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Abstract. Some modern DPLL-based propositional SAT solvers now
have fast in-memory algorithms for generating unsatisfiability proofs and
cores without writing traces to disk. However, in long SAT runs these
algorithms still run out of memory.

For several of these algorithms, here we discuss advantages and dis-
advantages, based on carefully designed experiments with our imple-
mentation of each one of them, as well as with (our implementation
of) Zhang and Malik’s one writing traces on disk. Then we describe a
new in-memory algorithm which saves space by doing more bookkeeping
to discard unnecessary information, and show that it can handle sig-
nificantly more instances than the previously existing algorithms, at a
negligible expense in time.

1 Introduction

More and more applications of propositional SAT solvers and their extensions
keep emerging. For some of these applications, it suffices to obtain a yes/no an-
swer, possibly with a model in case of satisfiability. For other applications, also
in case of unsatisfiability a more detailed answer is needed. For example, one
may want to obtain a small (or even minimal, wrt. set inclusion) unsatisfiable
subset of the initial set of clauses. Such subsets, called unsatisfiable cores, are
obviously useful in applications like planning or routing for explaining why no
feasible solution exists, but many other applications keep emerging, such as solv-
ing MAX-SAT problems [EM06], [MSPO0S] or debugging software models [Jac02].
In addition, it is frequently helpful, or even necessary, to be able to check the
unsatisfiability claims produced by a DPLL-based ([DP60, [DLL62]) SAT solver,
using some small and simple, independent, trusted checker for, e.g., resolution
proofs. Note that, although for certain classes of formulas the minimal resolution
proof is exponentially large [Hak85], for real-world problems the size tends to be
manageable and frequently it is in fact surprisingly small (as well as the core).
Since Zhang and Malik’s work in 2003 [ZM03], it is well-known that modern
DPLL-based solvers with learning can be instrumented to write a trace on disk
from which a resolution proof can be extracted and checked. Essentially, each
learned clause generates a line in the trace with only the list of its parents’ iden-
tifiers (ID’s), i.e., the ID’s of the clauses involved in the conflict analysis, which
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is a sequence of resolution steps (see the example below). When unsatisfiability
is detected, that is, a conflict at decision level zero, it provides a last line in the
trace corresponding to the parents list of the empty clause. By processing the
trace file backwards from this last line one can hence reconstruct a resolution
proof and find the subset of the initial clauses that is used in it.

Ezample 1. (see Section 2] for details) Consider, among others, a set of clauses:
9V6VTV8 8VTV5 6V8Vv4 4v1 4V5HV2 5VTV3 1v2v3
and a state of the DPLL procedure where the stack of assigned literals is of the
form: ...6...7...99854123. It is easy to see that this state can be reached
after the last decision 99 by six unit propagation steps with these clauses (from
left to right). For example, 8 is implied by 9, 6, and 7 because of the leftmost
clause. Now, the clause 1V2V3 is conflicting (it is false in the current assignment),

and working backwards from it we get an implication graph:

®
o

—
where the so-called 1UIP cut (the dotted line, see [MSS99, MMZT01]) gives
us the backjump clause 8V7V6 that is learned as a lemma. For those who are
more familiar with resolution, this is simply a backwards resolution proof on
the conflicting clause, resolving away the literals 3,2,1,4 and 5, in the reverse
order their negations were propagated, with the respective clauses that caused
the propagations:

5VTV3 1v2v3

4V5V2 SVTV1IV2
4v1 4v5VTV1
6Vv8V4 SVTV4
8VT7V5 6V8VTV5

8VTV6
until reaching a clause with only one literal of the current decision level (here,
literal 8). This clause 8V7V6 allows one to backjump to the state ...6...78, as
if it had been used on ...6...7 for unit propagation.

Due to the linear and regular nature of such resolution proofs (each literal is
resolved upon at most once and then does not re-appear), given the six input
clauses it is easy to see that the outcome must be 8V7VG6: its literals are exactly
the ones that do not occur with both polarities in the input clauses. This fact
allows one to reconstruct and check the whole resolution proof from (i) the
input clauses file and (ii) the parent ID information of the trace file. Note that
a clause’s ID can just be the line number (in one of the files) introducing it. O
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The overhead in time for producing the trace file is usually small (typically
around 10 per cent, [ZMO03], see Section H), but the traces quickly become large
(hundreds of MB from a few minutes run) and extracting the proof or the core,
i.e., the leaves of the proof DAG, may be expensive. This is especially the case
since it is likely that the trace does not fit into memory, and hence a breadth-first
processing is needed requiring more than one pass over the file [ZM03].

The processing time becomes even more important when, for reducing the size
of the core, one iteratively feeds it back into the SAT solver with the hope of gen-
erating a smaller one, until a fixpoint is reached (that still may not be minimal,
so one can apply other methods for further reducing it, if desired). Efficiency is
also important in other applications requiring features like the identification of
all disjoint cores, i.e., all independent reasons for unsatisfiability.

1.1 In-Memory Algorithms

To overcome the drawbacks of the trace file approach, in this paper we study
four alternative in-memory algorithms for generating unsatisfiability proofs and
cores using DPLL-based propositional SAT solvers.

The first algorithm is based on adding one distinct new initial ancestor (IA)
marker literal to each initial clause. These literals are set to false from the begin-
ning. Then the solver is run without ever removing these false [A-marker literals
from clauses, and the empty clause manifests itself as a clause built solely from
TA-marker literals, each one of which identifies one initial ancestor, that is, one
clause of the unsatisfiable core. This folk idea appears to be quite widely applied
(e.g., in SAT Modulo Theories). As far as we know, it stems from the Minisat
group (around 2002, Eén, Sorensson, Claessen). It requires little implementation
effort, but here, in Subsection [3]] we give experimental evidence showing that
it is extremely inefficient in solver time and memory and explain why.

Our second algorithm, given in Subsection [3.2] tries to overcome these short-
comings by storing initial ancestor information at the meta level along with the
clauses: each clause has an attached list with the ID’s of its initial ancestors.
This reduces part of the overhead of the first algorithm. However, our experi-
ments reveal that also this method is still far too expensive in memory, especially
in combination with certain clause simplification methods, which on the other
hand, when turned off, slow down the solver too much.

The third algorithm (Section [LT]) stores the immediate parents list along with
each clause. The problem with this approach is that if a low-activity clause is
deleted (as usual in modern SAT solvers), its associated parent information can
be removed only if this clause has generated no children (the literals of deleted
clauses need not be kept, though). This approach, implemented by Biere in Pi-
coSAT [Bie08§], essentially corresponds to storing the trace file of [ZM03] in main
memory. In those cases where this is indeed feasible, i.e., if there is enough memory,
this has several advantages over the trace file one. One not only avoids the inef-
ficiencies caused by the use of external memory, but also, and more importantly,
for retrieving the proof or the core one does not need to sequentially traverse the
whole trace, but only those parts of it that appear in the proof. This gives an order
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of magnitude speedup in applications where cores or proofs have to be produced
frequently [Bie08], and of course even more in the context of sophisti-
cated (e.g., iterative) core/proof minimization techniques.

Since we also need proofs and cores from long runs, we needed to go beyond
the current in-memory technology. Moreover, we use SAT solvers inside other
systems (e.g., for SAT Modulo Theories) where memory for the SAT solver is
more limited, All this will become even more important if (multicore) processor
performance continues to grow faster than memory capacity. Here we describe a
new and better in-memory method, and give a careful experimental comparison
with the previous ones, which is non-trivial, since, for assessing different data
structures and algorithms for SAT, it is crucial to develop implementations of
each one of them, based on the same SAT solver, and in such a way that the
search performed by the SAT solver is always identical. All software sources and
benchmarks used here can be found at www.1lsi.upc.edu/ rasin.

Our new in-memory algorithm, described in Section 2] keeps only the po-
tentially needed parent information. The idea is to keep for each clause also a
counter of how many of its children do have some active descendant. If it be-
comes zero the parent information can be removed (we have recently seen that
the use of reference counters is suggested in [Bie0§|, but we do not know how
similar this may be and no implementation exists). Here we show that (i) when
implemented carefully, the overhead on the SAT solver time is still essentially
negligible (around 5 per cent, similar to Biere’s approach) and (ii) the memory
usage frequently grows significantly slower. As the figure below shows, and as
expected, in Biere’s approach memory usage always grows linearly in the number
of conflicts (or more, since parents lists get longer in longer runs), and hence also
in his optimized Delta Encoding, which compresses parents lists up to four times
[Bie0§]. In our ChildCount approach, performing exactly the same search on this
instance (goldb-heqc-rotmul; cf. Section for many more experimental re-
sults), one can see in the figure that on this particular example memory usage
grows much slower and even tends to stabilize. Skews in the plot correspond to
clause deletion phases of the solver.

Memory usage comparison
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2  Short Overview on DPLL Algorithms for SAT

For self-containedness of the paper, here we give a short overview on DPLL
based on the abstract presentation of [NOTO06]. Let P be a fixed finite set of
propositional symbols. If p € P, then p is an atom and p and —p are literals
of P. The negation of a literal [, written —l, denotes —p if [ is p, and p if [ is
-p. A clause is a disjunction of literals I; V ... V [,,. A unit clause is a clause
consisting of a single literal. A (CNF) formula is a conjunction of one or more
clauses C1 A ... A C,. A (partial truth) assignment M is a set of literals such
that {p,—p} € M for no p. A literal [ is true in M if | € M, is false in M if
-l € M, and is undefined in M otherwise. A literal is defined in M if it is either
true or false in M. A clause C' is true in M if at least one of its literals is true
in M. It is false in M if all its literals are false in M, and it is undefined in
M otherwise. A formula F' is true in M, or satisfied by M, denoted M | F,
if all its clauses are true in M. In that case, M is a model of F. If F' has no
models then it is unsatisfiable. If F' and F’ are formulas, we write F' = F’ if F’
is true in all models of F'. Then we say that F’ is entailed by F, or is a logical
consequence of F'. If C'is a clause [1 V...V, , we write ~C' to denote the formula
=iy A ... A=l A state of the DPLL procedure is a pair of the form M | F,
where F' is a finite set of clauses, and M is, essentially, a (partial) assignment.
A literal [ may be annotated as a decision literal (see below), writing it as /9. A
clause C' is conflicting in a state M | F,C" if M E —-C. A DPLL procedure
can be modeled by a set of rules over such states:

UnitPropagate :

) M -C
M|F,CVvl = MI|F, CVl if {lisundeﬁnedinM
Decide :
[ or =l occurs in a clause of F'
d .
M| F = MEF|F f{lisundeﬁnedinM
Fail :
. ) M -C
M| FC — Fail if {M contains no decision literals
Backjump :

M 14 N | =C, and there is
some clause C’ VI’ such that:
MEN|F,C = MI|FC if{ FCECVI and Mk~
I is undefined in M, and
" or =’ occurs in F or in M 19 N

Learn :
. each atom of C occurs in F or in M
M| F = M| F,C f{Fl:C’
Forget :
M| F,C = M| F if{F|:C

For deciding the satisfiability of an input formula F', one can generate an
arbitrary derivation § | F = ... = S,,, where S,, is a final state (no rule
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applies). Under simple conditions, this always terminates. Moreover, for every
derivation like the above ending in a final state S,,, (i) F is unsatisfiable if, and
only if, S, is Fail, and (ii) if S, is of the form M | F then M is a model of F
(see [NOTO6] for all details).

The UnitPropagate, Decide and Fail rules speak for themselves. The Backjump
rule corresponds to what is done in Example [Il (here C’ v I’ is the backjump
clause) and the Learn rule corresponds to the addition of lemmas (clauses that
are logical consequences), such as the backjump clause. Since a lemma is aimed
at preventing future similar conflicts, when these conflicts are not very likely
to be found again the lemma can be removed by the Forget rule. In practice,
a lemma is removed when its relevance (see, e.g., [BS97]) or its activity level
drops below a certain threshold; the activity can be, e.g., the number of times
it becomes a unit or a conflicting clause [GN02].

3 Basic Algorithms, Only for Core Extraction

In this section we introduce and compare two basic algorithms that can be used
for extracting unsatisfiable cores, but not unsatisfiability proofs.

3.1 First Algorithm: Marker Literals

As said, in this approach one adds to each initial clause C; one distinct new
initial ancestor (IA) marker literal, say, a positive literal y;. These literals are
set to false from the beginning, and hence the logical meaning of the clause set
does not change.

Then the solver is run, but without applying to the y;-literals the usual sim-
plification technique of removing from all clauses the literals that are false at
decision level zero (henceforth: false literal deletion). In every lemma that is
generated, its subset of y;-literals shows exactly the subset of the initial clauses
it has been derived from. In such a run, unsatisfiability is then witnessed by the
appearance of an “empty clause” built solely from y;-literals, i.e., a clause of the
form y;, V...Vyj,, indicating that {C},,...,C}, } is an unsatisfiable core. Note
that this technique can only be used for finding unsatisfiable cores, and not for
generating a resolution proof, since the proof structure is lost.

The interesting aspect of this method is that it requires very little implemen-
tation effort. However, it leads to important inefficiencies in the SAT solver.
Clauses can become extremely long, using large amounts of memory, and for
clauses that without the y;-literals would have been units or two-literal clauses
this is no longer the case. This leads to an important loss of efficiency in, for
instance, the unit propagation data structures and algorithms.

3.2 Second Algorithm: Initial Ancestor Lists

An obvious way for overcoming the shortcomings of the previous algorithm is
by storing initial ancestor information at the meta level along with the clauses,
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instead of adding dummy literals for this. Therefore in this second algorithm each
clause has an attached list with the ID’s of its initial ancestors. This reduces part
of the overhead of the first algorithm. For example, unit clauses are really treated
as such, and are not hidden due to the additional TA literals.

In most DPLL-based SAT solvers, unit clauses and two-literal clauses are not
explicitly stored as such. Units are usually simply set to true in the assignment
at decision level zero, whereas binary clauses are typically kept in an adjacency
list data structure, i.e., for each literal [ there is a list of literals Iy ...[,, such
that each [V [; is a binary clause. This is much faster and memory-efficient for
unit propagation than the standard two-watched literal data structures that are
used for longer clauses.

In the algorithm for core extraction given here, we also need to store the
TA information for unit clauses and two-literal clauses. This is done here in a
memory bank apart from the one of the other clauses. Since one- and two-literal
clauses are never removed in our solver, neither is their TA information.

3.3 Experiments: The First Two Algorithms vs. Our Basic Solver

In the first table below we compare a basic version of our own Barcelogic SAT
solver without proof or core extraction (column Basic) with the two algorithms
described in this section (marker lits and IA’s ). Each one of these two al-
gorithms is implemented on top of the basic version with the minimal amount
of changes. In particular, binary clauses are still represented in their efficient
special form and no unit propagation using longer clauses is done if there is any
pending two-literal clause propagation.

As said, for the algorithm based on marker literals we had to turn off false
literal deletion. For the TA algorithm, each time a clause C'VVI with TA list L, gets
simplified due the decision level zero literal = with IA list Lo, the new clause C'
gets the TA list Ly U Lo. It turns out that the TA lists became long and memory
consuming. Therefore for this first experiment also in the IA’s algorithm we
switched off false literal deletion, which slowed down the solver and also made
it search differently with respect to the basic version, but it prevented memory
outs. Also to prevent memory outs, we were doing very frequent clause deletion
rounds: every 5000 conflicts we were deleting all zero-activity clauses. To make
the comparison fairer, we also did this in the basic algorithm, for which this is
not precisely its optimal setting.

Note that therefore all three versions of the solver perform a different searcH]
and hence, due to “luck” a core-generating version could still be faster than the
basic one on some particular benchmark. All experiments were run on a 2.66GHz
Xeon X3230, giving each process a 1.8GB memory limit and a timeout limit of
90 minutes. Times are indicated in seconds, and time outs are marked here with
TO. The table is split into two parts. The first part has the unsatisfiable prob-
lems from the qualification instance sets of the 2006 SAT Race (SAT-Race TS 1

! Below there is a version of the IA algorithm with false literal detection that does
perform the same search as the basic version.
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and 2, see fmv.jku.at/sat-race-2006) taking between 5 and 90 minutes in
our basic solver. The second part has much easier ones. In all experiments the
unsatisfiability of the extracted cores has been verified with independent SAT
solvers.

From the results of the table it follows that these techniques are not practical
except for very simple problems.

Runtimes (seconds)

Instance Basic marker IA’s
lits

manol-pipe-cha05-113 448 5035 786
manol-pipe-f7idw 546 2410 1181
6pipe 717 TO 1324
manol-pipe-gl0idw 830 4171 2299
manol-pipe-c7idw 1534 TO 3701
manol-pipe-c10b 1938 TO 3926
manol-pipe-g10b 1969 TO 5365
manol-pipe-c6bid i 2219 TO 4253
manol-pipe-gl0ni 2419 TO 4412
manol-pipe-g10nid 2707 TO TO
manol-pipe-c6nidw i 2782 TO TO
velev-dlx-uns-1.0-05 3306 1028 TO
goldb-heqc-frg2mul 3891 TO TO
Tpipe q0 k 4184 TO TO
manol-pipe-gl0bidw 4650 TO TO
goldb-heqc-i8mul 4911 TO TO
hoons-vbmc-s04-06 TO 4543  TO
2dIx-cc-me-ex-bp-f 1.81 291 1.35
3pipe-1-000 1.45 191 0.71
3pipe-3-000 1.92 3.03 1.59
4pipe-1-000 3.56 8.77  4.57
4pipe-3-000 5.38 11.67  5.36
4pipe-4-000 6.90 20.35 7.31
4pipe 8.15 33.64 14.82
Spipe-1-000 11.32 20.52 12.51
Spipe-2-000 10.31 18.98 14.33
5pipe-4-000 21.41 52.64 54.54
cache.inv14.ucl.sat.chaff.4.1.bryant 13.36 75.23 18.85
ooo.tagl4.ucl.sat.chaff.4.1.bryant 7.05 6.78  7.96

s1841184384-of-bench-sat04-984.used-as.sat04-992 2.07 4.62 1.97
s57793011-of-bench-sat04-724.used-as.sat04-737 9.10 66.05 10.36
$376420895-of-bench-sat04-984.used-as.sat04-1000  2.50 5.48  2.28

It is well-known that DPLL-based SAT solvers are extremely sensitive in the
sense that any small change (e.g., in the heuristic or in the order in which input
clauses or their literals are given) causes the solver to search differently, which in
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turn can cause dramatic changes in the runtime on a given instance. Therefore,
most changes in SAT solvers are hard to assess, as they can only be evaluated
by running a statistically significant amount of problems and measuring aspects
like runtime averages. For this reason, all experiments mentioned from now on in
this paper have been designed in such a way that for each method for proof/core
extraction our solver performs exactly the same search (which was impossible
in the algorithm with marker literals). This allows us to measure precisely the
overhead in runtime and memory consumption due to proof/core generation
bookkeeping.

The following table compares our basic solver on the easy problems with the
IA’s method, in runtime and in memory consumption. Here MO denotes memory
out (> 1.8 GB). The difference in times with the previous table comes from the
fact that here the setting of the solver is the standard one, with less frequent
clause deletion phases, and with false literal deletion. As said, false literal deletion
makes the TA’s method even more memory consuming and also slower, as longer
lists of parents have to be merged.

As we can see, usually only on the very simple problems the runtimes are
comparable. As soon as more than few seconds are spent in the basic version,
not only does the memory consumption explode, but also the runtime due to the
bookkeeping (essentially, computing the union of long parents lists and copying
them).

Basic vs IA’s (same search, Time in seconds, Memory in MB)

Instance T Basic M Basic T IA’s M IA’s
2dIx-cc-me-ex-bp-f 1.64 3 4.17 298
3pipe-1-000 1.35 3 2.07 122
3pipe-3-000 1.78 5 3.99 215
4pipe-1-000 3.98 14 22.76 843
4pipe-3-000 4.88 13 30.08 1175
4pipe-4-000 7.14 19  36.14 MO
4pipe 11.35 47  32.80 1106
5pipe-1-000 10.52 24 55.53 MO
5pipe-2-000 10.30 23 50.92 MO
5pipe-4-000 33.08 65  42.87 MO
cache.inv14.ucl.sat.chaff... 12.75 5 39.43 MO
ooo.tagl4.ucl.sat.chaff 4... 6.21 3 9.12 612
$1841184384-of-bench-sat0... 1.83 1 1.86 51
$57793011-of-bench-sat04-... 7.75 32 8.47 74
$376420895-of-bench-sat04... 1.99 1 2.37 89

4 Algorithms for Extracting Proofs and Cores

Here we analyze more advanced algorithms that are not only able to extract
unsatisfiable cores, but also resolution proof traces, i.e., the part of the trace
that corresponds to the resolution proof.
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4.1 In-Memory Parent Information

We now consider the in-memory method, a simpler version of which is imple-
mented in the PicoSAT solver [Bie(08]. Here, along with each clause the following
additional information is stored: its ID, its list of immediate parents’ ID’s, and
what we call its is-parent bit, saying whether this clause has generated any chil-
dren itself or not. The parents list is what one would write to the trace in the
[ZMO3] technique. Each time a new lemma is generated, it gets a new ID, its
is-parent bit is initialized to false, the ID’s of its parents are collected and at-
tached to it, and the is-parent bit of each one of its parents is set to true. In
this approach, the parent information of a deleted clause (by application of the
Forget rule during the clause deletion phase of the SAT solver) is removed only
if its is-parent bit is false.

Once the empty clause is generated (i.e., a conflict at level zero appears),
one can recover the proof by working backwards from it (without the need of
traversing the whole trace, and on disk, as in [ZMO03]).

In our implementation of this method, unlike what is done in PicoSAT, we
maintain the special-purpose two-literal clause adjacency-list representation also
when the solver is in proof-generation mode. Hence the performance slowdown
with respect to our basic reference solver corresponds exactly to the overhead due
to the bookkeeping for proof generation. Our implementation treats all conflicts
in a uniform way, including the one obtaining the empty clause. This in in
contrast to what is done with the final decision-level-zero conflict in Zhang and
Malik’s trace format, which gets a non-uniform treatment in [ZMO03] (in fact,
the explanations given in the introduction correspond to our simplified uniform
view where the empty clause has its conflict analysis like any other clause).

The parents lists of units and binary clauses are stored in a separate memory
zone, as we also did for the IA’s method. Unit and binary clauses are never
deleted in our solver. Essentially, at SAT solving time (more precisely, during
conflict analysis) what is required is a direct access to the ID of a given clause.
For unit and binary clauses we do this by hashing (for the larger clauses this
is not necessary, since the clause, along with all its information and literals, is
already being accessed during conflict analysis). At proof extraction time, one
needs direct access to the parent list corresponding to a given clause ID. This
we do by another hash table that only exists during proof extraction.

4.2 Our New Method with Child Count

The idea we develop in this section is the following: instead of just an is-parent
bit, we keep along with each clause a counter, called the childcounter, of how
many of its children have some active descendant. Here a clause is considered
active if it participates in the DPLL derivation rules that are implemented in
the SAT solver. In our solver, that is the case if it has less than three literals
(these clauses are never deleted in our solver) or if it has at least three literals
and has not been removed by the Forget rule (i.e., it is being watched in the
two-watched literal data structure for unit propagation [MMZT01]).
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If the childcounter becomes zero also the parent information can be removed,
since this clause can never appear in a proof trace of the empty clause (obtained
from active clauses only). Note that this is a recursive process: each time a
clause C' is selected for deletion, i.e., when C' goes from active to non-active, if
its childcounter is zero then a recursive childcounter-update(C) process starts:

For each parent clause PC of C,

1. Decrease by one the childcounter of PC.

2. If the childcounter now becomes zero and PC is non-active, then do
childcounter-update(PC).

3. Delete all information of C'.

We have again implemented this method on top of our basic Barcelogic solver,
and again we have done this in such a way that the search is not affected,
i.e., again the additional runtime and memory consumption with respect to our
basic solver correspond exactly to the overhead due to the bookkeeping for proof
generation.

As before, during conflict analysis again we need to add the parent’s ID’s
to the parent list of the new lemma, but now, in addition, the childcounters of
these parents are increased. For this, as before, we use hashing to retrieve the
ID of parent clauses with less than three literals. For the parent clauses with at
least three literals this is not necessary, since these clauses, along with all their
information and literals, are already being accessed during conflict analysis.

The main additional implementation issue is that now during the clause dele-
tion phase, when doing childcounter-update(C), given the ID of an (active or
non-active) clause, we may need access its information (their childcounters and
parent lists). For this we use an additional hash table, which supposes only a
negligible time overhead. Note that the clause deletion phase is not invoked very
frequently and takes only a small fraction of the runtime of the SAT solver.

4.3 Experiments

We have run experiments with the same unsatisfiable instances as before (the
harder ones): from the qualification instance sets of the 2006 SAT Race (SAT-
Race TS 1 and 2), the ones taking between 250 seconds and 90 minutes. Here
again we run our solver in its standard settings, with false literal deletion and
less frequent clause deletion phases.

In all experiments the correctness of the extracted proofs has been verified
with the TraceCheck tool, see and fmv. jku.at/tracecheck, and a simple
log information has been used to verify that indeed exactly the same SAT solving
search was taking place in all versions.

Time consumption is analyzed in the next table (where instances are or-
dered by runtime) which has the following columns: basic: our basic SAT solver
without proof/core generation, Biere: the same solver extended with Biere’s in-
memory core generation, Biere-b: the same, also extended with is-parent bit,
disk: the basic solver writing traces to disk, as in [ZM03], Child: our method
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with child count. Columns “solve” include just the solving time (all version
performing exactly the same search), and “slv+tr” includes as well the time
needed for traversing the in-memory data structures and writing to disk the
part of the trace that contains the unsatisfiability proof.

The entries labelled “MO” correspond to “Memory Out”, which means more
than 1.8GB. The entries labelled “FO” for the “disk” column correspond to more
than 2GB, which produced a “file too large” error (to be eliminated in the final
version of this paper).

Time (s)
Instance basic Biere Biere-b disk Child
solve solve slv+tr solve slv+tr solve solve slv+tr
manol-pi-cha05-113 254 265 269 265 269 273 2067 271

manol-pipe-f7idw 257 268 270 268 269 279 272 273
manol-pipe-c7idw 348 362 364 361 363 372 365 367
manol-pipe-g10idw 412 433 444 432 443 453 438 444
manol-pipe-c10b 527 550 561 546 558 567 555 564
goldb-heqc-i8mul 577 601 644 604 648 635 611 648

velev-dlx-uns-1.0-5 696 729 735 731 736 738 727 729
manol-pipe-c6bid i 748 780 790 771 780 800 788 794
6pipe 785 846 858 844 856 850 854 861
velev-pipe-uns-1.1-7 829 928 948 930 949 941 931 940
manol-pipe-c6nidw i 885 923 937 923 936 949 920 928
manol-pipe-gl0nid 1030 1073 1080 1073 1079 1116 1071 1074
hoons-vbmc-s04-06 1053 1084 1099 1088 1103 1110 1107 1118

7pipe q0 k 1551 1725 1776 1718 1764 1781 1751 1768
manol-pipe-gl0bidw 1709 MO MO 1774 1783 1856 1773 1777
manol-pipe-g10ni 1788 MO MO MO MO FO 2029 2033

manol-pipe-c7nidw 4059 MO MO MO MO FO 4209 4238
manol-pipe-c7bidw i 4255 MO MO MO MO FO 4414 4445

The differences in runtime between our basic SAT solver without proof/core
generation and its versions that do the necessary bookkeeping for in-memory
proof/core generation are always very small, usually around five percent or less,
and always less than the trace generation technique of [ZM03]. We conjecture
that this is mainly because of the inefficiencies in writing to disk of the latter
method (see below examples of the size of the traces that are written) since
it requires less additional bookkeeping than the in-memory techniques. Note
that our Childcount method in principle needs to do more work for generating
the trace.

Much more important and interesting are the differences in memory usage.
The plot we give below compares memory usage of three methods: (i) Biere’s
method without the is-parent bit (called “no removal” in the plot) i.e., where
parent information is never deleted, (ii) Biere’s method with the is-parent bit as
explained here in Section ] and (iii) our method with Childcount. We do this
for one of the instances that generate many conflicts.
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As we can see in the table below (where “Time” refers to the runtime of
our basic SAT solver, and column “Biere-b” is the one with is-parent bit), the
benefits of our Childcount methods are less important on examples that are
solved generating fewer conflicts. The is-parent bit of Biere’s methods has only
a very limited impact. In the last two columns we also show the size of the
whole DPLL trace on disk (“full”) produced by the method of [ZMO03], and
the size of its subset corresponding to the just the proof trace (“proof”), i.e.,
the proof of the empty clause, as it is generated by the methods Biere, Biere-b,
and Childcount (which all three produce exactly the same proof trace in our
implementations). Since the entire DPLL trace is usually much larger than just
the proof trace, the in-memory methods are also faster if one writes to disk
the proof trace once the unsatisfiability has been detected (although for many
applications, such as core minimization, this is not needed).
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In these implementations we have not considered compression methods such as
Biere’s Delta Encoding, which compresses parents lists up to four times [Bie0§],
since this is a somewhat orthogonal issue that can be applied (or not) to both
methods.

Num. Time Memory Usage (MB) Trace (MB)

Instance cnflcts (s) Biere Biere-b Child full proof
velev-dlx-uns-1.0-05 199390 696 239 234 229 226 30
manol-pipe-f7idw 333275 257 140 127 78 183 24
manol-pipe-cha5-113 336968 254 228 218 167 218 112
goldb-heqc-i8mul 397702 577 MO 972 947 1002 937
manol-pipe-g10idw 423079 412 434 412 285 550 191
manol-pipe-c10b 530022 527 347 330 240 452 258
manol-pipe-c7idw 536341 348 209 192 141 217 42
manol-pipe-c6bid-i 1123035 748 393 347 187 543 166
manol-pipe-c6nidw-i 1256752 885 488 436 252 671 226
hoons-vbme-s04-06 1301190 1053 320 309 228 358 322
manol-pipe-g10nid 1327600 1030 613 557 144 986 82
6pipe 1377876 785 519 502 418 433 205
velev-pipe-uns-1.1-7 1761066 829 447 409 210 751 260
manol-pipe-g10bidw 2250890 1709 MO 892 146 1679 100
manol-pipe-g10ni 2566801 1788 MO MO 159  FO 113
Tpipe-q0-k 3146242 1551 810 753 342 1381 472
manol-pipe-c7nidw 3585110 4059 MO MO 613 FO 692
manol-pipe-c7bidw-i 4011227 4255 MO MO 643 FO 761

5 Conclusions and Future Work

We have carried out a systematic and careful implementation of different meth-
ods for in-memory unsatisfiable core and proof generation. Regarding the two
simpler methods for generating cores, our IA technique is indeed slightly more
efficient than the one based on marker literals, but none of both is useful for
instances on which our solver (using its default settings) takes more than few
seconds. We have also shown that the techniques for generating cores and proofs
explained in Section [ are applicable to large SAT solving runs, and moreover al-
low one to keep the standard setting of the solver without a significant overhead
in runtime.

Our experiments clearly show that our Childcount technique makes it possible
to go significantly beyond previous in-memory techniques in terms of memory
requirements. We plan to implement it in combination with Biere’s Delta En-
coding compression technique, which will make it possible to handle even longer
DPLL runs or use even less memory. We also plan to use the basic underlying al-
gorithms given here inside algorithms for core-minimization and for applications
using cores (which are both outside the scope of this paper).
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