11, 14, 16) (11, 12, 14, 15) (12, 13, 15, 17) 30
2 (10, 13, 16, 18) (10, 11, 15, 16) (12, 13, 14, 18) 150
3 (12, 14, 15, 16) (11, 13, 14, 16) (12, 15, 16, 18) 105
4 (18, 21, 22, 24) (20, 21, 22, 23) (20, 23, 24, 25) 130
5 (10, 12, 13, 15) (12, 14, 15, 17) (10, 12, 13, 15) 60
6 (10, 14, 15, 18) (12, 13, 16, 17) (12, 16, 17, 20) 30
7 (10, 11, 12, 16) (10, 11, 12, 14) (10, 11, 12, 13) 75
8 (15, 17, 18, 20) (14, 15, 16, 20) (12, 14, 15, 16) 50

Fuzzy Chance-Constrained Goal Programming

We assume the following priority structure. At the first priority level, the
tardiness f1(x, y, ξ) should not exceed the target value b1 with a confidence
level α1. Thus we have a goal constraint

Cr
{
f1(x, y, ξ) − b1 ≤ d+

1

}
≥ α1

in which d+
1 ∨ 0 will be minimized.

At the second priority level, the makespan f2(x, y, ξ) should not ex-
ceed the target value b2 with a confidence level α2. Thus we have a goal
constraint

Cr
{
f2(x, y, ξ) − b2 ≤ d+

2

}
≥ α2

in which d+
2 ∨ 0 will be minimized.

Then we have the following fuzzy CCGP model for the parallel machine
scheduling problem (Peng and Liu [255]),⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lexmin{d+
1 ∨ 0, d+

2 ∨ 0}
subject to:

Cr
{
f1(x, y, ξ) − b1 ≤ d+

1

}
≥ α1

Cr
{
f2(x, y, ξ) − b2 ≤ d+

2

}
≥ α2

1 ≤ xi ≤ n, i = 1, 2, · · · , n
xi �= xj , i �= j, i, j = 1, 2, · · · , n
0 ≤ y1 ≤ y2 · · · ≤ ym−1 ≤ n

xi, yj , i = 1, 2, · · · , n, j = 1, 2, · · · , m − 1, integers.

(12.10)

Example 12.5. Suppose that b1 = 0, b2 = 45, α1 = 0.95 and α2 = 0.90.
A run of the hybrid intelligent algorithm (10000 cycles in fuzzy simulation,
1000 generations in GA) shows that the optimal schedule is
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Machine 1: 6 → 4;
Machine 2: 1 → 2 → 3;
Machine 3: 5 → 8 → 7

which can satisfy the first goal, but the second objective is 0.12.

Fuzzy Dependent-Chance Goal Programming

Suppose that the management goals have the following priority structure.
At the first priority level, the credibility that the tardiness f1(x, y, ξ) does

not exceed the given value b1 should achieve a confidence level α1. Thus we
have a goal constraint

α1 − Cr {f1(x, y, ξ) ≤ b1} = d−1

in which d−1 ∨ 0 will be minimized.
At the second priority level, the credibility that the makespan f2(x, y, ξ)

does not exceed the given value b2 should achieve a confidence level α2. Thus
we have a goal constraint

α2 − Cr {f2(x, y, ξ) ≤ b2} = d−2

in which d−2 ∨ 0 will be minimized.
Then Peng and Liu [255] proposed the following fuzzy DCGP model for

parallel machine scheduling problem,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lexmin{d−1 ∨ 0, d−2 ∨ 0}
subject to:

α1 − Cr {f1(x, y, ξ) ≤ b1} = d−1
α2 − Cr {f2(x, y, ξ) ≤ b2} = d−2
1 ≤ xi ≤ n, i = 1, 2, · · · , n
xi �= xj , i �= j, i, j = 1, 2, · · · , n
0 ≤ y1 ≤ y2 · · · ≤ ym−1 ≤ n

xi, yj, i = 1, 2, · · · , n, j = 1, 2, · · · , m − 1, integers.

(12.11)

Example 12.6. Suppose that b1 = 0, b2 = 45, α1 = 0.95 and α2 = 0.90.
A run of the hybrid intelligent algorithm (10000 cycles in fuzzy simulation,
1000 generations in GA) shows that the optimal schedule is

Machine 1: 1 → 5 → 3;
Machine 2: 6 → 4 → 2;
Machine 3: 8 → 7

which can satisfy the first goal, but the second objective is 0.05.
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12.4 Hybrid Models

We assume that the processing times are hybrid variables, and introduce
some hybrid models for machine scheduling problem.

Hybrid Expected Time Goal Programming

In order to balance the conflicting objectives, we may have the following
target levels and priority structure:

At the first priority level, the expected tardiness E[f1(x, y, ξ)] should not
exceed the target value b1. Thus we have a goal constraint

E[f1(x, y, ξ)] − b1 = d+
1

in which d+
1 ∨ 0 will be minimized.

At the second priority level, the expected makespan E[f2(x, y, ξ)] should
not exceed the target value b2. That is, we have a goal constraint

E[f2(x, y, ξ)] − b2 = d+
2

in which d+
2 ∨ 0 will be minimized.

Then we have the following hybrid expected time goal programming model
for the parallel machine scheduling problem,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lexmin
{
d+
1 ∨ 0, d+

2 ∨ 0
}

subject to:
E[f1(x, y, ξ)] − b1 = d+

1

E[f2(x, y, ξ)] − b2 = d+
2

1 ≤ xi ≤ n, i = 1, 2, · · · , n
xi �= xj , i �= j, i, j = 1, 2, · · · , n
0 ≤ y1 ≤ y2 · · · ≤ ym−1 ≤ n

xi, yj, i = 1, 2, · · · , n, j = 1, 2, · · · , m − 1, integers.

(12.12)

Hybrid Chance-Constrained Goal Programming

We assume the following priority structure. At the first priority level, the
tardiness f1(x, y, ξ) should not exceed the target value b1 with confidence
level α1. Thus we have a goal constraint

Ch
{
f1(x, y, ξ) − b1 ≤ d+

1

}
≥ α1

in which d+
1 ∨ 0 will be minimized.

At the second priority level, the makespan f2(x, y, ξ) should not exceed
the target value b2 with confidence level α2. Thus we have a goal constraint
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Ch
{
f2(x, y, ξ) − b2 ≤ d+

2

}
≥ α2

in which d+
2 ∨ 0 will be minimized.

Then we have the following hybrid CCGP model for the parallel machine
scheduling problem,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lexmin{d+
1 ∨ 0, d+

2 ∨ 0}
subject to:

Ch
{
f1(x, y, ξ) − b1 ≤ d+

1

}
≥ α1

Ch
{
f2(x, y, ξ) − b2 ≤ d+

2

}
≥ α2

1 ≤ xi ≤ n, i = 1, 2, · · · , n
xi �= xj , i �= j, i, j = 1, 2, · · · , n
0 ≤ y1 ≤ y2 · · · ≤ ym−1 ≤ n

xi, yj , i = 1, 2, · · · , n, j = 1, 2, · · · , m − 1, integers.

(12.13)

Hybrid Dependent-Chance Goal Programming

Suppose that the management goals have the following priority structure.
At the first priority level, the chance that the tardiness f1(x, y, ξ) does

not exceed the given value b1 should achieve a confidence level β1. Thus we
have a goal constraint

β1 − Ch {f1(x, y, ξ) ≤ b1} = d−1

in which d−1 ∨ 0 will be minimized.
At the second priority level, the chance that the makespan f2(x, y, ξ) does

not exceed the given value b2 should achieve a confidence level β2. Thus we
have a goal constraint

β2 − Ch {f2(x, y, ξ) ≤ b2} = d−2

in which d−2 ∨ 0 will be minimized.
Then we have the following hybrid DCGP model for parallel machine

scheduling problem,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lexmin{d−1 ∨ 0, d−2 ∨ 0}
subject to:

β1 − Ch {f1(x, y, ξ) ≤ b1} = d−1
β2 − Ch {f2(x, y, ξ) ≤ b2} = d−2
1 ≤ xi ≤ n, i = 1, 2, · · · , n
xi �= xj , i �= j, i, j = 1, 2, · · · , n
0 ≤ y1 ≤ y2 · · · ≤ ym−1 ≤ n

xi, yj, i = 1, 2, · · · , n, j = 1, 2, · · · , m − 1, integers.

(12.14)
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12.5 Exercises

Problem 12.1. Design a hybrid intelligent algorithm to solve hybrid mod-
els for machine scheduling problem (for example, the processing times are
random and the due dates are fuzzy).

Problem 12.2. Build uncertain models for machine scheduling problem (for
example, the processing times are uncertain variables with identification func-
tion (λ, ρ)), and design a hybrid intelligent algorithm to solve them.
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223. Mareš M, Computation Over Fuzzy Quantities, CRC Press, Boca Raton, 1994.
224. Mareschal B, Stochastic multicriteria decision making and uncertainty, Euro-

pean Journal of Operational Research, Vol.26, No.1, 58-64, 1986.
225. Martel A, and Price W, Stochastic programming applied to human resource

planning, Journal of the Operational Research Society, Vol.32, 187-196, 1981.
226. Masud A, and Hwang C, Interactive sequential goal programming, Journal of

the Operational Research Society, Vol.32, 391-400, 1981.
227. Marianov V, Rios M, and Barros FJ, Allocating servers to facilities, when

demand is elastic to travel and waiting times, RAIRO-Operations Research,
Vol.39, No.3, 143-162, 2005.



190 References

228. Medsker LR, Hybrid Intelligent Systems, Kluwer Academic Publishers,
Boston, 1995.

229. Mendel JM, Uncertainty Rule-Based Fuzzy Logic Systems: Introduction and
New Directions, Prentice-Hall, New Jersey, 2001.

230. Michalewicz Z, Genetic Algorithms + Data Structures = Evolution Programs,
3rd ed., Springer-Verlag, Berlin, 1996.

231. Minsky M, and Papert S, Perceptrons, MIT Press, Cambridge, MA, 1969.
232. Mitchell M, An Introduction to Genetic Algorithms, MIT Press, Cambridge,

MA, 1996.
233. Mohamed RH, A chance-constrained fuzzy goal program, Fuzzy Sets and Sys-

tems, Vol.47, 183-186, 1992.
234. Mohammed W, Chance constrained fuzzy goal programming with right-hand

side uniform random variable coefficients, Fuzzy Sets and Systems, Vol.109,
No.1, 107-110, 2000.

235. Mohan C, and Nguyen HT, An interactive satisfying method for solving multi-
objective mixed fuzzy-stochastic programming problems, Fuzzy Sets and Sys-
tems, Vol.117, 95-111, 2001.

236. Morgan B, Elements of Simulation, Chapamn & Hall, London, 1984.
237. Morgan DR, Eheart JW, and Valocchi AJ, Aquifer remediation design under

uncertainty using a new chance constrained programming technique, Water
Resources Research, Vol.29, No.3, 551-561, 1993.

238. Mukherjee SP, Mixed strategies in chance-constrained programming, Journal
of the Operational Research Society, Vol.31, 1045-1047, 1980.

239. Murat C, and Paschos VTH, The probabilistic longest path problem, Net-
works, Vol.33, 207-219, 1999.

240. Murray AT, and Church RL, Applying simulated annealing to location-
planning models, Journal of Heuristics, Vol.2, No.1, 31-53, 1996.

241. Nahmias S, Fuzzy variables, Fuzzy Sets and Systems, Vol.1, 97-110, 1978.
242. Negoita CV, and Ralescu D, On fuzzy optimization, Kybernetes, Vol.6, 193-

195, 1977.
243. Negoita CV, and Ralescu D, Simulation, Knowledge-based Computing, and

Fuzzy Statistics, Van Nostrand Reinhold, New York, 1987.
244. Nguyen VH, Fuzzy stochastic goal programming problems, European Journal

of Operational Research, Vol.176, No.1, 77-86, 2007.
245. Ohlemuller M, Tabu search for large location-allocation problems, Journal of

the Operational Research Society, Vol.48, No.7, 745-750, 1997.
246. Ostasiewicz W, A new approach to fuzzy programming, Fuzzy Sets and Sys-

tems, Vol.7, 139-152, 1982.
247. Painton L, and Campbell J, Genetic algorithms in optimization of system

reliability, IEEE Transactions on Reliability, Vol.44, 172-178, 1995.
248. Pawlak Z, Rough sets, International Journal of Information and Computer

Sciences, Vol.11, No.5, 341-356, 1982.
249. Pawlak Z, Rough sets and fuzzy sets, Fuzzy Sets and Systems, Vol.17, 99-102,

1985.
250. Pawlak Z, Rough Sets: Theoretical Aspects of Reasoning about Data, Kluwer

Academic Publishers, Dordrecht, 1991.
251. Pawlak Z, and Slowinski R, Rough set approach to multi-attribute decision

analysis, European Journal of Operational Research, Vol.72, 443-459, 1994.
252. Pawlak Z, Rough set approach to knowledge-based decision support, European

Journal of Operational Research, Vol.99, 48-57, 1997.



References 191

253. Pedrycz W, Optimization schemes for decomposition of fuzzy relations, Fuzzy
Sets and Systems, Vol.100, 301-325, 1998.

254. Peng J, and Liu B, Stochastic goal programming models for parallel machine
scheduling problems, Asian Information-Science-Life, Vol.1, No.3, 257-266,
2002.

255. Peng J, and Liu B, Parallel machine scheduling models with fuzzy processing
times, Information Sciences, Vol.166, Nos.1-4, 49-66, 2004.

256. Peng J, and Liu B, A framework of birandom theory and optimization meth-
ods, Information: An International Journal, Vol.9, No.4, 629-640, 2006.

257. Peng J, and Zhao XD, Some theoretical aspects of the critical values of bi-
random variable, Journal of Information and Computing Science, Vol.1, No.4,
225-234, 2006.

258. Peng J, and Liu B, Birandom variables and birandom programming, Comput-
ers & Industrial Engineering, Vol.53, No.3, 433-453, 2007.

259. Puri ML, and Ralescu D, Fuzzy random variables, Journal of Mathematical
Analysis and Applications, Vol.114, 409-422, 1986.

260. Raj PA, and Kumer DN, Ranking alternatives with fuzzy weights using max-
imizing set and minimizing set, Fuzzy Sets and Systems, Vol.105, 365-375,
1999.

261. Ramer A, Conditional possibility measures, International Journal of Cyber-
netics and Systems, Vol.20, 233-247, 1989.

262. Ramı́k J, Extension principle in fuzzy optimization, Fuzzy Sets and Systems,
Vol.19, 29-35, 1986.

263. Ramı́k J, and Rommelfanger H, Fuzzy mathematical programming based on
some inequality relations, Fuzzy Sets and Systems, Vol.81, 77-88, 1996.

264. Ravi V, Murty BSN, and Reddy PJ, Nonequilibrium simulated annealing-
algorithm applied to reliability optimization of complex systems, IEEE Trans-
actions on Reliability, Vol.46, 233-239, 1997.

265. Rommelfanger H, Hanscheck R, and Wolfe J, Linear programming with fuzzy
objectives, Fuzzy Sets and Systems, Vol.29, 31-48, 1989.

266. Roubens M, and Teghem Jr J, Comparison of methodologies for fuzzy and
stochastic multi-objective programming, Fuzzy Sets and Systems, Vol.42, 119-
132, 1991.

267. Roy B, Main sources of inaccurate determination, uncertainty and imprecision
in decision models, Mathematical and Computer Modelling, Vol.12, 1245-1254,
1989.

268. Rubinstein RY, Simulation and the Monte Carlo Method, Wiley, New York,
1981.

269. Saade JJ, Maximization of a function over a fuzzy domain, Fuzzy Sets and
Systems, Vol.62, 55-70, 1994.

270. Saber HM, and Ravindran A, Nonlinear goal programming theory and prac-
tice: A survey, Computers and Operations Research, Vol.20, 275-291, 1993.

271. Sakawa M, and Yano H, Feasibility and Pareto optimality for multiobjective
nonlinear programming problems with fuzzy parameters, Fuzzy Sets and Sys-
tems, Vol.43, 1-15, 1991.

272. Sakawa M, Kato K, and Katagiri H, An interactive fuzzy satisficing method for
multiobjective linear programming problems with random variable coefficients
through a probability maximization model, Fuzzy Sets and Systems, Vol.146,
No.2, 205-220, 2004.



192 References

273. Sakawa M, Nishizaki I, and Uemura Y, Interactive fuzzy programming for
multi-level linear programming problems with fuzzy parameters, Fuzzy Sets
and Systems, Vol.109, No.1, 3-19, 2000.

274. Sakawa M, and Kubota R, Fuzzy programming for multiobjective job shop
scheduling with fuzzy processing time and fuzzy duedate through genetic al-
gorithms, European Journal of Operational Research, Vol.120, No.2, 393-407,
2000.

275. Sakawa M, Nishizaki I, and Uemura Y, Interactive fuzzy programming for two-
level linear fractional programming problems with fuzzy parameters, Fuzzy
Sets and Systems, Vol.115, 93-103, 2000.

276. Sakawa M, Nishizaki I, and Hitaka M, Interactive fuzzy programming for
multi-level 0-1 programming problems with fuzzy parameters through genetic
algorithms, Fuzzy Sets and Systems, Vol.117, 95-111, 2001.

277. Savard G, and Gauvin J, The steepest descent direction for nonlinear bilevel
programming problem, Operations Research Letters, Vol.15, 265-272, 1994.

278. Schalkoff RJ, Artificial Neural Networks, McGraw-Hill, New York, 1997.
279. Schneider M, and Kandel A, Properties of the fuzzy expected value and the

fuzzy expected interval in fuzzy environment, Fuzzy Sets and Systems, Vol.26,
373-385, 1988.

280. Shao Z, and Ji XY, Fuzzy multi-product constraint newsboy problem, Applied
Mathematics and Computation, Vol.180, No.1, 7-15, 2006.

281. Sherali HD, and Rizzo TP, Unbalanced, capacitated p-median problems on
a chain graph with a continuum of link demands, Networks, Vol.21, No.2,
133-163, 1991.

282. Shih HS, Lai YJ, and Lee ES, Fuzzy approach for multilevel programming
problems, Computers and Operations Research, Vol.23, 73-91, 1996.

283. Shimizu K, Ishizuka Y, and Bard JF, Nondifferentiable and Two-level Math-
ematical Programming, Kluwer, Boston, 1997.

284. Shin WS, and Ravindran, A, Interactive multiple objective optimization: Sur-
vey I - continuous case, Computers and Operations Research, Vol.18, No.1,
97-114, 1991.

285. Silva EF, and Wood RK, Solving a class of stochastic mixed-integer programs
with branch and price, Mathematical Programming, Vol.108, Nos.2-3, 395-418,
2007.

286. Slowinski R, and Teghem Jr J, Fuzzy versus stochastic approaches to multicri-
teria linear programming under uncertainty, Naval Research Logistics, Vol.35,
673-695, 1988.

287. Slowinski R, and Stefanowski J, Rough classification in incomplete information
systems, Mathematical and Computer Modelling, Vol.12, 1347-1357, 1989.

288. Slowinski R, and Vanderpooten D, A generalized definition of rough approxi-
mations based on similarity, IEEE Transactions on Knowledge and Data En-
gineering, Vol.12, No.2, 331-336, 2000.

289. Sommer G, and Pollatschek, MA, A fuzzy programming approach to an
air pollution regulation problem, European Journal of Operational Research,
Vol.10, 303-313, 1978.

290. Soroush HM, The most critical path in a PERT network, Journal of the Op-
erational Research Society, Vol.45, 287-300, 1994.

291. Steuer RE, Algorithm for linear programming problems with interval objective
function coefficients, Mathematics of Operational Research, Vol.6, 333-348,
1981.



References 193

292. Steuer RE, Multiple Criteria Optimization: Theory, Computation and Appli-
cation, Wiley, New York, 1986.

293. Stewart WR Jr, and Golden BL, Stochastic vehicle routing: A comprehensive
approach, European Journal of Operational Research, Vol.14, 371-385, 1983.

294. Suykens JAK, Vandewalle JPL, De Moor BLR, Artificial Neural Networks for
Modelling and Control of Non-Linear Systems, Kluwer Academic Publishers,
Boston, 1996.

295. Szmidt E, Kacprzyk J, Entropy for intuitionistic fuzzy sets, Fuzzy Sets and
Systems, Vol.118, 467-477, 2001.

296. Taha HA, Operations Research: An Introduction, Macmillan, New York, 1982.
297. Tanaka H, and Asai K, Fuzzy linear programming problems with fuzzy num-

bers, Fuzzy Sets and Systems, Vol.13, 1-10, 1984.
298. Tanaka H, and Asai K, Fuzzy solutions in fuzzy linear programming problems,

IEEE Transactions on Systems, Man and Cybernetics, Vol.14, 325-328, 1984.
299. Tanaka H, and Guo P, Possibilistic Data Analysis for Operations Research,

Physica-Verlag, Heidelberg, 1999.
300. Tanaka H, Guo P, and Zimmermann HJ, Possibility distribution of fuzzy deci-

sion variables obtained from possibilistic linear programming problems, Fuzzy
Sets and Systems, Vol.113, 323-332, 2000.

301. Teghem Jr J, DuFrane D, and Kunsch P, STRANGE: An interactive method
for multiobjective linear programming under uncertainty, European Journal
Operational Research, Vol.26, No.1, 65-82, 1986.

302. Turunen E, Mathematics Behind Fuzzy Logic, Physica-Verlag, Heidelberg,
1999.

303. Van Rooij AJF, Jain LC, Johnson RP, Neural Network Training Using Genetic
Algorithms, World Scientific, Singapore, 1996.

304. Wagner BJ, and Gorelick SM, Optimal ground water quality management
under parameter uncertainty, Water Resources Research, Vol.23, No.7, 1162-
1174, 1987.

305. Wang D, An inexact approach for linear programming problems with fuzzy
objective and resources, Fuzzy Sets and Systems, Vol.89, 61-68, 1998.

306. Wang G, and Qiao Z, Linear programming with fuzzy random variable coef-
ficients, Fuzzy Sets and Systems, Vol.57, 295-311, 1993.

307. Wang YP, Jiao YC, and Li H, An evolutionary algorithm for solving nonlin-
ear bilevel programming based on a new constraint-handling scheme, IEEE
Transactions on Systems, Man and Cybernetics Part C, Vol.35, No.2, 221-232,
2005.

308. Waters CDJ, Vehicle-scheduling problems with uncertainty and omitted cus-
tomers, Journal of the Operational Research Society, Vol.40, 1099-1108, 1989.

309. Weistroffer H, An interactive goal programming method for nonlinear
multiple-criteria decision-making problems, Computers and Operations Re-
search, Vol.10, No.4, 311-320, 1983.

310. Wen M, and Iwamura K, Fuzzy facility location-allocation problem under the
Hurwicz criterion, European Journal of Operational Research, Vol.184, No.2,
627-635, 2008.

311. Wen M, and Iwamura K, Facility location-allocation problem in random fuzzy
environment: Using (α, β)-cost minimization model under the Hurewicz cri-
terion, Computers and Mathematics with Applications, Vol.55, No.4, 704-713,
2008.



194 References

312. Whalen T, Decision making under uncertainty with various assumptions about
available information, IEEE Transactions on Systems, Man and Cybernetics,
Vol.14, 888-900, 1984.

313. Xu J, and Li J, A class of stochastic optimization problems with one quadratic
and several linear objective functions and extended portfolio selection model,
Journal of Computational and Applied Mathematics, Vol.146, No.1, 99-113,
2002.

314. Yager RR, Mathematical programming with fuzzy constraints and a preference
on the objective, Kybernetes, Vol.9, 285-291, 1979.

315. Yager RR, A procedure for ordering fuzzy subsets of the unit interval, Infor-
mation Sciences, Vol.24, 143-161, 1981.

316. Yager RR, Modeling uncertainty using partial information, Information sci-
ences, Vol.121, 271-294, 1999.

317. Yager RR, Decision making with fuzzy probability assessments, IEEE Trans-
actions on Fuzzy Systems, Vol.7, 462-466, 1999.

318. Yager RR, On the evaluation of uncertain courses of action, Fuzzy Optimiza-
tion and Decision Making, Vol.1, 13-41, 2002.

319. Yang L, and Liu B, On inequalities and critical values of fuzzy random vari-
able, International Journal of Uncertainty, Fuzziness & Knowledge-Based Sys-
tems, Vol.13, No.2, 163-175, 2005.

320. Yang L, and Liu B, A sufficient and necessary condition for chance distribution
of birandom variable, Information: An International Journal, Vol.9, No.1, 33-
36, 2006.

321. Yang N, Wen FS, A chance constrained programming approach to transmis-
sion system expansion planning, Electric Power Systems Research, Vol.75,
Nos.2-3, 171-177, 2005.

322. Yao YY, Two views of the theory of rough sets in finite universes, International
Journal of Approximate Reasoning, Vol.15, 291-317, 1996.

323. Yazenin AV, Fuzzy and stochastic programming, Fuzzy Sets and Systems,
Vol.22, 171-180, 1987.

324. Yazenin AV, On the problem of possibilistic optimization, Fuzzy Sets and
Systems, Vol.81, 133-140, 1996.

325. Zadeh LA, Fuzzy sets, Information and Control, Vol.8, 338-353, 1965.
326. Zadeh LA, Outline of a new approach to the analysis of complex systems

and decision processes, IEEE Transactions on Systems, Man and Cybernetics,
Vol.3, 28-44, 1973.

327. Zadeh LA, The concept of a linguistic variable and its application to approx-
imate reasoning, Information Sciences, Vol.8, 199-251, 1975.

328. Zadeh LA, Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets and
Systems, Vol.1, 3-28, 1978.

329. Zadeh LA, A theory of approximate reasoning, In: J Hayes, D Michie and
RM Thrall, eds, Mathematical Frontiers of the Social and Policy Sciences,
Westview Press, Boulder, Cororado, 69-129, 1979.

330. Zhao R, and Liu B, Stochastic programming models for general redundancy
optimization problems, IEEE Transactions on Reliability, Vol.52, No.2, 181-
191, 2003.

331. Zhao R, and Liu B, Renewal process with fuzzy interarrival times and rewards,
International Journal of Uncertainty, Fuzziness & Knowledge-Based Systems,
Vol.11, No.5, 573-586, 2003.



References 195

332. Zhao R, and Liu B, Redundancy optimization problems with uncertainty of
combining randomness and fuzziness, European Journal of Operational Re-
search, Vol.157, No.3, 716-735, 2004.

333. Zhao R, and Liu B, Standby redundancy optimization problems with fuzzy
lifetimes, Computers & Industrial Engineering, Vol.49, No.2, 318-338, 2005.

334. Zhao R, Tang WS, and Yun HL, Random fuzzy renewal process, European
Journal of Operational Research, Vol.169, No.1, 189-201, 2006.

335. Zhao R, and Tang WS, Some properties of fuzzy random renewal process,
IEEE Transactions on Fuzzy Systems, Vol.14, No.2, 173-179, 2006.

336. Zheng Y, and Liu B, Fuzzy vehicle routing model with credibility measure
and its hybrid intelligent algorithm, Applied Mathematics and Computation,
Vol.176, No.2, 673-683, 2006.

337. Zhou J, and Liu B, New stochastic models for capacitated location-allocation
problem, Computers & Industrial Engineering, Vol.45, No.1, 111-125, 2003.

338. Zhou J, and Liu B, Analysis and algorithms of bifuzzy systems, International
Journal of Uncertainty, Fuzziness & Knowledge-Based Systems, Vol.12, No.3,
357-376, 2004.

339. Zhou J, and Liu B, Modeling capacitated location-allocation problem with
fuzzy demands, Computers & Industrial Engineering, Vol.53, No.3, 454-468,
2007.

340. Zhu Y, and Liu B, Continuity theorems and chance distribution of random
fuzzy variable, Proceedings of the Royal Society of London Series A, Vol.460,
2505-2519, 2004.

341. Zhu Y, and Liu B, Some inequalities of random fuzzy variables with appli-
cation to moment convergence, Computers & Mathematics with Applications,
Vol.50, Nos.5-6, 719-727, 2005.

342. Zimmermann HJ, Description and optimization of fuzzy systems, Interna-
tional Journal of General Systems, Vol.2, 209-215, 1976.

343. Zimmermann HJ, Fuzzy programming and linear programming with several
objective functions, Fuzzy Sets and Systems, Vol.3, 45-55, 1978.

344. Zimmermann HJ, Fuzzy mathematical programming, Computers and Opera-
tions Research, Vol.10, 291-298, 1983.

345. Zimmermann HJ, Applications of fuzzy set theory to mathematical program-
ming, Information Sciences, Vol.36, 29-58, 1985.

346. Zimmermann HJ, Fuzzy Set Theory and its Applications, Kluwer Academic
Publishers, Boston, 1985.



List of Acronyms

CCDP Chance-Constrained Dynamic Programming
CCGP Chance-Constrained Goal Programming
CCMLP Chance-Constrained Multilevel Programming
CCMOP Chance-Constrained Multiobjective Programming
CCP Chance-Constrained Programming
DCDP Dependent-Chance Dynamic Programming
DCGP Dependent-Chance Goal Programming
DCMLP Dependent-Chance Multilevel Programming
DCMOP Dependent-Chance Multiobjective Programming
DCP Dependent-Chance Programming
DP Dynamic Programming
EVDP Expected Value Dynamic Programming
EVGP Expected Value Goal Programming
EVM Expected Value Model
EVMLP Expected Value Multilevel Programming
EVMOP Expected Value Multiobjective Programming
GA Genetic Algorithm
GP Goal Programming
MLP Multilevel Programming
MOP Multiobjective Programming
NN Neural Network
SOP Single-Objective Programming



List of Frequently Used Symbols

x, y, z decision variables
x, y, z decision vectors
ã, b̃, c̃ fuzzy variables
ã, b̃, c̃ fuzzy vectors
ξ, η, τ random, fuzzy, or hybrid variables
ξ, η, τ random, fuzzy, or hybrid vectors
µ, ν membership functions
φ, ψ probability density functions
Φ, Ψ probability distributions
f, fi objective functions
g, gj constraint functions
∅ empty set
Pr probability measure
Cr credibility measure
Ch chance measure

uncertain measure
E expected value
(Ω, , Pr) probability space
(Θ, , Cr) credibility space
(Θ, , Cr) × (Ω, , Pr) chance space
(Γ, , ) uncertainty space
α, β confidence levels
d+, d− positive and negative deviations
� set of real numbers
�n set of n-dimensional real vectors
∨ maximum operator
∧ minimum operator
lexmin lexicographical minimization



Index

ascent method 3
backpropagation algorithm 22
chance-constrained programming

fuzzy 70
hybrid 99
stochastic 37
uncertain 119

chance constraint 37, 70
chance function 44, 74
chance measure 85
chromosome 9
compromise model 4
compromise solution 4
confidence level 37
credibility inversion theorem 61
credibility measure 57
credibility space 59
crisp equivalent 72
critical value 39, 67, 97, 117
decision variable 1
dependent-chance programming

fuzzy 75
hybrid 102
stochastic 43
uncertain 121

deterministic equivalent 40
deviation 5, 38, 71
direct method 3
distance function 4
dynamic programming 7

chance-constrained 123
dependent-chance 123
expected value 122

equipossible fuzzy variable 60

expected value 31, 64, 95, 116
expected value model

fuzzy 68
hybrid 98
stochastic 35
uncertain118

exponential distribution 28
facility location problem 157
function approximation 21
fuzzy environment 74
fuzzy event 74
fuzzy programming 57
fuzzy random programming 83
fuzzy random variable 83
fuzzy simulation 77
fuzzy variable 59
genetic algorithm 9
goal programming 4
Hessian method 3
hybrid programming 83
hybrid simulation 104
hybrid variable 90
identification function 114
integer programming 3
interactive approach 4
Kuhn-Tucker condition 2
machine scheduling problem 167
mathematical programming 1
membership function 60
multilevel programming 7

chance-constrained 125
dependent-chance 126
expected value 124

multiobjective programming 3



202 Index

Nash equilibrium 8, 125
neural network 19
newsboy problem 35
normal distribution 28
optimistic value, see critical value
Pareto solution 4
pessimistic value, see critical value
preference function 4
principle of uncertainty 46,75
probability density function 28
probability distribution 28
probability measure 26
probability space 26
project scheduling problem 139
Ψ graph 127
random fuzzy programming 83
random fuzzy variable 83
ranking criterion 33, 68, 98
sigmoid function 20

simplex algorithm 2
Stackelberg-Nash equilibrium 8, 125
stochastic environment 44
stochastic programming 25
stochastic simulation 51
system reliability design 129
uncertain dynamic programming 122
uncertain environment 44, 74
uncertain function 53, 76
uncertain measure 111
uncertain multilevel programming

124
uncertain programming 111
uncertain variable 113
uncertainty space 113
uniform distribution 28
vehicle routing problem 147
zero-one programming 3
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