

Lecture Notes in Artificial Intelligence 5330
Edited by R. Goebel, J. Siekmann, and W. Wahlster

Subseries of Lecture Notes in Computer Science

Iliano Cervesato Helmut Veith
Andrei Voronkov (Eds.)

Logic for Programming,
Artificial Intelligence,
and Reasoning

15th International Conference, LPAR 2008
Doha, Qatar, November 22-27, 2008
Proceedings

13

Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Iliano Cervesato
Carnegie Mellon University, Doha, Qatar

Helmut Veith
Technische Universität Darmstadt, Germany

Andrei Voronkov
University of Manchester, UK

Library of Congress Control Number: 2008939396

CR Subject Classification (1998): I.2.3, I.2, F.4.1, F.3, D.2.4, D.1.6

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-540-89438-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-89438-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12573158 06/3180 5 4 3 2 1 0

Preface

This volume contains the papers presented at the 15th International Conference
on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR) held
November 22–27 in Doha, Qatar on the premises of the Qatar campus of Carnegie
Mellon University.

In its 15th edition, LPAR looked back at a rich history. The conference
evolved out of the First and Second Russian Conferences on Logic Program-
ming, held in Irkutsk, in 1990, and aboard the ship “Michail Lomonosov” in
1991. The idea of organizing the conference came largely from Robert Kowalski,
who also proposed the creation of the Russian Association for Logic Program-
ming. In 1992, it was decided to extend the scope of the conference. Due to
considerable interest in automated reasoning in the former Soviet Union, the con-
ference was renamed Logic Programming and Automated Reasoning (LPAR).
Under this name three meetings were held during 1992–1994: again on board
the ship “Michail Lomonosov” (1992), in St. Petersburg, Russia (1993), and on
board the ship “Marshal Koshevoi” (1994). In 1999, the conference was held in
Tbilisi, Georgia. At the suggestion of Michel Parigot, the conference changed its
name again to Logic for Programming and Automated Reasoning (preserving the
acronym LPAR!) reflecting an interest in additional areas of logic. LPAR 2000
was held on Reunion Island, France. In 2001, the name (but not the acronym)
changed again to its current form. The 8th to the 14th meetings were held in
the following locations: Havana, Cuba (2001) Tbilisi, Georgia (2002); Almaty,
Kazakhstan (2003); Montevideo, Uruguay (2004); Montego Bay, Jamaica (2005);
Phnom Penh, Cambodia (2006); and Yerevan, Armenia (2007).

Following the call for paper, LPAR 2008 received 207 abstracts which mate-
rialized into 154 actual submissions. Each submission was reviewed by at least
three Program Committee members. Of these, the Program Committee selected
42 regular papers and 3 tool papers. The Committee deliberated electronically
via the EasyChair system, which proved an egregious platform for smoothly car-
rying out all aspects of the program selection and finalization. It has been a
tradition of LPAR to invite some of the most influential researchers in its focus
area to discuss their work and their vision for the field. This year’s distinguished
speakers are Edmund Clarke (Carnegie Mellon University, USA—2007 Turing
Award recipient), Amir Pnueli (New York University, USA—1996 Turing Award
recipient), Michael Backes (Saarland University and MPI-SWS, Germany), and
Thomas Eiter (Technical University of Vienna, Austria). This volume contains
the revised versions of the 45 papers as well as the abstracts of the invited talks.

The conference was held in Doha, Qatar, where Carnegie Mellon University
has recently established a branch campus with the goal of promoting the same
high standards of research and education for which its original campus in Pitts-
burgh, USA is internationally recognized. Carnegie Mellon Qatar is located in

VI Preface

Education City, a 2,500 acre campus which provides state-of-the-art research and
teaching facilities to branches of six of the world’s leading universities. It is part
of an unprecedented commitment of resources made by the Qatari leadership to
position Qatar as a world-class center of education and research.

Many people have been involved in the organization of this conference. In
particular, we wish to thank the Steering Committee for endorsing the candidacy
of Doha for this year’s edition of LPAR. This conference would not have been
possible without the hard work of the many people who relentlessly handled the
local arrangements, especially Thierry Sans and Kara Nesimiuk. We are most
grateful to the 35 members of the Program Committee who did an excellent job in
handling the large number of submissions, and the 202 additional reviewers who
assisted them in their evaluations. We greatly appreciate the generous support
of our sponsors, the Qatar National Research Fund (QNRF), the Qatar Science
and Technology Park (QSTP), iHorizons, Carnegie Mellon University in Qatar,
Microsoft Research and the Kurt Gödel Society. Finally we are grateful to the
authors, the invited speakers and the attendees who made this conference an
enjoyable and fruitful event.

October 2008 Iliano Cervesato
Helmut Veith

Andrei Voronkov

Organization

Steering Committee

Matthias Baaz TU Vienna, Austria
Chris Fermüller TU Vienna, Austria
Geoff Sutcliffe University of Miami, USA
Andrei Voronkov University of Manchester, UK

Program Chairs

Iliano Cervesato Carnegie Mellon University, Qatar
Helmut Veith Technical University of Darmstadt, Germany
Andrei Voronkov University of Manchester, UK

Program Committee

Franz Baader TU Dresden, Germany
Matthias Baaz TU Vienna, Austria
Peter Baumgartner National ICT, Australia
Josh Berdine MSR Cambridge, UK
Armin Biere Johannes Kepler University, Austria
Sagar Chaki Carnegie Mellon SEI, USA
Hubert Comon-Lundh ENS Cachan, France
Javier Esparza TU Munich, Germany
Roberto Giacobazzi University of Verona, Italy
Jürgen Giesl RWTH Aachen, Germany
Orna Grumberg Technion, Israel
Thomas Henzinger EPFL, Switzerland
Joxan Jaffar NUS, Singapore
Claude Kirchner INRIA & LORIA, France
Stephan Kreutzer Oxford University, UK
Orna Kupferman Hebrew University, Israel
Alexander Leitsch TU Vienna, Austria
Nicola Leone University of Calabria, Italy
Heiko Mantel TU Darmstadt, Germany
Catherine Meadows Naval Research Laboratory, USA
Aart Middeldorp University of Innsbruck, Austria
John Mitchell Stanford University, USA
Andreas Podelski University of Freiburg, Germany
Sanjiva Prasad IIT Delhi, India
Alexander Razborov Russian Academy of Sciences, Russia

VIII Organization

Riccardo Rosati University of Rome 1, Italy
Andrey Rybalchenko MPI-SWS, Germany
Marko Samer Durham University, UK
Ulrike Sattler University of Manchester, UK
Torsten Schaub University of Potsdam, Germany
Carsten Schuermann IT University of Copenhagen, Denmark
Helmut Seidl TU Munich, Germany
Henny Sipma Stanford University, USA
Geoff Sutcliffe University of Miami, USA
Ashish Tiwari SRI, USA

Workshop Chair

Laura Kovács EPFL, Switzerland

Publicity Chair

Geoff SutCliffe University of Miami, USA

Local Organization

Iliano Cervesato Carnegie Mellon University, Qatar
Thierry Sans Carnegie Mellon University, Qatar

External Reviewers

Mario Alviano
Serge Autexier
Arnon Avron
Clemens Ballarin
Clark Barrett
Ulrich Berger
Piergiorgio Bertoli
Dietmar Berwanger
Gustavo Betarte
Meghyn Bienvenu
Frederic Blanqui
Manuel Bodirsky
Maria Bonet
Olivier Bournez
Paul Brauner
Paola Bruscoli

Tevfik Bultan
Guillaume Burel
James Caldwell
Francesco Calimeri
Krishnendu Chatterjee
Hubie Chen
Alessandro Cimatti
Evelyne Contejean
Nora Cuppens-Boulahia
Olivier Danvy
Anupam Datta
Cristina David
Jared C. Davis
Anuj Dawar
Jeremy Dawson
Stephanie Delaune

Organization IX

Nachum Dershowitz
Josee Desharnais
Joelle Despeyroux
Alessandra Di Pierro
Gilles Dowek
Luigi Dragone
Irène Durand
Steve Dworschak
Wolfgang Faber
David Faitelson
Stephan Falke
Oliver Fasching
Andrzej Filinski
Andrea Flexeder
Daniel Fridlender
Alexander Fuchs
Carsten Fuhs
Ulrich Furbach
Deepak Garg
Stephane Gaubert
Thomas Martin Gawlitza
Martin Gebser
Samir Genaim
Herman Geuvers
Hugo Gimbert
Bernhard Gramlich
Gianluigi Greco
Hans W. Guesgen
Florian Haftmann
James Harland
Ted Herman
Miki Hermann
Stefan Hetzl
Jochen Hoenicke
Markus Holzer
Matthew Horridge
Clement Houtmann
Florent Jacquemard
Arnav Jhala
Jean-Pierre Jouannaud
Lukasz Kaiser
Antonis C. Kakas
Deepak Kapur
Stefan Kiefer
Florent Kirchner

Pavel Klinov
Dmitry Korchemny
Konstantin Korovin
Alexander Krauss
Joerg Kreiker
Stephan Kreutzer
Viktor Kuncak
Oliver Kutz
Martin Lange
Hans Leiß
Domenico Lembo
Maurizio Lenzerini
Leonid Libkin
Dan Licata
Yang Liu
Michael Luttenberger
Carsten Lutz
Alexander Lux
Olivier Ly
Michael Maher
Johann Makowsky
Marco Maratea
Maarten Marx
Isabella Mastroeni
Richard Mayr
Yael Meller
Robert Mercer
John-Jules Meyer
Kevin Millikin
Niloy J. Mitra
Georg Moser
Ben Moszkowski
Rasmus E. Møgelberg
Koji Nakazawa
Juan Antonio Navarro Perez
Jorge Navas
Friedrich Neurauter
Hans de Nivelle
Michael Norrish
Hans Jürgen Ohlbach
Santiago Ontañón
Jens Otten
Martin Otto
Balaji Padmanabhan
Bijan Parsia

X Organization

Etienne Payet
Yannick Pencole
Simona Perri
Michael Petter
Frank Pfenning
Paulo Pinheiro da Silva
Ruzica Piskac
Nir Piterman
Antonella Poggi
Marc Pouzet
Riccardo Puccella
Christophe Raffalli
Silvio Ranise
Francesco Ricca
Marco Roveri
Abhik Roychoudhury
Marco Ruzzi
Masahiko Sakai
Andrew Santosa
Jeffrey Sarnat
Abdul Sattar
Alexis Saurin
Francesco Scarcello
Sven Schewe
Peter Schneider-Kamp
Lutz Schröder
Norbert Schrimer
Dieter Schuster
Stefan Schwoon
Roberto Segala
Mohamed Nassim Seghir
Damien Sereni
Olha Shkaravska
Tijs van der Storm
Barbara Sprick
Lutz Strassburger
Ofer Strichman
Georg Struth
Heiner Stuckenschmidt
K. Subramani

Henning Sudbrock
Jun Sun
Bontawee Suntisrivaraporn
Dejvuth Suwimonteerabuth
Sven Thiele
Rene Thiemann
Peter Thiemann
Krishnaprasad Thirunarayan
Cesare Tinelli
Stephan Tobies
Tayssir Touili
Ralf Treinen
Dmitry Tsarkov
Christian Urban
Pawel Urzyczyn
K. Neeraj Verma
Rakesh Verma
Yakir Visel
Eelco Visser
Yakir Vizel
Razvan Voicu
Johannes Waldmann
Uwe Waldmann
Igor Walukiewicz
Volker Weber
Martin Wehrle
Stephanie Weirich
Daniel Weller
Bernd Westphal
Thomas Wilke
Verena Wolf
Frank Wolter
Bruno Woltzenlogel Paleo
Avi Yadgar
Greta Yorsh
G. Michael Youngblood
Harald Zankl
Yuanlin Zhang
Sarah Zobel

Table of Contents

Session 1. Constraint Solving

Symmetry Breaking for Maximum Satisfiability . 1
Joao Marques-Silva, Inês Lynce, and Vasco Manquinho

Efficient Generation of Unsatisfiability Proofs and Cores in SAT 16
Roberto Aśın, Robert Nieuwenhuis, Albert Oliveras, and
Enric Rodŕıguez-Carbonell

Justification-Based Local Search with Adaptive Noise Strategies 31
Matti Järvisalo, Tommi Junttila, and Ilkka Niemelä

The Max-Atom Problem and Its Relevance . 47
Marc Bezem, Robert Nieuwenhuis, and Enric Rodŕıguez-Carbonell

Session 2. Knowledge Representation 1

Towards Practical Feasibility of Core Computation in Data Exchange . . . 62
Reinhard Pichler and Vadim Savenkov

Data-Oblivious Stream Productivity . 79
Jörg Endrullis, Clemens Grabmayer, and Dimitri Hendriks

Reasoning about XML with Temporal Logics and Automata 97
Leonid Libkin and Cristina Sirangelo

Distributed Consistency-Based Diagnosis . 113
Vincent Armant, Philippe Dague, and Laurent Simon

Session 3. Proof-Theory 1

From One Session to Many: Dynamic Tags for Security Protocols 128
Myrto Arapinis, Stéphanie Delaune, and Steve Kremer

A Conditional Logical Framework . 143
Furio Honsell, Marina Lenisa, Luigi Liquori, and Ivan Scagnetto

Nominal Renaming Sets . 158
Murdoch J. Gabbay and Martin Hofmann

Imogen: Focusing the Polarized Inverse Method for Intuitionistic
Propositional Logic . 174

Sean McLaughlin and Frank Pfenning

XII Table of Contents

Invited Talk

Model Checking – My 27-Year Quest to Overcome the State Explosion
Problem (Abstract) . 182

Edmund M. Clarke

Session 4. Automata

On the Relative Succinctness of Nondeterministic Büchi and co-Büchi
Word Automata . 183

Benjamin Aminof, Orna Kupferman, and Omer Lev

Recurrent Reachability Analysis in Regular Model Checking 198
Anthony Widjaja To and Leonid Libkin

Alternation Elimination by Complementation (Extended Abstract) 214
Christian Dax and Felix Klaedtke

Discounted Properties of Probabilistic Pushdown Automata 230
Tomáš Brázdil, Václav Brožek, Jan Holeček, and Antońın Kučera

Session 5. Linear Arithmetic

A Quantifier Elimination Algorithm for Linear Real Arithmetic 243
David Monniaux

ME(LIA) – Model Evolution with Linear Integer Arithmetic
Constraints . 258

Peter Baumgartner, Alexander Fuchs, and Cesare Tinelli

A Constraint Sequent Calculus for First-Order Logic with Linear
Integer Arithmetic . 274

Philipp Rümmer

Encoding Queues in Satisfiability Modulo Theories Based Bounded
Model Checking . 290

Tommi Junttila and Jori Dubrovin

Session 6. Verification

On Bounded Reachability of Programs with Set Comprehensions 305
Margus Veanes and Ando Saabas

Program Complexity in Hierarchical Module Checking 318
Aniello Murano, Margherita Napoli, and Mimmo Parente

Valigator: A Verification Tool with Bound and Invariant
Generation . 333

Thomas A. Henzinger, Thibaud Hottelier, and Laura Kovács

Table of Contents XIII

Reveal: A Formal Verification Tool for Verilog Designs 343
Zaher S. Andraus, Mark H. Liffiton, and Karem A. Sakallah

Invited Talks

A Formal Language for Cryptographic Pseudocode 353
Michael Backes, Matthias Berg, and Dominique Unruh

Reasoning Using Knots . 377
Thomas Eiter, Magdalena Ortiz, and Mantas Šimkus

Session 7. Knowledge Representation 2

Role Conjunctions in Expressive Description Logics 391
Birte Glimm and Yevgeny Kazakov

Default Logics with Preference Order: Principles and
Characterisations . 406

Tore Langholm

On Computing Constraint Abduction Answers . 421
Michael Maher and Ge Huang

Fast Counting with Bounded Treewidth . 436
Michael Jakl, Reinhard Pichler, Stefan Rümmele, and
Stefan Woltran

Session 8. Proof-Theory 2

Cut Elimination for First Order Gödel Logic by Hyperclause
Resolution . 451

Matthias Baaz, Agata Ciabattoni, and Christian G. Fermüller

Focusing Strategies in the Sequent Calculus of Synthetic Connectives . . . 467
Kaustuv Chaudhuri

An Algorithmic Interpretation of a Deep Inference System 482
Kai Brünnler and Richard McKinley

Weak βη-Normalization and Normalization by Evaluation for
System F . 497

Andreas Abel

Session 9. Quantified Constraints

Variable Dependencies of Quantified CSPs . 512
Marko Samer

XIV Table of Contents

Treewidth: A Useful Marker of Empirical Hardness in Quantified
Boolean Logic Encodings . 528

Luca Pulina and Armando Tacchella

Tractable Quantified Constraint Satisfaction Problems over Positive
Temporal Templates . 543

Witold Charatonik and Micha�l Wrona

A Logic of Singly Indexed Arrays . 558
Peter Habermehl, Radu Iosif, and Tomáš Vojnar

Session 10. Modal and Temporal Logics

On the Computational Complexity of Spatial Logics with Connectedness
Constraints . 574

Roman Kontchakov, Ian Pratt-Hartmann, Frank Wolter, and
Michael Zakharyaschev

Decidable and Undecidable Fragments of Halpern and Shoham’s
Interval Temporal Logic: Towards a Complete Classification 590

Davide Bresolin, Dario Della Monica, Valentin Goranko,
Angelo Montanari, and Guido Sciavicco

The Variable Hierarchy for the Lattice µ-Calculus . 605
Walid Belkhir and Luigi Santocanale

A Formalised Lower Bound on Undirected Graph Reachability 621
Ulrich Schöpp

Session 11. Rewriting

Improving Context-Sensitive Dependency Pairs . 636
Beatriz Alarcón, Fabian Emmes, Carsten Fuhs, Jürgen Giesl,
Raúl Gutiérrez, Salvador Lucas, Peter Schneider-Kamp, and
René Thiemann

Complexity, Graphs, and the Dependency Pair Method 652
Nao Hirokawa and Georg Moser

Uncurrying for Termination . 667
Nao Hirokawa, Aart Middeldorp, and Harald Zankl

Approximating Term Rewriting Systems: A Horn Clause Specification
and Its Implementation . 682

John P. Gallagher and Mads Rosendahl

A Higher-Order Iterative Path Ordering . 697
Cynthia Kop and Femke van Raamsdonk

Author Index . 713

Symmetry Breaking for Maximum Satisfiability�

Joao Marques-Silva1, Inês Lynce2, and Vasco Manquinho2

1 School of Electronics and Computer Science, University of Southampton, UK
jpms@ecs.soton.ac.uk

2 IST/INESC-ID, Technical University of Lisbon, Portugal
{ines,vmm}@sat.inesc-id.pt

Abstract. Symmetries are intrinsic to many combinatorial problems including
Boolean Satisfiability (SAT) and Constraint Programming (CP). In SAT, the iden-
tification of symmetry breaking predicates (SBPs) is a well-known, often effec-
tive, technique for solving hard problems. The identification of SBPs in SAT has
been the subject of significant improvements in recent years, resulting in more
compact SBPs and more effective algorithms. The identification of SBPs has also
been applied to pseudo-Boolean (PB) constraints, showing that symmetry break-
ing can also be an effective technique for PB constraints. This paper extends
further the application of SBPs, and shows that SBPs can be identified and used
in Maximum Satisfiability (MaxSAT), as well as in its most well-known variants,
including partial MaxSAT, weighted MaxSAT and weighted partial MaxSAT. As
with SAT and PB, symmetry breaking predicates for MaxSAT and variants are
shown to be effective for a representative number of problem domains, allowing
solving problem instances that current state of the art MaxSAT solvers could not
otherwise solve.

1 Introduction

Symmetry breaking is a widely used technique for solving combinatorial problems.
Symmetries have been extensively studied in Boolean Satisfiability (SAT) [15,4,7,1],
and are regarded as an essential technique for solving specific classes of problem in-
stances. Symmetries have also been widely used for solving constraint satisfaction
problems (CSPs) [11]. More recent work has shown how to apply symmetry break-
ing in pseudo-Boolean (PB) constraints [2] and also in soft constraints [24]. It should
be noted that symmetry breaking is viewed as an effective problem solving technique,
either for SAT, PB or CP, that is often used as an optional technique, to be used when
default algorithms are unable to solve a given problem instance.

In recent years there has been a growing interest in algorithms for MaxSAT and
variants [16,17,26,13,14,18,21,20], in part because of the wide range of potential appli-
cations. MaxSAT and variants represent a more general framework than either SAT or
PB, and so can naturally be used in many practical applications. The interest in MaxSAT
and variants motivated the development of a new generation of MaxSAT algorithms,
remarkably more efficient than early MaxSAT algorithms [25,5]. Despite the observed
improvements, there are many problems still too complex for MaxSAT algorithms to

� This paper extends a preliminary technical report [19] on the same subject.

I. Cervesato, H. Veith, and A. Voronkov (Eds.): LPAR 2008, LNCS 5330, pp. 1–15, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 J. Marques-Silva, I. Lynce, and V. Manquinho

solve [3]. Natural lines of research for improving MaxSAT algorithms include studying
techniques known to be effective for either SAT, PB or CP. One concrete example is
symmetry breaking. Despite its success in SAT, PB and CP, the usefulness of symmetry
breaking for MaxSAT and variants has not been thoroughly investigated.

This paper addresses the problem of using symmetry breaking in MaxSAT and in
its most well-known variants, partial MaxSAT, weighted MaxSAT and weighted partial
MaxSAT. The work extends past recent work on computing symmetries for SAT [1]
and PB constraints [2] by computing automorphisms on colored graphs obtained from
CNF or PB formulas, and by showing how symmetry breaking predicates [7,1] can
be exploited. The experimental results show that symmetry breaking is an effective
technique for MaxSAT and variants, allowing solving problem instances that state of
the art MaxSAT solvers could not otherwise solve.

The paper is organized as follows. The next section introduces the notation used
throughout the paper, provides a brief overview of MaxSAT and variants, and also
summarizes the work on symmetry breaking for SAT and PB constraints. Afterwards,
the paper describes how to apply symmetry breaking in MaxSAT and variants. Ex-
perimental results, obtained on representative problem instances from the MaxSAT
evaluation [3] and also from practical applications [1], demonstrate that symmetry
breaking allows solving problem instances that could not be solved by any of the avail-
able state of the art MaxSAT solvers. The paper concludes by summarizing related
work, by overviewing the main contributions, and by outlining directions for future
work.

2 Preliminaries

This section introduces the notation used through the paper. Moreover, this section sum-
marizes relevant results in symmetry identification and symmetry breaking, and devel-
ops extensions to existing results, which will serve for applying symmetry breaking in
MaxSAT. Finally, this section also summarizes the MaxSAT problem and its variants.

2.1 Propositional Satisfiability

The usual definitions of propositional logic are assumed. Let X = {x1, x2, . . . , xn}
denote a set of propositional variables. A propositional formulaϕ in conjunctive normal
form (CNF) is a conjunction of clauses. A clause ω is a disjunctions of literals. A literal
is either a variable (x ∈ X) or its complement (x̄, with x ∈ X). Where appropriate,
clauses are viewed as sets of literals, defined on X , and CNF formulas are viewed as
set of clauses.

A truth assignment is a function A : X → {0, 1}. The usual semantics of proposi-
tional logic is used for associating values with formulas given truth assignments to the
variables. Assignments serve for computing the values of literals, clauses and the com-
plete CNF formula, respectively, A(l), A(ω) and A(ϕ) 1. As a result, the truth value of
literals, clauses and CNF formulas can be defined as follows:

1 The use ofA for describing the truth value of clauses and CNF formulas is an often used abuse
of notation.

Symmetry Breaking for Maximum Satisfiability 3

A(l) =
{
A(xi) if l = xi

1 −A(xi) if l = x̄i
(1)

A(ω) = max {A(l) | l ∈ ω} (2)

A(ϕ) = min {A(ω) |ω ∈ ϕ} (3)

A clause is said to be satisfied if at least one of its literals assumes value 1. If all literals
of a clause assume value 0, then the clause is unsatisfied. A formula is satisfied if all
clauses are satisfied, otherwise it is unsatisfied. A truth assignment that satisfies ϕ is
referred to as model. The set of models of ϕ is denoted by M(ϕ). The propositional
satisfiability (SAT) problem consists in deciding whether there exists an assignment to
the variables such that ϕ is satisfied.

2.2 Symmetries

A symmetry is an operation that preserves the constraints, and therefore also preserves
the solutions of a problem instance [6]. For a set of symmetric objects, it is possible to
obtain the whole set of objects from any of the objects. The elimination of symmetries
has been extensively studied in CP and SAT [15,4,22,7]. With the goal of developing
a solution for breaking symmetries in MaxSAT, this section provides a few necessary
definitions related with symmetries in propositional formulas [7].

For a set X of variables, a permutation of X is a bijective function π : X → X ,
and the image of x under π is denoted xπ. The set of all permutations of X is denoted
by PX , and this set is a group under the composition operation. Permutations can be
extended to literals, clauses and formulas, by replacing each literal by its permuted
literal. As a result, ϕπ = ∧i ω

π
i , and ωπ

i = ∨j l
π
i . Moreover, lπj = xπ

j if lj = xj , and
lπj = xπ

j if lj = x̄j .
Permutations also map truth assignments to truth assignments. If π ∈ PX , then each

truth assignment A is mapped into a new truth assignment πA, where πA(x) = A(xπ).
Given a formula ϕ and π ∈ PX , π is a symmetry (or automorphism) iff ϕπ = ϕ.

Moreover, Sϕ represents the set of symmetries of ϕ. A well-known result in symmetry
breaking for SAT is the following [7]:

Proposition 1 (Proposition 2.1 in [7]). Let ϕ be a CNF formula over X , π ∈ Sϕ, and
A a truth assignment of X . Then A ∈ M(ϕ) iff πA ∈ M(ϕ).

Proposition 1 can be extended to account for the number of unsatisfied clauses given
an assignment. Essentially, the number of unsatisfied clauses remains unchanged in
the presence of permutations. A permutation maps each clause to another clause. For
each assignment, each unsatisfied clause is mapped to another clause which is also
unsatisfied.

Let µ(ϕ,A) denote the number of unsatisfied clauses of formula ϕ given assignment
A. Clearly M(ϕ) = {A |µ(ϕ,A) = 0}. Then the following holds:

Proposition 2. Let ϕ be a CNF formula over X , π ∈ Sϕ, and A a truth assignment
of X . Then µ(ϕ,A) = µ(ϕπ, πA).

4 J. Marques-Silva, I. Lynce, and V. Manquinho

Proof: The proof follows from the discussion above. Symmetries map clauses into
clauses. Unsatisfied clauses will be mapped into unsatisfied clauses, and the mapping is
one-to-one.

Proposition 2 is used in the following sections for validating the correctness of symme-
try breaking for MaxSAT and extensions.

It is also known that Sϕ induces an equivalence relation on the truth assignments
of X . Moreover, observe that for each equivalence class, the number of unsatisfied
clauses is the same. Symmetry breaking predicates (SBPs) are used for selecting a re-
duced set of representatives from each equivalence class (ideally one representative
from each equivalence class).

2.3 Symmetry Breaking

Given the definition of symmetries, symmetry breaking predicates target the elimination
of all but one of the equivalent objects [7,1]. Symmetry breaking is expected to speed
up the search as the search space gets reduced. For specific problems where symmetries
may be easily found this reduction may be significant. Nonetheless, the elimination
of symmetries necessarily introduces overhead that is expected to be negligible when
compared with the benefits it may provide.

The most well-known strategy for eliminating symmetries in SAT consists in adding
symmetry breaking predicates (SBPs) to the CNF formula [7]. SBPs are added to the
formula before the search starts. The symmetries may be identified for each specific
problem, and in that case it is required that the symmetries in the problem are identified
when creating the encoding. Alternatively, one may give a formula to a specialized tool
for detecting all the symmetries [1]. The resulting SBPs select one representative from
each equivalence class. In case all symmetries are broken, only one assignment, instead
of n assignments, may satisfy a set of constraints, n being the number of elements in a
given equivalence class. The most often used approach for constructing SBPs consists
in selecting the least assignment in each equivalence class, e.g. by implementing predi-
cates that compare pairs of truth assignments. Other approaches include remodeling the
problem [23] and breaking symmetries during search [12]. Remodeling the problem im-
plies creating a different encoding, e.g. obtained by defining a different set of variables,
in order to create a problem with less symmetries or even none at all. Alternatively, the
search procedure may be adapted for adding SBPs as the search proceeds to ensure that
any assignment symmetric to one assignment already considered will not be explored
in the future, or by performing checks that symmetric equivalent assignments have not
yet been visited.

Currently available tools for detecting and breaking symmetries for a given formula
are based on group theory. From each formula a group is extracted, where a group
is a set of permutations. A permutation is a one-to-one correspondence between a set
and itself. Each symmetry defines a permutation on a set of literals. In practice, each
permutation is represented by a product of disjoint cycles. Each cycle (l1 l2 . . . lm) with
size m stands for the permutation that maps li on li+1 (with 1 ≤ i ≤ m− 1) and lm on
l1. Applying a permutation to a formula will produce exactly the same formula.

Symmetry Breaking for Maximum Satisfiability 5

Example 1. Consider the following CNF formula:

ϕ = (x1 ∨ x2) ∧ (x̄1 ∨ x2) ∧ (x̄2) ∧ (x3 ∨ x2) ∧ (x̄3 ∨ x2)

The permutations identified for ϕ are (x3 x̄3) and (x1 x3)(x̄1 x̄3). (The permutation
(x1 x̄1) is implicit.) The formula resulting from the permutation (x3 x̄3) is obtained
by replacing every occurrence of x3 by x̄3 and every occurrence of x̄3 by x3. Clearly,
the obtained formula is equal to the original formula. The same happens when applying
the permutation (x1 x3)(x̄1 x̄3): replacing x1 by x3, x3 by x1, x̄1 by x̄3 and x̄3 by
x̄1 produces the same formula. From [7,1], selection of the least assignment in each
permutation yields the symmetry breaking predicate ϕsbp = (x̄3) ∧ (x̄1 ∨ x3).

2.4 Maximum Satisfiability

Given a propositional formula ϕ, the MaxSAT problem is defined as finding an assign-
ment to variables in ϕ such that the number of satisfied clauses is maximized. (MaxSAT
can also be defined as finding an assignment that minimizes the number of unsatisfied
clauses.) Well-known variants of MaxSAT include partial MaxSAT, weighted MaxSAT
and weighted partial MaxSAT.

For partial MaxSAT, a propositional formulaϕ is described by the conjunction of two
CNF formulas ϕs and ϕh, where ϕs represents the soft clauses and ϕh represents the
hard clauses. The partial MaxSAT problem over a propositional formula ϕ = ϕh ∧ ϕs

consists in finding an assignment to the problem variables such that all hard clauses
(ϕh) are satisfied and the number of satisfied soft clauses (ϕs) is maximized.

For weighted MaxSAT, each clause in the CNF formula is associated to a non-
negative weight. A weighted clause is a pair (ω, c) where ω is a classical clause and
c is a natural number corresponding to the cost of unsatisfying ω. Given a weighted
CNF formula ϕ, the weighted MaxSAT problem consists in finding an assignment to
problem variables such that the total weight of the unsatisfied clauses is minimized,
which implies that the total weight of the satisfied clauses is maximized.

For the weighted partial MaxSAT problem, the formula is the conjunction of a
weighted CNF formula (soft clauses) and a classical CNF formula (hard clauses). The
weighted partial MaxSAT problem consists in finding an assignment to the variables
such that all hard clauses are satisfied and the total weight of satisfied soft clauses is
maximized. Observe that, for both partial MaxSAT and weighted partial MaxSAT, hard
clauses can also be represented as weighted clauses. For hard clauses one can consider
that the weight is greater than the sum of the weights of the soft clauses. This allows a
more uniform treatment of hard and weighted soft clauses.

MaxSAT and variants find a wide range of practical applications, that include
scheduling, routing, bioinformatics, and design automation. Moreover, MaxSAT can
be used for solving pseudo-Boolean optimization [14]. The practical applications of
MaxSAT motivated recent interest in developing more efficient algorithms. The most
efficient algorithms for MaxSAT and variants are based on branch and bound search,
using dedicated bounding and inference techniques [16,17,13,14]. Lower bounding
techniques include, for example, the use of unit propagation for identifying necessarily
unsatisfied clauses, whereas inference techniques can be viewed as restricted forms of
resolution, with the objective of simplifying the problem instance to solve.

6 J. Marques-Silva, I. Lynce, and V. Manquinho

3 Symmetry Breaking for MaxSAT

This section describes how to use symmetry breaking in MaxSAT. First, the construc-
tion process for the graph representing a CNF formula is briefly reviewed [7,1], as it
will be modified later in this section. Afterwards, plain MaxSAT is considered. The
next step is to address symmetry breaking for partial, weighted and weighted partial
MaxSAT.

3.1 From CNF Formulas to Colored Graphs

Symmetry breaking for MaxSAT and variants requires a few modifications to the ap-
proach used for SAT [7,1]. This section summarizes the basic approach, which is then
extended in the following sections.

Given a graph, the graph automorphism problem consists in finding isomorphic
groups of edges and vertices with a one-to-one correspondence. In case of graphs with
colored vertices, the correspondence is made between vertices with the same color. It
is well-known that symmetries in SAT can be identified by reduction to a graph au-
tomorphism problem [7,1]. The propositional formula is represented as an undirected
graph with colored vertices, such that the automorphism in the graph corresponds to a
symmetry in the propositional formula.

Given a propositional formula ϕ, a colored undirected graph is created as follows:

– For each variable xj ∈ X add two vertices to represent xj and x̄j . All vertices are
associated with variables are colored with color 1;

– For each variable xj ∈ X add an edge between the vertices representing xj and x̄j ;
– For each binary clause ωi = (lj ∨ lk) ∈ ϕ, add an edge between the vertices

representing lj and lk;
– For each non-binary clause ωi ∈ ϕ create a vertex colored with color 2;
– For each literal lj in a non-binary clause ωi, add an edge between the vertices

representing the literal and the clause.

Example 2. Figure 1 shows the colored undirected graph associated with the CNF for-
mula of Example 1. Vertices with shape ◦ represent color 1 and vertices with shape
� represent color 2. Vertex 1 corresponds to x1, 2 to x2, 3 to x3, 4 to x̄1, 5 to x̄2, 6
to x̄3 and 7 to unit clause (x̄2). Edges 1-2, 2-3, 2-4 and 2-6 represent binary clauses
and edges 1-4, 2-5 and 3-6 link complemented literals. Finally, edge 5-7 associates the
correct literal with the unit clause.

Observe that for binary clauses it suffices to connect the vertices of the literals associ-
ated with the clause [1].

3.2 Plain Maximum Satisfiability

Let ϕ represent the CNF formula of a MaxSAT instance. Moreover, let ϕsbp be the
CNF formula for the symmetry-breaking predicate obtained with a CNF symmetry tool
(e.g. Shatter 2 [1] built on top of Saucy [8]). All clauses in ϕ are effectively soft clauses,

2 Available from http://www.eecs.umich.edu/∼faloul/Tools/shatter/.

Symmetry Breaking for Maximum Satisfiability 7

1 4

2 5 7

3 6

(a) Colored graph

Vertex Mapping
1 literal x1

2 literal x̄1

3 literal x2

4 literal x̄2

5 literal x3

6 literal x̄3

7 clause (x̄2)

(b) Vertex mapping

Fig. 1. Colored graph for Example 2

for which the objective is to maximize the number of satisfied clauses. In contrast,
the clauses in ϕsbp are hard clauses, which must necessarily be satisfied. As a result,
the original MaxSAT problem is transformed into a partial MaxSAT problem, where ϕ
denotes the soft clauses and ϕsbp denotes the hard clauses. The solution of the partial
MaxSAT problem corresponds to the solution of the original MaxSAT problem.

Example 3. As shown earlier, for the CNF formula of Example 1, the generated SBP
(e.g. by Shatter) is: ϕsbp = (x̄3) ∧ (x̄1 ∨ x3). As a result, the resulting instance of
partial MaxSAT will be ϕ′ = (ϕh ∧ ϕs) = (ϕsbp ∧ ϕ). The addition of the clauses
associated with the SBP imply x3 = 0 and x1 = 0. Observe that if there exists a
MaxSAT solution for ϕ with x3 = 1 or x1 = 1, then not only it cannot have a smaller
number of unsatisfied clauses than ϕ′, but also such a solution must be included in an
equivalent class for which there is at least one representative in the solutions of ϕ′.

As the previous example suggests, the hard clauses represented by ϕsbp do not change
the solution of the original MaxSAT problem. Indeed, the construction of the symme-
try breaking predicate guarantees that the maximum number of satisfied soft clauses
remains unchanged by the addition of the hard clauses.

Proposition 3. The maximum number of satisfied clauses for the MaxSAT problem ϕ
and the partial MaxSAT problem (ϕ ∧ ϕsbp) are the same.

Proof: From Proposition 2 it is known that symmetries maintain the number of unsat-
isfied clauses, and this also holds for the equivalence classes induced by symmetries.
Moreover, symmetry breaking predicates allow for at least one truth assignment from
each equivalence class. Hence, at least one truth assignment from the equivalence class
that maximizes the number of satisfied clauses will satisfy the symmetry breaking pred-
icate, and so the solution of the MaxSAT problem is preserved.

3.3 Partial and Weighted Maximum Satisfiability

For partial MaxSAT, the generation of SBPs needs to be modified. The graph repre-
sentation of the CNF formula must take into account the existence of hard and soft
clauses, which must be distinguished by a graph automorphism algorithm. Symmetric

8 J. Marques-Silva, I. Lynce, and V. Manquinho

objects for problem instances with hard and soft clauses establish a correspondence
either between hard clauses or between soft clauses. In other words, when applying a
permutation hard clauses can only be replaced by other hard clauses, and soft clauses
by other soft clauses. In order to address this issue, the colored graph generation needs
to be modified. In contrast to the MaxSAT case, binary clauses are not handled differ-
ently from other clauses, and must be represented as vertices in the colored graph. This
is necessary for distinguishing between hard and soft binary clauses, and in general
between binary clauses with different weights.

For the partial MaxSAT problem, clauses can now have one of two colors. A vertex
with color 2 is associated with each soft clause, and a vertex with color 3 is associ-
ated with each hard clause. (As before, a vertex with color 1 corresponds to a literal.)
This modification ensures that any identified automorphism guarantees that soft clauses
correspond only to soft clauses, and hard clauses correspond only to hard clauses. More-
over, the procedure for the generation of SBPs from the groups found by a graph auto-
morphism tool remains unchanged, and the SBPs can be added to the original instance
as new hard clauses. The resulting instance is also an instance of partial MaxSAT. Cor-
rectness of this approach follows from the correctness of the plain MaxSAT case.

The solution for weighted MaxSAT and for weighted partial MaxSAT is similar to
the partial MaxSAT case, but now clauses with different weights are represented by
vertices with different colors. This guarantees that the groups found by the graph auto-
morphism tool take into consideration the weight of each clause. Let {c1, c2, . . . , ck}
denote the distinct clause weights in the CNF formula. Each clause ωi of weight ci,
represented as (ωi, ci) is associated with a vertex of color i+ 1 in the colored graph. In
case there exist hard clauses, an additional color k + 2 is used, and so each hard clause
is represented by a vertex with color k + 2 in the colored graph. Associating distinct
clause weights with distinct colors guarantees that the graph automorphism algorithm
can only make the correspondence between clauses with the same weight. Moreover,
the identified SBPs result in new hard clauses that are added to the original problem.
For either weighted MaxSAT or weighted partial MaxSAT, the result is an instance of
weighted partial MaxSAT. As before, correctness of this approach follows from the
correctness of the plain MaxSAT case.

Example 4. Consider the following weighted partial MaxSAT instance:

ϕ = (x1 ∨ x2, 1) ∧ (x̄1 ∨ x2, 1) ∧ (x̄2, 5) ∧
(x̄3 ∨ x2, 9) ∧ (x3 ∨ x2, 9)

for which the last two clauses are hard. Figure 2 shows the colored undirected graph
associated with the formula. Clauses with different weights are represented with differ-
ent colors (shown in the figure with different vertex shapes). A graph automorphism
algorithm can then be used to generate the symmetry breaking predicates ϕsbp =
(x̄1) ∧ (x̄3), consisting of two hard clauses. As a result, the assignments x1 = 0 and
x3 = 0 become necessary.

Proposition 4. The maximum number of satisfied clauses for the weighted (partial)
MaxSAT problem ϕ and the resulting weighted partial MaxSAT problem (ϕ∧ϕsbp) are
the same.

Symmetry Breaking for Maximum Satisfiability 9

7

1 4 8

2 5 9

3 6 10

11

(a) Colored graph

Vertex Mapping
1 literal x1

2 literal x2

3 literal x3

4 literal x̄1

5 literal x̄2

6 literal x̄3

7 clause (x1 ∨ x2, 1)
8 clause (x̄1 ∨ x2, 1)
9 clause (x̄2, 5)

10 clause (x̄3 ∨ x2, 9)
11 clause (x3 ∨ x2, 9)

(b) Vertex mapping

Fig. 2. Colored graph for Example 2

Table 1. Problem transformations due to SBPs

Original MS PMS WMS WPMS
With Symmetries PMS PMS WPMS WPMS

Proof: (Sketch) The proof is similar to the proof of Proposition 3, but noting that
weights partition the set of clauses into sets of clauses that can be mapped into each
other. Since mappings are between clauses with the same weights, the previous results
(from Propositions 2 and 3) still hold.

Table 1 summarizes the problem transformations described in this section, where MS
represents plain MaxSAT, PMS represents partial MaxSAT, WMS represents weighted
MaxSAT, and WPMS represents weighted partial MaxSAT. The use of SBPs introduces
a number of hard clauses, and so the resulting problems are either partial MaxSAT or
weighted partial MaxSAT.

3.4 Evaluating Alternative Formulations

Even though the proposed approach for breaking symmetries does not seem amenable
to further optimizations for the MaxSAT and partial MaxSAT cases, it is interesting
to investigate whether it is possible to optimize the approach outlined in the previous
section for the weighted variants of MaxSAT, e.g. by reorganizing clause weights. This
section argues that, provided some simple conditions hold, rearranging weights cannot
induce stronger symmetry breaking predicates.

Example 5. Consider the weighted MaxSAT formula:

ϕ = (x1 ∨ x̄2, 7) ∧ (x̄3 ∨ x4, 3) ∧ (x̄3 ∨ x4, 4) (4)

10 J. Marques-Silva, I. Lynce, and V. Manquinho

The symmetries for this formula are (x1 x̄2) and (x3 x̄4). Clearly, it is possible to induce
more symmetries by considering the following modification:

ϕ = (x1 ∨ x̄2, 3) ∧ (x1 ∨ x̄2, 4) ∧ (x̄3 ∨ x4, 3) ∧ (x̄3 ∨ x4, 4) (5)

In addition to the previous symmetries, one now also obtains (x1 x3)(x2 x4).

The previous example suggests that by rearranging weights one may be able to increase
the number of identified symmetries. As the example also suggests, this can only happen
when a clause is associated with more than one single weight. For the previous example
(x̄3 ∨ x4) is associated with weights 3 and 4. One simple way to tackle this problem
is to require that multiple occurrences of the same clause be aggregated into a single
clause, i.e. multiple occurrences of the same clause are represented by a single clause
and the multiple weights are added.

Proposition 5. If each clause has a single occurrence in formula ϕ, then splitting the
weight of a clause induces no additional symmetries.

Proof: Suppose that each clause has a single occurrence, and that additional symme-
tries could be identified by splitting the weight ci of a single clause ωi. Without loss of
generality assume that weight ci is split into ci1 and ci2 . If additional symmetries can
now be identified, then ωi is mapped to clause ωj1 due to ci1 and to clause ωj2 due to
ci2 . However, since each variable is mapped to some other variable, then ωj1 and ωj2

must be the same clause; but this is a contradiction.

The previous result ensures that the approach outlined in Section 3.3, for computing
symmetry breaking predicates for the weighted variations of MaxSAT, cannot be im-
proved upon by rearranging clause weights, provided each clause has a single occur-
rence in the formula. Clearly, this is not the case with the earlier example.

4 Experimental Results

The approach outlined in the previous sections for generating SBPs for MaxSAT has
been implemented in MAXSATSBP 3. MAXSATSBP interfaces SAUCY [8], and is orga-
nized similarly to SHATTER [1] and SHATTERPB [2].

The experimental setup has been organized as follows. First, all the instances from
the first and second MaxSAT evaluations (2006 and 2007) [3] were run. A timeout of
1000s of CPU time was considered, and instances requiring more than 1000s of CPU
time are declared as aborted. These results allowed selecting relevant benchmark fami-
lies, for which symmetries occur and which require a non-negligible amount of time for
being solved by both approaches (with or without SBPs). Afterwards, the instances for
which both approaches aborted were removed from the tables of results. This resulted
in selecting the hamming and the MANN instances for plain MaxSAT, the ii32 and
again the MANN instances for partial MaxSAT, the c-fat500 instances for weighted
MaxSAT and the dir and log instances for weighted partial MaxSAT.

3 The MAXSATSBP tool is available on request from the authors.

Symmetry Breaking for Maximum Satisfiability 11

Besides the instances that participated in the MaxSAT competition, we have included
additional plain MaxSAT problem instances (hole, Urq and chnl). The hole in-
stances refer to the well-known pigeon hole problem, the Urq instances represent ran-
domized instances based on expander graphs and the chnl instances model the routing
of wires in the channels of field-programmable integrated circuits. These instances refer
to problems that can be naturally encoded as MaxSAT problems and are known to be
highly symmetric [1]. The approach outlined above was also followed for selecting the
instances to be included in the results.

We have run different publicly available MaxSAT solvers, namely MINIMAXSAT 4,
TOOLBAR 5 and MAXSATZ 6. (MAXSATZ accepts only plain MaxSAT instances.) Evi-
dence from the MaxSAT evaluation suggests that the behavior of MINIMAXSAT is
similar to TOOLBAR and MAXSATZ, albeit being in general more robust. For this reason,
the results focus on MINIMAXSAT.

Tables 2 and 3 provide the results obtained. In the tables, TO denotes a timeout, and
so the run time is in excess of 1000s. Table 2 refers to plain MaxSAT instances and Ta-
ble 3 refers to partial MaxSAT (PMS), weighted MaxSAT (WMS) and weighted partial
MaxSAT (WPMS) instances. For each instance, the results shown include the number
of clauses added as a result of SBPs (#ClsSbp), the time required for solving the original
instances (OrigT), i.e. without SBPs, and the time required for breaking the symmetries
plus the time required for solving the extended formula afterwards (SbpT). (The best
configuration for each instance is outlined in bold.) Moreover, the SbpT column is split
into the time to run MAXSATSBP (MXSBP) and the time to run MINIMAXSAT. In
practice, the time required for generating SBPs is negligible. The results were obtained
on an Intel Xeon 5160 server (3.0GHz, 1333Mhz FSB, 4MB cache) running Red Hat
Enterprise Linux WS 4.

The experimental results allow establishing the following conclusions:

– The inclusion of symmetry breaking is essential for solving a number of problem
instances. We should note that all the plain MaxSAT instances in Table 2 for which
MINIMAXSAT aborted, are also aborted by TOOLBAR and MAXSATZ. After adding
SBPs all these instances become easy to solve by any of the solvers. For the aborted
partial, weighted and weighted partial MaxSAT instances in Table 3 this is not
always the case, since a few instances aborted by MINIMAXSAT could be solved by
TOOLBAR without SBPs. However, the converse is also true, as there are instances
that were initially aborted by TOOLBAR (although solved by MINIMAXSAT) that
are solved by TOOLBAR after adding SBPs.

– For several instances, breaking only a few symmetries can make the difference. We
have observed that in some cases the symmetries are broken with unit clauses.

– Adding SBPs is beneficial for most cases where symmetries exist. However, for a
few examples, SBPs may degrade performance.

– There is no clear relation between the number of SBPs added and the impact on the
search time.

– The run time of the symmetry breaking tool is in general negligible.

4 http://www.lsi.upc.edu/∼fheras/docs/m.tar.gz
5 http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/ToolBarIntro
6 http://www.laria.u-picardie.fr/∼cli/maxsatz.tar.gz

12 J. Marques-Silva, I. Lynce, and V. Manquinho

Table 2. Results for MINIMAXSAT on plain MaxSAT instances

Name #ClsSbp OrigT SbpT MXSBP MiniMaxSat

hamming10-2 81 TO 0.19 0.009 0.178
hamming10-4 1 886.57 496.79 0.01 496.777
hamming6-4 437 0.17 0.15 0.013 0.137
hamming8-2 85 TO 0.21 0.016 0.189
hamming8-4 253 0.36 0.11 0.011 0.102
MANN a27 85 TO 0.24 0.012 0.226
MANN a45 79 TO 0.20 0.011 0.185
MANN a81 79 TO 0.19 0.01 0.184

hole10 758 42.11 0.24 0.023 0.213
hole11 922 510.90 0.47 0.023 0.442
hole12 1102 TO 1.78 0.028 1.752
hole7 362 0.10 0.11 0.007 0.103
hole8 478 0.40 0.13 0.008 0.122
hole9 610 3.68 0.17 0.016 0.15
Urq3 5 29 83.33 0.27 0.033 0.236
Urq4 5 43 TO 50.88 0.07 50.806
chnl10 11 1954 TO 41.79 0.053 41.737
chnl10 12 2142 TO 328.12 0.057 328.063
chnl11 12 2370 TO 420.19 0.075 420.111

Table 3. Results for MINIMAXSAT on partial, weighted and weighted partial MaxSAT instances

Name MStype #ClsSbp OrigT SbpT MXSBP MiniMaxSat

ii32e3 PMS 1756 94.40 37.63 0.482 37.15
ii32e4 PMS 2060 175.07 129.06 0.787 128.277

c-fat500-10 WMS 2 57.79 11.62 0.028 11.591
c-fat500-1 WMS 112 0.03 0.06 0.016 0.046
c-fat500-2 WMS 12 0.16 0.11 0.011 0.049
c-fat500-5 WMS 4 0.16 0.11 0.016 0.091
MANN a27 WMS 1 TO 880.58 0.047 880.533
MANN a45 WMS 1 TO 530.86 0.048 530.807
MANN a81 WMS 1 TO 649.13 0.042 649.084

1502.dir WPMS 1560 0.34 10.67 0.754 9.912
29.dir WPMS 132 TO 28.09 0.031 28.055
54.dir WPMS 98 4.14 0.32 0.029 0.292
8.dir WPMS 58 0.03 0.05 0.008 0.039
1502.log WPMS 812 0.76 0.71 0.32 0.385
29.log WPMS 54 17.55 0.82 0.026 0.792
404.log WPMS 124 TO 64.24 0.094 64.151
54.log WPMS 48 2.37 0.16 0.021 0.139

Overall, the inclusion of SBPs should be considered when a hard problem instance
is known to exhibit symmetries. This does not necessarily imply that after breaking

Symmetry Breaking for Maximum Satisfiability 13

symmetries the instance becomes trivial to solve, and there can be cases where the new
clauses may degrade performance. However, in a significant number of cases, highly
symmetric problems become much easier to solve after adding SBPs. In many of these
cases the problem instances become trivial to solve.

5 Related Work

Symmetries are a well-known research topic, that serve to tackle complexity in many
combinatorial problems. The first ideas on symmetry breaking were developed in the
80s and 90s [15,4,22,7], by relating symmetries with the graph automorphism problem,
and by proposing the first approach for generating symmetry breaking predicates. This
work was later extended and optimized for propositional satisfiability [1].

Symmetries are an active research topic in CP [11]. Approaches for breaking symme-
tries include not only adding constraints before search [22] but also reformulation [23]
and dynamic symmetry breaking methods [12]. Recent work has also shown the appli-
cation of symmetries to soft CSPs [24].

The approach proposed in this paper for using symmetry breaking for MaxSAT and
variants builds on earlier work on symmetry breaking for PB constraints [2]. Similarly
to the work for PB constraints, symmetries are identified by constructing a colored
graph, from which graph automorphisms are obtained, which are then used to generate
the symmetry breaking predicates.

6 Conclusions

This paper shows how symmetry breaking can be used in MaxSAT and in its most well-
known variants, including partial MaxSAT, weighted MaxSAT, and weighted partial
MaxSAT. Experimental results, obtained on representative instances from the MaxSAT
evaluation [3] and practical instances [1], demonstrate that symmetry breaking allows
solving problem instances that no state of the art MaxSAT solver could otherwise solve.
For all problem instances considered, the computational effort of computing symme-
tries is negligible. Nevertheless, and as it is the case with symmetry breaking for SAT
and PB constraints, symmetry breaking should be considered as an optional problem
solving technique, to be used when standard techniques are unable to solve a given
problem instance.

The experimental results motivate additional work on computing symmetry break-
ing predicates for MaxSAT. A new more efficient version of Saucy has recently been
developed [9] and is likely to further reduce the run time for computing symmetries.
Moreover, the use of conditional symmetries could be considered [10,24].

Acknowledgement. This work is partially supported by EPSRC grant EP/E012973/1,
by EU grants IST/033709 and ICT/217069, and by FCT grants POSC/EIA/61852/2004
and PTDC/EIA/76572/2006.

14 J. Marques-Silva, I. Lynce, and V. Manquinho

References

1. Aloul, F., Sakallah, K.A., Markov, I.: Efficient symmetry breaking for boolean satisfiability.
In: International Joint Conference on Artificial Intelligence, pp. 271–276 (August 2003)

2. Aloul, F.A., Ramani, A., Markov, I.L., Sakallah, K.A.: ShatterPB: symmetry-breaking for
pseudo-Boolean formulas. In: Asian and South-Pacific Design Automation Conference, pp.
883–886 (2004)

3. Argelich, J., Li, C.M., Manyà, F., Planes, J.: MaxSAT evaluation (May 2007),
www.maxsat07.udl.es

4. Benhamou, B., Sais, L.: Theoretical study of symmetries in propositional calculus and appli-
cations. In: Eleventh International Conference on Automated Deduction, pp. 281–294 (1992)

5. Borchers, B., Furman, J.: A two-phase exact algorithm for MAX-SAT and weighted MAX-
SAT problems. Journal of Combinatorial Optimization 2(4), 299–306 (1998)

6. Cohen, D.A., Jeavons, P., Jefferson, C., Petrie, K.E., Smith, B.M.: Symmetry definitions for
constraint satisfaction problems. In: International Conference on Principles and Practice of
Constraint Programming, pp. 17–31 (2005)

7. Crawford, J.M., Ginsberg, M.L., Luks, E., Roy, A.: Symmetry-breaking predicates for search
problems. In: International Conference on Principles of Knowledge Representation and Rea-
soning, pp. 148–159 (1996)

8. Darga, P.T., Liffiton, M.H., Sakallah, K.A., Markov, I.L.: Exploiting structure in symmetry
detection for CNF. In: Design Automation Conference, pp. 530–534 (June 2004)

9. Darga, P.T., Sakallah, K.A., Markov, I.L.: Faster symmetry discovery using sparsity of sym-
metries. In: Design Automation Conference, pp. 149–154 (June 2008)

10. Gent, I.P., Kelsey, T., Linton, S., McDonald, I., Miguel, I., Smith, B.M.: Conditional symme-
try breaking. In: International Conference on Principles and Practice of Constraint Program-
ming, pp. 256–270 (2005)

11. Gent, I.P., Petrie, K.E., Puget, J.-F.: Symmetry in Constraint Programming. In: Handbook of
Constraint Programming, pp. 329–376. Elsevier, Amsterdam (2006)

12. Gent, I.P., Smith, B.M.: Symmetry breaking in constraint programming. In: European Con-
ference on Artificial Intelligence, pp. 599–603 (2000)

13. Heras, F., Larrosa, J.: New inference rules for efficient Max-SAT solving. In: AAAI Confer-
ence on Artificial Intelligence (2006)

14. Heras, F., Larrosa, J., Oliveras, A.: MiniMaxSat: a new weighted Max-SAT solver. In: Inter-
national Conference on Theory and Applications of Satisfiability Testing, pp. 41–55 (May
2007)

15. Krishnamurthy, B.: Short proofs for tricky formulas. Acta Informatica 22(3), 253–275 (1985)
16. Li, C.M., Manyà, F., Planes, J.: Exploiting unit propagation to compute lower bounds in

branch and bound Max-SAT solvers. In: International Conference on Principles and Practice
of Constraint Programming, pp. 403–414 (2005)

17. Li, C.M., Manyà, F., Planes, J.: Detecting disjoint inconsistent subformulas for computing
lower bounds for Max-SAT. In: AAAI Conference on Artificial Intelligence (July 2006)

18. Lin, H., Su, K.: Exploiting inference rules to compute lower bounds for MAX-SAT solving.
In: International Joint Conference on Artificial Intelligence, pp. 2334–2339 (2007)

19. Marques-Silva, J., Lynce, I., Manquinho, V.: Symmetry breaking for maximum satisfiability.
Computing Research Repository, abs/0804.0599 (April 2008),
http://arxiv.org/abs/0804.0599

20. Marques-Silva, J., Manquinho, V.M.: Towards more effective unsatisfiability-based maxi-
mum satisfiability algorithms. In: International Conference on Theory and Applications of
Satisfiability Testing, pp. 225–230 (2008)

www.maxsat07.udl.es
http://arxiv.org/abs/0804.0599

Symmetry Breaking for Maximum Satisfiability 15

21. Marques-Silva, J., Planes, J.: Algorithms for maximum satisfiability using unsatisfiable
cores. In: Design, Automation and Testing in Europe Conference, pp. 408–413 (March 2008)

22. Puget, J.-F.: On the satisfiability of symmetrical constrained satisfaction problems. In: Inter-
national Symposium on Methodologies for Intelligent Systems, pp. 350–361 (1993)

23. Smith, B.M.: Reducing symmetry in a combinatorial design problem. Technical Report
2001.01, School of Computing, University of Leeds (January 2001) (Presented at the CP-
AI-OR Workshop April 2001)

24. Smith, B.M., Bistarelli, S., O’Sullivan, B.: Constraint symmetry for the soft CSP. In: In-
ternational Conference on Principles and Practice of Constraint Programming, pp. 872–879
(September 2007)

25. Wallace, R., Freuder, E.: Comparative studies of constraint satisfaction and Davis-Putnam
algorithms for maximum satisfiability problems. In: Johnson, D., Trick, M. (eds.) Cliques,
Coloring and Satisfiability. DIMACS Series in Discrete Mathematics and Theoretical Com-
puter Science, vol. 26, pp. 587–615. American Mathematical Society (1996)

26. Xing, Z., Zhang, W.: MaxSolver: An efficient exact algorithm for (weighted) maximum sat-
isfiability. Artificial Intelligence 164(1-2), 47–80 (2005)

Efficient Generation of Unsatisfiability Proofs
and Cores in SAT

Roberto Aśın, Robert Nieuwenhuis, Albert Oliveras,
and Enric Rodŕıguez-Carbonell�

Abstract. Some modern DPLL-based propositional SAT solvers now
have fast in-memory algorithms for generating unsatisfiability proofs and
cores without writing traces to disk. However, in long SAT runs these
algorithms still run out of memory.

For several of these algorithms, here we discuss advantages and dis-
advantages, based on carefully designed experiments with our imple-
mentation of each one of them, as well as with (our implementation
of) Zhang and Malik’s one writing traces on disk. Then we describe a
new in-memory algorithm which saves space by doing more bookkeeping
to discard unnecessary information, and show that it can handle sig-
nificantly more instances than the previously existing algorithms, at a
negligible expense in time.

1 Introduction

More and more applications of propositional SAT solvers and their extensions
keep emerging. For some of these applications, it suffices to obtain a yes/no an-
swer, possibly with a model in case of satisfiability. For other applications, also
in case of unsatisfiability a more detailed answer is needed. For example, one
may want to obtain a small (or even minimal, wrt. set inclusion) unsatisfiable
subset of the initial set of clauses. Such subsets, called unsatisfiable cores, are
obviously useful in applications like planning or routing for explaining why no
feasible solution exists, but many other applications keep emerging, such as solv-
ing MAX-SAT problems [FM06, MSP08] or debugging software models [Jac02].

In addition, it is frequently helpful, or even necessary, to be able to check the
unsatisfiability claims produced by a DPLL-based ([DP60, DLL62]) SAT solver,
using some small and simple, independent, trusted checker for, e.g., resolution
proofs. Note that, although for certain classes of formulas the minimal resolution
proof is exponentially large [Hak85], for real-world problems the size tends to be
manageable and frequently it is in fact surprisingly small (as well as the core).

Since Zhang and Malik’s work in 2003 [ZM03], it is well-known that modern
DPLL-based solvers with learning can be instrumented to write a trace on disk
from which a resolution proof can be extracted and checked. Essentially, each
learned clause generates a line in the trace with only the list of its parents’ iden-
tifiers (ID’s), i.e., the ID’s of the clauses involved in the conflict analysis, which
� Technical Univ. of Catalonia, Barcelona. Partially supported by Spanish Ministry

Educ. and Science LogicTools-2 project (TIN2007-68093-C02-01).

I. Cervesato, H. Veith, and A. Voronkov (Eds.): LPAR 2008, LNCS 5330, pp. 16–30, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Efficient Generation of Unsatisfiability Proofs and Cores in SAT 17

is a sequence of resolution steps (see the example below). When unsatisfiability
is detected, that is, a conflict at decision level zero, it provides a last line in the
trace corresponding to the parents list of the empty clause. By processing the
trace file backwards from this last line one can hence reconstruct a resolution
proof and find the subset of the initial clauses that is used in it.

Example 1. (see Section 2 for details) Consider, among others, a set of clauses:
9∨6∨7∨8 8∨7∨5 6∨8∨4 4∨1 4∨5∨2 5∨7∨3 1∨2∨3

and a state of the DPLL procedure where the stack of assigned literals is of the
form: . . . 6 . . . 7 . . . 9d 8 5 4 1 2 3. It is easy to see that this state can be reached
after the last decision 9d by six unit propagation steps with these clauses (from
left to right). For example, 8 is implied by 9, 6, and 7 because of the leftmost
clause. Now, the clause 1∨2∨3 is conflicting (it is false in the current assignment),
and working backwards from it we get an implication graph:

6

8

4

5

2

1

37

9
d

where the so-called 1UIP cut (the dotted line, see [MSS99, MMZ+01]) gives
us the backjump clause 8∨7∨6 that is learned as a lemma. For those who are
more familiar with resolution, this is simply a backwards resolution proof on
the conflicting clause, resolving away the literals 3, 2, 1, 4 and 5, in the reverse
order their negations were propagated, with the respective clauses that caused
the propagations:

8∨7∨5
6∨8∨4

4∨1
4∨5∨2

5∨7∨3 1∨2∨3
5∨7∨1∨2

4∨5∨7∨1
5∨7∨4

6∨8∨7∨5
8∨7∨6

until reaching a clause with only one literal of the current decision level (here,
literal 8). This clause 8∨7∨6 allows one to backjump to the state . . . 6 . . . 7 8, as
if it had been used on . . . 6 . . . 7 for unit propagation.

Due to the linear and regular nature of such resolution proofs (each literal is
resolved upon at most once and then does not re-appear), given the six input
clauses it is easy to see that the outcome must be 8∨7∨6: its literals are exactly
the ones that do not occur with both polarities in the input clauses. This fact
allows one to reconstruct and check the whole resolution proof from (i) the
input clauses file and (ii) the parent ID information of the trace file. Note that
a clause’s ID can just be the line number (in one of the files) introducing it. �	

18 R. Aśın et al.

The overhead in time for producing the trace file is usually small (typically
around 10 per cent, [ZM03], see Section 4), but the traces quickly become large
(hundreds of MB from a few minutes run) and extracting the proof or the core,
i.e., the leaves of the proof DAG, may be expensive. This is especially the case
since it is likely that the trace does not fit into memory, and hence a breadth-first
processing is needed requiring more than one pass over the file [ZM03].

The processing time becomes even more important when, for reducing the size
of the core, one iteratively feeds it back into the SAT solver with the hope of gen-
erating a smaller one, until a fixpoint is reached (that still may not be minimal,
so one can apply other methods for further reducing it, if desired). Efficiency is
also important in other applications requiring features like the identification of
all disjoint cores, i.e., all independent reasons for unsatisfiability.

1.1 In-Memory Algorithms

To overcome the drawbacks of the trace file approach, in this paper we study
four alternative in-memory algorithms for generating unsatisfiability proofs and
cores using DPLL-based propositional SAT solvers.

The first algorithm is based on adding one distinct new initial ancestor (IA)
marker literal to each initial clause. These literals are set to false from the begin-
ning. Then the solver is run without ever removing these false IA-marker literals
from clauses, and the empty clause manifests itself as a clause built solely from
IA-marker literals, each one of which identifies one initial ancestor, that is, one
clause of the unsatisfiable core. This folk idea appears to be quite widely applied
(e.g., in SAT Modulo Theories). As far as we know, it stems from the Minisat
group (around 2002, Eén, Sörensson, Claessen). It requires little implementation
effort, but here, in Subsection 3.1 we give experimental evidence showing that
it is extremely inefficient in solver time and memory and explain why.

Our second algorithm, given in Subsection 3.2, tries to overcome these short-
comings by storing initial ancestor information at the meta level along with the
clauses: each clause has an attached list with the ID’s of its initial ancestors.
This reduces part of the overhead of the first algorithm. However, our experi-
ments reveal that also this method is still far too expensive in memory, especially
in combination with certain clause simplification methods, which on the other
hand, when turned off, slow down the solver too much.

The third algorithm (Section 4.1) stores the immediate parents list along with
each clause. The problem with this approach is that if a low-activity clause is
deleted (as usual in modern SAT solvers), its associated parent information can
be removed only if this clause has generated no children (the literals of deleted
clauses need not be kept, though). This approach, implemented by Biere in Pi-
coSAT [Bie08], essentially corresponds to storing the trace file of [ZM03] in main
memory. In those cases where this is indeed feasible, i.e., if there is enough memory,
this has several advantages over the trace file one. One not only avoids the inef-
ficiencies caused by the use of external memory, but also, and more importantly,
for retrieving the proof or the core one does not need to sequentially traverse the
whole trace, but only those parts of it that appear in the proof. This gives an order

Efficient Generation of Unsatisfiability Proofs and Cores in SAT 19

of magnitude speedup in applications where cores or proofs have to be produced
frequently [BKO+07, Bie08], and of course even more in the context of sophisti-
cated (e.g., iterative) core/proof minimization techniques.

Since we also need proofs and cores from long runs, we needed to go beyond
the current in-memory technology. Moreover, we use SAT solvers inside other
systems (e.g., for SAT Modulo Theories) where memory for the SAT solver is
more limited, All this will become even more important if (multicore) processor
performance continues to grow faster than memory capacity. Here we describe a
new and better in-memory method, and give a careful experimental comparison
with the previous ones, which is non-trivial, since, for assessing different data
structures and algorithms for SAT, it is crucial to develop implementations of
each one of them, based on the same SAT solver, and in such a way that the
search performed by the SAT solver is always identical. All software sources and
benchmarks used here can be found at www.lsi.upc.edu/~rasin.

Our new in-memory algorithm, described in Section 4.2, keeps only the po-
tentially needed parent information. The idea is to keep for each clause also a
counter of how many of its children do have some active descendant. If it be-
comes zero the parent information can be removed (we have recently seen that
the use of reference counters is suggested in [Bie08], but we do not know how
similar this may be and no implementation exists). Here we show that (i) when
implemented carefully, the overhead on the SAT solver time is still essentially
negligible (around 5 per cent, similar to Biere’s approach) and (ii) the memory
usage frequently grows significantly slower. As the figure below shows, and as
expected, in Biere’s approach memory usage always grows linearly in the number
of conflicts (or more, since parents lists get longer in longer runs), and hence also
in his optimized Delta Encoding, which compresses parents lists up to four times
[Bie08]. In our ChildCount approach, performing exactly the same search on this
instance (goldb-heqc-rotmul; cf. Section 4.3 for many more experimental re-
sults), one can see in the figure that on this particular example memory usage
grows much slower and even tends to stabilize. Skews in the plot correspond to
clause deletion phases of the solver.

 0

 50

 100

 150

 200

 250

 300

 350

 0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06 1.8e+06

m
em

or
y

us
ed

 [M
B

]

number conflicts

Memory usage comparison

parents-list with childcount
parents-list without childcount

20 R. Aśın et al.

2 Short Overview on DPLL Algorithms for SAT

For self-containedness of the paper, here we give a short overview on DPLL
based on the abstract presentation of [NOT06]. Let P be a fixed finite set of
propositional symbols. If p ∈ P , then p is an atom and p and ¬p are literals
of P . The negation of a literal l, written ¬l, denotes ¬p if l is p, and p if l is
¬p. A clause is a disjunction of literals l1 ∨ . . . ∨ ln. A unit clause is a clause
consisting of a single literal. A (CNF) formula is a conjunction of one or more
clauses C1 ∧ . . . ∧ Cn. A (partial truth) assignment M is a set of literals such
that {p,¬p} ⊆ M for no p. A literal l is true in M if l ∈ M , is false in M if
¬l ∈M , and is undefined in M otherwise. A literal is defined in M if it is either
true or false in M . A clause C is true in M if at least one of its literals is true
in M . It is false in M if all its literals are false in M , and it is undefined in
M otherwise. A formula F is true in M , or satisfied by M , denoted M |= F ,
if all its clauses are true in M . In that case, M is a model of F . If F has no
models then it is unsatisfiable. If F and F ′ are formulas, we write F |= F ′ if F ′

is true in all models of F . Then we say that F ′ is entailed by F , or is a logical
consequence of F . If C is a clause l1∨ . . .∨ ln, we write ¬C to denote the formula
¬l1 ∧ . . . ∧ ¬ln. A state of the DPLL procedure is a pair of the form M || F ,
where F is a finite set of clauses, and M is, essentially, a (partial) assignment.
A literal l may be annotated as a decision literal (see below), writing it as ld. A
clause C is conflicting in a state M || F,C if M |= ¬C. A DPLL procedure
can be modeled by a set of rules over such states:

UnitPropagate :

M || F, C ∨ l =⇒ M l || F, C ∨ l if
{
M |= ¬C
l is undefined in M

Decide :

M || F =⇒ M ld || F if
{
l or ¬l occurs in a clause of F
l is undefined in M

Fail :

M || F, C =⇒ Fail if
{
M |= ¬C
M contains no decision literals

Backjump :

M ld N || F, C =⇒ M l′ || F, C if

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
M ld N |= ¬C, and there is
some clause C′ ∨ l′ such that:
F,C |= C′ ∨ l′ and M |= ¬C′,
l′ is undefined in M , and
l′ or ¬l′ occurs in F or in M ld N

Learn :

M || F =⇒ M || F, C if
{

each atom of C occurs in F or in M
F |= C

Forget :
M || F, C =⇒ M || F if

{
F |= C

For deciding the satisfiability of an input formula F , one can generate an
arbitrary derivation ∅ || F =⇒ . . . =⇒ Sn, where Sn is a final state (no rule

Efficient Generation of Unsatisfiability Proofs and Cores in SAT 21

applies). Under simple conditions, this always terminates. Moreover, for every
derivation like the above ending in a final state Sn, (i) F is unsatisfiable if, and
only if, Sn is Fail , and (ii) if Sn is of the form M || F then M is a model of F
(see [NOT06] for all details).

The UnitPropagate, Decide and Fail rules speak for themselves. The Backjump
rule corresponds to what is done in Example 1 (here C′ ∨ l′ is the backjump
clause) and the Learn rule corresponds to the addition of lemmas (clauses that
are logical consequences), such as the backjump clause. Since a lemma is aimed
at preventing future similar conflicts, when these conflicts are not very likely
to be found again the lemma can be removed by the Forget rule. In practice,
a lemma is removed when its relevance (see, e.g., [BS97]) or its activity level
drops below a certain threshold; the activity can be, e.g., the number of times
it becomes a unit or a conflicting clause [GN02].

3 Basic Algorithms, Only for Core Extraction

In this section we introduce and compare two basic algorithms that can be used
for extracting unsatisfiable cores, but not unsatisfiability proofs.

3.1 First Algorithm: Marker Literals

As said, in this approach one adds to each initial clause Ci one distinct new
initial ancestor (IA) marker literal, say, a positive literal yi. These literals are
set to false from the beginning, and hence the logical meaning of the clause set
does not change.

Then the solver is run, but without applying to the yi-literals the usual sim-
plification technique of removing from all clauses the literals that are false at
decision level zero (henceforth: false literal deletion). In every lemma that is
generated, its subset of yi-literals shows exactly the subset of the initial clauses
it has been derived from. In such a run, unsatisfiability is then witnessed by the
appearance of an “empty clause” built solely from yi-literals, i.e., a clause of the
form yj1 ∨. . .∨yjk

, indicating that {Cj1 , . . . , Cjk
} is an unsatisfiable core. Note

that this technique can only be used for finding unsatisfiable cores, and not for
generating a resolution proof, since the proof structure is lost.

The interesting aspect of this method is that it requires very little implemen-
tation effort. However, it leads to important inefficiencies in the SAT solver.
Clauses can become extremely long, using large amounts of memory, and for
clauses that without the yi-literals would have been units or two-literal clauses
this is no longer the case. This leads to an important loss of efficiency in, for
instance, the unit propagation data structures and algorithms.

3.2 Second Algorithm: Initial Ancestor Lists

An obvious way for overcoming the shortcomings of the previous algorithm is
by storing initial ancestor information at the meta level along with the clauses,

22 R. Aśın et al.

instead of adding dummy literals for this. Therefore in this second algorithm each
clause has an attached list with the ID’s of its initial ancestors. This reduces part
of the overhead of the first algorithm. For example, unit clauses are really treated
as such, and are not hidden due to the additional IA literals.

In most DPLL-based SAT solvers, unit clauses and two-literal clauses are not
explicitly stored as such. Units are usually simply set to true in the assignment
at decision level zero, whereas binary clauses are typically kept in an adjacency
list data structure, i.e., for each literal l there is a list of literals l1 . . . ln, such
that each l ∨ li is a binary clause. This is much faster and memory-efficient for
unit propagation than the standard two-watched literal data structures that are
used for longer clauses.

In the algorithm for core extraction given here, we also need to store the
IA information for unit clauses and two-literal clauses. This is done here in a
memory bank apart from the one of the other clauses. Since one- and two-literal
clauses are never removed in our solver, neither is their IA information.

3.3 Experiments: The First Two Algorithms vs. Our Basic Solver

In the first table below we compare a basic version of our own Barcelogic SAT
solver without proof or core extraction (column Basic) with the two algorithms
described in this section (marker lits and IA’s). Each one of these two al-
gorithms is implemented on top of the basic version with the minimal amount
of changes. In particular, binary clauses are still represented in their efficient
special form and no unit propagation using longer clauses is done if there is any
pending two-literal clause propagation.

As said, for the algorithm based on marker literals we had to turn off false
literal deletion. For the IA algorithm, each time a clause C∨l with IA list L1 gets
simplified due the decision level zero literal ¬l with IA list L2, the new clause C
gets the IA list L1 ∪L2. It turns out that the IA lists became long and memory
consuming. Therefore for this first experiment also in the IA’s algorithm we
switched off false literal deletion, which slowed down the solver and also made
it search differently with respect to the basic version, but it prevented memory
outs. Also to prevent memory outs, we were doing very frequent clause deletion
rounds: every 5000 conflicts we were deleting all zero-activity clauses. To make
the comparison fairer, we also did this in the basic algorithm, for which this is
not precisely its optimal setting.

Note that therefore all three versions of the solver perform a different search1

and hence, due to “luck” a core-generating version could still be faster than the
basic one on some particular benchmark. All experiments were run on a 2.66GHz
Xeon X3230, giving each process a 1.8GB memory limit and a timeout limit of
90 minutes. Times are indicated in seconds, and time outs are marked here with
TO. The table is split into two parts. The first part has the unsatisfiable prob-
lems from the qualification instance sets of the 2006 SAT Race (SAT-Race TS 1

1 Below there is a version of the IA algorithm with false literal detection that does
perform the same search as the basic version.

Efficient Generation of Unsatisfiability Proofs and Cores in SAT 23

and 2, see fmv.jku.at/sat-race-2006) taking between 5 and 90 minutes in
our basic solver. The second part has much easier ones. In all experiments the
unsatisfiability of the extracted cores has been verified with independent SAT
solvers.

From the results of the table it follows that these techniques are not practical
except for very simple problems.

Runtimes (seconds)
Instance Basic marker IA’s

lits
manol-pipe-cha05-113 448 5035 786
manol-pipe-f7idw 546 2410 1181
6pipe 717 TO 1324
manol-pipe-g10idw 830 4171 2299
manol-pipe-c7idw 1534 TO 3701
manol-pipe-c10b 1938 TO 3926
manol-pipe-g10b 1969 TO 5365
manol-pipe-c6bid i 2219 TO 4253
manol-pipe-g10ni 2419 TO 4412
manol-pipe-g10nid 2707 TO TO
manol-pipe-c6nidw i 2782 TO TO
velev-dlx-uns-1.0-05 3306 1028 TO
goldb-heqc-frg2mul 3891 TO TO
7pipe q0 k 4184 TO TO
manol-pipe-g10bidw 4650 TO TO
goldb-heqc-i8mul 4911 TO TO
hoons-vbmc-s04-06 TO 4543 TO
2dlx-cc-mc-ex-bp-f 1.81 2.91 1.35
3pipe-1-ooo 1.45 1.91 0.71
3pipe-3-ooo 1.92 3.53 1.59
4pipe-1-ooo 3.56 8.77 4.57
4pipe-3-ooo 5.38 11.67 5.36
4pipe-4-ooo 6.90 20.35 7.31
4pipe 8.15 33.64 14.82
5pipe-1-ooo 11.32 20.52 12.51
5pipe-2-ooo 10.31 18.98 14.33
5pipe-4-ooo 21.41 52.64 54.54
cache.inv14.ucl.sat.chaff.4.1.bryant 13.36 75.23 18.85
ooo.tag14.ucl.sat.chaff.4.1.bryant 7.05 6.78 7.96
s1841184384-of-bench-sat04-984.used-as.sat04-992 2.07 4.62 1.97
s57793011-of-bench-sat04-724.used-as.sat04-737 9.10 66.05 10.36
s376420895-of-bench-sat04-984.used-as.sat04-1000 2.50 5.48 2.28

It is well-known that DPLL-based SAT solvers are extremely sensitive in the
sense that any small change (e.g., in the heuristic or in the order in which input
clauses or their literals are given) causes the solver to search differently, which in

24 R. Aśın et al.

turn can cause dramatic changes in the runtime on a given instance. Therefore,
most changes in SAT solvers are hard to assess, as they can only be evaluated
by running a statistically significant amount of problems and measuring aspects
like runtime averages. For this reason, all experiments mentioned from now on in
this paper have been designed in such a way that for each method for proof/core
extraction our solver performs exactly the same search (which was impossible
in the algorithm with marker literals). This allows us to measure precisely the
overhead in runtime and memory consumption due to proof/core generation
bookkeeping.

The following table compares our basic solver on the easy problems with the
IA’s method, in runtime and in memory consumption. Here MO denotes memory
out (> 1.8 GB). The difference in times with the previous table comes from the
fact that here the setting of the solver is the standard one, with less frequent
clause deletion phases, and with false literal deletion. As said, false literal deletion
makes the IA’s method even more memory consuming and also slower, as longer
lists of parents have to be merged.

As we can see, usually only on the very simple problems the runtimes are
comparable. As soon as more than few seconds are spent in the basic version,
not only does the memory consumption explode, but also the runtime due to the
bookkeeping (essentially, computing the union of long parents lists and copying
them).

Basic vs IA’s (same search, Time in seconds, Memory in MB)
Instance T Basic M Basic T IA’s M IA’s
2dlx-cc-mc-ex-bp-f 1.64 3 4.17 298
3pipe-1-ooo 1.35 3 2.07 122
3pipe-3-ooo 1.78 5 3.99 215
4pipe-1-ooo 3.98 14 22.76 843
4pipe-3-ooo 4.88 13 30.08 1175
4pipe-4-ooo 7.14 19 36.14 MO
4pipe 11.35 47 32.80 1106
5pipe-1-ooo 10.52 24 55.53 MO
5pipe-2-ooo 10.30 23 50.92 MO
5pipe-4-ooo 33.08 65 42.87 MO
cache.inv14.ucl.sat.chaff... 12.75 5 39.43 MO
ooo.tag14.ucl.sat.chaff.4... 6.21 3 9.12 612
s1841184384-of-bench-sat0... 1.83 1 1.86 51
s57793011-of-bench-sat04-... 7.75 32 8.47 74
s376420895-of-bench-sat04... 1.99 1 2.37 89

4 Algorithms for Extracting Proofs and Cores

Here we analyze more advanced algorithms that are not only able to extract
unsatisfiable cores, but also resolution proof traces, i.e., the part of the trace
that corresponds to the resolution proof.

Efficient Generation of Unsatisfiability Proofs and Cores in SAT 25

4.1 In-Memory Parent Information

We now consider the in-memory method, a simpler version of which is imple-
mented in the PicoSAT solver [Bie08]. Here, along with each clause the following
additional information is stored: its ID, its list of immediate parents’ ID’s, and
what we call its is-parent bit, saying whether this clause has generated any chil-
dren itself or not. The parents list is what one would write to the trace in the
[ZM03] technique. Each time a new lemma is generated, it gets a new ID, its
is-parent bit is initialized to false, the ID’s of its parents are collected and at-
tached to it, and the is-parent bit of each one of its parents is set to true. In
this approach, the parent information of a deleted clause (by application of the
Forget rule during the clause deletion phase of the SAT solver) is removed only
if its is-parent bit is false.

Once the empty clause is generated (i.e., a conflict at level zero appears),
one can recover the proof by working backwards from it (without the need of
traversing the whole trace, and on disk, as in [ZM03]).

In our implementation of this method, unlike what is done in PicoSAT, we
maintain the special-purpose two-literal clause adjacency-list representation also
when the solver is in proof-generation mode. Hence the performance slowdown
with respect to our basic reference solver corresponds exactly to the overhead due
to the bookkeeping for proof generation. Our implementation treats all conflicts
in a uniform way, including the one obtaining the empty clause. This in in
contrast to what is done with the final decision-level-zero conflict in Zhang and
Malik’s trace format, which gets a non-uniform treatment in [ZM03] (in fact,
the explanations given in the introduction correspond to our simplified uniform
view where the empty clause has its conflict analysis like any other clause).

The parents lists of units and binary clauses are stored in a separate memory
zone, as we also did for the IA’s method. Unit and binary clauses are never
deleted in our solver. Essentially, at SAT solving time (more precisely, during
conflict analysis) what is required is a direct access to the ID of a given clause.
For unit and binary clauses we do this by hashing (for the larger clauses this
is not necessary, since the clause, along with all its information and literals, is
already being accessed during conflict analysis). At proof extraction time, one
needs direct access to the parent list corresponding to a given clause ID. This
we do by another hash table that only exists during proof extraction.

4.2 Our New Method with Child Count

The idea we develop in this section is the following: instead of just an is-parent
bit, we keep along with each clause a counter, called the childcounter, of how
many of its children have some active descendant. Here a clause is considered
active if it participates in the DPLL derivation rules that are implemented in
the SAT solver. In our solver, that is the case if it has less than three literals
(these clauses are never deleted in our solver) or if it has at least three literals
and has not been removed by the Forget rule (i.e., it is being watched in the
two-watched literal data structure for unit propagation [MMZ+01]).

26 R. Aśın et al.

If the childcounter becomes zero also the parent information can be removed,
since this clause can never appear in a proof trace of the empty clause (obtained
from active clauses only). Note that this is a recursive process: each time a
clause C is selected for deletion, i.e., when C goes from active to non-active, if
its childcounter is zero then a recursive childcounter-update(C) process starts:

For each parent clause PC of C,

1. Decrease by one the childcounter of PC.
2. If the childcounter now becomes zero and PC is non-active, then do

childcounter-update(PC).
3. Delete all information of C.

We have again implemented this method on top of our basic Barcelogic solver,
and again we have done this in such a way that the search is not affected,
i.e., again the additional runtime and memory consumption with respect to our
basic solver correspond exactly to the overhead due to the bookkeeping for proof
generation.

As before, during conflict analysis again we need to add the parent’s ID’s
to the parent list of the new lemma, but now, in addition, the childcounters of
these parents are increased. For this, as before, we use hashing to retrieve the
ID of parent clauses with less than three literals. For the parent clauses with at
least three literals this is not necessary, since these clauses, along with all their
information and literals, are already being accessed during conflict analysis.

The main additional implementation issue is that now during the clause dele-
tion phase, when doing childcounter-update(C), given the ID of an (active or
non-active) clause, we may need access its information (their childcounters and
parent lists). For this we use an additional hash table, which supposes only a
negligible time overhead. Note that the clause deletion phase is not invoked very
frequently and takes only a small fraction of the runtime of the SAT solver.

4.3 Experiments

We have run experiments with the same unsatisfiable instances as before (the
harder ones): from the qualification instance sets of the 2006 SAT Race (SAT-
Race TS 1 and 2), the ones taking between 250 seconds and 90 minutes. Here
again we run our solver in its standard settings, with false literal deletion and
less frequent clause deletion phases.

In all experiments the correctness of the extracted proofs has been verified
with the TraceCheck tool, see [Bie08] and fmv.jku.at/tracecheck, and a simple
log information has been used to verify that indeed exactly the same SAT solving
search was taking place in all versions.

Time consumption is analyzed in the next table (where instances are or-
dered by runtime) which has the following columns: basic: our basic SAT solver
without proof/core generation, Biere: the same solver extended with Biere’s in-
memory core generation, Biere-b: the same, also extended with is-parent bit,
disk: the basic solver writing traces to disk, as in [ZM03], Child: our method

Efficient Generation of Unsatisfiability Proofs and Cores in SAT 27

with child count. Columns “solve” include just the solving time (all version
performing exactly the same search), and “slv+tr” includes as well the time
needed for traversing the in-memory data structures and writing to disk the
part of the trace that contains the unsatisfiability proof.

The entries labelled “MO” correspond to “Memory Out”, which means more
than 1.8GB. The entries labelled “FO” for the “disk” column correspond to more
than 2GB, which produced a “file too large” error (to be eliminated in the final
version of this paper).

Time (s)
Instance basic Biere Biere-b disk Child

solve solve slv+tr solve slv+tr solve solve slv+tr
manol-pi-cha05-113 254 265 269 265 269 273 267 271
manol-pipe-f7idw 257 268 270 268 269 279 272 273
manol-pipe-c7idw 348 362 364 361 363 372 365 367
manol-pipe-g10idw 412 433 444 432 443 453 438 444
manol-pipe-c10b 527 550 561 546 558 567 555 564
goldb-heqc-i8mul 577 601 644 604 648 635 611 648
velev-dlx-uns-1.0-5 696 729 735 731 736 738 727 729
manol-pipe-c6bid i 748 780 790 771 780 800 788 794
6pipe 785 846 858 844 856 850 854 861
velev-pipe-uns-1.1-7 829 928 948 930 949 941 931 940
manol-pipe-c6nidw i 885 923 937 923 936 949 920 928
manol-pipe-g10nid 1030 1073 1080 1073 1079 1116 1071 1074
hoons-vbmc-s04-06 1053 1084 1099 1088 1103 1110 1107 1118
7pipe q0 k 1551 1725 1776 1718 1764 1781 1751 1768
manol-pipe-g10bidw 1709 MO MO 1774 1783 1856 1773 1777
manol-pipe-g10ni 1788 MO MO MO MO FO 2029 2033
manol-pipe-c7nidw 4059 MO MO MO MO FO 4209 4238
manol-pipe-c7bidw i 4255 MO MO MO MO FO 4414 4445

The differences in runtime between our basic SAT solver without proof/core
generation and its versions that do the necessary bookkeeping for in-memory
proof/core generation are always very small, usually around five percent or less,
and always less than the trace generation technique of [ZM03]. We conjecture
that this is mainly because of the inefficiencies in writing to disk of the latter
method (see below examples of the size of the traces that are written) since
it requires less additional bookkeeping than the in-memory techniques. Note
that our Childcount method in principle needs to do more work for generating
the trace.

Much more important and interesting are the differences in memory usage.
The plot we give below compares memory usage of three methods: (i) Biere’s
method without the is-parent bit (called “no removal” in the plot) i.e., where
parent information is never deleted, (ii) Biere’s method with the is-parent bit as
explained here in Section 4.1, and (iii) our method with Childcount. We do this
for one of the instances that generate many conflicts.

28 R. Aśın et al.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

M
em

or
y

(M
B

)

Conflicts

manol-pipe-g10ni

Biere (no removal)
Biere

ChildCount

As we can see in the table below (where “Time” refers to the runtime of
our basic SAT solver, and column “Biere-b” is the one with is-parent bit), the
benefits of our Childcount methods are less important on examples that are
solved generating fewer conflicts. The is-parent bit of Biere’s methods has only
a very limited impact. In the last two columns we also show the size of the
whole DPLL trace on disk (“full”) produced by the method of [ZM03], and
the size of its subset corresponding to the just the proof trace (“proof”), i.e.,
the proof of the empty clause, as it is generated by the methods Biere, Biere-b,
and Childcount (which all three produce exactly the same proof trace in our
implementations). Since the entire DPLL trace is usually much larger than just
the proof trace, the in-memory methods are also faster if one writes to disk
the proof trace once the unsatisfiability has been detected (although for many
applications, such as core minimization, this is not needed).

Efficient Generation of Unsatisfiability Proofs and Cores in SAT 29

In these implementations we have not considered compression methods such as
Biere’s Delta Encoding, which compresses parents lists up to four times [Bie08],
since this is a somewhat orthogonal issue that can be applied (or not) to both
methods.

Num. Time Memory Usage (MB) Trace (MB)
Instance cnflcts (s) Biere Biere-b Child full proof
velev-dlx-uns-1.0-05 199390 696 239 234 229 226 30
manol-pipe-f7idw 333275 257 140 127 78 183 24
manol-pipe-cha5-113 336968 254 228 218 167 218 112
goldb-heqc-i8mul 397702 577 MO 972 947 1002 937
manol-pipe-g10idw 423079 412 434 412 285 550 191
manol-pipe-c10b 530022 527 347 330 240 452 258
manol-pipe-c7idw 536341 348 209 192 141 217 42
manol-pipe-c6bid-i 1123035 748 393 347 187 543 166
manol-pipe-c6nidw-i 1256752 885 488 436 252 671 226
hoons-vbmc-s04-06 1301190 1053 320 309 228 358 322
manol-pipe-g10nid 1327600 1030 613 557 144 986 82
6pipe 1377876 785 519 502 418 433 205
velev-pipe-uns-1.1-7 1761066 829 447 409 210 751 260
manol-pipe-g10bidw 2250890 1709 MO 892 146 1679 100
manol-pipe-g10ni 2566801 1788 MO MO 159 FO 113
7pipe-q0-k 3146242 1551 810 753 342 1381 472
manol-pipe-c7nidw 3585110 4059 MO MO 613 FO 692
manol-pipe-c7bidw-i 4011227 4255 MO MO 643 FO 761

5 Conclusions and Future Work

We have carried out a systematic and careful implementation of different meth-
ods for in-memory unsatisfiable core and proof generation. Regarding the two
simpler methods for generating cores, our IA technique is indeed slightly more
efficient than the one based on marker literals, but none of both is useful for
instances on which our solver (using its default settings) takes more than few
seconds. We have also shown that the techniques for generating cores and proofs
explained in Section 4 are applicable to large SAT solving runs, and moreover al-
low one to keep the standard setting of the solver without a significant overhead
in runtime.

Our experiments clearly show that our Childcount technique makes it possible
to go significantly beyond previous in-memory techniques in terms of memory
requirements. We plan to implement it in combination with Biere’s Delta En-
coding compression technique, which will make it possible to handle even longer
DPLL runs or use even less memory. We also plan to use the basic underlying al-
gorithms given here inside algorithms for core-minimization and for applications
using cores (which are both outside the scope of this paper).

30 R. Aśın et al.

References

[Bie08] Biere, A.: PicoSAT essentials, Private communication. Journal on Satisfi-
ability, Boolean Modeling and Computation (submitted, 2008)

[BKO+07] Bryant, R.E., Kroening, D., Ouaknine, J., Seshia, S.A., Strichman, O.,
Brady, B.A.: Deciding bit-vector arithmetic with abstraction. In: Grum-
berg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 358–372.
Springer, Heidelberg (2007)

[BS97] Bayardo Jr., R.J., Schrag, R.C.: Using CSP look-back techniques to solve
real-world SAT instances. In: Proceedings of the Fourteenth National Con-
ference on Artificial Intelligence (AAAI 1997), Providence, Rhode Island,
pp. 203–208 (1997)

[DLL62] Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-
proving. Comm. of the ACM 5(7), 394–397 (1962)

[DP60] Davis, M., Putnam, H.: A computing procedure for quantification theory.
Journal of the ACM 7, 201–215 (1960)

[FM06] Fu, Z., Malik, S.: On solving the partial max-sat problem. In: Biere, A.,
Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 252–265. Springer,
Heidelberg (2006)

[GN02] Goldberg, E., Novikov, Y.: BerkMin: A fast and robust SAT-solver. In:
Design, Automation, and Test in Europe (DATE 2002), pp. 142–149 (2002)

[Hak85] Haken, A.: The intractability of resolution. Theor. Comput. Sci. 39, 297–
308 (1985)

[Jac02] Jackson, D.: Alloy: a lightweight object modelling notation. ACM Trans.
Softw. Eng. Methodol. 11(2), 256–290 (2002)

[MMZ+01] Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff:
Engineering an Efficient SAT Solver. In: Proc. 38th Design Automation
Conference (DAC 2001) (2001)

[MSP08] Marques-Silva, J., Planes, J.: Algorithms for maximum satisfiability using
unsatisfiable cores. In: Proceedings of Design, Automation and Test in
Europe (DATE 2008), pp. 408–413 (2008)

[MSS99] Marques-Silva, J., Sakallah, K.A.: GRASP: A search algorithm for propo-
sitional satisfiability. IEEE Trans. Comput. 48(5), 506–521 (1999)

[NOT06] Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Modulo
Theories: from an Abstract Davis-Putnam-Logemann-Loveland Procedure
to DPLL(T). Journal of the ACM 53(6), 937–977 (2006)

[ZM03] Zhang, L., Malik, S.: Validating SAT Solvers Using an Independent
Resolution-Based Checker: Practical Implementations and Other Applica-
tions. In: 2003 Design, Automation and Test in Europe Conference (DATE
2003), pp. 10880–10885. IEEE Computer Society, Los Alamitos (2003)

Justification-Based Local Search with
Adaptive Noise Strategies

Matti Järvisalo, Tommi Junttila, and Ilkka Niemelä

Helsinki University of Technology (TKK)
Department of Information and Computer Science, P.O. Box 5400, FI-02015 TKK, Finland

{matti.jarvisalo,tommi.junttila,ilkka.niemela}@tkk.fi

Abstract. We study a framework called BC SLS for a novel type of stochastic
local search (SLS) for propositional satisfiability (SAT). Aimed specifically at
solving real-world SAT instances, the approach works directly on a non-clausal
structural representation for SAT. This allows for don’t care detection and justi-
fication guided search heuristics in SLS by applying the circuit-level SAT tech-
nique of justification frontiers. In this paper we extend the BC SLS approach first
by developing generalizations of BC SLS which are probabilistically approxi-
mately complete (PAC). Second, we develop and study adaptive noise mecha-
nisms for BC SLS, including mechanisms based on dynamically adapting the
waiting period for noise increases. Experiments show that a preliminary imple-
mentation of the novel adaptive, PAC generalization of the method outperforms
a well-known CNF level SLS method with adaptive noise (AdaptNovelty+) on a
collection of structured real-world SAT instances.

1 Introduction

While stochastic local search techniques (SLS) such as [1,2,3,4,5] are very efficient in
solving hard randomly generated SAT instances, a major challenge is to improve SLS on
structural problems by efficiently handling variable dependencies [6]. In this paper we
extend a recent non-clausal stochastic local search (SLS) method, BC SLS [7], which
applies similar ideas as typical in clausal SLS methods but differs in many crucial as-
pects. In particular, BC SLS combines techniques from structure-based complete DPLL
style non-clausal algorithms [8,9,10,11]. Aimed specifically at solving real-world SAT
instances, BC SLS works directly on a non-clausal structural representation for SAT.
This allows for adopting don’t cares [12] and justification guided search heuristics
in SLS by applying ideas from the circuit-level SAT technique of justification fron-
tiers [10]. For a discussion of the relationship between the basic BC SLS method and
both CNF level and other non-clausal SLS methods, such as [13,14,15], see [7].

In this work we adopt the basic ingredients of local search—the notions of a con-
figuration and a move, the objective function, and the stopping criterion—from BC
SLS, and extend the approach. In more detail, we develop generalizations of BC SLS
which (i) are probabilistically approximately complete (PAC) [16], and which (ii) ex-
ploit adaptive noise mechanisms within the framework.

It has been observed that the performance of CNF level SLS methods, such as those
in the WalkSAT family, varies greatly depending on the chosen fixed noise parameter

I. Cervesato, H. Veith, and A. Voronkov (Eds.): LPAR 2008, LNCS 5330, pp. 31–46, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

32 M. Järvisalo, T. Junttila, and I. Niemelä

setting [3,4]. We show that the same phenomenon is present also in BC SLS. In the case
of CNF level SLS, in order to avoid manual noise tuning this has led to the development
of automatic noise level mechanisms based on probing techniques for selecting a fixed
noise parameter setting before actual search [17], or by adaptively tuning the noise level
during search [4]. Here we adapt latter techniques to the BC SLS framework. However,
we discover that compared to the parameter values for adapting noise used in CNF level
SLS methods, radically different settings are required in BC SLS. We then show how
to adjust this technique for BC SLS for better performance. In addition to the adaptive
noise mechanism based on a static waiting period for noise increments, we suggest an
alternative based on dynamic waiting periods that depend more on the current state of
the search. While maintaining similar performance, the application of dynamic waiting
periods gives the possibility of dismissing the fixed constant used in the typical adaptive
noise mechanism based on a static waiting periods.

Applying a novel adaptive noise strategy for BC SLS, we show experimentally that
a preliminary implementation of an adaptive PAC variant of the BC SLS method out-
performs a fine-tuned implementation of the CNF level SLS method AdaptNovelty+ on
a collection of structured real-world SAT instances.

This paper is organized as follows. First we define Boolean circuits and central
concepts related to justifications and don’t cares (Sect. 2). The justification-based non-
clausal SLS framework is described in Sect. 3, with analysis of probabilistically ap-
proximately completeness of different variants of the method (Sect. 3.1). Section 4 is
focused on developing adaptive noise mechanisms for the framework.

2 Constrained Boolean Circuits

Boolean circuits offer a natural non-clausal representation for arbitrary propositional
formulas in a compact DAG-like structure with subformula sharing. Rather than trans-
lating circuits to CNF for solving the resulting SAT instance by local search, in this
work we will work directly on the Boolean circuit representation.

A Boolean circuit over a finite set G of gates is a set C of equations of form g :=
f(g1, . . . , gn), where g, g1, . . . , gn ∈ G and f : {f, t}n → {f, t} is a Boolean function,
with the additional requirements that (i) each g ∈ G appears at most once as the left
hand side in the equations in C, and (ii) the underlying directed graph

〈G,E(C) = {〈g′, g〉 ∈ G×G | g := f(. . . , g′, . . .) ∈ C}〉

is acyclic. If 〈g′, g〉 ∈ E(C), then g′ is a child of g and g is a parent of g′. The de-
scendant and ancestor relations are defined in the usual way as the transitive closures
of the child and parent relations, respectively. If g := f(g1, . . . , gn) is in C, then g is
an f -gate (or of type f), otherwise it is an input gate. The set of input gates in C is
denoted by inputs(C). A gate with no parents is an output gate. An assignment for C
is a (possibly partial) function τ : G → {f, t}. A total assignment τ for C is consis-
tent if τ(g) = f(τ(g1), . . . , τ(gn)) for each g := f(g1, . . . , gn) in C. A circuit C has
2|inputs(C)| consistent total assignments.

A constrained Boolean circuit Cα is a pair 〈C, α〉, where C is a Boolean circuit and
α is an assignment for C. With respect to a constrained circuit Cα, each 〈g, v〉 ∈ α is a

Justification-Based Local Search with Adaptive Noise Strategies 33

constraint, and g is constrained to v if 〈g, v〉 ∈ α. A total assignment τ for C satisfies
Cα if (i) τ is consistent with C, and (ii) respects the constraints: τ ⊇ α. If some total
assignment satisfies Cα, then Cα is satisfiable and otherwise unsatisfiable. In this work
we consider Boolean circuits in which the following Boolean functions are available as
gate types.

– NOT(v) is t iff v is f.
– OR(v1, . . . , vn) is t iff at least one of v1, . . . , vn is t.
– AND(v1, . . . , vn) is t iff all v1, . . . , vn are t.
– XOR(v1, v2) is t iff exactly one of v1, v2 is t.

However, notice that the techniques developed in this paper can be adapted for a wider
range of types. In order to keep the presentation and algorithms simpler, we assume that
constraints only appear in the output gates of constrained circuits. Any circuit can be
rewritten into such a normal form by using the rules in [8].

a0 b0 c0

AND XOR

OR

AND XORt3t2

o0

c1 t

t1

Fig. 1. A constrained circuit

Figure 1 shows a Boolean circuit for a full-adder with
the constraint that the carry-out bit c1 is t. Formally the
circuit is defined as C = {c1:=OR(t1, t2), t1:=AND(t3, c0),
o0:=XOR(t3, c0), t2:=AND(a0, b0), t3:=XOR(a0, b0)},
and α = {〈c1, t〉}. A satisfying total as-
signment for it is {〈c1, t〉, 〈t1, t〉, 〈o0, f〉,
〈t2, f〉, 〈t3, t〉, 〈a0, t〉, 〈b0, f〉, 〈c0, t〉}. The restriction
of an assignment τ to a set G′ ⊆ G of gates is defined
as usual: τ |G′ = {〈g, v〉 ∈ τ | g ∈ G′}. Given a non-
input gate g := f(g1, . . . , gn) and a value v ∈ {f, t},
a justification for the pair 〈g, v〉 is a partial assignment
σ : {g1, . . . , gn} → {f, t} to the children of g such that f(τ(g1), . . . , τ(gn)) = v
holds for all extensions τ ⊇ σ. That is, the values assigned by σ to the chil-
dren of g are enough to force g to have the value v. A gate g is justified in an
assignment τ if it is assigned, i.e. τ(g) is defined, and (i) it is an input gate, or
(ii) g := f(g1, . . . , gn) ∈ C and τ |{g1,...,gn} is a justification for 〈g, τ(g)〉. For example,
consider the gate t1 in Fig. 1. The possible justifications for 〈t1, f〉 are {〈t3, f〉},
{〈t3, f〉, 〈c0, t〉}, {〈t3, f〉, 〈c0, f〉}, {〈c0, f〉}, and {〈t3, t〉, 〈c0, f〉}; of these the first
and fourth one are subset minimal ones. The gate t1 is justified in the assignment
τ = {〈c1, t〉, 〈t1, f〉, 〈o0, t〉, 〈t2, t〉, 〈t3, f〉, 〈a0, t〉, 〈b0, t〉, 〈c0, t〉}.

A key concept in BC SLS is the justification cone jcone(Cα, τ) for a constrained
circuit Cα under an assignment τ ⊇ α. The justification cone is defined recursively top-
down in the circuit structure, starting from the constrained gates. Intuitively, the cone is
the smallest set of gates which includes all constrained gates and, for each justified gate
in the set, all the gates that participate in some subset minimal justification for the gate.
More formally, jcone(Cα, τ) is the smallest one of those sets S of gates which satisfy
the following properties.

1. If 〈g, v〉 ∈ α, then g ∈ S.
2. If g ∈ S and (i) g is a non-input gate, (ii) g is justified in τ , and (iii) 〈gi, vi〉 ∈ σ

for some subset minimal justification σ for 〈g, τ(g)〉, then gi ∈ S.

Notice that by this definition jcone(Cα, τ) is unambiguously defined.

34 M. Järvisalo, T. Junttila, and I. Niemelä

As another key concept, the justification frontier of Cα under τ , is the “bottom edge”
of the justification cone, i.e. those gates in the cone that are not justified:

jfront(Cα, τ) = {g ∈ jcone(Cα, τ) | g is not justified in τ}.

A gate g is interesting in τ if it belongs to the frontier jfront(Cα, τ) or is a descendant
of a gate in it; the set of all gates that are interesting in τ is denoted by interest(Cα, τ).
A gate g is an (observability) don’t care if it is neither interesting nor in the justification
cone jcone(Cα, τ). For instance, consider the constrained circuit Cα in Fig. 1. Under the
assignment τ = {〈c1, t〉, 〈t1, t〉, 〈o0, f〉, 〈t2, f〉, 〈t3, t〉, 〈a0, f〉, 〈b0, f〉, 〈c0, t〉}, the justi-
fication cone jcone(Cα, τ) is {c1, t1, t3, c0}, the justification frontier jfront(Cα, τ) is
{t3}, interest(Cα, τ) = {t3, a0, b0}, and the gates t2 and o0 are don’t cares.

As observed in [7] if the justification frontier jfront(Cα, τ) is empty for some total as-
signment τ , then the constrained circuit Cα is satisfiable. When jfront(Cα, τ) is empty,
a satisfying assignment can be obtained by (i) restricting τ to the input gates appear-
ing in the justification cone, i.e. to the gate set jcone(Cα, τ) ∩ inputs(C), (ii) assigning
other input gates arbitrary values, and (iii) recursively evaluating the values of non-input
gates. Thus, whenever jfront(Cα, τ) is empty, we say that τ de facto satisfies Cα. For
example, the assignment {〈c1, t〉, 〈t1, f〉, 〈o0, f〉, 〈t2, t〉, 〈t3, t〉, 〈a0, t〉, 〈b0, t〉, 〈c0, t〉} de
facto satisfies the constrained circuit Cα in Fig. 1; a satisfying assignment obtained
by the procedure above is {〈c1, t〉, 〈t1, f〉, 〈o0, f〉, 〈t2, t〉, 〈t3, f〉, 〈a0, t〉, 〈b0, t〉, 〈c0, f〉}.
Also note that if a total truth assignment τ satisfies Cα, then jfront(Cα, τ) is empty.

Translating Circuits to CNF. Each constrained Boolean circuit Cα can be translated
into an equi-satisfiable CNF formula cnf(Cα) by applying the standard “Tseitin trans-
lation”. In order to obtain a small CNF formula, the idea is to introduce a variable g̃ for
each gate g in the circuit, and then to describe the functionality of each gate with a set of
clauses. For instance, an AND-gate g := AND(g1, . . . , gn) is translated into the clauses
(¬g̃ ∨ g̃1),. . . , (¬g̃ ∨ g̃n), and (g̃ ∨¬g̃1 ∨ . . .∨¬g̃n). The constraints are translated into
unit clauses: introduce the clause (g̃) for 〈g, t〉 ∈ α, and the clause (¬g̃) for 〈g, f〉 ∈ α.

A Note on Negations. As usual in many SAT algorithms, we will implicitly ignore
NOT-gates of form g := NOT(g1); g and g1 are always assumed to have the opposite val-
ues. Thus NOT-gates are, for instance, (i) “inlined” in the cnf translation by substituting
¬g̃1 for g̃, and (ii) never counted in an interest set interest(Cα, τ).

3 Justification-Based Non-clausal SLS

In the non-clausal method BC SLS [7] a configuration is described by a total truth
assignment as in typical clausal SLS methods. However, the non-clausal method works
directly on general propositional formulas represented as Boolean circuits, and hence a
configuration is a total assignment on the gates of the Boolean circuit at hand. Moreover,
the key elements of an SLS method – the notion of moves, the objective function, and
the stopping criterion – are substantially different from the corresponding elements in
clausal SLS methods.

In typical SLS methods for SAT the moves consist of individual flips on variable
values in the current configuration. In BC SLS structural knowledge is exploited for
making moves on gates: a typical move on a gate g flips the values of a subset of g’s

Justification-Based Local Search with Adaptive Noise Strategies 35

children so that g becomes locally justified under the new truth assignment. Moreover,
moves are focused on a particular subset of the gates, the justification frontier, which
guides the search to concentrate on relevant parts of the instance exploiting observ-
ability don’t cares. In typical clausal SLS methods the objective function measures the
number of clauses that are falsified by the current truth assignment. In BC SLS the
objective function is based on the concept of justification frontier and uses the set of
interesting gates. The notion of a justification frontier leads to a early stopping criterion
where the search can be halted when the circuit has been shown to be de facto satisfiable
which often occurs before a total satisfying truth assignment has been found.

In this work we extend BC SLS in order to (i) achieve a probabilistically approxi-
mately complete (PAC) generalization of the method, and to (ii) exploit adaptive noise
mechanisms within the framework. The resulting generalized framework is described
as Algorithm 1. Given a constrained Boolean circuit Cα the algorithm performs struc-
tural local search over the assignment space of all the gates in C (inner loop on lines
3–13). As typical, the noise parameter p ∈ [0, 1] controls the probability of making
non-greedy moves (with p = 0 only greedy moves are made). Here we introduce an ad-
ditional parameter q ∈ [0, 1] which leads to PAC variants of BC SLS. We will consider
adaptive noise mechanisms for controlling the value of p during the search in Sect. 4.

Algorithm 1. Generalized BC SLS
Input: constrained Boolean circuit Cα, control parameters p, q ∈ [0, 1] for non-greedy moves
Output: a de facto satisfying assignment for Cα or “don’t know”
Explanations:
τ : current truth assignment on all gates with τ ⊇ α
δ: next move (a partial assignment)

1: for try := 1 to MAXTRIES(Cα) do
2: τ := pick an assignment over all gates in C s.t. τ ⊇ α
3: for move := 1 to MAXMOVES(Cα) do
4: if jfront(Cα, τ) = ∅ then return τ

5: Select a random gate g ∈ jfront(Cα, τ)
6: with probability (1− p) do %greedy move
7: δ := a random justification from those justifications

for 〈g, v〉 ∈ τ that minimize cost(τ, ·)
8: otherwise %non-greedy move (with probability p)
9: if g is constrained in α or with probability q do

10: δ := a random justification for 〈g, v〉 ∈ τ
11: else
12: δ := {〈g,¬τ (g)〉} %flip the value of g
13: τ := (τ \ {〈g,¬w〉 | 〈g,w〉 ∈ δ}) ∪ δ

14: return “don’t know”

For each of the MAXTRIES(Cα) runs, MAXMOVES(Cα) moves are made. As the
stopping criterion we use the condition that the justification frontier jfront(Cα, τ) is
empty. As discussed in Section 2 if jfront(Cα, τ) is empty, then Cα is satisfiable and a
satisfying truth assignment can be computed from τ . Notice that typically this stopping
criterion is reached before all gates are justified in the current configuration τ .

36 M. Järvisalo, T. Junttila, and I. Niemelä

Given the current configuration τ , we concentrate on making moves on gates in
jfront(Cα, τ) by randomly picking a gate g from this set. For a gate g and its current
value v in τ , the possible greedy moves are induced by the justifications for 〈g, v〉.
The idea is to minimize the size of the interest set. In other words, the value of the
objective function for a move (justification) δ is cost(τ, δ) = |interest(Cα, τ ′)|, where
τ ′ = (τ \ {〈g,¬w〉 | 〈g, w〉 ∈ δ}) ∪ δ. That is, the cost of a move δ is the size of the
interest set in the configuration τ ′ where for the gates mentioned in δ we use the values
in δ instead of those in τ . The move is then selected randomly from those justifications
δ for 〈g, v〉 for which cost(τ, δ) is smallest over all justifications for 〈g, v〉.

During a non-greedy move (lines 9–12, executed with probability p), we introduce a
new parameter q for guaranteeing the PAC property (for PAC proofs, see Section 3.1).
For non-greedy moves, the control parameter q defines the probability of justifying the
selected gate g by a randomly chosen justification from the set of all justifications for
the value of g (this is a non-greedy downward move). With probability (1− q) the non-
greedy move consists of inverting the value of the gate g itself (a non-greedy upward
move). The idea in upward moves is to try to escape from possible local minima by more
radically changing the justification front. In the special case when g is constrained, a
random downward move is done with probability 1.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 10000 20000 30000 40000 50000 60000

move

interest set size (upper)
front size (lower)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 10000 20000 30000 40000 50000 60000

move

interest set size (upper)
front size (lower)

Fig. 2. Comparison of dynamics: sizes of
interest set and justification frontier

Notice that the size of the interest set gives
an upper bound on the number of gates that
still need to be justified (the descendants of
the gates in the front). Following this intu-
ition, by applying the objective function of
minimizing the size of the interest set, the
greedy moves drive the search towards the
input gates. Alternatively, one could use the
objective of minimizing the size of the justifi-
cation frontier since moves are concentrated
on gates in the frontier and since the search
is stopped when the frontier is empty. How-
ever, we notice that the size of the interest set
is more responsive to quantifying the changes
in the configuration than the size of the justi-
fication frontier, as exemplified in Fig. 2. The size of the frontier typically drops rapidly
close to zero percents from its starting value (the y axis is scaled to [0, 1] in the figure),
and after this remains quite stable until a solution is found. This is very similar to the
typical behavior observed for objective functions based on the number of unsatisfied
clauses in CNF level SLS methods [18]. In contrast, the size of the interest set can vary
significantly without visible changes in the size of the justification frontier. Using the
size of the interest set rather than the size of the justification frontier also resulted in
better performance in preliminary experiments.

3.1 On the PAC Property in BC SLS

We now analyze under which conditions BC SLS is PAC (probabilistically approxi-
mately complete) [16]. A CNF-level SLS SAT method S is PAC if, for any satisfiable

Justification-Based Local Search with Adaptive Noise Strategies 37

CNF SAT instance F and any initial configuration τ , the probability that S eventually
finds a satisfying truth assignment for F starting from τ is 1 without using restarts, i.e.,
the number of allowed flips is set to infinity and the number of tries to one. A non-PAC
SLS method is essentially incomplete. Examples of PAC CNF level SLS methods in-
clude GWSAT (with non-zero random walk probability) and UnitWalk, while GSAT,
WalkSAT/TABU and Novelty (for arbitrary noise parameter setting) are essentially in-
complete [16,19]. Here we adapt the definition of PAC to the context of BC SLS.

Definition 1. BC SLS is PAC using fixed parameters p, q if, for any satisfiable con-
strained circuit Cα and any initial configuration τ , the probability that BC SLS even-
tually finds a de facto satisfying assignment for Cα starting from τ is 1 when setting
MAXTRIES(Cα) = 1 and MAXMOVES(Cα) = ∞.

It turns out that for a PAC variant of BC SLS, both upward and downward non-greedy
moves are needed.

Theorem 1. The variant of BC SLS where non-greedy downward moves are allowed
with probability q, where 0 < q < 1, is PAC for any fixed noise parameter p > 0.

Proof. Assume that Cα is satisfiable, the current assignment is τ , and jfront(Cα, τ) �= ∅.
We show that by executing the inner loop (lines 3–13) at most |G| times the algorithm
reaches a de facto satisfying assignment with probability of at least(

1
|G| · p · min(q · 1

2|G| , 1 − q)
)|G|

.

First, take any satisfying assignment τ� for Cα. Recall that jfront(Cα, τ�) = ∅ by
definition. Repeat the following until jfront(Cα, τ) = ∅.

1. If there is a gate g in the frontier jfront(Cα, τ) such that τ(g) �= τ�(g), execute the
line 12 that flips the value τ(g) to τ�(g). Note that g is not constrained by α as both
τ, τ� ⊇ α. Thus this step happens with the probability of at least 1

|G| · p · (1 − q).
2. Otherwise the current assignment τ is such that all the gates in the justification cone

and frontier under τ have the same values as in the satisfying truth assignment τ�.
Take a gate g in the frontier jfront(Cα, τ). Now there is at least one child of g whose
value differs in τ and τ�. Execute the line 10 in a way that only flips the values of
children of g whose values differ in τ and τ�; the value of at least one such child
is flipped. This step happens with the probability of at least 1

|G| · p · q ·
1

2|G| , where

the term 1
2|G| comes from the fact that a gate always has less than |G| children, and

thus the probability of picking the desired justification is at least 1
2|G| .

As both steps above (i) flip the value of at least one gate to one in τ� and (ii) never flip
a gate whose value already is the same as in τ�, they are executed at most |G| times:
after this τ = τ� and thus jfront(Cα, τ) = jfront(Cα, τ�) = ∅. Naturally, it may happen
that jfront(Cα, τ) = ∅ earlier and the process terminates in fewer than |G| steps; now
τ is not necessary equal to τ� but is de facto satisfying anyway. Therefore, executing
the lines 3–13 |G| times transforms the current assignment into a de facto satisfying

38 M. Järvisalo, T. Junttila, and I. Niemelä

assignment with probability of at least
(

1
|G| · p · min(q · 1

2|G| , 1 − q)
)|G|

. Since this is

non-zero when p > 0 and 0 < q < 1, BC SLS finds a satisfying assignment with
probability one as MAXMOVES(Cα) approaches infinity. �	

Interestingly, at least for the gate types considered here, downward non-greedy moves
can be restricted to minimal justifications without affecting Theorem 1.

However, if non-greedy moves are only allowed either (i) upwards or (ii) downwards,
then BC SLS becomes essentially incomplete.

Theorem 2. The variant of BC SLS where non-greedy moves are done only upwards
(i.e. when q = 0) is essentially incomplete for any fixed noise parameter p.

Proof. Consider the constrained circuit Cα in Fig. 3; the subcircuit Cf is such that the
gate d can evaluate both to t or f, depending on the values of the input gates, whileCg is
a subcircuit that only allows the gate e to evaluate to f. Therefore the gate d must have
the value t in any (de facto or standard) satisfying assignment. Furthermore, assume
that the subcircuit Cg has fewer gates than Cf .

AND

OR

ta

b c

Cf

Cg

d e

Fig. 3. A circuit

Assume that the current assignment τ assigns the gate d to
f and that 〈d, f〉 is not justified under τ . Now if τ(b) = f, the
gate b cannot be in the frontier, and the inner loop (lines 3–
13) of BC SLS cannot change the value of d to t. If τ(b) = t
(and thus b is in the justification cone), either (i) τ(e) = t
implying that d is a don’t care and thus its value cannot be
changed in the inner loop, or (ii) τ(e) = f implying that
b is in the frontier and the inner loop can pick an interest
set size minimizing justification for b on line 7 (but random
justification on line 10 is not in use as q = 0). In case (ii),
as Cg has fewer gates than Cf and 〈d, f〉 is not justified in
τ , the greedy move will flip the value of e to t and leave d intact because the whole
subcircuit Cf becomes a don’t care and is removed from the interest set. To sum up,
when q = 0 the inner loop cannot change the value of d and never finds a de facto
satisfying assignment. �	

Theorem 3. The variant of BC SLS where non-greedy moves are done only downwards
(i.e. when q = 1) is essentially incomplete for any fixed noise parameter p.

Proof. Consider again the constrained circuit Cα in Fig. 3 with the assumption that the
subcircuitCf is such that the gate d can evaluate both to t or f, depending on the values
of the input gates, while Cg is a subcircuit that only allows the gate e to evaluate to f.
Suppose that the current assignment τ assigns b to t, d to f, and e to t. Now the gate
b is not in the frontier. Because of this and the fact that the line 12 is never executed
when q = 1, the (incorrect) value of e cannot be changed in the inner loop (lines 3–13)
of BC SLS. Thus b never appears in the frontier and the (incorrect) value of the gate
d cannot be changed during the execution of the inner loop. Thus a de facto satisfying
assignment is never found. �	

Justification-Based Local Search with Adaptive Noise Strategies 39

 100

 1000

 10000

 100000

 1e+06

 1e+07

 100 1000 10000 100000 1e+06 1e+07

N
um

be
r

of
 m

ov
es

 fo
r

m
in

-P
A

C
 B

C
-S

LS

Number of moves for non-PAC BC-SLS

 100

 1000

 10000

 100000

 1e+06

 1e+07

 100 1000 10000 100000 1e+06 1e+07

N
um

be
r

of
 m

ov
es

 fo
r

m
in

-P
A

C
 B

C
-S

LS

Number of moves for non-PAC BC-SLS

 100

 1000

 10000

 100000

 1e+06

 1e+07

 100 1000 10000 100000 1e+06 1e+07

N
um

be
r

of
 m

ov
es

 fo
r

P
A

C
 B

C
-S

LS

Number of moves for non-PAC BC-SLS

 100

 1000

 10000

 100000

 1e+06

 1e+07

 100 1000 10000 100000 1e+06 1e+07

N
um

be
r

of
 m

ov
es

 fo
r

P
A

C
 B

C
-S

LS

Number of moves for non-PAC BC-SLS

Fig. 4. Non-PAC vs min-PAC BC SLS (left), non-PAC vs PAC BC SLS (right)

3.2 Experiments with Non-PAC and PAC Variant with Fixed Noise Parameter

Before developing adaptive noise mechanisms for BC SLS (Sect. 4), we look at the
performance of BC SLS with the fixed noise parameter setting p = 0.5. We experi-
ment with a prototype which is a relatively straightforward implementation of BC SLS
constructed on top of the bc2cnf Boolean circuit simplifier/CNF translator [20]. In the
implementation, only subset minimal justifications are considered for greedy moves. In
all the experiments of this paper we use as main benchmarks a set of Boolean circuits
encoding the problem of bounded model checking of various asynchronous systems for
deadlocks using the encoding in [21] (as listed in Table 1). Although rather easy for
current DPLL solvers, these benchmarks are challenging for typical SLS methods. We
limit the number of moves (cutoff) for the variants of BC SLS to 107, and run each
instance 15 times without restarts. When comparing BC SLS to CNF level SLS proce-
dures, we apply exactly the same Boolean circuit level simplification in bc2cnf to the
circuits as in our prototype implementation of BC SLS, and then translate the simplified
circuit to CNF with the standard “Tseitin-style” translation.

As the first experiment we compare the essentially incomplete (“non-PAC”) version
where non-greedy moves are only done upwards (q = 0) to two PAC variants (as de-
tailed in Section 3.1): in “min-PAC” 1% of non-greedy moves are randomly selected
from the set of minimal justifications, while in “PAC” 1% of non-greedy moves are ran-
domly selected from the set of all justifications (that is, in both cases we set q = 0.01
so that the downward non-greedy moves do not become dominating).

It turns out that the variants “non-PAC” and “min-PAC” have quite similar perfor-
mance (left in Fig. 4) except that “non-PAC” exceeds the cutoff more often. Surpris-
ingly, the “PAC” version, where also non-minimal random justifications are allowed,
does not perform as well as the other two variants (right in Fig. 4). With this evidence,
we will in all the following experiments apply the “min-PAC” variant of BC SLS.

In the following experiments, we concentrate on evaluating adaptive noise mecha-
nisms for BC SLS, and compare the resulting methods to adaptive clausal SLS methods.
We note that a comparison of (“non-PAC”) BC SLS using fixed noise parameter setting
with WalkSAT is provided in [7] with the results that BC SLS exhibits typically a one-
to-four-decade reduction in the number of moves compared to WalkSAT.

40 M. Järvisalo, T. Junttila, and I. Niemelä

4 Adaptive Noise Strategies for BC SLS

Considering CNF level SLS methods for SAT, it has been noticed that SLS performance
can vary critically depending on the chosen noise setting [4], and the optimal noise
setting can vary from instance to instance and within families of similar instances. The
same phenomenon is present also in BC SLS. The average number of moves over 100
runs of BC SLS with different noise parameter settings is shown in Fig. 5 for two
different families of increasingly difficult Boolean circuit instances. This observation
has led to the development of an adaptive noise mechanism for CNF level SLS in the
solver AdaptNovelty+ [4], dismissing the requirement of a pre-tuned noise parameter.
This idea has been successfully applied in other SLS solvers as well [22]. We now
consider strategies for adapting noise in BC SLS.

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
ve

ra
ge

 n
um

be
r

of
 m

ov
es

p

b12
b10

b8
b7
b6

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
ve

ra
ge

 n
um

be
r

of
 m

ov
es

p

b12
b10

b8
b7
b6

 10000

 100000

 1e+06

 1e+07

 1e+08

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 n
um

be
r

of
 m

ov
es

p

10
8

 10000

 100000

 1e+06

 1e+07

 1e+08

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 n
um

be
r

of
 m

ov
es

p

10
8

Fig. 5. Average number of moves for BC SLS with different noise parameter settings;
left: LTS BMC instance family speed-p, right: factoring instance family braun (see
http://www.tcs.tkk.fi/Software/genfacbm/)

4.1 Adaptive Noise in the Context of BC SLS

Following the general idea presented in [4], a generic adaptive noise mechanism for
BC SLS is presented as Algorithm 2. Starting from p = 0, the noise setting is tuned

Algorithm 2. Generic Adaptive Noise Mechanism
p: noise (initially p = 0)
adapt score: score at latest noise change
adapt step: step of latest noise change

1: if score < adapt score then %% noise decrease
2: p := p− φ

2 · p
3: adapt step := step
4: adapt score := score
5: else
6: if (step − adapt step) > WAITINGPERIOD() then %% noise increase
7: p := p + φ · (1− p)
8: adapt step := step
9: adapt score := score

Justification-Based Local Search with Adaptive Noise Strategies 41

 100

 1000

 10000

 100000

 1e+06

 1e+07

 100 1000 10000 100000 1e+06 1e+07

#u
nc

on
st

ra
in

ed
/6

#unconstrained/24

 100

 1000

 10000

 100000

 1e+06

 1e+07

 100 1000 10000 100000 1e+06 1e+07

#u
nc

on
st

ra
in

ed
/6

#unconstrained/24

 100

 1000

 10000

 100000

 1e+06

 1e+07

 100 1000 10000 100000 1e+06 1e+07

#u
nc

on
st

ra
in

ed
/2

4

#unconstrained/96

 100

 1000

 10000

 100000

 1e+06

 1e+07

 100 1000 10000 100000 1e+06 1e+07

#u
nc

on
st

ra
in

ed
/2

4

#unconstrained/96

Fig. 6. Comparison of number of moves; left: θ = 1
24 vs θ = 1

6 , right: θ = 1
96 vs θ = 1

24

during search based on the development of the objective function value. Every time
the objective function value is improved, noise is decreased according to line 2. If no
improvement in the objective function value has been observed during the last WAIT-
INGPERIOD() steps, the noise is increased according to line 7, where φ ∈]0, 1[controls
the relative amount of noise increase. Each time the noise setting is changed, the current
objective function value is then stored for the next comparison.

Hoos [4] suggests, reporting generally good performance, to use φ = 1
5 and the

static function θ · C for WAITINGPERIOD(), where θ = 1
6 is a constant and C denotes

the number of clauses in the CNF instance at hand. These parameter values have been
applied also in other CNF level SLS solvers [22].

For BC SLS, as the first step we fix φ accordingly to 1
5 , and focus on investigating the

effect of applying different waiting periods for noise increases in the context of BC SLS.
First we investigate using as WAITINGPERIOD() a static linear function θ · U , where
the number U of unconstrained gates is multiplied by a constant θ. In fact, opposed to
reported experience with CNF level SLS, it turns out that for BC SLS θ = 1

6 is too

 100

 1000

 10000

 100000

 1e+06

 1e+07

 100 1000 10000 100000 1e+06 1e+07

O
rig

in
al

 n
oi

se
 in

cr
ea

se
, #

un
co

ns
tr

ai
ne

d/
96

Rapid noise increase, #unconstrained/96

 100

 1000

 10000

 100000

 1e+06

 1e+07

 100 1000 10000 100000 1e+06 1e+07

O
rig

in
al

 n
oi

se
 in

cr
ea

se
, #

un
co

ns
tr

ai
ne

d/
96

Rapid noise increase, #unconstrained/96

Fig. 7. Comparison of number of
moves: rapidly increasing vs original
noise mechanism

large: by decreasing θ we can increase the perfor-
mance of BC SLS. As shown in Fig. 6 (left), by de-
creasing θ to 1

24 we witness an evident overall gain
in performance against θ = 1

6 (left), and again by
decreasing θ from 1

24 to 1
96 (right).

However, we noticed that changing the overall
scheme in the original adaptive noise mechanism
leads to even better performance for BC SLS. In
the novel scheme, which we call rapidly increas-
ing, when the waiting period is exceeded, the noise
level is increased after each step until we see the
first one-step improvement in the objective func-
tion. This can be implemented by removing line
8 in Algorithm 2. An example of the resulting im-
provement is shown in Fig. 7, in which the original
and rapidly increasing noise mechanism are compared using θ = 1

96 . In the following,
we will apply the rapidly increasing noise mechanism for BC SLS.

42 M. Järvisalo, T. Junttila, and I. Niemelä

We next compare BC SLS with θ = 1
96 to AdaptNovelty+ [23]. Our current proto-

type of BC SLS does compute the effect of moves on the justification cone and interest
set incrementally but is otherwise relatively unoptimized. The results shown in Table 1
are encouraging: BC SLS usually makes much fewer moves and is able to solve more
instances in the given time limit than AdaptNovelty+. Although making moves is slower
in our BC SLS prototype (around 100000 moves per second on average) than in Adapt-
Novelty+ (2.5 million per second), BC SLS is very competitive also in running times
on these instances as less moves are usually needed for finding a solution.

It it interesting to look at how the noise level fluctuates during a run with
different values of θ. An example is provided in Fig. 8 where, using instance

Table 1. Comparison of AdaptNovelty+ and BC SLS (static adaptive noise mechanism, θ = 1
96):

101 runs for each instance, 5–minute time limit for each run. succ %: percent of succesful runs.

Instance BC SLS θ = 1
96 AdaptNovelty+

name vars clauses succ % time #moves succ % time #moves
min med min med min med min med

dp 12.fsa-b5-p.bc 953 2966 100 0.1 1.0 4272 149287 100 0.1 0.1 4105 10012
dp 12.fsa-b6-p.bc 1362 4236 100 0.1 0.7 7996 79106 100 0.1 0.1 11006 29010
dp 12.fsa-b7-p.bc 1771 5506 100 0.1 0.6 11504 67705 100 0.1 0.1 23519 72153
dp 12.fsa-b8-p.bc 2180 6776 100 0.2 1.5 21143 142100 100 0.1 0.1 48525 215934
dp 12.fsa-b9-p.bc 2589 8046 100 0.1 4.6 18056 376007 100 0.1 0.3 109929 817996
dp 12.fsa-b5-s.bc 1337 4146 100 0.1 0.1 6234 17642 100 0.1 0.1 9240 22320
dp 12.fsa-b6-s.bc 1746 5416 100 0.1 0.3 9119 37626 100 0.1 0.1 27853 58083
dp 12.fsa-b7-s.bc 2155 6686 100 0.1 1.0 18480 86447 100 0.1 0.1 40098 136157
dp 12.fsa-b8-s.bc 2564 7956 100 0.1 3.1 19857 247490 100 0.1 0.1 60910 369385
dp 12.fsa-b9-s.bc 2973 9226 100 0.3 9.5 38487 730250 100 0.1 2.1 170040 5212785
elevator 1-b4-s.bc 439 1343 100 0.1 0.1 394 1707 100 0.1 0.1 2866 81606
elevator 1-b5-s.bc 698 2149 100 0.1 0.1 1365 3844 100 0.1 0.5 7961 1254582
elevator 1-b6-s.bc 1087 3374 100 0.1 0.8 2507 60052 100 1.4 15.5 3693776 42037729
elevator 2-b6-p.bc 682 2115 100 0.1 0.1 982 4366 100 0.1 5.5 149405 15053510
elevator 2-b7-p.bc 1253 3952 100 0.1 0.7 4120 37607 93 1.3 82.3 3406967 220184348
elevator 2-b6-s.bc 1333 4143 100 0.1 0.2 4389 17761 82 0.3 122.3 832838 329714970
elevator 2-b7-s.bc 2063 6478 100 0.2 1.1 11526 65931 6 36.7 - 94059483 -
elevator 2-b8-s.bc 3123 9919 67 1.7 179.9 79857 7254453 0 - - - -
mmgt 2.fsa-b6-p.bc 654 2036 100 0.1 0.1 569 12878 100 0.1 0.1 11902 308130
mmgt 2.fsa-b7-p.bc 928 2895 100 0.1 0.2 3027 26968 100 0.1 0.3 80656 1468861
mmgt 2.fsa-b8-p.bc 1317 4119 94 0.1 74.3 6293 6395263 100 0.1 34.0 70058 102384691
mmgt 2.fsa-b6-s.bc 1182 3708 100 0.1 0.1 3148 12644 95 1.8 89.2 4798784 239335425
mmgt 2.fsa-b7-s.bc 1723 5429 100 0.1 6.0 8989 347129 0 - - - -
mmgt 2.fsa-b8-s.bc 2381 7530 100 1.2 29.1 60339 1315753 0 - - - -
mmgt 3.fsa-b7-p.bc 1421 4459 100 0.1 0.4 3456 44913 100 0.1 0.1 26370 377011
mmgt 3.fsa-b9-p.bc 2596 8184 100 0.3 29.4 23771 1759402 27 4.8 - 12129665 -
mmgt 3.fsa-b7-s.bc 2588 8226 100 0.2 2.8 11575 154457 0 - - - -
speed 1.fsa-b6-p.bc 498 1514 100 0.1 0.1 385 1159 100 0.1 0.1 1327 26923
speed 1.fsa-b7-p.bc 758 2319 100 0.1 0.1 902 2935 100 0.1 0.1 7364 132024
speed 1.fsa-b8-p.bc 1021 3132 100 0.1 0.1 2125 7914 100 0.1 0.3 43042 919969
speed 1.fsa-b9-p.bc 1284 3944 100 0.1 0.2 3482 17454 100 0.1 2.6 46186 6812540
speed 1.fsa-b10-p.bc 1547 4754 100 0.1 0.4 5382 46156 100 0.4 18.5 1000674 48965683
speed 1.fsa-b12-p.bc 2073 6368 100 0.2 4.8 20250 499851 15 24.3 - 57759838 -
speed 1.fsa-b13-p.bc 2336 7172 100 1.2 40.8 123031 4332369 0 - - - -
speed 1.fsa-b14-p.bc 2599 7974 34 7.0 - 744191 - 0 - - - -
speed 1.fsa-b6-s.bc 666 2026 100 0.1 0.1 603 1278 100 0.1 0.1 2326 13049
speed 1.fsa-b7-s.bc 920 2811 100 0.1 0.1 1238 2409 100 0.1 0.1 6308 47237
speed 1.fsa-b8-s.bc 1175 3596 100 0.1 0.1 2025 4185 100 0.1 0.1 12134 98165
speed 1.fsa-b9-s.bc 1430 4380 100 0.1 0.1 2820 8629 100 0.1 0.1 29602 237623
speed 1.fsa-b10-s.bc 1685 5162 100 0.1 0.2 3514 14860 100 0.1 0.3 52643 790049
speed 1.fsa-b12-s.bc 2195 6722 100 0.1 1.2 8500 100027 100 0.3 6.6 723313 17287780
speed 1.fsa-b13-s.bc 2450 7499 100 0.4 3.7 30637 311209 84 1.5 135.4 3814440 354742108
speed 1.fsa-b14-s.bc 2705 8274 100 0.2 12.3 17063 1072742 15 1.8 - 4647662 -
speed 1.fsa-b15-s.bc 2960 9047 92 1.2 67.9 102953 6013459 3 0.4 - 982942 -

Justification-Based Local Search with Adaptive Noise Strategies 43

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 10000 20000 30000 40000 50000 60000 70000 80000

p

move

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 10000 20000 30000 40000 50000 60000 70000 80000

p

move

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000

p

move

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000

p

move

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000

p

move

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20000 40000 60000 80000 100000

p

move

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20000 40000 60000 80000 100000

p

move

Fig. 8. Noise level fluctuations during a run using θ = 1
6 , 1

24 , 1
96 (from top to bottom)

dp 12.fsa-b6-s, the development of p is shown for θ = 1
6 ,

1
24 ,

1
96 (from top to

bottom) on runs of similar length. It appears that with larger θ, a significant portion
of moves are wasted on plateaus, from which we can escape only with a strong noise
increase. On the other hand, for small values, such as 1

96 , the noise level seems to thrash
heavily, not focusing on a specific noise range. From another viewpoint, we observed
that lowering the value of θ basically raises the average noise level.

Now, the original motivation behind developing adaptive noise mechanisms comes
from the fact that the optimal noise level is instance-specific (recall Fig. 5). Apparently a
sufficient amount of noise is needed, which can be achieved by lowering the fixed value
of θ, but then the hence shortened waiting period for noise increases results in unfocused
fluctuations of the noise level. That is, by employing the adaptive noise mechanism
based on static waiting periods, we may have only changed the problem of finding the
optimal static noise level parameter p into the problem of finding an instance-specific
optimal value for θ. This motivates us to consider, opposed to a static waiting period
controlled by the addition parameter θ, dynamic waiting periods based on the state of
search, with the possibility of dismissing the otherwise required constant θ.

We consider two dynamic alternatives: WAITINGPERIOD() = jfront(Cα, τ) (the size
of the current justification frontier), and WAITINGPERIOD() = interest(Cα, τ) (the size
of the current interest set). The intuition behind using front is that since the gate at each
step is selected from the justification frontier, the size of the frontier gives us an estimate
on the number of possible greedy moves in order to improve the objective function value
before increasing the possibility of non-greedy moves (increasing noise). On the other
hand, the size of the interest set is precisely the objective function value. Intuitively, the
greater the objective function value is, the further we are from a solution, and thus more
effort is allowed on finding a good greedy move.

Fig. 9 gives a comparison of performance using the static waiting period with θ = 1
96

with the performance resulting from using dynamic waiting period based on frontier

44 M. Järvisalo, T. Junttila, and I. Niemelä

 100

 1000

 10000

 100000

 1e+06

 1e+07

 100 1000 10000 100000 1e+06 1e+07

N
um

be
r

of
 m

ov
es

 fo
r

|fr
on

t|

Number of moves for #unconstrained/96

 100

 1000

 10000

 100000

 1e+06

 1e+07

 100 1000 10000 100000 1e+06 1e+07

N
um

be
r

of
 m

ov
es

 fo
r

|fr
on

t|

Number of moves for #unconstrained/96

 100

 1000

 10000

 100000

 1e+06

 1e+07

 100 1000 10000 100000 1e+06 1e+07

N
um

be
r

of
 m

ov
es

 fo
r

|in
te

re
st

|

Number of moves for #unconstrained/96

 100

 1000

 10000

 100000

 1e+06

 1e+07

 100 1000 10000 100000 1e+06 1e+07

N
um

be
r

of
 m

ov
es

 fo
r

|in
te

re
st

|

Number of moves for #unconstrained/96

Fig. 9. θ = 1
96 vs front (left); θ = 1

96 vs interest (right)

size (left) and interest set size (right). The dynamic waiting period results in comparable
performance than the static one, although we notice that with the dynamic approach
based on frontier size seems to behave more similarly to the static one than the dynamic
approach based on interest set size.

This difference is highlighted by looking at the fluctuations of the noise level for the
dynamic waiting periods (exemplified in Fig. 10). Especially the noise level fluctuation
resulting from the interest set size approach seems to be more focused than when us-
ing the static waiting period with θ = 1

96 (recall Fig. 8 (bottom)), avoiding some of
the observed thrashing behavior without needing to choose a specific value for θ. The
question of to what extend thrashing may affect performance is an interesting aspect of
further work.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 10000 20000 30000 40000 50000 60000 70000

p

move

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 10000 20000 30000 40000 50000 60000 70000

p

move

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 10000 20000 30000 40000 50000 60000 70000

p

move

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000

p

move

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000

p

move

Fig. 10. Noise level fluctuation during a run using front (top) and interest set size (bottom)

5 Conclusions

We extend a recent framework BC SLS [7] for a novel type of stochastic local search
(SLS) for SAT. We analyze in detail under which conditions the extended framework is
probabilistically approximately complete and under which essentially incomplete. We
develop and study adaptive noise mechanisms for BC SLS. The results suggest that,
compared to the parameter values for adapting noise used in CNF level SLS methods,

Justification-Based Local Search with Adaptive Noise Strategies 45

radically different settings are required in BC SLS. As more fundamental changes to the
CNF level noise mechanism, we demonstrate improvements in performance for BC SLS
by introducing the rapidly increasing noise mechanism, and show that there is promise
for dismissing the static waiting period constant θ required in current CNF level noise
mechanisms by dynamically adapting the waiting period for noise increases. Compared
to well-known CNF level SLS methods, a prototype implementation of the framework
performs favorably w.r.t. the number of moves, showing promise for more optimized
implementations of the procedure. An interesting question regarding dynamic waiting
periods is whether CNF level SLS methods can gain from similar mechanisms.

Acknowledgements. Research supported by Academy of Finland (grants #122399 and
#112016). Järvisalo additionally acknowledges financial support from HeCSE graduate
school, Emil Aaltonen Foundation, Jenny and Antti Wihuri Foundation, Nokia Founda-
tion, and Finnish Foundation for Technology Promotion.

References

1. Selman, B., Levesque, H., Mitchell, D.: A new method for solving hard satisfiability prob-
lems. In: AAAI, pp. 440–446 (1992)

2. Selman, B., Kautz, H., Cohen, B.: Noise strategies for improving local search. In: AAAI, pp.
337–343 (1994)

3. McAllester, D., Selman, B., Kautz, H.: Evidence for invariants in local search. In: AAAI, pp.
321–326 (1997)

4. Hoos, H.: An adaptive noise mechanism for WalkSAT. In: AAAI, pp. 655–660 (2002)
5. Braunstein, A., Mézard, M., Zecchina, R.: Survey propagation: An algorithm for satisfiabil-

ity. Random Structures and Algorithms 27(2), 201–226 (2005)
6. Kautz, H., Selman, B.: The state of SAT. Discr. Appl. Math. 155(12), 1514–1524 (2007)
7. Järvisalo, M., Junttila, T., Niemelä, I.: Justification-based non-clausal local search for SAT.

In: ECAI. Frontiers in AI and Applications, vol. 178, pp. 535–539. IOS Press, Amsterdam
(2008)

8. Junttila, T., Niemelä, I.: Towards an efficient tableau method for Boolean circuit satisfiability
checking. In: Palamidessi, C., Moniz Pereira, L., Lloyd, J.W., Dahl, V., Furbach, U., Kerber,
M., Lau, K.-K., Sagiv, Y., Stuckey, P.J. (eds.) CL 2000. Lecture Notes in Computer Science
(LNAI), vol. 1861, pp. 553–567. Springer, Heidelberg (2000)

9. Kuehlmann, A., Ganai, M., Paruthi, V.: Circuit-based Boolean reasoning. In: DAC, pp. 232–
237. ACM, New York (2001)

10. Kuehlmann, A., Paruthi, V., Krohm, F., Ganai, M.K.: Robust Boolean reasoning for equiva-
lence checking and functional property verification. IEEE T-CAD 21(12), 1377–1394 (2002)

11. Thiffault, C., Bacchus, F., Walsh, T.: Solving non-clausal formulas with DPLL search. In:
Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 663–678. Springer, Heidelberg (2004)

12. Safarpour, S., Veneris, A., Drechsler, R., Lee, J.: Managing don’t cares in Boolean satisfia-
bility. In: DATE 2004. IEEE, Los Alamitos (2004)

13. Sebastiani, R.: Applying GSAT to non-clausal formulas. J. Artif. Intell. Res. 1, 309–314
(1994)

14. Kautz, H., McAllester, D., Selman, B.: Exploiting variable dependency in local search. In:
IJCAI poster session (1997),
http://www.cs.rochester.edu/u/kautz/papers/dagsat.ps

http://www.cs.rochester.edu/u/kautz/papers/dagsat.ps

46 M. Järvisalo, T. Junttila, and I. Niemelä

15. Pham, D., Thornton, J., Sattar, A.: Building structure into local search for SAT. In: IJCAI,
pp. 2359–2364 (2007)

16. Hoos, H.H.: On the run-time behaviour of stochastic local search algorithms for SAT. In:
AAAI, pp. 661–666 (1999)

17. Patterson, D.J., Kautz, H.: Auto-Walksat: A self-tuning implementation of Walksat. In: SAT,
4th Workshop on Theory and Application of Satisfiability Testing (2001)

18. Selman, B., Kautz, H.: An empirical study of greedy local search for satisfiability testing. In:
AAAI, pp. 46–51 (1993)

19. Hirsch, E., Kojevnikov, A.: UnitWalk: A new SAT solver that uses local search guided by
unit clause elimination. Ann. Math. Artif. Intell. 43(1), 91–111 (2005)

20. Junttila, T.: The BC package and a file format for constrained Boolean circuits,
http://www.tcs.hut.fi/∼tjunttil/bcsat/

21. Heljanko, K.: Bounded reachability checking with process semantics. In: Larsen, K.G.,
Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 218–232. Springer, Heidelberg
(2001)

22. Li, C., Wei, W., Zhang, H.: Combining adaptive noise and look-ahead in local search for
SAT. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 121–133.
Springer, Heidelberg (2007)

23. Tompkins, D., Hoos, H.: UBCSAT: An implementation and experimentation environment
for SLS algorithms for SAT and MAX-SAT. In: Hoos, H., Mitchell, D.G. (eds.) SAT 2004.
LNCS, vol. 3542, pp. 306–320. Springer, Heidelberg (2005)

http://www.tcs.hut.fi/~tjunttil/bcsat/

The Max-Atom Problem and Its Relevance�

Marc Bezem1, Robert Nieuwenhuis2, and Enric Rodŕıguez-Carbonell2

1 Department of Informatics, University of Bergen, Norway
2 Technical University of Catalonia (UPC), Barcelona, Spain

Abstract. Let F be a conjunction of atoms of the form max(x, y)+k ≥ z,
where x, y, z are variables and k is a constant value. Here we consider
the satisfiability problem of such formulas (e.g., over the integers or ra-
tionals). This problem, which appears in unexpected forms in many ap-
plications, is easily shown to be in NP. However, decades of efforts (in
several research communities, see below) have not produced any polyno-
mial decision procedure nor an NP-hardness result for this -apparently
so simple- problem.

Here we develop several ingredients (small-model property and lat-
tice structure of the model class, a polynomially tractable subclass and
an inference system) which altogether allow us to prove the existence of
small unsatisfiability certificates, and hence membership in NP intersec-
tion co-NP. As a by-product, we also obtain a weakly polynomial decision
procedure.

We show that the Max-atom problem is PTIME-equivalent to sev-
eral other well-known -and at first sight unrelated- problems on hyper-
graphs and on Discrete Event Systems, problems for which the existence
of PTIME algorithms is also open. Since there are few interesting prob-
lems in NP intersection co-NP that are not known to be polynomial, the
Max-atom problem appears to be relevant.

Keywords: constraints, max-plus algebra, hypergraphs.

1 Introduction

Difference Logic (DL) is a well-known fragment of linear arithmetic in which
atoms are constraints of the form x+k ≥ y, where x, y are variables and the
offset k is a constant value. Due to its many applications to verification (e.g.,
timed automata), it is one of the most ubiquitous theories in the context of Satis-
fiability Modulo Theories (SMT). In SMT systems, a theory solver is essentially
a decision procedure for the satisfiability of conjunctions of theory atoms. For
DL satisfiability is equivalent to the absence of negative cycles in the digraph
having one edge x k→ y for each atom x+k ≥ y, and can be decided in polynomial
time (e.g., by the Bellman-Ford algorithm; cf. [NOT06] for background on SMT
and algorithms for DL, among other theories).

� Partially supported by Spanish Ministry Educ. and Science LogicTools-2 project
(TIN2007-68093-C02-01).

I. Cervesato, H. Veith, and A. Voronkov (Eds.): LPAR 2008, LNCS 5330, pp. 47–61, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

48 M. Bezem, R. Nieuwenhuis, and E. Rodŕıguez-Carbonell

Motivated by the need of SMT techniques for reasoning about delays in dig-
ital circuits, it is natural to extend the atoms of DL to max-atoms of the form
max(x, y)+k ≥ z. The satisfiability of conjunctions of such constraints appears
to be a new problem, hereafter referred to as the Max-atom problem. The Max-
atom problem is easily seen to belong to NP, since after guessing in each atom
max(x, y)+k ≥ z which one of x and y is the maximal variable, the problem
reduces to DL. As in DL, there is no essential difference here between interpre-
tations over integers or rationals1: Given a conjunction of n atoms with rational
offsets max(xi, yi)+pi/qi ≥ zi, for i in 1 . . . n, if lcm is the least common multiple
of the q′is, one can express each atom as max(xi, yi)+ri/lcm ≥ zi for certain ri’s
and solve the equisatisfiable conjunction of atoms max(xi, yi)+ri ≥ zi over the
integers. Therefore, unless explicitly stated otherwise, here we will only consider
integer models and offsets.

The language of conjunctions of max-atoms of the form max(x, y)+k ≥ z is
quite expressive, and many interesting problems can be modeled by polynomially
many such max-atoms. Some simple examples follow. DL literals x+ k ≥ y
can of course be expressed as max(x, x)+k ≥ y. Equalities max(x, y)+k = z
can be written as max(x, y)+ k ≥ z ∧ z− k ≥ x ∧ z− k ≥ y. Strict
inequalities max(x, y)+k > z can be expressed as max(x, y)+k−1 ≥ z. One can
express max on both sides, as in max(x, y)+k = max(x′, y′)+k′ by introducing
a fresh variable z and writing max(x, y)+k = z ∧ max(x′, y′)+k′ = z. One
can also express different offsets on different arguments of max; for instance
max(x+5, y−3) ≥ z can be written as max(x, y′)+5 ≥ z ∧ y′+8 = y, where y′

is fresh. Furthermore, since max(e1, e2, e3) is equivalent to max(e1,max(e2, e3)),
one can express nested or larger-arity max-atoms such as max(e1, e2, e3) ≥ z by
writing max(e1, x) ≥ z ∧ max(e2, e3) = x, where x is fresh.

A less simple equivalence (see Section 5) exists with a problem used in Control
Theory for modeling Discrete Event Systems. It amounts to solving two-sided
linear max-plus systems: sets of equations of the form

max(x1+k1, . . . , xn+kn) = max(x1+k′1, . . . , xn+k′n)

where all n variables of the system occur on both sides of every equation, which
makes it non-trivial to show that max-atoms can be equivalently expressed in this
form. Finding a polynomial algorithm for this problem has been open for more
than 30 years in the area of max-plus algebras [BZ06]. An elegant algorithm was
given and claimed to be polynomial in [BZ06], but unfortunately in [BNRC08]
we have given an example on which it behaves exponentially. Currently still no
polynomial algorithm is known.

Yet another equivalent problem (see again Section 5) concerns shortest paths
in directed weighted hypergraphs. In such hypergraphs, an edge goes from a
set of vertices to another vertex. Hence a natural notion of a hyperpath (from
a set of vertices to a vertex) is a tree, and a natural notion of length of the
hyperpath is the maximal length (the sum of the weights) of a path from a
leaf to the root of this tree. For arbitrary directed hypergraphs with positive
1 Except, possibly, for the weakly polynomial algorithm that will be given in Section 3.

The Max-Atom Problem and Its Relevance 49

or negative weights, no polynomial algorithm for determining (the existence of)
such shortest hyperpaths has been found.

Slight increases in expressive power lead to NP-hardness. For instance, hav-
ing both max and min it is easy to express any 3-SAT problem with variables
x1 . . . xn, by: (i) an atom T > F (T , F are variables); (ii) for all xi the atoms
min(xi, x

′
i) = F and max(xi, x

′
i) = T ; (iii) for each clause like xp ∨ xq ∨ xr , an

atom max(xp, x
′
q, xr) ≥ T .

Altogether, decades of efforts in the hypergraph and the max-plus communi-
ties have not produced any polynomial decision procedure nor an NP-hardness
result for the different versions of the –apparently so simple– Max-atom problem.
In this paper we give several interesting new insights.

In Section 2 we first prove some relevant results on the models of sets (con-
junctions) of max-atoms: we give a small-model property, and show that the
model class is a (join semi-) lattice. These properties allow us to prove that a set
of max-atoms is unsatisfiable if, and only if, it has an unsatisfiable subset which
is right-distinct, i.e., where each variable occurs at most once as a right-hand
side of a max-atom.

In Section 3 we define max-derivations as transformation systems on states
(assignments to the variables) as a formalism for searching models, and use the
properties of the previous section to obtain a weakly polynomial algorithm for
the integers, which is also a strongly polynomial one for a relevant subclass of
problems.

In Section 4 we define a chaining inference system for max-atoms of the
form max(x1 +k1, . . . , xm +km) ≥ z, and building upon the previous results
we show that it is sound and refutation complete. Moreover, we prove that for
right-distinct sets chaining can be turned into a polynomial-time decision pro-
cedure, thus showing that the Max-atom problem is in co-NP (one only needs
to guess the small unsatisfiability certificate: the right-distinct unsatisfiable sub-
set). Since there are few interesting problems in NP ∩ co-NP that are not known
to be polynomial, this one appears to be relevant. Moreover, given the history
of problems in this class, such as deciding primality [AKS04], there is hope for
a polynomial-time algorithm.

The paper ends with the proofs of equivalence with solving two-sided lin-
ear max-plus systems and shortest paths in hypergraphs (Section 5) and the
conclusions (Section 6).

2 Models of Conjunctions of Max-Atoms

The following lemma ensures that models of a set of max-atoms are invariant
under “uniform” translations:

Lemma 1. Given a set of max-atoms S defined over the variables V and an
assignment α : V → Z which is a model of S, for any d ∈ Z the assignment α′

defined by α′(x) = α(x) + d is a model of S.

50 M. Bezem, R. Nieuwenhuis, and E. Rodŕıguez-Carbonell

Definition 1. Given a set of variables V , the size of an assignment α : V → Z is
the difference between the largest and the smallest value assigned to the variables,
i.e., size(α) = maxx,y∈V (α(x) − α(y)).

Lemma 2 (Small Model Property). If a set of max-atoms S is satisfiable,
then it has a model of size at most the sum of the absolute values of the offsets,
i.e., at most

KS =
∑

max(x,y)+k≥z ∈ S

|k|.

Proof. We may assume that all constraints in the set are equations: replace
each max-atom max(x, y) + k ≥ z by the constraints max(x, y) + k = z′ and
max(z, z′) = z′. The class of models does not change essentially by adding these
auxiliary constraints and variables, as one just has to add/omit interpretations
for the fresh variables. Furthermore, the sum of the absolute values of the offsets
does not change. Therefore, we may assume that S is a set of constraints of the
form max(x, y) + k = z (where possibly x and y are the same variable).

Let α be a model of S. Based on α we define a weighted graph whose vertices
are the variables. For every constraint max(x, y) + k = z, if α(x) ≥ α(y) then
we add a red edge (x, z) with weight k and a green edge (y, x) without a weight;
and otherwise, if α(y) > α(x) then we add a red edge (y, z) with weight k and
a green edge (x, y) without a weight. While changing the model, the graph will
remain all the time the same.

A red (weakly) connected component is a subgraph such that there are red
paths between any two variables in the subgraph, where the red edges may be
used in any direction. The segment of a red connected component is the range
of integers from the lowest value to the highest one assigned to the variables in
the component. The size of such a segment is at most the sum of the absolute
values of the weights of the edges in the component.

Red connected components partition the set of variables. If their segments
overlap, then already size(α) ≤ KS . If there is a gap somewhere, say of size p,
then the gap is closed by a suitable translation, e.g., by decreasing by p all values
assigned to variables above the gap. This respects all red edges and their weights
since the gap is between segments of red connected components and components
are translated as a whole. Green edges are also respected since we only close gaps
and never a variable x with initially a higher value than another variable y ends
up with a value strictly lower than y. Since all edges are respected we keep a
model, all the time closing gaps until there are no gaps left. We end up with a
model α′ without gaps and hence size(α′) ≤ KS . �	
The previous lemma gives an alternative proof of membership in NP of the
Max-atom problem: it suffices to guess a “small” assignment; checking that it is
indeed a model is trivially in P.

Lemma 3 below proves that the model class of a set of max-atoms is a (join
semi-) lattice, where the partial ordering is ≥ (pointwise ≥):

Definition 2. Given a set of variables V and assignments α1, α2 : V → Z, we
write α1 ≥ α2 if for all x ∈ V , α1(x) ≥ α2(x).

The Max-Atom Problem and Its Relevance 51

Definition 3. Given a set of variables V and two assignments α1, α2 : V → Z,
the supremum of α1 and α2, denoted by sup(α1, α2), is the assignment defined
by sup(α1, α2)(x) = max(α1(x), α2(x)) for all x ∈ V .

Lemma 3. Given a set of max-atoms S defined over the variables V and two
assignments α1, α2 : V → Z, if α1 |= S and α2 |= S then sup(α1, α2) |= S.

Proof. Let us denote sup(α1, α2) by α∗. Assume α1 |= S and α2 |= S and let
max(x, y)+k ≥ z be an atom in S. By assumption, max(αi(x), αi(y))+k ≥ αi(z)
for i = 1, 2. Also by definition for i = 1, 2 we have α∗(x) ≥ αi(x) and α∗(y) ≥
αi(y), so max(α∗(x), α∗(y)) + k ≥ αi(z). Thus max(α∗(x), α∗(y)) + k ≥ α∗(z),
that is, the atom max(x, y) + k ≥ z is satisfied by α∗. Hence α∗ |= S. �	

Using the previous lemmas, we have the following result:

Lemma 4. Let S be a set of max-atoms, and let z be a variable such that for
some r > 1 all max-atoms with z as right-hand side are L1, ..., Lr. The set S
is satisfiable if and only if all S − {Li} (i in 1 . . . r) are satisfiable.

Proof. The “only if” implication is trivial, since S−{Li} ⊆ S for all i in 1 . . . r.
Now, for the “if” implication, let αi be a model of S − {Li}. By Lemma 1, for
every i in 2 . . . r we can assume w.l.o.g. that αi(z) = α1(z). Let us define α∗ =
sup(α1, ..., sup(αr−1, αr)...). Then α∗(z) = αi(z) for all i in 1 . . . r. Moreover,
since for all i in 1 . . . r we have in particular αi |= S − {L1, ..., Lr}, by iterating
Lemma 3, α∗ |= S − {L1, ..., Lr}. It remains to be seen that α∗ |= Li for any i
in 1 . . . r. Let thus max(x, y) + k ≥ z be Li, for a given i in 1 . . . r. Since r > 1,
there is j in 1 . . . r such that i �= j. Since αj |= S − {Lj} and i �= j, αj |= Li.
So max(α∗(x), α∗(y)) + k ≥ max(αj(x), αj(y)) + k ≥ αj(z) = α∗(z). Hence
α∗ |= Li. �	

The next definition and lemma will be paramount for building short certificates
of unsatisfiability:

Definition 4. A set of max-atoms S is said to be right-distinct if variables
occur at most once as right-hand sides, i.e., for every two distinct max-atoms
max(x, y) + k ≥ z and max(x′, y′) + k ≥ z′ in S we have z �= z′.

Lemma 5. Let S be a set of max-atoms. If S is unsatisfiable, then there exists
an unsatisfiable right-distinct subset S′ ⊆ S.

Proof. Let V be the set of variables over which S is defined. Let us prove the
result by induction on N = |S|−|{z ∈ V | z appears as a right-hand side in S}|:

– Base step: N = 0. Then all variables appearing as right-hand sides are
different. So S is right-distinct, and we can take S′ = S.

– Inductive step: N > 0. Then there is a variable which appears at least twice
as a right-hand side. Let z be such a variable. By Lemma 4, since S is
unsatisfiable, there exists an atom L ∈ S with right-hand side z such that
S − {L} is unsatisfiable. Now, by induction hypothesis on S − {L} there is
an unsatisfiable right-distinct set S′ ⊆ S − {L} ⊂ S. �	

52 M. Bezem, R. Nieuwenhuis, and E. Rodŕıguez-Carbonell

3 Max-Derivations

W.l.o.g. in this section max-atoms are of the form max(x, y)+k ≥ z with x �= z,
y �= z. This can be assumed by removing trivial contradictions max(x, x) + k ≥
x (k < 0), trivial tautologies max(x, y) + k ≥ x (k ≥ 0), and by replacing
max(x, y) + k ≥ x by max(y, y) + k ≥ x if k < 0 and x �= y.

Definition 5. Given a set of max-atoms S defined over the variables V and two
assignments α, α′, we write α→S α

′ (or simply α→ α′, if S is understood from
the context) if there is a max-atom max(x, y) + k ≥ z ∈ S such that:

1. α′(z) = max(α(x), α(y)) + k

2. α′(z) < α(z) (hence we say that z decreases in this step)
3. α′(u) = α(u) for all u ∈ V , u �= z.

Any sequence of steps α0 → α1 → · · · is called a max-derivation for S.

Lemma 6. Let S be a set of max-atoms defined over the variables V . An as-
signment α : V → Z is a model for S if and only if α is final, i.e., there is no
α′ such that α→ α′.

The following lemma expresses that max-derivations, while decreasing variables,
never “break through” any model:

Lemma 7. Let S be a set of max-atoms and let α be a model of S. If α0 →
· · · → αm and α0 ≥ α, then αm ≥ α.

Proof. By induction over m, the length of the derivation. For m = 0 there is
nothing to prove. Now, if m > 0 the step α0 → α1 is by an atom max(x, y)+k ≥
z. Let us prove that α1 ≥ α. We only need to show that the inequality holds for
the variable that changes, which is z; and indeed α1(z) = max(α0(x), α0(y)) +
k ≥ max(α(x), α(y)) + k ≥ α(z). Now, by induction hypothesis αm ≥ α. �	

The previous lemma, together with the Small Model Property (Lemma 2), pro-
vides us with a weakly polynomial algorithm, i.e., an algorithm whose runtime
is polynomial in the input size if numbers are encoded in unary.

Theorem 1. The Max-atom problem over the integers is weakly polynomial.

Proof. Let S be a conjunction of max-atoms, with variables V , where |V | = n.
For deciding the satisfiability of S one can construct an arbitrary max-derivation,
starting, e.g., from the assignment α0 with α0(x) = 0 for all x in V . At each
step, one variable decreases by at least one. If S is satisfiable, by the Small Model
Property and by Lemma 1, there is a model α such that −KS ≤ α(x) ≤ 0 for
all x in V . Moreover, by the previous lemma, no variable x will ever get lower
than α(x) in the derivation. Altogether this means that, if no model is found
after n ·KS steps, then S is unsatisfiable. �	

The Max-Atom Problem and Its Relevance 53

Note that the previous result does not directly extend to the case of the ra-
tionals since the transformation described in the introduction may produce an
exponential blow-up in the value of the offsets.

As a corollary of the proof of the previous theorem, we obtain a PTIME
decision procedure for sets of atoms of the forms max(x, y) ≥ z or max(x, y) > z.
More generally, this also applies to K-bounded sets, where in S the absolute
values of all offsets are bounded by a given constant K.

Example 1. Let S be the following set of max-atoms:

S = {u− 10 ≥ x, z ≥ y, max(x, y) − 1 ≥ z, max(x, u) + 25 ≥ z},

and let α0 be the assignment with α0(x) = α0(y) = α0(z) = α0(u) = 0. This
initial assignment α0 violates u − 10 ≥ x, which allows us to decrease x and
assign it the value −10: in terms of max-derivations α0 → α1, where α1 is the
assignment with α1(x) = −10, α1(y) = α1(z) = α1(u) = 0.

Now the assignment α1 only violates max(x, y)−1 ≥ z, which forces z to take
the value −1: in terms of max-derivations, α1 → α2, where α2 is the assignment
with α2(x) = −10, α2(y) = 0, α2(z) = −1, α2(u) = 0. Then α2 only violates
z ≥ y, which forces y to take the value −1 too: α2 → α3, where α3 is the
assignment with α3(x) = −10, α3(y) = α3(z) = −1, α3(u) = 0.

It is easy to see that 11 iterations of each of the last two steps will be needed
to find a model: finally we will have a derivation α0 →∗ α with α(x) = −10,
α(y) = α(z) = −11, α(u) = 0; since there is no α′ such that α → α′, α is a
model of S, hence S is satisfiable.

Notice that, if we replace 10 in S by larger powers of 10, we get a family
of inputs whose sizes increase linearly, but for which the number of steps of
the max-derivations reaching to a model grows exponentially. Since the number
of steps is polynomial in the value of the offsets, and not in the sizes of the
offsets, the algorithm based on max-derivations can be weakly polynomial but
not polynomial.

Now, if we consider the set of max-atoms S′ = S ∪ {max(x, y) + 9 ≥ u}, we
note that α above does not satisfy the new constraint. So we can decrease u
and assign it the value −1, which makes u − 10 ≥ x false and forces x to take
the value −11. Then max(x, y) − 1 ≥ z is violated, and z is decreased to −12.
Finally z ≥ y becomes false, so y is assigned −12. The loop of these four steps
can be repeated over and over, making all variables decrease indefinitely. Thus,
S′ is unsatisfiable as no model is found within the bound of n ·KS steps given
in the previous theorem.

4 Chaining Inference System and Membership in Co-NP

In this section we deal with the (equivalent in expressive power) language of
max-atoms of the form max(x1+k1, ..., xn+kn) ≥ z. Here, T always stands for a
max-expression of the form max(y1+k′1, . . . , ym+k′m) with m ≥ 0; when written
inside a max-expression the whole expression is considered flattened, so then
max(T, z+k) represents max(y1+k′1, . . . , ym+k′m, z+k).

54 M. Bezem, R. Nieuwenhuis, and E. Rodŕıguez-Carbonell

Definition 6. The Max-chaining inference rule is the following:

max(x1+k1, ..., xn+kn) ≥ y max(T, y+k) ≥ z
max(T, x1+k1+k, . . . , xn+kn+k) ≥ z

(Max-chaining)

Definition 7. The Max-atom simplification rules are as follows:

max(T, x+k) ≥ x
max(T) ≥ x

if k < 0 (Max-atom simplification-1)

max(T, x+k, x+k′) ≥ y
max(T, x+k′) ≥ y

if k ≤ k′ (Max-atom simplification-2)

Theorem 2. The Max-chaining rule and the Max-atom simplification rules are
sound, i.e., the conclusions of the inference rules are logical consequences of their
respective premises. Moreover, for each one of the Max-atom simplification rules,
the conclusion and the premise are logically equivalent.

Theorem 3. Max-chaining, together with the Max-atom simplifications rules,
is refutation complete. That is, if S is an unsatisfiable set of max-atoms that is
closed under the Max-chaining and Max-atom simplification rules, then there is
a contradiction in S, i.e., a max-atom of the form max() ≥ x.

Proof. We prove a slightly stronger result, namely the refutation completeness
with a concrete ordered application strategy, assuming an ordering on the vari-
ables x1 > . . . > xn occurring in S. We prove that if there is no contradiction in
S then S is satisfiable. This is done by induction on n.
Base case: if n = 1 all atoms in S are of the form max(x+k1, . . . , x+km) ≥ x,
with m ≥ 1, and where at least one of the ki is positive (otherwise Max-atom
simplification-1 generates the contradiction max() ≥ x). Therefore these max-
atoms are tautologies and hence satisfiable.
Induction step. Assume n > 1. Let S1 be the subset of S of its max-atoms in
which the variable x1 occurs. Let SR1 and SL1 be the subsets of S1 of max-
atoms in which x1 occurs exactly once, only at the right-hand sides and only
at the left-hand sides, respectively. By an easy induction applying the previous
theorem, all max-atoms in S1 are logical consequences of the ones in SR1 and
SL1, since S is closed under the Max-Simplification rules. Let S′1 be the set of the
|SR1|·|SL1| max-atoms that can be obtained by applying the max-chaining steps
on x1 between max-atoms of these two sets. Now let S2 be the set S \ S1. Note
that it is closed under the Max-chaining and Max-atom simplification rules and
that S2 ⊇ S′1. Since S2 has one variable (x1) less than S, by induction hypothesis
there exists a model α for S2.

We will now extend α to a model α′ for S. That is, we will have α′(xi) = α(xi)
for all i > 1, and in addition α′ will also be defined for x1, in such a way that
α′ |= SR1∪SL1, which implies α′ |= S1, and hence, since α |= S2, we will obtain
α′ |= S.

The Max-Atom Problem and Its Relevance 55

Let SR1 be of the form { T1 ≥ x1, . . . , Tm ≥ x1 } (m > 0), and let α(T)
denote the evaluation of T under the assignment α.2 Now we define α′(x1) to
be min(α(T1), . . . , α(Tm)). W.l.o.g., say, α′(x1) = α(T1). Let T1 be of the form
max(y1 +k1, . . . , ym +km), so that α′(x1) = max(α(y1)+k1, . . . , α(ym)+km).
Clearly α′ satisfies by construction all atoms in SR1. It only remains to show
that α′ is also a model of SL1, i.e., of the atoms of the form max(x1+k, T) ≥ z.
For each such atom in SL1, the corresponding conclusion by max-chaining with
the atom max(y1+k1, . . . , ym+km) ≥ x1 is the atom max(y1+k1+k, . . . , ym+
km +k, T) ≥ z, which is in S2 and is hence satisfied by α. So, as α′(x1) =
max(α(y1)+k1, . . . , α(ym)+km), also max(x1+k, T) ≥ z is satisfied by α′. �	

Notice that the algorithm described in the proof of the previous theorem is a
generalization of the Fourier-Motzkin elimination procedure.

Example 2. Let us consider again the system introduced in Example 1 extended
with max(x, y) + 9 ≥ u, which makes it unsatisfiable. Atoms are written now in
the format used in this section.

{ max(u − 10) ≥ x, max(z) ≥ y,
max(x− 1, y − 1) ≥ z, max(x + 25, u+ 25) ≥ z
max(x+ 9, y + 9) ≥ u}

By applying a closure strategy as described in the proof of the previous theorem,
we get a contradiction:

Rule Set of Max-Atoms
max(u− 10) ≥ x, max(z) ≥ y,
max(x− 1, y − 1) ≥ z, max(x+ 25, u+ 25) ≥ z
max(x+ 9, y + 9) ≥ u

max-chaining x max(z) ≥ y, max(u − 11, y − 1) ≥ z,
max(u+ 15, u+ 25) ≥ z,max(u− 1, y + 9) ≥ u

atom-simplification-2 max(z) ≥ y, max(u − 11, y − 1) ≥ z,
max(u+ 25) ≥ z, max(u− 1, y + 9) ≥ u

atom-simplification-1 max(z) ≥ y, max(u − 11, y − 1) ≥ z,
max(u+ 25) ≥ z, max(y + 9) ≥ u

max-chaining y max(u− 11, z − 1) ≥ z, max(u+ 25) ≥ z,
max(z + 9) ≥ u

atom-simplification-1 max(u− 11) ≥ z, max(u+ 25) ≥ z, max(z + 9) ≥ u
max-chaining z max(u− 2) ≥ u, max(u + 34) ≥ u
atom-simplification-1 max() ≥ u

Theorem 4. The Max-atom problem for right-distinct sets is decidable in poly-
nomial time.
2 Note that when SR1 = ∅, if SL1 has the form { max(x1+k1, T1) ≥ z1, . . . , max(x1+

kn, Tn) ≥ zn } (n > 0) one just needs to define α′(x1) = max(α(z1)−k1, . . . , α(zn)−
kn). If SL1 = ∅ too, then α′(x1) can be defined arbitrarily.

56 M. Bezem, R. Nieuwenhuis, and E. Rodŕıguez-Carbonell

Proof. For right-distinct sets, the closure process eliminating variables one by
one, as explained in the refutation completeness proof, can be done in polynomial
time if the Max-atom simplification rules are applied eagerly. The proof shows
that after each Max-atom simplification step, its premise can be ignored (i.e.,
removed) once the conclusion has been added, and that tautologies of the form
max(. . . , x+k, . . .) ≥ x with k ≥ 0 can also be ignored. Eliminating one variable
x can then be done in polynomial time, since there is only one leftmost premise of
chaining with x. After eliminating x, a new right-distinct set of max-atoms with
one variable less and at least one atom less is obtained, in which each atom has
arity bounded by the number of variables and the size of the offsets is bounded
by the sum of the sizes of the offsets in the input. �	

Example 3. In the previous example, an unsatisfiable right-distinct subset is:

{ max(u−10) ≥ x, max(z) ≥ y, max(x−1, y−1) ≥ z, max(x+9, y+9) ≥ u }.

Applying the polynomial-time closure we get a contradiction:

Rule Set of Max-Atoms
max(u− 10) ≥ x
max(z) ≥ y
max(x− 1, y − 1) ≥ z
max(x+ 9, y + 9) ≥ u

max-chaining x max(z) ≥ y
max(u− 11, y − 1) ≥ z
max(u− 1, y + 9) ≥ u

atom-simplification-1 max(z) ≥ y
max(u− 11, y − 1) ≥ z
max(y + 9) ≥ u

max-chaining y max(u− 11, z − 1) ≥ z
max(z + 9) ≥ u

atom-simplification-1 max(u− 11) ≥ z
max(z + 9) ≥ u

max-chaining z max(u− 2) ≥ u
atom-simplification-1 max() ≥ u

Theorem 5. The Max-atom problem is in co-NP.

Proof. By Lemma 5, if a set of max-atoms is unsatisfiable, it has a right-distinct
unsatisfiable subset. This subset is a small unsatisfiability certificate, which, by
the previous theorem, can be verified in polynomial time. �	

Since there are few interesting problems in NP ∩ co-NP that are not known
to be polynomial, this problem (in its several equivalent forms) appears to be
relevant. Moreover, given the history of problems in this class, such as deciding
primality [AKS04], there is hope for a polynomial-time algorithm.

The Max-Atom Problem and Its Relevance 57

5 PTIME Equivalences

In this section we show the polynomial reducibility between the Max-atom prob-
lem, the satisfiability problem for two-sided linear max-plus systems, and the
existence problem of shortest hyperpaths in hypergraphs.

Theorem 6. The Max-atom problem and the problem of satisfiability of a two-
sided linear max-plus system are polynomially reducible to each other.

Proof. Reducing this kind of max-equations to max-atoms can be done as ex-
plained in the introduction. For the reverse reduction, by the Small Model Prop-
erty, if S is satisfiable then it has a model α such that size(α) ≤ KS (notice that
KS can be computed in polynomial time). Let V = {x1, . . . , xn} be the set of
variables over which S is defined. Now, for each variable xi, we consider the
equation

max(x1 − 1, ..., xi−1 − 1, xi +KS , xi+1 − 1, ..., xn − 1) =
max(x1, ..., xi−1, xi +KS , xi+1, ..., xn),

which is equivalent to xi +KS ≥ xj , i.e., KS ≥ xj − xi for all j in 1 . . . n, j �= i.
Let S′0 be the two-sided linear max-plus system consisting of these n equations.
Now we add new equations to S′0 to obtain a system S′ which is equisatisfiable
to S. This is achieved by replacing every max-atom max(xi1 , xi2) + k ≥ xi3 in
S by the equation

max(xi1 + k, xi2 + k, xi3 , xj −KS − |k| − 1, ...) =
max(xi1 + k, xi2 + k, xi3 − 1, xj −KS − |k| − 1, ...),

where j ranges over all variable indices different from i1, i2, i3 (if any of the
indices i1, i2 or i3 coincide, an obvious simplification must be applied). The
offset −KS − |k| − 1 has been chosen so that variables with this offset do not
play a role in the maxima. If we leave them out, it is clear that the resulting
constraint max(xi1 + k, xi2 + k, xi3) = max(xi1 + k, xi2 + k, xi3 − 1) is equivalent
to the max-atom max(xi1 , xi2) + k ≥ xi3 . �	

For the relationship with shortest hyperpaths, first some preliminary notions on
hypergraphs are presented. We do this by contrasting them with the analogous
concepts for graphs.

A (directed, weighted) graph is a tuple G = (V,E,W) where V is the set of
vertices, E is the set of edges and W : E → Z is the weight function. Each edge
is a pair (s, t) from a vertex s ∈ V called the source vertex to a vertex t ∈ V
called the target vertex.

A (directed, weighted) hypergraph is a tuple H = (V,E,W) where V is the
set of vertices, E is the set of hyperedges and W : E → Z is the weight function.
Each hyperedge is a pair (S, t) from a non-empty finite subset of vertices S ⊆ V
called the source set to a vertex t ∈ V called the target vertex. Thus, a graph
is a hypergraph in which for all hyperedges the source set consists of a single
element.

58 M. Bezem, R. Nieuwenhuis, and E. Rodŕıguez-Carbonell

Given a graph G = (V,E,W) and vertices x, y ∈ V , a path from x to y is
a sequence of edges defined recursively as follows: (i) if y = x, then the empty
sequence ∅ is a path from x to y; (ii) if there is an edge (z, y) ∈ E and a path sx,z

from x to z, then the sequence sx,y obtained by appending (z, y) to the sequence
sx,z is a path from x to y.

Given a hypergraph H = (V,E,W), a subset of vertices X ⊆ V , X �= ∅ and
y ∈ V , a hyperpath from X to y is a tree defined recursively as follows: (i) if
y ∈ X , then the empty tree ∅ is a hyperpath from X to y; (ii) if there is a
hyperedge (Z, y) ∈ E and hyperpaths tX,zi from X to zi for each zi ∈ Z, then
the tree tX,y with root (Z, y) and children the trees tX,zi for each vertex zi ∈ Z,
is a hyperpath from X to y. Therefore, when viewing graphs as hypergraphs, a
path is just a hyperpath where the tree has degenerated into a sequence of edges.
This notion of hyperpath corresponds to the unfolded hyperpaths or hyperpath
trees of [AIN92].

Using the weight function W on the edges E of a graph, one can extend the
notion of weight to paths. Namely, the weight of a path p, denoted by ω(p), can
be defined naturally as follows: (i) if p is ∅, then ω(p) = 0; (ii) if p is the result
of appending the edge e to the path q, then ω(p) = W (e) + ω(q).

On the other hand, in the case of hypergraphs several notions of hyperpath
weight have been studied [AIN92]. In this paper we consider the one of rank (also
called the distance [GLPN93]) of a hyperpath p, which is defined as: (i) if p is ∅,
then ω(p) = 0; (ii) if p is a tree with root the hyperedge e and children p1, ..., pm,
then ω(p) = W (e) + max

(
ω(p1), . . . , ω(pm)

)
. This natural notion intuitively

corresponds to the heaviest path in the tree.
From now on, we will assume that hypergraphs are finite, i.e., the set of

vertices V is finite.

Example 4. Fig. 1 (a) shows an example of a hypergraph. E.g., the hyperedge
({u}, x) has weight −10, while the weight of the hyperedge ({u, x}, z) is 25 . The
empty tree is a hyperpath from {u, y} to y with rank 0; Fig. 1 (b) shows another
hyperpath from {u, y} to y, with rank 24.

xu

({x, y}, z)

({u, x}, z)

0

25

−10

z

y

−1

(a) (b)

({u}, x)

({u}, x) ({z}, y)

({z}, y)

Fig. 1. Example of hypergraph

The Max-Atom Problem and Its Relevance 59

We now show that the Max-atom problem and the problem of existence of short-
est hyperpaths (i.e., with the least rank) in hypergraphs are equivalent, in the
sense that they can polynomially be reduced to one another.

Definition 8. Let H = (V,E,W) be a hypergraph. Given a subset of vertices
X ⊆ V , X �= ∅, the distance function δX : V → Z ∪ {±∞} is defined as

δX(y) = inf{ω(tX,y) | tX,y is a hyperpath from X to y},

where for S ⊆ R, we denote by inf(S) ∈ R ∪ {±∞} the infimum of S.
The distance function δX is said to be well-defined if δX(y) > −∞ for all

vertices y ∈ V .

With this definition, intuitively +∞ means “no hyperpath” and −∞ is re-
lated to negative cycles, for instance in the presence of an hyperedge such as
W ({x}, x) = −1.

Our goal is to show that the satisfiability of sets of max-atoms is equivalent to
the problem of, given a hypergraph H = (V,E,W), decide if for all non-empty
X ⊆ V the distance function δX is well-defined, i.e., for all y ∈ V there exists a
shortest hyperpath from X to y. To that end, we need the following lemmas:

Lemma 8. Let H = (V,E,W) be a hypergraph and X ⊆ V , X �= ∅ be a set
of vertices such that −∞ < δX(y) < +∞ for all y ∈ V . If (Z, y) ∈ E, then
δX(y) ≤W (Z, y) + maxz∈Z(δX(z)).

Proof. By hypothesis for all y ∈ V we have −∞ < δX(y) < +∞. Thus, in
particular, for all z ∈ Z there exists a hyperpath tz from X to z such that
ω(tz) = δX(z). Now the tree t with root (Z, y) and children the trees tz for each
z ∈ Z is a hyperpath fromX to y. So δX(y) ≤ ω(t) = W (Z, y)+maxz∈Z(ω(tz)) =
W (Z, y) + maxz∈Z(δX(z)). �	

Lemma 9. Let H = (V,E,W) be a hypergraph and α : V → Z be such that
α(y) ≤ maxz∈Z(α(z))+W (Z, y) for all hyperedges (Z, y) ∈ E. If t is a hyperpath
from a non-empty X ⊆ V to y ∈ V , then α(y) ≤ maxx∈X(α(x)) + ω(t).

Proof. Let us prove it by induction over the depth of t. In the base case t =
∅, and therefore y ∈ X . Since ω(∅) = 0, trivially α(y) ≤ maxx∈X(α(x)) =
maxx∈X(α(x)) + ω(∅). Now, if t has positive depth, its root is a hyperedge
(Z, y) ∈ E, and its children are trees t1, ..., tm connecting X to z1, ..., zm

respectively, where Z = {z1, ..., zm}. By induction hypothesis, for each i in 1 . . .m
we have α(zi) ≤ maxx∈X(α(x)) + ω(ti). Now:

α(y) ≤ max
1≤i≤n

(α(zi)) +W (Z, y) ≤ max
1≤i≤n

(max
x∈X

(α(x)) + ω(ti)) +W (Z, y) =

= max
x∈X

(α(x)) + max
1≤i≤n

(ω(ti)) +W (Z, y) = max
x∈X

(α(x)) +ω(t). �	

Finally we are in condition to prove the equivalence of the two problems. For
convenience, in what remains of this section we assume max-atoms to be of the
form max1≤i≤n(xi) + k ≥ z.

60 M. Bezem, R. Nieuwenhuis, and E. Rodŕıguez-Carbonell

Theorem 7. The Max-atom problem and the problem of well-definedness of the
distance functions of all subsets of vertices of a hypergraph are polynomially
reducible to each other.

Proof. First we prove that, given a set S of max-atoms, one can compute in
polynomial time a hypergraph H(S) whose distance functions are well-defined
if and only if S is satisfiable.

Let S be a set of max-atoms over the variables V . We can assume w.l.o.g. that
there exists a variable x ∈ V such that there are max-atoms x ≥ y ∈ S for every
y ∈ V (adding a fresh variable with these properties preserves satisfiability).
The hypergraph H(S) is defined as follows: its set of vertices is V ; and for each
max-atom maxz∈Z(z) + k ≥ y, we define a hyperedge e = (Z, y) with weight
W (e) = k.

Let us see that the distance function δx in H(S) is well-defined if and only if
S is satisfiable (we write δx instead of δ{x} for the sake of clarity). Let us prove
that if δx is well-defined then S is satisfiable. By construction, for each max-atom
maxz∈Z(z)+ k ≥ y ∈ S there exists a hyperedge e = (Z, y) in H(S) with weight
W (e) = k. Now, since δx is well-defined and all vertices are hyperconnected to
{x}, by Lemma 8 we have maxz∈Z(δx(z)) + W (Z, y) ≥ δx(y), and so δx |= S.
Let us prove the converse, i.e., that if S is satisfiable then δx is well-defined, by
contradiction. Let us assume that δx is not well-defined and let α be a model of
S. Then there is y ∈ V such that δx(y) = −∞. This implies that for all w ∈ R
there exists a hyperpath tw from {x} to y such that ω(tw) < w; in particular, this
holds for w = α(y)−α(x). As α |= S, by Lemma 9 we have α(x)+ω(tw) ≥ α(y),
i.e., ω(tw) ≥ α(y) − α(x), which is a contradiction.

Finally, as in H(S) all vertices are hyperconnected to {x} by a hyperedge, it
is clear that δx is well-defined if and only if so is δX for all X ⊆ V , X �= ∅.

Secondly, let us prove that given a hypergraph H , one can compute in poly-
nomial time a set S(H) of max-atoms such that H has a well-defined distance
function δX for all X ⊆ V , X �= ∅ if and only if S(H) is satisfiable. Given
H = (V,E,W), the variables of S(H) are V , the vertices of H ; and for each
hyperedge (Z, y) ∈ E, we consider the max-atom maxz∈Z(z) + W (Z, y) ≥ y.
The proof concludes by observing that H has a well-defined distance function
δX for all X ⊆ V , X �= ∅ if and only if the same property holds for H(S(H)), if
and only if S(H) is satisfiable. �	

Example 5. The hypergraph corresponding to the set of max-atoms considered
in Example 1 is the one shown in Example 4.

6 Conclusions and Future Directions

The contributions of this paper can be summarized as follows:

– First, we have shown that the Max-atom problem is in NP ∩ co-NP. As
no PTIME algorithm for solving this problem has been found yet, this is
relevant since there are few interesting problems in NP ∩ co-NP that are not
known to be polynomial.

The Max-Atom Problem and Its Relevance 61

– We have given a weakly polynomial decision procedure for the problem (when
the offsets are integers). This algorithm becomes polynomial under more
restrictive conditions on the input, e.g. by imposing a bound on offsets.

– Finally, we have shown the equivalence of deciding the Max-atom problem
with two other at first sight unrelated problems: namely, (i) the satisfiability
of two-sided linear max-plus systems of equations, used in Control Theory
for modeling Discrete Event Systems; and (ii) the existence for a given hy-
pergraph of shortest paths from any non-empty subset of vertices to any
vertex. Finding a PTIME algorithm for these problems has been open in the
respective areas for more than 30 years, and is still unsolved.

As regards future work, in the short term we would like to find a weakly
polynomial algorithm when the offsets may be arbitrary rational numbers. This
would perhaps give new insights about the long-term goal of finding a polynomial
algorithm for deciding the satisfiability of sets of max-atoms.

As noticed by an anonymous referee, the Max-atom problem is a special case
of the problem of finding a super-fixed point of a min-max function. A super-
fixed point of a function f on a (partially) ordered set A is an a ∈ A such that
f(a) ≥ a. Now, for instance, the satisfiability of S in Example 1 from Section 3
is equivalent to finding a super-fixed point of

f(u, x, y, z) = (u, u− 10, z,min(max(x, y) − 1,max(x, u) + 25))

with respect to the coordinate-wise partial order. More information on min-max
functions can be found in [G94]. The referee further mentioned a connection with
game theory in [C92]. We gratefully acknowledge these suggestions for future
research.

References

[AIN92] Ausiello, G., Italiano, G., Nanni, U.: Optimal traversal of directed hyper-
graphs. Tech. Rep. TR-92-073, ICSI, Berkeley, CA (1992)

[AKS04] Agrawal, M., Kayal, N., Saxena, N.: PRIMES is in P. Annals of Mathe-
matics 160(2), 781–793 (2004)

[BNRC08] Bezem, M., Nieuwenhuis, R., Rodriguez-Carbonell, E.: Exponential be-
haviour of the Butkovič-Zimmermann algorithm for solving two-sided lin-
ear systems in max-algebra. Discrete Applied Mathematics (to appear)

[BZ06] Butkovič, P., Zimmermann, K.: A strongly polynomial algorithm for solv-
ing two-sided linear systems in max-algebra. Discrete Applied Mathemat-
ics 154(3), 437–446 (2006)

[C92] Condon, A.: The complexity of stochastic games. Information and Com-
putation 96(2), 203–224 (1992)

[GLPN93] Gallo, G., Longo, G., Pallottino, S., Nguyen, S.: Directed hypergraphs and
applications. Discrete Applied Mathematics 42, 177–201 (1993)

[G94] Gunawardena, J.: Min-max functions. Discrete Events Dynamic Systems 4,
377–406 (1994)

[NOT06] Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Modulo
Theories: from an Abstract Davis-Putnam-Logemann-Loveland Procedure
to DPLL(T). Journal of the ACM 53(6), 937–977 (2006)

Towards Practical Feasibility of Core
Computation in Data Exchange�

Reinhard Pichler and Vadim Savenkov

Vienna University of Technology

Abstract. Core computation in data exchange is concerned with mate-
rializing the minimal target database for a given source database. Gottlob
and Nash have recently shown that the core can be computed in polyno-
mial time under very general conditions. Nevertheless, core computation
has not yet been incorporated into existing data exchange tools. The
principal aim of this paper is to make a big step forward towards the
practical feasibility of core computation in data exchange by developing
an improved algorithm and by presenting a prototype implementation of
our new algorithm.

1 Introduction

Data exchange is concerned with the transfer of data between databases with
different schemas. This transfer should be performed so that the source-to-
target dependencies (STDs) establishing a mapping between the two schemas are
satisfied. Moreover, the target database may also impose additional integrity
constraints, called target dependencies (TDs). As STDs and TDs, we consider
so-called embedded dependencies [1], which are first-order formulae of the form
∀x (φ(x) → ∃y ψ(x,y)) where φ and ψ are conjunctions of atomic formulas or
equalities, and all variables in x do occur in φ(x). Throughout this paper, we
shall omit the universal quantifiers. By convention, all variables occurring in the
premise are universally quantified. Moreover, we shall often also omit the exis-
tential quantifiers. By convention, all variables occurring in the conclusion only
are existentially quantified over the conclusion. We shall thus use the notations
φ(x) → ψ(x,y) and φ(x) → ∃y ψ(x,y) interchangeably for the above formula.

The source schema S and the target schema T together with the set Σst of
STDs and the set Σt of TDs constitute the data exchange setting (S,T, Σst, Σt).
Following [2,3], we consider dependencies of the following forms: Each STD is
a tuple generating dependency (TGD) [4] of the form φS(x) → ψT(x,y), where
φS(x) is a conjunction of atomic formulas over S and ψT(x,y) is a conjunction of
atomic formulas over T. Each TD is either a TGD, of the form φT(x) → ψT(x,y)
or an equality generating dependency (EGD) [4] of the form φT(x) → (xi = xj).
In these dependencies, φT(x) and ψT(x,y) are conjunctions of atomic formulas
over T, and xi, xj are among the variables in x. An important special case of

� This work was supported by the Austrian Science Fund (FWF), project P20704-N18.

I. Cervesato, H. Veith, and A. Voronkov (Eds.): LPAR 2008, LNCS 5330, pp. 62–78, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Towards Practical Feasibility of Core Computation in Data Exchange 63

TGDs are full TGDs, which have no (existentially quantified) variables y, i.e.
we have φS(x) → ψT(x) and φT(x) → ψT(x), respectively.

The data exchange problem for a data exchange setting (S,T, Σst, Σt) is the
task of constructing a target instance J for a given source instance I, s.t. all
STDs Σst and TDs Σt are satisfied. Such a J is called a solution. Typically, the
number of possible solutions to a data exchange problem is infinite.

Example 1. Suppose that the source instance consists of two relations Tuto-
rial(course, tutor): {(’java’, ’Yves’)} and BasicUnit(course): {’java’}. Moreover,
let the target schema have four relation symbols NeedsLab(id tutor,lab), Tu-
tor(idt,tutor), Teaches(id tutor, id course) and Course(idc,course). Now suppose
that we have the following STDs:

1. BasicUnit(C) → Course(Idc, C).
2. Tutorial(C, T) → Course(Idc, C),Tutor(Idt, T),Teaches(Idt, Itc).

and suppose that the TDs are given by the two TGDs:

3. Course(Idc, C) → Tutor(Idt, T),Teaches(Idt, Idc).
4. Teaches(Idt, Idc) → NeedsLab(Idt, L).

Then the following instances are all valid solutions:
J = {Course(C1, ’java’), Tutor(T2,N), Teaches(T2,C1), NeedsLab(T2,L2),

Course(C2, ’java’), Tutor(T1,’Yves’), Teaches(T1,C2), NeedsLab(T1,L1)},
Jc = {Course(C1,’java’), Tutor(T1,’Yves’), Teaches(T1,C1), NeedsLab(T1,L1)},
J ′={Course(’java’,’java’), Tutor(T1,’Yves’), Teaches(T1,’java’), NeedsLab(T1,L1)}

A natural requirement (proposed in [2]) on the solutions is universality, that
is, there should be a homomorphism from the materialized solution to any other
possible solution. Note that J ′ in Example 1 is not universal, since there exists
no homomorphism h : J ′ → J . Indeed, a homomorphism maps any constant onto
itself; thus, the fact Course(’java’,’java’) cannot be mapped onto a fact in J .

In general, a data exchange problem has several universal solutions, which
may significantly differ in size. However, there is – up to isomorphism – one
particular, universal solution, called the core [3], which is the most compact
one. For instance, solution Jc in Example 1 is a core.

Fagin et al. [3] gave convincing arguments that the core should be the data-
base to be materialized. In general, computing the core of a graph or a structure
is NP-complete [5]. However, Gottlob and Nash [6] showed that the core of the
target database in data exchange can be computed in polynomial time under very
general conditions. Despite this favorable complexity result, core computation
has not yet been incorporated into existing data exchange tools. This is mainly
due to the following reasons: (1) Despite the theoretical tractability of core
computation, we are still far away from a practically efficient implementation
of core computation. In fact, no implementation at all has been reported so far.
(2) The core computation looks like a separate technology which cannot be easily
integrated into existing database technology.

64 R. Pichler and V. Savenkov

Results. The main contribution of this work is twofold:

(1) We present an enhanced version of the FindCore algorithm, which we
shall refer to as FindCore

E . One of the specifics of FindCore is that EGDs
in the target dependencies are simulated by TGDs. As a consequence, the core
computation becomes an integral part of finding any solution to the data ex-
change problem. The most significant advantage of our FindCore

E algorithm
is that it avoids the simulation of EGDs by TGDs. The activities of solving
the data exchange problem and of computing the core are thus fully uncoupled.
The core computation can then be considered as an optional add-on feature of
data exchange which may be omitted or deferred to a later time (e.g., to pe-
riods of low database user activity). Moreover, the direct treatment of EGDs
leads to a performance improvement of an order of magnitude. Another order of
magnitude can be gained by approximating the core. Our experimental results
suggest that the partial execution of the core computation may already yield a
very good approximation to the core. Since all intermediate instances computed
by our FindCore

E algorithm are universal solutions, one may stop the core
computation at any time and content oneself with an approximation to the core.

(2) We also report on a proof-of-concept implementation of our enhanced
algorithm. It is built on top of a relational database system and mimics data
exchange-specific features by automatically generated views and SQL queries.
This shows that the integration of core computation into existing database tech-
nology is clearly feasible. The lessons learned from the experiments with this
implementation yield important hints concerning future improvements.

Due to lack of space, most proofs are sketched or even omitted in this paper.
For full proofs, we refer to [7].

2 Preliminaries

2.1 Basic Notions

Schemas and instances. A schema σ = {R1, . . . , Rn} is a set of relation
symbols Ri with fixed arities. An instance over a schema σ consists of a relation
for each relation symbol in σ, s.t. both have the same arity. Tuples of the relations
may contain two types of terms : constants and variables . The latter are also
called labeled nulls. Two labeled nulls are equal iff they have the same label.
For every instance J , we write dom(J), var(J), and const(J) to denote the
set of terms, variables, and constants, respectively, of J . Clearly, dom(J) =
var(J) ∪ const(J) and var(J) ∩ const(J) = ∅. If a tuple (x1, x2, . . . , xn) belongs
to the relation R, we say that J contains the fact R(x1, x2, . . . , xn). We write x
for a tuple (x1, x2, . . . , xn) and if xi ∈ X , for every i, then we also write x ∈ X
instead of x ∈ Xn. Likewise, we write r ∈ x if r = xi for some i. Let Σ be an
arbitrary set of dependencies and J an instance. We write J |= Σ to denote that
the instance J satisfies Σ. In a data exchange setting (S,T, Σst, Σt), the source
schema S and the target schema T have no relation symbols in common. In a
source instance I, no variables are allowed, i.e., dom(I) = const(I).

Towards Practical Feasibility of Core Computation in Data Exchange 65

Chase. The data exchange problem can be solved by the chase [4], which iter-
atively introduces new facts or equates terms until all desired dependencies are
fulfilled. More precisely, let Σ contain a TGD τ : φ(x) → ψ(x,y), s.t. I |= φ(a)
for some assignment a on x and I � ∃yψ(a,y). Then we have to extend I with
facts corresponding to ψ(a, z), where the elements of z are fresh labeled nulls.
Likewise, suppose that Σ contains an EGD τ : φ(x) → xi = xj , s.t. I |= φ(a)
for some assignment a on x. This EGD enforces the equality ai = aj . We thus
choose a variable v among ai, aj and replace every occurrence of v in I by the
other term; if ai, aj ∈ const(I) and ai �= aj , the chase halts with failure. The
result of chasing I with dependencies Σ is denoted as IΣ .

A sufficient condition for the termination of the chase is that the TGDs be
weakly acyclic (see [8,2]). This property is formalized as follows. For a depen-
dency set Σ, construct a dependency graph GD whose vertices are fields Ri

where i denotes a position (an “attribute”) of relation R. Let φ(x) → ψ(x,y) be
a TGD in Σ and suppose that some variable x ∈ x occurs in the field Ri. Then
the edge

(
Ri, Sj

)
is present in GD if either (1) x also occurs in the field Sj in

ψ(x,y) or (2) x occurs in some other field T k in ψ(x,y) and there is a variable
y ∈ y in the field Sj in ψ(x,y). Edges resulting from rule (2) are called special .

A set of TGDs is weakly acyclic if there is no cycle containing a special edge.
Obviously, the set of STDs is always weakly acyclic, since the dependency graph
contains only edges from fields in the source schema to fields in the target schema.
We thus consider data exchange settings (S,T, Σst, Σt) where Σst is a set of
TGDs and Σt is a set of EGDs and weakly acyclic TGDs.

Figure 1 shows the dependency graph for the target TGDs in Example 1.
Special edges are marked with *. Source-to-target TGDs are omitted, since they
can never produce a cycle. Figure 1 contains two kinds of vertices: the ovals, la-
belled by attributes of target relations, are the actual vertices of the dependency
graph. The rectangles, labelled by relation names, were inserted to improve the
readability. Rather than adding the relation names to the attributes in the labels
of the oval vertices, we have connected each attribute to the rectangular vertex
with the corresponding relation name. Clearly, this dependency graph has no
cycle containing a special edge. Hence, these TGDs are weakly acyclic.

Universal solutions and core. Let I,I ′ be instances. A homomorphism h : I →
I ′ is a mapping dom(I) → dom(I ′), s.t. (1) whenever R(x) ∈ I, then R(h(x)) ∈
I ′, and (2) for every constant c, h(c) = c. An endomorphism is a homomorphism
I → I, and a retraction r is an idempotent endomorphism, i.e. r ◦ r = r. An
endomorphism or a retraction is proper if it is not surjective (for finite instances,
this is equivalent to being not injective). The image r(I) under a retraction r is
called a retract of I. An instance is called a core if it has no proper retractions.
A core C of an instance I is a retract of I, s.t. C is a core. Cores of an instance
I are unique up to isomorphism. We can therefore speak about the core of I.

Consider a data exchange setting where Σst is a set of TGDs and Σt is a
set of EGDs and weakly acyclic TGDs. Then the solution to a source instance
S can be computed as follows: We start off with the instance (S, ∅), i.e., the
source instance is S and the target instance is initially empty. Chasing (S, ∅)

66 R. Pichler and V. Savenkov

with Σst yields the instance (S, T), where T is called the preuniversal instance.
This chase always succeeds since Σst contains no EGDs. Then T is chased with
Σt. This chase may fail because of the EGDs in Σt. If the chase succeeds, then
we end up with U = TΣt, which is referred to as the canonical universal solution.
Both T and U can be computed in polynomial time w.r.t. the size of the source
instance [2].

Tutortutor

idt

Course

course

idc
Teaches

id_tutor

id_course

NeedsLab

id_tutor

lab

**
 * *

Fig. 1. Dependency graph

Depth, height, width, blocks.
Let Σ be a set of dependencies
with dependency graph GD. The
depth of a field Rj of a relation
symbol R is the maximal num-
ber of special edges in any path
of GD that ends in Rj . The depth
of Σ is the maximal depth of any
field in Σ. Given a dependency τ :

φ(x) → ψ(x,y) in Σ, we define the width of τ to be |x|, and the height as |y|.
The width (resp. the height) of Σ is the maximal width (resp. height) of the
dependencies in Σ.

Core computation is essentially a search for appropriate homomorphisms,
whose key complexity factor is the block size [3]. It is defined as follows: The
Gaifman graph G(I) of an instance I is an undirected graph whose vertices are
the variables of I and, whenever two variables v1 and v2 share a tuple in I, there
is an edge (v1, v2) in G(I). A block is a connected component of G(I). Every
variable v of I belongs exactly to one block, denoted as block(v, I). The block
size of instance I is the maximal number of variables in any of its blocks.

Theorem 1. [3] Let A and B be instances, and suppose that blocksize(A) ≤ c
holds. Then the check if a homomorphism h : A → B exists and, if so, the
computation of h can both be done in time O(|A| · |B|c).

Theorem 2. [3] If Σst is a set of STDs of height e, S is ground, and (S, T) =
(S, ∅)Σst, then blocksize(T) ≤ e.

Sibling, parent, ancestor. Consider the chase of the preuniversal instance T
with TDs Σt and suppose that y is a tuple of variables created by enforcing a
TGD φ(x) → ψ(x,y) in Σt, s.t. the precondition φ(x) was satisfied with a tuple
a. Then the elements of y are siblings of each other; every variable of a is a
parent of every element of y; and the ancestor relation is the transitive closure
of the parent relation.

2.2 Core Computation with FindCore

In this section, we recall the FindCore algorithm of [6]. To this end, we briefly
explain the main ideas underlying the steps (1) – (11) of this algorithm.

The chase. FindCore starts in (1) with the computation of the preuniversal
instance. But then, rather than directly computing the canonical universal so-
lution by chasing T with Σt, the EGDs in Σt are simulated by TGDs. Hence,

Towards Practical Feasibility of Core Computation in Data Exchange 67

in (2), the set Σt of EGDs and TGDs over the signature τ is transformed into
the set Σ̄t of TGDs over the signature τ ∪ E, where E (encoding equality) is a
binary relation not present in τ . The transformation proceeds as follows:
1. Replace all equations x = y with E(x, y), turning every EGD into a TGD.
2. Add equality constraints (symmetry, transitivity, reflexivity): (i) E(x, y) →
E(y, x); (ii) E(x, y), E(y, z) → E(x, z); and (iii) R(x1, . . . , xk) → E(xi, xi)
for every R ∈ τ and i ∈ {1, 2, . . . , k} where k is the arity of R.

3. Add consistency constraints: R(x1, . . . , xk), E(xi, y) → R(x1, . . . , y, . . . , xk)
for every R ∈ τ and i ∈ {1, 2, . . . , k}.

Procedure FindCore

Input: Source ground instance S
Output: Core of a universal solution for S

(1) Chase (S,∅) with Σst

to obtain (S, T) := (S, ∅)Σst ;
(2) Compute Σ̄t from Σt;
(3) Chase T with Σ̄t (using a nice order)

to get U := T Σ̄t ;
(4) for each x ∈ var(U), y ∈ dom(U), x �= y do
(5) Compute Txy;
(6) Look for h : Txy → U s.t. h(x) = h(y);
(7) if there is such h then
(8) Extend h to an endomorphism h′ on U ;
(9) Transform h′ into a retraction r;
(10) Set U := r(U);
(11) return U.

Even if Σt was weakly acyclic, Σ̄t

may possibly not be so. Hence, a
special nice chase order is defined
in [6] which ensures termination
of the chase by Σ̄t. It should be
noted that U computed in (3) is
not a universal solution since, in
general, the EGDs of Σt are not
satisfied. Their enforcement hap-
pens as part of the core computa-
tion.

Retractions. The FindCore al-
gorithm computes the core by
computing nested retracts. This is

motivated by the following properties of retractions: (1) embedded dependencies
are closed under retractions and (2) any proper endomorphism can be efficiently
transformed into a retraction [6]:

Theorem 3. [6] Let r : A → A be a retraction with B = r(A) and let Σ be a
set of embedded dependencies. If A |= Σ, then B |= Σ.

Theorem 4. [6] Given an endomorphism h : A→ A such that h(x) = h(y) for
some x, y ∈ dom(A), there is a proper retraction r on A s.t. r(x) = r(y). Such
a retraction can be found in time O(|dom(A)|2).

Note that U after step (3) clearly satisfies the dependencies Σst and Σ̄t. Steps
(4) – (8), which will be explained below, search for a proper endomorphism h
on U . If this search is successful, we use Theorem 4 to turn h into a retraction
r in step (9) and replace U by r(U) in step (10). By Theorem 3 we know that
Σst and Σ̄t are still satisfied.

Searching for proper endomorphisms. At every step of the descent to the
core, the FindCore algorithm attempts to find a proper endomorphism for the
current instance U in the steps (5) – (8) of the algorithm. Given a variable x
and another domain element y, we try to find an endomorphism which equates
x and y. However, by Theorem 1, the time needed to find an appropriate homo-
morphism may be exponential w.r.t. the block size. The key idea in FindCore

68 R. Pichler and V. Savenkov

is, therefore, to split the search for a proper endomorphism into two steps: For
given x and y, there exists an instance Txy (defined below) whose block size
is bounded by a constant depending only on Σst ∪ Σt. So we first search for
a homomorphism h : Txy → U with h(x) = h(y); and then h is extended to a
homomorphism h : U → U , s.t. h(x) = h(y) still holds. Hence, h is still non-
injective and, thus, h is a proper endomorphism, since we only consider finite
instances. The properties of Txy and the existence of an extension h′ of h are
governed by the following results from [6]:

Lemma 1. [6] For every weakly acyclic set Σ of TGDs, instance T and x, y ∈
dom(TΣ), there exist constants b, c which depend only on Σ and an instance Txy

satisfying (1) x, y ∈ dom(Txy), (2) T ⊆ Txy ⊆ TΣ, (3) dom(Txy) is closed under
parents and siblings, and (4) |dom(Txy)| ≤ |dom(T)| + b. Moreover, Txy can be
computed in time O(|dom(T)|c).

Theorem 5. (Lifting) [6] Let TΣ be a universal solution of a data exchange
problem obtained by chasing a preuniversal instance T with the weakly acyclic
set Σ of target TGDs. If B and W are instances such that: (1) B |= Σ, (2)
T ⊆ W ⊆ TΣ, and (3) dom(W) is closed under ancestors and siblings, then
any homomorphism h : W → B can be extended in time O(|dom(T)|b) to a
homomorphism h′ : TΣ → B where b depends only on Σ.

Summary. Recall that the predicate E simulates equality. Hence, if step (3) of
the algorithm generates a fact E(ai, aj) with ai �= aj then the data exchange
problem has no solution. Otherwise, the loop in steps (4) – (10) tries to suc-
cessively shrink dom(U). When no further shrinking is possible, then the core
is reached. In fact, it is proved in [6] that such a minimal instance U resulting
from FindCore indeed satisfies all the EGDs. Hence, U minus all auxiliary facts
with leading symbol E constitutes the core of a universal solution. Moreover, it
is proved in [6] that the entire computation fits into O(|dom(S)|b) time for some
constant b which depends only on the dependencies Σst ∪Σt.

3 Enhanced Core Computation

The crucial point of our enhanced algorithm FindCore
E is the direct treatment

of the EGDs, rather than simulating them by TGDs. Hence, our algorithm pro-
duces the canonical universal solution U first (or detects that no solution exists),
and then successively minimizes U to the core. On the surface, our FindCore

E

algorithm proceeds exactly as the FindCore algorithm from Section 2.2 algo-
rithm, i.e.: (i) compute an instance Txy; (ii) search for a non-injective homo-
morphism h : Txy → U ; (iii) lift h to a proper endomorphism h′ : U → U ; and
(iv) construct a proper retraction r from h′.

Actually, the construction of a retraction r via Theorem 4 and the closure
of embedded dependencies w.r.t. retractions according to Theorem 3 are not
affected by the application of the EGDs. In contrast, the first 3 steps above
require significant adaptations in order to cope with EGDs:

Towards Practical Feasibility of Core Computation in Data Exchange 69

(i) Txy in Section 2.2 is obtained by considering only a small portion of the
target chase, thus producing a subinstance of U . Now that EGDs are involved,
the domain of U may no longer contain all elements that were present in T or in
some intermediate result of the chase. Hence, we need to define Txy differently.

(ii) The computational cost of the search for a homomorphism h : Txy → U
depends on the block size of Txy which in turn depends on the block size of
the preuniversal instance T . EGDs have a positive effect in that they eliminate
variables, thus reducing the size of a single block. However, EGDs may also merge
different blocks of T . Hence, without further measures, this would destroy the
tractability of the search for a homomorphism h : Txy → U .

(iii) Since Txy is defined differently from Section 2.2, also the lifting of
h : Txy → U to a proper endomorphism h′ : U → U has to be modified. Moreover,
it will turn out that a completely new approach is needed to prove the correctness
of this lifting. The details of the FindCore

E algorithm are worked out below.

Introduction of an id. Chasing with EGDs results in the substitution of vari-
ables. Hence, the application of an EGD to an instance J produces a syntactically
different instance J ′. However, we find it convenient to regard the instance J ′

after enforcement of an EGD as a new version of the instance J rather than
as a completely new instance. In other words, the substitution of a variable
produces new versions of facts that have held that variable, but the facts them-
selves persist. We formalize this idea as follows: Given a data exchange setting
S = (S,T, Σst, Σt), we define an id-aware data exchange setting Sid by aug-
menting each relation R ∈ T with an additional id field inserted at position
0. Hence, in the atoms of the conclusions of STDs and in all atoms occurring
in TDs, we have to add a unique existentially-quantified variable at position 0.
For example, the source-to-target TGD τ : S(x) → R(x, y) is transformed into
τ id : S(x) → Rid(t, x, y) for some fresh variable t.

These changes neither have an effect on the chase nor on the core computation,
as no rules rely on values in the added columns. It is immediate that a fact
R(x1, x2, . . . , xn) is present in the target instance at some phase of solving the
original data exchange problem iff the fact Rid(id, x1, x2, . . . , xn) is present at
the same phase of solving its id-aware version. In fact, this modification does
not even need to be implemented – we just introduce it to allow the discussion
about facts in an unambiguous way.

During the chase, every fact of the target instance is assigned a unique id
variable, which is never substituted by an EGD. We can therefore identify a fact
with this variable: (1) if Rid(t1, x1, . . . , xn) is a fact of a target instance T, then
we refer to it as fact t1; (2) we define equality on facts as equality between their
id terms: Rid(t1, x1, . . . , xn) = Rid(t2, y1, . . . , yn) iff t1 = t2.

We also define a position by means of the id of a fact plus a positive integer
indicating the place of this position inside the fact. Thus, if J is an instance and
R(idR, x1, x2, . . . , xn) is an id-aware version of R(x1, . . . , xn) ∈ J , then we say
that the term xi occurs at the position (idR, i) in J .

Source position and origin. By the above considerations, facts and positions
in an id-aware data exchange setting, persist in the instance once they have

70 R. Pichler and V. Savenkov

been created – in spite of possible modifications of the variables. New facts and,
therefore, new positions in the target instance are introduced by TGDs. If a
position p = (idR, i) occurring in the fact R(idR, x1, . . . , xn) was created to hold
a fresh variable, we call p native to its fact idR. Otherwise, if an already existing
variable was copied from some position p′ in the premise of the TGD to p, then
we say that p is foreign to its fact idR. Moreover, we call p′ the source position
of p. Note that there may be multiple choices for a source position. For instance,
in the case of the TGD R(y, x) ∧ S(x) → P (x): a term of P/1 may be copied
either from R/2 or from S/1. Any possibility can be taken in such a case: the
choice is don’t care non-deterministic.

Of course, a source position may itself be foreign to its fact. Tracing the chain
of source positions back until we reach a native position leads to the notion of
origin position, which we define recursively as follows: If a position p = (idR, i) is
native to the factR(idR, x1, . . . , xn), then its origin position is p itself. Otherwise,
if p is foreign, then the origin of p is the origin of a source position of p.

The fact holding the origin position of p is referred to as the origin fact of the
position p. Finally, we define the origin fact of a variable x, denoted as Originx,
as the origin fact of one of the positions where it was first introduced (again in
a don’t care non-deterministic way).

Example 2. Let J = {S(idS1, x1, y1)} be a preuniversal instance, and consider
the TDs {S(idS, x, y) → P (idP , y, z);P (idP , y, z) → Q(idQ, y, v)} yielding the
canonical solution JΣ = {S(idS1, x1, y1), P (idP1, y1, z1), Q(idQ1, y1, v1)} in Fig-
ure 2. Every position of J is native, being created by the source-to-target chase,
which never copies labeled nulls. Thus the origin positions of (idS1, 1) and
(idS1, 2) are these positions themselves. The latter is also the origin position
for the two foreign positions (idP1, 1) and (idQ1, 1), introduced by the target
chase (foreign positions are dashed in the figure). The remaining two positions
of the facts idP1 and idQ1 are native. The origin positions of the variables are:
(idS1, 1) for x1, (idS1, 2) for y1, (idP1, 2) for z1, and (idQ1, 2) for v1.

Lemma 2. Let I be an instance. Moreover, let p be a position in I and op its
origin position. Then p and op always contain the same term.

Normalization of TGDs. Let τ : φ(x) → ψ(x,y) be a non-full TGD, i.e.,
y is non-empty. Then we can set up the Gaifman graph G(τ) of the atoms in
the conclusion ψ(x,y), considering only the new variables y, i.e., G(τ) contains
as vertices the variables in y. Moreover, two variables yi and yj are adjacent

ZY Y V

S(X,Y) Z. P(Y,Z) P(Y,Z) V. Q(Y,V)

X Y S.a

S.b P.b Q.b

P.a Q.a

*
*

S.a S.b P.a P.b Q.a Q.b
(a) (b)

source & origin source

origin

1 1 1 1 1 1

Fig. 2. Positions of the instance JΣ (a) and the dependency graph of Σ (b)

Towards Practical Feasibility of Core Computation in Data Exchange 71

(by slight abuse of notation, we identify vertices and variables), if they jointly
occur in some atom of ψ(x,y). Let G(τ) contain the connected components
y1, . . . ,yn. Then the conclusion is of the form ψ(x,y) = ψ0(x) ∧ ψ1(x,y1) ∧
· · ·∧ψn(x,yn), where the subformula ψ0(x) contains all atoms of ψ(x,y) without
variables from y and each subformula ψi(x,yi) contains exactly the atoms of
ψ(x,y) containing at least one variable from the connected component yi.

Now let the full TGD τ0 be defined as τ0 : φ(x) → ψ0(x) and let the non-
full TGDs τi with i ∈ {1, . . . , n} be defined as τi : φ(x) → ψi(x,yi). Then τ is
clearly logically equivalent to the conjunction τ0 ∧ τ1 ∧ · · · ∧ τn. Hence, τ in the
set Σt of target dependencies may be replaced by τ0, τ1, . . . , τn.

We say that Σt is in normal form if every TGD τ in Σt is either full or its
Gaifman graph G(τ) has exactly 1 connected component. By the above consid-
erations, we will henceforth assume w.l.o.g., that Σt is in normal form.

Example 3. The non-full TGD τ : S(x, y) → ∃z, v(P (x, z)∧R(x, y) ∧Q(y, v)) is
logically equivalent to the conjunction of the three TGDs: τ0 : S(x, y) → R(x, y),
τ1 : S(x, y) → ∃z P (x, z), and τ2 : S(x, y) → ∃v Q(y, v). Clearly, these depen-
dencies τ0, τ1, and τ2 are normalized in the above sense.

Extension of the parent and sibling relation to facts. Let I be an instance
after the jth chase step and suppose that in the next chase step, the non-full
TGD τ : φ(x) → ψ(x,y) is enforced, i.e.: I |= φ(a) for some assignment a on x
and I � ∃yψ(a,y), s.t. the facts corresponding to ψ(a, z), where the elements
of z are fresh labeled nulls, are added. Let t be a fact introduced by this chase
step, i.e., t is an atom of ψ(a, z). Then all other facts introduced by the same
chase step (i.e., all other atoms of ψ(a, z)) are the siblings of t. The parent set
of a fact t consists of the origin facts for any foreign position in t or in any of
its siblings. The ancestor relation on facts is the transitive closure of the parent
relation. This definition of siblings and parents implies that facts introducing no
fresh nulls (since we are assuming the above normal form, these are the facts
created by a full TGD) can be neither parents nor siblings.

Recall that we identify facts by their ids rather than by their concrete values.
Hence, any substitutions of nulls that happen in the course of the chase do not
change the set of siblings, the set of parents, or the set of ancestors of a fact.

Example 4. Let us revisit the two TGDs S(idS, x, y) → P (idP , y, z) and P (idP ,
y, z) → Q(idQ, y, v) from Example 2, see also Figure 2. Although the creation
of the atom Q(y1, v1) was triggered by the atom P (y1, z1), the only parent of
Q(y1, v1) is the origin fact of y1, namely S(x1, y1).

Some useful notation. To reason about the effects of EGDs, it is convenient
to introduce some additional notation, following [3]. Let J be a canonical preuni-
versal instance and J ′ the canonical universal solution, resulting from chasing J
with a set of target dependencies Σt. Moreover, suppose that u is a term which
either exists in the domain of J or which is introduced in the course of the chase.
Then we write [u] to denote the term to which u is mapped by the chase. More
precisely, let t = S(u1, u2, . . . , us) be an arbitrary fact, which either exists in J
or which is introduced by the chase. Then the same fact t in J ′ has the form

72 R. Pichler and V. Savenkov

S([u1], [u2], . . . , [us]). By Lemma 2, every [ui] is well-defined, since it corresponds
to the term produced by the chase in the corresponding origin position. For any
set Σt of TDs, constants are mapped onto themselves: ∀c ∈ const(J) c = [c]. For
u, v ∈ dom(J), we write u ∼ v if [u] = [v], i.e. two terms have the same image
in J ′. If Σt contains no EGDs, then u = [u] holds for all u ∈ dom(J). Clearly,
the mapping [·] : J → J ′ is a homomorphism.

The following lemma is the basis for constructing a homomorphism h′ :
TΣst → U , analogously to Theorem 5 by extending a homomorphismh : Txy → U .

Lemma 3. For every weakly acyclic set Σt of TGDs and EGDs, instance T , and
x, y ∈ dom(TΣt), there exist constants b, c which depend only on Σ = Σst ∪ Σt

and an instance Txy satisfying (1) Originx,Originy ⊆ Txy, (2) all facts of T
are in Txy, and Txy ⊆ TΣt, (3) Txy is closed under parents and siblings over
facts, and (4) |dom(Txy)| ≤ |dom(T)| + b. Moreover, Txy can be computed in
time O(|dom(T)|c).

Compared with Lemma 1, we had to redefine the set Txy. Moreover, the uni-
fication of variables caused by EGDs in the chase invalidates some essential
assumptions in the proof of the corresponding result in [6, Theorem 7]. At any
rate, also in our case, the lifting can be performed efficiently:

Theorem 6. (Lifting) Let TΣt be a universal solution of a data exchange
problem obtained by chasing a preuniversal instance T with the weakly acyclic
set Σt of TGDs and EGDs. If B and W are instances such that: (1) B |= Σ with
Σ = Σst ∪Σt; (2) all facts of T are in W (i.e. W contains facts with the same
ids) andW ⊆ TΣt, and (3) W is closed under ancestors and siblings (over facts),
then any homomorphism h : W → B can be transformed in time O(|dom(T)|b)
into a homomorphism h′ : TΣt → B, s.t. ∀x ∈ dom(h) : h(x) = h′(x), where b
depends only on Σ.

Proof. Although every fact of T is in W , there may of course be variables in
dom(T) which are not in dom(W), because of the EGDs. Hence, ∀x ∈ dom(T) \
dom(W) : x �= [x], and ∀x ∈ dom(T) ∩ dom(W) : x = [x].

Suppose that the chase of a preuniversal instance T with Σt has length n.
Then we write Ts with 0 ≤ s ≤ n to denote the result after step s of the
chase. In particular, we have T0 = T and Tn = TΣt. For every s, we say that
a homomorphism hs : Ts → B is consistent with h if ∀x ∈ dom(hs), such that
[x] ∈ dom(h), hs(x) = h([x]) holds. We claim that for every s ∈ {0, . . . , n},
such a homomorphism hs consistent with h exists. Then h′ = hn is the desired
homomorphism. This claim can be proved by induction on s.

In order to actually construct the homomorphism h′ = hn, we may thus
simply replay the chase and construct hs for every s ∈ {0, . . . , n}. The length n
of the chase is polynomially bounded (cf. Section 2.1). The action required to
construct hs from hs−1 fits into polynomial time as well. We thus get the desired
upper bound on the time needed for the construction of h′. �
The only ingredient missing for our FindCore

E algorithm is an efficient search
for a homomorphism h : Txy → U with U ⊆ TΣt.

Towards Practical Feasibility of Core Computation in Data Exchange 73

Procedure FindCoreE

Input: Source ground instance S
Output: Core of a universal solution for S

(1) Chase (S,∅) with Σst to obtain (S, T) := (S, ∅)Σst ;
(2) Chase T with Σt to obtain U := TΣt ;
(3) for each x ∈ var(U), y ∈ dom(U), x �= y do
(4) Compute Txy;
(5) Look for h : Txy → U s.t. h(x) = h(y);
(6) if there is such h then
(7) Extend h to an endomorphism h′ on U ;
(8) Transform h′ into a retraction r;
(9) Set U := r(U);
(10) return U.

By the construction of Txy ac-
cording to Lemma 3, the domain
size of Txy as well as the number
of facts in it are only by a con-
stant larger than those of the cor-
responding preuniversal instance
T . By Theorem 1, the complex-
ity of searching for a homomor-
phism is determined by the block
size. The problem with EGDs in
the target chase is that they may
destroy the block structure of T
by equating variables from differ-

ent blocks of T . However, we show below that the search for a homomorphism
on Txy may still use the blocks of TΣst computed before the target chase. To
achieve this, we adapt the Rigidity Lemma from [3]. The original Rigidity Lemma
was formulated for sets of target dependencies consisting of EGDs only. A close
inspection of the proof in [3] reveals that it remains valid when TGDs are added.

Definition 1. Let K be an instance whose elements are constants and nulls.
Let y be some element of K. We say that y is rigid if h(y) = y for every
endomorphism h on K. In particular, all constants of K are rigid.

Lemma 4. (Rigidity) Assume a data exchange setting where Σst is a set of
TGDs and Σt is a set of EGDs and TGDs. Let J be the canonical preuniversal
instance and let J ′ = JΣt be the canonical universal instance. Let x and y be
nulls of J s.t. x � y (i.e., [x] = [y]) and s.t. [x] is a nonrigid null of J ′. Then x
and y are in the same block of J .

Next, we formalize the idea of considering the blocks of the preuniversal instance
when searching for a homomorphism on the universal instance.

Definition 2. We define the non-rigid Gaifman graph G′(I) of an instance I
as the usual Gaifman graph but restricted to vertices corresponding to non-rigid
variables. We define non-rigid blocks of an instance I as the connected compo-
nents of the non-rigid Gaifman graph G′(I).

Theorem 7. Let T be a preuniversal instance obtained via the STDs Σst. Let
Σt be a set of weakly acyclic TGDs and EGDs, and let U be a retract of TΣt.
Moreover, let x, y ∈ dom(TΣt) and let Txy ⊆ TΣt be constructed according to
Lemma 3. Then we can check if there exists a homomorphism h : Txy → U , s.t.
h(x) = h(y) in time O(|dom(U)|c) for some c depending only on Σ = Σst ∪Σt.

Proof. First, it can be easily shown that the rigid variables of TΣt are also rigid
in Txy. The key observation to achieve the O(|dom(U)|c) upper bound on the
complexity is that the search for a homomorphism h : Txy → U proceeds by
inspecting the non-rigid blocks of Txy individually. Moreover, since we already

74 R. Pichler and V. Savenkov

have a retraction r : TΣ → U , we may search for a homomorphism h with h(x) =
h(y) by inspecting only the blocks containing x and y and to set h(z) = r(z) for
the variables of all other blocks. �

Putting all these pieces together, we get the FindCore
E algorithm. It has ba-

sically the same overall structure as the FindCore algorithm of [6], which we
recalled in Section 2.2. Of course, the correctness of our algorithm and its polyno-
mial time upper bound are now based on the new results proved in this section.
In particular, step (4) is based on Lemma 3, step (5) is based on Lemma 4 and
Theorem 7, and step (7) is based on Theorem 6.

Theorem 8. Let (S,T, Σst, Σt) be a data exchange setting with STDs Σst and
TDs Σt. Moreover, let S be a ground instance of the target schema S. If this data
exchange problem has a solution, then FindCore

E correctly computes the core
of a canonical universal solution in time O(|dom(S)|b) for some b that depends
only on Σst ∪Σt.

4 Implementation and Experimental Results

Implementation. We have implemented the FindCore
E algorithm presented

in Section 3 in a prototype system. Its principal architecture is shown in Fig-
ure 3(a). For specifying data exchange scenarios, we use XML configuration files.
The schema of the source and target database as well as the STDs and TDs are
thus cleanly separated from the scenario-independent Java code. The XML con-
figuration data is passed to the Java program, which uses XSLT templates to
automatically generate those code parts which depend on the concrete scenario
– in particular, the SQL-statements for managing the target database (creating
tables and views, transferring data between tables etc.).

None of the common DBMSs to-date support labeled nulls. Therefore, to
implement this feature, we had to augment every target relation (i.e., table)
with additional columns, storing null labels. For instance, for a column tutor of
the Tutor table, a column tutor var is created to store the labels for nulls of
tutor. To simulate homomorphisms, we use a table called Map storing variable
mappings, and views that substitute labeled nulls in the data tables with their

NULL Yves

idt tutor

T1

idt_var

NULL

tutor_var

NULL NULLT2 N

Tutor (table with null labels)

T1

var_id

T2

Map (a homomorphism)

Tutor table mapped (a view)

NULL Yves

idt tutor

T1

idt_var

NULL

tutor_var

NULL YvesT1 NULL

T1

var

T1

NULL

const

NULL

N NULL Yves

Duplicate row

Source
Database

Data
Exchange
engine

XSLT

<XML/>
Data

Exchange
Scenario

Target
Database

(a) (b)

Fig. 3. Overview of the implementation (a) and modelling labeled nulls (b)

Towards Practical Feasibility of Core Computation in Data Exchange 75

images given by a homomorphism. Figure 3(b) gives a flavor of what this part
of the database looks like. The target database contains many more auxiliary
tables for maintaining the relevant information of the core computation.

A great deal of the core computation is delegated to the target DBMS via
SQL commands. For instance, the homomorphism computation in step 5 of
FindCore

E is performed in the following way. Let a variable x and a term
y be selected at step 3 of the algorithm, and let the set Txy be computed at step
4. We want to build a homomorphism h : Txy → U , s.t. h(x) = h(y). To do so, we
need to inspect all possible mappings from the block of x and from the block of
y. Each of these steps boils down to generating and executing a database query
that fetches all possible substitutions for the variables in each block.

Example 5. Let us revisit the data exchange setting from Example 1. Suppose
that the canonical universal solution is
J = {Course(C1,’java’), Tutor(T2,N), Teaches(T2,C1), NeedsLab(T2,L2),

Course(C2,’java’), Tutor(T1,’Yves’), Teaches(T1,C2), NeedsLab(T1,L1)}

Suppose that we look for a proper endomorphism h′ on J and suppose that
step 4 of FindCore

E yields the set TN,′Yves′ = {Tutor(T2,N),Teaches(T2,C1),

Course(C1,’java’)}. At step 5, a homomorphism h : Txy → J (with x = N
and y =′ Yves′), s.t. h(N) = ′Yves′ has to be found. In the absence of EGDs,
non-rigid blocks are the same as usual blocks, and the block of N in TN,′Yves′ is
{N,T2, C1}. The following SQL query returns all possible instantiations of the
variables {T2, C1} compatible with the mapping h(N) = ′Yves′:

SELECT Tutor.idt var AS T2, Course.idc var AS C1 FROM Tutor JOIN Teaches ON Tu-
tor.idt var = Teaches.id tutor var JOIN Course ON Teaches.id course var = Course.idc var
WHERE Tutor.tutor=’Yves’ AND Course.course=’java’

In our example, the result is {T2 ← T1, C1 ← C2}.

Experiments. We have run experiments with our prototype implementation
on several scenarios with varying size of the schema (5–10 target relations), of
the dependencies (5–15 constraints), and of the actual source data. Since there

2000 5000 8000 11000 14000 17000 20000 23000

variables

0

20

40

60

80

100

120

ru
n
n
in
g
ti
m
e
,
m
in

Original FindCore alg. 10% redundancy

Enhanced algorithm 50% redundancy

Enhanced alg. 10% redundancy

1 iteration 50% redundancy

1 iteration 10% redundancy

1 2 3 4 5 6 7

iterations

250

300

350

400

450

500

550

#
n
u
lls
in
th
e
co
re
ap
p
ro
xi
m
at
io
n

50

100

150

200

250

300

ru
n
n
in
g
ti
m
e,
se
c

(a) (b)

Fig. 4. Performance (a) and the progress (b) of core computation

76 R. Pichler and V. Savenkov

are no established benchmarks for core computation algorithms, we constructed
our own test cases by appropriately extending the data exchange scenario from
Example 1. Typical runtimes are displayed in Figure 4. They were obtained by
tests on a workstation running Suse Linux with 2 QuadCore processors (2.3
GHz) and 16 GB RAM. Oracle 11g was used as database system.

We had to synthesize the scenarios ourselves since no benchmark for core
computation exists currently, and we needed means to adjust the dependencies
and the source data in order to manage redundancy in the target database. When
the target EGDs were deliberately “badly designed”, the canonical solution had
about 50% more nulls than the core. In this case, our system handled only
about 7,000 nulls in the target DB in 120 min (2nd solid curve from the left).
In contrast, when the target EGDs were “carefully designed”, the canonical
solution had only 10% more nulls than the core. In this case, about 22,000 nulls
were handled in similar time (3rd solid curve).

We have also implemented the FindCore algorithm of [6] in order to com-
pare its performance with our algorithm. The left-most curve in Figure 4(a)
corresponds to a run of FindCore on the “well-designed” data exchange prob-
lem. The runtime is comparable to FindCore

E in case of “badly designed”
dependencies. Actually, this is not surprising: One of the principal advantages of
the FindCore

E algorithm is that it enforces EGDs as part of the chase rather
than in the course of the core computation. The negative effect of simulating the
EGDs by TGDs is illustrated by the following simple example:

Example 6. Let J = {R(x, y), P (y, x)} be a preuniversal instance, and let a
single EGD R(z, v), P (v, z) → z = v constitute Σt. To simulate this EGD by
TGDs in [6], the following set of dependencies Σ̄t has to be constructed:

P (x, y)→ E(x, x) E(x, y)→ E(y, x)
P (x, y)→ E(y, y) E(x, y), E(y, z)→ E(x, z) P (x, y), E(x, z)→ P (z, y)
R(x, y)→ E(x, x) R(x, y), E(x, z) → R(z, y) P (x, y), E(y, z)→ P (x, z)
R(x, y)→ E(y, y) R(x, y), E(y, z) → R(x, z) R(z, v), P (v, z)→ E(z, v)

where E is the auxiliary predicate representing equality. Chasing J with Σ̄t (in a
nice order), yields the instance J Σ̄t = {R(x, y), R(x, x), R(y, x), R(y, y), P (y, x),
P (y, y), P (x, y), P (x, x), E(x, x), E(x, y), E(y, x), E(y, y)}. The core computa-
tion applied to J Σ̄t produces the instance {R(x, x), P (x, x)} or {R(y, y), P (y, y)}.
On the other hand, if EGDs were directly enforced by the target chase, then the
chase would end with the canonical universal solution JΣt = {R(x, x), P (x, x)}.

Another interesting observation is that, in many cases, the result of applying
just a few endomorphisms already leads to a significant elimination of redundant
nulls (i.e., nulls present in the canonical solution but not in the core) from
the target database and that further iterations of this procedure are much less
effective concerning the number of nulls eliminated vs. time required. A typical
situation is shown in Figure 4(b): The solid line shows the number of redundant
nulls remaining after i iterations (i.e., i nested endomorphisms) while the dotted
line shows the total time required for the first i iterations. To achieve this, we
used several heuristics to choose the best homomorphisms. The following hints

Towards Practical Feasibility of Core Computation in Data Exchange 77

proved quite useful: (i) prefer constants over variables, (ii) prefer terms already
used as substitutions, and (iii) avoid mapping a variable onto itself.

Every intermediate database instance produced by FindCore
E is a univer-

sal solution to the data exchange problem. Hence, our prototype implementation
also allows the user to restrict the number of nested endomorphisms to be con-
structed, thus computing an approximation of the core rather than the core itself.
The dotted curves in Figure 4(a) corresponds to a “partial” core computation,
with only 1 iteration of the while-loop in FindCore

E . In both scenarios, even
a single endomorphism allowed us to eliminate over 85% of all redundant nulls.
Lessons learned. Our experiments have clearly revealed the importance of care-
fully designing target EGDs. In some sense, they play a similar role as the core
computation in that they lead to an elimination of nulls. However, the EGDs do
it much more efficiently. Another observation is that it is well worth considering
to content oneself with an approximation of the core since, in general, a small
number of iterations of our algorithm already leads to a significant reduction of
nulls. Finally, the experience gained with our experiments gives us several hints
for future performance improvements. We just give three examples: (i) Above
all, further heuristics have to be incorporated concerning the search for an en-
domorphism which maps a labeled null onto some other domain element. So far,
we have identified and implemented only the most straightforward, yet quite
effective, rules. Apparently, additional measures are needed to further prune the
search space. (ii) We have already mentioned the potential of approximating
the core by a small number of endomorphisms. Again, we need further heuristics
concerning the search for the most effective endomorphisms. (iii) Some phases
of the search for an endomorphism allow for concurrent implementation. This
potential of parallelization, which has not been exploited so far, clearly has to
be leveraged in future versions of our implementation.

5 Conclusion

In this paper we have revisited the core computation in data exchange and we
have come up with an enhanced version of the FindCore algorithm from [6],
which avoids the simulation of EGDs by TGDs. The algorithms FindCore and
FindCore

E look similar in structure and have essentially the same asymptotic
worst-case behavior. More precisely, both algorithms are exponential w.r.t. some
constant b which depends on the dependencies Σst ∪ Σt of the data exchange
setting. Actually, in [9] it was shown that the core computation for a given target
instance J is fixed-parameter intractable w.r.t. its block size. Hence, a significant
reduction of the worst-case complexity is not likely to be achievable. At any rate,
as we have discussed in Section 4, our new approach clearly outperforms the
previous one under realistic assumptions.

We have also presented a prototype implementation of our algorithm, which
delegates most of its work to the underlying DBMS via SQL. It has thus been
demonstrated that core computation fits well into existing database technology
and is clearly not a separate technology. Although the data exchange scenarios

78 R. Pichler and V. Savenkov

tackled so far are not industrial size examples, we expect that there is ample
space for performance improvements. The experience gained with our prototype
gives valuable hints for directions of future work.

References

1. Fagin, R.: Horn clauses and database dependencies. J. ACM 29, 952–985 (1982)
2. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and query

answering. Theor. Comput. Sci. 336, 89–124 (2005)
3. Fagin, R., Kolaitis, P.G., Popa, L.: Data exchange: getting to the core. ACM Trans.

Database Syst. 30, 174–210 (2005)
4. Beeri, C., Vardi, M.Y.: A proof procedure for data dependencies. J. ACM 31, 718–

741 (1984)
5. Hell, P., Nešetřil, J.: The core of a graph. Discrete Mathematics 109, 117–126 (1992)
6. Gottlob, G., Nash, A.: Data exchange: computing cores in polynomial time. In: Proc.

PODS 2006, pp. 40–49. ACM Press, New York (2006)
7. Pichler, R., Savenkov, V.: Towards practical feasibility of core computation in data

exchange. Technical Report DBAI-TR-2008-57, TU Vienna (2008),
http://www.dbai.tuwien.ac.at/research/report/dbai-tr-2008-57.pdf

8. Deutsch, A., Tannen, V.: Reformulation of XML queries and constraints. In: Cal-
vanese, D., Lenzerini, M., Motwani, R. (eds.) ICDT 2003. LNCS, vol. 2572, pp.
225–238. Springer, Heidelberg (2002)

9. Gottlob, G.: Computing cores for data exchange: new algorithms and practical so-
lutions. In: Proc. PODS 2005, pp. 148–159. ACM Press, New York (2005)

http://www.dbai.tuwien.ac.at/research/report/dbai-tr-2008-57.pdf

Data-Oblivious Stream Productivity

Jörg Endrullis1, Clemens Grabmayer2, and Dimitri Hendriks1

1 Vrije Universiteit Amsterdam, Department of Computer Science
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

joerg@few.vu.nl, diem@cs.vu.nl
2 Universiteit Utrecht, Department of Philosophy

Heidelberglaan 8, 3584 CS Utrecht, The Netherlands
clemens@phil.uu.nl

Abstract. We are concerned with demonstrating productivity of spec-
ifications of infinite streams of data, based on orthogonal rewrite rules.
In general, this property is undecidable, but for restricted formats com-
putable sufficient conditions can be obtained. The usual analysis, also
adopted here, disregards the identity of data, thus leading to approaches
that we call data-oblivious. We present a method that is provably opti-
mal among all such data-oblivious approaches. This means that in order
to improve on our algorithm one has to proceed in a data-aware fashion.1

1 Introduction

For programming with infinite structures, productivity is what termination is for
programming with finite structures. Productivity captures the intuitive notion of
unlimited progress, of ‘working’ programs producing defined values indefinitely.
In functional languages, usage of infinite structures is common practice. For
the correctness of programs dealing with such structures one must guarantee
that every finite part of the infinite structure can be evaluated, that is, the
specification of the infinite structure must be productive.

da
ta
-ob

liv
iou

sly

rec
og

niz
ab

le

pu
re

F
¬F

P
¬P

P = productive

F = flat

Our contribution:
= automated

recognition
= decision

Fig. 1. Map of stream specifications

We investigate this notion for
stream specifications, formalized as
orthogonal term rewriting systems.
Common to all previous approaches
for recognizing productivity is a
quantitative analysis that abstracts
away from the concrete values of
stream elements. We formalize this
by a notion of ‘data-oblivious’ rewrit-
ing, and introduce the concept of
data-oblivious productivity. Data-
oblivious (non-)productivity implies

1 This research has been partially funded by the Netherlands Organisation for Scien-
tific Research (NWO) under FOCUS/BRICKS grant number 642.000.502.

I. Cervesato, H. Veith, and A. Voronkov (Eds.): LPAR 2008, LNCS 5330, pp. 79–96, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

80 J. Endrullis, C. Grabmayer, and D. Hendriks

(non-)productivity, but neither of the converse implications holds. Fig. 1 shows
a Venn diagram of stream specifications, highlighting the subset of ‘data-
obliviously recognizable’ specifications where (non-)productivity can be recog-
nized by a data-oblivious analysis.

We identify two syntactical classes of stream specifications: ‘flat’ and ‘pure’
specifications, see the description below. For the first we devise a decision algo-
rithm for data-oblivious (d-o) productivity. This gives rise to a computable, d-o
optimal, criterion for productivity: every flat stream specification that can be es-
tablished to be productive by whatever d-o argument is recognized as productive
by this criterion (see Fig. 1). For the subclass of pure specifications, we establish
that d-o productivity coincides with productivity, and thereby obtain a decision
algorithm for productivity of this class. Additionally, we extend our criterion
beyond the class of flat stream specifications, allowing for ‘friendly nesting’ in
the specification of stream functions; here d-o optimality is not preserved.

In defining the different formats of stream specifications, we distinguish be-
tween rules for stream constants, and rules for stream functions. Only the latter
are subjected to syntactic restrictions. In flat stream specifications the defining
rules for the stream functions do not have nesting of stream function symbols;
however, in defining rules for stream constants nesting of stream function sym-
bols is allowed. This format makes use of exhaustive pattern matching on data
to define stream functions, allowing for multiple defining rules for an individ-
ual stream function symbol. Since the quantitative consumption/production be-
haviour of a symbol f might differ among its defining rules, in a d-o analysis one
has to settle for the use of lower bounds when trying to recognize productivity.
If for all stream function symbols f in a flat specification T the defining rules for
f coincide, disregarding the identity of data-elements, then T is called pure.

Our decision algorithm for d-o productivity determines the tight d-o lower
bound on the production behaviour of every stream function, and uses these
bounds to calculate the d-o production of stream constants. We briefly explain
both aspects. Consider the stream specification A → 0 : f(A) together with the
rules f(0 : σ) → 1 : 0 : 1 : f(σ), and f(1 : σ) → 0 : f(σ), defining the stream
0 : 1 : 0 : 1 : . . . of alternating bits. The tight d-o lower bound for f is the function
id : n �→ n. Further note that suc: n �→ n+1 captures the quantitative behaviour
of the function prepending a data element to a stream term. Therefore the d-o
production of A can be computed as lfp(suc ◦ id) = ∞, where lfp(f) is the
least fixed point of f : N → N and N := N ∪ {∞}; hence A is productive. As
a comparison, only a ‘data-aware’ approach is able to establish productivity of
B → 0 : g(B) with g(0 : σ) → 1 : 0 : g(σ), and g(1 : σ) → g(σ). The d-o lower
bound of g is n �→ 0, due to the latter rule. This makes it impossible for any
conceivable d-o approach to recognize productivity of B.

We obtain the following results:

(i) For the class of flat stream specifications we give a computable, d-o optimal,
sufficient condition for productivity.

(ii) We show decidability of productivity for the class of pure stream specifica-
tions, an extension of the format in [3].

Data-Oblivious Stream Productivity 81

(iii) Disregarding d-o optimality, we extend (i) to the bigger class of friendly
nesting stream specifications.

(iv) A tool automating (i), (ii) and (iii), which can be downloaded from, and
used via a web interface at: http://infinity.few.vu.nl/productivity .

Related work. Previous approaches [6,4,7,1] employed d-o reasoning (without
using this name for it) to find sufficient criteria ensuring productivity, but did
not aim at optimality. The d-o production behaviour of a stream function f
is bounded from below by a ‘modulus of production’ ν f : Nk → N with the
property that the first ν f(n1, . . . , nk) elements of f(t1, . . . , tk) can be computed
whenever the first ni elements of ti are defined. Sijtsma develops an approach
allowing arbitrary production moduli ν : Nk → N, which, while providing an
adequate mathematical description, are less amenable to automation. Telford
and Turner [7] employ production moduli of the form ν(n) = n+ a with a ∈ Z.
Hughes, Pareto and Sabry [4] use ν(n) = max{c ·x+d | x ∈ N, n ≥ a ·x+b}∪{0}
with a, b, c, d ∈ N. Both classes of production moduli are strictly contained in
the class of ‘periodically increasing’ functions which we employ in our analysis.
We show that the set of d-o lower bounds of flat stream function specifications is
exactly the set of periodically increasing functions. Buchholz [1] presents a type
system for productivity, using unrestricted production moduli. For a restricted
subclass he gives an automatable method for ensuring productivity, but this
excludes the use of stream functions with a negative effect like odd defined by
odd(x :y :σ) → y :odd(σ) with a (periodically increasing) modulus νodd(n) = �n

2 �.

Overview. In Sec. 2 we define the notion of stream specification, and the syntactic
format of flat and pure specifications. In Sec. 3 we formalize the notion of d-o
rewriting. In Sec. 4 we introduce a production calculus as a means to compute
the production of the data-abstracted stream specifications, based on the set
of periodically increasing functions. A translation of stream specifications into
production terms is defined in Sec. 5. Our main results, mentioned above, are
collected in Sec. 6. We conclude and discuss some future research topics in Sec. 7.

2 Stream Specifications

We introduce the notion of stream specification. An example is given in Fig. 2,
a productive specification of Pascal’s triangle where the rows are separated by

P → 0 : s(0) : f(P)

f(s(x) : y : σ) → a(s(x), y) : f(y : σ)

f(0 : σ) → 0 : s(0) : f(σ)

a(s(x), y) → s(a(x, y))
a(0, y) → y

Fig. 2. A flat stream specification

zeros. Indeed, evaluating this specifica-
tion, we get: P �� 0 : 1 : 0 : 1 : 1 : 0 : 1 : 2 :
1 : 0 : 1 : 3 : 3 : 1 :

We define stream specifications to
consist of a stream layer (top) where
stream constants and functions are
specified, and a data layer (bottom)
such that the stream layer may use sym-
bols of the data layer, but not vice-
versa. Thus, the data layer is a term

http://infinity.few.vu.nl/productivity

82 J. Endrullis, C. Grabmayer, and D. Hendriks

rewriting system on its own. In order to abstract from the termination prob-
lem when investigating productivity, we require the data layer to be strongly
normalizing. Let us explain the reason for this hierarchical setup. Stream
dependent data symbols (whose defining rules do contain stream symbols),
like head(x : σ) → x, might cause the output of undefined data terms. Let
σ(n) := head(tailn(σ)), and consider the following bitstream specifications:

S → 0 : S(2) : S T → 0 : T(3) : T ,

taken from [6]. Here we have that S(n) →∗ S(n − 2) for all n ≥ 2, and S(1) →∗

S(2), and hence S �� 0 : 0 : 0 : . . ., producing the infinite stream of zeros. On the
other hand, the evaluation of each data term T(2n + 1) eventually ends up in
the loop T(3) →∗ T(1) →∗ T(3) →∗ Hence we have that T �� 0 : ? : 0 : ? : . . .
(where ? stands for ‘undefined’) and T is not productive.

Such examples, where the evaluation of stream elements needs to be delayed
to wait for ‘future information’, can only be productive using a lazy evaluation
strategy like in the programming language Haskell. Productivity of specifica-
tions like these is adequately analyzed using the concept of ‘set productivity’
in [6]. A natural first step is to study its proper subclass called ‘segment pro-
ductivity’, where well-definedness of one element requires well-definedness of
all previous ones. The restriction to this subclass is achieved by disallowing
stream dependent data functions. While conceptually more general, in practice
stream dependent data functions usually can be replaced by pattern matching:
add(σ, τ) → (head(σ)+head(τ)):add(tail(σ), tail(τ)), for example, can be replaced
by the better readable add(x : σ, y : τ) → (x + y) : add(σ, τ).

Stream specifications are formalized as many-sorted, orthogonal, constructor
term rewriting systems [8]. We distinguish between stream terms and data terms.
For the sake of simplicity we consider only one sort S for stream terms and one
sort D for data terms. Without any complication, our results extend to stream
specifications with multiple sorts for data terms and for stream terms.

Let U be a finite set of sorts. A U-sorted set A is a family of sets {Au}u∈U ;
for V ⊆ U we define AV :=

⋃
v∈V Av. A U-sorted signature Σ is a U-sorted set of

function symbols f , each equipped with an arity ar(f) = 〈u1 · · ·un, u〉 ∈ U∗ × U
where u is the sort of f ; we write u1 × . . .× un → u for 〈u1 · · ·un, u〉. Let X be
a U-sorted set of variables. The U-sorted set of terms Term(Σ,X) is inductively
defined by: for all u ∈ U , Xu ⊆ Term(Σ,X)u, and f(t1, . . . , tn) ∈ Term(Σ,X)u

if f ∈ Σ, ar (f) = u1 × . . . × un → u, and ti ∈ Term(Σ,X)ui . Term∞(Σ,X)
denotes the set of (possibly) infinite terms over Σ and X (see [8]). Usually we
keep the set of variables implicit and write Term(Σ) and Term∞(Σ). A U-sorted
term rewriting system (TRS) is a pair 〈Σ,R〉 consisting of a U -sorted signature
Σ and a U-sorted set R of rules that satisfy well-sortedness, for all u ∈ U :
Ru ⊆ Term(Σ,X)u ×Term(Σ,X)u, as well as the standard TRS requirements.

Let T = 〈Σ,R〉 be a U-sorted TRS. For a term t ∈ Term(Σ)u where u ∈ U we
denote the root symbol of t by root(t). We say that two occurrences of symbols
in a term are nested if the position [8, p.29] of one is a prefix of the position of the
other. We define D(Σ) := {root(l) | l → r ∈ R}, the set of defined symbols, and

Data-Oblivious Stream Productivity 83

C(Σ) := Σ \D(Σ), the set of constructor symbols. Then T is called a constructor
TRS if for every rewrite rule ρ ∈ R, the left-hand side is of the form f(t1, . . . , tn)
with ti ∈ Term(C(Σ)); then ρ is called a defining rule for f . We call T exhaustive
for f ∈ Σ if every term f(t1, . . . , tn) with (possibly infinite) closed constructor
terms ti is a redex. Note that, stream constructor terms are inherently infinite.

A stream TRS is a finite {S ,D}-sorted, orthogonal, constructor TRS 〈Σ,R〉
such that ‘:’ ∈ ΣS , the stream constructor symbol, with arity D × S → S is the
single constructor symbol in ΣS . Elements of ΣD and ΣS are called the data
symbols and the stream symbols, respectively. We let Σ−

S := ΣS \ {‘:’}, and, for
all f ∈ Σ−

S , we assume, without loss of generality, that the stream arguments are
in front: ar (f) ∈ Sars(f) ×Dard(f) → S , where ars(f) and ard (f) ∈ N are called the
stream arity and the data arity of f, respectively. By Σscon we denote the set
of symbols in Σ−

S with stream arity 0, called the stream constant symbols, and
Σsfun := Σ−

S \ Σscon the set of symbols in Σ−
S with stream arity unequal to 0,

called the stream function symbols. Note that stream constants may have a data
arity > 0 as for example in: natsFrom(n) → n : natsFrom(s(n)). Finally, by Rscon

we mean the defining rules for the symbols in Σscon .

Definition 2.1. A stream specification T is a stream TRS T = 〈Σ,R〉 such
that the following conditions hold:

(i) There is a designated symbol M0 ∈ Σscon with ard (M0) = 0, the root of T .
(ii) 〈ΣD , RD 〉 is a terminating, D -sorted TRS; RD is called the data layer of T .
(iii) T is exhaustive (for all defined symbols in Σ = ΣS �ΣD).

Note that Def. 2.1 indeed imposes a hierarchical setup; in particular, stream
dependent data functions are excluded by item (ii). Exhaustivity forΣD together
with strong normalization of RD guarantees that closed data terms rewrite to
constructor normal forms, a property known as sufficient completeness [5].

We are interested in productivity of recursive stream specifications that make
use of a library of ‘manageable’ stream functions. By this we mean a class of
stream functions defined by a syntactic format with the property that their d-o
lower bounds are computable and contained in a set of production moduli that
is effectively closed under composition, pointwise infimum and where least fixed
points can be computed. As such a format we define the class of flat stream
specifications (Def. 2.2) for which d-o lower bounds are precisely the set of ‘pe-
riodically increasing’ functions (see Sec. 4). Thus only the stream function rules
are subject to syntactic restrictions. No condition other than well-sortedness is
imposed on the defining rules of stream constant symbols.

In the sequel let T = 〈Σ,R〉 be a stream specification. We define the relation� on rules in RS : for all ρ1, ρ2 ∈ RS , ρ1 � ρ2 (ρ1 depends on ρ2) holds if and
only if ρ2 is the defining rule of a stream function symbol on the right-hand
side of ρ1. Furthermore, for a binary relation → ⊆ A × A on a set A we define
(a →) := {b ∈ A | a → b} for all a ∈ A, and we denote by →+ and →∗ the
transitive closure and the reflexive–transitive closure of →, respectively.

84 J. Endrullis, C. Grabmayer, and D. Hendriks

Definition 2.2. A rule ρ ∈ RS is called nesting if its right-hand side contains
nested occurrences of stream symbols fromΣ−

S . We useRnest to denote the subset
of nesting rules of R and define R¬nest := RS \Rnest , the set of non-nesting rules.

A rule ρ ∈ RS is called flat if all rules in (ρ �∗) are non-nesting. A symbol
f ∈ Σ−

S is called flat if all defining rules of f are flat; the set of flat symbols is
denoted Σflat . A stream specification T is called flat if Σ−

S ⊆ Σflat ∪Σscon , that
is, all symbols in Σ−

S are either flat or stream constant symbols.

See Fig. 2 and Ex. 5.5 for examples of flat stream specifications.
As the basis of d-o rewriting (see Def. 3.2) we define the data abstraction of

terms as the results of replacing all data-subterms by the symbol •.

Definition 2.3. Let �Σ� := {•} � ΣS . For stream terms s ∈ Term(Σ)S , the
data abstraction �s� ∈ Term(�Σ�)S is defined by:

�σ�=σ �u : s�=• : �s� �f(s1, . . . , sn, u1, . . . , um)�= f(�s1�, . . . , �sn�, •, . . . , •).
Based on this definition of data abstracted terms, we define the class of pure
stream specifications, an extension of the equally named class in [3].

Definition 2.4. A stream specification T is called pure if it is flat and if for
every symbol f ∈ Σ−

S the data abstractions ��� → �r� of the defining rules �→ r
of f coincide (modulo renaming of variables).

See Ex. 5.4 for an example of a pure stream function specification. Def. 2.4 general-
izes the specifications called ‘pure’ in [3] in four ways concerning the defining rules
of stream functions: First, the requirement of right-linearity of stream variables is
dropped, allowing for rules like f(σ) → g(σ, σ). Second, ‘additional supply’ to the
stream arguments is allowed. For instance, in a rule like diff(x : y :σ) → xor(x, y) :
diff(y :σ), the variable y is ‘supplied’ to the recursive call of diff. Third, the use of
non-productive stream functions is allowed now, relaxing an earlier requirement
of [3] on stream function symbols to be ‘weakly guarded’, see Def. 5.1. Finally,
defining rules for stream function symbols may use a restricted form of pattern
matching as long as, for every stream function f, the d-o consumption/production
behaviour (see Sec. 3) of all defining rules for f is the same.

Definition 2.5. A rule ρ ∈ RS is called friendly if for all rules γ ∈ (ρ �∗)
we have: (1) γ consumes in each argument at most one stream element, and
(2) it produces at least one. The set of friendly nesting rules Rfnest is the largest
extension of the set of friendly rules by non-nesting rules from RS that is closed
under �. A symbol f ∈ Σ−

S is friendly nesting if all defining rules of f are friendly
nesting. A stream specification T is called friendly nesting ifΣ−

S ⊆ Σfnest∪Σscon ,
that is, all symbols in Σ−

S are either friendly nesting or stream constant symbols.

Note that, in particular, every flat stream specification is friendly nesting.

Example 2.6. The rules X → 0 : f(X) and f(x : σ) → x : f(f(σ)) form a friendly
nesting stream specification with an empty data layer.

Data-Oblivious Stream Productivity 85

Definition 2.7. Let A = 〈Term(Σ)S ,→〉 be an abstract reduction system
(ARS) on the set of terms over a stream TRS signature Σ. The production
function ΠA : Term(Σ)S → N of A is defined for all s ∈ Term(Σ)S by:

ΠA(s) := sup {n ∈ N | s→∗
A u1 : . . . : un : t } .

We call A productive for a stream term s if ΠA(s) = ∞. A stream specification
T is called productive if T is productive for its root M0.

Note that in a stream specification T it holds (since T is an orthogonal rewriting
system) that if T is productive for a term s, then s rewrites in T to an infinite
constructor term u1 : u2 : u3 : . . . as its unique infinite normal form.

3 Data-Oblivious Analysis

We formalize the notion of d-o rewriting and introduce the concept of d-o pro-
ductivity. The idea is a quantitative reasoning where all knowledge about the
concrete values of data elements during an evaluation sequence is ignored. For
example, consider the following stream specification:

M → f(0 : 1 : M) (1) f(0 : x : σ) → 0 : 1 : f(σ) (2) f(1 : x : σ) → x : f(σ)

The specification of M is productive: M →2 0:1:f(M) →3 0:1:0:1:f(f(M)) →∗
During the rewrite sequence (2) is never applied. Disregarding the identity of
data, however, (2) becomes applicable and allows for the rewrite sequence:

M → f(• : • : M) →(2) • : f(M) →∗ • : f(• : f(• : f(. . .))) ,

producing only one element. Hence from the perspective of a data-oblivious
analysis there exists a rewrite sequence starting at M that converges to an infinite
normal form which has only a stream prefix of length one. In terminology to be
introduced in Def. 3.2 we will say that M is not ‘d-o productive’.

D-o term rewriting can be thought of as a two-player game between a rewrite
player R which performs the usual term rewriting, and an opponent G which
before every rewrite step is allowed to arbitrarily exchange data elements for
(sort-respecting) data terms in constructor normal form. The opponent can ei-
ther handicap or support the rewrite player. Respectively, the d-o lower bound
on the production of a stream term s is the infimum of the production of s with
respect to all possible strategies for the opponent G.

M M

f(0 : 1 : M) f(1 : 0 : M)

0 : f(M) 0 : f(M)

0 : f(f(0 : 1 : M)) 0 : f(f(1 : 0 : M))

0 : f(0 : f(M)) . . .

G

R
G

R
G

R
G

R
G

Fig. 3. Data-oblivious rewriting

Fig. 3 depicts d-o rewriting of the
above stream specification M; by ex-
changing data elements, the opponent G
enforces the application of (2). The op-
ponent can be modelled by an operation
on stream terms, a function from stream
terms to stream terms: Term(Σ)S →
Term(Σ)S . For our purposes it will be
sufficient to consider strategies for G with

the property that G(s) is invariant under exchange of data elements in s for all
terms s (see Prop. 3.4 below for a formal statement).

86 J. Endrullis, C. Grabmayer, and D. Hendriks

Definition 3.1. Let T = 〈Σ,R〉 be a stream specification. A data-exchange
function on T is a function G : Term(Σ)S → Term(Σ)S such that �G(r)� = �r�
for all r ∈ Term(Σ)S , and G(r) is in closed data-constructor normal form.

Definition 3.2. We define the ARS AT,G ⊆ Term(Σ)S × Term(Σ)S for every
data-exchange function G, as follows:

AT,G := {〈s, t〉 | s, t ∈ Term(Σ), G(s) →T t} .

Thus the steps s→AT,G t in AT,G are those of the form s �→ G(s) →T t.
The d-o lower bound doT (s) on the production of a stream term s ∈ Term(Σ)S

is defined as follows:

doT (s) := inf{ΠAT,G (s) | G a data-exchange function on T } . (∗)

A stream specification T is d-o productive if doT (M0) = ∞ holds.

Proposition 3.3. For T = 〈Σ,R〉 a stream specification and s ∈ Term(Σ)S :

doT (s) ≤ ΠT (s) .

Hence d-o productivity implies productivity.

Proposition 3.4. The definition of the d-o lower bound doT (s) of a stream
term s in a stream specification T in Def. 3.2 does not change if the quantification
in (∗) is restricted to data-exchange functions G that factor as follows:

G : Term(Σ)
�·�−→ Term(�Σ�) G•−→ Term(Σ) (for some function G•) (†)

(data-exchange functions that are invariant under exchange of data elements).

Proof (Sketch). It suffices to prove that, for every term s ∈ Term(Σ)S , and for
every data-exchange function G on T , there exists a data-exchange function G′

on T of the form (†) such that ΠAT,G′ (s) ≤ ΠAT,G (s). This can be shown by
adapting G in an infinite breadth-first traversal over R(s), the reduction graph
of s in AT,G , thereby defining G′ as follows: if for a currently traversed term s
there exists a previously traversed term s0 with �s0� = �s� and G′(s0) �= G(s),
then let G′(s) := G′(s0), otherwise let G′(s) := G(s). Then the set of terms of
the reduction graph R′(s) of s in AT,G′ is a subset of the terms in R′(s). �	

Let T be a stream definition. As an immediate consequence of this proposition
we obtain that, for all stream terms s1, s2 ∈ Term(Σ) in T , doT (s1) = doT (s2)
holds whenever �s1� = �s2�. This fact allows to define d-o lower bounds di-
rectly on the data-abstractions of terms: For every term s ∈ Term(�Σ�), we let
doT (�s�) := doT (s) for an arbitrarily chosen s ∈ Term(Σ)S . In order to reason
about d-o productivity of stream constants (see Sec. 6), we now also introduce
lower bounds on the d-o consumption/production behaviour of stream functions.

Data-Oblivious Stream Productivity 87

Definition 3.5. Let T = 〈Σ,R〉 be a stream specification, g ∈ Σ−
S , k = ars(g),

and � = ard(g). The d-o lower bound doT (g) : Nk → N of g is:

doT (g)(n1, . . . , nk) := doT (g((•n1 : σ1), . . . , (•nk : σk), •, . . . , •︸ ︷︷ ︸
� times

)) ,

where •m : σ :=
m times︷ ︸︸ ︷

• : . . . : • : σ.

Let T be a stream specification, and f ∈ Σsfun a unary stream function symbol.
By a d-o trace of f in T we mean, for a given data-exchange function G, and a
closed infinite stream term r of the form u0 :u1 :u2 : . . ., the production function
πρ : N → N of a rewrite sequence ρ : s0 = f(r) →AT,G s1 →AT,G s2 →AT,G . . .,
where πρ is defined as follows: for all n ∈ N, πρ(n) is the supremum of the lengths
of stream prefixes in those terms si until which during the steps of ρ less or equal
to n stream elements of r within s have been consumed; more precisely, πρ(n) is
the supremum of the number of leading ‘:’ symbols in terms si where i is such
that no descendent [8, p. 390] of the position of the (n+ 1)-th symbol ‘:’ in s0 is
in the pattern of a redex contracted during the first i steps of ρ.

As a consequence of the use of pattern matching on data in defining rules,
even simple stream function specifications can exhibit a complex d-o behaviour,
that is, possess large sets of d-o traces. Consider the specification h(0 : s) → h(s)
and h(1 : s) → 1 : h(s). Here n �→ 0, and n �→ n are d-o traces of h, as well as all
functions h : N → N with the property ∀n ∈ N. 0 ≤ h(n+ 1) − h(n) ≤ 1. As an
example of a more complicated situation, consider the flat function specification:

input5 10 15

output

5

10

15

Fig. 4. Traces

f(σ) → g(σ, σ)
g(0 : y : σ, x : τ) → 0 : 0 : g(σ, τ)

g(1 : σ, x1 : x2 : x3 : x4 : τ) → 0 : 0 : 0 : 0 : 0 : g(σ, τ)

Fig. 4 shows a (small) selection of the set of d-o traces
for f, in particular the d-o traces that contribute to
the d-o lower bound doT (f). In this example the lower
bound doT (f) is a superposition of multiple d-o traces
of f. In general doT (f) can even be a superposition of
infinitely many d-o traces.

4 The Production Calculus

As a means to compute the d-o production behaviour of stream specifications,
we introduce a ‘production calculus’ with periodically increasing functions as its
central ingredient.

We use N := N � {∞}, the extended natural numbers, with the usual ≤, +,
and we define ∞− n := ∞ for all n ∈ N, and ∞−∞ := 0.

An infinite sequence σ ∈ Xω is eventually periodic if σ = αβββ . . . for some
α ∈ X∗ and β ∈ X+. A function f : N → N is eventually periodic if the sequence
〈f(0), f(1), f(2), . . .〉 is eventually periodic.

88 J. Endrullis, C. Grabmayer, and D. Hendriks

Definition 4.1. A function g : N → N is called periodically increasing if
it is non-decreasing and the derivative of g, n �→ g(n + 1) − g(n), is even-
tually periodic. A function h : N → N is called periodically increasing if
its restriction to N is periodically increasing and if h(∞) = limn→∞ h(n).
Finally, a k-ary function i : (N)k → N is called periodically increasing if
i(n1, ..., nk) = min(i1(n1), . . . , ik(nk)) for some unary periodically increasing
functions i1, . . . , ik.

Periodically increasing (p-i) functions can be denoted by their value at 0 followed
by a representation of their derivative. For example, 0312 denotes the p-i function
f : N → N with values 0, 3, 4, 6, 7, 9, We use a finer and more flexible notation
over the alphabet {−,+} that will be useful in Sec. 5. For instance, we denote
f as above by the ‘io-term’ 〈+0−+3,−+1−+2〉.

Definition 4.2. An io-term is a pair 〈α, β〉 with α ∈ {−,+}∗ and β ∈ {−,+}+.
The set of io-terms is denoted by I, and we use ι, κ to range over io-terms. For
ι ∈ I, we define �ι� : N → N, the interpretation of ι ∈ I, by:

�〈−α, β〉�(0) = 0 �〈+α, β〉�(n) = 1 + �〈α, β〉�(n)
�〈−α, β〉�(n+ 1) = �〈α, β〉�(n) �〈ε, β〉�(n) = �〈β, β〉�(n)

for all n ∈ N, and extend it to N → N by adding �ι�(∞) = limn→∞ �ι�(n). We
say that ι represents �ι�. We use αβ as a shorthand for 〈α, β〉. Here ε denotes
the empty word and we stipulate �〈ε,+p〉�(n) = 1 + 1 + . . . = ∞.

It is easy to verify that, for every ι ∈ I, the function �ι� is periodically increasing.
Furthermore, every p-i function is represented by an io-term. Subsequently, we
write f for the shortest io-term representing a p-i function f : N → N. Of course
we then have �f� = f for all p-i functions f .

Proposition 4.3. Unary periodically increasing functions are closed under
composition and minimum.

In addition, these operations can be computed via io-term representations. In [2]
we define computable operations comp : I × I → I, and fix : I → N such that
for all ι, κ ∈ I: �comp(ι, κ)� = �ι� ◦ �κ� and fix(ι) is the least fixed point of �ι�.

We introduce a term syntax for the production calculus and rewrite rules for
evaluating closed terms; these can be visualized by ‘pebbleflow nets’, see [3,2].

Definition 4.4. Let X be a set. The set of production terms P is generated by:

p ::= k | x | f(p) | µx.p | min(p, p)

where x ∈ X , for k ∈ N, the symbol k is a numeral (a term representation) for
k, and, for a unary p-i function f : N → N, f ∈ I, the io-term representing f .
For every finite set P = {p1, . . . , pn} ⊆ P , we use min(p1, . . . , pn) and min P as
shorthands for the production term min(p1,min(p2, . . . ,min(pn−1, pn))).

Data-Oblivious Stream Productivity 89

The production �p� ∈ N of a closed production term p ∈ P is defined by
induction on the term structure, interpreting µ as the least fixed point operator,
f as f , k as k, and min as min.

For faithfully modelling the d-o lower bounds of stream functions with stream
arity r, we employ r-ary p-i functions, which we represent by r-ary gates. An
r-ary gate, abbreviated by gate(ι1, . . . , ιr), is a production term context of the
form min(ι1(�1), . . . , ιr(�r)), where ι1, . . . , ιr ∈ I. We use γ as a syntactic vari-
able for gates. The interpretation of a gate γ = gate(ι1, . . . , ιr) is defined as
�γ�(n1, . . . , nr) := min(�ι1�(n1), . . . , �ιr�(nr)). It is possible to choose unique
gate representations f of p-i functions f that are efficiently computable from
other gate representations, see [2].

Owing to the restriction to (term representations of) periodically increasing
functions in Def. 4.4 it is possible to calculate the production �p� of terms p ∈ P .
For that purpose, we define a rewrite system which reduces any closed term to
a numeral k. This system makes use of the computable operations comp and fix
on io-terms mentioned above.

Definition 4.5. The rewrite relation →R on production terms is defined as the
compatible closure of the following rules:

ι1(ι2(p)) → comp(ι1, ι2)(p) ι(k) → �ι�(k)
ι(min(p1, p2)) → min(ι(p1), ι(p2)) µx.x→ 0
µx.min(p1, p2) → min(µx.p1, µx.p2) µx.p→ p if x �∈ FV(p)

µx.ι(x) → fix(ι) min(k1, k2) → min(k1, k2)

The following theorem establishes the usefulness of →R : the production �p�
of a production term p can always be computed by reducing p according to →R,
thereby obtaining a normal form that is a numeral after finitely many steps.

Theorem 4.6. The rewrite relation →R is confluent, terminating and produc-
tion preserving, that is, p →R p

′ implies �p� = �p′�. Every closed p ∈ P has a
numeral k as its unique →R-normal form, and it holds that �p� = k.

Proof. Termination of →R is straightforward to show. Confluence of →R follows
by Newman’s lemma since all critical pairs are convergent. For preservation of
production of →R it suffices to show this property for each of the rules. This is
not difficult, except for the third rule (that distributes µx over min) for which
preservation of production is an immediate consequence of Lem. 4.7 below, in
view of the fact that 〈N,≤〉 is a complete chain. �	

A complete lattice is a partially ordered set in which every subset has a least
upper bound and a greatest lower bound. A complete chain is a complete lattice
on which the order is linear. As a consequence of the Knaster–Tarski theorem
every order-preserving (non-decreasing) function f on a complete lattice has a
least fixed point lfp(f). We use ∧ for the infix infimum operation.

90 J. Endrullis, C. Grabmayer, and D. Hendriks

Lemma 4.7. Let 〈D,≤〉 be a complete chain. Then it holds that:

∀f, g : D → D non-decreasing. lfp(f ∧ g) = lfp(f) ∧ lfp(g) (◦)

Proof. Let 〈D,≤〉 be a complete chain, and let f, g : D → D be non-decreasing.
The inequality lfp(f ∧ g) ≤ lfp(f) ∧ lfp(g) follows easily by using that, for every
non-decreasing function h on D, lfp(h) is the infimum of all pre-fixed points of h,
that is, of all x ∈ D with h(x) ≤ x. For the converse inequality, let x := lfp(f∧g).
Since x = (f∧g)(x) = f(x)∧g(x), and D is linear, it follows that either f(x) = x
or g(x) = x, and hence that x is either a fixed point of f or of g. Hence x ≥ lfp(f)
or x ≥ lfp(g), and therefore lfp(f ∧ g) = x ≥ lfp(f) ∧ lfp(g). �	

We additionally mention that (◦) holds in a complete lattice only if it is linear.

5 Translation into Production Terms

In this section we define a translation from stream constants in flat or friendly
nesting specifications to production terms. In particular, the root M0 of a spec-
ification T is mapped by the translation to a production term [M0] with the
property that if T is flat (friendly nesting), then the d-o lower bound on the
production of M0 in T equals (is bounded from below by) the production
of [M0].

5.1 Translation of Flat and Friendly Nesting Symbols

As a first step of the translation, we describe how for a flat (or friendly nesting)
stream function symbol f in a stream specification T a periodically increasing
function [f] can be calculated that is (that bounds from below) the d-o lower
bound on the production of f in T .

Let us again consider the rules (i) f(s(x) : y : σ) → a(s(x), y) : f(y : σ), and
(ii) f(0 : σ) → 0 : s(0) : f(σ) from Fig. 2. We model the d-o lower bound on the
production of f by a function from N to N defined as the unique solution for
Xf of the following system of equations. We disregard what the concrete stream
elements are, and therefore we take the infimum over all possible traces:

Xf(n) = inf
{
Xf,(i)(n), Xf,(ii)(n)

}
where the solutions for Xf,(i) and Xf,(ii) are the d-o lower bounds of f assuming
that the first rule applied in the rewrite sequence is (i) or (ii), respectively. The
rule (i) consumes two elements, produces one element and feeds one element
back to the recursive call. For rule (ii) these numbers are 1, 2, 0 respectively.
Therefore we get:

Xf,(i)(n) = let n′ := n− 2, if n′ < 0 then 0 else 1 +Xf(n′ + 1) ,
Xf,(ii)(n) = let n′ := n− 1, if n′ < 0 then 0 else 2 +Xf(n′ + 0) .

The unique solution for Xf is n �→ n .− 1, represented by the io-term −−+.

Data-Oblivious Stream Productivity 91

In general, functions may have multiple arguments, which during rewriting
may get permuted, duplicated or deleted. The idea is to track single arguments,
and take the infimum over all branches in case an argument is duplicated.

For example, the rule zip(x : σ, τ) → x : zip(τ, σ) with a permutation of the
stream arguments, gives rise to the following specification:

Xzip,1(n) = let n′ := n− 1, if n′ < 0 then 0 else 1 +Xzip,2(n′)
Xzip,2(n) = let n′ := n− 0, if n′ < 0 then 0 else 1 +Xzip,1(n′) ,

and duplication of arguments like in the rule f(x : σ) → g(σ, x : σ) yields:

Xf,1(n) = let n′ := n− 1, if n′ < 0 then 0 else inf
{
Xg,1(n′), Xg,2(1 + n′)

}
.

For a recursion variable X let 〈X〉 be the unique solution for X . The in-
tuition behind the recursion variables is as follows. Let f be a flat stream
function symbol with stream arity k. Then the solution 〈Xf〉 for Xf models
the d-o lower bound on the production of f, that is, 〈Xf〉 = doT (f). Fur-
thermore, the variables Xf,i for 1 ≤ i ≤ k describe how the consumption
from the i-th argument of f ‘retards’ the production of f, more precisely,
〈Xf,i〉 = λn.doT (f(•∞, . . . , •∞, •n, •∞, . . . , •∞)).

Finally, consider h(x : σ) → Y, Y → 0 : Z and Z → Z, a specification il-
lustrating the case of deletion of stream arguments. To translate stream func-
tions like h we extend the translation of flat stream functions to include flat
stream constants. To cater for the case that there are no stream arguments or
all stream arguments get deleted during reduction, we introduce fresh recur-
sion variables Xf,� for every stream symbol f. The variable Xf,� expresses the
production of f assuming infinite supply in each argument, that is, 〈Xf,�〉 =
doT (f(•∞, . . . , •∞)).

Therefore in the definition of the translation of stream functions, we need
to distinguish the cases according to whether a symbol is weakly guarded
or not.

Definition 5.1. We define the dependency relation � between symbols in Σ−
S

by � := {〈f, g〉 ∈ Σ−
S ×Σ−

S | f(s,u) → g(t,v) ∈ RS} (remember that ‘:’ �∈ Σ−
S).

We say that a symbol f ∈ Σ−
S is weakly guarded if f is strongly normalising with

respect to � and unguarded, otherwise.

The translation of a stream function symbol is defined as the unique solution
of a (potentially infinite) system of defining equations where the unknowns are
functions. More precisely, for each symbol f ∈ Σfnest ⊇ Σsfun of a flat or friendly
nesting stream specification, this system has a p-i function [f] as a solution forXf ,
which is unique among the continuous functions. In [2] we present an algorithm
that effectively calculates these solutions in the form of gates.

Definition 5.2. Let 〈Σ,R〉 be a stream specification. For each flat or friendly
nesting symbol f ∈ Σfnest ⊇ Σflat with arities k = ars(f) and � = ard (f) we

92 J. Endrullis, C. Grabmayer, and D. Hendriks

define [f] : N
k → N, the translation of f, as [f] := 〈Xf〉 where 〈Xf〉 is the unique

solution for Xf of the following system of equations:
For all n1, . . . , nk ∈ N, i ∈ {1, . . . , k}, and n ∈ N:

Xf(n1, . . . , nk) = inf
{
Xf,�, Xf,1(n1), . . . , Xf,k(nk)

}
,

Xf,� =

{
inf

{
Xf,�,ρ | ρ a defining rule of f

}
if f is weakly guarded,

0 if f is unguarded,

Xf,i(n) =

{
inf

{
Xf,i,ρ(n) | ρ a defining rule of f

}
if f is weakly guarded,

0 if f is unguarded.

We write ui : σi for ui,1 : . . . : ui,p : σi, and |ui| for p. For Xf,�,ρ and Xf,i,ρ we
distinguish the possible forms the rule ρ can have. If ρ is nesting, thenXf,�,ρ = ∞,
and Xf,i,ρ(n) = n for all n ∈ N. Otherwise, ρ is non-nesting and of the form:

f((u1 : σ1), . . . , (uk : σk), v1, . . . , v�) → w1 : . . . : wm : s ,

where either (a) s ≡ σj , or (b) s ≡ g((u′
1 : σφ(1)), . . . , (u′

k′ : σφ(k′)), v′1, . . . , v′�′)
with k′ = ars(g), �′ = ard (g), and φ : {1, . . . , k′} → {1, . . . , k}. Then we add:

Xf,�,ρ =

{
∞ case (a)
m+Xg,� case (b)

Xf,i,ρ(n) = let n′ := n− |ui|, if n′ < 0 then 0 else

m+

⎧⎪⎨⎪⎩
n′ case (a), i = j

∞ case (a), i �= j

inf
{
Xg,�, Xg,j(n′ + |u′

j |) | j ∈ φ−1(i)
}

case (b) .

Proposition 5.3. Let T be a stream specification, and f ∈ Σfnest ⊇ Σflat a
stream function symbol with k = ars(f). The system of recursive equations de-
scribed in Def. 5.2 has a k-ary p-i function as its unique solution for Xf , which
we denote by [f]. Furthermore, the gate representation [f] of [f] can be computed.

Concerning non-nesting rules on which defining rules for friendly nesting symbols
depend via �, this translation uses the fact that their production is bounded
below by ‘min’. These bounds are not necessarily optimal, but can be used to
show productivity of examples like Ex. 2.6.

Example 5.4. Consider a pure stream specification with the function layer:

f(x : σ) → x : g(σ, σ, σ) ,
g(x : y : σ, τ, υ) → x : g(y : τ, y : υ, y : σ) .

Data-Oblivious Stream Productivity 93

The translation of f is [f], the unique solution for Xf of the system:

Xf(n) = inf
{
Xf,�, Xf,1(n)

}
Xf,1(n) = let n′ := n− 1

if n′ < 0 then 0 else 1 + inf
{
Xg,�, Xg,1(n′), Xg,2(n′), Xg,3(n′)

}
Xf,� = 1 +Xg,�

Xg,1(n) = let n′ := n− 2, if n′ < 0 then 0 else 1 + inf
{
Xg,�, Xg,3(1 + n′)

}
Xg,2(n) = 1 + inf

{
Xg,�, Xg,1(1 + n)

}
Xg,3(n) = 1 + inf

{
Xg,�, Xg,2(1 + n)

}
Xg,� = 1 +Xf,�

An algorithm for solving such systems of equations is described in [2]; here we
solve the system directly. Note that Xf,� = Xg,� = ∞, and therefore Xg,3(n) =
1 +Xg,2(n + 1) = 2 +Xg,1(n + 2) = 3 +Xg,3(n), hence ∀n ∈ N. Xg,3(n) = ∞.
Likewise we obtain Xg,2(n) = ∞ if n ≥ 1 and 1 for n = 0, and Xg,1(n) = ∞ if
n ≥ 2 and 0 for n ≤ 1. Then if follows that [f](0) = 0, [f](1) = [f](2) = 1, and
[f](n) = ∞ for all n ≥ 2, represented by the gate [f] = gate(−+−−+). The gate
corresponding to g is [g] = gate(−−+,+−+,+).

Example 5.5. Consider a flat stream function specification with the following
rules which use pattern matching on the data constructors 0 and 1:

f(0 : σ) → g(σ) f(1 : x : σ) → x : g(σ) g(x : y : σ) → x : y : g(σ)

denoted ρf0 , ρf1 , and ρg, respectively. Then, [f] is the solution for Xf,1 of:

Xf(n) = inf
{
Xf,�, Xf,1(n)

}
Xf,1(n) = inf

{
Xf,1,ρ f0

(n), Xf,1,ρ f1
(n)

}
Xf,1,ρ f0

(n) = let n′ := n− 1, if n′ < 0 then 0 else
{
Xg,�, Xg,1(n′)

}
Xf,1,ρ f1

(n) = let n′ := n− 2, if n′ < 0 then 0 else 1 +
{
Xg,�, Xg,1(n′)

}
Xf,� = inf

{
Xg,�, 1 +Xg,�

}
Xg,1(n) = let n′ := n− 2, if n′ < 0 then 0 else 2 +

{
Xg,�, Xg,1(n′)

}
Xg,� = 2 +Xg,� .

As solution we obtain an overlapping of both traces [f]1,ρ f0
and [f]1,ρ f1

, that is,
[f]1(n) = n .− 2 represented by the gate [f] = gate(−−−+).

The following lemma states that the translation [f] of a flat stream function
symbol f (as defined in Def. 5.2) is the d-o lower bound on the production
function of f. For friendly nesting stream symbols f it states that [f] pointwisely
bounds from below the d-o lower bound on the production function of f.

Lemma 5.6. Let T be a stream specification, and let f ∈ Σfnest ⊇ Σflat .

(i) If f is flat, then: [f] = doT (f). Hence, doT (f) is periodically increasing.
(ii) If f is friendly nesting, then it holds: [f] ≤ doT (f) (pointwise inequality).

94 J. Endrullis, C. Grabmayer, and D. Hendriks

5.2 Translation of Stream Constants

In the second step, we now define a translation of stream constants in a flat or
friendly nesting stream specification into production terms under the assump-
tion that gate translations for the stream functions are given. Here the idea is
that the recursive definition of a stream constant M is unfolded step by step; the
terms thus arising are translated according to their structure using gate trans-
lations of the stream function symbols from a given family of gates; whenever
a stream constant is met that has been unfolded before, the translation stops
after establishing a binding to a µ-binder created earlier.

Definition 5.7. Let T be a stream specification, M ∈ Σscon , and F ={γf}f∈Σsfun

a family of gates. The translation [M]F ∈ P of M with respect to F is defined by
[M]F := [M]F

∅
, where, for every M ∈ Σscon and every α ⊆ Σscon we define:

[M(u)]Fα := [M]Fα :=

{
µM.min {[r]Fα∪{M} | M(v) → r ∈ R} if M �∈ α
M if M ∈ α

[u : s]Fα := +−+([s]Fα)

[f(s1, . . . , sars(f), u1, . . . , uard (f))]Fα := γf([s1]Fα , . . . , [sars(f)]
F
α)

Example 5.8. As an example we translate Pascal’s triangle, see Fig. 2. The trans-
lation of the stream function symbols is F = {[f] = gate(−−+)}, cf. page 90.
Hence we obtain [P]F = µP.+−+(+−+(−−+(P))) as the translation of P.

The following lemma is the basis of our main results in Sec. 6. It entails that if
we use gates that represent d-o optimal lower bounds on the production of the
stream functions, then the translation of a stream constant M yields a production
term that rewrites to the d-o lower bound of the production of M.

Lemma 5.9. Let T = 〈Σ,R〉 be a stream specification, and F = {γf}f∈Σsfun

a family of gates. If �γf� = doT (f) for all f ∈ Σsfun , then for all M ∈ Σscon :
�[M]F � = doT (M). Hence, T is d-o productive if and only if �[M0]F � = ∞.

If �γf� ≤ doT (f) for all f ∈ Σsfun , then for all M ∈ Σscon : �[M]F � ≤ doT (M).
Consequently, T is d-o productive if �[M0]F� = ∞.

6 Deciding Data-Oblivious Productivity

In this section we assemble our results concerning decision of d-o productivity,
and automatable recognition of productivity. We define methods:

(DOP) for deciding d-o productivity of flat stream specifications,
(DP) for deciding productivity of pure stream specifications, and
(RP) for recognising productivity of friendly nesting stream specifications,

that proceed in the following steps:

(i) Take as input a (DOP) flat, (DP) pure, or (RP) friendly nesting stream spec-
ification T = 〈Σ,R〉.

Data-Oblivious Stream Productivity 95

(ii) Translate the stream function symbols into gates F := {[f]}f∈Σsfun (Def. 5.2).
(iii) Construct the production term [M0]F with respect to F (Def. 5.7).
(iv) Compute the production k of [M0]F using →R (Def. 4.5).
(v) Give the following output:
(DOP) “T is d-o productive” if k = ∞, else “T is not d-o productive”.
(DP) “T is productive” if k = ∞, else “T is not productive”.
(RP) “T is productive” if k = ∞, else “don’t know”.

Note that all of these steps are automatable (cf. our productivity tool, Sec. 7).
Our main result states that d-o productivity is decidable for flat stream spec-

ifications. Since d-o productivity implies productivity (Prop. 3.3), we obtain a
computable, d-o optimal, sufficient condition for productivity of flat stream spec-
ifications, which cannot be improved by any other d-o analysis. Second, since for
pure stream specifications d-o productivity and productivity are the same, we
get that productivity is decidable for them.

Theorem 6.1. (i) DOP decides d-o productivity of flat stream specifications,
(ii) DP decides productivity of pure stream specifications.

Proof. Let k be the production of the term [M0]F ∈ P in step (iv) of DOP/DP.
(i) By Lem. 5.6 (i), Lem. 5.9, and Thm. 4.6 we find: k = doT (M0).
(ii) For pure specifications we additionally note: ΠT (M0) = doT (M0). �	

Third, we obtain a computable, sufficient condition for productivity of friendly
nesting stream specifications.

Theorem 6.2. A friendly nesting (flat) stream specification T is productive if
the algorithm RP(DOP) recognizes T as productive.

Proof. By Lem. 5.6 (ii), Lem. 5.9, and Thm. 4.6: k ≤ doT (M0) ≤ ΠT (M0). �	

Example 6.3. We illustrate the decision of d-o productivity by means of Pascal’s
triangle, Fig. 2. We reduce [P]F , the translation of P, to →R-normal form:

[P]F = µP.+−+(+−+(−−+(P))) →∗
R µP.++−−+(P) →R ∞

Hence doT (P) = ∞, and P is d-o productive and therefore productive.

7 Conclusion and Further Work

In order to formalize quantitative approaches for recognizing productivity of
stream specifications, we defined the notion of d-o rewriting and investigated d-o
productivity. For the syntactic class of flat stream specifications (that employ
pattern matching on data), we devised a decision algorithm for d-o productiv-
ity. In this way we settled the productivity recognition problem for flat stream
specifications from a d-o perspective. For the even larger class including friendly
nesting stream function rules, we obtained a computable sufficient condition for
productivity. For the subclass of pure stream specifications (a substantial exten-
sion of the class given in [3]) we showed that productivity and d-o productivity

96 J. Endrullis, C. Grabmayer, and D. Hendriks

coincide, and thereby obtained a decision algorithm for productivity of pure
specifications.

We have implemented in Haskell the decision algorithm for d-o productivity.
This tool, together with more information including a manual, examples, our
related papers, and a comparison of our criteria with those of [4,7,1] can be
found at our web page http://infinity.few.vu.nl/productivity. The reader is
invited to experiment with our tool.

It is not possible to obtain a d-o optimal criterion for non-productivity of flat
specifications in an analogous way to how we established such a criterion for
productivity. This is because the d-o upper bound doT (f) on the production of
a stream function f in flat stream specifications is not in general a periodically
increasing function. For example, for the following stream function specification:

f(x : σ, τ) → x : f(σ, τ) , f(σ, y : τ) → y : f(σ, τ) ,

it holds that do(f)(n1, n2) = n1 +n2, which is not p-i. While this example is not
orthogonal, do (f) is also not p-i for the following similar orthogonal example:

f(0 : x : σ, y : τ) → x : f(σ, τ) , f(1 : σ, x : y : τ) → y : f(σ, τ) .

Currently we are developing a method that goes beyond a d-o analysis, one
that would, e.g., prove productivity of the example B given in the introduction.
Moreover, we study a refined production calculus that accounts for the delay
of evaluation of stream elements, in order to obtain a faithful modelling of lazy
evaluation, needed for example for S on page 82, where the first element depends
on a ‘future’ expansion of S.

Acknowledgement. We thank Jan Willem Klop, Carlos Lombardi, Vincent van
Oostrom, and Roel de Vrijer for useful discussions, and the anonymous referees
for their comments and suggestions.

References

1. Buchholz, W.: A Term Calculus for (Co-)Recursive Definitions on Streamlike Data
Structures. Annals of Pure and Applied Logic 136(1-2), 75–90 (2005)

2. Endrullis, J., Grabmayer, C., Hendriks, D.: Data-Oblivious Stream Productivity.
Technical report (2008), http://arxiv.org/pdf/0806.2680

3. Endrullis, J., Grabmayer, C., Hendriks, D., Isihara, A., Klop, J.W.: Productivity of
Stream Definitions. In: Csuhaj-Varjú, E., Ésik, Z. (eds.) FCT 2007. LNCS, vol. 4639,
pp. 274–287. Springer, Heidelberg (2007)

4. Hughes, J., Pareto, L., Sabry, A.: Proving the Correctness of Reactive Systems Using
Sized Types. In: POPL 1996, pp. 410–423 (1996)

5. Kapur, D., Narendran, P., Rosenkrantz, D.J., Zhang, H.: Sufficient-Completeness,
Ground-Reducibility and their Complexity. Acta Informatica 28(4), 311–350 (1991)

6. Sijtsma, B.A.: On the Productivity of Recursive List Definitions. ACM Transactions
on Programming Languages and Systems 11(4), 633–649 (1989)

7. Telford, A., Turner, D.: Ensuring Streams Flow. In: AMAST, pp. 509–523 (1997)
8. Terese: Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Sci-

ence, vol. 55. Cambridge University Press, Cambridge (2003)

http://arxiv.org/pdf/0806.2680

Reasoning about XML with Temporal Logics
and Automata

Leonid Libkin1 and Cristina Sirangelo1,2

1 University of Edinburgh
2 LSV, ENS–Cachan, INRIA

Abstract. We show that problems arising in static analysis of XML
specifications and transformations can be dealt with using techniques
similar to those developed for static analysis of programs. Many prop-
erties of interest in the XML context are related to navigation, and can
be formulated in temporal logics for trees. We choose a logic that admits
a simple single-exponential translation into unranked tree automata, in
the spirit of the classical LTL-to-Buchi automata translation. Automata
arising from this translation have a number of additional properties; in
particular, they are convenient for reasoning about unary node-selecting
queries, which are important in the XML context. We give two appli-
cations of such reasoning: one deals with a classical XML problem of
reasoning about navigation in the presence of schemas, and the other
relates to verifying security properties of XML views.

Keywords: Query automata, static analysis, temporal logics, XML.

1 Introduction

Static analysis of XML specifications and transformations has been the focus of
many recent papers (see, e.g., [1,4,6,8,10,13,16,24,25,35]). Typical examples in-
clude consistency of type declarations and constraints, or of schema specifications
and navigational properties, or containment of XPath expressions. They found
application in query optimization, access control, data exchange, and reasoning
about security properties of views, among others.

Many XML specifications – for example, various schema formalisms – are
automata-based. Furthermore, there is a close connection between XML naviga-
tion, which is a key component of query languages, and temporal logics used
in the field of verification [5,26,25,22,16]. Thus, it is very natural to adapt
automata-based techniques developed by the verification community (cf. [11])
for XML static analysis problems involving schemas and navigation.

Examples of such usage exist, but by and large they take existing verification
tools, and attempt to reshape the problem at hand so that those tools would
be applicable to it. For example, [25] shows how to reason about XML navi-
gation language XPath and XML schemas by encoding them in PDL. While it
achieves provably optimal EXPTIME-bound, it does so by a rather complicated
algorithm (for example, it uses, as a black box for one of its steps, a translation

I. Cervesato, H. Veith, and A. Voronkov (Eds.): LPAR 2008, LNCS 5330, pp. 97–112, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

98 L. Libkin and C. Sirangelo

from PDL into a certain type of tree automata [40], for which no efficient imple-
mentations exist). Another example of such reasoning [16] goes via much better
implementable µ-calculus, but the technique only guarantees nO(n) algorithms
for problems for which 2O(n) algorithms exist.

We propose an alternative approach: instead of using verification techniques
as-is in the XML context, we adapt them to get better static analysis algorithms.
The present paper can be viewed as a proof-of-concept paper: we demonstrate
one logic-to-automata translation targeted to XML applications, which closely
resembles the standard Vardi-Wolper’s LTL-to-Büchi translation [39], and show
that it is easily applicable in two typical XML reasoning tasks.

Typically, temporal logic formulae are translated into either nondeterministic
or alternating automata; for LTL, both are possible [39,37]. We believe that both
should be explored in the XML context. For this paper, we concentrate on the
former. A recent workshop paper [10] developed an alternating-automata based
approach; it handled a more expressive navigation language, but did not work
out connections with XML schemas, as we do here.

Our goal is to find a clean direct translation from a logical formalism suitable
for expressing many XML reasoning tasks, into an automata model. Towards
that end, we use a simple LTL-like logic for trees, which we call TLtree, rather
than a W3C-designed language (but we shall show that such languages can
be easily translated into TLtree). This logic was defined in [34], and it was re-
cently used in the work on XPath extensions [26], and as a key ingredient for an
expressively-complete logic for reasoning about procedural programs [2,3].

The translation will produce a bit more than automata rejecting or accepting
trees; instead it will produce query automata [30,28,15] which can also select
nodes from trees in their successful runs. The ability to produce such automata
is not surprising at all (since in the Vardi-Wolper construction states are sets
of formulae and successful runs tell us which formulae hold in which positions).
Nonetheless, it is a very useful feature for XML reasoning, since many XML data
processing tasks are about node-selecting queries [18,30,36,29]. Furthermore, ad-
ditional properties of query automata arising in the translation make operations
such as complementation and testing containment very easy for them. Conse-
quently, it becomes easier to combine several reasoning tasks.

Organization In Section 2 we give examples of XML reasoning where the
logic/automata connection would be useful. Section 3 describes unranked trees
and automata for them. In Section 4 we present the logic TLtree and various
XPath formalisms, and give an easy translation of XPath into TLtree. In Section
5 we give a translation from TLtree to query automata. Section 6 applies this
translation in complex reasoning tasks involving schemas and navigation in XML
documents, and Section 7 gives an application to reasoning about XML views.

2 Motivating Examples

We now consider two examples of XML static analysis problems that will later
be handled by restating these problems with the help of TLtree and the automata

Reasoning about XML with Temporal Logics and Automata 99

translation. While formal definitions will be given later, for the reader not flu-
ent in XML the following abstractions will be sufficient. First, XML documents
themselves are labeled unranked trees (that is, different nodes can have a differ-
ent number of children). XML schemas describe how documents are structured;
they may be given by several formalisms that are all subsumed by tree automata.
The most common of such formalisms is referred to as DTDs (document type
definitions). And finally XPath is a navigational language; an XPath expression
for now can be thought of as selecting a set of nodes in a tree.

Reasoning about schemas and navigation. A common static analysis prob-
lem in the XML context, arising in query optimization and consistency check-
ing, is the interaction of navigational properties (expressed, for example, in
XPath) with schemas (often given as DTDs). Known results about the complex-
ity of problems such as XPath containment [35], or XPath/DTD consistency [6],
are typically stated in terms of completeness for various intractable complexity
classes. They imply unavoidability of exponential-time algorithms, but they do
not necessarily lead to reasonable algorithms that can be used in practice.

To illustrate this, consider the containment problem of XPath expressions
under a DTD, i.e., checking whether for all trees satisfying a DTD d, the set
of nodes selected by e1 is contained in the set selected by e2 (written as d |=
e1 ⊆ e2). Automata-based algorithms would either translate XPath directly into
automata (which could depend heavily on a particular syntactic class [31]), or
attempt a generic translation via an existing logic. The second approach, taken
by [25,6,16], translates e1, e2, and d into formulae of expressive logics such as
PDL (in [25]) or µ-calculus (in [16]). Then one uses techniques of [40,38] to
check if there exists a finite tree T satisfying d and a node s in T witnessing
e1(s) ∧ ¬e2(s), i.e., a counterexample to the containment. PDL and µ-calculus
have been chosen because of their ability to encode XML schemas, e.g., DTDs,
but, as we shall see, this is easy to avoid.

While this is very much in the spirit of the traditional logic/automata connec-
tion used so extensively in static analysis of programs, there are some problems
with this approach as currently used. The logics used were chosen because of
their ability to encode DTDs, but this makes the constructions apply several al-
gorithms as black-boxes. For example, the PDL construction of [25] combines a
translation into PDL with converse on binary trees, a rather complex automata
model of [40] together with an extra automaton that restricts it to finite trees.
Second, we do not get a concise description of the set of all possible counterex-
amples, rather a yes or no answer. And third, the high expressiveness of logics
comes at a cost. The running time of algorithms that go via µ-calculus is nO(n)

[16]. For the PDL approach [25], the running time is 2O(‖e1‖+‖e2‖+‖d‖), where
‖ · ‖ denotes the size. In several applications, we would rather avoid the 2O(‖d‖)

factor, since many DTDs are computer-generated from database schemas and
could be very large, while XPath expressions tend to be small.

The translation we propose is a direct and simple construction, and does
not rely on complicated algorithms such as the PDL-to-automata translation.
It produces a concise description of all possible counterexamples, which can be

100 L. Libkin and C. Sirangelo

reused later. Finally, it exhibits an exponential blowup in the size of e1 and e2,
but remains polynomial in the size of the schema.

Reasoning about views and query answers. Often the user sees not a whole
XML document, but just a portion of it, V (called a view), generated by a query.
Such a query typically specifies a set of nodes selected from a source document,
and thus can be represented by a query automaton QAV : i.e., an extension of a
tree automaton that can select nodes in trees; a formal definition will be given
shortly.

If we only have access to V , we do not know the source document that pro-
duced it, as there could be many trees T satisfying V = QAV(T). We may know,
however, that every such source has to satisfy some schema requirements, pre-
sented by a tree automaton A. A common problem is to check whether V may
reveal some information about the source. If Q is a Boolean (yes/no) query, one
defines the certain answer to Q over V to be true iff Q is true in every possible
T that generates V :

certainAQAV (Q;V) =
∧

{Q(T) | V = QAV(T), T is accepted by A}

Now if by looking at V , we can conclude that certainAQAV (Q;V) is true, then V
reveals that Q is true in an unknown source. If Q is a containment statement
e1 ⊆ e2, such an inclusion could be information that needs to be kept secret
(e.g., it may relate two different groups of people). For more on this type of
applications, see [13,14].

Suppose Q itself is definable by an automaton AQ. If we can convert automata
AQ, A, and the query automaton QAV into a new automaton A∗ that accepts
V iff certainAQAV (Q;V) is false, then acceptance by A∗ gives us some assurances
that the secret is not revealed. Furthermore, since views are often given by
XPath expressions, and e1 and e2 are often XPath expressions too, an efficient
algorithm for constructing A∗ would give us a verification algorithm exponential
in (typically short) XPath expressions defining e1, e2, and V , and polynomial in
a (potentially large) expression defining the schema.

In fact, we shall present a polynomial-time construction for A∗ for the case of
subtree- (or upward-closed) queries [7]. In that case, combining it with previous
efficient translations from logical formulae into query automata, we get efficient
algorithms for verifying properties of views.

3 Unranked Trees and Automata

Unranked trees. XML documents are normally abstracted as labeled unranked
trees. We now recall the standard definitions, see [29,22,36]. Nodes in unranked
trees are elements of N∗, i.e. strings of natural numbers. We write s · s′ for the
concatenation of strings, and ε for the empty string. The basic binary relations
on N∗ are the child relation: s ≺ch s′ if s′ = s · i, for some i ∈ N, and the
next-sibling relation: s′ ≺ns s

′′ if s′ = s · i and s′′ = s · (i + 1) for some s ∈ N∗

Reasoning about XML with Temporal Logics and Automata 101

and i ∈ N. The descendant relation ≺∗
ch and the younger sibling relation ≺∗

ns are
the reflexive-transitive closures of ≺ch and ≺ns.

An unranked tree domain D is a finite prefix-closed subset of N∗ such that
s · i ∈ D implies s · j ∈ D for all j < i. If Σ is a finite alphabet, an unranked
tree is a pair T = (D,λ), where D is a tree domain and λ is a labeling function
λ : D → Σ.

Unranked tree automata and XML schemas. A nondeterministic unranked
tree automaton (cf. [29,36]) over Σ-labeled trees is a triple A = (Q,F, δ) where
Q is a finite set of states, F ⊆ Q is the set of final states, and δ is a mapping
Q×Σ → 2Q∗

such that each δ(q, a) is a regular language overQ. We assume that
each δ(q, a) is given as an NFA. A run of A on a tree T = (D,λ) is a function
ρA : D → Q such that if s ∈ D is a node with n children, and λ(s) = a, then
the string ρA(s · 0) · · · ρA(s · (n− 1)) is in δ(ρA(s), a). Thus, if s is a leaf labeled
a, then ρA(s) = q implies that ε ∈ δ(q, a). A run is accepting if ρA(ε) ∈ F ,
and a tree is accepted by A if an accepting run exists. Sets of trees accepted by
automata A are called regular and denoted by L(A).

There are multiple notions of schemas for XML documents, DTDs being the
most popular one. What is common for them is that they are subsumed by
the power of unranked tree automata, and each specific formalism has a simple
(often linear time) translation into an automaton [36]. So when we speak of XML
schemas, we shall assume that they are given by unranked tree automata.

Query automata. It is well known that automata capture the expressiveness
of MSO sentences over finite and infinite strings and trees. The model of query
automata [30] captures the expressiveness of MSO formulae ϕ(x) with one free
first-order variable – that is, MSO-definable unary queries. We present here a
nondeterministic version, as in [28,15].

A query automaton (QA) for Σ-labeled unranked trees is a tuple QA =
(Q,F,Qs, δ), where (Q,F, δ) is an unranked tree automaton, and Qs ⊆ Q is
the set of selecting states. Each run ρ of QA on a tree T = (D,λ) defines the
set Sρ(T) = {s ∈ D | ρ(s) ∈ Qs} of nodes assigned a selecting state. The unary
query defined by QA is then, under the existential semantics,

QA∃(T) =
⋃

{Sρ(T) | ρ is an accepting run of QA on T }.

Dually, one can define QA∀(T) under the universal semantics as the intersection
of Sρ(T)’s. Both semantics capture the class of unary MSO queries [28].

These notions are not very convenient for reasoning tasks, as many runs need
to be taken into account – different nodes may be selected in different runs. Also,
it makes operations on query automata hard computationally: for example, a
natural notion of complement for an existential-semantics QA will be expressed
as a universal semantics QA, requiring an exponential time algorithm to convert
it back into an existential QA.

102 L. Libkin and C. Sirangelo

To remedy this, we define a notion of single-run query automata as QAs
(Q,F,Qs, δ) satisfying two conditions:

1. For every tree T , and accepting runs ρ1 and ρ2, we have Sρ1(T) = Sρ2(T);
and

2. The automaton (Q,F, δ) accepts every tree.

For such QAs, we can unambiguously define the set of selected nodes as QA(T) =
Sρ(T), where ρ is an arbitrarily chosen accepting run.

While the conditions are fairly strong, they do not restrict the power of QAs:

Fact 1. (see [15,32,33]) For every query automaton QA, there exists an equiva-
lent single-run query automaton, that is, a single-run query automaton QA′ such
that QA∃(T) = QA′(T) for every tree T .

Remarks: the construction in [15] needs a slight modification to produce such
QA; also it needs to be extended to unranked trees which is straightforward.
This was also noticed in [33]. One can also get this result by slightly adapting
the construction of [32].

We now make a few remarks about closure properties and decision problems
for single-run QAs. It is known [29] that nonemptiness problem for existential-
semantics QAs is solvable in polynomial time; hence the same is true for single-
run QAs. Single-run QAs are easily closed under intersection: the usual product
construction works. Moreover, if one takes a product A×QA of a tree automaton
and a single-run QA (where selecting states are pairs containing a selecting state
of QA), the result is a QA satisfying 1) above, and the nonemptiness problem
for it is solvable in polynomial time too.

We define the complement of a single-run QA as QA = (Q,F,Q − Qs, δ),
where QA = (Q,F,Qs, δ). It follows immediately from the definition that for
every tree T with domain D, we have QA(T) = D−QA(T), if QA is single-run.
This implies that the containment problem QA1 ⊆ QA2 (i.e., checking whether
QA1(T) ⊆ QA2(T) for all T) for single-run QAs is solvable in polynomial time,
since it is equivalent to checking emptiness of QA1 ×QA2.

4 Logics on Trees: TLtree and XPath

TLtree. An unranked tree T = (D,λ) can be viewed as a structure
〈D,≺∗

ch,≺∗
ns,(Pa)a∈Σ〉, where Pa’s are labeling predicates: Pa = {s ∈ D | λ(s) =

a}. Thus, when we talk about first-order logic (FO), or monadic second-order
logic (MSO), we interpret them on these representations of unranked trees. Re-
call that MSO extends FO with quantification over sets.

We shall use a tree temporal logic [26,34], denoted here by TLtree [22]. It can
be viewed as a natural extension of LTL with the past operators to unranked
trees [20,38], with next, previous, until, and since operators for both child and
next-sibling relations. The syntax of TLtree is defined by:

ϕ,ϕ′ := " | ⊥ | a | ϕ ∨ ϕ′ | ¬ϕ | X∗ϕ | X−
∗ ϕ | ϕU∗ϕ

′ | ϕS∗ϕ
′,

Reasoning about XML with Temporal Logics and Automata 103

where " and ⊥ are true and false, a ranges over Σ, and ∗ is either ’ch’ (child)
or ’ns’ (next sibling). The semantics is defined with respect to a tree T = (D,λ)
and a node s ∈ D:

– (T, s) |= "; (T, s) �|= ⊥;
– (T, s) |= a iff λ(s) = a;
– (T, s) |= ϕ ∨ ϕ′ iff (T, s) |= ϕ or (T, s) |= ϕ′;
– (T, s) |= ¬ϕ iff (T, s) �|= ϕ;
– (T, s) |= Xchϕ if there exists a node s′ ∈ D such that s ≺ch s

′ and (T, s′) |= ϕ;
– (T, s) |= X−

chϕ if there exists a node s′ ∈ D such that s′ ≺ch s and (T, s′) |= ϕ;
– (T, s) |= ϕUchϕ

′ if there is a node s′ such that s ≺∗
ch s

′, (T, s′) |= ϕ′, and for
all s′′ �= s′ satisfying s ≺∗

ch s
′′ ≺∗

ch s
′ we have (T, s′′) |= ϕ.

– (T, s) |= ϕSchϕ
′ if there is a node s′ such that s′ ≺∗

ch s, (T, s′) |= ϕ′, and for
all s′′ �= s′ satisfying s′ ≺∗

ch s
′′ ≺∗

ch s we have (T, s′′) |= ϕ.

The semantics of Xns,X−
ns,Uns, and Sns is analogous by replacing the child

relation with the next-sibling relation.
A TLtree formula ϕ defines a unary query T �→ {s | (T, s) |= ϕ}. It is known

that TLtree is expressively complete for FO: the class of such unary queries
is precisely the class of queries defined by FO formulae with one free variable
[26,34].

XPath. We present a first-order complete extension of XPath, called conditional
XPath, or CXPath [26]. We introduce very minor modifications to the syntax
(e.g., we use an existential quantifier E instead of the usual XPath node test
brackets []) to make the syntax resemble that of temporal logics. CXPath has
node formulae α and path formulae β given by:

α, α′ := a | ¬α | α ∨ α′ | Eβ
β, β′ := ?α | step | step∗ | (step/?α)∗ | β/β′ | β ∨ β′

where a ranges over Σ and step is one of the following: ≺ch, ≺−
ch, ≺ns, or ≺−

ns.
The language without the (step/?α)∗ is known as “core XPath”.

Intuitively Eβ states the existence of a path starting in a given node and
satisfying β, the path formula ?α tests if the node formula α is true in the initial
node of a path, and / is the composition of paths.

Given a tree T = (D,λ), the semantics of a node formula is a set of nodes
[[α]]T ⊆ D, and the semantics of a path formula is a binary relation [[β]]T ⊆ D×D
given by the following rules. We use R∗ to denote the reflexive-transitive closure
of relation R, and π1(R) to denote its first projection.

[[a]]T = {s ∈ D | λ(s) = a} [[?α]]T = {(s, s) | s ∈ [[α]]T }
[[¬α]]T = D − [[α]]T [[step]]T = {(s, s′) | s, s′ ∈ D and (s, s′) ∈ step}
[[α ∨ α′]]T = [[α]]T ∪ [[α′]]T [[β ∨ β′]]T = [[β]]T ∪ [[β′]]T
[[Eβ]]T = π1([[β]]T) [[step∗]]T = [[step]]∗T

[[β/β′]]T = [[β]]T ◦ [[β′]]T
[[(step/?α)∗]]T = [[(step/?α)]]∗T

104 L. Libkin and C. Sirangelo

CXPath defines two kinds of unary queries: those given by node formulae,
and those given by path formulae β, selecting [[β]]rootT = {s ∈ D | (ε, s) ∈ [[β]]T }.
Both classes capture precisely unary FO queries on trees [26].

XPath and TLtree. XPath expressions can be translated into TLtree. For ex-
ample, consider an expression in the “traditional” XPath syntax: e = /a//b[//c].
It says: start at the root, find children labeled a, their descendants labeled b, and
select those which have a c-descendant. It can be viewed as both a path formula
and a node formula of XPath. An equivalent path formula is

β = ≺ch /?a/ ≺∗
ch /?(b ∧E(≺∗

ch /?c)).

The set [[β]]rootT = {s | (ε, s) ∈ [[β]]T } is precisely the set of nodes selected by e in
T . Alternatively we can view it as a node formula

α = b ∧ E(≺∗
ch /?c) ∧E

(
(≺−

ch)∗/?(a ∧ E(≺−
ch /root))

)
.

Here root is an abbreviation for a formula that tests for the root node. Then
[[α]]T generates the set of nodes selected by e. It is known [27] that for every
path formula β, one can construct in linear time a node formula α so that
[[β]]rootT = [[α]]T . Thus, from now on we deal with node XPath formulae.

The above formulae can be translated into an equivalent TLtree expression

b ∧ Fchc ∧ F−
ch

(
a ∧ X−

chroot
)

Here Fchϕ is "Uchϕ, and F−
chϕ is "Schϕ; we also use root as a shorthand for

¬X−
ch". This formula selects b-labeled nodes with c-labeled descendants, and an

a-ancestor which is a child of the root – this is of course equivalent to the original
expression.

Since both TLtree and CXPath are first-order expressively-complete [26], each
core or conditional XPath expression is equivalent to a formula of TLtree; how-
ever, no direct translation has previously been produced. We now give such a
direct translation that, together with the translation from TLtree to QAs, will
guarantee single-exponential bounds on QAs equivalent to XPath formulae.

Lemma 1. There is a translation of node formulae α of core or conditional
XPath into formulae α′ of TLtree such that the number of subformulae of α′ is
at most linear in the size of α. Moreover, if α does not use any disjunctions of
path formulae, then the size of α′ is at most linear in the size of α.

In particular, even if α′ is exponential in the size of α, the size of its Fischer-
Ladner closure is at most linear in the size of the original formula α.

We now sketch the proof. Given two TLtree formulae ϕ and ϕ′ and a CXPath
path formula β, we write ϕ′ ≡ Xβϕ if for each tree T and each node s, one has
that (T, s) |= ϕ′ iff there is a node s′, with (s, s′) ∈ [[β]]T , such that (T, s′) |= ϕ.
Now each CXPath node formula α is translated into a TLtree formula ϕα

such that (T, s) |= ϕα iff s ∈ [[α]]T . Each path formula β is translated into a

Reasoning about XML with Temporal Logics and Automata 105

mapping xβ from TLtree formulae to TLtree formulae such that xβ(ϕ) ≡ Xβϕ.
The rules are:

α ϕα

a a
¬α′ ¬ϕα′

α′ ∨ α′′ ϕα′ ∨ ϕα′′

Eβ xβ(")

β xβ(ϕ)
?α ϕα ∧ ϕ
≺ch Xchϕ
≺∗

ch "Uchϕ
(≺ch /?α)∗ (Xchϕα)Uchϕ
β′/β′′ xβ′ ◦ xβ′′(ϕ)
β ∨ β′ xβ′(ϕ) ∨ xβ′′(ϕ)

5 Tree Logic into Query Automata: A Translation

Our goal is to translate TLtree into single-run QAs. We do a direct translation
into unranked QAs, as opposed to coding of unranked trees into binary (which is
a common technique). Such coding is problematic for two reasons. First, simple
navigation over unranked trees may look unnatural when coded into binary,
resulting in more complex formulae (child, for example, becomes ‘left successor
followed by zero or more right successors’). Second, coding into binary trees
makes reasoning about views much harder. The property of being upward-closed,
which is essential for decidability of certain answers, is not even preserved by
the translation. Thus, we do a direct translation into unranked QAs, and then
apply it to XML specifications.

Since values of transitions δ(q, a) in unranked QAs are not sets of states but
rather NFAs representing regular languages over states, we measure the size of
QA = (Q,F,Qs, δ) not as the number |Q| of states, but rather as

‖QA‖ = |Q| +
∑

q∈Q,a∈Σ

‖δ(q, a)‖,

where ‖δ(q, a)‖ is the number of states of the NFA. We then show:

Theorem 1. Every TLtree formula ϕ of size n can be translated, in exponential
time, into an equivalent single-run query automaton QAϕ of size 2O(n), i.e. a
query automaton such that QAϕ(T) = {s | (T, s) |= ϕ} for every tree T .

We now sketch the construction. First, as is common with translations into non-
deterministic automata [39], we need to work with a version of TLtree in which
all negations are pushed to propositions. To deal with until and since opera-
tors, we shall introduce four operators R∗ and I∗ for ∗ being ’ch’ or ’ns’ so that
¬(αU∗β) ↔ ¬αR∗¬β and ¬(αS∗β) ↔ ¬αI∗¬β; this part is completely stan-
dard. However, trees do not have a linear structure and we cannot just push
negation inside the X operators: for example, ¬Xchϕ is not Xch¬ϕ. Since our
semantics of the next operators is existential (there is a successor node in which
the formula is true), we need to add their universal analogs. For example, X∀

chϕ

106 L. Libkin and C. Sirangelo

is true in s if for every successor s′ of s in the domain of the tree, ϕ is true
in s′. Then of course we have ¬Xchϕ ↔ X∀

ch¬ϕ. We add four such operators
(X∀

ch,X
∀
ns,X

−∀
ch ,X

−∀
ns). Other axes have a linear structure, so one could alterna-

tively add tests for the root, first, and last child of a node to deal with them.
For example, ¬X−

chϕ↔ X−
ch¬ϕ∨αroot, where αroot is a test for the root. But for

symmetry we prefer to deal with the four universal versions of the next/previous
operators, since it is unavoidable for Xch.

With these additions, we can push negations to propositions, so we assume
negations only occur in subformulae ¬a for a ∈ Σ. The states of QAϕ will be
maximally consistent subsets of the Fischer-Ladner closure of ϕ (in particular,
for each state q and a subformula ψ, exactly one of ψ and ¬ψ is in q).

The transitions have to ensure that all “horizontal” temporal connectives
behave properly, and that “vertical” transitions are consistent. The alphabet of
each automaton δ(q, a) is the set of states of QAϕ; that is, letters of δ(q, a) are sets
of formulae. Each δ(q, a) is a product of three automata. The first guarantees
that eventualities αUnsβ and αSnsβ are fulfilled in the oldest and youngest
siblings. For that, we impose conditions on the initial states δ(q, a)’s that they
need to read a letter (which is a state of QAϕ) that may not contain αSnsβ
without containing β, and on their final state guaranteeing that in the last letter
we do not have a subformula αUnsβ without having β.

The second automaton enforces horizontal transitions, and it behaves very
similarly to the standard LTL-to-Büchi construction; it only deals with next-
sibling connectives. For example, if Xnsα is the current state of QA for a node
s · i, then the state for s · (i + 1) contains α, and that if αUnsβ is in the state
for s · i but β is not, then αUnsβ is propagated into the state for s · (i+ 1).

The third automaton enforces vertical transitions. We give a few sample rules.
If q contains the negation of αSchβ, then the automaton rejects after seeing a
state which contains αSchβ but does not contain β (since in this case αSchβ
must propagate to the parent). If q contains αUchβ and does not contain β,
then the automaton only accepts if one of its input letters contains αUchβ. And
if q contains Xchα, then it only accepts if one of its input letters contains α. In
addition, we have to enforce eventualities αUchβ by disallowing these automata
to accept ε if q contains αUchβ and does not contain β.

The final states of QAϕ at the root must enforce correctness of αSchβ formulae:
with each such formula, states from F must contain β as well. This completes
the construction. When all automata δ(q, a) are properly coded, the 2O(n) bound
follows. We then show a standard lemma that in an accepting run, a node is
assigned a state that contains a subformula α iff α is true in that node. This
guarantees that for every tree, there is an accepting run. Since each state has
either α or ¬α in it, it follows that the resulting QA is single-run.

6 An Application: Reasoning about Document
Navigation

As mentioned in Section 2, typical XML static analysis tasks include consis-
tency of schema and navigational properties (e.g., is a given XPath expression

Reasoning about XML with Temporal Logics and Automata 107

consistent with a given DTD?), or query optimization (e.g., is a given XPath
expression e contained in a another expression e′ for all trees that conform to
a DTD d?). We now show two applications of our results for such analyses of
XML specifications.

Satisfiability algorithms for sets of XPath expressions. The exponential-time
complexity for satisfiability of XPath expressions in the presence of a schema
is already known [25,6]. We now show how we can verify satisfiability of mul-
tiple sets of XPath expressions, in a uniform way, using translation into query
automata.

Given an arbitrary set E = {e1, . . . , en} of XPath (core or conditional) expres-
sions and a subset E′ ⊆ E, let Q(E′) be a unary query defining the intersection
of queries given by all the e ∈ E′. That is, Q(E′) selects nodes that satisfy
every expression e ∈ E′. We can capture all (exponentially many) such queries
Q(E′)s by a single automaton, that is instantiated into different QAs by different
selecting states.

Corollary 1. One can construct, in time 2O(‖E‖) (that is, 2O(‖e1‖+...+‖en‖)), an
unranked tree automaton A(E) = (Q,F, δ) and a relation σ ⊆ E ×Q such that,
for every E′ ⊆ E,

QAE′ = (Q, F,
⋂

{σ(e) | e ∈ E′}, δ)

is a single-run QA defining the unary query Q(E′).

The construction simply takes the product of all the QAe′
i
s, produced by Theo-

rem 1, where e′i is a TLtree translation of ei, produced by Lemma 1. The relation
σ relates tuples of states that include selecting states of QAe′

i
with ei ∈ E.

Then checking nonemptiness of QAE′ , we see if all e ∈ E′ are simultaneously
satisfiable.

The containment problem for XPath expressions is a special case of the prob-
lem we consider. To check whether d |= e1 ⊆ e2, we construct QA{e1,¬e2} as in
Corollary 1, and take the product of it with the automaton for d. This results in
a QA of size ‖d‖·2O(‖e1‖+‖e2‖) that finds counterexamples to containment under
d. This is precisely the construction that was promised in the introduction.

Verifying complex containment statements under DTDs. We can now extend the
previous example and check not a single containment, as is usually done [35],
but arbitrary Boolean combinations of XPath containment statements, without
additional complexity. Assume that we are given a DTD d (or any other schema
specification presented by an automaton), a set {e1, . . . , en} of XPath expres-
sions, and a Boolean combination C of inclusions ei ⊆ ej. We now want to check
whether d |= C, that is, whether C is true in every tree T that conforms to d.
We shall refer to size of C as ‖C‖; the definition is extended in the natural way
from the definition of ‖e‖.

Theorem 2. In the above setting, one can construct an unranked tree automa-
ton of size ‖d‖ · 2O(‖C‖) whose language is empty iff d |= C.

108 L. Libkin and C. Sirangelo

This is achieved by replacing ei ⊆ ej in C with the formula ¬Fch(e′i ∧ ¬e′j) and
ei �⊆ ej in C with the formula Fch(e′i ∧ ¬e′j), where e′i, e

′
j are TLtree translations

of ei and ej produced by Lemma 1. Thus we can view C as a TLtree formula αC .
Now construct a QA for ¬αC , by Theorem 1, and turn it into an automaton that
checks whether the root gets selected. Now we take the product of this automaton
with the automaton for d. The result accepts counterexamples to C under d, and
the result follows. The construction of the automaton is polynomial-time in ‖d‖
and single-exponential time in ‖C‖.

7 An Application: Reasoning about Views

Recall the problem outlined in the introduction. We have a view definition given
by a query automaton QAV . For each source tree T , it selects a set of nodes
V = QAV(T) which can also be viewed as a tree (we can assume, for example,
that QAV always selects the root). Source trees are required to satisfy a schema
constraint (e.g., a DTD). Since all schema formalisms for XML are various re-
strictions or reformulations of tree automata, we assume that the schema is given
by an automaton A.

If we only have access to V , we would like to be sure that secret information
about an unknown source T is not revealed. This information, which we assume
to be coded by a Boolean query Q, would be revealed by V if the answer to
Q were true in all source trees T that conform to the schema and generate V
– that is, if certainAQAV (Q;V) were true. Thus, we would like to construct a
new automaton A∗ that accepts V iff certainAQAV (Q;V) is false, giving us some
security assurances about the view.

In general, such an automaton construction is impossible: if QAV generates
the yield of a tree, views essentially code context-free languages. Combining
multiple CFLs with the help of DTDs, we get an undecidability result:

Proposition 1. The problem of checking, for source and view schemas As and
Av, a view definition QAV , and a Boolean first-order query Q, whether there
exists a view V that conforms to Av and satisfies certainAs

QAV
(Q;V) = true, is

undecidable.

Schemas and queries required for this result are very simple, so to ensure the
existence of the automaton A∗, we need to put restrictions on the class of views.
We assume that they are upward-closed as in [7]: if a node is selected, then so is
the entire path to it from the root.

Note that the upward-closure QA↑ of a query automaton QA can be obtained
in linear time by adding a bit to the state indicating whether a selecting state
has been seen and propagating it up. Thus, we shall assume without loss of
generality that QAs defining views are upward-closed: if s ∈ QA(T) and s′ is an
ancestor of s, then s′ ∈ QA(T).

The key observation that we need is that for an upward-closed QA, satisfying
the single-run condition, its image is regular. Furthermore, it can be accepted
by a small tree automaton:

Reasoning about XML with Temporal Logics and Automata 109

Lemma 2. Let QA be an upward-closed query automaton that satisfies condition
1) of the definition of single-run QAs. Then one can construct, in cubic time,
an unranked tree automaton A∗ that accepts trees V for which there exists a tree
T satisfying V = QA(T). Moreover, the number of states of A∗ is at most the
number of states of QA.

Proof sketch. The automaton A∗ has to guess a tree T and its run so that the
selecting states would be assigned precisely to the elements of V . So one first
needs to analyze non-selecting runs: that is, runs that can be extended to an
accepting run but never hit a selecting state. Trees admitting such runs may be
inserted under leaves of V , and in between two consecutive siblings of a node
in V . We then need to modify the horizontal transition to allow for guesses of
words consisting of final states of non-selecting runs in between two states.

To apply Lemma 2 to the problem of finding certain answers certainAQAV (Q;V),
we now take the product of QAV with A and the automaton for ¬Q (the selecting
states in the product will be determined by QAV), and obtain:

Theorem 3. Let QAV be upward-closed and single-run, A an unranked tree au-
tomaton defining a schema, and A¬Q an automaton accepting trees for which Q
is false. Then one can construct, in polynomial time, an unranked tree automaton
A∗ such that

1. ‖A∗‖ = O(‖QAV‖ · ‖A‖ · ‖A¬Q‖), and
2. A∗ accepts V ⇔ certainAQAV (Q;V) = false.

Combining Theorem 3 with previous translations into single-run QAs and prop-
erties of the latter, we obtain algorithms for verifying properties of views given
by XPath expressions. Revisiting our motivating example from Section 2, we
make the following assumptions:

– The view definition is given by an XPath (conditional or core) expression
eV ; the view V of a source tree T has all the nodes selected by eV and their
ancestors;

– The schema definition is given by a DTD d;
– The query Q is an arbitrary Boolean combination of containment statements
e ⊆ e′, where e, e′ come from a set E of XPath expressions.

Then, for a given V , we want to check if certaind
eV

(Q;V) is false: that is, the
secret encoded by Q cannot be revealed by V , since not all source trees T that
conform to d and generate V satisfy Q. We then have the following:

Corollary 2. In the above setting, one can construct in time polynomial in
‖d‖ and exponential in ‖E‖ + ‖eV ‖ an unranked tree automaton A∗ of size
‖d‖ · 2O(‖eV ‖+‖E‖) that accepts a view V iff certaind

eV
(Q;V) is false.

Note that again the exponent contains the size of typically small XPath expres-
sions, and not the potentially large schema definition d.

110 L. Libkin and C. Sirangelo

8 Conclusion

There are several extensions we would like to consider. One concerns relative
specifications often used in the XML context – these apply to subtrees. Results
of [21,2] on model-checking of now and within operators on words and nested
words indicate that an exponential blowup is unavoidable, but there could well be
relevant practical cases that do not exhibit it. We would like to see how LTL-to-
Büchi optimization techniques (e.g., in [12,17]) could be adapted in our setting,
to produce automata of smaller size. We also would like to see if automata can be
used for reasoning about views without imposing upward-closeness of [7], which
does not account for some of the cases of secure XML views [13]. One could
look beyond first-order at logics having the power of MSO or ambient logics
with known translations into automata, and investigate their translations into
QAs [9,18,15]. Another possible direction has to do with a SAX representation
of XML which corresponds to its linear structure (in the paper we dealt with the
tree structure, i.e., the DOM representation). The connection between the linear
structure of XML and nested words already found some applications [19,23].

Acknowledgment. We thank Pablo Barceló and Floris Geerts for their com-
ments. This work was done while the second author was at the University of
Edinburgh. The authors were supported by EPSRC grant E005039, the first
author also by the European Commission Marie Curie Excellence grant MEXC-
CT-2005-024502.

References

1. Abiteboul, S., Cautis, B., Milo, T.: Reasoning about XML update constraints. In:
PODS 2007, pp. 195–204 (2007)

2. Alur, R., Arenas, M., Barceló, P., Etessami, K., Immerman, N., Libkin, L.: First-
order and temporal logics for nested words. In: LICS 2007, pp. 151–160 (2007)

3. Alur, R., Etessami, K., Madhusudan, P.: A temporal logic of nested calls and
returns. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp.
467–481. Springer, Heidelberg (2004)

4. Arenas, M., Fan, W., Libkin, L.: Consistency of XML specifications. In: Inconsis-
tency Tolerance, pp. 15–41. Springer, Heidelberg (2005)

5. Barceló, P., Libkin, L.: Temporal logics over unranked trees. In: LICS 2005, pp.
31–40 (2005)

6. Benedikt, M., Fan, W., Geerts, F.: XPath satisfiability in the presence of DTDs.
In: PODS 2005, pp. 25–36 (2005)

7. Benedikt, M., Fundulaki, I.: XML subtree queries: specification and composition.
In: Bierman, G., Koch, C. (eds.) DBPL 2005. LNCS, vol. 3774, pp. 138–153.
Springer, Heidelberg (2005)

8. Bojanczyk, M., David, C., Muscholl, A., Schwentick, T., Segoufin, L.: Two-variable
logic on data trees and XML reasoning. In: PODS 2006, pp. 10–19 (2006)

9. Boneva, I., Talbot, J.-M., Tison, S.: Expressiveness of a spatial logic for trees. In:
LICS 2005, pp. 280–289 (2005)

Reasoning about XML with Temporal Logics and Automata 111

10. Calvanese, D., De Giacomo, G., Lenzerini, M., Vardi, M.Y.: Regular XPath: con-
straints, query containment and view-based answering for XML documents. In:
Logic in Databases (2008)

11. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

12. Daniele, M., Giunchiglia, F., Vardi, M.Y.: Improved automata generation for linear
temporal logic. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633,
pp. 249–260. Springer, Heidelberg (1999)

13. Fan, W., Geerts, F., Jia, X., Kementsietsidis, A.: Rewriting regular XPath queries
on XML views. In: ICDE 2007, pp. 666–675 (2007)

14. Fan, W., Chan, C.Y., Garofalakis, M.: Secure XML querying with security views.
In: SIGMOD 2004, pp. 587–598 (2004)

15. Frick, M., Grohe, M., Koch, C.: Query evaluation on compressed trees. In: LICS
2003, pp. 188–197 (2003)

16. Genevés, P., Layaida, N.: A system for the static analysis of XPath. ACM TOIS 24,
475–502 (2006)

17. Gerth, R., Peled, D., Vardi, M., Wolper, P.: Simple on-the-fly automatic verification
of linear temporal logic. In: PSTV 1995, pp. 3–18 (1995)

18. Gottlob, G., Koch, C.: Monadic datalog and the expressive power of languages for
web information extraction. J. ACM 51, 74–113 (2004)

19. Kumar, V., Madhusudan, P., Viswanathan, M.: Visibly pushdown automata for
streaming XML. In: WWW 2007, pp. 1053–1062 (2007)

20. Kupferman, O., Pnueli, A.: Once and for all. In: LICS 1995, pp. 25–35 (1995)
21. Laroussinie, F., Markey, N., Schnoebelen, P.: Temporal logic with forgettable past.

In: LICS 2002, pp. 383–392 (2002)
22. Libkin, L.: Logics for unranked trees: an overview. In: Caires, L., Italiano, G.F.,

Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp.
35–50. Springer, Heidelberg (2005)

23. Madhusudan, P., Viswanathan, M.: Query automata for nested words (manuscript,
2008)

24. Maneth, S., Perst, T., Seidl, H.: Exact XML type checking in polynomial time. In:
Schwentick, T., Suciu, D. (eds.) ICDT 2007. LNCS, vol. ICDT 2007, pp. 254–268.
Springer, Heidelberg (2006)

25. Marx, M.: XPath with conditional axis relations. In: Bertino, E., Christodoulakis,
S., Plexousakis, D., Christophides, V., Koubarakis, M., Böhm, K., Ferrari, E. (eds.)
EDBT 2004. LNCS, vol. 2992, pp. 477–494. Springer, Heidelberg (2004)

26. Marx, M.: Conditional XPath. ACM TODS 30, 929–959 (2005)
27. Marx, M., de Rijke, M.: Semantic characterizations of navigational XPath. SIG-

MOD Record 34, 41–46 (2005)
28. Neven, F.: Design and Analysis of Query Languages for Structured Documents.

PhD Thesis, U. Limburg (1999)
29. Neven, F.: Automata, logic, and XML. In: Bradfield, J.C. (ed.) CSL 2002 and

EACSL 2002. LNCS, vol. 2471, pp. 2–26. Springer, Heidelberg (2002)
30. Neven, F., Schwentick, T.: Query automata over finite trees. TCS 275, 633–674

(2002)
31. Neven, F., Schwentick, T.: On the complexity of XPath containment in the presence

of disjunction, DTDs, and variables. LMCS 2(3) (2006)
32. Neven, F., Van den Bussche, J.: Expressiveness of structured document query lan-

guages based on attribute grammars. J. ACM 49(1), 56–100 (2002)

112 L. Libkin and C. Sirangelo

33. Niehren, J., Planque, L., Talbot, J.-M., Tison, S.: N-ary queries by tree automata.
In: Bierman, G., Koch, C. (eds.) DBPL 2005. LNCS, vol. 3774, pp. 217–231.
Springer, Heidelberg (2005)

34. Schlingloff, B.-H.: Expressive completeness of temporal logic of trees. Journal of
Applied Non-Classical Logics 2, 157–180 (1992)

35. Schwentick, T.: XPath query containment. SIGMOD Record 33, 101–109 (2004)
36. Schwentick, T.: Automata for XML – a survey. JCSS 73, 289–315 (2007)
37. Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Banff

Higher Order Workshop (1996)
38. Vardi, M.Y.: Reasoning about the past with two-way automata. In: Larsen, K.G.,

Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 628–641. Springer,
Heidelberg (1998)

39. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Inf.& Com-
put. 115, 1–37 (1994)

40. Vardi, M.Y., Wolper, P.: Automata-theoretic techniques for modal logics of pro-
grams. JCSS 33, 183–221 (1986)

Distributed Consistency-Based Diagnosis

Vincent Armant, Philippe Dague, and Laurent Simon

LRI, Univ. Paris-Sud 11, CNRS and INRIA Saclay
Parc Club Université, 4 rue Jacques Monod 91893 Orsay Cedex, France

{vincent.armant,philippe.dague,laurent.simon}@lri.fr

Abstract. A lot of methods exist to prevent errors and incorrect be-
haviors in a distributed framework, where all peers work together for
the same purpose, under the same protocol. For instance, one may limit
them by replication of data and processes among the network. How-
ever, with the emergence of web services, the willing for privacy, and
the constant growth of data size, such a solution may not be applicable.
For some problems, failure of a peer has to be detected and located by
the whole system. In this paper, we propose an approach to diagnose
abnormal behaviors of the whole system by extending the well known
consistency-based diagnosis framework to a fully distributed inference
system, where each peer only knows the existence of its neighbors. Con-
trasting with previous works on model-based diagnosis, our approach
computes all minimal diagnoses in an incremental way, without needs to
get any conflict first.

1 Introduction

Model-Based Diagnosis has been introduced in the late eighties by [14,11], and
has since been widely used in many successful works. With this formalism, a
logical theory describes the normal (and, optionally, abnormal) behavior of a
physical system, and consistency checking against observations is used to derive
hypotheses over components reliability (called diagnoses), that explain failures.
Even if stronger logic may be used, it is often the case where propositional logic is
chosen to model the system. In this context, diagnosing the system with respect
to observations can be expressed as a classical – and heavily studied – knowledge
based compilation problem: restricted prime implicants [6].

Recent years have seen an increasing number of AI works pushing forward
the power of distributed systems, for instance by adding semantic layers [1]. In
such networks, all systems (or “peers”) are running the same algorithm, and
are working for the same purpose. The framework may however describe two
kinds of settings. One which allows any peer to communicate with any other
peer (generally by means of distributed hash tables, [17]) and the other where
peers only know their neighbors, which is closer to social networks, circuits, and
web services composition. In the latter formalism, reasoning is based on the dec-
laration of logical equivalence of variables between peers (the shared variables),
which locally defines subsystems acquaintances.

I. Cervesato, H. Veith, and A. Voronkov (Eds.): LPAR 2008, LNCS 5330, pp. 113–127, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

114 V. Armant, P. Dague, and L. Simon

Fig. 1. 3 steps web-payment certification

In this paper, we investigate the problem of diagnosing distributed systems
defined by peers acquaintances. Each peer only knows its neighborhood, and
has a logical model of its normal and abnormal behavior with respect to its own
local variables and its variables shared with its acquaintances, only some of them
are observable. The challenging problem is to build a set of global diagnoses
for the whole system. Our solution directly computes diagnoses (including all
minimal ones for set inclusion) without conflicts analysis, a very hard task which
is generally the first step – and the first bottleneck – of all previous model-based
diagnoses engines, even when efficient algorithms are used [16].

In our approach, we focus on “static” settings of distributed systems (i.e. we
do not deal with connection of new peers or disconnection of existing peers),
in order to easily ensure that diagnoses and observations are consistent. If the
static behavior is not possible in a fully peer-to-peer setting, it is more realistic in
a distributed setting, for instance web services composition, embedded circuits,
and social networks. In many cases, additional layers, like memory of past events
and counters, can even simulate the “static” hypothesis.

In the next section, we introduce our notations, recall the principles of model
based diagnosis and extend it to formulas in Disjunctive Normal Form. In section
3, we introduce our foundations of distributed reasoning for diagnosis. In section
4, we present the distributed algorithm and then we report related work and
conclude.

Example 1 (Three steps web-payment certification). We illustrate the paper by
a toy example of a web-payment certification, see figure 1. The order validation
service (OVS) asks to an eshopping service (ES) for a hire purchase approval
(hPurch). In order to maximize its sales opportunity, (ES) waits for the cus-
tomer bank approval (bkAprvl) or a loan agency approval (laAprvl). The bank
hire purchase service (HPS) and the loan agency service (LAS) both check the
customer credit card validity (valCC) by a call to the credit card service (CCS).
In the following, we restrict the system to (HPS) and will refer to its “global de-
scription” as the conjunction of the Transaction Approval (TA), the Solvability
Checking (SC) and the Option Checking (OC).

Distributed Consistency-Based Diagnosis 115

2 From CNF Diagnosis to DNF Diagnosis

We assume familiarity with the standard literature on propositional reasoning and
resolution. A literal is a variable v or its negation ¬v. Given a set L of literals, we
denote by L the set of its opposite literals. A Conjunctive Normal Form formula
(CNF) is a conjunction of clauses (disjunctions of literals). A Disjunctive Normal
Form formula (DNF) is a disjunction of products (conjunctions of literals). For
simplicity, we identify a formula with a set of sets of literals. We denote by T∧

(resp T∨) the set of sets of literals corresponding to a CNF (resp DNF).
A model is a set of literals that, when assigned to true, allows the evaluation

of a given formula to true. We say that a formula f is satisfiable (or consistent),
denoted by f �|= ⊥, if there exists a model for f . Let f1, and f2 be two formulas, if
all the models of f1 are also models of f2, which is noted f1 |= f2, then f1 is called
an implicant of f2 and f2 is called an implicate of f1. The minimal (with respect to
the order relation induced by inclusion of sets of literals) implicate clauses (resp.
implicant products) of a formula are called the prime implicates (resp. prime im-
plicants) of this formula. The set of prime implicates is expressed in CNF whether
the set of prime implicants is in DNF. Given a formula f and a subset V of its vari-
ables, the restriction of f on V is denoted by f |V and corresponds to recursively
apply on f the Shannon decomposition operator on all variables x of f that do
not appear in V . This operation, known as forgetting in Knowledge Compilation,
is well known to be a NP-Hard problem. However, when f is expressed as a DNF,
the restriction operator is simply a vocabulary restriction of all products of f . The
restriction of T∨ on a set of literals L can be defined as T∨|{L} = {I|{L}|∃I ∈ T∨

s.t. I|{L} = I ∩ L}, which is no more a hard task.

2.1 Centralized Model-Based Diagnosis

Like many other works, we adapt the model-based diagnosis framework from
[11,8] to the propositional case. Initially, an observed system is a triple (SD,
COMPS, OBS) where SD is a first order logical formula describing the system
behavior, OBS is a formula describing the observations (that boils down fre-
quently to values assignment to observable variables) and COMPS is the set of
monitored components, that appear as arguments of the predefined predicate
Ab() in SD (Ab(Ci) denoting that component Ci is abnormal). In propositional
logic, we may merge the whole into a single theory T , with the naming con-
vention: all variables okCi (called mode variables) encode the correct behavioral
modes of the components Ci, i.e. ¬Ab(Ci). We note F the set of negative mode
literals {...,¬okCi,...} representing faulty components. For a (boolean) observ-
able coded by a variable v, the elementary observation v = a is coded by v if a
equals 1 and ¬v if a equals 0.

Example 2 (Modeling the system). A correct behavior of TA (okTA) will approve
a hire purchase (bkAprvl) if the customer is solvent (solv) and fulfills the con-
dition (eOpt) of OC. The rule for TA is rewritten as f(TA) : okTA⇒ (solv ∧
eOpt⇔ bkAprvl). A normal functioning of SC (okSC) will consider a customer

116 V. Armant, P. Dague, and L. Simon

solvent (solv) if he does not exceed his overdraft limit (¬exOvLine). We obtain
f(SC) : okSC ⇒ (¬exOvLine ⇔ solv). A correct behavior of OC (okOC) will
satisfy (eOPt) if the customer asked for hire purchases by internet (ePurch)
and his credit card is valid (valCC). There are only two possible failures for
OC: when ePurch keeps its default value (i.e. no internet purchase) whereas the
customer asked for the internet option, and when the customer card is believed
invalid whereas it is valid. The Option Checking system can thus be encoded by
f(OC) : okOC ⇒ (ePurch∧valCC ⇔ eOpt)∧(¬okOC ⇒ ¬valCC∨¬ePurch).
The behavior of HPS is the conjunction f(HPS) : f(OC) ∧ f(SC) ∧ f(TA).

A diagnosis is a behavioral mode assignment to each component of the system,
consistent with its theory.

Definition 1 (Minimal Diagnoses). Let T be the theory that describes an
observed system, F the consistent set of all negative mode literals of the system.

& ⊆ F is a diagnosis for T iff T ∪& ∪ {F \ &} �|= ⊥
We write Diag(T) the set of diagnoses of T and min⊆(Diag(T)) the set of its
minimal diagnoses.

Intuitively, this definition states that, given any minimal diagnosis &, one may
suppose that all components C′ that do not appear in & are correct. We may
also notice that, because we can restrict the set of possible failures ((¬okOC ⇒
¬valCC ∨ ePurch) in the previous example), a minimal diagnosis may not be
extended by supposing some component C′ incorrect (a negative mode literal
candidate for extending a diagnosis can be inconsistent with T and the other
mode literals).

The theorem 3 of [8] states that the minimal diagnoses are the prime impli-
cants of the conjunction of minimal conflicts, where the minimal conflicts (called
minimal conflict sets in [14] and minimal positive conflicts in [8]) are the prime im-
plicates of the formula SD∧OBS, restricted to the mode literals in F . Intuitively,
a minimal conflict refers to a set of components containing at least a faulty one.
Minimal diagnoses are thus the minimal (for literals set inclusion) conjunctions of
faulty components that can explain all the conflicts, according to observations.

Example 3 (Conflicts and Diagnoses on Scenario 1). Let us suppose the following
scenario: the bank approved a hire purchase for an operation whereas the customer
exceeds his overdraft limit. He had a valid credit card but asked to stop internet
purchasing. In this case the bank service does not fulfill its expected behavior.

We thus look for the minimal subsets of {TA, OC, SC} that may
be faulty. This will be expressed by minimal conjunctions of literals from
{¬okTA,¬okOC,¬okSC}, which are consistent with the formula f(HPS) and
the observations {exOvLine, valCC, ¬ePurch, bkAprvl }. The minimal con-
flicts are (¬okSC ∨ ¬okTA) and (¬okOC ∨ ¬okTA). The minimal diagnoses
that satisfy these conflicts are: (¬okTA) and (¬okSC ∧ ¬okOC).

Most of previous works on diagnosis compute first the set of conflicts, restricted
to mode literals. Then, only when this first stage is over, diagnoses can be com-
puted. These methods are hopeless for building an incremental diagnostic engine

Distributed Consistency-Based Diagnosis 117

as all minimal conflicts have to be known before the first diagnosis can be re-
turned. They are nevertheless motivated by the fact that models of real-world
systems are supposed to be close to CNF. If needed, new variables are usually
added to practically contain the potential blow-up when translating to CNF. Up
to now very few interest has been shown in DNF representations of a system.
However, such a DNF representation is very advantageous for diagnosis: if we
ensure that the set F of mode variables is consistent, which means that no vari-
able appears both positively and negatively in F , then, if T∨ is the description
of an observed system, each product of the restriction T∨|{F} is a diagnosis (not
necessarily minimal).

Lemma 1. Let T∨ be a DNF description of an observed system, and F a con-
sistent set of negative mode literals, then

∀I ∈ T∨, I|{F} ∈ Diag(T)

Sketch of Proof. For each I ∈ T∨, I is an implicant of T which is trivially
consistent with T . Let us consider {F \I|{F}}, which does not contain any literals
from I|{F}. Thus, T ∪ I|{F} ∪ {F \ I|{F}} is consistent and by definition I|{F}
is a diagnosis.

Consequently, if we compute at least one implicant of T , we obtain at least
one diagnosis without waiting for conflicts. In practice, our requirement about
a DNF representation of T can be weakened without loss: implicants can be
incrementally computed by an efficient SAT solver or even deduced from a com-
pact, compiled, representation of T that allows efficient production of models
[6]. The result is that, on small systems, or on large – but distributed – systems,
the direct translation from CNF to DNF can be done. The following theorem
states that minimal diagnoses are contained in any DNF description encoding
the observed system.

Theorem 1. Let T be the description of an observed system, and F a consistent
set of negative mode literals:

min⊆(Diag(T)) = min⊆(T∨|{F})

Sketch of Proof A) Let & be a minimal diagnosis, by the definition 1, & ∪
{F \ &} is consistent with the observed system. Thus, for any DNF represen-
tation of the system, there exists an implicant I consistent with & ∪ {F \ &}.
Since I is consistent with & ∪ {F \ &} we have I|{F\�} = ∅ and thus I|{F}
=I|{�}. Because we know that I|{F} is a diagnosis and & is a minimal one
we have I|{�} = &. B) Let I|{F} ∈ min⊆(T∨|{F}), I|{F} is a diagnosis,
suppose that it is not a minimal one. Then there exists a diagnosis &, s.t.
& ⊂ I|{F}. Consequently, there exists l in I|{F} s.t. l is not in &. In this case
& ∪ { F \ &} ∪ I is contradictory. But since & ∪ { F \ &} is consistent with
T∨, then there exists I ′ �= I s.t. & ∪ { F \ &} ∪ I ′ is consistent and I ′|{F}
⊆ &. We deduce that I ′|{F} ⊆ & ⊂ I|{F}. It is contradictory with the fact that
I|{F} ∈ min⊆(T∨|{F}).

118 V. Armant, P. Dague, and L. Simon

Example 4 (Finding Diagnoses in DNF theory). Let FHPS =
{¬okTA,¬okOC,¬okSC} be the set of mode literals and T∨

HPS the DNF
formula of the description of HPS with observations.

T∨
HPS =

(¬okTA ∧ ¬okSC ∧ ¬eOpt ∧ okOC)∨
(¬okTA ∧ ¬okSC ∧ ¬okOC)∨
(¬okTA ∧ ¬solv ∧ ¬okOC)∨
(¬okTA ∧ ¬okSC ∧ ¬eOpt)∨
(¬okTA ∧ ¬solv ∧ ¬eOpt)∨
(¬okSC ∧ ¬okOC ∧ eOpt ∧ solv)

For simplicity, we omitted, in each product, the conjunction of observed literals
exOvLine ∧ valCC ∧ ¬ePurch ∧ bkAprvl. Finally, after restriction on FHPS

and subsumption elimination, we obtain the two diagnoses {¬okTA, (¬okSC ∧
¬okOC)}.

By the lemma 1 we know that each implicant contains a diagnosis. The theorem
1 states that any DNF description of the observed system contains the set of
minimal diagnoses. Now, suppose that we monitor and diagnose a distributed
system by the means of a distributed diagnostic architecture made up of local
diagnostic engines which gradually compute local implicants from the monitored
subsystems. A consistent composition of local implicants from each diagnostic
engine is actually an implicant for the global system. We note that, as soon as
each diagnostic engine returns its first implicant, the composition task can start.
In the next section we precise the notion of distributed system which differs from
the usual notion of system in diagnosis by taking into account the shared and
local acquaintance of each subsystem. We take advantage of this characterization
for forgetting symbols and optimizing the composition task.

3 Diagnosing Peer-to-Peer Settings

We formalize our distributed model based diagnosis framework by means of
Peer-to-Peer Inference Systems (P2PIS) proposed by [9], and extended in [1] for
distributed reasoning. In a P2PIS, a so-called “inference peer” has only a partial
knowledge of the global network (generally restricted to its acquaintance) and
may have local information, only known by itself. In our work, an inference peer
will for instance model the expected behavior of a real peer, a web service, or
a subcircuit, of a distributed system. Let us denote by T the description of the
global observed system. T is the (virtual) conjunction of all local theories Tp of
peers p. Of course, in our framework, T will never be explicitly gathered and
privacy of local knowledge will be ensured. T is built on the global variables
vocabulary V (excluding mode variables), which can be partitioned into shared
variables Sh and local variables Loc

– Sh = {v|∃p �= p′s.t. v appears both in Tp and in Tp′}
– Loc = V \ Sh

In addition to this partition, we have to add mode variables in order to be
able to diagnose the system. We denote by F the set of all mode variables of

Distributed Consistency-Based Diagnosis 119

the system. Obviously, in order to build a global diagnosis, exchange of mode
variables between peers has to be possible. Thus, the network will allow formulas
built on variables from Sh ∪ F to be sent from peer to peer. We denote by
Vp, Shp, Locp, Fp the vocabulary, the shared variables, the local variables and
the mode variables symbols of any inference peer p.

3.1 A Network of DNF Models

In the previous section, we assumed that we were able to work directly on the
DNF of T . Because T here is a conjunction of formulas, we may push this
hypothesis to all Tp. If the first hypothesis, i.e. in the centralized case, may not
be considered as a realistic one, at the opposite small peers will admit relatively
small DNF encoding, and thus the second hypothesis, i.e. in the distributed case,
is of practical interest. If all Tp are in DNF, then writing T in DNF can be done
by the distribution property of ∧ over ∨. More formally, we use the following
operator for this purpose:

Definition 2 (Distribution (⊗))
T∨

1 ⊗ T∨
2 = {I1 ∧ I2|I1 ∈ T∨

1 , I2 ∈ T∨
2 , I1 ∧ I2 �|= ⊥}

One may notice that inconsistent products are deleted, and, if the result is
minimized, then this operator is exactly the clause-distribution operator of [16],
but applied to DNF and products.

Because of privacy, and for efficiency purpose, let us introduce the following
lemma stating that instead of distributing all theories before restricting the
result to mode variables, one may first restrict all theories to shared and mode
variables without loss.

Lemma 2. Let T∨ be a description of an observed P2P system, F a consistent
set of negative mode literals:

(⊗T∨
p)|{Sh,F} = ⊗(T∨

p |{Shp,Fp})

Sketch of Proof. Let I (resp. I ′) an implicant of T∨
p , (resp. T∨

p′). Local symbols
from I do not appear in I ′, thus inconsistencies between I and I ′ can only come
from shared symbols.

With this lemma and the first theorem we can show that minimal diagnoses
can be computed with shared and mode literals only.

Theorem 2. Let T be a description of an observed P2P system, F a consistent
set of negative mode literals:

min⊆(Diag(T)) = min⊆((⊗(T∨
p |{Shp,Fp}))|{F})

Sketch of Proof. Let T∨ be a DNF global description of the observed system
s.t. T∨ ≡ T . By theorem 1 we know that min⊆(Diag(T)) = min⊆(T∨|{F}). We
have T∨|{F} = T∨|{Sh,F}|{F} since the restriction of T∨ on shared and faulty
symbols does not delete any faulty symbol. Moreover, because T∨ ≡ ⊗T∨

p , we
deduce by the lemma 2 that min⊆(Diag(T)) = min⊆((⊗T∨

p |{(Shp,Fp)})|{F}).

120 V. Armant, P. Dague, and L. Simon

3.2 Distributions with Trees

We now focus on the distribution of consistent diagnoses between diagnostic
engines. Here we consider that any peer may be able to initiate a diagnosis and
may ask its neighborhood to help him for this task. When receiving a request for
a diagnosis by an initiator, a peer will also query its acquaintances, according to
its observation values, and will begin to answer to its initiator as soon as possible.
Thus, the initial request will flood into the network top-down and answers will
converge to the initial peer with a bottom-up traversal of the network. Implicitly,
for a given request for a diagnosis, any peer will maintain who was its local
initiator, and thus an implicit tree will be built in the network for each request.

We use this tree to efficiently compute the distribution of peers theories. Let us
denote by Ap the subtree rooted in p and by child(Ap, Ap′) the relation between
Ap′ and Ap s.t. Ap′ is a subtree of Ap. We note by ShAp the variables shared
by Ap and any other peer in the distributed system. We note TAp the theory
defined as the conjunction of the theories of all peers occurring in the the subtree
rooted in p.

TAp =

⎧⎨⎩T
∨
p |{Fp,Shp}, if � ∃p′s.t.child(Ap, Ap′) is set.

(T∨
p |{Fp,Shp} ⊗

⊗
{Ap′ |child(Ap,Ap′)}

TAp′)|{ShAp ,FAp}, otherwise

The next theorem shows that we can compute global diagnoses by gradually
forgetting shared acquaintances which correspond to local acquaintances of a
subtree.

Theorem 3. Let T be the global description of an observed system,
child(Ap, Ap′) a relation defining a Tree on T rooted in r. then:

min⊆(Diag(T)) = min⊆(TAr)

Sketch of Proof. We use the theorem 2 and inductively prove that ∀p, TAp =
(⊗
q∈Ap

T∨
q |{Shq,Fq})|{ShAp ,FAp}. Concerning the root r, we note that ShAr=∅, con-

sequently min⊆(TAr) only contains the set of minimal diagnoses.
Thus, intuitively, as soon as we know that a given variable cannot imply any

inconsistency in other parts of the tree, we remove it. As answers will go back
to the root, peers will filter out useless variables, and, hopefully, will reduce the
number and the size of possible answers.

4 Algorithm

In this section, we present our message-passing algorithm M2DT, standing for
“Minimal Diagnoses by Distributed Trees” (see algorithm 1). We call neighbor of
p a peer that shares variables with p. As previously, A stands for the distributed
cover tree, dynamically built by the algorithm. We write Ap the subtree of A
rooted in p. For a tree A and a peer p, p’s parent and p’s children will be in-
cluded, by construction, in p’s neighborhood. Let us recall that TAp is defined

Distributed Consistency-Based Diagnosis 121

as the theory (more exactly a subpart of the whole theory, sufficient for diagnos-
tic purpose) of the observed subsystem defined by the conjunction of all peers
occurring in the whole subtree Ap. We call r-implicant of TAp a restriction of
one implicant of TAp to its mode variables and shared vocabulary.

4.1 A General View on M2DT

At the beginning, a given peer, called the starter, broadcasts a request of diagno-
sis (reqDiag) to its neighborhood. When a peer receives its first reqDiag, it sets
the sender as its parent and broadcasts the request to its remaining neighbors,
in order to flood the network. This first stage of the algorithm aims at building
a distributed cover tree: as the request goes along the network, the relationship
(parent, p) is set and defines the distributed cover tree A. As soon as one peer
knows that it is a leaf in A, it answers by sending its r-implicants (respDiag)
to its parent and thus begins the second stage of the algorithm. When an inter-
mediate node receives r-implicants from one of its children, there are two cases.
If it already knows the role of all its neighborhood (parent, direct children and
peers that can either occur deeper in the current subtree or elsewhere in the
cover tree), it extends all new r-implicants by distributing them over its own
r-implicants and those already received from all other children. It then filters
out useless variables and sends all resulting implicants to its parent. If it does
not know the role of all its neighborhood, it stores the received r-implicants for
a future use. With this algorithm, global diagnoses converge to the starter peer.
When a peer does not wait any more for any message, it sends its termination
message to its parent. When a peer has received all termination messages from
all its children, it sends its termination message to its parent (third and last
stage of the algorithm). When the starter peer receives the termination mes-
sage, we are sure that it already received the set of minimal diagnoses from all
its children.

4.2 Structures and Algorithm

A message can be a request of diagnosis reqDiag, a response respDiag or a
notification of termination endDiag. The structure of a message msg is the
following one:

msg.T ype: takes its values in {reqDiag, respDiag, endDiag}, matching the
three stages of the algorithm.

msg.Desc: defined only when msg.T ype = respDiag, represents the descen-
dants of the sender of the message that participated in building the consid-
ered r-implicant.

msg.rImpl: defined only when msg.T ype = respDiag, is an r-implicant of the
subtree rooted in the sender of the message.

A peer p sets its parent to the first peer in its neighborhood that sent it a reqDiag
message. For all other reqDiag messages that pmay receive, it adds the sender to

122 V. Armant, P. Dague, and L. Simon

the set NotChild. This set stores all peers that are not direct children of p (peers
that can occur deeper in the subtree rooted in p or that do not occur in this sub-
tree). All peers p′ that send to p at least one respDiagmessage are stored inChild.
The array TChild, defined in each peer p only for its direct children p′, associates
to each child peer p′ a DNF theory TChild[p′]. TChild[p′] stores all r-implicants
received so far from p′. This set will be known to be complete when p will receive
an endDiagmessage from p′. In order to detect additional useless variables, p also
stores in Desc all known descendant of p (peers occurring in the subtree rooted
in p). All local variables of all peers are already deleted by the algorithm, but one
may now consider as “local” a variable that is guaranteed to occur only in the
current subtree and not elsewhere. This is the case for shared variables that are
shared only by peers that occur in the current subtree.

To detect and notify termination, p maintains a list of peers from which
messages are still waited. This list is called waitEnd and initially set to all
neighbors of p (Neighborhood). A peer leaves the list if it is the parent, if it is
not a direct descendant or if it is a direct child that notified termination.

4.3 Primitives of M2DT

checkEnd (waitEnd, p′) Checks and propagates the termination. First, it re-
moves p′ from the waitEnd list of p. If waitEnd is empty, it sends the
termination message and terminates.

extends (I, T∨
p , TChild,Desc) Extends the implicant I from p′ by distributing

it on the local theory T∨
p and all sets TChild[p”] that are defined and different

from p′. This primitive, which is only called when the local subtree is entirely
known, computes
(T∨

p |{Fp,Shp} ⊗ I ⊗
p”�=p′

TChild[p”])|{ShAp ,FAp}

One may notice that ShAp is not directly known. It is deduced fromDesc: we
associate in Desc to each shared variable the unique identifiers of all peers
that share it. Thus, one may check if all peers that share a given shared
variable are “local” to the subtree, only with the help of the set Desc.

flush (T∨
p , TChild,Desc) Sends the distribution of all implicants stored in the

TChild array and the local theory. This primitive is called only when the
local subtree is known to be complete for the first time with a reqDiag
message, which means that the last unknown neighbor sent to p a message
“I am not your direct child”. We thus have to flush all previously stored
implicants (if any) to p’s parent. This primitive computes
(T∨

p |{Fp,Shp} ⊗
p”�=p′

TChild[p”])|{ShAp ,FAp}

One may notice that this primitive will be called for all leaves of the dis-
tributed tree A.

4.4 Properties

In the following we assume a FIFO channel between two connected peers and
no lost message. The acquaintance graph is connected and the global theory is

Distributed Consistency-Based Diagnosis 123

Algorithm 1. Peer p receives a message msg from peer p′

1: switch msg.Type
2:
3: case : reqDiag
4: /*A distributed tree is built*/
5: if parent is not set then /* Flooding alg.*/
6: parent← p′

7: send to all p neighborhood \p′ : msg [reqDiag]
8: else /* p’ is not a direct child */
9: NotChild ← NotChild ∪ {p′}

10: end if
11: /* Flushes all stored implicants when the subtree is known */
12: if {parent} ∪ Child ∪NotChild = Neighborhood
13: Π ← flush(T ∨

p , TChild, Desc)
14: for all I ∈ Π
15: send to parent msg [respDiag,I ,Desc ∪ {p}]
16: end for
17: end if
18: /* p′ is either the parent or not a direct child*/
19: checkEnd(waitEnd, p′)
20:
21: case : respDiag
22: /* Stores the diag, or extends and propagates it */
23: Child ← Child ∪ {p′}
24: Desc ← Desc ∪msg.Desc
25: TChild[p′]← TChild[p′] ∪msg.rImpl
26: /* Extends msg.rImpl only if the subtree is already known */
27: if {parent} ∪ Child ∪NotChild = Neighborhood
28: Π ← extends(msg.rImpl,T ∨

p , TChild, Desc)
29: for all I ∈ Π
30: send to parent msg [respDiag,I ,Desc ∪ {p}]
31: end for
32: Tresult← min⊆(Tresult ∪Π)
33: end if
34:
35: case : endDiag
36: /* Notifies termination of this child, and propagates if needed*/
37: checkEnd(waitEnd, p′)
38: end switch

satisfiable. Messages processing is considered as “atomic”, which simply means
that the messages are treated one by one by each peer.

Let us first emphasize some observations.

Lemma 3. If a peer, p, sends a reqDiag to one of its neighbors, p′, this message
is the only one from p to p′.

Proof. A peer broadcasts the reqDiag to each of its neighbors (except its parent)
just after having set as its parent the sender of the first received reqDiag. Because

124 V. Armant, P. Dague, and L. Simon

of the condition line 5, p does not have the opportunity to send other reqDiag.
Concerning respDiag and endDiag they are sent to the parent only.

If we now focus on the first event carried out by each peer:

Lemma 4. All peers, except the starter, will receive a first event, which will be
a reqDiag message.

Proof. To receive a respDiag or an endDiag, p has to be a parent of some peer.
But to become a parent, p must send a reqDiag to at least one peer, and thus
p will have to receive reqDiag first. Consequently, since the acquaintance graph
is connected, and because a peer broadcasts reqDiag to its neighbors, then each
peer will receive a first reqDiag (we rely on the well known flooding algorithm
in a graph to ensure this).

With these lemmas we have the following property:

Property 1 (Distributed cover Tree). The relation (parent,p), built when p re-
ceives its first reqDiag, defines a distributed cover tree.

Sketch of Proof. Let n be the number of peers, req1(p) be the reception of
the first diagnosis request by p. Since the starter peer does not get any par-
ent, by the previous lemma we know that flooding reqDiag will build n-1 con-
nections (parent,p). Suppose a cycle is defined by these connections and an or-
der < s.t. req1(p) < req1(p′) if req1(p) is former than req1(p′). Let us take p
in the cycle, there exists p′ in the cycle s.t. p′ got p as parent, then req1(p) <
req1(p′). If we follow the ”parent” connection in the cycle, we have by transitiv-
ity that req1(p′) < req1(p). Consequently, we cannot have cycle by the ”parent”
connection.

Now we know that a distributed cover tree will be built but, at this point, a
peer p will only know its parent, but not its direct children. This can be deduced
by the respDiag messages, when all children of p will send it their r-implicants.
respDiag messages are only sent when the state of all neighbors of p are known
(Parent, Child, NotChild).

Lemma 5. Let p be a peer, p′ be one of its neighbors. If p′ does not get p as
parent, p will receive a reqDiag from p′.

Sketch of Proof. Let p′ be a neighbor of p that does not accept p as its parent.
When p sent to it a reqDiag, p′ already had a parent in order to refuse p as its
parent. Consequently p had also sent to p′ a reqDiag.

With this lemma, we can easily show the following property:

Property 2. Let Ap be the subtree rooted in p and built by the algorithm, TAp ,
the theory of Ap as previously defined, then p will send to its parent the r-
implicants of TAp .

Sketch of Proof. Let us prove this property recursively, with respect to the max-
imal depth, dmax, of the subtree Ap, rooted in p. If dmax=0, p is a leaf, none of its
neighbors gets it as parent. Nevertheless, with the previous lemma, we know that
each of them will send a reqDiag to it. Consequently, p will know the state of its

Distributed Consistency-Based Diagnosis 125

neighbors and satisfy the condition (parent∪Child∪NotChild = Neighborhood).
Then p will send all r-implicants of T∨

p computed by the flush primitive. If dmax >
0, suppose the property true for all children p′ of p: we thus guarantee that pwill re-
ceive from each of them their r-implicants and will store them in its TChild array.
Concerning the other neighbors (NotChild), p will receive from them a reqDiag.
Consequently, p will know the state of all its neighborhood and satisfy the con-
dition (parent ∪ Child ∪ NotChild = Neighborhood). Since the global theory
is satisfiable p will be able to build at least one r-implicant of TAp either by the
method extends or by the method flush.

Since TResult is minimized, the starter peer will save in it the minimal diag-
noses. The correction and the completeness of the algorithm are a direct conse-
quence of the previous property. The termination of the algorithm is shown by
the following one:

Property 3. The last event carried out by a peer is sending the endDiag message
to its parent.

Sketch of Proof. Similarly to the previous property, we can show this property
recursively with respect to the maximal depth, dmax. If dmax = 0, p will receive
a reqDiag from all its neighbors and the set waitEnd will be empty. Then
p will send the message end after the set of r-implicants of T∨

p . If dmax > 0, p
will receive a reqDiag from peers in NotChild and an endDiag from its children.
Then, the set waitEnd will be empty. As soon as possible, p will send r-implicants
to its parent and an endDiag as its last message.

Example 5 (M2DT Illustration). A customer made a hire purchase by internet
whereas his credit card was not valid: the service CCS observed ¬valCC and
the service ES observed hPurch. OV S starts the analysis and sends a diagnosis
request to ES. ES begins the computation of T∨

ES |{ShES,FES} and forwards the
request to its neighbors HPS and LAS. HPS and LAS receive the diagnosis
request from ES and both forward a diagnosis request to CCS. CCS forwards the
request to LAS. When LAS receives the request from CCS it has already received
one from ES, so it does not answer. At this step, LAS has received a message
from all its neighborhood, then it starts to send its implicants to ES. When

hPurch

(CCS)
ï valCC

(LAS)
ï okLAS
ï laAprvl
valCC laAprvl

(ES)
ïokES hPurch
laAprvl hPurch
bkAprvl hPurch

(OVS)
hPurch …
…

(HPS)
valCC bkAprvl
bkAprvl ïokOC
ïokTA
ïbkAprvl
ïvalCC bkAprvl ï okOC

ï valCC ï valCC ï bkAprvl

bkAprvlvalCC

laAprvl

ï okLAS

…

ï okLAS hPurch

…

Fig. 2. M2DT algorithm

126 V. Armant, P. Dague, and L. Simon

CCS receives the request from LAS, it does not answer and sends its implicant
¬valCC to HPS. Simultaneously, ES gets ¬laAprvl from LAS and HPS gets
¬valCC from CCS. At this step, ES did not received any message from any of its
neighbors, unlike HPS, which can send to ES the implicant ¬bkAprvl∧¬valCC
built from the 4th implicant of its theory and ¬valCC. At this step, ES received
a message from its neighbors. It builds ¬okLAS∧¬bkAprvl∧hPurch∧¬valCC
from its theory and its received implicants. ES removes ¬bkAprvl and ¬valCC
which are shared variables only occurring in the subtree rooted in ES and sends
¬okLAS ∧ hPurch to OV S. At this step OV S gets its first diagnosis.

5 Related Works

Our approach has been preceded by many pieces of work. Methods from [2] ex-
tend the ATMS principles of [7] in order to incrementally compute the set of
conflicts in a distributed framework. However, those methods have still to wait
for all conflicts before having a chance to get the first diagnosis. Many other
works try to take advantage of the system topology, for instance by using de-
composition properties of the model [5,13]. Similarly [12] searches for diagnoses
into a partitioned graph by assigning values for shared variables and maintaining
a local consistency. The global diagnosis is thus distributed in all local diagnoses.
This method however does not guarantee the minimality and supposes a global
system description, which is not our case. In [3], local diagnoses from each agent
(peer) are synchronized such that to obtain at the end a compact representation
of global diagnoses. But the algorithm searches only for the set of diagnoses
with minimal cardinality whereas we look for the set of all minimal diagnoses
for subset inclusion. In [15], agents update their sets of local diagnoses in order
to be consistent with a global one. However, the algorithm cannot guarantee
that any combination of agents local minimal diagnoses is also a global minimal
diagnosis. In [4,10], a supervisor, that knows the global communication archi-
tecture between peers, coordinates the diagnosis task by dialoguing with local
diagnosers. Thus the computation of global diagnoses from local ones is cen-
tralized. Due to the privacy constraint, in our framework a peer just knows its
neighbors, no peer knows the network architecture and computation of global
diagnoses is distributed, no peer playing a special role.

6 Conclusion

We proposed a distributed algorithm to compute the minimal diagnoses of a dis-
tributed Peer-to-Peer setting in an incremental way, with the help of a distributed
cover tree of the acquaintance graph of the peers. Our algorithm takes advantage
of the DNF representation of the local theories of the peers in order to compute
global diagnoses without needs to get conflicts first. However, one has to notice
that, in practice, peers do not have to rewrite their local theories in DNF. They
may compute answers to requests “on the fly” and thus allow our algorithm to
work on CNF encoding of the peers. Developing this technique will be our next

Distributed Consistency-Based Diagnosis 127

investigation, along with experimental testing and scaling-up study of our algo-
rithm on real examples, such as conversational web services. We can already state
the many advantages offered by our approach: we ensure privacy issues, in par-
ticular no peer has the global knowledge; we never compute the set of conflicts
before computing the diagnoses; we take advantage of the natural structure of the
network, which can be generally decomposed such as to obtain a small number
of shared variables; we take advantage of the distributed cpu power of the whole
network; lastly, we restrict the vocabulary of diagnoses as soon as possible. Future
lines of research will include the study of dynamic Peer-to-Peer systems.

References

1. Adjiman, P., Chatalic, P., Rousset, M.-C., Simon, L.: Distributed reasoning in a
peer-to-peer setting. In: IJCAI 2005 (2005)

2. Beckstein, C., Fuhge, R., Kraetzschmar, G.: Supporting assumption-based reason-
ing in a distributed environment. In: Workshop on Distributed Artificial Intelli-
gence (1993)

3. Biteus, J., Frisk, E., Nyberg, M.: Distributed diagnosis by using a condensed local
representation of the global diagnoses with minimal cardinality. In: DX 2006 (2006)

4. Console, L., Picardi, C., Theseider Dupré, D.: A framework for decentralized qual-
itative model-based diagnosis. In: IJCAI 2007 (2007)

5. Darwiche, A.: Model-based diagnosis using structured system descriptions. Journal
of AI Research 8, 165–222 (1998)

6. Darwiche, A., Marquis, P.: A knowledge compilation map. Journal of AI Re-
search 17, 229–264 (2002)

7. de Kleer, J.: An assumption-based tms. Artificial Intelligence 28, 127–162 (1986)
8. de Kleer, J., Mackworth, A.K., Reiter, R.: Characterizing diagnoses and sytems.

Artificial Intelligence 56, 197–222 (1992)
9. Halevy, A., Ives, Z., Tatarinov, I.: Schema mediation in peer data management

systems. In: ICDE 2003, pp. 505–516 (March 2003)
10. Kalech, M., Gal Kaminka, A.: On the design of social diagnosis algorithms for

multi-agent teams. In: IJCAI 2003 (2003)
11. de Kleer, J., Williams, B.C.: Diagnosing multiple faults. Artificial Intelli-

gence 32(1), 97–130 (1987)
12. Kurien, J., Koutsoukos, X., Zhao, F.: Distributed diagnosis of networked, embedded

systems. In: DX 2002 (2002)
13. Provan, G.: A model-based diagnosis framework for distributed systems. In: DX

2002 (2002)
14. Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32(1),

57–96 (1987)
15. Roos, N., ten Teije, A., Witteveen, C.: A protocol for multi agent diagnosis with

spatially distributed knowledge. In: AAMAS 2003 (2003)
16. Simon, L., del Val, A.: Efficient consequence finding. In: IJCAI 2001 (2001)
17. Stoica, I., Morris, R., Karger, D., Kaasshoek, M.F., Balakrishnan, H.: Chord: a

scalable peer-to-peer lookup service for internet applications. In: ACM SIGCOMM
2001 (2001)

From One Session to Many:
Dynamic Tags for Security Protocols�

Myrto Arapinis, Stéphanie Delaune, and Steve Kremer

LSV, ENS Cachan & CNRS & INRIA, France

Abstract. The design and verification of cryptographic protocols is a notoriously
difficult task, even in abstract Dolev-Yao models. This is mainly due to several
sources of unboundedness (size of messages, number of sessions, . . .). In this
paper, we characterize a class of protocols for which secrecy for an unbounded
number of sessions is decidable. More precisely, we present a simple transforma-
tion which maps a protocol that is secure for a single protocol session (a decidable
problem) to a protocol that is secure for an unbounded number of sessions.

Our result provides an effective strategy to design secure protocols: (i) design
a protocol intended to be secure for one protocol session (this can be verified
with existing automated tools); (ii) apply our transformation and obtain a protocol
which is secure for an unbounded number of sessions. The proof of our result is
closely tied to a particular constraint solving procedure by Comon-Lundh et al.

1 Introduction

Security protocols are small distributed programs which aim at guaranteeing properties
such as confidentiality of data, authentication of participants, etc. The security of these
protocols relies on the one hand on the security of cryptographic primitives, e.g. encryp-
tion and digital signatures, and on the other hand on the concurrency-related aspects of
the protocols themselves. History has shown that even if cryptography is supposed to
be perfect, such as in the classical Dolev-Yao model [16], the correct design of secu-
rity protocols is notoriously error-prone. See for instance [7] for an early survey on
attacks. These difficulties come mainly from two sources of unboundedness: a proto-
col may be executed several times (we get several protocol sessions) and the attacker
is allowed to build messages of unbounded size. Indeed, secrecy is known to be unde-
cidable when an unbounded number of sessions is allowed, even if the message size
is bounded [17]. However, when the number of sessions is bounded, and even without
assuming a bounded message size, the problem becomes co-NP-complete [25]. More-
over, special purpose verification tools (e.g. [3]) exist which are highly efficient when
the number of sessions is small.

In this paper we consider the secrecy property and we propose a protocol transforma-
tion which maps a protocol that is secure for a single session to a protocol that is secure
for an unbounded number of sessions. This provides an effective strategy to design
secure protocols: (i) design a protocol intended to be secure for one protocol session

� Work partly supported by ARA SSIA Formacrypt and CNRS/JST ICT “Cryptography and
logic: Computer-checked security proofs”.

I. Cervesato, H. Veith, and A. Voronkov (Eds.): LPAR 2008, LNCS 5330, pp. 128–142, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

From One Session to Many: Dynamic Tags for Security Protocols 129

(this can be efficiently verified with existing automated tools); (ii) apply our transfor-
mation and obtain a protocol which is secure for an unbounded number of sessions.

Our transformation. Suppose that Π is a protocol between k participants A1, . . . , Ak.
Our transformation adds to Π a preamble in which each participant sends a freshly
generated nonceNi together with his identity to all other participants. This allows each
participant to compute a dynamic, session dependent tag 〈A1, N1〉, . . . , 〈Ak, Nk〉 that
will be used to tag each encryption and signature in Π . Our transformation is surpris-
ingly simple and does not require any cryptographic protection of the preamble. Intu-
itively, the security relies on the fact that the participant Ai decides on a given tag for
a given session which is ensured to be fresh as it contains his own freshly generated
nonce Ni. The transformation is computationally light as it does not add any crypto-
graphic application; it may merely increase the size of messages to be encrypted or
signed. The transformation applies to a large class of protocols, which may use sym-
metric and asymmetric encryption, digital signature and hash function.

We may note that, en passant, we identify a class of tagged protocols for which
security is decidable for an unbounded number of sessions. This directly follows from
our main result as it stipulates that verifying security for a single protocol session is
sufficient to conclude security for an unbounded number of sessions.

Related Work. The kind of compiler we propose here has also been investigated in
the area of cryptographic design in computational models, especially for the design of
group key exchange protocols. For example, Katz and Yung [19] proposed a compiler
which transforms a key exchange protocol secure against a passive eavesdropper into an
authenticated protocol which is secure against an active attacker. Earlier work includes
compilers for 2-party protocols (e.g. [5]). In the symbolic model, recent works [12,4]
allow one to transform a protocol which is secure in a weak sense (roughly no at-
tacker [12] or just a passive one [4] and a single session) into a protocol secure in the
presence of an active attacker and for an unbounded number of sessions. All of these
works share however a common drawback: the proposed transformations make heavy
use of cryptography. This is mainly due to the fact that the security assumptions made
on the input protocol are rather weak. As already mentioned in [12], it is important,
from an efficiency perspective to lighten the use of cryptographic primitives. In this
work, we succeed in doing so at the price of requiring stronger security guarantees on
the input protocol. However, we argue that this is acceptable since efficient automatic
tools exist to decide this security criterion on the input protocols.

We can also compare our work with existing decidable protocol classes for an un-
bounded number of sessions. An early result is the PTIME complexity result by Dolev
et al. [15] for a restricted class, called ping-pong protocols. Other classes have been
proposed by Ramanujam and Suresh [23,24], and Lowe [21]. However, in both cases,
temporary secrets, composed keys and ciphertext forwarding are not allowed which
discards protocols, such as the Yahalom protocol [7] (see also Section 4.3).

Outline of the paper. In Section 2 we describe the term algebra which is used to model
protocol messages as well as the intruder capabilities to manipulate such terms. Then,
in Section 3, we define the protocol language we use to model protocols. In Section 4

130 M. Arapinis, S. Delaune, and S. Kremer

we formally describe our transformation and state our main transference result. Finally,
in Section 5, we prove our main result. Due to a lack of space the proofs are given in [1].

2 Messages and Intruder Capabilities

2.1 Messages

We use an abstract term algebra to model the messages of a protocol. For this we
fix several disjoint sets. We consider an infinite set of agents A = {ε, a, b . . .} with
the special agent ε standing for the attacker and an infinite set of agent variables
X = {xA, xB, . . .}. We need also to consider an infinite set of names N = {n,m . . .}
and an infinite set of variables Y = {y, z, . . .}. We consider the following signature
F = {enc/2, enca/2, sign/2, 〈 〉/2, h/1, priv/1, shk/2}. These function symbols model
cryptographic primitives. The symbol 〈 〉 represents pairing. The term enc(m, k) (resp.
enca(m, k)) represents the message m encrypted with the symmetric (resp. asymmet-
ric) key k whereas the term sign(m, k) represents the message m signed by the key k.
The function h models a hash function whereas priv(a) is used to model the private key
of an agent a, and shk(a, b) (= shk(b, a)) is used to model the long-term symmetric key
shared by agents a and b. For simplicity, we confuse the agent names with their public
key. Names are used to model atomic data such as nonces. The set of terms is defined
inductively by the following grammar:

t, t1, t2 . . . ::= y | n | x | a | priv(u1) | shk(u1, u2) | f(t1, t2) | h(t)

where u1, u2 ∈ A∪X , and f ∈ {〈 〉, enc, enca, sign}. We sometimes write 〈t1, . . . , tn〉
instead of writing 〈t1, 〈, . . . , 〈tn−1, tn〉 . . .〉〉. We say that a term is ground if it has
no variable. We consider the usual notations for manipulating terms. We write vars(t)
(resp. fresh(t), agent(t)) for the set of variables (resp. names, agents) occurring in t.
We write St(t) for the set of subterms of a term t and define the set of cryptographic sub-
terms of a term t as CryptSt(t) = {f(t1, . . . , tn) ∈ St(t) | f ∈ {enc, enca, sign, h}}.
Moreover we define the set of long-term keys of a term t as

lgKeys(t) = {priv(u) | u ∈ A ∪ X and u ∈ St(t)} ∪ {shk(u1, u2) ∈ St(t)}.
and we define Kε = {priv(ε)} ∪ {shk(a, ε) | a ∈ A}. Intuitively Kε represents the set
of long-term keys of the attacker. An atom is a long-term key, a name or a variable. We
define the set of plaintexts of a term t as the set of atoms that occur in plaintext, i.e

– plaintext(h(u)) = plaintext(f(u, v)) = plaintext(u) for f ∈ {enc, enca, sign},
– plaintext(〈u, v〉) = plaintext(u) ∪ plaintext(v), and
– plaintext(u) = {u} otherwise.

All these notions are extended to sets of terms and to other kinds of term contain-
ers as expected. We denote by #S the cardinality of a set S. Substitutions are written
σ = {x1 �→ t1, . . . , xn �→ tn} where its domain is dom(σ) = {x1, . . . , xn}. The sub-
stitution σ is ground if all the ti are ground. The application of a substitution σ to a
term t is written σ(t) or tσ. Two terms t1 and t2 are unifiable if t1σ = t2σ for some
substitution σ, that is called a unifier. We denote by mgu(t1, t2) the most general unifier
of t1 and t2.

From One Session to Many: Dynamic Tags for Security Protocols 131

T � u T � v

T � 〈u, v〉

T � u T � v

T � enc(u, v)

T � u T � v

T � enca(u, v)

T � u T � v

T � sign(u, v)

T � u

T � h(u)

T � 〈u, v〉

T � u

T � 〈u, v〉

T � v

T � enc(u, v) T � v

T � u

T � enca(u, v) T � priv(v)

T � u

T � sign(u, v)
(optional)

T � u

u ∈ T ∪A ∪Kε

T � u

Fig. 1. Intruder deduction system

Example 1. Let t = enc(〈n, a〉, shk(a, b)). We have that vars(t) = ∅, i.e. t is ground,
fresh(t) = {n}, agent(t) = {a, b}, lgKeys(t) = {priv(a), priv(b), shk(a, b)} and
plaintext(t) = {n, a}. The terms shk(a, b), a, n and priv(a) are atoms.

2.2 Intruder Capabilities

We model the intruder’s abilities to construct new messages by the deduction system
given in Figure 1. The intuitive meaning of these rules is that an intruder can compose
new messages by pairing, encrypting, signing and hashing previously known messages
provided he has the corresponding keys. Conversely, he can decompose messages by
projecting or decrypting provided he has the decryption keys. Our optional rule ex-
presses that an intruder can retrieve the whole message from its signature. Whether this
property holds depends on the actual signature scheme. Therefore we consider this rule
to be optional. Our results work in both cases.

Definition 1 (Deducible). We say that a term u is deducible from a set of terms T ,
denoted T (u, if there exists a tree such that its root is labeled by T (u and for every
node labeled by T (v having n sons labeled by T (v1, . . . , T (vn we have that
T�v1,...,T�vn

T�v is an instance of one of the inference rules given in Figure 1.

Example 2. The term 〈n, shk(a, b)〉 is deducible from {enc(n, shk(a, b)), shk(a, b)}.

3 Model for Security Protocols

In this section, we give a language for specifying protocols and define their execution in
the presence of an active attacker. Our model is similar to existing ones (see e.g. [25,10])
and mostly inspired by [11] except for the fact that we introduce parametrized roles
which allows us to instantiate new sessions.

3.1 Syntax

Our protocol model allows parties to exchange messages built from identities and ran-
domly generated nonces using public key and symmetric encryption, digital signature
and hashing. The individual behavior of each protocol participant is defined by a role.
A role describes a sequence of events, i.e. a sequence of receiving and sending.

132 M. Arapinis, S. Delaune, and S. Kremer

Definition 2 (Event, role and protocol). An event e is either a receive event, denoted
rcv(u), or a send event, denoted snd(u), where u is a term. A role is of the form
λx1. . . . λxk.νy1. . . . νyp. seq, where

– X = {x1, . . . , xk} is a set of agent variables, i.e. the parameters of the role corre-
sponding to the k participants of the protocol,

– Y = {y1, . . . , yp} is a set of variables: the nonces generated by the role,
– seq = e1; e2; . . . ; e� is a sequence of events such that (vars(seq) � {X}) ⊆ Y , i.e.

all agents variables are parameters.

Moreover, for all i, 1 ≤ i ≤ �, we have that ei = snd(u) implies

1. vars(u) ⊆ X ∪ Y ∪ {vars(v) | ej = rcv(v) and j < i}, and
2. vars(plaintext(u)) ⊆ X ∪ Y ∪ {vars(plaintext(v)) | ej = rcv(v) and j < i}.

The set of roles is denoted by Roles. The length of a role is the number of elements in
its sequence of events. A k-party protocol is a mapping Π : [k] → Roles, where [k] =
{1, 2, . . . , k}.

The two last conditions on variables only discard protocols that are not executable by re-
quiring that each variable which appears in a sent term (at a plaintext position) is either
one of the parameters, nonces, or is a variable which has been bound by a previous re-
ceive event (at a plaintext position). Condition 1 is rather standard whereas Condition 2
will be useful later on to trace data that occur in plaintext position.

Example 3. We illustrate our protocol syntax on the familiar Needham-Schroeder
public-key protocol. In our syntax this protocol is modeled as follows.

Π(1) = λxA.λxB .νy.
snd(enca(〈y, xA〉, xB));
rcv(enca(〈y, z〉, xA));
snd(enca(z, xB))

Π(2) = λxA.λxB .νy
′.

rcv(enca(〈z′, xA〉, xB));
snd(enca(〈z′, y′〉, xA));
rcv(enca(y′, xB))

The initiator, role Π(1) played by xA, sends to the responder, role Π(2) played
by xB , his identity together with a freshly genrated nonce y, encrypted with the re-
sponder’s public key. The reponder replies by copying the initiator’s nonce and adds a
fresh nonce y′, encrypted by the initiator’s public key. The initiator acknowledges by
forwarding the responder’s nonce encrypted by its public key.

3.2 Scenarios and Sessions

In our model, a session corresponds to the instantiation of one role. This means in par-
ticular that one “normal execution” of a k-party protocol requires k sessions, one per
role1. We may want to consider several sessions corresponding to different instantia-
tions of a same role. Since the adversary may block, redirect and send new messages,
all the sessions might be interleaved in many ways. Such an interleaving is captured by
the notion of a scenario.

1 In the literature, the word session is often used in an abusive way to represent an execution of
the protocol, i.e. one session per role, whereas we use it for the execution of a role.

From One Session to Many: Dynamic Tags for Security Protocols 133

Definition 3 (Scenario). A scenario for a protocol Π : [k] → Roles is a sequence
sc = (r1, sid1) · · · (rn, sidn) where ri is a role and sid i a session identifier such that
1 ≤ ri ≤ k, sid i ∈ N � {0}, the number of identical occurrences of a pair (r, sid) is
smaller than the length of the role r, and sid i = sid j implies ri = rj .

The condition on identical occurrences ensures that a role cannot execute more events
than it contains. The last condition ensures that a session number is not reused on other
roles. We say that (r, s) ∈ sc if (r, s) is an element of the sequence sc.

Given a scenario and an instantiation for the parameters, we define a symbolic trace,
that is a sequence of events that corresponds to the interleaving of the scenario, for
which the parameters have been instantiated, fresh nonces are generated and variables
are renamed to avoid name collisions between different sessions.

Definition 4 (Symbolic trace). Let Π be a k-party protocol with

Π(j) = λxj
1. . . . λx

j
k.νy

j
1. . . . νy

j
pj
.ej

1; . . . ; e
j
�j

for 1 ≤ j ≤ k.

Given a scenario sc = (r1, sid1) · · · (rn, sidn) and a function α : N → Ak, the sym-
bolic trace tr = e1; . . . ; en associated to sc and α is defined as follows. Let qi =
#{(rj , sid j) ∈ sc | j ≤ i, sid j = sid i}, i.e. the number of previous occurrences
in sc of the session sid i. We have qi ≤ �ri and ei = (eri

qi
)σri,sidi , where

– dom(σr,sid) = {xr
1, . . . , x

r
k} ∪ {yr

1, . . . , y
r
pr
} ∪ vars(Π(r)),

– σr,sid (y) = ny,sid if y ∈ {yr
1, . . . , y

r
pr
}, where ny,sid is a fresh name;

– σr,sid (xr
i) = ai when α(sid) = (a1, . . . , ak);

– σr,sid (z) = zsid otherwise, where zsid is a fresh variable.

A session sid is said to be honest w.r.t. α when α(sid) ∈ (A � {ε})k.

Intuitively, a session sid is honest if all of its participants, from the point of view of the
agent playing the session sid , are honest (i.e. �= ε). Since agent variables only occur as
parameters in a protocol (see Def. 2), a symbolic trace does not contain agent variables.

We define an operator K which associates to a symbolic trace tr the knowledge
gained by the adversary, i.e. the set of (possibly non ground) terms that are sent in
this symbolic trace. More precisely, we have that K(e1; · · · ; e�) =

⋃
1≤i≤� K(ei) where

K(rcv(u)) = ∅ and K(snd(u)) = {u}. This operator is useful in the following when we
associate a constraint system to a symbolic trace.

3.3 Constraint Systems

Constraint systems have been successfully used for verifying secrecy properties of finite
scenarios (see for instance [25,22,13]). We now recall the definition of constraint sys-
tems. In the next section we discuss how secrecy for an unbounded number of sessions
can be specified using (infinite) families of constraint systems.

Definition 5 (Constraint system). A constraint system C is either ⊥ or a finite se-
quence of expressions (Ti � ui)1≤i≤n, called constraints. Each Ti is a finite set of
terms, called the left-hand side of the constraint, and each ui is a term, called the right-
hand side of the constraint. Moreover, we assume that terms in C do not contain agent
variables and are such that:

134 M. Arapinis, S. Delaune, and S. Kremer

1. Ti ⊆ Ti+1 for every i such that 1 ≤ i < n;
2. if x ∈ vars(Ti) for some 1 ≤ i ≤ n then ∃j < i such that x ∈ vars(uj).

A solution of C is a ground substitution θ with dom(θ) = vars(C) such that for every
(T � u) ∈ C, we have that Tθ (uθ. The empty constraint system is always satisfiable
whereas ⊥ denotes an unsatisfiable system. We denote by maxlhs(C) (resp. minlhs(C))
the maximal (resp. minimal) left-hand side of C, i.e. Tn (resp. T1). We denote by rhs(C)
the set of its right-hand sides, i.e. {u1, . . . , un}.

In the remainder of the paper we often consider constraint systems as sets rather than
sequences of constraints, keeping the ordering induced by set inclusion of the left-hand
side of constraints implicit. The left-hand side of a constraint system usually represents
the messages sent on the network. Hence, the first condition states that the intruder
knowledge is always increasing. The second condition in Definition 5 says that each
variable occurs first in some right-hand side.

3.4 Secrecy

We now define the secrecy preservation problem for an unbounded number of sessions.
Intuitively, a termm is secret if for all possible instantiations and scenarios, the ground
term m′ obtained when all parameters and nonces have been instantiated during an
honest session remains secret. This definition leads us to consider an infinite family of
constraint systems.

Definition 6 (Secrecy). Let Π be a k-party protocol with

Π(j) = λxj
1 . . . λx

j
k.νy

j
1 . . . νy

j
pj
.seqj for 1 ≤ j ≤ k.

and let m ∈ St(seqr) for some role 1 ≤ r ≤ k. We say that Π preserves the secrecy
of m w.r.t. T0 (a finite set of ground atoms), if for any scenario sc, for any function α :
N → Ak and for any honest session sidh (i.e. α(sidh) ∈ (A � {ε})k) such that
(r, sidh) ∈ sc, the following constraint system is not satisfiable

{T0 ∪ K(tri) � u | tri = tri−1; rcv(u) and 1 ≤ i ≤ �} ∪ {T0 ∪ K(tr) � mσr,sidh
}

where tr is the symbolic trace of length � associated to (sc, α) and tri its prefix of
length i. The substitution σr,sidh

is defined as in Definition 4.

Example 4. Consider again the Needham-Schroeder protocol. Let Π(1) and Π(2) be
the two roles introduced in Example 3. This protocol is well-known to be insecure w.r.t.
m = y′ for any T0. Let sid1 and sid2 be two session identifiers such that sid1 �= sid2
and consider the scenario sc = (1, sid1) (2, sid2) (2, sid2), (1, sid1) (1, sid1) and the
function α such that α(sid1) = (a, ε) and α(sid2) = (a, b). The constraint system C
associated to T0, sc, α and mσ2,sid2 = ny′,sid2 (according to Definition 6) is given
below.

C :=

⎧⎪⎨⎪⎩
T1

def= T0, enca(〈ny,sid1 , a〉, ε) � enca(〈z′sid2
, a〉, b)

T2
def= T1, enca(〈z′sid2

, ny′,sid2〉, a) � enca(〈ny,sid1 , zsid1〉, a)
T2, enca(zsid1 , ε) � ny′,sid2

From One Session to Many: Dynamic Tags for Security Protocols 135

The substitution σ = {z′sid2
�→ ny,sid1 , zsid1 �→ ny′,sid2} is a solution of C. However,

this protocol preserves the secrecy of m (w.r.t. T0 = ∅ for instance) when consider-
ing one honest session for each role. This has been formally verified with the AVISPA
tool [3]. Our transference result (described in the next section) will ensure that the pro-
tocol Π̃ (obtained from Π by applying our transformation) is secure for an unbounded
number of sessions.

4 Transformation of Protocols

In Section 4.1 we define our transformation before we state our main result in Sec-
tion 4.2 whose proof is postponed to Section 5. Finally, we discuss the tags which are
used in our transformation in Section 4.3.

4.1 Our Transformation

Given an input protocol Π , our transformation will compute a new protocol Π̃ which
consists of two phases. During the first phase, the protocol participants try to agree
on some common, dynamically generated, session identifier τ . For this, each partici-
pant sends a freshly generated nonce Ni together with his identity Ai to all other par-
ticipants. (Note that if broadcast is not practical or if not all identities are known to
each participant, the message can be sent to some of the participants who forward the
message.) At the end of this preamble, each participant computes a session identifier:
τ = 〈〈A1, N1〉, . . . , 〈Ak, Nk〉〉. Note that an active attacker may interfere with this ini-
tialization phase and may intercept and replace some of the nonces. Hence, the protocol
participants do not necessarily agree on the same session identifier τ after this preamble.
In fact, each participant computes his own session identifier, say τj . During the second
phase, each participant j executes the original protocol in which the dynamically com-
puted identifier is used for tagging each application of a cryptographic primitive. In this
phase, when a participant opens an encryption, he will check that the tag is in accor-
dance with the nonces he received during the initialization phase. In particular he can
test the presence of his own nonce.

The transformation, using the informal Alice-Bob notation, is described below and
relies on the tagging operation that is formally defined in Definition 7.

Π =

⎧⎪⎨⎪⎩
Ai1 → Aj1 : m1

...
Ai�

→ Aj�
: m�

Π̃ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Phase 1 Phase 2

A1 → All : 〈A1, N1〉 Ai1 → Aj1 : [m1]τ
...

...
Ak → All : 〈Ak, Nk〉 Ai�

→ Aj�
: [m�]τ

where τ = 〈tag1, . . . , tagk〉 with tagi = 〈Ai, Ni〉
Note that, the Alice-Bob notation only represents what happens in a normal

execution, i.e. with no intervention of the attacker. Of course, in such a situation, the
participants agree on the same session identifier τ used in the second phase.

136 M. Arapinis, S. Delaune, and S. Kremer

Definition 7 (k-tag, k-tagging). A k-tag is a term 〈〈a1, v1〉, . . . , 〈ak, vk〉〉 where each
ai ∈ A and each vi is a term. Let u be a term and tag be a k-tag. The k-tagging of u
with tag, denoted [u]tag, is inductively defined as follows:

[〈u1, u2〉]tag = 〈[u1]tag, [u2]tag〉
[f(u1, u2)]tag = f(〈tag, [u1]tag〉, [u2]tag) for f ∈ {enc, enca, sign}
[h(u1)]tag = h(〈tag, [u1]tag〉)
[u]tag = u otherwise

This notion is extended to sequences of events as expected. We are now able to formally
define our transformation.

Definition 8 (Protocol transformation). Let Π be a k-party protocol such that

Π(j) = λxj
1 . . . λx

j
k.νy

j
1 . . . νy

j
pj
.seqj for 1 ≤ j ≤ k.

and the variables zj
i (1 ≤ i, j ≤ k) do not appear in Π (which can always be ensured

by renaming variables inΠ). The transformed protocol Π̃ is a k-party protocol defined
as follows:

Π̃(j) = λxj
1 . . . λx

j
k.νy

j
1 . . . νy

j
pj
.νzj

j .Π̃
init(j); [seqj]τj for 1 ≤ j ≤ k

where τj = 〈uj
1, . . . , u

j
k〉 with uj

i = 〈xj
i , z

j
i 〉, and

Π̃ init(j) = rcv(uj
1); . . . ; rcv(u

j
j−1); snd(uj

j); rcv(u
j
j+1); . . . ; rcv(u

j
k)

In the above definition, the protocol Π̃ init models the initialization phase and the vari-
ables zj

i correspond to the nonces that are exchanged during this phase. In particular for
the role j, the variable zj

j is a freshly generated nonce while the other variables zj
i , i �= j,

are expected to be bound to the other participant’s nonces in the receive events. Remem-
ber also that the variables xj

i are the role parameters which correspond to the agents.
The tag computed by the jth role in our transformation consists in the concatenation of
the k − 1 nonces received during the initialization phase together with the fresh nonce
generated by the role j itself, i.e. zj

j . We illustrate this transformation on the Needham-
Schroeder protocol introduced in Section 2.

Example 5. Consider the Needham-Schroeder protocol described in Example 3. Ap-
plying our transformation we obtain a 2-party protocol Π̃ . The role Π̃(2) is described
below. The role Π̃(1) can be obtained in a similar way.

Π̃(2) = λxAλxB .νy
′.νzB.rcv(〈xA, zA〉); snd(〈xB , zB〉);

rcv(enca(〈τ, 〈z′, xA〉〉, xB));
snd(enca(〈τ, 〈z′, y′〉〉, xA));
rcv(enca(〈τ, y′〉, xB))

where τ = 〈〈xA, zA〉, 〈xB , zB〉〉. Note that Lowe’s famous man-in-the-middle
attack [20] described in Example 4 does not exist anymore on Π̃ .

From One Session to Many: Dynamic Tags for Security Protocols 137

4.2 Main Theorem

We are now able to state our main transference result.

Theorem 1. Let Π be a k-party protocol, Π̃ be its corresponding transformed proto-
col, and T0 be a finite set of ground atoms. Let m ∈ St(Π(j)) for some 1 ≤ j ≤ k
and m̃ be its counterpart in Π̃(j). Let CK = lgKeys(Π) � (T0 ∪ Kε) and assume that
CK ∩ plaintext(Π) = ∅, i.e. critical keys do not appear in plaintext.

If Π preserves the secrecy of m w.r.t. T0 when considering one honest session of
each role, then Π̃ preserves the secrecy of m̃ w.r.t. T0.

Our result states that if the compiled protocol admits an attack that may involve several
honest and dishonest sessions, then there exists an attack which only requires one hon-
est session of each role (and no dishonest sessions). The situation is however slightly
more complicated than it may seem at first sight since there is an infinite number of
honest sessions, which one would need to verify separately. Actually we can avoid
this combinatorial explosion thanks to the following well-known result [9]: when ver-
ifying secrecy properties it is sufficient to consider one single honest agent (which is
allowed to “talk to herself”). Hence we can instantiate all the parameters with the same
agent a ∈ A � {ε}.

Our dynamic tagging is useful to avoid interaction between different sessions of the
same role in a protocol execution and allows us for instance to prevent man-in-the-
middle attacks (see Example 5). A more detailed discussion showing that static tags are
not sufficient follows in Section 4.3. As stated in Theorem 1 we need also to forbid long-
term secrets in plaintext position (even under an encryption). Note that this condition is
generally satisfied by protocols and considered as a prudent engineering practice.

4.3 Other Ways of Tagging

We have also considered an alternative, slightly different transformation that does not
include the identities in the tag, i.e., the tag is simply the sequence of nonces. In that
case we obtain a different result: if a protocol admits an attack then there exists an attack
which only requires one (not necessarily honest) session for each role. In this case, we
need to additionally check for attacks that involve a session engaged with the attacker.
On the example of the Needham-Schroeder protocol the man-in-the-middle attack is
not prevented by this weaker tagging scheme. However, the result requires one to also
consider one dishonest session for each role, hence including the attack scenario. In both
cases, it is important for the tags to be collaborative, i.e. all participants do contribute
by adding a fresh nonce.

Finally, different kinds of tags have also been considered in [2,6,23]. However these
tags are static and have a different aim. While our dynamic tagging scheme avoids
confusing messages from different sessions, these static tags avoid confusing different
messages inside a same session and do not prevent that a same message is reused in
two different sessions. Under some additional assumptions (e.g. no temporary secret,
no ciphertext forwarding), several decidability results [24,21] have been obtained by
showing that it is sufficient to consider one session per role. But those results can not

138 M. Arapinis, S. Delaune, and S. Kremer

deal with protocols such as the Yahalom protocol or protocols which rely on a tempo-
rary secret. In the framework we consider here, the question whether such static tags
would be sufficient to obtain decidability is still an open question (see [2]). In a simi-
lar way, static tags have also been used by Heather et al. [18] to avoid type confusion
attacks.

5 Proof of Our Main Result

The proof of our main result is closely tied to a particular procedure for solving con-
straint systems (see [8,13,10]). We therefore first give a brief description of this proce-
dure before outlining the proof itself.

5.1 Constraint Solving Procedure

The procedure we consider for constraint solving uses the simplification rules of Fig-
ure 2 to transform a given constraint system into another, simpler one. Such a sim-
plification step is denoted C �σ C′ where σ is a substitution that has been applied
to C during this step (when omitted it implicitly refers to the identity function). We also
writeC �n

σ C
′ for a sequence of n steps where σ is the composition of the substitutions

applied at each step.
Our constraint solving procedure is very similar to the ones presented in [8,13,10,14]:

soundness, completeness and termination can be proved in a similar way. This means
that the procedure always terminates after a finite number of steps resulting either in ⊥
when no solution exists or in a constraint system in solved form. A constraint sys-
tem is in solved form when the right-hand side of each constraint is a variable. In that
case the constraint system can be trivially satisfied. Moreover, we assume that rules
R2,R3,R4,R5, and R6 are applied in priority, i.e. before any instance of the rule R1. It
is easy to see that the procedure remains complete.

For the purpose of our proof, we decorate each term t by a pair (r, s) which denotes
the role number and the session identifier in which t originated. The resulting term t(r,s)

is called a labeled term. By convention, terms in T0 (the initial attacker knowledge)
are labeled with (0, 0). These decorations do not influence the procedure but provide
additional information that is useful in the proof. We could have added these decorations
before, but it would increase notational clutter and harm readability.
We extend all notations defined on terms to labeled terms, by providing a session iden-
tifier as an additional argument: e.g. vars(T, sid) =

⋃
t(r,sid)∈T vars(t).

5.2 Proof of Theorem 1

Theorem 1 is proved by contradiction. Assume that Π̃ admits an attack. This means
that there exists a scenario sc, a function α : N → Ak and an honest session sidh such
that the associated constraint system C (according to Definition 6) is satisfiable. We
will prove that the constraint system C′ associated to sc′ (the subsequence of sc where
we only consider some particular sessions, say S, chosen according to the tag τsidh

From One Session to Many: Dynamic Tags for Security Protocols 139

R1 : C ∧ T � u(r,sid) � C if T ∪ {x | T ′ � x ∈ C, T ′ � T} � u

R2 : C ∧ T � u(r,sid) �σ Cσ ∧ Tσ � uσ(r,sid)

if σ = mgu(t, u) where t ∈ St(T), t �= u, t, u are neither variables nor pairs

R3 : C ∧ T � u(r,sid) �σ Cσ ∧ Tσ � uσ(r,sid)

if σ = mgu(t1, t2), t1, t2 ∈ St(T), t1 �= t2, t1, t2 are neither variables nor pairs

R4 : C ∧ T � u(r,sid) �σ Cσ ∧ Tσ � uσ(r,sid)

if σ = mgu(t2, t3), enca(t1, t2) ∈ St(T), priv(t3) ∈ (plaintext(T) ∪ {priv(ε)}), t2 �= t3

R5 : C ∧ T � u(r,sid) � ⊥ if vars(T ∪ {u}) = ∅ and T �� u

R6 : C ∧ T � f(u1, . . . , un)(r,sid) � C ∧ {T � u
(r,sid)
i | 1 ≤ i ≤ n}

for f ∈ {〈〉, enc, enca, sign, h}

Fig. 2. Simplification rules

involved in the cryptographic subterms of the honest session sidh) and α, is also sat-
isfiable. Intuitively sid ∈ S if and only if the nonce generated during the initialization
phase of the session sid appears in tag τsidh

at the expected position, i.e. at the rth po-
sition where r is the role associated to the session identifier sid . Initially, we have that
C′ = C|S according to the following definition.

Definition 9 (Constraint system C|S). Let C be a constraint system and S a set of
session identifiers, we define the restriction of C to S as follows

C|S := {T |S � u(r,s) | s ∈ S and (T � u(r,s)) ∈ C},
where T |S = {v(r,s) ∈ T | s ∈ S ∪ {0}}.

We want to ensure that the simplification steps are stable by restriction to some well-
chosen set S of sessions (see Lemma 2). This property does not hold for general con-
straint systems but only for well-formed constraint systems. This notion relies on some
additional definitions.

Definition 10 (k-tagged). A term t is k-tagged if all its cryptographic subterms are
tagged with a k-tag , i.e. ∀u ∈ CryptSt(t), ∃tag, u1, . . . , un. u = f(〈tag, u1〉, . . . , un)
where f ∈ {enc, enca, sign, h}.

We denote by tags(t) the set of k-tags which occur in a tagging position in t. Given a
set T of k-tagged labeled terms, tags(T, sid) =

⋃
t(i,sid)∈T tags(t).

Definition 11 (Well-formed). A constraint system C = (Ti � ui)1≤i≤n is well-
formed w.r.t. a set T of k-tagged labeled terms if the following hold:

1. maxlhs(C) ⊆ T and rhs(C) ⊆ St(T);
2. the constraint system C satisfies the plaintext origination property, i.e.

if x ∈ vars(plaintext(Ti)) then ∃ j < i such that x ∈ vars(plaintext(uj));
3. for all sid we have that |tags(T, sid)| ≤ 1;
4. for all sid1, sid2 such that tags(T, sid1) �= tags(T, sid2), we have that

vars(T, sid1) ∩ vars(T, sid2) = ∅ ∧ fresh(T, sid1) ∩ fresh(T sid2) = ∅.

140 M. Arapinis, S. Delaune, and S. Kremer

Intuitively, Condition 1 states that the terms in C are k-tagged. Condition 2 ensures that
any variable appearing as a plaintext has been previously received in a plaintext position
(this is ensured thanks to the condition 2 of Definition 2). Condition 3 says that all terms
that originated in the same session have the same tag. Finally, Condition 4 ensures that
sessions that are currently tagged in different ways in C use different variables and dif-
ferent nonces. Note that terms issued from different sessions are not necessarily tagged
differently. First, we show that the simplification rules maintain well-formedness.

Lemma 1. Let T be a set of k-tagged labeled terms, and C be a constraint system
well-formed w.r.t. T . Let D be a constraint system, σ be a substitution and n be an
integer such that C �n

σ D. Then, we have that D is well-formed w.r.t. Tσ and, for any
session sid , we have that tags(Tσ, sid) = (tags(T, sid))σ.

Relying on Lemma 1 we show that there exists a derivation from C|S to a constraint
system in solved form, i.e. the existence of an attack involving only sessions in S.

Lemma 2. Let CK0 be a set of ground atoms such that CK0 ∩ Kε = ∅, T be a set of
k-tagged labeled terms andC be a constraint system well-formed w.r.t. T and such that

1. (lgKeys(C) � CK0) ⊆ minlhs(C) and those terms are labeled with (0, 0), and
2. CK0 ∩ plaintext(maxlhs(C)) = ∅.

Let D be a satisfiable constraint system, σ be a substitution and n be an integer
such that C �n

σ D. Let tag be a k-tag, Sid(tag) = {sid | tags(Tσ, sid) = tag}.
If (maxlhs(C) � u(r,sid)) ∈ C for some u, r and sid ∈ Sid(tag) then there exists
m ≤ n such that C|Sid(tag) �m

σ|Y D|Sid(tag), where Y =
⋃

sid∈Sid(tag) vars(T, sid).

This lemma is proved by induction. The proof is technical and the details can be
found in [1]. We consider the different rules and distinguish several cases depending
on whether the terms involved are labeled with a session identifier in S or not. For in-
stance, the rules R5 (resp. R6) are mimicked by using the same instance of the same rule
when the labeled term u(r,sid) (right-hand side of the constraint) is such that sid ∈ S.
Otherwise, we keep the constraint system unchanged. For the rule R2 (resp. R3) the key
point is that terms which are tagged differently cannot be unified and do not share any
variables nor fresh names (this is due to well-formedness). Thus, the unifier σ used in
this step involved two terms labeled by sid1 and sid2 that are either both in S or both
not in S. This is due to the fact that, after application of σ, these two terms will be
tagged in the same way and thus by definition of S, have the same status. If both are
in S, we can apply the same rule. If none of them is in S, we show that σ has no effect
and we keep the constraint system unchanged. The case of the rules R1 and R4 can also
be proved in a similar way.

In order to pursue the proof of Theorem 1, we apply Lemma 2 on the deriva-
tion C �n

σ D witnessing the existence of an attack on Π̃ and we consider S =
{sid | tags(Tσ, sid) = tags(Tσ, sidh)}, i.e. the sessions that are tagged in the same
way that sidh. We obtain that C|S can also reach a constraint system in solved form,
namelyD|S . Moreover, the satisfiability of C|S witnesses the fact that there is an attack
on Π̃ that only involves sessions in S. In order to conclude, it remains to show that:

From One Session to Many: Dynamic Tags for Security Protocols 141

1. S does not contain two distinct sessions that execute the same role. Intuitively, this
comes from the fact that sessions in S are tagged in the same way (after application
of σ) and this is not possible for two distinct sessions that execute the same role.
Indeed, the fresh nonce generated by different sessions of the same role ensures
that their tags are distinct.

2. S only contains honest sessions. First sidh is an honest session by definition of the
secrecy property. Second, since the names of the agents engaged in a role occur
in the tag and sessions in S are tagged in the same way as the session sidh, we
conclude that this property is also true for any sid ∈ S.

Thus, there is an attack on Π̃ that involves at most one honest session of each role. To
conclude, it is easy to see that this attack can also be mounted on the protocolΠ .

6 Future Work

Our current result applies to transfer secrecy properties. As future work we foresee to
extend the scope of our result to other security properties, e.g. authentication or more
challenging equivalence based properties. We also plan to extend the result to other
intruder theories. We foresee that such results require new proof methods which are not
based on the decision procedure as in this paper, but directly on the semantics. Another
challenging topic for future research is to obtain more fine-grained characterizations of
decidable classes of protocols for an unbounded number of sessions. The new insights
gained by our work seem to be a good starting point to extract the conditions needed to
reduce the security for an unbounded number of sessions to a finite number of sessions.

Acknowledgments. We would like to thank Yassine Lakhnech for discussions that ini-
tiated this work as well as Hubert Comon-Lundh, Véronique Cortier, Joshua Guttman
and Ralf Küsters for their helpful comments.

References

1. Arapinis, M., Delaune, S., Kremer, S.: From one session to many: Dynamic tags for security
protocols. Research Report LSV-08-20, ENS Cachan, France, 30 pages (June 2008)

2. Arapinis, M., Duflot, M.: Bounding messages for free in security protocols. In: Arvind, V.,
Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp. 376–387. Springer, Heidelberg (2007)

3. Armando, A., et al.: The Avispa tool for the automated validation of internet security proto-
cols and applications. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576,
pp. 281–285. Springer, Heidelberg (2005)

4. Beauquier, D., Gauche, F.: How to guarantee secrecy for cryptographic protocols. CoRR,
abs/cs/0703140 (2007)

5. Bellare, M., Canetti, R., Krawczyk, H.: A modular approach to the design and analysis of
authentication and key exchange protocols (extended abstract). In: Proc. 30th Annual ACM
Symposium on the Theory of Computing (STOC 1998), pp. 419–428. ACM Press, New York
(1998)

6. Blanchet, B., Podelski, A.: Verification of cryptographic protocols: Tagging enforces termi-
nation. In: Gordon, A.D. (ed.) FOSSACS 2003. LNCS, vol. 2620, pp. 136–152. Springer,
Heidelberg (2003)

142 M. Arapinis, S. Delaune, and S. Kremer

7. Clark, J., Jacob, J.: A survey of authentication protocol literature (1997)
8. Comon, H.: Résolution de contraintes et recherche d’attaques pour un nombre borné de ses-

sions, http://www.lsv.ens-cachan.fr/∼comon/CRYPTO/bounded.ps
9. Comon-Lundh, H., Cortier, V.: Security properties: two agents are sufficient. Science of

Computer Programming 50(1-3), 51–71 (2004)
10. Cortier, V., Delaitre, J., Delaune, S.: Safely composing security protocols. In: Arvind, V.,

Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp. 352–363. Springer, Heidelberg (2007)
11. Cortier, V., Delaune, S.: Safely composing security protocols. Research Report LSV-08-06,

ENS Cachan, France, 39 pages (March 2008)
12. Cortier, V., Warinschi, B., Zălinescu, E.: Synthesizing secure protocols. In: Biskup, J., López,

J. (eds.) ESORICS 2007. LNCS, vol. 4734, pp. 406–421. Springer, Heidelberg (2007)
13. Cortier, V., Zălinescu, E.: Deciding key cycles for security protocols. In: Hermann, M.,

Voronkov, A. (eds.) LPAR 2006. LNCS, vol. 4246, pp. 317–331. Springer, Heidelberg (2006)
14. Delaune, S.: Note: Constraint solving procedure,

http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/
CDD-fsttcs07-addendum.pdf

15. Dolev, D., Even, S., Karp, R.M.: On the security of ping-pong protocols. In: Proc. Advances
in Cryptology (CRYPTO 1982), pp. 177–186 (1982)

16. Dolev, D., Yao, A.C.: On the security of public key protocols. In: Proc. of the 22nd Sym-
posium on Foundations of Computer Science (FOCS 1981). IEEE Comp. Soc. Press, Los
Alamitos (1981)

17. Durgin, N., Lincoln, P., Mitchell, J., Scedrov, A.: Undecidability of bounded security proto-
cols. In: Proc. Workshop on Formal Methods and Security Protocols (1999)

18. Heather, J., Lowe, G., Schneider, S.: How to prevent type flaw attacks on security protocols.
In: Proc. 13th Computer Security Foundations Workshop (CSFW 2001), pp. 255–268. IEEE
Comp. Soc. Press, Los Alamitos (2000)

19. Katz, J., Yung, M.: Scalable protocols for authenticated group key exchange. In: Boneh, D.
(ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 110–125. Springer, Heidelberg (2003)

20. Lowe, G.: Breaking and fixing the Needham-Schroeder public-key protocol using FDR. In:
Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055, pp. 147–166. Springer, Hei-
delberg (1996)

21. Lowe, G.: Towards a completeness result for model checking of security protocols. Journal
of Computer Security 7(1) (1999)

22. Millen, J., Shmatikov, V.: Constraint solving for bounded-process cryptographic protocol
analysis. In: Proc. 8th ACM Conference on Computer and Communications Security (CCS
2001). ACM Press, New York (2001)

23. Ramanujam, R., Suresh, S.P.: Tagging makes secrecy decidable for unbounded nonces as
well. In: Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp. 363–
374. Springer, Heidelberg (2003)

24. Ramanujam, R., Suresh, S.P.: Decidability of context-explicit security protocols. Journal of
Computer Security 13(1), 135–165 (2005)

25. Rusinowitch, M., Turuani, M.: Protocol insecurity with finite number of sessions and com-
posed keys is NP-complete. Theoretical Computer Science 299(1-3), 451–475 (2003)

http://www.lsv.ens-cachan.fr/~comon/CRYPTO/bounded.ps
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/CDD-fsttcs07-addendum.pdf
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/CDD-fsttcs07-addendum.pdf

A Conditional Logical Framework�

Furio Honsell, Marina Lenisa, Luigi Liquori, and Ivan Scagnetto

INRIA, France & UNIUD, Italy
{honsell,lenisa,scagnett}@dimi.uniud.it,Luigi.Liquori@inria.fr

Abstract. The Conditional Logical Framework LFK is a variant of the Harper-
Honsell-Plotkin’s Edinburgh Logical Framemork LF. It features a generalized
form of λ-abstraction where β-reductions fire under the condition that the argu-
ment satisfies a logical predicate. The key idea is that the type system memorizes
under what conditions and where reductions have yet to fire. Different notions of
β-reductions corresponding to different predicates can be combined in LFK . The
framework LFK subsumes, by simple instantiation, LF (in fact, it is also a sub-
system of LF!), as well as a large class of new generalized conditional λ-calculi.
These are appropriate to deal smoothly with the side-conditions of both Hilbert
and Natural Deduction presentations of Modal Logics. We investigate and char-
acterize the metatheoretical properties of the calculus underpinning LFK , such as
subject reduction, confluence, strong normalization.

1 Introduction

The Edinburgh Logical Framework LF of [HHP93] was introduced both as a general
theory of logics and as a metalanguage for a generic proof development environment.
In this paper, we consider a variant of LF, called Conditional Logical Framework LFK ,
which allows to deal uniformly with logics featuring side-conditions on the application
of inference rules, such as Modal Logics. We study the language theory of LFK and
we provide proofs for subject reduction, confluence, and strong normalization. By way
of example, we illustrate how special instances of LFK allow for smooth encodings of
Modal Logics both in Hilbert and Natural Deduction style.

The motivation for introducing LFK is that the type system of LF is too coarse as
to the “side conditions” that it can enforce on the application of rules. Rules being
encoded as functions from proofs to proofs and rule application simply encoded as
lambda application, there are only roundabout ways to encode provisos, even as simple
as that appearing in a rule of proof. Recall that a rule of proof can be applied only to
premises which do not depend on any assumption, as opposed to a rule of derivation
which can be applied everywhere. Also rules which appear in many natural deduction
presentations of Modal and Program Logics are very problematic in standard LF. Many
such systems feature rules which can be applied only to premises which depend solely
on assumptions of a particular shape [CH84], or whose derivation has been carried out
using only certain sequences of rules. In general, Modal, Program, Linear or Relevance

� Supported by AEOLUS FP6-IST-FET Proactive.

I. Cervesato, H. Veith, and A. Voronkov (Eds.): LPAR 2008, LNCS 5330, pp. 143–157, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

144 F. Honsell et al.

Logics appear to be encodable in LF only encoding a very heavy machinery, which
completely rules out any natural Curry-Howard paradigm, see e.g. [AHMP98]. As we
will see for Modal Logics, LFK allows for much simpler encodings of such rules, which
open up promising generalizations of the proposition-as-types paradigm.

The idea underlying the Conditional Logical Framework LFK is inspired by the
Honsell-Lenisa-Liquori’s General Logical Framework GLF see [HLL07], where we
proposed a uniform methodology for extending LF, which allows to deal with pattern
matching and restricted λ-calculi. The key idea, there, is to separate two different no-
tions that are conflated in the original LF. As already mentioned, much of the rigidity
of LF arised from the fact that β-reduction can be applied always in full generality. One
would like to fire a β-reduction under certain conditions on typed terms, but the type
system is not rich enough to be able to express such restrictions smoothly. What we
proposed in [HLL07] is to use as type of an application, in the term application rule,
(O·Appl) below, not the type which is obtained by carrying out directly in the metalan-
guage the substitution of the argument in the type, but a new form of type which simply
records the information that such a reduction can be carried out. An application of the
Type Conversion Rule can then recover, if possible,
the usual effect of the application rule. This key idea
leads to the following object application rule:

Γ (M : Πx:A.B Γ (N : A
Γ (M N : (λx:A.B)N

Once this move has been made, we have a means of annotating in a type the infor-
mation that a reduction is waiting to be carried out in the term. If we take seriously this
move, such a type need not be necessarily definitionally equal to the reduced one as in
the case of LF. Without much hassle we have a principled and natural way of typing
calculi featuring generalized or restricted forms of β-reduction, which wait for some
condition to be satisfied before they can fire. Furthermore, such calculi can be used
for underpinning new powerful Logical Frameworks, where all the extra complexity
in terms can be naturally tamed using the expressive power of the new typing system.
Once this program is carried out in a sufficiently modular form, we have a full-fledged
Logical Framework.

More specifically, in LFK we consider a new form of λ and corresponding Π ab-
straction, i.e. λPx:A.M and ΠPx:A.M , where P is a predicate, which ranges over a
suitable set of predicates. The reduction (λPx:A.M)N fires only if the predicate
P holds on N , and in this case the redex pro-
gresses, as usual, to M [N/x]. Therefore the fi-
nal object application rule in LFK will be:

Γ (Σ M : ΠPx:A.B Γ (Σ N : A
Γ (Σ M N : (λPx:A.B)N

In this rule a type where a reduction is “stuck”, if the predicate P is not true on N ,
is assigned to an object application. However, when we view this object as a subterm of
another term, such reduction could become allowed in the future, after other reductions
are performed in the term, which provide substitutions for N . In LFK more predicates
can be combined. LFK subsumes standard LF, which is recovered by considering the
trivial predicate that is constantly true.

Historically, the idea of introducing stuck-reduction in objects and types, in the set-
ting of higher-order term rewriting systems with sophisticated pattern-matching ca-
pabilities, was first introduced in Cirstea-Kirchner-Liquori’s Rho-cube [CKL01b], in
order to design a hierarchy of type systems for the untyped Rewriting Calculus of
[CKL01a], and then it was generalized to a more general framework of Pure Type

A Conditional Logical Framework 145

Systems with Patterns [BCKL03]. This typing protocol was essential to preserve the
strong normalization of typable terms, as proved in [HLL07]. The idea underlying the
Conditional Logical Framework LFK is the same exploited in [HLL07] for the Gen-
eral Logical Framework GLF. However, there is an important difference between the
two frameworks in the definition of predicates. On one hand, predicates in [HLL07]
are used both to determine whether β-reduction fires and to compute a substitution,
while in the present paper they are used only to determine whether β-reduction fires.
On the other hand, in [HLL07] predicates are defined on terms, while here they are
defined on typed judgments. This adds extra complexity both in the definition of the
system and in the study of its properties, but it greatly simplifies the treatment of Modal
Logics and of other situations where conditions depending on types have to be ex-
pressed.

Apart from Modal Logics, we believe that our Conditional Logical Framework could
also be very helpful in modeling dynamic and reactive systems: for example bio-
inspired systems, where reactions of chemical processes take place only provided some
extra structural or temporal conditions; or process algebras, where often no assumptions
can be made about messages exchanged through the communication channels. Indeed,
it could be the case that a redex, depending on the result of a communication, can re-
main stuck until a “good” message arrives from a given channel, firing in that case an
appropriate reduction (this is a common situation in many protocols, where “bad” re-
quests are ignored and “good ones” are served). Such dynamical (run-time) behaviour
could be hardly captured by a rigid type discipline, where bad terms and hypotheses are
ruled out a priori, see e.g. [NPP08].

In this paper we develop all the metatheory of LFK . In particular, we prove subject
reduction, strong normalization, confluence; this latter under the sole assumption that
the various predicate reductions nicely combine, i.e. no reduction can prevent a redex,
which could fire, from firing after the reduction. Since β-reduction in LFK is defined only
on typed terms, in order to prove subject reduction and confluence, we need to devise a
new approach, alternative to the one in [HHP93]. Our approach is quite general, and in
particular it yields alternative proofs for the original LF.

In conclusion, the work on LFK carried out in this paper is valuable in three ways.
First, being LFK so general, the results in this paper potentially apply to a wide range
of Logical Frameworks, therefore many fundamental results are proved only once and
uniformly for all systems. Secondly, the LFK approach is useful in view of implement-
ing a “telescope” of systems, since it provides relatively simple sufficient conditions
to test whether a potential extension of the framework is safe. Thirdly, LFK can sug-
gest appropriate extensions of the proposition-as-types paradigm to a wider class of
logics.

Synopsis. In Section 2, we present the syntax of LFK , its type system, and the predicate
reduction. In Section 3, we present instantiations of LFK to known as well as to new
calculi, and we show how to encode smoothly Modal Logics. The LFK ’s metatheory is
carried out in Section 4. Conclusions and directions for future work appear in Section 5.
Proofs appear in a Web Appendix available at the author’s web pages.

146 F. Honsell et al.

2 The System

Syntax. In the following definition, we introduce the LFK pseudo-syntax for kinds, fam-
ilies, objects, signatures and contexts.

Definition 1 (LFK Pseudo-syntax)

Σ ∈ S Σ ::= ∅ | Σ, a:K | Σ, f :A Signatures

Γ,∆ ∈ C Γ ::= ∅ | Γ, x:A Contexts

K ∈ K K ::= Type | ΠPx:A.K | λPx:A.K | KM Kinds

A,B,C ∈ F A ::= a | ΠPx:A.B | λPx:A.B | AM Families

M,N,Q ∈ O M ::= f | x | λPx:A.M |M N Objects

where a, f are typed constants standing for fixed families and terms, respectively, and
P is a predicate ranging over a set of predicates, which will be specified below.

LFK is parametric over a set of predicates of a suitable shape. Such predicates are defined
on typing judgments, and will be discussed in the section introducing the type system.

Notational conventions and auxiliary definitions. Let “T ” range over any term in the
calculus (kind, family, object). The abstractions �Px:A.T (�∈ {λ,Π}) bind the vari-
able x in T . Domain Dom(Γ) and codomain CoDom(Γ) are defined as usual. Free
Fv(T) and bound Bv(T) variables are defined as usual. As usual, we suppose that, in
the context Γ, x:T , the variable x does not occur free in Γ and T . We work modulo
α-conversion and Barendregt’s hygiene condition.

Type System. LFK involves type judgments of the following shape:

Σ sig Σ is a valid signature

(Σ Γ Γ is a valid context in Σ

Γ (Σ K K is a kind in Γ and Σ

Γ (Σ A : K A has kindK in Γ and Σ

Γ (Σ M : A M has type A in Γ and Σ

Γ (Σ T �→β T
′(: T ′′) T reduces to T ′ in Γ,Σ (and T ′′)

Γ (Σ T =β T
′(: T ′′) T converts to T ′ in Γ,Σ (and T ′′)

The typing rules of LFK are presented in Figure 1. As remarked in the introduction,
rules (F·Appl) and (O·Appl) do not utilize metasubstitution as in standard LF, but rather
introduce an explicit type redex. Rules (F·Conv) and (O·Conv) allow to recover the usual
rules, if the reduction fires.

Typed Operational Semantics. The “type driven” operational semantics is presented
in Figure 2, where the most important rule is (O·Red), the remaining ones being the
contextual closure of β-reduction. For lack of space we omit similar rules for kinds and
constructors. According to rule (O·Red), reduction is allowed only if the argument in

A Conditional Logical Framework 147

Signature and Context rules

∅ sig
(S·Empty) Σ sig

�Σ ∅
(C·Empty)

Σ sig �Σ K a �∈ Dom(Σ)
Σ, a:K sig

(S·Kind)

Σ sig �Σ A : Type f �∈ Dom(Σ)
Σ, f :A sig

(S·Type)

�Σ Γ Γ �Σ A : Type x �∈ Dom(Γ)
�Σ Γ, x:A

(C·Type)

Kind rules

�Σ Γ
Γ �Σ Type

(K·Type)

Γ, x:A �Σ K
Γ �Σ ΠPx:A.K

(K·Pi)

Γ, x:A �Σ K
Γ �Σ λPx:A.K

(K·Abs)

Γ �Σ λPx:A.K Γ �Σ N : A
Γ �Σ (λPx:A.K) N

(K·Appl)

Family rules

�Σ Γ a:K ∈ Σ
Γ �Σ a : K

(F·Const)

Γ, x:A �Σ B : Type
Γ �Σ ΠPx:A.B : Type

(F·Pi)

Γ, x:A �Σ B : K
Γ �Σ λPx:A.B : ΠPx:A.K

(F·Abs)

Γ �Σ A : ΠPx:B.K Γ �Σ N : B
Γ �Σ A N : (λPx:B.K) N

(F·Appl)

Γ �Σ A : K′

Γ �Σ K Γ �Σ K =β K′

Γ �Σ A : K
(F·Conv)

Object rules

�Σ Γ x:A ∈ Γ
Γ �Σ x : A

(O·Var)

�Σ Γ f :A ∈ Σ
Γ �Σ f : A

(O·Const)

Γ, x:A �Σ M : B
Γ �Σ λPx:A.M : ΠPx:A.B

(O·Abs)

Γ �Σ M : ΠPx:A.B Γ �Σ N : A
Γ �Σ M N : (λPx:A.B) N

(O·Appl)

Γ �Σ M : A
Γ �Σ B : Type Γ �Σ A =β B : Type

Γ �Σ M : B
(O·Conv)

Fig. 1. LFK Type System

the context satisfies the predicate P . In this sense, reduction becomes “conditioned” by
P . In LFK , we can combine more predicate reductions, i.e., we can define and combine
several predicates guarding β-reduction, whose shape is as follows. Each predicate is
determined by a set A of families (types), and the intended meaning is that it holds on
a typed judgment Γ (Σ M : A and a set of variables X ⊆ Dom(Γ) if “Γ (Σ M : A
is derivable and all the free variables in M which are in X appear in subterms typable
with a type in A”. This intuition is formally stated in the next definition.

Definition 2 (Good families (types) and predicates)
Let A ⊆ F be a set of families. This induces a predicate PA (denoted by P , for sim-
plicitly), defined on typed judgments Γ (M : A and sets X such that X ⊆ Dom(Γ).
The truth table of P appears in Figure 3.
We call good a predicate P defined as above, and good types the set of types in A
inducing it.

The following lemma states formally the intended meaning of our predicates:

Lemma 1 (P Satisfiability)
Given a predicate P ∈ L induced by a set of families (types) A, P holds on a typed
judgment Γ (Σ M : B and a set of variables X ⊆ Dom(Γ), if Γ (Σ M : B is
derivable and all the free variables in M which are in X appear in subterms typable
with a type in A.

148 F. Honsell et al.

Γ �Σ (λPx:A.M)N : C
Γ �Σ M [N/x] : C P(Fv(N); Γ �Σ N : A)

Γ �Σ (λPx:A.M) N �→β M [N/x] : C
(O·Red)

Γ �Σ λPx:A.M : ΠPx:A.B
Γ �Σ λPx:A.N : ΠPx:A.B Γ, x:A �Σ M �→β N : B

Γ �Σ λPx:A.M �→β λPx:A.N : ΠPx:A.B
(O·λ·Red1)

Γ �Σ λPx:A.M : C
Γ �Σ λPx:B.M : C Γ �Σ A �→β B : Type

Γ �Σ λPx:A.M �→β λPx:B.M : C
(O·λ·Red2)

Γ �Σ M N : (λPx:A.B) N
Γ �Σ P N : (λPx:A.B)N Γ �Σ M �→β P : ΠPx:A.B

Γ �Σ M N �→β P N : (λPx:A.B) N
(O·Appl·Red1)

Γ �Σ M N : (λPx:A.B) N
Γ �Σ M P : (λPx:A.B) N Γ �Σ N �→β P : A

Γ �Σ M N �→β M P : (λPx:A.B)N
(O·Appl·Red2)

Γ �Σ M �→β N : A Γ �Σ A =β B : Type
Γ �Σ M �→β N : B

(O·Conv·Red)

Fig. 2. LFK Reduction (Object rules)

Γ �Σ M :A A ∈ A
P(X ;Γ �Σ M : A)

(O·Start1) Γ �Σ M :A
P(∅; Γ �Σ M : A)

(O·Start2)

P(X ; Γ, x:A �Σ M : B)
P(X \ {x}; Γ �Σ λPx:A.M : ΠPx:A.B)

(O·Abs)

P(X ; Γ �Σ M : ΠPx:A.B) P(X ;Γ �Σ N : A)
P(X ;Γ �Σ M N : (λPx:A.B) N)

(O·Appl)

P(X ;Γ �Σ M : A) Γ �Σ B : Type Γ �Σ A =β B : Type
P(X ;Γ �Σ M : B)

(O·Conv)

Fig. 3. P’s truth table

Hence, if we take X = Fv(M), then P(X ;Γ (Σ M : A) will take into account
exactly the free variables of M , according to the abovementioned intended meaning.
Moreover, it is worth noticing that, once the “good families” are chosen, predicates are
automatically defined as a consequence (look at the examples in the next section).

As far as definitional equality is concerned, due to lack of space, we give in Fig-
ure 4 only the rules on families, the ones for kinds and objects being similar. Notice
that typing, β-reduction, and equality are mutually defined. Moreover, β-reduction is
parametric over a (finite) set of good predicates, that is in LFK we can combine several
good predicates at once.

Finally, notice that our approach is different from static approaches, where “bad”
terms are ruled out a priori via rigid type disciplines. Namely, in our framework stuck

A Conditional Logical Framework 149

Γ �Σ A : K
Γ �Σ A =β A : K

(F·Refl·eq) Γ �Σ B =β A : K
Γ �Σ A =β B : K

(F·Sym·eq)

Γ �Σ A =β B : K Γ �Σ B =β C : K
Γ �Σ A =β C : K

(F·Trans·eq) Γ �Σ A �→β B : K
Γ �Σ A =β B : K

(F·Red·eq)

Fig. 4. LFK Definitional Equality (Family rules)

A1 : φ → (ψ → φ) K : �(φ → ψ)→ (�φ → �ψ)

A2 : (φ → (ψ → ξ))→ (φ → ψ)→ (φ → ξ) 4 : �φ → ��φ

A3 : (¬φ → ¬ψ)→ ((¬φ → ψ)→ φ) � : �φ → φ

MP :
φ φ → ψ

ψ NEC :
φ

�φ

Fig. 5. Hilbert style rules for Modal Logic S4

redexes can become enabled in the future. Consider, e.g. a redex (λP1x:A.M)N which
is stuck because a free variable y occurring into N does not satisfy the constraint im-
posed by predicate P1. Then, it could be the case that such redex is inserted into a con-
text where y will be instantiated by a term P , by means of an outer (non-stuck) redex,
like, e.g. in (λP2y:B.(λP1x:A.M)N)P . The resulting redex (λP1x:A[P/y].M [P/y])
N [P/y] could then fire since the constraint imposed by the predicate P1 is satisfied by
N [P/y].

3 Instantiating LFK to Modal Logics

The Conditional Logical Framework is quite expressive. By instantiating the set of pred-
icates, we can recover various known and new interesting Logical Frameworks. The
original LF can be recovered by considering the trivial predicate induced by the set A
of all families. More interesting instances of LFK are introduced below for providing
smooth encodings of Modal Logics.

Modal Logic in Hilbert style. The expressive power of the Conditional Logical Frame-
work allows to encode smoothly and uniformly both rules of proof as well as rules of
derivation. We recall that the former are rules which apply only to premises which do
not depend on any assumption, such as the rule of necessitation in Modal Logics, while
the latter apply to all premises, such as modus ponens. The idea is to use a conditioned
Π-abstraction in rules of proof and a standardΠ-abstraction in rules of derivation.

We shall not develop here the encodings of all the gamut of Modal Logics, in Hilbert
style, which is extensively treated in [AHMP98]. By way of example, we shall only
give the signature for classical S4 (see Figure 5) in Hilbert style (see Figure 6), which
features necessitation (rule NEC in Figure 5) as a rule of proof. For notational conven-
tion in Figure 6 and in the rest of this section, we will denote by on the expression
o→ o→ . . .→ o︸ ︷︷ ︸

n

. The target language of the encoding is the instance of LFK , obtained

by combining standard β-reduction with the β-reduction conditioned by the predicate

150 F. Honsell et al.

Closedo induced by the set A = {o}. Intuitively, Closedo(Fv(M);Γ (S4 M : True(φ))
holds iff “all free variables occurring in M belong to a subterm which can be typed in
the derivation with o”. This is precisely what is needed to encode it correctly, provided
o is the type of propositions. Indeed, if all the free variables of a proof term satisfy such
condition, it is clear, by inspection of the typing system’s object rules (see Figure 1),
that there cannot be subterms of type True(. . .) containing free variables. Intuitively,
this corresponds to the fact that the proof of the encoded modal formula does not depend
on any assumptions. The following Adequacy Theorem can be proved in the standard
way, using the properties of LFK in Section 4.

Theorem 1 (Adequacy of the encoding of S4 - Syntax)
Let ε be an encoding function (induced by the signature in Figure 6) mapping object
level formulæ of S4 into the corresponding canonical terms1 of LFK of type o. If φ is
a propositional modal formula with propositional free variables x1, . . . , xk, then the
following judgment Γ (S4 ε(φ) : o is derivable, where Γ ≡ x1:o, . . . , xk:o and each
xi is a free propositional variable in φ. Moreover, if we can derive in LFKΓ (S4 M : o
where Γ ≡ x1:o, . . . , xk:o andM is a canonical form, then there exists a propositional
modal formula φ with propositional free variables x1, . . . , xk such that M ≡ ε(φ).

The proof amounts to a straightforward induction on the structure of φ (first part) and on
the structure ofM (second part). After proving the adequacy of syntax, we can proceed
with the more interesting theorems about the adequacy of the truth judgments.

Theorem 2 (Adequacy of the encoding of S4 - Truth Judgment)
φ1, . . . , φh (S4 φ if and only if there exists a canonical form M such that

Γ, y1:True(ε(φ1)), . . . , yh:True(ε(φh)) (S4 M : True(ε(φ))

where Γ ≡ x1:o, . . . , xk:o for each xi free propositional variable in φ1, . . . , φh, φ.

Classical Modal Logic S4 and S5 in Prawitz Style. By varying the notion of good types
in the general format of LFK , one can immediately generate Logical Frameworks which
accommodate both classical Modal Logics S4 and S5 in Natural Deduction style intro-
duced by Prawitz. Figure 7 shows common and specific rules of S4 and S5.

We combine again standard β-reduction with a suitable notion of β-reduction condi-
tioned by a predicate Boxed. As in the previous case such predicate can be defined by
fixing a suitable notion of good type. In the case of S4 a type is good if it is of the shape
True(�A) for a suitableA or o. In the case of S5 a type is good if it is either of the shape
True(�A) or True(¬�A) or o. Again the intended meaning is that all occurrences of
free variables appear in subterms having a �-type or within a syntactic type o in the
case of S4, and a �-type or ¬�-type or within a syntactic type o in the case of S5.

Thus, e.g. for S4, the encoding of the Natural Deduction (�I) rule of Prawitz (see
Figure 7) can be rendered as Πφ:o. ΠBoxedx:True(φ). True(�φ), where o:Type repre-
sents formulæ, while True:o→ Type and �:o→ o.

1 In this case, as in [HHP93], in stating the adequacy theorem it is sufficient to consider long
λβη-normal forms without stuck redexes as canonical forms. Namely, non-reducible terms
with stuck redexes must contain free variables not belonging to subterms typable with o, and
clearly such terms do not correspond to any S4-formula.

A Conditional Logical Framework 151

Propositional Connectives and Judgments

o : Type ⊃: o3 ¬ : o2 � : o2 True :o→ Type

Propositional Axioms

A1 : Πφ:o. Πψ:o. True(φ ⊃ (ψ ⊃ φ))

A2 : Πφ:o. Πψ:o. Πξ:o. True((φ ⊃ (ψ ⊃ ξ)) ⊃ (φ ⊃ ψ) ⊃ (φ ⊃ ξ))

A3 : Πφ:o. Πψ:o. True((¬ψ ⊃ ¬φ) ⊃ ((¬ψ ⊃ φ) ⊃ ψ))

Modal Axioms

K : Πφ:o. Πψ:o. True(�(φ ⊃ ψ) ⊃ (�φ ⊃ �ψ))

4 : Πφ:o. True(�φ ⊃ ��φ)

� : Πφ:o. True(�φ ⊃ φ)

Rules

MP : Πφ:o. Πψ:o. True(φ)→ True(φ ⊃ ψ)→ True(ψ)

NEC : Πφ:o. ΠClosedox:True(φ). True(�φ)

Fig. 6. The signature ΣS4 for classic S4 Modal Logic in Hilbert style

Modal Logic common rules in Natural Deduction style

Γ � φ Γ � ψ
Γ � φ ∧ ψ

(∧I) Γ � φ ∧ ψ
Γ � φ

(∧E1) Γ � φ ∧ ψ
Γ � ψ

(∧E2)

Γ � φ
Γ � φ ∨ ψ

(∨I1) Γ � ψ
Γ � φ ∨ ψ

(∨I2) Γ � φ ∨ ψ Γ, φ � ξ Γ, ψ � ξ
Γ � ξ

(∨E)

Γ, φ � ψ
Γ � φ → ψ

(→ I) Γ � φ → ψ Γ � φ
ψ

(→ E)

Γ, φ � ¬φ
Γ � ¬φ

(¬I) Γ � ¬φ Γ � φ
Γ � ψ

(¬E) Γ,¬φ � φ
Γ � φ

(RAA)

Specific rules for Modal Logic S4 in Natural Deduction style

�Γ � φ
�Γ � �φ

(�I) Γ � �φ
Γ � φ

(�E)

Specific rules for Modal Logic S5 in Natural Deduction style

�Γ0,¬�Γ1 � φ
�Γ0,¬�Γ1 � �φ

(�I) Γ � �φ
Γ � φ

(�E)

Fig. 7. Modal Logic (common rules and S4,5 rules) in LFK

Quite a remarkable property of this signature is that it encodes a slightly more usable
version of Natural Deduction S4 than the one originally introduced by Prawitz. Our
formulation is precisely what is needed to achieve a normalization result in the logic
which could not be done in the original system of Prawitz. Being able to refer to boxed
subterms, rather than just boxed variables, is what makes the difference. Once again LFK

encodings improve presentations of logical systems!

152 F. Honsell et al.

Propositional Connectives and Judgments

o : Type and : o3 or : o3 ⊃: o3 ¬ : o2 � : o2 True : o → Type

Propositional Rules

AndI : Πφ:o. Πψ:o. True(φ)→ True(ψ)→ True(φ and ψ)

AndE1 : Πφ:o. Πψ:o. True(φ and ψ)→ True(φ)

AndE2 : Πφ:o. Πψ:o. True(φ and ψ)→ True(ψ)

OrI1 : Πφ:o. Πψ:o. True(φ)→ True(φ or ψ)

OrI2 : Πφ:o. Πψ:o. True(ψ)→ True(φ or ψ)

OrE : Πφ:o. Πψ:o. True(φ or ψ)→ (True(φ)→ True(ξ))→ (True(ψ)→ True(ξ))→ True(ξ)

ImpI : Πφ:o. Πψ:o. (True(φ)→ True(ψ))→ True(φ ⊃ ψ)

ImpE : Πφ:o. Πψ:o. True(φ ⊃ ψ)→ True(φ)→ True(ψ)

NegI : Πφ:o. (True(φ)→ True(¬φ))→ True(¬φ)

NegE : Πφ:o. Πψ:o. True(¬φ)→ True(φ)→ True(ψ)

RAA : Πφ:o. (True(¬φ)→ True(φ))→ True(φ)

Modal Rules

BoxI : Πφ:o. ΠBoxedx:True(φ). True(�φ)

BoxE : Πφ:o. Πx:True(�φ). True(φ)

Fig. 8. The signature ΣS for classic S4 or S5 Modal Logic in Natural Deduction style

4 Properties of LFK

In this section, we study relevant properties of LFK . We show that, without any ex-
tra assumption on the predicates, the type system satisfies a list of basic properties,
including the subderivation property, subject reduction and strong normaliza-
tion. The latter follows easily from the strong normalization result for LF, see
[HHP93]. Confluence and judgment decidability can be proved under the as-
sumption that the various predicate reductions nicely combine, in the sense that
no reduction can prevent a redex, which could fire, from firing after the re-
duction. The difficulty in proving subject reduction and confluence for LFK lies
in the fact that predicate β-reductions do not have corresponding untyped re-
ductions, while standard proofs of subject reduction and confluence for de-
pendent type systems are based on underlying untyped β-reductions (see e.g.
[HHP93]). We provide an original technique, based solely on typed β-reductions,
providing a fine analysis of the structure of terms which are β-equivalent to
Π-terms.

In the following, we will denote by Γ (Σ α any judgment defined in LFK . The proof
of the following theorem is straightforward.

Theorem 3 (Basic Properties)

Subderivation Property
1. Any derivation of Γ (Σ α has subderivations of Σ sig and (Σ Γ .
2. Any derivation of Σ, a:K sig has subderivations of Σ sig and (Σ K .
3. Any derivation of Σ, f :A sig has subderivations of Σ sig and (Σ A : Type.
4. Any derivation of (Σ Γ, x:A has subderivations of Σ sig and Γ (Σ A : Type.

A Conditional Logical Framework 153

5. Given a derivation of Γ (Σ α and any subterm occurring in the subject of the
judgment, there exists a derivation of a smaller length of a judgment having
that subterm as a subject.

6. If Γ (Σ A : K , then Γ (Σ K .
7. If Γ (Σ M : A, then Γ (Σ A : Type if there are no stuck redexes in A.

Derivability of Weakening and Permutation
If Γ and∆ are valid contexts, and every declaration occurring in Γ also occurs in
∆, then Γ (Σ α implies ∆ (Σ α.

Transitivity
If Γ, x:A,∆ (Σ α and Γ (Σ M : A, then Γ,∆[M/x] (Σ α[M/x].

Convertibility of types in domains
1. For all Γ, x:A,∆ (Σ α and Γ,∆ (Σ A =β A

′ : K , then Γ, x:A′, ∆ (Σ α.
2. If P(X ;Γ, x:A,∆ (Σ M : B) holds and Γ,∆ (Σ A =β A′ : K , then

P(X ;Γ, x:A′, ∆ (Σ M : B) holds.

Strong normalization of LFK follows from the one of LF, since there is a trivial map of
LFK in LF, which simply forgets about predicates. Thus, if there would be an infinite
reduction in LFK , this would be mapped into an infinite reduction in LF.

Theorem 4 (Strong Normalization)

1. If Γ (Σ K , then K ∈ SNK.
2. if Γ (Σ A : K , then A ∈ SNF .
3. if Γ (Σ M : A, then M ∈ SNO .

Where SN{K,F ,O} denotes the set of strongly normalizing terms of kinds, families, and
objects, respectively.

In the following we will denote by Γ (Σ A �β B : K the fact that either Γ (Σ A �→β

B : K or Γ (Σ B �→β A : K holds. Moreover, in the next results we will use a
measure of the complexity of the proofs of judgments which takes into account all the
rules applied in the derivation tree. More precisely, we have the following definition:

Definition 3 (Measure of a derivation)
Given a proof D of the judgment Γ (Σ α, we define the measure of D, denoted by #D,
as the number of all the rules applied in the derivation of D itself.

The following lemma is easily proved by induction on #D.

Lemma 2 (Reduction/Expansion)
For any derivation D : Γ (Σ A =β B : K , either A ≡ B or there exist C1, . . . , Cn

(n ≥ 0) such that:

1. There exist D1 : Γ (Σ A �β C1 : K and D2 : Γ (Σ C1 �β C2 : K . . . and
Dn : Γ (Σ Cn−1 �β Cn : K and Dn+1 : Γ (Σ Cn �β B : K and, for all
1 ≤ i ≤ n+ 1, we have #Di < #D.

2. For any 1 ≤ i ≤ n, we have that there exist D′
1 : Γ (Σ A =β Ci : K and

D′
2 : Γ (Σ Ci =β B : K and #D′

1,#D′
2 < #D.

154 F. Honsell et al.

This lemma allows us to recover the structure of a term which is β-equivalent to a
Π-term. The proof proceeds by induction on #D.

Lemma 3 (Key lemma)

1. If D : Γ (Σ ΠPx:A.K =β K ′ holds, then either ΠPx:A.K ≡ K ′ or there are
P1, ...,Pn, and D1, ..., Dn, andM1, ...,Mn (n ≥ 0), andKA, D1, D2 such that:
(a) K ′ ≡ ((λP1y1:D1. . . . ((λPnyn:Dn.(ΠPx:A′.K ′′))Mn) . . .)M1).
(b) D1 : Γ (Σ A =β ((λP1y1:D1. . . . ((λPnyn:Dn.A

′)Mn) . . .)M1) : KA.
(c) D2 : Γ, x:A (Σ K =β ((λP1y1:D1. . . . ((λPnyn:Dn.K

′′)Mn) . . .)M1).
(d) #D1,#D2 < #D.

2. If D : Γ (Σ ΠPx:A.B =β C : K holds, then either ΠPx:A.B ≡ C or there are
P1, ...,Pn, and D1, ..., Dn, and M1, ...,Mn (n ≥ 0), and KA, KB , and D1, D2
such that:
(a) C ≡ ((λP1y1:D1. . . . ((λPnyn:Dn.(ΠPx:A′.B′))Mn) . . .)M1).
(b) D1 : Γ (Σ A =β ((λP1y1:D1. . . . ((λPnyn:Dn.A

′)Mn) . . .)M1) : KA.
(c) D2 : Γ, x:A (Σ B =β ((λP1y1:D1. . . . ((λPnyn:Dn.B

′)Mn) . . .)M1) : KB .
(d) #D1,#D2 < #D.

Corollary 1 (Π’s injectivity)

1. If Γ (Σ ΠPx:A.K =β ΠPx:A′.K ′, then Γ (Σ A =β A′ : KA and Γ, x:A (Σ

K =β K
′.

2. If Γ (Σ ΠPx:A.B =β ΠPx:A′.B′ : K , then Γ (Σ A =β A
′ : K ′ and Γ, x:A (Σ

B =β B
′ : K ′′.

The proof of the following theorem uses the Key Lemma.

Theorem 5 (Unicity, Abstraction and Subject Reduction)

Unicity of Types and Kinds
1. If Γ (Σ A : K1 and Γ (Σ A : K2, then Γ (Σ K1 =β K2.
2. If Γ (Σ M : A1 and Γ (Σ M : A2, then Γ (Σ A1 =β A2 : K .

Abstraction Typing
1. If Γ (Σ λPx:A.T : ΠPx:A′.T ′, then Γ (Σ A =β A

′ : K .
2. If Γ (Σ λPx:A.T : ΠPx:A.T ′, then Γ, x:A (Σ T : T ′.

Subject Reduction
1. If Γ (Σ (λPx:A.K)N , then Γ (Σ K[N/x].
2. If Γ (Σ (λPx:A.B)N : K and P(Fv(N);Γ (Σ N : A) holds, then Γ (Σ

B[N/x] : K .
3. If Γ (Σ (λPx:A.M)N : C and P(Fv(N);Γ (Σ N : A) holds, then Γ (Σ

M [N/x] : C.

In the following, we consider notions of reduction for LFK that are well-behaved in the
following sense:

1. a redex which can fire, can still fire after any β-reduction in its argument (possibly
corresponding to a different predicate);

2. a redex which can fire, can still fire after application to its argument of a substitution
coming from another reduction.

A Conditional Logical Framework 155

Formally:

Definition 4 (Well behaved β-reduction)
Assume that the LFK β-reduction is determined by the set P of good predicates. Then
the β-reduction is well-behaved if, for all P ,P ′ ∈ P, the following two conditions are
satisfied:

1. If P(Fv(N);Γ (Σ N : A) holds and Γ (Σ N �→β N
′ : A, then P(Fv(N ′);Γ (Σ

N ′ : A) holds.
2. If P(Fv(N);Γ ′, y:A′;Γ (Σ N : A) and P ′(Fv(N ′);Γ ′ (Σ N ′ : A′) hold, then

P(Fv(N [N ′/y]);Γ ′, Γ [N ′/y] (Σ N [N ′/y] : A[N ′/y]) holds.

Definition 4 above allows one to combine several notions of predicate reduction, pro-
vided the latter are all well-behaved.

Since LFK is strongly normalizing, in order to prove confluence of the system, by
Newman’s Lemma, it is sufficient to show that LFK β-reduction is locally confluent, i.e.
(in the case of objects) if Γ (Σ M1 �→β M2 : C and Γ (Σ M1 �→β M3 : C, then
there exists M4 such that Γ (Σ M2 �→→β M4 : C and Γ (Σ M3 �→→β M4 : C. Under the
hypothesis that β-reduction is well-behaved, using Theorem 5, we can prove that the
reduction is locally confluent.

Theorem 6 (Local Confluence)
If β-reduction is well behaved, then it is locally confluent.

Finally, from Newman’s Lemma, using Theorems 4 and 6, we have:

Theorem 7 (Confluence)
Assume β-reduction is well behaved. Then the relation �→β is confluent, i.e.:

1. If Γ (Σ K1 �→→β K2 and Γ (Σ K1 �→→β K3, then there exists K4 such that Γ (Σ

K2 �→→β K4 and Γ (Σ K3 �→→β K4.
2. If Γ (Σ A1 �→→β A2 : K and Γ (Σ A1 �→→β A3 : K , then there exists A4 such that
Γ (Σ A2 �→→β A4 : K and Γ (Σ A3 �→→β A4 : K .

3. If Γ (Σ M1 �→→β M2 : C and Γ (Σ M1 �→→β M3 : C, then there exists M4 such that
Γ (Σ M2 �→→β M4 : C and Γ (Σ M3 �→→β M4 : C.

Judgements decidability show that LFK can be used as a framework for proof checking.

Theorem 8 (Judgements decidability of LFK)
If �→β is well-behaved, then it is decidable whether Γ (Σ α is derivable.

The standard pattern of the proof applies, provided we take care that reductions are
typed in computing the normal form of a type.

It is easy to show that, for all instances of LFK considered in Section 3, the corre-
sponding β-reductions are well behaved, thus judgement decidability holds.

5 Conclusions and Directions for Future Work

In this paper, we have investigated the language theory of the Conditional Logical
Framework LFK , which subsumes the Logical Framework LF of [HHP93], and gen-
erates new Logical Frameworks. These can feature a very broad spectrum of general-
ized typed (possibly by value) β-reductions, together with an expressive type system

156 F. Honsell et al.

which records when such reductions have not yet fired. The key ingredient in the typ-
ing system is a decomposition of the standard term-application rule. A very interesting
feature of our system is that it allows for dealing with values induced by the typing
system, i.e. values which are determined by the typing system, through the notion of
good predicates. We feel that our investigation of LFK is quite satisfactory: we have
proved major metatheoretical results, such as strong normalization, subject reduction
and confluence (this latter under a suitable assumption). For LFK we have achieved de-
cidability, which legitimates it as a metalanguage for proof checking and interactive
proof editing. We have shown how suitable instances of LFK provide smooth encodings
of Modal Logics, compared with the heavy machinery needed when we work directly
into LF, see e.g. [AHMP98]. Namely, the work of specifying the variable occurrence
side-conditions is factored out once and for all into the framework.

Here is a list of comments and directions for future work.

– Some future efforts should be devoted to the task of investigating the structure of
canonical forms including stuck redexes. Such analysis could clarify the rôle of
stuck β-reductions and stuck terms in the activity of encoding object logics into
LFK . Moreover, following the approach carried out in [WCPW02], we could benefit
from a presentation of LFK based upon a clear characterization of canonical forms
in order to avoid the notion of β-conversion and the related issues.

– We believe that our metalogical Framework has some considerable potential. In
particular, it could be useful for modeling dynamic situations, where the static ap-
proach of rigid typed disciplines is not sufficient. We plan to carry out more exper-
iments in the future, e.g. in the field of reactive systems, where the rôle of stuck
redexes could be very helpful in modeling the dynamics of variables instantiations.

– Our results should scale up to systems corresponding to the full Calculus of Con-
structions [CH88].

– Is there an interesting Curry-Howard isomorphism for LFK , and for other systems
blending rewriting facilities and higher order calculi?

– Investigate whether LFK could give sharp encodings of Relevance and Linear Log-
ics. Is the notion of good predicate involved in the definition of LFK useful in this
respect? Or do we need a different one?

– Compare with work on Deduction Modulo [DHK03].
– In [KKR90], Kirchner-Kirchner-Rusinowitch developed an Algebraic Logical

Framework for first-order constrained deduction. Deduction rules and constraints
are given for a first-order logic with equality. Enhancing LFK with constraints seems
to be a perfect fit for a new race of metalanguages for proof checking and auto-
matic theorem proving. Without going much into the details of our future research,
the abstraction-term could, indeed, have the shape λPx; C.M , where P records the
first-order formula, x is a vector of variables occurring in the formula and C are
constraints over x.

– Until now, the predicate states a condition that takes as input the argument and
its type. It would be interesting to extend the framework with another predicate,
say Q, applied to the body of the function. The abstraction would then have the

A Conditional Logical Framework 157

form λPx:A.MQ. This extension would put conditions on the function output, so
leading naturally to a framework for defining Program Logics à la Hoare-Floyd.

– Implement new proof assistants based on dependent type systems, like e.g. Coq,
based on LFK .

References

[AHMP98] Avron, A., Honsell, F., Miculan, M., Paravano, C.: Encoding Modal Logics in
Logical Frameworks. Studia Logica 60(1), 161–208 (1998)

[BCKL03] Barthe, G., Cirstea, H., Kirchner, C., Liquori, L.: Pure Pattern Type Systems. In:
Proc. of POPL, pp. 250–261. ACM Press, New York (2003)

[CH84] Cresswell, M., Hughes, G.: A companion to Modal Logic. Methuen (1984)
[CH88] Coquand, T., Huet, G.: The Calculus of Constructions. Information and Computa-

tion 76(2/3), 95–120 (1988)
[CKL01a] Cirstea, H., Kirchner, C., Liquori, L.: Matching Power. In: Middeldorp, A. (ed.)

RTA 2001. LNCS, vol. 2051, pp. 77–92. Springer, Heidelberg (2001)
[CKL01b] Cirstea, H., Kirchner, C., Liquori, L.: The Rho Cube. In: Honsell, F., Miculan,

M. (eds.) FOSSACS 2001. LNCS, vol. 2030, pp. 166–180. Springer, Heidelberg
(2001)

[DHK03] Dowek, G., Hardin, T., Kirchner, C.: Theorem Proving Modulo. Journal of Auto-
mated Reasoning 31(1), 33–72 (2003)

[HHP93] Harper, R., Honsell, F., Plotkin, G.: A Framework for Defining Logics. Journal of
the ACM 40(1), 143–184 (1993); Preliminary version in proc. of LICS 1987

[HLL07] Honsell, F., Lenisa, M., Liquori, L.: A Framework for Defining Logical Frame-
works. Computation, Meaning and Logic. Articles dedicated to Gordon Plotkin,
Electr. Notes Theor. Comput. Sci. 172, 399–436 (2007)

[KKR90] Kirchner, C., Kirchner, H., Rusinowitch, M.: Deduction with Symbolic Con-
straints. Technical Report 1358, INRIA, Unité de recherche de Lorraine,
Vandoeuvre-lès-Nancy, FRANCE (1990)

[NPP08] Nanevski, A., Pfenning, F., Pientka, B.: Contextual Model Type Theory. ACM
Transactions on Computational Logic 9(3) (2008)

[WCPW02] Watkins, K., Cervesato, I., Pfenning, F., Walker, D.: A Concurrent Logical Frame-
work I: Judgments and Properties. Technical Report CMU-CS-02-101, Depart-
ment of Computer Science, Carnegie Mellon University (2002)

Nominal Renaming Sets

Murdoch J. Gabbay1 and Martin Hofmann2

1 http://www.gabbay.org.uk
2 http://www.tcs.informatik.uni-muenchen.de/∼mhofmann/

Abstract. Nominal techniques are based on the idea of sets with a finitely-
supported atoms-permutation action.

We consider the idea of nominal renaming sets, which are sets with a finitely-
supported atoms-renaming action; renamings can identify atoms, permutations
cannot. We show that nominal renaming sets exhibit many of the useful qualities
found in (permutative) nominal sets; an elementary sets-based presentation,
inductive datatypes of syntax up to binding, cartesian closure, and being a topos.
Unlike is the case for nominal sets, the notion of names-abstraction coincides
with functional abstraction. Thus we obtain a concrete presentation of sheaves
on the category of finite sets in the form of a category of sets with structure.

Keywords: Nominal renaming sets, nominal sets, abstract syntax with binding.

1 Introduction

The motivation of this work is to provide semantic foundations for formal theories of
syntax with variable binding. Several such theories have been proposed in the literature
[5,17,16,14,19] and used in concrete applications with varying success [15,4,25,18,21].
All but the most elementary approaches require some semantical or proof-theoretical
justification asserting their soundness and also explaining the meaning of the judge-
ments made. Functor categories (categories of (pre)sheaves) are a popular method
[7,16,3,8] for providing such foundations. However, proofs involving presheaves are
notoriously complicated and require a thorough working knowledge so as to be able
to reduce clutter by elision of trivial steps. In some situations [21,25], a sets-based
semantics is available in the form of nominal sets [14] which considerably simplifies
metatheoretic reasoning. A domains version of nominal sets [20] has also become an
important tool in denotational semantics of languages with dynamic allocation [1]

This paper provides a sets-based foundation for another class of systems for higher-
order syntax including in particular the theory of contexts [17] which could hitherto
only be modelled with functor categories. This will allow us to considerably simplify
the cumbersome functor-theoretic proof of soundness of that theory [3]. In this way, we
expect that our sets-based presentation of the semantics will then allow to justify further
extensions which would until now be too complicated to work through.

Note that we do not propose yet another approach to higher-order syntax. Rather,
we introduce a simplified presentation, up to categorical equivalence, of an existing
semantic model. We now summarise the contributions of the paper in more detail.

I. Cervesato, H. Veith, and A. Voronkov (Eds.): LPAR 2008, LNCS 5330, pp. 158–173, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.gabbay.org.uk
http://www.tcs.informatik.uni-muenchen.de/~mhofmann/

Nominal Renaming Sets 159

Write I for the category of finite sets and injections between them, write F for the
category of finite sets and all (not necessarily injective) functions between them, and
write Set for the category of sets1 and functions between them.

Previous work presented nominal sets [13]. These can be presented as the category
of pullback-preserving presheaves in SetI. Simultaneously, Fiore et al [7] and Hofmann
[16] proposed to use SetF for higher-order abstract syntax. Both can be used as mathe-
matical models for inductive specification and reasoning on syntax with binding.

In SetF for a presheaf F , the presheaf F+ given by F+(X) = F (X ∪ {x}) for
x �∈ X is isomorphic to the exponential A ⇒ F . In the category of nominal sets the
corresponding presheaf is isomorphic to A � F , with � being the right adjoint to a
tensor product different from cartesian product (it is mentioned in Theorem 34 and is
written [A]X). In either case the presheaf A is given by A(S) = S. Thus, SetF seems
better-suited for modelling higher-order abstract syntax, which uses typings like

lam : (var → tm) → tm (1)

for variable binding constructs (in this case: ‘lambda’). This arises when using an ex-
isting theorem prover or type theory (for example Coq) to model higher-order abstract
syntax [6,17]. In particular, in [3] the presheaf category from [16] was used to establish
soundness of the theory of contexts from [17].

FreshML [23] and the deep embeddings of the nominal datatypes package [25] pro-
vide a syntactic primitive corresponding to the right adjoint � mentioned above. They
use typings like

lam : (var � tm) → tm. (2)

Precomposing with the canonical map (A→B) −→ (A�B), one could justify the
typing in (1), but lam would not be injective. For the typing

lam : (tm → tm) → tm (3)

used in the Twelf system [19], another presheaf topos (Ŝ in [16]) is adequate. The con-
structions of this paper cannot be applied to this directly, but see the Conclusions.

The nominal approach benefits from a sets-based presentation. Denotations of types
are sets with structure — whence the name ‘nominal sets’ — rather than functors.

In this paper we offer a sets-based presentation of the full subcategory of SetF of
functors preserving pullbacks of monos. We present it as a category of sets with a not-
necessarily-injective renaming action. The pullback requirement implies that F (X∩Y)
is isomorphic to ‘the intersection of’ F (X) and F (Y), in line with the intuition ‘objects
with free variables from X’ for F (X). This rules out artefacts present in SetF like
F (X) = if |X | > 1 then {�} else ∅, which never arise as denotations of types in
higher-order abstract syntax.

In [16] it was argued that the internal logic of SetF qua topos might be unsuited to
reasoning with higher-order abstract syntax since equality of atoms (names, variables) is
not decidable in it. It was proposed in loc. cit. to import the logic of the Schanuel topos

1 It is convenient, but not necessary, to take this to be the category of ‘ordinary’ ZF sets (not
mentioning atoms). Since we are working at the meta-level, this is in fact not important and
any sufficiently rich collection of collections of elements will do.

160 M.J. Gabbay and M. Hofmann

using a pullback of triposes. Our presentation of this pullback construction amounts to
interpreting predicates as equivariant subsets; subsets of a renaming set stable under
injective renamings. Staton and Fiore [8] define a category of substitution sets equiva-
lent to a sheaf subcategory of SetF. Their category is not defined concretely in terms of
ordinary sets but as a theory within the Schanuel topos. It does not make SetF easier to
work with (and Staton and Fiore never introduced it for that purpose).

We also characterise the function space of nominal renaming sets as a set of func-
tions, rather than a Kripke exponential transported along the equivalence, and we iden-
tify the tripos structure needed to reason about renaming sets in a robust way, and in
particular, to justify the theory of contexts.

Some notation: This paper uses three different kinds of arrow. For the reader’s con-
venience we survey their definitions; this is all standard.

− If X and Y are sets then X → Y is the set of functions fromX to Y .

− If X and Y are nominal renaming sets then X −→ Y is the set of arrows from X
to Y in the category Ren (Definition 5). These are maps in |X| → |Y| with empty
support (Lemma 25).

−X ⇒ Y is the exponential (Definition 20 and Theorem 26). These are maps in
|X| → |Y| with finite support (Lemma 21).

2 Nominal Renaming Sets

Definition 1. Fix a countably infinite set of atoms A. We assume that atoms are disjoint
from numbers 0, 1, 2, . . ., truth-values ⊥,", and other standard mathematical entities.
A can be viewed as a set of urelemente [2,13,10]; we view them as a model of names
or variable symbols.
a, b, c, . . . will range over atoms. We follow a permutative convention that simulta-

neously introduced metavariables for atoms range permutatively; for example a and b
range over any two distinct atoms.2

Definition 2. Let Fin be the set of functions σ ∈ A → A such that there exists some
finite S ⊆ A such that for all b ∈ A \ S it is the case that σ(b) = b.

σ, τ will range over elements of Fin . We call these (finitely supported) renamings.

Definition 3. Write [a1 �→y1, . . . , ak �→yk] for the function that maps ai to yi for 1 ≤
i ≤ k and maps all other b (that is, atoms b not in the set {a1, . . . , ak}) to themselves.
Note that every function in Fin can be written in this fashion.

In particular, write [a �→b] for the function which ‘maps a to b’:

[a �→b](a) = b [a �→b](b) = b and [a �→b](c) = c

We write ◦ for functional composition. For example [a �→b] ◦ [b �→a] = [a �→b] (and
[a �→b] ◦ [b �→a] �= [a �→b, b �→a]). Write id for the identity renaming. id(a) = a always.

2 Note that we are working in the usual naı̈ve set-theoretic metalanguage; atoms form a set. At
that level, atoms have a decidable equality.

Nominal Renaming Sets 161

Fin with ◦ and id is a monoid. That is, id ◦ σ = σ ◦ id = σ and σ ◦ (σ′ ◦ σ′′) =
(σ ◦ σ′) ◦ σ′′. If S ⊆ A and σ ∈ Fin , write σ|S for the partial function equal to σ on S
and undefined elsewhere.

Definition 4. A nominal renaming set X is a pair (|X|, ·) of an underlying set |X| and
a finitely-supported renaming action ·.

A finitely-supported renaming action · is a map from Fin × |X| to |X| such that:

− id · x = x always.

− σ′ · (σ · x) = (σ′ ◦ σ) · x always.

− For every x ∈ |X| there is a finite S ⊆ A such that σ|S = σ′|S implies σ ·x = σ′ ·x.
We say that every x ∈ |X| has finite support.

Henceforth X and Y range over nominal renaming sets. x and x′ range over elements
of |X| and y and y′ range over elements of |Y| unless stated otherwise.

Definition 5. Nominal renaming sets form a category Ren. Objects are nominal re-
naming sets. An arrow F : X −→ Y is a function F ∈ |X| → |Y| such that
σ · F (x) = F (σ · x) always. F,G,H will range over arrows.

For example: A with action σ · a = σ(a) is a nominal renaming set. We have
supp(a) = {a}. We will write this renaming set by A, too. In general, we will dis-
tinguish notationally between a renaming set X and its underlying set |X|.

Call X trivial when σ ·x = x for all x ∈ |X| and σ ∈ Fin (so supp(x) = ∅ always).
Write B = ({",⊥}, ·) for a two-element trivial nominal renaming set. We conclude
with one more useful definition:

Definition 6. Let X×Y have underlying set |X| × |Y| (that is, z ∈ |X×Y| is a pair
(x, y) where x ∈ X and y ∈ Y) and pointwise renaming action (that is, σ · (x, y) =
(σ · x, σ · y)). Call this the product of X and Y.

2.1 Support of Nominal Renaming Sets

Definition 7. Say S ⊆ A supports x when for all σ, σ′, if σ|S = σ′|S then σ ·x = σ′ ·x.

Lemma 8 and Theorem 9 echo [13, Proposition 3.4]. The proofs for nominal renaming
set are simpler:

Lemma 8. If S, S′ ⊆ A support x then so does S ∩ S′.

Proof. Suppose σ|S∩S′ = σ′|S∩S′ . Define σ′′ ∈ Fin by: σ′′(a) = σ(a) if a ∈ S, and
σ′′(a) = σ′(a) if a ∈ A \ S. σ′′|S = σ|S so σ′′ · x = σ · x. It is not hard to verify that
σ′′|S′ = σ′|S′ so σ′′ · x = σ′ · x. The result follows.

Theorem 9. − x has a unique finite least supporting set supp(x); the support of x.

− σ|supp(x) = σ′|supp(x) implies σ · x = σ′ · x.

Proof. There is a finite S ⊆ A supporting x. The first part follows by Lemma 8. The
second part is then by Definition 7.

162 M.J. Gabbay and M. Hofmann

If the reader thinks of fv (free variables of) when they see supp, they will not go far
wrong [13, Example 6.11]. However, support is an abstract notion valid for any element
of any nominal renaming set.

As is standard in nominal techniques we write a#x for a �∈ supp(x), and read it as
‘a is fresh for x’. We may write a#x, y for ‘a#x and a#y’, and so on.

Definition 10. Let PFin have underlying set the collection of finite sets of atoms, with
pointwise renaming action.

That is, if S ⊆ A is finite then σ · S = {σ(a) | a ∈ S}. It is not hard to prove that
supp(S) = S always.

Lemma 11. 1. supp(σ · x) ⊆ σ · supp(x).
2. If σ is injective on supp(x) then supp(σ · x) = σ · supp(x).

Proof. For the first part, we will show that σ · supp(x) supports σ · x. The claim then
follows. To see the former suppose that σ1|σ·supp(x) = σ2|σ·supp(x). We then have
(σ1◦σ)|supp(x) = (σ2◦σ)|supp(x), hence σ1 ·σ ·x = (σ1◦σ)·x = (σ2◦σ)·x = σ2 ·σ ·x.

For the second part, it suffices to prove the reverse inclusion. Suppose σ|supp(x) =
[a1 �→y1, . . . , an �→yn]|supp(x). By assumption if yi = yj then i = j for 1 ≤ i, j ≤ n.
So we can form σ′ = [y1 �→a1, . . . , yn �→an]. By Theorem 9 σ′ · σ · x = x. By part 1 of
this result supp(σ′ ·σ ·x) ⊆ σ′ · supp(σ ·x). Thus, σ · supp(x) = σ · supp(σ′ ·σ ·x) ⊆
σ · σ′ · supp(σ · x).

Now, if a ∈ supp(σ · x) then by part 1 of this result we can write a = σ(b) for
some b ∈ supp(x). So, σ · σ′ · a = σ · σ′ · σ · b = σ · b = a. We have thus shown
σ · σ′ · supp(σ · x) ⊆ supp(σ · x) and hence the claim.

We remark that the extra assumption of injectivity for the second part is not redundant.
Corollary 12 helps to calculate support:

Corollary 12. If a ∈ supp(x) then [a �→b] ·x �= x. Taking the contrapositive, if [a �→b] ·
x = x then a#x. Note that a �= b is an implicit assumption.

Proof. By part 1 of Lemma 11 a �∈ supp([a �→b] · x). We assumed a ∈ supp(x), the
result follows.

Lemma 13. S ⊆ A supports x if and only if σ|S = id |S implies σ · x = x for all σ.

Proof. The left-to-right implication is direct from the definition of ‘supports’. For the
right-to-left implication we will show supp(x) ⊆ S. To that end, pick a ∈ supp(x)
and b �∈ supp(x). From Corollary 12 we then obtain σ · x �= x for σ = [a �→b]. Hence
σ|S �= id |S , hence a ∈ S.

We need Lemma 14 for Lemma 33 and Corollary 29:

Lemma 14. Suppose c#x and c#x′.
Then [a �→c] · x = [a′ �→c] · x′ if and only if a′#x and x′ = [a �→a′] · x.

Nominal Renaming Sets 163

Proof. Suppose a′#x and x′ = [a �→a′] · x. We reason as follows:

[a′ �→c] · x′ = [a′ �→c] · [a �→a′] · x x′ = [a �→a′] · x
= [a �→c] · x Theorem 9, a′#x

Conversely if [a �→c] · x = [a′ �→c] · x′ then [c �→a′] · [a �→c] · x = [c �→a′] · [a′ �→c] · x′.
By Theorem 9 [c �→a′] · [a′ �→c] · x′ = x′ and [c �→a′] · [a �→c] · x = [a �→a′] · x. It follows
that x′ = [a �→a′] · x. By similar reasoning x = [a′ �→a] · x′, and by part 1 of Lemma 11
it follows that a′#x.

3 The Exponential

Definition 15. Let |X ⇒ Y| be the set of functions f ∈ |X| → |Y| such that there
exists some finite Sf ⊆ A (for each f , we fix one such Sf) such that for all σ ∈ Fin
and x ∈ |X| if σ|Sf

= id |Sf
then

σ · f(x) = f(σ · x). (4)

|X ⇒ Y| serves as an underlying set in Definition 20. First, we consider some examples
and prove properties of |X ⇒ Y|.

Remark 16. − π1 ∈ |X × Y| → |X| mapping (x, y) to x is in |(X × Y) ⇒ X|.
− The map = ∈ |A × A| → |B| mapping (x, y) to " if x = y and to ⊥ if x �= y, is
not an element of |(A × A) ⇒ B|. Unpacking definitions, the reason is that there is
no finite S ⊆ A such that if σ|S = id |S then for all x, y ∈ A, x = y if and only if
σ(x) = σ(y).
− suppX ∈ |X| → |PFin | mapping x to supp(x), may or may not be an element of
|X ⇒ PFin |. If X = A then supp(a) = {a} and σ · supp(a) = σ · {a} = {σ(a)} =
supp(σ(a)). Therefore suppA ∈ |A ⇒ PFin |. Similarly for suppPFin .
On the other hand if we let X have |X| = |PFin | (finite sets of atoms) and the renaming
action such that σ · S = {σ(a) | a ∈ S} if σ|S is injective, and σ · S = ∅ otherwise,
then suppX �∈ |X ⇒ PFin |.

Remark 17. Intuitively, a map that does not compare atoms in its argument for inequal-
ity will be in the underlying set of the exponential. A map that compares atoms for
inequality, will not. See the Conclusions for further discussion.

Elements of |X ⇒ Y| are determined by their ‘asymptotic behaviour’:

Lemma 18. Suppose f ∈ |X ⇒ Y| and g ∈ |X ⇒ Y|. Suppose also S ⊆ A is finite
and assume that for all x ∈ |X| if supp(x) ∩ S = ∅ then f(x) = g(x). Then f = g.

Proof. Choose any x ∈ |X|. There are two cases:

− If supp(x) ∩ S = ∅ then by assumption f(x) = g(x).

164 M.J. Gabbay and M. Hofmann

− If supp(x) ∩ S �= ∅ then let C = {c1, . . . , ck} be a fresh choice of atoms (so
C ∩ (S ∪ Sf ∪ Sg ∪ supp(x)) = ∅). Let τ = [a1 �→c1, . . . , ak �→ck] and τT =
[c1 �→a1, . . . , ck �→ak]. By Lemma 11 supp(τ · x) ∩ S = ∅. We reason as follows:

f(x) = f(τT · τ · x) Theorem 9

= τT · f(τ · x) (4), Definition 15

= τT · g(τ · x) Assumption

= g(τT · τ · x) (4), Definition 15

= g(x) Theorem 9

An element f of the function space can be reconstructed from ‘asymptotic’ behaviour:

Lemma 19. Suppose f is a partial function from |X| to |Y|. Suppose S ⊆ A is finite
and: supp(x) ∩ S = ∅ implies f(x) is defined, and σ|S = id |S implies σ · f(x) =
f(σ · x), where both are defined.

Then there is a unique f ′ ∈ |X ⇒ Y| extending f (so f ′(x) = f(x) if f(x) is
defined).

Proof. First, we define f ′. Consider x ∈ |X|, write supp(x) = {a1, . . . , ak} = S. Let
C = {c1, . . . , ck} be fresh atoms (so C ∩ supp(x) = ∅ = C ∩ S). Define

τ = [a1 �→c1, . . . , ak �→ck] τT = [c1 �→a1, . . . , ck �→ak] and f ′(x) = τT · f(τ · x).

We first show the choice of fresh C does not matter. Suppose C′ = {c′1, . . . , c′k} is
also fresh (so C′ ∩ supp(x) = ∅ = C′ ∩ S). We put τ ′ = [a1 �→c′1, . . . , ak �→c′k] and
τ ′

T = [c′1 �→a1, . . . , c
′
k �→ak]. We must show τT · f(τ · x) = τ ′

T · f(τ ′ · x). We assume
the special case that

C ∩ C′ = ∅ and C′ ∩ supp(f(τ · x)) = ∅. (5)

The general case follows by two applications of the special case for an ‘even fresher’ set
of fresh atomsC′′. We write µ = [c1 �→c′1, . . . , ck �→c′k] and µT = [c′1 �→c1, . . . , c

′
k �→ck].

By Theorem 9 and C ∩ supp(x) = ∅ we have τ ′ · x = µ · τ · x. Also, by C′ ∩ S = ∅
we have f(τ ′ · x) = µ · f(τ · x). Therefore τ ′T · f(τ ′ · x) = τT · µT · µ · f(τ · x).

We recall (5); by Theorem 9 andC′∩supp(f(τ ·x)) = ∅, µT ·µ ·f(τ ·x) = f(τ ·x).
The claim that the choice of fresh C does not matter, follows.

To see that f ′ indeed extends f we suppose that x ∈ |X| and that f(x) is defined.
Then supp(τ · x) ∩ S = ∅ so f(τ · x) is also defined. By assumption on f we have
τT · f(τ · x) = f(τT · τ · x) = f(x) where the last equality uses Theorem 9.

To see that f ′ ∈ |X ⇒ Y| we put Sf ′ = S. Suppose that σ|S = id |S . We have
seen that the choice of the fresh C does not matter so that we can assume that τ and τT

commute with σ. We then have σ ·f ′(x) = σ ·τT ·f(τ ·x) = τT ·σ ·f(τ ·x) = f ′(σ ·x).
Uniqueness of f ′ is now by Lemma 18.

Definition 20. Let X ⇒ Y have underlying set |X ⇒ Y| with renaming action

if σ · x = x then (σ · f)x = σ · f(x). (6)

By Lemma 19 this uniquely determines the renaming action for all x ∈ |X|.

Nominal Renaming Sets 165

Lemma 21. X ⇒ Y is a nominal renaming set.

Proof. f ∈ |X ⇒ Y| is supported by the set Sf from Definition 15, for suppose that
σ|Sf

= id |Sf
. By Lemma 13 it suffices to show σ · f = f . Now put S = Sf ∪ {b |

σ(b) �= b}. This is a finite set so by Lemma 18 it suffices to show (σ · f)(x) = f(x)
for all x such that supp(x) ∩ S = ∅. Fix such an x. By Theorem 9 σ · x = x so by (6)
we know (σ · f)(x) = σ · f(x). supp(x) ∩ Sf = ∅ by assumption so by (4) we know
σ · f(x) = f(σ · x). Then f(σ · x) = f(x) since σ · x = x. The result follows.

Theorem 22. σ · f(x) = (σ · f)(σ · x), for f ∈ |X ⇒ Y|.

Proof. Write supp(f) ∪ supp(σ · f) ∪ {a | σ(a) �= a} = {a1, . . . , ak}. Choose fresh
C = {c1, . . . , ck}, so C ∩ (supp(x) ∪ Sf ∪ Sσ·f) = ∅ and σ|C = id |C . Define

τ = [a1 �→c1, . . . , ak �→ck] τT = [c1 �→a1, . . . , ck �→ak]
π = [a1 �→c1, c1 �→a1, . . . , ak �→ck, ck �→ak] σ′ = π ◦ σ ◦ π.

Then: (τT ◦ σ′ ◦ τ)|supp(x) = σ|supp(x) C ∩ supp(x) = ∅ (7)

τT ◦ σ′ ◦ σ = σ ◦ τT σ(c)=c for all c∈C (8)

(τT ◦ σ′)|Sσ·f = id |Sσ·f By construction (9)

So: (σ · f)(σ · x) = (σ · f)((τT ◦ σ′) · τ · x) Th. 9 and (7)

= (τT ◦ σ′) · (σ · f)(τ · x) (9) and (4), Def. 15

= (τT ◦ σ′) · σ · f(τ · x) (9) and (6), Def. 20

= (σ ◦ τT) · f(τ · x) (8)

= σ · f(τT · τ · x) (4), Def. 15

= σ · f(x) Theorem 9

Corollary 23. If f∈|X⇒Y| then the following are equivalent:

− For all x ∈ |X| and σ ∈ Fin , if σ|S = id |S then σ·f(x) = f(σ·x).
− supp(f) ⊆ S.

Proof. If σ|supp(f) = id |supp(f) then by Theorems 22 and 9, σ ·f(x) = (σ ·f)(σ ·x) =
f(σ · x).

Now suppose S ⊆ A and for all x ∈ |X| if σ|S = id |S then σ ·f(x) = f(σ ·x). If we
show that S supports f then by the ‘unique least’ property of support (Theorem 9) we
are done. Suppose σ|S = id |S and take any x ∈ |X| such that σ|supp(x) = id |supp(x):

f(x) Theorem 9= f(σ · x) Assumption
= σ · f(x) Theorem 22= (σ · f)(σ · x) Theorem 9= (σ · f)(x).

By Lemma 18 σ · f = f as required.

Compare Corollary 24 with [13, Example 4.9, (24)]:

166 M.J. Gabbay and M. Hofmann

Corollary 24. supp(f(x)) ⊆ supp(f) ∪ supp(x) always, for f ∈ |X ⇒ Y|.

Proof. Using Theorems 22 and 9.

Lemma 25. Arrows F : X −→ Y are exactly f ∈ |X ⇒ Y| such that supp(f) = ∅.

Proof. F : X −→ Y is a map in |X| → |Y|. By definition σ · F (x) = F (σ · x). By
Corollary 23, supp(F) = ∅. Conversely if f ∈ |X ⇒ Y| and supp(f) = ∅ then f is a
map in |X| → |Y|. Also, σ · f(x) = f(σ · x) by Theorems 22 and 9.

Theorem 26. - ⇒ - is an exponential in Ren.

Proof. We show that currying and uncurrying are arrows between (X×Y) −→ Z and
X −→ (Y ⇒ Z). The βη equations are then inherited.
Currying: Take F ∈ (X × Y) −→ Z. For x ∈ X we put Fx = (λy∈|Y|.F (x, y)).
We show that λx∈|X|.Fx ∈ X −→ (Y ⇒ Z):

If x ∈ |X | we put SFx = supp(x). If σ|supp(x) = id |supp(x) then σ · Fx(y) =
F (σ · x, σ · y) = F (x, σ · y) = Fx(σ · y), so Fx ∈ |X ⇒ Y|.

To see that x �→ Fx is an arrow pick arbitrary σ. We need to show σ · Fx = Fσ·x.
Appealing to Lemma 18 we choose y ∈ Y with σ · y = y and supp(y) disjoint from
supp(x) = supp(Fx). We then have (σ · Fx)(y) = σ · F (x, σ · y) = σ · F (x, y) =
F (σ · x, σ · y) = F (σ · x, y) = Fσ·x(y).
Uncurrying: Take G ∈ X −→ (Y⇒Z). We show that λ(x, y)∈|X × Y|.G(x)(y) ∈
(X × Y) −→ Z:

It suffices to show that σ · G(x)(y) = G(σ · x)(σ · y). Now σ · G(x)(y) = (σ ·
G(x))(σ · y) by Theorem 22 and σ ·G(x) = G(σ · x) by Definition 5.

Lemma 27 does for Ren what [13, Lemma 6.3] does for the category of nominal sets.
We can develop similar inductive and recursive principles for syntax-with-binding as
are exhibited using the Gabbay-Pitts N-quantifier in Theorem 6.5 in [13].

Lemma 27. There is a bijection between F : (A × X) −→ Y such that a#F (a, x)
always, andG ∈ (A ⇒ X) −→ Y.

Proof. We define mappings as follows:

− F maps to λf ∈ |A ⇒ X|. Na. F (a, fa) where (as is standard [13]) Na. F (a, fa)
is equal to F (a, fa) for any a such that a#f .

−G maps to λ(a, x) ∈ |A × X|.G(λy∈A.[a �→y] · x).
We can prove this is well-defined, and the result follows by calculations.

4 The Atoms-Exponential A ⇒ X

Lemma 28. If f ∈ |A ⇒ X| then f = λy∈A.[a �→y] · x for some x ∈ |X| and a#f .

Proof. By Definition 20 f ∈ |A ⇒ X| when f ∈ |A| → |X| and there is a finite
S ⊆ A such that σ ∈ Fin , a ∈ A, and σ|S = id |S imply σ · f(a) = f(σ(a)). Choose
a �∈ S and y ∈ A. Then f(y) = f([a �→y] · a) = [a �→y] · f(a), and we take x = f(a).

Nominal Renaming Sets 167

Two functions on atoms are equal if they agree for one fresh atom; compare this for ex-
ample with axiom (Extτν) in the theory of contexts [17, Figure 4] and the extensionality
principle for concretion of the Gabbay-Pitts model of atoms-abstraction in nominal sets
[13, Proposition 5.5, equation (48)]:

Corollary 29. Suppose f, f ′ ∈ |A ⇒ X| and suppose c#f and c#f ′. Then f(c) =
f ′(c) if and only if f = f ′.

Proof. The right-to-left implication is easy. Assume f(c) = f ′(c). By Lemma 28
• there exist x ∈ |X| and a ∈ A such that a#f and f = λy∈A.[a �→y] · x, and
• there exist x′ ∈ |X| and a′ ∈ A such that a′#f ′ and f ′ = λy∈A.[a′ �→y] · x′.

We assumed that f(c) = f ′(c) so [a �→c] · x = [a′ �→c] · x′. By Lemma 14 a′#x and
x′ = [a �→a′] · x. Choose any y ∈ A. We reason as follows:

f ′(y) = [a′ �→y] · x′ f ′ = λy∈A.[a′ �→y] · x′

= [a′ �→y] · [a �→a′] · x. x′ = [a �→a′] · x
= [a �→y] · x Theorem 9, a′#x

Lemma 30. Suppose f ∈ |A ⇒ Y|. Then a#f if and only if a#f(b), for any b#f (by
our permutative convention, b �= a).

Equivalently, supp(f) = supp(f(b)) \ {b} for any b#f .

Proof. We prove two implications. Choose any b#f .
If a#f then by Corollary 24 a#fb and we are done. Suppose that a#f(b). We have

assumed b#f so by Corollary 12 it suffices to prove [a �→b] ·f = f . Choose a fresh c (so
c#f and c#[a �→b] · f). By Corollary 29 it suffices to check that f(c) = ([a �→b] · f)(c).
Note that by Corollary 24 a#f(c). We reason as follows:

fc = [a �→b] · f(c) Theorem 9 and Corollary 24

= ([a �→b] · f)([a �→b] · c) Theorem 22

= ([a �→b] · f)c [a �→b] · c = c

Lemma 31. λy∈A.[a �→y] ·x is supported by supp(x); thus λy∈A.[a �→y]·x∈|A⇒X|.

Proof. The corollary is immediate given the first part, by Definition 15. We now prove
that supp(x) supports λy∈A.[a �→y] ·x. By Corollary 23 it suffices to show σ|supp(x) =
id |supp(x) implies σ · λy∈A.[a �→y] · x = λy∈A.[a �→y] · x.

So suppose σ|supp(x) = id |supp(x). By Corollary 29 it suffices to check

(σ · λy∈A.[a �→y] · x)c = (λy∈A.[a �→y] · x)c

for fresh c. Choose c such that c#σ · λy∈A.[a �→y] · x, c#λy∈A.[a �→y] · x, σ(c) = c
and c#x. By Theorem 22 since σ(c) = c we have that

σ · ((λy∈A.[a �→y] · x)c) = (σ · λy∈A.[a �→y] · x)c.

So it suffices to check that σ · [a �→c] ·x = [a �→c] ·x. We assumed σ|supp(x) = id |supp(x)
and c#x. It follows that (σ ◦ [a �→c])|supp(x) = [a �→c]|supp(x). By Theorem 9 the result
follows.

168 M.J. Gabbay and M. Hofmann

Corollary 32. supp(λy∈A.[a �→y] · x) = supp(x) \ {a}.

Proof. Choose some fresh b (so b#λy∈A.[a �→y] · x and b#x). By Lemma 31
λy∈A.[a �→y] · x ∈ |A ⇒ X|. Therefore by Lemma 30 we know that

supp(λy∈A.[a �→y] · x) = supp([a �→b] · x) \ {b}.

Since b#x by part 2 of Lemma 11 supp([a �→b] · x) = (supp(x) \ {a}) ∪ {b}.

Lemma 33. Suppose x, x′ ∈ |X|, and a, a′ ∈ A. Then λy∈A.[a �→y] · x =
λy∈A.[a′ �→y] · x′ if and only if a′#x and x′ = [a �→a′] · x.

Proof. Using Lemma 14 and Corollary 29.

The reader may recognise these results from the theory of the Gabbay-Pitts model
of atoms-abstraction in nominal sets [13, Definition 5.4]. A nominal renaming set is
also a nominal permutation set (by ‘forgetting’ the action for non-bijective σ); using
Corollary 12 it can be proved [11, Theorem 4.8] that the notions of support coincide.
In the spirit of [13, (35)] we can write3 [a]x = {(a, x)} ∪ {(c, [a �→c] · x) | c#x} and
|[A]X| = {[a]x | a ∈ A, x ∈ |X|}. The proof of Theorem 34 is now routine [11, The-
orem 5.7]:

Theorem 34. |A ⇒ X| is in bijective correspondence with |[A]X|. Inverse mappings
are given by:

− α maps z ∈ |[A]X| to λy∈A.[a �→y] · x, for (a, x)∈z.

− β maps f ∈ |A ⇒ X| to [a](fa), for a#f .

5 Presheaf and Topos Structure of Ren

For convenience, take the finite sets in I and F from the Introduction to be finite S ⊆ A.
We could now go on and exhibit the subobject classifier in Ren, thus establishing

that Ren is a topos, and hence is a model of higher-order logic. This is not hard to do: a
subobject classifier is the renaming set Ω with underlying set |Ω| those U ⊆ Fin such
that:

− If σ ∈ U then µ ◦ σ ∈ U for all µ ∈ Fin .

− There exists finite S ⊆ A such that µ ∈ U and σ|S = id |S imply µ ◦ σ ∈ U .

The renaming action is given by σ · U = {µ | µ ◦ σ ∈ U}. The proof that this makes
Ren into a topos is by standard calculations. We also remark that Ren is a Grothendieck
topos for a topology on the opposite of the category of finite sets and functions and thus
a full subcategory of the functor category SetF. The required topology has for basic
covers of an object X nonempty families of monos fi : X −→ Xi. The interested
reader is referred to [24] where a proof of a similar result is worked out.

We now characterise Ren as a category of presheaves.

3 The use of [a �→c] instead of the swapping (a c) (swapping defined in [13, (3)]) is immaterial
because c#x and so the actions coincide by Theorem 9.

Nominal Renaming Sets 169

Definition 35. Let PBM be the category of presheaves in SetF that preserve pullbacks
of pairs of monos, and natural transformations between them.

If f ∈ X → Y is a function let its image img(f) be {f(x) | x ∈ X} ⊆ Y . Note that
monos in F and Ren are injections, and that a pullback of a pair of monos is given by
set intersection with the natural inclusion maps. Write ‘ι : S ⊆ S′’ for “S ⊆ S′ and we
write ι for the subset inclusion arrow in F”.

Definition 36. Fix F ∈ PBM. Let (S, x) range over pairs where S ⊆ A is finite and
x ∈ F (S). Write ∼ for the least equivalence relation such that ι : S ⊆ S′ implies
(S, x) ∼ (S′, F (ι)(x)).

Lemma 37. If ι1 : S1 ⊆ S′ and ι2 : S2 ⊆ S′ and (S1, x1) ∼ (S′, x′) ∼ (S2, x2)
then there exists some x ∈ F (S1 ∩ S2) such that (S1 ∩ S2, x) ∼ (S′, x′). Thus, each
∼-equivalence class has a unique least representative (S, x), ‘least’ in the sense that if
(S, x) ∼ (S′, x′) then ι : S ⊆ S′ and x′ = F (ι)(x).

Theorem 38. Ren is equivalent to PBM.

Proof. X maps to FX mapping S ∈ F to {x ∈ |X| | supp(x) ⊆ S} and mapping
τ : S → S′ to the renaming action of τ extended to a total function which is the identity
off S. This is a presheaf by part 1 of Lemma 11 and we can prove that it preserves
pullbacks of monos using Lemma 8. F maps to the set of unique least representative
elements of ∼-equivalence classes, as constructed in Lemma 37 with action given by
τ · (S, x) is the representative of the ∼-equivalence class of (τ · S, F (τ |S)(x)). The
result follows by routine calculations.

Preserving pullbacks of monos, and the corollary that we have ‘least representatives’,
makes possible the sets-based presentation of nominal sets and nominal renaming sets,
contrasting with the purely presheaf-based presentations of [7,16].

6 Tripos Structure on Ren

As argued in [16] the topos logic of F , thus also that of Ren, is unsuited to reasoning
about syntax with binding. For example equality of atoms is not decidable in that logic.
In fact, in the topos logic of Ren and F , the proposition ∀x, y∈A.¬¬(x=y) holds.

It was proposed in [16] to use the tripos obtained by pulling back the logic from
the Schanuel topos instead. In particular, the tripos so obtained is needed to justify the
theory of contexts [17] (well — almost; the restriction to pullback-preserving functors
had not been made explicit in that paper.)

In keeping with our goal of making these constructions concrete and usable for direct
calculations, we make this construction explicit at the level of Ren.

Definition 39. For a nominal renaming set X let Pred(X) be the set of those subsetsU
of |X| that are preserved by bijective renamings, i.e., for which x ∈ U implies σ ·x ∈ U
provided that σ ∈ Fin is bijective, i.e., a permutation.

Pred(X) is ordered by subset inclusion and Pred(−) extends to a functor Renop →
Poset where Pred(f)(U) = {x | f(x) ∈ U} when f : X → Y and U ∈ Pred(Y).

170 M.J. Gabbay and M. Hofmann

We remark that in the topos logic of Ren a predicate is a subset preserved by all renam-
ings, not just the bijective ones.

Theorem 40 is a consequence of the folklore result stated in [16] which asserts that
triposes can be pulled back along finite-limit-preserving functors with a right adjoint
(‘geometric morphisms’). Rather than detailing this argument we illustrate the tripos
structure by concrete constructions below.

Theorem 40. The pair (Ren,Pred) forms a tripos.

This means there is enough structure to interpret higher-order logic. In particular, pred-
icates are closed under boolean operations, universal quantification over renaming sets,
and there is a renaming set O of propositions such that morphisms X → O are in 1-1
correspondence with elements of Pred(X). We explicitly construct these ingredients
in order to demonstrate that the logic for Ren is quite close to classical set-theoretic
reasoning in contrast to the functorial reasoning that was used in [17].

Proposition 41. The object of propositions O in the tripos (Ren,Pred) has underlying
set those U ⊆ Fin such that:

− If σ ∈ U and π ∈ Fin is a permutation then π ◦ σ ∈ U
− There exists finite S ⊆ X such that if σ|S = σ′|S then σ ∈ U iff σ′ ∈ U .

The renaming action in O is given by σ · U = {µ | µ ◦ σ ∈ U}.

Proof (Sketch). If P ∈ Pred(X) then a morphism χP : X → O is defined by χP (a) =
{σ | σ · a ∈ P}. Conversely, if m : X → O is a morphism then we associate the
predicate Pm = {a | m(a) = "} where " ∈ O is given by " = Fin .

Proposition 42. The logic of (Ren,Pred) is classical.

Proof. It suffices to show that if P ∈ Pred(X) is a predicate then its set-theoretic
complement {x | x �∈ P} is again a predicate. But if π ∈ Fin is a permutation and
x �∈ P then π · x �∈ P for otherwise x = π-1 · π · x ∈ P .

Proposition 43 (universal quantification). Let P ∈ Pred(X×Y) (possibly given by
a morphism X × Y → O). Its universal quantification ∀P ∈ Pred(X) is given by
∀P = {x | ∀y∈Y.(x, y) ∈ P}.

Proof. Suppose that Q ∈ Pred(X). We have to show that ∀P is a predicate and that
the following are equivalent:

− for all x ∈ X and y ∈ Y if x ∈ Q then (x, y) ∈ P
− for all x ∈ X if x ∈ Q then x ∈ ∀P
The equivalence being obvious from the definition it only remains to show that ∀P is
indeed a predicate. So assume that π ∈ Fin is a permutation and consider that x ∈ ∀P .
If y ∈ Y then (x, π-1 · y) ∈ P since x ∈ ∀P . So, (π · x, y) ∈ P since P is a renaming
set. Hence, since y was arbitrary, π · x ∈ ∀P as required.

Logical operations in (Ren,Pred) are given by their standard meanings in classical
set theory. Propositions are elements of O rather than of {0, 1}. Note that the axiom

Nominal Renaming Sets 171

of unique choice (which identifies functional relations with morphisms) is not valid in
(Ren,Pred). Indeed, a functional relation, i.e., a predicate P on X×Y such that for all
x ∈ |X| there is a unique y ∈ |Y| such that (x, y) ∈ P , does not in general give rise to a
morphism from X to Y. Indeed, in [16] it was shown that the Axiom of Unique Choice
is an inconsistent extension of the theory of contexts. There is a unique function f such
that (x, f(x)) ∈ P for all x ∈ |X| but in general it will be invariant under permutations,
not all renamings.

7 Conclusions

Nominal renaming sets are a natural evolution of nominal sets. The connection between
Ren and the category of nominal sets [13] is evident. However, the details are not en-
tirely straightforward; proofs have to be changed and sometimes they take on a very
different character. In particular the definition of the action for function spaces in the
permutative case (σ · f)(x) = σ-1 · f(σ · x) does not carry over, because σ-1 need not
exist. It is replaced by an a priori partial definition (Definition 20) which is totalised
with a unique extension theorem (Lemma 19).

Nominal renaming sets are related to SetF as featured in [7] and [16]; they corre-
spond to the pullback-preserving presheaves (Theorem 38). Ren has appeared before;
the first author discussed the idea in his thesis [9, Section 11.1] and studied a gener-
alisation of nominal renaming sets as an algebraic theory over nominal sets in [12].
Meanwhile, a category equivalent to Ren was independently presented, also as an al-
gebraic theory over nominal sets, in [8, Definition 2.4]. The constructions presented in
this paper, notably the exponential and the tripos structure, are new and do not follow
directly from these earlier results. It is thanks to these explicit constructions that Ren
can serve as a sets-based semantic underpinning for weak HOAS, i.e. that we can do
calculations entirely within Ren, without switching to a functor category. To our knowl-
edge, we are the first to suggest applying renaming sets as a semantic basis for weak
HOAS in the sense of Despeyroux [5] and in particular the theory of contexts [17].

Future work.
It will be interesting to give details of a proof of validity of the theory of contexts

using nominal renaming sets. In this conference paper we have not done that, but such
a proof could be based on the one in [17], and should be simplified thanks to the use of
set-theoretic language (most of the time). Note that no notion of forcing is required.

Nominal sets have been generalised to ‘nominal domains’ [22] thus giving access
to fresh names in denotational semantics. It would be interesting to generalise renam-
ing sets in this way as well, giving access to fresh names with substitution within a
functional metalanguage. Here, our explicitation of the exponential (Section 3) may be
particularly useful.

Nominal renaming sets belong to a family of structures with a finitely supported
substitution action. Probably they are the simplest, but others may also be interesting.
For example, define a nominal substitution set to be a pair of a nominal renaming set X
and a function sub : ((A ⇒ X) × X) ⇒ X such that

− If a#z then z[a �→x] = z.

− If a#y then z[a �→x][b �→y] = z[b �→y][a �→x[b �→y]].

172 M.J. Gabbay and M. Hofmann

Here we write z[a �→x] for sub(λy∈A.[a �→y]·z, x). A category of nominal substitution
sets has arrows maps F : X −→ Y such that F (z[a �→x]) = (F (z))[a �→F (x)].

(This can also be phrased directly using ‘normal’ sets.) We conjecture that this defi-
nition or a refinement of it will be useful to give semantics to typings like (tm → tm) →
tm used for binders, for example in Twelf [19], for which hitherto only purely presheaf
semantics are available [16].

References

1. Benton, N., Leperchey, B.: Relational reasoning in a nominal semantics for storage. In: Urzy-
czyn, P. (ed.) TLCA 2005. LNCS, vol. 3461, pp. 86–101. Springer, Heidelberg (2005)

2. Brunner, N.: 75 years of independence proofs by Fraenkel-Mostowski permutation models.
Mathematica Japonica 43, 177–199 (1996)

3. Bucalo, A., Honsell, F., Miculan, M., Scagnetto, I., Hofmann, M.: Consistency of the theory
of contexts. Journal of Functional Programming 16(3), 327–395 (2006)

4. Despeyroux, J.: A higher-order specification of the π–calculus. In: IFIP TCS, pp. 425–439
(2000)

5. Despeyroux, J., Felty, A.P., Hirschowitz, A.: Higher-order abstract syntax in COQ. In: Urzy-
czyn, P. (ed.) TLCA 2005. LNCS, vol. 3461, pp. 124–138. Springer, Heidelberg (2005)

6. Despeyroux, J., Hirschowitz, A.: Higher-order abstract syntax with induction in COQ. In:
Pfenning, F. (ed.) LPAR 1994. LNCS, vol. 822, pp. 159–173. Springer, Heidelberg (1994)

7. Fiore, M.P., Plotkin, G.D., Turi, D.: Abstract syntax and variable binding. In: LICS 1999, pp.
193–202. IEEE, Los Alamitos (1999)

8. Fiore, M.P., Staton, S.: A congruence rule format for name-passing process calculi from
mathematical structural operational semantics. In: LICS 2006, pp. 49–58. IEEE, Los Alami-
tos (2006)

9. Gabbay, M.J.: A Theory of Inductive Definitions with alpha-Equivalence. PhD thesis, Cam-
bridge, UK (2000)

10. Gabbay, M.J.: A General Mathematics of Names. Information and Computation 205, 982–
1011 (2007)

11. Gabbay, M.J.: Nominal renaming sets. Technical Report HW-MACS-TR-0058, Heriot-Watt
University (2007), http://www.gabbay.org.uk/papers.html#nomrs-tr

12. Gabbay, M.J., Mathijssen, A.: Capture-avoiding Substitution as a Nominal Algebra. In:
Barkaoui, K., Cavalcanti, A., Cerone, A. (eds.) ICTAC 2006. LNCS, vol. 4281, pp. 198–
212. Springer, Heidelberg (2006)

13. Gabbay, M.J., Pitts, A.M.: A New Approach to Abstract Syntax with Variable Binding (jour-
nal version). Formal Aspects of Computing 13(3–5), 341–363 (2001)

14. Gabbay, M.J., Pitts, A.M.: A new approach to abstract syntax involving binders. In: 14th
Annual Symposium on Logic in Computer Science, pp. 214–224. IEEE Computer Society
Press, Los Alamitos (1999)

15. Hirschkoff, D.: A full formalization of pi-calculus theory in the Calculus of Constructions.
In: Gunter, E.L., Felty, A.P. (eds.) TPHOLs 1997. LNCS, vol. 1275, pp. 153–169. Springer,
Heidelberg (1997)

16. Hofmann, M.: Semantical analysis of higher-order abstract syntax. In: 14th Annual Sympo-
sium on Logic in Computer Science, pp. 204–213. IEEE, Los Alamitos (1999)

17. Honsell, F., Miculan, M., Scagnetto, I.: An axiomatic approach to metareasoning on nominal
algebras in HOAS. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS,
vol. 2076, pp. 963–978. Springer, Heidelberg (2001)

http://www.gabbay.org.uk/papers.html#nomrs-tr

Nominal Renaming Sets 173

18. McKinna, J., Pollack, R.: Some lambda calculus and type theory formalized. Journal of Au-
tomated Reasoning 23(3-4), 373–409 (1999)

19. Pfenning, F., Schürmann, C.: System description: Twelf - a meta-logical framework for
deductive systems. In: Ganzinger, H. (ed.) CADE 1999. LNCS, vol. 1632, pp. 202–206.
Springer, Heidelberg (1999)

20. Shinwell, M.R.: The Fresh Approach: Functional Programming with Names and Binders.
PhD thesis, Computer Laboratory, University of Cambridge (December 2004)

21. Shinwell, M.R., Pitts, A.M., Gabbay, M.J.: FreshML: Programming with binders made sim-
ple. In: ICFP 2003. SIGPLAN Not., vol. 38(9), pp. 263–274. ACM Press, New York (2003)

22. Shinwell, M.R., Pitts, A.M.: On a monadic semantics for freshness. Theoretical Computer
Science 342(1), 28–55 (2005)

23. Shinwell, M.R., Pitts, A.M.: Fresh objective Caml user manual. Technical Report UCAM-
CL-TR-621, University of Cambridge (2005)

24. Staton, S.: Name-passing process calculi: operational models and structural operational se-
mantics. PhD thesis, University of Cambridge (2007)

25. Urban, C., Tasson, C.: Nominal techniques in Isabelle/HOL. In: Nieuwenhuis, R. (ed.) CADE
2005. LNCS, vol. 3632, pp. 38–53. Springer, Heidelberg (2005)

Imogen: Focusing the Polarized Inverse Method for
Intuitionistic Propositional Logic

Sean McLaughlin and Frank Pfenning

Department of Computer Science
Carnegie Mellon University

Abstract. In this paper we describe Imogen, a theorem prover for intuitionistic
propositional logic using the focused inverse method. We represent fine-grained
control of the search behavior by polarizing the input formula. In manipulating
the polarity of atoms and subformulas, we can often improve the search time by
several orders of magnitude. We tested our method against seven other systems
on the propositional fragment of the ILTP library. We found that our prover out-
performs all other provers on a substantial subset of the library.

1 Introduction

Imogen is a theorem prover for intuitionistic propositional logic (IPL) based on a fo-
cused inverse method with explicit polarities. The inverse method [15,7] uses forward
saturation, generalizing resolution to non-classical logics. Focusing [1,14] reduces the
search space in a sequent calculus by restricting the application of inference rules based
on the polarities of the connectives and atomic formulas. One of the novel aspects of
Imogen is that it exploits inherent flexibility in the assignment of polarities to subformu-
las to optimize proof search. Different assignments of polarities can yield dramatically
different performance.

Raths and Otten [18] compare seven systems on the ILTP library [19], a collection
of challenge problems for intuitionistic logic provers. In contrast to Imogen, all these
use backward search in a contraction-free sequent calculus. This difference in basic
approach is reflected in a unique performance profile. Imogen clearly outperforms the
other provers on an interesting subset of the benchmark problems, with a tendency to
do better on non-theorems. Some problems that appear difficult for backward search
are solved almost instantaneously by Imogen, and vice versa. We therefore consider
Imogen an interesting and viable alternative for intuitionistic theorem proving.

In this system description we give an overview of the basic principles underlying Imo-
gen, its implementation, and analyze its performance compared to other provers for IPL.
The theoretical foundations for Imogen are mostly contained in published papers cited
in this description; we therefore do not explicitly state or prove any metatheorems. The
source code for Imogen is available at http://www.cs.cmu.edu/˜seanmcl/
Imogen.

I. Cervesato, H. Veith, and A. Voronkov (Eds.): LPAR 2008, LNCS 5330, pp. 174–181, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.cs.cmu.edu/~seanmcl/Imogen
http://www.cs.cmu.edu/~seanmcl/Imogen

Imogen: Focusing the Polarized Inverse Method for Intuitionistic Propositional Logic 175

2 The Polarized Inverse Method

In this section we sketch the main principles underlying Imogen and their interaction:
focusing, polarization, and the inverse method.

2.1 Focusing

Focusing is a method to restrict the space of possible proofs in a cut-free sequent cal-
culus without affecting provability. It was originally developed for backward search in
classical linear logic [1], but has been applied to other non-classical logics [11,14] as
well as forward search [5].

Focusing is based on two observations about the properties of connectives. The first
is that certain connectives can always be eagerly decomposed during backward proof
search without losing completeness. For example, the goal of proving A ⊃ B can
always be decomposed to provingB under additional assumption A. Such connectives
are said to have negative polarity. As long as the top-level connective stays negative,
we can continue the decomposition eagerly without considering any other possibilities.
In contrast, for a formula such as A ∨ B, we have to make a choice whether to try to
proveA or B. Such connectives are said to have positive polarity. Surprisingly, as long
as the top-level connective stays positive, we can continue the decomposition eagerly,
making a choice at each step. Moreover, we can arbitrarily assign positive or negative
polarity to atomic formulas and restrict the use of atoms in initial sequents.

Proofs that satisfy all three restrictions are called focused. Imogen restricts its for-
ward search to focused proofs, in a manner explained in the next two sections, drasti-
cally reducing its search space when compared to the usual sequent calculus.

2.2 Polarized Formulas

In linear logic, the polarity of each connective is uniquely determined. This is not true
for intuitionistic logic where conjunction and truth are inherently ambiguous. We there-
fore assign polarities to formulas in a preprocessing phase. It is convenient to represent
the result as a polarized formula [12] where immediately nested formulas always have
the same polarity, unless an explicit polarity-shifting connective ↑ or ↓ is encountered.
These coercions are called shifts.

Implication has slightly special status, in that its left-hand side has opposite polarity
from its right-hand side. This is because in the sequent calculus for intuitionistic logic,
the focusing behavior of connectives on the left-hand side is the opposite of their behav-
ior on the right-hand side. (Here the meta-variable P ranges over atomic propositions.)

Positive formulas A+ ::= P+ | A+ ∨A+ | ⊥ | A+ ∧A+ | " | ↓A−

Negative formulas A− ::= P− | A+ ⊃ A− | A− 	 A− |
−
" | ↑A+

The translation A− of an (unpolarized) formula F in IPL is nondeterministic, subject
only to the constraint that the translation |A−| = F .

176 S. McLaughlin and F. Pfenning

|A+ ∨B+| = |A+| ∨ |B+| |⊥| = ⊥ |P+| = P
|A+ ∧B+| = |A+| ∧ |B+| |"| = " |↓A−| = |A−|
|A− 	B−| = |A−| ∧ |B−| |

−
" | = " |P−| = P

|A+ ⊃ B−| = |A+| ⊃ |B−| |↑A+| = |A+|

For example, the formula ((A∨C)∧ (B ⊃ C)) ⊃ (A ⊃ B) ⊃ C can be interpreted
as any of the following polarized formulas (among others):

((↓A− ∨ ↓C−) ∧ ↓(↓B− ⊃ C−)) ⊃ (↓(↓A− ⊃ B−) ⊃ C−)

↓↑((↓A− ∨ ↓C−) ∧ ↓(↓B− ⊃ C−)) ⊃ (↓↑↓(↓A− ⊃ B−) ⊃ C−)

↓(↑(A+ ∨ C+) 	 (B+ ⊃ ↑C+)) ⊃ (↓(A+ ⊃ ↑B+) ⊃ ↑C+)

Shift operators have highest binding precedence in our presentation of the examples.
As we will see, the choice of translation determines the search behavior on the resulting
polarized formula. Different choices can lead to search spaces with radically different
structure [6].

2.3 From Focused Proofs to Big-Step Inferences

A sequent of intuitionistic logic has the form Γ =⇒ A, where Γ is a set or multiset of
formulas. For purposes of Imogen it is convenient to always maintain Γ as a set, without
duplicates. Since we can always eagerly decompose negative connectives on the right
of a sequent and positive connectives on the left, the only sequents in our polarized
calculus we need to consider have negative formulas on the left or positive formulas on
the right, in addition to atoms which can appear with either polarity on either side. The
right-hand side could also be empty if we are deriving a contradiction. We call such
sequents stable.

Stable Hypotheses Γ ::= · | Γ,A− | Γ, P+

Stable Conclusions γ ::= A+ | P− | ·
Stable Sequents Γ =⇒ γ

We exploit focusing on polarized formulas to derive big-step rules that go from sta-
ble sequents as premises to stable sequents as conclusions. Completeness of focusing
tells us that these derived rules, by themselves, are sufficient to prove all valid stable se-
quents. Rather than formally specify this rule generation (see, for example, Andreoli [2]
for the linear case), we only illustrate the process, continuing with the example above.

((↓A− ∨ ↓C−) ∧ ↓(↓B− ⊃ C−)) ⊃ (↓(↓A− ⊃ B−) ⊃ C−)

The input formula is always translated to a negative formula, which we break down to
a set of stable sequents by applying invertible rules. Here we obtain the two sequents

A, ↓B ⊃ C, ↓A ⊃ B =⇒ C

C, ↓B ⊃ C, ↓A ⊃ B =⇒ C

We search for proofs of these two stable sequents independently. For each stable se-
quent, we focus on each constituent formula in turn, and decompose it until we reach

Imogen: Focusing the Polarized Inverse Method for Intuitionistic Propositional Logic 177

all stable sequents as premises. Each possibility yields a new big-step inference rule.
We continue to analyze its premises recursively in the same manner. As an example, we
show the process for the first goal above.

Focusing onA yields the initial sequentA =⇒ A. Focusing on ↓B ⊃ C and ↓A ⊃ B
yield the big-step rules

Γ =⇒ B
Γ, ↓B ⊃ C =⇒ C

Γ =⇒ A
Γ, ↓A ⊃ B =⇒ B

2.4 The Inverse Method with Big-Step Rules

The usual (small-step) inverse method applies sequent calculus rules in the forward
direction so that each derived formula is a subformula of the original goal. The subfor-
mula property is already built into the generation of the rules, so all we need to do now
is to apply the big-step rules to saturation in the forward direction. To start the process,
each derived rule with no premises is considered as an initial sequent.

To prove the first stable sequent in our example, we begin with the initial sequent
A =⇒ A. We only have two inference rules, of which only the second applies. The ap-
plication of this rule derives the new fact A, ↓A ⊃ B =⇒ B. Once again, we have
only one choice: applying the first rule to this new sequent. The application yields
A, ↓A ⊃ B, ↓B ⊃ C =⇒ C which is our goal.

In general, forward inference may only generate a strengthened form of the goal
sequent, so we need check if any derived sequents subsume the goal.Γ =⇒ γ subsumes
Γ ′ =⇒ γ′ if Γ ⊆ Γ ′ and γ ⊆ γ′. The inference process saturates if any new sequent
we can derive is already subsumed by a previously derived sequent. If none of these
subsume the goal sequent, the goal is not provable and we explicitly fail. In this case,
the saturated database may be considered a kind of countermodel for the goal sequent.
If the goal sequent is found, Imogen can reconstruct a natural deduction proof term as
a witness to the formula’s validity.

3 Optimizations and Heuristics

A problem with focusing becomes apparent when considering formulas such as

A = (A1 ∨ B1) ∧ (A2 ∨B2) ∧ · · · ∧ (An ∨Bn)

Focusing onA on the right will produce 2n inference rules. Inverting F on the left will
produce a single rule with 2n premises. To avoid exponential behavior such as this, we
can change the polarities of the subformulas by adding double shifts, ↓↑ and ↑↓:

A′ = ↓↑(A1 ∨ B1) ∧ ↓↑(A2 ∨ B2) ∧ · · · ∧ ↓↑(An ∨ Bn).

The double shifts break the focusing and inversion phases respectively, leading to a
linear number of rules and premises at the expense of an increased number of inverse
method deductions. In the extreme, if we insert double shifts before every subformula,
we can emulate the inverse method for the ordinary sequent calculus. Imogen currently
uses heuristics to insert double shifts for avoiding an exponential explosion.

178 S. McLaughlin and F. Pfenning

Imogen first translates to polarized form by a simple method that inserts the fewest
shifts, making the choice of conjunction accordingly. Using additional heuristics, Imogen
may modify this decision, adding shifts and swapping conjunction and atom polarities
to improve the search behavior. Sometimes this leads to a very different search space for
problems that are syntactically very similar1. Roughly, we count the number of rules and
premises that will result from focusing. If such numbers are very large with respect to
the input formula, we insert double shifts at a subformula of the goal that is causing a
part of the explosion and check the number of rules and premises on the new formula.
We continue in this way until a “reasonable” number of premises and rules is reached.

We maintain the hypotheses as sets. Thus, contraction is handled automatically by
the application of multi-premise rules.

Formulas which appear in a stable goal sequent will appear in every sequent which
backward search could construct and are therefore redundant. We omit such global
assumptions from all sequents. Another helpful optimization is backward subsump-
tion. When a new sequent is derived, we remove all sequents that it subsumes from the
database. These effects are quantified in section 5.

4 Inference Engine

Imogen’s saturation algorithm is based on the Otter loop [16]. It maintains Otter’s two
distinct databases for active sequents2, those sequents that have had all inference rules
applied to them, and kept sequents that have not yet been considered for inferences.
New rules are generated when a multiple premise rule is matched against an active
sequent. This method of matching multi-premise rules incrementally is called partially
applied rule generation.

The algorithm proceeds as follows. It first polarizes the input formula and runs an
initial stabilization pass to determine the stable sequents to prove. The initial sequents
and derived rules are then generated using focusing. As an optimization, subformulas
are given unique labels to allow fast formula comparison. The final step before search
is to initialize the kept sequent database with the initial sequents.

At this stage, Imogen begins the forward search. It selects a kept sequent based on
some fair strategy. The sequent is matched against the first premise of all current rules.
The matching process will produce new sequents that are put into the kept database, as
well as new partially applied rules. The new rules are recursively matched against the
active database, and the resulting sequents are put into the kept database. This process
repeats until either the kept database becomes empty, in which case the search space is
saturated and the formula is invalid, or until the goal sequent is subsumed by a derived
sequent.

5 Evaluation

We evaluated our prover on the propositional fragment of the ILTP [19, version 1.1.2]
library of problems for intuitionistic theorem provers. The 274 problems are divided

1 This effect can be seen in the erratic results of problem class SYJ206 in section 5.
2 Sometimes called the “set of support”.

Imogen: Focusing the Polarized Inverse Method for Intuitionistic Propositional Logic 179

into 12 families of difficult problems such as the pigeonhole principle, labeled SYJ201
to SYJ212. For each family, there are 20 instances of increasing size. There are also
34 miscellaneous problems. The provers that are currently evaluated are ft-C [20, ver-
sion 1.23], ft-Prolog [20, version 1.23], LJT [8], PITP [3, version 3.0], PITPINV [3,
version 3.0], and STRIP [13, version 1.1]. These provers represent a number of differ-
ent methods of theorem proving in IPL, yet forward reasoning is conspicuously absent.
Imogen solved 261 of the problems. PITPINV was the only prover to solve more. Some
illustrative examples of difficult problems are shown in the following table:

Prover ft-Prolog ft-C LJT PITP PITPINV IPTP STRIP Imogen

Solved (out of 274) 188 199 175 238 262 209 205 261

SYN007+1.014 -0.01 -0.01 stack large large large alloc -0.1

SYJ201+1.018 0.28 0.04 0.4 0.01 0.01 2.31 0.23 25.5
SYJ201+1.019 0.36 0.04 0.47 0.01 0.01 2.82 0.32 28.0
SYJ201+1.020 0.37 0.05 0.55 0.01 0.01 3.47 0.34 28.35

SYJ202+1.007 516.55 76.3 memory 0.34 0.31 13.38 268.59 64.6
SYJ202+1.008 time time memory 3.85 3.47 97.33 time time
SYJ202+1.009 time time memory 50.25 42.68 time time time
SYJ202+1.010 time time memory time time time time time

SYJ205+1.018 time time 0.01 0.01 7.49 0.09 time 0.01
SYJ205+1.019 time time 0.01 0.01 15.89 0.09 time 0.01
SYJ205+1.020 time time 0.01 0.01 33.45 0.1 time 0.01

SYJ206+1.018 time time memory 1.01 0.96 9.01 8.18 56.2
SYJ206+1.019 time time memory 1.95 1.93 18.22 14.58 394.14
SYJ206+1.020 time time memory 3.92 3.89 36.35 33.24 42.7

SYJ207+1.018 time time time time -68.71 time time -42.6
SYJ207+1.019 time time time time -145.85 time time -63.6
SYJ207+1.020 time time time time -305.21 time time -97.25

SYJ208+1.018 time time memory -0.99 -0.95 time time -184.14
SYJ208+1.019 time time memory -1.36 -1.35 memory mem -314.31
SYJ208+1.020 time time memory -1.76 -1.80 memory mem -506.02

SYJ209+1.018 time time time time -13.44 time time -0.01
SYJ209+1.019 time time time time -28.68 time time -0.01
SYJ209+1.020 time time time time -60.54 time time -0.02

SYJ211+1.018 time time time -43.65 -31.51 time time -0.02
SYJ211+1.019 time time time -91.75 -66.58 time time -0.02
SYJ211+1.020 time time time -191.57 -139.67 time time -0.02

SYJ212+1.018 -0.01 -0.01 memory -1.31 -1.37 time -8.5 -0.02
SYJ212+1.019 -0.01 -0.01 memory -2.7 -2.75 time -17.41 -0.03
SYJ212+1.020 -0.01 -0.01 memory -5.51 -5.51 time -38.94 -0.04

The table uses the notation of [18]. All times are in seconds. The entry “memory”
indicates that the prover process ran out of memory. A “time” entry indicates that the
prover was unable to solve the problem within the ten minute time limit. A negative
number indicates the time to ascertain that a formula is not valid. All statistics except
for those of Imogen were executed on a 3.4 GHz Xeon processor running Linux [18].
The Imogen statistics are a 2.4 GHz Intel Core 2 Duo on Mac OS X. Thus the Imogen
statistics are conservative.

180 S. McLaughlin and F. Pfenning

6 Conclusion

The most closely related system to Imogen is Linprover [4], which is an inverse method
prover for intuitionistic linear logic exploiting focusing, but not polarization. We do not
explicitly compare our results to Linprover, which incurs additional overhead due to
the necessary maintenance of linearity constraints. We are also aware of two provers
for first-order intuitionistic logic based on the inverse method, Gandalf [21] and Sand-
storm [9], both of which partially exploit focusing. We do not compare Imogen to these
either, since they incur substantial overhead due to unification, contraction, and more
complex subsumption.

Imogen could be improved in a number of ways. Selecting sequents from the kept
database for rule application could be improved by a more intelligent ordering of for-
mulas. Better heuristics for assigning polarities to subformulas, especially atoms, seem
to offer the biggest source of performance gains. Experimenting with double shifts and
atom polarities by hand greatly increased performance, but as yet we have no sophisti-
cated methods for determining more optimal assignments of polarities.

We implemented Imogen with the eventual goal to generalize the system to first-
order intuitionistic logic and logical frameworks and were somewhat surprised that
even a relatively straightforward implementation in a high-level language is not only
competitive with previous provers based on backward search, but clearly better on a
significant portion of accepted benchmark problems. We plan to begin experiments us-
ing the polarized inverse method for LF [10] and M2, the metalogic of Twelf [17].

One of Imogen’s strengths is its ability to do redundancy elimination. The databases
can grow large, making deriving further inferences slower. Yet when a strong sequent
is derived, it is not uncommon for half or more of the database to be subsumed and
eliminated with backward subsumption, thus allowing Imogen to continue making de-
ductions at a much higher rate. We believe that this will be important in solving difficult
problems in more complex logics.

Our experience with Imogen, in addition to the evidence provided by the provers
cited above, adds strength to our thesis that the polarized inverse method works well on
non-classical logics of different kinds.

Acknowledgments

We have been generously supported in this work by NSF grant CCR-0325808. We
would like to thank Kaustuv Chaudhuri for helpful discussions regarding Imogen. We
also thank the anonymous reviewers for helpful suggestions and correcting some minor
errors.

References

1. Andreoli, J.-M.: Logic programming with focusing proofs in linear logic. Journal of Logic
and Computation 2(3), 297–347 (1992)

2. Andreoli, J.-M.: Focussing and proof construction. Annals of Pure and Applied Logic 107(1–
3), 131–163 (2001)

Imogen: Focusing the Polarized Inverse Method for Intuitionistic Propositional Logic 181

3. Avellone, A., Fiorino, G., Moscato, U.: A new O(n log n)-space decision procedure for propo-
sitional intuitionistic logic. In: Kurt Goedel Society Collegium Logicum, vol. VIII, pp. 17–33
(2004)

4. Chaudhuri, K.: The Focused Inverse Method for Linear Logic. PhD thesis, Carnegie Mellon
University, Technical report CMU-CS-06-162 (December 2006)

5. Chaudhuri, K., Pfenning, F.: Focusing the inverse method for linear logic. In: Ong, L. (ed.)
Computer Science Logic, pp. 200–215. Springer, Heidelberg (2005)

6. Chaudhuri, K., Pfenning, F., Price, G.: A logical characterization of forward and backward
chaining in the inverse method. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS,
vol. 4130, pp. 97–111. Springer, Heidelberg (2006)

7. Degtyarev, A., Voronkov, A.: The inverse method. In: Robinson, A., Voronkov, A. (eds.)
Handbook of Automated Reasoning, ch. 4, vol. I, pp. 179–272. Elsevier Science, Amsterdam
(2001)

8. Dyckhoff, R.: Contraction-free sequent calculi for intuitionistic logic. Journal of Symbolic
Logic 57(3), 795–807 (1992)

9. Garg, D., Murphy, T., Price, G., Reed, J., Zeilberger, N.: Team red: The Sandstorm theorem
prover, http://www.cs.cmu.edu/∼tom7/papers/

10. Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. Journal of the
ACM 40(1), 143–184 (1993)

11. Howe, J.M.: Proof Search Issues in Some Non-Classical Logics. PhD thesis, University of
St. Andrews, Scotland (1998)

12. Lamarche, F.: Games semantics for full propositional linear logic. In: Proceedings of the 10th
Annual Symposium on Logic in Computer Science (LICS 1995), San Diego, California, pp.
464–473. IEEE Computer Society, Los Alamitos (1995)

13. Larchey-Wendling, D., Méry, D., Galmiche, D.: STRIP: Structural sharing for efficient proof-
search. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS, vol. 2083, pp.
670–674. Springer, Heidelberg (2001)

14. Liang, C., Miller, D.: Focusing and polarization in intuitionistic logic. In: Duparc, J., Hen-
zinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 451–465. Springer, Heidelberg (2007)

15. Maslov, S.Y.: An inverse method for establishing deducibility in classical predicate calculus.
Doklady Akademii nauk SSSR 159, 17–20 (1964)

16. McCune, W.W.: OTTER 3.0 reference manual and guide. Technical Report ANL-94/6, Ar-
gonne National Laboratory/IL, USA (1994)

17. Pfenning, F., Schürmann, C.: System description: Twelf - A meta-logical framework for
deductive systems. In: Ganzinger, H. (ed.) CADE 1999. LNCS, vol. 1632, pp. 202–206.
Springer, Heidelberg (1999)

18. Raths, T., Otten, J.: The ILTP Library, http://www.iltp.de/
19. Raths, T., Otten, J., Kreitz, C.: The ILTP problem library for intuitionistic logic. J. Autom.

Reasoning 38(1-3), 261–271 (2007)
20. Sahlin, D., Franzén, T., Haridi, S.: An intuitionistic predicate logic theorem prover. Journal

of Logic and Computation 2(5), 619–656 (1992)
21. Tammet, T.: A resolution theorem prover for intuitionistic logic. In: McRobbie, M.A., Slaney,

J.K. (eds.) CADE 1996. LNCS, vol. 1104, pp. 2–16. Springer, Heidelberg (1996)

http://www.cs.cmu.edu/~tom7/papers/
http://www.iltp.de/

Model Checking – My 27-Year Quest to
Overcome the State Explosion Problem

Edmund M. Clarke

Computer Science Department
Carnegie Mellon University

Abstract. Model Checking is an automatic verification technique for
state-transition systems that are finite-state or that have finite-state ab-
stractions. In the early 1980’s in a series of joint papers with my graduate
students E.A. Emerson and A.P. Sistla, we proposed that Model Check-
ing could be used for verifying concurrent systems and gave algorithms
for this purpose. At roughly the same time, Joseph Sifakis and his stu-
dent J.P. Queille at the University of Grenoble independently developed
a similar technique. Model Checking has been used successfully to reason
about computer hardware and communication protocols and is beginning
to be used for verifying computer software. Specifications are written in
temporal logic, which is particularly valuable for expressing concurrency
properties. An intelligent, exhaustive search is used to determine if the
specification is true or not. If the specification is not true, the Model
Checker will produce a counterexample execution trace that shows why
the specification does not hold. This feature is extremely useful for find-
ing obscure errors in complex systems. The main disadvantage of Model
Checking is the state-explosion problem, which can occur if the system
under verification has many processes or complex data structures. Al-
though the state-explosion problem is inevitable in worst case, over the
past 27 years considerable progress has been made on the problem for
certain classes of state-transition systems that occur often in practice.
In this talk, I will describe what Model Checking is, how it works, and
the main techniques that have been developed for combating the state
explosion problem.

I. Cervesato, H. Veith, and A. Voronkov (Eds.): LPAR 2008, LNCS 5330, p. 182, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On the Relative Succinctness of Nondeterministic Büchi
and co-Büchi Word Automata

Benjamin Aminof, Orna Kupferman, and Omer Lev

Hebrew University, School of Engineering and Computer Science, Jerusalem 91904, Israel
{benj,orna}@cs.huji.ac.il, omerl@math.huji.ac.il

Abstract. The practical importance of automata on infinite objects has motivated
a re-examination of the complexity of automata-theoretic constructions. One such
construction is the translation, when possible, of nondeterministic Büchi word
automata (NBW) to nondeterministic co-Büchi word automata (NCW). Among
other applications, it is used in the translation (when possible) of LTL to the
alternation-free µ-calculus. The best known upper bound for the translation of
NBW to NCW is exponential (given an NBW with n states, the best translation
yields an equivalent NCW with 2O(n log n) states). On the other hand, the best
known lower bound is trivial (no NBW with n states whose equivalent NCW
requires even n+1 states is known). In fact, only recently was it shown that there
is an NBW whose equivalent NCW requires a different structure.

In this paper we improve the lower bound by showing that for every integer
k ≥ 1 there is a language Lk over a two-letter alphabet, such that Lk can be
recognized by an NBW with 2k+1 states, whereas the minimal NCW that recog-
nizes Lk has 3k states. Even though this gap is not asymptotically very significant,
it nonetheless demonstrates for the first time that NBWs are more succinct than
NCWs. In addition, our proof points to a conceptual advantage of the Büchi condi-
tion: an NBW can abstract precise counting by counting to infinity with two states.
To complete the picture, we consider also the reverse NCW to NBW translation,
and show that the known upper bound, which duplicates the state space, is tight.

1 Introduction

Finite automata on infinite objects were first introduced in the 60’s, and were the key
to the solution of several fundamental decision problems in mathematics and logic
[3,13,16]. Today, automata on infinite objects are used for specification and verification
of nonterminating systems. The automata-theoretic approach to verification views ques-
tions about systems and their specifications as questions about languages, and reduces
them to automata-theoretic problems like containment and emptiness [11,21]. Recent
industrial-strength property-specification languages such as Sugar [2], ForSpec [1], and
the recent standard PSL 1.01 [5] include regular expressions and/or automata, making
specification and verification tools that are based on automata even more essential and
popular.

There are many ways to classify an automaton on infinite words. One is the type of its
acceptance condition. For example, in Büchi automata, some of the states are designated
as accepting states, and a run is accepting iff it visits states from the accepting set

I. Cervesato, H. Veith, and A. Voronkov (Eds.): LPAR 2008, LNCS 5330, pp. 183–197, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

184 B. Aminof, O. Kupferman, and O. Lev

infinitely often [3]. Dually, in co-Büchi automata, a run is accepting iff it visits states
from the accepting set only finitely often. Another way to classify an automaton is by
the type of its branching mode. In a deterministic automaton, the transition function
maps the current state and input letter to a single successor state. When the branching
mode is nondeterministic, the transition function maps the current state and letter to a
set of possible successor states. Thus, while a deterministic automaton has at most a
single run on an input word, a nondeterministic automaton may have several runs on
an input word, and the word is accepted by the automaton if at least one of the runs is
accepting.

Early automata-based algorithms aimed at showing decidability. The complexity of
the algorithm was not of much interest. Things have changed in the early 80’s, when
decidability of highly expressive logics became of practical importance in areas such as
artificial intelligence and formal reasoning about systems. The change was reflected in
the development of two research directions: (1) direct and efficient translations of logics
to automata [23,19,20], and (2) improved algorithms and constructions for automata on
infinite objects [18,4,15]. For many problems and constructions, our community was
able to come up with satisfactory solutions, in the sense that the upper bound (the com-
plexity of the best algorithm or the blow-up in the best known construction) coincides
with the lower bound (the complexity class in which the problem is hard, or the blow-
up that is known to be unavoidable). For some problems and constructions, however,
the gap between the upper bound and the lower bound is significant. This situation is
especially frustrating, as it implies that not only we may be using algorithms that can
be significantly improved, but also that something is missing in our understanding of
automata on infinite objects.

One such problem, which this article studies, is the problem of translating, when
possible, a nondeterministic Büchi word automaton (NBW) to an equivalent nondeter-
ministic co-Büchi word automaton (NCW). NCWs are less expressive than NBWs. For
example, the language {w : w has infinitely many a’s} over the alphabet {a, b} cannot
be recognized by an NCW. The best translation of an NBW to an NCW (when possible)
that is currently known actually results in a deterministic co-Büchi automaton (DCW),
and it goes via an intermediate deterministic Streett automaton. The determinization
step involves an exponential blowup in the number of states [18]. Hence, starting with
an NBW with n states, we end up with a DCW with 2O(n log n) states.

The exponential upper bound is particularly annoying, since the best known lower
bound is trivial. That is, no NBW with n states whose equivalent NCW requires even
n+ 1 states is known. In fact, only recently was it shown that there is an NBW whose
equivalent NCW requires a different structure [8]. Beyond the theoretical challenge in
closing the exponential gap, and the fact it is related to other exponential gaps in our
knowledge [7], the translation of NBW to NCW has immediate applications in symbolic
LTL model checking. We elaborate on this point below.

It is shown in [9] that given an LTL formula ψ, there is an alternation-free µ-calculus
(AFMC) formula equivalent to ∀ψ iff ψ can be recognized by a deterministic Büchi
automaton (DBW). Evaluating specifications in the alternation-free fragment of µ-
calculus can be done with linearly many symbolic steps. In contrast, direct LTL model
checking reduces to a search for bad-cycles, whose symbolic implementation involves

On the Relative Succinctness of Nondeterministic Büchi 185

nested fixed-points, and is typically quadratic [17]. The best known translations of LTL
to AFMC first translates the LTL formula ψ to a DBW, which is then linearly translated
to an AFMC formula for ∀ψ. The translation of LTL to DBW, however, is doubly-
exponential, thus the overall translation is doubly-exponential, with only an exponen-
tial matching lower bound [9]. A promising direction for coping with this situation was
suggested in [9]: Instead of translating the LTL formula ψ to a DBW, one can translate
¬ψ to an NCW. This can be done either directly, or by translating the NBW for ¬ψ to
an equivalent NCW. Then, the NCW can be linearly translated to an AFMC formula for
∃¬ψ, whose negation is equivalent to ∀ψ. Thus, a polynomial translation of NBW to
NCW would imply a singly-exponential translation of LTL to AFMC.1

The main challenge in proving a non-trivial lower bound for the translation of NBW
to NCW is the expressiveness superiority of NBW with respect to NCW. Indeed, a lan-
guage that is a candidate for proving a lower bound for this translation has to strike a
delicate balance: the languages has to somehow take advantage of the Büchi acceptance
condition, and still be recognizable by a co-Büchi automaton. In particular, attempts to
use the main feature of the Büchi condition, namely its ability to easily track infinitely
many occurrences of an event, are almost guaranteed to fail, as a co-Büchi automaton
cannot recognize languages that are based on such a tracking. Thus, a candidate lan-
guage has to use the ability of the Büchi condition to easily track the infinity in some
subtle way.

In this paper we point to such a subtle way and provide the first non-trivial lower
bound for the translation of NBW to NCW. We show that for every integer k ≥ 1, there
is a languageLk over a two-letter alphabet, such that Lk can be recognized by an NBW
with 2k + 1 states, whereas the minimal NCW that recognizes Lk has 3k states. Even
though this gap is not asymptotically very significant, it demonstrates for the first time
that NBWs are more succinct than NCWs. In addition, our proof points to a conceptual
advantage of the Büchi condition: an NBW can abstract precise counting by counting to
infinity with two states. To complete the picture, we also study the reverse translation,
of NCWs to NBWs. We show that the known upper bound for this translation, which
doubles the state space of the NCW, is tight.

2 Preliminaries

2.1 Automata on Infinite Words

Given an alphabetΣ, a word overΣ is an infinite sequence w = σ1 ·σ2 · · · of letters in
Σ. An automaton is a tuple A = 〈Σ,Q, δ,Q0, α〉, where Σ is the input alphabet, Q is
a finite set of states, δ : Q×Σ → 2Q is a transition function,Q0 ⊆ Q is a set of initial
states, and α ⊆ Q is an acceptance condition. We define several acceptance conditions
below. Intuitively, δ(q, σ) is the set of states that A may move into when it is in the
state q and it reads the letter σ. The automaton A may have several initial states and

1 Wilke [22] proved an exponential lower-bound for the translation of an NBW for an LTL
formula ψ to and AFMC formula equivalent to ∀ψ. This lower-bound does not preclude a
polynomial upper-bound for the translation of an NBW for¬ψ to an AFMC formula equivalent
to ∃¬ψ, which is our goal.

186 B. Aminof, O. Kupferman, and O. Lev

the transition function may specify many possible transitions for each state and letter,
and hence we say that A is nondeterministic. In the case where |Q0| = 1 and for every
q ∈ Q and σ ∈ Σ, we have that |δ(q, σ)| ≤ 1, we say that A is deterministic.

Given two states p, q ∈ Q, a path of lengthm from p to q is a finite sequence of states
π = π0, π1, · · · , πm−1 such that π0 = p, πm−1 = q, and for every 0 ≤ i < m− 1, we
have that πi+1 ∈

⋃
σ∈Σ δ(πi, σ). If π0 ∈

⋃
σ∈Σ δ(πm−1, σ) then π is a cycle. We say

that π is simple if all the states of π are different. I.e., if for every 1 ≤ i < j < m, we
have that πi �= πj . Let π = π0, π1, · · · , πm−1 be a simple path of length m ≥ k. The
k-tail of π is the set {πm−k, . . . , πm−1} of the last k states of π. Note that since π is
simple the size of its k-tail is k.

A run r = r0, r1, · · · of A on w = σ1 · σ2 · · · ∈ Σω is an infinite sequence of
states such that r0 ∈ Q0, and for every i ≥ 0, we have that ri+1 ∈ δ(ri, σi+1). We
sometimes refer to runs as words in Qω. Note that while a deterministic automaton has
at most a single run on an input word, a nondeterministic automaton may have several
runs on an input word. Acceptance is defined with respect to the set of states inf (r) that
the run r visits infinitely often. Formally, inf (r) = {q ∈ Q | for infinitely many i ∈
IN, we have ri = q}. As Q is finite, it is guaranteed that inf (r) �= ∅. The run r is
accepting iff the set inf (r) satisfies the acceptance condition α. We consider here the
Büchi and the co-Büchi acceptance conditions. A set S ⊆ Q satisfies a Büchi acceptance
condition α ⊆ Q if and only if S ∩ α �= ∅. Dually, S satisfies a co-Büchi acceptance
condition α ⊆ Q if and only if S ∩ α = ∅. We say that S is α-free if S ∩ α = ∅. An
automaton accepts a word iff it has an accepting run on it. The language of an automaton
A, denoted L(A), is the set of words that A accepts. We also say that A recognizes the
language L(A). For two automata A and A′, we say that A and A′ are equivalent if
L(A) = L(A′).

We denote the different classes of automata by three letter acronyms in {D,N} ×
{B, C} × {W}. The first letter stands for the branching mode of the automaton (deter-
ministic or nondeterministic); the second letter stands for the acceptance-condition type
(Büchi, or co-Büchi); the third letter indicates that the automaton runs on words.

Different classes of automata have different expressive power. In particular, while
NBWs recognize all ω-regular language [13], DBWs are strictly less expressive than
NBWs, and so are DCWs [12]. In fact, a language L can be recognized by a DBW
iff its complement can be recognized by a DCW. Indeed, by viewing a DBW as a
DCW, we get an automaton for the complementing language, and vice versa. The
expressiveness superiority of the nondeterministic model over the deterministic one
does not apply to the co-Büchi acceptance condition. There, every NCW has an
equivalent DCW.2

3 From NBW to NCW

In this section we describe our main result and point to a family of languagesL1, L2, . . .
such that for all k ≥ 2, an NBW for Lk requires strictly fewer states than an
NCW for Lk.

2 When applied to universal Büchi automata, the translation in [14], of alternating Büchi au-
tomata into NBW, results in DBW. By dualizing it, one gets a translation of NCW to DCW.

On the Relative Succinctness of Nondeterministic Büchi 187

3.1 The Languages Lk

We define an infinite family of languages L1, L2, . . . over the alphabetΣ = {a, b}. For
every k ≥ 1, the language Lk is defined as follows:

Lk = {w ∈ Σω | both a and b appear at least k times in w}.

Since an automaton recognizing Lk must accept every word in which there are at
least k a’s and k b’s, regardless of how the letters are ordered, it may appear as if
the automaton must have two k-counters operating in parallel, which requires O(k2)
states. This would indeed be the case if a and b were not the only letters in Σ, or if
the automaton was deterministic. However, since we are interested in nondeterministic
automata, and a and b are the only letters inΣ, we can do much better. SinceΣ contains
only the letters a and b, one of these letters must appear infinitely often in every word in
Σω. Hence, w ∈ Lk iff w has at least k b’s and infinitely many a’s, or at least k a’s and
infinitely many b’s. An NBW can simply guess which of the two cases above holds, and
proceed to validate its guess (if w has infinitely many a’s as well as b’s, both guesses
would succeed). The validation of each of these guesses requires only one k-counter,
and a gadget with two states for verifying that there are infinitely many occurrences of
the guessed letter. As we later show, implementing this idea results in an NBW with
2k + 1 states.

Observe that the reason we were able to come up with a very succinct NBW for Lk

is that NBW can abstract precise counting by “counting to infinity” with two states. The
fact that NCW do not share this ability [12] is what ultimately allows us to prove that
NBW are more succinct than NCW. However, it is interesting to note that also NCW
for Lk can do much better than O(k2) states. Even though an NCW cannot validate a
guess that a certain letter appears infinitely many times, it does not mean that such a
guess is useless. If an NCW guesses that a certain letter appears infinitely many times,
then it can postpone counting occurrences of that letter until after it finishes counting
k occurrences of the other letter. In other words, w ∈ Lk iff w has either at least k b’s
after the first k a’s, or k a’s after the first k b’s. Following this characterization yields an
NCW with two components (corresponding to the two possible guesses) each with two
k-counters running sequentially. Since the counters are independent of each other, the
resulting NCW has about 4k states instead ofO(k2) states. But this is not the end of the
story; a more careful look reveals that Lk can also be characterized as follows: w ∈ Lk

iff w has at least k b’s after the first k a’s (this characterizes words in Lk with infinitely
many b’s), or a finite number of b’s that is not smaller than k (this characterizes words
in Lk with finitely many b’s). Obviously the roles of a and b can also be reversed. As
we later show, implementing this idea results in an NCW with 3k + 1 states. We also
show that up to one state this is indeed the best one can do.

3.2 Upper Bounds for Lk

In this section we describe, for every k ≥ 1, an NBW with 2k + 1 states and an NCW
with 3k + 1 states that recognize Lk.

Theorem 1. There is an NBW with 2k + 1 states that recognizes the language Lk.

188 B. Aminof, O. Kupferman, and O. Lev

a, b

a a a a

t0

t′
2 t′

kt′
k−1t′

k−2t′
1

a

b

t2 tktk−1tk−2t1

b b b ba, b

a

b b b

a a a

b

a

b

a, b

· · ·

· · ·

Fig. 1. An NBW for Lk with 2k + 1 states

Proof: Consider the automaton in Figure 1. Recall that w ∈ Lk iff w has at least k b’s
and infinitely many a’s, or at least k a’s and infinitely many b’s. The lower branch of
the automaton checks the first option, and the upper branch checks the second option.
Let’s focus on the upper branch (a symmetric analysis works for the lower branch). The
automaton can reach the state marked tk−1 iff it can read k− 1 a’s. From the state tk−1
the automaton can continue and accept w, iff w has at least one more a (for a total of
at least k a’s) and infinitely many b’s. Note that from tk the automaton can only read b.
Hence, it moves from tk to tk−1 when it guesses that the current b it reads is the last b
in a block of consecutive b’s (and thus the next letter in the input is a). Similarly, from
tk−1 the automaton moves to tk if it reads an a and guesses that it is the last a in a block
of consecutive a’s.

Theorem 2. There is an NCW with 3k + 1 states that recognizes the language Lk.

Proof: Consider the automaton in Figure 2. Recall thatw ∈ Lk iffw contains at least k
b’s after the first k a’s, or a finite number of b’s not smaller than k. The upper branch of
the automaton checks the first option, and the lower branch checks the second option.
It is easy to see that an accepting run using the upper branch first counts k a’s, then
counts k b’s, and finally enters an accepting sink. To see that the lower branch accepts
the set of words that have at least k b’s, but only finitely many b’s, observe that every
accepting run using the lower branch proceeds as follows: It stays in the initial state
until it guesses that only k b’s remain in the input, and then it validates this guess by
counting k b’s and entering a state from which only aω can be accepted.

Before we turn to study lower bounds for the languageLk, let us note that the strategies
used in the NBW and NCW in Figures 1 and 2 are very different. Indeed, the first
uses the ability of the Büchi condition to track that an event occurs infinitely often,
and the second uses the ability of the co-Büchi condition to track that an event occurs
only finitely often. Thus, it is not going to be easy to come up with a general linear
translation of NBWs to NCWs that given the NBW in Figure 1 would generate the
NCW in Figure 2.

On the Relative Succinctness of Nondeterministic Büchi 189

a, b

a a a

a

t2k−1
b

t2k

a, b

t0

t′2t′1
b

a

b

t1

b

a

b

a

t′kt′k−1t′k−2
b

aa

b

t2

b

· · · tk−1
a

b

tk

a

b tk+1

a

b

· · ·

· · ·

Fig. 2. An NCW for Lk with 3k + 1 states

3.3 Lower Bounds for Lk

In this section we prove that the constructions in Section 3.2 are optimal. In particular,
this section contains our main technical contribution – a lower bound on the number of
states of an NCW that recognizes Lk.

Let A = 〈Σ,Q, δ,Q0, α〉 be an NBW or an NCW that recognizes the language Lk.
Let qa

0q
a
1q

a
2 · · · be an accepting run of A on the word akbω, and let qb

0q
b
1q

b
2 · · · be an

accepting run of A on the word bkaω. Also, let Qa = {qa
1 , q

a
2 , . . . , q

a
k}, and Qb =

{qb
1, q

b
2, . . . , q

b
k}. Note that A may have several accepting runs on akbω and bkaω, thus

there may be several possible choices ofQa andQb. The analysis below is independent
of this choice. Observe that for every 1 ≤ i ≤ k, the state qa

i can be reached from Q0
by reading ai, and from it the automaton can accept the word ak−ibω. Similarly, the
state qb

i can be reached fromQ0 by reading bi, and from it the automaton can accept the
word bk−iaω. A consequence of the above observation is the following lemma.

Lemma 1. The sets Qa andQb are disjoint, of size k each, and do not intersect Q0.

Proof: In order to see that |Qa| = k, observe that if qa
i = qa

j for some 1 ≤ i < j ≤ k,
then A accepts the word aiak−jbω, which is impossible since it has less than k a’s. A
symmetric argument shows that |Qb| = k. In order to see thatQa ∩Qb = ∅, note that if
qa
i = qb

j for some 1 ≤ i, j ≤ k, then A accepts the word aibk−jaω, which is impossible
since it has less than k b’s. Finally, if qa

i ∈ Q0 for some 1 ≤ i ≤ k, then A accepts the
word ak−ibω, which is impossible since it has less than k a’s. A symmetric argument
shows that Qb ∩Q0 = ∅.

Since obviously |Q0| ≥ 1, we have the following.

Theorem 3. Every NCW or NBW that recognizes Lk has at least 2k + 1 states.

Theorem 3 implies that the upper bound in Theorem 1 is tight, thus the case for NBW
is closed. In order to show that every NCW A = 〈Σ,Q, δ,Q0, α〉 that recognizes the
language Lk has at least 3k states, we prove the next two lemmas.

190 B. Aminof, O. Kupferman, and O. Lev

Lemma 2. If A = 〈Σ,Q, δ,Q0, α〉 is an NCW that recognizes the language Lk, then
there are two (not necessarily different) states qa, qb �∈ α, such that qa and qb are
reachable from each other using α-free paths, and satisfy that A can accept the word
aω from qa, and the word bω from qb.

Proof: Let n be the number of states in A, and let r = r0, r1, · · · be an accepting run
of A on the word (anbn)ω . Observe that since r is an accepting run then inf (r)∩α = ∅.
Since A has a finite number of states, there exists l ≥ 0 such that all the states visited
after reading (anbn)l are in inf (r). Furthermore, there must be a state qa that appears
twice among the n+1 states r2nl, · · · , r2nl+n that r visits while reading the (l+1)− th
block of a’s. It follows that there is 1 ≤ ma ≤ n such that qa can be reached from qa
by reading ama while going only through states not in α. Similarly, there is a state
qb ∈ inf (r) and 1 ≤ mb ≤ n such that qb can be reached from qb by reading bmb while
going only through states not in α. Hence, A can accept the word (ama)ω = aω from
qa, and the word (bmb)ω = bω from qb. Since qa and qb appear infinitely often on the
α-free tail r2nl, · · · of r, they are reachable from each other using α-free paths.

Note that a similar lemma for NBW does not hold. For example, the NBW in Figure 1 is
such that there is no state from which aω can be accepted, and that can be reached from
a state from which bω can be accepted. Also note that there may be several possible
choices for qa and qb, and that our analysis is independent of such a choice.

Lemma 3. Every simple path from Q0 to qa is of length at least k + 1 and its k-tail is
disjoint from Q0 ∪ Qa. Similarly, every simple path from Q0 to qb is of length at least
k + 1 and its k-tail is disjoint from Q0 ∪Qb.

Proof: We prove the lemma for a path π fromQ0 to qa (a symmetric argument works
for a path to qb). By Lemma 2, A can accept the word aω from qa. Hence, A must read
at least k b’s before reaching qa. This not only implies that π is of length at least k+1,
but also that no state in the k-tail of π can be reached (in zero or more steps) from Q0
without reading b’s. Since all states in Q0 ∪Qa violate this requirement, we are done.

Lemmas 1 and 3 together imply that if there exists a simple path π from Q0 to qa
whose k-tail is disjoint fromQb (alternatively, a simple path fromQ0 to qb whose k-tail
is disjoint from Qa), then A has at least 3k + 1 states: Q0, Qa, Qb, and the k-tail of
π. The NCW used to establish the upper bound in Theorem 2 indeed has such a path.
Unfortunately, this is not the case for every NCW recognizingLk. However, as the next
two lemmas show, if the k-tail of π is α-free we can “compensate” for each state (except
for qb

k) common to π and Qb, which gives us the desired 3k lower bound. The proof of
the main theorem then proceeds by showing that if we fail to find a simple path from
Q0 to qa whose k-tail is disjoint from Qb, and we also fail to find a simple path from
Q0 to qb whose k-tail is disjoint fromQa, then we can find a simple path fromQ0 to qa
whose k-tail is α-free.

Lemma 4. There is a one-to-one function fa : Qa \ ({qa
k}∪α) → α\ (Q0∪Qa∪Qb).

Similarly, there is a one-to-one function fb : Qb \ ({qb
k} ∪ α) → α \ (Q0 ∪Qa ∪Qb).

On the Relative Succinctness of Nondeterministic Büchi 191

Proof: We prove the lemma for fb (a symmetric argument works for fa). Let n be
the number of states in A. Consider some qb

i ∈ Qb \ ({qb
k} ∪ α). In order to define

fb(qb
i), take an accepting run r = r0, r1, · · · of A on the word bianbk−iaω. Among the

n+ 1 states ri, · · · , ri+n that r visits while reading the sub-word an there must be two
equal states ri+m = ri+m′ , where 0 ≤ m < m′ ≤ n. Since the word biam(am′−m)ω

has less than k b’s it must be rejected. Hence, there has to be a state si ∈ α along the
path ri+m, · · · , ri+m′ . We define fb(qb

i) = si. Note that si can be reached from Q0 by
reading a word with only i b’s, and that A can accept from si a word with only k − i
b’s. We prove that si �∈ Q0 ∪Qa ∪Qb.

– si �∈ Q0 ∪ Qa ∪ {qb
1, . . . q

b
i−1} because all states in Q0 ∪Qa ∪ {qb

1, . . . q
b
i−1} can

be reached (in zero or more steps) from Q0 by reading less than i b’s, and from si

the automaton can accept a word with only k − i b’s.
– si �= qb

i since si ∈ α and qb
i �∈ α.

– si �∈ {qb
i+1, . . . q

b
k} because si can be reached fromQ0 by reading a word with only

i b’s, and from all states in {qb
i+1, . . . q

b
k} the automaton can accept a word with less

than k − i b’s.

It is left to prove that fb is one-to-one. To see that, observe that if for some 1 ≤
i < j ≤ k we have that si = sj , then the automaton would accept a word with only
i+ (k − j) b’s, which is impossible since i+ (k − j) < k.

The following lemma formalizes our counting argument.

Lemma 5. If there is a simple path π from Q0 to qa, or from Q0 to qb, such that the
k-tail of π is α-free, then A has at least 3k states.

Proof: We prove the lemma for a path π fromQ0 to qa (a symmetric argument works
for a path to qb). By Lemma 1, it is enough to find k−1 states disjoint fromQ0∪Qa∪Qb.
Let P ⊆ Qb be the subset of states of Qb that appear on the k-tail of π, and let R be
the remaining k− |P | states of this k-tail. By Lemma 3 we have that R is disjoint from
Q0 ∪ Qa, and by definition it is disjoint from Qb. We have thus found k − |P | states
disjoint from Q0 ∪Qa ∪Qb. It remains to find a set of states S which is disjoint from
Q0∪Qa∪Qb∪R, and is of size at least |P |−1. Since the k-tail of π is α-free, it follows
from Lemma 4 that for every state qb

i in P , except maybe qb
k, there is a “compensating”

state fb(qb
i) ∈ α\(Q0∪Qa∪Qb). We defineS to be the set S =

⋃
{qb

i∈P,qb
i �=qb

k}
{fb(qb

i)}
of all these compensating states. Since fb is one-to-oneS is of size at least |P |−1. Since
R is α-free and S ⊆ α it must be that S is also disjoint from R, and we are done.

We are now ready to prove our main theorem.

Theorem 4. Every NCW that recognizes the language Lk has at least 3k states.

Proof: As noted earlier, by Lemmas 1 and 3, if there exists a simple path from Q0 to
qa whose k-tail is disjoint fromQb, or if there exists a simple path fromQ0 to qb whose
k-tail is disjoint from Qa, then A has at least 3k + 1 states: Q0, Qa, Qb, and the k-tail
of this path. We thus assume that on the k-tail of every simple path fromQ0 to qa there

192 B. Aminof, O. Kupferman, and O. Lev

is a state from Qb, and that on the k-tail of every simple path from Q0 to qb there is a
state from Qa. Note that since by Lemma 3 the k-tail of every simple path from Q0 to
qb is disjoint fromQb, it follows from our assumption that qa �= qb.

Another consequence of our assumption is that qa is reachable from Qb. Take an
arbitrary simple path from Qb to qa, let qb

i be the last state in Qb on this path, and let
qb
i = v0, · · · , vh = qa be the tail of this path starting at qb

i . Note that if qa ∈ Qb then
h = 0. Define πa to be the path qb

0, · · · , qb
i , v1, · · · , vh. Observe that by Lemma 1, and

the fact that v1, ..., vh are not in Qb, the path πa is simple. Hence, by our assumption,
the k-tail of πa intersects Qb. Since v1, ..., vh are not in Qb, it must be that h < k.

By Lemma 2, qb is reachable from qa without using states in α. Thus, there exists a
simple α-free path qa = u0, ..., um = qb. Since u0 = qa ∈ πa, we can take 0 ≤ j ≤ m
to be the maximal index such that uj appears on πa. Define the path πb, from Q0 to
qb, to be the prefix of πa until (but not including) uj , followed by the path uj, ..., um.
Note that πb is a simple path since by our choice of uj it is the concatenation of two
disjoint simple paths. Hence, by our assumption, there is some state qa

j ∈ Qa on the
k-tail of πb. We claim that qa

j must be on the α-free tail uj , ..., um of πb. Recall that all
the states in πb before uj are also in πa, so it is enough to prove that qa

j is not in πa. By
Lemma 1, qa

j cannot be equal to any of the first i+1 states of πa. By Lemma 3, and the
fact that h < k, it cannot be equal to any of the remaining h states of πa. We can thus
conclude that the tail of πb starting at qa

j is α-free.
We are now in a position to build a new simple path π from Q0 to qa, whose k-tail

is α-free. By Lemma 5, this completes the proof. We first define a path π′ from Q0 to
qa by concatenating to the path qa

0 , q
a
1 , · · · qa

j−1 the tail of πb starting at qa
j , followed by

some α-free path from qb to qa (by Lemma 2 such a path exists). Since π′ may have
repeating states, we derive from it the required simple path π by eliminating repetitions
in an arbitrary way. Observe that the only states in π′ (and thus also in π) that may be in
α are the states {qa

0 , q
a
1 , . . . q

a
j−1}. By Lemma 3, the k-tail of π is disjoint fromQ0∪Qa.

Hence, it must be α-free.

Combining the upper bound in Theorem 1 with the lower bound in Theorem 4, we get
the following corollary.

Corollary 1. For every integer k ≥ 1, there is a language Lk over a two-letter alpha-
bet, such thatLk can be recognized by an NBW with 2k+1 states, whereas the minimal
NCW that recognizes Lk has 3k states.

4 From NCW to NBW

As shown in Section 3, NBWs are more succinct than NCWs. In this section we study
the translation of NCW to NBW and show that the converse is also true. That is, we
show that the known construction that translates an NCW with n states and acceptance
condition α, to an equivalent NBW with 2n− |α| states, is tight. For reference, we first
briefly recall this translation. The translation we present follows [10], which comple-
ments deterministic Büchi automata.

Theorem 5. [10] Given an NCW A = 〈Σ,Q, δ,Q0, α〉 with n states, one can build an
equivalent NBW A′ with 2n− |α| states.

On the Relative Succinctness of Nondeterministic Büchi 193

Proof: The NBW A′ is built by taking two copies of A, deleting all the states in α
from the second copy, and making all the remaining states of the second copy accepting.
Transitions are also added to enable the automaton to move from the first copy to the
second copy, but not back. The idea is that since an accepting run of A visits states in α
only finitely many times, it can be simulated by a run of A′ that switches to the second
copy when states in α are no longer needed. More formally, A′ = 〈Σ, (Q × {0}) ∪
((Q \ α) × {1}), δ′, Q0 × {0}, (Q \ α) × {1}〉, where for every q ∈ Q and σ ∈ Σ we
have δ′(〈q, 0〉, σ) = (δ(q, σ) × {0}) ∪ ((δ(q, σ) \ α) × {1}, and for every q ∈ Q \ α
and σ ∈ Σ we have δ′(〈q, 1〉, σ) = (δ(q, σ) \ α) × {1}.

Observe that if α = ∅, then L(A) = Σ∗, and the translation is trivial. Hence, the
maximal possible blowup is when |α| = 1. In the remainder of this section we prove
that there are NCWs (in fact, DCWs with |α| = 1) for which the 2n − |α| blowup
cannot be avoided.

4.1 The Languages L′
k

We define a family of languages L′
2, L

′
3, . . . over the alphabet Σ = {a, b}. For every

k ≥ 2 we let L′
k = (akbk + akbk−1)∗(akbk−1)ω. Thus, a word w ∈ {a, b}ω is in L′

k

iff w begins with an a, all the blocks of consecutive a’s in w are of length k, all the
blocks of consecutive b’s in w are of length k or k − 1, and only finitely many blocks
of consecutive b’s in w are of length k. Intuitively, an automaton for L′

k must be able
to count finitely many times up to 2k, and infinitely many times up to 2k − 1. The key
point is that while a co-Büchi automaton can share the states of the 2k− 1 counter with
those of the 2k counter, a Büchi automaton cannot.

4.2 Upper Bounds for L′
k

We first describe an NCW (in fact, a DCW) with 2k states that recognizes the language
L′

k. By Theorem 5, one can derive from it an equivalent NBW with 4k − 1 states.

Theorem 6. There is a DCW with 2k states that recognizes the language L′
k.

Proof: Consider the automaton in Figure 3. It is obviously deterministic, and it is easy
to see that it accepts the language akbk−1(akbk−1 + bakbk−1)∗(akbk−1)ω = (akbk +
akbk−1)∗(akbk−1)ω = L′

k.

· · ·a a
t2

a bb
t0 t1 t3 s2s1

a
tk · · ·b

b

sk−1

a

Fig. 3. A DCW for L′
k with 2k states

194 B. Aminof, O. Kupferman, and O. Lev

Note that the NCW in Figure 3 is really a DCW, thus the lower bound we are going to
prove is for the DCW to NBW translation. It is worth noting that the dual translation,
of DBW to NCW (when exists), involves no blowup. Indeed, if a DBW A recognizes a
language that is recognizable by an NCW, then this language is also recognizable by a
DCW, and there is a DCW on the same structure as A for it [6,8].

4.3 Lower Bounds for L′
k

In this section we prove that the NBW obtained by applying the construction in The-
orem 5 to the automaton in Figure 3, is optimal. Thus, every NBW for L′

k has at least
4k− 1 states. Note that this also implies that the upper bound in Theorem 6 is tight too.

We first show that an automaton for L′
k must have a cycle along which it can count

to 2k, for the purpose of keeping track of occurrences of akbk in the input.

Lemma 6. If A = 〈Σ,Q, δ,Q0, α〉 is an NCW or an NBW that recognizes the language
L′

k, then there is a cycle C, reachable from Q0, with at least 2k different states, along
which A can traverse a finite word containing the substring akbk.

Proof: Let n be the number of states in A, and let r = r0, r1, · · · be an accepting run
of A on the word w = (akbk)n+1(akbk−1)ω . Since A has only n states, there must be
1 ≤ i < j ≤ n + 1, such that ri2k = rj2k . Consider the cycle C = ri2k, · · · , rj2k−1.
Note that r0 ∈ Q0 and thus C is reachable from Q0. Also note that j − i ≥ 1, and that
A can traverse (akbk)j−i along C.

We now prove that the states ri2k, · · · , r(i+1)2k−1 are all different, thus C has at
least 2k different states. Assume by way of contradiction that this is not the case, and
let 0 ≤ h < l ≤ 2k − 1 be such that ri2k+h = ri2k+l. Define u = akbk, and let
u = xyz, where x = u1 · · ·uh, y = uh+1 · · ·ul, and z = ul+1 · · ·u2k. Observe
that x and z may be empty, and that since 0 ≤ h < l ≤ 2k − 1, it must be that
0 < |y| < 2k. Also note that A can traverse x along ri2k · · · ri2k+h, and traverse y
along the cycle Ĉ = ri2k+h, · · · , ri2k+l−1. By adding k more traversals of the cycle Ĉ
we can derive from r a run r′ = r0 · · · ri2k+h · (ri2k+h+1 · · · ri2k+l)k+1 · ri2k+l+1 · · ·
on the word w′ = (akbk)ixyk+1z(akbk)n−i(akbk−1)ω . Similarly, by removing from
r a traversal of Ĉ, we can derive a run r′′ = r0 · · · ri2k+hri2k+l+1 · · · on the word
w′′ = (akbk)ixz(akbk)n−i(akbk−1)ω. Since inf (r) = inf (r′) = inf (r′′), and r is
accepting, so are r′ and r′′. Hence, w′ and w′′ are accepted by A.

To derive a contradiction, we show that w′ �∈ L′
k or w′′ �∈ L′

k. Recall that xyz =
akbk and that 0 < |y| < 2k. Hence, there are two cases to consider: either y ∈ a+ +b+,
or y ∈ a+b+. In the first case we get that yk+1 contains either ak+1 or bk+1, which
implies that w′ �∈ L′

k. Consider now the case y ∈ a+b+. Let y = ambt. Since i > 0, the
prefix (akbk)ixzak ofw′′ ends with bkak−mbk−tak. Since all the consecutive blocks of
a’s in w must be of length k, andm > 0, it must be that k−m = 0. Hence,w′′ contains
the substring bkbk−t. Recall that k = m, and that m + t < 2k. Thus, k − t > 0, and
bkbk−t is a string of more than k consecutive b’s. Since no word in L′

k contains such a
substring, we are done.

The following lemma shows that an NBW recognizing L′
k must have a cycle going

through an accepting state along which it can count to 2k− 1, for the purpose of recog-
nizing the (akbk−1)ω tail of words in L′

k.

On the Relative Succinctness of Nondeterministic Büchi 195

Lemma 7. If A = 〈Σ,Q, δ,Q0, α〉 is an NBW that recognizes the language L′
k, then

A has a cycle C, with at least 2k − 1 different states, such that C ∩ α �= ∅.

Proof: Since L(A) is not empty, there must be a state c0 ∈ α that is reachable from
Q0, and a simple cycle C = c0, · · · , cm−1 going through c0. Since C is simple, all its
states are different. It remains to show thatm ≥ 2k− 1. Let u ∈ Σ∗ be such that A can
reach c0 from Q0 while reading u, and let v = σ1 · · ·σm be such that A can traverse v
alongC. It follows thatw = uvω is accepted by A. Since all words in L′

k have infinitely
many a’s and b’s, it follows that a and b both appear in v. We can thus let 1 ≤ j < m
be such that σj �= σj+1. Let x be the substring x = σj · · ·σmσ1 · · ·σj+1 of vv. Since
σj �= σj+1, it must be that x contains one block of consecutive letters all equal to σj+1
that starts at the second letter of x, and another block of consecutive letters all equal to
σj that ends at the letter before last of x. Since |x| = m + 2 we have that x contains
at least one block of consecutive a’s and one block of consecutive b’s that start and end
within the span ofm letters. Recall that since w ∈ L′

k then all the blocks of consecutive
a’s in vω must be of length k, and all the blocks of consecutive b’s in vω must be of
length at least k − 1. Hence, m ≥ k + k − 1.

Theorem 7. Every NBW A = 〈Σ,Q, δ,Q0, α〉 that recognizes the language L′
k has at

least 4k − 1 states.

Proof: By Lemma 6, there is a cycle C = c0, · · · , cn−1, reachable from Q0, with
at least 2k different states, along which A can read some word z = z1 · · · zn con-
taining akbk. By Lemma 7, there is a cycle C′ = c′0, · · · , c′m−1, with at least 2k − 1
different states, going through an accepting state c′0 ∈ α. In order to prove that A has
at least 4k − 1 states, we show that C and C′ are disjoint. Assume by way of con-
tradiction that there is a state q ∈ C ∩ C′. By using q as a pivot we can construct
a run r that alternates infinitely many times between the cycles C and C′. Since C′

contains an accepting state, the run r is accepting. To reach a contradiction, we show
that r is a run on a word containing infinitely many occurrences of bk, and thus it
must be rejecting. Let 0 ≤ l < n and 0 ≤ h < m be such that q = cl = c′h, and
let q0, · · · , qt be a path from Q0 to q (recall that C is reachable from Q0). Consider
the run r = q0 · · · qt−1(c′h · · · c′m−1c

′
0 · · · c′h−1cl · · · cn−1c0 · · · cn−1c0 · · · cl−1)ω . Let

x, y ∈ Σ∗ be such that A can read x along the path q0, · · · qt, and read y while going
from c′h back to itself along the cycle C′. Observe that r is a run of A on the word
w = x · (y · zl+1 · · · zn · z · z1 · · · zl)ω. Since c′0 ∈ α and r goes through c′0 infinitely
many times, r is an accepting run of A on w. Since w contains infinitely many occur-
rences of z it contains infinitely many occurrences of bk, and thus w �∈ L′

k, which is a
contradiction.

Combining the upper bound in Theorem 6 with the lower bound in Theorem 7 we get
the following corollary:

Corollary 2. For every integer k ≥ 2, there is a language L′
k over a two-letter alpha-

bet, such that L′
k can be recognized by a DCW with 2k states, whereas the minimal

NBW that recognizes L′
k has 4k − 1 states.

196 B. Aminof, O. Kupferman, and O. Lev

5 Discussion

We have shown that NBWs are more succinct than NCWs. The advantage of NBWs
that we used is their ability to save states by counting to infinity with two states instead
of counting to k, for some parameter k. The bigger k is, the bigger is the saving. In
our lower bound proof, k is linear in the size of the state space. Increasing k to be
exponential in the size of the state space would lead to an exponential lower bound for
the NBW to NCW translation. Once we realized this advantage of the Büchi condition,
we tried to find an NBW that uses a network of nested counters in a way that would
enable us to increase the relative size of k. We did not find such an NBW, and we
conjecture that the succinctness of the Büchi condition cannot go beyond saving one
copy of the state space. Let us elaborate on this.

The best known upper bound for the NBW to NCW translation is still exponential,
and the upper bound for the NCW to NBW translation is linear. Still, it was much
easier to prove the succinctness of NCWs with respect to NBWs (Section 4) than the
succinctness of NBWs with respect to NCWs (Section 3). Likewise, DCWs are more
succinct than NBWs (Section 4), whereas DBWs are not more succinct than NCWs [6].
The explanation for this quite counterintuitive “ease of succinctness” of the co-Büchi
condition is the expressiveness superiority of the Büchi condition. Since every NCW has
an equivalent NBW, all NCWs are candidates for proving the succinctness of NCW. On
the other hand, only NBWs that have an equivalent NCW are candidates for proving the
succinctness of NBWs. Thus, the candidates have to take an advantage of the strength
of the Büchi condition, but at the same time be restricted to the co-Büchi condition. This
restriction has caused researchers to believe that NBWs are actually co-Büchi-type (that
is, if an NBW has an equivalent NCW, then it also has an equivalent NCW on the same
structure). The results in [8] refuted this hope, and our results here show that NBWs can
actually use their expressiveness superiority for succinctness. While the results are the
first to show such a succinctness, our fruitless efforts to improve the lower bound further
have led us to believe that NBWs cannot do much more than abstracting counting up to
the size of the state space. Intuitively, as soon as the abstracted counting goes beyond
the size of the state space, the language has a real “infinitely often” nature, and it is
not recognizable by an NCW. Therefore, our future research focuses on improving the
upper bound. The very different structure and strategy behind the NBW and NCW in
Figures 1 and 2 hint that this is not going to be an easy journey either.

References

1. Armoni, R., Fix, L., Flaisher, A., Gerth, R., Ginsburg, B., Kanza, T., Landver, A., Mador-
Haim, S., Singerman, E., Tiemeyer, A., Vardi, M.Y., Zbar, Y.: The ForSpec temporal logic: A
new temporal property-specification logic. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002.
LNCS, vol. 2280, pp. 196–211. Springer, Heidelberg (2002)

2. Beer, I., Ben-David, S., Eisner, C., Fisman, D., Gringauze, A., Rodeh, Y.: The temporal logic
Sugar. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 363–367.
Springer, Heidelberg (2001)

3. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Proc. Int.
Congress on Logic, Method, and Philosophy of Science, 1960, pp. 1–12. Stanford University
Press (1962)

On the Relative Succinctness of Nondeterministic Büchi 197

4. Emerson, E.A., Jutla, C.: The complexity of tree automata and logics of programs. In: Proc.
29th IEEE Symp. on Foundations of Computer Science, pp. 328–337 (1988)

5. Accellera Organization Inc (2006), http://www.accellera.org
6. Krishnan, S.C., Puri, A., Brayton, R.K.: Deterministic ω-automata vis-a-vis deterministic

Büchi automata. In: Du, D.-Z., Zhang, X.-S. (eds.) ISAAC 1994. LNCS, vol. 834, pp. 378–
386. Springer, Heidelberg (1994)

7. Kupferman, O.: Tightening the exchange rate beteen automata. In: Duparc, J., Henzinger,
T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 7–22. Springer, Heidelberg (2007)

8. Kupferman, O., Morgenstern, G., Murano, A.: Typeness for ω-regular automata. In: Wang,
F. (ed.) ATVA 2004. LNCS, vol. 3299, pp. 324–338. Springer, Heidelberg (2004)

9. Kupferman, O., Vardi, M.Y.: From linear time to branching time. ACM Transactions on
Computational Logic 6(2), 273–294 (2005)

10. Kurshan, R.P.: Complementing deterministic Büchi automata in polynomial time. Journal of
Computer and Systems Science 35, 59–71 (1987)

11. Kurshan, R.P.: Computer Aided Verification of Coordinating Processes. Princeton Univ.
Press, Princeton (1994)

12. Landweber, L.H.: Decision problems for ω–automata. Mathematical Systems Theory 3, 376–
384 (1969)

13. McNaughton, R.: Testing and generating infinite sequences by a finite automaton. Informa-
tion and Control 9, 521–530 (1966)

14. Miyano, S., Hayashi, T.: Alternating finite automata on ω-words. Theoretical Computer Sci-
ence 32, 321–330 (1984)

15. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proc. 16th ACM Symp. on
Principles of Programming Languages, pp. 179–190 (1989)

16. Rabin, M.O.: Decidability of second order theories and automata on infinite trees. Transac-
tion of the AMS 141, 1–35 (1969)

17. Ravi, K., Bloem, R., Somenzi, F.: A comparative study of symbolic algorithms for the
computation of fair cycles. In: Johnson, S.D., Hunt Jr., W.A. (eds.) FMCAD 2000. LNCS,
vol. 1954, pp. 143–160. Springer, Heidelberg (2000)

18. Safra, S.: On the complexity of ω-automata. In: Proc. 29th IEEE Symp. on Foundations of
Computer Science, pp. 319–327 (1988)

19. Street, R.S., Emerson, E.A.: An elementary decision procedure for the µ-calculus. In:
Paredaens, J. (ed.) ICALP 1984. LNCS, vol. 172, pp. 465–472. Springer, Heidelberg (1984)

20. Vardi, M.Y., Wolper, P.: Automata-theoretic techniques for modal logics of programs. Journal
of Computer and Systems Science 32(2), 182–221 (1986)

21. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Information and Computa-
tion 115(1), 1–37 (1994)

22. Wilke, T.: CTL+ is exponentially more succinct than CTL. In: Pandu Rangan, C., Raman, V.,
Ramanujam, R. (eds.) FST TCS 1999. LNCS, vol. 1738, pp. 110–121. Springer, Heidelberg
(1999)

23. Wolper, P., Vardi, M.Y., Sistla, A.P.: Reasoning about infinite computation paths. In: Proc.
24th IEEE Symp. on Foundations of Computer Science, pp. 185–194 (1983)

http://www.accellera.org

Recurrent Reachability Analysis in Regular
Model Checking

Anthony Widjaja To and Leonid Libkin

LFCS, School of Informatics, University of Edinburgh
{anthony.w.to,libkin}@ed.ac.uk

Abstract. We consider the problem of recurrent reachability over infi-
nite systems given by regular relations on words and trees, i.e, whether
a given regular set of states can be reached infinitely often from a given
initial state in the given transition system. Under the condition that
the transitive closure of the transition relation is regular, we show that
the problem is decidable, and the set of all initial states satisfying the
property is regular. Moreover, our algorithm constructs an automaton
for this set in polynomial time, assuming that a transducer of the tran-
sitive closure can be computed in poly-time. We then demonstrate that
transition systems generated by pushdown systems, regular ground tree
rewrite systems, and the well-known process algebra PA satisfy our con-
dition and transducers for their transitive closures can be computed in
poly-time. Our result also implies that model checking EF-logic extended
by recurrent reachability predicate (EGF) over such systems is decidable.

1 Introduction

Infinite-state systems play an important role in verification as they capture many
scenarios that cannot be adequately described by standard finite-state models.
For example, the behavior of parameterized systems needs to be checked regard-
less of the number of processes, and this is often most suitably represented by
an infinite-state system.

The most common verification problems for such systems can be abstracted
as reachability and recurrent reachability [2, 3, 8, 9]. Reachability asks if a given
state, or a state in a given set, can be reached from an initial state. Checking
these is essential for verifying safety of infinite-state systems, as we want to find
counterexamples to specifications saying that bad states cannot be reached. If we
have slightly weaker specifications saying that undesirable states can only appear
in some initial portion of each execution path, then counterexamples to those
are formalized as recurrent reachability, i.e. the existence of a witnessing path
that infinitely often goes through a given set of states. In the CTL* notation,
recurrent reachability for a set L is EGFL. Observe that although for finite
systems recurrent reachability is reducible to reachability, this is not the case for
infinite systems in general, e.g. lossy channel systems (see [1]).

To make the questions of model checking meaningful for infinite systems, they
need to have an effective finite representation. Often, the state space is described

I. Cervesato, H. Veith, and A. Voronkov (Eds.): LPAR 2008, LNCS 5330, pp. 198–213, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Recurrent Reachability Analysis in Regular Model Checking 199

by regular word or tree languages, and transitions are given by regular word or
tree transducers: this is the general framework of regular model-checking [2, 3].
Without restrictions, this does not guarantee decidability even for the simplest
reachability properties. Hence, one normally restricts the class of transducers
so that their iterations would remain regular [7, 17]. Then such infinite-state
systems have an effective word-automatic or tree-automatic presentation [5, 6].
Some of the most well-known and most studied classes of such systems include
pushdown systems [14, 15, 22, 27], prefix-recognizable graphs [11, 24], ground
tree rewrite systems [13, 19], and the process algebra PA [4, 20, 22].

For such systems, reachability has been extensively studied [3, 9, 14, 15, 16,
17, 23, 27]. Much less is known about recurrent reachability. Unlike reachability,
it is not immediately seen to be decidable even under the assumption that the
transitive closure of the transition relation is representable by a regular trans-
ducer. One recent result [18, 19] showed that recurrent reachability is decidable
for infinite-state transition systems generated by ground tree rewrite systems.

Our main contributions are as follows. We look at arbitrary infinite-state
transition systems that have an automatic representation (either word-automatic
or tree-automatic) and that further satisfy the condition that the transitive
closure of its transition relation is regular. We then show the following:

1. For every regular language L, the set of all states that satisfy a recurrent
reachability property EGFL is also regular. This observation gives rise to
two flavors of the model-checking problem: the global problem is to construct
an automaton accepting the set of states satisfying EGFL, and the local
problem is to verify whether a given word/tree satisfies the property.

2. We give a generic poly-time algorithm that solves both model-checking prob-
lems for EGFL given the following as inputs: word/tree regular transducers
defining a transition relation and its transitive closure, and a nondeterminis-
tic word/tree automaton defining L. For positive answers, our algorithm also
constructs some witnessing infinite paths using Büchi word/tree automata as
finite representations. In particular, if the transducer defining the transitive
closure can itself be computed in poly-time, we obtain a poly-time algo-
rithm for checking recurrent reachability properties. One can also combine
our algorithm with the semi-algorithms for computing iterating transducers
developed in regular model checking (e.g. [2, 3, 7, 17]).

3. We then look at some particular examples of transition systems in which
the transitive closure of the transition relation is regular for which an iterat-
ing transducer is poly-time computable. As corollaries, we obtain poly-time
algorithms for recurrent reachability over pushdown systems, ground tree
rewrite systems, and PA-processes. These also imply that the extension of
the EF-logic [8, 19, 23] with the EGF operator remains decidable for all
those examples. For the first two examples, our results follow from known
results [15, 18, 19] proven using specialized methods for pushdown systems
and ground tree rewrite systems, although their methods do not show how
to compute witnessing paths, which are also of interests in verification. Our
results for PA-processes are new.

200 A.W. To and L. Libkin

Outline of the paper In Section 2, we recall some basic definitions. In Section 3 we
prove our results for transition systems that have word-automatic presentations,
and provide applications to pushdown systems. In Section 4 we prove results for
tree-automatic presentations, and provide applications to ground tree rewrite
systems and PA-processes. We conclude in Section 5 with future work.

2 Preliminaries

Transition systems. Let AP = {P1, . . . , Pn} be a finite set of atomic proposi-
tions. A transition system over AP is

S = 〈S, →, λ〉,

where S is a set of states, →⊆ S×S is a transition relation, and λ : AP → 2S is
a function defining which states satisfy any particular atomic proposition. The
set S is not required to be finite.

We write →+ (resp. →∗) to denote the transitive (resp. transitive-reflexive)
closure of →. If S′ ⊆ S, then pre∗(S′) (resp. post∗(S′)) denotes the set of states
s that can reach (resp. be reached from) some state in S′.

Recurrent reachability. Given a transition system S = 〈S,→, λ〉 and a set
S′ ⊆ S, we write s →ω S′ iff there exists an infinite sequence {si}i∈N such
that s0 = s and si ∈ S′ and si−1 →+ si for all i > 0. By transitivity of →+,
every infinite subsequence of such a sequence {si}i∈N that starts with s0 is also
a witness for s→ω S′. We write Rec(S′) to denote the set of states s such that
s →ω S′. We will also write Rec(S′,→+) to emphasize the transitive binary
relation in use.

Words, Trees, and Automata. We assume basic familiarity with automata
on finite and infinite words and trees (see [12, 25]). Fix a finite alphabet Σ. For
each finite word w = w1 . . . wn ∈ Σ∗, we write w[i, j], where 1 ≤ i ≤ j ≤ n, to
denote the segment wi . . . wj . Given an automaton A = (Σ,Q, δ, q0, F), a run of
A on w is a function ρ : {0, . . . , n} → Q with ρ(0) = q0 that obeys δ. In this case,
the length ‖ρ‖ of ρ is n. The last state ρ(n) appearing in ρ is denoted by last(ρ);
the first state ρ(0) is denoted by first(ρ). We also define run segments to be runs
that do not necessarily start from q0. Given a run segment ρ′ : {0, . . . ,m} → Q
such that first(ρ′) = last(ρ), we may concatenate ρ and ρ′ to obtain a new
run ρ , ρ′ : {0, . . . , n + m} → Q defined in the obvious way. We also use the
notation ρ[i, j] to denote the segment ρ(i) . . . ρ(j). A run on an ω-word w ∈ Σω

is a function ρ : N → Q with ρ(0) = q0 that obeys δ. We use abbreviations NWA
and NBWA for nondeterministic (Büchi) word automata.

Given a finite direction alphabet Υ , a tree domain is a non-empty prefix-closed
set D ⊆ Υ ∗. The empty word (denoted by ε) is referred to as the root. Words
u ∈ D so that no ui is in D are called leaves. A tree T is a pair (D, τ), where D
is a tree domain and τ is a node-labeling function mapping D to Σ. The tree T
is said to be finite if D is finite; otherwise, it is said to be infinite. The tree T is

Recurrent Reachability Analysis in Regular Model Checking 201

said to be complete if, whenever u ∈ D, if ui ∈ D for some i ∈ Υ , then uj ∈ D
for all j ∈ Υ . If T is infinite, it is said to be full if D = Υ ∗. The set of all finite
trees over Υ and Σ is denoted by TreeΥ (Σ). If Υ = {1, 2}, we write Tree2(Σ)
for TreeΥ (Σ).

A (top-down) tree automaton A = (Σ,Q, δ, q0, F) over finite Σ-labeled trees
has a transition function δ : Q×Σ → 2Qm

, wherem = |Υ |. For our constructions,
it will be most convenient to define runs on trees with virtual leaf nodes. We
define virt(T) to be the (Σ∪⊥)-labeled Υ -tree (D′, τ ′) such that D′ := D∪{vi :
v ∈ D, i ∈ Υ} and if u ∈ D, then τ ′(u) := τ(u); if u /∈ D, then τ ′(u) = ⊥. Notice
that virt(T) is complete. A run of A on T , i.e. a mapping ρ : D′ → Q, starts in
the initial state q0 and for each node u labeled a with children u1, . . . , um, we
have (ρ(u1), . . . , ρ(um)) ∈ δ(q, a). A run is accepting if ρ(u) ∈ F for each leaf
u ∈ D′.

We abbreviate nondeterministic tree automata as NTA, and write NBTA for
tree automata over full infinite trees with a Büchi acceptance condition (that
will be sufficient for our purposes). For all kinds of automata, L(A) stands for
the word or tree languages accepted by A. Also for all types of automata A, we
write Aq for A in which the initial state is set to q.

Transducers. These will be given by letter-to-letter automata that accept bi-
nary (and, more generally, k-ary) relations over words and trees (cf. [5, 6]). We
start with words. Given two words w = w1 . . . wn and w′ = w′

1 . . . w
′
m over the

alphabet Σ, we define a word w ⊗ w′ of length k = max{n,m} over alphabet
Σ⊥ ×Σ⊥, where Σ⊥ = Σ ∪ {⊥} and ⊥/∈ Σ, as follows:

w ⊗ w′ =
[
a1
b1

]
. . .

[
ak

bk

]
, where ai =

{
wi i ≤ n

⊥ i > n,
and bi =

{
w′

i i ≤ m

⊥ i > m.

In other words, the shorter word is padded with ⊥’s, and the ith letter of w⊗w′ is
then the pair of the ith letters of padded w and w′. A letter-to-letter automaton
is simply an automaton over Σ⊥×Σ⊥, and a binary relation R over Σ∗ is regular
if the set {w ⊗ w′ : (w,w′) ∈ R} is accepted by a letter-to-letter automaton R.
We shall refer to such an automaton as a transducer over Σ∗, since it can be
alternatively viewed as mapping words w ∈ Σ∗ nondeterministically into words
w′ so that w ⊗ w′ is accepted by R.

Given two trees T1 = (D1, τ1) and T2 = (D2, τ2), we define T = T1 ⊗ T2 as a
tree over the labeling alphabet Σ2

⊥ similarly to the definition of w⊗w′. That is,
the domain of T is D1 ∪D2, and the labeling τ : D1 ∪D2 → Σ2

⊥ is defined as
τ(u) = (a1, a2) so that ai = τi(u) if u ∈ Di and ⊥ otherwise, for i = 1, 2.

As for words, a binary relation R over TreeΥ (Σ) is regular if there is a tree
automaton R over TreeΥ (Σ2

⊥) accepting the set {T1 ⊗ T2 | (T1, T2) ∈ R}. We
also view it as a transducer that nondeterministically assigns to a tree T1 any
tree T2 so that (T1, T2) ∈ R. If the binary relation R defined by a transducer R
is transitive, we shall refer to R itself as being transitive.

Automatic transition systems. In this paper, we deal with infinite transition
systems that can be finitely represented by word or tree automata. We say that

202 A.W. To and L. Libkin

a transition system S = 〈S, →, λ〉 over AP is word-automatic if, for some finite
alphabet Σ, we have S = Σ∗, the relation → is a regular relation on S, and
each λ(Pi) is a regular subset of S. Likewise, a transition system S over AP is
tree-automatic if, for some Υ and Σ, we have S = TreeΥ (Σ), and all of → and
λ(Pi)’s are regular tree relations/languages over TreeΥ (Σ).

We measure the size of such a word- or tree-automatic transition system S
as the total size of the transducer for →, and the automata for S and λ(Pi), for
Pi ∈ AP. We shall assume that these are nondeterministic.

As mentioned already, pushdown systems and prefix-recognizable graphs are
examples of word-automatic infinite transition systems, while PA-processes and
graphs generated by ground tree rewrite systems are examples of tree-automatic
transition systems.

3 Recurrent Reachability: The Word Case

We call a word-automatic transition system S = 〈S,→, λ〉 transitive if the re-
lation →+ is regular. As we shall see shortly, if S is transitive, then the set
Rec(L) is regular too, for an arbitrary regular language L. This gives rise to two
variants of the model-checking problem for recurrent reachability: in the global
model-checking problem, we are given S and a language L represented by an
NWA A, and we want to construct an NWA accepting Rec(L(A)). In the local
version, we also have a word w, and we must check whether w ∈ Rec(L(A)).
That is,

Global

model-checking:

Input: 1) A transitive word-automatic S
2) An NWA A

Output: A description of Rec(L(A))

Local

model-checking:

Input: 1) A transitive word-automatic S
2) An NWA A
3) a word w

Output: yes, if w→ω L(A)
no, otherwise

Throughout this section, we assume that the transition relation → of transitive
S is given by a transducer R, and that R+ is the transducer for →+ (which exists
by the transitivity assumption). We shall also use the transducer for →∗, denoted
by R∗. It can be obtained from R+ by letting it accept pairs w ⊗ w.

Theorem 1. Given a transitive word-automatic transition system S = 〈S,→, λ〉
and an NWA A, the set Rec(L(A)) of states w such that w →ω L(A) is regular.

Moreover, if the transducer R+ for →+ is computable in time t(|R|), then
one can compute an NWA recognizing Rec(L(A)) of size O(|R+|2×|A|) in time
t(|R|) +O(|R+|3 × |A|2).

Recurrent Reachability Analysis in Regular Model Checking 203

Corollary 2. Given a transitive word-automatic transition system S = 〈S,→, λ〉
and an NWA A, such that the transducer R+ is poly-time computable, both global
and local model-checking for recurrent reachability are solvable in poly-time.

As another corollary, consider the EF,EX-fragment of CTL, known as the EF-
logic [23, 27]. Its formulae over AP = {P1, . . . , Pn} are given by

ϕ,ϕ′ := " | Pi, i ≤ n | ϕ ∨ ϕ′ | ¬ϕ | EXϕ | EFϕ.

Each formula, evaluated over a transition system S = 〈S,→, λ〉, defines a set
[[ϕ]]S ⊆ S as follows:

(1) [["]]S = S; (2) [[Pi]]S = λ(Pi);
(3) [[ϕ ∨ ϕ′]]S = [[ϕ]]S ∪ [[ϕ′]]S ; (4) [[¬ϕ]]S = S − [[ϕ]]S ;
(5) [[EXϕ]]S = {s | ∃s′ : s→ s′ and s′ ∈ [[ϕ]]S};
(6) [[EFϕ]]S = {s | ∃s′ : s→∗ s′ and s′ ∈ [[ϕ]]S}.

If →∗ is given by a regular transducer, then [[ϕ]]S is clearly effectively regular
[6], and so the model-checking problem for EF-logic is decidable. We now ex-
tend this to the (EF+EGF)-logic, defined as the extension of EF-logic with the
formulae EGFϕ with the semantics

[[EGFϕ]]S = Rec([[ϕ]]S ,→+) = {s | s→ω [[ϕ]]S}.

Theorem 1 extends decidability to (EF+EGF)-logic:

Corollary 3. If S = 〈S,→, λ〉 is a transitive word-automatic transition sys-
tem such that the transducer R+ is computable, then for each formula ϕ of
(EF+EGF)-logic, the set [[ϕ]]S is regular, and an NWA defining [[ϕ]]S can be
effectively constructed.

We now prove Theorem 1. Throughout the proof, we let M stand for R+ and use
unambiguous abbreviations such as Rec(A,M) for Rec(L(A), L(M)). By defi-
nition, we have w ∈ Rec(A,M) iff there exists a sequence {si}i∈N of words with
s0 = w such that si−1 ⊗ si ∈ L(M) and si ∈ L(A) for all i > 0. We now divide
Rec(A,M) into two sets Rec1(A,M) and Rec2(A,M), where Rec1(A,M) con-
tains words with a witnessing infinite sequence {si}i∈N that satisfies sj = sk for
some j < k, and Rec2(A,M) contains words with a witnessing infinite sequence
{si}i∈N that satisfies sj �= sk for all distinct j, k ∈ N. We shall write Rec1 and
Rec2 when the intended automata A and M are clear from the context. Now
notice that Rec(L(A)) = Rec1 ∪ Rec2. It is easy to construct an NWA that
recognizes Rec1. Observe that, for all word w, we have w ∈ Rec1 iff there exists
a word w′ such that w →∗ w′, w′ →+ w′, and w′ ∈ L(A). By taking a product
and then applying projection (e.g. see [6]), we can compute an NWA A1 that
recognizes Rec1 in time O(|R+|2 × |A||) with |A| = O(|R+|2 × |A|).

Thus, it remains to construct the automaton A2 for Rec2. We shall first com-
pute a Büchi automaton B that recognizes an ω-word which represents the wit-
nessing infinite sequence for membership in Rec2. Once B is constructed, it is
easy to obtain A2 as we shall see later. The most obvious representation of the

204 A.W. To and L. Libkin

infinite sequence {si}i∈N is s0⊗s1⊗ The problem with this representation is
that it requires an infinite alphabet, and possibly infinitely many copies of the
automata A and M to check whether si ∈ L(A) and si−1 →+ si for all i > 0.
Therefore, the first step towards solving the problem is to analyze the infinite
witnessing paths and to show that it is sufficient to consider only infinite se-
quences of a special form. For the rest of this section, we let A = (Q1, δ1, q

1
0 , F1)

and M = R+ = (Q2, δ2, q
2
0 , F2).

Lemma 4. For every word w ∈ Σ∗, it is the case that w ∈ Rec2(A) iff there
exist two infinite sequences {αi}i∈N and {βi}i∈N of words over Σ such that

1. α0 = w and |αi| > 0 for all i > 0,
2. |αi| = |βi| for all i ∈ N,
3. there exists an infinite run r of A on β0β1 . . . such that, for all i ∈ N, the

automaton Aq accepts αi+1, where q = r(|β0 . . . βi|),
4. there exists an infinite run r′ of M on (β0 ⊗ β0)(β1 ⊗ β1) . . . such that, for

all i ∈ N, Mq accepts αi ⊗ βiαi+1 where q = r′(|β0 . . . βi−1|).

One direction of the lemma is easy: if 1)–4) hold, then from the infinite sequences
{αi}i≥0 and {βi}i≥0 we can form a new sequence {si}i≥0 with si := β0 . . . βi−1αi.
Condition (3) ensures that si ∈ L(A) for all i > 0, and condition (4) implies
that si →+ si+1 for all i ≥ 0. This implies that w ∈ Rec2(A) and thus proving
sufficiency in Lemma 4.

The idea of the proof of Theorem 1 is that the sequences {αi}i≥0 and {βi}i≥0
compactly represent a sequence {si}i≥0 witnessing w ∈ Rec2(A) . We shall later
construct a Büchi automaton that recognizes precisely all ω-words of the form

(α0 ⊗ β0)
[
#
#

]
(α1 ⊗ β1)

[
#
#

]
(α2 ⊗ β2)

[
#
#

]
. . . (∗)

such that the sequences {αi}i≥0 and {βi}i≥0 satisfy r.h.s. of Lemma 4. From such
an automaton B it is easy to obtain an automaton recognizing α0 = w ∈ Rec2.

Now we shall prove the other direction in Lemma 4: that the sequences {αi}i≥0
and {βi}i≥0 exist under the assumption w ∈ Rec2(A). We will first need to ex-
tend the definition of Rec2(N , T) to allow not necessarily transitive transducers
T : w ∈ Rec2(N , T) iff there exists a sequence {si}i≥0 of words such that s0 = w,
si �= si′ for all distinct i, i′ ∈ N, si ∈ L(N) for all i > 0, and sj ⊗ sk ∈ L(T) for
all k > j ≥ 0.

Lemma 5. Suppose N and T are, respectively, an automaton and a transducer
over Σ. For every word w ∈ Σ∗, if w ∈ Rec2(N , T), then there exists a word
w′w′′ such that

1. |w′| = |w| and |w′′| > 0,
2. w ⊗ w′w′′ ∈ L(T),
3. there exist an accepting run r of N on w′w′′, and a run r′ of T on w′ ⊗ w′

such that w′′ ∈ Rec2(N q1 , T q′
1), where q1 = r(|w|) and q′1 = r′(|w|).

Recurrent Reachability Analysis in Regular Model Checking 205

Proof. Suppose that w ∈ Rec2(N , T). Then, there exists an infinite sequence
σ = {si}i∈N such that s0 = w, si �= si′ for all distinct i, i′ ∈ N, and it is the
case that, for all i > 0, the word si is in L(N) with accepting run ηi, and for
all distinct pair of indices i′ > i ≥ 0, we have si ⊗ si′ ∈ L(T). As there are only
finitely many different words of length |w| but infinitely many different words in
σ, we may assume that |si| > |w| for all i ≥ 1; for, otherwise, we may simply
omit these words from σ. Now every word si, where i > 0, can be written as
si = uivi for some words ui, vi such that |ui| = |w| and |vi| > 0. As there are
only finitely many different words of length |w| and finitely many different runs
of N of length |w|, by pigeonhole principle there must exist k > 0 such that
uj = uk and ηj [0, |w|] = ηk[0, |w|] for infinitely many j > 0. Let w′ := uk and
η := ηk[0, |w|]. Therefore, we may discard all words si in σ with i ≥ 1 such that
ui �= w′ or η is not a prefix of ηi. By renaming indices, call the resulting sequence
σ = {si}i∈N and, for all i ≥ 1, denote by ηi the accepting run of N on si that
has η as a prefix. Notice that σ is still a witness for w ∈ Rec2(N , T). So, let
θj,k, where 0 ≤ j < k, be the accepting run of T on sj ⊗ sk. Let C be the finite
set of all runs of T on w′ ⊗ w′. Notice that it is not necessarily the case that
|C| = 1 as T is nondeterministic. Consider the edge-labeled undirected graph
G = (V, {Eu}u∈C) such that V = Z+ and

Eu = {{j, k} : 0 < j < k and u is a prefix of θj,k }.

Notice that {Eu}u∈C is a partition of {{j, k} : j �= k, j, k > 0}, and so G is a
complete graph. By (infinite) Ramsey theorem,G has a monochromatic complete
infinite subgraph H = (V ′, Eu) for some u ∈ C. Set r′ := u. Notice that if V ′

contains the elements i1 < i2 < . . ., then θij ,ik
with k > j ≥ 1 has u as a

prefix. Therefore, we can discard all words si (i > 0) in σ such that i /∈ V ′

and by renaming indices call the resulting sequence σ = {si}i∈N. We also adjust
the sequence {ηi}i>0 of accepting runs by omitting the appropriate runs and
adjusting indices. We now set w′′ to be the unique word v such that s1 = w′v. It
is easy to see that (1) and (2) are satisfied. Setting r = η1, it is easy to check that
w′′ ∈ Rec2(N q1 , T q′

1) with witnessing sequence {ti}i>0, where ti is the unique
word such that si = w′ti for all i > 0. �	

Now it is not difficult to inductively construct the desired sequences {αi}i≥0 and
{βi}i≥0 by using lemma 5 at every induction step. The gist of the proof is that
from the word w′w′′ given by lemma 5 at induction step k, we will set βk = w′,
αk+1 = w′′, and extend the partial runs r and r′ in lemma 4. Notice that we
now have w′′ ∈ Rec2(N q1 , T q′

1), which sets up the next induction step. See full
version for a detailed argument. This completes the proof of lemma 4.

Now we construct a Büchi automaton B accepting ω-words of the form (∗),
where αi’s and βi’s are given by Lemma 4. We first give an informal description
of how to implement B. The automaton B will attempt to guess the runs r
and r′, while at the same time checking that the runs satisfy conditions 3–4 in
Lemma 4. To achieve this, B will run a copy of A and M, while simultaneously
also running a few other copies of A and M to check that the runs r and r′

guessed so far satisfy conditions 3) and 4) along the way. The automaton B

206 A.W. To and L. Libkin

Box 3

[
#
#

] [
a
b

]

[
#
#

]Box 1 Box 2

Fig. 1. A bird’s eye view of the Büchi automaton B

consists of three components depicted as Boxes 1, 2, and 3 in Figure 1. The first
box is used for reading the prefix of the input before the first occurrence of

[
#
#

]
,

while the other boxes are used for reading the remaining suffix. Boxes 2–3 are
essentially identical, i.e., they have the same sets of states and essentially the
same transition functions. When B arrives in Box 2, it will read a single letter
in Σ2 and goes to Box 3 so as to make sure that |αi| > 0 for each i > 0. When
B is in Box 3, it will go to Box 2 upon reading the letter

[
#
#

]
. We will set all

states in Box 2 as the final states so as to make sure that infinitely many
[
#
#

]
is seen, i.e., the sequences {αi}i and {βi}i are both infinite, and each words αi

and βi are finite.
More formally, the automaton B = (Σ2 ∪ {

[
#
#

]
}, Q, δ, q0, F) is defined as fol-

lows. We set Q := (Q1 ×Q2 ×Q2) � (Q1 ×Q2 ×Q1 ×Q2 ×Q2 × {1, 2}), where
Q1 ×Q2 ×Q2 are the states in box #1, and Q1 ×Q2 ×Q1 ×Q2 ×Q2 × {i} are
states in box #(i + 1). The initial state is q0 := (q10 , q

2
0 , q

2
0). The first and the

last components in each state are meant for guessing the infinite runs r and r′.
The second component of each state in box #1 is used for guessing a prefix of
the accepting run of M on α0⊗β0α1. The automaton B will finish this guessing
when it reaches box #3 upon the completion of parsing α1 ⊗ β1. When B is
presently in box #2 or #3 and reading αi⊗βi, where i > 0, the third and fourth
components of the states are used for checking that β0 . . . βi−1αi ∈ L(A) and
β0 . . . βi−2αi−1 ⊗ β0 . . . βi−1αi ∈ L(M), respectively. At the same time, the sec-
ond component will be checking that β0 . . . βi−1αi⊗β0 . . . βiαi+1 ∈ L(M), which
will be completed in the next iteration. We now formally define the transition
function. We set

δ((q, q′, q′′),
[
a
b

]
) :=

⎧⎪⎨⎪⎩
δ1(q, b) × δ2(q′,

[
a
b

]
) × δ2(q′′,

[
b
b

]
) , if a, b �= #

(q, q′′, q, q′, q′′, 1) , if a = b = #
∅ , otherwise.

and, when B is in a state in Q1 ×Q2 ×Q1 ×Q2 ×Q2 × {i}, where i = 1, 2, we
define

δ((q1, q2, q′1, q
′
2, q

′′
2 , i),

[
a
b

]
) := δ1(q1, b) × δ2(q2,

[
a
b

]
) × δ1(q′1, a) ×

δ2(q′2,
[
⊥
a

]
) × δ2(q′′2 ,

[
b
b

]
) × {2}

Recurrent Reachability Analysis in Regular Model Checking 207

if a, b �= #. If q′1 ∈ F1, and q′2 ∈ F2, then we set

δ((q1, q2, q′1, q
′
2, q

′′
2 , 2),

[
#
#

]
) = (q1, q′′2 , q1, q2, q

′′
2 , 1).

Finally, the set of final states are F := Q1 ×Q2 ×Q1 ×Q2 ×Q2 ×{1}. It is easy
to see that B, as claimed, recognizes exactly ω-words of the word of the form (∗)
such that the sequences {αi}i∈N and {βi}i∈N satisfy the conditions in Lemma 4.

Now, from B we can easily compute the automaton A2 = (Q′, Σ, δ′, q′0, F
′)

that recognizes Rec2. Roughly speaking, the automaton A2 will accept the set of
finite words α0 such that there exist two sequences {αi}i>0 and {βi}i≥0 such that
the ω-word (∗) is accepted by B. Therefore, we will set the new set of states Q′

to be Q1 ×Q2×Q2, i.e., the first component of B in Fig. 1. We apply projection
operation on the transition function δ of B to obtain δ′. More formally, if a ∈ Σ,
we set

δ′((q1, q2, q′2), a) =
∨
b∈Σ

δ((q1, q2, q′2),
[
a
b

]
).

Finally, the new set F ′ of final states will those states in Q′ from which B
can accept some ω-words of the form

[
#
#

]
w for some ω-word w. For this, we

can apply the standard algorithm for testing nonemptiness for Büchi automata,
which takes linear time. Theorem 1 is now immediate. �

Application: Pushdown systems. We shall use the definition of [10, 11, 22],
which subsumes a more common definition of [14, 15, 27] based on configurations
of pushdown automata and transitions between them. A pushdown system over
the alphabet Σ is given by a finite set ∆ of rules of the form u → v where
u, v ∈ Σ∗. Let Dom(∆) denote the set of words u for which there is a rule u→ v
in ∆. Then ∆ generates a relation →∆ over Σ∗ as follows: (w,w′) ∈ R∆ iff there
exist x, u, v ∈ Σ∗ such that w = xu, w′ = xv, and u→ v is a rule in ∆. We thus
compute recurrent reachability over pushdown systems 〈Σ∗, →∆, λ〉.

The binary relation →∆ is regular, and can be given by a transducer R∆ whose
size is linear in ‖∆‖ (where ‖∆‖ is the sum of the lengths of each word in ∆).
Caucal [10] proved that, for each pushdown system ∆, the relation →∗

∆ is a poly-
time-computable rational transduction1. Later in [11] he noted that the given
transducer is also regular. For completeness, we sketch how his construction gives
a regular transducer R∗

∆ for →∗
∆ in poly-time. Recall the following well-known

proposition, which is proven using the standard “saturation” construction (e.g.
see [8, 10, 14]).

Proposition 6. Given a pushdown system ∆ and a nondeterministic automa-
ton A, one can compute two automata Apre∗ and Apost∗ for pre∗(L(A)) and
post∗(L(A)) in poly-time.

In fact, the algorithm given in [14] computes the automata in cubic time, and
the sizes of Apre∗ and Apost∗ are at most quadratic in |A|. To construct R∗

∆

using this proposition, we shall need the following easy lemma.
1 Rational transducers are strictly more powerful than regular transducers.

208 A.W. To and L. Libkin

Lemma 7 ([10]). Given a pushdown system ∆ and two words u, v ∈ Σ∗, then
u→∗

∆ v iff there exist words x, y, z ∈ Σ∗ and word w ∈ Dom(∆)∪ {ε} such that
u = xy, v = xz, y →∗

∆ w, and w→∗
∆ z.

Now constructing R∗
∆ is easy. First, we use Proposition 6 to compute the au-

tomata Aw
pre∗ and Aw

post∗ that recognize pre∗(w) and post∗(w) for every w ∈
Dom(∆) ∪ {ε}. Then, on input u ⊗ v, the transducer guesses a word w ∈
Dom(∆) ∪ {ε} and a position at which the prefix x in Lemma 7 ends, and
then simultaneously runs the automata Aw

pre∗ and Aw
post∗ to verify that the top

part y and the bottom part z of the remaining input word (preceding the ⊥
symbol) satisfy y ∈ L(Aw

pre∗) and z ∈ L(Aw
post∗). We thus obtain a transducer

R∗ of size O(‖∆‖2). By taking a product, we compute a transducer R+ of size
O(‖∆‖3) in poly-time. Therefore, Theorem 1 implies the following.

Theorem 8. Both global and local model-checking for recurrent reachability over
pushdown systems are solvable in poly-time.

That is, for a pushdown system ∆ and a nondeterministic automaton A
over an alphabet Σ, one can compute in polynomial time an NWA recognizing
Rec(L(A),→+

∆).

4 Recurrent Reachability: The Tree Case

Recall that in a tree-automatic transition system S = (S,→, λ), the relation →
and the sets λ(Pi)’s are given as tree automata. As in the word case, such a
transition system is said to be transitive if the relation →+ is regular. We now
extend our results from Section 3 to transitive tree-automatic transition systems.

Theorem 9. Given an NTA A and a transitive tree-automatic transition system
S = 〈S,→, λ〉, the set Rec(L(A)) of states T ∈ S such that T →ω L(A) is
regular. Moreover, if the transducer R+ for →+ is computable in time t(|R|),
then one can compute an NTA recognizing Rec(L(A)) of size O(|R+|2 × |A|) in
time t(|R|) +O(|R+|6 × |A|4).

As in the word case, this implies two corollaries:

Corollary 10. If S is transitive and tree-automatic and R+ is poly-time com-
putable, then both global and local model-checking for recurrent reachability are
solvable in poly-time.

Corollary 11. If S = 〈S,→, λ〉 is a transitive tree-automatic transition sys-
tem such that the transducer R+ is computable, then for each formula ϕ of
(EF+EGF)-logic, the set [[ϕ]]S is regular, and an NTA defining [[ϕ]]S can be ef-
fectively constructed.

The proof follows the same basic steps as the proof of Theorem 1: we first show
that it is sufficient to consider only infinite witnessing sequences that have a rep-
resentation as an infinite tree over a finite labeling alphabet; we then construct

Recurrent Reachability Analysis in Regular Model Checking 209

a tree automaton (over infinite trees) with a Büchi acceptance condition that
recognizes such sequences; and from such an automaton we construct a NTA
for Rec(L(A)) by applying projection and checking nonemptiness for Büchi tree
automata. As checking nonemptiness for Büchi tree automata is quadratic [26]
instead of linear as in the word case, the degree of the polynomials in Theorem
9 doubles. While all steps are similar to those in the word case, there are many
technical differences; in particular in the coding of an infinite sequence by a
single infinite tree. See full version for details of the proof.

Application: Ground tree rewrite systems. Ground tree rewrite systems
have been intensely studied in the rewriting, automata, and verification commu-
nities [12, 13, 18, 19]. We now show that a result by Löding [19] on poly-time
model-checking for recurrent reachability and decidability of model checking
(EF+EGF)-logic over such systems, which was proved with a specialized method
for RGTRSs, can be obtained as a corollary of Theorem 9.

A ground tree rewrite system (GTRS) over Σ-labeled Υ -trees is a finite set
∆ of transformation rules of the form t → t′ where t, t′ ∈ TreeΥ (Σ). If we
permit rules of the form L → L′, where L and L′ are tree languages given by
some NTAs, then we call ∆ a regular ground tree rewrite system (RGTRS).
Obviously, RGTRSs generalize GTRSs. We define ‖∆‖ as the sum of the sizes
of automata in ∆. The RGTRS ∆ also generates a binary relation →∆ over
TreeΥ (Σ): For a tree T and a node u in it, let Tu be the subtree of T rooted at
u. Given two trees T and T ′, we let T →∆ T ′ iff there exists a node u in T and
a rule L → L′ in ∆ such that Tu ∈ L and T ′ = T [t′/u] for some t′ ∈ L′, where
T [t′/u] is the tree obtained from T by replacing the node u by the tree t′.

Given ∆, it is easy to compute a tree transducer R∆ for →∆ in time O(‖∆‖);
it guesses a node u in the input tree T ⊗ T ′ and a rule in ∆ to apply at u in T
to obtain T ′. The following has been proven in [13] and [12, chapter 3].

Proposition 12. Given a RGTRS ∆, the transitive closure relation →+
∆ is reg-

ular, and a transducer defining it can be computed in time polynomial in |R∆|.

In fact, the proof for the above proposition constructs “ground tree transducers”,
which are a subclass of the notion of transducers we are considering in this paper
(e.g. see [12, chapter 3]).

Combining this proposition with corollaries 10 and 11, we obtain:

Corollary 13. (Löding [19]) Both global and local model checking for recurrent
reachability over RGTRSs are solvable in poly-time. Model checking (EF+EGF)-
logic over RGTRSs with regular atomic predicates is decidable.

Application: PA-processes. PA [4, 22] is a well-known process algebra al-
lowing sequential and parallel compositions, but no communication. It gener-
alizes basic parallel processes (BPP), and context-free processes (BPA), but is
incomparable to pushdown processes and Petri nets (e.g. see [22]). PA has found
applications in the interprocedural dataflow analysis of parallel programs [16].

210 A.W. To and L. Libkin

We review the basic definitions, following the presentation of [20]: we initially
distinguish terms that are equivalent up to simplification laws. The definition of
PA usually includes transition labels, which we omit to simplify our presentation
(however, the results easily hold when we incorporate transition labels). Fix
a finite set Var = {X,Y, Z, . . .} of process variables. Process terms over Var,
denoted by FVar, are generated by the grammar:

t, t′ := 0 | X, X ∈ Var | t.t′ | t‖t′

where 0 denotes a “nil” process, and t.t′ and t‖t′ are sequential and parallel
compositions, resp. Process terms can be viewed as Σ-labeled binary trees, where
Σ = Var∪{0, ‖, ·}. In particular, inner nodes are always labeled by ‘.’ or ‘‖’, while
leaves are labeled by elements in Var∪{0}. A PA declaration over FVar is a finite
set ∆ of rewrite rules of the form X → t, where X ∈ Var, and t ∈ FVar. We set
Dom(∆) = {X : (X → t) ∈ ∆, for some t ∈ FV ar}, and Var∅ = Var − Dom(∆).
The set ∆ generates a transition relation →∆ on process terms defined by:

t1 → t′1
t1‖t2 → t′1‖t2

t1 → t′1
t1.t2 → t′1.t2 X → t

(X → t) ∈ ∆
t2 → t′2

t1‖t2 → t1‖t′2
t2 → t′2

t1.t2 → t1.t
′
2
t1 ∈ IsNil

Here IsNil is the set of “terminated” process terms, i.e., those in which all
variables are in Var∅. It is easy to see that there is a regular transducer R∆ over
process terms for →∆, whose size is linear in the size ‖∆‖ of ∆. It is defined in
in the same way as for GTRSs, except that when it guesses a leaf node at which
a rule is applied, it must further ensure that v has no ‘.’-labeled ancestor u such
that v is a descendant u1 and that Tu0 is not a terminated process term.

Theorem 14 ([16, 20, 21]). Given a PA declaration ∆ and a NTA A describ-
ing a set of process terms over Var, the sets pre∗(L(A)) and post∗(L(A)) are
regular, for which NTAs can be computed in time O(‖∆‖ × |A|), and one can
construct a regular transducer R+ for →+ in poly-time2.

We consider only languages and atomic propositions that are interpreted as regu-
lar subsets of FV ar. This poses no problem as FV ar is easily seen a regular subset
of Tree2(Σ) and no tree t ∈ FV ar is related by→ to a tree t′ ∈ Tree2(Σ)−FV ar.
From Theorem 14 and Corollaries 10 and 11, we obtain:

Theorem 15. Both global and local model checking for recurrent reachability
over PA are solvable in poly-time. Model checking (EF+EGF)-logic over PA is
decidable.

In the study of PA processes, it is common to use a structural equivalence on
process terms. We now extend our results to PA modulo structural equivalence.
2 Lugiez and Schnoebelen first proved this in [20] for a more general notion of trans-

ducers, but later in [21] realized that regular transducers suffice.

Recurrent Reachability Analysis in Regular Model Checking 211

Let ≡ be the smallest equivalence relation on FV ar that satisfies the following:

t.0 ≡ t 0.t ≡ t t‖0 ≡ t t‖t′ ≡ t′‖t
(t‖t′)‖t′′ ≡ t‖(t′‖t′′) (t.t′).t′′ ≡ t.(t′.t′′)

We let [t]≡ stand for the equivalence class of t and [L]≡ for
⋃

t∈L[t]≡. We write
L/ ≡ for {[t]≡| t ∈ L}. It was shown in [20] that, for each t ∈ FV ar, [t]≡ is a
regular tree language, although the set [L]≡ need not be regular even for regular
L. Given a PA declaration ∆, the equivalence ≡ generates a transition relation
[t]≡ ⇒ [u]≡ over FVar/ ≡ which holds iff there exist t′ ∈ [t]≡ and u′ ∈ [u]≡ such
that t′ → u′. We need the following result:

Lemma 16 ([20]). The relation ≡ is bisimulation: for all t, t′, u ∈ FV ar, if
t ≡ t′ and t→ u, then there exists u′ ∈ FV ar such that t′ → u′ and u ≡ u′.

Now it is not hard to show that, for every NTA A, the set Rec(L(A)) is
closed under ≡, if L(A) is closed under ≡. This also implies that Rec(L(A)) =
[Rec(L(A))]≡ = {t : t ∈ Rec(L(A)/ ≡,⇒+)}. In the following, we consider only
languages that are closed under ≡.

Theorem 17. Given an NTA A such that L(A) is closed under ≡ and a process
term t ∈ FV ar, it is possible to decide whether [t]≡ ⇒ω L(A)/ ≡ in PTIME.

Since Rec(L(A)) = [Rec(L(A))]≡, we need only compute an NTA for Rec(L(A))
and test whether t ∈ Rec(L(A)). These can be done in PTIME by theorem 15.

We now move to model checking (EF+EGF)-logic over PA modulo ≡. Suppose
S = 〈S,→, λ〉 is a transition system generated by some PA-declaration and
that each λ(P) is closed under ≡. In fact, the standard atomic propositions
for PA-processes include sets of process terms of the form [t]≡ and action-based
predicates, i.e., sets of all terms t in which some transitions in ∆ can be applied
(and these are obviously closed under ≡ and of size O(‖∆‖)). Now Lemma 16
implies that [[ϕ]]S is closed under ≡ for (EF+EGF)-formulae ϕ, and we obtain:

Theorem 18. The problem of model checking for (EF+EGF)-logic over PA
modulo ≡ is decidable whenever all atomic propositions are closed under ≡.

5 Future Work

We mention some possible future work. We would like to further study algorith-
mic improvements of our general technique, e.g., in its current form it gives a
polynomial of degree higher than the specialized technique of [19] for RGTRSs.
We would also like to investigate stronger but nonrestrictive conditions that
ensure decidability of stronger logics (e.g. CTL*) within our framework; it is
easy to show that our current condition is insufficient. Finally, we would like
to study when our technique could generate elementary complexity algorithms
for (EF+EGF)-logic, or just EF-logic alone. This problem is still open even for
PA-processes and GTRSs [19, 23].

212 A.W. To and L. Libkin

Acknowledgements. We thank Richard Mayr and anonymous referees for their
helpful comments. The authors were supported by EPSRC grant E005039, the
second author also by EC grant MEXC-CT-2005-024502.

References

1. Abdulla, P.A., Jonsson, B.: Undecidable verification problems for programs with
unreliable channels. Inf. Comput. 130(1), 71–90 (1996)

2. Abdulla, P.A., Jonsson, B., Mahata, P., d’Orso, J.: Regular tree model checking.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 555–568.
Springer, Heidelberg (2002)

3. Abdulla, P.A., Jonsson, B., Nilsson, M., Saksena, M.: A survey of regular model
checking. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp.
35–48. Springer, Heidelberg (2004)

4. Baeten, J., Weijland, W.: Process Algebra. In: CUP (1990)
5. Benedikt, M., Libkin, L., Neven, F.: Logical definability and query languages over

ranked and unranked trees. ACM Trans. Comput. Logic 8(2), 11 (2007)
6. Blumensath, A., Grädel, E.: Automatic structures. In: LICS 2000, pp. 51–60 (2000)
7. Boigelot, B., Legay, A., Wolper, P.: Iterating transducers in the large. In: Hunt

Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 223–235. Springer,
Heidelberg (2003)

8. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata:
Application to model-checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CON-
CUR 1997. LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997)

9. Bouajjani, A., Legay, A., Wolper, P.: Handling liveness properties in (ω-)regular
model checking. In: INFINITY, pp. 101–115 (2004)

10. Caucal, D.: On the regular structure of prefix rewriting. In: Arnold, A. (ed.) CAAP
1990. LNCS, vol. 431, pp. 61–86. Springer, Heidelberg (1990)

11. Caucal, D.: On the regular structure of prefix rewriting. Theor. Comput.
Sci. 106(1), 61–86 (1992)

12. Comon, H., et al.: Tree Automata: Techniques and Applications (2007),
http://www.grappa.univ-lille3.fr/tata

13. Dauchet, M., Tison, S.: The theory of ground rewrite systems is decidable. In:
LICS 1990, pp. 242–248 (1990)

14. Esparza, J., Hansel, D., Rossmanith, P., Schwoon, S.: Efficient algorithms for
model checking pushdown systems. In: Emerson, E.A., Sistla, A.P. (eds.) CAV
2000. LNCS, vol. 1855, pp. 232–247. Springer, Heidelberg (2000)

15. Esparza, J., Kucera, A., Schwoon, S.: Model checking LTL with regular valuations
for pushdown systems. Inf. Comput. 186(2), 355–376 (2003)

16. Esparza, J., Podelski, A.: Efficient algorithms for pre* and post* on interprocedural
parallel flow graphs. In: POPL 2000, USA, pp. 1–11. ACM, New York (2000)

17. Jonsson, B., Nilsson, M.: Transitive closures of regular relations for verifying
infinite-state systems. In: Schwartzbach, M.I., Graf, S. (eds.) TACAS 2000. LNCS,
vol. 1785, pp. 220–234. Springer, Heidelberg (2000)

18. Löding, C.: Model-checking infinite systems generated by ground tree rewriting.
In: Nielsen, M., Engberg, U. (eds.) FOSSACS 2002. LNCS, vol. 2303, pp. 280–294.
Springer, Heidelberg (2002)

19. Löding, C.: Reachability problems on regular ground tree rewriting graphs. Theory
Comput. Syst. 39(2), 347–383 (2006)

http://www.grappa.univ-lille3.fr/tata

Recurrent Reachability Analysis in Regular Model Checking 213

20. Lugiez, D., Schnoebelen, P.: The regular viewpoint on PA-processes. Theor. Com-
put. Sci. 274(1-2), 89–115 (2002)

21. Lugiez, D., Schnoebelen, P.: Decidable first-order transition logics for PA-processes.
Inf. Comput. 203(1), 75–113 (2005)

22. Mayr, R.: Process rewrite systems. Inf. Comput. 156(1-2), 264–286 (2000)
23. Mayr, R.: Decidability of model checking with the temporal logic EF. Theor. Comp.

Sci. 256(1-2), 31–62 (2001)
24. Thomas, W.: Constructing infinite graphs with a decidable MSO-theory. In: Rovan,

B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 113–124. Springer, Heidel-
berg (2003)

25. Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Proc.
Banff Higher-Order Workshop, pp. 238–266

26. Vardi, M.Y., Wolper, P.: Automata-theoretic techniques for modal logics of pro-
grams. JCSS 32(2), 183–221 (1986)

27. Walukiewicz, I.: Model checking CTL properties of pushdown systems. In: Kapoor,
S., Prasad, S. (eds.) FST TCS 2000. LNCS, vol. 1974, pp. 127–138. Springer,
Heidelberg (2000)

Alternation Elimination by Complementation�

(Extended Abstract)��

Christian Dax and Felix Klaedtke

ETH Zurich, Computer Science Department, Switzerland

Abstract. In this paper, we revisit constructions from the literature that
translate alternating automata into language-equivalent nondeterminis-
tic automata. Such constructions are of practical interest in finite-state
model checking, since formulas of widely used linear-time temporal logics
with future and past operators can directly be translated into alternating
automata. We present a construction scheme that can be instantiated for
different automata classes to translate alternating automata into language-
equivalent nondeterministic automata. The scheme emphasizes the core
ingredient of previously proposed alternation-elimination constructions,
namely, a reduction to the problem of complementing nondeterministic
automata. Furthermore, we clarify and improve previously proposed con-
structions for different classes of alternating automata by recasting them
as instances of our construction scheme. Finally, we present new comple-
mentation constructions for 2-way nondeterministic automata from which
we then obtain novel alternation-elimination constructions.

1 Introduction

Alternating automata are a powerful tool in finite-state model checking. Here,
they serve as a glue between declarative specification languages like LTL [26]
and PSL [1] and simple graph-like structures such as nondeterministic Büchi
automata, which are well suited for algorithmic treatment, see e.g., [31]. By
establishing translations from alternating automata to nondeterministic Büchi
automata, one reduces the model checking problem for finite-state systems to
a reachability problem on simple graph-like structures, see e.g., [13]. Similarly,
such translations can be used to solve the satisfiability problem for declarative
specification languages like LTL and PSL.

Translations of declarative specification languages into alternating automata
are usually rather direct and easy to establish due to the rich combinatorial
structure of alternating automata. Translating an alternating automaton into
a nondeterministic Büchi automaton is a purely combinatorial problem. Hence,
using alternating automata as an intermediate step is a mathematically elegant
way to formalize such translations and to establish their correctness. Another

� Supported by the Swiss National Science Foundation (SNF).
�� Due to space limitations, some proofs have been omitted. These can be found in an

extended version of the paper, which is available from the authors’ webpages.

I. Cervesato, H. Veith, and A. Voronkov (Eds.): LPAR 2008, LNCS 5330, pp. 214–229, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Alternation Elimination by Complementation 215

more practical advantage of such translations is that several automata-based
techniques are applicable to optimize the outcome of such translations, e.g.,
simulation-based reduction techniques [9, 10].

Different classes of alternating automata are used for these kinds of trans-
lations depending on the expressive power of the specification language. For
instance, for LTL, a restricted class of alternating automata suffices, namely
the so-called very-weak alternating Büchi automata [21, 27]. These restrictions
have been exploited to obtain efficient translators from LTL to nondeterministic
Büchi automata, see [11]. For more expressive languages like the linear-time µ-
calculus µLTL [2, 28], one uses alternating parity automata, and for fragments
of the standardized property specification language PSL [1], one uses alternating
Büchi automata [5]. If the temporal specification language has future and past
operators, one uses 2-way alternating automata instead of 1-way alternating
automata, see, e.g., [12, 15, 30]. Due to the immediate practical relevance in
finite-state model checking, different constructions have been developed and
implemented for translating a given alternating automaton into a language-
equivalent nondeterministic automaton like the ones mentioned above.

In this paper, we present a general construction scheme for translating al-
ternating automata into language-equivalent nondeterministic automata. In a
nutshell, the general construction scheme shows that the problem of translating
an alternating automaton into a language-equivalent nondeterministic automa-
ton reduces to the problem of complementing a nondeterministic automaton. We
also show that the nondeterministic automaton that needs to be complemented
inherits structural and semantic properties of the given alternating automaton.
We exploit these inherited properties to optimize the complementation construc-
tions for special classes of alternating automata.

Furthermore, we instantiate the construction scheme to different classes of al-
ternating automata. Some of the constructions that we obtain share similar tech-
nical details with previously proposed constructions as, e.g., the ones described
in [11, 17, 22]. Some of them even produce the same nondeterministic Büchi
automata modulo minor technical details. However, recasting these known con-
structions in such a way that they become instances of the construction scheme
increases their accessibility. In particular, correctness proofs become modular
and less involved. Another benefit of utilizing the construction scheme is that
differences and similarities between the translations for the different classes of
alternating automata become apparent.

We also present novel alternation-elimination constructions. These construc-
tions are instances of our construction scheme and utilize a new complementation
construction for so-called loop-free 2-way nondeterministic co-Büchi automata.
In particular, we obtain an alternation-elimination construction that translates
a loop-free 2-way alternating Büchi automaton with n states into a language-
equivalent nondeterministic Büchi automaton with at most O(24n) states. This
construction has potential applications for translating formulas from fragments
of PSL extended with temporal past operators into nondeterministic Büchi au-
tomata. To the best of our knowledge, the best known construction for this class

216 C. Dax and F. Klaedtke

of alternating automata results in nondeterministic Büchi automata of size at
most 2O(n2) [15].

Overall, we see our contributions as twofold. On the one hand, the presented
general construction scheme extracts and uniformly identifies essential ingre-
dients for translating various classes of alternating automata into language-
equivalent nondeterministic ones. Previously proposed alternation-elimination
constructions for several classes of alternating automata, e.g. [11, 12, 15, 25, 28,
30] are based on similar ingredients. On the other hand, we clarify and improve
existing alternation-elimination constructions for different classes of alternating
automata, and we provide novel ones.

We proceed as follows. In Section 2, we give background on alternating au-
tomata. In Section 3, we give the general construction scheme. In Section 4, we
present instances of that construction scheme for different classes of alternating
automata and revisit previously proposed alternation-elimination constructions.
Finally, in Section 5, we draw conclusions.

2 Background

We assume that the reader is familiar with automata theory. In this section, we
recall the relevant background in this area and fix the notation used throughout
this paper.

Given an alphabet Σ, Σ∗ is the set of finite words over Σ and Σω is the set
of infinite words over Σ. Let w be a word over Σ. We denote its length by |w|.
Note that |w| = ∞ if w ∈ Σω. For i < |w|, wi denotes the ith letter of w, and
we write wi for the word w0w1 . . . wi−1, where i ∈ N ∪ {∞} with i ≤ |w|. The
word u ∈ Σ∗ ∪Σω is a prefix of w if wi = u, for some i ∈ N∪ {∞} with i ≤ |w|.

A (Σ-labeled) tree is a function t : T → Σ, where T ⊆ N∗ satisfies the
following conditions: (i) T is prefix-closed (i.e., if w ∈ T and u is a prefix of w
then u ∈ T) and (ii) if xi ∈ T and i > 0 then x(i − 1) ∈ T . The elements in T
are called the nodes of t and the empty word ε is called the root of t. A node
xi ∈ T with i ∈ N is called a child of the node x ∈ T . An (infinite) path in t is
a word π ∈ Nω such that u ∈ T , for every prefix u of π. We write t(π) for the
word t(π0)t(π1) · · · ∈ Σω.

For a set P of propositions, B+(P) is the set of positive Boolean formulas
over P , i.e., the formulas built from the propositions in P , and the connectives
∧ and ∨. Given M ⊆ P and β ∈ B+(P), we write M |= β if the assignment
that assigns true to the propositions in M and assigns false to the propositions
in P \M satisfies β. Moreover, we write M |≡ β if M is a minimal model of β,
i.e., M |= β and there is no p ∈M such that M \ {p} |= β.

In the following, we define 2-way alternating automata, which scan input
words letter by letter with their read-only head. The meaning of “2-way” and
“alternating” is best illustrated by the example transition δ(p, a) = (q,−1) ∨
((r, 0)∧(s, 1)) of such an automaton, where p, q, r, s are states, a is a letter of the
input alphabet, and δ is the transition function. The second coordinate of the tu-
ples (q,−1), (r, 0), (s, 1) specify in which direction the read-only head moves: −1

Alternation Elimination by Complementation 217

for left, 0 for not moving, and 1 for right. The transition above can be read as
follows. When reading the letter a in state p, the automaton has two choices:
(i) It goes to state q and moves the read-only head to the left. In this case, the
automaton proceeds scanning the input word from the updated state and posi-
tion. (ii) Alternatively, it can go to state r and to state s, where the read-only
head is duplicated: the first copy proceeds scanning the input word from the
state r, where the position of the read-only head is not altered; the second copy
proceeds scanning the input word from the state s, where the read-only head is
moved to the right. Note that the choices (i) and (ii) are given by the minimal
models of the example transition δ(p, a), which is a positive Boolean formula
with propositions that are pairs of states and movements of the read-only head.

Let D := {−1, 0, 1} be the set of directions in which the read-only head can
move. Formally, a 2-way alternating automaton A is a tuple (Q,Σ, δ, qI,F),
where Q is a finite set of states, Σ is a finite nonempty alphabet, δ : Q× Σ →
B+(Q× D) is the transition function, qI ∈ Q is the initial state, and F ⊆ Qω is
the acceptance condition. The size |A| of the automaton A is |Q|.

A configuration of A is a pair (q, i) ∈ Q×N. Intuitively, q is the current state
and i is the position of the read-only head in the input word. A run of A on the
word w ∈ Σω is a tree r : T → Q× N such that r(ε) = (qI, 0) and for each node
x ∈ T with r(x) = (q, j), we have that{

(q′, j′ − j) ∈ Q×Z
∣∣ r(y) = (q′, j′), where y is a child of x in r

}
|≡ δ(q, wj) .

Observe that we require here that the set of labels of the children is a mini-
mal model of the positive Boolean formula δ(q, wj). Intuitively, the minimality
requirement prevents the automaton from doing unnecessary work in an accept-
ing run. We need this minimality requirement in Section 3.3. A path π in r
is accepting if q0q1 · · · ∈ F , where r(π) = (q0, i0)(q1, i1) · · · ∈ (Q × N)ω . The
run r is accepting if every path in r is accepting. The language of A is the set
L(A) := {w ∈ Σω | there is an accepting run of A on w}.

In the following, we introduce restricted classes of 2-way alternating automata.
Let A = (Q,Σ, δ, qI,F) be a 2-way alternating automaton.

Note that we do not have any restriction on the acceptance condition F ; it
can be any subset of Qω. However, since this is often too general, one usually
considers automata where the acceptance conditions are specified in a certain
finite way—the type of an acceptance condition. Commonly used types of accep-
tance conditions are listed in Table 1. Here, inf(π) is the set of states that occur
infinitely often in π ∈ Qω and the integer k is called the index of the automaton.
If F is specified by the type τ , we say that A is a τ automaton. Moreover, if
the type of the acceptance condition is clear from the context, we just give the
finite description α instead of F . For instance, a Büchi automaton is given as a
tuple (S, Γ, η, sI, α) with α ⊆ S.

The automaton A is 1-way if δ(q, a) ∈ B+(Q×{1}), for all q ∈ Q and a ∈ Σ.
That means, A can only move the read-only head to the right. If A is 1-way, we
assume that δ is of the form δ : Q×Σ → B+(Q).

The automaton A is nondeterministic if δ returns a disjunction of proposi-
tions for all inputs; A is universal if δ returns a conjunction of propositions for

218 C. Dax and F. Klaedtke

Table 1. Types of acceptance conditions

type: τ finite description, acceptance condition: α, F
α = F ⊆ Q

Büchi F := {π ∈ Qω | inf(π) ∩ F �= ∅}
co-Büchi F := {π ∈ Qω | inf(π) ∩ F = ∅}

α = {F1, . . . , F2k} ⊆ 2Q, where F1 ⊆ F2 ⊆ · · · ⊆ F2k

parity F := {π ∈ Qω | min{i |Fi ∩ inf(π) �= ∅} is even}
co-parity F := {π ∈ Qω | min{i |Fi ∩ inf(π) �= ∅} is odd}

α = {(B1, C1), . . . , (Bk, Ck)} ⊆ 2Q × 2Q

Rabin F :=
⋃

i{π ∈ Qω | inf(π) ∩Bi �= ∅ and inf(π) ∩ Ci = ∅}
Streett F :=

⋂
i{π ∈ Qω | inf(π) ∩Bi = ∅ or inf(π) ∩ Ci �= ∅}

α = {M1, . . . , Mk} ⊆ 2Q

Muller F :=
⋃

i{π ∈ Qω | inf(π) = Mi}

all inputs; A is deterministic if it is nondeterministic and universal. For nonde-
terministic and deterministic automata, we use standard notation. For instance,
if A is nondeterministic, we view δ as a function of the form δ : Q → 2Q×D.
That means, a clause is written as a set. Note that a run r : T → Q × N of a
nondeterministic automaton A on w ∈ Σω consists of the single path π = 0ω.
To increase readabiliy, we call r(π) ∈ (Q×N)ω also a run of A on w. Moreover,
for R ⊆ Q and a ∈ Σ, we abbreviate

⋃
q∈R δ(q, a) by δ(R, a).

3 Alternation-Elimination Scheme

In this section, we present a general construction scheme for translating alter-
nating automata into language-equivalent nondeterministic automata. The con-
struction scheme is general in the sense that it can be instantiated for different
classes of alternating automata. We provide such instances in Section 4. Before
presenting the construction scheme in Section 3.2, we need some preparatory
work, which we present in Section 3.1.

3.1 Memoryless Runs as Words

Let A = (Q,Σ, δ, qI,F) be a 2-way alternating automaton and let r : T → Q×N
be a run of A on the word w ∈ Σω. The run r is memoryless1 if all equally
labeled nodes x, y ∈ T have isomorphic subtrees, i.e., if r(x) = r(y) then for all
z ∈ N∗, xz ∈ T ⇔ yz ∈ T and whenever xz ∈ T then r(xz) = r(yz). We define

M(A) := {w ∈ Σω | there is an accepting memoryless run on w}.
1 The choice of the term “memoryless” becomes clear when viewing a run of an

alternating automaton as a representation of a strategy of the first player in a two-
person infinite game [24]. A memoryless run encodes a memoryless strategy (also
known as a positional strategy) of the first player, i.e., a strategy that does not take
the history of a play into account.

Alternation Elimination by Complementation 219

Note that M(A) ⊆ L(A); however, the converse does not hold in general. The
languages are equal when A is an alternating Büchi, co-Büchi, or parity automa-
ton [8, 17], or an alternating Rabin automaton [14]. For alternating Streett and
Muller automata, the languages can be different. However, such automata can
be translated to language-equivalent alternating parity automata, see [20].

Observe that in a memoryless run r : T → Q×N of A on a word w ∈ Σω, we
can merge nodes with isomorphic subtrees without loosing any information. We
obtain an infinite directed graph, which can be represented as an infinite word
of functions f ∈ (Q→ 2Q×D)ω, where fj(q) returns the labels of the children of
a node x ∈ T with label (q, j). Note that fj(q) is well-defined, since x ∈ T and
y ∈ T have isomorphic subtrees whenever r(x) = r(y).

Definition 1. The induced tree2 t : T → Q× N of the word f ∈ (Q→ 2Q×D)ω

is inductively defined:

(i) we have that ε ∈ T and t(ε) := (qI, 0), and
(ii) for each x ∈ T with t(x) = (p, j) and fj(p) = {(q0, d0), . . . , (qk, dk)}, we

have that x0, . . . , xk ∈ T and t(xi) := (qi, j+di), for each i ∈ N with i ≤ k.

The word f ∈ (Q→ 2Q×D)ω is a run-word of A on w ∈ Σω if the induced tree t
is a run of A on w. Moreover, f is accepting if t is accepting. Finally, we define
L′(A) := {w ∈ Σω | there is an accepting run-word of A on w}.

The following lemma states that automata that accept by run-words are as
expressive as automata that accept by memoryless runs.

Lemma 2. For every 2-way alternating automaton A, M(A) = L′(A).

3.2 Reduction to Complementation

For the following, fix a 2-way alternating automaton A = (Q,Σ, δ, qI,F). More-
over, we abbreviate the function space Q→ 2Q×D by Γ . Without loss of gener-
ality, we assume that A has a rejecting sink state s ∈ Q, i.e., for every a ∈ Σ,
δ(s, a) = (s, 1) and for every u ∈ Q∗, usω �∈ F .

From A we construct the automaton B := (Q,Σ × Γ, η, qI, Q
ω \ F), which

is 2-way and nondeterministic. For q ∈ Q and (a, g) ∈ Σ × Γ , we define the
transition function as

η
(
q, (a, g)

)
:=

{
g(q) if g(q) |≡ δ(q, a),
{(s, 1)} otherwise.

The next lemma is at the core of the results of this paper. It states that the
automaton B rejects exactly those words (w0, f0)(w1, f1) · · · ∈ (Σ × Γ)ω, where
f is an accepting run-word of A on w.
2 The tree t is actually not uniquely determined, since we do not uniquely order the

children of a node in t. However, the order of the children is irrelevant for the results
in this paper, and to simplify matters, we consider two trees as isomorphic if they
only differ in the order of their subtrees.

220 C. Dax and F. Klaedtke

Lemma 3. For all words w ∈ Σω and f ∈ Γω, it holds that

(w0, f0)(w1, f1) · · · ∈ L(B) iff
(i) f is not a run-word of A on w, or
(ii) f is a rejecting run-word of A on w.

The next theorem shows that when L(A) = M(A), the problem of eliminating
the alternation of A (i.e., to construct a language-equivalent nondeterministic
automaton) reduces to the problem of complementing the nondeterministic au-
tomaton B.
Theorem 4. Let C be a nondeterministic automaton that accepts the comple-
ment of L(B) and let D be the projection of C on Σ. If L(A) = M(A) then
L(A) = L(D).

Proof. For a word w ∈ Σω, the following equivalences hold:

w ∈ L(A)
Lemma 2⇔ w ∈ L′(A)
Lemma 3⇔ (w0, f0)(w1, f1) · · · �∈ L(B), for some f ∈ Γω

⇔ (w0, f0)(w1, f1) · · · ∈ L(C), for some f ∈ Γω

⇔ w ∈ L(D) . �	

3.3 On Weak and Loop-Free Automata

In the following, we show that the nondeterministic automaton B inherits proper-
ties from the alternating automaton A. We exploit these properties in Section 4.

Weak Automata. The notion of weakness for automata was introduced in [23]. It
led to new insights (e.g., [6, 16, 17, 23]). Moreover, many operations on weak au-
tomata are often simpler and more efficient to implement than their counterparts
for non-weak automata, see e.g., [11, 17].

The following definition of weakness for an arbitrary acceptance condition F
generalizes the standard definition of weakness for the Büchi acceptance condi-
tion. Let A = (Q,Σ, δ, qI,F) be a 2-way alternating automaton. A set of states
S ⊆ Q is accepting if inf(r(π)) ⊆ S implies r(π) ∈ F , for each run r and each
path π in r. S is rejecting if inf(r(π)) ⊆ S implies r(π) /∈ F , for each run r and
each path π in r. The automaton A is (inherently) weak, if there is a partition on
Q into the sets Q1, . . . , Qn such that (i) each Qi is either accepting or rejecting,
and (ii) there is a partial order - on the Qis such that for every p ∈ Qi, q ∈ Qj ,
a ∈ Σ, and d ∈ D: if (q, d) occurs in δ(p, a) then Qj - Qi. The automaton
A is very-weak (also known as 1-weak or linear), if each Qi is a singleton. The
intuition of weakness is that each path of any run of a weak automaton that gets
trapped in one of the Qis is accepting iff Qi is accepting.

The following lemma shows that in our alternation-elimination scheme, the
weakness of an alternating automaton A transfers to the nondeterministic au-
tomaton B, which needs to be complemented (see Theorem 4).
Lemma 5. Let A be a 2-way alternating automaton and let B be the 2-way
nondeterministic automaton as defined in Section 3.2. If A is weak then B is
weak, and if A is very-weak then B is very-weak.

Alternation Elimination by Complementation 221

Table 2. Sizes of 1-way NBAs obtained by instances of the construction scheme

VABA ABA APA ARA

1-way size O(n2n) O(22n) 2O(nk log n) 2O(nk log nk)

compl. by Corollary 11 by [4] by [18] by [18]

2-way size O(n23n) 2O(n2) 2O((nk)2)

compl. by Theorem 10 by [28] by [28]

2-way + size O(n22n) O(24n)
loop-free compl. by Corollary 9 by Theorem 8

Loop-Free Automata. For a 2-way alternating automaton A = (Q,Σ, δ, qI,F),
we define the set Π(A) as the set of words (q0, j0)(q1, j1) · · · ∈ (Q × N)ω such
that (q0, j0) = (qI, 0) and for all i ∈ N, there is some a ∈ Σ and a minimal model
M ⊆ Q of δ(qi, a) with (qi+1, ji+1− ji) ∈M . The automaton A is loop-free if for
all words π ∈ Π(A), there are no integers i, j ∈ N with i �= j such that πi = πj .
Recall that πi and πj are configurations, which consist of the current state and
the position of the read-only head. So, A does not loop on a branch in a partial
run when scanning an input word.

As in the case of weak automata, the nondeterministic automaton B inherits
the loop freeness of the alternating automaton A in the construction scheme.

Lemma 6. Let A be a 2-way alternating automaton and let B be the 2-way
nondeterministic automaton as defined in Section 3.2. If A is loop-free then B
is loop-free.

4 Instances of the Alternation-Elimination Scheme

In this section, we give instances of the construction scheme presented in
Section 3. For brevity, we use the following acronyms: ABA for 1-way alternat-
ing Büchi automaton, NBA for 1-way nondeterministic Büchi automaton, and
DBA for 1-way deterministic Büchi automaton. We prepend the symbols 2, W,
and V to the acronyms to denote 2-way, weak, and very-weak automata, respec-
tively. Analogously, we use acronyms for co-Büchi, parity, Rabin, and Streett
automata. For instance, co-2WNBA abbreviates 2-way weak nondeterministic
co-Büchi automaton.

Table 2 summarizes some instances of our construction scheme for obtaining
language-equivalent NBAs from alternating automata. The table states the sizes
of the resulting NBAs, where n is the size and k is the index of the given alternating
automaton. Moreover, for each instance in Table 2, we reference the used comple-
mentation construction. We remark that the classes of alternating automata in the
columns VABA, ABA, and APA in Table 2 are relevant in finite-state model check-
ing, since system properties that are given as formulas of the widely used temporal
logics like LTL, PSL, andµLTL or fragments thereof can directly be translated into
alternating automata that belong to one of these classes of automata.

222 C. Dax and F. Klaedtke

All the instances in Table 2 follow the same pattern, which is as follows. Let
us use the notation from Section 3.2. In particular, A is the given alternating
automaton over the alphabet Σ for which we want to construct a language-
equivalent NBA D.

1. From A we construct the nondeterministic automaton B over the extended
alphabet Σ × Γ with the co-acceptance condition of A.

2. We complement the nondeterministic automaton B with the complementa-
tion construction that is referenced in Table 2. We obtain an NBA C over
the alphabet Σ×Γ . Note that in some instances it is necessary to switch to
another acceptance condition in order to apply the referenced complemen-
tation construction. In these cases, we first transform B accordingly. Such
transformations are given in [20].

3. Finally, we project the extended alphabet Σ × Γ of the NBA C to Σ. This
gives us the NBA D.

For instance, if A is an ARA, we construct an NSA B. With the construction
from [18], we complement the NSA B and obtain an NBA C.

Note that with the construction scheme at hand, the only remaining difficult
part is the complementation construction in the second step. In the following
Section 4.1, we present novel complementation constructions that are used by
some of the instances of the construction scheme from Table 2.

4.1 Novel Complementation Constructions

Complementing Loop-Free co-2NBAs. The following construction can be seen as
a combination of Vardi’s complementation construction [29] for 2-way nondeter-
ministic automata over finite words and the Miyano-Hayashi construction [17, 22]
for 1-way alternating Büchi automata. The construction is based on the following
characterization of the words that are rejected by a loop-free co-2NBA.

Lemma 7. Let A = (Q,Σ, δ, qI, F) be a loop-free co-2NBA and w ∈ Σω. It
holds that w �∈ L(A) iff there are words R ∈ (2Q)ω and S ∈ (2Q\F)ω such that

(i) qI ∈ R0,
(ii) for all i ∈ N, p, q ∈ Q, and d ∈ D, if p ∈ Ri, (q, d) ∈ δ(p, wi), and i+d ≥ 0

then q ∈ Ri+d,
(iii) S0 = R0 \ F ,
(iv) for all i ∈ N, p, q ∈ Q \ F , and d ∈ {0, 1}, if p ∈ Si and (q, d) ∈ δ(p, wi)

then q ∈ Si+d,
(v) for all i ∈ N and p, q ∈ Q \ F , if p ∈ Si, (q,−1) ∈ δ(p, wi), and i− 1 ≥ 0

then q ∈ Si−1 or Si−1 = ∅, and
(vi) there are infinitely many i ∈ N such that Si = ∅ and Si+1 = Ri+1 \ F .

Proof (sketch). (⇒) Assume w /∈ L(A), i.e., all runs of A on w visit a state in F
infinitely often. We need the following definitions. A word (q0, j0) . . . (qn, jn) ∈
(Q × N)∗ is a run segment if (qi+1, ji+1 − ji) ∈ δ(qi, wi), for all i < n. The

Alternation Elimination by Complementation 223

run segment is initial if (q0, j0) = (qI, 0). For i ∈ N, we define Ri := {qn ∈
Q | there is an initial run segment (q0, j0) . . . (qn, jn) with jn = i}. Since (qI, 0)
is an initial run segment, R satisfies (i). To show that (ii) holds, assume i ∈ N,
p, q ∈ Q, and d ∈ D. If p ∈ Ri, (q, d) ∈ δ(p, wi), and i + d ≥ 0 then there
is an initial run segment r0 . . . rn ∈ (Q × N)∗ such that rn = (p, i). Hence,
r0 . . . rn(q, i+d) ∈ (Q×N)∗ is also an initial run segment and therefore, q ∈ Ri+d.

It remains to define S ∈ (2Q\F)ω that satisfies (iii)–(vi). In the following, we call
a run segment (q0, j0) . . . (qn, jn) ∈ (Q × N)∗ F -avoiding if qi /∈ F , for all i ≤ n.
For defining S inductively, it is convenient to use the auxiliary set S−1 := ∅.

Let m ∈ N ∪ {−1} such that Sm = ∅. We define T ∈ (Q × N)ω as the
set of F -avoiding run segments that start in Rm+1 \ F , i.e., Ti := {qk ∈
Q | there is an F -avoiding run segment (q0, j0) . . . (qk, jk) with q0 ∈ Rm+1, j0 =
m+ 1, and jk = i}, for i ∈ N. We show that there is an integer n ∈ N such that
Tn = ∅. Assume that such an integer n does not exist. With König’s Lemma it
is easy to see that T contains an infinite F -avoiding run segment. Thus, there is
an accepting infinite run of A on w. This contradicts the assumption w /∈ L(A).
We choose n ∈ N to be minimal and define Sm+1+i := Ti, for i ≤ n.

By construction of S, conditions (iii) and (vi) are satisfied. With a similar
argumentation that we used to show (ii), we see that (iv)–(v) hold.

(⇐) Assume there are words R ∈ (2Q)ω and S ∈ (2Q\F)ω with the conditions
(i)–(vi). Let r := (q0, j0)(q1, j1) · · · ∈ (Q × N)ω be a run of A on w. Due to
conditions (i) and (ii), we have qi ∈ Rji , for each i ∈ N. We show that r is
rejecting.

Suppose that r is accepting. There is a k ∈ N such that qi /∈ F , for all
i > k. Due to condition (vi), there is a breakpoint Sm = ∅ with m > jk and
Sm+1 = Rm+1 \ F . Since r is loop-free, there is an h > k such that jh = m+ 1.
Without loss of generality, we assume that h is maximal. Since r is loop-free and
the set Q is finite, such an h exists. We have ji > m+ 1, for all i > h.

Since qh ∈ Rjh
and qh /∈ F , we have qh ∈ Sjh

. Using the conditions (iv) and
(v), we obtain by induction that qi ∈ Sji , for all i > h. Since r is loop-free, there
is no n > m such that Sn = ∅. We obtain a contradiction to condition (vi). �	

The following theorem extends the Miyano-Hayashi construction to 2-way au-
tomata. Roughly speaking, the constructed NBA C guesses a run that satisfies
the conditions of Lemma 7, for the given co-2NBA and an input word.

Theorem 8. For a loop-free co-2NBA B, there is an NBA C that accepts the
complement of L(B) and has 1 + 24|B| states.

Proof (sketch). Let B = (Q,Σ, δ, qI, F) be a loop-free co-2NBA. We define the
NBA C := (P,Σ, η, pI, G), where P := (2Q × 2Q\F × 2Q × 2Q\F) ∪ {pI}, and
G := 2Q × {∅} × 2Q × 2Q\F . The transition function η is defined as follows. For
the initial state pI and a ∈ Σ, we have that η(pI, a) / (R0, S0, R1, S1) iff the
following conditions hold:

– qI ∈ R0,
– for all p ∈ R0, q ∈ Q, and d ∈ {0, 1}: if (q, d) ∈ δ(p, a) then q ∈ Rd,

224 C. Dax and F. Klaedtke

– S0 = R0 \ F ,
– for all p ∈ S0, q /∈ F , and d ∈ {0, 1}, if (q, d) ∈ δ(p, a) then q ∈ Sd.

For the other states in P and a ∈ Σ, we have that η
(
(R−1, S−1, R0, S0), a

)
/

(R0, S0, R1, S1) iff the following conditions hold:

– for all p ∈ R0, q ∈ Q, and d ∈ D, if (q, d) ∈ δ(p, a) then q ∈ Rd,
– for all p ∈ S0, q /∈ F , and d ∈ {0, 1}, if (q, d) ∈ δ(p, a) then q ∈ Sd,
– for all p ∈ S0 and q /∈ F , if (q,−1) ∈ δ(p, a) then q ∈ S−1 or S−1 = ∅, and
– if S0 = ∅ then S1 = R1 \ F .

Intuitively, for an input word w, the automaton guesses the words R ∈ (2Q)ω

and S ∈ (2Q\F)ω from Lemma 7. With the first and third component of P ,
it checks the conditions (i) and (ii). With the second and last component, it
checks that (iii)–(v) holds. Finally, the acceptance condition ensures that (vi) is
satisfied. It easy to check that C accepts the complement of L(B). �	

Complementing (Loop-Free) co-2VNBA. If the given automaton is a loop-free
co-2VNBA, we can simplify the 2-way breakpoint construction presented in The-
orem 8. The simplification is based on the following observation: each run of a
very-weak automaton will eventually get trapped in a state with a self-loop.
Thus, the conditions (iii)–(vi) from Lemma 7 can be simplified accordingly.
The simpler conditions allow us to optimize the complementation construc-
tion for loop-free co-2VNBA. Roughly speaking, instead of guessing the word
S ∈ (2Q\F)ω from Lemma 7 and checking that S fulfills the conditions (iii)–
(vi), the constructed automaton only has to check that no run of the loop-free
co-2VNBA gets trapped in a state q /∈ F .

Additionally, for very-weak automata, we can extend the above 2-way break-
point construction so that it can deal with non-loop-free co-2VNBAs. This ex-
tension is based on the observation that there are only two types of loops: a
very-weak automaton loops if (1) it gets trapped in a state without moving
the read-only head or (2) it gets trapped in a state in which it first moves
the read-only head to the right and then to the left. Such loops can be locally
detected.

Based on these two observations, we obtain from Lemma 7 the following
corollary that characterizes the words that are rejected by a given (loop-free)
co-2VNBA. We exploit this new characterization in the Theorem 10 below for
complementing (loop-free) co-2VNBAs.

Corollary 9. Let A = (Q,Σ, δ, qI, F) be a co-2VNBA and w ∈ Σω. It holds
that w �∈ L(A) iff there is a word R ∈ (2Q)ω such that

(i) qI ∈ R0,
(ii) for all i ∈ N, p, q ∈ Q, and d ∈ D, if p ∈ Ri, (q, d) ∈ δ(p, wi), and i+d ≥ 0

then q ∈ Ri+d,
(iii) there is no n ∈ N such that q ∈ Ri \ F and (q, 1) ∈ δ(q, wi), for all i ≥ n.
(iv) there is no i ∈ N and q ∈ Ri \ F such that (q, 0) ∈ δ(q, wi), and

Alternation Elimination by Complementation 225

(v) there is no i ∈ N and q ∈ Ri \ F such that (q, 1) ∈ δ(q, wi) and (q,−1) ∈
δ(q, wi+1).

Furthermore, when A is loop-free only (i)–(iii) must hold.

Theorem 10. For a co-2VNBA B, there is an NBA C that accepts the comple-
ment of L(B) and has O(|B| ·23|B|) states. If B is loop-free then we can construct
C with O(|B| · 22|B|) states.

Proof (sketch). Let B = (Q,Σ, δ, qI, F) be a co-2VNBA, where we assume that
Q = {1, . . . , n} and Q \F = {1, . . . ,m}, for m,n ∈ N. If m = 0 then F = Q and
hence, L(B) = ∅. So, assume m > 0. Furthermore, assume m < n. Otherwise,
we add an additional accepting state to Q. Let k := m+ 1.

We define the NBA C := (P,Σ, η, pI, G), where P := (2Q × 2Q × 2Q\F ×
{1, . . . , k}) ∪ {pI} and G := 2Q × 2Q × 2Q\F × {1}. The transition function η
is defined as follows. For the initial state pI and a ∈ Σ, we have that η(pI, a) /
(R0, R1, R

′
0, 1) iff the following conditions hold:

– qI ∈ R0,
– for all p ∈ R0, q ∈ Q, and d ∈ {0, 1}, if (q, d) ∈ δ(p, a) then q ∈ Rd,
– there is no q ∈ R0 \ F such that (q, 0) ∈ δ(q, a), and
– R′

0 = {q ∈ R0 | (q, 1) ∈ δ(q, a)}.

For the other states in P and a ∈ Σ, we have that η
(
(R−1, R0, R

′
−1, s), a

)
/

(R0, R1, R
′
0, s

′) iff the following conditions hold:

– for all p ∈ R0, q ∈ Q, and d ∈ D, if (q, d) ∈ δ(p, a) then q ∈ Rd,
– s′ = s, if s ≤ m, s ∈ R0, and (s, 1) ∈ δ(s, a); otherwise, s′ = (smod k) + 1,
– there is no q ∈ R0 \ F such that (q, 0) ∈ δ(q, a),
– there is no q ∈ R′

−1 such that (q,−1) ∈ δ(q, a), and
– R′

0 = {q ∈ R0 | (q, 1) ∈ δ(q, a)}.

It remains to show that C accepts the complement of L(B). Note that C locally
checks all conditions of Corollary 9 except for (iii). Condition (iii) is satisfied if
the run is accepting.

We remark that we need the third component in a state because C forgets the
previously read letter. There is an alternative construction, namely, we construct
an automaton with the state space (2Q × 2Q ×Σ × (Q \ F)) ∪ {pI} that stores
the letter in the third component of a state.

When B is loop-free, the automaton C does not have to check (iv) and (v).
Hence we can drop the third component in C’s state space. �	

If the given automaton A is a co-VNBA, we can further simplify the construction.
To ensure that a word w is rejected by the co-VNBA A, one only has to check
the first three conditions of Corollary 9, where we can restrict d to 1 instead
of d ∈ D in condition (ii). We point out that the idea of this construction is
implicitly used in the translation [3, 11] of VABAs to NBAs and in the “focus
approach” of the satisfiability checking of LTL formulas in [19].

226 C. Dax and F. Klaedtke

Corollary 11. For a co-VNBA B, there is a DBA C that accepts the complement
of L(B) and has O(|B| · 2|B|) states.

Proof (sketch). Let B = (Q,Σ, δ, qI, F). Assume that Q = {1, . . . , n} and Q \
F = {1, . . . ,m}, for m,n ∈ N. If m = 0 then F = Q and hence, L(B) = ∅.
So, assume m > 0. Furthermore, assume that m < n. Otherwise, we add an
additional accepting state to Q. Let k := m + 1. We define the DBA C :=
(2Q × {1, . . . , k}, Σ, η, ({qI}, 1), 2Q × {1}

)
, where

η
(
(R, s), a

)
:=

{(
δ(R, a), s

)
if s ≤ m, s ∈ R, and s ∈ δ(q, a),(

δ(R, a), (smod k) + 1
)

otherwise.

B accepts a word w iff there is a run that gets trapped in a state q �∈ F iff C
detects the existence of such a run with its second component and rejects. �	

4.2 Revisiting Alternation-Elimination Constructions

Let us first review the construction of the nondeterministic automaton B ac-
cording to the construction scheme in Section 3.2. Observe that B possesses the
alphabet Σ×Γ , which is exponential in the size of the given alternating automa-
ton A. In practice, it will not be feasible to explicitly construct B. Fortunately,
for the instances in Table 2, we can optimize the constructions by merging the
steps of constructing B and complementing B: we build the transitions of B
only locally and we directly project the extended alphabet Σ × Γ to Σ when
constructing the complement automaton of B.

For the remainder of this section, let us revisit previously proposed alterna-
tion-elimination constructions. The alternation-elimination constructions in [7,
15, 28, 30] for specific classes of alternating automata have a similar flavor as the
instances that we obtain from the construction scheme presented in Section 3. In
fact, at the core of all these constructions is the complementation of a nondeter-
ministic automaton B that processes inputs of the given alternating automaton
A augmented with additional information about the runs of the automaton A.
However, the previously proposed constructions and the corresponding instances
from our construction scheme differ in the following technical detail. The con-
structions in [7, 15, 28, 30] use an additional automaton B′ that checks whether
such an augmented input is valid, i.e., in our terminology that the additional
information is a run-word. In the worst-case, the size of B′ is exponential in the
size of A. We do not need this additional automaton B′. Instead, the requirement
in our construction scheme that the given alternating automaton A has a reject-
ing sink state takes care of invalid inputs. This technical detail leads to slightly
better upper bounds on the size of the constructed nondeterministic automata,
since we do not need to apply the product construction with the automaton B′

to check whether an input is valid.
Finally, we remark that the alternation-elimination construction by Miyano

and Hayashi [22] for ABAs, and the constructions by Gastin and Oddoux [11, 12]

Alternation Elimination by Complementation 227

for VABAs and loop-free 2VABAs coincide (modulo some minor technical de-
tails) with the corresponding instances that we obtain from the presented con-
struction scheme. Moreover, these three alternation-elimination constructions
can be seen as special cases of the alternation-elimination construction for
loop-free 2ABAs that we obtain from the construction scheme by using the
complementation construction in Theorem 8. We are not aware of any other
alternation-elimination construction for this class of automata except the one
that also handles non-loop-free ABAs. However, the upper bounds for the con-
struction for 2ABAs is worse than the upper bound that we obtain by this new
construction for loop-free 2ABAs (see Table 2).

5 Conclusion

We have presented a general construction scheme for translating alternating au-
tomata into language-equivalent nondeterministic automata. Furthermore, we
have given instances of this construction scheme for various classes of alter-
nating automata. Some of these instances clarify, simplify, or improve existing
ones; some of these instances are novel. Since declarative specification languages
for reactive systems like LTL or fragments of PSL can directly be translated
into some of the considered classes of alternating automata, the presented con-
structions are of immediate practical interest in finite-state model checking and
satisfiability checking.

We remark that the presented constructions depend on complementation con-
structions for nondeterministic automata. Improving the latter ones, will im-
mediately result in better alternation-elimination constructions. A comparison
of the upper bounds on the sizes of the produced nondeterministic automata
suggests that alternation elimination for 2-way alternating automata causes a
slightly larger blow-up than for 1-way alternating automata (see Table 2). It
remains as future work to close this gap, e.g., by providing worst-case examples
that match these upper bounds or by improving the constructions.

Acknowledgments. The authors thank Martin Lange, Nir Piterman, and Moshe
Vardi for helpful discussions and comments.

References

1. IEEE standard for property specification language (PSL). IEEE Std. 1850TM (Oc-
tober 2005)

2. Banieqbal, B., Barringer, H.: Temporal logic with fixed points. In: Banieqbal, B.,
Pnueli, A., Barringer, H. (eds.) Temporal Logic in Specification. LNCS, vol. 398.
Springer, Heidelberg (1989)

3. Bloem, R., Cimatti, A., Pill, I., Roveri, M.: Symbolic implementation of alternating
automata. Int. J. Found. Comput. Sci. 18 (2007)

4. Boigelot, B., Jodogne, S., Wolper, P.: An effective decision procedure for linear
arithmetic over the integers and reals. ACM Trans. Comput. Log. 6 (2005)

228 C. Dax and F. Klaedtke

5. Bustan, D., Fisman, D., Havlicek, J.: Automata construction for PSL, tech. report,
Computer Science and Applied Mathematics, The Weizmann Institute of Science,
Israel (2005)

6. Chang, E., Manna, Z., Pnueli, A.: The safety-progress classification. In: Logic and
Algebra of Specifications. NATO ASI Series (1993)

7. Dax, C., Hofmann, M., Lange, M.: A proof system for the linear time µ-calculus.
In: Proc. of FSTTCS 2006. LNCS, vol. 4437 (2006)

8. Emerson, E., Jutla, C.: Tree automata, mu-calculus and determinacy (extended
abstract). In: Proc. of FOCS 1991 (1991)

9. Etessami, K., Wilke, T., Schuller, R.: Fair simulation relations, parity games, and
state space reduction for Büchi automata. SIAM J. Comput. 34 (2005)

10. Fritz, C., Wilke, T.: Simulation relations for alternating Büchi automata. Theoret.
Comput. Sci. 338 (2005)

11. Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In: Berry, G.,
Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, p. 53. Springer, Heidel-
berg (2001)

12. Gastin, P., Oddoux, D.: LTL with past and two-way very-weak alternating au-
tomata. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 439–448.
Springer, Heidelberg (2003)

13. Gerth, R., Peled, D., Vardi, M., Wolper, P.: Simple on-the-fly automatic verification
of linear temporal logic. In: Proc. of PSTV 1995. IFIP Conf. Proc., vol. 38 (1996)

14. Jutla, C.: Determinization and memoryless winning strategies. Inf. Comput. 133
(1997)

15. Kupferman, O., Piterman, N., Vardi, M.: Extended temporal logic revisited. In:
Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, p. 519. Springer,
Heidelberg (2001)

16. Kupferman, O., Vardi, M.: Weak alternating automata and tree automata empti-
ness. In: Proc. of STOC 1998 (1998)

17. Kupferman, O., Vardi, M.: Weak alternating automata are not that weak. ACM
Trans. Comput. Log. 2 (2001)

18. Kupferman, O., Vardi, M.: Complementation constructions for nondeterministic
automata on infinite words. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005.
LNCS, vol. 3440, pp. 206–221. Springer, Heidelberg (2005)

19. Lange, M., Stirling, C.: Focus games for satisfiability and completeness of temporal
logic. In: Proc. of LICS 2001 (2001)

20. Löding, C.: Methods for the transformation of omega-automata: Complexity and
connection to second order logic, master’s thesis, University of Kiel, Germany
(1998)

21. Löding, C., Thomas, W.: Alternating automata and logics over infinite words. In:
Watanabe, O., Hagiya, M., Ito, T., van Leeuwen, J., Mosses, P.D. (eds.) TCS 2000.
LNCS, vol. 1872. Springer, Heidelberg (2000)

22. Miyano, S., Hayashi, T.: Alternating finite automata on ω-words. Theoret. Comput.
Sci. 32 (1984)

23. Muller, D., Saoudi, A., Schupp, P.: Alternating automata, the weak monadic theory
of trees and its complexity. Theoret. Comput. Sci. 97 (1992)

24. Muller, D., Schupp, P.: Alternating automata on infinite trees. Theoret. Comput.
Sci. 54 (1987)

25. Muller, D., Schupp, P.: Simulating alternating tree automata by nondeterministic
automata: New results and new proofs of the theorems of Rabin, McNaughton and
Safra. Theoret. Comput. Sci. 141 (1995)

Alternation Elimination by Complementation 229

26. Pnueli, A.: The temporal logic of programs. In: Proc. of FOCS 1977 (1977)
27. Rohde, G.: Alternating automata and the temporal logic of ordinals, PhD thesis,

University of Illinois at Urbana-Champaign, Champaign, IL, USA (1997)
28. Vardi, M.: A temporal fixpoint calculus. In: Proc. of POPL 1988 (1988)
29. Vardi, M.: A note on the reduction of two-way automata to one-way automata.

Inform. Process. Lett. 30 (1989)
30. Vardi, M.: Reasoning about the past with two-way automata. In: Larsen, K.G.,

Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443. Springer, Heidelberg
(1998)

31. Vardi, M.: Automata-theoretic model checking revisited. In: Cook, B., Podelski,
A. (eds.) VMCAI 2007. LNCS, vol. 4349. Springer, Heidelberg (2007)

Discounted Properties of Probabilistic Pushdown
Automata�

Tomáš Brázdil, Václav Brožek, Jan Holeček, and Antonı́n Kučera

Faculty of Informatics, Masaryk University,
Botanická 68a, 60200 Brno,

Czech Republic
�brazdil,brozek,holecek,kucera�@fi.muni.cz

Abstract. We show that several basic discounted properties of probabilistic
pushdown automata related both to terminating and non-terminating runs can be
eÆciently approximated up to an arbitrarily small given precision.

1 Introduction

Discounting formally captures the natural intuition that the far-away future is not as
important as the near future. In the discrete time setting, the discount assigned to a state
visited after k time units is �k, where 0 � � � 1 is a fixed constant. Thus, the “weight”
of states visited lately becomes progressively smaller. Discounting (or inflation) is a
key paradigm in economics and has been studied in Markov decision processes as well
as game theory [18,15]. More recently, discounting has been found appropriate also
in systems theory (see, e.g., [6]), where it allows to put more emphasis on events that
occur early. For example, even if a system is guaranteed to handle every request even-
tually, it still makes a big di�erence whether the request is handled early or lately, and
discounting provides a convenient formalism for specifying and even quantifying this
di�erence.

In this paper, we concentrate on basic discounted properties of probabilistic push-
down automata (pPDA), which provide a natural model for probabilistic systems with
unbounded recursion [9,4,10,3,14,12,13]. Thus, we aim at filling a gap in our knowl-
edge on probabilistic PDA, which has so far been limited only to non-discounted proper-
ties. As the main result, we show that several fundamental discounted properties related
to long-run behaviour of probabilistic PDA (such as the discounted gain or the total
discounted accumulated reward) are expressible as the least solutions of eÆciently con-
structible systems of recursive monotone polynomial equations whose form admits the
application of the recent results [17,8] about a fast convergence of Newton’s approx-
imation method. This entails the decidability of the corresponding quantitative prob-
lems (we ask whether the value of a given discounted long-run property is equal to or
bounded by a given rational constant). A more important consequence is that the dis-
counted long-run properties are computational in the sense that they can be eÆciently

� Supported by the research center Institute for Theoretical Computer Science (ITI), project
No. 1M0545.

I. Cervesato, H. Veith, and A. Voronkov (Eds.): LPAR 2008, LNCS 5330, pp. 230–242, 2008.
c� Springer-Verlag Berlin Heidelberg 2008

Discounted Properties of Probabilistic Pushdown Automata 231

approximated up to an arbitrarily small given precision. This is very di�erent from the
non-discounted case, where the respective quantitative problems are also decidable but
no eÆcient approximation schemes are known1. This shows that discounting, besides
its natural practical appeal, has also mathematical and computational benefits.

We also consider discounted properties related to terminating runs, such as the
discounted termination probability and the discounted reward accumulated along a
terminating run. Further, we examine the relationship between the discounted and non-
discounted variants of a given property. Intuitively, one expects that a discounted prop-
erty should be close to its non-discounted variant as the discount approaches 1. This
intuition is mostly confirmed, but in some cases the actual correspondence is more
complicated.

Concerning the level of originality of the presented work, the results about termi-
nating runs are obtained as simple extensions of the corresponding results for the non-
discounted case presented in [9,14,10]. New insights and ideas are required to solve the
problems about discounted long-run properties of probabilistic PDA (the discounted
gain and the total discounted accumulated reward), and also to establish the correspon-
dence between these properties and their non-discounted versions. A more detailed dis-
cussion and explanation is postponed to Sections 3 and 4.

Since most of the proofs are rather technical, they are not included in this paper. The
main body of the paper contains the summary of the main results, and the relationship
to the previous work is carefully discussed at appropriate places. Proofs in full detail
can be found in [2].

2 Basic Definitions

In this paper, we use �, �0, �, and � to denote the sets of positive integers, nonnegative
integers, rational numbers, and real numbers, respectively. We also use the standard
notation for intervals of real numbers, writing, e.g., (0� 1] to denote the set �x � � � 0 �

x � 1�.
The set of all finite words over a given alphabet � is denoted ��, and the set of all

infinite words over � is denoted ��. We also use �� to denote the set �� � ��� where � is
the empty word. The length of a given w � �� � �� is denoted len(w), where the length
of an infinite word is �. Given a word (finite or infinite) over �, the individual letters of
w are denoted w(0)�w(1)� � � � .

Let V � �, and let 	
 V � V be a total relation (i.e., for every v � V there is
some u � V such that v	 u). The reflexive and transitive closure of 	 is denoted 	�.
A path in (V�) is a finite or infinite word w � V� � V� such that w(i�1)	w(i) for
every 1 � i � len(w). A run in (V�) is an infinite path in V . The set of all runs that
start with a given finite path w is denoted Run(w).

A probability distribution over a finite or countably infinite set X is a function f :
X 	 [0� 1] such that

�
x�X f (x) � 1. A probability distribution f over X is positive if

f (x) � 0 for every x � X, and rational if f (x) � � for every x � X. A �-field over a set
� is a set
 2� that includes � and is closed under complement and countable union.

1 For example, the existing approximation methods for the (non-discounted) gain employ the
decision procedure for the existential fragment of (���� ���), which is rather ineÆcient.

232 T. Brázdil et al.

A probability space is a triple (�� ��) where � is a set called sample space, is a
�-field over � whose elements are called events, and � : 	 [0� 1] is a probability
measure such that, for each countable collection �Xi�i�I of pairwise disjoint elements of
 we have that �(

�
i�I Xi) �

�
i�I �(Xi), and moreover �(�)�1. A random variable

over a probability space (�� ��) is a function X : � 	 � � ���, where � � � is
a special “undefined” symbol, such that �� � � � X(�) � c� � for every c � �. If
�(X��) � 0, then the expected value of X is defined by �[X] �

�
���

X(�) d�.

Definition 1 (Markov Chain). A Markov chain is a triple M � (S � 	 �Prob) where S
is a finite or countably infinite set of states, 	
 S �S is a total transition relation, and
Prob is a function which to each state s � S assigns a positive probability distribution
over the outgoing transitions of s. As usual, we write s x

	 t when s	 t and x is the
probability of s	 t.

To every s � S we associate the probability space (Run(s)� ��) where is the �-field
generated by all basic cylinders Run(w) where w is a finite path starting with s, and
� : 	 [0� 1] is the unique probability measure such that �(Run(w)) � 	

len(w)�1
i�1 xi

where w(i�1) xi	w(i) for every 1 � i � len(w). If len(w) � 1, we put �(Run(w)) � 1.

Definition 2 (probabilistic PDA). A probabilistic pushdown automaton (pPDA) is a
tuple
 � (Q� �� Æ�Prob) where Q is a finite set of control states, � is a finite stack
alphabet, Æ
 (Q � �) � (Q � ��2) is a transition relation (here ��2

� �w � �� �

len(w) � 2�), and Prob : Æ 	 (0� 1] is a rational probability assignment such that for
all pX � Q � � we have that

�
pX�q� Prob(pX 	 q�) � 1.

A configuration of
 is an element of Q � ��, and the set of all configurations of
 is
denoted �(
).

To each pPDA
 � (Q� �� Æ�Prob�) we associate a Markov chain M� � (�(
)�	�Prob),
where p� 1

	 p� for every p � Q, and pX x
	 q� i� (pX� q�) � Æ, Prob�(pX	 q�) �

x, and � ��. For all p� q � Q and X � �, we use Run(pXq) to denote the set of
all w � Run(pX) such that w(n) � q� for some n � �, and Run(pX�) to denote the
set Run(pX) �

�
q�Q Run(pXq). The runs of Run(pXq) and Run(pX�) are sometimes

referred to as terminating and non-terminating, respectively.

3 Discounted Properties of Probabilistic PDA

In this section we introduce the family of discounted properties of probabilistic PDA
studied in this paper. These notions are not PDA-specific and could be defined more
abstractly for arbitrary Markov chains. Nevertheless, the scope of our study is limited
to probabilistic PDA, and the notation becomes more suggestive when it directly reflects
the structure of a given pPDA.

For the rest of this section, we fix a pPDA
 � (Q� �� Æ�Prob�), a nonnegative reward
function f : Q � � 	 �, and a discount function � : Q � � 	 [0� 1). The functions f
and � are extended to all elements of Q � �� by stipulating that f (pX�) � f (pX) and
�(pX�) � �(pX), respectively. One can easily generalize the presented arguments also
to rewards and discounts that depend on the whole stack content, provided that this

Discounted Properties of Probabilistic Pushdown Automata 233

dependence is “regular”, i.e., can be encoded by a finite-state automaton which reads
the stack bottom-up. This extension is obtained just by applying standard techniques
that have been used in, e.g., [11]. Also note that � can assign a di�erent discount to
each element of Q � �, and that the discount can also be 0. Hence, we in fact work
with a slightly generalized form of discounting which can also reflect relative speed of
transitions.

We start by defining several simple random variables. The definitions are param-
etrized by the functions f and �, control states p� q � Q, and a stack symbol X � �. For
every run w and i � �0, we use �(wi) to denote 	 i

j�0�(w(j)), i.e., the discount accumu-
lated up to w(i). Note that the initial state of w is also discounted, which is somewhat
non-standard but technically convenient (the equations constructed in Section 4 become
more readable).

IpXq(w) �

�������
1 if w � Run(pXq)

0 otherwise

I�pXq(w) �

�������
�(wn�1) if w � Run(pXq)� w(n�1) � w(n) � q�

0 otherwise

R f
pXq(w) �

�������
�n�1

i�0 f (w(i)) if w � Run(pXq)� w(n�1) � w(n) � q�

0 otherwise

R f ��
pXq(w) �

�������
�n�1

i�0 �(wi) � f (w(i)) if w � Run(pXq)� w(n�1) � w(n) � q�

0 otherwise

G f
pX(w) �

�������
limn��

�n
i�0 f (w(i))

n�1 if w � Run(pX�) and the limit exists

� otherwise

G f ��
pX (w) �

�������
limn��

�n
i�0 �(wi)� f (w(i))
�n

i�0 �(wi) if w � Run(pX�) and the limit exists

� otherwise

X f ��
pX (w) �

�������
��

i�0 �(wi) f (w(i)) if w � Run(pX�)

0 otherwise

The variable IpXq is a simple indicator telling whether a given run belongs to Run(pXq)
or not. Hence, �[IpXq] is the probability of Run(pXq), i.e., the probability of all runs
w � Run(pX) that terminate in q�. The variable I�pXq is the discounted version of IpXq,
and its expected value can thus be interpreted as the “discounted termination probabil-
ity”, where more weight is put on terminated states visited early. Hence, �[I�pXq] is a
meaningful value which can be used to quantify the di�erence between two configura-
tions with the same termination probability but di�erent termination time. From now
on, we write [pXq] and [pXq� �] instead of �[IpXq] and �[I�pXq], respectively, and we
also use [pX�] to denote 1 �

�
q�Q[pXq]. The computational aspects of [pXq] have

been examined in [9,14], where it is shown that the family of all [pXq] forms the least
solution of an e�ectively constructible system of monotone polynomial equations. By

234 T. Brázdil et al.

applying the recent results [17,8] about a fast convergence of Newton’s method, it is
possible to approximate the values of [pXq] eÆciently (the precise values of [pXq] can
be irrational). In Section 4, we generalize these results to [pXq� �].

The variable R f
pXq returns to every w � Run(pXq) the total f -reward accumulated up

to q�. For example, if f (rY) � 1 for every rY � Q � �, then the variable returns the
number of transitions executed before hitting the configuration q�. In [10], the condi-
tional expected value �[R f

pXq � Run(pXq)] has been studied in detail. This value can be
used to analyze important properties of terminating runs; for example, if f is as above,
then �

q�Q

[pXq] � �[R f
pXq � Run(pXq)]

is the conditional expected termination time of a run initiated in pX, under the condi-
tion that the run terminates (i.e., the stack is eventually emptied). In [10], it has been
shown that the family of all �[R f

pXq � Run(pXq)] forms the least solution of an ef-
fectively constructible system of recursive polynomial equations. One disadvantage of
�[R f

pXq � Run(pXq)] (when compared to [pXq� �] which also reflects the length of ter-
minating runs) is that this conditional expected value can be infinite even in situations
when [pXq] � 1.

The discounted version R f ��
pXq of R f

pXq assigns to each w � Run(pXq) the total dis-
counted reward accumulated up to q�. In Section 4, we extend the aforementioned
results about �[R f

pXq � Run(pXq)] to the family of all �[R f ��
pXq � Run(pXq)]. The ex-

tension is actually based on analyzing the properties of the (unconditional) expected
value �[R f ��

pXq]. At first glance, �[R f ��
pXq] does not seem to provide any useful information,

at least in situations when [pXq] � 1. However, this expected value can be used to ex-
press not only �[R f ��

pXq � Run(pXq)], but also other properties such as �[G f ��
pX] or �[X f ��

pX]
discussed below, and can be e�ectively approximated by Newton’s method. Hence, the
variable R f ��

pXq and its expected value provide a crucial technical tool for solving the
problems of our interest.

The variable G f
pX assigns to each non-terminating run its average reward per tran-

sition, provided that the corresponding limit exists. For finite-state Markov chains, the
average reward per transition exists for almost all runs, and hence the corresponding
expected value (also called the gain2) always exists. In the case of pPDA, it can happen
that �(G f

pX��) � 0 even if [pX�] � 1, and hence the gain �[G f
pX] does not necessar-

ily exist. A concrete example is given in Section 4. In [10], it has been shown that if
all �[Rg

tYs � Run(tYs)] are finite (where g(rZ) � 1 for all rZ � Q � �), then the gain
is guaranteed to exist and can be e�ectively expressed in first order theory of the re-
als. This result relies on a construction of an auxiliary finite-state Markov chain with
possibly irrational transition probabilities, and this method does not allow for eÆcient
approximation of the gain.

In Section 4, we examine the properties of the discounted gain �[G f ��
pX] which

are remarkably di�erent from the aforementioned properties of the gain (these
results constitute the first highlight of our paper). First, we always have that
�(G f ��

pX�� � Run(pX�)) � 0 whenever [pX�] � 0, and hence the discounted gain is
guaranteed to exist whenever [pX�] � 1. Further, we show that the discounted gain

2 The gain is one of the fundamental concepts in performance analysis.

Discounted Properties of Probabilistic Pushdown Automata 235

can be eÆciently approximated by Newton’s method. One intuitively expects that the
discounted gain is close to the value of the gain as the discount approaches 1, and we
show that this is indeed the case when the gain exists (the proof is not trivial). Thus,
we obtain alternative proofs for some of the results about the gain that have been pre-
sented in [10], but unfortunately we do not yield an eÆcient approximation scheme
for the (non-discounted) gain, because we were not able to analyze the corresponding
convergence rate. More details are given in Section 4.

The variable X f ��
pX assigns to each non-terminating run the total discounted reward

accumulated along the whole run. Note that the corresponding infinite sum always ex-
ists and it is finite. If [pX�] � 1, then the expected value �[X f ��

pX] exactly corresponds
to the expected discounted payo�, which is a fundamental and deeply studied concept
in stochastic programming (see, e.g., [18,15]). In Section 4, we show that the family of
all �[X f ��

pX] forms the least solution of an e�ectively constructible system of monotone
polynomial equations. Hence, these expected values can also be e�ectively approxi-
mated by Newton’s method by applying the results of [17,8]. We also show how to
express �[X f ��

pX � Run(pX�)], which is more relevant in situations when 0 � [pX�] � 1.

4 Computing the Discounted Properties of Probabilistic PDA

In this section we show that the (conditional) expected values of the discounted random
variables introduced in Section 3 are expressible as the least solutions of eÆciently
constructible systems of recursive equations. This allows to encode these values in first
order theory of the reals, and design eÆcient approximation schemes for some of them.

Recall that first order theory of the reals (���� ���) is decidable [19], and the ex-
istential fragment is even solvable in polynomial space [5]. The following definition
explains what we mean by encoding a certain value in (���� ���).

Definition 3. We say that some c � � is encoded by a formula �(x) of (���� ���) i�
the formula �x�(�(x) � x�c) holds.

Note that if a given c � � is encoded by �(x), then the problems whether c � � and
c � � for a given rational constant � are decidable (we simply check the validity of the
formulae �(x��) and �x�(�(x) � x � �), respectively).

For the rest of this section, we fix a pPDA
 � (Q� �� Æ�Prob�), a nonnegative reward
function f : Q � � 	 �, and a discount function � : Q � � 	 [0� 1). As a warm-up,
let us first consider the family of expected values [pXq� �]. For each of them, we fix the
corresponding first order variable ��pXq� �����pXq� �����pXq� ���, and construct the following equation (for
the sake of readability, each variable occurrence is typeset in boldface):

��pXq� �����pXq� �����pXq� ��� �
�

pX
x
�q�

x � �(pX) �
�

pX
x
�rY

x � �(pX) � ��rYq� �����rYq� �����rYq� ���

�

�

pX
x
�rYZ� s�Q

x � �(pX) � ��rYs� �����rYs� �����rYs� ��� � ��sZq� �����sZq� �����sZq� ���

(1)

236 T. Brázdil et al.

Thus, we produce a finite system of recursive equations (S1). This system is rather
similar to the system for termination probabilities [pXq] constructed in [9,14]. The only
modification is the introduction of the discount factor �(pX). A proof of the following
theorem is also just a technical extension of the proof given in [9,14] (see [2]).

Theorem 4. The tuple of all [pXq� �] is the least nonnegative solution of the
system (S1).

Now consider the expected value �[R f ��
pXq]. For all p� q � Q and X � � we fix a first order

variable ��pXq����pXq����pXq�� and construct the following equation:

��pXq����pXq����pXq�� �
�

pX
x
�q�

x � �(pX) � f (pX) �
�

pX
x
�rY

x � �(pX) �
�
[rYq] � f (pX) � ��rYq����rYq����rYq��

	

�

�

pX
x
�rYZ� s�Q

x � �(pX) � ([rYs] � [sZq] � f (pX) � [sZq] � ��rYs����rYs����rYs�� � [rYs� �] � ��sZq����sZq����sZq��)

(2)

Thus, we obtain the system (S2). Note that termination probabilities and discounted
termination probabilities are treated as “known constants” in the equations of (S2).

As opposed to (S1), the equations of system (S2) do not have a good intuitive mean-
ing. At first glance, it is not clear why these equations should hold, and a formal proof
of this fact requires advanced arguments. The proof of the following theorem is already
non-trivial (see [2]).

Theorem 5. The tuple of all�[R f ��
pXq] is the least nonnegative solution of the system (S2).

The conditional expected values �[R f ��
pXq � Run(pXq)] make sense only if [pXq] � 0,

which can be checked in time polynomial in the size of
 because [pXq] � 0 i�
pX 	�q�, and the reachability problem for PDA is in P (see, e.g., [7]). The next theorem
says how to express �[R f ��

pXq � Run(pXq)] using �[R f ��
pXq].

Theorem 6. For all p� q � Q and X � � such that [pXq] � 0 we have that

�[R f ��
pXq � Run(pXq)] �

�[R f ��
pXq]

[pXq]
(3)

Now we turn our attention to the discounted long-run properties of probabilistic PDA
introduced in Section 3. These results represent the core of our paper.

As we already mentioned, the system (S1) can also be used to express the family of
termination probabilities [pXq]. This is achieved simply by replacing each �(pX) with 1
(thus, we obtain the equational systems originally presented in [9,14]). Hence, we can
also express the probability of non-termination:

[pX�] � 1 �
�
q�Q

[pXq] (4)

Note that this equation is not monotone (by increasing [pXq] we decrease [pX�]), which
leads to some complications discussed in Section 4.1.

Discounted Properties of Probabilistic Pushdown Automata 237

Now we have all the tools that are needed to construct an equational system for the
family of all �[X f ��

pX]. For all p � Q and X � �, we fix a first order variable ��pX����pX����pX�� and
construct the following equation, which gives us the system (S5):

��pX����pX����pX�� �
�

pX
x
�rY

x � �(pX) � ([rY�] � f (pX) � ��rY����rY����rY��)

�

�

pX
x
�rYZ

x � �(pX) � ([rY�] � f (pX) � ��rY����rY����rY��)

�

�

pX
x
�rYZ� s�Q

x � �(pX) �

[rYs] � [sZ�] � f (pX) � [sZ�] � �[R f ��

rYs] � [rYs� �] � ��sZ����sZ����sZ��
�

(5)

The equations of (S5) are even less readable than the ones of (S2). However, note that
the equations are monotone and eÆciently constructible. The proof of the following
theorem is based on advanced arguments.

Theorem 7. The tuple of all �[X f ��
pX] is the least nonnegative solution of the system (S5).

In situations when [pX�] � 1, �[X f ��
pX � Run(pX�)] may be more relevant than �[X f ��

pX].
The next theorem says how to express this expected value.

Theorem 8. For all p� q � Q and X � � such that [pX�] � 0 we have that

�[X f ��
pX � Run(pX�)] �

�[X f ��
pX]

[pX�]
(6)

Concerning the equations of (S6), there is one notable di�erence from all of the pre-
vious equational systems. The only known method of solving the problem whether
[pX�] � 0 employs the decision procedure for the existential fragment of (���� ���),
and hence the best known upper bound for this problem is PSPACE. This means that
the equations of (S6) cannot be constructed eÆciently, because there is no eÆcient way
of determining all p� q and X such that [pX�] � 0.

The last discounted property of probabilistic PDA which is to be investigated is the
discounted gain �[G f ��

pX]. Here, we only managed to solve the special case when � is a
constant function.

Theorem 9. Let � be a constant discount function such that �(rY) � � for all rY �

Q � �, and let p � Q, X � � such that [pX�] � 1. Then

�[G f ��
pX] � (1 � �) � �[X f ��

pX] (7)

A proof of Theorem 9 is simple. Let w � Run(pX�). Since both limn��

�n
i�0 �(wi) and

limn��

�n
i�0 �(wi) f (w(i)) exist and the latter is equal to (1��)�1 the claim follows from

the linearity of the expected value.
Note that the equations of (S7) can be constructed eÆciently (in polynomial time),

because the question whether [pX�] � 1 is equivalent to checking whether [pXq] � 0

238 T. Brázdil et al.

for all q � Q, which is equivalent to checking whether pX �	� q� for all q � Q. Hence,
it suÆces to apply a polynomial-time decision procedure for PDA reachability such
as [7].

Since all equational systems constructed in this section contain just summation, mul-
tiplication, and division, one can easily encode all of the considered discounted prop-
erties in (���� ���) in the sense of Definition 3. For a given discounted property c, the
corresponding formula �(x) looks as follows:

�v
�
solution(v) � (�u

�
solution(u) � v � u

	
� x � vi

Here v and u are tuples of fresh first order variables that correspond (in one-to-one fash-
ion) to the variables employed in the equational systems (S1), (S2), (S3), (S4), (S5),
(S6), and (S7). The subformulae solution(v) and solution(u) say that the variables of v
and u form a solution of the equational systems (S1), (S2), (S3), (S4), (S5), (S6), and
(S7). Note that the subformulae solution(v) and solution(u) are indeed expressible in
(���� ���), because the right-hand sides of all equational systems contain just summa-
tion, multiplication, division, and employ only constants that themselves correspond to
some variables in v or u. The vi is the variable of v which corresponds to the considered
property c, and the x is the only free variable of the formula �(x). Note that �(x) can
be constructed in space which is polynomial in the size of a given pPDA
 (the main
cost is the construction of the system (S6)), but the length of �(x) is only polynomial
in the size of
, �, and f . Since the alternation depth of quantifiers in �(x) is fixed, we
can apply the result of [16] which says that every fragment of (���� ���) where the al-
ternation depth of quantifiers is bounded by a fixed constant is decidable in exponential
time. Thus, we obtain the following theorem:

Theorem 10. Let c be one of the discounted properties of pPDA considered in this sec-
tion, i.e., c is either [pXq� �], �[R f ��

pXq], �[R f ��
pXq � Run(pXq)], �[X f ��

pX], �[X f ��
pX � Run(pX�)],

or �[G f ��
pX] (in the last case we further require that � is constant). The problems whether

c � � and c � � for a given rational constant � are in EXPTIME.

The previous theorem extends the results achieved in [9,10,14] to discounted
properties of pPDA. However, in the case of discounted long-run properties
�[X f ��

pX], �[X f ��
pX � Run(pX�)], and �[G f ��

pX], the presented proof is completely di�erent
from the non-discounted case. Moreover, the constructed equations take the form which
allows to design eÆcient approximation scheme for these values, and this is what we
show in the next subsection.

4.1 The Application of Newton’s Method

In this section we show how to apply the recent results [17,8] about fast convergence
of Newton’s method for systems of monotone polynomial equations to the discounted
properties introduced in Section 3. We start by recalling some notions and results pre-
sented in [17,8].

Monotone systems of polynomial equations (MSPEs) are systems of fixed point
equations of the form x1 � f1(x1� � � � � xn)� � � � � xn � fn(x1� � � � � xn), where each fi

Discounted Properties of Probabilistic Pushdown Automata 239

is a polynomial with nonnegative real coeÆcients. Written in vector form, the system is
given as x � f (x), and solutions of the system are exactly the fixed points of f . To f we
associate the directed graph H f where the nodes are the variables x1� � � � � xn and (xi� x j)
is an edge i� x j appears in fi. A subset of equations is a strongly connected component
(SCC) if its associated subgraph is a SCC of H f .

Observe that each of the systems (S1), (S2), and (S5) forms a MSPE. Also observe
that the system (S1) uses only simple coeÆcients obtained by multiplying transition
probabilities of
 with the return values of �, while the coeÆcients in (S2) and (S5) are
more complicated and also employ constants such as [rYq], [rYs� �], �[R f ��

pXq], or [rY�].
The problem of finding the least nonnegative solution of a given MSPE x � f (x)

can be obviously reduced to the problem of finding the least nonnegative solution for
F(x) � 0, where F(x) � f (x) � x. The Newton’s method for approximating the least
solution of F(x) � 0 is based on computing a sequence x(0)� x(1)� � � � , where x(0)

� 0
and

x(k�1)
� xk � (F�(xk))�1 F(xk)

where F�(x) is the Jacobian matrix of partial derivatives. If the graph H f is strongly
connected, then the method is guaranteed to converge linearly [17,8]. This means that
there is a threshold k f such that after the initial k f iterations of the Newton’s method,
each additional bit of precision requires only 1 iteration. In [8], an upper bound for k f

is presented.
For general MSPE where H f is not necessarily strongly connected, a more structured

method called Decomposed Newton’s method (DNM) can be used. Here, the component
graph of H f is computed and the SCCs are divided according to their depth. DNM pro-
ceeds bottom-up by computing k �2t iterations of Newton’s method for each of the SCCs
of depth t, where t goes from the height of the component graph to 0. After computing
the approximations for the SCCs of depth i, the computed values are fixed, the corre-
sponding equations are removed, and the SCCs of depth i�1 are processed in the same
way, using the previously fixed values as constants. This goes on until all SCCs are pro-
cessed. It was demonstrated in [14] that DNM is guaranteed to converge to the least
solution as k increases. In [17], it was shown that DNM is even guaranteed to converge
linearly. Note, however, that the number of iterations of the original Newton’s method
in one iteration of DNM is exponential in the depth of the component graph of H f .

Now we show how to apply these results to the systems (S1), (S2), and (S5). First,
we also add a system (S0) whose least solution is the tuple of all termination probabil-
ities [pXq] (the system (S0) is very similar to the system (S1), the only di�erence is
that each �(pX) is replaced with 1). The systems (S0), (S1), (S2), and (S5) themselves
are not necessarily strongly connected, and we use H to denote the height of the com-
ponent graph of (S0). Note that the height of the component graph of (S1), (S2), and
(S5) is at most H. Now, we unify the systems (S0), (S1), (S2), and (S5) into one equa-
tion system S. What we obtain is a MSPE with three types of coeÆcients: transition
probabilities of
, the return values of �, and non-termination probabilities of the form
[rY�] (the system (S4) cannot be added to S because the resulting system would not be
monotone). Observe that

– (S0) and (S1) only use the transition probabilities of
 and the return values of � as
coeÆcients;

240 T. Brázdil et al.

– (S2) also uses the values defined by (S0) and (S1) as coeÆcients;
– (S5) uses the values defined by (S0), (S1) and (S2) as coeÆcients, and it also uses

coeÆcients of the form [rY�].

This means that the height of the component graph of S is at most 3H. Now we can
apply the DNM in the way described above, with the following technical modification:
after computing the termination probabilities [rYq] (in the system (S0)), we compute
an upper approximation for each [rY�] according to equation (4), and then subtract
an upper bound for the overall error of this upper approximation bound with the same
overall error (here we use the technical results of [8]). In this way, we produce a lower
approximation for each [rY�] which is used as a constant when processing the other
SCCs. Now we can apply the aforementioned results about DNM.

Note that once the values of [pXq], [pXq� �], �[R f ��
pXq], and �[X f ��

pX] are computed

with a suÆcient precision, we can also compute the values of �[R f ��
pXq � Run(pXq)] and

�[G f ��
pX] by equations given in Theorem 6 and Theorem 9, respectively. Thus, we obtain

the following:

Theorem 11. The values of [pXq], [pXq� �],�[R f ��
pXq], �[X f ��

pX], �[R f ��
pXq � Run(pXq)], and

�[G f ��
pX] can be approximated using DNM, which is guaranteed to converge linearly. The

number of iterations of the Newton’s method which is needed to compute one iteration
of DNM is exponential in H.

In practice, the parameter H stays usually small. A typical application area of PDA are
recursive programs, where stack symbols correspond to the individual procedures, pro-
cedure calls are modeled by pushing new symbols onto the stack, and terminating a pro-
cedure corresponds to popping a symbol from the stack. Typically, there are “groups” of
procedures that call each other, and these groups then correspond to strongly connected
components in the component graph. Long chains of procedures P1� � � � � Pn, where each
Pi can only call P j for j � i, are relatively rare, and this is the only situation when the
parameter H becomes large.

4.2 The Relationship between Discounted and Non-discounted Properties

In this section we examine the relationship between the discounted properties intro-
duced in Section 3 and their non-discounted variants. Intuitively, one expects that a
discounted property should be close to its non-discounted variant as the discount ap-
proaches 1. To formulate this precisely, for every � � (0� 1) we use �� to denote the
constant discount function that always returns �.

The following theorem is immediate. It suÆces to observe that the equational sys-
tems for the non-discounted properties are obtained from the corresponding equational
systems for discounted properties by substituting all �(pX) with 1.

Theorem 12. We have that

– [pXq] � lim��1[pXq� ��]
– �[R f

pXq] � lim��1 �[R f ���

pXq]

– �[R f
pXq � Run(pXq)] � lim��1 �[R f ���

pXq � Run(pXq)]

Discounted Properties of Probabilistic Pushdown Automata 241

The situation with discounted gain �[G f ��
pX] is more complicated. First, let us realize that

�[G f
pX] does not necessarily exist even if [pX�] � 1. To see this, consider the pPDA

with the following rules:

pX
1
2
	 pYX� pY

1
2
	 pYY� pZ

1
2
	 pZZ� pX

1
2
	 pZX� pY

1
2
	 p�� pZ

1
2
	 p�

The reward function f is defined by f (pX) � f (pY) � 0 and f (pZ) � 1. Intuitively,
pX models a one-dimensional symmetric random walk with distinguished zero (X),
positive numbers (Z) and negative numbers (Y). Observe that [pX�] � 1. However, one
can show that �(G f

pX��) � 1, which means that �[G f
pX] does not exist. The example is

elaborated to a greater detail in [2].
The following theorem says that if the gain does exist, then it is equal to the limit of

discounted gains as � approaches 1. The opposite direction, i.e., the question whether the
existence of the limit of discounted gains implies the existence of the (non-discounted)
gain is left open. The proof of the following theorem is not trivial and relies on several
subtle observations (see [2]).

Theorem 13. If �[G f
pX] exists, then �[G f

pX] � lim��1 �[G f ���

pX].

Since lim��1 �[G f ��
pX] can be e�ectively encoded in first order theory of the reals, we ob-

tain an alternative proof of the result established in [10] saying that the gain is e�ectively
expressible in (���� ���). Actually, we obtain a somewhat stronger result, because the
formula constructed for lim��1 �[G f ��

pX] encodes the gain whenever it exists, while the
(very di�erent) formula constructed in [10] encodes the gain only in situation when a
certain suÆcient condition (mentioned in Section 3) holds. Unfortunately, Theorem 13
does not yet help us to approximate the gain, because the proof does not give any clue
how large � must be chosen in order to approximate the limit upto a given precision.

5 Conclusions

We have shown that a family of discounted properties of probabilistic PDA can be
eÆciently approximated by decomposed Newton’s method. In some cases, it turned
out that the discounted properties are “more computational” than their non-discounted
counterparts. An interesting open question is whether the scope of our study can be
extended to other discounted properties defined, e.g., in the spirit of [3]. More open
questions concern decidability of discounted properties of more complex models like
Markov decision process and recursive stochastic games in general.

References

1. Diekert, V., Durand, B. (eds.): STACS 2005. LNCS, vol. 3404. Springer, Heidelberg (2005)
2. Brázdil, T., Brožek, V., Holeček, J., Kučera, A.: Discounted properties of probabilistic push-

down automata. Technical report FIMU-RS-2008-06, Faculty of Informatics, Masaryk Uni-
versity (2008)

242 T. Brázdil et al.

3. Brázdil, T., Esparza, J., Kučera, A.: Analysis and prediction of the long-run behavior of
probabilistic sequential programs with recursion. In: Proceedings of FOCS 2005, pp. 521–
530. IEEE Computer Society Press, Los Alamitos (2005)

4. Brázdil, T., Kučera, A., Stražovský, O.: On the decidability of temporal properties of prob-
abilistic pushdown automata. In: Diekert, V., Durand, B. (eds.) STACS 2005 [1]. LNCS,
vol. 3404, pp. 145–157. Springer, Heidelberg (2005)

5. Canny, J.: Some algebraic and geometric computations in PSPACE. In: Proceedings of STOC
1988, pp. 460–467. ACM Press, New York (1988)

6. de Alfaro, L., Henzinger, T., Majumdar, R.: Discounting the future in systems theory.
In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS,
vol. 2719, pp. 1022–1037. Springer, Heidelberg (2003)

7. Esparza, J., Hansel, D., Rossmanith, P., Schwoon, S.: EÆcient algorithms for model checking
pushdown systems. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp.
232–247. Springer, Heidelberg (2000)

8. Esparza, J., Kiefer, S., Luttenberger, M.: Convergence thresholds of Newton’s method for
monotone polynomial equations. In: Proceedings of STACS 2008 (2008)

9. Esparza, J., Kučera, A., Mayr, R.: Model-checking probabilistic pushdown automata. In:
Proceedings of LICS 2004, pp. 12–21. IEEE Computer Society Press, Los Alamitos (2004)

10. Esparza, J., Kučera, A., Mayr, R.: Quantitative analysis of probabilistic pushdown automata:
Expectations and variances. In: Proceedings of LICS 2005, pp. 117–126. IEEE Computer
Society Press, Los Alamitos (2005)

11. Esparza, J., Kučera, A., Schwoon, S.: Model-checking LTL with regular valuations for push-
down systems. Information and Computation 186(2), 355–376 (2003)

12. Etessami, K., Yannakakis, M.: Algorithmic verification of recursive probabilistic systems.
In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 253–270. Springer,
Heidelberg (2005)

13. Etessami, K., Yannakakis, M.: Checking LTL properties of recursive Markov chains. In:
Proceedings of 2nd Int. Conf. on Quantitative Evaluation of Systems (QEST 2005), pp. 155–
165. IEEE Computer Society Press, Los Alamitos (2005)

14. Etessami, K., Yannakakis, M.: Recursive Markov chains, stochastic grammars, and monotone
systems of non-linear equations. In: Diekert, V., Durand, B. (eds.) STACS 2005 [1]. LNCS,
vol. 3404, pp. 340–352. Springer, Heidelberg (2005)

15. Filar, J., Vrieze, K.: Competitive Markov Decision Processes. Springer, Heidelberg (1996)
16. Grigoriev, D.: Complexity of deciding Tarski algebra. Journal of Symbolic Computation 5(1–

2), 65–108 (1988)
17. Kiefer, S., Luttenberger, M., Esparza, J.: On the convergence of Newton’s method for mono-

tone systems of polynomial equations. In: Proceedings of STOC 2007, pp. 217–226. ACM
Press, New York (2007)

18. Puterman, M.L.: Markov Decision Processes. Wiley, Chichester (1994)
19. Tarski, A.: A Decision Method for Elementary Algebra and Geometry. Univ. of California

Press, Berkeley (1951)

A Quantifier Elimination Algorithm for Linear
Real Arithmetic

David Monniaux

CNRS / VERIMAG�

Abstract. We propose a new quantifier elimination algorithm for the
theory of linear real arithmetic. This algorithm uses as subroutines sat-
isfiability modulo this theory and polyhedral projection; there are good
algorithms and implementations for both of these. The quantifier elimi-
nation algorithm presented in the paper is compared, on examples aris-
ing from program analysis problems and on random examples, to several
other implementations, all of which cannot solve some of the examples
that our algorithm solves easily.

1 Introduction

Consider a logic formula F , possibly with quantifiers, whose variables lay within
a certain set S and whose atomic predicates are relations over S. The models
of this formula are assignments of values in S for the free variables of F such
that F evaluates to “true”. Quantifier elimination is the act of providing another
formula F ′, without quantifiers, such that F and F ′ are equivalent, that is, have
exactly the same models. For instance, ∀x (x ≥ y ⇒ x ≥ 3) is equivalent to
quantifier-free y ≥ 3.

If F has no free variables, then F ′ is a ground (quantifier-free, variable-free)
formula. In most practical cases such formulas can be easily decided to be true
or false; quantifier elimination thus provides a decision procedure for quantified
formulas.

In this paper, we only consider relations of the form L(x, y, z, . . .) ≥ 0 where
L is a linear affine expression (an arithmetic expression where multiplication
is allowed only by a constant factor), interpreted over the real numbers (or,
equivalently, over the rationals). We can thus deal with any formula over lin-
ear equalities or inequalities. Our algorithm transforms any formula of the form
∃x1, . . . , xn F , where F has no quantifiers, into a quantifier-free formula F ′ in
disjunctive normal form. Nested quantifiers are dealt with by syntactic induc-
tion: in order to eliminate quantifiers from ∃x F or ∀x F , where F may contain
quantifiers, one first eliminates quantifiers from F . Universal quantifiers are con-
verted to existential ones (∀x1, . . . , xn F ≡ ¬∃x1, . . . , xn ¬F), yet our algorithm
generally avoids the combinatorial explosion over negations that hinders some
other methods.
� VERIMAG is a joint research laboratory of CNRS and Grenoble universities.

I. Cervesato, H. Veith, and A. Voronkov (Eds.): LPAR 2008, LNCS 5330, pp. 243–257, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

244 D. Monniaux

Our method can be understood as an improvement over the approach of con-
verting to DNF through ALL-SAT and performing projection; we compared
both approaches experimentally (see § 5.2). We compared our implementation
with commercial and noncommercial quantifier elimination procedures over some
examples arising from practical program analysis cases, as well as random prob-
lems, and ours was the only one capable of processing them without exhausting
memory or time, or failing due to the impossibility of handling large coefficients.

2 The Algorithm

We first describe the datatypes on which our algorithm operates, then the off-
the-shelf subroutines that it uses, then the algorithm and its correctness proof,
then possible alterations.

2.1 Generalities

We process unquantified formulas built using ∧, ∨, ⇒, ¬ or other logical connec-
tives such as exclusive-or (the exact set of connectives allowed depends on the
satisfiability tester being used, see below; in this paper we shall only use ∧, ∨
and ¬), and on quantified formulas built with the same connectives and the ex-
istential (∃) and universal (∀) quantifiers. It is possible to quantify not only on a
single variable but also on a set of variables, represented as a vector v. The atoms
are linear inequalities, that is, formulas of the form c + cxx + cyy + czz · · · ≥ 0
where c ∈ Q is the constant coefficient and cv ∈ Q is the coefficient associated
with variable v. It is trivially possible to represent equalities or strict inequalities
using this formula language. The models of a formula F are assignments a of ra-
tional numbers to the free variables of F such that a satisfies F (written a |= F).
F is said to be satisfiable if a model exists for it. If F has no free variables, then
F is said to be true if F is satisfiable, false otherwise. Two formulas A and B
are said to be equivalent, noted A ≡ B, if they have the same models. Formula
A is said to imply formula B, noted A
 B, if any model of A is a model of B.

Consider a quantifier-free formula F , whose atomic predicates are linear
inequalities, and variables x1, . . . , xn. We wish to obtain a quantifier-free
formula F ′ equivalent to ∃x1, . . . , xn F . Let us temporarily forget about effi-
ciency in order to convince ourselves quickly that quantifier elimination is pos-
sible. F can be put into disjunctive normal form (DNF) C1 ∨ · · · ∨ Cm (by
recursive application of distributivity), and ∃x1, . . . , xn F is thus equivalent to
(∃x1, . . . , xn C1) ∨ · · · ∨ (∃x1, . . . , xn Cm). Various methods exist for finding a
conjunction C′

i equivalent to ∃x1, . . . , xn Ci, among which we can cite Fourier-
Motzkin elimination (see § 5.1). We therefore obtain F ′ in DNF. For a universal
quantifier, through De Morgan’s laws, we obtain a formula in conjunctive normal
form (CNF).

Such a naive algorithm suffers from an obvious inefficiency, particularly if
applied recursively to formulas with alternating quantifiers. A first and obvious

A Quantifier Elimination Algorithm for Linear Real Arithmetic 245

step is to replace DNF conversion through distributivity by modern techniques
(model enumeration using satisfiability modulo theory). We show in this paper
than one can do better by interleaving the projection and the model numeration
processes.

2.2 Building Blocks

If one has propositional formulas with a large number of variables, one never
converts formulas naively from CNF to DNF, but one uses techniques such as
propositional satisfiability (SAT) solving. Even though SAT is NP-complete,
there now exist algorithms and implementations that can deal efficiently with
many large problems arising from program verification. In our case, we apply
SAT modulo the theory of linear real inequalities (SMT), a problem for which
there also exist algorithms, implementations, standard benchmarks and even a
competition. Like SAT, SAT modulo linear inequalities is NP-complete. A SMT
solver takes as an input a formula F where the literals are linear equalities or
inequalities, and answers either “not satisfiable”, or a model of F , assigning a
rational number to each variable in F . We assume we have such an algorithm
Smt at our disposal as a building block

Another needed building block is quantifier elimination over conjunctions,
named Project(C,v): given a conjunction C of linear inequalities over vari-
ables v = v1, . . . , vN , obtain a conjunction C′ equivalent to ∃v1, . . . , vn C. For
efficiency reasons, it is better if C′ is minimal (no conjunct can be removed
without adding more models), or at least “small”. Fourier-Motzkin elimination
is a simple algorithm, yet, when it eliminates a single variable, the output con-
junction can have a quadratic number of conjuncts compared to the input con-
junction, thus a pass of simplification is needed for practical efficiency; various
algorithms have been proposed in that respect [1]. For our implementations, we
used “black box” libraries implementing geometrical transformations, in particu-
lar polyhedron projection: C defines a convex polyhedron1 in QN , and finding C′

amounts to computing the inequalities defining the projection of this polyhedron
into QN−n.

3 Quantifier Elimination Algorithm

We shall first describe subroutines Generalize1 and Generalize2, then the
main algorithm ExistElim.

1 A good bibliography on convex polyhedra and the associated algorithms can be found
in the documentation of the Parma Polyhedra Library. [2] By convex polyhedron, we
mean, in a finite-dimension affine linear real space, an intersection of a finite number
of half-spaces each delimited by a linear inequality, that is, the set of solutions
of a finite system of linear inequalities. In particular, such a polyhedron can be
unbounded. In the rest of the paper, the words “polyhedron”must be understood to
mean “convex polyhedron” with that definition.

246 D. Monniaux

Algorithm 1. Generalize1(a, F): Generalize a model a of a formula F to a
conjunction
Require: a |= F

M ← true
for all P ∈ AtomicPredicates(F) do

if a |= P then
M ← M ∧ P

else
M ← M ∧ ¬P

end if
end for

Ensure: M
 F

Algorithm 2. Generalize2(G, M): Remove useless constraints from conjunc-
tion M so that G ∧M ≡ false
Require: G ∧M is not satisfiable

for all c conjunct in M do
if (G \ {c}) ∧M is not satisfiable (call Smt) then

remove c from M
end if

end for
Ensure: G ∧M is not satisfiable

3.1 Generalized Models

Consider a satisfiable quantifier-free formula F . We suppose we have at our
disposal a SMT-solving algorithm that will output a model m |= F . We wish
to obtain instead a generalized model: a conjunction C such that C =⇒ F .
Ideally, we would like C to have as few conjuncts as possible. We shall now see
algorithms in order to obtain such generalized models.

The truth value of F on an assignment a of its variables only depends on
the truth value of the atomic predicates of F over a. Let us note NF =
|AtomicPredicates(F)|, where |X | denotes the cardinality of the set X . These
truth assignments therefore define at most 2NF equivalence classes over the valu-
ations of the variables appearing in F . There can be fewer than 2NF equivalence
classes, because some truth assignments can be contradictory (for instance, x ≥ 1
assigned to true and x ≥ 0 assigned to false). One can immediately generalize
a model of a formula to its equivalence class, which motivates our algorithm
Generalize1. Its output is a conjunction of literals from F .

This conjunction may itself be insufficiently general. Consider the formula
F = (x ≥ 0 ∧ y ≥ 0) ∨ (¬x ≥ 0 ∧ y ≥ 0). x �→ 0, y �→ 0 is a model of F .
Generalize1 will output the conjunction x ≥ 0∧ y ≥ 0. Yet, the first conjunct
could be safely removed. Generalize2(¬(F ∨ O),M) will remove unnecessary
conjuncts from M while preserving the property that M
 F ∨ O. Figure 3
illustrates why it is better to generalize the conjunctions.

A Quantifier Elimination Algorithm for Linear Real Arithmetic 247

The problem of obtaining a minimal (or at least, “reasonably small”) incon-
sistent subset out of an inconsistent conjunction has already been studied. In
DPLL(T) algorithms [3] for SMT-solving, the problem is to find out, given a
consistent conjunction of literals L1 ∧ · · · ∧ Ln and a new literal L′, whether
L1 ∧ · · · ∧ Ln ⇒ L′, L1 ∧ · · · ∧ Ln ⇒ ¬L′, or neither; and if one of the im-
plications holds, produce a minimal explanation why it holds, that is, a subset
Li1 , . . . , Lim of the Li such that Li1 ∧ · · · ∧ Lim ⇒ L′ (respectively, ⇒ ¬L′).
Since this decision and explanation procedure is called often, it should be fast
and much effort has been devoted in that respect by implementors of SMT-solvers
(e.g. [4] for congruence theories). It is however not straightforward to use such
explanation procedures for our purposes, since we do not consider conjunctions
of literals only: when algorithm ExistElim invokes Generalize2(¬F,M1), ¬F
is in general a complex formula, not a literal.

We therefore present here a straightforward inconsistent set minimization al-
gorithm similar to the one found in [5, §6]. Generalize2(G,M), where M is a
conjunction such that G ∧M is unsatisfiable, works as follows:

– It attempts removing the first conjunct from M (thus relaxing the M con-
straint). If G∧M stays unsatisfiable, the conjunct is removed. If it becomes
satisfiable, then the conjunct is necessary and is kept.

– The process is continued with the following conjuncts.

Unsurprisingly, the results of this process depend on the order of the conjuncts
inside the conjunction M . Some orders may perform better than others; the
resulting set of conjuncts is minimal with respect to inclusion, but not necessarily
with respect to cardinality.2

3.2 Main Algorithm

The main algorithm is ExistElim(F,v) which computes a DNF formula equiv-
alent to ∃v F . v is a vector of variables. v can be empty, and then the algorithm
simply computes a “simple” DNF form for F . The algorithm computes general-
ized models of F and projects them one by one, until exhaustion. It maintains
three formulas H and O. O is a DNF formula containing the projections of the
models processed so far. H contains the models yet to be processed; it is initially
equal to F . For each generalized model M , its projection π is added to O and
removed from H . ExistElim can thus be understood as an ALL-SAT imple-
mentation coupled with a projection, where the projection is performed inside
the loop so as to simplify the problem (as opposed to waiting for all models to
be output and projecting them).
2 This is the case even if we consider a purely propositional case. As an example,

consider F = A ∨ (B ∧ C). M = A ∧ B ∧ C
 F , otherwise said M ∧ ¬F is not
satisfiable. If one first relaxes the constraint A, one gets the conjunction B ∧ C,
which still implies F ; this conjunction has two propositional models (A∧B ∧C and
¬A ∧ B ∧ C). Yet, one could have chosen to relax B and obtain A ∧ C, and then
to relax C and obtain A (which still implies F); this formula has four propositional
models.

248 D. Monniaux

projection of A

A

B

C

Fig. 1. Subsumption of one generalized model by another

AB C

O

D

Fig. 2. The gray area is the set of points matched by formula F = y ≥ −1 ∨ (y ≥
−2∧x ≥ −1∧x ≤ 1). Point O = (0, 0) is found as a model. This model is first generalized
to y ≥ −1∧y ≥ −2∧x ≥ −1∧x ≤ 1 according to its valuations on the atomic boolean
formulas. Depending on whether one first tries to relax x ≥ −1 or y ≥ −1, one gets
either a half plane (one conjunct) or a vertical band (three conjuncts); the former is
“simpler” than the second. The simplicity of the formula output by Generalize2 thus
depends on the ordering of the input conjuncts.

Algorithm 3. ExistElim: Existential quantifier elimination
H ← F
O ← false
while H is satisfiable (call Smt) do {(∃v F) ≡ (O ∨ ∃v H) and H ∧ O ≡ false and
O does not mention variables from v}

a ← a model of H {a |= H}
M1 ← Generalize1(F, a) {M1
 F}
M2 ← Generalize2(¬F, M1) {¬(M2 ∧G)}
π ← Project(M2, v) {π ≡ ∃v M2}
O ← O ∨ π
H ← H ∧ ¬π

end while
Ensure: O ≡ ∃v F

A Quantifier Elimination Algorithm for Linear Real Arithmetic 249

A

B

C

Fig. 3. A is the first generalized model selected. If G0
def= ¬F , the initial value of G,

is replaced at the next iteration by G1
def= ¬F ∧ ¬π0 where π0 is the projection of A,

then it is possible to generate a single generalized model encompassing both B and C
(for instance x ≥ −1 ∧ y ≥ 0 ∧ y ≤ 2. If G stays constant, then the x ≥ 1 constraint
defining the left edge of C cannot be relaxed.

The partial correctness of the algorithm ensues from the loop condition and
the following loop invariants: (∃v F) ≡ O ∨ (∃v H), H
 F and O does not
mention variables from v.

Given a formula φ, we denote by W (φ) the number of equivalence classes
induced by the atomic predicates of F with nonempty intersection with the
models of φ. Termination is ensured because W (H) decreases by at least one
at each iteration: M1 defines exactly one equivalence class, M2 defines a union
of equivalence classes which includes the one defined by M1, and the models of
π include those of M2 thus also at least one equivalence class. The number of
iterations is thus at most 2NF . Note that Generalize2 is needed neither for
correctness nor for termination, but only for efficiency: otherwise, the number
of iterations would always be the number of equivalence classes, which can be
huge.

4 Possible Changes and Extensions

We investigated two variations of the same algorithm, both of which perform sig-
nificantly worse. In addition, we extended the algorithm to quantifier elimination
modulo a user-specified theory.

4.1 ALL-SAT Then Project (Mod1)

The algorithm would still be correct if M was removed from H instead of π.
It then becomes equivalent to performing ALL-SAT (obtaining all satisfying
assignments) then projection. On the one hand, with this modified algorithm,
the set of atomic formulas of H would stay included in that of F throughout the
iterations, while this set can grow larger with the original algorithm since the
set of atomic formulas of the projection of F can be much larger than the set

250 D. Monniaux

of atomic formulas in F (see §5.1). On the other hand, the original algorithm
may need fewer iterations because π may subsume several generalized models,
as shown by Fig. 1 : A is the first generalized model being generated, and its
projection subsumes B; thus, the original algorithm will not have to generate
B, while the modified algorithm will generate B. Our experiments (§5.2) showed
that the unmodified algorithm often performs much better in practice than this
approach.

4.2 Removals from Negated Set (Mod2)

The algorithm given previously was not the first we experimented; we had orig-
inally a slightly more complicated one, given as ExistElim(Mod2), which we
wrongly thought would be more efficient. Instead of using ¬F to check for inap-
propriate generalizations, we used a formula G initially equal to ¬F , and then
progressively altered. The termination proof stays the same, while correctness
relies on the additional invariant G ≡ ¬(F ∨ O). ExistElim can be thought of
as identical to ExistElim(Mod2) except that G stays constant.

Algorithm 4. ExistElim(Mod2): Existential quantifier elimination
H ← F
G← ¬F
O ← false
while H is satisfiable (call Smt) do {(∃v F) ≡ (O ∨ ∃v H) and G ≡ ¬(F ∨O) and
H ∧O ≡ false and O does not mention variables from v}

a ← a model of H {a |= H}
M1 ← Generalize1(F, a) {M1
 F}
M2 ← Generalize2(G, M1) {¬(M2 ∧G)}
π ← Project(M2, v) {π ≡ ∃v M2}
O ← O ∨ π
H ← H ∧ ¬π
G ← G ∧ ¬π

end while
Ensure: O ≡ ∃v F

We thought this scheme allowed more generalization of models than the al-
gorithm we gave earlier in the article, as shown by Fig. 3. ExistElim tries to
generalize M to a conjunction that implies F , but in fact this is too strict a
condition to succeed, whereas ExistElim(Mod2) succeeds in generalizing F to
a conjunction that implies F ∨ O. If at least one variable is projected out, and
F actually depends on that variable, then the models of F are strictly included
in those of the final value of O, which is equivalent to ∃v F .

Experiments (§5.2) however showed that this “more clever”algorithm is slower
by approximately a factor of two, because adding extra assertions to G is costly
for the SMT-solver.

A Quantifier Elimination Algorithm for Linear Real Arithmetic 251

4.3 Extra Modulo Theory

The algorithm can be easily extended to quantifier elimination modulo an as-
sumption T on the free variables of F . All definitions stay the same except that

 is replaced by
T , defined as P
T Q

def= (P ∧ T)
 (Q ∧ T) and ≡ is re-
placed by ≡T , defined as (P ≡T Q) def= (P ∧T ≡ Q∧T). ExistElim is modified
by replacing the initialization of G and H by ¬F ∧ T and F ∧ T respectively.
Intuitively, T defines a universe of validity such that values outside of the models
T are irrelevant to the problem being studied.

5 Comparison with Other Algorithms

The“classical”algorithm for quantifier elimination over linear inequalities is Fer-
rante and Rackoff’s [6]. Another algorithm based on similar ideas, but with bet-
ter performance, was proposed by Loos and Weispfenning [7]. We shall therefore
compare our method to these algorithms, both theoretically and experimentally.
We also compared our algorithm with other available packages using other quan-
tifier elimination techniques.

5.1 Complexity Bounds

We consider in this section that inequalities are written using integer coefficients
in binary notation. We shall prove that a complexity bound 2n2q

where n is the

Table 1. Timings (in seconds, on an AMD Turion TL-58 64-bit Linux system) for
eliminating quantifiers from our benchmarks. The first line is the algorithm described
in this paper, the two following linear variants from §4, then other packages. Reduce

has rlqe (quantifier elimination) and rlqe+rldnf (same, followed by conversion to
DNF). (> t) means that the computation was killed after t seconds because it was
running too long. The prsb23 and following are decision problems, the output is true
or false, thus DNF form does not matter. Out-of-memory is noted “o-o-m”.

Benchmark r. lim. R r. lim. float prsb23 blowup5
Mjollnir 1.4 17 0.06 negligible
Mjollnir (mod1) 1.6 77a 0.06 negligible
Mjollnir (mod2) 1.5 34 0.07 negligible
Mjollnir Loos-Weispfenning o-o-m o-o-m o-o-m negligible
Proof-of-concept n/a 823 n/a n/a
Mjollnir Ferrante-Rackoff o-o-m o-o-m o-o-m negligible
Proof-of-concept n/a 823 n/a n/a
Lira o-o-m o-o-m 8.1 0.6
Redlog rlqe 182 o-o-m 1.4 negligible
Redlog rlqe+rldnf o-o-m o-o-m n/a n/a
Mathematica Reduce (> 12000) o-o-m (> 780) 7.36
a Memory consumption grows to 1.1 GiB.

252 D. Monniaux

number of atomic formulas and q is the number of quantifiers to be eliminated.

This yields an overall complexity of 222|F |
where |F | is the size of the formula.

Let us consider a conjunction of inequalities taken from a set of n inequalities.
The Fourier-Motzkin algorithm [8,1] eliminates variable x from this conjunction
as follows. It first partitions these inequalities into those where x does not ap-
pear, which are retained verbatim, and those where x appears positively (E+)
and negatively (E−). From each couple of inequalities (e+, e−) in E+ × E−, an
inequality where x does not appear is obtained by cancellation between e+ and
e−. The size in bits of the coefficients in the output inequalities can be at most
2s+ 1 where s is the maximal size of the input coefficients.

The inequalities output therefore belong to a set of size asymptotically at most
n2/4 (the worst-case occurs when the inequalities split evenly between those in
which x appears positively and those where it appears negatively). The output
conjunction is in general too large: many inequalities in it are superfluous; yet it
is guaranteed to include all inequalities defining the facets of the projection of
the polyhedron.

Consider a formula F written with inequalities A1, . . . , An as atomic formulas,
with maximal coefficient size s. Our algorithm eliminates the quantifier from
∃x F and outputs a DNF formula F ′ built with inequalities found in the output
of the Fourier-Motzkin algorithm operating on the set A1, . . . , An and variable x.
It follows that F ′ is built from at most, asymptotically, n2/4 inequalities as
atomic formulas. The running time for this quantifier elimination comes from:

– The SMT solving passes. There are at most 2n branches to explore in total.
For each branch, SMT has to test whether the solution set of a conjunction
of polynomial inequalities is empty or not, which is a particular case of linear
programming, with polynomial complexity. The overall SMT cost is therefore
bounded by O(2n.P (n)) for some polynomial P ;

– The projections, with complexity O(n2.s), applied to each of at most 2n

polyhedra.

This gives an overall complexity of O(2cn) where c is a constant.
Consider now a succession of quantifier eliminations (with or without alter-

nations). We now have F consisting of a sequence of quantifiers followed by a
quantifier-free formula built out of atomic formulas A1, . . . , An. Our algorithm
performs eliminations in sequence, starting from the rightmost quantifier.

Let us note A(k) the set of atomic formulas that can be obtained after k
eliminations; A(0) = {A1, . . . , An}. Clearly, |A(k)| ≤ |A(0)|2k

asymptotically,
since at each iteration the size of the set of atomic formulas can at most get
squared by Fourier-Motzkin elimination. The size of the coefficients grows at
most as s.2k. This yields the promised bound.

It is possible that the bound |A(k)| ≤ |A(0)|2k

, obtained by observation of
the Fourier-Motzkin algorithm, is too pessimistic. The literature does not show
examples of such doubly exponential blowups, while polyhedra with single ex-
ponential blowups can be constructed.

A Quantifier Elimination Algorithm for Linear Real Arithmetic 253

The “classical”algorithm for quantifier elimination over real or rational arith-
metic is Ferrante and Rackoff’s method [6][8, §7.3][9, §4.2]. A related algorithm
was proposed by Loos and Weispfenning [7][9, §4.4]. Both these algorithms are
based on the idea that an existentially quantified formula ∃x F (x) with free
variables y, z, . . . can be replaced by F (x1) ∨ · · · ∨ F (xm) where x1, . . . , xm are
expressed as functions of y, z, In the case of Ferrante and Rackoff, m is
quadratic in the worst case in the length of the formula, while for Loos and
Weispfenning it is linear. In both cases, the overall complexity bound is 22cn

.
The weakness of both algorithms is that they never simplify formulas. This

may explain that while their theoretical bounds are better than ours, our algo-
rithm is in practice more efficient, as shown in the next subsection.

One could at first assume that the complexity bounds for our algorithm are
asymptotically worse than Ferrante and Rackoff’s. Our algorithm, however, out-
puts results in CNF or DNF form, while Ferrante and Rackoff’s algorithm does
not. If we add a step of transformation to CNF or DNF to their algorithm, then
we also obtain a triple exponential bound.

5.2 Practical Results

We benchmarked several variants of our method against other algorithms:

Mjollnir is the algorithm described in §3, implemented on top of SMT solver
Yices

3 and the NewPolka polyhedron package from Apron
4, or optionally

the Parma Polyhedra Library (PPL5). Profiling showed that most of the time
is spent in the SMT solver, so performance differences between NewPolka
and PPL are negligible.

Proof-of-concept is an early version of the same algorithm, implemented on
top of a rudimentary SMT solver and the PPL. The SMT algorithm used
is simple and lazy: the SMT problem is turned into SAT by replacing each
atomic inequality by a propositional variable, and the SAT problem is input
into Minisat. A full SAT solution is obtained, then tested for emptiness
by solving a linear programming problem: finding a vector of coefficients
suitable as a contradiction witness for Farkas’ lemma. If a witness is found,
it yields a contradictory conjunction, whose negation is added to the SAT
problem and SAT is restarted.

Mjollnir (mod1) is the ALL-SAT then projection algorithm from §4.1. It is
invoked by option -no-block-projected-model.

Mjollnir (mod2) is the algorithm from §4.2; it is invoked by option -add-
blocking-to-g.

Mjollnir Ferrante-Rackoff implements [6][8, §7.3].
Mjollnir Loos-Weispfenning implements [7].
Lira6 is based on Büchi automata and handles both Presburger arithmetic (in-

teger linear inequalities) and rational linear inequalities.
3 http://yices.csl.sri.com/
4 http://apron.cri.ensmp.fr/library/
5 http://www.cs.unipr.it/ppl/
6 http://lira.gforge.avacs.org/

http://yices.csl.sri.com/
http://apron.cri.ensmp.fr/library/
http://www.cs.unipr.it/ppl/
http://lira.gforge.avacs.org/

254 D. Monniaux

Table 2. Benchmarks on 3 × 100 random instances generated using randprsb, with
formula depths n respectively 14, 15 and 16 (obtained by randprsb 0 7 -10 10 n i)
where i ranges in [0, 99]). The table shows the number of instances solved within the
timeout period out of the proposed 100, the average time spent per solved instance,
and the number of instances resulting in out-of-memory.

depth 14 depth 15 depth 16
Solved Avg O-o-m Solved Avg O-o-m Solved Avg O-o-m

Mjollnir 100 1.6 0 94 9.8 0 73 35.3 0
Mjollnir (mod1) 94 8.2 3 80 27.3 7 39 67.1 25
Mjollnir (mod2) 100 3.8 0 91 13.9 0 65 39.2 0
Mjollnir Loos-W. 93 1.77 4 90 6.42 5 62 17.65 27
Proof-of-concept 94 1.4 0 86 2.2 0 55 17.7 0
Mjollnir Ferrante-R. 51 18.2 41 23 23.2 65 3 7.3 85
Proof-of-concept 94 1.4 0 86 2.2 0 55 17.7 0
Lira 14 102.4 83 3 77.8 94 1 8 95
Redlog (rlqe) 92 13.7 0 53 27.4 0 27 33.5 0
Mathematica 6 30.2 0 1 255.7 0 1 19.1 0

Mathematica7 is a general-purpose symbolic algebra package. Its Reduce fonc-
tion appears to implement CAD [10], an algorithm suitable for nonlinear in-
equalities interpreted in the theory of real closed fields, though it is difficult
to know what exactly is implemented because this program is closed source.

Redlog8 is a symbolic formula package implemented on top of the computer
algebra system Reduce 3.8.9 Redlog implements various algorithms due
to Volker Weispfenning and his group [11].

Table 1 compares these various implementations on a few benchmark exam-
ples10 coming from two sources:

1. Examples produced from problems of program analysis following our method
for the parametric computation of least invariants. [12] To summarize, each
formula expresses the fact that a set of program states (such as a product of
intervals for the numerical variables) is the least invariant of a program, or
the strongest postcondition if there is no fixed point involved. Most of the
examples, being extracted by hand from simple subprograms, were easily
solved and thus did not constitute good benchmarks, but one of them,
defining the least invariant of a rate limiter, proved to be tougher to solve,
and we selected it as a benchmark. We have two versions of this example:
the first for a rate limiter operating over real numbers (“r. lim R”) the second

7 http://www.wolfram.com/
8 http://www.algebra.fim.uni-passau.de/~redlog/
9 http://www.uni-koeln.de/REDUCE/

10 Available from http://www-verimag.imag.fr/ monniaux/download/linear_qe_
benchmarks.zip

http://www.wolfram.com/
http://www.algebra.fim.uni-passau.de/~redlog/
http://www.uni-koeln.de/REDUCE/
http://www-verimag.imag.fr/~monniaux/download/linear_qe_benchmarks.zip
http://www-verimag.imag.fr/~monniaux/download/linear_qe_benchmarks.zip

A Quantifier Elimination Algorithm for Linear Real Arithmetic 255

over floating-point numbers, abstracted using real numbers (“r. lim float”),
and considerably tougher to process than the real example.

2. Examples procured from the Lira designers (prsb23 and blowup5).

Memory consumption stayed modest for all examples (< 15 MiB), except for
r. lim float. Profiling showed that most of the time is spent in the SMT-solver
and only a few percents in the projection algorithm. The fact that the proof-of-
concept implementation, with a very naive SMT-solver, performs decently on an
example where other algorithms exhaust memory shows that the performance of
our algorithm cannot be solely explained by the good quality of Yices.

Table 2 compares the various algorithms on random examples. We then used
the LIRA team’s randprsb tool11 to generate 100 random instances, by chang-
ing the seed of the random number generator from 0 to 99, for each of three
values (14, 15, 16) of the depth parameter, which measures complexity.12 The
programs were then tested with both a 1.8 GiB memory limit and a timeout of
five minutes. It is clear from Tab. 2 that Mjollnir -no-add-blocking-to-g is
the most efficient of the tested tools.

6 Conclusion and Future Work

We have proposed a new quantifier elimination algorithm for the theory of linear
inequalities over the real or rational numbers, and investigated possible variants.
Our motivation was the practical application of a recent result of ours on program
analysis, stating that formulas for computing the least invariants of certain kinds
of systems can be obtained through quantifier elimination [12].

This algorithm is efficient on examples obtained from this program analy-
sis technique, as well as other examples, whereas earlier published algorithms,
as well as several commercial packages, all exhaust time or memory resources.
Our algorithm leverages the recent progresses on satisfiability modulo theory
solvers (SMT) and, contrary to older algorithms, performs on-the-fly simpli-
fications of formulas that keep formula sizes manageable. Our algorithm also
performs better than a straight application of SMT solvers (ALL-SAT followed
by projection).

Our algorithm is described for rational or real linear arithmetic, but it can be
extended to any theory for which there is an efficient satisfiability testing algo-
rithm for unquantified formulas and a reasonably efficient projection algorithm
for conjunctions. Among extensions that could be interesting from a practical
point of view would be on the one hand the nonlinear case for real arithmetic
(polynomials), and on the other hand the mixed integer / real problems. Of
course, nonlinear integer arithmetic cannot be considered, since Peano arith-
metic is undecidable.

11 http://lira.gforge.avacs.org/toolpaper/randPrsb.hs
12 We used the command line randprsb 0 7 -10 10 n i where n is the depth param-

eter (here, 14, 15 or 16) and i ranges in [0, 99].

http://lira.gforge.avacs.org/toolpaper/randPrsb.hs

256 D. Monniaux

Tarski showed that the theory of the real closed fields (inequalities of polyno-
mial expressions) admits quantifier elimination, [13] however his algorithm had
impractical (non-elementary) complexity. Later, the cylindrical algebraic decom-
position (CAD) [14, Ch. 11] method was introduced, with doubly exponential
complexity, which is unavoidable in the worst case [14, §11.4]. Our experiments
with both Mathematica and Qepcad, both of which implement CAD, as well
as with Reduce/Redlog, which implement various algorithms for quantifier
elimination, showed us that combinatorial blowup occurs very quickly. For such
techniques to be interesting in practice, practical complexity should be lowered.
Perhaps our technique could help. There are, however, significant difficulties in
that respect. Our technique starts with some single model of the target formula
over the rational numbers; but a system of nonlinear inequalities needs not have
rational models when it is not full-dimensional (for instance, X2 = 2). Our tech-
nique reduces the geometrical computations to computations on conjunctions;
but in the nonlinear case, single inequalities can be reduced to disjunctions. As
an example, X2 ≥ 4 is reduced to X ≤ −2 ∨ X ≥ 2. Most importantly, our
technique relies at several steps on the availability of a decision procedure that
stays efficient even when the answer is negative.

Regarding the mixed integer / real problems, the Lira tool implements quan-
tifier elimination using a weak form of Büchi automata matching the b-ary ex-
pression of the integers or reals, where b is an arbitrary base. [15] The output of
the process is an automaton and not a readable formula. While it is possible to
decide a closed formula, and to obtain one model from a satisfiable non-closed
formula, it is an open problem how to efficiently reconstruct a quantifier-free
formula from the resulting automaton. The automaton construct is unsuitable
for large coefficients (as our examples obtained from the analysis of floating-
point programs). Even on examples with small coefficients, the tool was unable
to complete quantifier elimination without blowing up. We think therefore that
it would be interesting to be able to apply our technique to the mixed integer /
real problems, but there are difficulties: the algorithms on integer polyhedra are
considerably more complex than on rational polyhedra.

A classical objection to automatic program analysis tools meant to prove
the absence of bugs is that these tools could themselves contain bugs. Our
method uses complex algorithms (SMT-solving, polyhedron projection) as sub-
procedures. We consider developing techniques so that the algorithm outputs
easily-checkable proofs or “proof witnesses” of the correctness of its computa-
tion. Furthermore, we showed in earlier publications [12] that certain program
analysis tasks were equivalent to quantifier elimination problems; that is, an
effective static analyzer can be extracted from the quantifier-free form of an
analyzer specification. This therefore suggests a new way for writing safe static
analyzers: instead of painstakingly writing an analyzer, then proofs of correctness
in a proof assistant [16], one could formulate the analysis problem as an equiva-
lent quantifier elimination problem, with a relatively simple proof of equivalence,
then apply a “certified” quantifier elimination procedure in order to extract the
effective analyzer.

A Quantifier Elimination Algorithm for Linear Real Arithmetic 257

References

1. Imbert, J.L.: Fourier’s elimination: Which to choose? In: Principles and Practice
of Constraint Programming, pp. 117–129 (1993)

2. Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra Library, version 0.9,
http://www.cs.unipr.it/ppl

3. Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: DPLL(T): Fast
Decision Procedures. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114,
pp. 175–188. Springer, Heidelberg (2004)

4. Nieuwenhuis, R., Oliveras, A.: Fast Congruence Closure and Extensions. Inf. Com-
put. 2005(4), 557–580 (2007)

5. de Moura, L., Rueß, H., Sorea, M.: Lazy theorem proving for bounded model
checking over infinite domains. In: Voronkov, A. (ed.) CADE 2002. LNCS, vol. 2392,
pp. 438–455. Springer, Heidelberg (2002)

6. Ferrante, J., Rackoff, C.: A decision procedure for the first order theory of real
addition with order. SIAM Journal of Computation 4(1), 69–76 (1975)

7. Loos, R., Weispfenning, V.: Applying linear quantifier elimination. The Computer
Journal 36(5), 450–462 (1993)

8. Bradley, A.R., Manna, Z.: The Calculus of Computation: Decision Procedures with
Applications to Verification. Springer, Heidelberg (2007)

9. Nipkow, T.: Linear quantifier elimination. In: Armando, A., Baumgartner, P.,
Dowek, G. (eds.) IJCAR 2008. LNCS, vol. 5195, pp. 18–33. Springer, Heidelberg
(2008)

10. Caviness, B.F., Johnson, J.R. (eds.): Quantifier elimination and cylindrical alge-
braic decomposition. Springer, Heidelberg (1998)

11. Loos, R., Weispfenning, V.: Applying linear quantifier elimination. The Computer
Journal 36(5), 450–462 (1993); Special issue on computational quantifier elimina-
tion

12. Monniaux, D.: Optimal abstraction on real-valued programs. In: Riis Nielson, H.,
Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 104–120. Springer, Heidelberg (2007)

13. Tarski, A.: A Decision Method for Elementary Algebra and Geometry. University
of California Press (1951)

14. Basu, S., Pollack, R., Roy, M.F.: Algorithms in real algebraic geometry. Algorithms
and computation in mathematics. Springer, Heidelberg (2003)

15. Becker, B., Dax, C., Eisinger, J., Klaedtke, F.: LIRA: handling constraints of linear
arithmetics over the integers and the reals. In: Damm, W., Hermanns, H. (eds.)
CAV 2007. LNCS, vol. 4590, pp. 312–315. Springer, Heidelberg (2007)

16. Pichardie, D.: Interprétation abstraite en logique intuitionniste : extraction
d’analyseurs Java certifiés. PhD thesis, Université Rennes 1 (2005)

http://www.cs.unipr.it/ppl

ME(LIA) - Model Evolution with Linear Integer
Arithmetic Constraints�

Peter Baumgartner1, Alexander Fuchs2, and Cesare Tinelli2

1 National ICT Australia (NICTA)
Peter.Baumgartner@nicta.com.au

2 The University of Iowa, USA
{fuchs,tinelli}@cs.uiowa.edu

Abstract. Many applications of automated deduction require reasoning modulo
some form of integer arithmetic. Unfortunately, theory reasoning support for the
integers in current theorem provers is sometimes too weak for practical purposes.
In this paper we propose a novel calculus for a large fragment of first-order logic
modulo Linear Integer Arithmetic (LIA) that overcomes several limitations of
existing theory reasoning approaches. The new calculus — based on the Model
Evolution calculus, a first-order logic version of the propositional DPLL pro-
cedure — supports restricted quantifiers, requires only a decision procedure for
LIA-validity instead of a complete LIA-unification procedure, and is amenable to
strong redundancy criteria. We present a basic version of the calculus and prove
it sound and (refutationally) complete.

1 Introduction

Many applications of automated deduction require reasoning modulo some form of
integer arithmetic. Unfortunately, theory reasoning support for the integers in current
theorem provers is sometimes too weak for practical purposes. We propose a novel
refutation calculus for a restricted clause logic modulo Linear Integer Arithmetic (LIA)
that overcomes these problems. To obtain a complete calculus, we disallow free function
symbols of arity > 0 and restrict every free constant to range over a finite interval of Z.
For simplicity, we also restrict every (universal) variable to range over a bounded below
interval of Z (such as, for instance, N),

In spite of the restrictions, the logic is quite powerful. For instance, functions with a
finite range can be easily encoded into it. This makes the logic particularly well-suited
for applications that deal with bounded domains, such as, for instance, bounded model
checking and planning. SAT-based techniques, based on clever reductions of BMC and
planning to SAT, have achieved considerable success in the past, but they do not scale
very well due to the size of the propositional formulas produced. It has been argued
and shown by us and others [4,12] that this sort of applications could benefit from a
reduction to a more powerful logic for which efficient decision procedures are available.
That work had proposed the function-free fragment of clause logic as a candidate. This

� The work of the last two authors was partially supported by the National Science Foundation
grant number 0237422.

I. Cervesato, H. Veith, and A. Voronkov (Eds.): LPAR 2008, LNCS 5330, pp. 258–273, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

ME(LIA) - Model Evolution with Linear Integer Arithmetic Constraints 259

paper takes that proposal a step further by adding integer constraints to the picture. The
ability to reason natively about the integers can provide a reduction in search space even
for problems that do not originally contain integer constraints. The following simple
example from finite model reasoning demonstrates this:1

a : [1..100] P(a) ¬P(x) ← 1
.
≤ x∧ x

.
≤ 100 .

The clause set above is unsatisfiable because the interval declaration a : [1..100] for the
constant a together with the unit clause P(a) permit only models that satisfy one of
P(1), . . . ,P(100). Such models however falsify the third clause. Finite model finders,
e.g., need about 100 steps to refute the clause set, one for each possible value of a. Our
ME(LIA) calculus, on the other hand, reasons directly with integer intervals and allows
a refutation in O(1) steps. See Section 2 for an in-depth discussion of another example.

The calculus we propose is derived from the Model Evolution calculus (ME) [7],
a first-order logic version of the propositional DPLL procedure. The new calculus,
ME(LIA), shares with ME the concept of evolving interpretations in search for a model
for the input clause set. The crucial insight that leads from ME to ME(LIA) lies in the
use of the ordering < on integers in ME(LIA) instead of the instantiation ordering
on terms in ME. This then allows ME(LIA) to work with concepts over integers that
are similar to concepts used in ME over free terms. For instance, it enables a strong
redundancy criterion that is formulated, ultimately, as certain constraints over LIA ex-
pressions. All that requires (only) a decision procedure for the full fragment of LIA
instead of a complete enumerator of LIA-unifiers.

For space constraints, we present only a basic version of the calculus. We refer the
reader to a longer version of this paper [6] for extensions and improvements.

Related work. Most of the related work has been carried out in the framework of the
resolution calculus. One of the earliest related calculi is theory resolution [15]. In our
terminology, theory resolution requires the enumeration of a complete set of solutions
of constraints. The same applies to various “theory reasoning” calculi introduced later
[2,9]. In contrast, in ME(LIA) all background reasoning tasks can be reduced to satis-
fiability checks of (quantified) constraint formulas. This weaker requirement facilitates
the integration of a larger class of solvers (such as quantifier elimination procedures)
and leads to potentially far less calls to the background reasoner. For an extreme exam-
ple, the clause ¬(0< x)∨P(x) has, by itself, infinitely many most general LIA-unifiers
(the theory reasoning analogous of most general unifiers), namely {x �→ 1},{x �→ 2}, . . .,
the most general solutions of the constraint (0 < x) with respect to the term instan-
tiation ordering. Thus, any calculus based on the computation of complete sets of
(most general) solutions of LIA-constraints may need to consider all of them. In con-
trast, in ME(LIA), or in other calculi based on satisfiability alone, notably Bürckert’s
constrained resolution [8], it is enough just to check that a constraint like (0 < x) is
LIA-satisfiable.

Constrained resolution is actually more general than ME(LIA), as it admits back-
ground theories with (infinitely, essentially enumerable) many models, as opposed to

1 The predicate symbol
.
≤ denotes less than or equal on integers.

260 P. Baumgartner, A. Fuchs, and C. Tinelli

the single fixed model that ME(LIA) works with.2 On the other hand, constraint reso-
lution does not admit free constant or function symbols—unless they are considered as
part of the background theory, which is pointless since specialized background theory
reasoners do not accept free symbols. The most severe drawback of constraint resolu-
tion, however, is the lack of redundancy criteria.

The importance of powerful redundancy criteria has been emphasized in the devel-
opment of the modern theory of resolution in the 1990s [14]. With slight variations
they carry over to hierarchical superposition [1], a calculus that is related to constraint
resolution. The recent calculus in [11] integrates dedicated inference rules for Linear
Rational Arithmetic into superposition. In [7, e.g.] we have described conceptual dif-
ferences between ME, further instance based methods [3] and other (resolution) calculi.
Many of the differences carry over to the constraint-case, possibly after some modifica-
tions. For instance, ME(LIA) explicitly, like ME, maintains a candidate model, which
gives rise to a redundancy criterion different to the ones in superposition calculi. Also
it is known that instance-based methods decide different fragments of first-order logic,
and the same holds true for the constraint-case.

Over the last years, Satisfiability Modulo Theories has become a major paradigm for
theorem proving modulo background theories. In one of its main approaches, DPLL(T),
a DPLL-style SAT-solver is combined with a decision procedure for the quantifier-free
fragment of the background theory T [13]. DPLL(T) is essentially limited to the ground
case. In fact, addressing this intrinsic limitation by lifting DPLL(T) to the first-order
level is one of the main motivations for the ME(LIA) calculus (much like ME was
motivated by the goal of lifting the propositional DPLL procedure to the first-order
level while preserving its good properties). At the current stage of development the
core of the procedure—the Split rule—and the data structures are already lifted to the
first-order level. We are working on an enhanced version with additional rules, targeting
efficiency improvements. With these rules then ME(LIA) can indeed be seen as a proper
lifting of DPLL(T) to the first-order level (within recursion-theoretic limitations).

2 Calculus Preview

It is instructive to discuss the main ideas of the ME(LIA) calculus with a simple exam-
ple before defining the calculus formally. Consider the following two unit constrained
clauses (formally defined in Section 3):3

P(x) ← a
.
< x (1) ¬P(x) ← x

.= b (2)

where a,b are free constants, which we call parameters, x,y are (implicitly universally
quantified) variables, and a

.
< x and x

.= b are the respective constraints of clause (1)
and (2). The restriction that all parameters range over some finite integer domain is
achieved with the global constraints a : [1..10], b : [1..10]. Informally, clause (1) states
that there is a value of a in {1, . . . ,10} such that P(x) holds for all integers x greater
than a. Similarly for clause (2).

2 Extending ME(LIA) correspondingly is future work.
3 The predicate symbol

.= denotes integer equality and � .= stands for ¬(· .= ·); similarly for
.
<.

ME(LIA) - Model Evolution with Linear Integer Arithmetic Constraints 261

b : [1..10]
a : [1..10]

(a) Initial tree

¬P(x) | a
.
< xP(x) | a

.
< x

b : [1..10]
a : [1..10]

(1)

(b) (1) causes Split

(1)

a+1
.= b a+1 � .= b

P(x) | a
.
< x ¬P(x) | a

.
< x

b : [1..10]
a : [1..10]

(2)

(c) (2) causes Domain Split

(1)

a+1
.= b a+1 � .= b

P(x) | a
.
< x ¬P(x) | a

.
< x

b : [1..10]
a : [1..10]

P(x) |¬P(x) |
x
.= b∧a

.
< x x

.= b∧a
.
< x

(2)

(2)

(d) (2) causes Split

(1)

a+1
.= b a+1 � .= b

P(x) | a
.
< x ¬P(x) | a

.
< x

b : [1..10]
a : [1..10]

P(x) |¬P(x) |
x
.= b∧a

.
< x x

.= b∧a
.
< x

(2)

(2)

(1)

a
.
< b a �

.
< b

(e) (1) causes Domain Split

Fig. 1. Derivation example. Closed branches are marked with the number of the clause used to
close them.

The clause set above is satisfiable in any expansion of the integers structure Z to
{a,b,P} that maps a,b into {1, . . . ,10} with a ≥ b. The calculus will discover that
and compute a data structure that denotes exactly all these expansions. To see how
this works, it is best to describe the calculus’ main operations using a semantic tree
construction, illustrated in Figure 1. Each branch in the semantic tree denotes a finite
set of first-order interpretations that are expansions of Z. These interpretations are the
key to understanding the working of the calculus. The calculus’ goal is to construct a
branch denoting a set of interpretations that are each a model of the given clause set and
the global parameter constraints, or to show that there is no such model.

In the example in Figure 1a, the initial single-node tree denotes all interpretations
that interpret a and b over {1, . . . ,10} and falsify by default all ground atoms of the
form P(n) where n is an integer constants (e.g., P(−1),P(4), . . .). Each of these (100)
interpretations falsifies clause (1). The calculus detects that and tries to fix the problem
by changing the set of interpretations in two essentially complementary ways. It does
that by computing a context unifier and applying the Split inference rule (both defined
later) which extends the tree as in Figure 1b. With the addition of the constrained literal
P(x) | a

.
< x, the left branch of the new tree now denotes all interpretations that interpret

a and b as before but satisfy P(n) only for values of n greater than a.

262 P. Baumgartner, A. Fuchs, and C. Tinelli

The right branch in Figure 1b still denotes the same set of interpretations as in the
original branch. However, the presence of ¬P(x) | a

.
< x now imposes a restriction on

later extensions of the branch. To explain how, we must observe first that in the calcu-
lus the set of solutions of any constraint (which are integer tuples) is a well-founded
poset. Hence, each satisfiable constraint has minimal solutions. Now, if a branch in the
semantic tree contains a literal L(x1, . . . ,xk) | c where c is a satisfiable constraint over
the variables x1, . . . ,xn, each associated interpretation I satisfies L(n1, . . . ,nk) where
(n1, . . . ,nk) is one of the minimal solutions of c in I. Further extensions of the branch
must maintain L(n1, . . . ,nk) satisfied. This minimal solution is commited to at the time
the literal is added to the semantic tree. In the right branch of Figure 1b a (unique)
minimal solution of a

.
< x is a + 1 for all interpretations. This entails that ¬P(a + 1) is

permanently valid in the branch in the sense that (i) ¬P(a + 1) holds in every interpre-
tation of the branch and (ii) no extensions of the branch are allowed to change that. As
a consequence, the right branch permanently falsifies clause (1), and so it can be closed.

Similarly, P(a+1) is permanently valid in the left branch of Figure 1b.4 In interpreta-
tions of the branch where a+1 = b this is a problem because there clause (2) is falsified.
Since the branch also has interpretations where a + 1 �= b, the calculus makes progress
by splitting on a+1

.= b. This is done with the Domain Split rule, leading to the tree in
Figure 1c. The leftmost branch there denotes only interpretations where a+1 = b. That
branch can be closed because it permanently falsifies clause (2). It is worth pointing out
that domain splits like the above, identifying “critical” cases of parameter assignments,
can be computed deterministically. They do not need not be guessed.

We skip the rest of the derivation, and just note that the trees in Figure 1d and Fig-
ure 1e are obtained by applying Split and Domain Split, respectively. As for the branch
ending in a �

.
< b, all its interpretations satisfy P(n) for all n> a (because the constraint in

¬P(x) | x
.= b∧a

.
< x is now unsatisfiable) and falsify P(b) (by default, because a �< b).

It follows that they all satisfy the clause set. The calculus recognizes that and stops. Had
the clause set been unsatisfiable, the calculus would have generated a tree with closed
branches only.

Note how the calculus found a model, in fact a set of models, for the input clause set
without having to enumerate all possible values for the parameters a and b, resorting
instead to much more course-grained domain splits. In its full generality, the calculus
still works as sketched above. Its formal description is, however, more complex because
the calculus handles constraints with more than one (free) variable, and does not require
the computation of explicit, symbolic representations of minimal solutions.

3 Constraints and Constrained Clauses

The new calculus works with clauses containing parametric linear integer constraints,
which we call here simply constraints. These are any first-order formulas over the signa-
ture ΣΠ

Z = { .=,
.
<,+,−, 0,±1,±2, . . .}∪Π, where Π is a finite set of constant symbols

not in ΣZ = ΣΠ
Z \Π. The symbols of ΣZ have the expected arity and usage. Following

4 In DPLL terms, the split with P(x) | a
.
< x and ¬P(x) | a

.
< x is akin to a split on the comple-

mentary literals P(a + 1) and ¬P(a + 1). The calculus soundness proof relies in essence on
this observation.

ME(LIA) - Model Evolution with Linear Integer Arithmetic Constraints 263

a common math terminology, we will call the elements of Π parameters. We will use,
possibly with subscripts, the letters m,n to denote the integer constants (the constants
in ΣZ); a,b to denote parameters; x,y to denote variables (chosen from an infinite set
X); s, t to denote terms over ΣΠ

Z , and l to denote literals.

We write t : [m ..n] as an abbreviation of m
.
≤ t ∧ t

.
≤ n. We denote by ∃̄ c (resp. ∀̄c)

the existential (resp. universal) closure of the constraint c, and by π x c the projection
of c on x, i.e., ∃y c where y is a tuple of all the free variables of c that are not in
the variable tuple x. We use the predicate symbol

.
≤ also to denote the component-wise

extension of the integer ordering
.
≤ to integer tuples (for any tuple size),

.
≤� to denote the

lexicographic extension of
.
≤ to integer tuples, and

.
< and

.
<� to denote their respective

strict version.5

A constraint is ground if it contains no variables, closed if it contains no free vari-
ables.6 We define a satisfaction relation |=Z for closed parameter-free constraints as fol-
lows: |=Z c if c is satisfied in the standard sense in the structure Z of the integers—the
one interpreting the symbols of ΣZ in the usual way over the universe Z. A parameter
valuation α, a mapping from Π to Z, determines an expansion Zα of Z to the signature
ΣΠ

Z that interprets each a ∈ Π as α(a). For each parameter valuation α and closed con-
straint c we write α |=Z c to denote that c is satisfied in Zα. A (possibly non-closed)
constraint c is α-satisfiable if α |=Z ∃̄c.

For finite sets Γ of closed constraints we denote by Mods(Γ) the set of all valuations
α such that α |=Z Γ. We write Γ |=Z c to denote that α |=Z c for all α ∈ Mods(Γ). For
instance, a : [1 ..10] |=Z ∃x x

.
< a but a : [1 ..10] �|=Z ∃x (5

.
< x∧ x

.
< a).

If e is a term or a constraint, y = (y1, . . . ,yk) is a tuple of distinct variables containing
the free variables of e, and t = (t1, . . . ,tk), we denote by e[t/y] the result of simultane-
ously replacing each free occurrence of yi in e by ti, possibly after renaming e’s bound
variables as needed to avoid variable capturing. We will write just e[t] when y is clear
from context. With a slight abuse of notation, when x is a tuple of distinct variables, we
will write e[x] to denote that the free variables of e are included in x.

For any valuation α, a tuple m of integer constants is an α-solution of a constraint
c[x] if α |=Z c[m]. For instance, {a �→ 3} |=Z c[4,1], where c[x,y] = (a .= x− y).

The example in the introduction demonstrated the role of minimal solutions of (sat-
isfiable) constraints. However, minimal solutions need not always exist—consider e.g.
the constraint x

.
< 0. We say that a constraint c is admissible iff for all parameter val-

uations α, if c is α-satisfiable then the set of α-solutions of c contains finitely many
minimal elements with respect to

.
≤, each of which we call a minimal α-solution of c.

From now on we always assume that all constraints are admissible. Note that admis-
sibility can be easily enforced by conjoining a given constraint c[x] with the constraint
n

.
≤ x for some tuple n of integer constants.
As indicated in Section 2, the calculus needs to analyse constraints and their minimal

solutions. We stress that for the calculus to be effective, it need not actually compute
minimal solutions. Instead, it is enough for it to work with constraints that denote each
of the minimal α-solutions m1, ...,mn of an α-satisfiable constraint c[x]. This can be

5 We remark that each of the new symbols is definable in the given constraint language.
6 Note that a ground or closed constraint can contain parameters.

264 P. Baumgartner, A. Fuchs, and C. Tinelli

done with the formulas µk c defined below, where y is a tuple of fresh variables with the
same length as x and k ≥ 1.7

µc
def= c∧∀y (c[y]→¬(y

.
< x)) µ� c

def= c∧∀y (c[y]→ x
.
≤� y)

µk c
def= µ� (¬(µ1 c)∧·· ·∧¬(µk−1 c)∧ (µc))

Recalling that c is admissible, it is easy to see that for any valuation α, µc has at most
n α-solutions (for some n): the n minimal α-solutions of c, if any. If c is α-satisfiable,
let m1, ...,mn be the enumeration of these solutions in the lexicographic order

.
≤�. Ob-

serving that
.
≤� is a linearization of

.
≤, it is also easy to see that µ� c has exactly one

α-solution: m1. Similarly, for k = 1, . . . ,n, µk c has exactly one α-solution: mk (this is
thanks to the additional constraint ¬(µ1 c)∧ ·· · ∧¬(µk−1 c), which excludes the previ-
ous minimal α-solutions, denoted by µ1 c, . . . ,µk−1. For k> n, µk c is never α-satisfiable.
This is a formal statement of these claims:

Lemma 1. Let α be an assignment and c an admissible constraint. Then, there is an
n ≥ 0 such that µ1 c, . . . ,µn c have unique, pairwise different α-solutions, which are all
minimal α-solutions of c. Furthermore, for all k> n, µk c is not α-satisfiable.

For example, if c[(x,y)] = a
.
≤ x∧a

.
≤ y∧¬(x .= y) then µ�c is semantically equivalent

(≡) to x
.= a∧ y

.= a + 1, µc ≡ (x .= a∧ y
.= a + 1)∨ (x .= a + 1∧ y

.= a), µ1 c ≡ (x .=
a∧ y

.= a + 1), µ2 c = (x .= a + 1∧ y
.= a) and µ3 c is not α-satisfiable, for any α.

As we will see later, the calculus compares lexicographically minimal α-solutions
of constraints that have a single minimal solution. With such constraints it is enough
to compare their least α-solutions with respect to

.
≤�. This is done with the following

comparison operators over constraints, where x and y are disjoint vectors of variables
of the same length:

c
.
<µ� d

def= ∃x∃y (µ� c[x]∧µ�d[y]∧x
.
<� y) c

.=µ� d
def= ∃x (µ� c[x]∧µ�d[x])

In words, the formula c
.
<µ� d is α-satisfiable iff the least α-solutions of c and d exist,

and the former is
.
<�-smaller than the latter. Similarly for c

.=µ� d wrt. same least α-
solutions.

From the above, it is not difficult to show the following.

Lemma 2 (Total ordering). Let α be a parameter valuation, and c[x] and d[x] two
α-satisfiable (admissible) constraints. Then, exactly one of the following cases applies:
(i) α |=Z c

.
<µ� d, (ii) α |=Z c

.=µ� d, or (iii) α |=Z d
.
<µ� c.

We stress that the restriction to α-satisfiable constraints is essential here. If c or d is not
α-satisfiable, then none of the listed cases applies.

3.1 Constrained Clauses

We now expand the signature ΣΠ
Z with a finite set of free predicate symbols, and denote

the resulting signature by Σ. The language of our logic is made of sets of admissible

7 The notations ∀x c and ∃x c stand just for c when x is empty.

ME(LIA) - Model Evolution with Linear Integer Arithmetic Constraints 265

constrained Σ-clauses, defined below. The semantics of the logic consists of all the
expansions of the integer structure to the signature Σ, the Σ-expansions of Z.

A normalized literal is an expression of the form (¬)p(x) where p is a n-ary free
predicate symbol of Σ and x is an n-tuple of distinct variables. We write L(x) to denote
that L is a normalized literal whose argument tuple is exactly x.

A normalized clause is an expression C = L1(x1)∨·· ·∨Ln(xn) where n≥ 0 and each
Li(xi) is a normalized literal, called a literal in C. We write C(x) to indicate that C is a
normalized clause whose variables are exactly x. We denote the empty clause by �.

A (constrained Σ-)clause D[x] is an expression of the form C(x) ← c with the free
variables of c included in x. When C is � we call D a constrained empty clause. A clause
C(x) ← c is LIA-(un)satisfiable if there is an (no) Σ-expansion of the integer structure
Z that satisfies ∀x(c →C(x)). A set S of clauses and constraints is LIA-(un)satisfiable
if there is an (no) Σ-expansion of Z that satisfies every element of S.

We will consider only admissible clauses, i.e., constrained clauses C(x) ← c where
(i) C �= � and (ii) c is an admissible constraint. Condition (i) above is motivated by
purely technical reasons. It is, however, no real restriction, as any clause � ← c in
a clause set S can be replaced by false ← c, where false is a 0-ary predicate sym-
bol not in S, once S has been extended with the clause ¬false ← ".8 Condition (ii)
is the real restriction, needed to guarantee the existence of minimal solutions, as ex-
plained earlier. To simplify the presentation, we will further restrict ourselves to clauses
with (trivially admissible) constrains of the form c[x]∧ 0

.
≤ x, where 0 is the tuple of

all zeros. For brevity, in our examples we will sometimes leave the constraint 0
.
≤ x

implicit.

4 Constrained Contexts

A context literal K is a pair L(x) | c where L(x) is a normalized literal and c is an (ad-
missible) constraint with free variables included in x. We denote by K the constrained
literal L(x) | c, where L is the complement of L.

A (constrained) context is a pair Λ ·Γ where Γ is a finite set of closed constraints
and Λ is a finite set of context literals. We will implicitly identify the sets Λ with their
closure under renamings of a context literal’s free variables.

In terms of the semantic tree presentation in Figure 1, each branch there corresponds
(modulo a detail explained below) to a context Λ ·Γ, where Γ are the parameter con-
straints along the branch and Λ are the constrained literals. In the discussion of Figure 1
we explained informally the meaning of parameter constraints and constrained literals.
The purpose of this section is to provide a formal account for that.

Definition 3 (α-Covers, α-Extends). Let α be a parameter valuation. A context literal
L(x) | c1 α-covers a context literal L(x) | c2 if α |=Z ∃̄ c2 and α |=Z ∀̄ (c2 → c1).

The literal L(x) | c1 α-extends L(x) | c2 if L(x) | c1 α-covers L(x) | c2 and α |=Z
c1
.=µ� c2. If Γ is a set of closed constraints, L(x) | c1 Γ-extends L(x) | c2 if it α-extends

it for all α ∈ Mods(Γ).

8 We will use " and ⊥ respectively for the universally true and the universally false constraint.

266 P. Baumgartner, A. Fuchs, and C. Tinelli

For an unnormalized literal L(t) we say that L(x) | c1[x] α-covers L(t) if L(x) covers
the normalized version of L(t), i.e., the literal L(x) | π x (x .= t[z/x]) where z is a tuple
of fresh variables.

The intention of the previous definition is to compare context literals with respect to
their set of solutions for a fixed valuation α. This is expressed basically by the second
condition in the definition of α-covers. For example, P(x) | a

.
< x α-covers P(x) | a+1

.
<

x, for any α. The first condition (α |=Z ∃̄ c2) is needed to exclude α-coverage for trivial
reasons, because c2 is not α-satisfiable. Without it, for example, P(x) | x

.= 2 would
α-cover P(x) | x

.= a∧a
.= 5 when, say, α(a) = 3, which is not intended. But note that

α �|=Z ∃x (x .= a∧a
.= 5) in this case. Also note that the two conditions α |=Z ∃̄ c2 and

α |=Z ∀̄ (c2 → c1) in combination enforce that c1 is α-satisfiable as well.
The notion of α-extension is similar to that of α-coverage, but applies to literals with

the same least solutions only. For instance, P(x) | 0
.
≤ x∧ x

.
< 7 α-extends P(x) | 0

.
≤

x∧ x
.
< 3, and α-covers it, for any α (the least solution being 0 for both literals), and

P(x) | 3
.
< x α-covers P(x) | 7

.
< x but does not α-extend it.

The concepts introduced in the next three definitions allow us to associate a set of
structures to each context satisfying certain well-formedness conditions.

Definition 4 (α-Produces). Let Λ be a set of constrained literals and α a parameter
valuation. A context literal L(x) | c1 α-produces a context literal L(x) | c2 wrt. Λ if

1. L(x) | c1 α-covers L(x) | c2, and
2. there is no L(x) | d in Λ that α-covers L(x) | c2 and such that α |=Z c1

.
<µ� d.

The set Λ α-produces a context literal K if some literal in Λ α-produces K wrt. Λ. A
context Λ ·Γ produces K if there is an α ∈ Mods(Γ) such that Λ α-produces K.

As an example, if α(a) = 3 then P(x) | 2
.
< x α-produces P(5) wrt. Λ = {¬P(x) | x

.=
a∧ a

.= 5}. Observe that neither α |=Z (2
.
< x)

.
<µ� (x .= a∧ a

.= 5) holds nor does
¬P(x) | x

.= a∧a
.= 5 α-cover ¬P(5), as x

.= a∧a
.= 5 is not α-satisfiable. However, if

α(a) = 5 then P(x) | 2
.
< x no longer α-produces P(5) wrt. Λ, because now α |=Z (2

.
<

x)
.
<µ� (x .= a∧a

.= 5) and ¬P(x) | x
.= a∧a

.= 5 α-covers ¬P(5).

Definition 5 (α-Contradictory). Let Λ ·Γ be a context and α ∈ Mods(Γ). A context
literal L(x) | c is α-contradictory with Λ if there is a context literal L(x) | d in Λ such
that α |=Z c

.=µ� d. It is Γ-contradictory with Λ if there is a L(x) | d in Λ such that
Γ |=Z c

.=µ� d.
The literal L(x) | c is contradictory with the context Λ ·Γ if it is α-contradictory with

Λ for some α ∈ Mods(Γ). The context Λ ·Γ itself is contradictory if some context literal
in Λ is contradictory with it.

The notion of Γ-contradictory is based on equality of the least α-solutions of the in-
volved constraints for all α∈ Mods(Γ). It underlies the abandoning of candidate models
due to permanently falsified clauses in Section 2, which is captured precisely as closing
literals in Definition 8 below.

We require our contexts not only to be non-contradictory but also to constrain each
parameter to a finite subset of Z. Furthermore, they should guarantee that the associated
Σ-expansions of Z are total over tuples of natural numbers. All this is achieved with
admissible contexts.

ME(LIA) - Model Evolution with Linear Integer Arithmetic Constraints 267

Definition 6 (Admissible Γ, Admissible Context). A context Γ ·Λ is admissible if

1. Γ is admissible, that is, Γ is satisfiable, and, for each parameter a in Π, there are
integer constants m,n ≥ 0 such that Γ |= a : [m ..n].

2. For each free predicate symbol P in Σ, the set Λ contains ¬P(x) | −1
.
≤ x.

3. Λ ·Γ is not contradictory.9

Thanks to Condition 2 in the above definition, an admissible context α-produces a literal
¬P(n) with n consisting of non-negative integer constants, if no other literal in the
context α-produces P(n). Observe that admissible contexts Λ ·Γ may contain context
literals whose constraint is not α-satisfiable for some (or even all) α ∈ Mods(Γ). For
those α’s, such literals simply do not matter as their effect is null.

However, admissible contexts are always consistent in the sense that they cannot
produce both a constraint literal L(x) | c and its complement L(x) | c. The following
definition provides the formal account of the meaning of contexts announced at the
beginning of this section.

Definition 7 (Induced Structure). Let Γ · Λ be an admissible context and let α ∈
Mods(Γ). The Σ-structure ZΛ,α induced by Λ and α is the expansion of Z to all the
symbols in Σ that interprets each parameter a as α(a), and satisfies a positive ground
literal L(s) iff Λ α-produces L(s).

The above consistency property and the presence of literals ¬P(x) | −1
.
≤ x in admis-

sible contexts entails that, for every α ∈ Mods(Γ), ZΛ,α satisfies a literal L(n) if and
only if Λ α-produces L(n), where n is a tuple of non-negative integer constants. Thus,
Definition 7 connects syntax (α-productivity) to semantics (truth) in a one-to-one way.

In Section 2 we explained the derivation in Figure 1 as being driven by semantic
considerations, to construct a model by successive branch extensions. The calculus’
inference rules achieve that in their core by computing context unifiers.

Definition 8 (Context Unifier). Let Λ ·Γ be an admissible context and D[x] = L1(x1)∨
·· · ∨Lk(xk) ← c[x] a constrained clause with free variables x. A context unifier of D
against Λ ·Γ is a constraint

d[x] = d′[x]∧∃y (y
.
≤ x∧µ j d′[y]), where d′[x] = c[x]∧ c1[x1]∧·· ·∧ ck[xk] (1)

with each ci coming from a literal Li(xi) | ci in Λ, and j ≥ 1.
For each i = 1, . . . ,k, the context literal

Li(xi) | di, with di = π xi d (2)

is a literal of the context unifier. The literal Li(xi) | di is closing if Γ |=Z ci
.=µ� di.

Otherwise, it is a (α-)remainder literal (of d) if there is an α ∈ Mods(Γ) such that
α |=Z ci

.
<µ� di (equivalently, such that α �|=Z ci

.=µ� di and di is α-satisfiable)10.
The context unifier d is closing if each of its literals is closing. It is (α-)productive if

for each i = 1, . . . ,k, the context literal Li(xi) | ci α-produces Li(xi) | di wrt. Λ for some
α ∈ Mods(Γ).

9 Equivalently, for every α ∈ Mods(Γ) and every pair of context literals L(x) | c and L(x) | d in
Λ, it is not the case that α |=Z c

.=µ� d.
10 Observe that if di is α-satisfiable so are d and ci.

268 P. Baumgartner, A. Fuchs, and C. Tinelli

The constraint d in (1) can be perhaps best understood as follows. Its component d′ =
c[x]∧ c1[x1]∧ ·· · ∧ ck[xk] denotes any simultaneous solution of D’s constraint and the
constraints coming from pairing each of D’s literal with a context literal with same
predicate symbol but opposite sign. The component µ jd′[y] denotes the jth minimal
solution of d′, which bounds from below the solutions of d. A simple, but important
consequence (for completeness) is that for any α and concrete solution m of d′, j can
be always chosen so that d[m] is α-satisfied. As a special case, when m is the j-th
minimal solution of d′, it is also the least solution of d. Regarding di in (2), for any α,
the set of α-solutions of di is the projection over the vector xi of the solutions of d.

A formal statement of the above is expressed by the following lemma.

Lemma 9 (Lifting). Let Λ ·Γ be an admissible context, α ∈ Mods(Γ), D[x] = L1(x1)∨
·· · ∨Lk(xk) ← c[x] with k ≥ 1 a constrained clause, and m a vector of constants from
Z. If ZΛ,α falsifies D[m], then there is an α-productive context unifier d of D against
Λ ·Γ where m is an α-solution of d.

As an example (with no parameters, for simplicity), let d′ = c[x1,x2]∧ c1[x1]∧ c2[x2]
where c = ¬(x1

.= x2), c1 = 1
.
≤ x1, and c2 = 1

.
≤ x2. Then, the (unique) solution of

µ j d′ for j = 1 is (1,2); for j = 2 it is (2,1). By fixing j = 1 now let us commit to
(1,2). Then the solutions of d1 are (1),(2), . . . and the solutions of d2 are (2),(3), . . .
The least solution of d1, (1), coincides with the projection over x1 of the commited
minimal solution (1,2). Similarly for d2. This is no accident and is crucial in proving the
soundness of the calculus. It relies on the property that the least (individual) solutions of
all the di’s are, in combination, the least solution of d—which is in turn the first minimal
solution of d′. In the example, the least solutions of d1 and d2 are 1 and 2, respectively,
and combine into (1,2), the least solution of d.

We stress that all the notions in the above definition are effective thanks to the decid-
ability of LIA. A subtle point here is the choice of j in (1), as j is not bounded a priori.
However, all these notions hold only if di is α-satisfiable for some or all (finitely) many
choices of α ∈ Mods(Γ), and that di becomes α-unsatisfiable if j exceeds the number
of minimal α-solutions of di. By this argument, the possible values for j are effectively
bounded.

Example 10. Consider the context {P(x) | a
.
< x}·{a : [1 ..10],b : [1 ..10]} and the input

clause ¬P(x) ← b
.
< x. The context corresponds to the left branch in Figure 1b. There

is a context unifier, for any j ≥ 1, d = a
.
< x∧b

.
< x∧∃y (y

.
≤ x∧µ j (a

.
< y∧b

.
< y)) .

Its literal is K′ = ¬P(x) | d1, where d1 = π x d(= d). The constraint (a
.
< y∧b

.
< y) has

a unique minimal α-solution, which is also its least α-solution. Thus, d is equivalent
to a

.
< x∧ b

.
< x, obtained with j = 1. It is closing if Γ |=Z (a

.
< x) .=µ� d1, which is

equivalent to Γ |=Z ¬(a
.
< b). That is not the case, i.e. there is an α ∈ Mods(Γ) that

satisfies a
.
< b. According to Definition 8 then, K′ is a remainder literal of d. Indeed, it

can be verified then that α |=Z (a
.
< x)

.
<µ� (a

.
< x∧b

.
< x).

5 The Calculus

The inference rules of the calculus are defined over triples, sequents, of the form Λ ·Γ (
Φ where Λ ·Γ is an admissible context and Φ is a set of constrained clauses. Intuitively,

ME(LIA) - Model Evolution with Linear Integer Arithmetic Constraints 269

an antecedent Λ ·Γ corresponds to a branch in the semantic tree presentation in Section 2
and always denotes a set of candidate models for Φ, the Σ-structures induced by Λ and
α ∈ Mods(Γ) (Def. 7) .

The calculus derives a tree of sequents with the goal of incrementally modifying
the candidate models until they evolve, so to speak, into a set of models of Φ. More
precisely, a derivation of Γ and Φ starts with a tree with a root node only, which is
labeled with the sequent Λ0 · Γ (Φ, where Λ0 contains (only) the constraint literal
¬p(x) | −1

.
≤ x for each free predicate symbol p in Σ. It then applies the derivation rules

defined below to grow that tree, by applying a rule at a time to a leaf of the tree and
extending it with the conclusions in the expected way. See [6] for a formal definition.

Context unifiers play a crucial role in the evolution of Λ ·Γ. To illustrate their use,
consider a sequent Λ ·Γ (Φ. If for some α ∈ Mods(Γ) the structure ZΛ,α induced by
Λ and α falsifies Φ, it must falsify a “ground” instance D[m] of some clause D in Φ.
As shown in [6], this implies the existence of an α-productive context unifier d of D
against Λ ·Γ where m is an α-solution of d.

If d has an α-remainder literal K′
i = L(xi) | di not contradictory with the context, the

problem with D[m] can be fixed by adding K′
i to Λ. In fact, if mi is the projection of

m over xi, then K′
i will α-produce Li(mi) in the new context, as its least solution is no

greater than mi.11 That will make the new ZΛ,α satisfy Li(mi) and so D[m] as well. This
is essentially what the calculus does to Λ ·Γ (Φ with the rules Split(d) or Extend(d)
introduced below. If each α-remainder literal of d is contradictory with the context, it
will be β-contradictory with Λ for one or more β ∈ Mods(Γ). Then, it is necessary to
strengthen Γ to eliminate the offending β’s, which is achieved with the Domain Split(d)
rule. Strengthening Γ either makes Split(d) or Extend(d) applicable to an α-remainder
literal of d or turns all literals of d into closing ones. In the latter case, the calculus will
close the corresponding branch with the Close(d) rule.

The ME(LIA) calculus has four derivation rules. The application of these rules is
subject to certain fairness criteria, explained later. In the rules, the notation Φ,D abbre-
viates Φ∪{D}. (Similarly for Λ,K and Γ,c.)

Close(d)
Λ ·Γ (Φ,D
Λ ·Γ (Φ,D,� ←"

if

{
(� ←") /∈ Φ∪{D}, and
d is a closing context unifier of D against Λ ·Γ.

This rule recognizes that the context not only falsifies some input clause D but is also
unfixable, and adds the empty clause as a marker for that.

Split(d)
Λ ·Γ (Φ,D

(Λ,Li | di) ·Γ (Φ,D (Λ,Li | di) ·Γ (Φ,D
if

⎧⎪⎪⎨⎪⎪⎩
d is a context unifier of D against Λ ·Γ,
Li | di is a remainder literal of d, and
neither Li | di nor Li | di is contradictory

with Λ ·Γ.

This rule, analogous to the main rule of the DPLL procedure, derives one of two
possible sequents non-deterministically. The left-hand side conclusion chooses to fix
the context by adding Li | di to Λ. The right-hand side branch is needed for soundness,
in case the left-hand side fix leads to an application of Close. It causes progress in the

11 This is the analogous of “lifting” in a Herbrand-based theorem proving.

270 P. Baumgartner, A. Fuchs, and C. Tinelli

derivation by making Li | di Γ-contradictory with the context, which forces the calculus
to consider other alternatives to Li | di.

Extend(d)
Λ ·Γ (Φ,D

(Λ,Li | di) ·Γ (Φ,D
if

⎧⎪⎪⎨⎪⎪⎩
d is a context unifier of D against Λ ·Γ,
Li | di is a remainder literal of d,
Li | di is Γ-contradictory with Λ, and
there is no K in Λ that Γ-extends Li | di.

This rule can be seen as a one-branched Split. If Li | di is Γ-contradictory with Λ, the
only way to fix the context is to add Li | di to it. Its last precondition is a redundancy
test—which also prevents a repeated application of the rule with the same literal.

To illustrate the need of Extend, suppose Λ = {¬P(x) | −1
.
≤ x, P(x) | x : [1 ..5]},

Γ = /0 and D = P(x) ← x : [1 ..7]. The clause D is falsified in the (single) induced in-
terpretation12. Adding P(x) | x : [1 ..7] to Λ will fix the problem. However, Split cannot
be used for that since ¬P(x) | x : [1 ..7] is Γ-contradictory with Λ—for having the same
least solution, 1, as the constraint of P(x) | x : [1 ..5]. Extend will do instead.

Domain Split(d)
Λ ·Γ (Φ,D

Λ · (Γ,c .=µ� di) (Φ,D Λ · (Γ,¬(c .=µ� di)) (Φ,D
if

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

d is a c.u. of D against Λ ·Γ,
there is a literal Li | di of d, and
there is Li | c or Li | c in Λ s.t.

α |=Z c
.=µ� di

for some α ∈ Mods(Γ), and
Γ �|=Z c

.=µ� di.

The purpose of this rule is to enable later applications of the other rules that are not
applicable to the current context. It does that by partitioning the current Mods(Γ) in two
non-empty parts.

It is not too difficult to see that the derivation rules are mutually exclusive, in the
sense that for a given sequent at most one of them is applicable to the same clause D,
context unifier d, and literal of d.

In [6] we introduce another optional rule, Ground Split, that adds another, more flex-
ible, way to do case analysis on the parameters. The rule can improve efficiency in
particular when paired with a suitable quantifier elimination procedure for LIA. In that
case, one can replace each potential application of Domain Split, which would add a
constraint [¬](c .=µ� di) to Γ, with one application of Ground Split, which splits on a
ground constraint l that entails c

.=µ� di and is computed from it by the QE procedure.
The net effect is that Γ grows only with ground literals, making tests involving it con-
siderably cheaper—at the cost of an increased number of splits for Γ.

5.1 Soundness and Completeness

Proposition 11 (Soundness). For all admissible clause sets Φ and admissible sets of
closed constraints Γ, if there is a derivation of Φ and Γ that ends in a tree containing
� ←" in each of its leaf nodes, then Γ∪Φ is LIA-unsatisfiable.

In essence, and leaving Γ aside, the proof is by first deriving a binary tree over ground,
parameter-free literals that reflects the applications of the derivation rules in the

12 Because, for instance, ¬P(6) is true in it.

ME(LIA) - Model Evolution with Linear Integer Arithmetic Constraints 271

construction of the given refutation tree. For instance, a Split application with its new
constraint literal L(x) | c in the left context gives rise to the literal L(m), where m is
the least α-solution of c for a given α. In the resulting tree neighbouring nodes will
be labelled with complementary literals, like L(m) and ¬L(m). In the second step it
is shown that this binary tree is closed by ground instances from the input set. It is
straightforward then to argue that Φ∪Γ is LIA-unsatisfiable.

To prove the calculus’ completeness requires to introduce several technical notions.
Again we refer to the long version of this paper [6] for that, and provide a brief summary
here only. One of these notions is that of an exhausted branch, in essence, a (limit)
derivation tree branch that need not be extended any further. It is based on the notion of
redundant context unifiers.

Definition 12 (Redundant Context Unifier). Let Λ1 ·Γ1 and Λ2 · Γ2 be admissible
contexts, α ∈ Mods(Γ1) and D a clause. A context unifier d of D against Λ1 ·Γ1 is
α-redundant in Λ2 ·Γ2 if

1. Λ2 α-produces some literal of d, or
2. Mods(Γ2) � Mods(Γ1)

We say that d is redundant in Λ2 ·Γ2 if it is α-redundant in Λ2 ·Γ2 for all α ∈ Mods(Γ).

If condition (1) applies then the interpretation induced by Λ2 and α will already satisfy
D, and there is no point considering a derivation rule application based on that d. Condi-
tion (2) allows us to discard an existing derivation rule application when the constraints
in Γ are strengthened.

Now, an exhausted (limit) branch (i) has the property that whenever Split, Extend or
Domain Split is applicable to some of its sequents, based on an α-productive context
unifier, then this context unifier is α-redundant in the context of some later sequent (a
sequent more distant from the root), (ii) cannot be applied Close to, and (iii) does not
contain �←". Finally, in fair derivations each leaf node of some derived tree contains
� ←" or its limit tree has an exhausted branch.

Fair derivations in the sense above exist and are computable for any set of Σ-clauses.
A naive fair proof procedure, for instance, grows a branch until the above conditions (ii)
and (iii) are violated, and turns to another branch to work on, if any, or otherwise applies
the next Split, Extend or Domain Split taken from a FIFO queue, unless its context unifier
is redundant. A similar proof procedure has been described for the ME calculus in [5].

The following is our main result (see [6] for a more precise statement and proof).

Theorem 13 (Completeness). For every fair derivation of Φ and Γ, the (limit) context
of every exhausted branch of its limit tree induces a LIA-model of Φ∪Γ.

Note that this result includes a proof convergence result, that every fair derivation of
an unsatisfiable clause set is a refutation. In practical terms, it implies that as long as a
derivation strategy guarantees fairness, the order of application of the rules of the cal-
culus is irrelevant for proving an input clause set unsatisfiable, giving to the ME(LIA)
calculus the same flexibility enjoyed by the DPLL calculus at the propositional level.

272 P. Baumgartner, A. Fuchs, and C. Tinelli

An interesting special case arises when the exhausted branch in Theorem 13 is finite.
The branch then readily provides a model of the input clause set.

6 Conclusions and Further Work

We have presented a basic version of ME(LIA), a new calculus for a logic with re-
stricted quantifiers and linear integer constraints. The calculus allows one to reason
with certain useful extensions of linear integer arithmetic with relations and finite do-
main constants. With the restriction of variables to finite domains, implementations
of the calculus have potential applications in formal methods and in planning, where
they can scale better than current decision procedures based on weaker logics, such as
propositional logic or function-free clause logic.

We are working on extending the set of derivation rules with rules analogous to the
unit-propagation rule of DPLL, which are crucial for producing efficient implementa-
tions. With that goal, we are also working on refinements of the calculus that reduce the
cost of processing LIA-constraints. We stress though that the basic version presented
here is already geared toward efficiency for featuring a (semantically justified) redun-
dancy criterion, by reduction to LIA’s ordering constraints, that allows one to avoid
inferences with clause instances satisfied by one of the current candidate models.

References

1. Bachmair, L., Ganzinger, H., Waldmann, U.: Refutational Theorem Proving for Hierachic
First-Order Theories. Appl. Algebra Eng. Commun. Comput. 5, 193–212 (1994)

2. Baumgartner, P.: Theory Reasoning in Connection Calculi. LNCS (LNAI), vol. 1527.
Springer, Heidelberg (1998)

3. Baumgartner, P.: Logical Engineering with Instance-Based Methods. In: Pfenning, F. (ed.)
CADE 2007. LNCS, vol. 4603, pp. 404–409. Springer, Heidelberg (2007)

4. Baumgartner, P., Fuchs, A., de Nivelle, H., Tinelli, C.: Computing Finite Models by Reduc-
tion to Function-Free Clause Logic. Journal of Applied Logic (in Press, 2007)

5. Baumgartner, P., Fuchs, A., Tinelli, C.: Implementing the Model Evolution Calculus. Inter-
national Journal of Artificial Intelligence Tools 15(1), 21–52 (2006)

6. Baumgartner, P., Fuchs, A., Tinelli, C.: ME(LIA)– Model Evolution With Linear Integer
Arithmetic Constraints. Technical Report, Department of Computer Science, The University
of Iowa (2008), http://www.cs.uiowa.edu/∼tinelli

7. Baumgartner, P., Tinelli, C.: The Model Evolution Calculus. In: Baader, F. (ed.) CADE 2003.
LNCS (LNAI), vol. 2741, pp. 350–364. Springer, Heidelberg (2003)

8. Bürckert, H.J.: A Resolution Principle for Clauses with Constraints. In: Stickel, M.E. (ed.)
CADE 1990. LNCS (LNAI), vol. 449, pp. 178–192. Springer, Heidelberg (1990)

9. Ganzinger, H., Korovin, K.: Theory Instantiation. In: Hermann, M., Voronkov, A. (eds.)
LPAR 2006. LNCS (LNAI), vol. 4246, pp. 497–511. Springer, Heidelberg (2006)

10. Ge, Y., Barrett, C., Tinelli, C.: Solving Quantified Verification Conditions Using Satisfiability
Modulo Theories. In: Pfenning, F. (ed.) CADE 2007. LNCS, vol. 4603. Springer, Heidelberg
(2007)

http://www.cs.uiowa.edu/~tinelli

ME(LIA) - Model Evolution with Linear Integer Arithmetic Constraints 273

11. Korovin, K., Voronkov, A.: Integrating Linear Arithmetic Into Superposition Calculus. In:
Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 223–237. Springer, Hei-
delberg (2007)

12. Antonio, J., Peréz, N.: Encoding and Solving Problems in Effectively Propositional Logic.
PhD thesis, The University of Manchester (2007)

13. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Modulo Theories: from an
Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T). J. of the ACM 53(6),
937–977 (2006)

14. Nieuwenhuis, R., Rubio, A.: Paramodulation-Based Theorem Proving. In: Robinson, J.A.,
Voronkov, A. (eds.) Handbook of Automated Reasoning. Elsevier/MIT press (2001)

15. Stickel, M.E.: Automated Deduction by Theory Resolution. J. of Aut. R. 1, 333–355 (1985)

A Constraint Sequent Calculus for
First-Order Logic with Linear Integer

Arithmetic

Philipp Rümmer

Department of Computer Science and Engineering
Chalmers University of Technology and Göteborg University

SE-412 96 Göteborg, Sweden
philipp@chalmers.se

Abstract. First-order logic modulo the theory of integer arithmetic is
the basis for reasoning in many areas, including deductive software ver-
ification and software model checking. While satisfiability checking for
ground formulae in this logic is well understood, it is still an open ques-
tion how the general case of quantified formulae can be handled in an
efficient and systematic way. As a possible answer, we introduce a sequent
calculus that combines ideas from free-variable constraint tableaux with
the Omega quantifier elimination procedure. The calculus is complete for
theorems of first-order logic (without functions, but with arbitrary unin-
terpreted predicates), can decide Presburger arithmetic, and is complete
for a substantial fragment of the combination of both.

1 Introduction

One of the main challenges in automated theorem proving is to combine rea-
soning about full first-order logic (FOL), including quantifiers, with reasoning
about theories like the integers. At the time, there are efficient provers for han-
dling formulae in first-order logic, as well as SMT-solvers that can efficiently
handle ground problems modulo many theories, but the support for the combi-
nation of both is typically weak. In this paper, we develop a novel calculus for
reasoning about first-order logic modulo linear integer arithmetic that is com-
plete for both the first-order part and the theory part, and that can handle a
substantial fragment of the combination of both. Because the calculus is close
to the DPLL(T) architecture, techniques and optimisations used in SMT-solvers
are readily applicable when working on ground problems, but can be combined
with free-variable techniques to treat quantifiers more systematically.

We start from two existing approaches: free-variable tableaux with incremen-
tal closure, following the work by Martin Giese [1], and the Omega quantifier
elimination procedure [2] for deciding Presburger arithmetic (PA) [3]. From the
former method, our calculus inherits the concept of generating constraints that
describe valuations of free variables for which a formula is satisfied. The lat-
ter method provides the basic rules for dealing with linear integer arithmetic,
and the concept of recursive application of a calculus in order to handle nested

I. Cervesato, H. Veith, and A. Voronkov (Eds.): LPAR 2008, LNCS 5330, pp. 274–289, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Constraint Sequent Calculus for FOL with Linear Integer Arithmetic 275

and alternating quantifiers. The resulting calculus accepts arbitrary formulae
of PA enriched with arbitrary uninterpreted predicates as input. Uninterpreted
functions are not directly supported, but can be treated by a translation to
uninterpreted predicates and functionality and totality axioms.

Our calculus operates on constrained sequents Γ (∆ ⇓ C, which consist of
two sets Γ ,∆ of formulae (the antecedent and the succedent) and one further for-
mula C (the constraint). In this paper, C will always be a formula of PA. The se-
mantics of a constrained sequent is the same as of the implication C ⇒ (Γ (∆),
i.e., we call the sequent valid if the constraint C implies the ordinary sequent
Γ (∆ (and the ordinary sequent holds iff the formula

∧
Γ →

∨
∆ holds). In

this sense, we can say that the constraint C is an approximation of the sequent
Γ (∆. The sequent ∀x.(x

.
≥ 0 → p(x)) (p(c) ⇓ c

.
≥ 0 is valid, for instance,

as are the sequents ∀x.(x
.
≥ 0 → p(x)) (p(c) ⇓ c .= 3 and Γ (∆ ⇓ false .

In practice, the constraints of sequents will be unknown during the construc-
tion of a proof. Proving thus consists of two or more phases: starting with a
problem Γ (∆ ⇓ ? with unknown constraint, a proof procedure will first apply
analytic rules to the antecedent and succedent and build a proof tree, similarly
as in a normal Gentzen-style sequent calculus. At some point when it seems ap-
propriate, the procedure will start to close branches by synthesising constraints,
which are subsequently propagated downwards from the leaves to the root of
the tree. If the constraint that reaches the root is found to be valid, the valid-
ity of the input problem Γ (∆ has been shown; otherwise, the procedure will
continue to expand the proof tree and later update the resulting constraints.

analytic reasoning
about input formula

 ⏐⏐⏐⏐
∗....

Γ ′′ (∆′′ ⇓ C
Γ ′ (∆′ ⇓ C′

· · ·

⏐⏐⏐⏐" propagation
of constraints

If the input problem Γ (∆ does not contain uninterpreted predicates (i.e.,
corresponds to a PA formula), it is always possible to find proofs such that the
resulting constraint is equivalent to Γ (∆ (we will call such proofs exhaustive).
This allows us to use the calculus as a quantifier elimination procedure for PA.

Our main contributions are: the introduction of the calculus, completeness
results for a number of fragments (including FOL and PA), a complete and
terminating proof strategy for the PA fragment, and the result that fair proof
construction is complete for formulae that are provable at all. Proofs for all
theorems in the paper are given in [4].

The paper is organised as follows: After giving basic definitions in Sect. 2, we
introduce our calculus in three steps: Sect. 3 gives a version for pure first-order
logic, Sect. 4 a minimalist version for first-order logic modulo integer arithmetic,
together with completeness results, and Sect. 5 an equivalent but more refined
calculus. Sect. 6 contains the result that fair proof strategies are complete. Fi-
nally, Sect. 7 summarises related work and Sect. 8 concludes.

276 P. Rümmer

2 Preliminaries

We assume that the reader is familiar with classical first-order logic and Gentzen-
style sequent calculi, see [5] for an introduction. Assuming that x ∈ X ranges
over an infinite set of variables, c ∈ A over an infinite set of constants, p ∈ P
over a set of uninterpreted predicates with fixed arity, and α ∈ � over integers,
the syntactic categories of terms t and formulae φ are defined by:

t ::= α || x || c || αt+ · · · + αt

φ ::= φ ∧ φ || φ ∨ φ || ¬φ || ∀x.φ || ∃x.φ || t
.= 0 || t

.
≥ 0 || t

.
≤ 0 || α | t || p(t, . . . , t)

For reasons of simplicity, we only allow 0 as right-hand side of equations and
inequalities, although we deviate from this convention in some places for sake of
clarity. The explicit divisibility operator α | t is added for presentation purposes
only and does not add any expressiveness (divisibility can also be expressed
with an existentially quantified equation). Further, we use the abbreviations
true, false for the equations 0 .= 0, 1 .= 0 and φ→ ψ as abbreviation for ¬φ∨ψ.

Simultaneous substitution of terms t1, . . . , tn for variables x1, . . . , xn is de-
noted by [x1/t1, . . . , xn/tn]φ, whereby we assume that variable capture is avoided
by renaming bound variables when necessary. As short-hand notations, we some-
times also substitute terms for constants (as in [c/t]φ), quantify over constants
(as in ∀c.φ), or quantify over sets of constants (as in ∀U.φ).

Semantics. The only universe considered for evaluation are the integers � (an ex-
ception is Sect. 3, where we treat normal first-order logic). A variable
assignment β : X → � is a mapping from variables to integers, a constant
assignment δ : A → � a mapping from constants to integers, and an inter-
pretation I : P → P(�∗) a mapping from predicates to sets of �-tuples. The
evaluation function val I,β,δ for terms and formulae is then defined as is common
and gives the arithmetic operations their normal meaning. We call a formula φ
valid if valI,β,δ(φ) is true for all I, β, δ.

Sequents. If Γ ,∆ are finite sets of formulae and C is a formula, all of which do not
contain free variables, then Γ (∆ is an (ordinary) sequent and Γ (∆ ⇓ C
is a (constrained) sequent. We sometimes identify sequents with the formulae∧
Γ →

∨
∆ (resp.,

∧
Γ ∧ C →

∨
∆). A calculus rule is a binary relation between

finite sets of constrained sequents (the premisses) and constrained sequents (the
conclusion). A sequent calculus rule is called sound, iff, for all instances

Γ1 (∆1 ⇓ C1 · · · Γn (∆n ⇓ Cn

Γ (∆ ⇓ C

it holds that: if all premisses Γ1 (∆1 ⇓ C1, . . . , Γn (∆n ⇓ Cn are valid,
then Γ (∆ ⇓ C is valid. Proof trees are defined as is common as trees growing
upwards in which each node is labelled with a constrained sequent, and in which
each node that is not a leaf is related with the nodes directly above through an
instance of a calculus rule. A proof is closed if it is finite, and if all leaves are
justified by a rule instance without premisses.

A Constraint Sequent Calculus for FOL with Linear Integer Arithmetic 277

Simplification. We denote elementary simplification steps on terms and atomic
formulae in a proof with simp, without showing more details about the applied
transformation (in an implementation, simp might be a part of the datastruc-
tures for formulae). simp normalises terms to the form α1t1 + · · · + αntn, in
which α1, . . . , αn are non-zero integers and t1, . . . , tn are pairwise distinct vari-
ables, constants, or 1 (possibly 0 as the empty sum). Further, terms are put into
a canonical form by sorting summands according to a well-founded ordering <r:

– on variables, constants and integers, <r is an arbitrary well-ordering such
that variables are bigger than constants, constants are bigger than integers,
and: 0 <r 1 <r −1 <r 2 <r −2 <r 3 <r · · · .

– on terms with coefficients, <r is defined by αt <r α
′t′ if and only if t <r t

′

or t = t′ and α <r α
′.

– on linear combinations, <r is defined by α1t1 + · · · + αntn <r α
′
1t

′
1 + · · · +

α′kt
′
k if and only if {{α1t1, . . . , αntn}} <r {{α′1t′1, . . . , α′nt′n}} (in the multiset

extension of <r, cf. [6]).

Atomic formulae t .= 0, t
.
≥ 0, t

.
≤ 0 are normalised by simp such that the coef-

ficients of non-constant terms in t are coprime (do not have non-trivial factors
in common), and such that the leading coefficient is non-negative. This also de-
tects that equations like 2y − 6c+ 1 .= 0 are unsolvable and equivalent to false ,
and that an inequality like 2y − 6c+ 1

.
≤ 0 can be simplified and rounded to

y − 3c+ 1
.
≤ 0 thanks to the discreteness of the integers. All inequalities in the

succedent are moved to the antecedent. A divisibility judgement α | t is nor-
malised like an equation αx + t

.= 0, and it is ensured that α and the leading
coefficient of t are positive.

3 A Constraint Sequent Calculus for First-Order Logic

We first introduce a very restricted calculus for pure first-order logic, in order to
illustrate how the framework of constrained sequents is related to normal free-
variable tableau calculi. This section is exceptional in that we do not assume
evaluation of formulae over the universe � of integers, and that we allow equa-
tions s .= t whose right-hand side is not 0. The rules from Fig. 1, together with
the following closure rule, form the calculus PredC :

∗
Γ, p(s1, . . . , sn) (p(t1, . . . , tn), ∆ ⇓

∧
i si

.= ti
pred-close

Instead of unifying complementary literals, a conjunction of equations about the
predicate arguments is generated and propagated as a constraint.

Example 1. We show a proof for the sequent ∀x.∃y.p(x, y) (∃z.p(a, z). In or-
der to instantiate existential and universal quantifiers, fresh constants c, d, e
are introduced. The constraints on the right-hand side are practically filled in

278 P. Rümmer

Γ � φ, ∆ ⇓ C Γ � ψ, ∆ ⇓ D

Γ � φ ∧ ψ, ∆ ⇓ C ∧D
and-right

Γ, φ � ∆ ⇓ C Γ, ψ � ∆ ⇓ D

Γ, φ ∨ ψ � ∆ ⇓ C ∧D
or-left

Γ, φ, ψ � ∆ ⇓ C

Γ, φ ∧ ψ � ∆ ⇓ C
and-left

Γ � φ, ψ, ∆ ⇓ C

Γ � φ ∨ ψ, ∆ ⇓ C
or-right

Γ � φ, ∆ ⇓ C

Γ,¬φ � ∆ ⇓ C
not-left

Γ, φ � ∆ ⇓ C

Γ � ¬φ, ∆ ⇓ C
not-right

Γ � [x/c]φ,∃x.φ, ∆ ⇓ [x/c]C
Γ � ∃x.φ,∆ ⇓ ∃x.C

ex-right

Γ, [x/c]φ, ∀x.φ � ∆ ⇓ [x/c]C
Γ,∀x.φ � ∆ ⇓ ∃x.C

all-left

Γ � [x/c]φ, ∆ ⇓ [x/c]C
Γ � ∀x.φ,∆ ⇓ ∀x.C

all-right

Γ, [x/c]φ � ∆ ⇓ [x/c]C
Γ,∃x.φ � ∆ ⇓ ∀x.C

ex-left

Fig. 1. The rules for first-order predicate logic (without equality). In all rules, c is
a constant that does not occur in the conclusion: in contrast to the usage of Skolem
functions and free variables in tableaux, the same kinds of symbols (constants) are
used to handle both existential and universal quantifiers. Arbitrary renaming of bound
variables is allowed in the constraints when necessary to avoid variable capture.

after applying pred-close. Because ∃x.∀y.∃z.(x .= a ∧ y .= z) is valid, also the
validity of the original problem is proven.

∗
. . . , p(c, d) (. . . , p(a, e) ⇓ c .= a ∧ d .= e

pred-close

. . . , p(c, d) (∃z.p(a, z) ⇓ ∃z.(c .= a ∧ d .= z)
ex-right

. . . , ∃y.p(c, y) (∃z.p(a, z) ⇓ ∀y.∃z.(c .= a ∧ y .= z)
ex-left

∀x.∃y.p(x, y) (∃z.p(a, z) ⇓ ∃x.∀y.∃z.(x .= a ∧ y .= z)
all-left

It is easy to see that a constraint C produced by a proof can only consist
of equations over variables and constants, conjunctions, and quantifiers (be-
cause these are the only constructs that are introduced in constraints by the
rules of PredC). The validity of constraints/formulae of this kind is decid-
able and corresponds to simultaneous unification, which makes the calculus
effective.

Lemma 2 (Soundness). If a sequent Γ (∆ ⇓ C is provable in PredC , then
it is valid (holds in all first-order structures).

Lemma 3 (Completeness). Suppose φ is closed, valid (holds in all first-order
structures), and does not contain constants. Then there is a valid constraint C
such that (φ ⇓ C is provable in PredC .

A Constraint Sequent Calculus for FOL with Linear Integer Arithmetic 279

4 Adding Integer Arithmetic

Relatively few changes to the calculus PredC from the previous section are
necessary to reason about problems in integer arithmetic. In this section, we
describe a minimalist approach in which all integer reasoning happens during
the constraint solving and investigate fragments on which the resulting method
is complete. Later in the paper, the calculus is refined and optimised. From now
on and in contrast to the previous section, assume that formulae and terms are
evaluated over first-order structures with the universe � as described in Sect. 2.

In contrast to the previous section, to handle integer arithmetic disjunctive
constraints also need to be considered. We thus split the rule pred-close into
two new rules, one of which (pred-unify) generates unification conditions for
complementary pairs, while the other one (close) allows to synthesise a con-
straint from arbitrary formulae in a sequent:

Γ, p(s1, . . . , sn) (p(t1, . . . , tn),
∧

i si − ti
.= 0, ∆ ⇓ C

Γ, p(s1, . . . , sn) (p(t1, . . . , tn), ∆ ⇓ C pred-unify

∗
Γ, φ1, . . . , φn (ψ1, . . . , ψm, ∆ ⇓ ¬φ1 ∨ · · · ∨ ¬φn ∨ ψ1 ∨ · · · ∨ ψm

close

(φ1, . . . , φn, ψ1, . . . , ψm do not contain uninterpreted predicates)

Besides these two rules, PresPredC
S contains all rules given in Fig. 1. It is obvious

that any proof in PredC can be translated to a proof in PresPredC
S by replac-

ing applications of pred-close with applications of pred-unify, followed by
close, which means that PresPredC

S is complete for first-order logic.
Because uninterpreted predicates are excluded in close, the constraint result-

ing from a proof is always a formula in Presburger arithmetic and can in principle
be handled using any decision procedure for PA (e.g. [2], also see Sect. 5.3). We
come back to this issue later in the paper and assume for the time being that
some procedure is available for deciding the validity of constraints.

As an implication of a more general result (Lem. 13), it can be observed
that PresPredC

S is proof-confluent: if φ is provable, then every partial proof of
(φ ⇓ ? can be extended to a closed proof of a sequent (φ ⇓ C with valid

constraint C.

Example 4. We show a proof for the following sequent (Fig. 2):

∀x.p(2x), ∀x.¬p(2x + 1) (∀y.(p(y) → p(y + 10))

The sequent is proven by first building the “main proof” (upwards) to a point
where close can be applied. The constraints C1, . . . , C4 are then filled in and
propagated downwards. Because C4 is valid, we have proven the validity of the
original formula. The constraint simplification is explained in more detail later.

Completeness on fragments. Two fragments on which PresPredC
S is complete

are the classes of purely universal and of purely existential formulae. We call
positions in the antecedent/succedent of a sequent positive if they are underneath
an odd/even number of negations. All other positions are called negative.

280 P. Rümmer

∗
. . . � . . . , 2d− c− 10 .= 0, c− 2e− 1 .= 0 ⇓ C1

close

p(2d), . . . , p(c) � p(c + 10), p(2e + 1) ⇓ C1
pred-unify× 2

. . . , p(2d),∀x.¬p(2x + 1), p(c) � p(c + 10) ⇓ C2
all-left,not-left

∀x.p(2x),∀x.¬p(2x + 1), p(c) � p(c + 10) ⇓ C3
all-left

∀x.p(2x),∀x.¬p(2x + 1) � ¬p(c) ∨ p(c + 10) ⇓ C3
or-right,not-right

∀x.p(2x),∀x.¬p(2x + 1) � ∀y.(p(y)→ p(y + 10)) ⇓ C4
all-right

The constraints are:

C1 = 2d− c− 10 .= 0 ∨ c− 2e− 1 .= 0
C2 = ∃y.[e/y]C1 = ∃y.(2d− c− 10 .= 0 ∨ c− 2y − 1 .= 0)
C3 = ∃x.[d/x]C2 = ∃x.∃y.(2x− c− 10 .= 0 ∨ c− 2y − 1 .= 0)

≡ 2 | (c + 10) ∨ 2 | (c− 1)
C4 = ∀x.[c/x]C3 = ∀x.(2 | (x + 10) ∨ 2 | (x− 1))

≡ true

Fig. 2. An example proof in the calculus PresPred C
S

Lemma 5. If Γ (∆ is a valid sequent in which ∃ only occurs in negative and
∀ only in positive positions, then there is a valid PA constraint C such that
Γ (∆ ⇓ C has a proof in the calculus PresPredC

S .

Lemma 6. If Γ (∆ is a valid sequent (without constants) in which ∃ only
occurs in positive and ∀ only in negative positions, then there is a valid PA
constraint C such that Γ (∆ ⇓ C has a proof in the calculus PresPredC

S .

Comparison with ME(LIA). We can also show that the calculus PresPredC
S is

complete on the logic that can be handled by Model Evolution modulo linear
integer arithmetic [7]. Ignoring minor syntactic issues and the fact that ME(LIA)
works on clauses, ME(LIA) is a sound and complete calculus for proving the
unsatisfiability of formulae of the shape ∃ā.(φ ∧ ψ), where ā = (a1, . . . , am) is a
vector of existentially quantified variables, φ is a PA formula over ā that only
has finitely many solutions, and ψ is an arbitrary formula over ā in which ∃/∀
only occurs in negative/positive positions.

Lemma 7. If ∃ā.(φ∧ψ) as above is an unsatisfiable formula that does not con-
tain constants or free variables, then there is a valid constraint C such that the
sequent ∃ā.(φ ∧ ψ) (⇓ C has a proof in PresPredC

S .

5 Built-In Handling of Presburger Arithmetic

Although the calculus from the previous section is in principle usable, it prac-
tically has a number of shortcomings: the handling of arithmetic in constraints
provides little guidance for the construction of proofs, so that large constraints
are produced in a very indeterministic manner that cannot be solved efficiently.

A Constraint Sequent Calculus for FOL with Linear Integer Arithmetic 281

Moreover, constraints are even needed to handle ground problems, for which
branch-local reasoning should be sufficient. The main goal when refining the
calculus is, therefore, to reduce the usage of constraints as far as possible.

In this section, we define built-in rules for handling linear integer arithmetic
that can be interleaved with the rules from the previous section. The rules make
it possible to handle ground problems branch-locally: proof trees for ground
problems can be constructed depth-first (non-iteratively), similarly to the way
in which SMT-solvers work. It can be achieved that the only constraints that
can result from a subproof in case of ground problems are true or false (more
details are given in [4]). Branch-local reasoning is also possible for innermost ∀-
quantifiers in positive and ∃ in negative positions. The arithmetic rules also yield
a decision procedure for PA that can be used to decide constraints (Sect. 5.3).

The rules in detail. The calculus PresPredC consists of the rules given in Fig. 3,
together with all rules from the calculus PresPredC

S and the simplification rule
simp. We introduce new rules ex-right-d, all-left-d that instantiate quanti-
fied formulae destructively, because formulae that do not contain uninterpreted
predicates never have to be instantiated twice (also see Lem. 13 below).

The equality handling follows the calculus given in [8] and can solve arbitrary
equations in the antecedent, in the sense that the equations are rewritten until
the leading coefficients are all 1 and the leading terms of equations occur in
exactly one place. Speaking in terms of matrices, red is the rule for performing
row operations, while col-red(-subst) is responsible for column operations.
We define a suitable strategy for guiding the rules below.

The rules div-right and div-left translate divisibility statements to equa-
tions, while div-close synthesises divisibility statements from equations. The
formula C′ in div-close can be found through pseudo-division (multiplying
equations, inequalities or divisibility statements in C with non-zero factors). For
C = (c+ d

.= 0) and α = 3, for instance, we would choose C′ = (x+ 3d .= 0).
Inequalities are handled based on the Omega test [2], which is an extension of

the Fourier-Motzkin variable elimination method (cf. [9]) for integer problems.
The central rule is omega-elim for replacing a conjunction of inequalities with
a disjunction over simpler cases (omega-elim is directly based on the main
theorem underlying the Omega test [2]). The literal mi in the rule is defined by:

m = max
j
βj , mi =

⌊
mαi − αi −m

m

⌋
In case there are no upper bounds, we define m = mi = −1. The application
of omega-elim is only meaningful if c does not occur in formulae other than
inequalities. Note, that if there are no lower or no upper bounds, the rule will
replace all inequalities whose leading term is c with true.

Because we avoid the application of omega-elim in certain common situa-
tions (for instance, whenever the constant c occurs as argument of uninterpreted
predicates), we also introduce a rule fm-elim for normal Fourier-Motzkin elim-
ination. fm-elim can be applied with higher priority than omega-elim and is
often able to close proofs faster than omega-elim, reducing the need to resort

282 P. Rümmer

Γ � [x/c]φ, ∆ ⇓ [x/c]C
Γ � ∃x.φ,∆ ⇓ ∃x.C

ex-right-d

Γ, [x/c]φ � ∆ ⇓ [x/c]C
Γ,∀x.φ � ∆ ⇓ ∃x.C

all-left-d

(c a constant that does not occur in the conclusion,
φ does not contain uninterpreted predicates)

Γ, t
.= 0 � φ[s + α · t], ∆ ⇓ C

Γ, t
.= 0 � φ[s], ∆ ⇓ C

red

(α a literal, or t a literal and α an arbitrary term)

Γ, α(u + c′) + t
.= 0, c− u− c′ .= 0 � ∆ ⇓ [x/c′]C

Γ, αc + t
.= 0 � ∆ ⇓ ∀x.C

col-red

(c′ a constant that does not occur in the conclusion or in u)

Γ, α(u + c′) + t
.= 0, c− u− c′ .= 0 � ∆ ⇓ [x/c′]C

Γ, αc + t
.= 0 � ∆ ⇓ [x/c− u]C

col-red-subst

(c′ a constant that does not occur in the conclusion or in u)

Γ,∃x.αx + t
.= 0 � ∆ ⇓ C

Γ, α | t � ∆ ⇓ C
div-left

(x an arbitrary variable)

Γ, (α | t + 1) ∨ · · · ∨ (α | t + α− 1) � ∆ ⇓ C

Γ � α | t, ∆ ⇓ C
div-right

(α > 0)

Γ, αc− t
.= 0 � ∆ ⇓ C

Γ, αc− t
.= 0 � ∆ ⇓ [x/t]C′ ∨ α � t

div-close

(c does not occur in t or in C′, C′ a PA formula such that C ⇔ [x/αc]C′)

Γ � t
.
≤ 0, ∆ ⇓ C Γ � t

.
≥ 0, ∆ ⇓ D

Γ � t
.= 0, ∆ ⇓ C ∧D

split-eq

Γ, t
.= 0 � ∆ ⇓ C

Γ, t
.
≤ 0, t

.
≥ 0 � ∆ ⇓ C

anti-symm

Γ, αc + s
.
≥ 0, βc + t

.
≤ 0, βs− αt

.
≥ 0 � ∆ ⇓ C

Γ, αc + s
.
≥ 0, βc + t

.
≤ 0 � ∆ ⇓ C

fm-elim

(α > 0, β > 0)

Γ,

∧
i,j αibj − aiβj − (αi − 1)(βj − 1)

.
≥ 0

∨∨
i

∨mi
k=0

(
αic− ai − k

.= 0 ∧∧
i αic− ai

.
≥ 0 ∧

∧
j βjc− bj

.
≤ 0

) � ∆ ⇓ C

Γ, {αic− ai

.
≥ 0}i, {βjc− bj

.
≤ 0}j � ∆ ⇓ C

omega-elim

(αi > 0, βj > 0)

Fig. 3. Rules for equations, inequalities, and divisibility judgements. In red, we write
φ[s] in the succedent to denote that s occurs in an arbitrary formula in the sequent,
which can in particular also be in the antecedent. mi in omega-elim as on page 281.

A Constraint Sequent Calculus for FOL with Linear Integer Arithmetic 283

to the more complex rule. Further, we define two rules to convert between equa-
tions and inequalities. While the rule split-eq is strictly necessary for certain
problems, anti-symm is introduced only for reasons of efficiency.

Lemma 8 (Soundness). If a sequent Γ (∆ ⇓ C is provable in PresPredC ,
then it is valid.

5.1 Exhaustive Proofs

The existence of a closed proof for a sequent Γ (∆ ⇓ C guarantees that the
implication C ⇒ (Γ (∆) holds (this is the soundness of the calculus, Lem. 8).
In the special case that the sequent Γ (∆ does not contain uninterpreted pred-
icates, it is possible to distinguish particular closed proofs that also guarantee
the opposite implication (Γ (∆) ⇒ C, and thus (Γ (∆) ⇔ C. While this can
be achieved in a trivial way by always applying close such that all formulae
in a sequent are selected, it is sufficient to impose a weaker condition on proof
trees that leads to smaller constraints and also makes it possible to eliminate
quantifiers (Sect. 5.3). To this end, it is necessary to remember whether a con-
stant was introduced by an existential rule (like ex-right) or a universal rule
(like all-right). A generalisation of the condition is described in [4].

Assume that a PresPredC -proof is given. We annotate the sequents in the
proof with sets U of “universal” constants that the calculus attempts to elim-
inate. More formally, the proof is called exhaustive iff there is a mapping from
proof nodes (constrained sequents) to sets U of constants that satisfies:

1. The rules and-*, or-*, not-*, pred-unify, red, div-*, split-eq, anti-

symm, fm-elim, and simp keep or reduce the set: if the conclusion is anno-
tated with U , the premisses are annotated with arbitrary subsets of U .

2. The rules ex-right(-d), all-left(-d) erase the set: the premiss is anno-
tated with ∅.

3. The rules ex-left and all-right may add the introduced constant c to
the set: if the conclusion is annotated with U , then the premiss is annotated
with a subset of U ∪ {c}.

4. The rule col-red is only applied if the conclusion is annotated with U such
that c ∈ U . In this case, the premiss is annotated with a subset of U ∪ {c′}.

5. The rule col-red-subst is only applied if the conclusion is annotated with
U such that c �∈ U , and if u does not contain any constants from U . In this
case, the premiss is annotated with a subset of U .

6. The rule omega-elim is only applied if the conclusion is annotated with U
such that c ∈ U and if c does not occur in Γ or ∆. In this case, the premiss
is annotated with an arbitrary subset of U .

7. The rule div-close is only applied if the conclusion is annotated with U
such that c ∈ U . In this case, the premiss is annotated with a subset of U .

8. The rule close is always applied such that all formulae without uninter-
preted predicates are selected, apart from (possibly) those equations in the
succedent that contain constants from U that exclusively occur in equations
in the succedent.

284 P. Rümmer

Lemma 9 (Constraint completeness). Suppose that a PresPredC-proof is
closed and exhaustive. For each sequent Γ (∆ ⇓ C in the tree, let Γp, ∆p

denote the subsets of PA formulae in Γ , ∆. Then, for each sequent Γ (∆ ⇓ C
that is annotated with a set U , the implication ∀U. (Γp (∆p) ⇒ ∀U. C holds.

Example 10. The formula ¬∃x.∃y.(2x− c− 10 .= 0 ∨ 2y − c+ 1 .= 0) from Ex-
ample 4 is simplified by constructing a proof. To see that the proof is exhaustive,
the sequent with constraint D5 is annotated with ∅, the sequent with D1 with
{e}, the sequent with D3 with {d}, and all other sequents with the set {d, e}.
This implies that the original formula is equivalent to D5.

∗
2d− c− 10 .= 0 (⇓ D1

close

2d− c− 10 .= 0 (⇓ D2
div-close

∗
2e− c+ 1 .= 0 (⇓ D3

close

2e− c+ 1 .= 0 (⇓ D4
div-close

2d− c− 10 .= 0 ∨ 2e− c+ 1 .= 0 (⇓ D2 ∧D4
or-left

∃x.∃y.(2x− c− 10 .= 0 ∨ 2y − c+ 1 .= 0) (⇓ D5
ex-left × 2

The constraints resulting from the proof are:

D1 = 2d− c− 10 � .= 0
D2 = [2d/c+ 10]D1 ∨ 2 � (c+ 10) = (c+ 10)− c− 10 � .= 0 ∨ 2 � (c+ 10)

≡ 2 � (c+ 10)
D3 = 2e− c+ 1 � .= 0
D4 = [2e/c− 1]D3 ∨ 2 � (c− 1) = (c− 1) − c+ 1 � .= 0 ∨ 2 � (c− 1)

≡ 2 � (c− 1)
D5 = ∃x.[d/x]∃y.[e/y](D2 ∧D4) = ∃x.∃y.(2 � (c+ 10) ∧ 2 � (c− 1))

≡ 2 � (c+ 10) ∧ 2 � (c− 1)

5.2 The Construction of Exhaustive Proofs for PA Problems

We define a strategy to apply the PresPredC -rules to a sequent Γ (∆ ⇓ ?
that only contains PA formulae. The strategy is guaranteed to terminate and to
produce a closed and exhaustive proof, and it is deterministic in the sense that
no search is required, every ordering of rule applications (that is consistent with
given priorities) leads to an exhaustive proof. In order to guide the proof con-
struction, the strategy maintains a set U of constants (which is initially empty)
and a term ordering <r (as in Sect. 2) that are updated when new constants
are introduced or existing constants need to be reordered. The ordering <r is
always chosen such that the constants in U are bigger than all constants that
are not in U . Both U and <r are branch-local: different branches in a proof tree
can be built using different Us and <rs.

We list the rules that the strategy applies to a proof goal with descending
priority: step 2 will only be carried out if step 1 is impossible, etc.

1. apply simp (if possible).
2. apply red if an α exists such that s+ α · t <r s

(and if s �= t or φ[s] is not an equation in the antecedent).

A Constraint Sequent Calculus for FOL with Linear Integer Arithmetic 285

3. if the antecedent contains an equation αc+ t
.= 0 with α > 1, then:

– if c �∈ U , apply col-red-subst. The fresh constant c′ is inserted in the
term ordering <r such that it becomes minimal, and u is chosen such
that (αu + t) = min<r {αu′ + t | u′ a term}.

– if c ∈ U and t contains at least one further constant from U whose
coefficient is not a multiple of α, apply col-red. The fresh constant c′

is added to U and is inserted in the term ordering<r such that it becomes
smaller than all other constants in U , but bigger than all constants not
in U . u is again chosen such that (αu+ t) = min<r {αu′+ t | u′ a term}.

4. if the antecedent contains an equation αc+ t
.= 0 with c ∈ U , apply div-

close, remove c from U , and update <r such that c becomes minimal.
(This is also possible for α = 1)

5. if possible, apply any of the following rules:
– anti-symm.
– fm-elim, if the result is not subsumed by an inequality in the antecedent.
– any of the rules and-*, or-*, not-*.

6. if possible, apply any of the following rules:
– split-eq: if an equation can be split that contains a constant c ∈ U that

also occurs as leading term of an inequality in the antecedent.
– omega-elim: if inequalities {αic− ai

.
≥ 0}i, {βjc− bj

.
≤ 0}j occur in

the antecedent and c ∈ U , and if c does not occur in any other formula.
– all-right, ex-left: add the fresh constant c to U and insert it into <r

such that it becomes maximal.
– ex-right-d, all-left-d: set U to ∅ and insert c arbitrarily into <r.
– div-left, div-right.

7. apply close and select exactly those formulae that do not contain constants
from U or uninterpreted predicates.

The steps 1–4 of the strategy work by eliminating all U -constants that occur
in equations in the antecedent. Similarly as in [8], in the antecedent only equa-
tions will be left whose leading coefficient is 1 and whose leading term does not
occur in other places in the sequent anymore. The steps 5–6 handle inequalities
by first applying the Fourier-Motzkin rule exhaustively, and by eliminating con-
stants using the Omega rule whenever possible. Also quantifiers, propositional
connectives and divisibility judgements are treated in step 5–6. A proof that is
constructed using this procedure is shown in Example 10.

Lemma 11 (Termination and exhaustiveness). If a sequent Γ (∆ ⇓ ?
does not contain uninterpreted predicates, the strategy from above terminates
and produces a closed exhaustive proof.

5.3 Deciding Presburger Arithmetic by Recursive Proving

The anticipated way to decide constraints in proofs is to eliminate quantifiers
already during the constraint propagation, i.e., at the points where the rules ex-

right(-d), all-left(-d), all-right, ex-left or col-red are applied and

286 P. Rümmer

cause quantifiers to occur in constraints. By eliminating such quantifiers right
away, each subproof of the proof can be annotated with a constraint that is
a quantifier-free PA formula. When building proofs incrementally, this makes
it possible to easily distinguish between unsatisfiable subproofs (i.e., subproofs
with an unsatisfiable constraint) that need to be expanded further, and satisfiable
subproofs whose expansion can be postponed. Besides, due to Lem. 11 and as
only quantifier-free constraints occur, the resulting procedure decides PA.

To eliminate quantifiers, the calculus PresPredC can be used (Example 10):

Lemma 12 (Quantifier elimination). Suppose a formula φ does not contain
uninterpreted predicates and ∀ occurs in φ only in positive positions and ∃ only
in negative positions. The strategy from the previous section produces a proof
with root (φ ⇓ C in which C does not contain quantifiers (more precisely, if
C contains a quantified subformula Qx.ψ, then x does not occur in ψ).

6 Fair Construction of Proofs

We now compare the calculus PresPredC with the more restricted calculus
PresPredC

S from Sect. 4. Because the former calculus is a superset of the latter,
it is a trivial observation that any sequent provable in PresPredC

S is also provable
in PresPredC . It can also be shown that PresPredC cannot prove more sequents
than PresPredC

S [4], which means that the two calculi are equivalent.
Proofs in PresPredC can be found by a backtracking-free fair application

strategy. To define the notion “fair,” it has to be observed that formulae in a
PresPredC -proof can be rewritten by applying red or simp. When this happens,
it is possible to identify a unique successor of the modified formula in the premiss
of the rule application (vice versa, a formula can have multiple predecessors
because distinct formulae could become equal when applying a rule).

A fair PresPredC-proof for a sequent Γ (∆ ⇓ ? is a possibly infinite proof
in PresPredC in which all constraints are ? and all branches have the properties:

– Fair treatment of formulae with uninterpreted predicates: whenever at some
point on the branch one of the rules in Fig. 1 is applicable to a formula that
contains uninterpreted predicates, the rule is applied to the formula or to
a successor of the formula at some later point on the branch. (This implies
that all-left and ex-right are applied infinitely often to each universally
quantified formula with uninterpreted predicates).

– Fair unification of complementary literals: if there is a sequent on the branch
of the shape Γ, p(t̄) (p(s̄), ∆ ⇓ ?, the rule pred-unify is applied at least
once on the branch to the pair p(t̄), p(s̄) or to successors of these formulae.

– Exhaustiveness: all proof nodes can be annotated with sets U as in Sect. 5.1.

A constraint C is generated by a fair proof of Γ (∆ ⇓ ? if a (finite) proof
for Γ (∆ ⇓ C can be obtained by chopping off all branches of the fair proof
at some point, applying close in some way to the leaves and propagating the
resulting constraints through the proof. The next lemma, together with Lem. 9,
implies the completeness of a fair rule, formula, and branch selection strategy.

A Constraint Sequent Calculus for FOL with Linear Integer Arithmetic 287

Lemma 13 (Fair construction). Suppose that a PresPredC
S -proof for the se-

quent Γ (∆ ⇓ C exists. Every fair PresPredC-proof of Γ (∆ ⇓ ? whose root
is annotated with the set U generates a constraint D with ∀U.C ⇒ ∀U.D.

7 Related Work

ME(LIA) [7] is a recently proposed variant of the Model Evolution calculus that
is similar to our calculus in that it supports PA enhanced with uninterpreted
predicates (and without functions) as input language, and that its architecture
resembles tableau calculi. Model Evolution does not use rigid free variables that
are shared among different branches in the way tableaux do, however, which
means that also constraints can be kept branch-local. Further differences are
that ME(LIA) works on clauses, only supports a restricted form of existential
quantification, and has a more explicit representation of candidate models.

SMT-solvers based on the DPLL(T) architecture [10] can handle ground prob-
lems modulo integer arithmetic (and many other theories) efficiently, but only
offer heuristic quantifier handling. Because of the similarity between DPLL and
sequent calculi, the work presented in this paper can be seen as an alternative
approach to handling quantifiers that should also be applicable to DPLL(T).

The simplification of formulae by the rules in Fig. 3 is roughly comparable
with deduction modulo [11]. The concept is here integrated in a setting that
resembles free-variable tableaux to treat quantifiers more efficiently.

An approach to embed algebraic constraints in tableau calculi is described
in [12], where quantifier elimination tasks in real arithmetic (possibly involving
more than one proof goal) are carried out by an external procedure, in a manner
comparable to the simultaneous solving of constraints from multiple proof goals
described here. Uninterpreted functions or predicates are not handled.

There are a number of approaches to include theories into resolution-based
calculi. [13] works with constraints that are solved in a theory, but requires to
enumerate the solutions of constraints (whereas it is enough to check the validity
of constraints in our work). In [14], while it is enough to check satisfiability of
constraints, no uninterpreted functions or predicates are supported. A recent
calculus to handle rational arithmetic is given in [15], and is similar to our work
in that it has built-in rules to solve systems of equations and inequalities (based
on Fourier-Motzkin). The calculus is complete under restrictions that effectively
prevent quantification over rationals. It remains to be investigated how this
fragment is related to the fragments discussed here.

8 Conclusions and Future Work

We have presented a novel calculus to reason about problems in first-order
logic modulo linear integer arithmetic. The calculus is complete for function-free
first-order logic (on such problems, proofs in the calculus resemble free-variable
tableaux with incremental closure [1]) and can decide Presburger arithmetic (in
a manner that is similar to the Omega test [2]). As further results, we have shown

288 P. Rümmer

that the calculus is at least as complete as the calculus ME(LIA), and allows the
fair construction of proofs. An implementation of the calculus is available under
http://www.cs.chalmers.se/∼philipp/princess and is described in [4].

Apart from continuing the implementation and benchmarks, there are a num-
ber of concepts that require more research, among others: the encoding and
handling of functions and further theories; the integration of lemma learning;
the integration of connectivity conditions to make proof search more directed;
the elimination of cuts in proofs; an analysis of the complexity of the calcu-
lus as a decision procedure for PA. We also plan to extend our calculus to
support nonlinear arithmetic (following the work in [8]), and possibly rational
arithmetic.

Acknowledgements. I want to thank Wolfgang Ahrendt, Nikolaj Bjørner, Richard
Bubel, Reiner Hähnle, Henrik Johansson, and the anonymous referees for dis-
cussions and/or comments during different stages of this work.

References

1. Giese, M.: Incremental closure of free variable tableaux. In: Goré, R.P., Leitsch, A.,
Nipkow, T. (eds.) IJCAR 2001. LNCS, vol. 2083, pp. 545–560. Springer, Heidelberg
(2001)

2. Pugh, W.: The Omega test: a fast and practical integer programming algorithm
for dependence analysis. In: Proceedings, 1991 ACM/IEEE conference on Super-
computing, pp. 4–13. ACM, New York (1991)

3. Presburger, M.: Über die Vollständigkeit eines gewissen Systems der Arithmetik
ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. In: Spra-
wozdanie z I Kongresu metematyków slowiańskich, Warszawa, Warsaw, Poland,
vol. 1929, pp. 92–101, 395 (1930)

4. Rümmer, P.: Calculi for Program Incorrectness and Arithmetic. PhD thesis,
Chalmers University of Technology (to appear, 2008)

5. Fitting, M.C.: First-Order Logic and Automated Theorem Proving, 2nd edn.
Springer, New York (1996)

6. Dershowitz, N., Manna, Z.: Proving termination with multiset orderings. Commun.
ACM 22, 465–476 (1979)

7. Baumgartner, P., Fuchs, A., Tinelli, C.: MELIA – model evolution with linear
integer arithmetic constraints (to appear, 2008)

8. Rümmer, P.: A sequent calculus for integer arithmetic with counterexample gener-
ation. In: Beckert, B. (ed.) Proceedings, 4th International Verification Workshop.
CEUR, vol. 259 (2007), http://ceur-ws.org/

9. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chichester (1986)
10. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theo-

ries: From an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T).
Journal of the ACM 53, 937–977 (2006)

11. Dowek, G., Hardin, T., Kirchner, C.: Theorem proving modulo. Journal of Auto-
mated Reasoning 31, 33–72 (2003)

12. Platzer, A.: Differential dynamic logic for hybrid systems. Journal of Automated
Reasoning 41, 143–189 (2008)

http://www.cs.chalmers.se/~philipp/princess
http://ceur-ws.org/

A Constraint Sequent Calculus for FOL with Linear Integer Arithmetic 289

13. Stickel, M.E.: Automated deduction by theory resolution. Journal of Automated
Reasoning 1, 333–355 (1985)

14. Bürckert, H.J.: A resolution principle for clauses with constraints. In: Stickel, M.E.
(ed.) CADE 1990. LNCS, vol. 449, pp. 178–192. Springer, Heidelberg (1990)

15. Korovin, K., Voronkov, A.: Integrating linear arithmetic into superposition calcu-
lus. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 223–237.
Springer, Heidelberg (2007)

Encoding Queues in Satisfiability Modulo Theories
Based Bounded Model Checking�

Tommi Junttila and Jori Dubrovin

Helsinki University of Technology TKK
Department of Information and Computer Science

P.O. Box 5400, FIN-02015 TKK, Finland
Tommi.Junttila@tkk.fi, Jori.Dubrovin@tkk.fi

Abstract. Using a Satisfiability Modulo Theories (SMT) solver as the back-end
in SAT-based software model checking allows common data types to be repre-
sented directly in the language of the solver. A problem is that many software
systems involve first-in-first-out queues but current SMT solvers do not support
the theory of queues. This paper studies how to encode queues in the context of
SMT-based bounded model checking, using only widely supported theories such
as linear arithmetic and uninterpreted functions. Various encodings with consider-
ably different compactness and requirements for available theories are proposed.
An experimental comparison of the relative efficiency of the encodings is given.

1 Introduction

Bounded model checking (BMC) [1] is an efficient symbolic model checking technique
that has been successfully applied to finding bugs in hardware, software, timed, and hy-
brid systems. In a recent industrial project we have applied BMC to the analysis of
asynchronous, message passing, object oriented systems described in UML [2,3]. Such
systems rise naturally e.g. in the context of communication protocol design. The pro-
posed BMC techniques seem to be relatively efficient (especially when the so-called
step semantics are applied [3]) and sometimes even complementary to the explicit state
methods traditionally used in the analysis of this kind of systems. In [2,3] we use the
NuSMV tool [4] as the back-end, and thus the symbolic transition relation is eventually
translated (“bit-blasted”) into propositional logic and solved with a propositional satis-
fiability (SAT) solver. Compared to propositional SAT, Satisfiability Modulo Theories
(SMT, see e.g. [5,6,7]) offers an attractive framework for solving problems involving
constraints over non-Boolean domains such as linear arithmetics over reals or integers,
equality with uninterpreted functions (EUF), lists, arrays, and so on. Encouraged by this
and the tremendous improvements in the efficiency of SMT solvers during the last few
years, we have also implemented and experimented with an SMT-based variant of our
UML BMC encoding.

When applying BMC to asynchronous message passing systems, one has to be able
to encode queues in symbolic form accepted by SMT solvers. Unfortunately, decision

� This work has been financially supported by the Academy of Finland (project 112016),
Helsinki Graduate School in Computer Science and Engineering, and Jenny and Antti Wihuri
Foundation.

I. Cervesato, H. Veith, and A. Voronkov (Eds.): LPAR 2008, LNCS 5330, pp. 290–304, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Encoding Queues in Satisfiability Modulo Theories Based Bounded Model Checking 291

procedures for theories of queues, especially with sub-queue relations, can be quite
complex (see e.g. [8]) and, to the authors’ knowledge, are not currently implemented
in any of the state-of-the-art SMT solvers. However, in the context of finding counter-
examples to safety properties of message passing systems with BMC, we do not need
a full theory of queues but only enqueue and dequeue operations.1 If we wish to check
liveness properties with BMC (see e.g. [11]) or use temporal induction [12,13] to prove
absence of bugs as well, we also need a predicate that checks whether the contents of a
queue are the same at two different time steps. As current SMT solvers do not support
these restricted theories of queues either (the theory of recursive data structures [14]
and its variants implemented in some SMT solvers are not applicable, as they only sup-
port stacks and Lisp-like lists, i.e. last-in-first-out protocol instead of first-in-first-out),
we have developed ways to encode queues with other theories. In this paper we study
how to do such symbolic queue encodings in the BMC context by using fragments of
quantifier-free first order logic supported by the current state-of-the-art SMT solvers.
Our goal is to develop queue encodings that (i) are compact (queue encodings can form
a significant part of the symbolic transition relation encoding used in BMC), (ii) only
require theories that are supported in the current SMT solvers, and (iii) are hopefully
efficient to solve. We present several alternative queue encodings that vary consider-
ably in compactness and in what kind of theories they apply; we mainly concentrate
on queues with fixed bounded capacity but also present one (very compact) encoding
that can handle unbounded queues. We benchmark the proposed encodings by using a
simple scalable “stress test” model and some real UML models. Naturally, our queue
encodings can also be applied to BMC of any hardware or software system that uses
queues, not only message passing protocols.

Related work. Compared to some other theories such as those of arrays or linear arith-
metics, there seems to be relatively little work on developing and implementing decision
procedures for queues.

In [15], lambda functions are used to describe queues within the context of mi-
croprocessor verification. However, the expansion of the lambda functions with beta-
substitution, required for getting an SMT problem without lambdas, seems to result in
a quadratic blow-up with respect to the BMC bound.

As a part of his thesis [8, Chapter 8], Bjørner develops a decision procedure for
queues. However, concatenation of queues as well as sub-queue relations are consid-
ered, making the decision procedure rather involved compared to our needs. To our
knowledge, it is not implemented in any state-of-the-art SMT solver. Based on the ax-
ioms given in [8, Chapter 8], one possibility would be to use the cons/revcons construc-
tors to describe queue contents, then eliminate the revcons constructors by using the
axioms, and finally solve the resulting problem with an SMT-solver supporting the the-
ory of recursive data types (e.g. Yices [16] to name just one example of such a solver).
However, eliminating the revcons constructors in this way leads to a quadratic explosion
in the size of the formula with respect to the BMC bound.

1 Actually, state machines in UML [9] (as well as in SDL [10]) can also temporarily defer
messages; the symbolic translation in [2] can handle this, but due to space limitations we do
not consider deferring in this paper.

292 T. Junttila and J. Dubrovin

The queue interface concept we use in this paper is similar to the one proposed
in [17,18] for encoding memories in the context of BMC for embedded systems. It
seems that queues are easier than memories in this setting as the constraints for mem-
ories in [17,18] depend on the BMC bound, making the size of the overall encoding
quadratic with respect to the bound; the queue encodings presented in this paper are
linear with respect to the bound.

As a final note it should be noticed that some of the underlying high-level concepts
in our queue encodings are by no means new. Anyone who has programmed a queue
data structure with a programming language such as C or C++ has certainly considered
the basic ideas of both the “shifting” and “cyclic” approaches of this paper. But we
are not aware of any previous attempts to systematically describe, analyze, and bench-
mark these approaches in the context of SMT-based BMC. Furthermore, the “linear”
approach and the “tag-based” element compression exploit uninterpreted functions for
reducing the problem size in, we believe, a novel way.

2 BMC and the Queue Interface

In Model Checking [19], we can consider a system to be composed of a finite vector
s = 〈x1, . . . , xn〉 of typed state variables, the set I ⊆ S of initial states, and the
transition relation R ⊆ S × S, where S = domain(x1) × · · · × domain(xn) is the
set of states of the system. A pair 〈s, s′〉 is in the transition relation iff the system can
move from s to s′ in one execution step. We will primarily consider checking invariant
properties of systems and define the set B ⊆ S of bad states, in which the invariant is
broken. The model checking problem is to determine whether a bad state can be reached
from any initial state with a finite number of transitions.

In Bounded Model Checking (BMC), the characteristic functions of the sets I , R,
and B are encoded as formulas I(s), R(s, s′), and B(s) over vectors of state variables.
The question is then whether there is a bound K ≥ 0 and a sequence s0, . . . , sK of
states such that I(s0) ∧ R(s0, s1) ∧ · · · ∧ R(sK−1, sK) ∧ B(sK) holds. For a fixed
bound, a satisfiability checker, in this case an SMT solver, can decide the existence of a
state sequence that satisfies the latter formula and thus show whether a bad state can be
reached.

The problem we address is that if one or more of the state variables represent queues,
there is no direct way of encoding the queue contents and operations in the language
of the currently available SMT solvers. We propose several alternative queue encodings
that only use theories that are widely supported by state-of-the-art solvers. We will
encapsulate each queue behind a unified interface that allows (limited) access to the
contents of the queue, making it possible to switch to a different queue encoding while
keeping the encoding of the rest of the system the same. Although we only talk about
a single queue in a system, several queues can be handled by simply duplicating the
interface and the encoding.

We assume that at each time step, each queue can be the target of at most one enqueue
and at most one dequeue operation (both can occur at the same time step provided that
the queue is not empty: that is, the element enqueued at a time step cannot be dequeued
at the same time step but only later).

Encoding Queues in Satisfiability Modulo Theories Based Bounded Model Checking 293

The interface consists of two client-controlled Boolean variables, which tell whether
a dequeue/enqueue operation is executed, and two data elements: one that tells the client
of the queue what the first element in the queue is at the current time step, and another
for the element to be appended into the queue in the case the enqueue operation is
executed. Furthermore, the client can query whether the queue is empty or full, and
whether the contents of the queue at two different time steps match. As mentioned in
the introduction, the equality test between time steps is only required if one wishes to
check liveness properties or apply temporal induction (see e.g. [11,12,13]).

The contents of a queue with element type ELEM can be represented as a variable-
length vector of elements, thus domain(QUEUE(ELEM)) = domain(ELEM)∗. In the
case of a bounded queue, the length is bounded by the capacity Z of the queue.

Formally, the queue interface contains the following terms.

– empty t and full t are Boolean formulas that tell whether the queue is empty or full,
respectively, at the time step t with 0 ≤ t ≤ K . A bounded queue is full iff it
contains Z elements. An unbounded queue is never full.

– firstelemt is of type ELEM and holds the value of the first element in the queue at
the time step t. It has a meaningless value if the queue is empty.

– deq t is a client-controlled Boolean variable that determines whether the first ele-
ment of the queue is removed when moving to the time step t+ 1.

– enqt is a client-controlled Boolean variable that determines whether the element
newelemt is appended to the queue when moving to the time step t+ 1.

– newelemt of type ELEM is a client-controlled term, see the previous item.
– equal t,u is a Boolean formula that is true iff the contents of the queue at time steps
t and u are the same.

It is assumed that the client of the queue interface never tries to (i) dequeue when the
queue is empty, or (ii) enqueue when the queue is full and dequeuing not is taking place
at the same time step. That is, the following are assumed to be invariants (i.e. to hold at
every time step t):

deq t ⇒ ¬empty t (1)

enqt ⇒ (¬full t ∨ deq t) (2)

Formally, the contents of a queue Q evolve in time as follows. Let the contents at the
time step t beQt = 〈v1, v2, . . . , vn〉. Then firstelemt = v1 and the contents at the next
time step are

Qt+1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
〈v2, . . . , vn,newelemt〉 if ¬empty t ∧ deq t ∧ enq t

〈v2, . . . , vn〉 if ¬empty t ∧ deq t ∧ ¬enq t

〈v1, . . . , vn,newelemt〉 if ¬deq t ∧ enqt

〈v1, . . . , vn〉 if ¬deq t ∧ ¬enq t.

(3)

We point out that the queue interface is not as expressive as a true theory of queues
would be. In particular, we cannot define arbitrary relationships between time points,
for example, constraining that Q6 is equal to Q2 except that the first element has been
dequeued. However, from the BMC point of view, arbitrary constraints between queue

294 T. Junttila and J. Dubrovin

qct
3 qct

4qct
1 qct

2qct
0

tail t

v8 v1 v12

tail t+1

v1 v12 v17

qct+1
1qct+1

0 qct+1
2 qct+1

3 qct+1
4

Fig. 1. An illustration of the shifting-based encoding approach when Qt = 〈v8, v1, v12〉, deq t =
enqt = true, and newelemt = v17, resulting in Qt+1 = 〈v1, v12, v17〉

variables are not needed, and it suffices to reason about a non-branching evolution of
the contents of the queue. The restrictions on the interface make it possible to design
compact encodings to be used especially with BMC.

3 Queue Encodings

In this section we present the three different approaches for encoding queues, called
“shifting”, “cyclic”, and “linear”, together with variations within each approach. We
analyze the sizes and theory requirements of the alternatives.

3.1 A Shifting-Based Approach

Our first approach, illustrated in Fig. 1, is a straightforward implementation of the BMC
semantics of queues given in Eq. (3). It considers bounded queues with at most Z ele-
ments and is basically the approach presented in [2] except that only pure FIFO queues
are considered here. For each time step t, we introduce a sequence 〈qct

0, . . . , qct
Z−1〉

of variables, each of type ELEM. The intuition is that qct
s−1 holds the value of the s:th

element in the queue at time step t (the semantics is undefined if there are less than s
elements). In addition, we introduce a timed integer variable tail t that holds the loca-
tion of the first unused slot in the sequence, i.e. the length of the queue at time step t.
Letting s quantify over {0, . . . , Z − 1}, the definitions for the queue interface variables
as well as for updating the queue contents are the following.

tail t+1 :=

⎧⎪⎨⎪⎩
deq t ∧ ¬enqt : tail t − 1
¬deq t ∧ enqt : tail t + 1
else : tail t

(4)

empty t := (tail t = 0) (5)

full t := (tail t = Z) (6)

qct+1
s :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
enq t ∧ ¬deq t ∧ tail t=s : newelemt

enq t ∧ deq t ∧ tail t=s+1 : newelemt

deq t : qct
s+1

else : qct
s

(7)

firstelemt := qct
0. (8)

The notation of Eqs. (4) and (7) should be interpreted as a standard case-expression, i.e.
tail t+1 := if deq t ∧ ¬enq t then tail t−1 else (if ¬deq t ∧ enq t then tail t+1 else tail t).

Encoding Queues in Satisfiability Modulo Theories Based Bounded Model Checking 295

The term qct
Z that appears in (7) in the boundary case s = Z − 1 can be taken to have

an arbitrary constant value of type ELEM.
As updating the queue contents (Eq. (7)) requires O(Z) definitions for each time

step, the overall size of the encoding with BMC boundK is O(K · Z).

Equality test. In this approach it is straightforward to check in size O(Z) whether the
contents of the queue are the same at two time steps t and u:

equal t,u := (tail t = tailu) ∧
∧

0≤s<Z

(s < tail t) ⇒ (qct
s = qcu

s). (9)

One-Hot Encoding for the Tail Pointer. The integer tail pointer used in the shifting-
based approach above requires that the SMT solver includes a decision procedure for
integers with constants and the successor function. We can eliminate this requirement
by using a Boolean one-hot encoding for the tail pointer as follows. For each s ∈
{0, 1, . . . , Z}, introduce a timed Boolean variable tail ts. In any satisfying truth assign-
ment, at each time step t, exactly one of the variables tail t0, . . . , tail

t
Z will be true by

construction. Letting s quantify over {0, 1, . . . , Z}, the updating of the tail pointer is
expressed as

tail t+1
s :=

⎧⎪⎨⎪⎩
enqt ∧ ¬deq t : (s > 0) ∧ tail ts−1

¬enqt ∧ deq t : (s < Z) ∧ tail ts+1

else : tail ts

(10)

where each (s > 0) and (s < Z) is interpreted as a constant false or true depending
on s. Equations (5)–(7) are modified by substituting each equality check of the form
tail t = c with the variable tail tc.

Although updating the tail pointer now requires O(Z) definitions (Eq. (10)) instead
of one as in the integer case (Eq. (4)), the size of the overall encoding stays in O(K ·Z).
The potential benefits of the one-hot encoding are that (i) no additional theories are
required by the queue encoding, and (ii) as Boolean SAT solvers (whose search tech-
niques and data structures modern SMT solvers apply) are very efficient, the introduced
Boolean constraints are possibly easier to solve for SMT solvers.

Equality test. The predicate for checking the equality of queue contents at two time
steps is relatively easy to express also in this encoding. Let equal t,u := equal t,u0 , where
the auxiliary predicate equal t,u0 is defined as

equal t,us :=
(
tail ts ∧ tailus

)
∨
(
(qct

s = qcu
s) ∧ equal t,us+1

)
for 0 ≤ s < Z , and

equal t,uZ :=
(
tail tZ ∧ tailuZ

)
.

The size of the equal t,u formula stays the same O(Z) as in the integer encoded tail
pointer case above.

3.2 A Cyclic Approach

We can modify the encoding of Sect. 3.1 by introducing a timed integer variable head t

that tells the position of the first element of the queue. Instead of shifting the entire con-
tents of the queue upon a dequeue operation, we increment head t by one. This requires

296 T. Junttila and J. Dubrovin

head ttail t

qct
3 qct

4

v1 v3 v8v12 v9 v4

qct
1 qct

2 qct
5qct

0 qct+1
0

head t+1 tail t+1

v17 v8v4v9v1 v12

qct+1
1 qct+1

2 qct+1
3 qct+1

4 qct+1
5

Fig. 2. An illustration of the cyclic encoding approach when Z = 5, Qt = 〈v8, v1, v12〉, deq t =
enqt = true, and newelemt = v17, resulting in Qt+1 = 〈v1, v12, v17〉

that the values of head t and tail t wrap around at the boundaryZ . For notational conve-
nience, we define the terms “successor moduloZ+1” and “predecessor moduloZ+1”
by “succ(x) := if x = Z then 0 else x+1” and “pred(x) := if x = 0 then Z else x−1”,
respectively. We define

head t+1 := if deq t then succ(head t) else head t (11)

tail t+1 := if enq t then succ(tail t) else tail t (12)

empty t := (tail t = head t) (13)

full t := (succ(tail t) = head t). (14)

There are several approaches for representing the queue contents at each time step, as
discussed in the following sub-sections. These vary in compactness and in their require-
ments for the available decision procedures.

Explicit Contents Representation. As in the shifting-based approach in Sect. 3.1, we
introduce a sequence 〈qct

0, . . . , qc
t
Z〉 of timed variables, each of type ELEM. The queue

contents update and the firstelemt term are written as follows (see Fig. 2).

qct+1
s := if enq t ∧ (tail t=s) then newelemt else qct

s (15)

firstelemt :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
head t = 0 : qct

0...
...

head t = Z − 1 : qct
Z−1

else : qct
Z

(16)

There areZ+1 frame definitions (15), each of constant size. On the other hand, Eq. (16)
is of size O(Z). Thus the size of the overall BMC encoding is O(K · Z).

Equality test. Perhaps the easiest way of forming the equality predicate equal t,u is
to use the one presented below for one-hot encoded head and tail pointers and simply
replace each test of the form “head t

c” with “head t = c” and “tail tc” with “tail t = c”.

One-Hot Encoding for Head and Tail. Similarly to Sect. 3.1, we can express the head
and tail pointers with Boolean one-hot encoding instead of integers. We only apply this
one-hot encoding with the explicit contents representation. For each s ∈ {0, 1, . . . , Z},
introduce timed Boolean variables head t

s and tail ts. We replace definitions (11)–(14)
with the following for s = 0, . . . , Z.

Encoding Queues in Satisfiability Modulo Theories Based Bounded Model Checking 297

head t+1
s := if deq t then head t

pred(s) else head t
s (17)

tail t+1
s := if enq t then tail tpred(s) else tail ts (18)

empty t :=
∨

0≤s′≤Z

(head t
s′ ∧ tail ts′) (19)

full t :=
∨

0≤s′≤Z

(head t
s′ ∧ tail tpred(s′)) (20)

Again, the definitions (15) and (16) are modified by substituting each test head t = c
with head t

c and each tail t = c with tail tc.
Compared to the integer case (Eqs. (11)–(14)), maintaining head, tail, empty, and full

definitions now requires terms of size O(Z) instead of O(1) per time step. However,
the total BMC encoding size forK steps stays in O(K · Z).

Equality test. The predicate for checking the equality of queue contents at two time
steps is more cumbersome than in Sect. 3.1 as the head position is now variable. We
can define

equal t,u :=
∧

0≤i,j≤Z

(head t
i ∧ headu

j) ⇒ Et,u
i,j , (21)

where the Et,u
i,j are predicates constrained by

Et,u
i,j ⇔ (tail ti ∧ tailuj) ∨

(
¬tail ti ∧ ¬tailuj ∧ (qct

i=qcu
j) ∧ Et,u

succ(i),succ(j)

)
. (22)

Intuitively, Et,u
i,j is a “suffixes are equal” predicate evaluating to true iff the sequence

〈qct
i, qc

t
succ(i), . . . , qc

t
pred(tailt)〉 is the same as 〈qcu

j , qc
u
succ(j), . . . , qc

u
pred(tailu)〉. The

size of the equal t,u predicate, including the constraints in (22), is O(Z2).

UIF-Based Contents Representation. Instead of having a variable qct
s to represent the

value of the element s at the time step t, we can encode the contents of all elements at a
single time step by using an uninterpreted function (UIF). That is, for each time step t,
we introduce an UIF qct : INT → ELEM and rewrite the equations (15) and (16) as

qct+1(s) := if enq t ∧ (tail t=s) then newelemt else qct(s) (23)

firstelemt := qct(head t) (24)

where s ranges over {0, ..., Z}. The idea is to reduce the size of the definition of
firstelemt from O(Z) to a constant. However, the overall encoding size still remains
in O(K · Z) as the frame constraints (23) are essentially the same as in the explicit
encoding.

Equality test. In the cyclic approach, we can express the length of the queue with
“lent := if head t ≤ tail t then tail t − head t else tail t + Z + 1 − head t”. Now we can
define the queue contents equality checking predicate as

equal t,u := (lent = lenu) ∧
∧

0≤i<Z

((i < lent) ⇒ Et,u
i) (25)

where Et,u
i :=

(
qct(succi(head t)) = qcu(succi(headu))

)
, and succi(x) denotes the

nested application of the succ(x)-notation i times.

298 T. Junttila and J. Dubrovin

Array-Based Contents Representation. We can avoid writing the Z+1 copies of the
frame constraint (23) by using an array instead of an UIF to represent the queue con-
tents. The downside is the reliance on the more complex theory of arrays (see e.g. [20]).
We denote the operations on arrays by read(a, i), which returns the value at index i in
array a, and write(a, i , v), which returns a copy of array a in which the value at index
i has been replaced by v . We introduce a timed array variable qct : INT → ELEM that
describes the queue contents at time t. The definitions (15) and (16) are replaced with

qct+1 := if enqt then write(qct, tail t,newelemt) else qct (26)

firstelemt := read(qct, head t). (27)

That is, only a constant amount of definitions are needed for each time step, meaning
that the encoding is independent of the queue capacity Z and the size of the resulting
overall BMC encoding is O(K).

Equality test. Unfortunately the compactness of the array-based contents representation
does not seem to extend to equality checking. The most compact way we have found
for expressing equal t,u in this setting is essentially the one for UIF-based contents
representation given in Eq. (25). The only change is to replace each equality test of the
form qct(i) = qcu(j) with read(qct, i) = read(qcu, j).

3.3 A Linear Approach

We next show a very compact encoding approach exploiting uninterpreted functions
and a small fragment of linear arithmetic. The resulting encoding has only a constant
amount of constraints per time step. A drawback is that, like the UIF- and array-based
contents representation approaches above, it requires theory combination: if handling
of queue elements otherwise requires a decision procedure for a theory T , then the
combination of T with the theory of “EUF + integer offsets” (see [21] for an efficient
decision procedure for this theory) is required after introducing the queue constraints.

The basic idea, illustrated in Fig. 3, is very simple: we have a single, infinite ar-
ray common to all time steps in which the queue progresses as a sliding window. For
each time step t, we introduce two integer variables, head t : INT and tail t : INT. The
contents of the queue at the time step are the array elements from the index head t to
tail t − 1. When an element is removed from the queue, the head t variable is incre-
mented by one. Similarly, when an element is inserted in the queue, it is written to the
array at index tail t, after which the tail index is incremented by one. Thus each array
index is written at most once. This allows us to capture the contents of the queue by
using an UIF qc : INT → ELEM. In contrast to the UIF-based contents encoding in
Sect. 3.2, the UIF is not time-dependent but shared across all time steps. We define

head t+1 := if deq t then head t + 1 else head t (28)

tail t+1 := if enq t then tail t + 1 else tail t (29)

empty t := (head t = tail t) (30)

full t := (tail t = head t + Z) (31)

firstelemt := qc(head t) (32)

Encoding Queues in Satisfiability Modulo Theories Based Bounded Model Checking 299

......

head t tail t

v12v9 v8 v1

qc
(1

3)

qc
(1

4)

qc
(1

5)

qc
(1

2)

qc
(1

1)

qc
(1

0)

......

head t+1 tail t+1

v1v8v9 v12

qc
(1

0)

qc
(1

1)

qc
(1

2)

qc
(1

3)

qc
(1

4)

v17

qc
(1

5)

Fig. 3. An illustration of the linear encoding approach when Qt = 〈v8, v1, v12〉, deq t = enq t =
true, and newelem t = v17, resulting in Qt+1 = 〈v1, v12, v17〉

and constrain that
enq t ⇒ (qc(tail t) = newelemt). (33)

Only a constant amount of terms is needed for each time step, and thus the size of the
overall encoding forK time steps is O(K). The size is the same as that of the bounded
cyclic, array-based encoding. The relative benefit is that an easier theory (EUF + inte-
ger offsets [21]) is applied and that unbounded queues can be supported (as explained
below).

Equality test. The equality checking predicate can be expressed in size O(Z). Let
lent := tail t − head t and define equal t,u := equal t,u0 , where

equal t,us :=
(
lent=s ∧ lenu=s

)
∨
(
(qc(head t+s)=qc(headu+s)) ∧ equal t,us+1

)
(34)

for 0 ≤ s < Z , and
equal t,uZ :=

(
lent = Z ∧ lenu = Z

)
. (35)

Unbounded Queues. The linear approach can be modified to allow encoding of un-
bounded queues. Simply replace Eq. (31) above with

full t := false. (36)

The size of the encoding stays in O(1) per time step.

Equality test. The queue contents equality comparison is similar to that of the bounded
case except that the size of the queue at a time step t is now bounded above by t + M
instead of the queue capacityZ , whereM is the number of elements in queue at the first
time step 0. That is, assuming t < u, the equality checking predicate equal t,u is the
same as in the bounded linear case considered above except that Z is replaced with the
constant t+M in Eqs. (34) and (35). The worst case size of equal t,u is thusO(K). This
is a drawback as in BMC for liveness properties we usually have to apply at leastK such
predicates and thus the overall BMC encoding becomes at least quadratic in the bound.

4 Tag-Based Tuple Element Compression

It is often the case that a queue does not contain scalar values, but tuples of values. In
the context of UML model checking [3], this happens when the messages in the input

300 T. Junttila and J. Dubrovin

queues of state machines are composed of both a signal identifier and some parameter
values associated with the signal. Some SMT solvers, such as Yices [16] and Z3 [22],
have a direct support for tuples and thus one can simply define ELEM to be tuple type
and use the presented queue encodings unmodified. We next consider solutions for the
case that tuples are not supported.

The straightforward way to handle tuple types is to split them into individual parts.
For example, if ELEM = TUPLE(REAL, INT), then an uninterpreted function qct :
INT → ELEM appearing in the UIF-based contents representation scheme (Sect. 3.2)
is encoded as two UIFs qct

1 : INT → REAL and qct
2 : INT → INT, and a constraint

qct(x) = qct(y) becomes qct
1(x)=qct

1(y) ∧ qct
2(x)=qct

2(y). This transformation can
be applied to all queue encodings of Sect. 3. If the element type ELEM is a tuple with
A parts, then the variables firstelemt, newelemt, qct

s, and qct, and the UIFs qct and
qc need to be duplicated A times together with the constraints involving those variables
and UIFs. This increases the sizes of all encodings by a factor of A in the O-notation.
We will call the result the duplicating tuple encoding.

The alternative we propose is a tag-based encoding that avoids storing tuple values in
the queue and moving them across time steps. Instead, each enqueued tuple is associated
with a tag, e.g. a single integer value, which is stored in the queue. Upon dequeuing,
the tag is decoded back into a tuple. The scheme can be efficiently implemented using
UIFs as follows. Assume that ELEM = TUPLE(T1, . . . , TA) for some types Ti. We
define a scalar type TAG that has to have a domain large enough to hold the possible
element values, i.e. |domain(TAG)| ≥ |domain(ELEM)| should hold. We define time-
independent UIFs decodei : TAG → Ti for each 1 ≤ i ≤ A that are used to interpret
the tags as tuple parts, and construct a queue with element type TAG using one of
the encodings presented in the previous section. We rename the terms firstelemt and
newelemt of the interface of the queue as firsttagt and newtagt, respectively, and hide
them from the client. Instead, the client will see the terms

firstelemt
i := decodei(firsttagt) (37)

newelemt
i := decodei(newtag t) (38)

for each 1 ≤ i ≤ A as part of the queue interface. Except for the queue equality
predicate equal t,u discussed below, this additional level of abstraction does not affect
the semantics of the queue. Note that only the decode functions together with the def-
initions (37) and (38) are duplicated A times, while the internals of the queue only
deal with scalar values. Thus when the tag-based encoding is applied, the size of the
shifting-based approach as well as that of the cyclic approach with explicit and UIF-
based contents representation drop from O(K · Z · A) to O(K · (Z + A)). The size of
the array-based contents representation stays in O(K · A) but requires only one array
variable instead of A per time step; this is, in theory, beneficial as the theory of equality
with UIFs required by tags is much easier to decide than the theory of arrays.

As tuples with same values can be assigned to different tags, the equality checking
predicate equal t,u needs special treatment. In equal t,u, every equality comparison be-
tween tag values has to be expanded; for instance, the comparison qct

s = qcu
s in Eq. (9)

has to be rewritten as
∧

1≤i≤A (decodei(qct
s) = decodei(qcu

s)). Thus for the equality
checking part of the encoding, tags do not help to compress the size of the encoding.

Encoding Queues in Satisfiability Modulo Theories Based Bounded Model Checking 301

Table 1. Comparison of the approaches on the single queue stress test with a scalar integer ele-
ment. The numbers show the largest bound that was solved within ten minutes by the Z3 solver.

shifting cyclic linear unbounded
explicit uif array

Z int. tail one-hot tail int. tail one-hot tail
2 28 79 35 92 24 26 13 12
5 20 33 28 42 15 26 12

10 19 25 20 31 14 27 12
50 19 25 17 31 12 25 11

5 Experiments

We now provide an experimental comparison of the proposed approaches. We have de-
veloped a prototyping tool called PySMT for constructing and solving SMT problems in
the Python programming language. It (i) has an API for constructing the problems, (ii)
can translate the problems into the native input language of several SMT solvers and also
(to some extent) to the SMT-LIB format, and (iii) can also execute the solver binary and
(to a quite limited extent) parse the result so that it can be queried by using the API. We
have implemented the proposed queue encoding approaches on top of PySMT and give
some preliminary experimental results below. The scripts and models for the experiments
are available at http://www.tcs.hut.fi/˜tjunttil/experiments/
LPAR2008-SMT.

5.1 Single Queue Stress Test

First, we try to test the efficiency of the queue encodings in isolation by constructing
very simple BMC problems consisting of one queue only. In this problem, (i) whether
an enqueue or a dequeue operation is applied at time step t is unconstrained, meaning
that all possible enqueue/dequeue sequences are considered, (ii) each enqueued element
is either an integer or a tuple of integers, each constrained to have a value greater than
some positive constant, and (iii) the (valid) property to be checked is that an element
with a negative integer value is never dequeued. For each time step, we set the run time
limit to ten minutes and report the time spent in the solver. Problem generation time is
not included as our generator script has, we believe, unessential inefficiencies.

Scalar Elements. To isolate the core queue constraints from the constraints needed
to represent tuple elements, we first compare the encoding approaches in the case of
scalar elements. Table 1 shows the results for different queue lengths when Z3 (ver-
sion 1.2) [22] is used as the SMT solver. In addition, Fig. 4(a) shows a more detailed
view when the queue size Z is five. The results show that there are dramatic differences
in the performance of different approaches and contents encoding schemes. Unfortu-
nately, the more compact and elegant ones, namely the linear approach and the cyclic
approach with array-based contents representation, are not performing well. Instead, the
encodings applying fewest theories, i.e. the cyclic and shifting approaches with one-hot

http://www.tcs.hut.fi/~tjunttil/experiments/LPAR2008-SMT
http://www.tcs.hut.fi/~tjunttil/experiments/LPAR2008-SMT

302 T. Junttila and J. Dubrovin

encoded head and tail pointers seem to be the best choices in general. We also ran
experiments with the Yices SMT solver [16] and obtained similar results, except that the
integer encoded head and tail pointers seem to perform as well as the one-hot encoded.

Tuple Elements. We also benchmarked the encoding approaches when queue elements
are tuples of integers. As expected, the result is that the problems become harder when
tuples contain more parts. For instance, consider the cyclic approach with explicit con-
tents representation and one-hot encoded head and tail pointers. With scalar element
(tuple with one part) the behavior is shown as the rightmost curve in 4(a) while the sec-
ond rightmost curve in Fig. 4(b) shows the same with a tuple of five parts: the largest
bound solved within ten minutes drops from 42 to 27.

The second observation is that the tag-based tuple encoding is almost universally a
few times more efficient in terms of running time than the duplicating tuple encoding.
Figure 4(b) shows a comparison of the tuple encodings for three different queue en-
codings approaches; these plots represent typical behavior in this benchmark set. We
also experimented with the direct tuple type support of Z3; it seems to provide similar
performance as our tag-based encoding. Again, comparable results were obtained when
Yices was used as the solver instead of Z3.

5.2 Bounded Model Checking of UML Models

We have also benchmarked the queue encodings in a more realistic bounded model
checking context. We analyzed some UML models by using the symbolic encoding de-
scribed in [2,3]. Instead of using NuSMV, we translate the BMC problems into SMT
problems and use Yices (version 1.0.11) [16] to solve them. The results are shown in Ta-
ble 2, the numbers give the cumulative time (in seconds) used by the SMT solver when
solving all the problems from bound 0 to the bound |cex| where a counter-example to
the analyzed property is found. The queue size for the bounded queue encodings was
set to ten; “dstep” (“interl.”, resp.) denotes that the dynamic step (interleaving, resp.)
semantics (see [3]) was applied. The use of tags to represent tuple queue elements seems

 0

 100

 200

 300

 400

 500

 600

 10 15 20 25 30 35 40 45 50

tim
e(

s)

bound

linear
cyclic(uif)

shifting(int tail)
cyclic(array)

cyclic(expl.,int tail)
shifting(onehot tail)

cyclic(expl.,onehot tail)
 0

 100

 200

 300

 400

 500

 600

 10 15 20 25 30

tim
e(

s)

bound

shifting(int t.)
shifting(int t.)+tags
shifting(onehot t.)

shifting(onehot t.)+tags
cyclic(expl.,onehot t.)

cyclic(expl.,onehot t.)+tags

(a) (b)

Fig. 4. Comparison of some approaches with Z3 as the solver. (a) Scalar queue element, Z = 5.
(b) Tuple queue element with 5 parts, Z = 5.

Encoding Queues in Satisfiability Modulo Theories Based Bounded Model Checking 303

Table 2. BMC of some UML models using Yices as the solver

model |cex| linear shifting shifting cyclic cyclic cyclic
unbounded one-hot explicit one-hot UIF

giop, dstep 8 21.31 23.93 28.99 296.77 78.98 137.33
(with tags) 24.18 24.52 29.58 25.67 24.44

giop, interl. 14 1986.07 1599.10 1250.13 >1h >1h 2902.11
(with tags) 1084.25 860.11 849.31 1244.03 1088.80

travel, interl. 15 1.86 2.54 2.18 3.16 2.93 3.17
(with tags) 2.45 2.09 2.87 2.83 3.26

mtravel, dstep 11 3.77 5.43 4.27 7.45 5.74 7.02
(with tags) 3.99 3.79 4.58 4.32 4.82

to play a much bigger role than the encoding approach in this practical setting; they pro-
vide a substantial performance gain especially when analyzing the giop model having
tens of message parameters and thus wide tuples in queues. With the other models
having no or only few parameters, the performance gain is non-existent or small; in
addition, the choice of the encoding approach does not seem to make much difference
on these models. The reason for this is probably that the applied bounds are relatively
small and parts other than the queue encoding dominate the search space of the SMT
problem.

6 Conclusions

We have presented and experimentally evaluated different quantifier-free SMT encod-
ings for queues in the context of bounded model checking. The presented encodings
vary significantly in compactness and the theories they require the SMT solver to im-
plement. Our preliminary experimental results show that the most compact encodings
do not necessarily perform best, even when they involve no complex theories such ar-
rays but only equality with uninterpreted functions and integer offsets. On the contrary,
it seems that it may be worthwhile to use more space by booleanizing integer head and
tail pointers so that the encoding becomes essentially propositional, the only theory
atoms being equality tests between elements that are stored in the queue. The proposed
method for compressing tuple elements with the use of tags and uninterpreted decode
functions yields a relatively consistent and often significant speed-up in our experi-
ments. The most obvious future work is of course to develop and implement decision
procedures for theories of queues. The encoding approaches presented in this paper
form a natural base when evaluating their performance in the BMC context.

References

1. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without BDDs. In:
Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg
(1999)

2. Dubrovin, J., Junttila, T.: Symbolic model checking of hierarchical UML state machines. In:
ACSD 2008, pp. 108–117. IEEE Press, Los Alamitos (2008)

304 T. Junttila and J. Dubrovin

3. Dubrovin, J., Junttila, T., Heljanko, K.: Symbolic step encodings for object based communi-
cating state machines. In: Barthe, G., de Boer, F.S. (eds.) FMOODS 2008. LNCS, vol. 5051,
pp. 96–112. Springer, Heidelberg (2008)

4. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebastiani,
R., Tacchella, A.: NuSMV version 2: An opensource tool for symbolic model checking.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 359–364. Springer,
Heidelberg (2002)

5. de Moura, L.M., Dutertre, B., Shankar, N.: A tutorial on satisfiability modulo theories. In:
Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 20–36. Springer, Heidel-
berg (2007)

6. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories: From
an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T). Journal of the
ACM 53(6), 937–977 (2006)

7. Bozzano, M., Bruttomesso, R., Cimatti, A., Junttila, T.A., van Rossum, P., Schulz, S., Sebas-
tiani, R.: MathSAT: Tight integration of SAT and mathematical decision procedures. Journal
of Automated Reasoning 35(1–3), 265–293 (2005)

8. Bjørner, N.S.: Integrating Decision procedures for Temporal Verification. PhD thesis, Stan-
ford University (1998)

9. OMG: UML 2.0 superstructure specification (2005), http://www.omg.org
10. International Telecommunication Union Geneva, Switzerland: Recommendation Z.100

(03/93) - CCITT specification and description language (SDL) (1993)
11. Biere, A., Heljanko, K., Junttila, T.A., Latvala, T., Schuppan, V.: Linear encodings of

bounded LTL model checking. Logical Methods in Computer Science 2(5) (2006)
12. Sheeran, M., Singh, S., Stålmarck, G.: Checking safety properties using induction and a

SAT-solver. In: Johnson, S.D., Hunt Jr., W.A. (eds.) FMCAD 2000. LNCS, vol. 1954, pp.
108–125. Springer, Heidelberg (2000)

13. Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. In: BMC 2003.
Electronic Notes in Theoretical Computer Science, vol. 89, pp. 541–638. Elsevier, Amster-
dam (2003)

14. Oppen, D.C.: Reasoning about recursively defined data structures. Journal of the ACM 27(3),
403–411 (1980)

15. Lahiri, S.K., Seshia, S.A., Bryant, R.E.: Modeling and verification of out-of-order micropro-
cessors in UCLID. In: Aagaard, M.D., O’Leary, J.W. (eds.) FMCAD 2002. LNCS, vol. 2517,
pp. 142–159. Springer, Heidelberg (2002)

16. Dutertre, B.: System description: Yices 1.0.10. SMT-COMP 2007 tool description paper
(2007), http://www.smtcomp.org/2007/participants.shtml

17. Ganai, M.K., Gupta, A., Ashar, P.: Efficient modeling of embedded memories in bounded
model checking. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 440–452.
Springer, Heidelberg (2004)

18. Ganai, M.K., Gupta, A., Ashar, P.: Verification of embedded memory systems using efficient
memory modeling. In: DATE 2005, pp. 1096–1101. IEEE Computer Society, Los Alamitos
(2005)

19. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cambridge
(1999)

20. Stump, A., Barrett, C.W., Dill, D.L., Levitt, J.R.: A decision procedure for an extensional
theory of arrays. In: LICS 2001, pp. 29–37. IEEE Computer Society, Los Alamitos (2001)

21. Nieuwenhuis, R., Oliveras, A.: Fast congruence closure and extensions. Information and
Computation 205, 557–580 (2007)

22. de Moura, L.M., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof,
J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)

http://www.omg.org
http://www.smtcomp.org/2007/participants.shtml

On Bounded Reachability of Programs with Set
Comprehensions

Margus Veanes1 and Ando Saabas2,�

1 Microsoft Research, Redmond, WA, USA
margus@microsoft.com

2 Institute of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
ando@cs.ioc.ee

Abstract. We analyze the bounded reachability problem of programs
that use abstract data types and set comprehensions. Such programs
are common as high-level executable specifications of complex protocols.
We prove decidability and undecidability results of restricted cases of
the problem and extend the Satisfiability Modulo Theories approach to
support analysis of set comprehensions over tuples and bag axioms. We
use the Z3 solver for our implementation and experiments, and we use
AsmL as the modeling language.

1 Introduction

Programs that use high-level data types are commonly used to describe exe-
cutable specifications [22] in form of so called model programs. An important and
growing application area in the software industry is the use of model programs
for specifying and documenting expected behavior of application-level network
protocols [14]. Model programs typically use abstract data types such as sets
and maps, and comprehensions to express complex state updates. Correctness
assumptions about the model are usually expressed through state invariants. An
important problem is to validate a model prior to its use as an oracle or final
specification. One approach is to use Satisfiability Modulo Theories or SMT to
perform bounded reachability analysis or bounded model-checking of model pro-
grams [36]. The use of SMT solvers for automatic software analysis has recently
been introduced [1,11] as an extension of SAT-based bounded model checking [5].
The SMT based approach makes it possible to deal with more complex back-
ground theories. Instead of encoding the verification task of a sequential program
as a propositional formula the task is encoded as a quantifier free formula. The
decision procedure for checking the satisfiability of the formula may use combi-
nations of background theories [29].

The main contribution of this paper is a characterization of the decidable
and undecidable cases of the bounded reachability problem of model programs.
We show in Section 3 that already the single step reachability problem is un-
decidable if a single set-valued parameter is allowed. In Section 4 we show that
� Part of this work was done during an internship at Microsoft Research, Redmond.

I. Cervesato, H. Veith, and A. Voronkov (Eds.): LPAR 2008, LNCS 5330, pp. 305–317, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

306 M. Veanes and A. Saabas

the bounded reachability problem remains decidable provided that all parame-
ters have basic (non-set valued) types. This result is orthogonal to the decidable
fragment of bounded reachability of model programs that use the array property
fragment [8]. In Section 5 the paper extends the work started in [36] through im-
proved handling of quantifier instantiation and extended support for background
axioms to support for example bag or multi-set axioms. We use the SMT solver
Z3 [10] for our experiments and we use AsmL [16] as the modeling language.
Related work is discussed in Section 6.

2 Model Programs and Bounded Reachability

In this section we define some background material related to model programs,
in order to make the paper self-contained. A more thorough exposition can be
found in [36].

Model programs. The main use of model programs is as high-level specifications
in model-based testing tools such as Spec Explorer [37] and NModel [30]. In Spec
Explorer, one of the supported input languages is the abstract state machine
language AsmL [16]. AsmL is used in this paper as the concrete specification
language for update rules that correspond to basic ASMs [15].

We letΣ denote the overall signature of function symbols. Part ofΣ is denoted
by Σvar and contains nullary function symbols whose interpretation may vary
from state to state, called state variables. The remaining part Σstatic contains
symbols whose interpretation is fixed by the background theory. A ground term
over Σstatic is called a value term. A subset of Σstatic, denoted by Σacts are free
constructors called action symbols. Given an action symbol f , an action or f -
action is a value term whose function symbol is f .

For all action symbols f with arity n ≥ 0, and all i, 1 ≤ i ≤ n, there is a unique
parameter variable (not in Σvar) denoted by fi. We write Σf for {fi}1≤i≤n. Note
that if n = 0 then Σf = ∅.

Definition 1. A model program P is a tuple (VP , AP , IP , RP), where

– VP is a finite set of state variables, let ΣP denote Σstatic ∪ VP ;
– AP is a finite set of action symbols ;
– IP is a formula over ΣP , called the initial state condition;
– RP is a family {Rf

P }f∈AP of action rules Rf
P = (Gf

P , U
f
P), where

• Gf
P is a quantifier free formula over ΣP ∪Σf called the guard ;

• Uf
P , called the update rule, is a block {v := tfv}v∈V f

P
of assignments where

tfv is a term over ΣP ∪Σf and V f
P ⊆ VP .

This definition is a variation of model programs that syntactically restricts the
update rules to be block assignments. This restriction is not a true limitation
because if-then-else terms are allowed and nondeterministic choices can be en-
coded as branching based on action parameter values (i.e. the choices are made

On Bounded Reachability of Programs with Set Comprehensions 307

explicit). We often say action to also mean an action rule or an action symbol,
if the intent is clear from the context.

In general, model programs can have a rich background theory, including the
theory of maps. In the following example, the fragment of interest is the so-called
array theory fragment where all map sorts have domain sort Z and the theory
of Z is Presburger arithmetic.

Example 1 (Credits). The following model program is written in AsmL. It spec-
ifies how a client and a server need to use message ids, based on a sliding window
protocol. It models part of the credits-algorithm in the SMB2 [34] protocol.

var window as Set of Integer = {0}
var maxId as Integer = 0
var requests as Map of Integer to Integer = {->}

[Action("Req(_,m,c)")] Req(m as Integer, c as Integer)
require m in window and c > 0
requests := Add(requests,m,c)
window := window difference {m}

[Action("Res(_,m,c,_)")] Res(m as Integer, c as Integer)
require m in requests
require requests(m) >= c
require c >= 0
window := window union {maxId + i | i in {1..c}}
requests := RemoveAt(requests,m)
maxId := maxId + c

[Invariant] ClientHasEnoughCredits()
require requests = {->} implies window <> {}

The Credits model program illustrates a typical use of model programs as
protocol-specifications. Actions use parameters, maps and sets are used as state
variables and a comprehension expression is used to compute a set. (Since the
domain of the maps and sets is Z, the example is in the array theory fragment.)
Each action has a guard and an update rule given by a basic ASM. For example,
the guard of the Req action requires that the id of the message is in the current
window of available ids and that the number of credits that the client requests
from the server is positive. The state invariant associated with the model pro-
gram is that the client must not starve, i.e. there should always be a message id
available at some point, so that the client can issue new requests.

Let P be a fixed model program. A P -state is a mapping of VP to values.1 Given
an action a = f(a1, . . . , an), let θa denote the parameter assignment {fi �→
ai}1≤i≤n. Given a P -state S, an extension of S with the parameter assignment
θ is denoted by (S; θ).

Let S be a P -state, an f -action a is enabled in S if (S; θa) |= Gf
P (where |=

is the standard satisfaction relation of first-order logic). The action a causes a
transition from S to S′, where

S′ = {v �→ tfv
(S;θa)}v∈V f

P
∪ {v �→ vS}v∈VP \V f

P
.

1 More precisely, this is the foreground part of the state, the background part is the
canonical model of the background theory T .

308 M. Veanes and A. Saabas

A labeled transition system or LTS is a tuple (S,S0, L, T), where S is a set of
states, S0 ⊆ S is a set of initial states, L is a set of labels and T ⊆ S × L× S is
a transition relation.

Definition 2. Let P be a model program. The LTS of P , denoted by [[P]] is
the LTS (S,S0, L, T), where S0, is the set of all P -states s such that s |= IP ; L
is the set of all actions over AP ; T and S are the least sets such that, S0 ⊆ S,
and if s ∈ S and there is an action a that causes a transition from s to s′ then
s′ ∈ S and (s, a, s′) ∈ T .

A run of P is a sequence of transitions (si, ai, si+1)i<κ in [[P]], for some κ ≤ ω,
where s0 is an initial state of [[P]]. The sequence (ai)i<κ is called an (action)
trace of P . The run or the trace is finite if κ < ω.

Bounded reachability of model programs. Let P be a model program and let ϕ
be a ΣP -formula. The main problem we are addressing is whether ϕ is reachable
in P within a given bound.

Definition 3. Given ϕ and k ≥ 0, ϕ is reachable in P within k steps, if there
exists an initial state s0 and a (possibly empty) run (si, ai, si+1)i<l in P , for
some l ≤ k, such that sl |= ϕ. If so, the action sequence α = (ai)i<l is called a
reachability trace for ϕ and s0 is called an initial state for α.

Note that, given a trace α and an initial state s0 for it, the state where the
condition is reached is reproducible by simply executing α starting from s0. This
provides a cheap mechanism to check if a trace produced by a solver is indeed
a witness. In a typical model program, the initial state is uniquely determined
by an initial assignment to state variables, so the initial state witness is not
relevant.

The bounded reachability formula for a given model program P , step bound
k and reachability condition ϕ is:

Reach(P, ϕ, k) def= IP ∧ (
∧

0≤i<k

P [i]) ∧ (
∨

0≤i≤k

ϕ[i])

P [i] def=
∨

f∈AP

(action[i] = f(f1[i], . . . , fn[i]) ∧Gf
P [i]

∧
v∈V f

P

v[i+ 1] = tfv [i]
∧

v∈VP \V f
P

v[i+ 1] = v[i])

where an expression E[i] denotes E where each state variable and parameter
variable has been given index i if i > 0. A skip action has the action rule
(true, ∅). We use the following Theorem from [36].

Theorem 1. Let P be a model program that includes a skip action, k ≥ 0 a step
bound and ϕ a reachability condition. Then Reach(P, ϕ, k) is satisfiable if and
only if ϕ is reachable in P within k steps. Moreover, if M satisfies Reach(P, ϕ, k),
let M0 = {v �→ vM}v∈VP , let ai = action[i]M for 0 ≤ i < k, and let α be the
sequence (ai)i<k. Then α is a reachability trace for ϕ and M0 is an initial state
for α.

On Bounded Reachability of Programs with Set Comprehensions 309

3 One Step Reachability

The bounded reachability problem of model programs is undecidable in the gen-
eral case. In this section we pin down various minimal cases of the undecidability
with respect to certain background theories. In all cases it is enough to restrict
the reachability bound and the number of action symbols to 1, i.e. the undecid-
ability arises already using a single step and a single action symbol. We call it
the one step reachability problem. In Section 4 we argue that these undecidable
cases are minimal in some sense.

First, we define a theory TS(A) that extends a given theory A (for example
Presburger arithmetic) with tuples and sets. It is assumed that the language
of A does not include the new symbols. It is convenient to restrict the set of
all possible expressions of TS(A) to a set of well-formed expressions that are
shown in Figure 1. When considering a formula of TS(A) as defined in Figure 1,
it is assumed that by default all set variables are existentially quantified, i.e.
have an outermost existential quantifier. We write TS(A) both for the class of
expressions as defined in Figure 1, as well as the axioms of TS(A).

The axioms of TS(A) include the axioms of A, the axioms for tuples stating
that for each arity k the k-tuple constructor is a free constructor, axioms for
set union, set intersection, element-of relation, subset relation, and the exten-
sionality axiom for sets. Given a model A of TS(A), i.e., a structure A in the
language of TS(A) that is a model of the axioms of TS(A), the comprehension
term s = {t(x) |x ϕ(x)}, where t and ϕ may include parameters, has the inter-
pretation sA in A such that A |= ∀y(y ∈ sA ↔ ∃x(t(x) = y ∧ ϕ(x))) which is
well-defined due to the extensionality axiom: ∀v w(∀y(y ∈ v ↔ y ∈ w) → v = w).

Example 2. Let P be Presburger arithmetic. The following is a range expression,
in TS(P): {z | x ≤ z ∧ z ≤ y} where we omit the z from |z. We often use the
abbreviation {x..y} for a range from x to y. The following is a direct product
v × w between two sets v and w: {〈x, y〉 | x ∈ v ∧ y ∈ w}.

Note that, not all well-formed TS(P) expressions can be used in a model pro-
gram, in a model program all expressions are quantifier free and each set com-
prehension variable has a finite range.

Theorem 2. One can effectively associate a deterministic 2-register machine
M with a formula haltsM (m,n) in TS(P) with integer parameters m and n,
such that M halts on (m,n) if and only if haltsM (m,n) holds.

Proof (Outline). Let STEPM (〈i,m, n〉, 〈i′,m′, n′〉) be the Presburger program
formula for M as defined in [6, Theorem 2.1.15], where i,m, n and i′,m′, n′

denote the current and the next configuration of the 2-register machine. Let
1 . . . k be the instructions of M and assume that M is such that the initial
instruction is 1 and the final instruction is k > 1 and when the final instruction
is reached then both registers are zero. Let haltsM be the following formula:

haltsM (m,n) def= ∃s∃l(validM (m,n, s, l))

310 M. Veanes and A. Saabas

Basic elements : E ::= TA | 〈E, . . . , E〉 | πi(E) | x | ite(F, E, E)

Sets of basic elements : S ::= {E |x F} | ∅ | S ∪ S | S ∩ S | S \ S | v | ite(F, S, S)

Formulas : F ::= FA | ¬F | F ∧ F | F ∨ F | ∀x F | ∃x F |
E = E | S ⊆ S | S = S | E ∈ S

Fig. 1. Well-formed expressions in TS(A). The theory A has terms TA and Formulas
FA. It is assumed that all terms in TA have sort A. Set variables are denoted by v and
basic variables (tuple variables or variables of sort A) are denoted by x. The grammar
omits sorts (type annotations) for ease of readability, but it is that of standard many-
sorted first order logic. For example in a set operation term s1 � s2, it is assumed that
both s1 and s2 have the same sort (so sets contain only homogeneous elements), in an
element-of atom t ∈ s it is assumed that if the sort of t is σ then the sort of s is {σ},
a tuple (t1, t2) has the sort σ1 × σ2 provided that ti has sort σi, etc.

type Config = (Integer, Integer, Integer)
steps as Set of (Integer,Config,Config)
length as Integer
[Action] haltsM(m as Integer, n as Integer)

require validM(m, n, steps, length)

Fig. 2. Model program PM

validM (m,n, s, l) def=
s = {〈j, x, y〉 | 〈j, x, y〉 ∈ s ∧ STEPM (x, y) ∧ 1 ≤ j ∧ j ≤ l} ∧
{〈π0(z), π1(z)〉 | z ∈ s} ∪ {〈l, 〈k, 0, 0〉〉} =
{〈1, 〈1,m, n〉〉} ∪ {〈π0(z) + 1, π2(z)〉 | z ∈ s}

The statement is now straightforward to prove through an argument similar to
shifted pairing [17, Theorem 15]. �

The following is an immediate consequence of the proof of Theorem 2.

Corollary 1. TS(P) is undecidable. Undecidability arises already for formulas
of the form ∃v∃xϕ, where ϕ is quantifier free and uses at most three unnested
comprehensions.

The construction of haltsM in Theorem 2 shows that comprehensions together
with pairing (or tuples) leads to undecidability of the one step reachability prob-
lem, because validM can be used as an enabling condition of an action as illus-
trated in Figure 2, and the halting problem of 2-register machines is undecidable.

Only a small fragment of Presburger arithmetic is needed. In particular, di-
visibility by a constant is not needed. The proof of the theorem does not change
if M is assumed to be a Turing machine (assume M has two input symbols and
the configuration (i,m, n) represents a snapshot of M where i is the finite state
of M , m represents the tape content to the left of the tape head and n represents
the tape content to the right of the tape head), only the construction of STEP is

On Bounded Reachability of Programs with Set Comprehensions 311

different. However, in that case one needs to express divisibility by 2 to deter-
mine the input symbol represented by the lowest bit of the binary representation
of m or n, which can be encoded using an additional existential quantifier.

Another consequence of the construction in Theorem 2 is that decidability of the
bounded reachability problem cannot in general be obtained by fixing the model
program or by limiting the number of set variables (without disallowing them).

Corollary 2. There is a fixed model program Pu over TS(P) with one set-valued
state variable, one integer-valued state variable, and an action symbol with two
integer-valued parameters, such that the following problem is undecidable: given
an action a, decide if a is enabled in Pu.

Proof. Let Mu be a 2-register machine that is universal in the following sense,
given a Turing machine M and an input v (over a fixed alphabet), let �M, v
be an effective encoding of M and v as an input for Mu, so that Mu accepts
�M, v if and only if M accepts v. Such a 2-register machine exists and can be
constructed effectively [21, Theorem 7.9]. Let Pu be like PMu in Figure 2. Let M
be a Turing machine and v an input for M . Then haltsMu(�M, v) is enabled
in Pu iff (by Theorem 2) Mu halts on �M, v iff M accepts v. �
A basic value or sort is a non-set value or sort. A parameter or state variable is
basic if its sort is basic.

Definition 4. A model program is basic if all of its action parameters are basic,
each state variable is either basic or a set of basic elements, and set-sorted
state variables are initialized with expressions that contain no set-sorted state
variables.

Example 3. The model program Pu in Corollary 2 is not basic because the initial
value of steps is undefined. The following model program on the other hand is
basic, where STEP and k are the same as above.

[Action] halts(maxCounter as Integer, l as Integer)
let steps = {(j,(i,m,n),(i’,m’,n’)) | i,i’ in {1..k}, j in {1..l},

m,n,m’,n’ in {1..maxCounter}, STEP((i,m,n),(i’,m’,n’))}
require {(j,x) | (j,x,y) in steps} union {(l,(k,0,0))} =

{(1,(1,m,n))} union {(j+1,y) | (j,x,y) in steps}

It seems as if it is possible to express the halting problem just using bounded
reachability of basic model programs. This is not the case as is shown in Section 4.
Intuitively, a comprehension adds “too many” elements.

An extension of basic model programs that leads to undecidability of the one
step reachability problem is if we allow set cardinality. We can then express
integer multiplication as follows, given two (non-negative) integers m and n:
m ·n def= |{1..m}×{1..n}|. Also, if we allow bag comprehensions we can define the
cardinality of a set s as |s| def= {{0|x ∈ s}}[0]. Either of these extensions allows us to
effectively encode diophantine equations (e.g. 5x2y+6z3−7 = 0 is a diophantine
equation). Let p(x) be a diophantine equation and let P(x) be an action whose
enabling condition is the encoding of p(x). Then P(n) is enabled iff n is an integer
solution for p(x). The problem of deciding whether a diophantine equation has
an integer solution is known as Hilbert’s 10th problem and is undecidable [28].

312 M. Veanes and A. Saabas

4 Bounded Reachability of Basic Model Programs

We show that the bounded reachability problem of basic model programs over a
background TS(A) is decidable provided that Th(A) is decidable, where Th(A)
is the closure of A under entailment. We say that Th(A) is decidable, if for an
arbitrary closed first-order formula ϕ in the language of A it is decidable whether
ϕ ∈ Th(A).

The proof has two steps. First, we show that there is a fragment of TS(A)
formulas, denoted by TS(A)≺, for which the validity or satisfiability problem re-
duces effectively to A, by showing that there is an effective equivalence preserving
mapping from formulas in TS(A)≺ to formulas in A. Second, we show that the
bounded reachability problem of basic model programs over TS(P) reduces to
(satisfiability in) TS(P)≺. Let A be fixed. Let V (ϕ) denote the collection of all
set variables that occur in a formula ϕ over TS(A).

Definition 5. A TS(A) formula ϕ is in TS(A)≺ (also called stratified) if

– ϕ has the form ψ ∧
∧

v∈V (ϕ) v = Sv, and

– the relation ≺ def= {(w, v)|v ∈ V (ϕ), w ∈ V (Sv)} is well-founded.

The equation v = Sv is called the definition of v in ϕ.

Theorem 3. TS(A)≺ reduces effectively to A.

Proof (Outline). The definition of TS(A)≺ is equivalent to the following construc-
tion in the case when all tuples are required to be flat. Let L0 be the language of
A and let A0 = A. Given Li and Ai, create Li+1 and Ai+1 as follows: expand Li

with a relation symbol Rϕ of arity n for each Li-formula ϕ(x1, . . . , xn) and add
the definition ∀x(Rϕ(x) ↔ ϕ(x)) to Ai. Now TS(A)≺ corresponds to

⋃
i Ai as

follows. Due to the well-founded ordering, each set variable v with the definition
v = {〈x〉 |x ϕ(x)} corresponds to a relation symbol Rϕ. Given a formula ϕ in
TS(A)≺, it corresponds thus to a formula ϕk in Ak for some k. The statement
follows by using the theorem of the existence of definitional expansions [20, The-
orem 2.6.4] to reduce ϕi+1 in Li+1 to an equivalent ϕi in Li. �

It follows that TS(P)≺ is decidable. We also get the following corollary that is
the main result of this section.

Corollary 3. Bounded reachability of basic model programs over TS(P) is
decidable.

Proof. Let P be a basic model program over TS(P) let ϕ be a reachability
condition, and let k be a step bound. It is easy to see that ψ = Reach(P, ϕ, k)

On Bounded Reachability of Programs with Set Comprehensions 313

can be written as a stratified TS(P) formula: First, we can assume that there
is only one action symbol (with a specific parameter that identifies a particular
action). Since P is basic, the initial value of each state variable v(0) must be
defined. In each step formula for step i, the value v(i+1) is given a definition
that uses only variables or parameters from state i and parameters are basic.
The definition can be written on a form that uses ite and is a top level equation
of the generated formula. The only variables that are not given definitions are
parameters, but all parameters are basic. Satisfiability of ψ in the language that
includes the state variables reduces to entailment of the existential closure of ψ
from TS(P), which by Theorem 3, reduces to P and is thus decidable. �

General integer arrays and array read and write operations are, strictly speaking,
not in the TS(P) fragment but can easily be encoded using tuples and compre-
hensions. For example, given an array variable v from integers to integers with
the default value 0, encode it as the graph ṽ of v. The relation Read(ṽ, l, x)
that holds when v[l] = x, can be defined through Read(ṽ, l, x) def= ite({x} =
{π1(y) | y ∈ ṽ ∧ π0(y) = l}, true, x = 0) and the corresponding write opera-
tion Write(ṽ, l, x) can be defined through Write(ṽ, l, x) def= {y | y ∈ ṽ ∧ π0(y) �=
l}∪{(l, x)}.Using this encoding one can for example transform the Credits model
program in Example 1 into an equivalent model program over TS(P).

5 Implementation

We use the state of the art Z3 SMT solver for the implementation of bounded
model checking. The initial implementation was described in [36]. We have ex-
tended this work in several aspects, including support for comprehensions with
multiple comprehension variables and non-invertible comprehension expressions,
bag(multiset) support etc., all of which make use of the iterated model refine-
ment technique (explained in the following paragraphs). This is possible due to
the fact that model programs are executable, so the feasibility of traces provided
by the solver can be checked.

While, in principle, the traces could be executed directly on the model pro-
gram via the ASML compiler, we use the approach to translate them to C# and
executed the traces on C# code. This provides several benefits: we can conve-
niently use .Net API’s for reflection, we can add auxiliary methods for evaluating
and saving intermediate results for pinpointing error locations (in case an erro-
neous trace is provided by the solver) etc. Additionally, this eases the adoption of
other languages for describing model programs. For example, NModel [30] uses
C# as the modelling language. In this case, we would only need to provide a
parser from C# to the internal abstract syntax to be able to use the framework.

The refinement loop works as follows. A trace provided by the Z3 solver is
executed step by step on the generated program via reflection, and after each
step it is checked whether the state given in the model matches the actual state
(simply by comparing the variable values as assigned by the solver to the values in
the actual state). If it does not match, we know at which action the mismatching

314 M. Veanes and A. Saabas

state was reached. By examining the statements in the action we can check which
of the axioms was not instantiated correctly and on which variables, consequently
pinpointing the exact error source. The interpretation on this operation can
then be fixed, by adding new formulas to the original model formula, giving
explicit instantiations of the “misinterpreted” axiom on each index term. The
new formula can be sent back to Z3 and a new trace obtained, which might
again be erroneous (on some other axiom application), in which case it is again
fixed and the refinement loop continues. This technique helps us circumvent
SMT solvers’ difficulties in coping with quantifiers. The approach is similar to
CEGAR [9] (counter example guided abstraction refinement), the main difference
being that we do not refine the level of abstraction, but instead lazily instantiate
axioms in case their use has not been triggered during proof search.

We make use of the iterative refinement in several cases. In comparison to
[36], we have added support for comprehensions which include more than 1
variable, and for the case where the element term is not invertible. In this case we
rewrite the comprehension into formulas ∀y(ϕ[x] → t[x] ∈ s′) and ∀y(y ∈ s′ →
∃x(y = t[x] ∧ ∧ϕ[x])). Existential quantifiers can be eliminated from the latter
by skolemization. During the refinement loop, the two axioms are instantiated
for specific index terms if needed.

Similar approach is used when extending the framework with bag support.
While adding the bag axioms to Z3 is straightforward (for example the definition
of bag union is ∀x, s1, s2.((s1 � s2)[x] ≡ s1[x] + s2[x])), traces given by Z3 might
be incorrect. (Quantifiers are implemented via pattern matching in Z3, so axioms
are instantiated only if the particular pattern is encountered during proof search.
If the pattern is not encountered, the axiom never gets used.) In this case, we
can again use the model checking technique to pinpoint the source of error, and
refine the model. This procedure is complete in case of integer bags.

6 Related Work

The unbounded reachability problem for model programs without comprehen-
sions and with parameterless actions is shown to be undecidable in [13], where
it is called the hyperstate reachability problem. General reachability problems
for transition systems are discussed in [33] where the main results are related to
guarded assignment systems. A guarded assignment system is a union of guarded
assignments or update rules. Detailed proofs of the theorems in this paper are
given in [38]. The case when A = P in Theorem 3 is related to decidable exten-
sions of P that are discussed in [4].

The decidable fragment BAPA [26] is an extension of Boolean algebra with
P . The sets in BAPA are finite and bounded by a maximum size and the car-
dinality operator is allowed, which unlike for TS(P)≺, does not enable encoding
of multiplication. Comprehensions are not possible and the element-of relation
is not allowed, i.e. integers and sets can only be related through the cardinal-
ity operator. A decidable fragment of bag (multiset) constraints combined with
summation constraints are considered in [31] where summation constraints can
be used to express set cardinality (without using bag cardinality that is also

On Bounded Reachability of Programs with Set Comprehensions 315

included in the fragment). A related fragment of integer linear arithmetic with
a star operator is considered in [32].

In [8] a decision procedure for an array fragment is introduced and in [36] it
is shown that this decision procedure can be applied to the bounded reachability
problem of a subclass of model programs. However, the fragment in [8] does not
allow expressions that include universally quantified variables, other than the vari-
able itself, to occur in array read operations. Consequently, comprehensions where
the comprehension expression is not invertible are not covered in [36]. In [19] an-
other fragment of arrays is considered that allows universal variables in array read
expressions that relate consecutive elements or talk about periodic properties.

The full fragment TS(P) is also part of the data structures that are allowed
in the Jahob verification system [7]. Formulas in this fragment are translated
in Jahob to standard first-order formulas that can be proven using a resolution
theorem prover.

A technique for translating common comprehension expressions (such as sum
and count) into verification conditions is presented in [27] within the Spec#
verification system that uses Boogie to generate verification conditions for SMT
solvers [3]. The system does not support arbitrary set comprehension expressions
as terms but allows axioms that enable explicit definitions of sets.

The reduction of the theories of arrays, sets and multisets to the theory of
equality with uninterpreted function symbols and linear arithmetic is used in
[24] for constructing interpolants for these theories. This work is based on the
results of [25], where it is shown that the quantifier-free theories of arrays, sets
and multisets can be reduced to quantifier-free theories of uninterpreted symbols
with equality, constructors and Presburger arithmetic.

Using SAT for bounded reachability of transition systems was introduced in
in [5] and the extension to SMT was introduced in [1]. Besides Z3 [10], other
SMT solvers that support arrays are described in [2,35]. The formula encoding we
use [36] into SMT follows the same scheme but does not unwind comprehensions
and makes the action label explicit.

Our quantifier elimination scheme is inspired by [8], and refines it by using
model-checking to implement an efficient incremental saturation procedure on
top of the SMT solver. The work here extends the work in [36] through support
for set comprehensions with multiple comprehension variables and non-invertible
comprehension expressions, as well as bag (multi-set) axioms. A recent applica-
tion of the quantifier elimination scheme has been pursued by [23] in the context
of railway control systems.

The following problems have not been addressed yet. Bounded reachability
of model programs that use nested comprehensions, including for example sets
and bags, is interesting for analysis of general purpose algorithms, see e.g. [18].
Given the (computational) complexity of A, what is the complexity of TS(A)≺?
It seems that a TS(A)≺ formula can be exponentially more succinct than the
corresponding A formula. So, the complexity of TS(P)≺ could thus be 222cn

,
since the complexity of P is 22cn

[12]. The proper instantiation of array indices
and avoidance of false models generated by an SMT solver, due to the inherent

316 M. Veanes and A. Saabas

incompleteness of the triggering mechanism of universally quantified axioms, is
an important open problem in the general case.

Acknowledgement. We thank Nikolaj Bjørner for support with Z3. We also thank
the anonymous referees for their helpful comments and suggestions. The second
author received support from the Estonian Doctoral School in ICT, the EITSA
Tiger University Plus programme and the Estonian Association of Information
Technology and Telecommunications (ITL).

References

1. Armando, A., Mantovani, J., Platania, L.: Bounded model checking of software
using SMT solvers instead of SAT solvers. In: Valmari, A. (ed.) SPIN 2006. LNCS,
vol. 3925, pp. 146–162. Springer, Heidelberg (2006)

2. Armando, A., Ranise, S., Rusinowitch, M.: A rewriting approach to satisfiability
procedures. Inf. Comput. 183(2), 140–164 (2003)

3. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A
modular reusable verifier for object-oriented programs. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp.
364–387. Springer, Heidelberg (2006)

4. Bès, A.: A survey of arithmetical definability, A tribute to Maurice Boffa, Special
Issue of Belg. Math. Soc., 1–54 (2002)

5. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs.
In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer,
Heidelberg (1999)

6. Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Springer,
Heidelberg (1997)

7. Bouillaguet, C., Kuncak, V., Wies, T., Zee, K., Rinard, M.: On using first-order
theorem provers in the Jahob data structure verification system. Technical Re-
port MIT-CSAIL-TR-2006-072, Massachusetts Institute of Technology (November
2006)

8. Bradley, A.R., Manna, Z., Sipma, H.B.: What’s decidable about arrays? In: Emer-
son, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 427–442.
Springer, Heidelberg (2006)

9. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

10. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963. Springer, Heidelberg (2008)

11. de Moura, L.M., Rueß, H., Sorea, M.: Lazy theorem proving for bounded model
checking over infinite domains. In: Voronkov, A. (ed.) CADE 2002. LNCS, vol. 2392,
pp. 438–455. Springer, Heidelberg (2002)

12. Fischer, M.J., Rabin, M.O.: Super-exponential complexity of Presburger arith-
metic. In: SIAMAMS, pp. 27–41 (1974)

13. Grieskamp, W., Gurevich, Y., Schulte, W., Veanes, M.: Generating finite state
machines from abstract state machines. SIGSOFT Softw. Eng. Notes 27(4), 112–
122 (2002)

14. Grieskamp, W., MacDonald, D., Kicillof, N., Nandan, A., Stobie, K., Wurden,
F.: Model-based quality assurance of Windows protocol documentation. In: ICST
2008, Lillehammer, Norway (April 2008)

On Bounded Reachability of Programs with Set Comprehensions 317

15. Gurevich, Y.: Evolving Algebras 1993: Lipari Guide. In: Specification and Valida-
tion Methods, pp. 9–36. Oxford University Press, Oxford (1995)

16. Gurevich, Y., Rossman, B., Schulte, W.: Semantic essence of AsmL. Theor. Com-
put. Sci. 343(3), 370–412 (2005)

17. Gurevich, Y., Veanes, M.: Logic with equality: partisan corroboration and shifted
pairing. Inf. Comput. 152(2), 205–235 (1999)

18. Gurevich, Y., Veanes, M., Wallace, C.: Can abstract state machines be useful in
language theory? Theor. Comput. Sci. 376(1), 17–29 (2007)

19. Habermehl, P., Iosif, R., Vojnar, T.: What else is decidable about arrays? In:
Amadio, R. (ed.) FOSSACS 2008. LNCS, vol. 4962. Springer, Heidelberg (2008)

20. Hodges, W.: Model theory. Cambridge Univ. Press, Cambridge (1995)
21. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and

Computation. Addison-Wesley, Reading (1979)
22. Jacky, J., Veanes, M., Campbell, C., Schulte, W.: Model-based Software Testing

and Analysis with C#. Cambridge University Press, Cambridge (2008)
23. Jacobs, S., Sofronie-Stokkermans, V.: Applications of hierarchical reasoning in the

verification of complex systems. ENTCS 174(8), 39–54 (2007)
24. Kapur, D., Majumdar, R., Zarba, C.G.: Interpolation for data structures. In: SIG-

SOFT FSE 2006, pp. 105–116. ACM, New York (2006)
25. Kapur, D., Zarba, C.G.: A reduction approach to decision procedures (2006)
26. Kuncak, V., Nguyen, H.H., Rinard, M.: An algorithm for deciding BAPA: Boolean

algebra with Presburger arithmetic. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS,
vol. 3632, pp. 260–277. Springer, Heidelberg (2005)

27. Leino, R., Monahan, R.: Automatic verification of textbook programs that use
comprehensions. In: FTfJP 2007, Berlin, Germany (July 2007)

28. Matiyasevich, Y.V.: Hilbert’s tenth problem. MIT Press, Cambridge (1993)
29. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM

Trans. Program. Lang. Syst. 1(2), 245–257 (1979)
30. NModel. Public version released (May 2008), http://www.codeplex.com/NModel
31. Piskac, R., Kuncak, V.: Decision procedures for multisets with cardinality con-

straints. In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS,
vol. 4905, pp. 218–232. Springer, Heidelberg (2008)

32. Piskac, R., Kuncak, V.: On Linear Arithmetic with Stars. Technical Report LARA-
REPORT-2008-005, EPFL (2008)

33. Rybina, T., Voronkov, A.: A logical reconstruction of reachability. In: Broy, M.,
Zamulin, A.V. (eds.) PSI 2003. LNCS, vol. 2890, pp. 222–237. Springer, Heidelberg
(2004)

34. SMB2 (2008), http://msdn2.microsoft.com/en-us/library/cc246482.aspx
35. Stump, A., Barrett, C.W., Dill, D.L., Levitt, J.R.: A decision procedure for an

extensional theory of arrays. In: LICS 2001, pp. 29–37. IEEE, Los Alamitos (2001)
36. Veanes, M., Bjørner, N., Raschke, A.: An SMT approach to bounded reachability

analysis of model programs. In: Suzuki, K., Higashino, T., Yasumoto, K., El-Fakih,
K. (eds.) FORTE 2008. LNCS, vol. 5048. Springer, Heidelberg (2008)

37. Veanes, M., Campbell, C., Grieskamp, W., Schulte, W., Tillmann, N., Nachmanson,
L.: Model-based testing of object-oriented reactive systems with Spec Explorer. In:
Hierons, R.M., Bowen, J.P., Harman, M. (eds.) FORTEST 2008. LNCS, vol. 4949,
pp. 39–76. Springer, Heidelberg (2008)

38. Veanes, M., Saabas, A., Bjørner, N.: Bounded reachability of model programs.
Technical Report MSR-TR-2008-81, Microsoft Research (May 2008)

http://www.codeplex.com/NModel
http://msdn2.microsoft.com/en-us/library/cc246482.aspx

Program Complexity in Hierarchical Module
Checking�

Aniello Murano1, Margherita Napoli2, and Mimmo Parente2

1 Università di Napoli “Federico II”, Via Cintia, 80126 - Napoli, Italy
2 Università di Salerno, Via Ponte don Melillo, 84084 - Fisciano (SA), Italy

Abstract. Module checking is a well investigated technique for verifying
the correctness of open systems, which are systems characterized by an
ongoing interaction with an external environment. In the classical module
checking framework, in order to check whether an open system satisfies
a required property, we first translate the entire system into an open
model (module) that collects all possible behaviors of the environment
and then check it with respect to a formal specification of the property.

Recently, in the case of closed system, Alur and Yannakakis have con-
sidered hierarchical structure models in order to have models exponen-
tially more succinct. A hierarchical model uses as nodes both ordinary
nodes and supernodes, which are hierarchical models themselves. For
CTL specifications, it has been shown that for the simple case of mod-
els having only single-exit supernodes, the hierarchical model checking
problem is not harder than the classical one. On the contrary, for the
more general multiple-exit case, the problem becomes Pspace-complete.

In this paper, we investigate the program complexity of the CTL
hierarchical module checking problem, that is, we consider the module
checking problem for a fixed CTL formula and modules having also
supernodes that are modules themselves. By exploiting an automata-
theoretic approach through the introduction of hierarchical Büchi tree
automata, we show that, in the single-exit case, the addressed problem
remains in Ptime, while in the multiple-exit case, it becomes Pspace-
complete.

1 Introduction

Module checking is a useful technique that allows to verify the correctness of open
systems [KVW01]. While the behavior of a closed system is fully characterized
by internal states, an open system maintains an ongoing interaction with an
external environment, and its behavior is fully affected by this interaction.

Classically, in order to check whether an open system satisfies a required
property, we translate the entire system into a module, that is in a labeled state-
transition graph whose set of states is partitioned into a set of system states
(where the system makes a transition) and a set of environment states (where

� Work partially supported by MIUR PRIN Project no.2007-9E5KM8 and grant “For-
mal Methods for Closed and Open Systems” ex-60% 2006 Università di Salerno.

I. Cervesato, H. Veith, and A. Voronkov (Eds.): LPAR 2008, LNCS 5330, pp. 318–332, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Program Complexity in Hierarchical Module Checking 319

the environment makes a transition). Given a module M, describing the system
to be verified, and a temporal logic formula ϕ, specifying the desired behavior
of the system, module checking asks whether, for all possible environments, M
satisfies ϕ. Therefore, while in model checking it is sufficient to check whether the
full computation tree obtained by unwinding M satisfies ϕ, in module checking
it is necessary to verify that all trees obtained from the full computation tree by
pruning some subtrees rooted in nodes corresponding to choices disabled by the
environment (those trees represent the interactions of M with all the possible
environments) satisfy ϕ. We collect all such trees in a set named exec(M).

As a classic example of closed and open systems, we can think of two drink-
dispensing machines. One machine, which is a closed system, repeatedly boils
water, makes an internal nondeterministic choice, and serves either coffee or tea.
The second machine, which is an open system, repeatedly boils water, asks the
environment to choose between coffee and tea, and deterministically serves a
drink according to the external choice. Both machines induce the same infinite
tree of possible executions. Nevertheless, while the behavior of the first machine
is determined by internal choices solely, the behavior of the second machine
is determined also by external choices, made by its environment. Formally, in
a closed system, the environment cannot modify any of the system variables.
In contrast, in an open system, the environment can modify some of them. In
[KVW01, AMV07], it has been shown that for systems modeled as single modules
and specifications as branching time temporal logic formulas, module checking
is exponentially harder than model checking.

In formal verification a very interesting question is how complex is to check for
system correctness in the case we fix the specification. This question is usually
addressed as the program complexity and in more details concerns the complexity
of the verification question for the set {M | M satisfies ϕ}, for a fixed formula
ϕ[VW86]. Program complexity is receiving great attention in formal verification
due to the fact that often the size of the system widely exceeds that of the
formula, which is usually very small and therefore considered constant. This
allows us to use in practice formal verification techniques whenever they result
tractable with respect to the system. For example, we recall that for finite-state
systems and specifications given as formulas of the branching-time temporal logic
CTL ([CE81]), module checking is Exptime-complete, but the corresponding
problem with a constant size formula is only Ptime-complete [KVW01].

Recently, in the case of complex closed systems, hierarchical structure mod-
els have been usefully considered, in order to have models exponentially more
succinct. A hierarchical model uses as nodes both ordinary nodes or supernodes,
which are models themselves [AY01, ABE+05, LNPP08]. The straightforward
way to analyze a hierarchical closed machine is to flatten it (thus, incurring an
exponential blow up) and apply a model checking tool on the resulting ordinary
model. In [AY01], it has been shown that for linear-time specifications such as
LTL, the cost of flattening can be avoided by showing that the LTL hierarchical
model checking problem is not harder than the classical one. The same happens
for CTL specifications, for models having one exit node. In the general case,

320 A. Murano, M. Napoli, and M. Parente

instead,CTL hierarchical model checking becomes exponentially harder and, in
particular, the program complexity is Pspace-complete.

In this paper, we investigate the program complexity of the module checking
problem forCTL in the case of modules expressed by hierarchical modules, that
is nodes of the module can be ordinary nodes or supernodes which are modules
themselves. As a simple example, consider again the above drink-dispensing
machine. Now suppose that both in the cases the environment makes a coffee or
tea choice, the system allows the environment to have an extra choice between
regular sugar or diet sugar. In both cases, we can remand the choice to another
module. As for non-hierarchical open systems, in case we want to check whether
it is possible for the designed hierarchical open machine to serve coffee with
regular sugar, a straightforward way is to flatten it and then, by using the
classical module checking technique, check whether the flatten module satisfies
the CTL formula AGEF coffe with regular sugar . Unfortunately, by flattening
the hierarchical module, we increase exponentially the size of the module and we
immediately get thatCTL hierarchical module checking is Exptime w.r.t. both
the sizes of the hierarchical module and the formula.

In this paper, we show that for the addressed problem the cost of flattening
can be avoided. In particular, we show that for single-exit hierarchical modules,
the program complexity of the CTL hierarchical module checking problem is
not harder than the classical one, while in the case of multiple-exit hierarchical
modules, the addressed problem becomes Pspace-complete.

For the upper bounds, we use an automata-theoretic approach via tree
automata. In particular, we introduce hierarchical nondeterministic Büchi tree au-
tomata (HNBT) and use a reduction to the emptiness problem for this automata.
In more details, given a hierarchical module M and aCTL formula ϕ, we first con-
struct in polynomial time an HNBT AM accepting exec(M). The construction of
AM we propose here extends that used in [KVW01] by also taking into account
that M is in a hierarchical shape. Thus, AM will have, for each supernode in the
hierarchicalmodule (which is a hierarchicalmodule itself) a corresponding supern-
ode (which is a hierarchical automaton itself) with the same number of exit nodes.
From the formula side, accordingly to [KVW00], we construct in exponential time
a nondeterministic Büchi tree automaton (NBT) A¬ϕ accepting all models that
do not satisfy ϕ, with the intent to check that none of them are in exec(M). Thus,
we check that M models ϕ for every possible choice of the environment by check-
ing whether L(AM) ∩ L(A¬ϕ) is empty. To obtain the result, we first show that
the product of the HNBT AM with the NBT A¬ϕ can be performed in polyno-
mial time, turning into an HNBT having a number of exit nodes that depends on
the number of states of A¬ϕ, which in turn depends on the size of ϕ. Since we are
interested on the program complexity of the hierarchical module checking prob-
lem, we assume the formula to be fixed. Therefore, the obtained HNBT will have
multiple exits if AM does, and a constant number of exit-nodes otherwise. Then,
we show that the emptiness problem for an HNBT can be solved in Ptime if it
only admits constant (and in particular single-) exits, while it is Pspace-complete
in the case of multiple exits. Thus, we get the desired upper bounds. To show

Program Complexity in Hierarchical Module Checking 321

matching lower bounds, for the single-exit case, we recall that the program com-
plexity of the classicalmodule checking problem is Ptime-hard and that, for multi-
ple exits, the program complexity of CTL hierarchical model checking closed
system is Pspace-hard.

The paper is self-contained and is organized as follows. In the next section,
we give basic definitions, introduce open hierarchical state machines, and define
the hierarchical module checking problem forCTL. In Section 3, we briefly recall
NBT and introduce HNBT. Then, we solve the emptiness problem for HNBT.
Finally, in Section 4, we solve the hierarchical module checking problem forCTL.

2 Preliminary

In this section, we introduce the hierarchical module checking problem for CTL.
Let N be the set of positive integers. A tree T is a prefix closed subset of N∗.

The elements of T are called nodes and the empty word ε is the root of T . For
x ∈ T , the set of children of x (in T) is children(T, x) = {x · i ∈ T | i ∈ N}.
For k ≥ 1, the complete k-ary tree is the tree {1, . . . , k}∗. For x ∈ T , a path
π of T from x is a set π ⊆ T such that x ∈ π and for each y ∈ π such that
children(T, y) �= ∅, there is exactly one node in children(T, y) belonging to π.
In the following, for a path of T , we mean a path of T from the root ε. For an
alphabet Σ, a Σ-labeled tree is a pair (T, V), where T is a tree and V : T → Σ
maps each node of T to a symbol in Σ.

In this paper, we consider open systems, i.e. systems that interact with their
environment and whose behavior depends on this interaction. The global behav-
ior of such a system is described by a finite state machine (also called module
[KVW01]) M = (AP, S,E,R, in , L), where AP is a finite set of atomic proposi-
tions, S∪E is a finite set of states partitioned into a set S of system states and a
set E of environment states (we use W to denote S ∪E), R ⊆W ×W is a total
transition relation, in ∈ W is an initial state, and L : W → 2AP maps each state
w to the set of atomic propositions that hold in w. For (w,w′) ∈ R, we say that
w′ is a successor of w. For each state w ∈W , we denote by succ(w) the ordered
tuple of w’s successors. When the module M is in a system state ws, then all
the states in succ(ws) are possible next states. On the other hand, when M is
in an environment state we, then the possible next states (that are in succ(we))
depend on the current environment. Since the behavior of the environment is
not predictable, we have to consider all the possible sub-tuples of succ(we). The
only constraint, since we consider environments that cannot block the system, is
that at least one transition from we exists leading into a next state in succ (not
all these transitions may be disabled by the environment).

The set of all the maximal computations of M starting from the initial state
in is described by a W -labeled tree (TM, VM), called computation tree, which is
obtained by unwinding M in the usual way. The problem of deciding, for a given
branching-time formula ψ over AP , whether (TM, L ◦ VM) satisfies ψ, denoted
M |= ψ, is the usual model-checking problem [CE81, QS81]. On the other hand,
for an open system, (TM, VM) corresponds to a very specific environment, i.e. a

322 A. Murano, M. Napoli, and M. Parente

maximal environment that never restricts the set of its next states. Therefore,
when we examine a branching-time specification ψ w.r.t. a module M, ψ should
hold not only in (TM, VM), but also in all the trees obtained by pruning from
(TM, VM) subtrees whose root is a child (successor) of a node corresponding to
an environment state. The set of these labeled trees is denoted by exec(M), and
is formally defined as follows. (T, V) ∈ exec(M) iff T ⊆ TM, V is the restriction
of VM to the tree T , and for all x ∈ T the following holds:

– if VM(x) = w ∈ S and succ(w) = 〈w1, . . . , wn〉, then children(T, x) =
{x · 1, . . . , x · n} (note that for 1 ≤ i ≤ n, V (x · i) = VM(x · i) = wi);

– if VM(x) = w ∈ E and succ(w) = 〈w1, . . . , wn〉, then there is a sub-
tuple 〈wi1 , . . . , wip〉 of succ(w), with p ≥ 1, such that children(T, x) =
{x · i1, . . . , x · ip} (note that for 1 ≤ j ≤ p, V (x · ij) = VM(x · ij) = wij).

Intuitively, each labeled tree (T, V) in exec(M) corresponds to a different
behavior of the environment. In the following, we consider the trees in exec(M)
as 2AP -labeled trees, i.e. taking the label of a node x to be L(V (x)).

In this paper, we consider the branching-time temporal logic CTL as sys-
tem specification. CTL was introduced by Emerson and Clarke in 1981 [CE81]
as a tool for specifying and verifying concurrent programs. CTL formulas are
built from a set AP of atomic propositions using boolean operators, the linear-
temporal operators X (“next time”) and U (“until”), coupled with the path
quantifiers A (“for all paths”) or E (“for some path”). For a formal definition
ofCTL see [CGP99]. The closure cl(ϕ) of aCTL formula ϕ is the set of all sub-
formulas of ϕ, including ϕ. The size |ϕ| of ϕ is defined as the number of elements
in cl(ϕ). Given aCTL formula ϕ, we say that (T, V) satisfies ϕ if ((T, V), ε) |= ϕ.

For a module M and a CTL formula ψ, we say that M satisfies ψ, denoted
M |=r ψ, if all the trees in exec(M) satisfy ψ. The problem of deciding whether
M satisfies ψ is called module checking [KVW01]. Note that M |=r ψ implies
M |= ψ (since (TM, VM) ∈ exec(M)), but the converse in general does not hold.
Also, note that M �|=r ψ is not equivalent to M |=r ¬ψ. Indeed, M �|=r ψ just
states that there is some tree (T, V) ∈ exec(M) satisfying ¬ψ.

Open Hierarchical State Machines. An open hierarchical state machine,
or hierarchical module M over a set AP of atomic propositions is a tuple
(M1, . . . ,Mn) of components, where each Mi =(AP ,Si,Ei,Ri, Boxi, Oi, ini, Li,
Yi), 1 ≤ i ≤ n, has the following elements:

– A finite set Si of system nodes ;
– A finite set Ei of environment nodes. We assume Si∩Ei = ∅, andWi = Si∪Ei;
– A finite set Box of boxes (or supernodes). We assume Wi ∩Boxi = ∅;
– An initial node ini of Wi;
– A subset Oi of Wi, called exit-nodes.
– A labeling function Li : Wi → 2AP labeling each node with a subset of AP .
– An indexing function Yi : Boxi → {i+ 1, . . . , n} that maps each box of the
i-th component to an index greater than i. That is, if Yi(b) = j, for a box b
of Mi, then b can be viewed as a reference to the component Mj .

Program Complexity in Hierarchical Module Checking 323

– An edge relation Ri. Each edge in Ri is a pair (u, v) with source u and sink
v: source u either is a node of Mi, or is a pair (u1, u2), where u1 is a box of
Mi with Yi(u1) = j and u2 is an exit-node of Mj , and the sink v is either
a node or a box of Mi.

The edges connect nodes and boxes with one another. Edges entering a box
implicitly connect to the unique initial node of the component associated with
that box. On the other hand, edges exiting a box explicitly specify an exit-
node among the possible exit-nodes of the component associated with that box.
A hierarchical module is closed (called hierarchical model in [AY01]) if for all
components Mi, we have Ei = ∅.

By extending an idea used for closed hierarchical models, we can associate to
a hierarchical module an ordinary flat module, by recursively substituting each
box with the component indexed by the box. Since different boxes can be as-
sociated with the same component, each node can appear in different contexts.
The expanded flat module will be denoted Mf . Its states are tuples 〈u1, . . . , uh〉,
h ≥ 1, whose last component uh is a node, while all the other are boxes. More-
over, each uj belongs to the Mi which the box uj−1 refers to. A state in the flat
module is either a system or environment state depending on whether uh is a
system or an environment node, and also the propositional labeling of the state
is determined by the labeling of uh.

Now we proceed to a formal definition of expansion of a hierarchical module
M = 〈M1, . . . ,Mn〉. For each component Mi, we define the module Mf

i =
(AP, Sf

i , E
f
i , R

f
i , in

f
i , L

f
i) as the expanded structure of Mi obtained as follows:

– inf
i = 〈ini〉;

– The set Sf
i (resp., Ef

i) of system (resp., environment) nodes of Mf
i is defined

inductively:
• if u is a system (resp., environment) node of Mi then 〈u〉 belongs to Sf

i

(resp., Ef
i);

• if u is a box of Mi with Yi(u) = j, and 〈u1, . . . , uh〉 is a system (resp.,
environment) state of Mf

j , where h ≥ 1, then 〈u, u1, . . . , uh〉 belongs to
Sf

i (resp., Ef
i).

– The transition relation Rf
i of Mf

i is defined inductively as follows:
• for (u, v) ∈ Ri, if the sink v is a node then (〈u〉, 〈v〉) ∈ Rf

i , and if v is a
box with Yi(v) = j then (〈u〉, 〈v, in j〉) ∈ Rf

i ;
• if w is a box of Mi with Yi(w) = j, and (〈u1, . . . , uh〉, 〈v1, . . . , vh′〉) is

a transition of Mf
j , for h, h′ ≥ 1, then (〈w, u1, . . . , uh〉, 〈w, v1, . . . , vh′〉)

belongs to Rf
i .

– The labeling function Lf
i : W f

i → 2AP of Mf
i (where W f

i = Sf
i ∪ Ef

i) is
defined inductively as follows:
• if w is a node of Mi, then Lf

i (〈w〉) = Li(w);
• if w = 〈u, u1, . . . , uh〉, where h ≥ 1, and u is a box of Mi with Yi(u) = j,

then Lf
i (w) = Lf

j (〈u1, . . . , uh〉).

324 A. Murano, M. Napoli, and M. Parente

The module Mf
1 is the expanded structure of M and therefore we just indicate

it as Mf in the following.
The size |Mi| of Mi is the sum of |Wi|, |Boxi|, and |Ri|. The size of the

hierarchical module M is the sum of the sizes of all Mi. The nesting depth of M,
denoted nd(M), is the length of the longest chain i1, i2, . . . , ij of indices such that
a box of Mil

is mapped to il+1. Observe that each state of the expanded structure
is a vector of length at most the nesting depth, and the size of the expanded
module Mf can be exponential in the nesting depth, and is O(|M|nd(M)).

The hierarchical module checking problem for CTL is to decide for a given
hierarchical module M and a CTL formula ϕ, whether Mf |=r ϕ.

As noted above, the last component of every state is a node (all the others
being boxes), and the system or environment nature of the last component as
well as its propositional labeling determines the nature and the propositional
labeling of the entire state, respectively.

In the following sections we will consider the cases of hierarchical module
single-exit (all the Oi contain just element), or multiple-exit and the special case
of hierarchical module with a constant number of exit-nodes (constant-exit).

3 Tree Automata

In order to solve the program complexity of the hierarchical module check-
ing problem for CTL, we use an automata theoretic approach; in particular,
we exploit the formalisms of Nondeterministic Büchi Tree Automata (NBT)
[Rab70, VW86] and introduce Hierarchical Nondeterministic Büchi Tree Au-
tomata (HNBT), that is NBT where states can be either ordinary node states
or box states, which are tree automata themselves. Analogously to hierarchical
modules, we consider both the cases single- or multiple-exit HNBT. HNBT ex-
tend to infinite trees the notion of hierarchical automata introduced in [ABE+05]
on infinite words.

Nondeterministic Büchi Tree Automata (NBT). Here, we briefly recall
the definition of NBT over complete k-ary trees, for a given k ≥ 1. Formally, a
NBT is a tuple A = (Σ,Q, in, δ,F), where Σ is a finite input alphabet, Q and
in are as in modules and they represent a finite set of states, and an initial state,
respectively; δ : Q × Σ → 2Qk

is a transition function, and F ⊆ Q is a Büchi
acceptance condition.

Intuitively, when the automaton is in state q, reading an input node x labeled
by σ ∈ Σ, then the automaton chooses a tuple (q1, . . . , qk) ∈ δ(q, σ) and splits
in k copies such that for each 1 ≤ i ≤ k, a copy in state qi is sent to the node
x · i in the input tree.

A run of A on a Σ-labeled k-ary tree (T, V) (where T = {1, . . . , k}∗) is a
Q-labeled tree (T, r) such that r(ε) = in and for each x ∈ T , we have that
(r(x · 1), . . . , r(x · k)) ∈ δ(r(x), V (x)). For a path π ⊆ T , let inf r(π) ⊆ Q be the
set of states that appear as the labels of infinitely many nodes in π. For a Büchi
condition F ⊆ Q, π is accepting if inf r(π)∩F �= ∅. A run (T, r) is accepting if all
its paths are accepting. The automaton A accepts an input tree (T, V) iff there

Program Complexity in Hierarchical Module Checking 325

is an accepting run of A over (T, V). The language of A, denoted L(A), is the
set of Σ-labeled (complete) k-ary trees accepted by A. The emptiness problem
for A is to check whether L(A) = ∅. The size |A| of an NBT A is |Q|+ |δ|, note
that |δ| is at most |Σ| · |Q|k+1.

It is well-known that formulas of CTL can be translated into equivalent tree
automata (accepting the models of the given formula). In particular, given aCTL
formula ϕ one can construct an NBT over k-ary trees, for some degree k ≥ 1,
having as number of states (independent from k) 2O(|ϕ| log(|ϕ|)), as stated in the
following lemma.

Lemma 1 ([KVW00, Var98])
Given a CTL formula ϕ over AP and k ≥ 1, one can construct a NBT Aϕ with
number of states 2O(|ϕ| log |ϕ|) (independent from k) that accepts exactly the set
of 2AP -labeled complete k-ary trees that satisfy ϕ.

Hierarchical Nondeterministic Büchi Tree Automata(HNBT). We now
introduce HNBT over complete k-ary trees (for a given k ≥ 1), as a hierarchical
extension of NBT. An HNBT A over an alphabet Σ is a tuple 〈A1, . . . ,An〉,
with each Ai such that Ai = (Σ,Wi, δi, Boxi, in i, Oi, Yi,Fi) where Wi, Boxi,
ini, Oi, and Yi are as in the components of hierarchical modules, Fi ⊆ Wi is a
set of accepting states, and δi : (Wi ∪ (Boxi ×

⋃
j>iOj)) ×Σ → 2(Wi∪Boxi)k

. A
tuple (q1, . . . , qk) is in δi(q, σ) only if either q ∈ Wi or q is a pair (b, s), where
b ∈ Boxi with Yi(b) = j and s is an exit-node of Aj . Moreover, each qi can be
either a node state or a box state of Ai.

The size |Ai| is |Wi| + |Boxi| + |δi|, note that |δi| is at most |Σ| · (|Wi| +
|Boxi|)k+2. The size of A is the sum of the sizes of all Ai. Similarly to hierarchical
modules, we can flat a HNBT A into an NBT Af by defining the NBT’s Af

i

similarly to what has been done for Mf
i . Thus a state of Af

i is a tuple consisting
of all box states and having necessarily as last component a node state. A state
of Af

i is final if its last component is in Fj , with j ≥ i. A tree (T, V) is accepted
by a HNBT A if there is an accepting run of Af on (T, V). The language L(A)
accepted by A is the set of the accepted trees.

To exploit the automata theoretic approach for the module checking problem
for hierarchical module, we solve the emptiness problem for HNBT.

Lemma 2. The emptiness problem for a single-exit HNBT is in Ptime. The
emptiness problem for a multiple-exit HNBT is in Pspace.

Proof (sketch). For an NBT A, one can check in polynomial time its emptiness
by simply checking whether there exists in A a set G of “good” final states which
is reachable by itself (i.e., for each state w of G there is a run that contains a
subtree starting from w and whose frontier is contained in G) and that from the
initial state of A it is possible to reach G [Rab70, VW86].

We now prove that also in the case of single-exit HNBT we can check emptiness
in polynomial time, by opportunely embedding a component-wise exploration of
the hierarchical automaton into the above NBT’s emptiness algorithm.

In fact, for a single-exit HNBT A = 〈A1, . . . ,An〉 instead of checking empti-
ness for the flat Af

1 we will use a simple property (checkable in polynomial

326 A. Murano, M. Napoli, and M. Parente

time) on suitable NBTs Âi and sets B̂oxi, constructed from Ai. Let us for
the moment give a non-constructive definition of these latter sets: for each i,
let B̂oxi = {b ∈ Boxi | Yi(b) = j, L(Af

j) �= ∅}. Moreover, let each Ai =
(Σ,Wi, δi, Boxi, inii, Oi, Yi,Fi), the NBT Âi is a tuple (Σ, Q̂i, în i, δ̂i, F̂i), where

– Q̂i ⊆Wi ∪Boxi and Wi ⊆ Q̂i;
– F̂i ⊆ Fi ∪Boxi and Fi ⊆ F̂i;

To each Âi can be associated a set of non complete k-ary trees, possibly having
some finite paths, which can be seen, roughly speaking, as accepted by a Tree
Automaton (not a NBT) with the following acceptance conditions: on the finite
paths the acceptance is obtained considering the states of B̂oxi as final states,
while the infinite paths are accepted with the usual Büchi condition F̂i. To check
the emptiness for the given HNBT, we will check whether such set of trees for
Â1 is empty. For each Âi we distinguish three different kinds of paths π of its
runs, all starting from în i:

A. π either is infinite and goes through a state of F̂i infinitely often or is finite
and its last state belongs to B̂oxi.

B. π is a finite path whose last state is in Oi (recall thatOi ⊆ Q̂i, sinceWi ⊆ Q̂i)
and π does not contain any state of F̂i.

C. π is a finite path whose last state is in Oi and it does contain at least one
state of F̂i.

Let us now define inductively and bottom-up all Âi and the B̂oxi. For the base,
let Ân = An and B̂oxn = ∅. Suppose now that for 1 ≤ i ≤ n we have already
defined all Âj , for j > i. The sets Q̂i and F̂i contain Wi and Fi, respectively
and, given a box b ∈ Boxi such that Yi(b) = j, we have that:

– if there exists a run of Âj containing at least a type-B path and all the
others are either type-A paths or type-C paths, then b ∈ Q̂i.

– if there exists a run of Âj containing at least a type-C path and all the
remaining are of type-A paths, then b ∈ Q̂i and b ∈ F̂i.

– if there exists a run of Âj whose all paths are of type-A paths, then b ∈ B̂oxi

and b ∈ Q̂i.

Moreover în i = ini and

– for q ∈ Wi, δ̂i(q, σ) = δi(q, σ) and
– for q ∈ Boxi ∩ Q̂i, δ̂i(q, σ) = δi((q, s), σ) with s ∈ Oi.

Observe that the set B̂oxi contains a box b ∈ Boxi if it appears in an accepting
run of Af

i . Moreover if there exists a run of Âj containing a type-C path π, then
this run can be taken infinitely often in an accepting run (T, r) of Af

i : in this
way, in fact, the final state of Âj occurring in π, appears infinitely often in some
paths of (T, r). Thus we consider b as a final state of Âi.

Now it is easy to see that a tree (T, V) is accepted by Af
i if and only if there

exists a run of Âi whose paths are all of type-A . Observe that the set B̂oxi is
now defined constructively and is consistent with the previous definition.

Program Complexity in Hierarchical Module Checking 327

Now since L(A) �= ∅ if and only if there exists a tree (T, V) accepted by Af
1 ,

we have that an algorithm to solve the emptiness problem can be easily given,
based on the construction of Âi’s. Actually it remains to be convinced that the
existence of the runs required in those constructions can be done in polynomial
time. This can be accomplished by using a fixed-point algorithm which resembles
the one given by Rabin in [Rab70] for NBT. In an extended version of the paper
we will give the full details of such algorithm.

Consider now a multiple-exit HNBT A. We now sketch a nondeterministic
algorithm running in polynomial space, and from Savitch’s theorem, we get our
result. As in the single-exit case, we will construct some NBT Âi’s, but now
the construction is accomplished nondeterministically and in a top-down way,
starting from i = 1. To obtain each Âi, the algorithm, for each box b ∈ Boxi

with Yi(b) = j, either guesses that L(Af
j) �= ∅ or chooses two (possibly empty)

sets X ⊆ Oj and Y ⊆ Oj and guesses, for some s ∈ Oj , that there exists a run in
Âj having type-B paths from înj to s ∈ X and type-C paths from înj to s ∈ Y .
According to these choices, the NBT Âi is constructed, similarly as in the case
of single-exit. Then the algorithm proceeds by checking the guessed property of
ÂYi(b), for each b ∈ Boxi. In this step ÂYi(b) is constructed, and this obviously,
implies other guesses for the boxes belonging to AYi(b). This chain of guesses
naturally ends when Ân has to be constructed, since Boxn is empty. Observe
that the overall space necessary during the execution of the algorithm does not
exceed the size of A and this concludes the proof. �	

We now conclude this section by showing that the above results are also tight.
For the single-exit case, notice that NBT are a special case of HNBT and for
NBT the emptiness problem is already known to be Ptime-hard.

For the multiple-exit case, we use a polynomial reduction from the model-
checking problem for multiple-exit hierarchical state machines w.r.t constant
CTL formulas, which is known to be Pspace-hard [AY01]. In order to apply this
reduction, we have first to define a cross product between an HNBT A′ and an
NBT A′′, say it A′ ⊗A′′, that allows to construct in polynomial time an HNBT
whose flattening is equivalent to the Cartesian product of the NBT’s A′f and
A′′. We now formally show how to construct A′ ⊗A′′.

Let A′=〈A1, . . . ,An〉 be an HNBT, with Ai =(Σ,Wi, δi, Boxi, ini, Oi, Yi,Fi),
and A′′ = (Σ,Q, in, δ,F ′′) with Q = {q1, . . . , qm} and in = q1. The product A′⊗
A′′ is the HNBT A = 〈A11, . . . ,A1m, . . . ,An1, . . . ,Anm〉, where each component
Aij = (Σ,Wi × Q, δij , Boxi × Q, (ini, qj), Oi × Q, Yij ,Fij), 1 ≤ i ≤ m and
1 ≤ j ≤ n, is such that

– Fij = Fi ×F ′′

– Yij(b, q) = m(i′ − 1) + j′ if Yi(b) = i′ and q = qj′ ,
– if (q′′1 , . . . , q′′k) ∈ δ(q′′, σ) and (q′1, . . . , q′k) ∈ δi(q′, σ) then

• if q′ ∈Wi then ((q′1, q
′′
1), . . . , (q′k, q

′′
k)) ∈ δij((q′, q′′), σ)

• if q′ = (b, s), with b ∈ Boxi and s ∈ OYi(b), then ((q′1, q′′1), . . . , (q′k, q
′′
k)) ∈

δij((b′, s′), σ), where b′ = (b, q), for some q ∈ Q, and s′ = (s, q′′))

328 A. Murano, M. Napoli, and M. Parente

Lemma 3. Given an HNBT A′ and an NBT A′′, the HNBT A = A′ ⊗ A′′

accepts the language L(A) = L(A′) ∩ L(A′′) and has size O(|Q|2 · |A′| · |A′′|).

Proof. Let A′ be an HNBT, A′′ be an NBT and A = A′⊗A′′, as described above,
with components Aij . Since Af is not isomorphic to A′f × A′′, we prove the
lemma by showing an isomorphism among the run of Af and those of A′f ×A′′.

Given a run (T, r) of Af , we can define a run (T, r′) of A′f and a run
(T, r′′) of A′′ as follows. The run (T, r′) is obtained by projecting for each
state 〈(q′1, q′′1), . . . , (q′h, q

′′
h)〉 in (T, r) the first components, thus getting the state

〈q′1, . . . , q′h〉 of A′f . The run (T, r′′) of A′′ is obtained by projecting the sec-
ond component of the node in each state (recall that only (q′h, q

′′
h) is a node,

while all the other are boxes). Symmetrically, given the two runs, we can define
(T, r) of Af . Now it immediately follows that (T, r) is accepting if and only
if (T, r′) and (T, r′′) are both accepting runs. Thus the accepted languages is
L(A) = L(A′) ∩ L(A′′).

Consider now the size of each component Aij : from the definition of the cross
product ⊗, each component Aij is obtained by pairing the initial node ini of Ai

with qj . The number of the states is |Wi| · |Q| and the number of superstates is
|Boxi| · |Q|. The size |δij | of the transition function is bounded by |δi| · |δ| · |Q|,
since when the transition is defined on a pair (b, s) then b can be paired with
any state q ∈ Q. Thus the overall size of A = A′ ⊗A′′ is O(|Q|2 · |A′| · |A′′|). �	
Let us now turn back to the desired reduction. Let ϕ be a fixed CTL formula
and M be a hierarchical closed state machine with multiple exits. Let AM
be an HNBT obtained from M by considering all its states as accepting and
collecting all its relations in “tree-like” transitions (observe that AM suffices
to be deterministic). More formally, for each Mi = (AP ,Si,Ei,Ri, Boxi, Oi,
ini, Li, Yi), in M we add to AM the component Ai = (2AP ,Wi, δi, Boxi, ini, Oi,
Yi,Fi), where Wi = Si ∪ Ei, Fi = Wi, and δi(w,Li(w)) = {(wi, . . . , wd)} iff,
for each 1 ≤ j ≤ d, (w,wd) ∈ Ri. By Lemma 1, we can construct an NBT Aϕ

accepting all models of ϕ. Note that Aϕ has a fixed size, since ϕ is also fixed.
By Lemma 3, we can construct in polynomial time an HNBT AM⊗ϕ accepting
the intersection1 of AK and Aϕ. Clearly, K satisfies ϕ iff L(AK⊗ϕ) �= ∅. This,
together with Lemma 2 leads to the desired result.

Theorem 1. (i) The emptiness problem for a single-exit HNBT is Ptime-
complete. (ii) The emptiness problem for a multiple-exit HNBT is Pspace-
complete.

4 Deciding Hierarchical Module Checking

In this section, we solve the program complexity of theCTL hierarchical module
checking problem. In particular, we show that this problem is in Ptime for
1 One can observe that AM may not be complete and that AM and Aϕ may disagree

on the number of node successors. It is not hard to see that, by duplicating successor
states, we can adapt the previous constructions in order to obtain AM and Aϕ as
k-ary complete automata.

Program Complexity in Hierarchical Module Checking 329

single-exit modules and in Pspace in the multiple-exit case. By recalling that
the program complexity for the classical CTL module checking is Ptime-hard
and the program complexity for theCTL hierarchical model checking is Pspace-
hard, we get that our results are also tight.

Our solution to both problems is based on an automata–theoretic approach,
by extending an idea of [KVW01]. In practice, we take into account that the
input module is hierarchical. Therefore, we extend [KVW01]’s idea to each com-
ponent of the module and use the automata product ⊗ introduced in the previous
section, instead of a classical Cartesian product. In more details, let M be a hi-
erarchial module and ϕ a fixed CTL formula. We decide the module checking
problem for M against ϕ by building an HNBT AM⊗¬ϕ as AM ⊗A¬ϕ. Essen-
tially, the first automaton, AM, is an HNBT that accepts trees of exec(Mf), and
the second automaton is an NBT A¬ϕ that accepts all trees that do not satisfy
ϕ. Thus, M |=r ϕ iff L(AM⊗¬ϕ) is empty. Now, recall from Lemma 3 that the
cross product between AM and A¬ϕ corresponds to an HNBT (which can be
constructed in polynomial time) whose flattening is equivalent to the Cartesian
product of the NBT’s Af

M and A¬ϕ. The component automata of the obtained
HNBT will have a number of exit nodes that depends on the number of states
of A¬ϕ, which in turn depends, by Lemma 1, on the size of the formula ϕ. Since
here we are interested on the program complexity of the hierarchical module
checking problem, we assume the formula to be fixed. Therefore, AM⊗¬ϕ will
have multiple exits iff AM does, and a constant number of exit nodes, otherwise.

Let us now discuss about the emptiness problem for HNBT’s with a constant
number of exits. That is, we are interested in determining the complexity of the
emptiness problem for the set {A | A is an HNBT with at most d-exit nodes}, for
a fixed natural number d. First observe that in the algorithm we have proposed
in Lemma 2 for checking the emptiness of HNBT’s with single exits, each box
either contributes to check the existence of an accepting run or not at all. On
the opposite, in the multiple-exit case, we have to remember for each box which
exit node ensures acceptance and which does not. Therefore, for each box some
splitting may be required. For instance consider a component Ai with two exit
nodes w1 and w2. It may be that a run exits in w1 trough paths all visiting at
least a final state and in w2 trough a path that does not. Thus, we need to split
Ai into four copies, depending whether both, only w1, only w2, or none can be
considered in the extended set of final states. In general, if we start in Lemma 2
with an HNBT having at most d exit nodes, we need to generate 2d copies of
each component automaton, in the worst case. Since d is a fixed parameter, it
turns out that the emptiness problem also for this automata remains in Ptime

as reported in the following proposition.

Proposition 1. The emptiness problem for a constant-exit HNBT is in Ptime.

To conclude with our idea of solving the program complexity forCTL hierarchical
module checking let us give some details on how to construct AM for a hierar-
chical module M = 〈M1, . . . ,Mn〉, with each Mi = (AP ,Si,Ei,Ri, Boxi, Oi,
ini, Li, Yi). First, we recall that each component automaton of AM can only work

330 A. Murano, M. Napoli, and M. Parente

on complete k-ary trees, while trees in exec(Mf) may be not. To overcome this
problem, we consider an equivalent representation of exec(Mf) in which all nodes
have degree k = max{bd(w) | w ∈

⋃
i Si ∪Ei}, where bd(w) denotes the branch-

ing degree of w (i.e. the number of its successors). Now, recall that each tree in
exec(Mf) is a 2AP -labeled tree that is obtained from (TMf , VMf) by suitably
pruning some of its subtrees. We can encode the tree (TMf , VMf) as a 2AP ∪{⊥}-
labeled complete k-ary tree (where ⊥ is a fresh atomic proposition not belonging
to AP) in the following way: for each node x ∈ TM with d children (x·1, . . . , x·d)
(note that 1 ≤ d ≤ k as Ri is total), we add the children (x ·(d+1), . . . , x ·k) and
label these new nodes with ⊥; finally, for each node x labeled by ⊥ we add recur-
sively k-children labeled by ⊥. Let ({1, . . . , k}∗, V ′) be the tree thus obtained.
Then, we can encode a tree (T, V) ∈ exec(Mf) as the 2AP ∪ {⊥}-labeled com-
plete k-ary tree obtained from ({1, . . . , k}∗, V ′) preserving all the labels of nodes
of ({1, . . . , k}∗, V ′) that either are labeled by ⊥ or belong to T , and replacing
all the labels of nodes (together with the labels of the corresponding subtrees)
pruned in (T, V) with the label ⊥. In this way, all the trees in exec(Mf) have
the same structure (they all coincide with {1, . . . , k}∗), and they differ only in
their labeling. Thus, the proposition ⊥ is used to denote both “disabled” nodes
and “completion” nodes2. Moreover, since we consider environments that do
not block the system, for each node associated with an enabled environment
node, at least one successor is not labeled by ⊥. Let us denote by êxec(M) the
set of all 2AP ∪ {⊥}-labeled k-ary trees obtained from ({1, . . . , k}∗, V ′) in the
above described manner. We now show an HNBT AM accepting êxec(M). AM
is the tuple 〈A(1,�),A(2,�),A(2,⊥),A(2,�), . . . ,A(n,�),A(n,⊥),A(n,�)〉, where for
1 ≤ i ≤ n and x ∈ {⊥,",(}, each A(i,x) = 〈Σ,W ′

i , δi, Box
′
i, (in i, x), O′

i, Y
′
i ,Wi〉

is defined as follows (recall Wi = Si ∪ Ei):

– Σ = 2AP ∪ {⊥};
– W ′

i = Wi×{⊥,",(}. The automaton A(i,x) starts from (ini, x). For example,
the computation starts from (ini,⊥) whenever a box corresponding to Ai has
been disabled. From states of the form (w,⊥), A(i,x) can read only the letter
⊥, from states of the form (w,"), it can read only letters in 2AP . Finally,
when A(i,x) is in state (w,(), then it can read both letters in 2AP and the
letter ⊥. In this last case, it is left to the environment to decide whether the
transition to a state of the form (w,() is enabled. The three types of states
are used to ensure that the environment enables all transitions from enabled
system nodes, enables at least one transition from each enabled environment
node, and disables transitions from disabled nodes.

– O′
i = Oi × {⊥,",(}. Clearly, we can have three types of exit nodes.

– Box′i = Boxi × {⊥,",(}. As for states, we can have three types of boxes,
which are used to ensure that, regarding the initial node w of the component
automaton corresponding to a box, the environment can enable all transi-
tions from w whenever w is an enabled system node, enable at least one

2 As stated in [KVW01], the use of the atomic proposition ⊥ must be taken into
account while building A¬ϕ. This can be easily handled by opportunely modifying
the formula ϕ by exploiting an argument similar to that used in [KVW01].

Program Complexity in Hierarchical Module Checking 331

transition from w whenever w is an enabled environment node, and disables
transitions from w whenever w is a disabled node.

– Y ′
i is such that Y ′

i (b, x) = Yi(b), x. That is, from a box (b, x), Ai calls the
automaton A(Yi(b),x). Then the computation continues from (inYi(b), x) as
described above.

– The transition function δi : (W ′
i ∪ (Box′i ×

⋃
j>iO

′
j)) ×Σ → 2(W ′

i∪Box′
i)

k

is
defined as follows. Let z = w ∈Wi or w ∈ Oj such that z = (b, w) ∈ (Boxi×⋃

j>iOj) and Yi(b) = j. Let succ(z) = (z1, . . . , zd), with 1 ≤ d ≤ k, and for
m,m′ ∈ {",(,⊥}, let z′ be either (w,m), if z = w, or z′ = ((b,m′), (w,m)),
if z = (b, w). Then, δi is as follows:
• For w ∈Wi ∪Oj and m ∈ {(,⊥}, we have

δi(z′,⊥) = {((z1,⊥), . . . , (zd,⊥), (z,⊥), . . . , (z,⊥)︸ ︷︷ ︸
k pairs

)}

That is, δi(z′,⊥) contains exactly one k-tuple. In this case all the suc-
cessors of the current node are disabled.

• For w ∈ Si ∪ (Sj ∩Oj) and m ∈ {",(} we have

δi(z′, Li(w)) = {((z1,"), . . . , (zd,"), (z,⊥), . . . , (z,⊥)︸ ︷︷ ︸
k pairs

)}

• For m ∈ {",(} and either w ∈ Ei and g = w or w ∈ (Ej ∩ Oj) and
g = b we have δi(z′, Li(w)) =

{ ((z1,"), (z2,(), . . . , (zd,(), (g,⊥), . . . , (g,⊥)),
((z1,(), (z2,"), . . . , (zd,(), (g,⊥), . . . , (g,⊥)),

...
...

((z1,(), (z2,(), . . . , (zd,"), (g,⊥), . . . , (g,⊥))}.

That is, δi(z′, Li(w)) contains d k-tuples. When the automaton proceeds
according to the i-th tuple, the environment can disable the transitions
to all successors of the current state, except the transition associated
with zi, which must be enabled.

One can be convinced on the fact that A is polynomial in the size of M, by
noting that each A(i,x) has 3·|Mi| states, and |δi| is bounded by O(k·|Ri|). Thus,
by summing up our idea trough the above polynomial construction of AM, the
exponential-constant time construction given by Lemma 1 for A¬ϕ, Lemma 3,
Proposition 1, and Lemma 2 the following result holds.

Theorem 2. The program complexity for the CTL hierarchical module check-
ing problem is Ptime-complete in the case of single-exit modules and Pspace-
complete in in the case of multiple-exit modules.

332 A. Murano, M. Napoli, and M. Parente

5 Conclusions

In this paper, we have introduced and solved the program complexity for the
hierarchical module checking problem for CTL, both in the case of single-exit
and multiple-exit modules. An immediate exponential solution can be obtained
by flattening the hierarchical module and then apply the classical algorithm. By
avoiding the flattening, we have shown algorithms having a better performance
and, in particular, working not harder than those used in the closed hierarchical
system case. As future directions, it would be worth to consider more involved
scenarios both on the module checking side (e.g., pushdown module checking
[BMP05], systems with incomplete information [AMV07]) and on the hierarchi-
cal side (e.g., recursive state machine [ABE+05], with both nodes and boxes
labeled with atomic propositions [LNPP08]).

References

[ABE+05] Alur, R., Benedikt, M., Etessami, K., Godefroid, P., Reps, T.W., Yan-
nakakis, M.: Analysis of recursive state machines. ACM Trans. Program.
Lang. Syst. 27(4), 786–818 (2005)

[AMV07] Aminof, B., Murano, A., Vardi, M.Y.: Pushdown module checking with
imperfect information. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR
2007. LNCS, vol. 4703, pp. 460–475. Springer, Heidelberg (2007)

[AY01] Alur, R., Yannakakis, M.: Model checking of hierarchical state machines.
ACM Trans. Program. Lang. Syst. 23(3), 273–303 (2001)

[BMP05] Bozzelli, L., Murano, A., Peron, A.: Pushdown module checking. In: Sut-
cliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS, vol. 3835, pp. 504–518.
Springer, Heidelberg (2005)

[CE81] Clarke, E.M., Emerson, E.A.: Design and verification of synchronization
skeletons using branching time temporal logic. In: Kozen, D. (ed.) Logic
of Programs 1981. LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982)

[CGP99] Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cam-
bridge (1999)

[KVW00] Kupferman,O.,Vardi,M.Y.,Wolper,P.:AnAutomata-TheoreticApproach
to Branching-Time Model Checking. J. of the ACM 47(2), 312–360 (2000)

[KVW01] Kupferman, O., Vardi, M.Y., Wolper, P.: Module Checking. Information
and Computation 164(2), 322–344 (2001)

[LNPP08] LaTorre, S., Napoli, M., Parente, M., Parlato, G.: Verification of
scope-dependent hierarchical state machines. Information and Computa-
tion 206(9,10), 1161–1177 (2008)

[QS81] Queille, J.P., Sifakis, J.: Specification and verification of concurrent pro-
grams in Cesar. In: Dezani-Ciancaglini, M., Montanari, U. (eds.) Program-
ming 1982. LNCS, vol. 137, pp. 337–351. Springer, Heidelberg (1982)

[Rab70] Rabin, M.O.: Weakly definable relations and special automata. Mathe-
matical Logic and Foundations of Set theory (1970)

[Var98] Vardi, M.Y.: Reasoning about the past with two-way automata. In: Larsen,
K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp.
628–641. Springer, Heidelberg (1998)

[VW86] Vardi, M.Y., Wolper, P.: Automata-theoretic techniques for modal logics
of programs. J. of Computer and System Sciences 32(2), 182–221 (1986)

Valigator: A Verification Tool with Bound and
Invariant Generation�

Thomas A. Henzinger, Thibaud Hottelier, and Laura Kovács

EPFL, Switzerland

Abstract. We describe Valigator, a software tool for imperative program
verification that efficiently combines symbolic computation and automated rea-
soning in a uniform framework. The system offers support for automatically
generating and proving verification conditions and, most importantly, for auto-
matically inferring loop invariants and bound assertions by means of symbolic
summation, Gröbner basis computation, and quantifier elimination. We present
general principles of the implementation and illustrate them on examples.

1 Introduction

In [16], a framework for generating polynomial equations as loop invariants was pre-
sented for a rich class of so-called P-solvable loops with ignored loop conditions. Im-
plemented in the software package Aligator, the approach was successfully tested
on many examples. However, Aligator was not able to infer properties depending
on the loop conditions.

In the current paper we address this problem and present Valigator, an auto-
matic tool that extends and uses the functionalities of Aligator. More precisely,
Valigator enables Aligator to infer stronger invariants involving polynomial
equalities and inequalities by treating loop conditions. In addition, Valigator sup-
ports generating and proving verification conditions using the inferred loop invariants,
and proving the partial correctness of programs annotated with pre- and postconditions.
We consider programs containing loops with sequencing, nested conditionals, and as-
signments, and impose structural constraints on the type of assignments. We require that
loop conditions are linear inequalities, variables from loop conditions are changed us-
ing affine mappings, and most importantly, branches in loops commute. By commuting
we mean that variables in the loop condition are changed by the same affine mappings
in all conditional branches.

The purpose of this paper is to discuss the underlying principles of Valigator,
whose main features are as follows. (1) It contains a prototype verification condition gen-
erator based on the strongest-postcondition strategy [13]. (2) It integrates Aligator
as its invariant inference engine and thus has access to a wealth of powerful algorithms
from the computer algebra system Mathematica [24]. Moreover, we extended
Aligator by implementing an approach for automatically inferring polynomial equal-
ities and inequalities as invariants from the polynomial closed form of the loop by im-
posing bound constraints on the number of loop iterations. (3) Finally, Valigator

� This research was supported by the Swiss NSF.

I. Cervesato, H. Veith, and A. Voronkov (Eds.): LPAR 2008, LNCS 5330, pp. 333–342, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

334 T.A. Henzinger, T. Hottelier, and L. Kovács

Fig. 1. The Valigator tool

uses the automated theorem proving tools Z3, CVC3, and STP [11,5,15] for proving
the correctness of the verification conditions.

In the sequel, we will discuss in more detail the main ingredients of Valigator. We
will present general principles of the implementation and illustrate them on examples.
In order to improve readability, we present the input and output lines of Valigator
commands in a simplified form.

Implementation and Installation. Valigator is implemented in the Scala pro-
gramming language [20], that compiles to the Java bytecode. Beside exploiting the
Scala capabilities, Valigator integrates Scala with the computer algebra sys-
tem Mathematica in a transparent way by relying on the JLink toolkit [24]. Using
and controlling the Mathematica kernel directly from a Scala program is thus sup-
ported in Valigator. The overall workflow of Valigator is illustrated in Figure 1.
Valigator is available at:

http://mtc.epfl.ch/software-tools/Aligator/Valigator/.

The current version of the source distribution is 0.1 and runs under most recent
Linux versions.

Experiments. We have successfully tried our implementation on many examples; – see
the mentioned URL. For each of the examples, the results were obtained in less than 5
seconds on a machine with a 2.0GHz CPU and 2GB of RAM. The most time-consuming
part of Valigator lies in proving verification conditions, whereas the generation of
verification conditions together with invariant and bound inference requires less than 2
seconds for all examples we tried.

Related Work. We only mention some of the numerous tools that are related to
Valigator. Such systems include the static program verifiers Esc/Java [14],
LOOP [23], and JIVE [18] for sequential Java. Inputs to these tools are Java source
programs with user-supplied annotations expressed in JML [17]. Generating verifica-
tion conditions, these systems are respectively connected with the theorem provers
Simplify [12], PVS [21], and Isabelle [19] to verify proof obligations. It is well-
known that producing first-order verification conditions requires loop invariants. These
tools are thus powerful for programs whose invariants are specified by the user and, due
to the nature of the employed provers, they support checking assertions over integers

Valigator: A Verification Tool with Bound and Invariant Generation 335

only if they are linear. A similar verification environment has been developed in the
KeY tool [1] for Java programs, and in Spark [2] for Ada code.

A closely related approach to Valigator is the Spec� [4] verifier for C� programs,
which uses the Boogie [3] tool for verification. Boogie combines an invariant infer-
ence engine based on the abstract interpretation framework, a verification condition
generator, and the theorem prover Z3 [11]. Inferred invariants over integers are again
required to be linear, because Z3 handles only linear arithmetic.

The main difference between the mentioned systems and Valigator is that
Valigator supports the automatic generation of polynomial invariants by means
of symbolic computation and offers a richer choice of proof tools over integers for
proving polynomial (and not just linear) verification conditions. However, many of the
discussed tools handle data types such as arrays and pointers, which is not yet the case
for Valigator.

Inferring polynomial invariants is also supported by the Polyinvar tool [22] by
bounding a priori the degree of polynomials. Valigator imposes no such bounds, yet
Polyinvar can handle more complex loops. We are also not aware of an integration
of Polyinvar into a verification environment.

2 Valigator: System Description

Inputs to Valigator are programs formulated in a custom language similar to a
subset of the programming language C, with sequencing, assignments, conditionals,
and loops, involving addition and multiplication over integers, augmented with pre-
and postconditions. Data types are not yet handled. The language uses assume and
assert constructs for stating, respectively, pre- and postconditions. In the sequel we
call an annotated program a program with a precondition and a postcondition.

We require that loops be P-solvable. Namely, (i) they contain only assignments to
variables and nested conditionals; (ii) variables in assignments range over numeric
types, such as integers; (iii) values of variables can be expressed as polynomials of
the initial values of variables (those when the loop is entered), the loop counter, and
some new variables, where there are algebraic dependencies among the new variables;
(iv) assignments to variables X ′ that appear in the loop condition are affine mappings
satisfying the matrix equation X ′ = AX ′ + B with a square matrix A and column
vector B of numeric constants, where the main diagonal of A contains only 1s; (v)
conditional branches in loops commute, i.e variables X ′ from the loop conditions are
changed in the same manner on each branch; (vi) and finally, the loop condition is ex-
pressed by linear inequalities over loop variables X ′. Note that condition (iv) ensures
the existence of polynomial closed forms of X ′ as univariate polynomials in the loop
counter, whereas conditions (iv)-(vi) yield polynomial inequalities in the loop counter.

The syntax of considered P-solvable loops is thus as below.

while (b0) {s0; if(b1) then {s1}
while (b0) {else{. . .else{if(bk−1) then {sk−1} else {sk}} . . . }; sk+1}

(1)

where k ∈ N, s0, . . . , sk+1 are sequences of assignments and b0, . . . , bk−1 are boolean
expressions.

336 T.A. Henzinger, T. Hottelier, and L. Kovács

Verification conditions are automatically derived using the strongest postcondition
method and Aligator. Their validity is checked by state-of-the-art theorem provers.

Command 2.1 : Valigator[C]

Input: Annotated program C
Output: Yes/No/Unknown, where

- Yes means that all verification conditions were successfully proved, and hence the
partial correctness of the input is established;
- No is returned when at least one verification condition was disproved, and hence either
a bug in the program was found or the invariants generated by Aligator were not
strong enough.
- Unknown is answered when at least one verification condition was disproved because,
due to some unsafe arithmetic simplifications during invariant inference, the derived
invariant is not actually a loop invariant (see Subsection 2.2).

In the last two cases, when the invariants generation fails, it is possible to manually give
invariants to Valigator using annotations in the program source code.

Example 2.1. Consider the annotated program computing the sum of two integers
a and b, such that b is non-negative.

Input:Valigator[assume (b >= 0);
Valigator[res = a; cnt = b;
Valigator[while(cnt > 0){cnt = cnt− 1; res = res+ 1};
Valigator[assert (res = a+ b)]

Output:Yes

Verification of imperative programs in Valigator consists of invariant inference,
generation and proving of verification conditions. In what follows, we discuss these
steps in more detail, and summarize the main components of Valigator in Table 1.

Table 1. Valigator commands and their descriptions

Valigator: verification of programs with invariant and bound inference
Input: Annotated program
Output: Yes/No/Unknown
VCG: verification condition generator
Input: Annotated program
Output: List of verification conditions
Aligator: invariant generation for P-solvable loops with bound inference
Input: P-solvable loop and, optionally, initial values of loop variables
Output: Loop invariant
AnalyseBound: bound analysis for P-solvable loops
Input: List of assignments over loop variables, loop condition and initial values of loop variables
Output: Bound assertions over the values of loop variables

Valigator: A Verification Tool with Bound and Invariant Generation 337

2.1 Generation of Verification Conditions

Generation of verification conditions is performed by the VCG command.

Command 2.2 : VCG[C]

Input: Annotated program C
Output: List of verification conditions (proof obligations)

VCG is a predicate transformer based on a list of inference rules. It treats the pro-
gram structure recursively, statement-by-statement. Namely, VCG takes an annotated
program, and repeatedly modifies the precondition such that at the end the program is
“eliminated”, and a logical formula is inferred as a collection of verification conditions.
In fact, it computes the strongest postcondition in the abstract interpretation framework
defined in [10].

For each assertion specified by assert,VCG generates a proof obligation. However,
contrarily to other verification tools (see e.g. [2,4]), in Valigator we do not use
assert for annotating loops with invariants. Instead, VCG invokes Aligator as its
invariant inference engine whenever a loop is encountered. Invariant generation is thus
part of VCG and the invariant inference takes advantage of the constant propagation
performed by VCG. Using the invariant returned by Aligator, VCG generates two
proof obligations corresponding to the initial and the inductiveness properties of the
invariant.

Example 2.2. For Example 2.1, the verification conditions derived by VCG are below.

Input: VCG[C]

Output: b ≥ 0 ∧ res = a ∧ cnt = b ⇒
cnt+ res = a+ b ∧ (b > 0 ⇒ cnt ≥ 0) ∧ (b ≤ 0 ⇒ res = a ∧ cnt = b)

b ≥ 0 ∧ cnt > 0 ∧ cnt+ res = a+ b ∧
(b > 0 ⇒ cnt ≥ 0) ∧ (b ≤ 0 ⇒ res = a ∧ cnt = b) ⇒
(cnt− 1) + (res+ 1) = a+ b ∧ (b > 0 ⇒ cnt− 1 ≥ 0) ∧
(b ≤ 0 ⇒ res+ 1 = a ∧ cnt− 1 = b)

b ≥ 0 ∧ cnt ≤ 0 ∧ cnt+ res = a+ b ∧
(b > 0 ⇒ cnt ≥ 0) ∧ (b ≤ 0 ⇒ res = a ∧ cnt = b) ⇒
res = a+ b

where the generated loop invariant is cnt+ res = a+ b ∧ (b > 0 ⇒ cnt ≥ 0) ∧ (b ≤
0 ⇒ res = a ∧ cnt = b), as shown in Example 2.3, andC is the input of Valigator
given in Example 2.1. The first two proof obligations ensure soundness of the invariant;
the last one corresponds to the assert statement.

2.2 Invariant Inference

Let X denote the set of loop variables, X0 the corresponding initial values (before
entering the loop), and n the iteration counter of the loop.

338 T.A. Henzinger, T. Hottelier, and L. Kovács

Command 2.3 : Aligator[PLoop, IniVal→list of assignments]

Input: P-solvable loop PLoop as in (1) and, optionally, a list of assignments specifying
the initial valuesX0 of X
Output: Loop invariant

∧
i pi(X) = 0 ∧ ϕ(X), whereϕ(X) is a boolean combination

of polynomial equalities qj(X) = 0 and inequalities rs(X) ≥ 0, with pi, qj , rs ∈
K[X], where K can be either Z or Q

Example 2.3. The invariant returned by Aligator for Example 2.1 is given below.

Input: Aligator[while(cnt > 0){cnt = cnt− 1; res = res+ 1},
IniVal→ {res = a; cnt = b}]

Output: cnt+ res = a+ b ∧ (b > 0 ⇒ cnt ≥ 0) ∧ (b ≤ 0 ⇒ res = a ∧ cnt = b)

Note that the initial values of cnt and res are extracted by VCG from Example 2.1 (i.e.
from the loop precondition), and then fed into Aligator.

Example 2.4. To illustrate the power of invariant and bound inference, let us now con-
sider a P-solvable loop with conditional branches as given below. Its invariant property
returned by Aligator is as follows.

Input: Aligator[while(x + y < 10)
Aligator[{if (x < y) then {x = x+ y; y = y + 1; c = c+ 1; d = d+ 1}
Aligator[{if (x < y) else {x = x+ y; y = y + 1}},
IniVal→ {x = 0; y = 2; c = 1; d = 1}]

Output: c = d ∧ y2 = y + 2x+ 2 ∧ (0 + 2 < 10 ⇒ x+ y < 10 ∨ (x = 9 ∧ y = 5))

Example 2.5. A relatively simple well-known example is taken from [7]. The invariant
property returned by Aligator is given below.

Input: Aligator[while(x �=y){x=x + 1; y=y − 1},IniVal→ {x=a; y=b}]
Output: x+ y=a+ b ∧ (a=b⇒ x=a ∧ y=b) ∧ (a+ b = 2x = 2y ∨ a = b ∨ x �= y)

Internally, (i) Aligator first checks whether a given input is as (1). If it is not,
an error is reported, and the invariant inference stops. Otherwise, polynomial equalities
pi(X) = 0 as invariants are generated for loop (1) with omitted tests, as follows: the
closed form system of X is derived using recurrence solving over the loop body with
the summation variable n, and variables depending on n are then eliminated by the
Gröbner basis computation [8]. In the sequel, we write CFX(n) to mean the system of
closed form expressions of X as functions of n. As a result of this step, valid polyno-
mial relations among loop variables are inferred [16]. (ii) Next, the loop condition is
taken into account, and it is checked whether conditional branches commute. By com-
muting we mean that variables X ′ ⊆ X in the loop condition b0 are changed by affine
mappings in the same manner on each conditional branch. Deriving CFX′(n) is thus
also feasible by means of recurrence solving in case of loops with nested conditionals,
and, as discussed on page 335, CFX′ (n) yields a univariate polynomial system in n. If

Valigator: A Verification Tool with Bound and Invariant Generation 339

it is established that the branches commute, quantifier elimination is applied to derive
bound assertions on n as additional polynomial inequalities rs(X) ≥ 0 and equalities
qj(X) = 0. This is based on a relatively simple idea: we seek solution to the formula
given below, expressing the upper bound of n.

∃n.n ≥ 0 ∧
((
b0[[n]] ∧ CFX′(n)︸ ︷︷ ︸

L(n)

∧¬b0[[n+ 1]]︸ ︷︷ ︸
T (n)

))
, (2)

where b0[[n]] represents the loop condition in which all variables X ′ have been substi-
tuted by their values CFX′(n) at iteration n; L(n) encodes the behavior of X ′ during
the nth loop iteration; and T (n) corresponds to the termination criteria of the loop after
n iterations. The formulas L and T are functions of the loop counter n and are de-
rived from substituting variables X ′ by their closed forms CFX′(n). As mentioned on
page 335, b0 is expressed by linear inequalities over X ′, hence b0[[n]] is expressed by
polynomial inequalities in n. This way, solving (2) reduces to the problem of quantifier
elimination from a quantified system of univariate polynomial inequalities and equal-
ities in n, which can be solved as presented in [9]. Note that although [9] would also
handle the case when the loop condition is a non-linear polynomial inequality, due to
efficiency reasons, we only treat loops whose loop conditions are linear.

For solving (2) we rely on the quantifier elimination engine of Mathematica inte-
grated into Aligator as part of the AnalyseBound command for inferring bound
assertions. If an exact value of n can be computed, the values V (X ′) of variables X ′

when exiting the loop are derived using CFX′ (n). Note that equation (2) makes the
assumption that the loop will be executed at least once. However, it is trivial to compute
the symbolic state at the end of the loop when it is executed 0 times. Turning VX′ into
a loop invariant is based on the following simple fact. If the loop is executed at least
once, then either the loop condition holds or values of the variablesX ′ fulfill VX′ .

Finally, the loop invariant returned by Aligator is the conjunction of the polyno-
mial invariants derived in step (i) and the invariants obtained after the bound analysis
from step (ii).

Command 2.4 : AnalyseBound[SX′, b0, IniVals]

Input: Assignment statements SX′ of loop (1) corresponding to the variablesX ′, loop
test b0 and initial values ofX ′

Output: Formula (b0[[0]] ⇒ b0 ∨ V (X ′)) ∧ (¬b0[[0]] ⇒ CFX(0))

Example 2.6. For the loop of Example 2.1 we obtain:

Input: AnalyseBound[{cnt = cnt− 1},
AnalyseBound[cnt > 0, {res0 = a, cnt0 = b}]

Output: (b > 0 ⇒ cnt = 0 ∨ cnt > 0) ∧ (b ≤ 0 ⇒ res = a ∧ cnt = b)

where we denote respectively by res0 and cnt0 the variables standing for the initial
values of res and cnt. The polynomial invariant inferred in step (i) of Aligator is
res + cnt = a + b. Hence, the complete invariant returned by Aligator to VCG is
cnt+ res = a+ b ∧ (b > 0 ⇒ cnt = 0 ∨ cnt > 0) ∧ (b ≤ 0 ⇒ res = a ∧ cnt = b),
as also presented in Example 2.3.

340 T.A. Henzinger, T. Hottelier, and L. Kovács

Example 2.7. For the loop of Example 2.4 the result of AnalyseBound is:

Input: AnalyseBound[{x = x+ y; y = y + 1},
AnalyseBound[x+ y < 10, {x0 = 0, y0 = 2, c0 = 1, d0 = 1}

Output: 0 + 2 < 10 ⇒ x+ y < 10 ∨ (x = 9 ∧ y = 5)

where, x0, y0, c0 and d0 denote respectively the initial values of x, y, c and d.

Note that the invariant generation in Aligator might perform unsafe optimizations
(since data types are not yet handled). For instance, it always reduces 2(x

2) to x, which
is only valid when x is even. For this reason, in order to ensure correctness of invariants,
and subsequently to ensure soundness of Valigator, generating and proving proof
obligations for invariants’ validity is crucial in Valigator.

2.3 Proving Verification Conditions

VCG generates proof obligations (verification conditions) in the SMT-LIB [6] format
in one of the following two logics: Quantifier-free Bit Vectors (QF BV) or Quantifier-
free Linear Integer Arithmetic (QF LIA). QF LIA is more limited as it only supports
linear relation among variables, but it is usually faster at proving or disproving
obligations.
Valigator can either feed the proof obligations directly into a theorem prover or

dump them to disk. Valigator has been tested with CVC3 and Z3 for linear arith-
metic and STP for bit vectors. However, any other prover handling one of the mentioned
logics and the SMT-LIB format could be used as well. Note that these two logics are
decidable; the provers named above are sound and complete.

Example 2.8. Using CVC3, Z3, or STP, all proof obligations listed in Example 2.2 are
successfully proved in less than 3 seconds on a 2.0GHz machine.

3 Conclusion

By combining automated reasoning and symbolic computation, Valigator allows us
to verify programs annotated with pre- and postconditions, and offers automatic support
for inferring invariant properties of P-solvable loops. The approach was successfully
tested on several examples, some of which are presented in this paper.

So far, using only preconditions of loops, bound assertions are derived under the
assumption that quantifier elimination yields an exact integer solution on the number
of loop iterations. However, in many cases such a solution does not exist. A possible
extension of our approach would be to use an interval approximation of the bound on
the number of loop iterations.

The class of loops for which Valigator can automatically infer invariants is lim-
ited by constraints on the program structure; Valigator can handle branches inside
the loop as long as they commute. We are trying to extend our approach to programs
with non-commuting branches, and thus with more complex flow structure.

Valigator: A Verification Tool with Bound and Invariant Generation 341

We are also interested in generalizing the framework to programs on non-numeric
data structures such as arrays and lists.

References

1. Ahrendt, W., Baar, T., Beckert, B., Bubel, R., Giese, M., Hähnle, R., Menzel, W., Mostowski,
W., Roth, A., Schlager, S., Schmitt, P.H.: The KeY Tool. Software and System Modeling 4(1),
32–54 (2005)

2. Barnes, J.: High Integrity Software - The Spark Approach to Safety and Security. Addison-
Wesley, Reading (2003)

3. Barnett, M., Chang, B.Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A modular
reusable verifier for object-oriented programs. In: Proc. of FMC (2005)

4. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: An overview. In:
Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.) CASSIS 2004. LNCS,
vol. 3362. Springer, Heidelberg (2005)

5. Barrett, C., Berezin, S.: CVC Lite: A new implementation of the cooperating validity checker.
In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 515–518. Springer, Heidelberg
(2004)

6. Barrett, C., Ranise, S., Stump, A., Tinelli, C.: The Satisfiability Modulo Theories Library
(SMT-LIB) (2008), http://www.SMT-LIB.org

7. Brauburger, J., Giesl, J.: Approximating the Domains of Functional and Imperative Pro-
grams. Sci. Comput. Programming 35(1), 113–136 (1999)

8. Buchberger, B.: An Algorithm for Finding the Basis Elements of the Residue Class Ring of
a Zero Dimensional Polynomial Ideal. J. of Symbolic Computation 41(3-4), 475–511 (2006)

9. Collins, G.E.: Quantifier Elimination for the Elementary Theory of RealClosed Fields by
Cylindrical Algebraic Decomposition. LNCS, vol. 33, pp. 134–183 (1975)

10. Cousot, P., Cousot, R.: Abstract Interpretation: a Unified Lattice Model for Static Analysis of
Programs by Construction or Approximation of Fixpoints. In: Proc. of POPL, pp. 238–252
(1977)

11. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R., Rehof, J.
(eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)

12. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a Theorem Prover for Program Checking. J. of
the ACM 52(3), 365–473 (2005)

13. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, Englewood Cliffs (1976)
14. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.: Extended

Static Checking for Java. In: Proc. of PLDI, pp. 234–245 (2002)
15. Ganesh, V., Dill, D.L.: A Decision Procedure for Bit-Vectors and Arrays. In: Damm, W.,

Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590. Springer, Heidelberg (2007)
16. Kovács, L.: Reasoning Algebraically About P-Solvable Loops. In: Ramakrishnan, C.R., Re-

hof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 249–264. Springer, Heidelberg (2008)
17. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary Design of JML: A Behavioral Interface

Specification Language for Java. Technical Report 98-06u, Iowa State University (2003)
18. Müller, P., Meyer, J., Poetzsch-Heffter, A.: Programming and Interface Specification Lan-

guage of Jive— specification and Design Rationale. Technical Report 223, University of Ha-
gen (1997)

19. Nipkow, T., Paulson, L.C., Wenzel, M.T.: Isabelle/HOL. LNCS, vol. 2283. Springer, Heidel-
berg (2002)

http://www.SMT-LIB.org

342 T.A. Henzinger, T. Hottelier, and L. Kovács

20. Odersky, M.: The Scala Language Specification (2008),
http://www.scala-lang.org

21. Owre, S., Shankar, N., Rushby, J.: VS: A Prototype Verification System. In: Kapur, D. (ed.)
CADE 1992. LNCS, vol. 607. Springer, Heidelberg (1992)

22. Seidl, H., Petter, M.: Inferring Polynomial Invariants with Polyinvar. In: Proc. of NSAD
(2005)

23. van den Berg, J., Jacobs, B.: The LOOP Compiler for Java and JML. In: Margaria, T., Yi, W.
(eds.) TACAS 2001. LNCS, vol. 2031, pp. 299–312. Springer, Heidelberg (2001)

24. Wolfram, S.: The Mathematica Book. Version 5.0. Wolfram Media (2003)

http://www.scala-lang.org

Reveal: A Formal Verification Tool
for Verilog Designs

Zaher S. Andraus, Mark H. Liffiton, and Karem A. Sakallah

Department of Electrical Engineering and Computer Science
University of Michigan, Ann Arbor, MI 48109-2122

{zandrawi,liffiton,karem}@umich.edu

Abstract. We describe the Reveal formal functional verification system
and its application to four representative hardware test cases. Reveal em-
ploys counterexample-guided abstraction refinement, or CEGAR, and is
suitable for verifying the complex control logic of designs with wide dat-
apaths. Reveal performs automatic datapath abstraction yielding an ap-
proximation of the original design with a much smaller state space. This
approximation is subsequently used to verify the correctness of control
logic interactions. If the approximation proves to be too coarse, it is au-
tomatically refined based on the spurious counterexample it generates.
Such refinement can be viewed as a form of on-demand “learning” sim-
ilar in spirit to conflict-based learning in modern Boolean satisfiability
solvers. The abstraction/refinement process is iterated until the design is
shown to be correct or an actual design error is reported. The Reveal sys-
tem allows some user control over the abstraction and refinement steps.
This paper examines the effect on Reveal’s performance of the various
available options for abstraction and refinement. Based on our initial ex-
perience with this system, we believe that automating the verification
for a useful class of hardware designs is now quite feasible.

1 Introduction

The paradigm of iterative abstraction and refinement has gained momentum
in recent years as a particularly effective approach for the scalable verification
of complex hardware and software systems. Dubbed counterexample-guided ab-
straction refinement (CEGAR), its power stems from the elimination (i.e., ab-
straction) of details that are irrelevant to the property being checked and from
analyzing any spurious counterexamples to pinpoint and add just those details
that are needed to refine the abstraction, i.e., to make it more precise. Origi-
nally pioneered by Kurshan [13], it has since been adopted by several researchers
as a powerful means for coping with verification complexity. In particular, the
use of abstraction-based verification has been thoroughly studied in the context
of model checking by Clarke et al. [6] and Cousot and Cousot [7] for over two
decades. Later methods by Clarke et al. [6], Jain et al. [12] and Das et al. [8]
have successfully demonstrated the automation of abstraction and refinement in
the context of model checking for safety properties.

I. Cervesato, H. Veith, and A. Voronkov (Eds.): LPAR 2008, LNCS 5330, pp. 343–352, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

344 Z.S. Andraus, M.H. Liffiton, and K.A. Sakallah

Whereas such a verification paradigm is appealing at a conceptual level, its
success in practice hinges on effective automation of the abstraction and refine-
ment steps, as well as the various checking steps requiring sophisticated reason-
ing. In this paper, we describe how these issues are addressed by Reveal, an
automatic CEGAR-based verification system. Reveal is used to formally verify
complex hardware designs, including pipelined microprocessors whose RTL de-
scriptions have tens of thousands of HDL source lines, thousands of signals, and
hundreds of thousands of state bits.

Below, we will describe Reveal’s CEGAR flow and analyze its behavior and
performance by way of four representative test cases. For each test case, we
compare a number of methods to model and check the desired properties on
the abstract design, including the use of a Satisfiability Modulo Theories (SMT)
solver [9]; we study trade-offs between various refinement options; we highlight
the types of lemmas generated in the refinement stage and analyze the idiosyn-
crasies leading to them; we show how genuine bugs were discovered using Reveal;
we provide experimental evidence that demonstrates the importance of datapath
abstraction for the scalability of formal verification; and, finally, we compare the
performance of Reveal against a number of existing automatic tools that per-
form formal verification of hardware, such as VCEGAR [12], BAT [14], UCLID
[4], and VIS [10].

The rest of the paper is organized in four sections. Section 2 reviews Reveal’s
CEGAR framework, and Sections 3 and 4 describe our benchmark test cases
and how they were verified using the Reveal system. Finally 5 summarizes the
paper’s conclusions.

2 The Reveal Verification System

Figure 1 depicts the flowchart of the reveal system. Reveal performs checks of
safety properties on hardware designs described in the Verilog hardware descrip-
tion language (HDL). A typical usage scenario involves providing two Verilog
descriptions of the same hardware design, such as a high-level specification and
a detailed implementation, and checking them for functional equivalence. Reveal
adopts the CEGAR-based approach of Andraus et al. [1], mainly involving:

Abstraction. The goal of abstraction is to obtain a compact representation of
the design for which formal property checking is more likely to terminate (i.e.,
to scale both in time and space) than if applied directly on the original de-
sign. Reveal performs datapath and memory abstraction by replacing datapath
units with uninterpreted functions and predicates, while leaving the control logic
unabstracted. This allows reasoning about the complex control of the design,
while avoiding the complexity introduced by datapath elements. Previous work
(e.g. [5]) showed that it is possible to prove many useful (equivalence) properties
if the abstract model is expressed in the logic of Equality with Uninterpreted
Functions (EUF), a quantifier-free fragment of first order logic. Scalability can
be further improved by abstracting to CLU, which extends EUF with counting
arithmetic and lambda expressions for memories [4].

Reveal: A Formal Verification Tool for Verilog Designs 345

Concrete
Design

Abstract the
Design

Abstract Model

Property
holds

Design isDesign is
CorrectCorrect

Abstract
Counterexample

BugBug
TraceTrace

learnrefine

Property User
Lemmas

Explain
Infeasibility

Feasible

Property
fails

In
fe

as
ib

le

Explain
Violation

Lemmas
Database

Check
Property

Check
Feasibility

Refine the Abstraction

Fig. 1. The Reveal Flow

Table 1. Benchmark Statistics

Name
Verilog
Lines

Verilog
Signals State Bits

Sorter 79 30 35 to 1027
DLX 2.4x103 399 1.0x1011

Risc16F84 1.2x103 169 1.0x105

X86 1.3x104 1.0x103 5.8x103

Property Checking. Formal reasoning in the EUF or CLU logics determines if
the abstracted design satisfies the specified property. Early EUF/CLU solvers
convert the formula to an equi-satisfiable propositional formula and use an off-
the-shelf Boolean solver to check for satisfiability. In contrast, Satisfiability Mod-
ule Theories (SMT) solvers (e.g. YICES [9]) operate on these formulas directly
by integrating specialized theory solvers within a backtrack propositional solver.
SMT solvers, thus, are able to take advantage of the high-level semantics of the
non-propositional constraints, while at the same time benefiting from the pow-
erful reasoning capabilities of modern propositional SAT solvers. Reveal uses the
YICES solver [9][16] in the property checking step, allowing the integration of
the empty theory (consistency of term equality), UF theory, and integer theories
(for counting).

Refinement. An abstract counterexample, demonstrating that the property is
violated by the abstract model, has to be checked for feasibility on the concrete
model. If feasible, a concrete counterexample trace is generated. If not, the coun-
terexample is spurious, and is refuted in the abstract model by adding a blocking
clause, similar to learning in SAT, and the process iterates. Reveal avoids the
näıve refutation of one counterexample at a time, which usually leads to very
slow convergence, rendering the approach impractical. Instead, one or more suc-
cinct explanations are used in each iteration to explain infeasibility and refine
the abstraction for the next round of checking. These explanations, referred to as
lemmas, are universal facts extracted from the concrete model to refute current
or future spurious counterexamples and can thus be stored in a lemma database
and re-used across invocations of Reveal on the same (family of) design(s). Pre-
liminary results of this scheme [3] show that the convergence of the refinement

346 Z.S. Andraus, M.H. Liffiton, and K.A. Sakallah

loop is contingent upon the way these lemmas are derived. Reveal employs a
reasoning engine that combines YICES with CAMUS [11] during feasibility and
refinement. The CAMUS tool can derive one, multiple, or all minimally unsatisfi-
able subsets (MUSes for short) of constraints from a set of infeasible constraints.
Finding MUSes allows for trimming the infeasibility explanations, effectively en-
larging their footprint in the abstract solution space. Finding multiple MUSes
means learning multiple lemmas in each refinement iteration and yielding a sig-
nificant speedup in the convergence of the refinement loop. Finally, scalability
is further improved by finding MUSes with the use of the bit-vector theory in
YICES. Earlier methods (e.g. [3]) use a bit-blasting approach in which the ab-
stract counterexample is encoded with propositional constraints and passed to a
propositional solver. In contrast, reasoning at the word-level with the bit-vector
theory in YICES allows much more efficient derivation of MUSes (i.e., lemmas).

3 Case Studies

We performed our experiments on the four designs which we briefly describe in
this section. Table 1 summarizes the design statistics. Interested readers can find
more details in [2].

Sorter Case Study. The Sorter design implements two versions of an algorithm
that sorts four bit-vectors. The computation delay in both versions is 3 cycles.
The property we verified is the equality between corresponding outputs in the
two versions. All the bit-vectors in the two units, including the inputs and the
outputs, have bit-width W, which we vary from 2 to 64 to see the effect of
the datapath width on the scalability of each tool. Reveal’s performance on the
Sorter is presented in Figure 2, and will be analyzed in Section 4.

DLX Case Study. DLX is a 32-bit RISC microprocessor [11]. Its salient features
include a 32-bit address space with separate instruction and data memories, a
32-word register file with two read ports and one write port, and 38 op-codes for
arithmetic, logical, and control operations. Our case study involved proving the
equivalence of two versions of DLX [17]. The first version, which we will refer to
as DLXSpec, is a single-cycle implementation of the instruction set architecture
(ISA) and serves as the architectural specification of the microprocessor. The
second version, labeled DLXImpl, is a standard 5-stage pipeline.

RISC16F84 Case Study. This design is an implementation of the Risc16F84
microcontroller [19]. It has a 213x14-bit instruction memory, a 29x8-bit data
memory, 34 op-codes, and a 4-stage pipeline. Similarly to the DLX case, we de-
note the implementation and specification by OCImpl and OCSpec respectively.
OCImpl processes one instruction every four cycles, while OCSpec needs one
cycle to process each instruction.

X86 Case Study. The X86 design is an open source RTL Verilog model de-
veloped at IIT Madras that implements Intel’s IA-32 ISA [18]. The design’s

Reveal: A Formal Verification Tool for Verilog Designs 347

Decoder module is responsible for fetching an instruction prefix from memory,
finding the total length of the instruction, and fetching and decoding the rest
of the instruction. We verified the property that the Decoder activates the cor-
responding decode unit (Integer versus Floating Point) when the instruction is
confined to a set of 6 integer and floating point op-codes.

4 Results and Analysis

We verified a number of buggy and bug-free variations of each of the aforemen-
tioned designs. The buggy versions were obtained by injecting errors in the RTL
description. These variations are described in Table 2. Columns labeled T, I, and
L, describe, respectively, total run-time (seconds), number of iterations, and to-
tal number of refinement lemmas (when applicable). ‘TO’ stands for ”Time Out”
(600s). Finally, the smallest run-time is highlighted in bold in each row; there
can be multiple in each row when the difference is insignificant.

0.01

0.1

1

10

100

1000

2 8 14 20 26 32 38 44 50 56 62

Datapath Bit Width

V
er

if
ic

at
io

n
 t

im
e,

 s
ec

.

VIS
Reveal(B)
VCEGAR
VIS(BMC)
UCLID
BAT
Reveal(C)

Fig. 2. Runtime Graphs for Sorter

// DLX
define BEQ 4
define op 31:26
initial OR3 = 32'd0
case IR3[`op] `BEQ: ...

// X86
op2 = 32'd0;
if (…) op2[16:0] =
 instrSeq[31:16];

Fig. 3. Verilog Code Frag-
ment from DLX and X86

Reveal’s modes were classified by a one-, two-, or three-letter code that in-
dicates the abstraction and refinement options used. Abstraction options are
labeled B (bit-level, i.e., no abstraction), C (CLU abstraction), and E (EUF
abstraction). Refinement options are labeled V (refinement via refuting the ab-
stract violation) and L (refinement with lemmas). For lemma refinement, S de-
notes refinement with a single lemma per iteration, while M denotes refinement
with multiple lemmas. For example, the label CLM means CLU abstraction and
refinement with multiple lemmas, whereas EV means EUF abstraction and re-
finement with the negation of the abstract violation.

348 Z.S. Andraus, M.H. Liffiton, and K.A. Sakallah

Our empirical case study compares the performance of Reveal against the ver-
ification systems UCLID, BAT, VCEGAR, and VIS on a 2.2 GHz AMD Opteron
processor with 8GB of RAM running Linux. UCLID [4] allows modeling of the
datapath with abstract terms, and memories with Lambda expressions. BAT [14]
models memories with set and get functions for reads and writes, respectively,
but models the datapath with finite-length bit-vectors. VCEGAR [12] performs
word-level predicate abstraction on the Verilog input but does not abstract mem-
ory arrays. Finally, VIS [10] uses, by default, bit-level reachability analysis to
verify invariants. It can also be used in two special modes: one that performs
bounded model checking of safety properties (denoted herein by VIS(BMC)),
and another that performs invariant checking with a CEGAR algorithm based
on hiding registers [15] (denoted by VIS(AR)).

B

T I T I T I T I L T I L T

D1 Bug-free DLX TO >1507 1.92 9 1.8 8 0.6 4 8 1.0 6 12 TO
D2 Pipeline "Stall" s-a-1 0.11 1 0.15 1 0.12 1 0.11 1 0 0.1 1 0 0.21
D3 Incorrect 'jump' address 3.16 45 2.22 11 1.16 5 1.13 3 5 1.1 4 8 6.7

R1 Bug-free RISC16F84 TO >1767 TO >1204 TO >1085 257 93 185 148 68 170 209
R2 Floating "carry-in" signal 0.79 8 56 20 TO >1881 72 44 13 40 33 39 15.2
R3 "aluout_zero_node" s-a-1 115 654 50 123 121 311 2.6 5 15 27.3 40 73 11.6

X1 Bug-free X86 TO >388 TO >1158 TO >945 36.5 40 104 60.4 19 96 TO
X2 enInt and enFP swapped TO >461 TO >1062 TO >1046 30.5 78 161 103 24 86 TO

X3 Wrong FSM transitions 1.98 2 1.95 2 1.96 2 2.0 2 6 2.1 1 0 2.72
X4 CMP activates the FP unit TO >308 TO >847 TO >1252 23 12 41 58.7 7 43 TO

Test Case/Version
CLMCV ELS CLS ELM

Fig. 4. Verification results for the DLX, RISC16F84, and X86 variations

4.1 Datapath Abstraction

The merits of datapath abstraction are evident in all verification runs. In particu-
lar, the performance of Reveal(C) and UCLID on the Sorter example is oblivious
to the datapath bit-width W (Figure 2). In both cases, the abstract model is
unaltered when the datapath bit width is changed; thus, the time needed to
verify the abstract model is constant. Furthermore, the only interaction between
the datapath and the control logic in this design involves bit-vector inequali-
ties, allowing the CLU logic to prove the property without any refinement. The
performance of the remaining tools degrades as W increases:

– VCEGAR takes 6.1 seconds to prove the property for W=2 as it incremen-
tally discovers between 33 and 40 predicates within 58 to 130 iterations.
Additionally, run-time grows exponentially with W. We suspect that the
reason behind this is the expense of simulating the abstract counterexample
on the concrete design in each refinement iteration, as well as the repeated
generation of the abstract model each time a new predicate is added.

– The run-times of Reveal(B), VIS, and VIS(BMC) degrade rapidly as the bit
width is increased. The run-times of VIS(AR) are similar to those of VIS
and were removed from the graph to avoid clutter.

Reveal: A Formal Verification Tool for Verilog Designs 349

– BAT’s performance degrades with increasing W, but BAT’s reduction of the
verification formulas to CNF appears to play an important role in keeping
the run-time low.

Note that Reveal(B) (in Table 2) has the worst performance, though surpris-
ingly it is able to terminate on a number of buggy versions. This is attributed
to the ability of the bit-vector solver in YICES to efficiently find a satisfying
assignment and thus its ability to find abstract counterexamples. However, the
rest of the cases confirm that proving that a property holds is intractable without
abstraction.

Finally, comparing Reveal(C) and Reveal(E) sheds some light on the difference
between abstraction to EUF or CLU. In particular, Reveal(C) converges faster
than Reveal(E) in terms of refinement iterations in the X86 and RISC16F84
cases. This is attributed to the heavy use of counters in these designs. Still,
Reveal(E) outperforms Reveal(C) in most cases since the latter uses an integer
solver which impacts overall performance.

4.2 Refinement Convergence

The performance of the various options in Reveal demonstrate the role of au-
tomatic refinement. In particular, Table 2 shows that the use of lemmas for
refinement (modes ELS, CLS, ELM, and CLM) is far superior to refuting one
counterexample at a time (mode CV). Also, using multiple lemmas in each re-
finement iteration (modes CLM and ELM) outperforms refinement with a single
lemma at a time (modes ELS and CLS). The R2 case shows an interesting out-
lier; Reveal(CV) is significantly faster than any version that refines with lemmas.
This is due to the heuristic nature of the satisfiability search for finding a bug.
Any search, regardless of the refinement used, could ”get lucky” and find a bug
early, though only rarely.

To further assess the effect of lemmas on the convergence of the algorithm,
we ran Reveal(C) on a version that combines the three bugs present in X2, X3,
and X4. This was an iterative session, in which Reveal was re-invoked after cor-
recting each reported bug. We tested Reveal in two modes: a mode in which
learned lemmas are discarded after each run and a mode in which learned lem-
mas are saved and used across runs. The total run-time for the first mode was
232 seconds, whereas the run-time in the second mode was 166 seconds, a 40%
improvement in speed. This confirmed our conjecture that lemmas discovered in
one verification run can be profitably used in subsequent runs. The verification
of real-life designs involves tens to hundreds of invocations of the tool, thus a
significantly larger speed-up could be seen in practice.

4.3 Refinement Lemmas

We traced the source of refinement lemmas back to the original Verilog code
involving control/datapath interactions. For example, most of the lemmas in the
DLX example were related to the pipeline registers and control logic in DLXImpl,

350 Z.S. Andraus, M.H. Liffiton, and K.A. Sakallah

such as the lemma (IR3 = 32′d0) → (IR3 [31 : 26]) �= 6′d4, which states that
it’s not possible to extract a non-zero field from a zero bit-vector. The source of
the lemma is in Figure 3 and it involves IR3; the initial abstraction lost the fact
that IR3[31:26] can not be equal to 4, and it found a spurious counterexample
that executed the BEQ instruction. Another example is the set of lemmas in
the RISC16F84, most of which are due to the variable opcode width feature,
wherein the opcode field can be k-bits wide for any k ∈ K = {2, ..., 7, 14}.
For instance, the opcode of the goto instruction is IR[13:11]=3’b101, while the
opcode for addlw is IR[13:9]=5’b11111. The encoding guarantees that only one
opcode is active at any given time. This information is lost when abstracting
the bit-vector extraction operation. This results in the occurrence of lemmas of
the form (IR [13 : k1] = v1) → (IR [13 : k2] �= v2) for values v1 �= v2 and distinct
indices k1, k2 ∈ K.

It is worth mentioning that our experience with this flow shows that refine-
ment lemmas can be very simple, or very complex, depending on the design and
the property. In either case, the automatic discovery and (on-demand) refine-
ment of only those relevant ones is an important enabler for the scalability of
this approach.

4.4 Discovering Genuine Bugs

In addition to discovering artificially introduced bugs (e.g. those described in
Table 2), Reveal was able to discover a number of genuine bugs. In particular,
the RISC16F84 design includes the Verilog expression {1’b0,aluinp2 reg,c in} in
OCImpl, which uses a floating signal c in as the carry-in bit to an 8-bit adder.
In contrast, OCSpec performs addition without any carry-in bit. Reveal thus
produces a counterexample showing the deviation with c in assigned to 1. The
unit designer acknowledged this problem and asserted that the simulation carried
out for this design assumed c in=0. An additional coding problem was discovered
in X86; the RTL description includes the code given in Figure 3, which extracts
a 16-bit displacement value from the instruction stream and assigns it to a 17-bit
register. Most synthesis tools will zero-extend the RHS expression to make the
sizes consistent, in which case the resulting model is still correct. Nonetheless,
such an error may indicate additional problems in other units of the design.

4.5 Performance of VIS, VCEGAR, and UCLID

VIS, VCEGAR, and UCLID were not able to successfully terminate on the DLX,
RISC16F84, or X86 designs. In some cases, the tool times out or exceeds available
memory, and in others, an internal error causes unexpected termination. Details
of these experiments can be found in [2].

5 Conclusions

We examined the performance of Reveal, a CEGAR-based formal verification
system for safety properties in general, and equivalence in particular. Reveal is

Reveal: A Formal Verification Tool for Verilog Designs 351

particularly suited for the verification of designs with wide datapaths and com-
plex control logic. Datapath abstraction allows Reveal to focus on the control
interactions making it possible to scale up to much larger designs than is possible
if verification is carried out at the bit level. Additionally, Reveal’s demand-based
lemma generation capability eliminates one of the obstacles that had complicated
the deployment of formal equivalence tools in the past. From a practical per-
spective, hands-free operation and support of Verilog allow Reveal to be directly
used by designers. These capabilities were demonstrated by efficiently proving
the existence of bugs, or proving the lack thereof, in four Verilog examples that
emulate real-life designs both in terms of size and complexity.

Acknowledgements

This work was funded in part by the DARPA/MARCO Gigascale Systems Re-
search Center, and in part by the National Science Foundation under ITR grant
No. 0205288.

References

1. Andraus, Z., Liffiton, M., Sakallah, K.: Refinement strategies for verification meth-
ods based on datapath abstraction. In: Proc. of Asia and South Pacific Design
Automation Conference, pp. 19–24 (2006)

2. Andraus, Z., Liffiton, M., Sakallah, K.: CEGAR-based formal hardware verification:
a case study. Technical Report CSE-TR-531-07, University of Michigan (2007)

3. Andraus, Z., Sakallah, K.: Automatic abstraction and verification of Verilog mod-
els. In: Proc. of Design Automation Conference, pp. 218–223 (2004)

4. Bryant, R., Lahiri, S., Seshia, S.: Modeling and verifying systems using a logic
of counter arithmetic with Lambda expressions and uninterpreted functions. In:
Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 78–92. Springer,
Heidelberg (2002)

5. Burch, J., Dill, D.: Automatic verification of pipelined microprocessor control. In:
Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 68–80. Springer, Heidelberg (1994)

6. Clarke, E., Grumberg, O., Long, D.: Model checking and abstraction. ACM Trans-
actions on Programming Languages and Systems (TOPLAS) 16(5), 1512–1542
(1994)

7. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Conference
Record of the Sixth Annual ACM SI PLAN-SIGACT Symposium on Principles of
Programming Languages, pp. 238–252 (2006)

8. Das, S., Dill, D.: Successive approximation of abstract transition relations. In: IEEE
Symposium on Logic in Computer Science, pp. 51–58 (2001)

9. Dutertre, B., de Moura, L.: A fast linear arithmetic solver for DPLL(T). In: Ball,
T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg
(2006)

10. Brayton, R., et al.: VIS: a system for verfication and synthesis. In: Alur, R., Hen-
zinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 428–432. Springer, Heidelberg
(1996)

352 Z.S. Andraus, M.H. Liffiton, and K.A. Sakallah

11. Hensessy, J., Patterson, D.: Computer Architecture: A Quantitative Approach, 2nd
edn. Morgan Kaufmann, San Francisco (1996)

12. Jain, H., Kroening, D., Sharygina, N., Clarke, E.: Word-level predicate abstrac-
tion and refinement for verifying RTL Verilog. In: Proc. of Design Automation
Conference, pp. 445–450 (2005)

13. Kurshan, R.: Computer-Aided Verification of Coordinating Processes: The
Automata-Theoritic Approach. Princeton University Press, Princeton (1999)

14. Manolios, P., Srinivasan, S., Vroon, D.: Automatic memory reductions for rtl model
verification. In: Proc. of Int’l. Conference on Computer-Aided Design, pp. 786–793
(2006)

15. Wang, F., Li, B., Jin, H., Hachtel, G., Somenzi, F.: Improving Ariadne’s Bundle by
following multiple threads in abstraction refinement. In: Proc. of Int’l. Conference
on Computer-Aided Design, pp. 408–415 (2003)

16. http://yices.csl.sri.com/
17. http://www.eecs.umich.edu/vips/stresstest.html
18. http://vlsi.cs.iitm.ernet.in/x86 proj/x86Homepage.html
19. http://www.opencores.org

http://yices.csl.sri.com/
http://www.eecs.umich.edu/vips/stresstest.html
http://vlsi.cs.iitm.ernet.in/x86_proj/x86Homepage.html
http://www.opencores.org

A Formal Language for
Cryptographic Pseudocode

Michael Backes1,2, Matthias Berg1, and Dominique Unruh1

1 Saarland University, Saarbrücken, Germany
2 MPI-SWS

Abstract. Game-based cryptographic proofs are typically expressed us-
ing pseudocode, which lacks a formal semantics. This can lead to ambigu-
ous specifications, hidden mistakes, and even wrong proofs. We propose
a language for expressing proofs that is expressive enough to specify
all constructs occurring in cryptographic games, including probabilis-
tic behaviors, the usage of oracles, and polynomial-time programs. The
language is a probabilistic higher-order lambda calculus with recursive
types, references, and support for events, and is simple enough that re-
searchers without a strong background in the theory of programming
languages can understand it. The language has been implemented in the
proof assistant Isabelle/HOL.

1 Introduction

A salient technique for formulating cryptographic security proofs are so-called
sequences of games. In such a proof, a desired security property is first formulated
as a probabilistic experiment, the initial game.1 Usually, this game comprises the
adversary as well as the protocol under consideration and describes the actions
that the adversary may perform. The output of the game denotes if the adversary
performs a successful attack (where the notion of a successful attack depends on
the security notion under consideration).

To find the probability of an attack, the game is then transformed in a series
of steps, and for each step it is shown that the new game is in some way similar
to the previous one. E.g., it may be shown that the transformation changes the
probability of an event at most by a small amount ε. The last game in the
sequence usually has a trivial form in which the probability of an attack can be
directly bounded using a complexity-theoretic assumption. We refer to [32,7] for
a thorough overview of this technique.

This game-based technique leads to well-structured proofs. Ideally, each of
the transformations can be verified individually without having to reason about
other transformations. This simplifies detecting potential mistakes in the proof
and where these mistakes occur. Further, since the individual transformations
are typically very simple (there is a trade-off between the complexity of the

1 Games in the sense of this technique must not be confused with game-theoretic
games. In our context a game is just the description of some probabilistic process.

I. Cervesato, H. Veith, and A. Voronkov (Eds.): LPAR 2008, LNCS 5330, pp. 353–376, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

354 M. Backes, M. Berg, and D. Unruh

transformations and the length of the overall game sequence), and since the
correctness of each transformation can be proven independently, the game-based
proof technique should constitute an ideal candidate for formal verification of
complexity-based cryptographic proofs.

In addition to structuring for cryptographic proofs, games are also the most
popular method for formulating security properties in cryptography. This com-
bines nicely with the game-based proof technique as the security definition al-
ready describes the initial game of the game sequence. Thus no error-prone
switch of paradigm is needed at the beginning of a game-based proof.

In practice, however, the advantages of game-based proofs are mitigated by
the following limitation: in virtually all cryptographic publications, the games
are either described in words, or—at best—in some ad-hoc pseudo-code. In both
cases, no formal semantics of the language used are specified. This leads to three
grave disadvantages:
– Ambiguity of definitions. As cryptographic games are used to provide security

definitions, the lack of a formal semantics may result in different interpre-
tations of the details of a given game, and hence in an ambiguous security
definition. For example, if a subroutine representing an adversary is invoked
twice, it might be unclear whether the adversary may keep state between
these two invocations. The author of the security definition may explicitly
point out these ambiguities and resolve them; this, however, assumes that
the author is aware of all possible interpretations.

– Mistakes may be hidden. The correctness of a cryptographic proof may be
much harder to verify: Since the correctness of a transformation usually
depends on the precise definition of the game, the reader of the proof may not
be sure whether the transformation is indeed incorrect or whether the reader
just misinterpreted the definition of the game. Moreover, it may happen that
for a sequence of three games A,B,C, depending of the exact definition of
B, either the transformation from A to B, or that from B to C is incorrect.
However, if the transformations are verified individually, in each case there
is some interpretation of the meaning of B that lets the corresponding proof
step seem correct.

– Unsuited for machine-assisted verification. Finally, if we are interested in
machine-assisted verification of cryptographic protocols, the semantics of
the games need to be defined precisely since a computer will not be able to
reason about a semantics-free pseudo-code.

1.1 Our Contribution

We overcome these limitations by defining a language for formalizing crypto-
graphic games. Our language has the following properties:

– Expressiveness. The language should be able to express all constructs that
usually occur in the specification of cryptographic games, including proba-
bilistic behaviors, the usage of oracles, and potentially continuous probability

A Formal Language for Cryptographic Pseudocode 355

measures for reasoning about, e.g., an infinitely long random tape for estab-
lishing information-theoretic security guarantees. From a language perspec-
tive, oracles are the higher-order arguments that are passed to a program.
We consequently propose a higher-order functional probabilistic language
to deal with sophisticated objects such as oracles (functional since func-
tional languages deal with higher-order objects much more naturally than
imperative languages). A purely functional language, however, is insufficient,
because functional reasoning would not allow oracles to keep state between
their invocations (and passing on state as explicit inputs would result in se-
crecy violations, e.g., an oracle would output its secret key to the adversary).
We remedy this problem by including ML-style references in the language.
Finally, events constitute a common technique in game-based cryptographic
proofs for identifying undesirable behavior. We thus explicitly include events
in the language. The semantics is operational in order to be able to introduce
the notion of polynomial runtime.

– Simplicity. The definition of the language should be as simple as possible
so that researchers without a strong background in the theory of program-
ming languages can understand at least its intuitive meaning. In particular,
the language should also have a syntax that is readable without a detailed
introduction into the language.

– Mechanization. Our language has been implemented in the proof assistant
Isabelle/HOL so that it is possible to use the power of its logic to reason
about the language and to formally verify proofs. Moreover, we formalize sev-
eral common relations between games in Isabelle/HOL, such as denotational
equivalence, observational equivalence, and computational indistinguishabil-
ity. We expect our language and these game transformations to culminate
in a tool that enables cryptographers to check the validity of their proofs in
a machine-assisted manner without having to bother about the details and
intricacies of our language.

1.2 Related Work

The analysis of cryptographic protocols using formal techniques has received
considerable attention [25,23,17,21,29,33,1,6]. These approaches, however, only
provide guarantees with respect to a symbolic model that abstracts from the
actual cryptography by means of a term algebra, so-called Dolev-Yao models.
While there has been a substantial amount of work on carrying these results
over to the computational model [2,18,4,19,24,3,12,10], these works only apply
to standard cryptographic operations such as encryption schemes and digital
signatures. They do, however, support concise reasoning about low-level crypto
proofs, which is the goal of our work.

The work that comes closest to our framework is CertiCrypt [5], which is a
framework for reasoning about game-based cryptographic proofs in the Coq proof
assistant [34]. Their language takes into account complexity-theoretic issues of
programs, permits using variables, and has a library for expressing common

356 M. Backes, M. Berg, and D. Unruh

security properties such as IND-CPA for encryption schemes as well as compu-
tational hypotheses such as the Decisional Diffie-Hellman (DDH) assumption. In
contrast to our work, their language, however, is not higher-order, and it is re-
stricted to discrete probability measures; therefore, reasoning about oracles and
information-theoretic security guarantees is infeasible. These two shortcomings
apply to the work discussed below as well.

CryptoVerif [8] is a tool to support game-based cryptographic proofs. The un-
forgeability of the FDH signature scheme was asserted by the tool assuming the
existence of one-way permutations [9]. CryptoVerif differs substantially from our
framework in that it aims at generating the sequence of games itself, based on a
collection of predefined transformations, while we aim at checking if a sequence of
games provided by the user is computationally sound. These approaches should
thus be considered complementary instead of competing.

Other approaches for reasoning about game-based cryptographic proofs have
been presented in [11,28], where they were used to establish the security of the
ElGamal encryption scheme provided that the DDH assumption holds. The for-
malism in [11] is not powerful enough to fully express the security properties of
interest, e.g., notions such as negligible probability or polynomial-time adver-
saries cannot be expressed. The formalism in [28] models adversaries immedi-
ately as Coq functions. The framework is hence only capable of offering limited
support for proof automation because there is no special syntax for writing
games that could be conveniently used to mechanize syntactic transformations.
Moreover, the formalism ignores complexity-theoretic issues such as defining a
polynomial-time adversary.

The creation of an automated tool to help with the mundane parts in proofs
is advocated in [15]. The language presented in this paper is a step towards the
completion of this goal.

1.3 Paper Outline

The paper is organized as follows. Section 2 introduces the notation that we
will use throughout the paper. Section 3 provides a primer in probability the-
ory. Section 4 defines the syntax of the language and its semantics. Polynomial
runtime is formalized in Section 5. Section 6 defines relations over programs
such as computational indistinguishability. Section 7 presents some fundamen-
tal tools for reasoning about our language. We show how to embed the language
in higher-order logic in Section 8, and we provide examples of common crypto-
graphic constructs expressed in our language in Section 9. Section 10 concludes
and outlines future work.

2 Notation

Let � be the natural numbers including 0, � the real numbers, �+ the nonneg-
ative real numbers including 0. Let � denote the set of Booleans. The powerset
ofX is denoted by 2X .X×Y is the Cartesian product ofX and Y , andX → Y is

A Formal Language for Cryptographic Pseudocode 357

the function space from X to Y . For a set Y , we write f−1(Y) for {x.f(x) ∈ Y }.
By λx.p we denote the function mapping a to p′ where p′ results from replacing
x by a in p. (E.g., λx.x+ x maps a to 2a.) We write [a1, . . . , an] for lists (finite
sequences) and [] for the empty list. Given lists a, b, by a@b we denote the
concatenation of a and b. By x :: a we denote the list a with the element x
prepended.

We further summarize the notation introduced in Section 3 below: We write
ΣX for the canonical σ-algebra over X , f(µ) for applying f to a distribution µ,
and δx for the probability distribution that assigns probability 1 to x. f◦g denotes
the composition of two kernels, and ∀x ∈ µ. P (x) denotes the fact that P (x)
holds almost surely with respect to the distribution µ. Given a distribution µ and
a measurable set E, by µ|E we denote the distribution that sets the probability
of all events outside E to 0.

3 A Primer in Probability Theory

We give a compact overview of measures and probability theory in this section.
For a detailed overview, we refer to a standard textbook on probability theory,
e.g., [16]. A σ-algebra over a set X is a set ΣX ⊆ 2X such that ∅ ∈ ΣX , and
A ∈ ΣX ⇒ (X \ A) ∈ ΣX , and for any sequence (Ai)i∈�, Ai ∈ ΣX we have
that

⋂
iAi ∈ ΣX . The smallest σ-algebra containing all A ∈ G for some set G

is called the σ-algebra generated by G. We assume that there is some canonical
σ-algebra ΣX associated with each set X ; we call the sets A ∈ ΣX measurable
sets. We assume that ΣX×Y is generated by all A × B with A ∈ ΣX , B ∈ ΣY .
ΣX→Y is generated by all sets {f.f(x) ∈ A} for x ∈ X , A ∈ ΣY . For countable
X , ΣX = 2X . Σ� is generated by all sets [a, b] with a, b ∈ � (Borel-algebra);
Σ�+ is defined analogously.

A measure over X is a function µ : ΣX → �
+ with the following proper-

ties: µ(∅) = 0 and for a pairwise disjoint sequence (Ai)i∈�, Ai ∈ ΣX , we have
µ(
⋃

iAi) =
∑

i µ(Ai) (countable additivity). We call µ a probability measure
if µ(X) = 1 and we call it a subprobability measure if µ(X) ≤ 1. Intuitively,
µ(E) denotes the probability that some value x ∈ E is chosen. A subprobability
measure can be used to model the output of a program that does not terminate
with probability 1, then µ(X) is the probability of termination. The words mea-
sure and distributions are synonyms. We write δx for the Dirac measure, i.e.,
δx(E) = 1 if x ∈ E, and δx(E) = 0 otherwise. Given a measure µ on X and a set
E ∈ ΣX , we define the restriction of µ to E as µ|E(A) := µ(A ∩E). Intuitively,
µ|E sets the probability of all events outside E to 0.

A function X → Y is called measurable if for all E ∈ ΣY , we have f−1(E) ∈
ΣX . We can apply a measurable function f to a measure µ by defining µ′ := f(µ)
by µ′(E) := µ(f−1(E)). Intuitively, f(µ) is the distribution of f(x) when x is
chosen according to µ.

A function f : X → (ΣY → �
+) is called a kernel if for all x ∈ X we have that

f(x) is a measure and if for all E ∈ ΣY we have that the function fE : X → �
+,

fE(x) := f(x)(E) is measurable. Intuitively, a kernel is a probabilistic function

358 M. Backes, M. Berg, and D. Unruh

from X to Y that assigns every input x ∈ X a distribution over outputs in Y .
We call f a Markov kernel, if f(x) is a probability measure for all x ∈ X , and
we call f a submarkov kernel if f(x) is a subprobability measure for all x ∈ X .

For any measurable function f : X → � and any distribution µ over X , we
can define the (measure) integral

∫
f(x) dµ(x). Intuitively,

∫
f(x) dµ(x) is the

expected value of f(x) if x is chosen according to the distribution µ. We refer
to [16] for the formal definition of the integral. If f is bounded from below and
above, then the integral always exists (and is finite).

Given a kernel g from Y to Z and a measure µ on Y , we define the application
g ·µ by (g ·µ)(E) :=

∫
g(w)(E)dµ(w). Intuitively, g ·µ is the distribution resulting

from choosing x according to µ and then applying the probabilistic function g.
Given a kernel f from X to Y , we can define the (kernel) composition g ◦ f by
(g ◦ f)(x) := g · (f(x)).

If µ is a measure over X and P : X → � is a measurable function, we write
∀x←µ.P (x) to denote ∃A ∈ ΣX .µ(A) = 0 ∧ ∀x ∈ (X \A).P (x). Intuitively, this
means a value x sampled according to µ always satisfies P (x).

4 Syntax and Semantics of the Language

This section introduces the syntax and the semantics of our language. We start
by outlining the cryptographic requirements the language should fulfill, proceed
by giving the syntax of the language and conclude by giving its operational
semantics.

4.1 Cryptographic Requirements of the Language

We strive for defining a language that is powerful enough to express and rea-
son about the constructions and the definitions that are used in cryptography.
Since cryptography heavily relies on the use of probabilism, the language neces-
sarily needs to be probabilistic. Moreover, the language should not be restricted
to discrete probability measures, since discrete probability measures are not suffi-
cient for reasoning about infinite constructions such as the random selection of an
infinitely long random tape, e.g., to reason about information-theoretic security
guarantees. Oracles, i.e., objects that can be queried in order to perform tasks such
as computing the hash of some string or computing the decryption of some cipher-
text, constitute another salient concept in modern cryptography. From a language
perspective, oracles are higher-order arguments that are passed to a program. We
hence strive for a higher-order functional language – higher-order to deal with so-
phisticated objects such as oracles, functional since functional languages deal with
higher-order objects more naturally than imperative languages.

A purely functional language, however, is insufficient, because functional rea-
soning would, e.g., not allow oracles to keep state between its invocations. While
one can rewrite every program that uses state into a purely functional, equiv-
alent program without state by passing state around as an explicit object, this
approach is insufficient as well in our setting because it inadequately deals

A Formal Language for Cryptographic Pseudocode 359

with secrecy properties: Consider an adversary that accesses a decryption oracle
which, upon its first query, generates a secret key and subsequently decrypts the
queries obtained from the adversary using that key. A purely functional setting
with an explicit encoding of state would cause the oracle to return its state, i.e.,
its secret key, and the adversary had to additionally provide the key in its next
query to the oracle. Clearly, this violates the intended secrecy of the key, and
there is moreover not even a guarantee that the adversary provides the same,
correct state in all of its queries. We remedy this problem by including ML-style
references in the language.

To make the language efficiently usable from a programmer’s perspective, we
need a way to express data structures like lists and trees. Because we do not want
to commit ourselves to specific data structures, we include mechanisms that are
sufficient for the programmer to define his own type constructors. More precisely,
the language has an iso-recursive type system [30] that includes product and sum
types. This is enough to express arbitrary data types.

The use of events is a common technique in game-based cryptographic proofs.
A game raises an event whenever some – usually unwanted – condition occurs.
One then transforms this game into another game that behaves identical to the
original game, except that it may proceed arbitrarily once the event is raised.
Finally, one exploits the fundamental lemma of game-based cryptographic proofs,
which shows that the error this transformation introduces is bounded by the
probability that the event occurs. For conveniently reflecting this reasoning, we
explicitly include events in the language.

4.2 Syntax of the Language

We now introduce the syntax of our language. Following the considerations of the
previous section, the syntax relies on a probabilistic higher-order lambda calculus
with references, iso-recursive types, and events. We first give the syntax in the
following definition and proceed with explanatory comments on the syntax.

Definition 1 (Syntax). The sets of values V , of pure values V0, of programs
P , of program types T and of pure program types T0 are defined by the following
grammars (where n ∈ �, v ∈ B (see below), X ∈ ΣB, s denotes strings, and f
denotes submarkov kernels from V0 to V0):

V := value v | varn | (V, V) | ΛP | locn | inlV | inr V | foldV

V0 := value v | (V0, V0) | inlV0 | inr V0 | foldV0

P := varn | value v | fun(f, P) | ΛP | PP | locn | ref P | !P | P := P |
event s | eventlist | foldP | unfoldP | (P, P) | fstP | sndP |
inlP | inrP | case P P P

T := ValueX | T × T | T + T | T → T | Ref T | µT | Tvarn

T0 := ValueX | T0 × T0 | T0 + T0 | µT0 | Tvarn

In the following we will use the variables P for programs, V for values, T and U
for types, where V0 and T0, U0 denote pure values and pure types, respectively.

360 M. Backes, M. Berg, and D. Unruh

For a measurable set X , the type of basic values in that set is denoted ValueX .
For types T and U , T × U and T + U denote the pair type and the sum type
of T and U , respectively. T → U denotes the type of functions from T to U ,
and Ref T denotes the type of references of type T . µT introduces a binder in
De Bruijn notation [13] and Tvarn denotes the type variable with De Bruijn
index n, i.e., type variables belonging to the (n + 1)-st enclosing binder µ. For
readability we will also use the notation µx.T to denote types with named vari-
ables. Intuitively the type µx.T represents the infinite type which is obtained by
recursively substituting x with µx.T in T . The set of pure types T0 consists of
the types which do not contain function or reference types.

We do not fix the basic types that are available in our language for extensibility
but instead assume a type B that contains the basic types we expect to need. This
includes the type unit with a single element unit , and the type of real numbers
real, but also functions of type nat → bool, which can be used to encode infinite
random tapes. The construct value v is used to introduce an element v ∈ B in
programs.

Programs use De Bruijn notation [13] for variables. With var n we denote
variables with De Bruijn index n and with ΛP we denote the function with
body P . For readability we will also use the notation Λx.P to denote func-
tions with named variables. Such functions can be converted to unnamed func-
tions in De Bruijn notation using standard techniques. Additionally we write
let x = A in B for (Λx.B)A. Function application is written P1P2 where P1 is
the function and P2 is its argument. Store locations are denoted by locn, refer-
ence creation by ref P , dereferencing by !P , and assignment by P1 := P2. The
language also provides pairs (P1, P2) and their projections fstP and sndP . Sums
are constructed using inlP and inrP and destructed using the case P1 P2 P3 con-
struct. Events are raised using the construct event s. The list of previously raised
events is given by eventlist. In an iso-recursive setting (in contrast to an equi-
recursive setting) the substitutions of µT into itself (as explained above) are
made explicit using the construction unfoldP and its inverse foldP .

Programs of the form value v, varn, ΛP , and locn are considered values. If V1
and V2 are values, then so are (V1, V2), inlV1, inr V1, and foldV1. Pure values V0
are values that do not contain variables, Λ-abstractions, and locations.

Using pairs, sums, and recursive types we can define other types like
booleans and lists. For example, we set bool := Valueunit + Valueunit for
booleans and listT := µx.(Valueunit + (T × x)) for lists over type T . We can
then introduce syntactic sugar for conditionals via if P1 then P2 else P3 :=
case P1 (Λ ↑P2) (Λ ↑P3). (Here ↑P denotes the lifting of all free variables in P by
one.) The usual constructors for lists are defined by nil := fold (inl (value unit))
and P1::P2 := fold (inr (P1, P2)). We further assume the definition of a type char
of characters and a type string := list char .

Probabilism is introduced by the construct fun(f, P), where f is a submarkov
kernel from V0 to V0. It is interpreted as applying f to P , yielding a proba-
bility measure on pure values. This construct is truly expressive: It allows for
expressing every (deterministic) mathematical function g by using the kernel

A Formal Language for Cryptographic Pseudocode 361

f := λx.δg(x), but also every probabilistic function such as a coin-toss; more-
over, it is not even limited to discrete probability measures. Using this construct
we can, for example, express the random selection of infinite random tapes. We
implemented the language in the proof assistant Isabelle/HOL [27]. The restric-
tion to submarkov kernels on pure values is due to the fact that the datatype for
P must not contain functions with argument type P in Isabelle/HOL. The exten-
sion Isabelle/HOLCF [26] which includes Scott’s logic for computable functions
allows such datatypes, but we decided not to introduce this additional domain-
theoretic complexity.

The set of program rectangles P̂ is defined inductively by including {varn}
for all n ∈ �, {value v|v ∈ B} for all B ∈ ΣB, {event s} for all s, {eventlist},
{fun(f, P)|P ∈ A∧ f ∈ F} for all A ∈ P̂ and arbitrary F , {P1P2|P1 ∈ A1 ∧P2 ∈
A2} for all A1, A2 ∈ P̂ , {(P1, P2)|P1 ∈ A1 ∧ P2 ∈ A2} for all A1, A2 ∈ P̂ , and
analogously for the other cases. We define the σ-algebra of programs ΣP as the
σ-algebra generated by P̂ .

We model type environments as lists of program types. In the following let Γ
be a type environment which is used to assign types to De Bruijn indices (by
giving varn the n-th type in Γ) and let Θ be a type environment to assign types
to store locations (by giving locn the n-th type in Θ). We write Γ |Θ (P : T
to denote that program P has type T under the variable type environment
Γ and the store type environment Θ. The inference rule for this relation are
straightforward and thus omitted in this version.

4.3 Semantics of the Language

We now define the semantics of our language. Defining a denotational semantics
in the presence of a higher-order store constitutes a highly sophisticated task.
Domain-theoretic models have been developed [20,31], but they rely on a complex
machinery that turns proving even simple properties in these models into a
challenging task.

We thus define an operational small-step semantics � of the language. Since
the language contains references and is probabilistic, the reduction relation �
maps program states to distributions over program states. Furthermore, a pro-
gram state includes a list of previously raised events. We have implemented the
semantics using the proof assistant Isabelle/HOL [27], see Section 8.

Definition 2 (Program State and Reduction). A program state is a triple
P |σ|η of a program P , a list σ of programs (the store), and a list η of strings
(the events raised so far).

The reduction relation � is a relation between program states and subprob-
ability measures over program states. It is defined using evaluation contexts as
explained by the rules given in Figure 1.

The rules from Figure 1 are defined using evaluation contexts. An evaluation
context E is a program with a hole �, where another program P can be inserted,
written E[P]. Evaluation contexts have the property that the hole is always at

362 M. Backes, M. Berg, and D. Unruh

E := � | fun(f, E) | (E, P) | (V, E) | EP | V E | ref E | !E | (E := P) | (V := E)

| fst E | sndE | fold E | unfold E | inl E | inr E | case E P P | case V E P | case V V E

E[(ΛP)V]|σ|η � δE[P{V }]|σ|η Appl

E[ref V]|σ|η � δE[loc (|σ|)]|σ@[V]|η Ref

E[!(loc l)]|σ|η � δE[σl]|σ|η , if l < |σ| Deref

E[loc l := V]|σ|η � δE[value unit]|σ[l:=V]|η , if l < |σ| Assign

E[fst (V, V
′
)]|σ|η � δE[V]|σ|η Fst

E[snd (V, V
′
)]|σ|η � δE[V ′]|σ|η Snd

E[fun(f, V)]|σ|η � (λx. E[x]|σ|η)(fV) Fun

E[event s]|σ|η � δE[value unit]|σ|η@[s] Ev

E[eventlist]|σ|η � δE[η]|σ|η EvList

E[case (inl V) VL VR]|σ|η � δE[VLV]|σ|η CaseL

E[case (inr V) VL VR]|σ|η � δE[VRV]|σ|η CaseR

E[unfold (fold V)]|σ|η � δE[V]|σ|η Fold

Fig. 1. Reduction rules

the position, where the program should be evaluated first according to a call-by-
value strategy. For example to evaluate an application P1P2, we want P1 to be
evaluated first, unless it is already a value, in which case we evaluate P2. This
behavior is specified by the context rules EP and V E, i.e., either evaluate the
first part, or given that the first part is a value V , evaluate the second part.

Evaluation contexts constitute an elegant way to specify structural rules like
where the evaluation should take place first. To specify the non-structural eval-
uation steps, we use additional rules. To consider the application example again,
we have the rule that an abstraction ΛP applied to a value V , evaluates to
P{V }, where P{V } denotes the substitution of var 0 in P with V together with
the shifting of all other De Bruijn indices in P by −1. More formally, for all
evaluation contexts E, the program state E[(ΛP)V]|σ|η reduces to the Dirac
measure δE[P{V }]|σ|η (rule Appl).

The rules concerning the store are Ref, Deref, and Assign. The state
E[ref V]|σ|η reduces to δE[loc (|σ|)]|σ@[V]|η, i.e., the value V is appended to the
store and its location |σ| is returned. Assuming l < |σ|, the state E[!(loc l)]|σ|η
reduces to the l-th element of σ, namely δE[σl]|σ|η, and the assignment E[loc l :=
V]|σ|η replaces the l-th element of σ by V and returns the value unit , namely
δE[valueunit]|σ[l:=V]|η.

The pair destructors E[fst (V1, V2)]|σ|η and E[snd (V1, V2)]|σ|η reduce to the
first and the second component of the pair, respectively, namely δE[V1]|σ|η and
δE[V2]|σ|η.

The function construct E[fun(f, V)]|σ|η reduces to the distribution obtained
by applying f to V and embedding the result into the context and the state,
namely we reduce to (λx. E[x]|σ|η)(fV).

A Formal Language for Cryptographic Pseudocode 363

If an event is raised, as in E[event s]|σ|η, the event is appended to the event
list η and the unit value is returned, namely δE[valueunit]|σ|η@[s]. The program
state E[eventlist]|σ|η returns the list of previously raised events η, namely it
reduces to δE[η]|σ|η. Here η is the representation of η in the program syntax, i.e.,
a list of strings.

If the case-construct is applied to a value inlV as in E[case (inlV) VL VR]|σ|η,
then the value V is given as an argument to VL, namely δE[VLV]|σ|η. Likewise
the program state E[case (inr V) VL VR]|σ|η reduces to δE[VRV]|σ|η.

Finally we need to rule that an unfold applied to a fold cancels out, namely
E[unfold (foldV)]|σ|η reduces to δE[V]|σ|η

Similar to the relation Γ |Θ (P : T for programs, we can define a relation
Γ |Θ � P |σ|η : T which types program states. We omit the formal definition in
this version. We can now establish the uniqueness, progress and type preserva-
tion for the relation �.

Lemma 3 (Uniqueness, Progress and Preservation). Let P |σ|η be a pro-
gram state, and T a type. Then the following holds:
– Uniqueness: There exists at most one measure µ such that P |σ|η � µ.
– Progress and preservation: Assume that P is not a value and that []|Θ �
P |σ|η : T . Then there is a probability measure µ over program states such
that P |σ|η � µ and it holds that

∀(P ′|σ′|η′)←µ.∃Θ′. ([]|(Θ@Θ′) � P ′|σ′|η′ : T).

We finally define the denotation of a program. First, we define a function stepn

that intuitively performs n steps according to �. Second, the resulting measure
is restricted to values, since we only consider execution paths that terminate.
Finally, the denotation of a program is given by the supremum of such measures.

Definition 4 (Denotations of Programs). Let P |σ|η be a program state,
let step(P |σ|η) := µ if P |σ|η � µ, and step(P |σ|η) := δP |σ|η otherwise. Let
step0(P |σ|η) := δP |σ|η and stepn+1 := step ◦ stepn(P |σ|η). Let Val be the set of
program states V |σ|η where V is a value.

Given a program state P |σ|η, define µn := stepn(P |σ|η) (the distribution
of the program state after n steps), let µ̄n := µn|Val (the program state af-
ter n steps restricted to values only), and define the denotation of P |σ|η as
�P |σ|η� := supn µ̄

n (the distribution of the program state after the execution).
The denotation of a program P is defined as �P � := �P |[]|[]�.
The rules in Figure 1 only employ Dirac measures and submarkov kernels on
their right-hand side. From this we can prove that the functions step and λP.�P �
are submarkov kernels.

Lemma 5. The function step is a submarkov kernel and λP.�P � is a submarkov
kernel.

364 M. Backes, M. Berg, and D. Unruh

5 Defining Polynomial Runtime

Cryptographic proofs often only assert security if the runtime of the adversary is
bounded polynomially in the security parameter. In this section, we give a formal
definition of such polynomial-time programs in our language. Since it is unclear
what polynomial time means for programs handling non-computational objects
such as reals or arbitrary kernels, we exclude such programs from our definition
of polynomial-time programs. More precisely, we only allow programs handling
unit , booleans (or bits), and kernels performing bit-operations. Furthermore, the
notion of polynomial-time programs shall not depend on whether events have
been raised or not.

Definition 6 ((Non)Computational/Eventless). A program is a non-
computational atom iff it is of the form eventlist, value v, where v �= unit,
or fun(f, P), where f does not compute a coin-toss or one of the bit-
operations ¬,∧,∨. A program is computational iff it does not contain any non-
computational atoms. A program is eventless, iff it does not contain any programs
of the form eventlist and event s.

Since the definition of polynomial-time programs should be able to deal with
oracles, we have to exclude the time that is spent for executing the oracles,
i.e., the notion of polynomial-time shall not depend on the running-time of the
oracles the program under consideration calls. We express this by transforming
the program so that it raises a distinguished step event for every step it takes.
If the oracles do not raise events themselves, the running time of the program
is defined as the number of step events it raises. Given a program P , the step-
annotated program P ! is constructed by replacing every sub-term t of P by
(Λ↑t)(event step).

If a program takes a pair (V0, P1) as argument, we define polynomial-time in
the size |V0| of the first component. Here V0 is a pure value, e.g., the security
parameter. The argument P1 might contain other arguments that potentially
include oracles. A program is defined to be polynomial-time if the number of
step events it raises while running P ! on (V0, P1) is polynomial in |V0|.

Definition 7 (Polynomial-time Programs). A program P of type (T0 ×
T) → U is polynomial-time, iff it is computational, T0 is a pure type, and
there is a polynomial q such that for all inputs (V0, P1) where V0 is of type T0
and P1 of type T is eventless, it holds

∀n.∀(P ′|σ|η)←stepn(P ! (V0, P1)|[]|[]).#step(η) ≤ q(|V0|),

where #step(η) denotes the number of step events in the event list η.

For programs of type T0 → U that should be polynomial-time in the size of
its input, where T0 is a pure type (i.e., they do not use oracles), we define the
notion of first-order polynomial-time: A program P of type T0 → U is first-order
polynomial time, iff the program Λx.(↑P)(fst x) is polynomial-time. We call a
program an efficient algorithm, iff it is first-order polynomial time, eventless and
does not use references.

A Formal Language for Cryptographic Pseudocode 365

6 Defining Program Relations

Game-based proofs are conducted by transformation of games (or programs) such
that a game and its transformation are in some sense equivalent or indistinguish-
able. In this section, we show how several such relations can be formalized in
our framework. We start with the notion of denotational equivalence, proceed
with the notion of observational equivalence, and conclude with the notion of
computational indistinguishability.

6.1 Denotational Equivalence

Among the relations we consider, denotational equivalence constitutes the
strongest such relation. Two programs P1 and P2 are denotationally equiva-
lent if their denotations �P1� and �P2� are the same. This relation is too strong
in many cases, since many game transformations do not preserve the denota-
tion completely and introduce small errors. Consider for example two programs
P1 and P2, where P1 selects a bitstring uniformly at random from {0, 1}n and
P2 from {0, 1}n \ {0n}. It is clear that �P1� �= �P2�, but their statistical differ-
ence is very small. The following definition introduces the notion of denotational
equivalence up to some error.

Definition 8 (Denotational equivalence up to error). Two programs P1
and P2 are denotationally equivalent up to error ε, iff

max
S

{|�P1�(S) − �P2�(S)|} ≤ ε

Denotational equivalence is also too strong from another perspective: Since it
compares programs based on the distribution on program states they compute,
these states also contain store allocations, which are inaccessible after the exe-
cution. Consequently, two programs which compute the same function are de-
notationally different if, e.g., the first program uses references while the second
one does not. Moreover the terms in the distributions have to be equal syntacti-
cally. Consider the programs Λx.(Λy.y)x and Λx.x. Both compute the identity
function, but they are denotationally different.

6.2 Observational Equivalence

Comparing programs based on their behavior instead on their denotation yields
the notion of observational equivalence. The idea is that when used as part of a
larger program R, two observationally equivalent programs should be replacable
with each other without affecting the computation of R, since it is impossible
for R to observe which program it contains. Two programs P and Q are
observationally equivalent, if their behavior is equivalent in every context. Here
we restrict the set of contexts to those that assign all free variables of P and
Q and that do not contain locations outside the store. More formally, we call
a program state P |σ|η fully closed if P does not contain free variables, and P and

366 M. Backes, M. Berg, and D. Unruh

σ do not contain locations greater that |σ|. Then two programs are observation-
ally equivalent if for any context that makes them fully closed, the probability
of termination is the same.

Definition 9 (Observational Equivalence – Untyped). Two programs P
and Q are observationally equivalent if for all contexts C such that C[P]|[]|[]
and C[Q]|[]|[] are fully closed, we have that �C[P]|[]|[]�(PS) = �C[Q]|[]|[]�(PS).
Here PS is the set of all program states.

In many applications, observational equivalence with respect to arbitrary con-
texts may be too strong a notion. Often it is sufficient to consider contexts
that match the type of the programs. More precisely, we say a context has
type (Γ,Θ, T) given a hole of type (Γ ′, Θ′, T ′) if Γ |Θ (C[P] : T whenever
Γ ′|Θ′ (P : T ′. (This can be concisely formulated by adding the introduction
rule (Γ ′@Γ ′′)|(Θ′@Θ′′) (� : T ′ to the introduction rules for (and then requir-
ing Γ |Θ (C : T in this modified typing relation.)

Then we can define the typed observational equivalence as follows:

Definition 10 (Observational Equivalence – Typed). Assume two pro-
grams P and Q satisfying Γ |Θ (P : T and Γ |Θ (Q : T .

Then P and Q are observationally equivalent having type (Γ,Θ, T) for con-
texts of type T ′, if for all contexts such that C has type ([], [], T ′) for holes of
type (Γ,Θ, T) it holds that �C[P]|[]|[]�(PS) = �C[Q]|[]|[]�(PS).

Note that if Γ |Θ (P : T and C has type ([], [], T ′) for holes of type (Γ,Θ, T), we
have that []|[] (C[P] : T ′ and thus C[P]|[]|[] is fully closed. Hence Definition 10
implies Definition 9.

Observational equivalence can be used to define the notion of efficiently com-
putable functions: A function f is efficiently computable if there is an efficient
algorithm f′, such that f′ and the embedding of f as program (using the kernel
λx.δf(x)) are observationally equivalent.

6.3 Computational Indistinguishability

We finally define the notion of computational indistinguishability for families of
programs. Intuitively, two families (Pk)k∈� and (Qk)k∈� are computationally
indistinguishable if every polynomial-time program D distinguishes Pk and Qk

with at most negligible probability in k.

Definition 11 (Computational Indistinguishability). A family of pro-
grams (Pk)k∈� is of type T if []|[] (Pk : T for all k ∈ �. Let 10 := nil
and 1k+1 := value unit ::1k. Let Strue be the set of program states V |σ|η where
V = true and let Pr[P] := �P �(Strue) (the probability that P evaluates to true).
Two families (Pk)k∈� and (Qk)k∈� of type T are computationally indistinguish-
able, iff for all polynomial-time programs D the following function is negligible:

λk.|Pr[D(1k, Pk)] − Pr[D(1k, Qk)]|

A Formal Language for Cryptographic Pseudocode 367

7 Fundamental Properties of the Language

7.1 A Chaining Rule for Denotations

The representation of the semantics in Figure 1 suggests that, given a program
E[P] where E is an evaluation context, first P is reduced until it is a value V ,
and then E[V] is reduced until it becomes a value. To reflect that the program
P may branch probabilistically and execute a different number of steps in the
different branches, we will start to evaluate E[V] at different points in time. In
the notation of Definition 4, there is no value n such that µn is a distribution
over states of the form E[V]|σ′|η′ for some values V and lists σ′, η′. However, we
can establish the following result in the limit of n: If we compute the denotation
�P |σ|η� and apply to this measure the kernel that maps V |σ′|η′ to its denotation,
then the result is equal to the denotation �E[P]|σ|η�.
Lemma 12 (Chaining denotations). Let E be an evaluation context (as in
Figure 1), P a program, σ a store and η an event list. Then

�E[P]|σ|η� = (λ(V |σ′|η′).�E[V]|σ′|η′�) · �P |σ|η�
This lemma is a powerful tool for reasoning about denotational equivalence. In
particular, it directly entails that if P and Q are denotationally equivalent then
E[P] and E[Q] are denotationally equivalent as well.

7.2 The CIU Theorem

Establishing observational equivalence of two programs P and Q can be very
difficult in general because of the arbitrary context C interacting with P and Q.
It would be simpler if we were allowed to quantify only over evaluation contexts
E as in the following definition (following [22]). For simplicity, we concentrate
on the untyped case here.

Definition 13 (CIU Equivalence). Let P and Q be programs. Given a list a
of values, we write P a for the program term resulting from replacing the i-th free
variable in P by ai. We call P and Q CIU equivalent if for all evaluation con-
texts E, all lists of values a, all stores σ and all event lists η the following holds:
If P a|σ|η and Qa|σ|η are fully closed then �E[P a]|σ|η�(PS) = �E[Qa]|σ|η�(PS)
where PS is the set of all program states.

This definition is much easier to handle than Definition 9. For example, assume
two denotationally equivalent programs P and Q without free variables and
without the subterm eventlist. Then P a = P and Qa = Q, and it is easy to
verify that �P a|σ|η� = �Qa|σ|η� for all σ, η. By Lemma 12 we get

�E[P a]|σ|η� = f · �P a|σ|η� = f · �Qa|σ|η� = �E[Qa]|σ|η�
where f(V |σ′|η′) := �E[V]|σ′|η′�. Hence P and Q are CIU equivalent.

368 M. Backes, M. Berg, and D. Unruh

Theorem 14 (CIU Theorem). If P and Q are CIU equivalent, they are ob-
servationally equivalent in the sense of Definition 9.

The proof follows the ideas of [22] with some extensions to cope with the proba-
bilistic nature of our language. ([22] performs an induction over the length of the
computation of a terminating program. For probabilistic programs, this length
is not necessarily bounded.)

As an immediate corollary we get that denotationally equivalent programs P
and Q without free variables or eventlist are also observationally equivalent.2

7.3 Exchanging Lines

One of the most elementary transformations on programs is to exchange two lines
of code. Yet, in the presence of side effects, changing the order of lines will change
the order of execution which in turn will lead to a different program. In this
section, we present conditions under which two lines of code can be exchanged
in our language. Given programs A,B,C, let PABC := let a = A in let b =
B in C(a, b) and PBAC := let b = B in let a = A in C(a, b). Here we assume
that C does not directly access a and b, i.e., that it does not have free variables
with de-Bruijn indices 0 and 1. Then, if we can derive that PABC and PBAC

are observationally equivalent, we can swap A and B in arbitrary positions in a
program. The following theorem gives conditions under which this is possible.

Theorem 15 (Line Swapping). Assume that A, B, and C do not contain
locations, and that A and B do not contain free variables, and that A does not
contain eventlist or event. Then PABC and PBAC are observationally equivalent.

The basic idea of the proof is to show that when we execute first A and B
on the same initial store, resulting in stores σA and σB , the store σAB result-
ing from applying A and B successively can be computed from σA and σB as
σAB = fAB(σA, σB) for a suitable function fAB. Similarly, the store resulting
from applying first B and then A is σBA = fBA(σA, σB). By showing that the
images of fAB and fBA are identical up to a reordering of the store, we have
that exchanging A and B only leads to a reordering of the store. From this we
get that also �PABC |σ|η� and �PBAC |σ|η� are identical up to a reordering of the
store. Then, using an argument similar to the discussion after Definition 13, we
see that PABC and PBAC are CIU equivalent and thus by Theorem 14 observa-
tionally equivalent; this shows Theorem 15.

As locations usually only appear in intermediate execution steps, but not in
the programs we reason about, the requirement that A, B, and C do not contain
locations does not restrict the applicability of the theorem. However, in some
cases one might want A and B to refer to variables assigned in a surrounding
context; in this case A and B would have to contain free variables. Yet, in
this case we cannot expect PABC and PBAC to be observationally equivalent in
2 Although this might seem obvious, it does not hold for all kinds of languages. For

example, a language with reflection do not necessarily have this property.

A Formal Language for Cryptographic Pseudocode 369

general, as the free variables could be assigned locations that are then shared by
A and B. To guarantee that this cannot happen, we need to type the context
in order to guarantee that the variables are not assigned locations; this woudl
hence require a typed version of Theorem 14.

7.4 The Fundamental Lemma

A common proof technique is the removal of “bad”-event flags, i.e., events that
indicate that something unexpected has happened such as a signature was forged.
Here two games P1 and P2 are syntactically equal up to some points where
P2 raises some event bad , written P1 �{bad} P2. The formal definition of this
relation is omitted in this version. The fundamental lemma of game-based proofs
says that if P2 raises the event or diverges with probability ≤ ε, then P1 and P2
are denotationally equivalent up to error ε.

Lemma 16 (Fundamental Lemma). Let Evs be the set of program states
P |σ|η where η contains the event bad and let T0 be a pure type. Given programs
P1 and P2 of type T0, where P1 �{bad} P2, let pr bad := �P2�(Evs) (the probability
that P2 raises the event bad and terminates), pr⊥ := 1 − �P2�(PS) (the proba-
bility that P2 does not terminate), and prbad∨⊥ := prbad + pr⊥ (the probability
that P2 raises the event bad or does not terminate). If pr bad∨⊥ ≤ ε, then P1 and
P2 are denotationally equivalent up to error ε.

8 Embedding the Type System in HOL

In Section 4 we showed the semantics of the language as it is implemented in
Isabelle/HOL. The implementation allows for using the inference rules of the
typing relation (to prove that some program P has a certain type T . This proof
has to be done interactively. Isabelle provides automatic type inference for its
own higher-order logic (HOL), i.e., it is not even possible to write an ill-typed
HOL term without being rejected by Isabelle’s type checker. For example, it is
not possible to write the application f f in HOL, since f cannot have type α→ β
and type α simultaneously. On the other hand, writing the application P P for
some program P in our language is not rejected by Isabelle. The program P has
the HOL type P and the application has the HOL type P → P → P . Hence
Isabelle accepts the program P P and infers the HOL type P , even though it is
not typeable with respect to (. In the following section we depict how our type
system can be embedded into HOL. Such an embedding allows us to benefit from
Isabelle’s automatic type checking, since it prevents us from accidentally writing
ill-typed programs. Moreover, the embedding permits more crisp formulations of
theorems and definitions, because we do not need to specify all the side conditions
that require the used programs to be well-typed. Instead, these conditions come
for free. Furthermore, Definitions like Definition 10 that depend on a type are
easier to use as the corresponding type can be implicitly inferred.

We start with a brief review of higher-order logic and proceed by showing how
our programs can be embedded in this logic.

370 M. Backes, M. Berg, and D. Unruh

8.1 Higher-Order Logic

In (simply typed) higher-order logic (HOL) every value in a statement has to be
assigned some type. Types may be elementary types (e.g., booleans, integers) or
higher-order types. Examples for higher-order types are α set, which denotes the
type of sets of elements of type α (where α may again be an elementary or higher-
order type), α → β, which is the type of all functions taking values of type α to
values of type β, orα×β, which is the type of all pairs in which the first component
has type α and the second has type β. For example, in the expression 1 ∈ �, we
would have that 1 has type nat (naturals),� has type nat set, and ∈ is a function of
type nat → nat set → bool (written in infix notation). An example for a statement
that does not typecheck isM ∈M , as ∈ necessarily has type α→ α set → bool for
some α, and thus M needs to have types α and α set simultaneously for some α.
The major advantages of HOL are its ability to automatically infer types as well
as its quite simple logic. Statements written in HOL are usually shorter and easier
to read than their counterparts in untyped logics. HOL also allows to state and
prove theorems in a polymorphic way: Instead of giving a concrete type to each
variable, we can use type variables α, β, . . . in the statement of the theorem; the
intended meaning is that this theorem holds for any instantiation of these type
variables with concrete types.

An addition to the typesystem of HOL that is implemented in Isabelle/HOL,
there exist Haskell-style type classes. A type class introduces constants and con-
straints that a type has to satisfy. For example, a type class semigroup might
require that for a type α, there is a constant ◦ of type α → α → α and it
holds that ◦ fulfills the semigroup axioms. A type α that fulfills the constraints
of a type class is called an instance of that type class. Namely, the type nat is
an instance of the type class semigroup. The advantage of type classes comes
into play when considering polymorphic statements. The type variables in these
statements can then be restricted to a given type class; the statement is then
expected to hold for all instantiation of the type variables that satisfy the con-
straints of the type classes. Consider the statement x ◦ (x ◦ x) = (x ◦ x) ◦ x,
where x may have any type α. In general, this statement will be wrong as there
might be types in which ◦ is not associative. If we restrict α to the type class
semigroup, however, the statement becomes true. The main advantage of type
classes is that important side conditions (like being a semigroup) can be cap-
tured automatically using type inference and do not need to be stated explicitly,
leading to shorter and more readable statements.

8.2 Embedding Programs into HOL

After implementing the type of programs as described in Definition 1 in HOL,
all programs will be of the same HOL-type. When writing down a program
immediately in HOL, we have to explicitly ensure that the program is well-typed
with respect to the typing relation (i.e., we lose the advantage of automatic type
inference and type checking as supported in HOL. To leverage the power of HOL
to our programs, we define a type class embeddable program that introduces the
following constants and constraints for a type α:

A Formal Language for Cryptographic Pseudocode 371

– Constants prog type and prog embedding of types programtype and α →
programterm, respectively.

– The type prog type is inhabited.
– For any x (of type α) we have []|[] (prog embedding(x) : prog type.

and a type class pure program that additionally has the following constants and
constraints:

– Constant reverse prog embedding of type programterm → α.
– For any x (of type α) we have prog embedding(x) ∈ V0.
– The composition reverse prog embedding ◦ prog embedding is the identity.
– prog embedding and reverse prog embedding are measurable.

Using these type classes we can give natural definitions for prog type,
prog embedding, and reverse prog embedding, for elementary types such as nat,
bool, etc., as well as for higher-order types such as α× β and α list where α and
β are already of type class pure program. For these definitions, we can then show
that nat, bool, etc., as well as α× β and α list are of type class pure program.

Assuming that α and β are of type class embeddable program, α×β and α list
still fulfill the constraints to be of type class embeddable program. Moreover we
can define prog type and prog embedding for function types γ1 → · · · → γn,
where the γi are of type class pure program, such that γ1 → · · · → γn is of type
class embeddable program.

To embed the notion of type environments, which are lists of program types,
we introduce the type class env type that fixes the constant env types of type
T list. We define instances env nil and (α, β)env cons, for which env types is im-
plemented as being [] and prog typeα#env typesβ , respectively, where # denotes
the concatenation of HOL lists, α is of type class embeddable program and β is
of type class env type.

We now define the main type of the embedding. The type (α, β)program rep-
resents the set of all programs that have type prog typeβ under the variable type
environment env typesα and the empty store type environment. It is defined as
the set {P ∈ P|env typesα|[] (P : prog typeβ}. Here α is of type class env type
and β is of type class embeddable program.

Defining the HOL type of programs now allows for defining programs in
HOL. For example, we can define the constant Var0 , whose representation is
the program var 0. This only types in non-empty environments and has the first
element in the environment as type. In particular, the HOL type of Var0 is
((α, γ)env cons, α)program. Similarly we can define a constant Lambda that em-
beds the ΛP construct. It expects an argument P that types in a non-empty
environment, namely being assigned the type ((α, γ)env cons, β)program, and
has the return type (γ, α → β)program. Following the examples above we are
able to embed all language constructs into HOL. Exploiting these newly intro-
duced constants for writing programs, the type-checker of Isabelle will ensure
that we cannot write ill-typed programs.

In the present section, we have shown how to embed programs as defined in
Section 4 into the type system of HOL. That is, we have defined a single type P of

372 M. Backes, M. Berg, and D. Unruh

programs, then we have defined a type system (on P , and finally we have defined
the HOL-type (γ, α)program as the type of all programs of type prog typeα.
The question arises whether it is necessary to perform this three-step approach.
Instead, one might want to directly define a HOL-type α program of programs of
type α in terms of smaller types. For example, the type α×β program might be
defined as the type containing all terms (P1, P2) with P1 having type α program
and P2 having type β program. Unfortunately, this approach does not work as,
e.g., the type α×β program also has to contain programs P1P2 (applications)
with P1 of type γ → α×β program and P2 of type γ program (for any type γ).
Hence the definition of the HOL-type α×β program has to depend (i) on an
infinite number of other types and (ii) on larger types. Such constructions are
not supported by HOL and would need much more elaborate (and thus more
complicated) type systems than HOL.

8.3 Syntax

The HOL-embedding explained above offers automatic type checking, but it
is still not very convenient to actually program in this language. For exam-
ple, one does not want to write LambdaVar0 to program the identity function.
We overcome this problem by implementing parse and print translations in Is-
abelle; this allows us to program in an ML-style syntax. We are able to hide the
De Bruijn implementation of variables and use named abstractions instead. For
example the identity function above is written as ¨λx.x¨. We are also able to
express syntactic sugar for constructs that are not present in the underlying lan-
guage. In particular, we offer a sequence construct ¨P1;P2¨, a let-like construct
¨select x ← P1 in P2¨, as well as pattern matching to write, e.g., ¨λ(x, y).x¨.
(The quotes ¨P¨ inform Isabelle that P should be parsed as a program and not
as a mathematical expression.) We also need the antiquotations :P : and ˆv. The
syntax :P : tells Isabelle that P is to be parsed using the normal mathematical
syntax and is supposed to evaluate to a program. The syntax ˆv denotes that
v is to be parsed using normal mathematical syntax, and the resulting value is
to be embedded into the language (e.g., ˆtrue would take the Isabelle-constant
true and convert it to the corresponding constant in our programming language.
Finally, to capture a common pattern in cryptographic definitions, we define
Pr[B : P] as ¨select P in B¨({True}). (The probability of reducing to true.)

9 Examples

This section gives an illustrating example application of our language. We define
encryption schemes and the security notion of indistinguishability under adaptive
chosen ciphertext attacks (IND-CCA2).

An encryption scheme consists of three programs. The first program,
the key generation Gen, expects a bitstring, namely a list of booleans, as
argument and returns a pair (pk, sk) consisting of a public key pk of type α
and a secret key sk of type β. It has type (env nil, bitstring → α×β)program. The

A Formal Language for Cryptographic Pseudocode 373

second program, the encryption algorithm Enc, expects a public key and a
message of type µ as argument and returns a cipher text of type γ. It has
type (env nil, (α × µ) → γ)program. The third program, the decryption algo-
rithm Dec, computes a message from a secret key and a ciphertext. It has type
(env nil, (β × γ) → µ)program.

Having specified encryption schemes, we can define what it means for an
encryption scheme to be correct. This is the case if Gen, Enc, and Dec are first
order polynomial time and for all n ∈ � and for all messages m it holds that
if (pk, sk) is output by Gen(1n), c is the encryption of m using pk and m′ is
the decryption of c using sk, then the probability that m = m′ is 1. In Isabelle,
the definition takes the following form (using the embedding and the syntax
introduced in Section 8):

(first order polynomial time Gen) ∧
(first order polynomial time Enc) ∧
(first order polynomial time Dec) ∧
(∀nm.Pr[(ˆop =)ˆm m′ : (pk, sk) ← :Gen:(:unary parameter n:);

c← :Enc:(pk, ˆm);
m′ ← :Dec:(sk, c)] = 1)

The security notion of indistinguishability under adaptive chosen ciphertext
attacks (IND-CCA2) says that no adversary can distinguish between the encryp-
tions of two self-chosen messages better than with negligible probability, even if
it has access to a decryption oracle. The only restriction is that it is not allowed
to query for the decryption of the challenge ciphertext. We model such an adver-
sary as two programs A1 and A2, where A1 outputs the challenge message pair
(m1,m2) and a string a, which is used for communication between A1 and A2.
We call A1 a message pair adversary, if all its possible outputs consist of a triple
(m1,m2, a), where |m1| = |m2|. We define two decryption oracles. The first oracle
D decrypts every ciphertext it is queried on. It is defined as ¨λsk.λc.:Dec:(sk, c)¨.
The second oracle D ′ behaves similarly, except that it refuses to decrypt the
challenge ciphertext c′, in which case it returns a default value. It is defined
as ¨λ(sk, c′).λc.if (ˆop =)ˆc c′ then ˆdefault value else :Dec ES:(sk, c)¨. Given an
adversary consisting of two programs A1 and A2, respectively, we can define the
IND-CCA2 game for a bit b, adversaries A1 and A2, and security parameter n
as follows:

Definition 17 (IND-CCA game)

IND CCA A1 A2 b n
′ =

Pr
[
:A2: (n, pk,m1,m2, c, a, :D′:(sk, c)) :

select n← :unary parameter n ′:;
(pk, sk) ← :Gen: n;
(m1,m2, a) ← :A1: (n, pk, :D: sk);

c← :Enc:(pk, if ˆb then m1 else m2)
]

374 M. Backes, M. Berg, and D. Unruh

Here unary parameter is a function (not a program) mapping an integer n′ to a
bitstring consisting of n ones.

We then define IND-CCA2 security for an encryption scheme ES as follows.

Definition 18 (IND-CCA2-Security). For all polynomial-time programs A1
and A2, where A1 is a message pair adversary, the following function is negligible.

λn.|(IND CCA A1 A2 true n) − (IND CCA A1 A2 false n)|

This definition can also be extended to the random oracle model, in which case
the random oracle is given to all programs as an additional argument.

We encourage the reader to compare the definition using our language with
a typical semi-formal definition from the standard textbook [14] (to make the
comparison simpler, we have adapted the definition by removing the auxiliary
input and adapting the variable names to match ours):

Definition 19 (IND-CCA security, following [14]). A public-key encryp-
tion scheme (Gen,Enc,Dec) is said to be IND-CCA secure if for every pair
of probabilistic polynomial-time oracle machines, A1 and A2, we have that
|IND CCA(1)

n − IND CCA(2)
n | is negligble where

IND CCA(i)
n := Pr

⎡⎢⎢⎢⎢⎣
v = 1 where

(pk , sk) ← Gen(1n)
(m(1),m(2), a) ← ADsk

1 (1n, pk)
c← Encpk (m(i))
v ← ADsk

2 (a, c)

⎤⎥⎥⎥⎥⎦
where |m(1)| = |m(2)|. When given the challenge c, machine A2 is not allowed
to make the query c to the decryption oracle Dsk .

10 Conclusion and Future Work

We implemented in Isabelle/HOL a probabilistic higher-order functional lan-
guage with recursive types, references, and events which is able to express
the constructs that typically occur in cryptographic specifications. Is it simple
enough to be understandable even for researchers without a strong background
in the theory of programming languages.

We are currently working on defining a collection of game transformations
that preserve the relations defined in Section 6. These game transformations will
culminate in a tool that enables cryptographers to conduct their proofs without
having to bother with the details and intricacies of our language, hence making a
substantial step towards the vision outlined in [15]. We have started to provide a
graphical user interface where simple game transformations are performed using
mouse gestures like drag-and-drop.

Acknowledgments. We thank Gilles Barthe and Cătălin Hriţcu for valuable
discussions. This work was partially supported by the Cluster of Excellence
“Multimodal Computing and Interaction”.

A Formal Language for Cryptographic Pseudocode 375

References

1. Abadi, M., Gordon, A.D.: A calculus for cryptographic protocols: The spi calculus.
Information and Computation 148(1), 1–70 (1999)

2. Abadi, M., Rogaway, P.: Reconciling two views of cryptography: The computa-
tional soundness of formal encryption. In: Watanabe, O., Hagiya, M., Ito, T., van
Leeuwen, J., Mosses, P.D. (eds.) TCS 2000. LNCS, vol. 1872, pp. 3–22. Springer,
Heidelberg (2000)

3. Backes, M., Pfitzmann, B.: Symmetric encryption in a simulatable Dolev-Yao style
cryptographic library. In: Proc. 17th IEEE Computer Security Foundations Work-
shop (CSFW), pp. 204–218 (2004)

4. Backes, M., Pfitzmann, B., Waidner, M.: A composable cryptographic library with
nested operations (extended abstract). In: Proc. 10th ACM Conference on Com-
puter and Communications Security, pp. 220–230 (2003); Full version in IACR
Cryptology ePrint Archive 2003/015 (January 2003), http://eprint.iacr.org/

5. Barthe, G., Gregoire, B., Janvier, R., Zanella Beguelin, S.: Formal certification of
code-based cryptographic proofs. IACR ePrint Archive (August. 2007),
http://eprint.iacr.org/2007/314

6. Basin, D., Mödersheim, S., Viganò, L.: OFMC: A symbolic model checker for se-
curity protocols. International Journal of Information Security (2004)

7. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for
code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 409–426. Springer, Heidelberg (2006),
http://eprint.iacr.org/2004/331.ps

8. Blanchet, B.: A computationally sound mechanized prover for security protocols.
In: Proc. 27th IEEE Symposium on Security & Privacy, pp. 140–154 (2006)

9. Blanchet, B., Pointcheval, D.: Automated security proofs with sequences of games.
In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 537–554. Springer, Hei-
delberg (2006)

10. Canetti, R., Herzog, J.: Universally composable symbolic analysis of mutual au-
thentication and key exchange protocols. In: Halevi, S., Rabin, T. (eds.) TCC 2006.
LNCS, vol. 3876, pp. 380–403. Springer, Heidelberg (2006)

11. Corin, R., den Hartog, J.: A probabilistic hoare-style logic for game-based crypto-
graphic proofs. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP
2006. LNCS, vol. 4052, pp. 252–263. Springer, Heidelberg (2006)

12. Cortier, V., Warinschi, B.: Computationally sound, automated proofs for security
protocols. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 157–171. Springer,
Heidelberg (2005)

13. de Bruijn, N.G.: Lambda Calculus notation with nameless dummies: a tool for
automatic formula manipulation. Indagationes Mathematicæ 34, 381–392 (1972)

14. Goldreich, O.: Foundations of Cryptography, May 2004. Basic Applications, vol. 2.
Cambridge University Press, Cambridge (May 2004),
http://www.wisdom.weizmann.ac.il/∼oded/frag.html

15. Halevi, S.: A plausible approach to computer-aided cryptographic proofs. Cryptol-
ogy ePrint Archive, Report 2005/181 (2005), http://eprint.iacr.org/

16. Halmos, P.R.: Measure Theory. Graduate Texts in Mathematics, vol. 18. Springer,
Heidelberg (1974)

17. Kemmerer, R.: Analyzing encryption protocols using formal verification techniques.
IEEE Journal on Selected Areas in Communications 7(4), 448–457 (1989)

http://eprint.iacr.org/
http://eprint.iacr.org/2007/314
http://eprint.iacr.org/2004/331.ps
http://www.wisdom.weizmann.ac.il/~oded/frag.html
http://eprint.iacr.org/

376 M. Backes, M. Berg, and D. Unruh

18. Laud, P.: Semantics and program analysis of computationally secure information
flow. In: Sands, D. (ed.) ESOP 2001. LNCS, vol. 2028, pp. 77–91. Springer, Hei-
delberg (2001)

19. Laud, P.: Symmetric encryption in automatic analyses for confidentiality against
active adversaries. In: Proc. 25th IEEE Symposium on Security & Privacy, pp.
71–85 (2004)

20. Levy, P.B.: Possible world semantics for general storage in call-by-value. In: Brad-
field, J.C. (ed.) CSL 2002 and EACSL 2002. LNCS, vol. 2471, pp. 232–246.
Springer, Heidelberg (2002)

21. Lowe, G.: Breaking and fixing the Needham-Schroeder public-key protocol using
FDR. In: TACAS 1996. LNCS, vol. 1055, pp. 147–166. Springer, Heidelberg (1996)

22. Mason, I., Talcott, C.: Equivalence in Functional Languages with Effects. Journal
of Functional Programming 1(3), 287–327 (1991)

23. Meadows, C.: Using narrowing in the analysis of key management protocols. In:
Proc. 10th IEEE Symposium on Security & Privacy, pp. 138–147 (1989)

24. Micciancio, D., Warinschi, B.: Soundness of formal encryption in the presence of
active adversaries. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 133–151.
Springer, Heidelberg (2004)

25. Millen, J.K.: The interrogator: A tool for cryptographic protocol security. In: Proc.
5th IEEE Symposium on Security & Privacy, pp. 134–141 (1984)

26. Müller, O., Nipkow, T., von Oheimb, D., Slotosch, O.: HOLCF = HOL + LCF.
Journal of Functional Programming 9(2), 191–223 (1999)

27. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer,
Heidelberg (2002)

28. Nowak, D.: A framework for game-based security proofs. IACR Cryptology ePrint
Archive 2007/199 (2007), http://eprint.iacr.org/

29. Paulson, L.: The inductive approach to verifying cryptographic protocols. Journal
of Cryptology 6(1), 85–128 (1998)

30. Pierce, B.C.: Types and programming languages. MIT Press, Cambridge (2002)
31. Schwinghammer, J.: Reasoning about Denotations of Recursive Objects. PhD the-

sis, Department of Informatics, University of Sussex, Brighton, UK (July 2006)
32. Shoup, V.: Sequences of games: A tool for taming complexity in security proofs.

IACR ePrint Archive (November 2004), http://eprint.iacr.org/2004/332.ps
33. Thayer Fabrega, F.J., Herzog, J.C., Guttman, J.D.: Strand spaces: Why is a secu-

rity protocol correct? In: Proc. 19th IEEE Symposium on Security & Privacy, pp.
160–171 (1998)

34. The Coq development team. The Coq Proof Assistant Reference Manual (2006),
http://coq.inria.fr

http://eprint.iacr.org/
http://eprint.iacr.org/2004/332.ps
http://coq.inria.fr

Reasoning Using Knots�

Thomas Eiter, Magdalena Ortiz, and Mantas Šimkus

Institute of Information Systems, Vienna University of Technology
{eiter,ortiz,simkus}@kr.tuwien.ac.at

Abstract. The deployment of Description Logics (DLs) and Answer Set
Programming (ASP), which are well-known knowledge representation
and reasoning formalisms, to a growing range of applications has created
the need for novel reasoning algorithms and methods. Recently, knots
have been introduced as a tool to facilitate reasoning tasks in extensions
of ASP with functions symbols. They were then also fruitfully applied
for query answering in Description Logics, hinging on the forest-shaped
model property of knowledge bases. This paper briefly reviews the knot
idea at a generic level and recalls some of the results obtained with
them. It also discusses features of knots and relations to other reasoning
techniques, and presents issues for further research.

1 Introduction

In the last years, there has been increasing interest in knowledge representation
and reasoning formalisms based on computational logic. Two prominent exam-
ples of them are Description Logics (DLs) [2], which play a fundamental role in
formal ontology management, and Answer Set Programming (ASP) [4], recog-
nized as a powerful declarative problem solving approach. These formalisms are
deployed to a growing range of applications, which in turn raise new requirements
and a need for reasoning services that are beyond traditional ones.

In Description Logics, the traditional reasoning tasks include testing satisfia-
bility of a knowledge base, concept subsumption and instance checking; the last
two are in fact reducible to satisfiability testing. Recent applications of DLs in on-
tology and data management, however, require reasoning services that lack this
reducibility property and call for dedicated algorithms. In particular, answering
queries to a knowledge base such as conjunctive queries –which are fundamental
in databases– has emerged as a relevant task (see e.g. [9,16,17,19,26]).

In ASP, which is rooted in non-monotonic logic programming, traditional
reasoning tasks include construction of some or all answer sets (i.e., models) of a
knowledge base, as well as brave/cautious entailment from the models (i.e., truth
in some or all models, respectively). In order to ensure finite models, standard
ASP solvers disallow function symbols or restrict their use in a suitable manner.

� This work has been partially supported by the Austrian Science Fund (FWF) grants
P20840 and P20841, and the Mexican National Council for Science and Technology
(CONACYT) grant 187697.

I. Cervesato, H. Veith, and A. Voronkov (Eds.): LPAR 2008, LNCS 5330, pp. 377–390, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

378 T. Eiter, M. Ortiz, and M. Šimkus

As this hinders modeling infinite domains and objects (like evolving processes),
respective extensions of ASP or more liberal use of function symbols are desired
(see [5,6,7,33] for very recent works and discussions).

Furthermore, beyond novel reasoning services, also the need for extensions
of the formalisms has emerged. In particular, the combination of rules and on-
tologies in hybrid knowledge bases, which integrate Logic Programming and De-
scription Logics, is an ongoing research issue, which is non-trivial given that
their basic settings are quite different (see e.g. [10,31,24] for more information).

With this background, knots were presented in [33] as a tool to solve reasoning
tasks in ASP extended with function symbols, that hinges on the properties of a
syntactically restricted program class: models are forest-shaped, i.e., collections
of trees (not in a strict sense) that are connected in a limited way; noticeably,
the models are infinite, but bear certain regularity. Loosely speaking, knots are
patterns of model subtrees of depth at most one, which can be instantiated and
combined to construct some model(s) of a given program. In fact, the whole set
of a models of the program can be represented by a suitable knot set; this was
exploited by several reasoning algorithms in [33].

Triggered by the fact that several Description Logics have models of similar
structure, knots were then (suitably adapted) transferred to the context of DLs
in [28,27], where they could be fruitfully applied to obtain (worst-case) optimal
algorithms for conjunctive query answering, providing an exponential improve-
ment w.r.t. previous approaches. This, together with some attractive features,
demonstrates the usefulness of knots, and suggests to explore them for further
applications, possible within other contexts.

In the next section, we present the knot idea a bit more in detail. We then
mention some related reasoning techniques, including tableaux rules, dominoes,
mosaics and automata, and highlight some specific features of knots in compar-
ison to them. Special consideration will be given to mosaics, which are perhaps
most closely related to knots. In Section 3, we then briefly consider knots in
Logic Programming and in DLs, recalling some recent results. Section 4 presents
some further issues and concludes this paper.

2 Model Representation Using Knots

2.1 The Knot Technique

The purpose of knots, which were introduced in [33] for reasoning over logic
programs with function symbols (see Section 3.1 for more details), is the finite
representation of possibly infinite tree-shaped structures by means of finite sets
of building blocks. Informally, we assume here a given knowledge base (KB) in a
(first order) language of unary and binary predicates (it can be, for example, a
logic program or a recast DL ontology). The KB represents a set of structures, its
models, which can be naturally represented as labeled graphs. We also assume
that these graphs are actually trees or sets of trees, and that their nodes are
terms with unary function symbols only (intuitively, f(t) is seen as a child node

Reasoning Using Knots 379

k5
E

Q

k2

P P

A,B

PR

A,B

P

.

.

.

E

P P

P

A,B

B,C

A,B

P

(II) (III)(I)

P

k1

P

C,D

k4

B,C

A,B

A,B E E

B,C

P

c

B,C
g(c)h(c)
C,D

c

E E E
hh(c) gg(c)gh(c)

Q

B,C C,D
h(c) g(c)

hh(c) gg(c)

Q

hhh(c)

P

C,D
ghh(c)

hhhh(c) gghh(c)

Q

E

P

k3
B,C

R

x

x

x C,Dx x

g(x)E
g(x)h(x)

h(x)

h(x)

g(x)

Fig. 1. Example knot set (I) and two generated trees (II) and (III)

of the term t). We will refer to tree-shaped models in this loose setting. For formal
definitions of (variants of) these assumptions, see [33,28,27].

Essentially, a knot is a small schematic labeled tree of depth ≤1, which is a
basic ‘block’ for building tree-shaped models. It is a pattern for small subtrees
that occur in actual models: such a subtree and the respective knot agree on
all the labels, but agree only partially on the structure of their terms. The
term at the root and inside the outermost function symbol of its children may
differ. Abstracting this difference, we obtain a subtree pattern; in turn, we can
instantiate this pattern with different terms and reobtain the subtrees.

Figure 1 illustrates this superficially on an example. On the left hand side, (I)
depicts a set of knots k1, . . . , k5. We use a constant x, not in the signature of the
KB, as their root term. It acts as a ‘place-holder’ that can be instantiated by
any functional term. These knots represent a set of tree-shaped structures that
can be built out of them, like the ones depicted in (II) and (III). The tree in (II)
starts with the knot k1, but instead of the ‘abstract’ x, it contains a constant
c from the KB. It is followed by the knots k2 and k4, instantiated with h(c)
and g(c) respectively. Then the left branch has another instance of k1, and the
sequence is repeated (possibly into the infinite). The finite tree-shaped model on
the right contains only one instance of each of the knots k1, k3 and k4.

The general idea underlying the knot technique is that sets of relevant knots
can be extracted from the model(s) of the KB and used as their compact repre-
sentation. Since only finitely many knots exist (over the signature of the KB),
knot sets are finite. Some models (or ideally, all models) can be built from these
sets by instantiating and combining knots in a suitable manner.

However, in order for a knot set to correctly represent models, some conditions
must be fulfilled. They can be grouped into two types:

1. local consistency conditions, which apply to each knot individually and en-
sure that it represents an abstract domain element with its immediate suc-
cessors in a tree model, as required by the constraints given in the KB.

2. global conditions, which apply to the (whole) knot set and ensure that suit-
able instances of the knots in the set can be composed into full models.

380 T. Eiter, M. Ortiz, and M. Šimkus

It is desired that both types of conditions can be checked easily, and that global
conditions, as an important feature, support an incremental model-building pro-
cedure that is backtracking-free, i.e., legal choices for knot instances at some
point can not lead to inconsistency later.

In case a knot set satisfies both the local and the global conditions, it can be
viewed as coherent. Coherence of a set of knots is a sufficient condition for it to
represent some model(s) of the KB. Furthermore, if this property is preserved
under unions of coherent sets, and since there are finitely many distinct knots,
there exists a unique set-inclusion maximal coherent set of knots, i.e., the smallest
coherent knot set that includes all coherent knot sets. Such maximal set can be
seen as complete, since it captures all the model structures that can be generated
by coherent knot sets (e.g., answer sets of ASP programs, canonical models for
query answering in some DLs). In particular applications it might be handy to
consider more refined notions of completeness, e.g., completeness with respect to
structures satisfying a given condition (e.g., w.r.t. finite structures).

Satisfiability testing of a KB can be reduced to finding a coherent knot set, or,
alternatively, to checking whether the maximal coherent knot set is non-empty;
this can be done using a simple elimination method, provided certain conditions
apply (see Section 4). Further, since coherent knot sets represent multiple (or
even all) models, they are not only useful for deciding KB satisfiability. As we
will see, they can be fruitfully used to solve various reasoning tasks, including
non-standard ones that are hard to solve with more traditional approaches.

2.2 Other Techniques

Many of the basic intuitions that underlie the knot technique can be found in
other reasoning methods, specially in the context of (fragments of) first-order
logic (FOL). For example, in modal and description logics, which usually can
be viewed as fragments of FOL, tree automata have been widely used (see,
e.g., [34,8,9]). Apart from exploiting the tree-model property of many of these
logics, like knots do, they also consider local conditions in the form of states
and transitions, and global acceptance conditions on the runs of the automata.
They exploit the finite number of finite ‘pieces’ that have to be considered to
effectively decide modelhood of potentially infinite structures. These relations
are even more clear in the case of mosaics and type elimination methods, which
can be viewed as a generalization of tree automata and are very closely related
to knots (see Section 2.4 for more details.)

Other methods that are based on different principles still exhibit some com-
mon features with knots. For example, we can consider resolution and tableau
algorithms, which are both well-known in FOL theorem proving and have been
widely explored for modal logics and description logics, (see, e.g., [3,19,26]). In
both cases we find some local conditions that define, for a specific pair of clauses
or for a given element of a tableau, which inference rules are applicable. There
are also some global consistency (clash-freeness, absence of the empty clause)
conditions and termination (completeness, saturation) conditions; the latter ex-
ploit the fact that only a finite numbers of objects (distinct nodes, clauses) are

Reasoning Using Knots 381

relevant to decide the consistency of a KB. Clearly, tableaux and knots are also
related in the sense that they closely resemble the models of the KB. On the
other hand, a tableau naturally represents one model, while knots represent sets
of models. As for resolution, it can be considered a proof-oriented technique, in
contrast to the model-oriented knots. We could say that, unlike knots, resolution
is based on the syntax and does aim at representing the structure of models.

In the setting of logic programs for non-monotonic reasoning, specially with
function symbols, knots are rather novel and not easily compared with existing
reasoning techniques – in part because there are fewer of them as there are for
FOL. This, in turn, has several reasons. First, ASP with function symbols is
highly undecidable [22,20,21] and, until recently, not many decidable fragments
had been considered. Research in ASP focused on the function-free (Datalog)
setting, in which most reasoning algorithms have been based on efficient ground-
ing. A second aspect is the need for ‘model building’, which is complicated in
general. Unlike FOL-style reasoning problems that can be solved by simply de-
ciding the existence of a (counter)-model, a standard reasoning task in ASP is
to construct a set of intended models. A further issue is that, to ensure the
stability of a model, some minimality condition must be tested, and this makes
reasoning harder in general (e.g., consistency testing for disjunctive propositional
programs under the answer set semantics is ΣP

2 -complete as compared with NP-
completeness in case of classical semantics). Indeed, it involves testing a global
condition that quantifies over all submodels of each candidate interpretation, a
property that goes beyond standard first order logic. This is specially challenging
in the presence of function symbols, since the candidate models to be considered
are infinite in general. Note that deciding whether an arbitrary logic program
with functions symbols has some stable model is Σ1

1 -complete.
Most of the existing reasoners build on efficient grounders and use tailored

model building and minimality checking algorithms, whose adaptability to the
infinite setting is unclear. Alternative approaches have considered, for example,
reductions of ASP to satisfiability of propositional and quantified Boolean for-
mulas. However, these have also been limited to the function free setting, and the
reasoning methods for ASP with function symbols remain largely undeveloped.

2.3 Features

We briefly summarize some important features and properties of knots which
suggest them as a useful technique.

• Knots already proved to be very helpful for deriving novel decidability and
tight complexity bounds for formalisms enjoying forest-shaped models. This is
because knots bring us close to the structure of models, and allow us to manip-
ulate them more easily.
• The representation of models via knots provides a basis for developing reason-
ing algorithms that work directly on knot sets instead of the input KBs. Such
algorithms can access the sets of knots for various tasks like constructing models
or evaluating different kinds of queries.

382 T. Eiter, M. Ortiz, and M. Šimkus

• These algorithms usually exhibit certain modularity. For example, maximal
coherent knot sets can be computed independently of the extensional data. This
proves specially useful when considering data complexity aspects.
• Further, sets of knots are useful for knowledge compilation. Indeed, once a
suitable knot set is computed (which can be done off-line, in a preprocessing
phase), it can be used in the on-line phase to provide more efficient reasoning.
• The compilation can provide the benefit of adaptability: as small changes in the
KB can often be reflected as small changes in the computed knot sets, algorithms
building on them are often re-usable, even in relatively changing environments.
• The model-building infrastructure provided by the knot technique is especially
important for the ASP context. For example, in tasks like diagnosis, planning
and configuration, possible models are built to show possible failures, plans, etc.
• The capability of knot sets to finitely represent sets of relevant models is useful
in the cases when a given query cannot be expressed in the underlying formalism,
e.g., the case of conjunctive queries in Description Logics (see Section 3.2).

On the downside of the approach is the exponential space that is required in
the worst-case to represent knot sets. However, for the ASP context this space
requirement is somewhat inherent, as model construction and traversal are im-
portant tasks. The high space requirements are also inherent to the idea of
knowledge compilation, and in this case, its cost is amortized over time through
the more efficient solution of several instances. Finally, we note that the size of
a knot set representing a set of models depends directly on the structural com-
plexity of the represented models; when only few knots occur in them (i.e., they
are highly regular), the respective knot set is rather small (note that even small
sets may actually encode infinitely many infinite models).

2.4 Knots and Mosaic Techniques

The knot technique is a close relative of mosaics, which were introduced in [25]
to prove decidability of equational theories of classes of algebras of relations. The
main idea behind them was to show that model existence can be equivalently
checked by deciding the existence of a finite set of model-pieces that fulfill certain
coherence conditions which allow to reconstruct the model. The knot technique
can in fact be seen as a particular mosaic technique that is tailored for ASP
and uses knots to build tree-shaped interpretations. The method for deriving
maximal coherent knot sets described in [33,28,27] is closely related to type
elimination, first described in [29], which was used in an exponential time (worst
case optimal) algorithm for Propositional Dynamic Logic (PDL).

More recently, mosaics have been applied to obtain decidability and tight com-
plexity results for some fragments of FOL that are highly relevant for Knowledge
Representation. Among them are the guarded fragment of FOL [1], the 2-variable
fragment C2 of FOL [18], and C2 augmented with counting quantifiers [30]. These
fragments capture several modal and description logics; e.g., the last one cap-
tures the DL SHOIQ that underlies the OWL Web Ontology standard.1 As
1 This holds after the standard elimination of transitive roles.

Reasoning Using Knots 383

a matter of fact, rather than by this relation, our deployment of knots to DLs
was motivated by forest-shaped model properties which they share with related
classes of logic programs, for which knots were originally introduced.

The knot technique provides a bridge between tree automata and mosaics.
Indeed, a single knot can be seen as a transition in an automaton: its nodes are
states, and given the root state, the automaton moves into the states given by
the leaves. In this setting, the emptiness test of the maximal coherent knot set
mimics the emptiness test of the automaton. The mosaic technique is to some
extent more liberal than knots and tree automata, since mosaics can deal with
models that are not necessarily tree-shaped.

3 Applications

3.1 Knots in Logic Programming

The knot technique has been fruitfully applied to provide decidability and com-
plexity results for the class of FDNC logic programs with function symbols [33].
Such programs feature negation as failure under the Answer Set semantics [15]
and follow the line of efforts that augment ASP with function symbols in order
to better support common-sense reasoning over infinite processes and objects.
As function symbols lead to high undecidability in general, some authors have
tried to identify expressive fragments of lower complexity (see, e.g., [5,7]).

The syntax and the Answer Set semantics of FDNC programs make them
especially suitable for reasoning about evolving action domains. Function sym-
bols allow to generate infinite time-lines (with possible branching), while the
availability of non-monotonic negation allows to expresses inertia information,
i.e., the truth value of a fluent (changeable property) is carried over to follow-up
stages in case there is no indication of the opposite. These features allow FDNC,
for example, to capture the core of propositional K, a planning language based
on the Answer Set semantics for logic programs [11].

As an example, the FDNC program in Figure 2 represents a well-known
shooting scenario illustrating the frame problem connected with inertia (which
properties remain unchanged if a certain action is taken). The rule (1) is an
initialization fact saying that in the initial situation the gun is not loaded. The
rules (2)-(3) describe the loading action, which occurs if the gun is unloaded
and there is no evidence (from a rule) for the target being hit; its effect is a
loaded gun. The rule (4) states the inertia of the fluent Loaded ; it remains true
during the transitions unless there is evidence that the fluent Unloaded is true.
The rules (5)-(6) describe the targeting action that occurs after loading the gun.
The rules (7)-(9) describe the shooting action; the agent shoots when the gun is
loaded and the object is on target. Its effects are non-deterministic: the target
is either hit or missed, and the gun is emptied.

The program has infinitely many answer sets corresponding to possible evo-
lutions of the initial situation. Indeed, if the shooter misses the target, the load-
target-shoot process is repeated, and can be repeated forever if she never hits
the target. A possible evolution depicted in (I) of Figure 2 corresponds to hitting

384 T. Eiter, M. Ortiz, and M. Šimkus

Change

Change

Change

Change

Change

Change

Hit, Unloaded
shoot(· · ·)

OnTarget, Loaded
target(· · ·)

Loaded
load(· · ·)

Miss, Unloaded
shoot(target(loaded(in)))

OnTarget, Loaded
target(loaded(in))

Loaded
load(in)

Unloaded
in

Change

Hit, Unloaded
shoot(x)

OnTarget, Loaded
x

Change

Miss, Unloaded
shoot(x)

OnTarget, Loaded
x

Change

Loaded
load(x)

Miss, Unloaded
x

Hit, Unloaded
x

Change

Loaded
load(x)

Unloaded
x

Change

OnTarget, Loaded
target(x)

Loaded
x

(I)(1) Unloaded(in)←
(2) Change(x, load(x))←Unloaded(x), not Hit(x)

(3) Loaded(load(x))←Change(x, load(x))

(4) Loaded(y)←Loaded(x), Change(x, y), not Unloaded(y)

(5) Change(x, target(x))←Loaded(x), not OnTarget(x)

(6) OnTarget(target(x))←Change(x, target(x))

(7) Change(x, shoot(x))←Loaded(x), OnTarget(x)

(8) Hit(shoot(x)) ∨Miss(shoot(x))←Change(x, shoot(x))

(9) Unloaded(shoot(x))←Change(x, shoot(x))

(II)

Fig. 2. Example FDNC program

the target in the second round. The inertia rule (4) demonstrates the capability
of FDNC programs (and ASP, in general) to model common-sense reasoning.
Inertia is modeled elegantly as a default that may have exceptions, in terms of
direct or indirect effects by some actions that cause a value change.

Inspired by modal logics, decidability of FDNC programs is ensured via a
restricted syntax that ensures the forest model property, combined with certain
modularity. More precisely, the first property ensures that each stable model of a
program can be viewed as a labeled forest, while the second characterizes global
minimality of interpretations in terms of local minimality conditions. The knot
technique was exploited to finitely represent such forest-shaped models.

For instance, in the example above, the answer sets of the program can be
represented by a coherent knot set depicted in (II) of Figure 2. Here each knot
k is a simple tree whose root x has at most one child f(x), i.e., k is a line,
where f is one of the function symbols (load , target , shoot), and each node is
labeled with a subset of the fluents (OnTarget , Loaded , Unloaded , Hit , Miss).
Informally, k represents a possible transition from a generic state x (determined
by the associated fluent values) to a successor state by taking the action f . The
knot of depth 0 indicates that no action is applicable when the target is hit
(more precisely, the state {Hit ,Unloaded} is reached).2

The knot representation of models provides a basis for solving basic reason-
ing problems associated with ASP, and the technique also allows to infer tight

2 Note that in this encoding there exists at most one executable action for each state,
hence the answer sets are “line-shaped”. The situations when several actions are
executable would be reflected by branching; the resulting answer sets would be tree-
shaped, each branch corresponding to a possible evolution of the initial situation.

Reasoning Using Knots 385

complexity bounds. Consistency testing in FDNC is ExpTime-complete and can
be verified by checking for non-emptiness of a complete knot set. The same com-
plexity bounds hold for brave inference of existential queries ∃x.A(x), which,
e.g., allow to test for plan existence in planning applications. The knot repre-
sentation allows to provide model-building services, which are useful in various
applications. For example, in planning and diagnosis a complete knot set can be
used to build relevant parts of a model corresponding to a possible scenario or a
plan. Last but not least, for all the aforementioned tasks, knots provide benefits
like modularity and knowledge compilation, as discussed in Section 2.3.

3.2 Knots in Description Logics

Description Logics are a well-established branch of logics for knowledge repre-
sentation and reasoning, and the premier logic-based formalism for modeling
concepts (classes of objects) and roles (binary relations between classes) [2].
They have gained increasing attention in different areas including data and in-
formation integration, peer-to-peer data management, and ontology-based data
access. In particular, they are of major importance in the Semantic Web, as the
standard Web ontologies (OWL) family are based on DLs. The recent use of
DLs in a widening range of applications has led to the study of new reasoning
problems, among which query answering over DL knowledge bases plays an im-
portant role. Several recent papers focus on answering queries over semantically
enhanced data schemas expressed by means of DL ontologies, cf. [9,16,17,19,26].

Research has focused on conjunctive queries (CQs) and their extensions, which
stem from the databases field. A CQ q is of the form A1(t1), . . . , An(tn), where
the Ai are predicates (in the context of DLs, concept and role names), and the ti

are matching argument lists of constants and variables. The entailment problem
for such a query q consists on deciding, given q and a DL KB K, whether there
is a homomorphic embedding (informally, a mapping) of q into every model of
K, i.e., whether ∃x.A1(t1) ∧ · · · ∧An(tn) is logically implied by K, where x lists
all variables in q.3

The considered query languages have as a common feature the use of variables
to join relations in a flexible way. Such joins are not expressible in the syntax of
DLs, hence it is unclear how to easily reduce the query entailment problem to
satisfiability testing or any other ‘traditional’ DL reasoning task. Furthermore,
recent complexity results show that for many DLs such reductions are exponen-
tial in general. Thus many algorithms rely on machinery beyond that of DLs to
traverse sets of models and to test the existence of query mappings in them.

In this setting, knots proved to be a powerful and well-suited reasoning tool.
Given a KB K and a query q, a complete set of knots L can be used to represent a
set M of canonical models of K, which can be shown to contain a countermodel
M for q whenever q is not entailed by K. Furthermore, it is possible to de-
cide the existence of such a countermodel M ∈ M (in time that is polynomial in

3 More precisely, these are Boolean CQs. More general CQs with distinguished (out-
put) variables and can be easily reduced to Boolean CQs.

386 T. Eiter, M. Ortiz, and M. Šimkus

L) as follows. The knots in L are enriched with ‘markings’ that represent a set
of subqueries of q. A knot k is marked with a set of subqueries Q, if in every
submodel of a model in M that starts with an instance of k, there is a mapping
for some subquery q ∈ Q. The markings can be built inductively considering the
depth of these mappings. Simple queries that are entailed at the root of a knot
(thus within depth 0) are computed first; in an inductive step, subqueries that
are entailed within greater depth are computed by combining the current knot
with the markings of its possible successors, until a fixed-point is reached. Let
Lq denote the set of knots that are marked with {q} at the end of this process.
Then there is a query mapping in some M ∈ M iff M starts with an instance
of a knot in Lq. Thus M contains a countermodel for q iff there is some knot in
L \ Lq that can start the model construction.4

We give a rough illustration of this procedure on an example. Suppose that a
knowledge base K is given, whose canonical models are represented by the set of
knots in Figure 1, part (I), and that they all start with an instance of the knot
k1. We want to decide the entailment of the query

q = B(x), P (x, y), C(y), Q(y, z), E(z).

We first take the only relevant subquery of it that can be mapped within depth
0, which is q1 = E(z) (i.e., the query restricted to the variable z; we do not need
to consider subqueries where a variable is mapped but its successors are not). We
can map it at the root of k5, this is shown on part (I) of Figure 3. Note that in
this figure we have omitted the terms in the knots, and we are using dotted arcs
to relate the leaves of each knot to the knots that can follow it in the construction
of a model. In the second step, which is illustrated in part (II), we consider a
larger subquery q2 = C(y), Q(y, z), E(z). We add a new marking showing that
q2 can always be mapped starting from the the knot k4, since its only successor
is k5 which is already marked with {q1}. Part (III) shows the third step, where
k1 is used to extend the mapping of q2 at k4 to q, exploiting the fact that the
right successor of k1 must be followed by k4 in every model construction. Given
that all models of K start with an instance of k1, this already ensures that q is
entailed by K. I.e., in every model of K there is a mapping for q, including, for
example, the trees (II) and (III) of Figure 1. A fixed-point is reached after one
more iteration that marks k2 with {q} (meaning that, if there were any models
starting with an instance of k2, they would have a mapping for q).

Such a knot-based algorithm for CQ answering in the DL ALCH was proposed
in [28]. Unlike previous algorithms requiring double exponential time, it yields
a tight ExpTime upper bound.

The algorithm was extended to SH in [27]. In this case, however, there are
exponentially many relevant subqueries whose combinations may result in differ-
ent markings. Hence doubly exponentially many (in the combined size of K and
q) knot-marking combinations may be generated in the worst case, resulting in

4 For simplicity we only consider models that are trees and start at an instance of one
knot. This naturally generalizes to forests: for connected q, non-entailment simply
requires that there is a set of knots in L \ Lq that can start a forest construction.

Reasoning Using Knots 387

Q

k2

P

k1

P

C,D

k4

B,C

A,B E E

B,C

P

k5
E

A,B

{q1}

{q2}
Q

k2

P

k1

P

C,D

k4

B,C

A,B E E

B,C

P

k5
E

A,B

Q

k2

P

k1

P

C,D

k4

B,C

A,B E E

B,C

P

k5
E

A,B

{q1}

{q2}

(I) (III)(II)

{q}

{q1}

P

k3
B,C

RP

k3
B,C

R P

k3
B,C

R

C,D

E

C,D

E

C,D

E

Fig. 3. Query entailment using knots

a 2ExpTime upper bound known from [16,9]. Most recently, this was shown to
be tight: CQ answering for SH is 2ExpTime-hard [13]. Further, a large family
of queries for which the SH algorithm runs in ExpTime has been identified in
[27]. This is noticable as in most of the previous query answering algorithms
that build on standard techniques for DL reasoning (e.g., automata [9], tableaux
[26] and resolution [19]), it was less clear how results that significantly lower the
2ExpTime upper bound for a rich class of queries could be obtained.

A similar technique based on domino systems (related to the domino sets
of [32]) was used for Horn-SHIQ in [12]. Like knot sets, domino systems provide
a finite representation of models in terms of simple, small building blocks. The
main difference is that the domino system represents just one model and there
is an explicit transition relation indicating the successors of each node. Such a
representation is well suited for Horn-SHIQ, since it is a deterministic DL and
query answering can be done over a single universal model.

Obtaining new algorithms and complexity bounds is not the only advantage of
exploiting knots in the context of query answering over DLs. Indeed, the above
mentioned algorithms share other positive features, including the following:

• Modularity. The maximal coherent knot set is computed using only the ter-
minological information in the KB. Once this has been done, markings for several
queries can be computed over the set, and further queries can be incorporated
incrementally (in polynomial time if their size is bounded). All this process is
independent of the input data (extensional information).
• Optimal data complexity. The set of knots and the query markings can
be precomputed in constant time w.r.t. the input data, assuming that the ter-
minological part of the KB and the query are fixed. After this first step, non-
entailment of a query can be easily established in non-deterministic polynomial
time. Hence the algorithm runs in coNP in data complexity and is optimal, as
matching hardness is known already for very weak DLs.
• Datalog encoding. The precompiled structure consisting of the marked
knots can be easily encoded into a Datalog program with unstratified nega-
tion (or an equivalent disjunctive Datalog program) that evaluates the query

388 T. Eiter, M. Ortiz, and M. Šimkus

over any given set of facts. Due to the availability of highly optimized Datalog
engines, this seems particularly promising for implementations.

Finally, we point out that this kind of techniques are not only useful for
query answering, but even for more traditional reasoning tasks. For example,
the authors of [32] fruitfully used their domino sets in an algorithm for testing
TBox satisfiability in the DL SHIQ that can be implemented using OBDDs.

4 Conclusion

As we have briefly discussed above, knots proved to be a useful tool for solving
some reasoning tasks in Answer Set Programming and Description Logics. There
are several issues that remain to be considered and open interesting avenues for
future research.

• Building knot sets. A crucial task for knot reasoning is to build coherent
knot sets, and in particular the maximal one. Under certain conditions, the max-
imal set K can be obtained by a simple elimination algorithm that starts with
the set of all possible knots (or any superset of K), and removes one by one
the knots that cause a violation of the local or the global conditions. Such an
elimination is possible, for example, in the applications above, where the global
conditions simply require that in a coherent knot set K each leaf of each knot
k has a compatible ‘successor’ in K.5 However, this method is not efficient in
general, particularly when the resulting knot set is small. Furthermore, for par-
ticular reasoning problems, it might not be necessary to construct the full set K,
but only a relevant part of it on demand (e.g., for query answering if the knowl-
edge base is known to be satisfiable). Hence modular/incremental computation
of knot sets is an important issue that remains to be explored.
• Generalizations. The knot concept is rather primitive, and for certain appli-
cations generalizations are needed. They can be of different kind; one concerns
information associated with a knot (in a similar manner as in query answer-
ing in DLs), while another concerns structure. Generalizations to subtrees of
depth n ≥ 1 are simple but hardly increase the expressiveness; knots for settings
in which models are not tree or forest-shaped would be of higher interest. As
pointed out above, our deployment of knots to reasoning tasks in DLs was via
related logic program classes, rather than through the link to modal logics and
mosaics. Given that ASP also has a link to (non-monotonic) modal logic [23], it
remains to be seen whether more general mosaic techniques than knots can be
fruitfully exploited via this link.
• Hybrid techniques. As several other reasoning techniques had been devised,
the question is whether knots can be fruitfully be combined with them. For in-
stance, in query answering one might use the knot technique on a partial knot

5 More generally, this elimination is applicable whenever the global condition for K
can be characterized, by means of a decidable relation R(k, S) between knots k and
knot sets S, as follows: for each k ∈ K, there is S ⊆ K such that R(k, S) holds.

Reasoning Using Knots 389

set sufficient for singling out the result, and employ other methods for subtasks,
such as possible satisfiability tests. However, developing sophisticated hybrid
techniques beyond simple combinations is more of a long term goal.
• Further applications. Finally, it would be interesting to see further appli-
cations of knots, not necessarily in the context of knowledge representation and
reasoning. Hybrid knowledge bases might be a first target.

References

1. Andréka, H., Németi, I., van Benthem, J.: Modal languages and bounded fragments
of predicate logic. Journal of Philosophical Logic 27(3), 217–274 (1998)

2. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.):
The Description Logic Handbook: Theory, Implementation and Applications. Cam-
bridge University Press, Cambridge (2003)

3. Baader, F., Sattler, U.: An overview of tableau algorithms for description logics.
Studia Logica 69(1), 5–40 (2001)

4. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press, Cambridge (2003)

5. Baselice, S., Bonatti, P.A., Criscuolo, G.: On finitely recursive programs. In: Dahl,
V., Niemelä, I. (eds.) ICLP 2007. LNCS, vol. 4670, pp. 89–103. Springer, Heidelberg
(2007)

6. Bonatti, P., Baselice, S.: Composing normal programs with function symbols. In:
Proc. of ICLP 2008. LNCS. Springer, Heidelberg (to appear, 2008)

7. Calimeri, F., Cozza, S., Ianni, G., Leone, N.: Computable functions in ASP: Theory
and implementation. In: Proc. of ICLP 2008. LNCS, vol. 5366. Springer, Heidelberg
(2008)

8. Calvanese, D., De Giacomo, G., Lenzerini, M.: Reasoning in expressive description
logics with fixpoints based on automata on infinite trees. In: Proc. of the 16th Int.
Joint Conf. on Artificial Intelligence (IJCAI 1999), pp. 84–89 (1999)

9. Calvanese, D., Eiter, T., Ortiz, M.: Answering regular path queries in expressive
description logics: An automata-theoretic approach. In: Proc. of the 22nd Nat.
Conf. on Artificial Intelligence (AAAI 2007), pp. 391–396 (2007)

10. de Bruijn, J., Eiter, T., Polleres, A., Tompits, H.: On representational issues about
combinations of classical theories with nonmonotonic rules. In: Lang, J., Lin, F.,
Wang, J. (eds.) KSEM 2006. LNCS, vol. 4092, pp. 1–22. Springer, Heidelberg (2006)

11. Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, A.: A logic programming
approach to knowledge-state planning: Semantics and complexity. ACM Trans.
Comput. Log. 5(2), 206–263 (2004)

12. Eiter, T., Gottlob, G., Ortiz, M., Šimkus, M.: Query answering in the descrip-
tion logic Horn-SHIQ. In: Proc. of JELIA 2008. LNCS. Springer, Heidelberg (to
appear, 2008)

13. Eiter, T., Lutz, C., Ortiz, M., Šimkus, M.: Complexity of Conjunctive Query An-
swering in Description Logics with Transitive Roles. Technical report (preliminary),
INFSYS RR-1843-08-09, TU Wien (2008)

14. Fox, D., Gomes, C.P. (eds.): Proceedings of the Twenty-Third AAAI Conference
on Artificial Intelligence, AAAI 2008, Chicago, Illinois, USA, July 13-17. AAAI
Press, Menlo Park (2008)

15. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing 9, 365–385 (1991)

390 T. Eiter, M. Ortiz, and M. Šimkus

16. Glimm, B., Horrocks, I., Lutz, C., Sattler, U.: Conjunctive query answering for the
description logic SHIQ. In: Proc. of IJCAI 2007, pp. 399–404 (2007)

17. Glimm, B., Horrocks, I., Sattler, U.: Conjunctive query entailment for SHOQ.
In: Proc. of the 2007 Description Logic Workshop (DL 2007). CEUR Electronic
Workshop Proceedings, vol. 250, pp. 65–75 (2007), http://ceur-ws.org/Vol-250/

18. Grädel, E., Kolaitis, P.G., Vardi, M.Y.: On the decision problem for two-variable
first-order logic. Bulletin of Symbolic Logic 3(1), 53–69 (1997)

19. Hustadt, U., Motik, B., Sattler, U.: A decomposition rule for decision procedures
by resolution-based calculi. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS,
vol. 3452, pp. 21–35. Springer, Heidelberg (2005)

20. Marek, V.W., Remmel, J.B.: On the expressibility of stable logic programming.
Theory and Practice of Logic Programming 3, 551–567 (2003)

21. Marek, W., Nerode, A., Remmel, J.: How Complicated is the Set of Stable Models
of a Recursive Logic Program? Annals of Pure and Applied Logic 56, 119–135
(1992)

22. Marek, W., Nerode, A., Remmel, J.: The Stable Models of a Predicate Logic Pro-
gram. Journal of Logic Programming 21(3), 129–153 (1994)

23. Marek, W., Truszczyński, M.: Nonmonotonic Logics – Context-Dependent Reason-
ing. Springer, Heidelberg (1993)

24. Motik, B., Horrocks, I., Rosati, R., Sattler, U.: Can OWL and logic programming
live together happily ever after? In: Cruz, I., Decker, S., Allemang, D., Preist,
C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS,
vol. 4273, pp. 501–514. Springer, Heidelberg (2006)

25. Németi, I.: Free algebras and decidability in algebraic logic. DSc. thesis, Mathe-
matical Institute of The Hungarian Academy of Sciences, Budapest (1986)

26. Ortiz, M., Calvanese, D., Eiter, T.: Data complexity of query answering in expres-
sive description logics via tableaux. J. of Automated Reasoning (June 2008)

27. Ortiz, M., Šimkus, M., Eiter, T.: Conjunctive query answering in SH using knots.
In: Baader, F., Lutz, C., Motik, B. (eds.) Proc. of DL 2008, Dresden, Germany,
May 13-16. CEUR Workshop Proceedings, vol. 353 (2008), CEUR-WS.org

28. Ortiz, M., Šimkus, M., Eiter, T.: Worst-case optimal conjunctive query answering
for an expressive description logic without inverses. In: Fox and Gomes [14], pp.
504–510

29. Pratt, V.R.: Models of program logics. In: FOCS, pp. 115–122. IEEE, Los Alamitos
(1979)

30. Pratt-Hartmann, I.: Complexity of the guarded two-variable fragment with count-
ing quantifiers. J. Log. Comput. 17(1), 133–155 (2007)

31. Rosati, R.: Integrating Ontologies and Rules: Semantic and Computational Issues.
In: Barahona, P., Bry, F., Franconi, E., Henze, N., Sattler, U. (eds.) Reasoning
Web 2006. LNCS, vol. 4126, pp. 128–151. Springer, Heidelberg (2006)

32. Rudolph, S., Krötzsch, M., Hitzler, P.: Terminological reasoning in SHIQ with
ordered binary decision diagrams. In: Fox and Gomes [14], pp. 529–534

33. Šimkus, M., Eiter, T.: FDNC: Decidable non-monotonic disjunctive logic programs
with function symbols. In: Proceedings of LPAR 2007. LNCS, vol. 4790, pp. 514–
530. Springer, Heidelberg (2007); Full paper Tech. Rep. INFSYS RR-1843-08-01,
TU Vienna, http://www.kr.tuwien.ac.at/research/reports/rr0801.pdf

34. Vardi, M.Y., Wolper, P.: Automata-theoretic techniques for modal logics of pro-
grams. J. Comput. Syst. Sci. 32, 183–221 (1986)

http://ceur-ws.org/Vol-250/
CEUR-WS.org
http://www.kr.tuwien.ac.at/research/reports/rr0801.pdf

Role Conjunctions
in Expressive Description Logics

Birte Glimm and Yevgeny Kazakov

Oxford University Computing Laboratory

Abstract. We show that adding role conjunctions to the Description
Logics (DLs) SHI and SHOIF causes a jump in the computational
complexity of the standard reasoning tasks from ExpTime-complete to
2ExpTime-complete and from NExpTime-complete to N2ExpTime-hard
respectively. We further show that this increase is due to a subtle inter-
action between inverse roles, role hierarchies, and role transitivity in the
presence of role conjunctions and that for the DL SHQ a jump in the
computational complexity cannot be observed.

1 Introduction

Description Logics are knowledge representation formalisms [1], which are mostly
based on decidable fragments of First-Order Logic with only unary and binary
predicates, called concepts and roles. The DLs SHIF and SHOIN provide a
logical underpinning for the W3C standards OWL Lite and OWL DL and highly
optimized reasoner implementations are available.

Current standardization efforts go into the direction of also supporting a richer
set of constructors for roles. It was recently shown that role compositions in the
proposed OWL2 standard cause an exponential blowup [2] in the computational
complexity of the standard reasoning problems. We show that allowing for con-
junctions over roles can also cause such a blowup.

Role conjunctions are closely related to conjunctive queries. In [3] it was shown
how the problem of conjunctive query answering over SHIQ can be reduced
to reasoning in SHIQ�—the extension of SHIQ with role conjunctions. For
example, the query 〈x〉 ← r(x, y) ∧ s(x, y) ∧A(y) can be answered by retrieving
all instances of the concept ∃(r � s).A for A a concept name, r, s roles, and x, y
variables. In [3] it was also shown that reasoning in SHIQ� is in 2ExpTime. It
was an open question whether this bound is tight.

In this paper we demonstrate that standard reasoning in SHIQ� and even in
SHI� is 2ExpTime-hard. It follows from the construction in [3] that reasoning
in SHIQ� is in ExpTime when either the number of transitive roles in role
inclusions, or the length of role conjunctions is bounded. We also demonstrate
that reasoning in SHIQ� without inverse roles is in ExpTime as well. Thus, the
increased complexity of SHIQ� is due to a combination of inverse roles, role
transitivity, role hierarchies, and role conjunctions. A similar effect is observed
for propositional dynamic logics (PDL), where the intersection operator causes

I. Cervesato, H. Veith, and A. Voronkov (Eds.): LPAR 2008, LNCS 5330, pp. 391–405, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

392 B. Glimm and Y. Kazakov

a complexity jump from ExpTime to 2ExpTime [4]. PDL is closely related to the
DL ALC extended with regular expressions on roles.

We now introduce some basic definitions and notations used throughout the
paper. In Section 3, we prove that for SHQ� the standard reasoning tasks remain
in ExpTime. In Section 4, we present the 2ExpTime-hardness result for SHI�
by a reduction to the word problem for exponentially space bounded Turing
machines. In Section 5 we demonstrate that SHOIF� is already N2ExpTime-
hard using a reduction to domino tiling problems. This paper is accompanied by
a technical report which contains intermediate lemmata and full proofs [5].

2 Preliminaries

Let NC , NR, and NI be countably infinite sets of concept names, role names,
and individual names. We assume that the set of role names contains a subset
NtR ⊆ NR of transitive role names. A role R is an element of NR∪{r− | r ∈ NR},
where roles of the form r− are called inverse roles. A role conjunction is an
expression of the form ρ = (R1 � · · · �Rn). A role inclusion axiom (RIA) is an
axiom of the form R 3 S where R and S are roles. A role hierarchy R is a finite
set of role inclusion axioms.

An interpretation I = (∆I , ·I) consists of a non-empty set ∆I , the domain of
I, and a function ·I , which maps every concept name A to a subset AI ⊆ ∆I ,
every role name r ∈ NR to a binary relation rI ⊆ ∆I × ∆I , every role name
r ∈ NtR to a transitive binary relation rI ⊆ ∆I × ∆I , and every individual
name a to an element aI ∈ ∆I . The interpretation of an inverse role r− is
{〈d, d′〉 | 〈d′, d〉 ∈ rI}. The interpretation of a role conjunction R1 � · · · � Rn is
R1

I ∩ · · · ∩ Rn
I . An interpretation I satisfies a RIA R 3 S if RI ⊆ SI , and a

role hierarchy R if I satisfies all RIAs in R.
For a role hierarchy R, we introduce the following standard DL notations:

1. We define the function Inv over roles as Inv(r) := r− and Inv(r−) := r for
r ∈ NR.

2. We define 3R as the smallest transitive reflexive relation on roles such that
R 3 S ∈ R implies R 3R S and Inv(R) 3R Inv(S). We write R ≡R S if
R 3R S and S 3R R.

3. A role R is called transitive w.r.t. R (notation R+ 3R R) if R ≡R S for
some role S such that S ∈ NtR or Inv(S) ∈ NtR.

4. A role S is called simple w.r.t. R if there is no role R such that R is transitive
w.r.t. R and R 3R S. A role conjunction R1 � · · · �Rn is simple w.r.t. R if
each conjunct is simple w.r.t. R.

The set of SHOIQ�-concepts is the smallest set built inductively from NC ,NR,
and NI using the following grammar, where A ∈ NC , o ∈ NI , n is a non-negative
integer, ρ is a role conjunction and δ is a simple role conjunction:

C ::= A | {o} | ¬C | C1 � C2 | ∀ρ.C | �n δ.C.

We use the following standard abbreviations: C1 	C2 ≡ ¬(¬C1 � ¬C2), ∃ρ.C ≡
¬(∀ρ.(¬C)), and �n δ.C ≡ ¬(� (n+ 1) δ.C).

Role Conjunctions in Expressive Description Logics 393

The interpretation of concepts in I is defined as follows:

{o}I = {oI}, (C �D)I =CI ∩DI , (¬C)I =∆I \ CI ,

(∀ρ.C)I = {d ∈ ∆I | if 〈d, d′〉 ∈ ρI , then d′ ∈ CI},
(�n δ.C)I = {d ∈ ∆I | �sI(d, C) ≥ n}

where �M denotes the cardinality of the set M and sI(d, C) is defined as {d′ ∈
∆I | 〈d, d′〉 ∈ sI and d′ ∈ CI}. Concepts of the form {o} are called nominals.

The DL SHOIF� is obtained by only allowing for the declaration of roles
as functional (e.g., Func(R)) instead of full number restrictions. By disallowing
number restrictions and nominals, we obtain SHI�. Finally, SHOIQ� minus
nominals and inverse roles, results in the DL SHQ�.

A general concept inclusion (GCI) is an expression C 3 D, where both C
and D are concepts. A finite set of GCIs is called a TBox. An interpretation I
satisfies a GCI C 3 D if CI ⊆ DI , and a TBox T if it satisfies every GCI in T .

An (ABox) assertion is an expression of the form C(a), r(a, b), where C is a
concept, r a role, and a, b ∈ NI . An ABox is a finite set of assertions. We use
NI (A) to denote the set of individual names occurring in A. An interpretation I
satisfies an assertion C(a) if aI ∈ CI , r(a, b) if 〈aI , bI〉 ∈ rI . An interpretation
I satisfies an ABox A if it satisfies each assertion in A, denoted as I |= A.

A knowledge base (KB) is a triple (R, T ,A) with R a role hierarchy, T a TBox,
and A an ABox. Let K = (R, T ,A) be a knowledge base and I = (∆I , ·I) an
interpretation. We say that I satisfies K if I satisfies R, T , and A. In this case,
we say that I is a model of K and write I |= K. We say that K is satisfiable
if K has a model. A concept D subsumes a concept C w.r.t. K if CI ⊆ DI for
every model I of K. A concept C is satisfiable w.r.t. K if there is a model I of K
such that CI �= ∅. It should be noted that the standard reasoning tasks such as
knowledge base satisfiability, concept subsumption, or concept satisfiability are
mutually reducible in polynomial time.

3 SHQ� Is ExpTime-Complete

In this section, we show that adding role conjunctions to the DL SHQ does not
increase the computational complexity of the standard reasoning tasks. For this
purpose, we devise a polynomial translation of a given SHQ� knowledge base to
an equisatisfiable ALCHQ� knowledge base (i.e., SHQ� minus role transitivity)
for which the standard reasoning tasks are ExpTime-complete [6,3,7].

Let K = (R, T ,A) be an SHQ� knowledge base. We say that K is simplified
if T contains only axioms of the form:

A 3 ∀ρ.B | A 3 ∃ρ.B | A 3 "#n δ.B |
�
Ai 3

⊔
Bj ,

where A(i) and B(j) are atomic concepts, ρ (δ) is a (simple) conjunction of roles,
and "# stands for � or �. Furthermore, concept assertions in A are limited to the
form A(a) for A a concept name. Every SHQ� knowledge base, which is not in
this form, can be transformed in polynomial time into the desired form by using

394 B. Glimm and Y. Kazakov

the standard structural transformation, which iteratively introduces definitions
for compound sub-concepts and sub-roles (see, e.g., [8]).

It is well known that transitivity can be eliminated from SHIQ and SHOIQ
knowledge bases by using auxiliary axioms that propagate the concepts over
transitive roles [8,9]. The transitivity elimination has been extended to SHIQ�

[3], however it becomes exponential in the worst case, since one has to introduce
new axioms for (possibly exponentially many) conjunctions of transitive roles.
The procedure is, however, polynomial if either the number of transitive roles in
role inclusions or the length of role conjunctions is bounded. Below we describe
a polynomial elimination of transitivity when there are no role inverses.

Let K = (R, T ,A) be a simplified SHQ� knowledge base. We construct an
ALCHQ� knowledge base K′ = (R′, T ′,A′) from K as follows. The signature of
K′ is defined by NI (K′) := NI (K), NR(K′) := NR(K), NtR(K′) := ∅, NC (K′) :=
NC (K) ∪ {Aa, A

r
a | A ∈ NC (K), a ∈ NI (K), r ∈ NR(K)}. Recall, that w.l.o.g.,

NI (K) is non-empty, therefore there exists at least one Aa for every A ∈ NC (K).
We set R′ := R, A′ := A, and T ′ as an extension of T with the following axioms:

A 3
⊔

a∈NI (A)Aa A ∈ NC (K) (1)

Aa 3 ∀r.Ar
a A ∈ NC (K), a ∈ NI (A), r ∈ NR(K) (2)

At
a 3 ∀t.At

a A ∈ NC (K), a ∈ NI (A), t ∈ NtR(K) (3)

At
a 3 Ar

a A ∈ NC (K), a ∈ NI (A), t ∈ NtR(K), r ∈ NR(K), t 3R r (4)
Ar1

a � · · · �Arn
a 3 B a ∈ NI (A), (A 3 ∀ρ.B) ∈ T , ρ = r1 � · · · � rn (5)

Theorem 1. Let K = (R, T ,A) be a simplified SHQ� knowledge base and K′ =
(R′, T ′,A′) an ALCHQ� knowledge base obtained from K as described above.
Then (i) K′ is obtained from K in polynomial time and (ii) K is satisfiable iff
K′ is satisfiable.

Proof (Sketch). Claim (i) is straightforward. We sketch the proof for Claim (ii).
For the “if” direction of (ii), one can show that every model J of K′ can

be extended to a model I of K by interpreting non-simple roles r ∈ NR as
rJ ∪

⋃
t�Rr, t∈NtR

(tJ)+ and leaving the interpretation of the other symbols un-
changed. All axioms that do not have negative occurrences of non-simple roles
remain satisfied in I. Among the remaining axioms are RIAs r 3 s and axioms
of the form A 3 ∀ρ.B. RIAs r 3 s are satisfied by definition of I, and axioms
of the form A 3 ∀ρ.B are satisfied due to axioms (1)–(5).

For the “only if” direction of (ii) we use the fact that every satisfiable SHQ�

knowledge base K has a forest-shaped model I, where the ABox individuals form
the roots of the trees and relations can only be between the individuals or within
the trees. The model I can be then extended to a model J of the axioms (1)–(5)
by interpreting Aa as the restriction of A to the elements of the tree growing
from a, and Ar

a as the minimal sets satisfying axioms (2)–(4). For proving that
J satisfies all axioms of the form (5), we use a property that if two elements of
a tree have a common descendant, then one is a descendant of the other. �	
Corollary 1. The problem of concept satisfiability in the DL SHQ� is ExpTime-
complete (and so are all the standard reasoning problems).

Role Conjunctions in Expressive Description Logics 395

4 SHI� Is 2ExpTime-Complete

In this section, we show that extending SHI with role conjunctions causes an
exponential blow-up in the computational complexity of the standard reasoning
tasks. We show this by a reduction from the word problem of an exponential
space alternating Turing machine.

An alternating Turning machine (ATM) is a tuple M = (Γ,Σ,Q, q0, δ1, δ2),
where Γ is a finite working alphabet containing a blank symbol �, Σ ⊆ Γ \{�} is
the input alphabet ; Q = Q∃�Q∀�{qa}�{qr} is a finite set of states partitioned
into existential states Q∃, universal states Q∀, an accepting state qa, and a
rejecting state qr; q0 ∈ Q∃ is the starting state, and δ1, δ2 : (Q∃ ∪ Q∀) × Γ →
Q × Γ × {L,R} are transition functions. A configuration of M is a word c =
w1qw2 where w1, w2 ∈ Γ ∗ and q ∈ Q. An initial configuration is c0 = q0w0
where w0 ∈ Σ∗. The size |c| of a configuration c is the number of symbols in c.
The successor configurations δ1(c) and δ2(c) of a configuration c = w1qw2 with
q �= qa, qr over the transition functions δ1 and δ2 are defined as for deterministic
Turing machines (see, e.g., [10]). The sets Cacc(M) of accepting configurations
and Crej(M) of rejecting configurations of M are the smallest sets such that (i)
c = w1qw2 ∈ Cacc(M) if either q = qa, or q ∈ Q∀ and δ1(c), δ2(c) ∈ Cacc(M),
or q ∈ Q∃ and δ1(c) ∈ Cacc(M) or δ2(c) ∈ Cacc(M), and (ii) c = w1qw2 ∈
Crej(M) if either q = qr, or q ∈ Q∃ and δ1(c), δ2(c) ∈ Crej(M), or q ∈ Q∀
and δ1(c) ∈ Crej(M) or δ2(c) ∈ Crej(M). The set of reachable configurations
from an initial configuration c0 in M is the smallest set M(c0) such that c0 ∈
M(c0) and δ1(c), δ2(c) ∈ M(c0) for every c ∈ M(c0). A word problem for an
ATM M is to decide given an initial configuration c0 whether c0 ∈ Cacc(M).
M is g(n) space bounded if for every initial configuration c0 we have: (i) c0 ∈
Cacc(M) ∪ Crej(M), and (ii) |c| ≤ g(|c0|) for every c ∈ M(c0). A classical result
AExpSpace = 2ExpTime [11] implies that there exists a 2n space bounded ATM
M for which the following decision problem is 2ExpTime-complete: given an
initial configuration c0 decide whether c0 ∈ Cacc(M).

We encode a computation of the ATM M in a binary tree (see Figure 1)
whereby the configurations of M are encoded on exponentially long chains that
grow from the nodes of the tree—the ith element of a chain represents the ith

element of the configuration. In our construction, we distinguish odd and even
configurations in the computation using concept names Odd and Even. Every
odd configuration has two even successor configurations reachable by roles r1e
and r2e respectively; likewise, every even configuration has two odd successor
configurations reachable by inverses of r1o and r2o . We further alternate between
the concepts P0, P1, and P2 within the levels of the binary tree. This allows
us to distinguish the predecessor and the successor configuration represented by
the exponentially long chains. We enforce these chains (see Figure 2) by using
the well know “integer counting” technique [12]. A counter cI(x) is an integer
between 0 and 2n − 1 that is assigned to an element x of the interpretation I
using n atomic concepts B1, . . . , Bn such that the ith bit of cI(x) is equal to 1 iff
x ∈ Bi

I . We first define the concept Z that can be used to initialize the counter
to zero, and the concept E to detect whether the counter has reached the final

396 B. Glimm and Y. Kazakov

O

r1
e r2

e

r1
o

r1
e r2

e

r2
o

r1
e

r1
e r2

e

r1
o

r1
e r2

e

r2
o

r2
e

2n

2n

00Odd
P0

00Even
P1

00Odd
P2

00Even
P0

01 10 11
veveve

r1
e

01 10 11
vovovo

r1
o

01 10 11
veveve

r2
e

01 10 11
vovovo

2n

Fig. 1. The alternating binary tree structure for simulating a computation of the ATM
(left) and a detailed picture for the highlighted path (right)

00

¬B2 ¬B1

01

¬B2 B1

10

B2 ¬B1

11

B2 B1

cI(x) = v v v

Fig. 2. Expressing exponentially long chains using a counter and binary encoding

value 2n − 1 and, thus, the end of the chain is reached:

Z ≡ ¬B1 � . . . � ¬Bn E ≡ B1 � . . . � Bn (6)

Every element that is not the end of the chain has a v-successor:

¬E � ∃v.� (7)

The lowest bit of the counter is always flipped over v, while any other bit of the
counter is flipped over v if and only if the previous bit is flipped from 1 to 0:

� ≡ (B1 � ∀v.¬B1) � (¬B1 � ∀v.B1) (8)
Bk−1 � ∀v.¬Bk−1 ≡ (Bk � ∀v.¬Bk) � (¬Bk � ∀v.Bk) 1 < k ≤ n (9)

For convenience, let us denote by j[i]2 the ith bit of j in binary coding (the
lowest bit of j is j[1]2).

The tree-like structure in Figure 1 is induced by the following formulas. First,
we initialize the origin O of the tree by saying that it belongs to an odd row
labeled with P0 and, with the concept Z, we initialize an exponential chain:

O � Odd � P0 � Z (10)

Every initial element of an exponential chain has two successors alternating
between odd and even values:

Z � Odd � ∃r1
e .Even � ∃r2

e .Even (11)

Z � Even � ∃r1
o
−

.Odd � ∃r2
o
−

.Odd (12)

Role Conjunctions in Expressive Description Logics 397

For convenience, we introduce super-roles r1, r2 and r of the created roles to
keep track of the relations between the nodes and their successors:

r1
e � r1 r1

o � r1− r2
e � r2 r2

o � r2− r1 � r r2 � r (13)

The new roles are used to initialize the value Z for the successors and increment
Pj over r modulo 3 (we denote j + 1 mod 3 as [j + 1]3):

Z � ∀r.Z Pj � ∀r.P[j+1]3 0 ≤ j ≤ 2 (14)

In order to have the roles on the exponential chain correspond to the odd and
even rows, we replace axiom (7) with the following axioms:

¬E � Even � ∃ve.� ¬E � Odd � ∃v−o .� (15)

vo � v− ve � v (16)
Odd � ∀v.Odd Even � ∀v.Even (17)

The values of Pj are copied across the elements of the same row:

Pj � ∀v.Pj ¬Pj � ∀v.¬Pj 0 ≤ j ≤ 2 (18)

If we take a look at Figure 1, we notice that the roles ri
o, ri

e, vo and ve are
directed in such a way that, from every element of an exponential chain, only
elements of the neighboring chains are reachable by a sequence of roles. In other
words, if we introduce a common transitive super-role t of these roles, then
every element of the chain will be connected via t to exactly all elements of the
parent chain and all elements of the successor chains. Unfortunately, this is not
sufficient to simulate a computation of the Turing machine, as we need to connect
exactly the corresponding elements of a chain and its two successor chains to
compute the successor configurations. In order to achieve this goal, we will add
auxiliary chains to the exponential chain that, using transitive super-roles and
role conjunctions, will allow us to restrict the reachability relation only to the
corresponding elements.

The detailed construction for the side chains of two successive configurations
is shown in Figure 3. Every element of the exponential v-chain has n additional
“side” successors reachable by roles hj

ke and hj
ko with j ∈ {0, 1} and 1 ≤ k ≤ n.

Intuitively, k corresponds to the counting concepts and j to the counter value.
We will also count the level in the h-chains using concepts Hk, 0 ≤ k ≤ n—all
elements of the v-chain belong to H0, and every h-successor of an element in
Hk−1 belongs to Hk. The following axioms initialize the side chains according
to this description:

O � H0 H0 � ∀r.H0 H0 � ∀v.H0 (19)

Hk−1 � ¬Bk � (¬Even � ∃h0
ke.Hk) � (¬Odd � ∃h0

ko
−

.Hk) 1 ≤ k ≤ n (20)

Hk−1 � Bk � (¬Even � ∃h1
ke.Hk) � (¬Odd � ∃h1

ko
−

.Hk) 1 ≤ k ≤ n (21)

hj
ke � h hj

ko � h− j ∈ {0, 1}, 1 ≤ k ≤ n (22)
Even � ∀h.Even Odd � ∀h.Odd (23)

398 B. Glimm and Y. Kazakov

00P0

Q0

h0
2o

ti02
tij1

h0
1o

ti01
tij2

00P1

Q1
h0

2e

ti02
tij1

h0
1e

ti01
tij2

01

Q1
h0

2e

ti02
tij1

h1
1e

ti11
tij2

10

Q1
h1

2e

ti12
tij1

h0
1e

ti01
tij2

11

Q1
h1

2e

ti12
tij1

h1
1e

ti11
tij2

ve

tijk

ve

tijk

ve

tijk

r1
e t1j

k

01

Q0

h0
2o

ti02
tij1

h1
1o

ti11
tij2

10

Q0

h1
2o

ti12
tij1

h0
1o

ti01
tij2

11

Q0

h1
2o

ti12
tij1

h1
1o

ti11
tij2

vo

tijk

vo

tijk

vo

tijk
ρ1 ρ1 ρ1 ρ1

Fig. 3. A zoom-in and extension of Figure 1, which illustrates the use of the aux-
iliary side chains to connect the elements of the exponentially long chains with the
corresponding elements in the successor chains

We use these roles to express that the elements within an h-chain have the same
values for Bk and Pj :

Bk � ∀h.Bk ¬Bk � ∀h.¬Bk 0 ≤ k ≤ n (24)
Pj � ∀h.Pj ¬Pj � ∀h.¬Pj 0 ≤ j ≤ 2 (25)

For the final elements of the h-chains, we introduce the special concepts Qi that
correlate with the concepts Pj :

Hn � (Pj � Qj) � (¬Pj � ¬Qj) 0 ≤ j ≤ 2 (26)

These concepts will be used to connect the last elements of the h-chains with
the corresponding elements in the chains for the two successor configurations
using role conjunctions ρ1 and ρ2 introduced later on (see Figure 3). In order to
connect these elements, we introduce transitive super-roles tijk with i ∈ {1, 2},
j ∈ {0, 1}, and 1 ≤ k ≤ n:

ri
o � tijk ri

e � tijk (27)

vo � tijk ve � tijk (28)

hj
ko � tijk hj

ke � tijk (29)

hj
ko � tij

′

k′ hj
ke � tij

′

k′ j′ ∈ {0, 1}, 1 ≤ k′ ≤ n, k′ �= k (30)

Intuitively, the index i in tijk is inherited from the roles ri
o and ri

e (27)—all role
implications hold for both values of i. Likewise, the index j is inherited from
hj

ko and hj
ke, but only when the values of the index k match (29)—otherwise

the role implications hold for both values of j (30). Roles vo and ve do not filter
any indexes and imply all roles tijk (28). Axioms (27)–(30) make sure that the

Role Conjunctions in Expressive Description Logics 399

first and the last elements of every h-chain are connected with ti0k (ti1k) iff the
kth bit of the counter is 0 (1). Thus, only the corresponding last elements of
the h-chains in the successor configurations are connected with tijk for all k with
1 ≤ k ≤ n and some i and j, because they have the same values for the counter.
To make use of this property we introduce roles si

k that are obtained from tijk
by abstracting from j and forgetting the direction:

tijk � si
k tijk

− � si
k i ∈ {1, 2}, j ∈ {0, 1}, 1 ≤ k ≤ n (31)

Now define the role conjunctions ρ1 = s1
1 � · · · � s1

n and ρ2 = s2
1 � · · · � s2

n that
connect the last elements of the h-chains iff they are the corresponding elements
for the r1 and r2 successors in our binary tree on Figure 1. Note that ρ1 and ρ2

are not simple.
We now specify how the created tree structure relates to an alternating Turing

machine. Let c0 be an initial configuration of an ATM M = (Γ, Σ, Q, q0, δ1, δ2)
and n = |c0| (w.l.o.g., we assume that n > 2). In order to decide whether
c0 ∈ Cacc(M), we try to build all the required accepting successor configurations
of c0 for M. We encode the configurations of M on the 2n-long v-chains. A chain
corresponding to a configuration c is connected via the roles r1 and r2 to two
chains that correspond to δ1(c) and δ2(c) respectively. We use an atomic concept
Aa for every symbol a that can occur in configurations and we make sure that
all elements of the same h-chain are assigned to the same symbol:

Aa � ∀h.Aa ¬Aa � ∀h.¬Aa (32)

It is a well-known property of the transition functions of Turing machines that
the symbols c1

i and c2
i at the position i of δ1(c) and δ2(c) are uniquely determined

by the symbols ci−1, ci, ci+1, and ci+2 of c at the positions i−1, i, i+1, and i+2.1

We assume that this correspondence is given by the (partial) functions λ1 and
λ2 such that λ1(ci−1, ci, ci+1, ci+2) = c1

i and λ2(ci−1, ci, ci+1, ci+2) = c2
i . We

use this property in our encoding as follows: for every quadruple of symbols
a1, a2, a3, a4 ∈ Q ∪ Γ , we introduce a concept name Sa1a2a3a4 which expresses
that the current element of the v-chain is assigned with the symbol a2, its v-
predecessor with a1 and its next two v-successors with respectively a3 and a4
(a1, a3, and a4 are � if there are no such elements):

Z � Aa2 � ∃v.(Aa3 � ∃v.Aa4) � S�a2a3a4 a2, a3, a4 ∈ Q ∪ Γ (33)
Aa1 � ∃v.(Aa2 � ∃v.(Aa3 � ∃v.Aa4)) � ∀v.Sa1a2a3a4 a1, a2, a3, a4 ∈ Q ∪ Γ (34)

Aa1 � ∃v.(Aa2 � ∃v.(Aa3 � E)) � ∀v.Sa1a2a3� a1, a2, a3 ∈ Q ∪ Γ (35)
Aa1 � ∃v.(Aa2 � E) � ∀v.Sa1a2�� a1, a2 ∈ Q ∪ Γ (36)

Furthermore, all elements of the same h-chain have the same values of Sa1a2a3a4 :

Sa1a2a3a4 � ∀h.Sa1a2a3a4 ¬Sa1a2a3a4 � ∀h.¬Sa1a2a3a4 (37)

1 If any of the indexes i − 1, i + 1, or i + 2 are out of range for the configuration c, we
assume that the corresponding symbols ci−1, ci+1, and ci+2 are the blank symbol �.

400 B. Glimm and Y. Kazakov

Finally, the properties of the transition functions are expressed using the follow-
ing axioms, where, as previously defined ρ1 = s1

1 �· · ·�s1
n and ρ2 = s2

1 �· · ·�s2
n:

Sa1a2a3a4 � Qj � ∀ρ1.[¬Q[j+1]3 � Aλ1(a1,a2,a3,a4)] 0 ≤ i ≤ 2 (38)

Sa1a2a3a4 � Qj � ∀ρ2.[¬Q[j+1]3 � Aλ2(a1,a2,a3,a4)] 0 ≤ i ≤ 2 (39)

Intuitively, these axioms say that whenever Sa1a2a3a4 holds at the end of an h-
chain where Qj holds, then Aλ1(a1,a2,a3,a4) should hold for every ρ1 (ρ2) successor
for which Q[j+1]3 holds. As noted before, only the corresponding last elements
of the h-chains can be connected by ρ1 and ρ2. The concepts Qj and Q[j+1]3
restrict the attention to the last elements of the h-chains and make sure that
the information is propagated to the successor configuration and not to the
predecessor configuration.

We now make sure that the elements in the root chain of our tree correspond
to the initial configuration c0:

O � Ac0
1
� ∀v.(Ac0

2
� · · · ∀v.(Ac0

n
� ∀v.O�) · · ·) (40)

O� � A� � ∀v.O� (41)

In order to distinguish between the configurations with existential and uni-
versal states, we introduce two concepts S∀ and S∃, which are implied by the
corresponding states and propagated to the first elements of the configuration:

Aq � S∃ q ∈ Q∃ Aq � S∀ q ∈ Q∀ (42)
∃v.S∃ � S∃ ∃v.S∀ � S∀ (43)

Now instead of always creating two successor configurations, we create only
configurations that are required for acceptance. Thus, we replace axioms (11)
and (12) with the axioms (44)–(46) below:

Z � Odd � S∀ � ∃r1
e .� � ∃r2

e .� Z � Even � S∀ � ∃r1
o
−

.� � ∃r2
o
−

.� (44)

Z � Odd � S∃ � ∃r1
e .� � ∃r2

e .� Z � Even � S∃ � ∃r1
o
−

.� � ∃r2
o
−

.� (45)
Odd � ∀r.Even Even � ∀r.Odd (46)

Finally we forbid configurations with rejecting states in our model:

Aqr � ⊥ (47)

To summarize, our construction proves the following theorem:

Theorem 2. Let c0 be an initial configuration for the ATM M and K a knowl-
edge base consisting of the axioms (6)–(10) and (13)–(47). Then c0 ∈ Cacc(M)
if and only if O is (finitely) satisfiable in K.

When analyzing the number of introduced axioms and their size, we see that
their number is polynomial in n and their size is linear in n, where n is the size
of the initial configuration. Hence, we get the following result.

Role Conjunctions in Expressive Description Logics 401

Corollary 2. The problem of (finite) concept satisfiability in the DL SHI� is
2ExpTime-hard (and so are all the standard reasoning problems).

The corresponding upper bound from [3] gives us the following result.

Corollary 3. The problem of concept satisfiability in SHI� and SHIQ� is
2ExpTime-complete (and so are all the standard reasoning problems).

Since the problem of KB satiafiability in SHI� can be polynomially reduced to
non-entailment of a union of conjunctive queries with at most two variables [5],
we also get the following result.

Corollary 4. The problem of entailment for unions of conjunctive queries in
SHI is 2ExpTime-complete already for queries with at most two variables.

5 SHOIF� Is N2ExpTime-Hard

For proving the lower bound of reasoning in SHOIF�, we use a reduction from
the double exponential domino tiling problem. We demonstrate how, by using
SHOIF� formulas, one can encode a 22n × 22n

grid-like structure illustrated
in Figure 4. As in our tree-like structure in Figure 1 we will use four roles
r1
o , r1

2 , r2
o , and r2

e with alternating directions to create the grid. Roles r1
o and r1

e

O

{o}

r1
o

r2
o

r1
e

r2
e

r1
o

r2
o

r1
e

r1
e

r2
e

r1
o

r1
e

r2
e

r1
o

r2
o

r1
e

r2
e

r1
o

r1
o

r2
o

r1
e

r2
o

r2
e

r2
o

r2
e

r1
e

r2
e

r1
o

r2
o

r1
e

r2
e

r1
o

r1
o

r2
o

r1
e

r2
o

r2
e

r2
o

r2
e

22n

22n

2n 2n

r2
o

ρ2 ρ2 ρ2 ρ2

r2
e

ρ2 ρ2 ρ2 ρ2

r2
o

ρ2 ρ2 ρ2 ρ2

r2
e

ρ2 ρ2 ρ2 ρ2

P0

P1

P2

P2

P0

¬Y

Y

¬Y

Y

Y

¬Y

¬Y

¬Y

Y

Y

Y

Y

¬Y

¬Y

¬Y

¬Y

Y

Y

¬Y

¬Y

¬Y

¬Y

Y

Y

2n

Fig. 4. A doubly exponential grid structure (left) and a detailed picture corresponding
to the selected vertical slice in the grid (right)

402 B. Glimm and Y. Kazakov

induce horizontal edges and roles r2
o and r2

e induce vertical edges. The nodes of
the grid are also partitioned on even and odd in a similar way as before: the
odd nodes have only outgoing r-edges and the even nodes have only incoming
r-edges. In fact our grid structure in Figure 4 is obtained from the tree structure
in Figure 1 by merging the nodes that are reachable with the same number of
horizontal and vertical edges up to a certain level; that is the nodes having the
same “coordinates”. The key idea of our construction is that in SHOIF� it is
possible to express doubly exponential counters for encoding the coordinates—a
similar technique has been recently used in [2] for proving N2ExpTime-hardness
of SROIQ. We use a pair of counters to encode the coordinates of the grid: the
counters are initialized in the origin O of the grid; the first counter is incremented
across horizontal edges and the second counter is incremented across the vertical
edges. We use nominals and inverse functional roles as in the hardness prove for
SHOIQ [6] to enforce the uniqueness of the nodes with the same coordinates.

To store the values of the counters we will use exponentially long v-chains
that grow from the nodes of the grid. The ith element of the chain encodes the
ith bit of the horizontal counter using concept X and the ith bit of the vertical
counter using concept Y (see the right part of Figure 1). We will use auxiliary
side h-chains like in our construction for SHI� to connect the corresponding
elements of the v-chains, which allows a proper incrementation of the counters.

In order to express the grid-like structure in Figure 4, we reuse all axioms
(6)–(31) that define r-, v-, and h-chains, and add axioms to deal with the new
counters and to merge the nodes with equal coordinates. First, we initialize both
counters for the origin of our grid using auxiliary concepts Z1 and Z2:

O � Z1 � Z2 Z1 � ¬X � ∀v.Z1 Z2 � ¬Y � ∀v.Z2 (48)

Next, we introduce two concepts Xf and Y f which express that the correspond-
ing bit of the counter needs to be flipped in the successor value. Thus, the ending
bit of the counter should always be flipped, while any other bit of the counter
should be flipped if and only if the lower bit of the counter (accessible via v) is
flipped from 1 to 0:

E � Xf � Y f (49)

∃v.(X � Xf) � Xf ∃v.¬(X � Xf) � ¬Xf (50)

∃v.(Y � Y f) � Y f ∃v.¬(Y � Y f) � ¬Y f (51)

Additionally, we express that the values of X , Y , Xf , and Y f agree across all
elements of the same h-chain:

X � ∀h.X ¬X � ∀h.¬X Y � ∀h.Y ¬Y � ∀h.¬Y (52)

Xf � ∀h.Xf ¬Xf � ∀h.¬Xf Y f � ∀h.Y f ¬Y f � ∀h.¬Y f (53)

Finally, we express when the bits are flipped and when they are not flipped
for the successor configurations using the property that the end elements of h-
chains are related to exactly the corresponding elements of the successor chains

Role Conjunctions in Expressive Description Logics 403

via the roles ρ1 and ρ2. The axioms are analogous to axioms (38) and (39) that
propagate the information to the successor configurations:

Qi � Xf � (X � ∀ρ1.[¬Q[i+1]3 � ¬X]) � (¬X � ∀ρ1.[¬Q[i+1]3 � X]) (54)

Qi � ¬Xf � (X � ∀ρ1.[¬Q[i+1]3 � X]) � (¬X � ∀ρ1.[¬Q[i+1]3 � ¬X]) (55)

Qi � Y f � (Y � ∀ρ2.[¬Q[i+1]3 � ¬Y]) � (¬Y � ∀ρ2.[¬Q[i+1]3 � Y]) (56)

Qi � ¬Y f � (Y � ∀ρ2.[¬Q[i+1]3 � Y]) � (¬Y � ∀ρ2.[¬Q[i+1]3 � ¬Y]) (57)

The following formulas express that the counters are copied for other directions:

Qi � (X � ∀ρ2.[¬Q[i+1]3 � X]) � (¬X � ∀ρ2.[¬Q[i+1]3 � ¬X]) (58)

Qi � (Y � ∀ρ1.[¬Q[i+1]3 � Y]) � (¬Y � ∀ρ1.[¬Q[i+1]3 � ¬Y]) (59)

In order to determine whether the counters have reached the maximal value
22n − 1, we use concepts E1 and E2 that hold on the elements of v-chains if and
only if X , respectively Y , hold for all v-successors until the end of the chain:

X � (E � ∃v.E1) � E1 E1 � X � (E � ∀v.E1) (60)

Y � (E � ∃v.E2) � E2 E1 � X � (E � ∀v.E1) (61)

In order to avoid creating r-successors after the maximal values of the counters
are reached, we replace axioms (11) and (12) with (62) and (63):

Z � Odd � (E1 � ∃r1
e .Even) � (E2 � ∃r2

e .Even) (62)

Z � Even � (E1 � ∃r1
o
−

.Odd) � (E2 � ∃r2
o
−

.Odd) (63)

In order to merge the elements with the same coordinates, we first merge the
elements that have the maximal values for both counters:

Z � E1 � E2 � {o} (64)

The preceding elements with the same coordinates are then merged by asserting
functionality of the roles r1 and r2 that are respective superroles of r1

e , r1
o
−, r2

e ,
and r2

o
− according to (13):

Func(r1) Func(r2) (65)

Our complexity result for SHOIF� is now obtained by a reduction from the
bounded domino tiling problem. A domino system is a triple D = (T, H, V),
where T = {1, . . . , k} is a finite set of tiles and H, V ⊆ T ×T are horizontal and
vertical matching relations. A tiling of m×m for a domino system D with initial
condition c0 = 〈t01, . . . , t0n〉, t0i ∈ T, 1 ≤ i ≤ n, is a mapping t : {1, . . . , m} ×
{1, . . . , m} → T such that 〈t(i − 1, j), t(i, j)〉 ∈ H, 1 < i ≤ m, 1 ≤ j ≤ m,
〈t(i, j − 1), t(i, j)〉 ∈ V, 1 ≤ i ≤ m, 1 < j ≤ m, and t(i, 1) = t0i , 1 ≤ i ≤ n. It
is well known [13] that there exists a domino system D0 that is N2ExpTime-
complete for the following decision problem: given an initial condition c0 of the
size n, check if D0 admits the tiling of 22n × 22n

for c0.

404 B. Glimm and Y. Kazakov

In order to encode the domino problem on our grid, we use new atomic con-
cepts T1, . . . , Tk for the tiles of the domino system D0. The following axioms
express that every element in our structure is assigned with a unique tile and
that it is not possible to have horizontal and vertical successors that do not agree
with the matching relations

� � T1 � · · · � Tk (66)
Ti � Tj � ⊥ 1 ≤ i < j ≤ k (67)

Ti � ∃r1.Tj � ⊥ 〈i, j〉 /∈ H (68)

Ti � ∃r2.Tj � ⊥ 〈i, j〉 /∈ V (69)

Finally, we express the initial condition of the grid:

O � Tt01
� ∀r1.(Tt02

� ∀r1.(Tt03
� ∀r1.(Tt04

� . . . ∀r1.Tt0n
. . .))) (70)

Note that the size and the number of formulas that we have constructed is
polynomial in the size of c0. Since D0 is fixed, we obtain a polynomial reduction
from the doubly exponential domino tiling problem to the problem of SHOIF�

knowledge base satisfiability.

Theorem 3. Let c0 be an initial condition of size n for the domino system D0
and K a knowledge base consisting of axioms (6)–(10), (13)–(31), and (48)–
(70). Then D0 admits the tiling of 22n × 22n

for c0 if and only if O is (finitely)
satisfiable in K.

Corollary 5. The problem of (finite) concept satisfiability in the DL SHOIF�

is N2ExpTime-hard (and so are all the standard reasoning problems).

6 Conclusions

Our investigation of the computational complexity of DLs with role conjunctions
is motivated by the facts that (i) role constructors recently gained attention since
the upcoming OWL2 standard supports a much richer set of role constructors
and (ii) conjunctive query answering in a DL L is often reducible to the knowl-
edge base satisfiability problem for L with role conjunctions (e.g., for SHIQ
and SHOQ this is the case). We have shown that role conjunctions cause an
exponential blowup for the DLs SHI� and SHOIF�. The main culprit for this
are inverse roles, which we show by proving ExpTime-completeness of SHQ�.
Our results imply that conjunctive query entailment for SHI is 2ExpTime-hard
already for a bounded number of variables in the query. The previously known
proof for 2ExpTime-hardness [14] has unbounded number of variables in queries.

It remains an open question whether SHOIF� is N2ExpTime-complete and so
far even decidability is unknown. We think that the answer to this question can
shed some light on the problem of decidability of conjunctive query entailment
in SHOIN and, thus, OWL DL, which is a long-standing open problem.

Role Conjunctions in Expressive Description Logics 405

References

1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook. Cambridge University Press, Cambridge
(2003)

2. Kazakov, Y.: RIQ and SROIQ are harder than SHOIQ. In: Proc. of the 11th Int.
Conf. on the Principles of Knowledge Representation and Reasoning (KR 2008).
AAAI Press/The MIT Press (2008)

3. Glimm, B., Horrocks, I., Lutz, C., Sattler, U.: Conjunctive query answering for the
description logic SHIQ. J. of Artificial Intelligence Research 31, 151–198 (2008)

4. Lange, M., Lutz, C.: 2-ExpTime lower bounds for Propositional Dynamic Logics
with intersection. J. of Symbolic Logic 70(5), 1072–1086 (2005)

5. Glimm, B., Kazakov, Y.: Role conjunctions in expressive description logics. Tech-
nical report, University of Oxford (2008),
http://www.comlab.oxford.ac.uk//files/361/RoleConjunctions.pdf

6. Tobies, S.: Complexity Results and Practical Algorithms for Logics in Knowledge
Representation. PhD thesis, RWTH Aachen (2001)

7. Schild, K.: A correspondence theory for terminological logics: preliminary report.
In: Proc. of the 12th Int. Joint Conf. on Artificial Intelligence (IJCAI 1991) (1991)

8. Kazakov, Y., Motik, B.: A resolution-based decision procedure for SHOIQ. J. of
Automated Reasoning 40(2–3), 89–116 (2008)

9. Hustadt, U., Motik, B., Sattler, U.: Reducing SHIQ− Description Logic to Dis-
junctive Datalog Programs. In: Proc. of the 9th Int. Conf. on the Principles of
Knowledge Representation and Reasoning (KR 2004) (2004)

10. Sipser, M.: Introduction to the Theory of Computation, 2 edn. Course Technology
(February 2005)

11. Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. J. of the ACM 28(1),
114–133 (1981)

12. Tobies, S.: The complexity of reasoning with cardinality restrictions and nominals
in expressive description logics. J. of Artificial Intelligence Research 12 (2000)

13. Börger, E., Grädel, E., Gurevich, Y.: The classical decision problem. J. of Logic,
Language and Information 8(4), 478–481 (1999)

14. Lutz, C.: Inverse roles make conjunctive queries hard. In: Proc. of the 2007 De-
scription Logic Workshop (DL 2007) (2007)

http://www.comlab.oxford.ac.uk//files/361/RoleConjunctions.pdf

Default Logics with Preference Order:
Principles and Characterisations

Tore Langholm

Royal Norwegian Naval Academy, Box 83 Haakonsvern, N-5886 Bergen
tore.langholm@sksk.mil.no

Abstract. Practical use of default logics requires mechanisms to select
the more suitable extensions from out of the several often allowed by
a classical default theory. An obvious solution is to order defaults in a
preference hierarchy, and use this ordering to select preferred extensions.
The literature contains many suggestions on how to implement such a
scheme. The problem is that they yield different results: all authors agree
that preferred extensions employ preferred defaults, but this apparent
agreement hides differences in lower level decisions. While motivations
for these are rarely discussed, their consequences for overall behaviour
are wide-ranging. This paper points towards standardisation, discussing
principles that ought to hold and then working top-down to determine
lower level details. We present characterisations, uncover anomalies of
existing approaches, and suggest repairs.

We build on work by Brewka and Eiter [4], who first identified some of
the desiderata discussed here. A slightly modified version of the notion
of preferred extension proposed by these authors, and one by Delgrande
and Schaub [5], are identified as the most and least inclusive notions of
extension satisfying all desiderata. We point out that these two (in the lit-
erature previously termed “descriptive” and “prescriptive”, respectively)
differ along two rather independent dimensions, and two additional no-
tions are then identified, representing the remaining possibilities.

1 Introduction

A classical default theory in the tradition of Reiter [11] typically allows several
extensions, of which one or a few will be deemed more appropriate in concrete
situations. Classical default logic does not provide sufficient means for carrying
out such comparison between extensions within the theory itself. One strategy
for accommodating appropriate comparison criteria within the theory, has been
the introduction of preference orders on the set of defaults [1,2,4,5,10,12]. Very
roughly, the extensions obtained using more preferred defaults are then to be
viewed as the better ones, i.e., the ones to be assigned an OK stamp. When it
comes to the precise mechanisms by which an ordering of defaults is translated

I. Cervesato, H. Veith, and A. Voronkov (Eds.): LPAR 2008, LNCS 5330, pp. 406–420, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Default Logics with Preference Order: Principles and Characterisations 407

into an acceptability criterion on extensions, there has, however, been remark-
ably little agreement. In the terminology we shall use, there has been a wide
variation among the extension predicates proposed by different authors: an ex-
tension predicate (EP for short) is something that determines, for any ordered
default theory, the set of acceptable extensions.

A landmark contribution was the article by Brewka and Eiter [4], which iden-
tifies some salient properties to look for in reasonable EPs. The majority of
approaches found in the literature at the time did not pass their test, but a
couple did, and indeed the range of possible EPs one can define that do pass,
remains wide and encompassing. Present work discusses additional, and in our
view equally reasonable, principles to further narrow down this space of possible
EPs, and then shows how to use these principles to characterise concrete EPs.
What we hope to see as the eventual outcome of such work, is a typology of sort,
identifying possible ways of interpreting the preference order, and determining
in each case the one and only appropriate EP to use. We believe that many of
the central issues are still to be settled, one clear indication of this being the
fact that two prominent EPs in the literature fail to comply with a principle of
Base Logic Invariance introduced here, an extremely weak requirement saying
that intuitively vacuous defaults of a type that merely restate logical inferences
which in any case are taken care of by the underlying monotonic logic, should
have no bearing on the set of acceptable extensions.

Original contributions of the present work are threefold. First and foremost,
there is a methodological twist; rather than passing from one EP to the next,
each time detecting unforeseen defects in previous approaches and seeking to al-
leviate these by smart fixes, we propose a less ad-hoc, more top-down procedure,
starting from general principles and looking to identify the right EP satisfying
these. Secondly we discuss a collection of such principles that one should want
to see in the treatment of defaults. This second contribution is not complete;
the principles described do not suffice to identify any one unique EP, but it does
take us quite a bit of the way. Our third contribution, then, is a study of the
strongest and weakest EPs satisfying various collections of principles. This last
part includes characterisations of such abstractly defined EPs, stated in very
concrete, algorithmic terms.

2 Basic Notions

For present discussions there is no need to fix the underlying (“base”) monotonic
logic to be any of the typical candidates usually considered, such as propositional
or predicate logic of some flavour. We merely assume the existence of some set
L of formulas together with an inference relation of the format E (ϕ, with
subsets and members of L to the left and right, respectively. For any E ⊆ L, we
write Th(E) for the set {ϕ | E (ϕ}, and, following Tarski [14], assume that (
behaves such that Th is a closure operator.1 We also require formulas ",⊥ in
L, such that " ∈ Th(∅) and Th({⊥}) = L. As usual, equivalence means mutual
1 E ⊆ Th(E) and Th(Th(E)) = Th(E) and Th(E) ⊆ Th(F) for all E ⊆ F ⊆ L.

408 T. Langholm

inferrability, hence ϕ, ψ are equivalent iff ϕ (ψ and ψ (ϕ. It is convenient to
assume that each formula is equivalent to infinitely many others.2

A set E of formulas is consistent if E �(⊥, i.e., iff Th(E) �= L, and inconsis-
tent if it is not consistent. Furthermore, ϕ is consistent (inconsistent) with
E, written E♦ϕ (E�ϕ), if E ∪ {ϕ} is consistent (inconsistent). We write E (F
if F ⊆ Th(E), i.e., if E (ϕ for every ϕ ∈ F .

A default rule (or just default) is of the form α : β/γ, where α, β, γ ∈ L. The
components α, β and γ are the prerequisite, justification and consequence,
respectively. The letter δ (and δ′, δ0, etc.) shall be used to range over defaults.
Frequently we shall want to refer to the individual components of a given δ;
rather than write pre(δ), just(δ), cons(δ) or the like, we shall then, for better
readability, adopt a convention linking the four variables α, β, γ, δ in such a
way that δ is at any time understood to be the default α : β/γ. Similarly for
α′, β′, γ′, δ′ and α0, β0, γ0, δ0, etc. Defaults of the form α : "/γ are justification
free; for these we use the simpler notation α/γ.

If D is a set of defaults and E is a set of formulas, then GD(D,E) is defined
to be the set of defaults δ in D such that E (α and E♦β. Now the semantics
of defaults is, at least partly, captured by a notion of D-closure: for any set D
of defaults, a set E of formulas is D-closed if E (γ for every δ ∈ GD(D,E).

A default theory is a pair (D,W) consisting of a set W of formulas and
a set D of defaults. An extension of the theory is any D-closed formula set E
containing W and satisfying the closure condition Th(E) = E and which is,
in an intuitive sense, reachable from W using D in a careful way that ensures
each step to remain justifiable at later stages.3 To simplify discussions we assume
that D is always finite;4 extensions can then be defined through a notion of proof
sequence, defined next. For any set W of formulas and set A or sequence u of
defaults, let WA and Wu be the sets W ∪{γ | δ ∈ A} and W ∪{γ | δ ∈ u}. Now,
the sequence u of defaults is a proof sequence (PS) if it contains no repetitions
and Wu is D-closed, and for any sδ - u we have Ws (α and Wu♦β. Here, v - u
expresses that v is an initial segment of u, i.e., that u = vw for some (possibly
empty) sequence w. It is well known that the following definition is equivalent
to Reiter’s original when applied to finite Ds.

2 This condition is met by any logic containing a binary connective (e.g., ∧ or ∨)
such that ϕ and (ϕ ϕ) and ((ϕ ϕ) ϕ) etc., are all distinct and equivalent. There
are several reasons for wanting this assumption, one is that some authors take an
“intensional” view of defaults, allowing two defaults to share the same prerequisite,
justification and consequence and yet be distinct, hence allowing for the theoretical
possibility of having “the same” default appearing at different places in the prefer-
ence hierarchy. Under the present assumption, this is easily simulated using distinct
copies of the formulas involved.

3 Following Reiter [11], the extensions of (D, W) are the fixed-points of an operator
mapping any set S of formulas to the smallest E ⊆ L containing W , such that
E = Th(E) and such that for each δ ∈ D, if E � α and S♦β, then E � γ.

4 The relevant distinctions to be discussed already appear in this restricted setting,
hence the technicalities introduced by infinite D’s would, in our view, only serve as
irrelevant distractions away from the central points to be conveyed.

Default Logics with Preference Order: Principles and Characterisations 409

Definition 1. E is an extension of (D,W) if E = Th(Wu) for a PS u.

In this case we write (D,W) � E. All defaults occurring in u will obviously be
members of GD(D,Wu), but u does not necessarily contain all of GD(D,Wu).
Remaining members ofGD(D,Wu) would, on the other hand, contribute nothing
additional, asWu is still required to beD-closed. Proof sequences that do contain
all of GD(D,Wu) are full; also the following is known and easily checked.

Lemma 1. (D,W) � E iff E = Th(Wu) for some full PS u.

An ordered default theory is a triple (D,W,<) where (D,W) is a classical
default theory and< is a strict, partial order onD. We interpret< as a preference
order5 on defaults, in such a way that δ1 is preferred to δ2 if δ1 < δ2. Suppose
D0 ⊆ D, then δ0 is a minimal element of (or minimal in) D0 if δ0 ∈ D0, and
δ1 < δ0 for no δ1 ∈ D0. Note that any non-empty, finite D0 ⊆ D has at least
one minimal element.

We shall sometimes refer to the subtheory of (D,W,<) containing only the
defaults occurring in some given subset D0 of D, and write (D0,W,<) for this,
although < may in fact not be a subset of D0 ×D0. What we shall mean then,
is of course (D0,W,<0), where <0 is the restriction of < to D0.

Let (D,W,<) be any ordered theory and let A be a subset of D, we then
define ↑A to be the set {δ′ ∈ D | δ ∈ A, (δ = δ′ or δ < δ′)}. A subset D0 ⊆ D is
preferentially closed if δ ∈ D0 whenever δ < δ0 and δ0 ∈ D0.

An extension predicate (EP) determines, for any ordered default theory,
an associated set of acceptable extensions. We shall use the symbols �x and �y

for arbitrary EPs, and write (D,W,<) �x E if E is an acceptable extension of
(D,W,<) according to �x. We say that �y contains �x, or �y is at least
as weak as �x, or �x is at least as strong as �y, if (D,W,<) �x E always
implies (D,W,<) �y E.

3 Core Principles

This paper primarily discusses principles of Order Compliance – in which way or
ways the extensions of an ordered default theory should comply with the ordering
on defaults. To carry out such discussions with sufficient rigour, we need a set
of ground rules, stipulating that candidate EPs do not deviate from classical
default logic in arbitrary ways. For this purpose we introduce the following core
principles, collectively referred to as “CP”.

Normality If (D,W,<) �x E then (D,W) � E
Null-Preference If (D,W) � E then (D,W, ∅) �x E
Relevance If (D\{δ},W,<) �x E and (E �(α orW �β) then (D,W,<) �x E.
Positivity If (D,W,<) �x E and (E �(α or E�β) then (D \ {δ},W,<) �x E.
Interpolation If (D,W,<) �x E and E (V and V (W then (D,V,<) �x E.

5 Beware that some authors adopt the opposite convention, according to which δ2 is
more preferred if δ1 < δ2.

410 T. Langholm

A common characteristic of the five is that they hardly at all refer to the pref-
erence order; they mostly record uniformities seen in classical default logic, and
stipulate that these carry over to the ordered version. The list is partly compiled
from the literature;6 we hope it will be clear from the following that they express
weak, uncontroversial conditions that would, in less formal settings, be dismissed
as trivial. Note in particular that it is not a list of pragmatically useful properties
ensuring easy processing or convenient numbers of accepted extensions – these
are all minimal requirements without which a candidate logic would in our view
lack sufficient semantic transparency.

Normality says that the extensions of any ordered theory are also extensions
of the corresponding classical, unordered theory: introducing priorities should
only have the effect of narrowing down the set of possible extensions – never the
opposite one of introducing new. In the presence of Normality, Null-Preference
goes on to say that an ordered theory with no preferences recorded should behave
exactly as the corresponding classical theory: ordered default logic employs no
other device than priorities for narrowing down the set of extensions.7

Relevance expresses the intuition that any extension should remain so after the
introduction of new defaults dealing with different circumstances, i.e., containing
prerequisites that don’t show up in the present case, or justifications contradicted
at the outset. It really consists of two principles, of which the first is nothing but
Principle II introduced by Brewka and Eiter.8 For an example, consider a default
theory used formedical diagnosis, and suppose the available facts anddefaults yield
an extension which in no way indicates that kidneys are encountering problems,
such as overloading due to internal or external factors. Now by the first half of Rel-
evance this extension remains valid after the introduction of new defaults applying
only in cases where kidney overloading is indicated. A slight modification will do
for illustration of the second half: suppose the available facts and defaults yield
a particular extension, and that available facts show the kidneys to be in perfect
working order. By Relevance this extension remains valid after the introduction of
new defaults applying only in cases where kidney failure cannot be excluded.

Positivity is a similar pair, expressing that a default can only contribute pos-
itively to something being an extension: if a theory yields a particular extension
and a given default available in the theory clearly does not contribute to this,
either because its prerequisite is not implied by the extension or because its
justification is contradicted by it, then the extension should remain so when the
default is removed from the theory. Simple adaptations of the above examples
could serve to illustrate this; we leave the task to the interested reader.

Interpolation says that if available facts and defaults yield a particular exten-
sion, and then new, independent facts (which go in W) are obtained which are

6 Engan [6] discusses the first two under the names of Classical Subset and Empty
Order, respectively.

7 This is not to say that other approaches for resolving multiple extensions are not to
be considered – only that such approaches should be recognized as that, i.e., other
approaches. Present work considers what can be achieved with priorities alone.

8 The principle is exactly the same, although the wording is different.

Default Logics with Preference Order: Principles and Characterisations 411

already implied by the extension, then the extension should remain an exten-
sion of the modified theory. Returning to kidneys: if an extension is obtained,
yielding a diagnosis which, as part of the picture, concludes that liver and kid-
neys are overloaded, then this diagnosis remains valid if someone turns up with
independent evidence of kidney overloading – provided this evidence does not
contribute additional details not already present in the extension.

4 Minimal and Weak Order Compliance

A more crucial discussion concerns conditions that relate EPs to the ordering,
The following, introduced by Brewka and Eiter [4], is of the sort:

Principle I. If E1 and E2 are distinct, classical extensions of (D,W), where
GD(D,E1) andGD(D,E2) areR∪{δ1} andR∪{δ2} respectively, for δ1 < δ2,
then E2 is not an extension of the ordered theory (D,W,<).

If the precedence order is to have any role to play at all in the selection of
acceptable extensions, then this would seem an absolutely minimal requirement.
The condition itself does, however, have the flavour of a useful but restricted test
criterion (note the very limited cases to which it applies) rather than of a well-
rounded principle, and we shall discuss instead some more general conditions
that, together with CP, will ensure Principle I. Consider first:

Minimal Order Compliance. Suppose (D,W,<) �x E, and suppose more-
over that E (α and E �(γ for some δ ∈ D. Then WD0�β for some
D0 ⊆ D\ ↑{δ} such that E (α0 and E♦β0 for every δ0 ∈ D0.

This is perhaps best considered in conjunction with Normality: if E is allowed
as an extension of (D,W,<), and a given default δ ∈ D does not fire although
its precondition α is satisfied, then by Normality we know that E refutes β.
Minimal Order Compliance makes, however, the stronger claim that in this case
a subset of E may also be identified, which refutes β, and contains just W and
consequences of defaults in D of which none are less preferred than δ. This
suffices to ensure Principle I:

Proposition 1. Any EP satisfying CP and Minimal Order Compliance also
satisfies Principle I.

Due to space restrictions, the proof is omitted here. It can be found, together
with proofs of all results listed below, in Langholm [9].

Minimal Order Compliance is closely related to the EP proposed by Brewka
and Eiter [4]; their Proposition 15 can be rephrased to say that, in the special
case of totally ordered default theories, their EP is the weakest possible (the
one allowing most9 extensions) that satisfies Minimal Order Compliance and
Normality. For our purposes it suffices to use this as the definition:

9 Allowing all extensions allowed by any other EPs satisfying these conditions.

412 T. Langholm

Definition 2. (D,W,<) �BE E iff (D,W) � E and for every δ ∈ D, if E (α
and E �(γ then WD0�β for some D0 ⊆ D\ ↑{δ} such that E (α0 and E♦β0 for
every δ0 ∈ D0.

Note carefully that �BE is not the EP introduced by Brewka and Eiter, but
coincides on totally ordered theories. It can be shown to satisfy CP. Since by defi-
nition it is the weakest EP satisfying Normality and Minimal Order Compliance,
it is also the weakest satisfying CP and Minimal Order Compliance.

We find two defects with �BE . One of these it shares with Brewka and
Eiter’s EP, the other it doesn’t. We consider the last first. To avoid potentially
confusing overloading of the word “extension,” we write “linearisation of <” to
mean a total (linear) extension of <.

Definition 3. The EP �x is sharp if for any ordered theory (D,W,<) and set
E of formulas, (D,W,<) �x E iff (D,W,<′) �x E for a linearisation <′ of <.

The following example shows that �BE is not sharp.

Example 1. Consider (D, ∅, <), with D containing the defaults

δ1 = " : p/p δ′1 = " : q/q
δ2 = " : ¬q/¬q δ′2 = " : ¬p/¬p

where δ1 < δ2 and δ′1 < δ′2. It is easy to see that either δ1 <′ δ′2 or δ′1 <
′ δ2 for

any linearisation <′ of <, hence any �x satisfying Minimal Order Compliance
will be such that E (p or E (q whenever (D, ∅, <′) �x E. However, as Minimal
Order Compliance only “talks about one δ1 at a time,” it fails to capture the
relevant conditions when faced with partially ordered theories. In particular,
(D, ∅, <) �BE Th({¬p,¬q}), although (D, ∅, <′) �BE Th({¬p,¬q}) for no
linearisation <′ of <.

Brewka and Eiter in effect10 define their notion of preferred extension to be
the unique sharp EP that coincides with �BE on totally ordered theories. The
defaults in the next example are totally ordered; hence what is shown there
about �BE applies equally for Brewka and Eiter’s notion.

Example 2. Let D contain

δ0 = p/p
δ1 = " : ¬p/¬p
δ2 = " : p/p

where δ0 < δ1 < δ2. Then (D, ∅) has the extensions Th({p}) and Th({¬p}),
of which both are extensions of (D, ∅, <) in the sense of �BE , i.e., such that
(D, ∅, <) �BE Th({p}) as well as (D, ∅, <) �BE Th({¬p}).

The example illustrates the behaviour of �BE that vacuous defaults such as
ϕ/ϕ may affect which extensions are accepted. Hence �BE , as well as Brewka
10 Brewka and Eiter [4], Definition 3 and Proposition 15.

Default Logics with Preference Order: Principles and Characterisations 413

and Eiter’s EP, violate the “only if” parts (but satisfy the “if” parts) of both
principles below.11

Trivial Invariance. If δ is any justification free default of the form ϕ/ϕ, then
(D,W,<) �x E iff (D \ {δ},W,<) �x E.

Base Logic Invariance. If δ is any justification free default of the form ϕ/ψ
where ϕ (ψ, then (D,W,<) �x E iff (D \ {δ},W,<) �x E.

Horty [8] recently introduced an EP for normal default theories which is some-
what related to Brewka and Eiter’s, and which violates a version of trivial invari-
ance for normal default theories in essentially the same way.12 Later we shall note
that the EP introduced by Delgrande and Schaub [5] has the opposite behaviour;
it satisfies the “only if” parts but violates the “if” parts of these principles.

Now consider the following strengthening of Minimal Order Compliance.

Suppose (D,W,<) �x E, and suppose moreover that E (α and
E �(γ for some δ ∈ D. Then (D0,W,<) �x E0 and E0�β for some
E0 ⊆ E and D0 ⊆ D\ ↑{δ}.

This version clearly implies the previous. What is different here, is that the
subset of E refuting β must be formed from W and the consequences of not just
any set of sufficiently preferred defaults in GD(D,E), but rather of such a set
of defaults that are applicable to the case, i.e., which jointly fire from W .

This modification was motivated by Base Logic Invariance. As it stands here,
however, the condition still only talks about one default at a time. The appro-
priate generalisation fixing this, is the following.

Weak Order Compliance. Suppose (D,W,<) �x E, and suppose N �= ∅
is a set of defaults in D such that E (α and E �(γ for each δ ∈ N . Then
(D0,W,<) �x E0 and E0�β for some δ ∈ N , E0 ⊆ E and D0 ⊆ D\ ↑N .

It can be shown that this condition is equivalent to the previous, when applied
to sharp EPs satisfying CP. To sum up; the step from Minimal to Weak Order
Compliance was motivated by the two defects of �BE seen in examples 1–2.

Definition 4. Let (D,W,<) be an ordered theory; the PS u is weakly obedi-
ent if for any δ0, δ1 in D,

Wu (γ0 if δ0 < δ1 and rδ1 - u and Wu (α0 and Wr♦β0.

E is a weakly obedient extension of (D,W,<), written (D,W,<) �W E, if
E = Th(Wu) for some weakly obedient PS u.

11 It violates the first, which is a special case of the second. In fact, it is easily seen
that any classical extension can be made acceptable in the sense of �BE by the
introduction of additional, sufficiently preferred defaults of the form ϕ/ϕ.

12 The normal version of a trivial default would be ϕ : ϕ/ϕ. In a modified version of
Example 2 in which δ0 = p : p/p (and with the opposite ordering, cf. footnote no. 5)
{δ0, δ2} would count as a “proper scenario,” yielding the extension Th({p}).

414 T. Langholm

Informally, a PS is weakly obedient if at any step it “weakly obeys” all defaults
preferred to the one actually being applied, in the sense that if the justification
of such a preferred default is consistent with the knowledge acquired so far,
and if its prerequisite turns out to be derivable from the knowledge eventually
assembled, then its conclusion should also follow from that eventual knowledge.

The reader is invited to check that �W coincides with the authors’ own
proposed EP on all relevant examples13 listed by Brewka and Eiter [4]. It also
satisfies all principles discussed so far. Moreover, the principles can be used to
characterise �W ; it is at least as weak as (contains) any other EP satisfying
Weak Order Compliance and CP:

Proposition 2. �W is sharp and satisfies Base Logic Invariance, CP and
Weak Order Compliance.

Proposition 3. �W is the weakest EP satisfying CP and Weak Order Com-
pliance.

Again, we refer to Langholm [9] for proofs.

5 Interlude: Blind Rejection and Empty Inclusion

Note that Weak Order Compliance and CP do not select �W as the only pos-
sible EP, they only define a range with �W located at one end as the most
permissive candidate. To narrow the range further down, one should look for
other principles. This should be done with utmost caution – it is not difficult to
find a priori plausible principles that harbour unforeseen consequences. The fol-
lowing two principles are cases in point; each is quite appealing when considered
in isolation, but it takes almost nothing to contradict one given the other. The
pair in fact represents a crossroad for further directions.

Blind Rejection. If (D,W,<) �x E and E�β, then also (D′,W,<′) �x E,
where (D′,W,<′) is identical to (D,W,<), except that δ has been replaced
in the preference hierarchy by a default δ′ with the same prerequisite and
justification as δ, but possibly with a different consequence.14

Empty Inclusion. If (D \ {δ},W,<) �x E and E (γ, then (D,W,<) �x E.

13 Brewka and Eiter [4] consider the numbered examples 4, 5, 8, 13, 14, 17 and 22,
the intermittent numbers being reserved for definitions and propositions. Of these,
Example 22 uses an extended format for which current definitions do not apply. In
the remaining 6 examples, which are used to motivate their approach, and which all
contain totally ordered theories, �W (and in fact also �O introduced below) and
�BE , and hence also Brewka and Eiter’s own EP, coincide.

14 A more formal phrasing goes as follows: let (D, <) and (D′, <′) be two partially
ordered sets of defaults for which there is an order-isomorphism h from the first onto
the second, and suppose there is a δ ∈ D such that h(δ0) = δ0 for every δ0 ∈ D \ {δ}
and for which h(δ) = δ′, where α = α′ and β = β′. Now if (D, W, <) �x E and
E�β, then also (D′, W,<′) �x E.

Default Logics with Preference Order: Principles and Characterisations 415

The intuition behind Blind Rejection is somewhat procedural in spirit, referring
to some process walking through the preference hierarchy and selecting defaults
based on their prerequisites and justifications, while – prior to each selection –
keeping a blind eye to what consequence might hide at the end of the default: in
particular, if it was OK to reject any particular default, then the corresponding
move would also be OK in the almost identical circumstances which differ only
in what was in fact contained in the consequence of the rejected default.

The intuition behind Empty Inclusion is perhaps more purely declarative: if
an extension is acceptable, it should remain so when new defaults are thrown
in, containing consequences already implied by this extension.

It can be seen that the corresponding versions for unordered theories are both
valid principles in classical default logic, but in their full versions they clash:

Proposition 4. No EP satisfies all of the four principles Blind Rejection, Empty
Inclusion, Null-Preference and Minimal Order Compliance.

Proof. Consider the defaults

δ0 = " : ¬p/q δ1 = "/p
δ′0 = " : ¬p/¬p δ2 = "/q

Then ({δ1, δ2}, ∅, ∅) �x Th({p, q}) if �x satisfies Null-Preference. Hence also
({δ0, δ1, δ2}, ∅, <) �x Th({p, q}) if �x satisfies Empty Inclusion as well, where
< prefers δ0 to δ1 and δ2, but keeps the others unordered. Further assuming Blind
Rejection, we obtain ({δ′0, δ1, δ2}, ∅, <′) �x Th({p, q}), where <′ prefers δ′0 to δ1
and δ2, in direct violation of minimal, as well as weak, Order Compliance. �	

The next result follows directly from the definitions.

Proposition 5. �W satisfies Empty Inclusion.

Corollary 1. �W is the weakest EP satisfying CP, Weak Order Compliance
and Empty Inclusion.

6 Order Compliance and Closed Order Compliance

In this section we consider an EP �O that is slightly stronger than �W , and
which satisfies Blind Rejection rather than Empty Inclusion. Comparing corol-
laries 1 (above) and 2 (below), one could say that �O is the “blind rejective”
version of �W . We also consider alternative characterisations, using the follow-
ing stronger principles of Order Compliance:

Order Compliance. Suppose (D,W,<) �x E and suppose N �= ∅ is a set
of defaults in D such that E (α and E�β for each δ ∈ N . Then (D0,W,<
) �x E0 and E0�β for some δ ∈ N , E0 ⊆ E and D0 ⊆ D\ ↑N .

Closed Order Compliance. Suppose (D,W,<) �x E and suppose N �= ∅
is a set of defaults in D such that E (α and E�β for each δ ∈ N . Then
(D0,W,<) �x E0 and E0�β for some δ ∈ N , E0 ⊆ E and preferentially
closed D0 ⊆ D \N .

416 T. Langholm

Order Compliance differs from Weak Order Compliance by replacing E �(γ by
the (under the circumstances) weaker condition E�β in the antecedent, hence it
applies in more cases. Closed Order Compliance is the further strengthening in
which the D0 in the consequent is required to be preferentially closed. We first
note (proof omitted here) that Order Compliance and Weak Order Compliance
are the same condition when applied to EPs satisfying Blind Rejection and CP.

Proposition 6. Any EP satisfying Weak Order Compliance, Blind Rejection
and CP, also satisfies Order Compliance.

Definition 5. Let (D,W,<) be an ordered theory; the PS u is obedient if for
any δ0, δ1 in D,

δ0 is in u if δ0 < δ1 and rδ1 - u and Wu (α0 and Wr♦β0.

E is an obedient extension of (D,W,<), written (D,W,<) �O E, if E =
Th(Wu) for some obedient PS u.

Informally, a PS is obedient if at any step it “obeys” all defaults preferred to
the one actually being applied, in the sense that if the justification of such a
preferred default is consistent with the knowledge acquired so far, and if its
prerequisite turns out to be derivable from the knowledge eventually assembled,
then the preferred default should be included in the PS. It is worth noting that
the following variant of the condition in Definition 5 is in fact equivalent.

Lemma 2. (D,W,<) �O E iff E = Th(Wu) for some full and obedient PS u.

The following example illustrates the difference between �O and �W .

Example 3. Let D contain

δ0 = " : ¬p/q
δ1 = "/q
δ2 = "/p

where δ0 < δ1 < δ2. Then the PS δ1δ2 is weakly obedient but not obedient.
Hence (D, ∅, <) �W Th({p, q}) but not (D, ∅, <) �O Th({p, q}).
Brewka and Eiter [4] consider no example of this sort, and again the reader is
encouraged to check that �O, like its close relative �W , coincides with the
authors’ own EP in all relevant examples given in that source. We note the
following salient properties, again omitting the proofs.

Proposition 7. �O satisfies CP, Blind Rejection and Base Logic Invariance.

Proposition 8. �O satisfies Closed Order Compliance.

Proposition 9. �O is sharp.

Proposition 10. �O is the weakest EP satisfying CP and Order Compliance.

Corollary 2. �O is the weakest EP satisfying CP, Weak Order Compliance
and Blind Rejection.

Default Logics with Preference Order: Principles and Characterisations 417

7 Progressive Extension Predicates

Propositions 3 and 10 (and the two corollaries) only characterize �O and �W

in a relative way as the weakest EPs satisfying various principles discussed up
to this point: assuming these principles, we can say a bit about which subsets
of L are not extensions, but less about which are. The following principle adds
positive import.

Minimal Application. Let δ be minimal in D, and suppose W (α and E♦β.
Then (D,W,<) �x E if (D \ {δ},W ∪ {γ}, <) �x E.

In words, if the prerequisite of a maximally preferred default follows from the
given facts while its justification is consistent with a proposed extension, then
this is indeed an extension, provided it is also an extension of the modified theory
obtained by removing this default while treating its consequence as fact.

Proposition 11. �O and �W satisfy Minimal Application.

As it turns out, Minimal Application is not enough to provide absolute char-
acterisations of �O and �W , even in combination with conditions previously
reviewed, but it does narrow the space of EPs further down. It can also be used
as the basis for relative characterisations of two additional EPs, this time look-
ing in the other direction, for the strongest possible EPs. Interestingly, an EP
showing up now, is the one introduced by Delgrande and Schaub [5].

Definition 6. Let (D,W,<) be an ordered default theory.

1. The PS u is progressive if, for any δ0, δ1 in u, if δ0 < δ1 then δ0 occurs
before δ1 in u.

2. (D,W,<) �WP E (E is a weakly obedient, progressive extension) if
E = Th(Wu) for a progressive and weakly obedient PS u.

3. (D,W,<) �OP E (E is an obedient, progressive extension) if E =
Th(Wu) for a progressive and obedient PS u.

The following simple example captures the difference between the weaker EPs
�W and �O and the stronger �WP and �OP .

Example 4. Let D contain

δ1 = p : q/q
δ2 = " : p/p

where δ1 < δ2. Then (D, ∅) has the classical extension Th({p, q}), obtained by
the (only!) PS δ2δ1, which is obedient but not progressive in (D,W,<). Hence
Th({p, q}) is an extension according to �W and �O, but not according to �WP

or �OP .

Simply put, the difference between �WP and �OP is the same as the difference
between �W and �O; it is the difference between Empty Inclusion and Blind
Rejection. The following is easily checked:

418 T. Langholm

Proposition 12. �WP satisfies Empty Inclusion. �OP satisfies Blind
Rejection.

Lemma 3. (D,W,<) �OP E iff E = Th(Wu) for some full, progressive and
obedient PS u.

The conditions in Lemma 3 are recognized as those used by Delgrande and
Schaub [5] in their definition of order-preserving extension,15 hence by happy
coincidence the initials in �OP may also stand for “order preserving.” Again,
propositions are listed without proof:

Proposition 13. �OP and �WP are sharp, and satisfy CP and Minimal
Application.

Proposition 14. �WP satisfies Weak Order Compliance.

Proposition 15. �OP satisfies Closed Order Compliance.

Proposition 16. �WP is the strongest EP satisfying CP, Empty Inclusion and
Minimal Application.

Proposition 17. �OP is the strongest EP satisfying CP and Minimal
Application.

Writing “ECP” for extended core principles, meaning CP plus Weak Order
Compliance and Minimal Application, we sum up the essential findings so far
in Figure 1. Finally, we observe that �WP , but not �OP , satisfies the logical
invariance principles discussed at the outset.

Proposition 18. �WP satisfies Base Logic Invariance.

Proposition 19. �OP violates Trivial Invariance.

Proof. Let D contain δ1 = p/p and δ2 = " : p/p, where δ1 < δ2. Then (D, ∅)
has the classical extension Th({p}), given by the proof sequences δ2 and δ2δ1,
of which the first is not obedient and the second not progressive in (D,W,<).
If the trivial default δ1 is deleted from D, however, δ2 becomes an obedient,
progressive PS. �	

Observe that �BE and �OP violate Base Logic Invariance in directly opposite
ways; trivial defaults represent obstacles for �OP , making it more difficult to
obtain given extensions, while �BE exploit them for “cheating” – obtaining ex-
tensions that would not be there without strategically placed (highly prioritised)
trivial defaults. One could argue that �BE and �OP are too weak and strong,

15 See Definition 4.2 in that reference. Recall that present discussions confine themselves
to theories with finite sets of defaults. When E is a classical extension of (D, W)
then a grounded enumeration of GD(D, E) is the same as a full PS for E. Condition
(1) says that this full PS is progressive, and condition (2) says that it is obedient.

Default Logics with Preference Order: Principles and Characterisations 419

EPs
satisfying

ECP
and

Empty
Inclusion

EPs
satisfying

ECP
and

Blind
Rejection

� �

� �

�WP �OP

�W �O

Fig. 1. The ovals denote the classes of EPs satisfying ECP, along with Empty Inclusion
and Blind Rejection, respectively. By Proposition 4, the two sets are disjoint. The stars
at the top and bottom denote, respectively, the weakest and strongest predicates in the
sets. The figure remains true if “sharp” is added to any of the ovals, if “Closed Order
Compliance” is added to the rightmost oval, and if “Base Logic Invariance” is added
to the leftmost. What is not apparent from the picture, is that �OP is stronger than
�WP and thus also stronger than �W , while �O is stronger than �W , and �O and
�WP are incomparable.

respectively, to satisfy Base Logic Invariance, and that reasonable repairs would
yield �W and �WP , respectively.

Schaub and Wang [13] introduced a notion of preferred answer sets for ex-
tended logic programs with preferences which, when we seek to “translate” it to
the present setting of default logics, would seem to yield an EP strictly between
�OP and �WP : write (D,W,<) �SW E iff there exists a progressive PS u for
E satisfying the following requirement, which (when applied to progressive proof
sequences) falls between Obedience and Weak Obedience.

Wr (γ0 if δ0 < δ1 and rδ1 - u and Wu (α0 and Wr♦β0.

It can be seen that this yields an EP strictly between �OP and �WP . Since we
suggest that �WP is a reasonable repair of �OP securing Base Logic Invariance,
it is of interest to see how this intermediate notion fares with respect to Base
Logic Invariance. A quick look at the example in the proof of Proposition 19,
however, immediately makes it clear that also �SW violates Trivial (and hence
also Base Logic) Invariance.

8 Further Directions

In future work we should like to see additional principles capturing intuitions
about the preference order which may, in combination with principles discussed
here, provide exact characterisations of the various EPs. Questions about which,
if any, distinctions explored in this paper disappear when restricting attention
to normal defaults and other special cases, also deserve further attention.

420 T. Langholm

Acknowledgement

The work reported on in this paper grew out of joint work with Iselin Engan,
Espen Lian and Arild Waaler in Engan et al. [7]. The author is particularly
indebted to Iselin Engan for fruitful discussions concerning the interpretation of
ordered default theories.

References

1. Baader, F., Hollunder, B.: Priorities on Defaults with Prerequisites, and Their
Application in Treating Specificity in Terminological Default Logic. J. Autom.
Reasoning 15(1), 41–68 (1995)

2. Brewka, G.: Adding Priorities and Specificity to Default Logic. In: MacNish, C.,
Moniz Pereira, L., Pearce, D.J. (eds.) JELIA 1994. LNCS, vol. 838, pp. 247–260.
Springer, Heidelberg (1994)

3. Brewka, G., Eiter, T.: Preferred Answer Sets for Extended Logic Programs. Arti-
ficial Intelligence 109(1-2), 297–356 (1999)

4. Brewka, G., Eiter, T.: Prioritizing default logic. In: Intellectics and Computational
Logic: Papers in Honor of Wolfgang Bibel, pp. 27–45. Kluwer, Dordrecht (2000)

5. Delgrande, J.P., Schaub, T.: Expressing preferences in default logic. Artificial In-
telligence 123(1-2), 41–87 (2000)

6. Engan, I.: Reasoning with preference in only knowing logic with confidence levels.
Master’s thesis, University of Oslo, Department of Linguistics, Norway (August
2005)

7. Engan, I., Langholm, T., Lian, E., Waaler, A.: Default reasoning with preference
within only knowing logic. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.)
LPNMR 2005. LNCS, vol. 3662, pp. 304–316. Springer, Heidelberg (2005)

8. Horty, J.: Defaults with Priorities. Journal of Philosophical Logic 36, 367–413
(2007)

9. Langholm, T.: Default Logics with Preference Order: Principles and Characterisa-
tions. Extended version of this paper, with mathematical proofs,
http://www.sksk.no/langholm/publications/princhar.pdf

10. Marek, V.W., Truszczynski, M.: Nonmonotonic Logic: Context-Dependent Rea-
soning. Springer, Heidelberg (1993)

11. Reiter, R.: A logic for default reasoning. Artificial Intelligence 13, 81–132 (1980)
12. Rintanen, J.: On Specificity in Default Logic. In: Proceedings of the Fourteenth

International Joint Conference on Artificial Intelligence (IJCAI 1995), pp. 1474–
1479. Morgan Kaufmann, San Francisco (1995)

13. Schaub, T., Wang, K.: A semantic framework for preference handling in answer set
programming. Theory and Practice of Logic Programming 3, 569–607 (2003)

14. Tarski, A.: Logic, Semantics, Metamathematics. Oxford University Press, Oxford
(1956)

http://www.sksk.no/langholm/publications/princhar.pdf

On Computing Constraint Abduction Answers

Michael Maher and Ge Huang

NICTA and University of NSW
Sydney, Australia

Michael.Maher@nicta.com.au,
plutohg@gmail.com

Abstract. We address the problem of computing and representing answers of
constraint abduction problems over the Herbrand domain. This problem is of in-
terest when performing type inference involving generalized algebraic data types.
We show that simply recognizing a maximally general answer or fully maximal
answer is co-NP complete. However we present an algorithm that computes the
(finite) set of fully maximal answers of an abduction problem. The maximally
general answers are generally infinite in number but we show how to generate a
finite representation of them when only unary function symbols are present.

1 Introduction

Constraint abduction is the inference procedure that, given constraints B and C, infers
constraintA such that A∧B → C. Recent work on constraint-based type inference for
generalized algebraic data types (GADTs) [15] has used conjunctions of expressions
B → C to express the type requirements of a program [11,13]. Answers to a con-
straint abduction problem correspond to a well-typing of the program [13,14]. Some
approaches to type inference with GADTs require programmer annotations [9,8], while
others attempt to infer types without such help [13,14]. In this paper we explore rep-
resentational and computational issues that arise in the latter approach, by addressing
them in the general context of constraint abduction.

In the Herbrand constraint domain the maximally general answers represent all an-
swers, but there are in general infinitely many maximally general answers to a constraint
abduction problem instance [3]. Thus computing them is not straightforward. Further-
more, we show that simply recognising that an answer is maximally general is a co-NP
complete problem. There are two ways we can address this problem. The first approach
is to develop a representation scheme whereby the set of maximally general answers
can be finitely presented. This is a difficult problem and we obtain a solution only in
the case where all function symbols are unary.

The second approach is to find a finite subset of the maximally general answers
that is canonically defined and of use in practice. The class of fully maximal answers
was identified in [3] as omitting many “unexpected” and unhelpful maximally general
answers, and was shown to be finite. It is used in [13,14]. Here we provide an algorithm
that applies without restriction on the function symbols and generates all fully maximal
answers.

For both maximally general answers and fully maximal answers we address specif-
ically the case where there are no function symbols. We have simple characterizations

I. Cervesato, H. Veith, and A. Voronkov (Eds.): LPAR 2008, LNCS 5330, pp. 421–435, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

422 M. Maher and G. Huang

in this case, and we use them to show that the number of maximally general answers
and fully maximal answers can grow explosively, even in this simple case.

After some preliminaries on constraint abduction and the Herbrand constraint do-
main (Section 2) we address, in turn, the complexity of recognising answers (Section
3), and the problems of representing all maximally general answers (Section 4) and
computing all fully maximal answers (Section 5).

2 Background

The syntax and semantics of constraints are defined by a constraint domain. Given a
signature Σ, and a set of variables V ars (which we assume is infinite), a constraint
domain is a pair (D,L) where D is aΣ-structure and L (the language of constraints) is
a set of Σ-formulas closed under conjunction and renaming of free variables.

Constraint abduction is a form of abduction where all predicates in the formulas
over which the abduction is being inferred have a semantics determined by a constraint
domain.

Definition 1. The Simple Constraint Abduction (SCA) Problem is as follows:
Given a constraint domain (D,L), and given two constraints B,C ∈ L such that

D |= ∃̃ B ∧C, for what constraints A ∈ L does

D |= (A ∧B) → C

and
D |= ∃̃ (A ∧B)

An instance of the problem has a fixed constraint domain and fixed constraints B
and C. A constraint A satisfying the above properties is called an answer.

Intuitively, B is background information and C is a conclusion drawn from B and
some missing information; each answer A is a candidate for the missing information.
Throughout this paper,A,B andC refer to the constraints in a simple constraint abduc-
tion problem. We assume B ∧C is satisfiable; otherwise, there are no answers. Usually
we leave the constraint domain implicit and use (A ∧ B) → C, for example, in place
of D |= (A ∧B) → C.

Of all the answers, we are most interested in the maximally general answers, that is,
constraints A such that (A ∧ B) → C and for every A′, if A → A′ and (A′ ∧ B) →
C then A′ → A. (That is, there is no answer strictly more general than A.) Under
some conditions on the constraint domain, they can also be thought of as a means to
(somewhat) compactly represent all answers.

In general, we wish to solve several SCA problems simultaneously, but it is shown in
[3] that maximally general answers to such joint problem can be constructed from the
maximally general answers of the individual SCA problems using the algorithm JCA-
Solve. Furthermore, if C is c1∧· · ·∧cn then we can reduce the SCA problem involving
B and C to the problem of solving simultaneously the SCA problems involvingB and
ci, for i = 1, . . . , n. Thus we can assume without loss of generality that C consists of a
single constraint.

In general, there can be infinitely many maximally general answers to a SCA prob-
lem, many of which result in a conjunction A ∧ B that is not maximally general. In

On Computing Constraint Abduction Answers 423

contexts where A will later be combined with B, we might want A ∧ B to be maxi-
mally general. This has led to the definition of fully maximal answers [3] – a subset of
the maximally general answers that is finite in some constraint domains.

Definition 2. An answer A is fully maximal if A is a maximally general answer and
A ∧B is maximally general among all expressions A′ ∧B where A′ is an answer.

Equivalently, A is a fully maximal answer iff A is a maximally general answer and
(A ∧B) ↔ (B ∧ C).

In this paper we are primarily interested in the Herbrand constraint domain, which
consists of (possibly) existentially quantified conjunctions of equations on terms, where
equality of ground terms is syntactic identity. We will denote this constraint domain
by FT∃. The weaker constraint domain where existential quantifiers are not used is
denoted byFT . These domains are widely used for symbolic computation in automated
reasoning, logic programming and type systems. Unification [10,2] is an algorithm for
solving equations in these constraint domains.

We assume that in every SCA instance there is a finite set of variables x̃ of inter-
est. Usually we can take x̃ to be vars(B) ∪ vars(C), where vars(o) denotes the free
variables of o. A constraint in FT ∃ is in standard form if it has the form ∃ỹ x̃ = t̃(ỹ),
where x̃ is a sequence of all variables of interest and ỹ is a disjoint set of existentially
quantified variables. The righthandside of such a constraint in standard form is the se-
quence of terms t̃(ỹ). Every satisfiable constraint in FT ∃ (and FT) can be presented
in this form. In FT a constraint is in solved form if it has the form x̃ = t̃(ỹ), where x̃
and ỹ are disjoint.

Example 1. We consider a SCA problem instance over FT . Let B be k(h(x), y) =
k(v, g(z)) and C be v = h(f(z)). The solved form of B is v = h(x), y = g(z).
Among the maximally general answers to this SCA instance are: the trivial answer
v = h(f(z)); x = f(z); and x = f(u), y = g(u), for any variable u other than
v, x, y, z. The latter class of answers are among the “unexpected” maximally general
answers [3] to this instance; they involve a variable not involved in the problem. The
answers in this class are not fully maximal. The other two answers are fully maximal.
For example, v = h(f(z)) ∧ v = h(x) → x = f(z).

If we consider this problem as an instance over FT∃ then the standard form of B
is ∃u1, u2 v = h(u1), x = u1, y = g(u2), z = u2 and the standard form of C is
∃u3 v = h(f(u3)), z = u3. Again v = h(f(z)) and x = f(z) are maximally general
answers. Another fully maximal answer is ∃u x = f(u), y = g(u), which is strictly
more general than x = f(u), y = g(u) for any variable u.

In the Herbrand constraint domains, whether FT ∃ or FT , the maximally general an-
swers of a SCA problem instance represent all answers, and in general there are in-
finitely many of them, but always only a finite number of fully maximal answers [3].

3 Recognising Answers

It is straightforward to determine whether a given constraint A is an answer for a SCA
problem involving B and C. It can be done in time linear in the size of A, B, C,

424 M. Maher and G. Huang

using a linear unification algorithm [7,5]. However, determining whether A is maxi-
mally general or fully maximal is substantially harder.

Theorem 1. Let A, B, and C be constraints of FT , and consider the SCA involvingB
and C.

1. The question whether A is an answer can be decided in linear time
2. Recognising that A is a maximally general answer is co-NP complete
3. Recognising that A is a fully maximal answer is co-NP complete

To prove parts 2 and 3 we reduce SAT to the problem of finding a more general answer
than a given answer. We conjecture that in FT∃ recognising that an answer is maximally
general or fully maximal is also co-NP complete. However Theorem 1 and its proof do
not directly extend to FT∃.

4 Maximally General Answers

In this section we consider only Herbrand domains where the signatureΣ contains only
constants and unary function symbols. The restriction to unary function symbols does
not limit the unruly proliferation of maximally general answers as identified in [3].

Example 2. Let B be x0 = x1, x2 = x3 and C be v = z. Then, in addition to the
more obvious maximally general answers isAy defined by x0 = s(v), x1 = s(y), x2 =
t(y), x3 = t(z) for any variable y not occurring in B or C, and any terms s and t.

Before defining an algorithm we must introduce several definitions. Let Σ1 be the set
of unary function symbols in Σ. We will use words constructed from these symbols
to represent the repeated application of the functions. For example, the application of
functions f(g(h(f(x)))) is represented by the word fghf applied to the variable x. The
application of a word w to a term t is written w(t). The empty word is denoted by ε.

While function symbols represent tree (or term) constructors, we introduce inverse
elements as the deconstructors for the underlying function symbol. Thus f−1 applied to
the term f(g(x)), or f−1(f(g(x))), is equal to g(x). In terms of equations, x = f−1(y)
is defined to mean y = f(x). We extend the inverse notation to general expressions by
defining (uw)−1 = w−1u−1. In some cases the application of an inverse element to a
term is not meaningful, for example, application of g−1 to f(g(x)). It corresponds to
a clash of function symbols in unification. As a result, composition of expressions is
a partial function. For example, (ff−1)g is equivalent to g, but f(f−1g) represents a
clash.

We can formulate equational reasoning in a partial algebra W of term constructors
and destructors where the values are Σ1-words, ε is the empty word, each σ ∈ Σ1 is a
constant, there is a binary composition operator (represented by juxtaposition) and the
inverse operator −1. (The problem of solving equations on this partial algebra has some
similarity to solving equations on the free group with rational constraints forcing each
variable to be a word [1].)

On Computing Constraint Abduction Answers 425

The meaning of expressions in the algebra is given by formulas in FT∃ relating two
variables, and similarly for equations over the algebra. Let e, e1, e2 be expressions in
the algebra and w be a Σ1-word.

[[x (w) y]] is the equation x = w(y)
[[x (e−1) y]] = [[y (e) x]]
[[x (e1e2) y]] = ∃z [[x (e1) z]] ∧ [[z (e2) y]]

[[e1 = e2]] = ∀x, y ([[x (e1) y]] ↔ [[x (e2) y]])

We introduce an infinite set WV ars of variables ranging over words, and extend
expressions to incorporate word variables. A word expression is an expression in the
algebra that does not involve the inverse operator. Clearly, the composition operator is
associative in cases where both results are defined. We adopt the convention that compo-
sition associates to the right. For a set S of expressions, we defineS−1 = {s−1 | s ∈ S}.

Recall that we write B → c for FT |= B → c. We say terms s and t are B-
equivalent if B → s = t. We write [s] for the B-equivalence class of s.

We group the terms that are (perhaps indirectly) equationally related by B. Given a
set of equationsB, aB-class is a minimal non-empty set S of terms that is closed under
(a) B-equivalence, (b) taking subterms, and (c) taking superterms. Each B-class has at
least one term (variable or constant) such that neither it, nor any term B-equivalent to
it, has a subterm. For each B-class we fix one such term and refer to it as the base of
the B-class. We say a B-class has a constant base if it contains a constant (in which
case we will choose the constant to be the base without loss of generality). Every term
in a B-class is B-equivalent to a term with the base as a subterm. Thus, for every term t
there is a (unique) corresponding wordwt such thatB → t = wt(b), where b is the base
of the B-class containing t. Note that all B-classes are disjoint and, given a variable or
constant z, all terms containing an occurrence of z are in the same B-class. Since we
assume B is satisfiable in FT , each B-class contains, at most, one constant.

Given two variables x and y in the same B-class, they are equationally related via
x = wx(b), y = wy(b), where b is the base of the B-class. We can visualize the parts
of the B-class relevant to x and y as shown in Figure 1(a). In those terms, wx = ac and
wy = dc, where c is the greatest common suffix1 of wx and wy .

A B-class contains infinitely many B-equivalence classes, assuming Σ1 is non-
empty. However, a finite representation of the B-classes can be computed by applying
a congruence closure algorithm [6] to the equations in B. The constants and variables
not congruent to any term with subterms are candidates for the base of a B-class. It is
straightforward to use an ordering on variables and constants to canonically choose a
base. We will assume that a constant is chosen as base, whenever possible.

Now, let C be v = w(z), where v is a variable, but z may be a variable or a constant.
Consider a prospective answer A, which we can assume is in solved form.

The coarse A,B-graph is an undirected graph where the B-classes are vertices, for
each equation (s1 = s2) ∈ A there is an edge between theB-class of s1 and theB-class
of s2, and there are no other edges. We can use the coarseA,B-graph to eliminate some

1 The greatest common suffix of words w1 and w2 is the longest word w such that there are
words u1 and u2 with w1 = u1w and w2 = u2w.

426 M. Maher and G. Huang

Fig. 1. Diagrams of (a) a B-class, and (b) the relevant part of the A, B-graph for Example 3

prospective answers that are not maximally general answers. A simple path betweenB-
classes b1 and b2 is a minimal set of edges that connects b1 and b2. When necessary, we
can arrange the edges in a sequence, to form a path as conventionally defined.

Proposition 1. Consider a solved form constraintA and its coarse A,B-graph. If A is
a maximally general answer of the SCA problem involving B and C (v = w(z)) then
then the coarse A,B-graph consists exactly of a simple path between the B-class of z
and the B-class of v.

However, the coarse A,B-graph does not address the details of A and cannot even
be used to determine whether A ∧ B is satisfiable, much less characterize maximally
general answers. Hence we define a more detailed graph.

The A,B-graph is a labelled, directed graph where the B-equivalence classes are
vertices and there is an edge from [s] to [t] labelled with a word u if eitherB → t = u(s)
or t = u(s) ∈ A. A simple path in the A,B-graph is a simple path in the underlying
undirected graph.

We will use paths in this graph to represent equational reasoning that might be used
to infer C (i.e. v = u(z)) from A ∧ B. Traversing an edge in the direction of an
arrow labelled with u corresponds to applying the word u to the terms in the currentB-
equivalence class, that is, constructing (the B-equivalence class of) larger terms from
the current terms. Conversely, traversing an edge against the direction of an arrow la-
belled with u corresponds to applying u−1 to the current B-equivalence class and de-
constructing the current terms, that is, deleting the prefix u from the word defining a
current term to produce (the B-equivalence class of) a subterm. If u is not a prefix of
the word defining the term then we cannot establish an equational relationship between
the terms at the two endpoints of the edge.

An MGA-path from z to v is a sequence of B-equivalence classes E0, . . . , E2n+1
such that E0 = [z], E2n+1 = [v], E2i and E2i+1 are in the same B-class, for i =
0, . . . , n, and the path involves at most oneB-class with a constant base. (Note that E2i

and E2i+1 may be the same B-equivalence class.) The MGA-path is induced by the
solved form constraintA if {E2i+1, E2i+2} = {[x], [y]} for some equation x = u(y) ∈
A, for i = 0, . . . , n − 1 and, conversely, for each equation x = u(y) ∈ A we have
{[x], [y]} = {E2i+1, E2i+2}, for some i. We say thatA and the MGA-path correspond.
Notice that the edges relevant to the previous definition involve only B-equivalence
classes of variables or constants. Hence only finitely many MGA-paths follow the same

On Computing Constraint Abduction Answers 427

route as a simple path in the coarseA,B-graph. An MGA-path is simple if the sequence
contains either 2 or 0 occurrences of B-equivalence classes from each B-class.

Example 3. Let C be v = z, B be x = hg(w), y = fg(w), z = h(u) and A be
x = h(v), y = f(z), where u, v, w, x, y, z are variables. Then there are three non-
simple B-classes: one contains v as the base, and is non-simple only because v occurs
in C; one contains z and u, with u as the base; and one contains w, x and y, with w as
the base. Part of the A,B-graph is shown in Figure 1(b). The MGA-path induced by A
is the path from [z] to [v] via [x] and [y]. The coarse A,B-graph consists of the three
non-simpleB-classes, connected by the dashed edges.

We now refine Proposition 1.

Proposition 2. A maximally general answer A induces a simple MGA-path from [z] to
[v] in the A,B-graph.

Since the equational relationship between any two B-equivalence classes [x] and [y]
in the same B-class is as described in Figure 1(a), a maximally general answer must
induce a path within theA,B-graph of the form shown in Figure 1(b), where the dashed
edges correspond to equations in A. Let us index the variables and words. We will use
the naming scheme for variables and words in a B-class described in Figure 1(a) with
an index i for the i’th B-class (counting from v, on the left), so that B → (xi =
aici(bi) ∧ yi = dici(bi)) and equations in A relate yi and xi+1. These equations may
be of the form yi = ui(xi+1) or xi+1 = ui(yi), where ui is a word. We express these
two possibilities compactly as yi = uei

i (xi+1) where ei ∈ {1,−1}.
We use the algebra of term constructors and their inverses to formulate requirements

on A to be a maximally general answer. The main requirement is the condition for A,
represented by a path from z to v, to establish that v = w(z).

a1d
−1
1 ue1

1 . . . aid
−1
i uei

i . . . and
−1
n = w (1)

This is a necessary, but not sufficient, condition for A to be a maximally general
answer.

Example 4. Continuing with Example 3 in Figure 1(b), the path from [z] to [v] via [y]
and [x] is labelled h−1hf−1f , which is equal to ε, implying that A∧B → C. However
A∧B is inconsistent: there is a clash between the h in z = h(u) and the g in y = fg(w).
Thus A is not an answer. If, in place of z = h(u), B contained z = a then we would
have a clash between a and g.

The problem is that, while the MGA-path demonstrates the possibility that we have a
maximally general answer, a ci(bi) (in terms of Figure 1) can be incompatible with
either another cj , as in the above example, or with part of the MGA-path. There are
two possibilities: a clash between a constant and a function symbol, or a clash between
function symbols.

The first possibility arises only if the path contains a B-class with a constant base b.
Suppose it is them’thB-class. For every simple path from b to another base we require
that the result is a word. This ensures that there is no clash between b and a unary

428 M. Maher and G. Huang

function symbol. There are two variations of the constraint, depending on whether the
target base is in a B-class between b and z or between b and v.

For each j : m < j ≤ n

∃u c−1
j a−1

j u
−ej

j dj−1 . . . a
−1
i+1u

−ei

i di . . . dm+1a
−1
m+1u

−em
m dmcm = u (2)

For each j : 1 ≤ j < m

∃u c−1
j d−1

j u
ej

j aj+1 . . . aid
−1
i uei

i . . . am−1d
−1
m−1u

em−1
m−1 amcm = u (3)

If there is a clash between function symbols on the MGA-path the requirement (1)
will not be satisfied, because the left side will not evaluate to a word. We need to exam-
ine all paths between bases to ensure that there is no clash between the function symbols
off the MGA-path and any other function symbol. Every variable-free word expression
without a clash can be simplified to the form u′u−1, for some words u and u′. Hence
we require that each path expression between bases will evaluate to this form.

For each j,m : 1 ≤ j < m ≤ n

∃u, u′ c−1
j d−1

j u
ej

j aj+1 . . . aid
−1
i uei

i . . . am−1d
−1
m−1u

em−1
m−1 amcm = u′u−1 (4)

The requirements (1) – (4) are necessary and sufficient for A to be a maximally
general answer.

Theorem 2. Consider a SCA problem involving B and C (v = w(z)) and a solved
form constraint A. A is a maximally general answer if and only if A corresponds to a
simple MGA-path in theA,B-graph from [z] to [v], and, for that path, requirements (1)
– (4) are satisfied.

Thus if we can finitely represent all solutions to the requirements (1) and (2) – (4), where
we now regard the ui’s as variables, then we also represent all maximally general an-
swers. This leads us to the abstract algorithm in Figure 2. Note that the output equations
may contain (possibly constrained) word variables in the solutions for ui’s; any consis-
tent instantiation of all these variables by words gives a maximally general answer.

algorithm MGA(B, C)
for n = 1, . . . , m do

for every usable sequence of B-classes B1, . . . , Bn do
for i = 1, . . . , n− 1 do

choose value of ei

choose values for [yi] in Bi and [xi+1] in Bi+1 to form a MGA-path
Generate equations (1) - (4) in variables ui

Solve equations for ui

choose variable or constant representatives pi and qi for each [xi] and [yi]
Check that the output describes a sufficiently general solved form
output equations qi = uei

i (pi)
end algorithm

Fig. 2. Nondeterministic algorithm for maximally general answers

On Computing Constraint Abduction Answers 429

For this approach to produce a finite representation, we must have an upper boundm
on the number ofB-classes in a sequence. A B-class is simple if it contains exactly one
variable or constant (which must be the base) and does not contain v or z. A variable
(constant) that appears in a simple class is called a simple variable (simple constant). It
turns out that no maximally general answerA in solved form can correspond to a MGA-
path with two adjacent simple B-classes because of the syntactic form of solved forms
and the lack of any other term B-equivalent to the simple variable or constant. Hence if
q is the number of non-simple B-classes, then we can take m = 2q − 1; no maximally
general answer corresponds to a longer MGA-path. A sequence of B-classes in usable
if simple B-classes do not appear consecutively in the sequence. Unusable sequences
do not correspond to maximally general answers.

There is one further restriction on simple variables in maximally general answers:
Simple variables must appear on the righthandside of equations inA, but must not appear
as a bare variable (i.e. they must appear as part of a larger term). For example, if xs is
a simple variable then y1 = s(xs), y2 = t(xs) is acceptable as part of A, assuming s
and t are non-empty words, but y1 = xs, y2 = t(xs) is less general than y2 = t(y1)
and, similarly, xs = s(y1), y2 = t(xs) is less general than y2 = ts(y1), while xs =
s(y1), xs = t(y2) is not in solved form. The same point applies to simple constants.
Although non-simple variables may appear on the lefthandside of equations in A, they
also may not appear as a bare variable on the righthandside (except for v and z), nor
may they appear both on the lefthandside and the righthandside of equations in A. For
simplicity, we express these restrictions in the algorithm of Figure 2 as a check before
output, but clearly it would be more efficient to enforce them at the time choices are made.

The names of simple variables are unimportant: any renaming of these variables will
result in a different maximally general answer. Thus any maximally general answer
involving a simple variable other than v and z represents an infinite set of maximally
general answers (since V ars is infinite). The answers involving simple variables are
some of the “unexpected” maximally general answers discussed in [3] and Example 1.

Rather than solve the equations (1) – (4) directly, we employ a backtracking search
procedure that produces a finite representation of the values of the word variables
ui for which the equations A on an MGA-path form a maximally general answer.

Fig. 3. Diagram of algorithm parameters

There is no room in this paper to present
the complete algorithm solve, but we
give an outline.

The state of the algorithm is described
by the following parameters: the remain-
der of the MGA-path to be explored; a
variable or constant b that is the deep-
est base of a B-class discovered so far;
word expressions r, s, and t describing
the relationship between the current point
p, the desired value of v (that is, w(z))
and b; and constraints E on word vari-
ables. The relationship of some of these
parameters is displayed in Figure 3.

430 M. Maher and G. Huang

In the algorithm, we iterate along expression a1d
−1
1 ue1

1 . . . aid
−1
i uei

i . . . and
−1
n of

(1) from right to left, preserving the invariants listed below at each point p (in B-
class Bj) of that expression by updating the parameters. The algorithm branches non-
deterministically when different updates are possible, and on each branch accumulates
conditions on the word variables ui. These conditions E are output when the branch
terminates successfully. If E is unsatisfiable then the branch fails (i.e. terminates un-
successfully). Thus the algorithm has a constraint programming style.

Let N be the number of symbols (variables and constants) in (1). Each branch has
length bounded byN . At each point the branching factor is at most N + n. Testing sat-
isfiability of E terminates, since the constraints involved have a restricted form. Hence
the algorithm must terminate.

Let e denote the part of the expression already visited. The invariants are:

1. the longest common suffix of s and t is ε
2. A ∧B |=E ts−1(p) = tr(b) = w(z)
3. A ∧B |=E p = sr(b) = e(z)
4. b is a constant iff some Bi has a constant base for j ≤ i ≤ n
5. A ∧B |=E (2)j ∧ (3)j ∧ (4)j

Here A ∧ B |=E ψ denotes that for every valuation σ of the word variables that
satisfies E, FT |= σ(A)∧B → σ(ψ) (where σ(A) and σ(ψ) are well-formed (sets of)
equations in the language of FT). (i)j denotes the subset of equations (i) that refers to
paths within and between B-classes Bj , Bj+1, . . . , Bn.

The collection of conditions E output by the algorithm solve constitute a finite rep-
resentation of the solutions of equations (1) – (4).

Theorem 3. Consider a SCA problem involving B and C over FT , and equations (1)
– (4) for a given MGA-path.

1. The algorithm solve terminates.
2. Let σ be a solution to the equations (1) – (4). Then σ can be extended to a solution

of one of the outputs of the solve algorithm.
3. If E is an output of the solve algorithm then every solution of E, when restricted to

the free variables of equations (1) – (4), is a solution of those equations.

Combining Theorem 2 and Theorem 3, we establish that the algorithm MGA(B, C) in
Figure 2 produces a finite representation of all maximally general answers of a simple
constraint abduction problem over FT where C is a single equation. When C contains
multiple equations we apply the JCA-Solve algorithm of [3] to the outputs of MGA(B,
c), for each c ∈ C, as mentioned earlier.

Example 5. Consider a variation of Example 3 where C is v = z and B is x =
hg(w), y = fg(w). The B-classes of v, y, z form a usable sequence and there is a
MGA-path [z], [y], [x], [v]. Of the possible values of the exponents, only one combi-
nation leads to equations with a solution. We consider this case, where A will have the
form x = u1(v), y = u2(z).

The resulting constraints on the word variablesui areu−1
1 fh−1u2 =ε from (1) and the

following three constraints from (4): ∃u, u′ g−1h−1u2 =u′u−1, ∃u, u′ u−1
1 fh−1u2 =

u′u−1, which is redundant wrt the first equation, and ∃u, u′ u−1
1 fg = u′u−1.

On Computing Constraint Abduction Answers 431

The solve algorithm produces the following two descriptions of solutions to the con-
straints: u1 = f, u2 = h and u1 = fgu, u2 = hgu for any word u. These correspond
to the answers x = f(v), y = h(z) and x = f(g(k(v))), y = h(g(k(z))) for any
term k (including the empty term). There are, of course, answers derived from other
MGA-paths.

Only small modifications are need to handle FT∃ constraints: B-classes might contain
existential variables, and these cannot be used as representatives of classes in a MGA-
path, and simple variables must be considered existential variables.

A Signature of Constants

When there are only constants in the signature the above discussion becomes much
simpler. There is no distinction between FT and FT∃, the B-classes reduce to B-
equivalence classes, simple B-classes become irrelevant, the A,B-graph is identical
to the coarse A,B-graph, and all labels on edges of the the A,B-graph are the empty
word. Thus every solved form constraint that corresponds to a simple path from [z] to
[v] is a maximally general answer.

We can use this to count the number of maximally general answers in some cases.
For example,

Proposition 3. Consider a SCA problem where the signature Σ consists only of con-
stants, C is v = z and at most one constant appears in B and C. The number of
maximally general answers is

q+2∑
n=2

∑
sequences B1...Bn

|B1| ∗ |Bn| ∗
n−1∏
i=1

|Bi| ∗ (|Bi| − 1)

where q is the number of non-simple B-classes, |Bi| denotes the cardinality of a B-
class Bi, and we sum over all sequences of non-simple B-classes with B1 = [z] and
Bn = [v].

When there are function symbols the number of maximally general answers can grow
rapidly – doubly exponentially – or can be infinite [3]. But even for SCA problems that
do not involve function symbols, the number of maximally general answers can grow
very rapidly.

Example 6. Consider the SCA problem where C is x1 = x2m and B is x1 = x2, . . . ,
x2i−1 = x2i, . . . , x2m−1 = x2m. Then |Bi| = 2, for i = 1, ...,m and |B1| ∗ |Bn| ∗∏n

i=2 |Bi|∗(|Bi|−1) = 2n for any n. For any length n there are (n−2)! sequences that
start with B0 and end with Bn. Thus there are

∑m
n=2(n − 2)! ∗ 2n maximally general

answers. If m ≥ 2 then there is a lower bound of (m − 2)!2m and an upper bound of
(m− 1)!2m.

Note that this discussion only applies when the signature does not contain any unary
(or higher arity) function symbols. It is not sufficient to simply impose that the SCA is
function-free (i.e. no such function symbols appear in B or C).

432 M. Maher and G. Huang

Example 7. Let B be u = v and C be x = y. Then the algorithm in Figure 2 generates
the maximally general answers x = y, and x = u, y = v, and x = v, y = u. However, if
the signature contains function symbols then there are also maximally general answers
x = k(u), y = k(v) and v = k(x), u = k(y), among others, for any term k.

Nevertheless, it seems that Example 6 provides a lower bound on the growth of the
number of expressions needed to represent all maximally general answers in the worst
case. Example 6 is also suggestive of the number of maximally general answers for any
constraint domain containing equations, since the problem and the answers are valid in
any constraint domain. On the other hand, there are some (non-equational) constraint
domains that have a unique most general answer [4].

5 Fully Maximal Answers

To a very limited extent we can use the results of the previous section to compute fully
maximal answers. For example

Proposition 4. Consider a SCA problem over a signature of constants. SupposeC con-
sists of a single equation v = z. Then the fully maximal answers are those defined by
the algorithm MGA with a sequence of B-classes of length 2. Thus there are |[v]| ∗ |[z]|
fully maximal answers.

When C contains more than one equation the JCA-Solve algorithm will not necessarily
produce all the fully maximal answers from the individual fully maximal answers.

Example 8. Let B be x = y, z = w and let C be x = a, z = a. Then the smaller
SCA problems where c1 is x = a (and c2 is z = a) have fully maximal answers x = a
and y = a (respectively, z = a and w = a). The JCA-Solve algorithm combines these
answers to give four fully maximal answers (such as x = a, z = a).

However, there are other fully maximal answers such as x = z, y = a that are not
composed from fully maximal answers to smaller problems.

Thus we take a more direct approach to computing fully maximal answers. Fortunately,
under this approach we need no restriction on the signature. We will first address the
problem over the constraint domain FT∃, and later discuss the small modifications
needed to adapt it to FT .

Suppose A is a constraint of FT∃ in standard form and S is a nonempty set of
positions in A. We define a few auxiliary functions.

pos(t, A) returns the set of positions of the term t in the righthandside of A
repl(S,A) replaces all terms in the righthandside of A occurring at a position in S by

a new variable (that is existentially quantified)
next(A) is the set {repl(S,A) | S is a nonempty set of positions of identical terms t

in A such that t �∈ V ars, or S ⊂ pos(t, A)}

next(A) is a set of constraints strictly more general than A. All constraints (up to
equivalence) more general than A can be generated by iterating next.

On Computing Constraint Abduction Answers 433

algorithm FMA(B, C)
if (B → C) then return true
let A be the standard form of B ∧ C
do forever

let A be next(A)
if (∀A′ ∈ A A′ ∧B �→ C) then return A
choose A ∈ A such that A ∧ B → C

end algorithm

Fig. 4. Nondeterministic algorithm for computing fully maximal answers

The algorithm defined in Figure 4 non-deterministically finds a maximally general
answer that is more general than B ∧ C. Using backtracking to implement the non-
determinism, we can enumerate all fully maximal answers.

It is straightforward to see that the algorithm is correct and terminates: By the condi-
tions in the definition of next, each iteration of the loop makesA strictly more general.
Since for each constraint there are only finitely many more general constraints, the loop
must terminate. An invariant of the loop is that A is an answer and is more general than
B∧C. When the loop is exited, there are no answers more general thanA, and henceA
must be a maximally general answer. Thus, Definition 2, A is fully maximal. Further-
more, since any constraint that is more general than B∧C can be obtained fromB∧C
by a sequence of next operations, every fully maximal answer is generated. Thus

Theorem 4. Algorithm FMA outputs all fully maximal answers to the SCA problem
over FT∃ and terminates.

There are optimizations that could be applied to the algorithm. In particular, it will find
the same fully maximal answer several times because the order in which subterms t of
A are generalized by repl is not significant to the final outcome. If we restrict the order
in which subterms t are chosen we will avoid this possibility, and restrict the branching
factor.

We can also require that subterms t that are chosen do not contain new variables
(introduced by repl). This prevents the algorithm proceeding by several “partial” gen-
eralizations.

Another possibility is to require an incremental approach, where next(A) contains
only constraints minimally (strictly) more general than A. That can be achieved by
restricting t in the definition of next to terms containing at most one function symbol.

We need vary the algorithm only slightly to find fully maximal answers over the
constraint domain FT . We assume A is in solved form, and redefine two auxiliary
functions as follows.

repl(S,A, x, t) deletes x = t from A and replaces all occurrences of t at a position in
S by x

next(A) is the set {repl(S,A, x, t) | x = t ∈ A,S ⊆ pos(t, A)}

A variant of this algorithm has been proposed by Tom Schrijvers [12]. The correct-
ness of the algorithm follows from the same argument as for the previous theorem,
underpinned by results from [2] on the structure of constraints in FT .

434 M. Maher and G. Huang

Theorem 5. Algorithm FMA, with the auxiliary functions modified as above, outputs
all fully maximal answers to the SCA problem over FT and terminates.

The correctness of the algorithm relies only on next(A) returning all constraints mini-
mally more general than A and termination relies only on every constraint having only
finitely many more general constraints. Thus the abstract algorithm in Figure 4 can be
adapted to any constraint domain where a constraint has only finitely many generaliza-
tions, provided next can be defined constructively.

Obviously these algorithms have high complexity. To some extent this cannot be
avoided. [3] has an example with a binary function symbol where the number of fully
maximal answers in FT grows doubly exponentially with the size of B and C. Again
we look at the function-free case, where we have a more direct characterization of the
fully maximal answers.

A Signature of Constants

When Σ contains only constants we can consider the A,B-graph as an undirected
graph. We say A connects B-classes [s] and [t] if there is a path from [s] to [t] in the
A,B-graph. We now characterize the fully maximal answers in the function-free case.

Theorem 6. Consider a function-free SCA problem. A is a fully maximal answer iff A
and C connect the same B-equivalence classes and the A,B-graph is a forest.

Unlike the computation of maximally general answers discussed in Section 4, this result
permits signatures containing function symbols (provided those symbols do not appear
in B or C). Using this characterization we can show that the number of fully maximal
answers can grow exponentially.

Example 9. Suppose C is yi = ti for i = 1, . . . , n, where each yi and ti occurs just
once in C, and B consists of the equations yi = y′i for i = 1, . . . , n where the y′i are
variables not appearing elsewhere inB and C. Then the size of the problem, combining
B and C, is θ(n).

The connected subgraphs of the C,B-graph all consist of a single edge connecting
two vertices (or the trivial case of an isolated vertex). It follows from Theorem 6 that
any fully maximal answer A has an A,B-graph isomorphic to the C,B-graph. The i’th
edge might be represented in A by yi = ti or y′i = ti. Thus there are 2n inequivalent
fully maximal answers to this problem.

We can make the same point here as in the discussion of maximally general answers
over a signature of constants: it appears that most constraint domains involving equa-
tions will have a similar growth in the number of fully maximal answers.

6 Conclusion

We have investigated constraint abduction over the Herbrand domain. We have shown
how to compute fully maximal answers, and represent finitely all maximally general

On Computing Constraint Abduction Answers 435

answers in the unary case. However, these problems are intractable in their full gener-
ality, and even in terms of the number of fully maximal answers in the function-free
case. This suggests that the use of constraint abduction for practical type inference is
out of reach until a smaller subset of answers can be identified with the meaning of the
type constraints, or more compact representations can be found. For the latter quest, the
A,B-graph is a starting point.

Acknowledgements. The authors thank J. Jaffar, T. Schrijvers and P. Stuckey for dis-
cussions related to this paper. We thank the referees for their comments, which helped
improve the presentation. NICTA is funded by the Australian Government as repre-
sented by the Department of Broadband, Communications and the Digital Economy
and the Australian Research Council through the ICT Centre of Excellence program.

References

1. Diekert, V., Gutierrez, C., Hagenah, C.: The existential theory of equations with rational
constraints in free groups is PSPACE-complete. Information and Computation 202(2), 105–
140 (2005)

2. Lassez, J.-L., Maher, M.J., Marriott, K.G.: Unification Revisited. In: Minker, J. (ed.) Foun-
dations of Deductive Databases and Logic Programming, pp. 587–625. Kauffman, San Fran-
cisco (1987)

3. Maher, M.J.: Herbrand Constraint Abduction. In: Proc. Symp. on Logic in Computer Sci-
ence, pp. 397–406 (2005)

4. Maher, M.: Heyting Domains for Constraint Abduction. In: Sattar, A., Kang, B.-h. (eds.) AI
2006. LNCS (LNAI), vol. 4304, pp. 9–18. Springer, Heidelberg (2006)

5. Martelli, A., Montanari, U.: An Efficient Unification Algorithm. ACM Trans. Program. Lang.
Syst. 4(2), 258–282 (1982)

6. Nelson, G., Oppen, D.C.: Fast Decision Procedures Based on Congruence Closure.
JACM 27(2), 356–364 (1980)

7. Paterson, M., Wegman, M.N.: Linear Unification. J. Comput. Syst. Sci. 16(2), 158–167
(1978)

8. Peyton Jones, S., Vytiniotis, D., Weirich, S., Washburn, G.: Simple Unification-based Type
Inference for GADTs. In: Proc. Int. Conf. Functional Programming, pp. 50–61. ACM Press,
New York (2006)

9. Pottier, F., Régis-Gianas, Y.: Stratified type inference for generalized algebraic data types.
In: Proc. POPL, pp. 232–244. ACM Press, New York (2006)

10. Robinson, J.A.: A Machine-Oriented Logic Based on the Resolution Principle. JACM 12(1),
23–41 (1965)

11. Simonet, V., Pottier, F.: Constraint-based type inference with guarded algebraic data types.
ACM Transactions on Programming Languages and Systems 29(1) (2007)

12. Schrijvers, T.: Personal communication
13. Stuckey, P.J., Sulzmann, M., Wazny, J.: Type Processing by Constraint Reasoning. In:

Kobayashi, N. (ed.) APLAS 2006. LNCS, vol. 4279, pp. 1–25. Springer, Heidelberg (2006)
14. Sulzmann, M., Schrijvers, T., Stuckey, P.J.: Type inference for GADTs via Herbrand con-

straint abduction, Report CW 507, K.U.Leuven, Dept. of Computer Science (2008)
15. Xi, H., Chen, C., Chen, G.: Guarded recursive datatype constructors. In: Proc. POPL, pp.

224–235 (2003)

Fast Counting with Bounded Treewidth�

Michael Jakl, Reinhard Pichler, Stefan Rümmele, and Stefan Woltran

Vienna University of Technology

Abstract. Many intractable problems have been shown to become tractable if
the treewidth of the underlying structure is bounded by a constant. An important
tool for deriving such results is Courcelle’s Theorem, which states that all prop-
erties defined by Monadic-Second Order (MSO) sentences are fixed-parameter
tractable with respect to the treewidth. Arnborg et al. extended this result to count-
ing problems defined via MSO properties. However, the MSO description of a
problem is of course not an algorithm. Consequently, proving the fixed-parameter
tractability of some problem via Courcelle’s Theorem can be considered as the
starting point rather than the endpoint of the search for an efficient algorithm.
Gottlob et al. have recently presented a new approach via monadic datalog to ac-
tually devise efficient algorithms for decision problems whose tractability follows
from Courcelle’s Theorem. In this paper, we extend this approach and apply it to
some fundamental counting problems in logic an artificial intelligence.

1 Introduction

Many problems which are, in general, intractable, have been shown to become tractable
if the treewidth of the underlying structure is bounded by a constant. An important
tool for deriving such results is Courcelle’s Theorem [1]. It states that any property
of finite structures, which is expressible by a Monadic Second Order (MSO) sentence,
can be decided in linear time (data complexity) if the structures under consideration
have bounded treewidth. Courcelle’s Theorem has been successfully applied to de-
rive tractability results in a great variety of fields. Recently, also its applicability to AI
has been underlined by showing that many fundamental problems in the area of non-
monotonic reasoning and knowledge representation can be encoded as MSO sentences
[2]. In [3], it was shown that the fixed-parameter tractability (FPT) via Courcelle’s The-
orem can be extended to counting problems defined via MSO properties.

Clearly, the MSO description of a problem is not an algorithm. Previous methods
for constructing concrete algorithms from an MSO description [3,4] first transform the
MSO evaluation problem into a tree language recognition problem, which is then solved
via a finite tree automaton (FTA). However, this approach has turned out to be only
of theoretical value, since even very simple MSO formulae quickly lead to a “state
explosion” of the FTA (see [5]). Consequently, it was already stated in [6] that the
algorithms derived via Courcelle’s Theorem are “useless for practical applications” and
that the main benefit of Courcelle’s Theorem is in providing “a simple way to recognize
a property as being linear time computable”. Of course, this also applies to the extension
of Courcelle’s Theorem to counting problems according to [3]. In other words, proving
the FPT of some problem by showing that it is MSO expressible is the starting point
rather than the end point of the search for an efficient algorithm.

� This work was supported by the Austrian Science Fund (FWF), project P20704-N18.

I. Cervesato, H. Veith, and A. Voronkov (Eds.): LPAR 2008, LNCS 5330, pp. 436–450, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Fast Counting with Bounded Treewidth 437

Recently, an alternative method to tackle this class of fixed-parameter tractable prob-
lems via monadic datalog has been proposed in [7]. In particular, it has been shown that
if some property of finite structures is expressible in MSO then it can also be expressed
by means of a monadic datalog program over the structure plus the tree decomposition.
The monadic datalog approach has been applied to problems from different areas [7,8]
including propositional satisfiability (SAT) and abduction. In this paper, we show that
the monadic datalog approach can be extended in such a way that it also provides con-
crete algorithms for some fundamental counting problems.

Results. We present new algorithms for the following problems: #SAT – the problem
of counting all models of a propositional formula (without restriction, this is a classical
#P-complete problem); #CIRCUMSCRIPTION – the problem of counting the (subset)
minimal models of a propositional formula (this problem was, apart from the generic
#Π1SAT-problem, one of the first problems to be shown #NP-complete [9]); and
#HORN-ABDUCTION – the problem of counting the solutions of a propositional abduc-
tion problem where the underlying theory is given by a set of Horn clauses. The #P-
completeness of this problem has been recently shown in [10]. Finally, we also report on
experimental evaluations of the #SAT algorithm. In particular, we compare a dedicated
implementation (where datalog serves as a “specification”) with direct realizations of
the datalog approach on top of the DLV-system [11]. Our experiments underline that
our approach of counting indeed yields the expected fixed-parameter tractability and
that – in great contrast to the MSO-to-FTA approach – there are no “hidden constants”
in the runtime behavior to render these algorithms useless.

Related Work. As mentioned above, counting problems defined via MSO properties
were shown in [3] to be FPT w.r.t. the treewidth of the input structures. In [12], this
FPT result was extended to graphs with bounded clique-width. An algorithm for solving
#SAT and #GENSAT in case of bounded treewidth or clique-width of the primal or inci-
dence graph was presented in [13]. Moreover, it is sketched how this approach based on
recursive splitting can be extended to other #P-complete problems. In [14], new #SAT-
algorithms based on dynamic programming were presented for bounded treewidth of
several graphs related to a propositional formula in CNF, namely the primal graph, dual
graph, and incidence graph. Our notion of treewidth of a CNF-formula (see Section 2)
corresponds to the treewidth of the incidence graph.

2 Preliminaries

Finite Structures and Treewidth. Let τ = {R1, . . . , RK} be a set of predicate sym-
bols. A finite structure A over τ (a τ -structure, for short) is given by a finite domain
A = dom(A) and relations RA

i ⊆ Aα, where α is the arity of Ri ∈ τ . A tree decom-
position T of a τ -structure A is a pair 〈T, (At)t∈T 〉 where T is a tree and each At is
a subset of A, s.t. the following properties hold: (1) Every a ∈ A is contained in some
At. (2) For everyRi ∈ τ and every tuple (a1, . . . , aα) ∈ RA

i , there exists a node t ∈ T
with {a1, . . . , aα} ⊆ At. (3) For every a ∈ A, {t | a ∈ At} induces a subtree of T .

The setsAt are called the bags of T . The width of a tree decomposition 〈T, (At)t∈T 〉
is defined as max{|At| | t ∈ T } − 1. The treewidth of A is the minimal width of all
tree decompositions of A. It is denoted as tw(A). For givenw ≥ 1, it can be decided in
linear time if some structure has treewidth ≤ w. Moreover, in case of a positive answer,
a tree decomposition of width w can be computed in linear time [15].

438 M. Jakl et al.

x1, x2, x4

x1, x2, c1 x1, x2, x4

x3, c1 x1, x4, c2 x2, x4, c3

x5, c2 x6, c3

x1, x2, x4

x1, x4

x1, x2, x4

x1, x2, x4 x1, x2, x4 x1, x2, x4

x1, x2

x1, x2, c1

x1, c1

x1, x3, c1

x3, c1

x1, x4, c2

x1, c2

x1, x5, c2

x5, c2

x2, x4

x2, x4, c3

x2, c3

x2, x6, c3

x6, c3

(a) tree decomposition T1 (b) tree decomposition T2

Fig. 1. Tree decompositions of formula ϕ of Example 1

Example 1 ([2]). We can represent propositional formulae in CNF as finite structures
over the alphabet τ = {cl(.), var(.), pos(. , .), neg(. , .)} where cl(z) (resp. var(z))
means that z is a clause (resp. a variable) and pos(x, c) (resp. neg(x, c)) means that x
occurs unnegated (resp. negated) in the clause c. For instance, the formula ϕ = (x1 ∨
¬x2 ∨ x3)∧ (¬x1 ∨ x4 ∨¬x5)∧ (x2 ∨¬x4 ∨ x6) corresponds to the structure A given
by the set of ground atoms {var(x1), var (x2), var(x3), var(x4), var (x5), var (x6),
cl(c1), cl(c2), cl(c3), pos(x1, c1), pos(x3, c1), pos(x4, c2), pos(x2, c3), pos(x6, c3),
neg(x2, c1), neg(x1, c2), neg(x5, c2), neg(x4, c3)}. Two tree decompositions T1 and
T2 of A are given in Figure 1. Note that the maximal size of the bags is 3 in both
decompositions. Hence, the treewidth is ≤ 2. On the other hand, it can be shown that
these tree decompositions are optimal in the sense that we have tw(ϕ) = tw(A) = 2. �
In [7], it was shown that the following form of normalized tree decompositions can
be obtained in linear time: (1) All bags contain either w or w + 1 pairwise distinct
elements. W.l.o.g., we may assume that the domain contains at least w elements. (2)
Every internal node t ∈ T has either 1 or 2 child nodes. (3) If a node t has one child
node t′, then the bag At is obtained from At′ either by removing one element or by
introducing a new element. (4) If a node t has two child nodes then these child nodes
have identical bags as t. In this case, we call t a branch node. In this paper, we only
deal with finite structures representing propositional formulae in CNF (possibly Horn).
Hence, the domain elements are either variables or clauses. Consequently, in case (3),
we call a node t in the tree decomposition a variable removal node, a clause removal
node, a variable introduction node, or a clause introduction node, respectively.

The tree decomposition T2 in Figure 1 is normalized in this sense.

MSO and Monadic Datalog. MSO extends First Order logic (FO) by the use of set
variables (denoted by upper case letters), which range over sets of domain elements.
In contrast, the individual variables (denoted by lower case letters) range over sin-
gle domain elements. An MSO formula ϕ(x) with exactly one free individual vari-
able is called a unary query. Datalog programs are function-free logic programs. The
(minimal-model) semantics can be defined as the least fixpoint (lfp) of applying the im-
mediate consequence operator. Predicates occurring only in the body of rules are called
extensional. Predicates occurring also in the head of some rule are called intensional.

Fast Counting with Bounded Treewidth 439

Let A be a τ -structure of treewidth w ≥ 1. Then we define the extended signature
τtd = τ ∪{root , leaf , child 1, child2, bag}, where the unary predicates root and leaf as
well as the binary predicates child1 and child2 are used to represent the tree of a tree
decomposition (of width w) in the obvious way. Finally, predicate bag has arity k + 2
with k ≤ w, where bag(t, a0, . . . , ak) means that the bag at node t is (a0, . . . , ak).

In [7], the following connection between unary MSO queries over structures with
bounded treewidth and monadic datalog was established:

Theorem 1. Let τ andw ≥ 1 be arbitrary but fixed. Every MSO-definable unary query
over τ -structures of treewidth w is also definable by a monadic datalog program over
τtd. Moreover, the resulting program can be evaluated in linear time w.r.t. the size of
the original τ -structure.

3 Counting All Models

We start our investigation of counting problems with the #SAT problem, i.e.: given
a clause set C over variables V , count the number of all models J ⊆ V of C (We
identify an assignment with the set of atoms that are true in it). Suppose that an instance
of #SAT is given as a τtd-structure with τtd = {cl , var , pos , neg, root , leaf , child1,
child2, bag}, encoding a clause set together with a tree decomposition T of widthw (as
explained Example 1). An extended datalog program for #SAT is displayed in Figure 2.

In this program, we adhere to the following notational conventions: Lower case let-
ters v, c, x, and j (possibly with subscripts) are used as datalog variables for a single
node in T , for a single clause, for a single propositional variable, or for an integer num-
ber, respectively. Upper case letters are used as datalog variables denoting sets of vari-
ables (in the case of X,P,N) or sets of clauses (in the case of C). In particular, for the
sake of readability, we present the extensional predicate bag in the form bag(v,X,C),
where X (resp. C) denotes the set of variables (resp. clauses) in the bag at node v in
T . Note that all these sets are not sets in the general sense, since their cardinality is
restricted by the maximal size w + 1 of the bags, where w is a fixed constant. Indeed,
we ultimately feed these sets to the datalog system DLV in the form of individual argu-
ments of appropriate variants of the predicates involved, see Section 6.

We are also using non-datalog expressions involving the ∪- and �-operator for or-
dinary resp. disjoint union. They could be easily replaced by “proper” datalog expres-
sions, e.g., C1 ∪ C2 = Cu can of course be replaced by union(C1, C2, Cu). Moreover,
we need arithmetic expressions j1 + j2 and j1 ∗ j2 as well as the SUM-operator for
the counting. The SUM-operator occurs as the expression SUM(j) in the rule heads
only. Its semantics is like the SUM aggregate function in ordinary SQL, where we first
apply a GROUP BY over all remaining head variables to the result of evaluating the
conjunctive query in the body of the rule.

For the discussion of the #SAT program below, it is convenient to introduce the fol-
lowing notation: Let C denote the input clause set with variables in V and tree decom-
position T . For any node v in T , we write Tv to denote the subtree of T rooted at v. By
Cl(v) we denote the clauses in the bag of v while Cl(Tv) denotes the clauses that occur
in any bag in Tv . Analogously, we write Var(v) and Var(Tv) as a short-hand for the
variables occurring in the bag of v respectively in any bag in Tv . Finally, the restriction
of a clause c to the variables in some set U ⊆ V will be denoted by c|U .

440 M. Jakl et al.

Program #SAT

/* leaf node. */
sat(v, P, N, Cu, 1)← leaf (v), bag(v, X, C), partition(X, P, N), true(P, N, Cu, C).

/* variable removal node. */
sat(v, P, N, Cu, j1 + j2)← bag(v, X, C), child1(v1, v), bag(v1, X ! {x}, C),

sat(v1, P ! {x}, N, Cu, j1), sat(v1, P, N ! {x}, Cu, j2).
sat(v, P, N, Cu, j)← bag(v, X, C), child1(v1, v), bag(v1, X ! {x}, C),

sat(v1, P ! {x}, N, Cu, j), not sat(v1, P, N ! {x}, Cu,).
sat(v, P, N, Cu, j)← bag(v, X, C), child1(v1, v), bag(v1, X ! {x}, C),

sat(v1, P, N ! {x}, Cu, j), not sat(v1, P ! {x}, N, Cu,).

/* clause removal node. */
sat(v, P, N, Cu, j)← bag(v, X, C), child1(v1, v), bag(v1, X, C ! {c}),

sat(v1, P, N, Cu ! {c}, j).

/* variable introduction node. */
sat(v, P ! {x}, N, Cu, SUM(j))← bag(v, X ! {x}, C), child1(v1, v), bag(v1, X, C),

sat(v1, P, N, C1, j), true({x}, ∅, C2, C), C1 ∪ C2 = Cu.
sat(v, P, N ! {x}, Cu, SUM(j))← bag(v, X ! {x}, C), child1(v1, v), bag(v1, X, C),

sat(v1, P, N, C1, j), true(∅, {x}, C2, C), C1 ∪ C2 = Cu.

/* clause introduction node. */
sat(v, P, N, Cu, j)← bag(v, X, C ! {c}), child1(v1, v), bag(v1, X, C),

sat(v1, P, N, C1, j), true(P, N, C2, {c}), C1 ∪ C2 = Cu.

/* branch node. */
sat(v, P, N, Cu, SUM(j))← child1(v1, v), bag(v1, X, C), sat(v1, P, N, C1, j1),

child2(v2, v), bag(v2, X, C), sat(v2, P, N, C2, j2),
bag(v, X, C), C1 ∪ C2 = Cu, j1 ∗ j2 = j.

/* result (at the root node). */
count(SUM(j)) ← root(v), bag(v, X, C), sat(v, P, N, C, j).

Fig. 2. #SAT program

The #SAT program contains four intensional predicates sat , true, partition , and
count . The crucial predicate is sat(v, P,N,C, j) with the following intended mean-
ing: v denotes a node in T . P and N form a partition of Var(v) representing a truth
assignment on Var(v), s.t. all variables in P are true and all variables in N are false.
C denotes a subset of Cl(v) and j denotes a positive integer. For arbitrary values of
v, P,N,C, we define the following set of truth assignments:

S(v, P,N,C) = {J | J is an extension of (P,N) to Var(Tv),
for each c ∈ (Cl(Tv) \ Cl(v)) ∪ C, c is true in J ,

for each c ∈ Cl(v) \ C, c|Var(Tv) is false in J . }

We can now characterize the least fixpoint (lfp) of the #SAT program as follows.1

Property A. If S(v, P,N,C) = ∅ then no atom sat(v, P,N,C,) is in the lfp of #SAT.
If S(v, P,N,C) �= ∅ then the following equivalence holds: sat(v, P,N,C, j) is in the
lfp of #SAT iff |S(v, P,N,C)| = j.

1 Due to lack of space, most proofs are omitted in this paper (for full proofs, we refer to [16]).

Fast Counting with Bounded Treewidth 441

This property implies that, for any given values v, P,N,C, we can derive at most one
fact sat(v, P,N,C, j). The main task of the program is the computation of all facts
sat(v, P,N,C, j) by means of a bottom-up traversal of the tree decomposition T . In-
deed, all the rules only allow us to derive sat -facts for some node v in T from sat -facts
at the child node(s) of v. Consequently, on the ground level, the program contains only
stratified negation, since the not-operator in the rules of variable removal nodes is only
applied to sat -facts of the child node v1 of v.

The other predicates have the following meaning: true(P,N,Cu, C) means that Cu

contains precisely those clauses fromC which are true in the (partial) assignment given
by (P,N). We do not specify the implementation of this predicate here. It can be easily
achieved via the extensional predicates pos and neg . A fact partition(X,P,N) ex-
presses that (P,N) is a partition of X . The predicate count holds the final result. The
datalog program in Figure 2 solves the #SAT problem in the following way.

Theorem 2. Let C be an instance of #SAT, encoded by a τtd-structure Atd. Then,
count(j) with j ≥ 1 is in the lfp of the #SAT-program evaluated on Atd iff C is satisfi-
able and has exactly j models. Moreover, both the construction of the τtd-structure Atd

and the evaluation of the program take time O(f(tw(C)) ∗ ‖C‖) for some function f , if
we assume constant runtime for the arithmetic operations.

Proof. Suppose that the predicate sat indeed fulfills Property A, which can be proved
by structural induction on T . The case distinction over all possible kinds of nodes is
rather straightforward – the only non-trivial case being the case of branch nodes.

Now consider the root node v of the tree decomposition T with bag(v,X,C). A
fact sat(v, P,N,C, j) in the lfp means that the assignment (P,N) on the variables X
has exactly j extensions to all variables, s.t. all clauses in C are true. But then, by the
semantics of the SUM-operator explained above, the rule with head count(SUM(j))
indeed means that a fact count(j′) with j′ ≥ 1 is in the lfp iff j′ is the number of
assignments that satisfy all clauses in C, i.e., j′ is the sum of j over all possible partitions
(P,N) of X , s.t. sat(v, P,N,C, j) is in the lfp. We are thus using that the root v of
T is unique and the values of X and C in the bag at v are uniquely determined by v.
Moreover, for every pair of (P,N) (together with C, which is fixed for v), the value of
j is also uniquely determined.

The linear time data complexity is due to the fact that our #SAT program is essen-
tially a succinct representation of a monadic datalog program extended by a counter
j. For instance, in the atom sat(v, P,N,C, j), the sets P , N , and C are subsets of
bounded size of the bag of v. Hence, each combination P,N,C could be represented
by sets r, s, t ⊆ {0, . . . , w} referring to indices of elements in the bag of v. Recall
that w is a fixed constant. Hence, sat(v, P,N,C, j) is simply a succinct representation
of constantly many predicates of the form satr,s,t(v, j). Hence, without the counter j,
the linear time bound is implicit in Theorem 1. Moreover, j is uniquely determined for
every combination of v, P,N,C, and the concrete value of j is computed by simple
addition and multiplication of the corresponding values in sat-facts at the child node(s)
of v. Hence, maintaining this additional argument j does not destroy the linearity. �

4 Counting the Minimal Models

We now extend the #SAT program in order to solve the #CIRCUMSCRIPTION problem,
i.e.: given a propositional formula ϕ, count the number of minimal models of ϕ. The

442 M. Jakl et al.

Program #CIRCUMSCRIPTION

/* leaf node. */
sat(v, 0, P, N, Cu, 1)← leaf (v), bag(v, X, C), partition(X, P, N), true(P, N, Cu, C).
unsat(v, 0, P, N, P ′, N ′, C′

u)← leaf (v),
sat(v, 0, P, N, , 1), sat(v, 0, P ′, N ′, C′

u, 1), P ′ ⊂ P .

/* variable removal node. */
auxsat(v, i, 0, P, N, Cu, j)← bag(v, X, C), child1(v1, v), bag(v1, X ! {x}, C),

sat(v1, i, P ! {x}, N, Cu, j).
auxsat(v, i, 1, P, N, Cu, j)← bag(v, X, C), child1(v1, v), bag(v1, X ! {x}, C),

sat(v1, i, P, N ! {x}, Cu, j).
auxunsat(v, i, 0, P, N, P ′ \ {x}, N ′ \ {x}, C′

u)← bag(v, X, C), child1(v1, v),
bag(v1, X ! {x}, C), unsat(v1, i, P ! {x}, N, P ′, N ′, C′

u).
auxunsat(v, i, 1, P, N, P ′, N ′ \ {x}, C′

u)← bag(v, X, C), child1(v1, v),
bag(v1, X ! {x}, C), unsat(v1, i, P, N ! {x}, P ′, N ′, C′

u).

/* clause removal node. */
sat(v, i, P, N, Cu, j)← bag(v, X, C), child1(v1, v), bag(v1, X, C ! {c}),

sat(v1, i, P, N, Cu ! {c}, j).
unsat(v, i, P, N, P ′, N ′, C′

u)← bag(v, X, C), child1(v1, v), bag(v1, X, C ! {c}),
sat(v1, i, P, N, Cu ! {c},), unsat(v1, i, P, N, P ′, N ′, C′

u ! {c}).

/* variable introduction node. */
sat(v, i, P ! {x}, N, C1 ∪ C2, j)← bag(v, X ! {x}, C), child1(v1, v), bag(v1, X, C),

sat(v1, i, P, N, C1, j), true({x}, ∅, C2, C).
sat(v, i, P, N ! {x}, C1 ∪ C2, j)← bag(v, X ! {x}, C), child1(v1, v), bag(v1, X, C),

sat(v1, i, P, N, C1, j), true(∅, {x}, C2, C).
unsat(v, i, P ! {x}, N, P ′ ! {x}, N ′, C1 ∪ C2)← bag(v, X ! {x}, C), child1(v1, v),

bag(v1, X, C), unsat(v1, i, P, N, P ′, N ′, C1), true({x}, ∅, C2, C).
unsat(v, i, P ! {x}, N, P ′, N ′ ! {x}, C1 ∪ C2)← bag(v, X ! {x}, C), child1(v1, v),

bag(v1, X, C), unsat(v1, i, P, N, P ′, N ′, C1), true(∅, {x}, C2, C).
unsat(v, i, P ! {x}, N, P, N ! {x}, C1 ∪ C2)← bag(v, X ! {x}, C), child1(v1, v),

bag(v1, X, C), sat(v1, i, P, N, C1,), true(∅, {x}, C2, C).
unsat(v, i, P, N ! {x}, P ′, N ′ ! {x}, C1 ∪ C2)← bag(v, X ! {x}, C), child1(v1, v),

bag(v1, X, C), unsat(v1, i, P, N, P ′, N ′, C1), true(∅, {x}, C2, C).

/* clause introduction node. */
sat(v, i, P, N, C1 ∪ C2, j)← bag(v, X, C ! {c}), child1(v1, v), bag(v1, X, C),

sat(v1, i, P, N, C1, j), true(P, N, C2, {c}).
unsat(v, i, P, N, P ′, N ′, C1 ∪ C2)← bag(v, X, C ! {c}), child1(v1, v), bag(v1, X, C),

unsat(v1, i, P, N, P ′, N ′, C1), true(P ′, N ′, C2, {c}).

Fig. 3. #CIRCUMSCRIPTION program

goal of the program in Figure 3 and 4 is, on the one hand, to keep track of all models
of a formula ϕ given by the input τtd-structure. This is done by the sat-predicate which
works essentially as in the #SAT program. However, at the end of the day, we may only
count the minimal models. Our #CIRCUMSCRIPTION program therefore also contains
an unsat-predicate, which is used to propagate “unsat”-conditions in the sense that some
model J is minimal only if all strictly smaller assignments J ′ ⊂ J do not satisfy ϕ.
Recall that we identify an assignment with the set of atoms that are true in it.

Fast Counting with Bounded Treewidth 443

Program #CIRCUMSCRIPTION (continued)

/* branch node. */
auxsat(v, i1, i2, P, N, C1 ∪ C2, j1 ∗ j2)← bag(v, X, C), child1(v1, v), bag(v1, X, C),

sat(v1, i1, P, N, C1, j1), child2(v2, v), bag(v2, X, C), sat(v2, i2, P, N, C2, j2).
auxunsat(v, i1, i2, P, N, P ′, N ′, C1 ∪ C2)← bag(v, X, C),

child1(v1, v), bag(v1, X, C), unsat(v1, i1, P, N, P ′, N ′, C1),
child2(v2, v), bag(v2, X, C), unsat(v2, i2, P, N, P ′, N ′, C2).

auxunsat(v, i1, i2, P, N, P, N, C1 ∪ C2)← bag(v, X, C),
child1(v1, v), bag(v1, X, C), sat(v1, i1, P, N, C1,),
child2(v2, v), bag(v2, X, C), unsat(v2, i2, P, N, P, N, C2).

auxunsat(v, i1, i2, P, N, P, N, C1 ∪ C2)← bag(v, X, C),
child1(v1, v), bag(v1, X, C), unsat(v1, i1, P, N, P, N, C1),
child2(v2, v), bag(v2, X, C), sat(v2, i2, P, N, C2,).

/* variable removal and branch node: aux ⇒ sat */
sat(v, i, P, N, Cu, j)← auxsat(v, i1, i2, P, N, Cu,), reduce(v, P, N, i, i1, i2, j).
unsat(v, i, P, N, P ′, N ′, C′

u)← auxunsat(v, i1, i2, P, N, P ′, N ′, C′
u),

reduce(v, P, N, i, i1, i2,).

/* result (at the root node). */
count(SUM(j))← root(v), bag(v, X, C), sat(v, i, P, N, C, j),

not unsat(v, i, P, N, P ′, N ′, C).

Fig. 4. #CIRCUMSCRIPTION program

A complication which our program has to overcome is that we have to keep track
which unsat-conditions refer to which sat-condition. Thus the sat-predicate has an index
i ∈ {0, 1, 2, . . .} as additional argument. The first four arguments v, i, P,N allow us to
associate each unsat-fact with the correct sat-fact. The sat- and unsat-predicates have
the following meaning: Let v denote a node in the tree decomposition T . Let the sets P
and N (resp. P ′ and N ′) denote a partition of Var(v) representing a truth assignment
on Var(v), s.t. all variables in P (resp. in P ′) are true and all variables in N (resp. in
N ′) are false. Let C and C′ denote subsets of Cl(v). Furthermore let i ∈ {0, 1, 2, . . .}
be an index used to distinguish different extensions of a truth assignment and let j be
a positive integer used for counting extensions of a truth assignment. Moreover, let the
set S(v, P,N,C) of truth assignments be defined as in Section 3. Then, occurrences
of the ground facts sat(v, i, P,N,C, j) and unsat(v, i, P,N, P ′, N ′, C′) in the least
fixpoint (lfp) of #CIRCUMSCRIPTION are determined as follows:

Property B. There exists an atom sat(v, , P,N,C,) in the lfp of the #CIRCUMSCRIP-
TION program iff S(v, P,N,C) �= ∅. Moreover, a fact unsat(v, i, P,N, , , ,) is in
the lfp only if also a fact sat(v, i, P,N, ,) is. Finally, if S(v, P,N,C) �= ∅ then
there exists a partition {Si1 , . . . , Sin} with n ≥ 1 of S(v, P,N,C) which fulfills the
following conditions:

1. A fact sat(v, i, P,N,C,) is contained in the lfp iff i ∈ {i1, . . . , in}.
2. The fact sat(v, i, P,N,C, j) is contained in the lfp iff |Si| = j.
3. For every partition (P ′, N ′) of Var(v) and every subset C′ ⊆ Cl(v), the following

two equivalences hold:

444 M. Jakl et al.

The fact unsat(v, i, P,N, P ′, N ′, C′) is contained in the lfp ⇔
there exists a J ∈ Si and an assignment J ′ ⊂ J , s.t. J ′ ∈ S(v, P ′, N ′, C′) ⇔
for all J ∈ Si there exists an assignment J ′ ⊂ J , s.t. J ′ ∈ S(v, P ′, N ′, C′).

Condition 2 above implies that, for any values v, i, P,N,C, there is at most one fact
sat(v, i, P,N,C,) in the lfp. Condition 3 ensures that, at the root node v of T , either
all j models described by a fact sat(v, i, P,N,C, j) are minimal or none of them is.

The predicates true and partition have the same meaning as in the #SAT program.
In addition, we have the predicates auxsat, auxunsat, and reduce with the following
meaning: Recall that the index i in sat(v, i, P,N,C,) is used to keep different as-
signments J ∈ S(v, P,N,C) apart. Of course, in principle, there can be exponen-
tially many such J . Nonetheless, the predicates auxsat, auxunsat, and reduce guaran-
tee the fixed-parameter tractability in the following way. In the first place, we com-
pute facts auxsat(v, i1, i2, P,N,C,) and auxunsat(v, i1, i2, P,N, P ′, N ′, C′), where
we use pairs of indices (i1, i2) rather than a single index i to associate the auxunsat-
facts with the correct auxsat-fact. Now suppose that for two distinct pairs (i1, i2) and
(i′1, i

′
2) a fact auxsat(v, i1, i2, P,N,C,) and auxsat(v, i′1, i

′
2, P,N,C,) exists in the

lfp and, moreover, the auxunsat-facts for (v, i1, i2, P,N) and (v, i′1, i
′
2, P,N) are the

same, i.e., for indices i, j, let Val(v, i, j, P,N) = {(P ′, N ′, C′) | there exists a fact
auxunsat(v, i, j, P,N, P ′, N ′, C′) in the lfp }. Then Val(v, i1, i2, P,N) = Val(v, i′1,
i′2, P,N) holds. Intuitively, this means that the pairs of indices (i1, i2) and (i′1, i

′
2)

are not distinguishable by the sat- and unsat-conditions for this particular combina-
tion of (v, P,N). The purpose of the reduce-predicate is, in such a situation, to con-
tract (i1, i2) and (i′1, i

′
2) to a single index i and to take care of the actual counting

and summation. More precisely, a fact reduce(v, P,N, i, i1, i2, j) means that the pair
of indices (i1, i2) is mapped to the single index i and that j is the sum of all j′ in
facts auxsat(v, i′1, i′2, P,N , C, j′), s.t. (i′1, i′2) is mapped to i. In principle, the reduce-
predicate predicate can be realized in datalog (see [16]). However, in the long run, an
efficient implementation via hash tables inside the datalog processor is clearly prefer-
able. The datalog program in Figure 3 and 4 solves the #CIRCUMSCRIPTION problem
in the following way:

Theorem 3. Let C be an instance of #CIRCUMSCRIPTION, encoded by a τtd-structure
Atd. Then, count(j) with j ≥ 1 is in the lfp of the #CIRCUMSCRIPTION-program eval-
uated on Atd iff C is satisfiable and has exactly j (subset) minimal models. Moreover,
both the construction of the τtd-structure Atd and the evaluation of the program take
time O(f(tw(C)) ∗ ‖C‖) for some function f , if we assume constant runtime for the
arithmetic operations.

Proof. The proof is based on essentially the same ideas as the proof of Theorem 2.
In particular, the correctness follows easily as soon as the correctness of Property B
is established, which can be done by structural induction. The linear time bound is
again shown via Theorem 1 and the fact that the arithmetic operations required for the
counting do not destroy the linear time data complexity. �

5 Horn Abduction

Abduction is an important method in artificial intelligence and, in particular, in diag-
nosis. A propositional abduction problem (PAP) is given by a tuple P = 〈V,H,M, C〉,

Fast Counting with Bounded Treewidth 445

where V is a finite set of variables, H ⊆ V is the set of hypotheses,M ⊆ V is the set
of manifestations and C is a consistent theory in the form of a propositional clause set.
A set S ⊆ H is a solution to P if C ∪ S is consistent and C ∪ S |= M holds.

In [8], the decision problem (i.e., does a given PAP have a solution) of proposi-
tional abduction with bounded treewidth was considered. In order to illustrate the wide
applicability of the datalog approach, we concentrate on the special case of #HORN-
ABDUCTION, i.e., given a PAP P whose theory is a set of Horn clauses, count the
number of solutions S of P . The datalog program in Figure 5 has a significantly differ-
ent flavour than the ones in the previous sections and can be considered as prototypical
for rule-based problems.

Before we explain this program, we introduce some useful terminology and conven-
tions: In general, Horn clauses are either rules, facts, or goals. For our purposes, it is
convenient to consider every clause r of C as a rule consisting of a head (denoted as
head(r)) and a body (denoted as body(r)). Goals of the form ¬p1 ∨ · · · ∨ ¬pk are thus
considered as rules of the form p1 ∧ · · · ∧ pk → ⊥ and a fact q in C is considered as a
rule of the form → q with an empty body. A PAP is represented by a τ -structure with
τ = {cl , var ,neg, pos , hyp,man}, where the predicates hyp and man indicate that
some variable a is a hypothesis (i.e., hyp(a)) or a manifestation (i.e., man(a)). By the
above consideration, var (⊥) is now also fulfilled. Moreover, neg(a, r) (resp. pos(a, r))
means that a occurs in the body of r (resp. in the head of r). For the input tree decom-
position, we assume that a bag containing some rule r also contains the variable a in the
head of r. This will greatly simplify the presentation of our datalog program and can,
in the worst-case, only double the width of the resulting decomposition.

For S ⊆ V ∪ {⊥}, we write S+ to denote the closure of S w.r.t. the theory C,
i.e.: An element q ∈ V ∪ {⊥} is contained in S+ iff either q ∈ S or there exists a
“derivation sequence” of q from S in C of the form S → S ∪ {q1} → S ∪ {q1, q2} →
. . . → S ∪ {q1, . . . , qn}, s.t. qn = q and for every i ∈ {1, . . . , n}, there exists a
rule ri ∈ C with body(ri) ⊆ S ∪ {q1, . . . , qi−1} and head(ri) = qi. Hence, a subset
S ⊆ H is a solution of the PAP P iff ⊥ /∈ S+ and M ⊆ S+. Our #HORN-ABDUC-
TION program searches for the number of solutions S ⊆ H by applying precisely this
criterion. The predicate solve(v, S, i, Co, RC,∆C, RO, j), which is at the heart of the
#HORN-ABDUCTION program, has the following intended meaning: v denotes a node
in the tree decomposition T . S is the projection of a solution S onto Hyp(v) and Co is
the projection of S+ \ S onto Var(v). We consider S+ \ S as well as Co as ordered
(which is indicated by the superscript o) w.r.t. some derivation sequence of S+ from
S. The argumentsRC,∆C, and RO are used to check that Co is indeed the projection
of S+ \ S onto Var(v). Informally, the arguments RC and ∆C ensure that Co is not
too big, while RO ensures that Co is not too small. These tasks are accomplished as
follows: RC contains those rules in v which are used in the above derivation sequence.
Furthermore, the set ∆C contains those variables of Co, for which we have already
found the corresponding derivation rule. Of course, in the bottom-up traversal of the
tree decomposition, every element of Co ultimately has to end up in ∆C. On the other
hand, RO contains those rules r in the bag of v which do not constitute a contradiction
with the closedness of S+, i.e., either the head of r is contained in S+ anyway or we
have already encountered in Var(Tv) a variable in body(r) which is not contained in
S+. The last argument j is used to count the number of different solutions.

In the program, we again use ∪ and � to denote ordinary union resp. disjoint union.
By Co � {x}, we mean that x is arbitrarily “inserted” into Co, leaving the order of the

446 M. Jakl et al.

Program #HORN-ABDUCTION

/* leaf node. */
solve(v, S, 0, Co, RC, ∆C, RO1 ∪ RO2, 1)← leaf (v), bag(v, X, R), S ∩ Co = ∅,

Co ⊆ X, RC ⊆ R, svar(v, S), explains(v, S ∪ Co), consistent(RC,S, Co, X),
derived(∆C,Co, RC), outside(RO1, R, X \ (S ∪ Co)), inside(RO2, R, S ∪ Co).

/* variable removal node. */
aux (v, S, i, 0, Co, RC, ∆C, RO, j)← bag(v, X, R), child1(v1, v), bag(v1, X ! {x}, R),

solve(v1, S ! {x}, i, Co, RC, ∆C, RO, j).
aux (v, S, i, 1, Co, RC, ∆C, RO, j)← bag(v, X, R), child1(v1, v), bag(v1, X ! {x}, R),

solve(v1, S, i, Co ! {x}, RC, ∆C ! {x}, RO, j).
aux (v, S, i, 1, Co, RC, ∆C, RO, j)← bag(v, X, R), child1(v1, v), bag(v1, X ! {x}, R),

solve(v1, S, i, Co, RC, ∆C, RO, j), x �∈ S, x �∈ Co.
/* rule removal node. */
solve(v, S, i, Co, RC, ∆C, RO, j)← bag(v, X, R), child1(v1, v), bag(v1, X, R ! {r}),

solve(v1, S, i, Co, RC ! {r}, ∆C, RO ! {r}, j).
solve(v, S, i, Co, RC, ∆C, RO, j)← bag(v, X, R), child1(v1, v), bag(v1, X, R ! {r}),

solve(v1, S, i, Co, RC, ∆C, RO ! {r}, j).
/* variable introduction node. */
solve(v, S ! {x}, i, Co, RC, ∆C, RO, j)← bag(v, X ! {x}, R), child1(v1, v),

bag(v1, X, R), solve(v1, S, i, Co, RC,∆C, RO, j), hyp(x).
solve(v, S, i, Co ! {x}, RC,∆C, RO, j)← bag(v, X ! {x}, R), child1(v1, v),

bag(v1, X, R), solve(v1, S, i, Co, RC,∆C, RO, j),
consistent(RC, S, Co ! {x}, X ! {x}).

solve(v, S, i, Co, RC, ∆C, RO1 ∪ RO2, j)← bag(v, X ! {x}, R), child1(v1, v),
bag(v1, X, R), solve(v1, S, i, Co, RC,∆C, RO1, j), not man(x),
outside(RO2, R, {x}), consistent(RC,S, Co, X ! {x}).

/* rule introduction node. */
solve(v, S, i, Co, RC !{r}, ∆C !{x}, RO!{r}, j)← bag(v, X, R!{r}), child1(v1, v),

bag(v1, X, R), solve(v1, S, i, Co, RC,∆C, RO, j), consistent(RC ! {r}, S, Co, X),
pos(x, r), x �∈ ∆C, x �= ⊥.

solve(v, S, i, Co, RC, ∆C, RO1 ∪ RO2 ∪ RO3, j)← bag(v, X, R ! {r}), child1(v1, v),
bag(v1, X, R), solve(v1, S, i, Co, RC,∆C, RO1, j),
outside(RO2, R ! {r}, X \ (S ! Co)), inside(RO3, R ! {r}, S ! Co).

/* branch node. */
aux (v, S, i1, i2, C

o, RC, ∆C1 !∆C2, RO1 !RO2, j1 ∗ j2)← bag(v, X, R),
child1(v1, v), bag(v1, X, R), solve(v1, S, i1, C

o, RC,∆C1, RO1, j1),
child2(v2, v), bag(v2, X, R), solve(v2, S, i2, C

o, RC,∆C2, RO2, j2),
derived(∆C,Co, RC), ∆C1 ∩∆C2 = ∆C.

/* variable removal and branch node: aux ⇒ solve */
solve(v, S, i, Co, RC, ∆C, RO, j)← aux(v, S, i1, i2, C

o, RC, ∆C, RO, j′),
reduce(v, S, i, i1, i2, j).

/* result (at the root node). */
count(SUM(j))← root(v), bag(v, X, R), solve(v, S, i, Co, RC,∆C, RO, j),

Co = ∆C, RO = R, not unsuccess(S, i, Co).
unsuccess(S, i, Co

1)← root(v), bag(v, X, R), solve(v, S, i, Co
2 , RC,∆C, RO, j),

Co
2 = ∆C, RO = R, Co

2 < Co
1 .

Fig. 5. #HORN-ABDUCTION program

Fast Counting with Bounded Treewidth 447

remaining elements unchanged. Analogously to the #CIRCUMSCRIPTION program, we
need an index i in order to distinguish between different derivation sequences leading
to different orderings on the elements in S+ \ S. Moreover, we need an aux-predicate
maintaining pairs of indices in case of variable removable and branch nodes. More-
over, we also need a reduce-predicate to contract aux-facts aux (v, S, i1, i2, . . .) and
aux(v, S, i′1, i′2, . . .) for partial solutions which are indistinguishable by the aux-facts
in the lfp. The actual counting and summation is again done in the reduce-predicate.

Formally, the correctness of the #HORN-ABDUCTION program can be shown via the
Property C defined below. Let Hyp(v), Man(v), Hyp(Tv), and Man(Tv) denote the
restriction of H and M to the variables in the bag of v or in any bag in Tv , respec-
tively. For arbitrary values of v, S, Co, RC,∆C, and RO, we define the following set
of extensions S of S to Hyp(Tv):
Sol(v, S, Co, RC,∆C,RO) = { S | S ⊆ S ⊆ Hyp(Tv) and ∃Co ∃RC with

Co ⊆ Co ⊆ Var(Tv) and RC ⊆ RC ⊆ Cl(Tv), s.t.

1. S ∩ Co = ∅, ⊥ /∈ Co, and Man(Tv) ⊆ S ∪ Co.
2. ∀r ∈ RC, head(r) ∈ Co and ∀p ∈ body(r) ∩ Var(Tv): either p ∈ S or p ∈ Co

with p < head(r).
3. RO = {r ∈ Cl(v) | body(r) ∩ Var(Tv) �⊆ S ∪ Co} ∪ {r ∈ Cl (v) | head(r) ∈
S ∪ Co} and ∀r ∈ Cl (Tv) \ Cl(v), if head(r) �∈ S ∪ Co then body(r) �⊆ S ∪ Co.

4. ∆C = {p ∈ Co | r ∈ RC, head(r) = p} and ∀p ∈ Co \ Co, ∃r ∈ RC with
head(r) = p. }

Then, occurrences of the ground facts solve(v, S, i, Co, RC,∆C, RO, j) in the lfp
of #HORN-ABDUCTION are determined as follows:

Property C. If Sol(v, S, Co, RC,∆C,RO) = ∅ then no atom solve(v, S, , Co, RC,
∆C,RO,) is in the lfp of #HORN-ABDUCTION. On the other hand, if Sol(v, S, Co,
RC, ∆C, RO) �= ∅ then the following conditions are fulfilled:

(a) A fact solve(v, S, , Co, RC,∆C,RO, j) is in the lfp of #HORN-ABDUCTION

iff |Sol(v, S, Co, RC,∆C,RO)| = j.
(b) For any further tuple of values (Co

1 , RC1, ∆C1, RO1) we have Sol(v, S, Co,
RC,∆C,RO) = Sol(v, S, Co

1 , RC1, ∆C1, RO1) iff there exists an index i and a value
j, s.t. there are facts solve(v, S, i, Co, RC,∆C,RO, j) and solve(v, S, i, Co

1 , RC1,
∆C1, RO1, j) in the lfp of #HORN-ABDUCTION.

The other predicates have the following intended meaning: svar(v, S) is used to
select sets of hypotheses. It is true for every subset S ⊆ Hyp(v). A fact explains(v,X)
is in the lfp iff Man(v) ⊆ X . These two predicates are only used to ease the notation at
the leaf nodes of T . The remaining predicates consistent, outside, inside, and derived
take care of the conditions 2 – 4 of the definition of Sol(v, S, Co, RC,∆C,RO) in the
following way: A fact consistent(RC,S,Co, X) is in the lfp iff ∀r ∈ RC we have
head(r) ∈ Co and ∀p ∈ body(r) ∩ X it holds that either p ∈ S or p ∈ Co with
p < head(r), i.e. the rules in RC are only used to derive greater variables from smaller
ones (plus variables from S), cf. condition 2 above. A fact outside(RO,R,X) is in the
lfp iff RO = {r ∈ R | body(r) ∩X �= ∅}. Hence, for X ⊆ V \ S+, the rules in RO
do not constitute a contradiction with the closedness of S+ because their bodies have
a variable of X (and, therefore, outside S+) in their body. A fact inside(RO,R,X) is
in the lfp iff RO = {r ∈ R | head(r) ∈ X}. Hence, for X ⊆ S+, the rules in RO
do not constitute a contradiction with the closedness of S+ because their head is inside

448 M. Jakl et al.

this set. A fact derived(∆C,Co, RC) means that ∆C contains those variables of Co

for which RC already contains the rule which is used in the last step of the derivation,
i.e., ∆C = {q ∈ Co | r ∈ RC, q = head(r)}. Analogously to Theorems 2 and 3, the
#HORN-ABDUCTION-program in Figure 5 has the following properties:

Theorem 4. Let P = 〈V,H,M, C〉 be an instance of #HORN-ABDUCTION, encoded
by a τtd-structure Atd. Then, count(j) with j ≥ 1 is in the lfp of the #HORN-ABDUC-
TION-program evaluated on Atd iff the PAP P is solvable and has j solutions. More-
over, both the construction of the τtd-structure Atd and the evaluation of the program
take time O(f(tw(P)) ∗ ‖P‖) for some function f , if we assume constant runtime for
the arithmetic operations.

6 Experimental Evaluation

A practical evaluation of the monadic datalog approach presented in earlier work [7] is
still missing. So far, datalog programs (like the ones established in [7,8]) only served
as a “specification” for an implementation in C++, rather than being used as a method
of its own for solving the problem. However, using the datalog approach directly would
be very appealing, for instance, for rapid prototyping. Below we report on some first
lessons learned when experimenting with implementations of the #SAT program.

When evaluating the #SAT-program on a datalog engine, several obstacles have to be
overcome: First, encodings for the non-standard datalog operations, especially those for
set arithmetic, are non-trivial and must be done very carefully (avoiding the introduc-
tion of cycles, etc.). A recent extension of the DLV-system [11], which is called DLV-
Complex (see http://www.mat.unical.it/dlv-complex), provides special built-in predi-
cates for set arithmetic. Our experiments showed that such built-ins normally lead to
a better performance than a direct realization of the #SAT-program in “pure” datalog.
Another interesting observation was that the DLV-system did not recognize that the
solve()-predicate can be evaluated without any cycles by a bottom-up traversal of the
tree-decomposition. We therefore relaxed the separation of the program and the data
and generated the programs using predicates solvev(), for each node v in the tree-
decomposition instead of having v as an argument in solve() – thus making the acyclic-
ity explicit. This led to a significant speed-up. Note that we could have put more and
more computation tasks into the generation of the datalog program. However, to keep
the method generic (w.r.t. different problems) we restricted ourselves to exploit only
structural information, i.e. the shape of the tree decomposition. Further, DLV is handi-
capped in the way that no values bigger than 1010 can be processed.

We carried out experiments with two implementations of our #SAT program: one
executing the datalog program directly on DLV-complex (compiling the tree structure
into the program as discussed above) and one using a general-purpose, Turing complete
programming language (in contrast to [7,8], we used Haskell rather than C++, because
we found it more convenient). Table 1 shows a glimpse of our results for various values
of the treewidth (tw), number of variables (# vars), clauses (# clauses) and nodes in
the tree decomposition (# nodes). The experiments were done on a recent Core2Duo
processor with 2GB of RAM and two cores at 1.86 GHz. The time was measured with
the Unix tool “time”. DLV was called with the default optimization parameters. Haskell
was compiled with increased optimization levels. Comparing a compiled program with
an interpreted program might be “unfair”, but the Haskell program does not need to be

Fast Counting with Bounded Treewidth 449

Table 1. Processing Time in sec. for #SAT.

tw # vars # clauses # nodes # models Haskell datalog
3 75 25 220 2.1E13 0.00 5.67
3 150 50 439 2.2E25 0.00 22.22
3 300 100 949 4.6E54 0.00 177.90
4 75 25 214 9.8E11 0.00 6.07
4 150 50 453 9.0E28 0.00 22.72
4 300 100 950 2.6E52 0.01 233.24
5 300 100 913 2.3E51 0.01 166.72
6 300 100 981 1.7E53 0.02 141.20
7 300 100 979 3.6E52 0.04 259.97

10 309 103 1044 5.1E48 4.12 2841.10

recompiled when the tree changes whereas the DLV program has to be generated for
each instance.

In theory, our #SAT algorithm specified in terms of a datalog program is fixed-
parameter linear whenever the program is evaluated in an “optimal” way. This is what
our Haskell implementation does. For the time being, it is unclear how the design of
the datalog program (or the underlying datalog engine) has to be changed such that the
datalog engine yields similar results. This is subject of ongoing research. Nevertheless
the datalog approach scales reasonably for instances of medium size. Therefore, al-
ready now, datalog engines can be employed as tools for rapid prototyping and to verify
specifications, which are planned to be realized by a program in another language.

7 Conclusion

We have shown that the monadic datalog approach of [7] can be extended to counting
problems defined via MSO. It should be noted that – as opposed to [13,14] – our ulti-
mate goal is not an efficient algorithm for the #SAT problem. Instead we are aiming at a
general-purpose method which allows us to systematically turn theoretical tractability
results based on Courcelle’s Theorem and generalizations thereof into efficient com-
putations. The experiments with our proof-of-concept implementation demonstrate that
our goal is realistic even though there is still a lot of work ahead of us.

Analogously to [13,14], our datalog programs ultimately follow a dynamic program-
ming approach. This is not surprising if we keep the crucial observation underlying
Courcelle’s Theorem in mind: Consider a structure A with tree decomposition T and
some node s in T . If a domain element a in some bag above s and an element b below
s jointly occur in some tuple in A then – by the definition of tree decompositions – b
also occurs in the bag of s. Hence, the essential properties of the substructure induced
by the subtree rooted at s can be described in terms of the elements in the bag of s –
without taking the concrete form of the subtree rooted at s into account. Indeed, our
#SAT program behaves very similar to the dynamic programming algorithm in [14] for
the incidence graph. Nevertheless, we find the declarative style of datalog appealing and
it has proved convenient in tackling not only #P problems but also the #NP-problem
#CIRCUMSCRIPTION. Moreover, the use of datalog allows us to take advantage of all
future improvements of datalog engines, which is a very active research area [17].

450 M. Jakl et al.

As future work in this area, we are planning to prove a general expressivity result as
to how monadic datalog has to be extended in order to be applicable to any MSO-based
counting problem over structures with bounded treewidth. Moreover, we also want to
integrate further extensions of Courcelle’s Theorem (like sum, minimum, and maxi-
mum, which are studied in [3]) into the monadic datalog approach of [7]. As far as our
implementation on top of DLV is concerned, we have already identified some directions
of future work in Section 6. Note that we have so far used DLV only as a “black box” by
converting a #SAT problem instance plus the extended datalog program for #SAT into
the DLV syntax. Integrating some of the extensions into the datalog system itself (e.g.,
an efficient implementation of the reduce-predicate in Figures 4 and 5 via hash tables)
would clearly help to improve the performance.

References

1. Courcelle, B.: Graph Rewriting: An Algebraic and Logic Approach. In: Handbook of The-
oretical Computer Science, vol. B, pp. 193–242. Elsevier Science Publishers, Amsterdam
(1990)

2. Gottlob, G., Pichler, R., Wei, F.: Bounded treewidth as a key to tractability of knowledge
representation and reasoning. In: Proc. AAAI 2006, pp. 250–256 (2006)

3. Arnborg, S., Lagergren, J., Seese, D.: Easy Problems for Tree-Decomposable Graphs. J.
Algorithms 12, 308–340 (1991)

4. Flum, J., Frick, M., Grohe, M.: Query evaluation via tree-decompositions. J. ACM 49, 716–
752 (2002)

5. Frick, M., Grohe, M.: The complexity of first-order and monadic second-order logic revis-
ited. In: Proc. LICS 2002, pp. 215–224 (2002)

6. Grohe, M.: Descriptive and Parameterized Complexity. In: Flum, J., Rodrı́guez-Artalejo, M.
(eds.) CSL 1999. LNCS, vol. 1683, pp. 14–31. Springer, Heidelberg (1999)

7. Gottlob, G., Pichler, R., Wei, F.: Monadic Datalog over Finite Structures with Bounded
Treewidth. In: Proc. PODS 2007, pp. 165–174 (2007)

8. Gottlob, G., Pichler, R., Wei, F.: Abduction with bounded treewidth: From theoretical
tractability to practically efficient computation. In: Proc. AAAI 2008, pp. 1541–1546 (2008)

9. Durand, A., Hermann, M., Kolaitis, P.G.: Subtractive reductions and complete problems for
counting complexity classes. Theor. Comput. Sci. 340, 496–513 (2005)

10. Hermann, M., Pichler, R.: Counting complexity of propositional abduction. In: Proc. IJCAI
2007, pp. 417–422 (2007)

11. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV
System for Knowledge Representation and Reasoning. ACM Trans. Comput. Log. 7, 499–
562 (2006)

12. Courcelle, B., Makowsky, J.A., Rotics, U.: On the fixed parameter complexity of graph enu-
meration problems definable in monadic second-order logic. Discrete Applied Mathemat-
ics 108, 23–52 (2001)

13. Fischer, E., Makowsky, J.A., Ravve, E.V.: Counting truth assignments of formulas of
bounded tree-width or clique-width. Discrete Applied Mathematics 156, 511–529 (2008)

14. Samer, M., Szeider, S.: Algorithms for propositional model counting. In: Dershowitz, N.,
Voronkov, A. (eds.) LPAR 2007. LNCS, vol. 4790, pp. 484–498. Springer, Heidelberg (2007)

15. Bodlaender, H.L.: A Linear-Time Algorithm for Finding Tree-Decompositions of Small
Treewidth. SIAM J. Comput. 25, 1305–1317 (1996)

16. Jakl, M., Pichler, R., Rümmele, S., Woltran, S.: Fast counting with bounded treewidth. Tech-
nical Report DBAI-TR-2008-61, Technische Universität Wien (2008)

17. Gebser, M., Liu, L., Namasivayam, G., Neumann, A., Schaub, T., Truszcyński, M.: The first
answer set programming system competition. In: Baral, C., Brewka, G., Schlipf, J. (eds.)
LPNMR 2007. LNCS, vol. 4483, pp. 3–17. Springer, Heidelberg (2007)

Cut Elimination for First Order Gödel Logic
by Hyperclause Resolution

Matthias Baaz�, Agata Ciabattoni��, and Christian G. Fermüller� � �

Technische Universität Wien, Austria

Abstract. Efficient, automated elimination of cuts is a prerequisite for proof
analysis. The method CERES, based on Skolemization and resolution has been
successfully developed for classical logic for this purpose. We generalize this
method to Gödel logic, an important intermediate logic, which is also one of the
main formalizations of fuzzy logic.

1 Introduction

In recent years an efficient method for the automated elimination of cuts from classical
first order sequent proofs has been developed [7,9]. This method, called CERES1 is
based on the resolution calculus and has been successfully employed for the in depth
analysis of proofs in number theory (e.g., [5]). It is moreover also of theoretical interest
due to its global nature and other essential differences, compared to the traditional, local
Gentzen- and Schütte-Tait-style cut elimination methods [18,20]. Of course, effective
cut elimination is not only useful for classical logic. It is a precondition for non-trivial
proof analysis in any logic. In [8] Baaz and Leitsch have extended CERES to a wide
class of finite-valued logics. Considering the intended applications, intuitionistic logic
and intermediate logics, i.e., logics over the standard language that are stronger than
intuitionistic logic, but weaker than classical logic, are even more important targets for
similar extensions. However, there are a number formidable obstacles to a straightfor-
ward generalization of CERES to this realm of logics:

– It is unclear whether and how classical resolution can be generalized, for the in-
tended purpose, to intermediate logics.

– Gentzen’s sequent format is too restrictive to obtain appropriate analytic calculi for
many important intermediate logics.

– Skolemization, or rather the inverse de-Skolemization of proofs — an essential
prerequisite for CERES — is not possible in general.

Here we single out a prominent intermediate logic, namely Gödel logic G (also called
Dummett’s LC or Gödel-Dummett logic), which is also one of the main formaliza-
tions of fuzzy logic (see, e.g., [13]) and therefore sometimes called intuitionistic fuzzy

� Partially supported by FWF (Austrian Science Foundation) P19875.
�� Partially supported by FWF Project P18731.

��� Partially supported by ESF/FWF Project I143-G15.
1 CERES stands for Cut Elimination by RESolution.

I. Cervesato, H. Veith, and A. Voronkov (Eds.): LPAR 2008, LNCS 5330, pp. 451–466, 2008.
© Springer-Verlag Berlin Heidelberg 2008

452 M. Baaz, A. Ciabattoni, and C.G. Fermüller

logic [22]. We show that essential features of CERES can be adapted to the calculus
HG [1,11] for G that uses hypersequents, a generalization of Gentzen’s sequents to
multisets of sequents. This adaption is far from trivial and, among other novel features,
entails a new concept of ‘resolution’: hyperclause resolution, which combines most
general unification and cuts on atomic hypersequents. It also provides clues to a better
understanding of resolution based cut elimination for sequent and hypersequent calculi,
in general.

Due to the incorrectness of general de-Skolemization we will deal with HG-proofs
with (arbitrary cut-formulas, but) end-hypersequents that contain either only weak
quantifier occurrences or only prenex formulas. For the latter case we show that the
corresponding class of proofs admits de-Skolemization.

Our results can also be seen as a first step towards automatizing cut elimination and
proof analysis for intuitionistic and other intermediate logics.

2 First Order Gödel Logic and Hypersequents

First-order Gödel logic G is one of the most important intermediate logics. It can be
characterized semantically by the class of all rooted linearly ordered Kripke models
with constant domains, see e.g. [12]. Syntactically, G arises from intuitionistic logic
by adding the axiom of linearity (A ⊃ B) ∨ (B ⊃ A) and the quantifier shifting axiom
∀x(A(x)∨C) ⊃ [(∀xA(x))∨C], where the x does not occur free in C.

The importance of the logic is also indicated by the fact that it can alternatively be
seen as a fuzzy logic, i.e., as an infinite-valued logic with the real unit interval [0,1] as
set of truth values [22,13]; but also as a temporal logic [10].

Hypersequent calculi [2] are simple and natural generalizations of Gentzen’s sequent
calculi. In our context, a hypersequent is a multiset of single-conclusioned (‘intuition-
istic’) sequents, called components, written as

Γ1 ⇒ ∆1 | · · · | Γn ⇒ ∆n

where, for i ∈ {1, . . . ,n}, Γi is a multiset of formulas, and ∆i is either empty or a single
formula. The intended interpretation of the symbol ‘|’ is disjunction at the meta-level.

A hypersequent calculus for propositional Gödel logic has been introduced by
Avron [1,2] and extended to first-order in [11]. The logical rules and internal structural
rules of this calculus are essentially the same as those in Gentzen’s sequent calculus
LJ for intuitionistic logic; the only difference being the presence of contexts H repre-
senting (possibly empty) side hypersequents. In addition we have external contraction
and weakening, and the so-called communication rule. We present an equivalent ver-
sion HG of the calculi in [1,11] with multiplicative logical rules (see, e.g., [21] for this
terminology).

Axioms: ⊥⇒, A ⇒ A, for atomic2 formulas A.
In the following rules, ∆ is either empty or a single formula.

Internal structural rules:
H | Γ ⇒ ∆

H | A,Γ ⇒ ∆
(iw-l)

H | Γ ⇒
H | Γ ⇒ A

(iw-r)
H | A,A,Γ ⇒ ∆
H | A,Γ ⇒ ∆

(ic-l)

2 The restriction to atomic axioms is useful, but does not imply any loss of generality.

Cut Elimination for First Order Gödel Logic by Hyperclause Resolution 453

External structural rules:
H

H | Γ ⇒ ∆
(ew)

H | Γ ⇒ ∆ | Γ ⇒ ∆
H | Γ ⇒ ∆

(ec)

Logical rules:
H | A1,Γ1 ⇒ ∆ H ′ | A2,Γ2 ⇒ ∆

H | H ′ | A1 ∨A2,Γ1,Γ2 ⇒ ∆
(∨-l)

H | Γ ⇒ Ai

H | Γ ⇒ A1 ∨A2
(∨i-r)i∈{1,2}

H | Ai,Γ ⇒ ∆
H | A1 ∧A2,Γ ⇒ ∆

(∧i-l)i∈{1,2}
H | Γ1 ⇒ A H ′ | Γ2 ⇒ B

H | H ′ | Γ1,Γ2 ⇒ A∧B
(∧-r)

H | Γ1 ⇒ A H ′ | B,Γ2 ⇒ ∆
H | H ′ | A ⊃ B,Γ1,Γ2 ⇒ ∆

(⊃-l)
H | A,Γ ⇒ B

H | Γ ⇒ A ⊃ B
(⊃-r)

In the following quantifier rules t denotes an arbitrary term, and y denotes an eigen-
variable, i.e., y does not occur in the lower hypersequent:

H | A(t),Γ ⇒ ∆
H | (∀x)A(x),Γ ⇒ ∆

(∀-l)
H | Γ ⇒ A(y)

H | Γ ⇒ (∀x)A(x)
(∀-r)

H | A(y),Γ ⇒ ∆
H | (∃x)A(x),Γ ⇒ ∆

(∃-l)
H | Γ ⇒ A(t)

H | Γ ⇒ (∃x)A(x)
(∃-r)

Like in [21] we call the exhibited formula in the lower hypersequent of each of
these rules the main formula, and the corresponding subformulas exhibited in the upper
hypersequents the active formulas of the inference.
The following communication rule of HG is specific to logic G:

H | Γ1,Γ2 ⇒ ∆1 H ′ | Γ1,Γ2 ⇒ ∆2

H | H ′ | Γ1 ⇒ ∆1 | Γ2 ⇒ ∆2
(com)

This version of the communication is equivalent to the one introduced in [1] (see [2]).
Finally we have cut, where A is called cut-formula of the inference:

H | Γ1 ⇒ A H ′ | A,Γ2 ⇒ ∆
H | H ′ | Γ1,Γ2 ⇒ ∆

(cut)

If A is atomic we speak of an atomic cut.

Remark. Note the absence of negation from our calculus: ¬A is just an abbreviation of
A ⊃⊥. (See, e.g., [21] for similar sytems for intuitionistic logic.)

Communication allows us to derive the following additional ‘distribution rule’ which
we will use in Section 6:

H | Γ ⇒ A∨B

H | Γ ⇒ A | Γ ⇒ B
(distr)

A derivation ρ using the rules of HG is viewed as an upward rooted tree. The root of ρ
is called its end-hypersequent, which we will denote by Hρ . The leaf nodes are called
initial hypersequents. A proof σ of a hypersequent H is a derivation with Hσ = H ,
where all initial hypersequents are axioms.

454 M. Baaz, A. Ciabattoni, and C.G. Fermüller

The ancestors of a formula occurrence in a derivation are traced upwards to the initial
hypersequents in the obvious way. I.e., active formulas are immediate ancestors of the
main formula of an inference. The other formula occurrences in the premises (i.e., up-
per hypersequents) are immediate ancestors of the corresponding formula occurrences
in the lower hypersequent. (This includes also internal and external contraction: here,
a formula in the lower hypersequent may have two corresponding occurrences, i.e. im-
mediate ancestors, in the premises.) The ancestor relation is the transitive closure of
immediate ancestorship.

The sub-hypersequent consisting of all ancestors of cut-formulas of an hyperse-
quent H in a derivation is called the cut-relevant part of H . The complementary
sub-hypersequent of H consisting of all formula occurrences that are not ancestors of
cut-formulas is the cut-irrelevant part of H . An inference is called cut-relevant if its
main formula is an ancestor of a cut-formula, and is called cut-irrelevant otherwise.

The hypersequent Γ1 ⇒ ∆1 | . . . | Γn ⇒ ∆n is called valid if its translation∨
1≤i≤n

(∧
A∈Γi

A ⊃ [∆i]
)

is valid in G, where [∆i] is ⊥ if ∆i is empty, and the indicated
implications collapse to ∆i whenever Γi is empty. A set of hypersequents is called un-
satisfiable if their translations entail ⊥ in G. (Different but equivalent ways of defining
validity and entailment in G have been indicated at the beginning of this section.)

Theorem 1 ([11,3]). A hypersequent H is provable in HG without cuts iff H is valid.

Remark. It might surprise the reader that we rely on the cut-free completeness of HG
in a paper dealing with cut elimination. However, this just emphasizes the fact that we
are interested in a particular transformation of proofs with cuts (i.e., ‘lemmas’) into
cut-free proofs, that is adequate for automatization and proof analysis (compare [9,5]).

3 Overview of hyperCERES

Before presenting the details of our transformation of appropriate HG-proofs into cut-
free proofs, which we call hyperCERES, we will assist the orientation of the reader
and describe the overall procedure on a more abstract level using keywords that will be
explained in the following sections.3

The end-hypersequent Hσ of the HG-proof σ that forms the input of hyperCERES
can be of two forms: either it contains only weak quantifier occurrences or it consists
of prenex formulas only.4 In the latter case we have to Skolemize the proof first (step 1)
and de-Skolemize it after cut elimination (step 7):

1. if necessary, construct a Skolemized form σ̂ of σ , otherwise σ̂ = σ (Section 4)
2. compute a characteristic set of pairs {〈R1(σ̂),D1〉, . . . 〈Rn(σ̂),Dn〉}, where

Σd(σ̂) = {D1, . . . ,Dn} is the characteristic set of d-hyperclauses — coding the cut
formulas of σ̂ — and each reduced proof Ri(σ̂) is a cut-free proof of a cut-irrelevant
sub-hypersequent of Hσ̂ augmented by Di (Section 5)

3 Due to space constraints we have to refer the reader to [9] for a presentation of CERES.
4 While in classical logic all formulas can be translated into equivalent prenex formulas, this

does not hold for G.

Cut Elimination for First Order Gödel Logic by Hyperclause Resolution 455

3. translate Σd(σ̂) into an equivalent set of hyperclauses Σ (σ̂) and construct a (hyper-
clause) resolution refutation γ of Σ(σ̂) (Section 6)

4. compute a ground instantiation γ ′ of γ using a ground substitution θ (Section 6)
5. apply θ to the reduced proofs R1(σ̂), . . . , Rn(σ̂), and assemble them into a single

proof γ ′[σ̂] using the atomic cuts and contractions that come from γ (Section 7)
6. eliminate the atomic cuts in γ ′[σ̂] in the usual way5

7. if necessary, de-Skolemize the proof γ ′[σ̂] and apply final contractions and weaken-
ings to obtain a cut-free proof of Hσ (Section 4)

It is well known (see, e.g., [19,17]) that there is no elementary bound on the size
of shortest cut-free proofs relative to the size of proofs with cuts of the same end-
(hyper)sequent. While the non-elementary upper bound on the complexity of cut elim-
ination obviously also applies to hyperCERES it should be pointed out that the global
(hyperclause) resolution based method presented here is considerably faster in gen-
eral, and never essentially slower, than traditional Gentzen- or Schütte-Tait-style cut
elimination procedures [1,3]. Moreover, the reliance on most general unification and
atomic cuts, i.e., on resolution for the computational kernel of the procedure implies
that hyperCERES is a potentially essential ingredient of (semi-)automated analysis of
appropriately formalized proofs.

4 Skolemization and De-Skolemization

Like in the original CERES-method [7,9], step 5 of hyperCERES is sound only if end-
(hyper)sequents do not contain strong quantifier occurrences. The reason for this is that,
in general, the eigenvariable condition might be violated when the reduced proofs (con-
structed in step 2) are combined with the resolution refutation (constructed in step 3)
to replace the original cuts with atomic cuts. Consequently, like in CERES, we first
Skolemize the proof; i.e., we replace all strong quantifier occurrences with appropriate
Skolem terms. (Obviously this is necessary only if there are strong quantifier occur-
rences at all.) While this transformation is always sound (in fact also for LJ-proofs),
the inverse de-Skolemization, i.e., the re-introduction of strong quantifier occurrences
according to the information coded in the Skolem terms, is unsound in general.6 How-
ever, as we will show below, de-Skolemization is possible for HG-proofs of prenex
hypersequents (step 7).

By a prenex hypersequent we mean a hypersequent in which all formulas are in
prenex form, i.e., all formulas begin with a (possibly empty) prefix of quantifier occur-
rences, followed by a quantifier-free formula. If Γ ⇒ ∆ is a component of a prenex
hypersequent, then all existential quantifiers occurring in Γ and all universal quantifiers
occurring in ∆ are called strong. The other quantifier occurrences are called weak.

The Skolemization H S of a prenex hypersequent H is obtained as follows. In every
component Γ ⇒ ∆ of H , delete each strong quantifier occurrence Qx and replace all

5 As is known, atomic cuts in HG-proofs can be moved upwards to the axioms, where they
become redundant (see, e.g., [3,1]).

6 E.g. ∀x(A(x)∨B) ⇒ A(c)∨B is provable in LJ while its de-Skolemized version ∀x(A(x)∨
B) ⇒∀xA(x)∨B is not.

456 M. Baaz, A. Ciabattoni, and C.G. Fermüller

corresponding occurrences of x by the Skolem term f (y), where f is a new function
symbol and y are the variables of the weak quantifier occurrences in the scope of which
Qx occurs. (If Qx is not the scope of any weak quantifier then f is a constant symbol.)

Given an HG-proof σ of H its Skolemization σ̂ is constructed in stages:

1. Replace the end-hypersequent H of σ by H S. Recall that this means that every
occurrence of a strongly quantified variable x in H is replaced by a corresponding
Skolem term f (y).

2. Trace the indicated occurrences of x and of the eigenvariable y corresponding to its
introduction throughout σ and replace all these occurrences by f (y), too.

3. Delete the (now) spurious strong quantifiers and remove the corresponding infer-
ences that introduce these quantifiers in σ .

4. For any inference in σ introducing a weakly quantified variable y by replacing A(t)
with QyA(y), replace all corresponding occurrences of y in Skolem terms f (y) by t.

It is straightforward to check that σ̂ is an HG-proof of H S. (Note that strong quantifier
occurrences in ancestors of cut formulas remain untouched by our Skolemization.)

It is shown in [4] that prenex formulas of G allow for de-Skolemization. We gener-
alize this result to proofs of prenex hypersequents. Our main tool is the following result
from [11].

Theorem 2 (Mid-hypersequents). Any cut-free HG-proof σ of a prenex hypersequent
H can be stepwise transformed into one in which no propositional rule is applied
below any application of a quantifier rule.

We call a hypersequent H S a linked Skolem instance of H if each formula A in H S

is an instance of a Skolemized formula AS that occurs in H S on the same side (left or
right) of a component as A. Moreover we link A to AS. As we will see in Section 7, we
obtain (cut-free proofs of) linked Skolem instances from step 5 (and 6) of hyperCERES.

Theorem 3 (De-Skolemization). Given a cut-free HG-proof ρ̂ of a linked Skolem in-
stance H S of a prenex hypersequent H , we can find a HG-proof ρ of H .

Proof. We construct ρ in stages as follows:

1. By applying Theorem 2 to ρ̂ we obtain a proof ρ ′ of the following form:

ρ p
1 · · · ρ p

i · · · ρ p
n

G1 Gi Gn. . . ρQ . .
.

H S

where the mid-hypersequents G1, . . . , Gn separate ρ ′ into a part ρQ containing
only (weak) quantifier introductions and applications of structural rules and parts
ρ p

1 , . . . ,ρ
p
n containing only propositional and structural inferences.

2. Applications of the weakening rules, (iw-l) and (ew), can be shifted upwards to the
axioms in the usual manner, while applications of (iw-r) can be safely deleted by
replacing each axiom ⊥⇒ in the proof by ⊥⇒ ∆ for suitable ∆ .
Consequently, ρQ does not contain weakenings after this transformation step.

Cut Elimination for First Order Gödel Logic by Hyperclause Resolution 457

3. Note that — in contrast to LK — Theorem 2 induces many and not just one mid-
hypersequents, in general. The reason for this is the possible presence of the binary
structural rule (com) in ρQ. To obtain a proof ρ ′′ with a single mid-hypersequent,
we have to move ‘communications’ upwards in ρQ; i.e., we have to permute appli-
cations of (com) with applications of (ic), (ec), (∀-l), and (∃-r), respectively. The
only non-trivial case is (∀-l). Disregarding side-hypersequents, the corresponding
transformation consists in replacing

Γ ,P(x),Σ ⇒ ∆
(∀-l)

Γ ,∀xP(x),Σ ⇒ ∆ Γ ,∀xP(x),Σ ⇒ ∆ ′
(com)

Γ ,∀xP(x) ⇒ ∆ | Σ ⇒ ∆ ′

by

Γ ,P(x),Σ ⇒ ∆
=================== (iw)∗

Γ ,P(x),Σ ,Γ ,∀xP(x) ⇒ ∆

Γ ,∀xP(x),Σ ⇒ ∆ ′
=================== (iw)∗

Γ ,P(x),Σ ,Γ ,∀xP(x) ⇒ ∆ ′
(com)

Γ ,P(x),Σ ⇒ ∆ ′ | Γ ,∀xP(x) ⇒ ∆ Γ ,P(x),Σ ⇒ ∆
(com)

Γ ,P(x) ⇒ ∆ | Σ ⇒ ∆ ′ | Γ ,∀xP(x) ⇒ ∆
(∀-l)

Γ ,∀xP(x) ⇒ ∆ | Σ ⇒ ∆ ′ | Γ ,∀xP(x) ⇒ ∆
(ec)

Γ ,∀xP(x) ⇒ ∆ | Σ ⇒ ∆ ′

4. For the final step we proceed like in [4], where the soundness of re-introducing
strong quantifier occurrences for corresponding Skolem terms is shown: we ig-
nore ρ ′′ and, given H and the links to its formulas, apply appropriate inferences to
the mid-hypersequent as follows.
(a) Infer all weak quantifier occurrences, which can be introduced at this stage

according to the quantifier prefixes in H .
(b) Apply all possible internal and external contractions.
(c) Among the strong quantifiers that immediately precede the already introduced

quantifiers we pick one linked to an instance of a Skolem term, that is maximal
with respect to the subterm ordering. This term is replaced everywhere by the
eigenvariable of the corresponding strong quantifier inference.

These three steps are iterated until the original hypersequent H is restored. �

5 Characteristic Hyperclauses and Reduced Proofs

All information of the original HG-proof σ that goes into the cut-formulas is collected
in a set Σd(σ̂), consisting of hypersequents whose components only contain atomic
formulas on the left hand sides and a (possibly empty) disjunction of atomic formulas,
on the right hand side. We will call hypersequents of this latter form d-hyperclauses.
In the proof of Theorem 4 we will construct characteristic d-hyperclauses Di together
with corresponding reduced proofs Ri(σ̂) which combine the cut-irrelevant part of the
Skolemized proof σ̂ with Di. The pairs 〈Ri(σ̂),Di〉 provide the information needed to
construct corresponding proofs containing only atomic cuts.

458 M. Baaz, A. Ciabattoni, and C.G. Fermüller

To assist concise argumentation we assume that the components of all hypersequents
in a proof are labelled with unique sets of identifiers. More precisely, a derivation σ is
labelled if there is a function from all components of hypersequents occurring in σ into
the powerset of a set of identifiers, satisfying the following conditions: (We will put the
label above the corresponding sequent arrow.)

– All components occurring in initial hypersequents of σ are assigned pairwise dif-
ferent singleton sets of identifiers.

– In all unary inferences the labels are transferred from the upper hypersequent to
the lower hypersequent in the obvious way. In external weakening (ew) a fresh
singleton set is assigned to the new component in the lower hypersequent. In ex-
ternal contraction (ec), if Γ M⇒∆ and Γ N⇒∆ are the two contracted components of
the upper hypersequent, then Γ M∪N⇒∆ is the corresponding component in the lower
hypersequent.

– In all binary logical inferences the labels in the side-hypersequents are transferred
in the obvious way, and the label of the component containing the main formula is
the union of the labels of the components containing the active formulas.

– In (cut) the labels of the components containing the cut formulas are merged, like
above, to obtain the label of the exhibited component of the lower hypersequent.

– In (com) the labels of all components are transferred from the premises to the lower
hypersequent simply in the same sequence as exhibited in the statement of the rule.

Let H and G denote the labelled hypersequents

Γ1
K1⇒ ∆1 | · · · | Γk

Kk⇒ ∆k | H ′ and Γ ′
1

K1⇒ ∆ ′
1 | · · · | Γ ′

k
Kk⇒ ∆ ′

k | G ′

respectively, where the labels in H ′ and G ′ are pairwise different and also different
from the labels K1, . . . ,Kk. Then H ,G denotes the merged hypersequent

Γ1,Γ ′
1

K1⇒ ∆1 ∨∆ ′
1 | · · · | Γk,Γ ′

k
Kk⇒ ∆k ∨∆ ′

k | H ′ | G ′

where ∆i ∨∆ ′
i is ∆i if ∆ ′

i is empty and is ∆ ′
i if ∆i is empty (and thus ∆i ∨∆ ′

i is empty if
both are empty).

Theorem 4. Given a Skolemized and labelled HG-proof σ̂ of Hσ̂ one can construct a
characteristic set of pairs {〈R1(σ̂),D1〉, . . . 〈Rn(σ̂),Dn〉}, where, for all i ∈ {1, . . . ,n},
Di is a labelled d-hyperclause and Ri(σ̂) is a labelled ‘(reduced)’ cut-free HG-proof
with the following properties:

(1) the end-hypersequent of Ri(σ̂) is H ′
σ̂ ,Di, for some sub-hypersequent H ′

σ̂ of Hσ̂ ,
(2) the characteristic d-hyperclause set Σd(σ̂) = {D1, . . . ,Dn} is unsatisfiable.

Proof. To show (1) and (2) we use the following induction hypotheses:

(1’) A characteristic set of pairs 〈Ri(σ̂ ′),D′
i〉 exists for every sub-proof σ̂ ′ of σ̂ , where

Ri(σ̂ ′) proves H ′
σ̂ ′ ,D′

i for some sub-hypersequent H ′
σ̂ ′ of Hσ̂ ′ which is cut-

irrelevant with respect to the original cuts in σ̂ . Moreover, the right hand sides in
H ′

σ̂ ′ ,D′
i are formulas in either H ′

σ̂ ′ or in D′
i.

Cut Elimination for First Order Gödel Logic by Hyperclause Resolution 459

(2’) There is a derivation of the cut-relevant part of Hσ̂ ′ from the set {D′
1, . . . ,D

′
m} of

d-hyperclauses constructed for σ̂ ′.

Note that (2) follows from (2’) as the cut-relevant part of Hσ̂ is an empty hypersequent
by definition. The proof proceeds by induction on the length of σ̂ ′.

If σ̂ ′ consists just of an axiom A M⇒A then there is only one pair 〈R(σ̂ ′),D〉 in the
corresponding characteristic set. R(σ̂ ′) is the axiom itself and D is the cut-relevant part
of A M⇒A (which might be the empty hypersequent). (1’) and (2’) trivially hold. Axioms
of the form ⊥⇒ are handled in the same way.

If σ̂ ′ is not an axiom we distinguish cases according to the last inference in σ̂ ′.
(∨-l): σ̂ ′ ends with the inference

... ρ̂
H | A1,Γ1

M⇒ ∆

... τ̂
H ′ | A2,Γ2

N⇒ ∆

H | H ′ | A1 ∨A2,Γ1,Γ2
M∪N⇒ ∆

(∨-l)

By induction hypothesis (1’) there are characteristic sets of pairs S1 = {〈R1(ρ̂),E1〉, . . . ,
〈Rm(ρ̂),Em〉} and S2 = {〈R1(τ̂),F1〉, . . . , 〈Rn(τ̂),Fn〉}, where the reduced proofs Ri(ρ̂)
and R j(τ̂) end in HRi(ρ̂) = Gi,Ei and in HRi(τ̂) =G ′

j ,Fj, respectively, where Gi and G ′
j

are sub-hypersequents of the cut-irrelevant parts of H | A1,Γ1
M⇒∆ and H ′ | A2,Γ2

N⇒∆ ,
respectively. Moreover, by (2’), there are derivations ρC and τC of the cut-relevant parts
of the just mentioned hypersequents from {E1, . . . ,Em} and {F1, . . . ,Fn}, respectively.

Two cases can occur:

(a) If the inference is cut-relevant, then the characteristic set S of pairs correspond-
ing to σ̂ ′ is just S1 ∪ S2. Condition (1’) trivially remains satisfied. Also (2’) is
maintained because we obtain a derivation of the cut-relevant part of H | H ′ |
A1 ∨A2,Γ1,Γ2

M∪N⇒∆ by joining ρC and τC with the indicated application of (∨-l).
(b) If the inference is cut-irrelevant, then we obtain the set S corresponding to σ̂ ′ by

S = {〈Ri j(ρ̂ �∨-l τ̂),Ei �i j Fj〉 : 1 ≤ i ≤ m,1 ≤ j ≤ n},

where Ri j(ρ̂ �∨-l τ̂) and Ei �i j FJ are defined as follows.
1. If A1 does not occur at the indicated position in HRi(ρ̂) then Ri j(ρ̂ �∨-l τ̂) is

Ri(ρ̂) and Ei �i j Fj is Ei.
2. If A2 does not occur at the indicated position in HR j(τ̂) then Ri j(ρ̂ �∨-l τ̂) is

R j(τ̂) and Ei �i j Fj is Fj.
3. If neither A1 nor A2 occur as indicated in the reduced proofs, then Ri j(ρ̂ �∨-l τ̂)

can be non-deterministically chosen to be either Ri(ρ̂) or R j(τ̂) and Ei �i j Fj

is either Ei or Fj, accordingly.
4. If both A1 and A2 occur at the indicated positions, then Ei �i j Fj is E ′

i ,F ′
j ,

where E ′
i (F ′

j) is like Ei (Fj), except for changing the label M (N) to M∪N.
Note that our labelling mechanism guarantees that the appropriate components
are identified in merging hypersequents.
The corresponding reduced proof Ri j(ρ̂ �∨-l τ̂) is constructed as follows. Since
A1 and A2 occur as exhibited in the end-hypersequents Gi ,Ei and G ′

j ,Fj of
Ri(ρ̂) and R j(τ̂), respectively, we want to join them by introducing A1 ∨A2 us-
ing (∨-l) like in σ̂ ′. However, (∨-l) is only applicable if the right hand sides of

460 M. Baaz, A. Ciabattoni, and C.G. Fermüller

the two relevant components in the premises are identical. To achieve this, we
might first have to apply (∨-r) or (iw-r) to the mentioned end-hypersequents.
The resulting new end-hypersequent might still contain different components
transferred from Ei and Fj, respectively, that need to be merged with other com-
ponents. This can be achieved by first applying internal weakenings to make
the relevant components identical, and then applying external contraction (ec)
to remove redundant copies of identical components.

Note that in all four cases (1’) remains satisfied by definition of Ri j(ρ̂ �∨-l τ̂) and of
Ei �i j Fj. For cases 1, 2, and 3 also (2’) trivially still holds. To obtain (2’) for case 4,
we proceed in two steps. First we merge the occurrences of clauses E1, . . . ,Em in
the derivation ρC of the cut-relevant part H ρ̂

c of Hρ̂ with clauses in {F1, . . . ,Fn}
to obtain a derivation ρC(Fi) of H

ρ̂
c ,Fi for each i ∈ {1, . . . ,n}. In a second step,

each initial hypersequent Fi in the derivation τC of the cut-relevant part of Hτ̂ is
replaced by ρC(Fi). By merging also the inner nodes of τC with H

ρ̂
c we arrive

at a derivation of the cut-relevant part of Hσ̂ ′ . (Actually, as the rules of HG are
multiplicative, redundant copies of identical formulas might arise, that are to be
removed by finally applying corresponding contractions.)

(∧i-l), (⊃-r), (∨-r), (∀-l), (∀-r), (∃-l), (∃-r), (ic-l): If the indicated last (unary) in-
ference is cut-relevant, then the characteristic set of pairs remains the same as for the
sub-proof ending with the premise of this inference.

If the inference is cut-irrelevant, then the hyperclauses E1, . . . ,Em of the pairs in
characteristic set {〈R1(ρ̂),E1〉, . . . 〈Rm(ρ̂),Em〉} for ρ̂ remain unchanged. Each reduced
proof Ri(ρ̂) is augmented by the corresponding inference if its active formula occurs in
the end-hypersequent HRi(ρ̂). If this is not the case then also Ri(ρ̂) remains unchanged.

In any of these cases, (1’) and (2’) clearly remain satisfied.
(ew), (iw-l), (iw-r): The characteristic set of pairs remains unchanged and consequently
(1’) still holds. Also (2’) trivially remains valid if the inference is cut-irrelevant. If a
cut-relevant formula is introduced by weakening, then the derivation required for (2’)
is obtained from the induction hypothesis by adding a corresponding application of a
weakening rule.
(∧-r), (⊃-l), (cut), (com): These cases are analogous to the one for (∨-l). �

Example 1. Consider the labelled proof σ in Figure 1.
The cut-relevant parts of σ and the names of all corresponding cut-relevant inferences
are underlined. The initial pair for the {1}-labelled axiom is 〈ρ1,

{1}⇒Q〉, where ρ1 is
Q {1}⇒Q. Since the succeeding inference (∨-r) is unary and cut-relevant, the pair remains
unchanged in that step.

For the middle part of the proof let us look at the subproof σ ′ ending with an ap-
plication of (com) yielding Q {2}⇒∃yP(y) | P(c) {3}⇒Q. Since there are no cut-ancestors in
the {2}-labelled axiom, the corresponding d-hyperclause is the empty {2}⇒. This is re-
tained for the right premise of (com). The corresponding reduced derivation consists
only of the first inference (∃-r) as the succeeding application of (iw-l) is cut-relevant.
For the left premise of the communication we obtain the d-hyperclause Q {3}⇒, which is
then merged and ‘communicated’ with {2}⇒ to obtain for σ ′ the d-hyperclause Q {2}⇒ | {3}⇒.

Cut Elimination for First Order Gödel Logic by Hyperclause Resolution 461

Q
{1}⇒ Q

(∨-r)

Q
{1}⇒ P(x)∨Q

P(c)
{2}⇒ P(c)

(∃-r)

P(c)
{2}⇒ ∃yP(y)

(iw-l)

Q,P(c)
{2}⇒ ∃yP(y)

Q
{3}⇒ Q

(iw-l)

Q,P(c)
{3}⇒ Q

(com)

Q
{2}⇒ ∃yP(y) | P(c)

{3}⇒ Q

P(x)
{4}⇒ P(x)

(∃-r)

P(x)
{4}⇒ ∃yP(y)

(∨-l)

P(x)∨Q
{2,4}⇒ ∃yP(y) | P(c)

{3}⇒ Q Q
{5}⇒ Q

(∨-l)

P(x)∨Q
{2,4}⇒ ∃yP(y) | P(c)∨Q

{3,5}⇒ Q
(cut)

Q
{1,2,4}⇒ ∃yP(y) | P(c)∨Q

{3,5}⇒ Q

Fig. 1. Labelled proof σ with underlined cut-relevant part

This forms a pair with the reduced derivation R(σ ′), which, in this case, is identical
with σ ′.7

From the cut-relevant (and therefore underlined) (∨-l)-inference one obtains an
additional pair 〈ρ2,P(x) {4}⇒〉 from its right premise, where ρ2 is the derivation of
P(x) {4}⇒∃yP(y) from the axiom.

For the succeeding cut-irrelevant application of (∨-l), the pair 〈ρ2,P(x) {4}⇒〉 re-
mains unchanged, as the left disjunct P(x) does not occur at the left side in the end-
hypersequent {4}⇒∃yP(y) of ρ2.8 The reduced proof ρ3 of the final pair is formed by
applying (∨-l) as indicated to the end-hypersequent of R(σ ′) and to Q {5}⇒Q as right
and left premises, respectively. The corresponding d-hyperclause arises from merging
Q {2}⇒ | {3}⇒ and {5}⇒ into Q {2}⇒ | {3,5}⇒ .

For the final application of cut we have to take the union of the sets of pairs con-
structed for its two premises. Therefore the characteristic set of pairs for σ is

{〈ρ1,
{1}⇒Q〉, 〈ρ2,P(x) {4}⇒〉, 〈ρ3,Q

{2}⇒ | {3,5}⇒〉} .

It is easy to check that conditions (1) and (2) of Theorem 4 are satisfied.

6 Hyperclause Resolution

By a hyperclause we mean a hypersequent in which only atomic formulas occur. Re-
member that, from the proof of Theorem 4, we obtain d-hyperclauses, which are like
hyperclauses, except for allowing disjunctions of atomic formulas at the right hand sides
of their components. However, using the derivable rule (distr) (see Section 2) it is easy
to see that an HG-derivation of, e.g., the d-hyperclause

A ⇒ B∨C |⇒ D∨E ∨F

7 Note that neither the cut-relevant application of (iw-l) nor Q appears in the reduced proof

corresponding to Q,P(c){2}⇒∃yP(y). Still, the missing Q is added by (iw-l) in R(σ ′) to make
the application of (com) possible.

8 This is case (∨-l)/(b)/2 in the proof of Theorem 4.

462 M. Baaz, A. Ciabattoni, and C.G. Fermüller

can be replaced by an HG-derivation of the hyperclause

A ⇒ B | A ⇒C |⇒ D |⇒ E |⇒ F .

Also the converse holds: using the rules (∨i-r), and (ec) we can derive the mentioned d-
hyperclause from the latter hyperclause. Therefore we can refer to hyperclauses instead
of d-hyperclauses in the following.

We also want to get rid of occurrences of ⊥ in hyperclauses. Since ⊥ ⇒ is an ax-
iom, any hyperclause which contains an occurrence of ⊥ at the left hand side of some
component is valid. But such hyperclauses are redundant, as our aim is to construct
refutations for unsatisfiable sets of hyperclauses. On the other hand, any occurrence of
⊥ at the right hand side of a component is also redundant and can be deleted. In other
words: we can assume without loss of generality that ⊥ does not occur in hyperclauses.
(Note that this does not imply that occurrences of ⊥ are removed from HG-proofs.)

In direct analogy to classical resolution, the combination of a cut-inference and most
general unification is called a resolution step. The lower hyperclause in

H | Γ1 ⇒ A H ′ | A′,Γ2 ⇒ ∆
θ (H | H ′ | Γ1,Γ2 ⇒ ∆)

(res)

where θ is the most general unifier of the atoms A and A′, is called resolvent of the
premises, that have to be variable disjoint. If no variables occur, and thus θ is empty,
(res) turns into (cut) and we speak of ground resolution. The soundness of this infer-
ence step is obvious. We show that hyperclause resolution is also refutationally com-
plete. It is convenient to view hyperclauses as sets of atomic sequents. This is equivalent
to requiring that external contraction is applied whenever possible. Consequently, there
is a unique unsatisfiable hyperclause, namely the empty hyperclause. A derivation of
the empty hyperclause by resolution from initial hypersequents contained in a set Σ of
hyperclauses is called a resolution refutation of Σ .

As usual for resolution, we focus on inferences on ground hyperclauses and later
transfer completeness to the general level using a corresponding lifting lemma.

Theorem 5. For every unsatisfiable set of ground hyperclauses Ψ there is a ground
resolution refutation of Ψ .

Proof. We proceed by induction on e(Ψ) = ‖Ψ‖− |Ψ |, where ‖Ψ‖ is the total number
of occurrences of atoms in Ψ , and |Ψ | is the cardinality of Ψ .

If e(Ψ)≤ 0 then either Ψ already contains the empty hyperclause, or else Ψ contains
exactly one atom per hyperclause. In the latter case, as Ψ is unsatisfiable, there must
be hyperclauses C1 = (⇒ A) and C2 = (A ⇒) in Ψ . Obviously the empty clause is a
ground resolvent of C1 and C2.

e(Ψ) ≥ 1: Ψ must contain a hyperclause C that has more than one atom occur-
rence. Without loss of generality let C = (H | Γ ⇒ A), where Γ may be empty.
(The case where all atoms in C occur only on the left hand side of sequents is anal-
ogous.) Since Ψ is unsatisfiable also the sets Ψ ′ = (Ψ − {C})∪ {H | Γ ⇒} and
Ψ ′′ = (Ψ −{C})∪{⇒A} must be unsatisfiable. Since e(Ψ ′)< e(Ψ) and e(Ψ ′′)< e(Ψ)
we obtain ground resolution refutations ρ ′ of Ψ ′ and ρ ′′ of Ψ ′′, respectively. By adding

Cut Elimination for First Order Gödel Logic by Hyperclause Resolution 463

in ρ ′ an occurrence of A to the right side of the derived empty hyperclause and likewise
to all other hyperclauses in ρ ′ that are on a branch ending in the initial hyperclause
H | Γ ⇒, we obtain a resolution derivation ρ ′

A of ⇒ A from Ψ . By replacing each
occurrence of ⇒ A as initial hyperclauses in ρ ′′ by a copy of ρ ′

A we obtain the required
ground resolution refutation of Ψ . �

Remark. Note that our completeness proof does not use any special properties of G.
Only the polarity between left and right hand side of sequent and the disjunctive inter-
pretation of ‘|’ at the meta-level are used. For any logic L : whenever we can reduce
L -validity (or L -unsatisfiability) of a formula F to L -unsatisfiability of a correspond-
ing set of atomic hyperclauses, we may use hyperclause resolution to solve the problem.

To lift Theorem 5 to general hyperclauses, one needs to add (the hypersequent version
of) factorization:

H | Γ ⇒ ∆
θ (H | Γ ′ ⇒ ∆)

(factor)

where θ is the most general unifier (see, e.g., [15]) of some atoms in Γ and where
θΓ ′(θ) is θ (Γ) after removal of copies of unified atoms. The lower hyperclause is
called a factor of the upper one.

Lemma 1. Let C′
1 and C′

2 be ground instances of the variable disjoint hyperclauses C1

and C2, respectively. For every ground resolvent C′ of C′
1 and C′

2 there is a resolvent C
of factors of C1 and C2.

The proof of Lemma 1 is exactly as for classical resolution (see, e.g., [15]) and thus
is omitted here. Combining Theorem 5 and Lemma 1 we obtain the refutational com-
pleteness of general resolution.

Corollary 1. For every unsatisfiable set of hyperclauses Σ there is a resolution refuta-
tion of Σ .

We will make use of the observation that any general resolution refutation of Σ can
be instantiated into (essentially) a ground resolution refutation of a set Σ ′ of instances
of hyperclauses in Σ , whereby resolution steps turn into cuts and factorization turns
into additional contraction steps. (Note that additional contractions do not essentially
change the structure of a ground resolution refutation.)

7 Projection of Hyperclauses into HG-Proofs

Remember that from Theorem 4 (in Section 5) we obtain a characteristic set of pairs
{〈R1(σ̂),D1〉, . . . 〈Rn(σ̂),Dn〉} for the proof σ̂ of H S. As described in Section 6, we
can construct a resolution refutation γ of the hyperclause set {C1, . . . ,Cn} corresponding
to the d-hyperclauses {D1, . . . ,Dn}. (This is step 3 of hyperCERES.) Forming a ground
instantiation γ ′ of γ yields a derivation of the empty hypersequent that consists only of
atomic cuts and contractions. (Step 4 of hyperCERES.) Each leaf node of γ ′ is a ground
instance θ (Ci) of a hyperclause in {C1, . . . ,Cn}. From Theorem 4 we also obtain, for

464 M. Baaz, A. Ciabattoni, and C.G. Fermüller

each i ∈ {1, . . . ,n} a cut-free proof Ri(σ̂) of Gi ,Di, where Gi is a sub-hypersequent
of the cut-irrelevant part of Hσ̂ and Di is the d-hyperclause corresponding to Ci. We
instantiate Ri(σ̂) using θ and finally apply (distr), as indicated in Section 6, to obtain
a cut-free proof σ̂ θ

i of θ (Gi),θ (Ci).
To get a proof γ ′[σ̂] of a linked Skolem instance of the original hypersequent H

(cf. Section 4) we replace each leaf node θ (Ci) of γ ′ with the proof σ̂ θ
i of θ (Gi),θ (Ci),

described above, and transfer the instances θ (Gi) of cut-irrelevant formulas in H also
to the inner nodes of γ ′ in the obvious way, i.e., to regain correct applications of atomic
cuts. As mentioned in Section 3, the remaining atomic cuts can easily be removed from
γ ′[σ̂]. The resulting proof is subjected to de-Skolemization as described in Theorem 3.
This final step 7 of hyperCERES yields the desired cut-free proof of H .

Example 2. We continue Example 1, where we have obtained the characteristic set
of pairs {〈ρ1,

{1}⇒Q〉, 〈ρ2,P(x) {4}⇒〉, 〈ρ3,Q
{2}⇒ | {3,5}⇒〉} for the proof σ of the (trivially)

Skolemized prenex hypersequent Q{1,2,4}⇒ ∃yP(y) | P(c)∨Q{3,5}⇒Q.
The obtained d-hyperclauses are in fact already hyperclauses. Moreover, one can

immediately see that the hyperclauses {1}⇒Q and Q {2}⇒ | {3,5}⇒ can be refuted by a one-step
resolution derivation γ:

{1}⇒Q Q{2}⇒ | {3,5}⇒
(res)

{1,2}⇒ | {1,3,5}⇒

Note that P(x) {4}⇒ and the corresponding reduced proof ρ2 are redundant. In our case, γ
is already ground. Therefore no substitution has to be applied to the reduced proofs ρ1
and ρ3. By replacing the two upper (d-)hyperclauses in γ with ρ1 and ρ3, respectively
we obtain the desired proof γ[σ] that only contains an atomic cut:

Q
{1}⇒ Q

Q,P(c)
{2}⇒ P(c) | {3,5}⇒

(∃-r)

Q,P(c)
{2}⇒ ∃yP(y) | {3,5}⇒

Q{2}⇒ |{3,5}⇒ Q
(iw)-l

Q{2}⇒ | P(c)
{3,5}⇒ Q

(com)

Q
{2}⇒ ∃yP(y) | P(c)

{3,5}⇒ Q Q
{5}⇒ Q

(∨-l)

Q
{2,4}⇒ ∃yP(y) | P(c)∨Q

{3,5}⇒ Q
(cut)

Q
{1,2,4}⇒ ∃yP(y) | P(c)∨Q

{3,5}⇒ Q

8 Final Remarks

The results of this paper are easily extendable to larger fragments G: (de-)Skolemization
is sound already for intuitionistic logic I without positive occurrences of universal quan-
tifiers, if an additional existence predicate is added [6]. Therefore hyperCERES applies
after incooperation of the mentioned existence predicate. Other classes where Skolem-
ization is sound for I are described by Mints [16].

The most interesting question however is whether hyperCERES can be extended to
intuitionistic logic itself. Note that we obtain a calculus for I by dropping the com-
munication rule from HG. It turns out that hyperCERES is applicable to the class of

Cut Elimination for First Order Gödel Logic by Hyperclause Resolution 465

(intuitionistic) hypersequents not containing negative occurrences of ∨ or positive oc-
currences of ∀, as the distribution rule (distr) is still sound for this fragment of I. This
fragment actually is an extension of the Harrop class [14] with weak quantifiers.

The extendability of hyperCERES to full intuitionistic logic depends on the devel-
opment of an adequate (de-)Skolemization technique, together with a concept of par-
allelized resolution refutations, that takes into account the disjunctions of atoms at the
right hand side of clauses without using (distr).

From a more methodological viewpoint, it should be mentioned that hyperCERES
uses the fact that ‘negative information’ can be treated classically in intermediate logics
like G, and that cuts amount to entirely negative information in our approach. In this
sense, global cut elimination, as presented in this paper, is more adequate for interme-
diate logics than stepwise reductions, which treat cuts as positive information.

References

1. Avron, A.: Hypersequents, Logical Consequence and Intermediate Logics for Concurrency.
Annals of Mathematics and Artificial Intelligence 4, 225–248 (1991)

2. Avron, A.: The Method of Hypersequents in Proof Theory of Propositional Non-Classical
Logics. In: Logic: From Foundations to Applications, pp. 1–32. Clarendon Press (1996)

3. Baaz, M., Ciabattoni, A.: A Schütte-Tait style cut-elimination proof for first-order Gödel
logic. In: Egly, U., Fermüller, C. (eds.) TABLEAUX 2002. LNCS, vol. 2381, pp. 24–38.
Springer, Heidelberg (2002)

4. Baaz, M., Ciabattoni, A., Fermüller, C.G.: Herbrand’s Theorem for Prenex Gödel Logic and
its Consequences for Theorem Proving. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR
2001. LNCS, vol. 2250, pp. 201–216. Springer, Heidelberg (2001)

5. Baaz, M., Hetzl, S., Leitsch, A., Richter, C., Spohr, H.: CERES: An Analysis of Fürstenberg’s
Proof of the Infinity of Primes. Theoretical Computer Science (to appear)

6. Baaz, M., Iemhoff, R.: The Skolemization of existential quantifiers in intuitionistic logic.
Ann. of Pure and Applied Logics 142, 269–295 (2006)

7. Baaz, M., Leitsch, A.: Cut-elimination and Redundancy-elimination by Resolution. J. Symb.
Comput. 29(2), 149–177 (2000)

8. Baaz, M., Leitsch, A.: CERES in Many-Valued Logics. In: Baader, F., Voronkov, A. (eds.)
LPAR 2004. LNCS, vol. 3452, pp. 1–20. Springer, Heidelberg (2005)

9. Baaz, M., Leitsch, A.: Towards a clausal analysis of cut-elimination. J. Symb. Comput. 41(3-
4), 381–410 (2006)

10. Baaz, M., Leitsch, A., Zach, R.: Incompleteness of an infinite-valued first-order Gödel Logic
and of some temporal logic of programs. In: Kleine Büning, H. (ed.) CSL 1995. LNCS,
vol. 1092, pp. 1–15. Springer, Heidelberg (1996)

11. Baaz, M., Zach, R.: Hypersequents and the Proof Theory of Intuitionistic Fuzzy Logic. In:
Clote, P.G., Schwichtenberg, H. (eds.) CSL 2000. LNCS, vol. 1862, pp. 187–201. Springer,
Heidelberg (2000)

12. Chagrov, A., Zakharyaschev, M.: Modal Logic. Oxford University Press, Oxford (1997)
13. Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)
14. Harrop, R.: Concerning formulas of the types A⊃B∨C, A⊃ (∃x)B(x) in intuitionistic formal

systems. J. Symbolic Logic 25, 27–32 (1960)
15. Leitsch, A.: The Resolution Calculus. Springer, Heidelberg (1997)
16. Mints, G.: The Skolem method in intuitionistic calculi. Proc. Inst. Steklov. 121, 73–109

(1974)

466 M. Baaz, A. Ciabattoni, and C.G. Fermüller

17. Orevkov, V.P.: Lower Bounds for Increasing Complexity of Derivations after Cut Elimina-
tion. J. Soviet Mathematics, 2337–2350 (1982)

18. Schütte, K.: Beweistheorie. Springer, Heidelberg (1960)
19. Statman, R.: Lower bounds on Herbrand’s theorem. Proc. of the Amer. Math. Soc. 75, 104–

107 (1979)
20. Tait, W.W.: Normal derivability in classical logic. The Syntax and Semantics of infinitary

Languages LNM 72, 204–236 (1968)
21. Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory, 2nd edn., Cambridge (2000)
22. Takeuti, G., Titani, T.: Intuitionistic fuzzy logic and intuitionistic fuzzy set theory. J. Sym-

bolic Logic 49, 851–866 (1984)

Focusing Strategies in the Sequent Calculus
of Synthetic Connectives

Kaustuv Chaudhuri

INRIA Saclay - Île-de-France
������������	��
���
����

Abstract. It is well-known that focusing striates a sequent derivation into phases
of like polarity where each phase can be seen as inferring a synthetic connective.
We present a sequent calculus of synthetic connectives based on neutral proof pat-
terns, which are a syntactic normal form for such connectives. Di�erent focusing
strategies arise from di�erent polarisations and arrangements of synthetic infer-
ence rules, which are shown to be complete by synthetic rule permutations. A
simple generic cut-elimination procedure for synthetic connectives respects both
the ordinary focusing and the maximally multi-focusing strategies, answering the
open question of cut-admissibility for maximally multi-focused proofs.

1 Introduction

The story of focusing has been told several times since Andreoli [3] with essentially the
same construction. The inference rules of the sequent calculus divide into two groups:
invertible and non-invertible, and, during proof search, the invertible rules can be ea-
gerly applied until only non-invertible rules remain. Then, one connective is selected for
focus and a maximal sequence of non-invertible rules are applied until invertible rules
become available again. Focused proof search alternates between these two phases,
invertible and non-invertible, or negative and positive, until no unproven goals remain.
Furthermore, the principal formulas of the positive and negative rules, themselves called
positive and negative, are perfectly dual, evoking a number of dualities that have re-
cently been explained via focusing; a short list includes: call-by-value (positive) dual
to call-by-name (negative) [16]; the Q-protocol (positive) dual to the T-protocol (neg-
ative) [14]; the proponent (positive) dual to the opponent (negative) [2]; and forward-
chaining (positive) dual to backward-chaining (negative) [7] (see [18] for a survey).

Proof theoretically, the innovation of focusing is not its operational interpretation,
however, but the derived notion of a synthetic connective. If the operand of a positive
(resp. negative) connective is itself positive (resp. negative), then the two connectives
fuse into a larger positive (resp. negative) connective; this fusion eventually synthesises
connectives whose operands have the opposite polarity and whose internal structure
does not matter; thus, � � (� � �) and (� � �) � � are essentially the same ternary pos-
itive synthetic connective when applied to three negative operands. A focused derivation
amounts to a derivation using synthetic inference rules for such synthetic connectives.

But are synthetic connectives true connectives, and can one construct a traditional
sequent calculus based on synthetic inferences? A first approximation to an answer is

I. Cervesato, H. Veith, and A. Voronkov (Eds.): LPAR 2008, LNCS 5330, pp. 467–481, 2008.
c� Springer-Verlag Berlin Heidelberg 2008

468 K. Chaudhuri

to note that the focused sequent calculus admits identity and cut-elimination [7,14], so
provability-wise there is no problem with synthetic inferences. However, if one looks
at the proofs themselves, the question gets more clouded. Ordinary unfocused rules of
like polarity freely permute with each other (as long as not prohibited by the subformula
relation), but synthetic positive rules never do. Indeed, the question of positive-positive
permutation is meaningless in the standard presentation of focusing because the neigh-
bours of a positive phase are negative. Yet, a positive-positive permutation is not a du-
bious concept: consider the sequent � a� � �� b� � �� a� b� 1, for instance, where indeed
the two � rules are non-interfering and permute. In game-theoretic terms, the equivalent
� moves are truly concurrent; however, the focused sequent calculus can only represent
a serialisation, which has been a long standing criticism of focusing qua syntax [1].
This limitation was partially removed in [5] by the use of multi-focusing to represent
the truly concurrent foci, but in that work the question of synthetic permutation was
answered by discarding one half of the synthetic connectives (the negatives) in their
entirety– very unsatisfactory!

The second break in the proof theory of synthetic derivations comes from the explicit
polarity switches or delays. These switching connectives are commonly used to define
a so-called polarised linear logic [10,12]; in fact, careful use of switches allows one
to mimic “strongly focusing” calculi like LJQ and LJT in a general focusing frame-
work [14]. This connective, however, has an incarnation only in the polarised world;
the unfocused calculus cannot detect it (e.g., by cut-reduction). Why should one coun-
tenance the invention of new connectives from one’s choice of proofs?

In this paper we propose an answer to both questions by paring focusing down into
three orthogonal concepts, each involving choices specific forms, that are usually con-
fused together: neutral expressions, proof patterns, and focusing strategies. To be con-
crete, we limit ourselves to propositional ����, although the construction itself is as
general as focusing. The central component, proof patterns, is a technical device used
to construct static synthetic inference rules by explicitly representing a normal form of
the branching search tree for a synthetic connective. Synthetic identity, synthetic cut-
elimination, and synthetic permutations can be defined by simple analysis of these static
proof patterns. The other two concepts are dynamic. Neutral expressions represent the
polarisation of a connective by recording the phase changes with the switch; however,
the switches themselves are not connectives but part of the dynamics of the proof: pro-
longing phases as long as possible, as in ordinary focusing, is a maximal polarisation,
while switching phases always, as in unfocused calculi, is a minimal polarisation. The
third concept, focusing strategies, defines recipes for applying the synthetic inference
rules; ordinary focusing is a negative-eager strategy, and maximal multi-focusing [5]
is a positive-eager strategy. The generic synthetic cut elimination preserves both these
strategies using a priority assignment to cut permutations.

Our main departure from ordinary focusing is an abolishment of the regimented
phase alternation. Relaxed phase alternation is a recent innovation in focusing, but it
has appeared at least three times before: first in [15] where the focalisation graph ex-
posed several roots that could be simultaneously or sequentially focused on, second
in [9] where a neutral game is forced to pick multiple positive foci to maintain parity
with the multiple negative “foci”, and third in [5] which recovers a limited form of

Focusing Strategies in the Sequent Calculus of Synthetic Connectives 469

permutative canonicity by requiring the foci to be as large as possible. Our presenta-
tion is reminiscent of several related exegeses of focusing: the generic cut-elimination
is present in ludics [10], even though it is phase alternating (and monistic, which our
presentation decidedly isn’t); proof patterns are a generalisation of a similar construct
in the �� calculus [18]; neutral expressions are present in [9], although their use there
was to define a neutral game that grows a dual pair of mutually normalising derivations.

This paper is organised as follows. In sec. 2, neutral expressions and proof patterns
are formally introduced and the sequent calculus of synthetic inferences is defined.
The key identity (theorem. 11) and cut (theorem. 12) theorems are proved. In sec. 3,
permutation is defined for synthetic connectives. Sec. 4 introduces focusing strategies
and sketches the two main variants: ordinary and maximally multi-focused.

2 A Sequent Calculus of Synthetic Connectives

This section will reconstruct a cut-free sequent calculus, called ����-�, of synthetic
connectives and inference rules for propositional multiplicative-additive linear logic.
���� is selected for simplicity and clarity; it contains the important features of focusing
without the distraction of polarising the exponentials. We shall adopt a polarised syntax
similar to [13], but polarised propositions will be seen as dual interpretations of neutral
expressions.

Definition 1. Neutral expressions, written E, F, etc., have the following syntax.

E� F� � � � � a � E � F � 1 � E � F � 0 � �E

Here, a represents an atomic proposition with unassigned polarity. The � operator rep-
resents an explicit switch of polarities.

Definition 2 (polarisation). A polarised proposition is defined as either a positive or
a negative polarisation of a neutral expression, given respectively by the polarisation
functions ���� and ����:

(a)� � a� (a)� � a�

�E � F�� � �E�� � �F�� �1�� � 1 �E � F�� � �E�� � �F�� �1�� � �

�E � F�� � �E�� � �F�� �0�� � 0 �E � F�� � �E�� & �F�� �0�� � �

��E�� � �E�� ��E�� � �E��

Here, a� (resp. a�) refers to a positively (resp. negatively) polarised atom. We write
�E�� to refer to either �E�� or �E��, and �E�� to refer to its dual polarisation.

Note that polarisation is an injection: infinitely many expressions can polarise to the
same proposition by means of repeated “administrative” �s. Nevertheless, all ����

propositions are either positive or negative polarisations of some expression. This re-
striction will need to be relaxed when moving to non-linear logics such as classical
logic where the propositional connectives have ambiguous polarities. Note also that the
representation of & as a polarisation of a sum (�) di�ers starkly from the popular view
of & as a “conjunction”, possibly because the two polarised interpretations of the clas-
sically ambiguous	 are � and & [14]. Our view of & as a “sum” (and� as a “product”)
is supported by distributivity: A� (B & C)
 (A� B) & (A�C).

470 K. Chaudhuri

Indeed, the rules of the calculus will be given not for polarised neutral expressions
but for an associated unique proof pattern that reorganises the expression into a dis-
junctive normal form up to the atoms or the polarity switches, using distributivity to
move the �s to the surface through the �s. This reorganisation will generally repeat a
sub-expression—for example, a � (b � c) is reorganised to (a � b) � (a � c), repeating
a—but will not duplicate any sub-derivations because of the � guards. For instance, the
duplication of the � B in the following derivation is syntactically prohibited.

� A�C � A� D
� A�C & D

&
� B

� A � B�C & D
�

�(A � B)� (C & D)
� 	

� A�C � B
� A � B�C

�
� A� D � B
� A � B� D

�

� A � B�C & D
&

�(A � B)� (C & D)
�

The propositions A � B and C & D are of opposite polarities, so we only observe the
equivalence �(E � F) � (G � H)
 (�(E � F) �G) � (�(E � F) � H) (for suitable E, F,
G and H), both of which have identical sub-derivations after the outer negative phase.

Definition 3 (proof patterns). Product patterns (�) and sum patterns (�) are generated
by the following grammars:

�� Ê
 �
 �1 � �2 �� �
 �
 �1 � �2

where Ê is either an atom or of the form �E. The structures ��� �� �� and ����� �� are
commutative monoids, where � is the set of product patterns and � the set of sum
patterns. A product pattern will always be depicted in its normal form

�
i�I Êi, and

a sum pattern similarly as
�

i�I �i, where I is a finite index set. The unqualified term
“proof pattern” will refer to sum patterns.

Notation 4. We write �
�
Ê
�
�

for (a)� if Ê � a and for �F�� if Ê � �F.

Abstractly, a proof pattern
�

i�I �i represents the proof search tree for a synthetic con-
nective. In the positive interpretation of the connective, the outer sum represents the
disjunctive () choices, while each �i represents the multiplicative (�) structure. In the
negative interpretation, the outer sum represents the alternatives (&), while the inner
product represents the sequent structure (�).

Definition 5. Given two patterns � �
�

i�I �i and �� �
�

j�J �
�

j, their product, written
� � �� is the pattern

�
i�I
�

j�J �i � �
�

j.

Fact 6. ����� ���� �� is a commutative semiring. ��

Every neutral expression has a corresponding pattern derived simply by treating the ex-
pression constructors as these semiring operators. Precisely, we can define a judgement
� � E with the following rules:

a � a �E � �E
� � E ��

� F
� � ��

� E � F � � �

� � E ��
� F

� � ��
� E � F � � �

For example, (a � c) � (a � �E) � c � �E � (a � �) � (c � �E).
Before proceeding further, we note that a similar notion of “pattern” has been de-

veloped in the realm of focused lambda calculi in the system �� [18,17]. The di�er-
ences are as follows: we define patterns for both positive and negative propositions and

Focusing Strategies in the Sequent Calculus of Synthetic Connectives 471

furthermore represent both the product and the sum structure; patterns in ��, on the
other hand, are defined only for the positive propositions and keep just the products,
forgetting one half of each sum. �� patterns are therefore a slice of the disjunctive nor-
mal form—indeed, the disjunctive normal forms cannot be computed at all unless the
sums are represented—which necessitates quantification over (their equivalent of) the
� judgement to recover the full sum. This quantification makes the synthetic rules in ��

higher-order. (This is most likely by design, as �� is intended as a logical explanation
for higher-order abstract syntax.)

Definition 7 (contexts and sequents)

– Acontext isafinitemultisetofexpressionsannotatedwithpolarities, (E1)�� � � � � (En)�,
written �. Two contexts that di�er only on (E)� and (F)� with E � F are considered
di�erent even if (E)� � (F)� (defn. 2).

– A sequent ��, where � is a context, is a judgement that the context � is linearly
contradictory. The form �� � is used to indicate that 	 is a derivation of ��.

– A focused sequent is a structure of the form �� ; (�)� where � is a context and (�)�

is a product pattern � annotated with a polarisation.

Definition 8. Let D � ��i�i�1��n be a list of contexts. Then,

1.
�

D stands for the list of sequents ��1, . . . , ��n.
2. �D stands for the sequent ��1� � � � � �n.

For non-atomic principal formulas, we define the synthetic rules on the proof pattern
of the underlying neutral expression. The outer sum in the pattern represents an enu-
meration of choices. If the corresponding proposition were positively polarised, then it
represents a disjunction of choices of which only one needs to be taken. For a negatively
polarised proposition it represents an alternation of choices, all of which must be taken.
The bottom half of the two synthetic rules thus looks as follows:

�
i�I �i � E �u � I� �� ; (�u)�

��� (E)�
P�

�
i�I �i � E �u � I� �� ; (�u)�

��� (E)�
N�

In each case, we obtain a number of focused sequents of the form �� ; (�)�. If the
polarisation is positive, i.e., the product pattern represents a �, then the context � must
be distributed into the components of the product. This demultiplexion operation is
defined by a ternary relation.

Definition 9 (demultiplexion). Given a context � and a product pattern � �
�

i�1��k Êi,
a demultiplexion of � along (�)� produces a list of contexts D � �1 ; � � � ; �k, written
� ; (�)� � D, generated by the following rules:

� ; (�)� � D
�� (a)� ; (� � a)� � D ; (a)�� (a)�

� ; (�)� � D
�� �� ; (� � a)� � D ; ��� (a)�

� ; (�)� � D
�� �� ; (� � �E)� � D ; ��� (E)�

472 K. Chaudhuri

The upper half of the positive rule, P�, is then obvious: we select a demultiplexion of
the context along the positive pattern and interpret every context in it as a sequent.

�D : (� ; (�)� � D)�
�

D

�� ; (�)�
P�

Somewhat surprisingly, the upper half of the negative rule, N�, can be written analo-
gously:

�D : (� ; (�)� � D)��D
�� ; (�)�

N�

The demultiplexion used to construct D is simply undone by the� operator. It therefore
does not matter how the demultiplexion is done, and there is always a way to demulti-
plex along a negative pattern (for example, all of the context can be “sent” to the first
element of the product pattern, if one exists). The premise of the N� rule is therefore
uniquely determined.

We shall henceforth ignore the halves of the rules and just consider the combined
rules P and N, each of which is a polarisation of the following neutral rule (where E is
non-atomic and

�
i�I �i � E):

Qu � I� QD : (� ; (�u)p � D)��D
��� (E)p R(p� Q��)

In the positive interpretation P � R(����
�

), there is one premise corresponding to
each element of a demultiplexion of the context along a product pattern; in the negative
interpretation N � R(�����), there is one premise for each element of the outer sum
pattern. The rules have been written in this way to highlight the precise duality of their
premises.

It is important to note that the use of the � and � in the rules is merely a notational
device. As the pattern that corresponds to an expression is statically known, we actually
have instances of the P and N rules specialised to the index sets of these statically known
patterns. Thus, the P and N rules are “first-order”: they do not depend on reasoning in
the meta-language.

There is one additional synthetic rule for atomic propositions:

� (a)�� (a)�
I

This rule is neither positive, nor negative, and can only be applied at the leaves of a
derivation. As usual, it is only defined for atoms, but it can be proved for arbitrary
expressions. This is a syntactic completeness theorem that is usually called the identity
principle. Its proof is almost immediate in ����-�.

Notation 10. We shall adopt the following notational shorthands: ��i�i�I for the multi-
set union of the �i, �
i�i�I for the list of contexts
i, and ��
i�i�I for the list of premises
�
i.

Theorem 11 (identity principle). The sequent � (E)�� (E)� is derivable for any E.

Focusing Strategies in the Sequent Calculus of Synthetic Connectives 473

Proof. We reason by induction on the structure of the proof pattern for E. The atomic
case follows simply by I. For the non-atomic cases, suppose

�
i�I
�

j�Ji
Êi j � E. We

have:

�u I�

�
� �

�
Êu j

�
�

��
�
Êu j

���
j�Ju

� (E)��
�
�
�
Êu j

���
j�Ju

P

� (E)�� (E)�
N

because
�
�
�
Êu j

���
j�Ju

;
��

j�Ju Êu j

�
�

�

�
�
�
Êu j

�
�

��
�
Êu j

���
j�Ju

.

We then use the induction hypothesis on the sequents of the form � �
�
Êu j

�
�

� �
�
Êu j

�
�

,
which contain strictly smaller expressions. ��

For syntactic soundness, we turn to admissibility of the following cut rule:

��� (E)� �
� (E)�

���

C

Theorem 12 (cut elimination). The C rule is admissible

Proof. We shall prove this by first admitting C as an inference rule and then eliminating
it by (non-deterministically) rewriting it out of a proof that uses it. This rewrite �� is
generated from the following cases.

– Initial cuts, where one of the premises is derived from I. In these cases, the elimi-
nation is trivial because we can just drop the C and the initial premise.

– Principal cuts, where the cut-expression is principal in P and N in the two premises.
Suppose

�
i�I �i � E, �i �

�
j�Ji

Êi j and u � I, such that:
�
��(j) � j� �

�
Êu j

�
�

�
j�Ju

� �� j� j�Ju � (E)�
P

�i I� ��(i) ��

�
�
�
Êi j

���
j�Ji

��� (E)�
N

� �� j� j�Ju � �
C

Let � : 1��n � Ju be a bijection. We rewrite the above cut as follows:

�ξ(φ(1)) Γφ(1),⇓
(
Êuφ(1)

)+
�ξ(φ(2)) Γφ(2),⇓

(
Êuφ(2)

)+

�ξ(φ(n)) Γφ(n),⇓
(
Êuφ(n)

)+
�ζ(u) ∆,

{
⇓
(
Êuφ(k)

)−}
k∈1..n

�Γφ(n), ∆,

{
⇓
(
Êuφ(k)

)−}
k∈1..n−1

C

. .
.

� {Γφ(k)}k∈2..n, ∆, ⇓
(
Êiφ(1)

)− C

� {Γφ(k)}k∈2..n, ∆
C

Each instance of C is now on a strictly smaller cut expression.
– Commutative cuts, where the cut-expression is not principal in one derivation. In

each of the following two cases, we suppose that
�

i�I
�

j�Ji
F̂i j � F, u � I and

474 K. Chaudhuri

v � Ju. The two cases of the rewrite are named [PCC] and [NCC] for positive and
negative commutative cuts respectively.

�
D �� �v� (E)���

�
F̂uv

�
� �

D�

� �� j� j�Ju � (F)�� (E)�
P

�� �� (E)�

� �� j� j�Ju � (F)�� �
C ��[PCC]

�
D

�� �v� (E)���
�
F̂uv

�
�

�� �� (E)�

��v� (E)���
�
F̂uv

�
�

� �
C �

D�

� �� j� j�Ju � (F)�� �
P

�i I� �� �� (E)��
�
�
�
F̂i j

���
j�Ji

��� (F)�� (E)�
P

�� �� (E)�

��� (F)�� �
C ��[NCC]

�i I�

�� �� (E)��
�
�
�
F̂i j

���
j�Ji

�� �� (E)�

��� ��

�
�
�
F̂i j

���
j�Ji

C

��� (F)�� (E)�
P

In these cases the instance of C on the right is on a smaller derivation. ��

The cut-elimination proof above is remarkable for several reasons. First, it is a generic
argument that is independent of any logical connective. Second, it is obviously correct
for each cut can be seen to be smaller by inspection.1 Lastly, it is compact: there is no
important detail missing in the proof. To be sure, these remarkable properties are also
observed in �� [18,17], but in ����-�, because the rules are first-order, we do not need
to depend on the meta language for the proof of coverage.

As already mentioned, a key distinguishing feature of ����-� from other focusing
systems such as ��� [3] or �� is that the positive and negative rules do not alternate.
In this sense, it would be a mistake to call ����-� a “focusing” system, so we cannot
prove ����-� complete with respect to the unfocused ���� (rules in fig. 1) by citation.
Fortunately, we can easily recover the unfocused rules by selecting a suitably minimal
polarisation.

Definition 13. The minimal polarisation ��� is given inductively as follows:

�a� � a
�
a�
	
� a

�A � B� � �A�� � �B�� �1� � 1 �A� B� � �A�� � �B�� ��� � 1

�A � B� � �A�� � �B�� �0� � 0 �A & B� � �A�� � �B�� ��� � 0

�P�� � � � �P� �N�� � ��N� �P�� � ��P� �N�� � � � �N�

Here P (resp. N) refers to any positive (resp. negative) proposition.

1 This proof does get more complex if, in some extension of ����-�, the index sets are infinite,
because in that case the result of eliminating a principal cut would be a derivation of infinite
depth.

Focusing Strategies in the Sequent Calculus of Synthetic Connectives 475

� a� a�
I

��� A ��� B
��� �� A � B

�
� 1 1

��� A� B
��� A� B

�
��

����
�

��� Ai

��� A1 � A2
� no 0

��� A ��� B
��� A & B

&
����

�

Fig. 1. ���� rules

Note that the polarisation of every strict subformula uses at least one administrative �
switch, and that (�P�)� � P and (�N�)� � N. The rules of the ordinary ���� calculus
then reappear as ����-� rules for these minimal polarisations.

Theorem 14 (completeness of ����-�). If � is a context of unpolarised propositions,
let ��� represent that context that replaces every positive P � � with (�P�)� and every
negative N � � with (�N�)�. If �� in ����, then � ��� in ����-�.

Proof (sketch). By induction on the structure of the given ���� derivation.

Case of I: the I rules in ���� and ����-� are identical.
Case of �: Consider �P � N� � �P�� � �N�� � � � �P� � ��N�. Its proof pattern is just

� � �P� � ��N�, so its derivation is:

��1� (�P�)
�

i.h.

��1� (��P�)
� N

��2� (�N�)�
i.h.

��1� �2� (� � �P� � ��N�)�

�

��1� �2� (�P � N�)�

P

because �1� �2 ; (� � �P� � ��N�)� � �1� (��P�)
� ; �2� (�N�)

�. We thus obtain the
� rule for P � N in ����. This characteristic case shows the way the induction
works for subformulas of the same and opposite polarities, and the remaining
cases are similar. ��

Theorem 14 shows that the ordinary unfocused ���� is recoverable in ����-� by picking
specific polarisations. This is a strong indication that synthetic rules with delays are a
more primitive notion than the usual binary connectives, an observation already made
in the genesis of ludics [10], but not well appreciated outside a certain section of the
proof theory community.

On the other hand, theorem. 14 does not show completeness for other polarisations.
In ordinary (unpolarised) focusing [3] the polarity of the rules matches the natural po-
larity of the principal propositions. This suggests a maximal polarisation of the ordinary
connectives that contains no administrative switches.

Definition 15. E is a maximal polarisation for A if A � (E)� and E contains no sub-
expressions of the form � � E�. We write � A � to refer to the unique maximal polarisation
of A because of the following trivial fact.

Fact 16. If E and F are maximal polarisations for A, then E � F. ��

476 K. Chaudhuri

Lemma 17. � (�P�)�� (�P �)� and � (�N�)�� (�N �)� are derivable in ����-�.

Proof (Sketch). Replay the proof of theorem. 11, but in one half of the reduction replay
the maximally polarised synthetic rule with many minimally polarised synthetic rules.

��

Minimal polarisations can thus be used to simulate maximal polarisations, directly giv-
ing the key focalisation result by an appeal to synthetic cuts.

Corollary 18 (Focalisation). If � is a context of unpolarised propositions, let �� � rep-
resent that context that replaces every positive P � � with (� P �)� and every negative
N � � with (�N �)�. If �� in ����, then � �� � in ����-s.

Proof. By theorem. 14, � ��� is provable in ����-s. Cut (theorem. 12) every (�P�)� and
(�N�)� in � ��� with a proof of � (�P�)�� (� P �)� or � (�N�)�� (�N �)� (lem. 17). ��

Proofs of the focalisation result using cut-elimination have also been attempted in [7,14],
but their proofs tend to be considerably more complex than the one presented here, partly
because they are based on a more traditional formulation of focusing, but also because
their proofs attempt to simulate the unfocused rules directly with cut. Our approach of
simulating the unfocused rules with a di�erent polarisation and then cutting them out ex
post facto is a more perspicuous decomposition of the focalisation result.

3 Synthetic Permutations

In this section, we investigate the matter of permutations of the synthetic inference
rules P and N. If the synthetic sequent calculus is to be seen as a generalisation of the
ordinary calculus, then it is essential to define the corresponding generalisations of the
binary permutations [11]. We write r1�r2 as a type of permutation where the rule(s) r1 is
(are) used immediately above r2 and the result of the permutation moves (possibly with
replication) r2 above a single instance of r1 without a�ecting the rest of the derivation.
Such permutations are familiar from the ordinary (unfocused) logic; for instance the
permutation ��& in ���� is the following reordering:

�� �� A �� �� B�C

��� �� A � B�C

�� �� A �� �� B�D

��� �� A � B�D
��� �� A � B�C & D

��
�� �� A

�� �� B�C �� �� B�D

��� B�C & D

��� �� A � B�C & D

Unsurprisingly, the N�N and P�P permutations are freely allowed in ����-�.

Definition 19 (equipollent permutation)
Suppose

�
i�I
�

j�Ji
Êi j � E and

�
k�K

�
l�Lk

F̂kl � F
1. A P�P permutation (for any u � I, v � Ju, w � K and x � Lw) is as follows:

�
��(j) � j��

�
Êu j

�
�

�
j�Ju�v

�
��(l) �l��

�
F̂wl

�
�

�
l�Lw�x

�� ���
�
Êuv

�
�

��
�
F̂wx

�
�

��� ��l�l�Lw�x� (F)���
�
Êuv

�
�

P

��� �� j� j�Ju�v� ��l�l�Lw�x� (E)�� (F)�
P

Focusing Strategies in the Sequent Calculus of Synthetic Connectives 477

��

�
��(l) �l� �

�
F̂wl

�
�

�
l�Lw�x

�
��(j) � j��

�
Êu j

�
�

�
j�Ju�v

�� ���
�
Êuv

�
�

��
�
F̂wx

�
�

��� �� j� j�Ju�v��
�
F̂wx

�
�

� (E)�
P

��� �� j� j�Ju�v� ��l�l�Lw�x� (E)�� (F)�
P

2. An N�N permutation is as follows:

�i I�

�k K� ��(i�k) ��

�
�
�
F̂kl

���
l�Lk

�

�
�
�
Êi j

���
j�Ji

��� (F)��
�
�
�
Êi j

���
j�Ji

N

��� (E)�� (F)�
N

��

�k K�

�i I� ��(i�k) ��

�
�
�
F̂kl

���
l�Lk

�

�
�
�
Êi j

���
j�Ji

��� (E)��
�
�
�
F̂kl

���
l�Lk

N

��� (E)�� (F)�
N

Equipollent permutations have no restrictions on the form of the left of ��, so these
permutations are always allowed. Of the two remaining permutation forms, the N�P
permutation is also always valid and readily defined.

Definition 20 (N�P permutation)
Suppose

�
i�I
�

j�Ji
Êi j � E and

�
k�K

�
l�Lk

F̂kl � F. An N�P permutation is of the fol-
lowing form (for any u � I and v � Ju)

�
��(j) � j��

�
Êu j

�
�

�
j�Ju�v

�k K� ��(k) ���
�
Êuv

�
�

�

�
�
�
F̂kl

���
l�Lk

��� (F)�� �
�
Êuv

�
�

N

� ��� j�Ju � �� (E)�� (F)�
P

��

�k K�

�
��(j) � j��

�
Êu j

�
�

�
j�Ju�v

��(k) ���
�
Êuv

�
�

�

�
�
�
F̂kl

���
l�Lk

��� ��� j�Ju � (E)��
�
�
�
F̂kl

���
l�Lk

P

� ��� j�Ju � �� (E)�� (F)�
N

The final permutations are the P�N permutations, which are not generally permissible.
In fact, writing this permutation type as P�N is somewhat misleading because actually
several coherent instances of P in the premises of the bottom N rule will be merged.
Two P instances are coherent if, essentially, they make the same disjunctive and multi-
plicative choices. However, they cannot be exactly identical because they have di�erent
conclusions.

Definition 21 (P�N permutation)
Suppose

�
i�I
�

j�Ji
Êi j � E and

�
k�K

�
l�Lk

F̂kl � F. A P�N permutation is of the follow-
ing form (for any u � K and v � Lu)

478 K. Chaudhuri

�i I�

�
��(l) �l��

�
F̂ul

�
�

�
l�Lu�v

��(i) ���
�
F̂uv

�
�

�

�
�
�
Êi j

���
j�Ji

��� ��l�l�Lu �

�
�
�
Êi j

���
j�Ji

� (F)�
P

��� ��l�l�Lu � (E)�� (F)�
N

��

�
��(l) �l��

�
F̂ul

�
�

�
l�Lu�v

�i I� ��(i) ���
�
F̂uv

�
�

�

�
�
�
Êi j

���
j�Ji

����
�
F̂uv

�
�

� (E)�
N

��� ��l�l�Lu � (E)�� (F)�
P

Observe how this permutation is restricted: all instances of P above the N must pick the
same term in the sum pattern of (F)�, must have all premises but one (the 	(l)) exactly
identical and independent of E, and the remaining premise (the (i)) in each case must
contain all the subexpressions of E in that position in its sum pattern.

All the permutations defined are quite obviously sound (each application of P and N
is correct), so we state the following lemma without proof.

Lemma 22. The equipollent, P�N and N�P permutations are sound, i.e., if the left then
the right hand side of ��. ��

We end this section with a sketched proof that the N rule is invertible, using only syn-
thetic permutations, instead of proving it in the usual way using cuts.

Theorem 23. The N rule is invertible.

Proof (Sketch). Since both N�N and N�P permutations are always allowed, every N rule
can be permuted repeatedly towards the goal. Hence, for any derivation of �
� (E)� that
contains an instance of N for (E)�, there is an equivalent derivation that begins with that
N rule. If there are no instances of N in the proof of �
� (E)�, then there must be a sub-
derivation that proves �
�� (E)�� (0)� with N (because E is non-atomic). An instance of
N for (E)� can be inserted here; each of its premises will contain (0)� and will therefore
be provable. This instance of N can now be permuted to the goal. ��

4 Strategies

In this section we shall assume that all polarisations are maximal (defn. 15).
As already seen, the ����-� calculus, despite being a calculus of synthetic connec-

tives, is more permissive in the order of synthetic rules than other focusing calculi such
as ���. However, ��� is recoverable in ����-� as a strategy of applying inference rules
to refine the goal sequent. By theorem. 23, the N rule is invertible, so it can always
be applied to remove negatively polarised expressions from the context. Such proposi-
tions are only introduced to the context by the P rule. Therefore, ordinary focusing is a
strategy of eagerly applying the N rules.

Definition 24 (ordinary focusing strategy). The focused proofs of �� are those that:

1. end in I; or

Focusing Strategies in the Sequent Calculus of Synthetic Connectives 479

2. end with N if there are any negatively polarised propositions in � with the premises
of the rule also focused; or

3. end with P if there are no negatively polarised propositions in � and all the premises
of that rule are also focused.

It is easy to see that this strategy degenerates to the familiar phase alternation after the
pre-existing negatively polarised propositions in the goal sequent are removed, for each
P step produces at-most one negatively polarised proposition in each premise, which
upon decomposition produces only positively polarised premises. The completeness of
this strategy is immediate from the invertibility of N (theorem. 23) and focalisation
(cor. 18). We also state the following rather obvious instance of the cut-elimination
algorithm (which is a synthetic restatement of the T-permutation [8]); we omit the proof.

Theorem 25 (focused cut-elimination). The cut-elimination rewrite��of theorem. 12
preserves focused proofs if the [NCC] case is given a higher precedence than the [PCC]
case. That is, given focused proofs of �
� (A)� and ��� (A)�, the cut on A is eliminated
to give a focused proof of �
� �. ��

As expected, this is not the sole interesting strategy for ����-� proofs. In [5], a notion of
maximally multi-focused proofs is introduced, which aims to equate all permutatively
isomorphic MALL proofs in a unique syntax; such a proof exhibits the “true concur-
rency” inherent in the selection of foci. Maximality was defined there as a terminating
permutative rewrite enlarging the principal formulas in a focusing calculus with multi-
ple foci. The recipe in [5] for generating maximally multi-focused proofs from complete
proofs can easily be repeated for ����-�, but we do not pursue that direction here; in-
stead, we characterise them here in terms of a strategy. In these maximal proofs the P
rule rather than the N rule is eagerly applied, giving a tantalisingly dual picture from
the strategy that generates ordinary ��� proofs.

Definition 26 (maximal multi-focusing strategy). The maximally multi-focused (ab-
breviated as maximal) proofs of �� are those proofs that:

1. end in I; or
2. end in P if there are any positively polarised propositions in � such that applying

P (reading backwards) leads to a proof, and all the premises of this rule are also
maximal; or

3. end in N if the situation for (2) does not apply, and the premises of this rule are also
maximal.

We state without the rather technical proof that the maximally multi-focused proofs
in the sense of [5] are exactly those proofs in the above class up to equipollent per-
mutations. Instead, we consider the question that was left open in [5] with regard to
cut-elimination on maximal proofs.

Theorem 27 (maximal cut-elimination). The cut-elimination rewrite �� in theorem.
12 preserves maximality if the [PCC] case is given a higher precedence than the [NCC]
case. That is, given maximal proofs of �
� (A)� and ��� (A)�, the cut on A is eliminated
to give a maximal proof of �
� �.

480 K. Chaudhuri

Proof (Sketch). We reason by induction on the structure of the two input derivations for
the cut being eliminated. The initial and principal cases are a straightforward application
of the induction hypothesis. For the commutative cases, the result of the cut-elimination
can only be maximal if the instances of P are kept closer to the root of the derivation,
which requires prioritising a [PCC] rewrite over an [NCC] rewrite. ��

The duality of theorems 25 and 27 is surprisingly clean, which gives further credence
to the notion of maximally multi-focused proof. Of course, the above strategy is not im-
plementable in a purely backwards reasoning (goal upwards) algorithm as it quantifies
over proofs of the conclusion, which will not be available until the search completes.
However, proofs in this class can be generated by saturation-based forward reasoning
(axioms downwards) algorithms, such as in the inverse method [6]. Such search algo-
rithms incrementally build a database of proved facts, so whenever a rule is applied
resulting in a new fact, the N rules are permuted upwards in the proof as much as pos-
sible.

5 Conclusions and Future Work

We have presented a reconstruction of the calculus of synthetic connectives by means of
polarisations of neutral proof patterns. Among the key technical merits of this presenta-
tion are simple and obviously correct proofs of cut, identity, focalisation, and synthetic
permutations. We have shown how, among the proofs using synthetic inferences, the
ordinary and maximally multi-focused proofs can be seen as diametrically opposite
strategies, and demonstrated that the generic synthetic cut-elimination with a priority
assignment preserves maximality.

The obvious next step is to extend the development to interesting fragments larger
than MALL. We have already extended it to the exponentials and first-order quantifiers,
but have left them out of this paper for presentational clarity and lack of space. Ex-
tending to infinite proof patterns (both sums and products) would also be interesting,
requiring finite presentations of infinite operations; of particular interest is the ques-
tion of proof patterns corresponding to the (co-)inductive connectives of ����� [4].
Yet another important extension would be to a proof of synthetic cut-elimination for
second-order MALL. Precise comparisons of synthetic derivations to game semantics
would also be instructive.

References

1. Abramsky, S.: Sequentiality vs. concurrency in games and logic. Mathematical Structures in
Computer Science 13(4), 531–565 (2003)

2. Abramsky, S., Melliès, P.-A.: Concurrent games and full completeness. In: 14th Symp. on
Logic in Computer Science, pp. 431–442. IEEE Computer Society Press, Los Alamitos
(1999)

3. Andreoli, J.-M.: Logic programming with focusing proofs in linear logic. J. of Logic and
Computation 2(3), 297–347 (1992)

4. Baelde, D., Miller, D.: Least and greatest fixed points in linear logic. In: Dershowitz, N.,
Voronkov, A. (eds.) LPAR 2007. LNCS, vol. 4790, pp. 92–106. Springer, Heidelberg (2007)

Focusing Strategies in the Sequent Calculus of Synthetic Connectives 481

5. Chaudhuri, K., Miller, D., Saurin, A.: Canonical sequent proofs via multi-focusing. In:
Ausiello, G., Karhumäki, J., Mauri, G., Ong, L. (eds.) Fifth IFIP International Conference
on Theoretical Computer Science. IFIP International Federation for Information Processing,
vol. 273, pp. 383–396. Springer, Boston (2008)

6. Chaudhuri, K., Pfenning, F.: Focusing the inverse method for linear logic. In: Luke Ong,
C.-H. (ed.) CSL 2005. LNCS, vol. 3634, pp. 200–215. Springer, Heidelberg (2005)

7. Chaudhuri, K., Pfenning, F., Price, G.: A logical characterization of forward and backward
chaining in the inverse method. J. of Automated Reasoning 40(2-3), 133–177 (2008)

8. Danos, V., Joinet, J.-B., Schellinx, H.: LKT and LKQ: sequent calculi for second order logic
based upon dual linear decompositions of classical implication. In: Girard, J.-Y., Lafont, Y.,
Regnier, L. (eds.) Advances in Linear Logic. London Mathematical Society Lecture Note
Series, vol. 222, pp. 211–224. Cambridge University Press, Cambridge (1995)

9. Delande, O., Miller, D.: A neutral approach to proof and refutation in MALL. In: Pfenning,
F. (ed.) 23th Symp. on Logic in Computer Science, pp. 498–508. IEEE Computer Society
Press, Los Alamitos (2008)

10. Girard, J.-Y.: Locus solum. Mathematical Structures in Computer Science 11(3), 301–506
(2001)

11. Kleene, S.C.: Permutabilities of inferences in Gentzen’s calculi LK and LJ. Memoirs of the
American Mathematical Society 10, 1–26 (1952)

12. Laurent, O.: Etude de la polarisation en logique. Thèse de doctorat, Université Aix-
Marseille II (March 2002)

13. Laurent, O.: Syntax vs. semantics: a polarized approach. Prépublication électronique
PPS��03�04��no 17 (pp), Laboratoire Preuves, Programmes et Systèmes (Submitted) (March
2003)

14. Liang, C., Miller, D.: Focusing and polarization in linear, intuitionistic, and classical logics.
Theoretical Computer Science (accepted, 2008)

15. Miller, D., Saurin, A.: From proofs to focused proofs: A modular proof of focalization in
linear logic. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 405–
419. Springer, Heidelberg (2007)

16. Wadler, P.: Call-by-value is dual to call-by-name. In: 8th Int. Conf. on Functional Program-
ming, pp. 189–201 (2003)

17. Zeilberger, N.: Focusing and higher-order abstract syntax. In: Necula, G.C., Wadler, P. (eds.)
Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL 2008, pp. 359–369. ACM, New York (2008)

18. Zeilberger, N.: On the unity of duality. Ann. of Pure and Applied Logic (to appear, 2008)

An Algorithmic Interpretation of a
Deep Inference System

Kai Brünnler and Richard McKinley

Institut für angewandte Mathematik und Informatik
Neubrückstr. 10, CH – 3012 Bern, Switzerland

Abstract. We set out to find something that corresponds to deep infer-
ence in the same way that the lambda-calculus corresponds to natural de-
duction. Starting from natural deduction for the conjunction-implication
fragment of intuitionistic logic we design a corresponding deep inference
system together with reduction rules on proofs that allow a fine-grained
simulation of beta-reduction.

1 Introduction

The Curry-Howard-Isomorphism states that intuitionistic natural deduction der-
ivations with the operation of detour-elimination behave exactly like lambda
terms with beta reduction. For an introduction, see the book [4] by Girard, La-
font and Taylor. Since the lambda calculus expresses algorithms, the lambda
calculus is thus an algorithmic interpretation of intuitionistic natural deduction.
We want to find an algorithmic interpretation for deep inference, a formalism
which has been introduced by Guglielmi [5]. So far, no deep inference system
that we are aware of has an algorithmic interpretation. In fact, while they typi-
cally have cut elimination procedures, the cut elimination steps are not given in
the form of simple reduction rules on proof terms.

The natural starting point for algorithmic interpretation of deep inference is
of course a system for intuitionistic logic. There already exists such a system, by
Tiu [11]. However, it focuses on locality of inference rules, and not on algorith-
mic interpretation. Its cut elimination proof works via translation to the sequent
calculus. We design another deep inference system for intuitionistic logic, with
the specific aim of staying as close to natural deduction as possible, because
there the algorithmic interpretation is well-understood. We then give a defini-
tion of proof terms for this system. The general way of building proof terms for
deep inference is already present in [1]. We equip these proof terms with reduc-
tion rules that allow us to simulate beta-reduction. We give translations from
natural deduction to deep inference and back and prove a weak form of weak
normalisation.

The principal way of composing our proof terms is not function application, as
in the lambda calculus, but is function composition, as in composition of arrows
in a category. So it is a system of what should be called categorical combinators.
In fact, it turns out that our proof terms are very similar to some categorical

I. Cervesato, H. Veith, and A. Voronkov (Eds.): LPAR 2008, LNCS 5330, pp. 482–496, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

An Algorithmic Interpretation of a Deep Inference System 483

combinators that Curien designed in the eighties, in order to serve as a target for
the compilation of functional programming languages [2]. A very accessible in-
troduction to those combinators and how they led to the development of explicit
substitution calculi, like the λσ-calculus, can be found in Hardin [7].

The difference between our combinators and Curien’s is in the presentation
of the defining adjunctions of a cartesian closed category. In our presentation
proof terms can be thought of graphically: they are built using vertical com-
position (the usual composition of morphisms) and horizontal composition (the
connectives).

2 A Deep Inference System for Intuitionistic Logic

Formulas, denoted by A,B,C,D, are defined as follows

A ::= a | (A ∧A) | (A ⊃A) ,

where a is a propositional variable. As usual, conjunction binds stronger than
implication and is left-associative, implication is right-associative. A formula
context, denoted by C{ }, is a formula with exactly one occurrence of the special
propositional variable { }, called the hole or the empty context. The formula
C{A} is obtained by replacing the hole in C{ } by A. As usual, a context is
positive if the number of implications we pass from the left on the path from
the hole to the root is even. A context is negative if that number is odd, and is
strictly positive if that number is zero.

A deep inference rule is a term rewriting rule on formulas. A rule is written

A
ρ
B

,

where ρ is the name of the rule and A and B are formulas containing schematic
variables. A is the premise and B is the conclusion of the rule. In term rewriting
A would be the left-hand-side or the redex and B would be the right-hand-side
or the contractum. A system is a set of rules. An instance of a formula containing
schematic variables is obtained by replacing the schematic variables by formulas.
An instance of an inference rule as above is

C{A′}
ρ
C{B′}

,

where C{ } is a context, the formula A′ is an instance of A and B′ is an instance
of B. A deep inference derivation is a sequence of rule instances composed in
the obvious way. In term rewriting terminology a derivation is just a reduction
sequence from one formula to another one using the given inference rules as
rewrite rules. Of course, this definition only applies when the context is positive,
since applying a rule in a negative context is generally unsound. For a negative
context C{ }, an instance of ρ will have the form

C{B′}
ρ
C{A′}

.

484 K. Brünnler and R. McKinley

A
c
A ∧ A

A ∧ B
w1

A

A ∧ B
w2

B

B
i
A ⊃ (B ∧ A)

(A ⊃ B) ∧ A
e

B

Fig. 1. A deep inference system for intuitionistic logic

Before seeing examples of derivations, let us look at a specific system for the
conjunction-implication fragment of intuitionistic logic: the system in Figure 1.
Because we like to think of the pair w1,w2 as one rule, there are essentially four
rules: c,w, i, e, or, respectively: contraction, weakening, implication introduction
and implication elimination. We can think of contraction as conjunction intro-
duction and of weakening as conjunction elimination. Implication elimination
can also be called evaluation. Categorically, each introduction rule is the unit
and each elimination rule the counit of an adjunction. The system is designed
with one goal in mind: to stay as close as possible to natural deduction, the
home ground for algorithmic interpretation of proofs.

Let us now look at two examples of derivations. Notice how the inference
rules apply deeply inside a context, as opposed to, say, rules in natural deduction.
Notice also how the derivation on the right contains a “detour”, a single instance
of w1 would also do the job.

Example 1

A ∧B
c
(A ∧B) ∧ (A ∧B)

w2
B ∧ (A ∧B)

w1
B ∧ A

A ∧B
i
(B ⊃ (A ∧B)) ∧B

w1
(B ⊃A) ∧B

e
A

We now introduce proof terms, or just terms, to capture deep inference deriva-
tions. Proof terms are denoted by R, T, U, V and are defined as follows:

R ::= id | ρ | (R .R) | (R ∧ R) | (R ⊃R)

where id is identity, ρ is the name of an inference rule from Figure 1, (R1 . R2)
is (sequential) composition and (R1 ∧ R2) and (R1 ⊃ R2) are conjunction and
implication. Both conjunction and implication are also referred to as parallel
composition. Sequential composition binds stronger than parallel composition
and is left-associative. Unnecessary parentheses may be dropped.

Some proof terms can be typed. The typing judgement A R−→ B says that the
term R can have the type A −→ B, so R has premise A and conclusion B. In
that case R is called typeable and the triple consisting of A,R,B is called a typed

An Algorithmic Interpretation of a Deep Inference System 485

A
id−→ A

A
R−→ B B

T−→ C

A
R.T−−→ C

A
R−→ C B

T−→ D

A ∧ B
R∧T−−−→ C ∧ D

C
R−→ A B

T−→ D

A ⊃ B
R⊃T−−−→ C ⊃ D

Fig. 2. Typing rules for proof terms

term. Typing judgements are derived by the typing rules in Figure 2 relative to
a given set of typing axioms. A typing axiom types an inference rule name: we
have A

ρ−→ B where A and B are instances of the premise and the conclusion of
ρ, respectively. The only set of inference rules (or: typing axioms) we consider
here is the one in Figure 1.

Example 2. Consider the following two terms R and T , which correspond to the
derivations in Example 1:

c . (w2 ∧ id) . (id ∧ w1) and (i ∧ id) . ((id ⊃ w1) ∧ id) . e

It is easy to see that they can be typed as A ∧B
R−→ B ∧ A and A ∧B

T−→ A.

Clearly, there is canonical way of turning deep inference derivations into proof
terms, as suggested by the examples above, and also a straightforward way of
turning proof terms into deep inference derivations (that requires us to choose
some order among parallel rewrites):

Proposition 1. Given two formulas A,B and a system of inference rules, there
is a derivation from A to B in that system iff there is a proof term R such that
A

R−→ B can be derived from the typing axioms corresponding to the given system.

Having introduced these typing derivations, we replace them immediately by
a more economical and suggestive notation, where we compose inference rules
vertically and horizontally. Let ρ be an inference rule A

ρ−→ B, and let A R−→ B,
B

T−→ C, C U−→ D. Then the typing derivations for ρ, R . T , R ∧U and R ⊃U are
represented as the tiles

A

ρ

B

,
R

A

T

B

C

,

A

R

∧

U

C

B ∧ D

and

B

R

⊃

U

C

A ⊃ D

.

486 K. Brünnler and R. McKinley

(bur)

R . (T . U)→ (R . T) . U
R . id → R← id . R
id ∧ id → id ← id ⊃ id
(R ∧ T) . (U ∧ V)→ R . U ∧ T . V
(R ⊃ T) . (U ⊃ V) → U . R ⊃ T . V

(nw)
(R ∧ T) . w1 → w1 . R
(R ∧ T) . w2 → w2 . T

(nc) R . c → c . (R ∧ R)

(β∧) c . w1 → id ← c . w2

(ni) R . i → i . (id ⊃ (R ∧ id))

(β⊃) (i . (id ⊃ R) ∧ T) . e→ (id ∧ T) . R

Fig. 3. System beta

Example 3. Here are the tile representations of the derivations from the first
example:

A ∧ B

c

A ∧ B

w2

∧ A ∧ B

B ∧

w1

A ∧ B

B ∧ A

and

A

i

∧ B

(B ⊃

w1

A ∧ B) ∧ B

(B

e

⊃ A) ∧ B

A

.

2.1 Reduction

Some reduction rules are shown in Figure 3. They were chosen for the single pur-
pose of allowing us to simulate β-reduction of the simply-typed lambda calculus,
the best-understood algorithmic interpretation of a logical system. In particular,
the rules were not chosen to make sense categorically: some naturality equations
are missing, extensionality is missing and the rule for beta reduction is more
general than one would expect.

The system is called System beta. It has two subsystems that we wish to iden-
tify: System bur, the first block of reduction rules, which is labeled with (bur),
and System subst, which is obtained from System beta by removing the (β⊃)-rule.
System bur equationally specifies a category with two bifunctors. From a deep in-
ference point of view, it has nothing to do with the inference rules involved, it
just equates derivations which differ due to inessential, bureaucratic detail. Sys-
tem subst is named in accordance with Curien. Consider a β-reduction step in the
lambda calculus. There are two things to do: first, remove the application opera-
tor and the lambda, and second, carry out the substitution. While the (β⊃)-rule
allows us to do the first step, System subst allows us do the second step.

System beta is not locally confluent, its completion Beta is obtained by adding
the rules in Figure 4. Morally, the right thing to do could be to work modulo

An Algorithmic Interpretation of a Deep Inference System 487

(bur′)
(W . (R ∧ T)) . (U ∧ V)→ W . (R . U ∧ T . V)
(W . (R ⊃ T)) . (U ⊃ V)→ W . (U . R ⊃ T . V)

(nw′)
(W . (R ∧ T)) . w1 → (W . w1) . R)
(W . (R ∧ T)) . w2 → (W . w2) . T)

(β⊃
′)

(i ∧ R) . e→ id ∧ R
(W . (i ∧ R)) . e → W . (id ∧ R)
(W . ((i . (id ⊃ R)) ∧ T)) . e→ (W . (id ∧ T)) . R

Fig. 4. The completion of system beta into system Beta

bur, which would allow us to abandon these extra reduction rules. In this work
we formally stay within the free theory. Nevertheless, we think of the terms as
deep inference derivations, which are equal modulo associativity and, morally,
should be equal modulo bur. System Bur is a completion of System bur and
System Subst a completion of System subst, both are obtained by adding the
corresponding rules from Figure 4.

For a given subsystem of System Beta we write R→ T if R can be rewritten
into T in one step by any rule in the given subsystem, so → is closed under
context and irreflexive. We write →n for the composition of → with itself n-
times, and � for the reflexive-transitive closure of →. If no subsystem is specified
we mean System Beta itself.

Example 4. Our example terms R and T rewrite as follows:

c . (w2 ∧ id) . (id ∧ w1)
→ c . (w2 . id) ∧ (id . w1)
→2 c . (w2 ∧ w1)

and

(i ∧ id) . ((id ⊃ w1) ∧ id) . e
→ (i . (id ⊃ w1) ∧ (id . id)) . e
→ (id ∧ id . id) . w1
→3 w1

Figure 5 shows for most of the reductions in system beta that they preserve
typing. For the remaining rules this is easy to check, so we have the following
proposition.

Proposition 2 (reduction preserves typing). Let R and T be proof terms with
R � T . If A R−→ B then A T−→ B.

By checking critical pairs we get local confluence, strong normalisation for Bur
can be obtained by a simple polynomial interpretation, so we have the following
proposition.

Proposition 3
(i) Systems Bur, Subst and Beta are locally confluent.
(ii) System Bur is confluent and strongly normalising.

488 K. Brünnler and R. McKinley

nc :
R

A

c
B

B ∧ B

→

A

c

A

R

∧

R

A

B ∧ B

nw :

A

R

∧ B

T

C

w1

∧ D

C

→
w1

A ∧ B

R

A

C

A

R

∧ B

T

C

w2

∧ D

D

→
w2

A ∧ B

T

B

D

β∧ :
c
A

w1

A ∧ A

A

→
A

A

c
A

w2

A ∧ A

A

→
A

A

ni :

A

R

B

i
C ⊃ (B ∧ C)

→

A

i

C ⊃

R

(A ∧ C)

C ⊃ (B ∧ C)

β⊃ :

B

i

∧

T

D

A ⊃

R

B ∧ A ∧

(A

e

⊃ C) ∧ A

C

→

B ∧

T

D

R

B ∧ A

C

Fig. 5. Reduction rules with typing

Remark 1 System Subst, and thus also System Beta, is not strongly normalising.
We have the following cycle:

c . w1 . c . w1 → c . (c . w1 ∧ c . w1) . w1

→ c . w1 . (c . w1)
→ c . w1 . c . w1 .

An Algorithmic Interpretation of a Deep Inference System 489

The situation is different from Curien’s system, where the subsystem for carrying
out substitutions is strongly normalising. The confluence proofs for Curien’s
systems, that we know of, use strong normalisation of the subsystem which
carries out substitutions, so they do not seem to directly apply in our setting.
For the moment we do not know whether our system is confluent. In any case
we do not see the failure of strong normalisation as a major defect. The problem
is now to find a natural and liberal strategy which ensures termination.

3 The Relation with Natural Deduction

There is an obvious inductive translation of a natural deduction derivation into
a deep inference derivation. It yields a deep inference derivation with the same
conclusion as the natural deduction derivation and which has as its premise the
conjunction of all premises of the natural deduction derivation. Since our in-
ference rules are all sound and since a suitable replacement theorem holds for
intuitionistic logic, we also know that we can also embed deep inference into
natural deduction. So translations in both directions exist. However, they only
work on derivations, not on the underlying untyped terms. What we would like to
have in both directions is a translation of untyped terms which has the property
of preserving typing. However, the obvious inductive translation of derivations
is not even well-defined on their underlying untyped terms. Consider a stan-
dard sequent-style natural deduction system with additive context treatment
and without structural rules. The two axiom instances A (A and B,A (A are
different derivations, that should be translated into A id−→ A and B ∧A

w2−→ A, re-
spectively. However, both axiom instances have the same underlying pure term,
namely just a variable. Clearly, taking the underlying pure lambda term loses
too much information of the original derivation. To keep that information we
very slightly extend the syntax of lambda terms. We mark a variable if it corre-
sponds to an axiom of the first kind and we will not mark it if it corresponds to
an axiom of the second kind. The marked variables behave as usual except that
they are not allowed to be bound.

We consider λ-terms with de Bruijn indices, introduced in [3]. They are defined
as follows, where n ≥ 1:

M ::= n | n· | (λM) | (MM) | (π1M) | (π2M) | 〈M,M〉 ,

and where in a given term an occurrence of n·, a marked index, is in the scope of
at most n−1 λ’s. The reduction rules for β-reduction together with substitution
M [n←N] and lifting tni are defined as follows:

π1〈M,N〉 →M

π2〈M,N〉 → N

(λM)N →M [1 ←N]

m[n←N] =

⎧⎪⎨⎪⎩
m− 1 m > n

tn−1
0 (N) m = n

m m < n

m·[n←N] = (m− 1)·

(M1M2)[n←N] = (M1[n←N]M2[n←N])

(λM)[n←N] = (λM [n+ 1 ←N])

490 K. Brünnler and R. McKinley

Γ, A,∆ � i(·) : A where i = |A, ∆| and i is marked iff |Γ | = 0

Γ � M : A Γ � N : B
∧

I

Γ � 〈M, N〉 : A ∧ B

Γ � M : A ∧ B
∧

E

Γ � π1M : A

Γ � M : A ∧ B
∧

E

Γ � π2M : B

Γ, A � M : B
⊃

I

Γ � λM : A ⊃ B

Γ � M : A ⊃ B Γ � N : A
⊃

E

Γ � MN : B

Fig. 6. Typing rules for the name-free λ-calculus

tni (m) =

{
m+ n m > i

m m ≤ i

tni (m·) = (m+ n)·

tni (M N) = (tni (M) tni (N))

tni (λM) = (λ tni+1(M))

A typing context, denoted by Γ or ∆, is a finite sequence of formulas. For
typing context Γ its length is denoted by |Γ | and the conjunction of all its
formulas, in the given order and associated to the left, is denoted by ∧Γ . Our
typing system for lambda terms is given in Figure 6. Notice that it is impossible
to type any term in an empty context, because that would require us to abstract
over a marked index, which is not allowed. Let " denote a ⊃ a, for some atom
a. Notice that whenever Γ (M : A and M ′ is obtained from M by removing all
markings, then ", Γ (M ′ : A

Natural deduction to deep inference. We define a function D from λ-terms to
deep inference proof terms. We write Rn for n > 0 to denote R sequentially
composed with itself n times. An expression R0 . T or T . R0 denotes just T .

m·
D =

{
id m = 1
wm−1

1 m > 1

mD = wm−1
1 . w2

λMD = i . (id ⊃MD)
MND = c . (MD

∧ND) . e
πnMD

= MD . wn

〈M,N〉
D

= c . (MD
∧ND)

It is straightforward to check that the embedding preserves typing, so we omit
the proof, even though it is very instructive:

Theorem 1 (the embedding preserves typing). If Γ (M : A then ∧Γ MD−−→ A.

We now come to the main theorem: System Beta can simulate β-reduction. The
proof is of course similar to the proof of a similar result for Curien’s combinators
in [2]. We write idn(R) for (. . . (R ∧ id) . . . ∧ id︸ ︷︷ ︸

n times

).

Theorem 2 (the embedding preserves reduction)
(i) If M �β N then MD � ND.
(ii) idn−1(c . (id ∧ND)) . MD � M [n←N]

D

(iii) idi(wn
1) . MD � tni (M)

D

An Algorithmic Interpretation of a Deep Inference System 491

Proof The first claim follows from the following diagram, which relies on (ii). A
similar diagram works for the projection–pairing reduction.

(λM)N D

β

c . (i . (id ⊃MD) ∧ND) . e

β⊃
′

c . (id ∧ND) . MD

(ii)

M [1 ←N] D M [1 ←N]
D

We now prove (ii), by induction on M . We see the cases for an index, an ap-
plication, and an abstraction. The cases for a marked index, for pairing and for
projection are straightforward.

idn−1(c . (id ∧ND)) . mD = idn−1(c . (id ∧ND)) . w
m−1
1 . w2

�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wn−1
1 . c . (id ∧ND) . w

m−n
1 . w2

� wm−2
1 . w2 = m− 1

D
= m[n←N]

D

m > n

wn−1
1 . c . (id ∧ND) . w2

� wn−1
1 . ND

(iii)
� tn−1

0 (N)
D

= m[n←N]
D

m = n

wm−1
1 . idn−m(c . (id ∧ND)) . w2

� wm−1
1 . w2 = mD = m[n←N]

D

m < n

idn−1(c . (id ∧ND)) . M1M2D
= idn−1(. . .) . c . (M1D

∧M2D
) . e

� c . (idn−1(. . .) . M1D
∧ idn−1(. . .) . M2D

) . e

� c . (M1[n←N]
D
∧M2[n←N]

D
) . e

= M1[n←N]M2[n←N]
D

= (M1M2)[n←N]
D

idn−1(. . .) . λMD = idn−1(. . .) . i . (id ⊃MD)
� i . (id ⊃ idn(. . .)) . (id ⊃MD)
� i . (id ⊃ idn(. . .) . MD)
� i . (id ⊃M [n+ 1 ←N

D
)

= λ(M [n+ 1 ←N])
D

= (λM)[n←N]
D

We now prove (iii), again by induction on M . We again see the cases for an
index, an application and an abstraction, the cases for a marked index, a pairing

492 K. Brünnler and R. McKinley

and a projection are straightforward.

idi(wn
1) . mD = (. . . (wn

1 ∧ id) . . . ∧ id︸ ︷︷ ︸
i times

) . wm−1
1 . w2 �

{
wm−1

1 . w2 = mD = tni (m)
D

m ≤ i

wm−1+n
1 . w2 = m+ n

D
= tni (m)

D
m > i

.

idi(wn
1) . M1M2D

= idi(wn
1) . (c . (M1D

∧M2D
) . e)

� c . (idi(wn
1) . M1D

∧ idi(wn
1) . M2D

) . e

� c . (tni M1
D
∧ tni M2

D
) . e

= tni M1
D
tni M2

D
= tni (M1M2)

D
.

idi(wn
1) . λND = idi(wn

1) . (i . (id ⊃ND))
� i . (id ⊃ idi+1(wn

1) . ND)
� i . (id ⊃ tni+1N

D
) = λtni+1N

D
= tni (λN)

D
.

�	

Definition 1. Let a proof term T be essentially in normal form if each reduction
sequence in system Beta starting from T only contains instances of the rules
R . id → R, id . R→ R, id ∧ id → id and id ⊃ id → id.

Proposition 4 (the embedding essentially preserves normal form). If M is in
normal form then MD is essentially in normal form.

Proof. By checking the reduction rules we first observe that, when given two
terms R, T which are essentially in normal form, then also the terms R ⊃ T ,
R ∧ T , i . (R ⊃ T) and c . (R ∧ T) are essentially in normal form. We prove our
proposition by induction on M . Translations of indices are clearly in normal
form, and our observation takes care of abstractions and pairings, so we are left
with applications and projections. Let M be an application M1M2. Then M1
can not be an abstraction, so it has to be either an index, a projection, a pairing
or an application. Say it is an application N1N2. Then MD = c . (M1D

∧M2D
) . e

with M1D
= c . (N1D

∧ N2D
) . e. By induction hypothesis M1D

is essentially in
normal form, so can only reduce to terms of the form c . U . e or c . e. But then
all reductions possible in a reduction sequence starting from MD are those that
are either in a reduction sequence starting from M1D

or M2D
and thus MD is

essentially in normal form. The other cases are similar.

Deep inference to natural deduction. We define a function N from deep in-
ference proof terms to natural deduction proof terms, i.e. lambda terms. We
give a definition using named lambda terms. For a given deep inference proof

An Algorithmic Interpretation of a Deep Inference System 493

term the function yields a lambda term with exactly one free variable, named
x. The translation from that into a name-free lambda term is as usual, except
that exactly those indices that come from occurrences of x are marked.

idN = x
wnN

= πnx
cN = 〈x, x〉
iN = λy.〈x, y〉
eN = π1xπ2x

R . T N = T N[x←RN]
R ∧ T N = 〈RN[x← π1x], T N[x← π2x]〉
R ⊃ T N = λy.T N[x← (xRN[x← y])] (fresh y)

Also the embedding in this direction preserves typing. Again it is straightforward
to check and we have to omit the proof for space reasons.

Theorem 3 (the embedding preserves typing). If A R−→ B then A (RN : B.

Remark 2. The embedding does not preserve normal form. Consider the normal
form i . (id ⊃ w1) which is mapped to λz.π1(λy〈x, y〉z) which is not in normal
form. The embedding does not preserve reduction. Consider the term w1 . i which
reduces to i . (id ⊃ (w1 ∧ id)) but w1 . iN = λy.〈π1x, y〉 is normal. The embedding
does not preserve β-convertibility. Consider id ∧ idN = 〈π1x, π2x〉 and idN = x.
However, if R � T then RN and T N are convertible in lambda calculus with
extensionality and surjective pairing.

Now we can use the two embeddings and their preservation of types to show the
following theorem:

Theorem 4. For each typed term there is a term in normal form with the same
type.

Proof. If a term R is typeable A R−→ B then by Theorem 3 A (RN : B and by
weak normalisation and subject reduction of the typed lambda calculus RN has a
normal form M with A (M : B. Now MD is essentially normal by Proposition 4

and typeable A
MD−−→ B by Theorem 1. Reducing MD in the canonical system

formed by the four rules which collapse and remove identity we obtain a term T

in normal form with A T−→ B.

Of course, while this is weak normalisation for some system, it is not weak
normalisation for System Beta, since System Beta cannot simulate the effect of
translating into the lambda calculus and back. So the problem now is to prove
weak normalisation either directly or maybe by using a different embedding into
lambda terms.

4 Discussion

Curien’s combinators. We first explain the difference between our combinators
and the categorical combinators of Curien. Both systems are orientations of a

494 K. Brünnler and R. McKinley

subset of a defining set of equations of a cartesian closed category, see Lam-
bek and Scott [8]. A cartesian closed category (without terminal object) is a
category with binary products and exponentials, which correspond to conjunc-
tion and implication, respectively. Both of these structures may be defined using
an adjunction. As explained in MacLane [9], an adjunction may be specified in
many different ways, leading to different presentations of a cartesian closed cat-
egory. Curien’s system corresponds to the specification based on one functor, a
mapping of arrows, and the counit. Our system corresponds to the more sym-
metric specification of an adjunction based on two functors and unit and counit.
Curien’s definition of a cartesian closed category is the one typically found in
textbooks, such as [8].

The primitives for both systems are summarized in Figure 7. Each of the two
rows represents an adjunction, and each column a collection of primitives. Our
system takes the functors ∧ and ⊃ as primitive, while Curien takes the mappings
〈−,−〉 and Λ. For each adjunction we take both unit and counit, while Curien
treats only the counit as a primitive. Of course, both systems include ∆ implic-
itly. The terms of Curien’s system are thus built from id,w1,w2, e using arrow com-
position, and two constructors 〈−,−〉 and Λ. By the equivalence of the different
presentations of an adjunction, we could define Curien’s constructors as

Λ(R) = A
i
B ⊃ (A ∧B) id⊃R

B ⊃ C and

〈R, T 〉 = A
c

A ∧A
R∧T

B ∧ C .

However, since we only have a subset of the defining equations of the adjunc-
tions this will not lead to an embedding of Curien’s system (not even the
one called CCLβ since it contains a bit of surjective pairing). In particular
Beta lacks naturality for the counit e, a part of naturality for the unit i as
in i . (id ⊃ (R ∧ T)) = i . (T ⊃ (R ∧ id)), and the equations c.(w1 ∧ w2) = id and
i.(id⊃ e) = id. Orienting and adding these equations would allow simulation of a
lambda calculus with surjective pairing and extensionality and give equational
equivalence with Curien’s system CCLβηSP.

Future work. Adding extensionality is an obvious route for further research.
Adding full naturality for i and e is another interesting route: note that our
embedding of the lambda calculus stays in the strictly positive fragment of proof
terms, the fragment where the left-hand side of an implication is always the term
id. System Beta never leaves the strictly positive fragment. Full naturality for i
and e would allow us to leave that fragment. This gives us a lot of freedom. In
explicit substitution calculi when a beta-redex is reduced a substitution arises
from it, and then this substitution can be carried out indepently from other
beta-redexes. In a system with full naturality a substitution could be carried out
indepently even from the very beta-redex that it arises from. It would also be
interesting to use the functor ∧ to more economically embed lambda terms than
what is possible with Curien’s combinators: by distributing to each subterm not
the entire environment, but only those variables of the environment that actually
occur. This would correspond to embedding a natural deduction system with

An Algorithmic Interpretation of a Deep Inference System 495

left adjoint functor

right adjoint functor
Hom-bijection

unit

counit

∆ : f �→ (f, f)

∧ : (f, g) �→ f ∧ g

(A, A)
(f,g)

(B,C)

A
〈f,g〉

B ∧ C

c : A → A ∧ A

(w1, w2) :
(A ∧ B, A ∧ B)→ (A, B)

− ∧ A : f �→ f ∧ id

A ⊃− : f �→ id ⊃ f

B ∧ A
f

C

B
Λ(f)

A ⊃ C

i : B → A ⊃ (B ∧ A)

e : (A ⊃ B) ∧ A → B

Fig. 7. Primitives of both systems

multiplicative context treatment, and it would require some kind of exchange
combinator, which shuffles around the channels corresponding to the variables.
It would also be interesting to study flow graphs in the sense of [6] for our proof
terms. It is easy to define them, and their acyclicity seems to be the key to a proof
of normalisation. Our proof terms also give rise to interaction-style combinators,
similar in spirit to those used for optimal reduction, but different because based
on function composition instead of function application. An extension with more
connectives would be interesting. Notice that the rules to add for disjunction are
in perfect duality with those for conjunction:

A
∨I

A ∨B

B
∨I

A ∨B

A ∨A
∨E

A
.

We enjoy this improvement over the situation in natural deduction, where we
have essentially the same introduction rules, but the following elimination rule:

[A] [B]

A ∨B C C
C

.

And finally, classical logic would be interesting. A sensible place would be to
start with a system which can simulate reduction in the λµ-calculus [10].

References

1. Brünnler, K., Lengrand, S.: On two forms of bureaucracy in derivations. In: Br-
uscoli, P., Lamarche, F., Stewart, C. (eds.) Structures and Deduction, pp. 69–80.
Technische Universität Dresden (2005)

2. Curien, P.-L.: Categorical Combinators, Sequential Algorithms and Functional Pro-
gramming, 2nd edn. Research Notes in Theoretical Computer Science. Birkhäuser,
Basel (1993)

496 K. Brünnler and R. McKinley

3. de Bruijn, N.G.: Lambda calculus notation with nameless dummies, a tool for
automatic formula manipulation, with application to the church-rosser theorem.
Indagationes Mathematicae (Proceedings) 75(5), 381–392 (1972)

4. Girard, J.-Y., Lafont, Y., Taylor, P.: Proofs and Types. Cambridge Tracts in The-
oretical Computer Science, vol. 7. Cambridge University Press, Cambridge (1990)

5. Guglielmi, A.: A system of interaction and structure. ACM Transactions on Com-
putational Logic 8(1), 1–64 (2007)

6. Guglielmi, A., Gundersen, T.: Normalisation control in deep inference via atomic
flows. Logical Methods in Computer Science 4(1:9), 1–36 (2008),
http://arxiv.org/pdf/0709.1205

7. Hardin, T.: From categorical combinators to λσ-calculi, a quest for confluence.
Technical report, INRIA Rocquencourt (1992),
http://hal.inria.fr/inria-00077017/

8. Lambek, J., Scott, P.J.: Introduction to higher order categorical logic. Cambridge
University Press, New York (1986)

9. Mac Lane, S.: Categories for the Working Mathematician. In: Graduate Texts in
Mathematics. Springer, Heidelberg (1971)

10. Parigot, M.: λµ-calculus: an algorithmic interpretation of classical natural deduc-
tion. In: Voronkov, A. (ed.) LPAR 1992. LNCS, vol. 624. Springer, Heidelberg
(1992)

11. Tiu, A.F.: A local system for intuitionistic logic. In: Hermann, M., Voronkov, A.
(eds.) LPAR 2006. LNCS, vol. 4246, pp. 242–256. Springer, Heidelberg (2006),
http://users.rsise.anu.edu.au/∼tiu/localint.pdf

http://arxiv.org/pdf/0709.1205
http://hal.inria.fr/inria-00077017/
http://users.rsise.anu.edu.au/~tiu/localint.pdf

Weak βη-Normalization and
Normalization by Evaluation for System F

Andreas Abel

Department of Computer Science
Ludwig-Maximilians-University Munich

Abstract. A general version of the fundamental theorem for System F
is presented which can be instantiated to obtain proofs of weak β- and
βη-normalization and normalization by evaluation.

1 Introduction and Related Work

Dependently typed lambda-calculi have been successfully used as proof languages
in proof assistants like Agda [19], Coq [16], LEGO [21], and NuPrl [11]. Since
types may depend on values in these type theories, checking equality of types,
which is crucial for type and, thus, proof checking, is non-trivial for these lan-
guages, and undecidable in the general case. In extensional type theories, such
as the one underlying NuPrl, extensional, hence undecidable, type equality has
been kept with the consequence that type checking is undecidable and requires
user interaction. In intensional type theories, which are the basis of Agda, Coq,
and LEGO, type equality has been restricted to a decidable fragment, called
definitional equality, hence, type checking is decidable. However, the choice of
this fragment strongly influences the comfort in using these systems: the more
equal types are recognized as equal automatically, the fewer equality proofs the
user has to construct manually.

Definitional equality encompasses at least computational equality, i. e., β, ex-
panding of definitions, and recursion, and exactly like that it is currently imple-
mented in Coq. However, there are suggestions to strengthen definitional equal-
ity by rewriting rules [8,10] and decision procedures [9]. On another line, it
is strongly desirable to include η, which does not fit well under the rewriting
paradigm. For incorporating η, normalization-by-evaluation has proven to be
successful. Besides being explored for simple types [7,12,3] it has been extended
to polymorphic types [4] and predicative dependent type theories [1]. Still open
is its application to impredicative type theories such as the Calculus of Construc-
tions (CoC), probably due to the difficult meta theory of CoC. Our long term
goal is to formulate a verified normalization-by-evaluation (NbE) algorithm for
impredicative type theories. This work is an important step towards this goal:
we construct a generic model for System F whose instances are soundness and
completeness proofs for NbE.

Altenkirch, Hofmann, and Streicher [4] already developed an NbE algorithm
for System F and proved it correct. However, their work concerns only a combi-
natory (λ-free) version of System F. Moreover, they construct an internal model

I. Cervesato, H. Veith, and A. Voronkov (Eds.): LPAR 2008, LNCS 5330, pp. 497–511, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

498 A. Abel

of System F in category theory; their work is only accessible to experts in cate-
gories, and the structure of the algorithm is a bit lost among the category-related
technical details. They provide an SML-implementation of the algorithm in the
appendix, but it is not formally related to the mathematical algorithm in the
main text. In an unpublished article [5] they later extend their result to full Sys-
tem F (with λ-abstraction). Deep knowledge of category theory is a preliminary
also for this paper, in the words of the authors, a “certain acquaintance with
categories of presheaves” is assumed.

In this article, we try to give a more conventional presentation of NbE for
System F, presuming only basic knowledge of λ-calculus and System F, domain
theory, and inductive definitions in set theory. This way, we hope to make NbE
for System F accessible to a wider audience, and to pave the way for an adaption
of NbE to impredicative dependent type theories.

Overview. In Sec. 2, we introduce syntax and typing and computation rules for
System F. A generic type interpretation is given in Sec. 3, and a generic formu-
lation of the fundamental theorem for System F in Sec. 4. It is then instantiated
to yield weak normalization proofs for β (Sec. 5) and βη (Sec. 6). As main re-
sults we obtain soundness and completeness of an NbE algorithm for System F
in Sec. 7.

2 Church-Style System F

In this section, we briefly recapitulate the syntax and static and dynamic se-
mantics of System F. A more gentle introduction to System F can be found in
Pierce’s book [20, Ch. 23].

Syntax. Type variables X and term variables x are drawn from two distinct,
countable supplies TyVar and Var.

Ty / A,B,C ::= X | A→ B | ∀XA types
Tm / r, s, t ::= x | λx :A. t | r s | ΛXt | r A terms
Cxt / Γ,∆ ::= � | Γ, x :A typing contexts

We say context Γ ′ extends Γ , written Γ ′ ≤ Γ , if Γ ′(x) = Γ (x) for all x ∈ dom(Γ).
For instance, assuming y �∈ dom(Γ), we have (Γ, y :A) ≤ Γ , but not the other way
round. Extending a context extends the set of terms typeable in that context;
this theorem is called weakening.

Remark 1. The direction of ≤ is chosen to be compatible with subtyping. There,
we let Γ ′ ≤ Γ if Γ ′(x) ≤ Γ (x) for all x ∈ dom(Γ). Then Γ (t : A, Γ ′ ≤ Γ , and
A ≤ A′ imply Γ ′ (t : A′ (contravariance!).

A substitution σ is a map from type variables to type expressions and from term
variables to term expressions. We write Aσ, tσ for the simultaneous execution
of substitution σ in A, t. As usual, FV(t) denotes the set of free type and term
variables of t, and FV(A) the set of free type variables of A. Let FV(Γ) =⋃
{FV(A) | (x :A) ∈ Γ}.

Weak βη-Normalization and Normalization by Evaluation for System F 499

Typing (static semantics) Γ (t : A.

Γ (x : Γ (x)
Γ, x :A (t : B

Γ (λx :A. t : A→ B

Γ (r : A→ B Γ (s : A
Γ (r s : B

Γ (t : A
Γ (ΛXt : ∀XA X �∈ FV(Γ)

Γ (t : ∀XA
Γ (t B : A[B/X]

Operational (dynamic) semantics. One step βη-reduction is the closure of the
following axioms under all term constructors:

(λx :A. t) s −→βη t[s/x] λx :A. t x −→βη t if x �∈ FV(t)
(ΛXt)A −→βη t[A/X] ΛX. tX −→βη t if X �∈ FV(t)

We denote its reflexive-transitive closure by −→∗
βη and its reflexive-transitive-

symmetric closure by =βη.
In the metatheoretic investigation of System F to follow, we denote the depen-

dent set-theoretic function space by (x ∈ S) → T (x), which is an abbreviation
for {f ∈ S →

⋃
x∈S T (x) | f(x) ∈ T (x) for all x ∈ S}.

3 Type Interpretation by Kripke Relations

We seek an interpretation of System F’s types which is general enough to account
for different normalization results. In particular, we are interested in normaliza-
tion by evaluation, which exists in different flavors. To name a few, Berger and
Schwichtenberg [7] interpret simple types as set-theoretical function spaces over
the base type of term families, Filinski [14] uses continuous function spaces in-
stead, and Altenkirch, Hofmann, and Streicher [4] construct a glueing model of
System F types. We choose Abel, Coquand, and Dybjer’s approach of contextual
reification [2], where types are modelled as applicative structures with variables,
and reification, i. e., converting semantic objects back to syntax, is context- and
type-sensitive. This means that we need to interpret types as Kripke relations,
i.e., relations indexed by contexts.

Kripke relations. Given a poset (S,⊆), we say F is Kripke if F ∈ Cxt → S and
antitone, i.e., Γ ′ ≤ Γ implies F (Γ) ⊆ F (Γ ′). We usually write FΓ for F (Γ).

We say D is an applicative System F structure, if DA is Kripke for each A ∈ Ty
and for all A,B ∈ Ty, X ∈ TyVar and Γ ∈ Cxt there exist operations

appA,B
Γ ∈ DA→B

Γ → DA
Γ → DB

Γ ,

AppX.A
Γ ∈ D∀XA

Γ → (B ∈ Ty) → DA[B/X]
Γ .

These operations need to be independent of type and context indices, i. e.,
appA,B

Γ (f, d) = appA′,B′

Γ ′ (f, d) if f ∈ DA→B
Γ ∩ DA′→B′

Γ ′ and d ∈ DA
Γ ∩ DA′

Γ ′ , and
similar for App. Thus, we can introduce an overloaded notation · for application

500 A. Abel

by f · d := app(f, d) and d · B := App(d,B). Examples for applicative System F
structures are TmA

Γ := {t | Γ (t : A}, as well as TmA
Γ /=βη.

Let D, D̂ be applicative System F structures. We define the set of Kripke
relations of type A by

A ∈ KA ⇐⇒ AΓ ⊆ DA
Γ × D̂A

Γ for all Γ and A is Kripke.

We use the letters A,B, C for elements of KA. We write Γ (d ∼ d′ ∈ A for
(d, d′) ∈ AΓ . KA forms a complete lattice with ⊆, ∩, and ∪ defined pointwise.

A Kripke relation A is a Kripke PER (partial equivalence relation) if AΓ

is symmetric and transitive for any context Γ , i.e., Γ (d ∼ d′ ∈ A implies
Γ (d′ ∼ d ∈ A and Γ (d1 ∼ d2 ∈ A and Γ (d2 ∼ d3 ∈ A imply
Γ (d1 ∼ d3 ∈ A.

Constructing Kripke relations. In predicative type theories, such as Martin-Löf
Type Theory, one can construct semantic types inductively, i. e., from below
[1], without reference to syntax. For impredicative systems, like System F or the
Calculus of Constructions, this is not possible. Instead, for each type constructor
one has to define a matching operation in the interpretation domain of types,
in our case, K, and then define the interpretation of a type by induction on
syntax, e. g., the size of the type expression [15, Sec. 14.2] or its derivation of
wellfoundedness [22]. In the following, we provide the necessary constructions to
interpret function type and universal type.

Kripke relations are closed under arbitrary intersections. Further construc-
tions on Kripke relations are function space and type abstraction:

→ ∈ KA → KB → KA→B

(A → B)Γ = {(f, f ′) ∈ DA→B
Γ × D̂A→B

Γ | for all d, d′, Γ ′ ≤ Γ,
Γ ′ (d ∼ d′ ∈ A implies Γ ′ (f · d ∼ f ′ · d′ ∈ B}

(.)X.B ∈ (A ∈ Ty) → KB[A/X] → K∀XB

(A.B)X.B
Γ = {(d, d′) ∈ D∀XA

Γ × D̂∀XA
Γ | Γ (d ·A ∼ d′ · A ∈ B}

The function space A → B is monotone (covariant) in B and antitone (con-
travariant) in A. The type abstraction operator (A.B)X.B is monotone in B. In
the following, we drop the superscript X.B.

Lemma 1. If A,B are Kripke PERs, so are A → B and A.B.

Interpretation space. Depending on what result one wants to harvest from a
model construction for System F, one has to impose restrictions on the interpre-
tation domain of types. For example, in a Tait-style proof of strong normalization
using saturated sets, one requires each semantic type to be below the set S of
strongly normalizing terms and above the set N of neutral strongly normalizing
terms. Vaux [23] found an abstraction of (N ,S) which he called stable pair. In
the following, we present a further generalization which allows the restriction to
be dependent on a syntactical type.

Weak βη-Normalization and Normalization by Evaluation for System F 501

Definition 1 (Interpretation space). An interpretation space consists of two
Kripke relations A ⊆ A ∈ KA for each type A such that the following conditions
hold.

k-fun-e A→ B ⊆ A→ B

k-fun-i A→ B ⊆ A→ B

k-all-e ∀Y A ⊆ B.A[B/Y] for any B

k-all-i X.A[X/Y] ⊆ ∀Y A for a new X

We write A � A (pronounced A realizes A) if A ⊆ A ⊆ A.

A trivial, not type-sensitive interpretation space is AΓ = N and AΓ = S. In
this case, A � A just means A is saturated. An analogy of A � A can be found
in Matthes’ proof of strong normalization of System F [18, Sec. 9.1.2] where it
means A is A-saturated. More examples of interpretation spaces can be found
in this article.

In the following, we assume an interpretation space. We now introduce the
last construction on semantic types, quantification, which is relative to an inter-
pretation space. If F(B) ∈ KB → KA[B/X] for all B ∈ Ty, we let⋂

F =
⋂

{B.F(B,B) | B � B} ∈ K∀XA.

Intersection is restricted to realizable semantic types. This has an analogue in
other normalization proofs of System F, e. g., Girard [15, Ch. 14] restricts quan-
tification to reducibility candidates. The type constructions preserve realizability,
thanks to the conditions imposed by Def. 1.

Lemma 2 (Realizability of type constructions)

1. If A � A and B � B then A→ B � A → B.
2. If A[B/Y] � F(B,B) for all B � B, then ∀Y A �

⋂
F .

Proof Directly, using the postulates on C and C.

1. First, we have A→ B ⊆ A → B by k-fun-e, and since A ⊆ A and B ⊆ B
we obtain by contravariance of the function space A→ B ⊆ A → B.
Secondly, since A ⊆ A and B ⊆ B, contravariance yields A → B ⊆ A →
B ⊆ A→ B by k-fun-i.

2. First, for any B � B we have A[B/Y] ⊆ F(B,B), thus by monotonicity
of the abstraction operator, B.A[B/Y] ⊆ B.F(B,B). By k-all-e it follows
∀Y A ⊆ B.F(B,B), and since B,B were arbitrary, ∀Y A ⊆

⋂
F .

Secondly, let X be a new type variable. We have X � X, hence, A[X/Y] �
F(X,X) which implies F(X,X) ⊆ A[X/Y]. Thus,

⋂
F ⊆ X.F(X,X) ⊆

X.A[X/Y] ⊆ ∀Y A by k-all-i.

502 A. Abel

Type interpretation can now be defined mechanically, mapping the syntactic
type constructors to the semantic ones. Let σ be a syntactical type substitution
and ρ(X) ∈ Kσ(X) for all type variables X , which we write ρ ∈ Kσ. We define
[[A]]ρ ∈ KAσ by the following equations.

[[X]]ρ = ρ(X)
[[A→ B]]ρ = [[A]]ρ → [[B]]ρ

[[∀XA]]ρ =
⋂

((B ∈ Ty) �→ (B ∈ KB) �→ [[A]]ρ[X �→B])

Note that ρ[X �→ B] ∈ Kσ[X �→B] in the last line.

Lemma 3. If ρ(X) is a Kripke PER for all X, so is [[A]]ρ.

Lemma 4 (Substitution). [[A[B/X]]]ρ = [[A]]ρ[X �→[[B]]ρ].

If ρ ∈ Kσ, we let σ � ρ if σ(X) � ρ(X) for all type variables X . It is now easy
to show that types realize their own interpretations.

Theorem 1 (Type interpretation is realizable). If σ � ρ then Aσ � [[A]]ρ.

4 Fundamental Lemma

A general model of System F can be given by interpreting terms in an applicative
System F structure D and types as PERs over D. The fundamental theorem does
not rely on types being PERs, thus, we can easily take Kripke relations instead.
This freedom will be exploited for the soundness of NbE in Sec. 7.4.

Fix some context ∆. Let η map type variables to syntactical types and term
variables to elements of D such that η ∈ DΓ

∆, meaning η(x) ∈ DB
∆ for all (x :B) ∈

Γ . Let t ∈ TmA
Γ . We stipulate the existence of an evaluation function �t�η ∈ DA

∆

with the following properties.

den-var �x�η = η(x)
den-fun-e �r s�η = �r�η · �s�η

den-all-e �r A�η = �r�η ·Aη
den-fun-i �λx :A. t�η · d = �t�η[x �→d] if d ∈ DA

∆

den-all-i �ΛXt�η ·A = �t�η[X �→A]

We call (D, · , � �) a syntactical applicative System F structure (cf. Barendregt
[6, 5.3.1]).

Now we are ready to show the fundamental theorem. Let (D̂, · , � �′) be
another syntactical applicative System F structure. For η ∈ DΓ

∆, η
′ ∈ D̂Γ

∆ we
define

∆ (η ∼ η′ ∈ [[Γ]]ρ ⇐⇒ ∆ (η(x) ∼ η′(x) ∈ [[Γ (x)]]ρ for all x ∈ dom(Γ).

Theorem 2 (Validity of typing). Let η � ρ and both η � TyVar = η′ � TyVar
and ∆ (η ∼ η′ ∈ [[Γ]]ρ. If Γ (t : A then ∆ (�t�η ∼ �t�′η′ ∈ [[A]]ρ.

Weak βη-Normalization and Normalization by Evaluation for System F 503

Proof. By induction on Γ (t : A. Interesting are the System F specific cases.

Case
Γ (t : A

Γ (ΛXt : ∀XA X �∈ FV(Γ)

B � B assumption
η[X �→ B] � ρ[X �→ B] =: ρ′ by def.
∆ (η[X �→ B] ∼ η′[X �→ B] ∈ [[Γ]]ρ = [[Γ]]ρ′ since X �∈ FV(Γ)

∆ (�t�η[X �→B] ∼ �t�′η′ [X �→B] ∈ [[A]]ρ′ by ind. hyp.

∆ (�ΛXt�η · B ∼ �ΛXt�′η′ · B ∈ [[A]]ρ′ den-all-i

∆ (�ΛXt�η ∼ �ΛXt�′η′ ∈ B.[[A]]ρ′ by def.

∆ (�ΛXt�η ∼ �ΛXt�′η′ ∈ [[∀XA]]ρ since B � B arbitrary

Case
Γ (t : ∀XA

Γ (t B : A[B/X]

∆ (�t�η ∼ �t�′η′ ∈
⋂

(B �→ B �→ [[A]]ρ[X �→B]) by ind.hyp.

Bη � [[B]]ρ by Thm. 1

∆ (�t�η · Bη ∼ �t�′η′ ·Bη ∈ [[A]]ρ[X �→[[B]]ρ] by instantiation

∆ (�t B�η ∼ �t B�′η′ ∈ [[A]]ρ[X �→[[B]]ρ] den-all-e

∆ (�t B�η ∼ �t B�′η′ ∈ [[A[B/X]]]ρ Substitution

5 Weak β-Normalization

From our general fundamental theorem we can recover a proof of β-normalization
for System F. In this case, we construct an untyped interpretation space of dis-
crete Kripke relations which ignores types and contexts. The following develop-
ment is standard, we show here only that it fits into the abstractions we have
chosen in sections 3 and 4.

Let r denote the β-equivalence class of r. Let DA
Γ = D̂A

Γ = Tm/=β for all Γ,A,
with application defined by r · s = r s and r · A = r A. Evaluation is defined by
�t�σ = tσ.

Lemma 5. Application and evaluation are well-defined and (D, · , � �) forms
a syntactical applicative System F structure.

Neutral terms are given by the grammar n ::= x | n s | nA. The interpretation
space for β-normalization is untyped, i. e., we set

AΓ = WΓ := {(t, t) | t has a β-normal form }
AΓ = NΓ := {(n, n) | n has a β-normal form }

504 A. Abel

for all types A. To show that these settings really constitute an interpretation
space is a standard exercise.

Let ηid be the identity map on term and type variables, and let ρid(X) = N
for all X ∈ TyVar. Clearly, ηid � ρid.

Lemma 6 (Identity environment). Γ (ηid ∼ ηid ∈ [[Γ]]ρid
.

Theorem 3 (Weak β-normalization of System F). If Γ (t : A then t has
a β-normal form.

Proof. By the fundamental theorem Γ (�t�ηid ∼ �t�ηid ∈ [[A]]ρid
which implies

Γ (t ∼ t ∈ W , hence, t has a β-normal form.

6 Weak βη-Normalization

In this section, we instantiate Thm. 2 to prove weak βη-normalization for Sys-
tem F. In particular, we show that each well-typed term has a η-long β-normal
form. In this, we will require the Kripke aspect of our type interpretation, since
being η-long for open terms can only be defined in the presence of a typing
context.

Let now r denote the βη-equivalence class of r and set DA
Γ = D̂A

Γ = Tm/=βη.
Again, D, with application and evaluation defined as in the last section, consti-
tutes a syntactical applicative System F structure.

Long normal forms are characterized by the two mutually defined judgments

Γ (t ⇑ A t is a long normal form of type A
Γ (t ⇓ A t is a neutral long normal form of type A

given by the following rules:

Γ (x ⇓ Γ (x)
Γ (r ⇓ A→ B Γ (s ⇑ A

Γ (r s ⇓ B
Γ (r ⇓ ∀XA

Γ (rB ⇓ A[B/X]

Γ (r ⇓ X
Γ (r ⇑ X

Γ, x :A (t ⇑ B
Γ (λx :A. t ⇑ A→ B

Γ (t ⇑ A
Γ (ΛXt ⇑ ∀XA X �∈ FV(Γ)

From the model construction of System F we want to harvest that each well-
typed term has a η-long β-normal form. Thus, we define an interpretation space
by setting

Γ (d ∼ d′ ∈ A ⇐⇒ exists r with d = d′ = r and Γ (r ⇑ A,
Γ (d ∼ d′ ∈ A ⇐⇒ exists r with d = d′ = r and Γ (r ⇓ A.

Lemma 7 (Weakening). A,A ∈ KA.

Indeed, A and A span an interpretation space, which we will prove in detail in
the following.

Weak βη-Normalization and Normalization by Evaluation for System F 505

Lemma 8 (Interpretation space)

k-fun-e A→ B ⊆ A→ B

k-fun-i A→ B ⊆ A→ B

k-all-e ∀XA ⊆ B.A[B/X]

k-all-i X.A[X/Y] ⊆ ∀Y A for a new X

Proof. k-fun-e A→ B ⊆ A→ B

Γ (f ∼ f ′ ∈ A→ B by hyp.
f = f ′ = r and Γ (r ⇓ A→ B by def.

Γ ′ ≤ Γ and Γ ′ (d ∼ d′ ∈ A assumption
d = d′ = s and Γ ′ (s ⇑ A by def.
f · d = f ′ · d′ = r s def. of application
Γ ′ (r s ⇓ B rule, Lemma 7
Γ ′ (f · d ∼ f ′ · d′ ∈ B by def.

Γ (f ∼ f ′ ∈ A→ B since Γ ′, d, d′ arb.

k-fun-i A→ B ⊆ A→ B

Γ (r ∼ r′ ∈ A→ B by hyp.
Γ, x :A (x ⇓ A rule
Γ, x :A (x ∼ x ∈ A by def.

Γ, x :A (r · x ∼ r′ · x ∈ B by def. →
r x = r′ x = t and Γ, x :A (t ⇑ B by def.

r = λx :A. r x = r′ = λx :A. r′ x = λx :A. t η

Γ (λx :A. t ⇑ A→ B rule

Γ (r ∼ r′ ∈ A→ B by def.

k-all-e ∀XA ⊆ B.A[B/X]

Γ (d ∼ d′ ∈ ∀XA assumption
d = d′ = r and Γ (r ⇓ ∀XA by def.

d ·B = d′ ·B = r B and Γ (r B ⇓ A[B/X] rule, app.
Γ (d ·B ∼ d′ · B ∈ A[B/X] by def.

Γ (d ∼ d′ ∈ B.A[B/X] by def. B.A

506 A. Abel

k-all-i X.A[X/Y] ⊆ ∀Y A for a new X .

Γ (r ∼ r′ ∈ X.A[X/Y] assumption

Γ (r ·X ∼ r′ ·X ∈ A[X/Y] by def. X.A
r X = r′X = t and Γ (t ⇑ A[X/Y] by def.

r = ΛX. rX = r′ = ΛX. r′X = ΛXt η

X �∈ FV(Γ) since X new
Γ (ΛXt ⇑ ∀X.A[X/Y] = ∀Y A rule

Γ (r ∼ r′ ∈ ∀Y A by def.

The rest is just an application of the fundamental theorem. Recall that ηid is the
identity map, and let this time ρid(X) = X for all X ∈ TyVar. Again, ηid � ρid,
and Γ (ηid ∼ ηid ∈ [[Γ]]ρid

.

Theorem 4 (Weak βη-normalization of System F). If Γ (t : A then t
β-reduces η-expands to a long normal form t′.

Proof. Clearly, A � [[A]]ρid
. By Thm. 2, Γ (�t�ηid ∼ �t�ηid ∈ [[A]]ρid

, meaning
t =βη t

′ with Γ (t′ ⇑ A. We conclude by Church-Rosser for β-reduction η-
expansion [17].

7 Normalization by Evaluation

In this section we now define a normalization function which maps exactly the
βη-equal terms of the same type to the same η-long β-normal form. To this end,
we define judgmental βη-equality Γ (t = t′ : A and the function nf(Γ (t :A)
such that it is

1. complete for judgmental equality, i. e., Γ (t = t′ : A implies nf(Γ (t :A) ≡
nf(Γ (t′ :A), and

2. sound, i. e., if Γ (t : A then Γ (t = nf(Γ (t :A) : A.

7.1 Judgmental Equality

Judgmental βη-equality Γ (t = t′ : A is defined inductively by the following
axiom, plus congruence rules and equivalence rules (reflexivity, symmetry, and
transitivity).

Γ, x :A (t : B Γ (s : A
Γ ((λx :A. t) s = t[s/x] : B

Γ (t : A→ B

Γ (λx :A. t x = t : A→ B
x �∈ FV(t)

Γ (t : A X �∈ FV(Γ)
Γ ((ΛXt)B = t[B/X] : A[B/X]

Γ (t : ∀XA
Γ (ΛX. tX = t : ∀XA X �∈ FV(t)

Weak βη-Normalization and Normalization by Evaluation for System F 507

A fundamental theorem for judgmental equality is of course not valid for arbi-
trary Kripke relations, it can only be shown for Kripke PERs, since symmetry
and transitivity have to be modeled. Also, to model the above equations, the
evaluation function must satisfy additional laws:

den-subst �t[s/x]�η = �t�η[x �→�s�η] if Γ, x :A (t : B and Γ (s : A
den-ty-subst �t[A/X]�η = �t�η[X �→Aη] if Γ (t : B and X �∈ FV(Γ)
den-irr �t�η = �t�η′ if η(x) = η′(x) for all x ∈ FV(t)

If these laws are satisfied, (D, · , � �) is called a syntactical combinatorial Sys-
tem F algebra (cf. [1]).

For the following theorem, consider an interpretation space of Kripke-PERs
over a syntactical combinatorial System F algebra.

Theorem 5 (Validity of equality). Let σ � ρ and ∆ (η ∼ η′ ∈ [[Γ]]ρ. If
Γ (t = t′ : A then ∆ (�t�η ∼ �t′�η′ ∈ [[A]]ρ.

Proof. By induction on Γ (t = t′ : A.

7.2 The Normalization Algorithm

Normalization by evaluation consists of two steps: first, evaluate the term in the
identity environment, obtaining a semantic object, and then, reify the semantic
object back to syntax, yielding a long normal form.

Evaluation. For the evaluation we need a combinatorial algebra Val with com-
putable application and evaluation and with variables. One possibility is to let
Val be the solution of the recursive domain equation:

Val = (Var × (Val ∪ Ty)<ω + [Val → Val] + (Ty → Val))⊥.

Then a semantic object d ∈ Val is either a neutral object e of the shape e ::= x |
e d | eA, a continuous function f ∈ [Val → Val] on semantic objects, a function
F ∈ Ty → Val from types to semantic objects, or undefined, ⊥.

Let DA
Γ = Val for all Γ,A. Application is defined by

e · d = e d
f · d = f(d)

e ·A = eA
F ·A = F (A),

yielding ⊥ in all other cases, and evaluation by den-var,den-fun-e,den-all-e

and
�λx :A. t�η(d) = �t�η[x �→d]�ΛXt�η(A) = �t�η[X �→A].

It is easy to check that (D, · , � �) forms a syntactical combinatorial System F
algebra.

508 A. Abel

Reification converts semantic objects back to expressions. Functions are reified
by applying them to fresh variables. This is of course only possible if Val contains
the variables.

We adapt contextual reification [2] to System F and define inductively the
mutual judgements

Γ (d↘ t ⇑ A d reifies to t at type A,
Γ (d↘ t ⇓ A d reifies to t, inferring type A.

These judgements enrich the corresponding judgements for long normal forms
by the semantic object d to be reified to term t. As a consequence, the output t
is trivially in long normal form.

Γ (x↘ x ⇓ Γ (x)

Γ (e↘ r ⇓ A→ B Γ (d↘ s ⇑ A
Γ (e d↘ r s ⇓ B

Γ (e↘ r ⇓ ∀XA
Γ (eB ↘ r B ⇓ A[B/X]

Γ (e↘ r ⇓ X
Γ (e↘ r ⇑ X

Γ, x :A (f · x↘ t ⇑ B
Γ (f ↘ λx :A. t ⇑ A→ B

Γ (F ·X ↘ t ⇑ A
Γ (F ↘ ΛXt ⇑ ∀XA X �∈ FV(Γ).

These rules can be interpreted computationally by considering them clauses of
a logic program. Both judgements take Γ and d as input and return t. In the
type-directed mode ⇑, type A is input, and in the inference mode ⇓, type A is
output. It is easy to check that the associated logic program is well-moded [13].
Termination, however, will follow from the fundamental theorem.

Lemma 9 (Weakening). Let Γ ′ ≤ Γ .

1. If Γ (e↘ r ⇓ A then Γ ′ (e↘ r ⇓ A.
2. If Γ (d↘ t ⇑ A then Γ ′ (d↘ t ⇑ A.

7.3 Completeness of NbE

We obtain completeness (and termination) of the normalization function as in-
stance of the fundamental theorem for judgmental equality. Let an interpretation
space be defined by

Γ (d ∼ d′ ∈ A ⇐⇒ exists t with Γ (d↘ t ⇑ A and Γ (d′ ↘ t ⇑ A,
Γ (d ∼ d′ ∈ A ⇐⇒ exists t with Γ (d↘ t ⇓ A and Γ (d′ ↘ t ⇓ A.

Lemma 10 (Interpretation space). A,A form an interpretation space of
Kripke PERs.

Proof. Analogous to Lemma 8.

Weak βη-Normalization and Normalization by Evaluation for System F 509

Theorem 6 (Completeness of NbE). If Γ (t = t′ : A then Γ (�t�ηid ↘
r ⇑ A and Γ (�t′�ηid ↘ r ⇑ A for some long normal form r.

Proof. Since Γ (ηid ∼ ηid ∈ [[Γ]]ρid
, by Thm. 5 Γ (�t�ηid ∼ �t′�ηid ∈ A.

The normalization function nf(Γ (t :A) can now be defined to yield the t′ such
that Γ (�t�ηid ↘ t′ ⇑ A.

7.4 Soundness of NbE

Soundness (and termination) of the normalization function is a consequence of
the fundamental theorem for typing, applied to a Kripke relation between seman-
tics and syntax. With D defined as above, we set D̂A

Γ = TmA
Γ /(Γ (= : A),

i.e., terms modulo judgmental equality, which forms a syntactical applicative
System F structure by virtue of

appA,B(r, s) = r s

AppX.A(r,B) = r B
�t�σ = tσ

Note that the typed applicative structure is crucial here, on untyped terms mod-
ulo judgmental equality one cannot define a total application operation. We let

Γ (d ∼ t ∈ A ⇐⇒ exists t′ with Γ (d↘ t′ ⇑ A and Γ (t = t′ : A,
Γ (d ∼ t ∈ A ⇐⇒ exists t′ with Γ (d↘ t′ ⇓ A and Γ (t = t′ : A.

Lemma 11 (Interpretation space). A,A form an interpretation space.

Theorem 7 (Soundness of NbE). If Γ (t : A then Γ (�t�ηid ↘ t′ ⇑ A and
Γ (t = t′ : A.

Proof. For all (x :B) ∈ Γ , it holds that Γ (x ∼ x ∈ B, hence, Γ (ηid(x) ∼
ηid(x) ∈ [[B]]ρid

, thus, Γ (ηid ∼ ηid ∈ [[Γ]]ρid
. By Thm. 2, Γ (�t�ηid ∼ t ∈ [[A]]ρid

.
We conclude by [[A]]ρid

⊆ A.

Summarizing this section, we have obtained a βη-normalization function for
System F which is complete and sound for judgmental equality. We have crucially
used that the fundamental theorem for typing is not restricted to PER semantics
but has been formulated for Kripke relations between two different applicative
System F structures.

8 Conclusion

We have introduced the concept of type interpretation space and proven generic
fundamental theorems for typing and judgmental equality in System F. As in-
stances, we obtained proofs of weak normalization for β and βη, and proofs of
soundness and completeness for a normalization-by-evaluation algorithm based
on contextual reification.

510 A. Abel

Further work. We seek to extend this work to type theories with non-trivial
equality on the type level, like System Fω and the Calculus of Constructions.

Acknowledgments. This work was carried out during a visit to Frédéric Blanqui
and Cody Roux at LORIA, Nancy, France, financed by the Bayerisch-Französi-
sches Hochschulzentrum. My gratitude extends also to Thierry Coquand and
Peter Dybjer for discussions on the topic, and to Ralph Matthes, Cody Roux,
and the anonymous referees for their suggestions which helped to improve this
paper.

References

1. Abel, A., Coquand, T., Dybjer, P.: Normalization by evaluation for Martin-Löf
Type Theory with typed equality judgements. In: Proc. of the 22nd IEEE Symp.
on Logic in Computer Science (LICS 2007), pp. 3–12. IEEE Computer Soc. Press,
Los Alamitos (2007)

2. Abel, A., Coquand, T., Dybjer, P.: Verifying a semantic βη-conversion test for
martin-löf type theory. In: Audebaud, P., Paulin-Mohring, C. (eds.) MPC 2008.
LNCS, vol. 5133, pp. 29–56. Springer, Heidelberg (2008)

3. Altenkirch, T., Dybjer, P., Hofmann, M., Scott, P.J.: Normalization by evaluation
for typed lambda calculus with coproducts. In: Proc. of the 16th IEEE Symp. on
Logic in Computer Science (LICS 2001), pp. 303–310. IEEE Computer Soc. Press,
Los Alamitos (2001)

4. Altenkirch, T., Hofmann, M., Streicher, T.: Reduction-free normalisation for a
polymorphic system. In: Proc. of the 11th IEEE Symp. on Logic in Computer
Science (LICS 1996), pp. 98–106. IEEE Computer Soc. Press, Los Alamitos (1996)

5. Altenkirch, T., Hofmann, M., Streicher, T.: Reduction-free normalisation for Sys-
tem F (1997), http://www.cs.nott.ac.uk/∼{}txa/publ/f97.pdf

6. Barendregt, H.: The Lambda Calculus: Its Syntax and Semantics. North Holland,
Amsterdam (1984)

7. Berger, U., Schwichtenberg, H.: An inverse to the evaluation functional for typed
λ-calculus. In: Proc. of the 6th IEEE Symp. on Logic in Computer Science (LICS
1991), pp. 203–211. IEEE Computer Soc. Press, Los Alamitos (1991)

8. Blanqui, F.: Definitions by rewriting in the calculus of constructions. Mathematical
Structures in Computer Science 15, 37–92 (2005)

9. Blanqui, F., Jouannaud, J.-P., Strub, P.-Y.: Building decision procedures in the
calculus of inductive constructions. In: Duparc, J., Henzinger, T.A. (eds.) CSL
2007. LNCS, vol. 4646, pp. 328–342. Springer, Heidelberg (2007)

10. Chrzaszcz, J., Walukiewicz-Chrzaszcz, D.: Towards rewriting in coq. In: Comon-
Lundh, H., Kirchner, C., Kirchner, H. (eds.) Jouannaud Festschrift. LNCS,
vol. 4600, pp. 113–131. Springer, Heidelberg (2007)

11. Constable, R.: Team: Implementing Mathematics with the Nuprl Proof Develop-
ment System. Prentice Hall, Englewood Cliffs (1986)

12. Danvy, O.: Type-directed partial evaluation. In: Hatcliff, J., Mogensen, T.Æ., Thie-
mann, P. (eds.) DIKU 1998. LNCS, vol. 1706, pp. 367–411. Springer, Heidelberg
(1999)

13. Debray, S.K., Warren, D.S.: Automatic mode inference for logic programs. Journal
of Logic Programming 5, 207–229 (1988)

http://www.cs.nott.ac.uk/~{}txa/publ/f97.pdf

Weak βη-Normalization and Normalization by Evaluation for System F 511

14. Filinski, A.: A semantic account of type-directed partial evaluation. In: Nadathur,
G. (ed.) PPDP 1999. LNCS, vol. 1702, pp. 378–395. Springer, Heidelberg (1999)

15. Girard, J.-Y., Lafont, Y., Taylor, P.: Proofs and Types. Cambridge Tracts in The-
oretical Computer Science, vol. 7. Cambridge University Press, Cambridge (1989)

16. INRIA: The Coq Proof Assistant, Version 8.1. INRIA (2007),
http://coq.inria.fr/

17. Jay, B.: Long βη normal forms and confluence. Technical Report ECS-LFCS-91-
183, University of Edinburgh (1991)

18. Matthes, R.: Extensions of System F by Iteration and Primitive Recursion on
Monotone Inductive Types. Ph.D. thesis, Ludwig-Maximilians-University (1998)

19. Norell, U.: Towards a practical programming language based on dependent type
theory. Ph.D. thesis, Department of Computer Science and Engineering, Chalmers
University of Technology, Göteborg, Sweden (2007)

20. Pierce, B.C.: Types and Programming Languages. MIT Press, Cambridge (2002)
21. Pollack, R.: The Theory of LEGO. Ph.D. thesis, University of Edinburgh (1994)
22. Streicher, T.: Semantics of Type Theory. Progress in Theoretical Computer Science.

Birkhaeuser Verlag, Basel (1991)
23. Vaux, L.: A type system with implicit types, English version of his mémoire de

mâıtrise (2004)

http://coq.inria.fr/

Variable Dependencies of Quantified CSPs�

Marko Samer

Department of Computer Science
TU Darmstadt, Germany

samer@cs.tu-darmstadt.de

Abstract. Quantified constraint satisfaction extends classical constraint satisfac-
tion by a linear order of the variables and an associated existential or universal
quantifier to each variable. In general, the semantics of the quantifiers does not
allow to change the linear order of the variables arbitrarily without affecting the
truth value of the instance. In this paper we investigate variable dependencies that
are caused by the influence of the relative order between these variables on the
truth value of the instance. Several approaches have been proposed in the litera-
ture for identifying such dependencies in the context of quantified Boolean for-
mulas. We generalize these ideas to quantified constraint satisfaction and present
new concepts that allow a refined analysis.

1 Introduction

Constraint satisfaction provides a formal framework for a large class of combinatorial
problems. For a set of constraints over a set of variables with respective domains, the
constraint satisfaction problem (CSP) is to decide whether there exists an instantiation
of the variables such that all constraints are simultaneously satisfied. In the case of
quantified constraint satisfaction, the set of constraints is accompanied by a linear order
of the variables and an existential or universal quantifier associated with each variable.
The quantified constraint satisfaction problem (QCSP) is then to decide whether the
constraints are simultaneously satisfied by instantiations according to the linear order
of the variables and the associated quantifiers (see Section 2 for a formal definition).
If the answer is affirmative, we say the instance is true; otherwise, we say it is false.
Classical constraint satisfaction can be seen as a special case of quantified constraint
satisfaction where all variables are existentially quantified. Evidently, in this case the
linear order of the variables (that is, the order in which the variables are instantiated)
can be arbitrarily changed without affecting the truth value of the instance. However,
if we also allow universal quantifiers, changing the relative order of two variables may
affect the truth value of the instance.

In this paper we investigate variable dependencies of QCSPs, i.e., dependencies be-
tween variables that arise from the relative order between these variables and their as-
sociated quantifiers. Intuitively, we say two variables are independent from each other
if their relative order has no influence on the truth value of the instance; otherwise,

� This research was carried out during the author’s postdoc position at the University of Durham
and was supported by the EPSRC, project EP/E001394/1.

I. Cervesato, H. Veith, and A. Voronkov (Eds.): LPAR 2008, LNCS 5330, pp. 512–527, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Variable Dependencies of Quantified CSPs 513

we say they are dependent. For example, two equally quantified variables that are ad-
jacent in the linear order are trivially independent from each other. We write QC to
denote a QCSP instance, where C is a set of constraints and Q is the quantifier pre-
fix of the form Q1x1 Q2x2 . . . Qnxn representing the linear order of the variables and
their respective quantifier Qi ∈ {∀, ∃}. It is well known that the number of quantifier
alternations in the prefix is an indicator for the problem hardness. In particular, the spe-
cial case of quantified Boolean formulas (QBFs), i.e., the subclass of QCSPs where all
variables have Boolean domain and the constraints are clauses, yields complete prob-
lems for every class in the polynomial hierarchy by bounding the number of quantifier
alternations respectively; in the case of unbounded quantifier alternations, it yields a
PSPACE-complete problem. It is thus not surprising that, already for QBFs, identifying
variable dependencies is in general PSPACE-hard [15]. Therefore, we focus on indepen-
dencies that can be recognized in polynomial time, i.e., we assume by default that two
variables depend on each other if we cannot tell whether they are independent.

Most research on QCSPs over the last years concentrated on theoretical issues, pri-
marily on the complexity of QCSP subclasses (see, e.g., [5,7,9,13]). But there also has
been made remarkable progress in the development of efficient QBF solvers [3,4,14],
and recently even solvers for QCSPs that work without an encoding into QBFs have
gained particular interest [6,12].

In this paper we follow a number of works on identifying variable dependencies
[4,8,14,15] and consider this question from a more theoretical point of view. To the
best of our knowledge, Biere [4] was the first who identified variable dependencies in
our sense. In the expansion step of his QBF solver, Biere applies Shannon expansion in
order to eliminate universal variables. This, however, requires that clauses containing
existential variables succeeding the expanded universal variable in the quantifier prefix
have to be duplicated. Actually, it suffices to duplicate only those clauses that contain
existential variables that depend on the universal variable. Thus, since it is desirable to
keep the size of the formula small, Biere proposed an efficient method for identifying
independent variables that do not need to be taken into account for clause duplication.
Closely related to Biere’s approach is the work of Ayari and Basin [1] and quantifier
shifting rules as investigated by Egly, Tompits, and Woltran [11].

Bubeck and Kleine Büning [8] demonstrated how to overcome the restriction to in-
nermost universal variables in Biere’s approach. At the same time, Samer and Szei-
der [15] presented another generalization and proposed the generic framework of de-
pendency schemes for identifying variable dependencies. Their research, however, was
motivated by backdoor set detection for QBFs. Backdoor sets allow to identify tractable
classes of QBFs with an unbounded number of quantifier alternations. Crucial in this
context is the bounded size of the backdoor sets, which in turn is closely related to
the question of variable dependencies. Recently, Lonsing and Biere [14] considered a
further application: Variable dependencies for QBFs in negation normal form.

We follow this line of research and extend it in three main areas:

1. We propose a formal definition of variable independence and strengthen the notion
of dependency schemes by using this new definition. Previous research is based on
a rather intuitive understanding of independence, but, to the best of our knowledge,
no formal definition has been presented so far.

514 M. Samer

2. We generalize previous methods for identifying variable dependencies from QBFs
to QCSPs. In the case of the standard dependency scheme (Section 3.1), this can be
done in a straightforward way, while in the case of the triangle dependency scheme
(Section 3.2), we have to introduce more general notions.

3. We generalize the idea of the triangle dependency scheme to an infinite hierarchy
of triangle dependency schemes. We show that each dependency scheme in this hi-
erarchy is strictly stronger than the one on the previous level. Moreover, we present
the generalized triangle dependency scheme as the closure of this hierarchy.

Note that since our results hold for QCSPs in general, they also hold for important
subclasses like QBFs. As mentioned above, the question about variable dependencies
has already been shown to be relevant in the context of expansion-based QBF solvers
and for the identification of tractable classes of QBFs via backdoor sets. We believe that
the knowledge about variable dependencies may also be exploited in other related areas.

This paper is organized as follows: In Section 2, we introduce the basic notions. In
Section 3, we present our refined framework of dependency schemes. Then, in Sec-
tions 3.1 and 3.2, we consider the standard dependency scheme and the triangle depen-
dency hierarchy based on our new framework. Finally, we conclude in Section 4.

2 Preliminaries

A constraint network C is a set of constraints over a set of variables V with respective
domains dom(x), x ∈ V . A constraint C ∈ C defines which instantiations of variables
in its scope var (C) ⊆ V by their respective domain elements satisfy C (note that we
do not require an extensional representation of the constraint relations). We refer to
|var(C)| as the arity of C and we put var (C) =

⋃
C∈C var (C). A quantified constraint

satisfaction formula (QCSP formula, for short) ϕ is of the form QC, where C is a
constraint network and Q is the quantifier prefix of the form Q1x1 . . . Qnxn with Qi ∈
{∀, ∃} and xi ∈ var(C) for all 1 ≤ i ≤ n. We put var (ϕ) = var (C) and we assume
w.l.o.g. that each variable in var (C) occurs exactly once in the quantifier prefix. We
call a constraint binary if it has arity two and we call a variable Boolean if its domain
contains exactly two elements.

For a QCSP formula ϕ = Q1x1 . . . Qnxn C and a variable xi ∈ var (ϕ), we de-
fine the depth of xi in ϕ by δϕ(xi) = i and we put qϕ(xi) = Qi. Moreover, we
define varQ(ϕ) = {x ∈ var(ϕ) : qϕ(x) = Q}. We also write Rϕ(x) = {z ∈
var(ϕ) : δϕ(x) < δϕ(z)} for the set of variables on the right of x in the quantifier
prefix and R

ϕ(x) = {z ∈ Rϕ(x) : ∃v ∈ Rϕ(x), qϕ(v) �= qϕ(x), δϕ(v) ≤ δϕ(z)} for
the set of variables on the right of x starting at the first variable (from left to right) with
different quantification; Lϕ(x) and L

ϕ(x) are defined symmetrically.
An assignment on some set X ⊆ var (ϕ) of variables is a mapping τ : X →⋃

x∈X dom(x) such that τ(x) ∈ dom(x) for all x ∈ X ; we put dom(τ) = X . An
assignment τ on X satisfies (falsifies) a constraint C if every instantiation of the vari-
ables in var (C) that coincides with τ on X ∩ var (C) satisfies (does not satisfy) C.
For an assignment τ on X and a constraint C, we denote by C[τ] the constraint with
scope var(C[τ]) = var (C) \ X such that an assignment σ on var(C) \ X satisfies

Variable Dependencies of Quantified CSPs 515

C[τ] if and only if τ ∪ σ satisfies C. For a constraint network C, we put C[τ] = {C[τ] :
C ∈ C, τ does not satisfy C}. For a QCSP formula ϕ with constraint network C, we
write ϕ[τ] to denote the QCSP formula obtained from ϕ by replacing C with C[τ] and
removing all superfluous quantifications.

The following definition is motivated by Benedetti [2]: An assignment tree T =
(T, λ) on some set X ⊆ var (ϕ) of variables is a pair of a rooted tree T where all
leaves have depth |X | + 1 and a function λ labeling every node t (except the root)
of T with a pair (x, d) such that x ∈ X and d ∈ dom(x); if x ∈ var∃(ϕ), then t
has no siblings (i.e., t’s parent has only one child), and if x ∈ var∀(ϕ), then t has
|dom(x)| − 1 siblings and there is no sibling t′ with λ(t′) = λ(t) (i.e., t’s parent has
exactly one child for each d ∈ dom(x)). Moreover, if t1 and t2 are two nodes of T such
that t1 has lower depth than t2 and it holds that λ(t1) = (x, d) and λ(t2) = (y, d′),
then δϕ(x) < δϕ(y). Every leaf t of T corresponds to an assignment τ on X such that
for every node t′ (except the root) on the path from the root to t it holds that λ(t′) =
(x, τ(x)), where x ∈ X . We simply write τ ∈ T for such an assignment. For x ∈ X
and d ∈ dom(x), we write Tx=d to denote the assignment subtree of T with root t such
that t is a child of the root of T and λ(t) = (x, d).

Note that every linear ordering on the domain elements of each variable gives rise to
a linear ordering of the nodes t1, t2, . . . , tn with the same depth in an assignment tree.
In this case we write T [x] to denote the corresponding unique sequence d1, d2, . . . , dn

of domain elements such that λ(ti) = (x, di).
A QCSP formulaϕwith constraint network C is true (or satisfiable) if there exists an

assignment tree T on var (ϕ) such that C[τ] = ∅ for all τ ∈ T (in this case we call T a
satisfying assignment tree or a model of ϕ); otherwise ϕ is false (or unsatisfiable). The
quantified constraint satisfaction problem QCSP is to decide whether ϕ is true. Two
QCSP formulas ϕ and ψ are (satisfiability) equivalent if they are either both true or
both false.

3 Dependency Schemes

Let us first clarify what we exactly mean when we say that two variables depend on
each other or are independent from each other. The motivation for our definition arises
from the intuitive meaning of independence in the related literature: Two variables are
considered independent if their relative order in the quantifier prefix does not affect the
truth value of the formula. This intuition is easy to formalize if we consider only ad-
jacent variables x and y in the quantifier prefix: Just swap x and y and check whether
the truth value has changed. However, if x and y are not adjacent, things become more
complicated since simply swapping x and y also changes the relative order to the vari-
ables between x and y. Then, however, it is not clear at all which change of the relative
order causes the change of the truth value or whether two changes of the relative order
cancel each other out with respect to the truth value of the formula.

Since we are interested in a notion of independence for any two variables x and y
(not only adjacent ones), we have to develop more general criteria. To this aim, assume
that x is universal and y is existential; if they are equally quantified, we consider them
always independent from each other. If the formula is false and y is on the right of x in

516 M. Samer

the quantifier prefix, i.e., the values assigned to y can be different for different values
assigned to x, it is easy to see that the formula cannot become true if we shift y to the
left of x where it can take only one value for each value assigned to x. Symmetrically,
if the formula is true and y is on the left of x in the quantifier prefix, i.e., y can take only
one value for each value assigned to x, it is easy to see that the formula cannot become
false if we shift y to the right of x where the values assigned to y can be different
for different values assigned to x. Thus, there are only two cases left that allow us to
distinguish between dependence and independence:

(i) If y is on the right of x in the quantifier prefix and the formula is true, we consider
y independent from x if the formula remains true under the restriction that the values as-
signed to y must be the same for all values assigned to x. In other words, we require that
if there exists any satisfying assignment tree, then there exists a satisfying assignment
tree such that the assignments to y are the same in all subtrees for different assignments
to x. Figure 1 illustrates this condition with an arbitrary satisfying assignment tree (left)
and a possible restricted satisfying assignment tree (right), where the values assigned
to y are the same in both subtrees for two different values assigned to x. According to
the definitions in Section 2 and in order to avoid confusion when referring to nodes of an
assignment tree, note that the dotted lines indicate nodes labeled with values assigned
to the corresponding variables.

(ii) If y is on the left of x in the quantifier prefix and the formula is false, we consider
y independent from x if the formula remains false under the relaxation that the values
assigned to y can be different for different values assigned to x. The problem in this
case, however, is to express this kind of relaxation in terms of assignment trees since y
is on the left of x and thus cannot take different values for different values assigned to x.
Therefore, we transform the original formula ϕ into a formula ϕx by shifting x to the
left most position in the quantifier prefix. Then there exists a satisfying assignment tree
of ϕ if and only if there exists a satisfying assignment tree of ϕx under the restriction
that the values assigned to variables that have been on the left of x in ϕ are the same in
all subtrees for different assignments to x. In this way we can easily express our relax-
ation on y by requiring this restriction only for variables different from y. In particular,
we require that if there exists no satisfying assignment tree of ϕx such that the assign-
ments to variables on the left of x in ϕ are the same in all subtrees for different values
assigned to x, then there exists no satisfying assignment tree of ϕx even if we allow y
to take different values for different values assigned to x. Thus, by contraposition, our
condition in case (ii) can be formulated in terms of assignment trees of ϕx similar as in
case (i). Figure 2 illustrates this condition with an arbitrary satisfying assignment tree
of ϕx (left), a possible restricted satisfying assignment tree of ϕx (middle), where the
values assigned to y are the same in both subtrees for two different values assigned to x,
and the corresponding satisfying assignment tree of ϕ (right).

We are now going to define our observations formally. Let ϕ be a QCSP formula
and x ∈ var(ϕ). We write ϕx to denote the formula obtained from ϕ by quantifier
reordering such that δϕx(x) = 1, δϕx(z) = δϕ(z)+ 1 for all z ∈ var(ϕ) with δϕ(z) <
δϕ(x), and δϕx(z) = δϕ(z) for all other z ∈ var (ϕ). For example, ifϕ=∃u ∀v ∃y ∀x C,
then ϕx = ∀x∃u ∀v ∃y C. The following proposition follows immediately from the

Variable Dependencies of Quantified CSPs 517

⇒
a b a b

c fd ee d e d
y

v

u

x

Fig. 1. Independence of y from x in ϕ = ∀x∃u ∀v ∃y C

dd e e

y

x

v

u

x

u

y

v
⇒

b a b c

ed

gh

a a

⇔c

b b

c

a

f g ih h g gh

dd e e

c c

Fig. 2. Independence of y from x in ϕ = ∃u ∀v ∃y ∀x C

definition of a satisfying assignment tree (an illustration can be found in the equivalence
on the right hand side of Figure 2).

Proposition 1. Let ϕ be a QCSP formula and x ∈ var∀(ϕ). Then ϕ is true if and only
if ϕx has a satisfying assignment tree T such that Tx=d[z] = Tx=d′ [z] for all d, d′ ∈
dom(x) and z ∈ Lϕ(x).

Definition 1 (Independence). Let ϕ be a QCSP formula and x ∈ var∀(ϕ). A set Y ⊆
var∃(ϕ) of variables is independent from x if the following holds: If there exists a sat-
isfying assignment tree T of ϕx such that Tx=d[z] = Tx=d′ [z] for all d, d′ ∈ dom(x)
and z ∈ Lϕ(x) \ Y , then there exists a satisfying assignment tree T ′ of ϕx such
that T ′

x=d[z] = T ′
x=d′ [z] for all d, d′ ∈ dom(x) and z ∈ Y ∪ Lϕ(x).

Note that we define independence for a set Y of variables instead of individual variables,
since the fact that two variables y1 and y2 are independent from x does not imply
that both variables together, i.e., the set {y1, y2}, is independent from x. For similar
reasons it makes sense to use a set of universal variables instead of the single variable x;
however, for simplicity, we restrict our considerations in this paper to the case of a single
universal variable.

We consider the above notion of independence based on assignment trees fundamen-
tal for several applications. In particular, it provides exactly what is needed to character-
ize those variables that are relevant for clause duplication in Biere’s expansion step [4].
Moreover, the above notion also allows us to identify which variables can be shifted
within the quantifier prefix as required in backdoor set detection [15]. Note, however,
that the other direction does not hold. For example, in the quantifier prefix ∀x∃u ∀y ∃v,
variable u may depend on x and y, and variable v may depend on y. Thus, none of the
variables can be shifted within the quantifier prefix without affecting the truth value of

518 M. Samer

C2C1 y u v

4 3 0
4 3 5
7 1 5
8 1 5

2 1
2 3
6 1

x u C3

4 5

y v

7 5
7 0

C4

1 0
3 4

u w

3 9
8 5

Fig. 3. Example ψ = ∀x∃u ∀y ∃v ∃w C, where C = {C1, C2, C3, C4}

the instance; however, v still can be independent from x. For this reason, the following
definition of dependency schemes strictly refines the notion introduced in the context
of backdoor sets [15].

Definition 2 (Dependency scheme). A dependency scheme D assigns to each QCSP
formula ϕ, set X ⊆ var∃(ϕ), and variable x ∈ var∀(ϕ) a set Dϕ(X,x) ⊆ X such
that the set X \Dϕ(X,x) of variables is independent from x.

Intuitively, a dependency scheme assigns to each variable x those variables inX whose
independence from x is unproven, i.e., all variables in Dϕ(X,x) are assumed to de-
pend on x. An example of a trivial dependency scheme is Dtrv

ϕ (X,x) := X since
X \ Dtrv

ϕ (X,x) = ∅ is trivially independent from x. Actually, our original motiva-
tion for dependency schemes lies in the cases where X = Lϕ(x) ∩ var∃(ϕ) and X =
Rϕ(x) ∩ var∃(ϕ). Because of the more general definition above, however, we do not
need to distinguish between these two cases in the remainder of this paper.

Our particular interested lies in tractable dependency schemes (i.e., dependency
schemes D such that Dϕ(X,x) can always be computed in polynomial time) that are
as general as possible. A dependency scheme D is more general than a dependency
scheme D′ if always Dϕ(X,x) ⊆ D′

ϕ(X,x) and the inclusion is strict in some cases.
In the following we are going to define two classes of non-trivial tractable depen-

dency schemes. To this aim, we need one more basic definition.

Definition 3 (Connected). Let ϕ be a QCSP formula with constraint network C. AnX-
path, X ⊆ var(ϕ), between two constraints C,C′ ∈ C is a sequence C1, . . . , Cn of
constraints in C with C = C1 and C′ = Cn such that var (Ci) ∩ var (Ci+1) ∩X �= ∅
for all 1 ≤ i < n. Two constraintsC,C′ ∈ C are connected with respect toX ⊆ var (ϕ)
if there is an X-path between them.

For illustration purposes we will consider the following QCSP formula ψ as a running
example throughout the remainder of this paper: ψ = ∀x∃u ∀y ∃v ∃w C, where C =
{C1, C2, C3, C4} as shown in Figure 3. We assume that the domains consist of the
respective values in Figure 3, i.e., dom(x) = {2, 6}, dom(y) = {4, 7, 8}, etc. It is easy
to see that the constraints C3 and C4 are connected with respect to {u, v}.

3.1 Standard Dependency Scheme

In this section, we consider a dependency scheme that is based on observations of
Biere [4] and Bubeck and Kleine Büning [8] in the context of QBF solvers. In par-
ticular, Biere [4] noticed that an existential variable y is independent from a universal

Variable Dependencies of Quantified CSPs 519

variable x if the set of constraints can be partitioned such that x and y are in different
partitions and the partitions have no variable in common. This approach of identifying
variable dependencies was extended by Bubeck and Kleine Büning [8] in such a way
that both partitions may have universal but no existential variables in common. Samer
and Szeider [15] incorporated these ideas into their framework of dependency schemes
for backdoor set detection. We reformulate the resulting standard dependency scheme
for QCSPs based on our refined notion of independence.

Definition 4 (Dependency pair). Let ϕ be a QCSP formula with constraint network C
and let x, y ∈ var(ϕ) such that qϕ(x) �= qϕ(y). An (x, y)-dependency pair with respect
to X ⊆ var(ϕ) is a tuple C1, C2 ∈ C of constraints such that (i) C1 and C2 are
connected with respect to X and (ii) x ∈ var (C1) and y ∈ var (C2).

In our example ψ from above, there is a (y, w)-dependency pair with respect to {u}
(by choosing the tuple C2, C4) and an (x, u)-dependency pair with respect to ∅ (by
choosing the tuple C1, C1).

Definition 5 (Standard dependency scheme). The standard dependency scheme Dstd

assigns to each QCSP formula ϕ, set X ⊆ var∃(ϕ), and variable x ∈ var∀(ϕ) the
set Dstd

ϕ (X,x) of variables y ∈ X such that there is an (x, y)-dependency pair with
respect to (Rϕ(x) ∩ var∃(ϕ)) ∪X .

For instance, recall our running example ψ above and let Xz = Rψ(z) ∩ var∃(ψ)
for z ∈ var∀(ψ). Then, we have Dstd

ψ (Xx, x) = {u, v, w} and Dstd
ψ (Xy, y) = {v}.

Note that this is an improvement upon the trivial dependency scheme Dtrv. In fact, the
standard dependency scheme is more general than the trivial dependency scheme and it
is not hard to show that the difference in size of the sets assigned by Dstd and Dtrv can
be arbitrarily large.

The following theorem states that the standard dependency scheme is indeed a depen-
dency scheme in our refined sense. This follows immediately from Theorem 2, which
will be shown in Section 3.2, since if there is no dependency pair as required in Defini-
tion 5, then none of the conditions in Definition 8 can hold.

Theorem 1. The standard dependency scheme is a dependency scheme.

The following proposition follows immediately from the fact that traversing the inci-
dence graph of an instance can be performed in linear time.

Proposition 2. Let ϕ be a QCSP formula with constraint network C and let n =∑
C∈C |var(C)|. Then, for every X ⊆ var∃(ϕ) and x ∈ var∀(ϕ), the set Dstd

ϕ (X,x)
can be computed in time O(n).

3.2 Triangle Dependency Hierarchy

In the previous section only the structure entailed by the constraint scopes is used in the
definition of the standard dependency scheme, i.e., the constraint relations are ignored.
In this section we consider a class of dependency schemes that also incorporate the
constraint relations, i.e., the possible instantiations satisfying a constraint. The basic

520 M. Samer

idea behind this kind of dependency scheme was developed in the context of backdoor
set detection [15]. In the following, we present a generalization to QCSPs based on our
refined notion of independence and, in addition, we generalize it to an infinite hierarchy
of dependency schemes such that each dependency scheme is more general than the one
on the previous level (in fact, the difference can be arbitrarily large as shown below).

Recall that, in order to show that an existential variable y is independent from a
universal variable x, the proof of the standard dependency scheme works by partitioning
the set of constraints such that x and y are in different partitions and the partitions
have no existential variables in common. The following triangle dependency schemes
generalize this idea in such a way that the partitions may have at most one existential
variable y in common if y is pure in the partition containing x. Gent, Nightingale, and
Stergiou [12] introduced the notion of a pure value for binary constraints as the CSP
counterpart of a pure literal. Our first step is to adapt this notion of pure values to
constraints with arbitrary arity.

Definition 6 (Pure value, Pure variable). Let ϕ be QCSP formula with constraint
network C, C ∈ C, x ∈ var(C), and d ∈ dom(x). We call d a pure value of x in C
if for all assignments τ on var(C) \ {x} not falsifying C, τ ∪ {(x, d)} satisfies C. We
call d a pure value of x in C′ ⊆ C if d is a pure value of x in all C ∈ C′. Moreover,
we call x a pure variable in C′ ⊆ C if there exists a pure value of x in C′.
For example, recall the QCSP formula ψ = ∀x∃u ∀y ∃v ∃w C, where C = {C1, C2,
C3, C4} as shown in Figure 3. Here, v is a pure variable in {C2, C3} since 5 is a pure
value of v in both C2 and C3. In contrast, u is not pure in C2 since neither 1 nor 3 are a
pure value of u in C2.

Definition 7 (Dependency triple). Letϕ be a QCSP formula with constraint network C
and let x, y ∈ var(ϕ) such that qϕ(x) = ∀ and qϕ(y) = ∃. An (x, y)-dependency triple
with respect to X ⊆ var (ϕ) is a triple C1, C2, C3 ∈ C of constraints such that (i) C1
and C2 as well as C1 and C3 are connected with respect to X ∪ {x}, (ii) x ∈ var (C1)
and y ∈ var (C2) ∩ var (C3), and (iii) y is not pure in {C2, C3}.

In our example ψ from above, there is an (x,w)-dependency triple with respect to {u}
(by choosing the triple C1, C4, C4) and a (y, u)-dependency triple with respect to ∅ (by
choosing the triple C2, C2, C2).

Roughly speaking, we consider an existential variable y to depend on a universal
variable x if a change of the value assigned to x forces a change of the value assigned
to y. If the domain of x is at least Boolean (which can be assumed w.l.o.g.) and the
domain of y is at most Boolean, this means that y must take each value in its domain; in
particular, this also means that y must take a pure value if it has one. This observation is
key in the proof of the following triangle dependency hierarchy. In fact, in the definition
of the triangle dependency hierarchy we distinguish between Boolean and non-Boolean
variables; for non-Boolean variables we use the same ideas as in the standard depen-
dency scheme. Note, however, that Boolean variables that are identified as independent
may allow non-Boolean variables to be identified as independent and vice versa, which
would not be possible if we consider both cases separately. Moreover, note that vari-
ables may become Boolean during the constraint solving process by domain filtering,
i.e., by removing domain elements that become known not to be part of a solution.

Variable Dependencies of Quantified CSPs 521

Definition 8 (Triangle dependency set). Let ϕ be a QCSP formula with constraint
network C, X ⊆ var∃(ϕ), and x ∈ var∀(ϕ). The triangle dependency set ∆i(X,x) is
recursively defined as follows: ∆0(X,x) = (Rϕ(x) ∩ var∃(ϕ)) ∪X and ∆i+1(X,x)
consists of all y ∈ ∆i(X,x) such that:

1. if y is Boolean,
(a) there is an (x, y)-dependency triple with respect to ∆i(X,x) \ {y} or
(b) there exists z ∈ ∆i(X,x)∩L

ϕ(y) such that there is no (x, z)-dependency pair
with respect to ∆i(X,x) \ {y}, but there is an (x, z)-dependency triple1 with
respect to ∆i(X,x);

2. otherwise, there is an (x, y)-dependency pair with respect to ∆i(X,x).

Definition 9 (Triangle dependency hierarchy). The triangle dependency hierarchy is
a hierarchy of schemes D�i , i ≥ 0, that assign to each QCSP formula ϕ, set X ⊆
var∃(ϕ), and variable x ∈ var∀(ϕ) the set D�i

ϕ (X,x) = ∆i(X,x) ∩X .

For instance, recall our running example ψ above and let Xz = Rψ(z) ∩ var∃(ψ)
for z ∈ var∀(ψ). Then, we have D�1

ψ (Xx, x) = {w} and D�1
ψ (Xy, y) = ∅, as well

asD�2
ψ (Xx, x) = D�2

ψ (Xy, y) = ∅. Note that this is an improvement upon the standard
dependency schemeDstd. In fact, already the triangle dependency schemeD�1 is more
general than the standard dependency scheme, since if there is no (x, y)-dependency
pair with respect to ∆0(X,x), then none of the conditions in Definition 8 can hold. It is
not hard to show that the difference in size of the sets assigned byD�1 andDstd can be
arbitrarily large. Moreover, note that dependency scheme D�2 tells us that no variable
in Xx and Xy depends on x and y, respectively. In particular, this also includes the
non-Boolean variable w, which is assumed to depend on x according to the standard
dependency scheme.

For each QCSP formula ϕ, it follows immediately from Definition 8 that the triangle
dependency sets must be equal for all i ≥ |var∃(ϕ)|. This observation results in the
following definition of the closure of our triangle dependency hierarchy.

Definition 10 (Generalized triangle dependency scheme). The generalized triangle
dependency scheme D�g assigns to each QCSP formula ϕ, set X ⊆ var∃(ϕ), and
variable x ∈ var∀(ϕ) the set D�g

ϕ (X,x) = ∆m(X,x) ∩X , where m is the smallest
number such that ∆m(X,x) = ∆m+1(X,x).

Let us now consider the relations between the dependency schemes in our triangle de-
pendency hierarchy. We observe that always ∆i+1(X,x) ⊆ ∆i(X,x); thus, it can be
easily shown that D�i+1 is more general than D�i for all i ≥ 0, and that D�g is
more general than D�i for all i ≥ 0. The following example shows that already for
the special case of QBFs and for any k ≥ 1, the difference in size of the sets as-
signed by D�k+1 and D�k and the difference in size of the sets assigned by D�g

and D�k can be arbitrarily large: Let n ≥ 1 be an arbitrarily large integer and let ψ =
∀x∃y1 ∃y2 . . . ∃yn ∃z1 ∃z2 . . . ∃zk C, where C consists of the clauses {x, z1, . . . , zk},
{zk, y1, . . . , yn}, {zk,¬y1, . . . ,¬yn}, and {zi,¬zi+1} for all 1 ≤ i < k. Then, we

1 If there are no pure variables w.r.t. C, this can be replaced by “(x, z)-dependency pair.”

522 M. Samer

have D�k

ψ (Xx, x) = {y1, y2, . . . , yn}, but D
�k+1
ψ (Xx, x) = D

�g

ψ (Xx, x) = ∅. Thus,
the relations between the dependency schemes are as follows:

Dtrv
ϕ (X,x) ⊇ Dstd

ϕ (X,x) ⊇ D�1
ϕ (X,x) ⊇ D�2

ϕ (X,x) ⊇ · · · ⊇ D�g
ϕ (X,x),

whereDtrv
ϕ (X,x) = D�0

ϕ (X,x) and the difference in size between the sets assigned by
any two schemes in this hierarchy can be arbitrarily large.

As Condition 1(b) in Definition 8 seems a little unnatural, let us now give an example
showing that it cannot be removed: Let ϕ = ∀x∃z ∀u ∃y C, where C consists of the
clauses {x, u,¬y}, {¬x,¬u,¬y}, {u, y, z}, {u,¬y,¬z}, {¬u, y,¬z}, and {¬u,¬y, z}.
It can be easily checked that ϕ is true and that there is no (x, y)-dependency triple with
respect to {z}, i.e., y would be considered independent from x if Condition 1(b) was
removed. However, there is no satisfying assignment tree T of ϕ such that Tx=0[y] =
Tx=1[y], i.e., y is not independent from x.

In the following we will show that the triangle dependency hierarchy consists indeed
of dependency schemes. Due to space limitations, we only give a proof sketch.

Lemma 1. Let ϕ be a QCSP formula with constraint network C and let x ∈ var∀(ϕ).
Moreover, letX ⊆ var∃(ϕ) and Y ⊆ X . If for all y ∈ Y there is no (x, y)-dependency
pair with respect to X , then the set C of constraints can be partitioned into two sub-
sets C1 and C2 such that (i) Y ⊆ var (C2) \ var (C1), (ii) x ∈ var(C1) \ var(C2),
and (iii) var (C1) ∩ var(C2) ⊆ var(ϕ) \X .

Lemma 2. Let ϕ be a QCSP formula with constraint network C and let x ∈ var∀(ϕ).
Moreover, letX ⊆ var∃(ϕ) and Y ⊆ X . If for all y ∈ Y there is no (x, y)-dependency
triple with respect to X \ {y}, then the set C of constraints can be partitioned into
subsets C1, C2, . . . , Cn such that (i) every y ∈ Y is pure in C1, (ii) x ∈ var (C1)\var (Ci)
for all 1 < i ≤ n, (iii) var (C1) ∩ var(Ci) ⊆ (var (ϕ) \X)∪ {y} for all 1 < i ≤ n and
some y ∈ Y , and (iv) var(Ci) ∩ var(Cj) ⊆ var (ϕ) \X for all 1 < i < j ≤ n.

Theorem 2. The triangle dependency hierarchy consists of dependency schemes.

Proof (Sketch). Let ϕ be a QCSP formula with constraint network C, X ⊆ var∃(ϕ),
and x ∈ var∀(ϕ). We show by induction on i that the sets ((Rϕ(x) ∩ var∃(ϕ)) ∪
X) \ ∆i(X,x) are always independent from x. It follows then immediately that the
triangle dependency schemes D�i are indeed dependency schemes. For the induction
start, we have ∆0(X,x) = (Rϕ(x) ∩ var∃(ϕ)) ∪ X . Thus, the set Y0 = ((Rϕ(x) ∩
var∃(ϕ)) ∪ X) \ ∆0(X,x) = ∅ is trivially independent from x. For the induction
step, consider the sets ∆k(X,x) and ∆k+1(X,x), and assume that Yk = ((Rϕ(x) ∩
var∃(ϕ)) ∪ X) \ ∆k(X,x) is independent from x. We have to show that Yk+1 =
((Rϕ(x) ∩ var∃(ϕ)) ∪ X) \ ∆k+1(X,x) is also independent from x. To this aim,
let Y = Yk+1 \ Yk = ∆k(X,x) \ ∆k+1(X,x) and Z = Lϕ(x) \ X ; we partition Y
into Y ′ and Y ′′ such that Y ′ consists of all Boolean variables in Y and Y ′′ consists
of all other variables in Y . By Lemma 1 and Lemma 2, this implies that the set C of
constraints can be partitioned into C1, C2, . . . , Cn such that (i) every y ∈ Y is pure
in C1, (ii) x ∈ var(C1) \ var (Ci) for all 1 < i ≤ n, (iii) var(C1) ∩ var (Ci) ⊆
(var (ϕ) \ (∆k(X,x) ∪ {x})) ∪ {y} for all 1 < i ≤ n and some y ∈ Y ′, and

Variable Dependencies of Quantified CSPs 523

τ1 τ2 τ3

x

y1
l

v1

u1

y0
l

v2

y2
l

u2

Fig. 4. Illustration of the proof idea of Theorem 2

(iv) var (Ci) ∩ var (Cj) ⊆ var (ϕ) \ (∆k(X,x) ∪ {x}) for all 1 < i < j ≤ n. Now
suppose that there exists a satisfying assignment tree T of ϕx such that Tx=d1 [z] =
Tx=d2 [z] for all d1, d2 ∈ dom(x) and z ∈ Z . By induction hypothesis, there exists a sat-
isfying assignment tree T ′ ofϕx such that T ′

x=d1
[z] = T ′

x=d2
[z] for all d1, d2 ∈ dom(x)

and z ∈ Yk∪Z . We have to show that there exists a satisfying assignment tree T ′′ of ϕx

such that T ′′
x=d1

[z] = T ′′
x=d2

[z] for all d1, d2 ∈ dom(x) and z ∈ Yk+1 ∪Z . To this aim,
we construct T ′′ by relabeling the vertices of T ′ separately for the variables of each
partition C1, C2, . . . , Cn:

Let Cl, 1 < l ≤ n, be any such partition and consider the schematic assignment
tree in Figure 4, where we assume that var(Cl) ∩ Y = {y0

l , y
1
l , y

2
l } as depicted by

the encircled vertices. Now we choose any path from a child of the root to a leaf; this
path corresponds to an assignment, say τ1. Since every assignment to the universal
variables (except x) corresponds uniquely to a path in each subtree below the root, we
get the corresponding assignments τ2 and τ3. Now, if var(C1) ∩ var(Cl) ∩ Y ′ = ∅
or y0

l ∈ var (C1)∩ var(Cl)∩ Y ′ is assigned the same value by all three assignments τ1,
τ2, and τ3, we can choose any of these assignments. Otherwise, there must be one
assignment, say τ2, which assigns to y0

l its pure value as depicted by the filled circle.
Thus, we relabel the encircled vertices on the paths corresponding to τ1 and τ3 by the
labels of the encircled vertices on the path corresponding to τ2. By repeating this for
the other paths in the subtrees and the other partitions appropriately, we are able to
construct the required satisfying assignment tree T ′′. �	

We extend the algorithmic idea used for the original triangle dependency scheme [15]
to prove the following runtime results.

Proposition 3. Let ϕ be a QCSP formula with constraint network C, m = |var∃(ϕ)|,
and n =

∑
C∈C |var (C)|. Moreover, let k ≥ 0 be any fixed integer and suppose that, for

every y ∈ var∃(ϕ) and C ∈ C, we can identify all pure values of y in C in time O(α).2

2 If there are no pure variables w.r.t. C, we need the pure values only for Boolean variables.

524 M. Samer

Then, for every X ⊆ var∃(ϕ) and x ∈ var∀(ϕ), the sets D�k
ϕ (X,x) and D�g

ϕ (X,x)
can be computed in time O(nα) and O(mnα), respectively.

Proof. It suffices to prove the runtime for computing ∆i+1(X,x) from ∆i(X,x). To
this aim, let G = (V,E) be the incidence graph of an instance, i.e., the bipartite graph
with variables and constraints as vertices; a variable x and a constraint C are joined by
an edge if and only if x ∈ var (C). Since |V | + |E| ≤ 3n, the incidence graph G can
be constructed in time O(n).

Recall that ∆i+1(X,x) consists of all variables y ∈ ∆i(X,x) satisfying one of the
conditions in Definition 8. We check these conditions by performing depth-first search
in G starting at x and labeling the visited vertices appropriately; the basic idea behind
this approach is due to Tarjan [16]. Note that during the traversal of G, we are allowed
to go over all constraints, but only over variables in ∆i(X,x), i.e., we have to avoid
variables not in ∆i(X,x). Let T denote the corresponding search tree, let Tv denote
the subtree of T rooted at v, and let V (Tv) denote the set of vertices of Tv. For each
vertex v ∈ V , we put t(v) = j if v is the j-th vertex visited. Moreover, we define
the low point lp(v) as the least number t(u) over all vertices u in V (Tv) and adjacent
(in G) to vertices in V (Tv) \ {v}. It is not hard to see that the labels t(v) and lp(v) can
be computed during the top-down and bottom-up phase of a single depth-first traversal,
respectively. We also label each variable z with its pure values pv(z) and its temporary
pure values pv ′(z) as follows: If z is visited the first time, we store in pv(z) the pure
values of z in its parent C. Each time we visit a constraint C′ adjacent (in G) to z,
we put pv ′(z) = pv(z) and remove elements from pv ′(z) that are not pure values
of z in C′. Then, each time we visit z again during the traversal of the subtree rooted
at C′ via some constraint C′′ with z ∈ var (C′′), we remove elements from pv ′(z)
that are not pure values of z in C′′. Finally, after the subtree has been processed and
we come back to z, we simply check whether t(C′) < t(z) or lp(C′) < t(z). If this
is the case, we put pv (z) = pv ′(z); otherwise, we discard pv ′(z). The labels pv (z)
can be computed during the same depth-first traversal as above; the pure values of a
variable in some constraint can be computed in time O(α) by assumption. Now we are
already able to check Condition 2 and Condition 1(a) in Definition 8: For Condition 2,
we just check whether y is reachable from x during our depth-first traversal (which is
the case if and only if there is an (x, y)-dependency pair with respect to ∆i(X,x)),
and for Condition 1(a), we check whether y is reachable and pv (y) = ∅ (which is the
case if and only if there is an (x, y)-dependency triple with respect to ∆i(X,x) \ {y}).
Finally, for Condition 1(b), we label each vertex v ∈ V with its least-depth non-pure
variable ldn(v), i.e., the variable in Tv with least depth in the quantifier prefix that is
not pure in the set of all its adjacent constraints, which can be determined in a similar
way as for computing pv (z). Again, the labels ldn(v) can be computed during our
single traversal of G. Condition 1(b) is then satisfied if and only if y has a child C′

such that lp(C′) ≥ t(y) and ldn(C′) belongs to a different quantifier block on the left
of the quantifier block y belongs to. Hence, since our depth-first traversal of G can be
performed in time O(n), our runtime results follow. �	
An interesting remaining question is about the nature of α in Proposition 3 if we con-
sider a particular constraint language. For example, in the case of extensional binary
constraints with finite domain, it is easy to see that α represents the largest domain size

Variable Dependencies of Quantified CSPs 525

Table 1. Average sizes of the sets assigned by various dependency schemes relative to the sizes of
the sets assigned by the trivial dependency scheme and corresponding average runtimes. The sets
are computed for all universal variables x over all instances ϕ with respect to Rϕ(x) ∩ var∃(ϕ)
without preprocessing (only tautological clauses are removed).

Instances (# Instances)
Dtrv Dstd D�1 D�2 D�3 D�g

size time size time size time size time size time size time
(%) (ms) (%) (ms) (%) (ms) (%) (ms) (%) (ms) (%) (ms)

QBF Eval’08 (3328) 100 0.6 98.4 3.1 31.2 9.4 30.1 11.2 30.0 11.5 29.8 17.1
QBF Eval’07 (1136) 100 0.6 91.5 5.8 72.7 14.4 70.6 20.0 70.6 20.0 70.5 20.0
QBF Eval’06 (1686) 100 0.0 90.7 0.4 48.2 1.6 39.4 2.2 39.3 2.9 39.3 2.9

squared. In the case of monotone constraints [10] with finite domain, deciding whether
d is a pure value of y in C reduces to deciding whether a certain assignment satisfies C.
Thus, α represents the runtime of checking for each domain element of y whether this
assignment satisfies C. Given a linear order on the domain elements, a constraint C is
monotone if its scope var(C) can be partitioned into S1 and S2 such that, for every
assignment τ on var(C) that satisfies C, the following holds: If τ(y) = a and b ≥ a
for some y ∈ S1 and a, b ∈ dom(y), then also τ |var(C)\{y} ∪ {(y, b)} satisfies C, and,
symmetrically, if τ(y) = a and b ≤ a for some y ∈ S2 and a, b ∈ dom(y), then also
τ |var(C)\{y} ∪ {(y, b)} satisfies C. We call a QCSP instance monotone if all its con-
straints are monotone. Important subclasses of monotone QCSPs are quantified linear
programming (QLP) and QBFs. In the case of QLP with finite domain, α represents
the largest domain size times the runtime for evaluating a linear inequation, while in
the case of QBFs, α represents the runtime for checking whether y ∈ C or ¬y ∈ C,
which can be done during the traversal of the instance. Hence, for QBFs, the runtime
estimations in Proposition 3 become O(n) and O(mn), respectively.

In general, if the pure values can be computed in polynomial time, then all schemes
in the triangle dependency hierarchy as well as the generalized triangle dependency
scheme are tractable by Proposition 3. Thus, for purely theoretical applications, we
can always take the generalized triangle dependency scheme since it is more general.
However, for practical applications, we can expect that the (practical) runtime increases
gradually with the generality of the dependency scheme and thus one has to find a
compromise between generality and runtime depending on the actual requirements.
Table 1 gives an overview on the average sizes of the sets assigned by various de-
pendency schemes presented in this paper to QBFs from the QBF solver evaluation
competitions of the last three years. The sizes of the sets are given relative to the sizes
of the sets assigned by the trivial dependency scheme and the runtimes are given in
milliseconds.

4 Conclusion

We proposed a refined notion of independence in order to identify variable dependen-
cies caused by the semantics and relative order of the quantifiers in the quantifier prefix
of QCSPs. Based on this notion, we redefined the framework of dependency schemes

526 M. Samer

and presented two classes of concrete dependency schemes, namely the standard de-
pendency scheme and the triangle dependency hierarchy (note that a similar hierarchy
construction based on the standard dependency scheme would collapse to its first level).
Since our results hold for QCSPs in general, they also hold for important subclasses
like QBFs and QLP. In addition to the applications mentioned in the introduction, i.e.,
expansion-based QBF solvers and the identification of tractable classes of QBFs via
backdoor sets, we believe that the knowledge about variable dependencies may also be
useful in other related areas. For example, it might be exploited in solvers for other
QCSP subclasses and QCSPs in general. In this context, experimental results concern-
ing performance improvements would be interesting. Moreover, we believe that the
question of variable dependencies is also interesting from a purely theoretical point
of view and that the presented ideas might also be applied in other logic formalisms
with quantifiers.

References

1. Ayari, A., Basin, D.: Qubos: Deciding quantified Boolean logic using propositional satis-
fiability solvers. In: FMCAD 2002. LNCS, vol. 2517, pp. 187–201. Springer, Heidelberg
(2002)

2. Benedetti, M.: Quantifier trees for QBFS. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS,
vol. 3569, pp. 378–385. Springer, Heidelberg (2005)

3. Benedetti, M.: sKizzo: A suite to evaluate and certify QBFS. In: Nieuwenhuis, R. (ed.)
CADE 2005. LNCS, vol. 3632, pp. 369–376. Springer, Heidelberg (2005)

4. Biere, A.: Resolve and expand. In: Hoos, H., Mitchell, D.G. (eds.) SAT 2004. LNCS,
vol. 3542, pp. 59–70. Springer, Heidelberg (2005)

5. Bordeaux, L., Cadoli, M., Mancini, T.: CSP properties for quantified constraints: Definitions
and complexity. In: Proc. 20th National Conference on Artificial Intelligence (AAAI 2005),
pp. 360–365. AAAI Press, Menlo Park (2005)

6. Bordeaux, L., Zhang, L.: A solver for quantified Boolean and linear constraints. In: SAC
2007, pp. 321–325. ACM Press, New York (2007)

7. Börner, F., Bulatov, A., Jeavons, P., Krokhin, A.: Quantified constraints: Algorithms and
complexity. In: Baaz, M., Makowsky, J.A. (eds.) CSL 2003. LNCS, vol. 2803, pp. 58–70.
Springer, Heidelberg (2003)

8. Bubeck, U., Kleine Büning, H.: Bounded universal expansion for preprocessing QBF. In:
Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 244–257. Springer,
Heidelberg (2007)

9. Chen, H.: Quantified constraint satisfaction and bounded treewidth. In: Proc. 16th European
Conference on Artificial Intelligence (ECAI 2004), pp. 161–165. IOS Press, Amsterdam
(2004)

10. Dechter, R.: Constraint Processing. Morgan Kaufmann, San Francisco (2003)
11. Egly, U., Tompits, H., Woltran, S.: On quantifier shifting for quantified Boolean formulas.

In: Proc. SAT 2002 Workshop on Theory and Applications of Quantified Boolean Formulas,
Informal Proceedings, pp. 48–61 (2002)

12. Gent, I.P., Nightingale, P., Stergiou, K.: QCSP-Solve: A solver for quantified constraint sat-
isfaction problems. In: Proc. 19th International Joint Conference on Artificial Intelligence
(IJCAI 2005), pp. 138–143. Professional Book Center (2005)

Variable Dependencies of Quantified CSPs 527

13. Gottlob, G., Greco, G., Scarcello, F.: The complexity of quantified constraint satisfaction
problems under structural restrictions. In: Proc. 19th International Joint Conference on Arti-
ficial Intelligence (IJCAI 2005), pp. 150–155. Professional Book Center (2005)

14. Lonsing, F., Biere, A.: Nenofex: Expanding NNF for QBF solving. In: Kleine Büning, H.,
Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 196–210. Springer, Heidelberg (2008)

15. Samer, M., Szeider, S.: Backdoor sets of quantified boolean formulas. In: Marques-Silva, J.,
Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 230–243. Springer, Heidelberg (2007)

16. Tarjan, R.E.: Depth first search and linear graph algorithms. SIAM Journal of Comput-
ing 1(2), 146–160 (1972)

Treewidth: A Useful Marker of Empirical Hardness
in Quantified Boolean Logic Encodings

Luca Pulina and Armando Tacchella�

DIST, Università di Genova, Viale Causa, 13 – 16145 Genova, Italy
Luca.Pulina@unige.it, Armando.Tacchella@unige.it

Abstract. Theoretical studies show that in some combinatorial problems, there
is a close relationship between classes of tractable instances and the treewidth
(tw) of graphs describing their structure. In the case of satisfiability for quanti-
fied Boolean formulas (QBFs), tractable classes can be related to a generalization
of treewidth, that we call quantified treewidth (twp). In this paper we investigate
the practical relevance of computing twp for problem domains encoded as QBFs.
We show that an approximation of twp is a predictor of empirical hardness, and
that it is the only parameter among several other candidates which succeeds con-
sistently in being so. We also provide evidence that QBF solvers benefit from a
preprocessing phase geared towards reducing twp, and that such phase is a po-
tential enabler for the solution of hard QBF encodings.

1 Introduction

Several theoretical studies deal with the relationship between the complexity of com-
binatorial problems and the treewidth (tw) of graphs representing their structure. The
common trait of such studies is that the assumption of bounded values of tw yields
tractable classes of problems which are intractable otherwise. This connection has been
unveiled in the study of graph algorithms, and it emerged in other areas of application
(see, e.g. [1]). In the context of the constraint satisfaction problem (CSP), the connec-
tion was first explored by Freuder [2], Dechter and Pearl [3], and more recent results
(see, e.g., [4,5,6]) consider also the quantified constraint satisfaction problem (QCSP).

In this paper, we are concerned with the practical relevance of the above results for
problems that can be encoded as quantified Boolean formulas (QBFs). The satisfiability
problem for QBFs (QSAT) is the subclass of QCSP wherein all the variables range
over a Boolean domain. The importance of QSAT stems both from theoretical aspects
– QSAT is the prototypical PSPACE-complete problem [7] – and from the fact that
QBFs can provide compact Boolean encodings in several automated reasoning tasks.
The interest in QSAT is also witnessed by a number of QBF encodings and solvers
(see [8]), and by the presence of an annual competition of QBF solvers (QBFEVAL) [9].

From a practical standpoint, we see the results in [4,5,6] as gateways to the efficient
solution of QBF encodings – many of which are also industrially relevant. In particular,
we build on [4] which relates the complexity of solving QCSPs to a generalization of tw
that we call quantified treewidth (twp). Our main contributions, obtained considering
data from the three most recent QBFEVAL events (2006-2008), are the following:
� This work has been partially supported by the Italian Ministry of University and Research.

I. Cervesato, H. Veith, and A. Voronkov (Eds.): LPAR 2008, LNCS 5330, pp. 528–542, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Treewidth: A Useful Marker of Empirical Hardness 529

– Since computing tw is an NP-complete problem [10] it is not difficult to see that
twp must be NP-hard at least; however, it turns out that twp can be approximated
efficiently enough; to this purpose we introduce the proof-of-concept tool QUTE,
a Quantifed Treewidth Estimator, to compute upper bounds of twp.

– While bounding twp is only a sufficient condition for tractability and we have no
clue whether increasing it will correspond to an increase in difficulty, we show
that the approximation of twp computed by QUTE is a robust predictor – albeit
in a statistical sense – of the performances exhibited by solvers when coping with
QBF encodings; in this sense, the approximation of twp is a marker of empirical
hardness, and it is the only parameter that succeeds consistently in being so among
several other syntactic parameters which are plausible candidates.

– The result in [4] relates to a specific algorithm and it does not say much about QBF
solvers using different approaches like search (see, e.g., [11,12]), skolemization
(see, e.g., [13]), or variable elimination (see, e.g., [14,15]);1 however, our experi-
mental analysis shows that the significance of approximated twp is not related to
some specific solver only.

– Finally, computing approximations of twp is also useful; to show this we intro-
duce QUBIS, a Quantified Boolean formula Incomplete Solver. QUBIS is incom-
plete in that, given an input QBF ϕ, it may either solve ϕ, or halt producing another
QBF ϕ′ whose treewidth is no larger than the treewidth of ϕ in most cases. Exper-
iments with QUBIS show that preprocessing helps when it decreases the treewidth
of QBFs, and the improvement can be so dramatic that formulas which cannot be
solved by any solver before QUBIS preprocessing, can be solved afterwards.

The paper is structured as follows. In Section 2 we introduce basic definitions. In
Section 3 we introduce the concept of empirical hardness and we show that the approx-
imation of twp provided by QUTE is a marker of solver performances. In Section 4
we describe QUBIS in some detail, and show that it can effectively improve the per-
formances of state-of-the-art QBF solvers. We conclude the paper in Section 5 with a
summary about our current results and the related work.

2 Preliminaries

In this section we consider the definition of QBFs and their satisfiability as given in the
literature of QBF decision procedures (see, e.g., [11,13,14]), and we introduce notation
from [4] to define graphs and associated parameters describing the structure of QBFs.

A variable is an element of a set P of propositional letters and a literal is a variable
or the negation thereof. We denote with |l| the variable occurring in the literal l, and
with l the complement of l, i.e., ¬l if l is a variable and |l| otherwise. A literal is positive
if |l| = l and negative otherwise. A clause C is an n-ary (n ≥ 0) disjunction of literals
such that, for any two distinct disjuncts l, l′ in C, it is not the case that |l| = |l′|. A

1 As shown in [16], the performances of Boolean satisfiability solvers based on variable elim-
ination are very sensitive to different values of tw. As we confirm in Section 4, QBF solvers
based on variable elimination are those that are most sensitive to twp and thus most closely
resemble an implementation of the algorithm used in [4].

530 L. Pulina and A. Tacchella

propositional formula is a k-ary (k ≥ 0) conjunction of clauses. A quantified Boolean
formula is an expression of the form

Q1z1 . . .QnznΦ (1)

where, for each 1 ≤ i ≤ n, zi is a variable, Qi is either an existential quantifier
Qi = ∃ or a universal one Qi = ∀, and Φ is a propositional formula in the variables
{z1, . . . , zn}. The expression Q1z1 . . .Qnzn is the prefix and Φ is the matrix of (1). A
literal l is existential if |l| = zi for some 1 ≤ i ≤ n and ∃zi belongs to the prefix of (1),
and it is universal otherwise. For example, the following expression is a QBF:

∀y1∃x1∀y2∃x2∃x3((y1 ∨ y2 ∨ x2) ∧ (y1 ∨ ¬y2 ∨ ¬x2 ∨ ¬x3)∧
(y1 ∨ ¬x2 ∨ x3) ∧ (¬y1 ∨ x1 ∨ x3)∧
(¬y1 ∨ y2 ∨ x2) ∧ (¬y1 ∨ y2 ∨ ¬x2)∧
(¬y1 ∨ ¬x1 ∨ ¬y2 ∨ ¬x3)∧
(¬x2 ∨ ¬x3)).

(2)

The semantics of a QBF ϕ can be defined recursively as follows. A QBF clause is
contradictory exactly when it does not contain existential literals. If the matrix of ϕ
contains a contradictory clause then ϕ is false. If the matrix of ϕ has no conjuncts then
ϕ is true. If ϕ = Qzψ is a QBF and l is a literal, we define ϕl as the QBF obtained from
ψ by removing all the conjuncts in which l occurs and removing l from the others. Then
we have two cases. If ϕ is ∃zψ, then ϕ is true exactly when ϕz or ϕ¬z are true. If ϕ is
∀zψ, then ϕ is true exactly when ϕz and ϕ¬z are true. The QBF satisfiability problem
(QSAT) is to decide whether a given formula is true or false. It is easy to see that if ϕ is
a QBF without universal quantifiers, solving QSAT is the same as solving propositional
satisfiability (SAT).

A relational signature σ is a finite set of relation symbols, each of which has an
associated arity. A (finite) relational structure A over σ consists of a universe A and a
relation RA overA for each relation symbolR of σ, such that the arity of RA matches
the arity associated to R. Accordingly, the QBF (2) can be rewritten as:

∀y1∃x1∀y2∃x2∃x3(C000(y1, y2, x2) ∧C0111(y1, y2, x2, x3)∧
C010(y1, x2, x3) ∧ C100(y1, x1, x3)∧
C100(y1, y2, x2) ∧C101(y1, y2, x2)∧
C1111(y1, x1, y2, x3) ∧ C11(x2, x3))

(3)

over the signature σ = {C000, C0111, C010, C100, C101, C1111, C11} where each Cw ∈
σ has arity |w|. Let φ be the expression (3). The QSAT problem for φ can be re-
stated as the problem of checking the (first-order logic) entailment B |= φ, where
B is a relational structure with signature σ and universe B = {0, 1}, such that, for
each Cw ∈ σ, CB

w is the relation containing all |w|-tuples over B except w, e.g.,
CB

11 = {(0, 0), (0, 1), (1, 0)}.
Following [4] we further introduce the notion of quantified relational structure as

a pair (p,A) where A is a relational structure and p is a prefix, i.e., an expression of
the form Q1z1 . . .Qnzn where each Qi is either ∃ or ∀, and z1, . . . , zn are exactly the
elements of the universe of A. The quantified relational structure (p,A) associated to

Treewidth: A Useful Marker of Empirical Hardness 531

a QBF φ is obtained by letting p be the prefix of φ and letting RA contain all tuples
(a1, . . . , ak) such that R(a1, . . . , ak) appears as a conjunct in φ. Notice that a pre-
fix p = Q1z1 . . . Qnzn can be viewed as the concatenation of quantifier blocks where
quantifiers in each block are the same, and consecutive blocks have different quantifiers.
If h ≤ n is the number of blocks in p, then h−1 is the alternation depth of p and, by ex-
tension, of the QBF having p as a prefix. If p consists of the blocksQ1Z1 . . .QhZh, then
to each variable z we can associate a level l(z) which is the index of the corresponding
block, i.e., l(z) = i for all the variables z ∈ Zi. We also say that variable z1 comes
after a variable z2 in p if l(z1) ≥ l(z2). For instance, the quantified relational structure
associated to (3) is (∀y1∃x1∀y2∃x2∃x3,A), with universe A = {y1, y2, x1, x2, x3}
and

CA
000 = {C000(y1, y2, x2)} CA

0111 = {C0111(y1, y2, x2, x3)}
CA

010 = {C010(y1, x2, x3)} CA
100 = {C100(y1, x1, x3), C100(y1, y2, x2)}

CA
1111 = {C1111(y1, x1, y2, x3)} CA

11 = {C11(x2, x3)}.
(4)

A relational structure – and thus the structure of a QBF – can be described by a
Gaifman graph. Given a relational structure A, the Gaifman graph of A is the graph
with vertex set equal to the universe A of A and with an edge (a, a′) for every pair of
different elements a, a′ ∈ A that occur together in some A-tuple, i.e., in some element
ofRA for some relation symbolR. A scheme for a quantified relational structure (p,A)
is a supergraph (A,E) of the Gaifman graph of A along with and ordering a1, . . . , an

of the elements of A such that

1. the ordering a1, . . . , an preserves the order of p, i.e., if i < j then aj comes after
ai in p, and

2. for any ak, its lower numbered neighbors form a clique, that is, for all k, if i < k,
j < k, (ai, ak) ∈ E and (aj , ak) ∈ E, then (ai, aj) ∈ E

The width wp of a scheme is the maximum, over all vertices ak, of the size of the set
{i : i < k, (ai, ak) ∈ E}, i.e., the set containing all lower numbered neighbors of
ak. The treewidth twp of a quantified relational structure (p,A) is the minimum width
over all schemes for (p,A). Given the correspondence between relational structures
and QBFs, we write twp(ϕ) to denote the treewidth of the QBF ϕ.

3 Treewidth and Empirical Hardness

If we define the class QSAT[twp < k] as the restriction of the QSAT problem to all
instances ((p,A),B) where (p,A) has quantified treewidth strictly less than k, then,
considering the definition of the polynomial-time algorithm k-consistency of [4], we
can state the following:

Theorem 1 ([4]). For all k ≥ 2, establishing k-consistency is a decision procedure for
QSAT[twp < k]

From the above, it immediately follows that the class QSAT[twp < k] is a tractable
subclass of the QSAT problem and, therefore, the QBFs corresponding to relational
structures with a bounded twp are a tractable subclass of QSAT.

532 L. Pulina and A. Tacchella

SORTBYPREFIX(ϕ, {v1, v2, . . . , vn})
1 h← number of quantifier blocks of ϕ
2 Zh ← h-th quantifier block of ϕ
3 i← 1; j ← 1; s← 0
4 while (h > 0) do
5 if (vi ∈ Zh) then
6 v′

j ← vi; j ← j + 1; Zh ← Zh \ {vi}
7 if (Zh = ∅) then
8 h← h - 1
9 if (s �= 0) then i← s; s← 0

10 else
11 if (s = 0) then s← i
12 while (vi �∈ Zh) i← i + 1
13 return {v′

1, v
′
2, . . . v

′
n}

FILLIN ((V, E), {v1, v2, . . . , vn})
1 tw← 0
2 for v ∈ V do
3 M(v) ← the set of vertices adjacent to v
4 E′ ← E
5 for i ← 1 to n do
6 if |M(vi)| > tw then
7 tw ← |M(vi)|
8 for u, w ∈ M(vi) and(u, w) �∈ E′ do
9 E′ ← E′ ∪ (u, w)

10 M(u)← M(u) ∪ {w}
11 M(w)← M(w) ∪ {u}
12 for u ∈ M(vi) do
13 M(u)← M(u)\{vi}
14 return tw

QUTE(ϕ)
1 G← Gaifman graph of ϕ
2 σ← FINDORDERING(G)
3 σ′ ← SORTBYPREFIX(ϕ, σ)
4 t̂wp ← FILLIN(G, σ′)
5 return t̂wp

Fig. 1. The algorithm of QUTE and the auxiliary functions SORTBYPREFIX and FILLIN

To understand the implications of Theorem 1 in the case of concrete QBF encodings
and solvers, we define a notion of empirical hardness. Given a set of QBFs Γ , a set
of QBF solvers Σ, and an implementation platform Π , we define hardness as a partial
functionHΓ,Σ,Π : Γ → {0, 1} such that

– HΓ,Σ,Π(ϕ) = 1 iff no solver in Σ can solve ϕ on Π , and
– HΓ,Σ,Π(ϕ) = 0 iff all solvers in Σ can solve ϕ on Π .

The parameters Γ and Σ take into account the dependency of H from the current state
of the art in the available QBF encodings and solvers. The parameterΠ denotes the de-
pendency of H from the currently available hardware platforms, as well as the amount
of time and space resources allotted to the solvers. In the remainder of this section Γ ,
Σ and Π are fixed, and we write H(ϕ) to denote the hardness of ϕ. In particular, Π
is a family of identical Linux workstations comprised of 8 Intel Core 2 Duo 2.13 GHz
PCs with 4GB of RAM; the resources granted to the solvers are 600s of CPU time and
3GB of memory. As for Γ and Σ, we consider the sets of formulas and solvers that
participated in the three most recent competitions of QBF solvers (QBFEVAL) [9].

Understanding the relationship between H(ϕ) and twp requires the computation of
both quantities for all the formulas in Γ , but computing an exact value of twp is unfea-
sible with our choice of Γ . Therefore, we built the tool QUTE – whose implementation
is sketched in Figure 1 – in order to provide us with approximate values of twp. As we
can see in Figure 1, QUTE takes as input a QBF ϕ and returns an approximate value
t̂wp of the quantified treewidth by performing the following steps:

Treewidth: A Useful Marker of Empirical Hardness 533

– The input QBF is converted to the corresponding Gaifman graphG (line 1) accord-
ing to the construction presented in Section 2.

– An ordering σ is sought (line 2); the current implementation of FINDORDERING is
the maximum cardinality search (MCS) algorithm of [17].

– The function SORTBYPREFIX (line 3) transforms σ into another – possibly identi-
cal – ordering σ′ which is compatible with the prefix of ϕ.

– Finally, the function FILLIN (line 4) computes the value of t̂wp by computing
a chordal completion of G in such a way that σ′ becomes a perfect elimination
scheme; since σ′ is not guaranteed to yield the minimum value of tw over all pos-
sible chordal completions, it turns out that t̂wp ≥ twp.

There are two important observations about QUTE. First, if FINDORDERING were
able to guess σ in such a way that the chordalization performed by FILLIN yields the
minimum maximal clique over all possible chordal completions, then t̂wp = twp. In
practice, FINDORDERING is just an heuristic, but efficient heuristics – like MCS – do
not guarantee a tight bound on the approximation, while more accurate algorithms (like,
e.g., QuickBB [18]) are hopelessly slow in our case. We have experimented with several
FINDORDERING – indeed, all those available in the TreeD library [19] on top of which
QUTE is implemented – and we did not find substantial differences among different
heuristics. Also, for graphs in which twp can be computed – random graphs of up to
30 nodes – we have seen that decreasing twp causes also t̂wp to decrease and, if the
graph is either very sparse of mostly connected, twp = t̂wp on most samples. However,
the question whether t̂wp is a tight approximation of twp remains open for the kind of
graphs that we deal with. Second, all the QBFs that we consider are in prenex CNF,
meaning that all the bound variables are constrained to a total order. However, it has
been shown (see, e.g., [20,21]) that the “true” prefix structure is, in many cases, a partial
order among the bound variables. Using partial orders instead of total ones may allow,
in some cases, to obtain a better approximation of twp than the one computed starting
from the prenex QBF. We consider all the above issues related to improving QUTE2 as
topics for future research.

The main result of this section is presented in Figure 2 where we consider hard the
formulas ϕ such thatH(ϕ) = 1, and easy the formulasϕ such thatH(ϕ) = 0. For each
QBFEVAL dataset, in Figure 2 (left) we show plots obtained by considering each for-
mula as a point in the multidimensional space of syntactic features, a set of 141 param-
eters that can be computed inexpensively like, e.g., the number of clauses, the number
of variables and the alternation depth. The complete listing and a detailed description
of such parameters can be found in [23]. Since it is impossible to visualize a space in
141 dimensions, we consider its two-dimensional projection obtained by means of a
principal components analysis (PCA) and considering only the first two principal com-
ponents.3 In Figure 2 (right) we show plots obtained by considering the distributions of
t̂wp computed for easy and hard formulas by QUTE. For each distribution, we show a
box-and-whiskers diagram representing the median (bold line), the first and third quar-
tile (bottom and top edges of the box), the minimum and maximum (whiskers at the

2 The latest C++ implementation of QUTE is available at [22].
3 Details about PCA and its use for visualizing multidimensional datasets are beyond the scope

of this paper: see, e.g., Chap. 7 of [24] for an introduction to PCA and further references.

534 L. Pulina and A. Tacchella

QBFEVAL Syntactic features (PCA) t̂wp (distribution)

2006

2007

2008

Fig. 2. Hardness vs. syntactic features (left) and treewidth (right)

top and the bottom) of a distribution. Values laying farther away than the median ±1.5
times the interquartile range are considered outliers and shown as dots on the plot.4 An
approximated 95% confidence interval for the difference in two medians is represented
by the notches cut in the boxes: if the notches of two plots do not overlap, this is strong
evidence that the two medians differ.

Considering the results shown in Figure 2 (right) we can conclude that t̂wp is a ro-
bust marker of empirical hardness, since for all QBFEVAL datasets the distribution of

4 In case outliers are detected, the whiskers extend up to the median +1.5 (resp. −1.5) times
the interquartile range, while the maximum (resp. minimum) value becomes the highest (resp.
lowest) outlier.

Treewidth: A Useful Marker of Empirical Hardness 535

Table 1. Discriminative power of syntactic features considering posterior probabilities

Group Feature Accuracy (%)

Treewidth (ˆtwp) 72

Existential 49
Number of variables Universal 64

Total 49

Number of sets Total 54

Existential 45
Number of variables Universal 62
per set Total 46

Clauses-to-Variables 43

Group Feature Accuracy (%)

Unary 42
Binary 53

Number of clauses Horn 50
Dual Horn 50
Total 58

Existential 59
Universal 44

Number of occurrences Negative 42
per variable (mean) Positive 41

Total 41

t̂wp varies significantly across hard and easy instances. To get a quantitative feeling
of this, let us consider a simple Bayesian argument related to the problem of deciding
whether a given QBF ϕ is hard or not. For the sake of our argument, the distributions
in Figure 2 (right) represent p(t̂wp|H), i.e., the probability density of t̂wp given the
hardness H . The proportion of hard instances in each dataset is the parameter r in
p(H) = rH(1 − r)(1−H), i.e., the prior density of hardnessH . Looking at prior infor-
mation only, we decide that a QBF ϕ is hard exactly when P (H = 1) > P (H = 0),
i.e., when r > 0.5. If we consider also the likelihood p(t̂wp|H), then we can compute
the posterior density p(H |t̂wp) using Bayes’ rule and then decide that a QBF ϕ is hard
exactly when

P (t̂wp(ϕ)|H(ϕ) = 1) · P (H(ϕ) = 1) > P (t̂wp(ϕ)|H(ϕ) = 0) · P (H(ϕ) = 0)

We close our argument by stating that in all the QBFEVAL datasets the accuracy of the
above criterion is strictly higher than looking at prior probabilities only. For instance,
in the QBFEVAL’08 dataset we have that r = 0.54 meaning that P (H = 0) = 0.46
and P (H = 1) = 0.54. A priori, given a formula ϕ in the QBFEVAL’08 dataset we
would decide that it is hard (H = 1), with a 54% accuracy, i.e., only slightly more
than tossing a fair coin. With the Bayesian approach, looking at t̂wp we obtain a 72%
accuracy which is a definite increase in our predictive ability.

On the other hand, syntactic features are collectively unable to distinguish among
easy and hard instances. As we can see in Figure 2 (left), with the partial exception of
some hard instances in the QBFEVAL’07 dataset, there is a non-negligible chance that
easy and hard instances share similar values of such features. Technically, we say that
in the space of syntactic features it is hard to find a discriminant – a curve in the PCA
plots of Figure 2 – that allows us to tell easy instances from hard ones with sufficient
accuracy. Repeating the Bayesian argument above for syntactic features on the QBFE-
VAL’08 dataset, we obtain the results of Table 1. Here we can see that posterior prob-
ability densities do not yield substantial improvements over prior probabilities except
in the case of t̂wp meaning that, overall, syntactic features are far from the predictive
power of approximated treewidth. In some cases, including the “famous” clauses-to-
variable ratio, conditioning hardness on a syntactic feature is even worse than tossing a
fair coin.

536 L. Pulina and A. Tacchella

4 Treewidth and Useful Preprocessing

In this section we introduce our tool QUBIS, an incomplete solver which, given an
input QBF ϕ, may either solve it, or halt producing another QBF ϕ′. With a suitable
setting of the parameters of QUBIS, t̂wp(ϕ′) can be made no larger than t̂wp(ϕ) in
most cases. The purpose of this section is to show that QBF solvers benefit from getting
the output of an incomplete run of QUBIS rather than being fed the original QBF as
input. In other words, preprocessing helps when it decreases t̂wp and, in practice, this
is often true independently from the algorithm featured by the solver.

QUBIS is based on Q-resolution defined in [25] as an operation among clauses of a
QBF. In particular, given two clauses P ∨x andR∨¬x, where P andR are disjunctions
of literals, the clause P ∨ R can be derived by Q-resolution subject to the constraints
that (i) x is an existential variable, and (ii) P and R do not share any variable z such
that ¬z (resp. z) occurs in P and z (resp. ¬z) occurs in R. QUBIS uses Q-resolution
to perform variable elimination on existential variables defined, e.g., in [14], as the
operation whereby, given a QBF Q1z1Q2z2 . . .∃xΦ, the variable x can be resolved
away by performing all resolutions on x, adding the resolvents to the matrix Φ and
removing from Φ all the clauses containing x. Universal variables can be eliminated
simply by deleting them once they have the highest prefix level. More precisely, given a
matrixΦ, let Φ/z be the same matrix whereby all the occurrences of z have been deleted.
The QBF Q1z1Q2z2 . . . ∀yΦ is true exactly when the QBF Q1z1Q2z2 . . . Φ/y is true,
so y can be eliminated safely. From the above, it immediately follows that variable
elimination, once it respects the prefix order, yields a decision procedure for QSAT
(see, e.g., [15,14]).

QUBIS takes as input a QBF ϕ and two parameters: (i) an integer deg, the maximum
degree allowed for a given variable considering the Gaifman graph of ϕ; (ii) an integer
div, the maximum value of diversity, a parameter defined in [16] as the product of the
number of positive and negative occurrences of a variable in ϕ. The role of deg is thus
to bound the number of variables in a clause, while the role of div is to bound the
(worst case) number of resolvents generated when eliminating an existential variable.
Intuitively, QUBIS eliminates variables until the input QBF can be declared true, false
or when eliminating variables is bound to increase the size of the resulting QBF beyond
some critical threshold. More precisely, a variable qualifies for elimination only if it has
the highest level in the prefix of ϕ, and

– it is a universal variable, or
– it is an existential variable, its degree is no larger than deg and its diversity is no

larger than div.

Universal variables are eliminated simply by deleting all their occurrences from the
matrix of ϕ, while existential variables are resolved away. In both cases, the resulting
QBF is given as argument to a recursive call of QUBIS. QUBIS terminates when one
of the following conditions is satisfied: (i) the matrix of ϕ is empty – in which case the
input QBF is true; (ii) the matrix of ϕ contains a contradictory clause – in which case
the input QBF is false; (iii) there are no variables that qualify for elimination in ϕ – in
which case ϕ is returned as output. Therefore, QUBIS is a sound and complete decision

Treewidth: A Useful Marker of Empirical Hardness 537

Table 2. Encodings to experiment with QUBIS(top), and performances of QBF solvers (bottom)

Encoding QBFs Description

add 32 equivalence checking of partial implementations of circuits
circ 63 FPGA logic synthesis
count 24 model checking of counter circuits
cp 24 conformant planning domains
k 378 modal K formulas
katz 20 symbolic reachability of industrially relevant circuits
s 171 symbolic diameter evaluation of ISCAS89 circuits
tipdiam 203 symbolic diameter evaluation of circuits

Solver add circ count cp k katz s tipdiam
Time # Time # Time # Time # Time # Time # Time # Time

QMRES 20 1061.53 – – 8 87.53 1 0.30 269 3072.22 7 51.90 6 36.00 58 2576.02
QUANTOR 8 20.94 7 141.66 12 16.05 16 1710.01 259 922.56 – – 17 1185.52 76 709.27
QUBE3.0 5 1.99 4 18.08 9 90.15 6 160.08 115 5552.56 – – 1 0.07 71 1132.97
QUBE6.1 5 1.34 4 4.87 9 116.52 5 169.14 203 4376.43 6 26.21 62 3006.31 151 1493.88
SKIZZO 14 814.80 6 79.11 12 5.88 7 287.40 348 7262.20 – – 19 1089.13 133 8554.86
YQUAFFLE 4 0.86 4 0.58 9 3.99 8 267.22 142 5622.60 – – 1 0.12 71 2162.84

procedure for the subclass of QBFs in which variables always qualify for elimination,
while for all the other formulas QUBIS5 behaves like a preprocessor.

The experiments detailed in this section are carried out on the same computing plat-
forms described in Section 3, but here we focus on the 915 QBF encodings summarized
in Table 2 (top) and on the following QBF solvers (references available from [8]):

QMRES is a symbolic implementation of variable elimination featuring multi-resolution, unit
propagation, and heuristics to choose variables.

QUANTOR uses existential variable elimination and universal variables expansion, plus equiva-
lence reasoning, subsumption checking, pure and unit literal detection.

QUBE3.0 is a search-based solver with learning.
QUBE6.1 is a composition of the search-based solver QUBE and a preprocessor that applies

equivalence substitution, Q-resolution and clause subsumption.
SKIZZO is a reasoning engine for QBF featuring several techniques, including search, resolution

and skolemization.6

YQUAFFLE is a search-based solver featuring learning and inversion of quantifiers.

Our first experiment is to run the solvers on the QBF encodings, with the goal of
showing that the encodings are challenging enough given the current state of the art,
and that the algorithms featured by the solvers are “orthogonal”, i.e., solvers have com-
plementary abilities across different families. Table 2 (bottom) shows the results: the
first column contains the solver names, and it is followed by eight groups of columns,
one for each encoding. The columns “#” and “Time” contain, respectively, the number
of formulas solved and the cumulative CPU seconds. A dash on both columns means
that the solver did not solve any formula. Looking at Table 2 (bottom) we see that our
selection is indeed valid for our purposes. For instance, consideringcirc encodings we
see that no single solver is able to solve more than about 10% of them. Still considering
the percentage of QBFs solved by any single solver, we see that a similar result holds

5 A proof-of-concept implementation in C++ of QUBIS can be downloaded from [22].
6 SKIZZO is run with its default settings.

538 L. Pulina and A. Tacchella

Table 3. Results of treewidth analysis on QBF encodings and their preprocessed versions

Solver add circ count cp
H H′ H′

q < µ µq H H′ H′
q < µ µq H H′ H′

q < µ µq H H′ H′
q < µ µq

QMRES 12 12 9 9 996 705 63 54 35 35 2055 1865 16 16 16 4 253 232 23 21 18 18 173 163
QUANTOR 24 24 21 21 541 398 56 47 28 28 2466 2234 12 12 12 3 311 309 8 6 4 4 447 438
QUBE3.0 27 27 24 23 507 364 59 50 31 31 2304 2090 15 15 15 4 254 229 18 16 13 13 211 203
QUBE6.1 27 27 24 23 507 364 59 50 31 31 2304 2090 15 15 15 4 254 229 19 17 14 14 203 193
SKIZZO 18 18 15 15 663 525 57 48 29 29 2425 2199 12 12 12 3 311 309 17 15 12 12 208 203
YQUAFFLE 28 28 25 24 490 353 59 50 31 31 2304 2090 15 15 15 4 254 229 16 14 11 11 221 215

k katz s tipdiam
H H′ H′

q < µ µq H H′ H′
q < µ µq H H′ H′

q < µ µq H H′ H′
q < µ µq

QMRES 109 96 71 55 370 364 13 13 13 13 351 306 165 61 6 6 796 497 145 145 97 94 311 194
QUANTOR 119 106 101 53 378 372 20 20 20 18 276 240 154 50 – – 3102 – 127 127 80 79 352 219
QUBE3.0 263 252 194 76 182 178 20 20 20 18 275 240 170 66 9 9 557 353 132 132 85 83 345 214
QUBE6.1 175 168 151 59 93 89 14 14 14 14 331 289 109 12 – – 3471 – 52 52 20 20 546 347
SKIZZO 30 21 18 17 276 269 20 20 20 18 275 240 152 48 – – 3223 – 70 70 46 42 395 259
YQUAFFLE 236 225 185 74 204 200 20 20 20 18 275 240 170 66 9 9 557 353 132 132 85 84 342 213

for katz encodings (about 30%) and s encodings (about 35%). Furthermore, there is
no single solver dominating over all encodings: QMRES is best on add and second best
on k encodings; QUANTOR is best on count (ex-aequo with SKIZZO) and third best
on k encodings; QUBE6.1 is the strongest on tipdiam and s encodings – apparently
due to internal preprocessing, given the performances of QUBE3.0; SKIZZO, on the
other hand, is the strongest on k encodings. 7

In the next experiment, for each solver we consider the formulas that it could not
solve according to the results of Table 2 (bottom). For each solver and each such formula
ϕ, we compute t̂wp(ϕ), preprocess ϕ with QUBIS – setting deg = 20 and div = 2000
– to yield a new QBF ϕ′ and then compute t̂wp(ϕ′) with QUTE. The goal of this
experiment is to see whether QUBIS, used as a preprocessor, is able to decrease t̂wp of
(solver-wise) hard encodings. Table 3 shows the results. The table is split horizontally
in two parts. In each part, the column “Solver” reports the name of a solver followed
by four groups of columns, one for each encoding of Table 2. Each group contains six
columns: H is the number of (solver-wise) hard formulas, H ′ is the number of such
formulas for which QUTE was able to estimate the treewidth,H ′

q is the number of such
formulas preprocessed by QUBIS for which QUTE was able to estimate the treewidth,
“<” is the number of formulas ϕ such that t̂wp(ϕ′) < t̂wp(ϕ). Columns “µ” and “µq”
contain the mean value of t̂wp for formulas in “H ′” and “H ′

q”, respectively.
Looking at Table 3, we can see that, on average, preprocessing with QUBIS de-

creases t̂wp. Indeed µq < µ for all solvers and all encodings in Table 3. In several
cases the set of encodings for which QUBIS is able to decrease t̂wp almost coincides
with the set that it is able to preprocess without exceeding its resource limits. This phe-
nomenon is most evident for the families add, circ – where the H ′

q and “<” actually
coincide for every solver – cp, and katz. In some cases, e.g., two formulas in the add
group and thirteen QUANTOR-hard encodings in the k group, t̂wp can be decreased of
one order of magnitude. Comparatively, there are only 38 cases in which treewidth is
increased. Considering the total number of literals in a formula as a size indicator, we

7 SKIZZOis also the strongest solver overall, with 539 encodings solved, 20% more than
QUBE6.1 which comes second best.

Treewidth: A Useful Marker of Empirical Hardness 539

Table 4. Performances of a selection of QBF solvers on preprocessed encodings

Solver add circ count cp
H S # Time H S # Time H S # Time H S # Time

QMRES 12 – 2 41.47 63 – – – 16 – – – 23 – – –
QUANTOR 24 – – – 56 – – – 12 – – – 8 – 1 41.50
QUBE3.0 27 – 1 9.04 59 – – – 15 – – – 18 – – –
QUBE6.1 27 – 2 8.24 59 – – – 15 – 15 57.32 19 – 2 412.82
SKIZZO 18 – – – 57 – 9 3274.30 12 – – – 17 – – –
YQUAFFLE 28 – 2 29.52 59 – – – 15 – – – 16 – 1 2.56

k katz s tipdiam
H S # Time H S # Time H S # Time H S # Time

QMRES 109 19 30 1508.64 13 – – – 165 1 6 471.88 145 4 15 955.63
QUANTOR 119 – 35 2.76 20 – – – 154 – – – 127 3 4 67.19
QUBE3.0 263 55 88 3547.85 20 – 2 209.24 170 3 4 378.24 132 4 22 2061.39
QUBE6.1 175 14 50 4942.48 14 – – – 109 – – – 52 – – –
SKIZZO 30 – 1 67.54 20 – 2 172.17 152 – – – 70 – 10 2419.14
YQUAFFLE 236 37 63 4219.11 20 – – – 170 3 4 380.96 132 4 19 1048.42

found out that the average size of such formulas is about one order of magnitude smaller
than the size of the ones for which QUBIS is able to decrease t̂wp, while the number of
quantifier blocks is, on average, a factor of two higher. Indeed, the net effect of QUBIS
on these kind of formulas is to increase the size of clauses without eliminating any
quantifier block, which means that t̂wp may increase because minimal cliques (clauses)
are bigger after preprocessing and the ordering on the vertices is as constrained as it
was before preprocessing.

Another relevant fact from Table 3 is that there are cases in which (i) estimating twp

is difficult and/or (ii) preprocessing is difficult. As it turns out, for some unprocessed
formulas, e.g., in the family s, we are not even able to compute t̂wp, and for other
formulas, e.g., in the family circ, we can compute t̂wp for more formulas than the
ones tamed by QUBIS. Needless to say, such families are quite challenging and, on
average, their members feature relatively high values of t̂wp. One last obervation about
Table 3 is related to the fact that it may seem unlikely that a tool like QUBIS is able
to consistently decrease t̂wp – indeed, we have discussed cases where the converse is
true. By definition of twp, if we let M be the size of the largest clause in a QBF ϕ, then
we know that M ≤ twp(ϕ). Since variable elimination tends to generate large clauses,
we would expect that in preprocessed formulas t̂wp is higher than in the original ones.
However, as discussed in [16], this is not necessarily the case, as long as the connectivity
of ϕ does not increase. Clearly, for QUBIS to work properly as a preprocessor, the
setting of the parameters deg and div is crucial – and not necessarily the best one in all
the situations. Our setting in the above experiments reflects a good trade-off between
efficiency in the usage of resources, and effectiveness in decreasing t̂wp.

In Table 4 we show the performances of QBF solvers on hard encodings after pre-
processing. The Table is organized similarly to Table 3, and there are four columns in
each group: H is the number of hard QBFs for each solver/encoding, S is the number
of such formulas solved by QUBIS during preprocessing, “#” and “Time” contain, re-
spectively, the total number of formulas solved (including the ones solved by QUBIS),
and the cumulative CPU time in seconds. Looking at Table 4 (top), considering the
group add, we can see that QMRES, QUBE6.1 and YQUAFFLE solve two previously
unsolved formulas, while QUBE3.0 solves one. In particular, QMRES is able to solve

540 L. Pulina and A. Tacchella

two more encodings since they had an estimated quantified treewidth of 658 and 943
but QUBIS decreased it to 77 and 93, respectively. Considering the group circ, we
can see that only SKIZZO is able to solve formulas (9 out of 29) that it found hard before
preprocessing. Considering the group count, as in the case of circ, we see that only
QUBE6.1 takes advantage of preprocessing by solving 15 previously unsolved formu-
las. Looking now at the cp group, we see that QUBE6.1 solves 2 hard formulas, while
both QUANTOR and YQUAFFLE solve 1 hard formula.

Still with reference to Table 4, we consider now the encodings on the bottom. In
the group k, preprocessing turns out to be very effective for most solvers, with the
exception of SKIZZO because of a ceiling effect: indeed, SKIZZO alone is already quite
effective on such formulas. On the other hand, search-based solvers benefit the most,
and it is fair to say that QUBIS complements the shortcomings of these solvers on
such encodings. However, it is interesting to notice that also variable-elimination based
solvers like QUANTOR and QMRES improve their performances, which contributes
to the thesis that decreasing t̂wp is useful independently from the specific algorithm
featured by the solver. As for the group katz, only QUBE3.0 and SKIZZO are able to
solve 2 previously unsolved formulas. Similar results hold also for the s group, wherein
QMRES is the solver which benefits the most from preprocessing. The grouptipdiam
is quite interesting in its own, since most solvers are able to benefit from preprocessing,
again in an algorithm independent fashion.

We conclude the analysis of Table 4 by mentioning that, overall, the dataset therein
considered consists of 272 hard – in the sense of Section 3 – formulas. QUBIS can
preprocess 113 such formulas in a successful way, i.e., without exceeding its resource
bounds. Noticeably, considering an ideal solver that always fares the best result for each
pair solver/encoding after preprocessing, we have that 25 previously hard formulas can
now be solved. Considering that QUBIS is still a proof-of-concept implementation,
we view this as an indication that preprocessing geared towards reducing quantified
treewidth is an enabler to deal with challenging QBF encodings.

5 Related Work and Conclusions

The empirical role of treewidth has been previously explored in the CSP [26] and
SAT [16] literature. Before this paper, there was no such study in QBF, albeit the
papers about QUANTOR and QMRES (see,e.g., [15,14]) implicitly leverage the same
concepts and are thus related to our contribution. From a theoretical standpoint, there
are two other papers [5,6] that together with [4] consider the relationship between
structural restrictions of QBFs and the complexity of reasoning about them. Here,
we follow [4] because its characterization of twp accounts nicely for the structure of
the prefix and the structure of the formula in a single parameter. In [6], the prefix is
taken into account by considering alternation depth, while treewidth accounts only for
the structure of the matrix. In [5] a completely different kind of structural restriction,
which is also incomparable with treewidth, is presented. From an experimental point
of view, it may be interesting to check how the results of [6] and [5] apply to our set-
ting, and whether they shed further insight on the behaviour of QBF solvers on hard
encodings.

Treewidth: A Useful Marker of Empirical Hardness 541

Concerning QUBIS, our direct source of inspiration has been the algorithm of
Bounded Directional Resolution (BDR) presented in [16]. From an implementation
point of view, even as a proof-of-concept implementation, QUBIS is more advanced
than BDR. From an algorithmic point of view, the main difference between BDR and
QUBIS is that our solver uses dynamic, rather than static, reordering of variables. Since
QUBIS uses Q-resolution to eliminate variables, it is in this aspect similar to QM-
RES [15] and QUANTOR [14]. However, our approach differs from QMRES, because
we do not use symbolic data structures, and also from QUANTOR since we never expand
universal variables.

In this paper we have studied the practical relevance of t̂wp as a marker of empirical
hardness in QBFs. We have shown that such approximation is, in a statistical sense,
a robust predictor of the difficulty encountered by solvers facing QBF encodings. We
have shown that other purely syntactic features, alone or in combination among them,
are not as good as t̂wp. Finally, we have shown that decreasing t̂wp as done by QUBIS
can enable QBF solvers to cope with hard encodings. Our future work will include
looking for more accurate bounds when approximating twp, evaluating the impact of
other preprocessors for QBFs on twp, and an evaluation of twp as a control parameter
for multi-engine solvers.

References

1. Bodlaender, H.L.: Treewidth: Characterizations, applications, and computations. Technical
report, Utrecht University (2006)

2. Freuder, E.: Complexity of k-tree structured constraint satisfation problem. In: Proc. of AAAI
1990 (1990)

3. Dechter, R., Pearl, J.: Tree Clustering for constraint networks. Artificial Intelligence, 61–95
(1989)

4. Chen, H., Dalmau, V.: From pebble games to tractability: An ambidextrous consistency al-
gorithm for quantified constraint satisfaction. In: Ong, L. (ed.) CSL 2005. LNCS, vol. 3634.
Springer, Heidelberg (2005)

5. Gottlob, G., Greco, G., Scarcello, F.: The Complexity of Quantified Constraint Satisfaction
Problems under Structural Restrictions. In: IJCAI 2005, Proceedings of the Nineteenth Inter-
national Joint Conference on Artificial Intelligence, pp. 150–155. Professional Book Center
(2005)

6. Pan, G., Vardi, M.Y.: Fixed-Parameter Hierarchies inside PSPACE. In: 21th IEEE Sympo-
sium on Logic in Computer Science (LICS 2006), pp. 27–36. IEEE Computer Society, Los
Alamitos (2006)

7. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time. In: 5th Annual
ACM Symposium on the Theory of Computation, pp. 1–9 (1973)

8. Giunchiglia, E., Narizzano, M., Pulina, L., Tacchella, A.: Quantified Boolean Formulas sat-
isfiability library, QBFLIB (2001), www.qbflib.org

9. Narizzano, M., Pulina, L., Taccchella, A.: QBF solvers competitive evaluation (QBFEVAL)
(2006), http://www.qbflib.org/qbfeval

10. Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings in a k-tree.
SIAM Journal on Algebraic and Discrete Methods, 277–284 (1987)

11. Giunchiglia, E., Narizzano, M., Tacchella, A.: Clause-Term Resolution and Learning in
Quantified Boolean Logic Satisfiability. Artificial Intelligence Research 26, 371–416 (2006),
http://www.jair.org/vol/vol26.html

www.qbflib.org
http://www.qbflib.org/qbfeval
http://www.jair.org/vol/vol26.html

542 L. Pulina and A. Tacchella

12. Zhang, L., Malik, S.: Conflict driven learning in a quantified boolean satisfiability solver. In:
Proceedings of International Conference on Computer Aided Design (ICCAD 2002) (2002)

13. Benedetti, M.: sKizzo: A suite to evaluate and certify QBFS. In: Nieuwenhuis, R. (ed.)
CADE 2005. LNCS, vol. 3632, pp. 369–376. Springer, Heidelberg (2005)

14. Biere, A.: Resolve and expand. In: Hoos, H., Mitchell, D.G. (eds.) SAT 2004. LNCS,
vol. 3542, pp. 59–70. Springer, Heidelberg (2005)

15. Pan, G., Vardi, M.Y.: Symbolic decision procedures for QBF. In: Wallace, M. (ed.) CP 2004.
LNCS, vol. 3258, pp. 453–467. Springer, Heidelberg (2004)

16. Rish, I., Dechter, R.: Resolution versus search: Two strategies for sat. Journal of Automated
Reasoning 24(1/2), 225–275 (2000)

17. Tarjan, R.E., Yannakakis, M.: Addendum: Simple linear-time algorithms to test chordality of
graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM J.
Comput. 14(1), 254–255 (1985)

18. Gogate, V., Dechter, R.: A Complete Anytime Algorithm for Treewidth. In: UAI 2004, Pro-
ceedings of the 20th Conference in Uncertainty in Artificial Intelligence, pp. 201–208. AUAI
Press (2004)

19. Subbarayan, S., Andersen, H.R.: Backtracking Procedures for Hypertree, HyperSpread and
Connected Hypertree Decomposition of CSPs. In: IJCAI, pp. 180–185 (2007)

20. Benedetti, M.: Quantifier trees for QBFS. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS,
vol. 3569. Springer, Heidelberg (2005)

21. Giunchiglia, E., Narizzano, M., Tacchella, A.: Quantifier Structure in search based proce-
dures for QBFs. IEEE Transactions on Computer Aided Design of Integrated Circuits and
Systems 26(3) (2007)

22. Pulina, L., Taccchella, A.: MIND-Lab projects and related information (2008),
http://www.mind-lab.it/projects

23. Pulina, L., Tacchella, A.: A multi-engine solver for quantified boolean formulas. In: Bessière,
C. (ed.) CP 2007. LNCS, vol. 4741, pp. 574–589. Springer, Heidelberg (2007)

24. Witten, I.H., Frank, E.: Data Mining, 2nd edn. Morgan Kaufmann, San Francisco (2005)
25. Kleine-Büning, H., Karpinski, M., Flögel, A.: Resolution for Quantified Boolean Formulas.

Information and Computation 117(1), 12–18 (1995)
26. Larrosa, J., Dechter, R.: Boosting Search with Variable Elimination in Constraint Optimiza-

tion and Constraint Satisfaction Problems. Constraints 8(3), 303–326 (2003)

http://www.mind-lab.it/projects

Tractable Quantified Constraint Satisfaction Problems
over Positive Temporal Templates�

Witold Charatonik and Michał Wrona

Institute of Computer Science
University of Wrocław

Abstract. A positive temporal template (or a positive temporal constraint lan-
guage) is a relational structure whose relations can be defined over a dense linear
order of rational numbers using a relational symbol ≤, logical conjunction and
disjunction.

We provide a complexity characterization for quantified constraint satisfaction
problems (QCSP) over positive temporal languages. The considered QCSP prob-
lems are decidable in LOGSPACE or complete for one of the following classes:
NLOGSPACE, P, NP, PSPACE. Our classification is based on so-called algebraic
approach to constraint satisfaction problems: we first classify positive temporal
languages depending on their surjective polymorphisms and then give the com-
plexity of QCSP for each obtained class.

The complete characterization is quite complex and does not fit into one paper.
Here we prove that QCSP for positive temporal languages is either NP-hard or
belongs to P and we give the whole description of the latter case, that is, we show
for which positive temporal languages the problem QCSP is in LOGSPACE, and
for which it is NLOGSPACE-complete or P-complete. The classification of NP-
hard cases is given in a separate paper.

1 Introduction

Constraint Satisfaction Problems provide a uniform approach to research on a wide
variety of combinatorial problems. Besides probably better-known CSP over finite do-
mains [9,11,19] with its Dichotomy conjecture of Feder and Vardi [12], CSP over infi-
nite domains are of more and more interest. Although there were some earlier results in
this field [1,16], a common approach to CSP over infinite domains was quite recently
proposed and developed by Manuel Bodirsky [2] and co-authors. This framework con-
centrates on relational structures that are ω-categorical [14]. Many results, including
so-called algebraic approach [15,11], for both CSP and QCSP [8] over finite domains
were generalized to infinite ones. Moreover, new results were established. Among them
there are full characterizations of complexity for both CSP and QCSP of equality con-
straint languages [6,4].

As each natural theoretical framework CSP have many different applications. It is
also the case in the area of CSP with infinite templates. For example, in [3,5] it is ar-
gued that CSP of relations definable over the dense linear order of rational numbers

� Work partially supported by Polish Ministry of Science and Education grant 3 T11C 042 30.

I. Cervesato, H. Veith, and A. Voronkov (Eds.): LPAR 2008, LNCS 5330, pp. 543–557, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

544 W. Charatonik and M. Wrona

may constitute a good approach to temporal and spatial reasoning [13,18]. Therefore
the very recent full complexity characterization of CSP for temporal, that is, definable
over 〈Q, <〉 templates gives a new perspective on temporal reasoning [7]. One should
mention in this context also the well-motivated AND/OR precedence constraints [17].
They are closely related to languages from items 3 and 4 of Theorem 1 below. It might
be said that we consider quantified positive variations of AND/OR precedence con-
straints.

Our paper is the next step in the area of quantified constraint satisfaction problems
over temporal templates. In general, we consider QCSP for temporal templates. In par-
ticular, we restrict ourselves to constraint languages that can be defined with ∧,∨ and
≤, i.e., we do not consider negation. We name such relations positive temporal since
they are positive definable over 〈Q,≤〉.

Our main contribution is a complexity characterization of QCSP problems over pos-
itive temporal languages summarized in Theorem 1 below.

Theorem 1 (The Main Theorem). Let Γ be a language of positive temporal relations,
then one of the following holds.

1. Each relation in Γ is definable by a conjunction of equations (x1 = x2) and then
QCSP(Γ) is decidable in LOGSPACE.

2. Each relation in Γ is definable by a conjunction of weak inequalities (x1 ≤ x2). If
there exists a relation in Γ that is not definable as a conjunction of equalities, then
QCSP(Γ) is NLOGSPACE-complete.

3. Each relation in Γ is definable by a formula of the form
∧n

i=1(xi1 ≤ xi2 ∨
. . . ∨ xi1 ≤ xik

) and then provided Γ satisfies neither condition 1 nor 2, the set
QCSP(Γ) is P-complete.

4. Each relation in Γ is definable by a formula of the form
∧n

i=1(xi2 ≤ xi1 ∨
. . . ∨ xik

≤ xi1) and then provided Γ satisfies neither condition 1 nor 2, the set
QCSP(Γ) is P-complete.

5. Each relation in Γ is definable by a formula of the form
∧n

i=1(xi1 = yi1 ∨ . . . ∨
xik

= yik
) and then provided Γ does not belong to any of the classes 1–4, the set

QCSP(Γ) is NP-complete.
6. The problem QCSP(Γ) is PSPACE-complete.

The complete characterization is quite complex and does not fit into one paper. There-
fore some parts of Theorem 1 are proved in a companion paper [10]. Technically, in this
paper we show the following.

Theorem 2. If Γ is a positive temporal language, then either it satisfies one of condi-
tions 1–4 of Theorem 1 or QCSP(Γ) is NP-hard.

Related work. As we already mentioned, parts of Theorem 1 are proved in a different
paper [10]. We give there the characterization of NP-hard cases, with the distinction
between NP-complete and PSPACE-complete cases (items 5 and 6 of Theorem 1) and
the complexity proofs for items 3 and 4 of Theorem 1 (the algebraic characterization of
these cases is given here in Section 5). In [10] we use different techniques, in particular

Tractable QCSP over Positive Temporal Templates 545

we do not use there the filter representation of temporal relations which is our basic tool
in this paper.

The characterizations of cases 1, 2 and 5 are due to other authors [4,3]. Here, we just
complete the picture by giving the NLOGSPACE-hardness proof for case 2. Theorem 1
substantially improves results from [4,3] in the sense that we consider a strictly more
expressive class of constraint languages. As in [4] we use the surjective preservation
theorem.

In a very recent paper [7] the authors give a classification of CSP over temporal lan-
guages depending on their polymorphisms. Although it sounds similar, it is different
from our classification. We deal with positive temporal languages and surjective poly-
morphisms, which are used to classify QCSP problems (as opposed to CSP problems
considered in [7]). In the case of positive temporal languages, the classification based
on polymorphisms is trivial: all these languages fall into the same class because they are
all closed under constant functions — as a consequence all CSP problems for positive
temporal languages are trivial. To obtain our classification we use methods different
from those used in [7]. The representation of temporal relations from Section 3 and the
proof in sections 5 and 6 plays a similar role in the proof of Theorem 1 as the Ram-
sey Theorem in the proof from [7] in the sense that it is used to show that there are
only few interesting classes of positive temporal relations closed under non-unary func-
tions. Nevertheless our representation may be easily translated into first order formula.
It is very useful in the context of considered QCSP problems — complexity proofs for
families of positive temporal templates from Theorem 1 are purely syntactical [4,3,10].

Outline of the paper. In Section 2, we give some preliminaries. Among others, we recall
a definition of a surjective polymorphism and surjective preservation theorem, which is
the most important tool in algebraic approach to QCSP. In Section 3 we propose a
representation of temporal relations. Section 4 is devoted to formally introducing the
concept of positive temporal relations. By giving their properties we unfold the reason
we choose just that subset. In Section 5, we derive first four items of Theorem 1, in
Section 6 we prove that all other languages are NP-hard and finally the last section is
devoted to the proof of Theorem 2.

2 Preliminaries

In most cases we follow the notation from [2,4].

Relational structures. We consider only relations defined over countable domains and
hence whenever we write a domain or D we mean a countable set. Let τ be some
relational (in this paper always finite) signature i.e., a set of relational symbols with
assigned arity. Then Γ is a τ -structure over domain D if for each relational symbol Ri

from τ , it contains a relation of according arity defined onD. In the rest of the paper we
usually say relational language (or template) instead of relational structure. Moreover,
we use the same notation for relational symbols and relations.

Automorphisms of Γ constitute a group with respect to composition. An orbit of a
k-tuple t in Γ is the set of all tuples of the form 〈Π(t1), . . . , Π(tk)〉 for all automor-
phisms Π . We say that a group of automorphisms of Γ is oligomorphic if for each k it

546 W. Charatonik and M. Wrona

has a finite number of orbits of k-tuples. Although there are many different ways of in-
troducing a concept of ω-categorical structures we do it by the following theorem [14].

Theorem 3. (Engeler, Ryll-Nardzewski, Svenonius) Let Γ be a relational structure.
Then Γ is ω-categorical if and only if the automorphism group of Γ is oligomorphic.

Polymorphisms and clones. LetR be a relation of arity n defined overD. We say that a
function f : Dm → D is a polymorphism of R if for all a1, . . . , am ∈ R (where ai, for
1 ≤ i ≤ m, is a tuple 〈ai

1, . . . , a
i
n〉), we have 〈f(a1

1, . . . , a
m
1), . . . , f(a1

n, . . . , a
m
n)〉 ∈

R. Then we say that f preserves R or that R is closed under f . A polymorphism of Γ
is a function that preserves all relations of Γ . By Pol(Γ) we denote the set of polymor-
phisms of Γ , and by sPol(Γ) — the set of surjective polymorphisms.

An operation π is a projection iff π(x1, . . . , xm) = xi for all m-tuples and fixed
i ∈ {1, . . . ,m}. The set of polymorphisms of an ω-categorical language Γ constitute a
clone, that is, a set of functions closed under composition and containing all projections.
We say that a function f with a domainD is an interpolation of a set of functions F iff
for every finite subset B of D there is some operation g ∈ F such that f(a) = g(a) for
every tuple a over the set B. The set of interpolations of F is called the local closure of
F . We say that a clone is locally closed if each its subset contains its local closure. For
each ω-categorical language Γ the clone of its polymorphisms is locally closed [2]. A
clone is generated by a set of functions F if it is the least clone containing F .

An operation f of arity m is essentially unary if there exists a unary operation
f0 such that f(x1 . . . , xm) = f0(xi) for some fixed i ∈ {1, . . . ,m}. An operation
that is not essentially unary is called essential. We say that a polymorphism f of
an ω-categorical structure Γ is oligopotent if the diagonal of f , that is, the function
f(x, . . . , x), is contained in the locally closed clone generated by the automorphisms
of Γ . A function f is called a quasi near-unanimity function (QNUF) if it satisfies
f(x, . . . , x, y) = f(x, . . . , y, x)= . . . = f(y, x, . . . , x) = f(x, . . . , x) for all x, y ∈ D.

Quantified constraint satisfaction problems. Let Γ contain R1, . . . , Rk. Then a con-
junctive positive formula (cp-formula) over Γ is a formula of the following form:

Q1x1 . . . Qnxn(R1(v1) ∧ . . . ∧Rk(vk)), (1)

whereQi ∈ {∀, ∃} and vj are vectors of variables x1, . . . , xn.
A QCSP(Γ) is a problem to decide whether a given cp-formula without free vari-

ables over Γ is true or not. Note that by downward Löwenheim-Skolem Theorem we
can focus on countable domains only. If all quantifiers in (1) are existential then the
corresponding problem is well-known as the constraint satisfaction problem.

A relation R has a cp-definition in Γ if there exists a cp-formula φ(x1, . . . , xn) over
Γ such that for all a1, . . . , an we have R(a1, . . . , an) iff φ(a1, . . . , an) is true. The set
of all relations cp-definable in Γ is denoted by [Γ].

Lemma 1 ([4]). Let Γ1, Γ2 be relational languages. If every relation in Γ1 has a cp-
definition in Γ2, then QCSP(Γ1) is log-space reducible to QCSP(Γ2).

The following results link [Γ] with sPol(Γ). The idea behind Theorem 4 is that the more
Γ can express, in the sense of cp-definability, the less polymorphisms are

Tractable QCSP over Positive Temporal Templates 547

contained in sPol(Γ). Moreover, the converse is also true. This theorem is called sur-
jective preservation theorem.

Theorem 4 ([4]). Let Γ be an ω-categorical structure. Then a relation R has a cp-
definition in Γ if and only if R is preserved by all surjective polymorphisms of Γ .

As a direct consequence of Lemma 1 and Theorem 4 we obtain the following.

Corollary 1 ([4]). Let Γ1, Γ2 be ω-categorical structures. If sPol(Γ2) ⊆ sPol(Γ1), then
QCSP(Γ1) is log-space reducible to QCSP(Γ2).

Quantified Equality Constraints. Concerning templates that allow equalities and all
logical connectives (equality constraint languages) the following classification [4] is
known.

1. Negative languages. Relations of such a language are definable as CNF-formulas
whose clauses are either equalities (x = y) or disjunctions of disequalities (x1 �=
y1 ∨ . . . ∨ xk �= yk). For each negative Γ the problem QCSP(Γ) is contained in
LOGSPACE.

2. Positive languages. Relations may be defined as conjunction of disjunctions of
equalities (x1 = y1 ∨ . . . ∨ xk = yk). For each positive Γ not being negative the
problem QCSP(Γ) is NP-complete.

3. In any other case the problem QCSP(Γ) is PSPACE-complete.

Note that the class 1 from Theorem 1 is a subset of negative languages and the class
5 is just the class of positive languages.

To give our characterization we need the following result. It may be inferred from
lemmas given in Section 7 in [4].

Lemma 2. Let Γ be an equality positive constraint language that is preserved by an
essential operation onD with infinite image. Then Γ is preserved by all operations, and
Γ is negative.

Corollary 2. If an equality constraint language Γ is positive, but not negative, then
sPol(Γ) contains only essentially unary polymorphisms.

Since QCSP(Γ) for positive non-negative equality language Γ is NP-hard, by corollar-
ies 1 and 2, we obtain one more observation.

Corollary 3. Let Γ be a positive temporal language with sPol(Γ) contained in the set
of essentially unary surjections on Q. Then QCSP(Γ) is NP-hard.

Quantified Positive Temporal Constraints. Now, we focus on positive temporal rela-
tions announced in the introduction. All of them are defined over the set of rational num-
bers using a relational symbol ≤ and connectives∧,∨. Therefore our results concerning
positive temporal relations generalize those for positive equality languages. Since the
only relational symbol we use is interpreted as a weak linear order over rational num-
bers, for each positive temporal structure Γ the set sPol(Γ) contains all automorphisms

548 W. Charatonik and M. Wrona

that preserve order, i.e., all increasing unary surjections f : Q → Q. We say that f is
increasing (weakly increasing) if f(a) > f(b) (f(a) ≥ f(b)) for all a > b. Thus, using
Theorem 3, it is not hard to see that all positive temporal languages are ω-categorical.

In Lemma 6 in Section 4 we provide another, not syntactical, characterization of
positive temporal relations. It is given in terms of polymorphisms.

3 Filter Representation of Temporal Relations

Here, after a few definitions we give a representation of temporal languages that we use
in the rest of the paper. At first look it may look somewhat confusing, but Example 1
and a short discussion after it should clarify our point.

A preorder is a reflexive and transitive relation. A preorder - on a set A is total if
for all a, b ∈ A we have a - b or b - a. We call A the domain of - and we write
A = Dom(-). We use a ≺ b as an abbreviation for a - b ∧ b �- a and a ≈ b as
an abbreviation for a - b ∧ b - a. In the following we represent total preorders on
finite sets of variables as sequences of the form x1 ∼1 x2 ∼2 . . . ∼n−1 xn where
each ∼i is either ≺ or ≈ and {x1, . . . , xn} = Dom(-). For example a ≺ b ≈ c is the
representation of -= {〈a, a〉, 〈b, b〉, 〈c, c〉, 〈a, b〉, 〈a, c〉, 〈b, c〉, 〈c, b〉}. By Range(-) we
denote the size of a maximal set of variables {xi1 , . . . , xil

} ⊆ Dom(-) such that for
all pairs xip , xir we have either xip ≺ xir or xir ≺ xip .

We write -1 # -2 and say that -1 is more general than -2 if -1 is a restriction
of -2 to a smaller domain. Formally, -1 # -2 if Dom(-1) ⊆ Dom(-2) and -1=
-2 ∩(Dom(-1) × Dom(-1)). We write -17-2 and say that -1 is flatter than -2 if
Dom(-1) = Dom(-2) and -2 as a relation is a subset of -1 (see the example below).

We say that a valuation q : {x1, . . . , xn} → Q is compatible with a total preorder
- on {x1, . . . , xn} if for all xi, xj such that xi - xj we have q(xi) ≤ q(xj). We then
also say that the tuple 〈q(x1), . . . , q(xn)〉 is compatible with -.

Definition 1. Consider a temporal relation R(x1, . . . , xn) ⊆ Qn. We say that - is
a bound for R if - is a total preorder on a subset of {x1, . . . , xn} such that for all
valuations q : {x1, . . . , xn} → Q compatible with - the tuple 〈q(x1), . . . , q(xn)〉 is
not inR. The set of bounds ofR is denoted B(R). A minimal wrt. # bound ofR is called
a filter for R. The set of filters of R is denoted F(R).

Let Γ be a temporal template. Assume that each R ∈ Γ is defined over different set
of variables. Then by F(Γ) equal to

⋃
R∈Γ F(R) we denote the set of filters of Γ .

Similarly, we write B(Γ) for the set of bounds of Γ .

Example 1. LetR(x1, x2, x3) be a relation given by (x1 ≤ x2 ∨ x2≤ x3) ∧ (x2 ≤ x1).
Then x3 ≺ x2 ≺ x1, x1 ≺ x2 and x1 ≈ x3 ≺ x2 are bounds for R (in fact R has more
bounds). The bound x1 ≈ x3 ≺ x2 is not a filter because x1 ≺ x2 is more general.
The relation R′ defined by (x1 ≤ x2 ∨ x1 ≤ x3) has three filters: x3 ≺ x2 ≺ x1,
x3 ≈ x2 ≺ x1 and x2 ≺ x3 ≺ x1. The filter x3 ≈ x2 ≺ x1 is flatter than both
x3 ≺ x2 ≺ x1 and x2 ≺ x3 ≺ x1. The range of a preorder x3 ≈ x2 ≺ x1 is 2, but the
range of a preorder x3 ≺ x2 ≺ x1 is equal to 3.

Tractable QCSP over Positive Temporal Templates 549

In the following we represent temporal relations (languages) with their sets of filters. It
is quite simple to inferF(R) from the cp-definitions in Example 1. Therefore one would
ask why we do not represent relations with their sets of clauses. The filter representation
gives us a kind of normal form while there may be many representations of the same
relations with sets of clauses. The following example shows another advantage of filters.
The relation R defined by (x1 ≥ x2 ∨ x2 ≥ x3) has one filter: x1 ≺ x2 ≺ x3. The
clause representation (x1 ≥ x2 ∨ x2 ≥ x3) does not say anything about dependencies
between x1 and x3. From the shape of the filter it is easy to see that R contains tuples
compatible with preorders: x1 ≺ x2, x1 ≺ x3, x2 ≺ x3 but it does not contain any tuple
compatible with x1 ≺ x2 ≺ x3. We use this property in several proofs.

Consider now the situation where we have some F(Γ) and we ask for F(R) of some
relationR that is cp-definable over Γ ; and the converse situation: when we want to infer
something about F(Γ) from F(R). The following lemmas give us a partial answer for
such questions. In lemmas 3–5 the relation R1 belongs to [R]. These lemmas are used
in each of the following sections of the paper and therefore are of crucial importance.

Let -Var be a preorder with domain Var such that x ≈ y for all x, y ∈ Var.

Lemma 3. Let R(x1, . . . , xn) be a temporal relation. Consider R1(xk, . . . , xn) de-
fined by R(x1, . . . , xn) ∧

∧k−1
i=1 xi = xi+1. If a preorder -1 is a bound of R1, then

each preorder - such that -1 # - and xi ≈ xi+1 for 1 ≤ i ≤ k − 1 is a bound of R.

Lemma 4. Let R(x1, . . . , xn) be a temporal relation with a filter - such that xi ≈
xi+1 for i = 1, . . . , k − 1. Consider R1(xk, . . . , xn) defined by R(x1, . . . , xn) ∧∧k−1

i=1 xi = xi+1. Then either the restriction of - to {xk, . . . , xn} or the restriction
of - to {xk+1, . . . , xn} is a filter of R1.

Example 2. Consider the preceding lemma once more. At first glance it may seem that
a restriction of - to {xk, . . . , xn} is always a filter of R1 and the second case is unnec-
essary there. To see that it is not the case, consider the following relation.

LetR(x1, x2, x3, x4) be defined by (x1 = x2∨x1 = x3∨x1 = x4)∧(x2 = x1∨x2 =
x3 ∨ x2 = x4) ∧ (x3 = x1 ∨ x3 = x2 ∨ x3 = x4) ∧ (x4 = x1 ∨ x4 = x2 ∨ x4 = x3).
Then x1 ≈ x2 ≈ x3 ≺ x4 is a filter of R. Moreover, let a relation R1(x2, x3, x4) be
equivalent to R(x1, x2, x3, x4) ∧ x1 = x2. Now, the reader can convince himself that
x3 ≺ x4 and not x2 ≈ x3 ≺ x4 is a filter of R1.

Lemma 5. Consider R(x1, . . . , xn) and R1(x1, . . . , xi−1, xi+1, . . . , xn) defined by
∃xi R(x1, . . . , xn). Then a preorder - such that xi /∈ Dom(-) is a filter of R if
and only if it is a filter of R1.

4 Positive Temporal Relations

An arbitrary relation defined over the dense linear order of rational numbers is closed
under all unary strictly increasing functions — they are automorphisms of such a rela-
tion. In the case of positive temporal relations we have a bit stronger result.

Lemma 6. A temporal relationR(x1, . . . , xn) is positive if and only if it is closed under
all weakly increasing functions f : Q → Q.

550 W. Charatonik and M. Wrona

It is rather obvious that positive temporal relations have substantially less varied struc-
ture than arbitrary temporal relations. The dependencies between tuples in positive tem-
poral relations can be given in terms of the order 7. The following results unfold the
reason why we introduced this order. Recall: if -7-1, then we say that - is flatter
than -1.

Lemma 7. Let a preorder - be flatter than -1 and Dom(-) ⊆ {x1, . . . , xn}. Con-
sider a tuple 〈q(x1), . . . , q(xn)〉 compatible with -1 where q : {x1, . . . , xn} → Q.
Then there exists a weakly increasing function f such that 〈f(q(x1)), . . . , f(q(xn))〉 is
compatible with -.

Lemma 8. Let R(x1, . . . , xn) be a temporal relation. Then it is a positive temporal
relation if and only if for all bounds - of R each preorder -1 such that -7-1 is also
a bound of R.

Corollary 4. Let R(x1, . . . , xn) be a positive temporal relation and let the set Var be a
nonempty subset of {x1, . . . , xn}. Then the preorder -Var is a bound of R if and only
if R is the empty relation. Intuitively, nonempty relations do not have filters of the form
-Var.

Note that if we have two bounds comparable wrt 7 then by Lemma 8 the flatter of
them is more interesting. Therefore we focus on minimal wrt 7 filters. We illustrate
this lemma on the following example.

Example 3. Consider once more a positive temporal relation given by (x1 ≤ x2∨x1 ≤
x3). It has a filter x2 ≈ x3 ≺ x1, but also filters (bounds) x2 ≺ x3 ≺ x1 and x3 ≺ x2 ≺
x1. Note or recall from Example 1 that the first of the mentioned preorders is flatter than
the remaining two. Moreover, these are all filters of the relation (x1 ≤ x2 ∨ x1 ≤ x3).

We finish this section by one more auxiliary lemma.

Lemma 9. Let R(x1, . . . , xn) be a temporal relation. Let - be a minimal with respect
to 7 filter ofR such that xi ≈ xi+1 for i = 1, . . . , k−1. LetR1(xk, . . . , xn) be defined
as R(x1, . . . , xn) ∧

∧k−1
i=1 xi = xi+1. Then there exists a preorder -1 in F(R1) such

that -1 # - and Range(-1) = Range(-).

5 Non Unary Surjective Polymorphisms of Positive Temporal
Relations

In this section we derive the first four classes of Theorem 1. We show that a positive
temporal language belongs to one of these four classes, or it is closed under essen-
tially unary surjective polymorphisms only and hence, by Corollary 3, in that case the
problem QCSP(Γ) is NP-hard.

In particular we show that a positive temporal language is closed under a binary sur-
jective polymorphism spp, under a binary surjective polymorphism dual-spp, or it is
preserved by essentially unary surjective polymorphisms only. The surjective polymor-
phisms spp : Q×Q → Q and dual-spp : Q×Q → Q are surjective counterparts of pp
and dual-pp operations introduced in [7].

Tractable QCSP over Positive Temporal Templates 551

Recall that all countable dense linear orders without endpoints are isomorphic. In
particular, Q,Q−,Q+ and Q− ∪ Q+ are isomorphic, where Q− = {q ∈ Q | q < 0}
and Q+ = {q ∈ Q | q > 0}. Let f1 : Q → Q−, f2 : Q → Q+ and f : Q− ∪ Q+ → Q
be any order-preserving bijections. Let

spp′(a, b) =
{

a if a < 0
f2(b) if a ≥ 0 dual-spp′(a, b) =

{
f1(b) if a ≤ 0
a if a > 0

and define spp(a, b) = f(spp′(a, b)) and dual-spp(a, b) = f(dual-spp′(a, b)). Observe
that if spp(a, b) is a (strict) lower bound of {spp(a1, b1), . . . , spp(ak, bk)} then either a
is a (strict) lower bound of {a1, . . . , ak} or b is a (strict) lower bound of {b1, . . . , bk}.
Similarly, if dual-spp(a, b) is a (strict) upper bound of the set {dual-spp(a1, b1), . . . ,
dual-spp(ak, bk)} then either a is a (strict) upper bound of {a1, . . . , ak} or b is a (strict)
upper bound of {b1, . . . , bk}.

For each i ≥ 2 let Ri
Left be the positive temporal relation defined by the formula

(x1 ≤ x2 ∨ . . . ∨ x1 ≤ xi). Let ΓLeft be the positive temporal language containing
Ri

Left for each i. Similarly, ΓRight is the set of relations defined by formulas (x2 ≤
x1 ∨ . . . ∨ xi ≤ x1). Each such formula is denoted by Ri

Right .

5.1 Classes of Different Power of Cp-Definability

The topic of this subsection is summarized by the following theorem. Recall from Sec-
tion 2 that [Γ] is the set of all relations that are cp-definable by relations of Γ . Note
that by Lemma 1, the problems QCSP(Γ1) and QCSP(Γ2) for some positive temporal
languages Γ1 and Γ2 such that [Γ1] = [Γ2] are logspace equivalent.

Theorem 5. Let Γ be a positive temporal language, then exactly one of the following
holds.

1. Each relation in Γ is definable by a conjunction of equations (x1 = x2) and then
[Γ] is equal to [x = y].

2. Each relation in Γ is definable by a conjunction of inequalities (x1 ≤ x2) and then
[Γ] is equal to [x ≤ y].

3. Each relation in Γ is definable by the formula of the form
∧n

i=1(xi1 ≤ xi2 ∨ . . . ∨
xi1 ≤ xik

) and then provided Γ satisfies neither condition 1 nor 2, the set [Γ] is
equal to [ΓLeft].

4. Each relation in Γ is definable by a formula of the form
∧n

i=1(xi2 ≤ xi1 ∨ . . . ∨
xik

≤ xi1) and then provided Γ satisfies neither condition 1 nor 2, the set [Γ] is
equal to [ΓRight].

5. Each relation in Γ is preserved by essentially unary surjective polymorphisms only.

First, we want to distinguish [ΓLeft] and [ΓRight] from each other and then from
[(x1 ≤ x2)]. Recall that in our language, see Theorem 4, sets [Γ1] and [Γ2] for some
positive temporal relations Γ1 and Γ2 are different if there exists a function that pre-
serves relations from exactly one of these sets.

Lemma 10. The language ΓLeft is closed under dual-spp operation but it is not closed
under spp. Dually, ΓRight is closed under spp but it is not closed under dual-spp.

552 W. Charatonik and M. Wrona

It is quite obvious that (x1 ≤ x2) is closed under both spp and dual-spp. In [3], it is
shown that (x1 ≤ x2) is closed under median, which is the ternary function that returns
the median of its three argument. It is not hard to show that median is a surjective
oligopotent QNU polymorphisms. To distinguish (x1 ≤ x2) from ΓLeft and ΓRight we
show that the last two relations are not closed under any surjective QNU polymorphism.

Lemma 11. Neither ΓLeft nor ΓRight is closed under any surjective oligopotent QNU
polymorphism.

It turns out that the relation defined by (x1 ≤ x2 ∨ x1 ≤ x3) has the same expressive
power, in the sense of cp-definability, as ΓLeft . In the same context the relation defined
by (x2 ≤ x1 ∨ x3 ≤ x1) is as powerful as the whole ΓRight .

Lemma 12. Every relation in ΓLeft has a cp-definition over (x1 ≤ x2 ∨x1 ≤ x3), that
is, [(x1 ≤ x2 ∨ x1 ≤ x3)] = [ΓLeft]. Similarly, [(x2 ≤ x1 ∨ x3 ≤ x1)] = [ΓRight].

Consider the following forms of filters.

z1 ≈ . . . ≈ zk ≺ y1 (2)

z1 ≺ y1 ≈ . . . ≈ yk (3)

We say that a preorder - with domain Dom(-) = {x1, . . . , xn} is of the form,
let’s say, (2) if n = k + 1 and xi1 ≈ . . . ≈ xin−1 ≺ xin for some permutation of
{x1, . . . , xn}.

The next theorem shows us the difference between positive temporal languages with
non-unary and only unary polymorphism. This difference is expressed using their filters.

Theorem 6. Let Γ be a positive temporal language. Consider the following conditions.

1. All filters minimal with respect to 7 in Γ are of the form (2).
2. All filters minimal with respect to 7 in Γ are of the form (3).

If neither of these conditions holds, then sPol(Γ) contains only essentially unary poly-
morphisms.

The proof of this theorem is presented in the next section. Here, we show that the
expressive power of a positive temporal template satisfying item 1 of Theorem 6 is not
higher than the one of (x1 ≤ x2 ∨ x1 ≤ x3). A similar statement concerning languages
satisfying item 2 of Theorem 6 and (x2 ≤ x1 ∨ x3 ≤ x1) is also true.

Lemma 13. Let Γ be a positive temporal language.

1. If all minimal with respect to 7 filters in F(Γ) are of the form z1 ≺ y1, then
[Γ] ⊆ [x1 ≤ x2].

2. If all minimal with respect to 7 filters in F(Γ) are of the form (2) and at least one
of them has a domain of size greater than or equal to 3, then [Γ] = [ΓLeft].

3. If all minimal with respect to 7 filters in F(Γ) are of the form (3) and at least one
of them has a domain of size greater than or equal to 3, then [Γ] = [ΓRight].

4. If [Γ] ⊆ [x1 ≤ x2], then either [Γ] = [x1 ≤ x2] or [Γ] = [x1 = x2].

Tractable QCSP over Positive Temporal Templates 553

Proof of Theorem 5. (Part One) First we show for a positive temporal language Γ that
either [Γ] is equal to exactly one of the following

1. [x1 ≤ x2 ∨ x1 ≤ x3]
2. [x2 ≤ x1 ∨ x3 ≤ x1]
3. [x1 ≤ x2]
4. [x1 = x2]

or Γ is closed under essentially unary polymorphisms only. By Theorem 6, it is enough
to prove that if all filters minimal with respect to 7 of Γ are either of the form (2) or of
the form (3), then [Γ] is equal to exactly one of the above classes.

By Lemma 13 we obtain that [Γ] is equal to at least one of them. To show that
these classes are pairwise disjoint we use appropriate polymorphisms from the preced-
ing lemmas and Theorem 4. By Lemma 10 we have that the first of the above families
is closed under dual-spp operation but is not preserved by spp. By Lemma 11, it is not
closed under any surjective oligopotent QNU polymorphism. Using the same lemmas
we obtain a similar statement about the second family. Further, from [3] we know that
the third family is closed under a surjective oligopotent QNU polymorphism. To distin-
guish the third and the fourth of the above sets using a function (in fact a permutation of
rational numbers) note that the former is not closed under any strictly decreasing unary
function.

(Part Two) Since all the classes are pairwise disjoint we can infer from Lemma 13
that [Γ] = [ΓLeft] if and only if all filters from Γ are of the form (2) and at least one
of them has a domain of size at least 3. Now, we show that if it is the case, then each
relation from Γ is definable by a formula of the form

∧n
i=1(xi1 ≤ xi2∨. . .∨xi1 ≤ xik

).
Indeed it is enough to introduce a clause (y1 ≤ y2 ∨ . . . ∨ y1 ≤ ym) for each filter of
the form y2 ≈ . . . ≈ ym ≺ y1 from F(R). Now it is not hard to prove that a valuation
q does not satisfy such a clause if and only if q is compatible with some preorder more
general than y2 ≈ . . . ≈ ym ≺ y1. Because it is a filter of R, by Lemma 8 we are done.

Similarly we can prove that if [Γ] = [ΓRight], then each relation from Γ may be
defined by a formula of the form

∧n
i=1(xi2 ≤ xi1 ∨ . . . ∨ xik

≤ xi1).
Further, if [Γ] is equal to [x1 ≤ x2], then all filters are of the form z ≺ y. Here, we

can show that each relation in Γ is definable by a conjunction of inequalities.
Finally, if [Γ] is equal to [x1 = x2], then, by Lemma 13, all filters are of the form

z ≺ y and for each such a filter the set F(Γ) contains y ≺ z as well. Therefore it is not
hard to show that each relation in Γ may be defined as a conjunction of equalities. �

6 Proof of Theorem 6

Although the last section contains the proof of Theorem 5, Theorem 6 was left without
an explanation. This section is devoted to fill this hole.

The idea behind the proof is to show that if a positive temporal template Γ contains
a filter that is not of the form (2) and a filter that is not of the form (3), then [Γ] contains
some positive non-negative equality relation R. By Corollary 2, the relation R and
hence, by Theorem 4, the language Γ is closed only under essentially unary surjections.

To prove this we consider a few cases. In most of them, we use the following lemma.

554 W. Charatonik and M. Wrona

If an n-ary positive temporal relation R(x1, . . . , xn) is different from Qn and con-
tains

∨
i�=j xi = xj for 1 ≤ i, j ≤ n as a subrelation then we call it potentially non-

negative positive.

Lemma 14. Let R be a potentially non-negative positive relation. Then it is closed
under essentially unary polymorphism only.

Consider the followings forms of filters.

x1 ≈ . . . ≈ xk ≺ y1 ≈ . . . ≈ yl (4)

x1
1 ≈ . . . ≈ x1

l1 ≺ . . . ≺ xn
1 ≈ . . . ≈ xn

ln (5)

If F(Γ) contains a filter than is not of the form (2) and a filter that is not of the form
(3), then one of the following cases holds.

1. The language Γ contains a filter of the form (4) where k > 1 and l ≥ 1 as well as
a filter of the same form where l > 1 and k ≥ 1, or

2. there exists a filter of the form (5) for n ≥ 3.

The next two sections handles these cases. The section 6.1 covers the first situation.
The second case is taken care of by the section 6.2.

6.1 Filters of Range 2

Here we prove the following.

Proposition 1. Let Γ be a positive temporal template with filters -L and -R defined
as follows. The preorder -L is of the form (4) with k > 1 and l ≥ 1. The preorder -R

is also of the same form (4), but with l > 1 and k ≥ 1. Then sPol(Γ) contains only
essentially unary polymorphisms.

Our strategy here is to show first that ’short’ relations with ’short’ filters of the form (4)
with k > 1 and l ≥ 1 are closed only under surjective unary polymorphisms or they
express (x1 ≤ x2 ∨ x1 ≤ x3). Afterward, we consider arbitrary relations with arbitrary
’long’ filters. For a ’long’ relationRL, we show that it can express a ’short’ relationRS .
ThereforeRL can express everything expressible by RS ; equivalently,RL cannot have
more surjective polymorphisms than RS . Lemmas 5, 4, and 9 ensure that RS obtained
from RL has an appropriate filter. ’Short’ relations have either arity 3 or 4. The first
case is handled by Corollary 5, the second case by Lemma 17. See the example at the
end of this subsection. First, we give two preliminary lemmas.

Lemma 15. Let R(x1, x2, x3) be a positive temporal relation with a filter x1 ≈ x2 ≺
x3. Moreover assume that x3 ≺ x1 ≈ x2 does not belong to F(R). Then (v1 ≤
v2 ∨ v1 ≤ v3) ∈ [R].

Lemma 16. Let R(x1, x2, x3) be a positive temporal relation with filters x1 ≈ x2 ≺
x3 and x3 ≺ x1 ≈ x2. Then sPol(Γ) contains only essentially unary polymorphisms.

As an immediate consequence of lemmas 15 and 16 we get the following.

Tractable QCSP over Positive Temporal Templates 555

Corollary 5. Let R(x1, x2, x3) be a positive temporal relation with a filter x1 ≈ x2 ≺
x3. Then either (v1 ≤ v2 ∨ v1 ≤ v3) ∈ [Γ] or sPol(Γ) contains only essentially unary
polymorphisms.

Lemma 17. Let R(x1, x2, x3, x4) be a positive temporal relation with a filter x1 ≈
x2 ≈ x3 ≺ x4. Then either (v1 ≤ v2 ∨ v1 ≤ v3) ∈ [R] or sPol(R) contains only
essentially unary polymorphisms.

Lemma 18. Let R(x1, . . . , xn) be a positive temporal relation. If R has any filter of
the form (4) where k > 1 and l ≥ 1, then either (v1 ≤ v2 ∨ v1 ≤ v3) ∈ [R] or sPol(Γ)
contains only essentially unary polymorphisms.

Similarly, we can show that if a positive temporal relation has any filter of the form (4)
where k ≥ 1 and l > 1, then either it is closed only under essentially unary surjective
polymorphisms or it can express (x2 ≤ x1 ∨ x3 ≤ x1). The following statement in fact
ends the proof of Proposition 1.

Lemma 19. If both (v1 ≤ v2 ∨ v1 ≤ v3) and (v2 ≤ v1 ∨ v3 ≤ v1) belong to [Γ], then
Γ is closed only under essentially unary polymorphisms.

Proof of Proposition 1. Let R be a relation of Γ with -L. Then, by Lemma 18, either
(v1 ≤ v2 ∨ v1 ≤ v3) ∈ [R] or sPol(R) contains only essentially unary polymorphisms.
Similarly, for some R1 that has -R as a filter we can show that either all its surjective
polymorphisms are essentially unary or (v2 ≤ v1 ∨ v3 ≤ v1) belongs to [R1]. To
complete the proof we use Lemma 19. �

We finish this subsection with an example that illustrates Proposition 1.

Example 4. Consider a positive relationRL given by (x1 ≤ x2∨x1 ≤ x3)∧(x5 ≤ x4∨
x6 ≤ x4)∧φ(y1, . . . , ym) where {x1, . . . , x6}∩{y1, . . . , ym} = ∅. It is straightforward
to show that x2 ≈ x3 ≺ x1 as well as x4 ≺ x5 ≈ x6 are minimal wrt 7 filters of R –
see Example 3. We now claim that sPol(Γ) contains essentially unary polymorphisms
only or equivalently, by Corollary 3, the problem QCSP(Γ) is NP-hard.

Now, define RS as ∃y1 . . .∃ym∃x4∃x5∃x6RL(x1, . . . , x6, y1, . . . , ym) By Lemma
5, we have that RS inherits the filter x2 ≈ x3 ≺ x1. From Lemma 15 we infer that
(v1 ≤ v2 ∨ v1 ≤ v3) belongs to [RS]. Hence it belongs to [RL]; note that RS is
cp-definable in RL – recall the definition of RS above. Similarly we can show that
(v2 ≤ v1 ∨ v3 ≤ v1) ∈ RL. By Lemma 19 we have that sPol(RL) contains essentially
unary polymorphisms only.

6.2 Filters of Range Greater Than 2

What remains to prove is the following.

Proposition 2. Let Γ be a positive temporal language. If there exists any minimal with
respect to 7 filter in F(Γ) whose range is strictly greater than 2, then sPol(Γ) contains
only essentially unary polymorphisms.

556 W. Charatonik and M. Wrona

The strategy here is similar to one in the preceding section. We express ’short’ rela-
tions with ’short’ filters using ’long’ relations with ’long’ filters and show that ’short’
relations are closed under essentially unary surjections only. Here, ’short’ filters are
of the form (5) where each li = 1 for all 1 ≤ i ≤ n. In turn, we think that a rela-
tion RS is ’short’ if it contains a ’short’ filter -S and Dom(RS) = Dom(-S). Each
’long’ relation has at least one (arbitrary) filter of the form (5). For example, the filter
x1 ≈ x2 ≺ x3 ≺ x4 is ’long’, but the filter x1 ≺ x3 ≺ x4 is ’short’.

7 Proof of Theorem 2

In [3] it is shown that each positive temporal language Γ from case 2 is decidable in
NLOGSPACE. To prove Theorem 1 we need hardness as well.

Lemma 20. Let Γ be a positive temporal language such that each its relation is defin-
able as a conjunction of weak inequalities but not as a conjunction of equalities. Then
QCSP(Γ) is NLOGSPACE-complete.

Proof. (of Theorem 2) By Theorem 5 we have that each positive temporal Γ is either
definable as in one of the conditions 1–4 of Theorem 1 or it is closed under essentially
unary surjections only. Lemma 20 gives us the complexity characterization of item 2.
Item 1 is characterized in [4]. In [10] we give the complexity proof for items 3 and 4.
Finally, by Corollary 3, we have that for any other positive temporal language Γ the
problem QCSP(Γ) is NP-hard. �

Acknowledgements. We thank Jerzy Marcinkowski for turning our attention to [4].

References

1. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832–
843 (1983)

2. Bodirsky, M.: Constraint Satisfaction Problems with Infinite Domains. PhD thesis,
Humboldt-Universität zu Berlin (2004),
http://www2.informatik.hu-berlin.de/ bodirsky/publications/
diss.html

3. Bodirsky, M., Chen, H.: Qualitative temporal and spatial reasoning revisited. In: Duparc, J.,
Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646. Springer, Heidelberg (2007)

4. Bodirsky, M., Chen, H.: Quantified equality constraints. In: 22nd IEEE Symposium on Logic
in Computer Science (LICS 2007), Proceedings. IEEE Computer Society Press, Los Alami-
tos (2007)

5. Bodirsky, M., Kára, J.: A fast algorithm and lower bound for temporal reasonning,
http://www2.informatik.hu-berlin.de/bodirsky/en/publications.
php

6. Bodirsky, M., Kára, J.: The complexity of equality constraint languages. In: Grigoriev, D.,
Harrison, J., Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967, pp. 114–126. Springer, Hei-
delberg (2006)

7. Bodirsky, M., Kára, J.: The complexity of temporal constraint satisfaction problems. In: Lad-
ner, R.E., Dwork, C. (eds.) Proceedings of the 40th Annual ACM Symposium on Theory of
Computing, pp. 29–38. ACM, New York (2008)

http://www2.informatik.hu-berlin.de/~bodirsky/publications/diss.html
http://www2.informatik.hu-berlin.de/~bodirsky/publications/diss.html
http://www2.informatik.hu-berlin.de/~bodirsky/en/publications.php
http://www2.informatik.hu-berlin.de/~bodirsky/en/publications.php

Tractable QCSP over Positive Temporal Templates 557

8. Boerner, F., Bulatov, A., Jeavons, P., Krokhin, A.: Quantified constraints: Algorithms and
complexity. In: Proceedings of CSL and the 8th Kurt Gödel Colloquium. LNCS. Springer,
Heidelberg

9. Bulatov, A.A.: A dichotomy theorem for constraints on a three-element set. In: Proceedings
43rd IEEE Symposium on Foundations of Computer Science (FOCS 2002), pp. 649–658
(2002)

10. Charatonik, W., Wrona, M.: Quantified positive temporal constraints. In: Kaminski, M., Mar-
tini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 94–108. Springer, Heidelberg (2008)

11. Cohen, D., Jeavons, P.: The complexity of constraints languages. In: Rossi, F., van Beek, P.,
Walsh, T. (eds.) Handbook of Constraint Programming. Elsevier, Amsterdam (2006)

12. Feder, T., Vardi, M.Y.: Monotone monadic SNP and constraint satisfaction. In: Proceedings
of 25th ACM Symposium on the Theory of Computing (STOC), pp. 612–622 (1993)

13. Fisher, M., Gabbay, D., Vila, L.: Handbook of Temporal Reasoning in Artificial Intelligence.
Elsevier, Amsterdam (2005)

14. Hodges, W.: A shorter model theory. Cambridge University Press, Cambridge (1997)
15. Jeavons, P.G., Cohen, D.A., Gyssens, M.: Closure properties of constraints. Journal of the

ACM 44, 527–548 (1997)
16. Krokhin, A., Jeavons, P., Jonsson, P.: A complete classification of complexity in Allens al-

gebra in the presence of a non-trivial basic relation. In: Proceedings of the 17th International
Joint Conference on Artificial Intelligence, pp. 83–88. Morgan Kaufmann, San Francisco
(2001)

17. Möhring, R.H., Skutella, M., Stork, F.: Scheduling with and/or precedence constraints. SIAM
J. Comput. 33(2), 393–415 (2004)

18. Renz, J., Nebel, B.: Qualitative spatial reasoning using constraint calculi. In: Aiello, M.,
Pratt-Hartmann, I., van Benthem, J. (eds.) Handbook of Spatial Logics. Springer, Heidelberg
(2007)

19. Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings 10th ACM Sympo-
sium on Theory of Computing, STOC 1978, pp. 216–226 (1978)

A Logic of Singly Indexed Arrays�

Peter Habermehl1, Radu Iosif2, and Tomáš Vojnar3

1 LSV, ENS Cachan, CNRS, INRIA; 61 av. du Président Wilson, F-94230 Cachan,
France and LIAFA, University Paris 7, Case 7014, 75205 Paris Cedex 13

haberm@liafa.jussieu.fr
2 VERIMAG, CNRS, 2 av. de Vignate, F-38610 Gières, France

iosif@imag.fr
3 FIT BUT, Božetěchova 2, CZ-61266, Brno, Czech Republic

vojnar@fit.vutbr.cz

Abstract. We present a logic interpreted over integer arrays, which allows dif-
ference bound comparisons between array elements situated within a constant
sized window. We show that the satisfiability problem for the logic is undecidable
for formulae with a quantifier prefix {∃,∀}∗∀∗∃∗∀∗. For formulae with quantifier
prefixes in the ∃∗∀∗ fragment, decidability is established by an automata-theoretic
argument. For each formula in the ∃∗∀∗ fragment, we can build a flat counter
automaton with difference bound transition rules (FCADBM) whose traces cor-
respond to the models of the formula. The construction is modular, following the
syntax of the formula. Decidability of the ∃∗∀∗ fragment of the logic is a conse-
quence of the fact that reachability of a control state is decidable for FCADBM.

1 Introduction

Arrays are commonplace data structures in most programming languages. Reasoning
about programs with arrays calls for expressive logics capable of encoding pre- and
post-conditions as well as loop invariants. Moreover, in order to automate program ver-
ification, one needs tractable logics whose satisfiability problems can be answered by
efficient algorithms.

In this paper, we present a logic of integer arrays based on universally quantified
comparisons between array elements situated within a constant sized window, i.e.,
quantified boolean combinations of basic formulae of the form ∀i . γ(i) → a1[i+ k1]−
a2[i + k2] ≤ m where γ is a positive boolean combination of bound and modulo con-
straints on the index variable i, a1 and a2 are array symbols, and k1,k2,m ∈ Z are inte-
ger constants. Hence the name of Single Index Logic (SIL). Note that SIL can also be
viewed as a fragment of Presburger arithmetic extended with uninterpreted functions
mapping naturals to integers.

The main idea in defining the logic is that only one universally quantified index may
be used on the right hand side of the implication within a basic formula. According
to [10], this restriction is not a real limitation of the expressive power of the logic

� The work was supported by the French Ministry of Research (RNTL project AVERILES),
the Czech Grant Agency (projects 102/07/0322, 102/05/H050), the Czech-French Barrande
project MEB 020840, and the Czech Ministry of Education by project MSM 0021630528.

I. Cervesato, H. Veith, and A. Voronkov (Eds.): LPAR 2008, LNCS 5330, pp. 558–573, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Logic of Singly Indexed Arrays 559

since a formula using two or more universally quantified variables in a difference bound
constraint on array values can be equivalently written in the form above, by introducing
fresh array symbols. This technique has been detailed in [10].

Working directly with singly-indexed formulae allows to devise a simple and effi-
cient decision procedure for the satisfiability problem of the ∃∗∀∗ fragment of SIL,
based on a modular translation of formulae into deterministic flat counter automata
with difference bound transition rules (FCADBM). This is possible due to the fact that
deterministic FCADBM are closed under union, intersection and complement, when
considering their sets of traces.

The satisfiability problem for ∃∗∀∗-SIL is thus reduced to checking reachability of
a control state in an FCADBM. The latter problem has been shown to be decidable
first in [6], by reduction to the satisfiability problem of Presburger arithmetic. Later on,
the method described in [4] reduced this problem to checking satisfiability of a linear
Diophantine system, leading to the implementation of the FLATA toolset [7].

Universally quantified formulae of the form ∀i . γ(i) → υ(i) are a natural choice
when reasoning about arrays as one usually tend to describe facts that must hold for
all array elements (array invariants). A natural question is whether a more complex
quantification scheme is possible, while preserving decidability. In this paper, we show
that the satisfiability problem for the class of formulae with quantifier prefixes of the
form ∀∗∃∗∀∗ is already undecidable, providing thus a formal reason for the choice of
working with existentially quantified boolean combinations of universal basic formulae.
The contribution of this paper is hence three-fold:

– we show that the satisfiability problem for the class of formulae with quantifier
prefixes of the form ∀∗∃∗∀∗ is undecidable,

– we define a class of counter automata that is closed under union, intersection and
complement of their sets of traces,

– we provide a decision procedure for the satisfiability problem within the fragment
of formulae with alternation depth of at most one, based on a modular, simple, and
efficient translation of formulae into counter automata.

The practical usefulness of the SIL logic is shown by giving a number of examples
of properties that are recurrent in programs handling array data structures.

Related Work. The saga of papers on logical theories of arrays starts with the seminal
paper [15], in which the read and write functions from/to arrays and their logical axioms
were introduced. A decision procedure for the quantifier-free fragment of the theory of
arrays was presented in [12]. Since then, various quantifier-free decidable logics on
arrays have been considered—e.g., [17,13,11,16,1,8].

In [5], an interesting logic, within the ∃∗∀∗ quantifier fragment, is developed. Un-
like our decision procedure based on automata theory, the decision procedure of [5]
is based on a model-theoretic observation, allowing to replace universal quantification
by a finite conjunction. The decidability of their theory depends on the decidability of
the base theory of array values. However, compared to our results, [5] does not allow
modulo constraints (allowing to speak about periodicity in the array values) nor reason-
ing about array entries at a fixed distance (i.e., reasoning about a[i] and a[i + k] for a
constant k and a universally quantified index i). The authors of [5] give also interesting
undecidability results for extensions of their logic. For example, they show that relating

560 P. Habermehl, R. Iosif, and T. Vojnar

adjacent array values (a[i] and a[i + 1]), or having nested reads, leads to undecidabil-
ity. In their setting, undecidability occurs as a consequence of allowing disjunctions
between predicates involving array value terms (a[i]). We circumvent this problem by
forbidding disjunctions on the right hand side of the implication, within universally
quantified formulae of the form ∀i . γ(i) → υ(i).

A restricted form of universal quantification within ∃∗∀∗ formulae is also allowed
in [2], where decidability is obtained based on a small model property. Unlike [5] and
our work, [2] allows a hierarchy-restricted form of array nesting. However, similar to
the restrictions presented above, neither modulo constraints on indices, nor reasoning
about array entries at a fixed distance are allowed. A similar restriction not allowing to
express properties of consecutive elements of arrays appears also in [3], where a quite
general ∃∗∀∗ logic on multisets of elements with associated data values is considered.

The closest in spirit to the present paper is our previous work in [10]. There, we es-
tablished decidability of formulae in the ∃∗∀∗ quantifier prefix class when references to
adjacent array values (e.g., a[i] and a[i+1]) are not used in disjunctive terms. However,
there are two essential differences between this work and the one reported in [10].

On one hand, the basic propositions from [10], allowing multiple universally quanti-
fied indices could not be translated directly into counter automata. This led to a complex
elimination procedure based on introducing new array symbols, which produces singly-
indexed formulae. However, the automata resulting from this procedure are not closed
under complement. Therefore, negation had to be eliminated prior to reducing the for-
mula to the singly-indexed form, causing further complexity. In the present work, we
start directly with singly-indexed formulae, convert them into automata, and compose
the automata directly using boolean operators (union, intersection, complement).

On the other hand, using universally quantified array property formulae as building
blocks for the formulae, although intuitive, is not formally justified in [10]. Here, we
prove that alternating quantifiers to a depth more than two leads to undecidability.

Roadmap. The paper is organised as follows. Section 2 introduces the necessary no-
tions on counter automata and defines the class of FCADBM. Section 3 defines the
logic SIL. Next, Section 4 gives the undecidability result for the entire logic, while
Section 5 proves decidability of the satisfiability for the ∃∗∀∗ fragment, by translation
to deterministic FCADBM. Finally, Section 6 presents some concluding remarks. For
space reasons, most of the proofs are deferred to [9].

2 Counter Automata

Given a formula ϕ, we denote by FV (ϕ) the set of its free variables. If we denote
a formula as ϕ(x1, ...,xn), we assume FV (ϕ) ⊆ {x1, ...,xn}. For ϕ(x), we denote by
ϕ[t/x] the formula in which each free occurrence of x is replaced by a term t. Given
a formula ϕ, we denote by |= ϕ the fact that ϕ is logically valid, i.e., it holds in every
structure corresponding to its signature.

A difference bound matrix (DBM) formula is a conjunction of inequalities of the
forms (1) x− y ≤ c, (2) x ≤ c, or (3) x ≥ c, where c ∈ Z is a constant. We denote
by " (true) the empty DBM. It is well-known that the negation of a DBM formula is

A Logic of Singly Indexed Arrays 561

equivalent to a finite disjunction of pairwise disjoint DBM formulae since, e.g., ¬(x−
y ≤ c) ⇐⇒ y− x ≤−c−1 and ¬(x ≤ c) ⇐⇒ x ≥ c+1. In particular, the negation of
" is the empty disjunction, denoted as ⊥ (false).

A counter automaton (CA) is a tuple A = 〈x,Q, I,−→,F〉 where:

– x is a finite set of counters ranging over Z,
– Q is a finite set of control states,
– I ⊆ Q is a set of initial states,
– −→ is a transition relation given by a set of rules q

ϕ(x,x′)−−−−→ q′ where ϕ is an arithmetic
formula relating current values of counters x to their future values x′ = {x′ | x ∈ x},

– F ⊆ Q is a set of final states.

A configuration of a counter automaton A is a pair (q,ν) where q ∈ Q is a control
state, and ν : x →Z is a valuation of the counters in x. For a configuration c = (q,ν), we
designate by val(c) = ν the valuation of the counters in c. A configuration (q′,ν′) is an

immediate successor of (q,ν) if and only if A has a transition rule q
ϕ(x,x′)−−−−→ q′ such that

|= ϕ(ν(x),ν′(x′)). A configuration c is a successor of another configuration c′ if and
only if there exists a finite sequence of configurations c = c1c2 . . .cn = c′ such that, for
all 1 ≤ i < n, ci+1 is an immediate successor of ci. Given two control states q,q′ ∈ Q,
a run of A from q to q′ is a finite sequence of configurations c1c2 . . .cn with c1 = (q,ν),
cn = (q′,ν′) for some valuations ν,ν′ : x → Z, and ci+1 is an immediate successor of ci,
for all 1 ≤ i< n. Let R (A) denote the set of runs of A from some initial state q0 ∈ I to
some final state q f ∈ F , and Tr(A) = {val(c1)val(c2) . . .val(cn) | c1c2 . . .cn ∈ R (A)}
be its set of valuation traces. If z ⊆ x is a subset of the counters of A and ν : x → Z is
a valuation of its counters, let ν↓z be the restriction of ν to the counters in z. If c = (q,ν)
is a configuration of A, we denote c↓z= (q,ν↓z) and Tr(A)↓z= {val(c1)↓z val(c2)↓z
. . .val(cn)↓z | c1c2 . . .cn ∈ R (A)}.

A counter z ∈ x is called a parameter of A if and only if, for each σ = ν1 . . .νn ∈
Tr(A), we have ν1(z) = . . . = νn(z), in other words the value of the counter does not
change during any run of A.

A control path in a counter automaton A is a finite sequence q1q2 . . .qn of control

states such that, for all 1 ≤ i < n, there exists a transition rule qi
ϕi−→ qi+1. A cycle is

a control path starting and ending in the same control state. An elementary cycle is
a cycle in which each state appears only once, except for the first one, which appears
both at the beginning and at the end. A counter automaton is said to be flat iff each
control state belongs to at most one elementary cycle.

A counter automaton A is said to be deterministic if and only if (1) it has exactly one

initial state, and (2) for each pair of transition rules with the same source state q
ϕ−→ q′

and q
ψ−→ q′′, we have |= ¬(ϕ∧ψ). It is easy to prove that, given a deterministic counter

automaton A, for each sequence of valuations ν1ν2 . . .νn ∈ Tr(A) there exists exactly
one control path q1q2 . . .qn such that (q0,ν1)(q1,ν2) . . . (qn−1,νn) ∈ R (A).

2.1 Flat Counter Automata with DBM Transition Rules

In the rest of the paper, we use the class of flat counter automata with DBM transition
rules (FCADBM). They are defined to be flat counter automata where each transition

562 P. Habermehl, R. Iosif, and T. Vojnar

in a cycle is labelled by a DBM formula and each transition not in a cycle is labelled
by a conjunction of a DBM formula with a (possibly empty) conjunction of modulo
constraints on parameters of the form z ≡s t where 0 ≤ t < s.

An extension of this class has been studied in [10]. Using results of [6,4], [10] shows
that, given a CA A = 〈x,Q, I,−→,F〉 in the class it considers and a pair of control states

q,q′ ∈ Q, the set Vq,q′ = {(ν,ν′) ∈ (x �→ Z)2 | A has a run from (q,ν) to (q′,ν′)} is
Presburger-definable. As an immediate consequence, the emptiness problem for A, i.e.,

Tr(A) ?= /0, is decidable.

Theorem 1. The emptiness problem for FCADBM is decidable.

In this section, we show that deterministic FCADBM are closed under union, intersec-
tion, and complement of their sets of traces. Let Ai = 〈x,Qi,{q0i},→i,Fi〉, i = 1,2, be
two deterministic FCADBM with the same set of counters. Note that this is not a re-
striction as one can add unrestricted counters without changing the behaviour of a CA.
We first show closure under intersection by defining the CA A1 ⊗ A2 = 〈x,Q1 ×Q2,

{(q01,q02)},→, F1 × F2〉 where (q1,q2)
ϕ−→ (q′1,q

′
2) ⇐⇒ q1

ψ1→1 q′1, q2
ψ2→2 q′2, and

|= ϕ ↔ ψ1 ∧ψ1. The next lemma proves the correctness of our construction.

Lemma 1. For any two deterministic FCADBM Ai = 〈x,Qi,{qi0},→i,Fi〉, i = 1,2,
A1 ⊗A2 is a deterministic FCADBM, and Tr(A1 ⊗A2) = Tr(A1)∩Tr(A2).

Let A = 〈x,Q, I,−→,F〉 be a deterministic FCADBM. Then we define A = 〈x,Q∪{qs},
I,→′,(Q \F)∪{qs}〉 where qs �∈ Q is a fresh sink state. The transition relation →′ is
defined as follows. For a control state q ∈ Q, let OA(q) =

∨
q

ϕ−→q′
ϕ.1 Then, we have:

– qs
"→′qs, q

ϕ→′q′ for each q
ϕ→ q′, and

– q
ψi→′qs, for all 1 ≤ i ≤ k, where ψi are (unique) conjunctions of DBMs and modulo

constraints2 such that |=¬OA(q)↔∨k
i=1 ψi and |=¬(ψi∧ψ j) for i �= j, 1≤ i, j ≤ k.

Flatness of A is a consequence of the fact that the only cycle of A, which did not exist
in A, is the self-loop around qs. That is, the newly added transitions do not create new
cycles. It is immediate to see that A is deterministic whenever A is. The following lemma
formalises correctness of the complement construction, proving thus that deterministic
FCADBM are effectively closed under union3, intersection, and complement of their
sets of traces.

Lemma 2. Given a deterministic FCADBM A = 〈x,Q,{q0},→,F〉, for any finite se-
quence of valuations σ ∈ (x �→ Z)∗, we have σ ∈ Tr(A) if and only if σ �∈ Tr(A).

1 If q has no immediate successors, then OA(q) is false by default.
2 The negation of z ≡s t with t < s is equivalent to

∨
t ′∈{0,...,s−1}\{t} z ≡s t ′.

3 The FCADBM whose set of traces is the union of the sets of traces of two given FCADBM

A1, A2 can be obtained simply as A1 ⊗A2.

A Logic of Singly Indexed Arrays 563

3 A Logic of Integer Arrays

3.1 Syntax

We consider three types of variables. The array-bound variables (k, l) appear within the
bounds that define the intervals in which some property is required to hold. Let BVar
denote the set of array-bound variables. The index (i, j) and array (a,b) variables are
used in array terms. Let IVar denote the set of index variables and AVar denote the set
of array variables. All variable sets are supposed to be finite and of known cardinality.

Fig. 1 shows the syntax of the Single Index Logic SIL. The term |a| denotes the
length of an array variable a. We use the symbol " to denote the boolean value true.
In the following, we will write f ≤ i ≤ g instead of f ≤ i ∧ i ≤ g, i < f instead of
i ≤ f − 1, i = f instead of f ≤ i ≤ f , ϕ1 ∨ϕ2 instead of ¬(¬ϕ1 ∧¬ϕ2), and ∀i . υ(i)
instead of ∀i . "→ υ(i). If �1(k1), . . . , �n(kn) are array-bound terms with free variables
k1, . . . ,kn ∈BVar, respectively, we write any DBM formula ϕ on terms a1[�1], . . . ,an[�n],
as a shorthand for (

∧n
k=1∀ j . j = �k → ak[j] = lk)∧ϕ[l1/a1[�1], . . . , ln/an[�n]], where

l1, . . . , ln are fresh array-bound variables.

n,m, p . . . ∈ Z constants
k, l, . . . ∈ BVar array-bound variables
i, j, . . . ∈ IVar index variables
a,b, . . . ∈ AVar array variables
∼ ∈ {≤,≥}

B := n | k +n | |a|+n array-bound terms
G := � | i− j ≤ n | i ≤ B | B ≤ i | i ≡s t | G∧G | G∨G guard expressions (0 ≤ t < s)
V := a[i+n] ∼ B | a[i+n]−b[i+m] ∼ p |

i−a[i+n] ∼ m | V ∧V value expressions
C := B ∼ n | B−B ≤ n | B ≡s t array-bound constraints (0 ≤ t < s)
P := ∀i . G →V array properties
F := P | C | ¬F | F ∧ F | F ∨ F | ∃i . F formulae

Fig. 1. Syntax of the Single Index Logic

For reasons that will be made clear later on, we allow only one index variable to oc-
cur within the right hand side of the implication in an array property formula ∀i . γ → υ,
i.e., we require FV (υ)∩ IVar = {i}. Hence the name Single Index Logic (SIL). Note
that this does not restrict the expressive power w.r.t. the logic considered in [10]. One
can always circumvent this restriction by using the method from [10] based on adding
new array symbols together with a transitive (increasing, decreasing, or constant) con-
straint on their adjacent values. This way a relation between arbitrarily distant entries
a[i] and b[j] is decomposed into a sequence of relations between neighbouring entries
of a, b, and entries of the auxiliary arrays. However this transformation would greatly
complicate the decision procedure, hence we prefer to avoid it here.

Notice also that one can compare an array value with an array-bound variable, or
with another array value on the right hand side of an implication in an array property
formula ∀i . γ → υ, but one cannot relate two or more array values with array-bound

564 P. Habermehl, R. Iosif, and T. Vojnar

parameters in the same expression. Allowing more complex comparisons between array
values would impact upon the decidability result reported in Section 5. For the same
reason, disjunctive terms are not allowed on the right hand side of implications in array
properties: allowing disjunctions in value expressions makes it possible to write a SIL
formula that encodes all executions of a 2-counter machine with nested control structure
(as shown already in [10]).

Let υ be a value expression written in the syntax of Fig. 1 (starting with the V non-
terminal). Let B(υ) be the formula defined inductively on the structure of υ as follows:

– B(a[i+ n]≤ B) = B(B ≤ a[i+ n]) = 0 ≤ i+ n< |a|
– B(i−a[i+ n]≤ m) = B(a[i+ n]− i≤ m) = 0 ≤ i+ n< |a|
– B(a[i+ n]−b[i+ m]≤ p) = 0 ≤ i+ n< |a| ∧ 0 ≤ i+ m< |b|
– B(υ1 ∧υ2) = B(υ1)∧B(υ2)

Intuitively, B(υ) is the conjunction of all sanity conditions needed in order for the array
accesses in υ to occur within proper bounds.

3.2 Semantics

Let us fix AVar = {a1,a2, . . . ,ak} as the set of array variables for the rest of this section.
A valuation is a pair of partial functions 〈ι,µ〉 where ι : BVar∪ IVar → Z⊥ associates
an integer value with every free integer variable, and µ : AVar → Z∗ associates a finite
sequence of integers with every array symbol a ∈ AVar. If σ ∈ Z∗ is such a sequence,
we denote by |σ| its length and by σi its i-th element.

By Iι,µ(t), we denote the value of the term t under the valuation 〈ι,µ〉. The semantics
of a formula ϕ is defined in terms of the forcing relation |= as follows:

Iι,µ(|a|) = |µ(a)|
Iι,µ(a[i+ n]) = µ(a)ι(i)+n

〈ι,µ〉 |= a[i+ n]≤ B ⇐⇒ Iι,µ(a[i+ n])≤ ι(B)
〈ι,µ〉 |= A1 −A2 ≤ n ⇐⇒ Iι,µ(A1)− Iι,µ(A2) ≤ n
〈ι,µ〉 |= ∀i . G →V ⇐⇒ ∀ n ∈ Z . 〈ι[i ← n],µ〉 |= G∧B(V) →V

〈ι,µ〉 |= ∃i . F ⇐⇒ 〈ι[i ← n],µ〉 |= F for some n ∈ N

Notice that the semantics of an array property formula ∀i . G →V ignores all values
of i for which the array accesses of V are undefined since we consider only the values of
i from Z that satisfy the safety assumption B(V). For space reasons, we do not give here
a full definition of the semantics. However, the missing rules are standard in first-order
arithmetic. A model of a SIL formula ϕ(k,a) is a valuation 〈ι,µ〉 such that the formula
obtained by interpreting each variable k ∈ k as ι(k) and each array variable a ∈ a as
µ(a) is logically valid: 〈ι,µ〉 |= ϕ. We define [[ϕ]] = {〈ι,µ〉 | 〈ι,µ〉 |= ϕ}. A formula is
said to be:

– satisfiable if and only if [[ϕ]] �= /0, and
– valid if and only if [[ϕ]] = (BVar∪ IVar → Z⊥)× (AVar → Z∗)

A Logic of Singly Indexed Arrays 565

With these definitions, the satisfiability problem asks, given a formula ϕ if it has at least
one model. Without losing generality, for the satisfiability problem, we can assume that
the quantifier prefix of ϕ (in prenex normal form) does not start with ∃. Dually, the
validity problem asks whether a given formula holds on every possible model. Symmet-
rically, for the validity problem, one can assume w.l.o.g. that the quantifier prefix of the
given formula does not start with ∀.

3.3 Examples

We now illustrate the syntax, semantics, and use of the logic SIL on a number of ex-
amples. For instance, the formula ∀i . a[i] = 0 is satisfied by all functions µ mapping a
to a finite sequence of 0’s, i.e., µ(a) ∈ 0∗. It is semantically equivalent to ∀i . 0 ≤ i <
|a| → a[i] = 0, in which the range of i has been made explicit.

The formula ∀i . 0 ≤ i < k → a[i] = 0 is satisfied by all pairs 〈ι,µ〉 where µ maps a
to a sequence whose first ι(k) elements (if they exist) are 0, i.e., µ(a) ∈ {0n | 1 ≤ n <
ι(k)} ∪ 0ι(k)Z∗. It is semantically equivalent to ∀i . 0 ≤ i<min(|a|,k) → a[i] = 0.

The capability of SIL to relate array entries at fixed distances (missing in many
decidable logics such as those considered in [2,5,3]) is illustrated on a bigger example
below. The modulo constraints on the index variables can then be used to state periodic
facts. For instance, the formula ∀i . i ≡2 0 → a[i] = 0∧∀i . i ≡2 1 → a[i] = 1 describes
the set of arrays a in which the elements on even positions have the value 0, and the
elements on odd positions have the value 1.

The logic SIL also allows direct comparisons between indices and values. For in-
stance, the formula ∀i . a[i] = i + 1 is satisfied by all arrays a which are of the form
1234 Alternatively, this can be specified as a[0] = 1 ∧ ∀i . a[i+1] = a[i]+1 where
a[0] = 1 is a shorthand for ∀i . i = 0 → a[i] = 1. Further, the set of arrays in which the
value at position n is between zero and n can be specified by writing ∀i . 0 ≤ a[i] < i,
which cannot be described without an explicit comparison between indices and values
(unless a comparison with an additional array describing the sequence 1234 . . . is used).

Checking verification conditions for array manipulating programs. The decision proce-
dure for checking satisfiability of SIL formulae, described later on, can be used for dis-
charging verification conditions of various interesting array-manipulating procedures.
As a concrete example, let us consider the procedure for an in-situ left rotation of arrays,
given below. We annotate the procedure (using double braces) with a pre-condition,
post-condition, and a loop invariant. We distinguish below logical variables from pro-
gram variables (typeset in print). The variable a0 is a logical variable that relates the
initial values of the array a with the values after the rotation.

{{ |a| = |a0| ∧∀ j.a[j] = a0[j] }}
x=a[0];
for (i=0; i< |a|-1; i++)
{{ x = a0[0]∧∀ j.0 ≤ j < i→ a[j] = a0[j + 1]∧∀ j.i ≤ j < |a| → a[j] = a0[j] }}
a[i]=a[i+1];

a[|a|-1]=x;
{{ a[|a|−1] = a0[0]∧∀ j.0 ≤ j < |a|−1 → a[j] = a0[j + 1]) }}

566 P. Habermehl, R. Iosif, and T. Vojnar

To check (partial) correctness of the procedure, one needs to check three verifica-
tion conditions out of which we discuss one here (the others are similar). Namely, we
consider checking the loop invariant, which requires checking validity of the formula:

x = a0[0]∧∀ j.0 ≤ j < i→ a[j] = a0[j + 1] ∧ ∀ j.i ≤ j < |a| → a[j] = a0[j] ∧
i< |a|−1∧|a′| = |a| ∧i′=i+ 1∧x′=x∧a′[i]=a[i+ 1]∧∀ j. j �= i→ a′[j] = a[j]

−→
x′ = a0[0]∧∀ j.0 ≤ j < i′ → a′[j] = a0[j + 1] ∧ ∀ j.i′ ≤ j < |a′| → a′[j] = a0[j]

Primed variables denote the values of program variables after one iteration of the loop.
Checking validity of this formula amounts to checking that its negation is unsatisfiable.
The latter condition is expressible in the decidable fragment of SIL. Note that the con-
ditions used above refer to adjacent array positions, which could not be expressed in the
logics defined in [2,5,3].

4 Undecidability of the Logic SIL

In this section, we show that the satisfiability problem for the ∀∗∃∗∀∗ fragment of SIL
is undecidable, by reducing from Hilbert’s Tenth Problem [14]. In the following, Sec-
tion 5 proves the decidability of the satisfiability problem for the fragment of boolean
combinations of universally quantified array property formulae—the satisfiability of the
∀∗ fragment is proven. Since the leading existential prefix is irrelevant when one speaks
about satisfiability, referring either to ∀∗∃∗∀∗ or to ∃∗∀∗∃∗∀∗ makes no difference in
this case. However, the question concerning the validity problem for the ∃∗∀∗ fragment
of SIL is still open.

First, we show that multiplication and addition of strictly positive integers can be
encoded using formulae of ∀∗∃∗∀∗-SIL. Let x,y,z ∈ N, with z> 0. We define:

ϕ1(j) : a2[j]> 0∧a3[j] > 0∧a1[j + 1] = a1[j]+ 1∧a2[j + 1] = a2[j]−1∧
∧ a3[j + 1] = a3[j]

ϕ2(j) : a2[j] = 0∧a3[j] > 0∧a1[j + 1] = a1[j]∧a2[j + 1] = y∧a3[j + 1] = a3[j]−1

ϕx=yz(a1,a2,a3,n1,n2) : n1 < n2 ∧a1[n1] = 0∧a2[n1] = y∧a3[n1] = z∧a1[n2] = x∧
∧ a3[n2]=0∧∀i.(n1 ≤ i< n2 →∃ j.i ≤ j < n2 ∧ϕ2(j)∧∀k.(i≤k < j → ϕ1(k)))

Notice that ϕx=yz is in the ∀∗∃∗∀∗ quantifier fragment of SIL.

Lemma 3. ϕx=yz(a1,a2,a3,n1,n2) is satisfiable if and only if x = yz.

Proof. We first suppose that x = yz and give a model of ϕx=yz(a1,a2,a3,n1,n2). We
choose n1 = 0 and n2 = (y+1)z. Then, we choose a1[n2] = x, a2[n2] = y and a3[n2] = 0.
Furthermore, for all j such that 0 ≤ j < z and for all i such that 0 ≤ i ≤ y, we choose
a1[i+ j(y + 1)] = i+ jy, a2[i+ j(y + 1)] = y− i and a3[i+ j(y + 1)] = z− j. Then, it is
easy to check that this is a model of ϕx=yz(a1,a2,a3,n1,n2).

A Logic of Singly Indexed Arrays 567

Let us consider now a model of ϕx=yz(a1,a2,a3,n1,n2). We show that this implies
x = yz. A model of n1 < n2∧a1[n1] = 0∧a2[n1] = y∧a3[n1] = z∧a1[n2] = x∧a3[n2] =
0∧∀i.(n1 ≤ i< n2 →∃ j.i ≤ j< n2 ∧ϕ2(j)∧∀k.(i ≤ k< j → ϕ1(k))) assigns values to
n1 and n2 and defines array values for a1, a2, and a3 between bounds n1 and n2. Clearly,
a1[n1] = 0, a2[n1] = y, a3[n1] = z, a1[n2] = x, and a3[n2] = 0. Due to their definition,
ϕ1(j) and ϕ2(j) cannot be true at the same point j since |= ϕ1(j) → a2[j] > 0 and
|= ϕ2(j) → a2[j] = 0.

Since the subformula ∀i.(n1 ≤ i < n2 → ∃ j.i ≤ j < n2 ∧ϕ2(j)∧∀k.(i ≤ k < j →
ϕ1(k))) holds, it is then clear that there exists points j1, . . . , jl with l > 0 and n1 ≤ j1 <
j2 < · · · < jl = n2 − 1 such that ϕ2(j) holds at all of these points. Furthermore, at all
intermediary points k not equal to one of the ji’s, ϕ1(k) has to be true. This implies
that l must be equal to z (since ϕ1(k) imposes a3[k + 1] = a3[k] whereas ϕ2(j) imposes
a3[j + 1] = a3[j]−1).

Let us examine the intermediary points between n1 and j1. Due to a1[n1]=0, a2[n1] =
y, a3[n1] = z and ϕ1(k) being true for all k such that n1 ≤ k < j1 as well as ϕ2(j1)
being true, we must have j1 = y + n1, and, for all k such that n1 < k ≤ j1, we have
a1[k] = k − n1, a2[k] = y − k + n1, and a3[k] = z. Furthermore, since ϕ2(j1) is true,
we have a1[j1 + 1] = y, a2[j1 + 1] = y, and a3[j1 + 1] = z− 1. We can continue this
reasoning with the intermediary points between j1 and j2 and so on up to jl . At the
end we get a3[jl + 1] = 0 and a1[jl + 1] = a1[n2] = yl. Since l = z and a1[n2] = x, this
implies x = yz. �	
Next, we define:

ϕ3(j) : a2[j]> 0∧a1[j + 1] = a1[j]+ 1∧a2[j + 1] = a2[j]−1

ϕx=y+z(a1,a2,n1,n2) : n1 < n2 ∧a1[n1] = y∧a2[n1] = z∧a1[n2] = x∧a2[n2] = 0 ∧
∧ ∀k.n1 ≤ k< n2 → ϕ3(k)

Lemma 4. ϕx=y+z(a1,a2,n1,n2) is satisfiable if and only if x = y + z.

Proof. Similar to Lemma 3. �	
We are now ready to reduce from Hilbert’s Tenth Problem [14]. Given a Diophantine
system S, we construct a SIL formula ΨS which is satisfiable if and only if the system
has a solution. Without loss of generality, we can suppose that all variables in S range
over strictly positive integers. Then S can be equivalently written as a system of equa-
tions of the form x = yz and x = y + z by introducing fresh variables. Let {x1, . . . ,xk}
be the variables of these equations. We enumerate separately all equations of the form
x = yz and those of the form x = y + z. Let nm be the number of equations of the form
x = yz and na the number of equations of the form x = y + z.

Let ΨS be the following SIL formula with three array symbols (a1,a2 and a3):

∃x1 . . .∃xk∃m1
1 . . .∃m1

nm+na
∃m2

1 . . .∃m2
nm+na

nm+na−1∧
i=1

m2
i < m1

i+1 ∧
nm∧
i=1

ϕi ∧
na∧

i=1

ϕ′
i

where the formulae ϕi and ϕ′
i are defined as follows: Let xi1 = xi2xi3 be the i-th mul-

tiplicative equation. Then, ϕi = ϕxi1 =xi2 xi3
(a1,a2,a3,m1

i ,m
2
i). Let xi1 = xi2 + xi3 be the

i-th additive equation. Then, ϕ′
i = ϕxi1 =xi2+xi3

(a1,a2,m1
nm+i,m

2
nm+i).

568 P. Habermehl, R. Iosif, and T. Vojnar

Lemma 5. A Diophantine system S has a solution if and only if the corresponding
formula ΨS is satisfiable.

Proof. The Diophantine system S is equivalently written as a conjunction of equations
of the form x = yz and x = y + z using variables {x1, . . . ,xk}. Then, the Diophantine
system has a solution if and only if all equations of the form x = yz and x = y + z
have a common solution. Since all pairs m1

i and m2
i denote disjoint intervals and using

Lemmas 3 and 4, we have that all equations of the form x = yz and x = y + z have
a common solution if and only if ΨS is satisfiable. �	

5 Decidability of the Satisfiability Problem for ∃∗∀∗-SIL

We show that the set of models of a boolean combination ϕ of universally quantified ar-
ray property formulae of SIL corresponds to the set of runs of an FCADBM Aϕ, defined
inductively on the structure of the formula. More precisely, each array variable in ϕ has
a corresponding counter in Aϕ, and given any model of ϕ that associates integer values
to all array entries, Aϕ has a run in which the values of the counters at different points
of the run match the values of the array entries at corresponding positions in the model.
Since the emptiness problem is decidable for FCADBM, this leads to decidability of
the satisfiability problem for ∃∗∀∗-SIL (or equivalently, for ∀∗-SIL).

5.1 Normalisation

Before describing the translation of ∃∗∀∗-SIL formulae into counter automata, we need
to perform a simple normalisation step. Let ϕ(k,a) be a SIL formula in the ∃∗∀∗ frag-
ment i.e., an existentially quantified boolean combination of (1) DBM conditions or
modulo constraints on array-bound variables k and array length terms |a|, a ∈ a, and
(2) array properties of the form ∀i . γ(i,k, |a|) → υ(i,k,a)4. Without losing generality,
we assume that the sanity condition B(υ) is explicitly conjoined to the guard of every
array property i.e., each array property is of the form ∀i . γ∧B(υ) → υ.

A guard expression is a conjunction of array-bound expressions i ∼ �, ∼ ∈ {≤,≥},
or modulo constraints i ≡s t where � is a an array bound term, and s, t ∈ N such that
0 ≤ t < s. For a guard γ and an integer constant c ∈ Z, we denote by γ + c the guard
obtained by replacing each array-bound expression i ∼ b by i ∼ b+ c and each modulo
constraint i ≡s t by i ≡s t ′ where 0 ≤ t ′ < s and t ′ ≡s t + c.

The normalisation consists in performing the following steps in succession:

1. Replace each array property subformula ∀i .
∨

j γ j →
∧

k υk by the equivalent con-
junction

∧
j,k∀i . γ j → υk where γ j are guard expressions and υk are either a[i+n]∼

�, a[i + n]− b[i + m]∼ p, or i− a[i + n]∼ m, where m,n, p ∈ Z, ∼∈ {≤,≥} and �
is an array bound term.

4 An array property formula with more than one universally quantified index variable in the
guard is equivalent to an array property formula whose guard has exactly one universally quan-
tified index variable. Indeed, a formula of the form ∀i1, . . . , in . γ(i1, . . . , in,k, |a|) → υ(i1,k,a)
is equivalent to ∀i1 . ((∃i2, . . . , in . γ(i1, . . . , in,k, |a|)) → υ(i1,k,a)) and then the existential
quantifiers in (∃i2, . . . , in . γ(i1, . . . , in,k, |a|)) can be eliminated possibly adding modulo con-
straints on k, |a| and i1.

A Logic of Singly Indexed Arrays 569

2. Simplify each newly obtained array property subformula as follows:

∀i . γ → a[i+ n]∼ � � ∀i . γ+ n → a[i] ∼ �

∀i . γ → i−a[i+ n]∼ m � ∀i . γ+ n → i−a[i]∼ m+ n

∀i . γ → a[i+ n]−b[i+ m]∼ p � ∀i . γ+ n → a[i]−b[i+ m−n]∼ p if m ≥ n

∀i . γ → a[i+ n]−b[i+ m]∼ p � ∀i . γ+ m → b[i]−a[i+ n−m]∼− p if m< n

where:
– ∼∈ {≤,≥} and ∼ is ≥ (≤) if ∼ is ≤ (≥), respectively, and
– � is an array-bound term, and m,n, p ∈ Z.

3. For each array property ψ : ∀i . γ(i)→ υ(i), let Bψ = {b1, . . . ,bn} be the set of array-
bound terms occurring in γ. Then replace ψ by the disjunction

∨
1≤i, j≤n

∧
1≤k≤n bi ≤

bk ≤ b j ∧ψ (one considers all possible cases of minimal and maximal values for
array-bound terms), and simplify all subformulae of the form

∧
j i ≤ b j (

∧
j i ≥ b j)

from γ to exactly one upper (lower) bound, according to the current conjunctive
clause. If the lower and upper bound that appear in γ are inconsistent with the
chosen minimal and maximal value added by the transformation to ψ (i.e., the lower
bound is assumed to be bigger than the upper one), we replace ψ in the concerned
conjunctive clause by " as it is trivially satisfied.

4. Rewrite each conjunction
∧

j i ≡s j t j occurring within the guards of array property

formulae into
∧

j i ≡S
S·t j
s j

where S is the least common multiple of s j , and simplify
the conjunction either to false (in which case the array property subformula is vac-
uously true), or to a formula i ≡S t. In case there is no modulo constraint within
a guard, for uniformity reasons, conjoin the guard with the constraint i ≡1 0.

5. Transform each array property subformula of the form

∀i . f ≤ i ≤ g∧ i ≡s t −→ a[i]−b[i+ m]∼ n

where m> 1, n ∈ Z, and 0 ≤ t < s into the following conjunction:

∀i . f ≤ i ≤ g∧ i ≡s t −→ a[i]− τ1[i+ 1]∼ 0 ∧∧m−2
j=1 ∀i. f + j ≤ i ≤ g + j∧ i ≡s (t + j)mod s −→ τ j[i]− τ j+1[i+ 1]∼ 0 ∧

∀i . f + m−1 ≤ i ≤ g + m−1∧ i≡s (t + m−1)mod s −→ τm−1[i]−b[i+ 1]∼ n

where τ1,τ2, . . . ,τm−1 are fresh array variables. Figure 2 depicts this transformation
for ∼=≤ – the case ∼=≥ is similar.

The result of the normalisation step is a boolean combination of (1) DBM conditions
or modulo constraints on array-bound variables k and array length terms |a|, a ∈ a and
(2) array properties of the following form:

∀i . f ≤ i ≤ g ∧ i ≡s t → υ

where f and g are array-bound terms, s, t ∈ N, 0 ≤ s< t, and υ is one of the following:

(1) a[i] ∼ �, (2) i−a[i]∼ n, (3) a[i]−b[i+ 1]∼ n

where ∼∈ {≤,≥}, n ∈ Z, and � is an array-bound term.

570 P. Habermehl, R. Iosif, and T. Vojnar

...

g

0 0 0 0
0 0 0 0

f
a

τ1
τ2

b

f + m

τm−1 n n n n
g + m

Fig. 2. Adding fresh array variables to array property formulae ∀i . f ≤ i ∧ i ≤ g ∧ i ≡s t →
a[i]−b[i+m] ≤ n

We need the following definition to state the normal form lemma. If X ⊆AVar is a set
of array variables, then µ↓X represents the restriction of µ : AVar → Z∗ to the variables
in X . For a formula ϕ of SIL, we denote by [[ϕ]]↓X the set {〈ι,µ↓X〉 | 〈ι,µ〉 |= ϕ}.

Lemma 6. Let ϕ(k,a) be a formula of ∃∗∀∗-SIL and φ(k,a, t) be the formula obtained
from ϕ by normalisation where t is the set of fresh array variables added during nor-
malisation. Then we have [[ϕ]] = [[φ]]↓a.

5.2 Translating Normalised Formulae into FCADBM

Let ϕ(k,a) be an ∃∗∀∗-SIL formula that is already normalised as in the previous. The
automaton encoding the models of ϕ is in fact a product Aϕ = Aϕ ⊗Atick, where Aϕ
is defined inductively on the structure of ϕ, and Atick is a generic FCADBM, defined
next. Both Aϕ and Atick (and, implicitly Aϕ) work with the set of counters x = {xk | k ∈
k} ∪ {x|a| | a ∈ a} ∪ {xa | a ∈ a} ∪ {xtick}, where:

– xk and x|a| are parameters corresponding to array-bound variables, i.e., their values
do not change during the runs of Aϕ,

– xa are counters corresponding to the array symbols, and
– xtick is a special counter that is initialised to zero and incremented by each transition.

The main intuition behind the automata construction is that, for each model 〈ι,µ〉 of ϕ,
there exists a run of Aϕ such that, for each array symbol a ∈ a, the value µ(a)n equals
the value of xa when xtick equals n, for all 0 ≤ n < |a|. The reason behind defining
Aϕ as the product of Aϕ and Atick is that the use of negation within ϕ, which involves
complementation on the automata level, may not affect the flow of ticks, just the way
they are dealt with within the guards. For this reason, Aϕ can only read xτ, while Atick is
the one updating it.

Formally, let Atick = 〈x,{q0,qtick},{q0},→tick,{qtick}〉, where

q0

xtick=0 ∧ x′tick=xtick+1 ∧ ∧
k∈k x′k=xk ∧ ∧

a∈a x′|a|=x|a|
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ qtick

and

qtick

x′tick=xtick+1 ∧ ∧
k∈k x′k=xk ∧ ∧

a∈a x′|a|=x|a|
−−−−−−−−−−−−−−−−−−−−−−−−−→ qtick

are the only transitions rules. The construction of Aϕ is recursive on the structure of ϕ:

A Logic of Singly Indexed Arrays 571

– if ϕ is a DBM constraint or modulo constraint θ on array-bound terms, let Aϕ =

〈x,{q0,q1},{q0},−→,{q1}〉 where the transitions rules are q1
"−→ q1 and q0

θ−→ q1,

and θ is obtained from the constraint θ by replacing all occurrences of k ∈ k by xk,
and all occurrences of |a|, a ∈ a, by x|a|.

– if ϕ = ¬ψ, let Aϕ = Aψ,
– if ϕ = ψ1 ∧ψ2, let Aϕ = Aψ1 ⊗Aψ2 ,

– if ϕ = ψ1 ∨ψ2, let Aϕ = Aψ1 ⊗Aψ2 .
– if ϕ is an array property, Aϕ is defined below, according to the type of the value

expression occurring on the right hand side of the implication.

Let ϕ : ∀i . f ≤ i ≤ g ∧ i ≡s t → υ be an array property subformula after normal-
isation. Figure 3 gives the counter automaton Aϕ for such a subformula. The formal
definition of Aϕ = 〈x,Q, I,−→,F〉 follows:

– Q = {qi | 0 ≤ i< s} ∪ {ri | 0 ≤ i< s} ∪ {q f}, I = {q0}, and F = {q f }.
– the transition rules of Aϕ are as follows, for all 0 ≤ i< s:

qi
xtick< f−1−−−−−−→ q(i+1) mod s qi

xtick= f−1−−−−−−→ r(i+1) mod s

ri
f≤xtick≤g−−−−−−→ r(i+1) mod s if i �= t rt

υ ∧ f≤xtick≤g−−−−−−−−→ r(t+1) mod s

ri
xtick>g−−−−→ q f q f

"−→ q f

q0
xtick=0 ∧ υ ∧ f≤xtick≤g−−−−−−−−−−−−−−→ r1 mod s if t = 0 q0

xtick=0 ∧ f≤xtick≤g−−−−−−−−−−−→ r1 mod s if t �= 0

Here υ is defined by:

• υ ∆= xa ∼ � if υ is a[i] ∼ � where � is obtained from � by replacing each occur-
rence of k ∈ k by xk and each occurrence of |a| by x|a|, a ∈ a,

• υ ∆= xtick − xa ∼ n if υ is i−a[i]∼ n, and

• υ ∆= xa − x′b ∼ n if υ is a[i]−b[i+ 1]∼ n.
Further, f (g) are obtained from f (g) by replacing each k ∈ k by xk and each |a|,
a ∈ a, by x|a|, respectively.

Notice that Aϕ is always deterministic. This is because the automata for array prop-
erty formulae are deterministic in the use of the xtick counter, complementation
preserves determinism, and composition of two deterministic FCADBM results in a de-
terministic FCADBM.

Let ϕ(k,a) be a normalised ∃∗∀∗-SIL formula, and Aϕ = Aϕ⊗Atick be the determin-
istic FCADBM whose construction was given in the previous. We define the following
relation between valuations 〈ι,µ〉 ∈ [[ϕ]] and traces σ ∈ Tr(Aϕ), denoted 〈ι,µ〉 ≡ σ, iff:

1. for all k ∈ k, ι(k) = σ0(xk),
2. for all a ∈ a, ι(|a|) = σ0(x|a|) = |µ(a)| ≤ |σ| and µ(a)i = σi(xa), 0 ≤ i< |µ(a)|.

The following lemma establishes correctness of our construction:

Lemma 7. Let ϕ(k,a) be a normalised ∃∗∀∗-SIL formula, and Aϕ be its corresponding
FCADBM. Then for each valuation 〈ι,µ〉 ∈ [[ϕ]] there exist a trace σ ∈ Tr(Aϕ) such that
〈ι,µ〉 ≡ σ. Dually, for each trace σ ∈ Tr(Aϕ) there exists a valuation 〈ι,µ〉 ∈ [[ϕ]] such
that 〈ι,µ〉 ≡ σ.

572 P. Habermehl, R. Iosif, and T. Vojnar

>

rs−2 r2

r1rs−1

r0q0
q f

qs−2 q2

qs−1 q1

xtick < f −1

f ≤ xtick ≤ g∧υ

xtick > g

xtick = f −1
f ≤ xtick ≤ g

rtrt+1

Fig. 3. The FCADBM for the formula ∀i . f ≤ i ≤ g ∧ i ≡s t → υ

Theorem 2. The satisfiability problem is decidable for the ∃∗∀∗ fragment of SIL.

Proof. Let ϕ(k,a) be a formula of ∃∗∀∗-SIL. By normalisation, we obtain a formula
φ(k,a, t) where t is the set of fresh array variables added during normalisation. Then,
by Lemma 6, we have [[ϕ]] = [[φ]]↓a. To check satisfiability of ϕ, it is therefore enough
to check satisfiability of φ. By Lemma 7, φ is satisfiable if and only if the language of
the corresponding automaton Aφ is not empty. This is decidable by Theorem 1. �	

6 Conclusion

We have introduced a logic over integer arrays based on universally quantified differ-
ence bound constraints on array elements situated within a constant sized window. We
have shown that the logic is undecidable for formulae with quantifier prefix in the lan-
guage ∀∗∃∗∀∗, and that the ∃∗∀∗ fragment is decidable. This is shown with an automata-
theoretic argument by constructing, for a given formula, a corresponding equivalent
counter automaton whose emptiness problem is decidable. The translation of formulae
into counter automata takes advantage of the fact that only one index is used in the dif-
ference bound constraints on array values, making the decision procedure for the logic
simple and efficient. Future work involves automatic invariant generation for programs
handling arrays, as well as implementation and experimental evaluation of the method.

References

1. Armando, A., Ranise, S., Rusinowitch, M.: Uniform derivation of decision procedures by
superposition. In: Fribourg, L. (ed.) CSL 2001 and EACSL 2001. LNCS, vol. 2142, p. 513.
Springer, Heidelberg (2001)

2. Arons, T., Pnueli, A., Ruah, S., Xu, J., Zuck, L.: Parameterized verification with automati-
cally computed inductive assertions. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001.
LNCS, vol. 2102. Springer, Heidelberg (2001)

A Logic of Singly Indexed Arrays 573

3. Bouajjani, A., Jurski, Y., Sighireanu, M.: A generic framework for reasoning about dynamic
networks of infinite-state processes. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS,
vol. 4424. Springer, Heidelberg (2007)

4. Bozga, M., Iosif, R., Lakhnech, Y.: Flat parametric counter automata. In: Bugliesi, M., Pre-
neel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052. Springer, Heidelberg
(2006)

5. Bradley, A.R., Manna, Z., Sipma, H.B.: What’s decidable about arrays? In: Emerson, E.A.,
Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855. Springer, Heidelberg (2006)

6. Comon, H., Jurski, Y.: Multiple Counters Automata, Safety Analysis and Presburger Arith-
metic. In: Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427. Springer, Heidelberg (1998)

7. The FLATA Toolset, http://www-verimag.imag.fr/∼async/FLATA/flata.html
8. Ghilardi, S., Nicolini, E., Ranise, S., Zucchelli, D.: Decision Procedures for Extensions of

the Theory of Arrays. Annals of Mathematics and Artificial Intelligence, 50 (2007)
9. Habermehl, P., Iosif, R., Vojnar, T.: A Logic of Singly Indexed Arrays. Technical Report

TR-2008-9, Verimag (2008)
10. Habermehl, P., Iosif, R., Vojnar, T.: What else is decidable about integer arrays? In: Amadio,

R. (ed.) FOSSACS 2008. LNCS, vol. 4962. Springer, Heidelberg (2008)
11. Jaffar, J.: Presburger Arithmetic with Array Segments. Inform. Processing Letters, 12 (1981)
12. King, J.: A Program Verifier. PhD thesis, Carnegie Mellon University (1969)
13. Mateti, P.: A Decision Proc. for the Correctness of a Class of Programs. Journal of the ACM,

28(2) (1980)
14. Matiyasevich, Y.: Enumerable Sets are Diophantine. Journal of Sovietic Mathematics 11,

354–358 (1970)
15. McCarthy, J.: Towards a Mathematical Science of Computation. In: IFIP Congress (1962)
16. Stump, A., Barrett, C.W., Dill, D.L., Levitt, J.R.: A Decision Procedure for an Extensional

Theory of Arrays. In: Proc. of LICS 2001 (2001)
17. Suzuki, N., Jefferson, D.: Verification Decidability of Presburger Array Programs. Journal of

the ACM 27(1) (1980)

http://www-verimag.imag.fr/~async/FLATA/flata.html

On the Computational Complexity of Spatial
Logics with Connectedness Constraints

R. Kontchakov1, I. Pratt-Hartmann2, F. Wolter3, and M. Zakharyaschev1

1 School of Computer Science, Birkbeck College London
2 Department of Computer Science, Manchester University
3 Department of Computer Science, University of Liverpool

Abstract. We investigate the computational complexity of spatial log-
ics extended with the means to represent topological connectedness and
restrict the number of connected components. In particular, we show
that the connectedness constraints can increase complexity from NP to
PSpace, ExpTime and, if component counting is allowed, to NExpTime.

1 Introduction

A subset of a topological space T is connected if it cannot be covered by the
union of two disjoint non-empty open sets in T . Connectedness is known to be
one of the most fundamental concepts of topology, and any textbook in the field
contains a substantial chapter on connectedness. In spatial representation and
reasoning in AI, the distinction between connected and disconnected regions is
recognized as indispensable for various modelling and representation tasks; see,
e.g., [1,4]. (After all, a disconnected plot is usually only worth half the value of a
connected plot.) In spite of this, so far only sporadic attempts have been made
to investigate the computational complexity of spatial logics with connectedness
constraints [3,21,23,15].

In this paper, we consider extensions of standard spatial logics designed for
qualitative spatial representation and reasoning (see, e.g., [18,4] for recent sur-
veys) with connectedness constraints such as ‘region r is connected’ (or c(r), in
symbols) and ‘region r contains at most k connected components’ (or c≤k(r)).
Our main aim is to provide a systematic study of the impact of these constraints
on the computational complexity of the satisfiability problem. We focus only on
quantifier-free spatial logics because first-order qualitative theories of topologi-
cal spaces are generally undecidable or non-recursively enumerable even without
connectedness constraints [10,7,5,12].

The weakest spatial formalisms for which the addition of connectedness con-
straints is of interest appear to be ‘9-intersections’ and RCC-8 [8,16], where one
can relate regions (regular closed sets) using binary predicates such as mereologi-
cal O(r, s) (‘regions r and s overlap’) or mereotopological EC(r, s) (‘regions r and
s are externally connected’). However, as far as satisfiability is concerned, these
logics cannot distinguish between arbitrary regions, connected regions, or regions
with k connected components [17], primarily because no Boolean operators on

I. Cervesato, H. Veith, and A. Voronkov (Eds.): LPAR 2008, LNCS 5330, pp. 574–589, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On the Computational Complexity of Spatial Logics 575

regions are available in their languages. That is why the weakest spatial formal-
ism, B, considered in this paper consists of only Boolean region terms denoting
Boolean combinations of regions. B itself is also rather weak (in fact, reasoning
in B coincides with Boolean reasoning about sets), but we show that its exten-
sions Bc and Bcc with constraints c(r) and c≤k(r), respectively, are full-fledged
topological logics with considerably more expressive power. Moreover—and this
was quite an unexpected result for the authors—the computational complexity
jumps from NP for B to ExpTime for Bc and NExpTime for Bcc.

Another spatial logic we deal with in this paper is BRCC-8 [23] which extends
RCC-8 with Boolean region terms. An equivalent formalism was also considered
in the framework of Boolean contact algebras by extending the Boolean algebra
of regular closed (or open) sets with Whitehead’s ‘extensive connection’ predi-
cate C(r, s); see [22,6]. Here we denote this logic by C (in order to unify the two
lines of research). As shown in [23], C is still NP-complete. We prove, however,
that its extensions Cc and Ccc with constraints of the form c(r) and c≤k(r) are
also ExpTime-complete and NExpTime-complete, respectively. Our maximal
spatial logic has its roots in the seminal paper by McKinsey and Tarski [13]. Fol-
lowing the modal logic tradition, we call it S4u (S4 with the universal modality).
In contrast to B and C, S4u is PSpace-complete. Its extensions S4uc and S4ucc,
however, turn out to be ExpTime-complete and NExpTime-complete again.

Thus, the addition of connectedness constraints to standard spatial logics with
Boolean region terms leads to considerably more expressive languages of higher
computational complexity. However, this increase in complexity is ‘stable:’ the
extensions Bc and S4uc of such different formalisms as B and S4u are of the same
complexity. Another interesting result is that by restricting these languages to
formulas with just one connectedness constraint of the form c(r), we obtain logics
that are still in PSpace, but two such constraints lead to ExpTime-hardness.
In fact, if the connectedness predicate is applied only to regions r1, . . . , rn that
are known to be pairwise disjoint, then it does not matter how many times this
predicate occurs in the formula: satisfiability is still in PSpace.

The first main ingredient of our proofs is representation theorems allowing
us to work with Aleksandrov topological spaces rather than arbitrary ones.
Such spaces can be represented by Kripke frames with quasi-ordered accessi-
bility relations. Topological connectedness in these frames corresponds to the
graph-theoretic connectedness in the (non-directed) graphs induced by the ac-
cessibility relations. Based on this observation, one can prove the upper bounds
in a more or less standard way using known techniques from modal and descrip-
tion logic. The lower bounds are much more involved and unexpected. They can
be regarded as the main contribution of this paper.

2 Topological Logics

All our spatial logics are interpreted over topological spaces. Given such a space
T and a set X ⊆ T , we denote by X◦ the interior of X in T and by X− its
closure. As usual in spatial KR&R, by a region of T we understand any regular

576 R. Kontchakov et al.

closed subset of T , i.e., any X ⊆ T with X = X◦−. Denote by RC(T) the set
of all regular closed subsets of T . It is known that RC(T) is a Boolean algebra
with top and bottom elements given by T and ∅, Boolean operations ·,− given
by X · Y = (X ∩ Y)◦− and −X = (X)◦

−
, and Boolean order ≤ by the relation

⊆. Let R = {ri | i < ω} be a set of region variables. A regular topological model
over T is a pair M = (T, ·M), where ·M is a map from R to RC(T). Our minimal
spatial logic, called B, is defined as follows. The set of B-terms is given by:

τ ::= ri | − τ | τ1 · τ2.
We abbreviate −((−τ1) · (−τ2)) by τ1 + τ2, r0 · (−r0) by 0, and −0 by 1. The
set of B-formulas is defined by:

ϕ ::= τ1 = τ2 | ¬ϕ | ϕ1 ∧ ϕ2.

Given a model M, the extension τM of a B-term τ in M is defined inductively
by the equations (−τ)M = (τM)◦

−
and (τ1 · τ2)M = (τM

1 ∩ τM
2)◦− , where

X = T \X . The truth-relation for B-formulas is defined by setting M |= τ1 = τ2
iff τM

1 = τM
2 , and interpreting the Boolean connectives ¬ and ∧ in the standard

way. We say that a formula ϕ is satisfiable (over a topological space T) if M |= ϕ,
for some model M = (T, ·M). Topologically, the logic B is quite poor: every
satisfiable B-formula ϕ is satisfied in a discrete topological space. In fact, it as
expressive as the modal logic S5, with τ = 1 playing the role of the S5-box.

The logic C extends B with the binary contact relation C due to White-
head [22]. Specifically, C-formulas are defined in the same way as the B-formulas,
except that we have the additional clause

ϕ ::= . . . | C(τ1, τ2) | . . . ,

where τ1 and τ2 are B-terms. The intended meaning of C(τ1, τ2) is as expected:
M |= C(τ1, τ2) iff τM

2 ∩ τM
2 �= ∅, that is τ1 is in contact with τ2 in M. (It is to

be noted that we may have M |=
(
τ1 · τ2 = 0

)
∧ C(τ1, τ2).) Unlike B, the logic

C can express a number of important topological relationships between regions,
e.g., all the RCC-8 relations.

Finally, we define the well-known modal logic S4u which can be regarded as a
spatial logic in view of the topological interpretation of S4 due to McKinsey and
Tarski [13]. As S4u is expressive enough to define the property of being regular
closed, we take a new set V = {vi | i < ω} of set variables and interpret them
by arbitrary sets of topological spaces. The S4u-terms are given by

τ ::= vi | τ | τ1 ∩ τ2 | τ◦ .

We abbreviate (τ◦) by τ− , (τ1 ∩ τ2) by τ1 ∪ τ2, v0 ∩ v0 by 0, and 0 by 1. The
S4u-formulas are defined in the same way as B-formulas.

In a topological model M = (T, ·M) for S4u, ·M is a map from V to 2T . The
extension τM of a term τ in M is defined inductively by the equations:

(τ)M = (τM), (τ1 ∩ τ2)M = τM
1 ∩ τM

2 , (τ◦)M = (τM)◦ .

And the truth-relation for S4u-formulas is defined in the same way as for B-
formulas. Note that both B and C can be regarded as proper fragments of S4u.

On the Computational Complexity of Spatial Logics 577

3 Topological Logics with Connectedness

Recall that a topological space T is connected just in case it is not the union
of two non-empty, disjoint, open sets; a subset X ⊆ T is connected in T just in
case either it is empty, or the topological space X (with the subspace topology)
is connected. If X ⊆ T , a maximal connected subset of X is called a (connected)
component of X . Every set X has at least one component, and a set is connected
just in case it has at most one component. The S4u-formula

(v1 �= 0) ∧ (v2 �= 0) ∧ (v1 ∪ v2 = 1) ∧ (v−1 ∩ v2 = 0) ∧ (v1 ∩ v−2 = 0)

is satisfiable in a topological space T iff T is not connected; it was used in [21]
to axiomatize the logic (in the standard language of S4u) of connected spaces.

We now extend the logics B, C and S4u with the connectedness predicate
c(·) and denote the resulting languages by Bc, Cc and S4uc, respectively. Their
formulas are defined as before, except that we now have the additional clause:

ϕ ::= . . . | c(τ) |

The meaning of c(τ) in a model M = (T, ·M) is as follows: M |= c(τ) iff τM

is connected in T . For example, most textbooks on general topology prove the
following facts: (i) the union of two intersecting, connected sets is connected; (ii)
any set sandwiched between a connected set and its closure is itself connected.
These facts are expressible as the following S4uc-validities:

c(v1) ∧ c(v2) ∧ (v1 ∩ v2 �= 0) → c(v1 ∪ v2),
c(v1) ∧ (v1 ⊆ v2) ∧ (v2 ⊆ v−1) → c(v2).

One can increase the expressive power of the connectedness predicate c(τ)
by generalizing it to the ‘counting’ predicates c≤k(τ), 1 ≤ k < ω, which state
that τ has at most k connected components. We denote the languages with such
predicates by Bcc, Ccc and S4ucc. Their formulas are defined in the same way
as before, except that we have the additional clause, where 1 ≤ k < ω:

ϕ ::= . . . | c≤k(τ) |

The meaning of c≤k(τ) is as follows: M |= c≤k(τ) iff τM has at most k compo-
nents in T . We write ¬c≤k(τ) as c≥k+1(τ) and abbreviate c≤1(τ) by c(τ). Thus,
we may regard S4uc as a sub-language of S4ucc. The numerical superscripts k
in c≤k are assumed to be coded in binary.

Note that for each S4ucc-formula ϕ one can construct an equi-satisfiable S4uc-
formula ϕ′ using the observation that c≤k(τ) can be replaced by (1) if it occurs
positively in ϕ and by (2) if the occurrence is negative, where(

τ =
⋃

1≤i≤k

vi

)
∧

∧
1≤i≤k

c(vi), (1)

(
τ =

⋃
1≤i≤k+1

vi

)
∧

∧
1≤i≤k+1

(
vi �= 0

)
∧

∧
1≤i<j≤k+1

(
τ ∩ v−i ∩ v−j = 0

)
(2)

with fresh v1, . . . , vk. Note, however, that these S4uc-formulas are exponentially
larger than the literals they replace.

578 R. Kontchakov et al.

4 Computational Complexity

There are two known complexity results for the spatial logics with connectedness
constraints introduced above. According to [15], satisfiability of S4ucc-formulas
is NExpTime-complete, which gives the NExpTime upper bound for all of these
logics. On the other hand, it follows from [23] that Cc is PSpace-hard (more
precisely, satisfiability of C-formulas in connected spaces is PSpace-complete).

We begin by showing that, as far as satisfiability is concerned, we can restrict
attention to topological spaces of a special kind. Recall that a topological space
is called an Aleksandrov space if arbitrary (not only finite) intersections of open
sets are open. Aleksandrov spaces can be characterized in terms of Kripke frames
F = (W,R), where W �= ∅ and R is a transitive and reflexive relation (i.e., a
quasi-order) on W . Every such F induces the interior operator ·◦F on W :

X◦
F = {x ∈ X | ∀y ∈W (xRy → y ∈ X)}, for every X ⊆W.

It is well-known [2] that the resulting topological space is Aleksandrov and,
conversely, every Aleksandrov space is induced by a quasi-order. Topological
models over Aleksandrov spaces will be called Aleksandrov models. Note that
the Aleksandrov space induced by F = (W,R) is connected iff F is connected as
a non-directed graph, that is, between any two points x, y ∈ W there is a path
along the relation R ∪ R−1, where R−1 is the inverse of R. This observation is
used implicitly throughout this paper. It is shown in [15] that S4ucc is complete
w.r.t. finite Aleksandrov models; this is a consequence of the following lemma.

Lemma 1 ([13,15]). (i) For every S4ucc-formula ϕ and every M = (T, ·M)
there exist an Aleksandrov model A = (TA, ·A) with |TA| ≤ 2|ϕ| and a continuous
function f : T → TA such that, for every sub-term τ of ϕ, τA = f(τM).

(ii) Every S4ucc-formula ϕ can be transformed (in LogSpace) into an S4ucc-
formula ϕ′ such that it has no negative occurrences of c≤k(τ), |ϕ′| is polynomial
in |ϕ|, and both ϕ and ϕ′ are satisfiable over the same topological spaces.

According to the next lemma, satisfiable Ccc-formulas can be satisfied in Alek-
sandrov models based on partial orders (W,R) of depth 1, i.e., R is the reflexive
closure of a subset of W1 ×W0, where Wi is the set of points of depth i; see
Fig. 1. Such frames and models are called quasi-saws and quasi-saw models.

Lemma 2. For every finite Aleksandrov model A = (TA, ·A), with TA induced
by (W,RA), there is a quasi-saw model B = (TB, ·B) such that TB is induced by
(W,RB) with RB ⊆ RA and, for every B-term τ , (i) τB = τA, and (ii) τ has
the same number of components in A and B.

Proof. Let W0 be the set of points from final clusters in (W,RA), i.e., W0 =
{v ∈ W | vRAu implies uRAv, for all u ∈ W}. In every final cluster C ⊆ W0
with |C| ≥ 2 we select a point and denote by U the set of all selected points.
Then we set V0 = W0 \ U and V1 = W \ V0, and define RB to be the reflexive
closure of RA ∩ (V1 ×V0). Clearly, (W,RB) is a quasi-saw, with V0 and V1 being
the sets of points of depth 0 and 1, respectively. For each variable ri, let rB

i = rA
i .

Claims (i) and (ii) are proved by induction on the construction of τ . ❑

On the Computational Complexity of Spatial Logics 579

� � � � � � �

� � � � � �
�

���
�

���
�

���
�

���
�

���
�

���
�

���
�

���

�������
�

depth 0

depth 1

Fig. 1. Quasi-saw

4.1 Upper Complexity Bounds

We first prove the ExpTime-upper bound for S4uc and a PSpace-upper bound
for certain fragments of S4uc. To start with, we transform a given S4uc-formula ϕ
into negation normal form (NNF+) in the following way. First, we push negation
¬ inward to atoms τ1 = τ2 and c(τ), then use (2), for k = 1, to get rid of negative
occurrences of c(τ), and finally replace each c(τ) with (c(τ)∧ (τ �= 0))∨ (τ = 0),
and each (τ1 = τ2) with (τ1 ∩ τ2 = 0) ∧ (τ1 ∩ τ2 = 0).

Every S4uc-formula ϕ in NNF+ is clearly equivalent to a disjunction
∨
Ψϕ,

where each ψ ∈ Ψϕ is a conjunction of the form

ψ =
l∧

i=1

(
ρi = 0

)
∧

m∧
i=1

(
τi �= 0

)
∧

k∧
i=1

(
c(σi) ∧ (σi �= 0)

)
(3)

such that each atom of ϕ occurs either positively or negatively in ψ. For any
such conjunction, it is decidable in polynomial time (in |ϕ|) whether it is in Ψϕ.

Theorem 1. Satisfiability of S4uc-formulas is in ExpTime.

Proof. The proof is by reduction to the satisfiability problem for propositional
dynamic logic (PDL) with converse and nominals, which is known to be Exp-

Time-complete [9, Section 7.3]. Let ψ be as in (3). Take two atomic programs α
and β and, for each σi, a nominal �i. For a term τ , denote by τ† the PDL-formula
obtained by replacing in τ , recursively, each sub-term ϑ◦ with [α∗]ϑ. Thus α∗

simulates the S4-accessibility relation, and the universal box will be simulated
by [γ], where γ = (β ∪ β− ∪ α ∪ α−)∗. Consider now the formula ψ′

l∧
i=1

[γ]¬ρ†i ∧
m∧

i=1

〈γ〉τ†i ∧
k∧

i=1

(
〈γ〉(�i ∧ σ†i) ∧ [γ](σ†i → 〈(α ∪ α−;σ†i ?)

∗〉�i)
)
.

It is not hard to see that ψ′ is satisfiable iff ψ is satisfiable: the first conjunct of
ψ′ states that all ρi are empty, the second that all τi are non-empty, the third
states that each σi holds at a point where �i holds and that from each σi-point
there is a path (along α ∪ α−) to �i which lies entirely within σi. ❑

Denote by S4uc
1 the set of S4uc-formulas in NNF+ with at most one occurrence

of an atom of the form c(τ).

Theorem 2. Satisfiability of S4uc
1-formulas is in PSpace.

580 R. Kontchakov et al.

Proof. We sketch a nondeterministic PSpace algorithm. Let ϕ be in NNF+.
Guess a ψ of the form (3) and check whether it is in Ψϕ. Now check whether ψ
is satisfiable: if ψ does not contain a conjunct of the form c(σ) ∧ (σ �= 0), then
a standard satisfiability checking algorithm for S4u is applied. If it contains
c(σ) ∧ (σ �= 0), then the algorithm proceeds as follows. Let τ0 =

⋂l
i=1 ρi. Set

B = {τ0◦}∪ {τ, τ | τ ∈ term(ψ)}, where term(ϕ) is the set of all sub-terms of ψ.
A subset t of B is called a type for ψ if τ0◦ ∈ t and τ ∈ t iff τ /∈ t, for all τ ∈ B.

Now, guess a type tσ containing σ and start m+1 S4-tableau procedures with
inputs τ1 ∩ τ0◦ , τ2∩ τ0◦ , . . . , τm ∩ τ0◦ , and

⋂
tσ ∩ τ0◦ in the usual way expanding

branch-by-branch, recovering the space once branches are checked. We may as
well assume that the nodes of these tableaux are types. Suppose t is a type
occurring in one of them. If σ ∈ t, it suffices to check that t can be connected by
a path of ≤ 2|ψ| points in σ to tσ. To complete the proof we present a subroutine
which, given types t0, t1 / σ and d ≥ 0, checks, in PSpace, whether t0 and t1
can be connected by a path of ≤ 2d points in σ to tσ.
Subroutine: If d = 0, we check that t0 and t1 can be made accessible one di-
rection or the other. If d > 0, we guess a type t with σ ∈ t that represents
the half-way point between t0 and t1. First we check that t is an allowable type
by constructing an S4-tableau with root t. The tableau can be discarded after
completion: although it may contain types t′ with σ ∈ t′, these type can never
threaten the connectedness of σ, since they are all accessible from the root t of
the tableau (the S4 accessibility relation is transitive!), and so are connected to
both t0 and t1 anyway. Then the subroutine calls itself recursively with param-
eters (t0, t, d− 1) and (t, t1, d− 1). Completing this recursive procedure requires
at most d items to be placed on the stack. ❑

Observe that the argument above shows that satisfiability of formulas ϕ in NNF+

with conjuncts
∧k

i=1 c(τi) such that (τ−i ∩ τ−j = 0), i �= j, are conjuncts of ϕ, is
decidable in PSpace as well.

4.2 Lower Complexity Bounds

We first prove the matching lower bound for Cc. Observe that when constructing
a model for an S4uc

1-formula with one positive occurrence of c(τ), we can check
‘connectivity’ of two τ -points by an (exponentially long) path using a PSpace-
algorithm because it is not necessary to keep in memory all the points on the
path. However, if two statements c(τ1) and c(τ2) have to be satisfied, then, while
connecting two τ1-points using a path, one has to check whether the τ2-points
on that path can be connected by a path, which, in turn, can contain another
τ1-point, and so on. The crucial idea in the proof below is simulating infinite
binary (non-transitive) trees using quasi-saws. Roughly, the construction is as
follows. We start by representing the root v0 of the tree as a point also denoted
by v0 (see Fig. 2), which is forced to be connected to an auxiliary point z by
means of some c(τ0). On the connecting path from v0 to z we represent the
two successors v1 and v2 of the root, which are forced to be connected in their
turn to z by some other c(τ1). On each of the two connecting paths, we again

On the Computational Complexity of Spatial Logics 581

��
�	

�

� ��
�

�
��

� �

v0

v1 v2

v11 v12

v0 v1

v2

� �

�� �

�

���	 ��	
�

�

�

�

�

�

�

�

�

�

�

�

�

���

���

���

���

���

���

���

��
����������������

�

v11 v12

�

�

�

�

�

���

���

���

���

� �� �� �

� � � �� � �

�

�

���	 ��	 ��	 ��	 �
��������

�

�

�

�

�

���

���

���

���

� �� �� �

� � � �� � �

�

�

���	 ��	 ��	 ��	 ������

�

��

�

�

�

�

�

�

��	

��	

�

�

�

� �

�

�

�

�

�

�

���
���

���
���

���

���

���

�

�

��

�

�

�

�

�

�

��	

��	

�

�

�

� �

�

�

�

�

�

�

���
���

���
���

���

���

���

���

�

�

z

� fA
0

� fA
1

�� fA
0 ∩ fA

1

�aA ��aA ∩ fA
0

��aA ∩ fA
1

Fig. 2. First 4 steps of encoding the full binary tree using 7-saws

take two points representing the successors of v1 and v2, respectively. We treat
these four points in the same way as v0, reusing c(τ0), and proceed ad infinitum
alternating between τ0 and τ1 when forcing the paths which generate the required
successors. Of course, we also have to pass certain information from a node to
its two successors (say, if �ψ holds in the node, then ψ holds in one of its
successors). Such information can be propagated along connected regions. Note
now that all points are connected to z. To distinguish between the information
we have to pass from distinct nodes of even (respectively, odd) level to their
successors, we have to use two connectedness formulas of the form c(fi + a),
i = 0, 1, in such a way that the fi points form initial segments of the paths to
z and a contains z. The fi-segments are then used locally to pass information
from a node to its successors without conflict. We now present the reduction in
more detail.

Theorem 3. Satisfiability of Cc-formulas is ExpTime-hard.

Proof. The proof is by reduction of the following problem. Denote by Df
2 the

bimodal logic (with �1 and �2) determined by Kripke models based on the full
infinite binary tree G = (V,R1, R2) with functional accessibility relations R1

and R2. Consider the global consequence relation |=f
2 defined as follows: χ |=f

2
ψ iff K |= χ implies K |= ψ, for every Kripke model K based on G. Using
standard modal logic technique one can show ExpTime-hardness of this global

582 R. Kontchakov et al.

consequence relation. We construct a Cc-formula Φ(χ, ψ), for any Df
2 -formulas χ,

ψ, such that (i) |Φ(χ, ψ)| is polynomial in |χ|+ |ψ| and (ii) Φ(χ, ψ) is satisfiable
iff χ �|=f

2 ψ. While constructing Φ(χ, ψ), we will assume that A is a quasi-saw
model induced by (W,R) and W0 is the set of points of depth 0 in (W,R).

Let sub(χ, ψ) be the closure under single negation of the set of subformulas of
χ, ψ. For each ϕ ∈ sub(χ, ψ) we take a fresh variable qϕ, and for �iϕ ∈ sub(χ, ψ)
and j = 0, 1, we fix fresh variables mi,j

ϕ and mi,j
¬ϕ. We also need fresh variables

si
j , for j = 0, 1 and 0 ≤ i ≤ 6. Let d = s00+s01. Intuitively, d simulates the domain

of the binary tree, where s00 and s01 stand for nodes with even and, respectively,
odd distance from the root. Suppose that the following Cc-formulas hold in A(

s60 = s61
)

∧
(
s60 �= 0

)
∧ c(f0 + s60) ∧ c(f1 + s61), (4)∧

0≤k<k′≤6

(sk
j · sk′

j = 0) ∧
∧

0≤k<k′≤6
|k−k′|>1

¬C(sk
j , s

k′

j), (5)

where fj = s0j + s1j + s2j + s3j + s4j + s5j , for j = 0, 1. (Note that s60 and s61 play
the role of a in the explanation above; see Fig. 2.) It follows that, for j = 0, 1, if
there is a point x0 ∈ (s0j)

A∩W0 then there is a (not necessarily unique) sequence
of points x1, x2, x3, x4, x5 from the same connected component of fA

j such that
xi ∈ (si

j)
A ∩W0, 1 ≤ i ≤ 5. Points x2 and x4 will be used to construct similar

sequences for the two successors of the node represented by x0: if (4)–(5) and

s2i
0 ≤ s01 and s2i

1 ≤ s00, for i = 1, 2, (6)

hold in A and x0 ∈ (s0j)
A ∩W0, then one can recover from A the infinite binary

tree with the root at x0. The formula

(q¬ψ · s00 �= 0) ∧ (d ≤ qχ) (7)

ensures then that there is x0 ∈ (s0j)
A∩W0, the root of the tree, in which ψ holds,

and χ holds everywhere in the tree, while the formulas

d · q¬ϕ = d · (−qϕ), d · qϕ1∧ϕ2 = d · (qϕ1 · qϕ2), (8)

for all ¬ϕ,ϕ1 ∧ ϕ2 ∈ sub(χ, ψ), capture the meaning of the Boolean connectives
from sub(χ, ψ) relativized to d. The formulas

¬C(fj ·mi,j
ϕ , fj ·mi,j

¬ϕ), (9)

(s0j · q�iϕ ≤ mi,j
ϕ) ∧ (mi,j

ϕ · s2i
j ≤ qϕ), (10)

(s0j · q¬�iϕ ≤ mi,j
¬ϕ) ∧ (mi,j

¬ϕ · s2i
j ≤ q¬ϕ,), (11)

for all �iϕ ∈ sub(χ, ψ) and j = 0, 1, are used to propagate information regarding
�iϕ along the connected components of fj using the markers mi,j

ϕ and mi,j
¬ϕ.

We define Φ(χ, ψ) to be the conjunction of all the above formulas. Clearly,
|Φ(χ, ψ)| is polynomial in |χ| + |ψ| and contains only two occurrences of the
connectedness predicate in (4).

On the Computational Complexity of Spatial Logics 583

� � � � � � �

� � � � � ��
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

yv
0 yv

1

yv
2

(= y
v1
0) yv

3

yv
4

(= y
v2
0) yv

5 uv = u

zv
0 zv

1 zv
2 zv

3 zv
4 zv

5

Fig. 3. A 7-saw for v

Conversely, suppose that K is a model for Df
2 based on the full infinite binary

tree G = (V,R1, R2) with root v0 and such that K |= χ and K, v0 �|= ψ. We
construct a quasi-saw model A satisfying Φ(χ, ψ) by induction (as in Fig. 2)
using infinitely many copies of the 7-saw shown in Fig. 3. For each node v of
G, we take a fresh 7-saw Sv = (Sv, Rv), where Sv = {yv

i , z
v
i , u

v | 0 ≤ i ≤ 5},
zv

i R
vyv

i , zv
i R

vyv
i+1, for 0 ≤ i ≤ 5, and zv

5R
vuv, and identify the following points:

yv
2 = yv1

0 , yv
4 = yv2

0 , uv1 = uv2 = uv, if v1 and v2 are the R1- and R2-
successors of v. The assignment is left to the reader.

Note that yv
1 and yv

3 are required to make the set of points in fA
j representing

a node v of G disconnected from the subset of fA
j representing another node v′

of G and thus satisfy (9); yv
5 are required to satisfy the last conjunct of (5). ❑

We now consider the lower complexity bound for C with constraints on the
number of connected components.

Theorem 4. Satisfiability of Ccc-formulas is NExpTime-hard.

Proof. The proof is by reduction of the NExpTime-complete 2d × 2d tiling
problem: Given d < ω, a finite set T of tile types—i.e., 4-tuples of colours T =
(left(T), right(T), up(T), down(T))—and a T0 ∈ T , decide whether T can tile
the 2d × 2d grid in such a way that T0 is placed onto (0, 0). In other words,
the problem is to decide whether there is a function f from {(i, j) | i, j < 2d}
to T such that up(f(i, j)) = down(f(i, j + 1)), for all i < 2d, j < 2d − 1,
right(f(i, j)) = left(f(i + 1, j)), for all i < 2d − 1, j < 2d, f(0, 0) = T0. We
construct a Ccc-formula ϕT ,d such that (i) |ϕT ,d| is polynomial in |T | and d and
(ii) ϕT ,d is satisfiable iff T tiles the 2d×2d grid, with T0 being placed onto (0, 0).
While constructing ϕT ,d, we will assume that A is a quasi-saw model induced
by (W,R) and W0 is the set of points of depth 0 in (W,R).

We partition all points of W0 with the help of a pair of variable triples
B0

X , B
1
X , B

2
X and B0

Y , B
1
Y , B

2
Y . Suppose that the formulas, for 0 ≤ � < 3,

B0
X +B1

X +B2
X = 1, B�

X · B�⊕31
X = 0 (12)

and their Y -counterparts hold in A, where ⊕3 denotes addition modulo 3. Then
every point in W0 is in exactly one of the (B�

X)A and exactly one of the (B�
Y)A.

To encode coordinates of the tiles in binary, we take a pair of variables Xj and
Yj , for each d ≥ j ≥ 1. For 0 ≤ n < 2d, let nX be the B-term X ′

d ·X ′
d−1 · · · · ·X ′

1,
whereX ′

j = Xj if the jth bit in the binary representation of n is 1, andX ′
j = −Xj

otherwise. For a point u ∈ W0, we denote by X(u) the binary d-bit number n,

584 R. Kontchakov et al.

called the X-value of u, such that u ∈ nA
X ; the jth bit of X(u) is denoted by

Xj(u). The term nY , the Y -value Y (u) of u and its jth bit Yj(u) are defined
analogously. For a point u of depth 0 we write coor(u) for (X(u), Y (u)). We will
use the variables Xi and Yj to generate the 2d × 2d grid, which consists of pairs
(iX , jY), for 0 ≤ i, j < 2d. Consider the following formulas, for 0 ≤ � < 3,

¬C(Xk ·B�
X , (−Xk) · B�

X), d ≥ k ≥ 1, (13)

¬C(Xj · (−Xk) ·B�
X , (−Xj) · B�⊕31

X), d ≥ j > k ≥ 1, (14)

¬C((−Xj) · (−Xk) · B�
X , Xj · B�⊕31

X), d ≥ j > k ≥ 1, (15)

¬C((−Xk) ·Xk−1 · · · · ·X1 ·B�
X , (−Xk) ·B�⊕31

X), d ≥ k > 1, (16)

¬C((−Xk) ·Xk−1 · · · · ·X1 ·B�
X , Xi ·B�⊕31

X), d ≥ k > i ≥ 1, (17)
¬C(Xd · · · · ·X1, (−Xd) · · · · · (−X1)), (18)

the Y -counterparts of (13)–(18), and the following, for d ≥ j, k ≥ 1,

¬C(Xj · Yk, (−Xj) · (−Yk)), ¬C((−Xj) · Yk, Xj · (−Yk)). (19)

Given a point v ∈ W0, denote by 4-nb(v) the set which consists of coor(v) and
its (at most four) neighbours in the 2d × 2d grid. Suppose that A satisfies all
the formulas above. If u, v ∈ W0 and zRu and zRv, for some z ∈ W , then
coor(u) ∈ 4-nb(v). Moreover, (i) X(v) = X(u) = n iff u and v are in the same
component of nA

X , and (ii) for eachm = −1, 0, 1,X(v) = X(u)+m iff u ∈ (B�
X)A

and v ∈ (B�⊕3m
X)A, for � = 0, 1, 2 (in particular, X(u) = X(v) iff u and v are in

the same connected component of (B�
X)A). Likewise for Y in place of X .

Suppose now that the following formulas are true in A as well:

0X ·0Y �= 0, (2d−1)X ·(2d−1)Y �= 0, c(0X +(2d−1)Y), c((2d−1)X +0Y). (20)

These constraints guarantee that in the connected set (0X + (2d − 1)Y)A there
are points u(0,i) and u(i,2d−1), 0 ≤ i < 2d, such that coor(u(0,i)) = (0, i) and
coor(u(i,2d−1)) = (i, 2d − 1). Similarly for the connected set ((2d − 1)X + 0Y)A.
This gives us the border of the 2d × 2d grid we are after. And the constraints

c((−X1) + 0Y), c(X1 + 0Y), c(0X + (−Y1)), c(0X + Y1) (21)

ensure that we can find inner points of the grid. It is to be noted, however, that
in general u �= v even if coor(u) = coor(v). In other words, the constructed points
do not necessarily form a proper 2d×2d grid. Let b =

(
X1 ·(−Y1)

)
+
(
(−X1)·Y1

)
and w =

(
(−X1) · (−Y1)

)
+
(
X1 · Y1

)
. Points in bA and wA can be thought of

as black and white squares of a chessboard. Observe that if u, v ∈ bA ∩ W0
and coor(u) �= coor(v) then u and v cannot belong to the same component of
bA. Thus, there are at least 2d−1 components in both bA and wA. Our next
constraints

c≤2d−1
(b), c≤2d−1

(w) (22)

On the Computational Complexity of Spatial Logics 585

say that bA and wA have precisely 2d−1 components. In particular, if u, v ∈W0
belong to the same component of bA then coor(u) = coor(v). This gives a proper
2d × 2d grid on which we encode the tiling conditions. The formulas∑

T∈T T = 1 and T · T ′ = 0, for T �= T ′, (23)

¬C(B�
X · B�′

Y · T, B�
X · B�′

Y · T ′), for �, �′ = 0, 1, 2 and T �= T ′, (24)

say that every point in W0 is covered by precisely one tile and that all points
in the same component of (B�

X · B�′

Y)A are covered by the same tile. That the
colours of adjacent tiles match is ensured by

¬C(B�
X · T, B�⊕31

X · T ′), for T, T ′ ∈ T with right(T) �= left(T ′), (25)

¬C(B�
Y · T, B�⊕31

Y · T ′), for T, T ′ ∈ T with top(T) �= bot(T ′). (26)

Finally, we have to say that (0, 0) is covered with T0:

0X · 0Y ≤ T0. (27)

One can check that the conjunction ϕT ,d of these Ccc-formulas is as required. ❑

The ExpTime and NExpTime lower bounds for Bc and Bcc will be proved by
reduction of satisfiability for Cc and Ccc, respectively; that is, by eliminating
occurrences of the predicate C in Cc- and Ccc-formulas. Clearly, two connected
closed sets are in contact iff their union is connected; in other words, the formula
c(τ1)∧ c(τ2) →

(
C(τ1, τ2) ↔ c(τ1 + τ2)

)
is a Ccc-validity. However, this ‘reduc-

tion’ of C to c cannot be directly applied to our formulas since the arguments
of the contact predicates in them are not necessarily connected. The next three
lemmas show how to overcome this problem.

We write ϕ[ψ]+ (or ϕ[ψ]−) to indicate that ϕ contains a positive (respectively,
negative) occurrence of ψ; then ϕ[χ]+ (or ϕ[χ]−) denotes the result of replacing
this occurrence of ψ in ϕ by χ.

Lemma 3. Let ϕ[C(τ1, τ2)]+ be a Ccc-formula, and t, t1, t2 fresh variables. Then
ϕ is equisatisfiable with the formula

ϕ∗ = ϕ[t = 0]+ ∧
(
(t = 0) → c(t1 + t2) ∧

∧
i=1,2

(ti ≤ τi) ∧ c(ti)
)
.

Proof. It is easy to see that |= ϕ∗ → ϕ. On the other hand, every model of ϕ
can be turned into a model of ϕ∗ by changing the extensions of t, t1, t2. ❑

Suppose X is a topological space, and S a regular closed subset of X . Then
S is itself a topological space (with the subspace topology), which has its own
regular closed algebra: RC(S) = {S · R | R ∈ RC(X)}. Denoting the Boolean
operations in RC(S) by ·S and −S, etc., we have, for any R1, R2 ∈ RC(S): (i)
R1 ·S R2 = R1 · R2; (ii) −S(R1) = S · (−R1), (iii) 1S = S and 0S = 0. For a
formula ϕ and a variable s, define ϕ|s to be the result of replacing every maximal
term τ occurring in ϕ by the term s · τ . For any model M = (T, ·M), define M|s
to be the model over the topological space sM (with the subspace topology)
obtained by setting rM|s = (r · s)M for all variables r.

586 R. Kontchakov et al.

Lemma 4. For any Ccc-formula, M |= ϕ|s iff M|s |= ϕ.

Proof. One can show by induction that (s · τ)M = τM|s , for any B-term τ . ❑

Lemma 5. Let ϕ[C(τ1, τ2)]− be a Ccc-formula, and s, t, t1, t2 fresh variables.
Then ϕ is equi-satisfiable with the formula

ϕ∗ =
(
ϕ[t �= 0]−

)
|s ∧

(
(t · s = 0) → ¬c(t1 + t2) ∧

∧
i=1,2

c(ti) ∧ (τi · s ≤ ti)
)
.

Proof. Evidently,
∧

i=1,2 (c(ti) ∧ (τi · s ≤ ti)) ∧ ¬c(t1 + t2) → ¬C(τ1 · s, τ2 · s)
is a Ccc-validity. So any model A of ϕ∗ is a model of (ϕ[C(τ1, τ2)]−)|s, whence,
by Lemma 4, A|s |= ϕ[C(τ1, τ2)]−. Conversely, suppose A |= ϕ[C(τ1, τ2)]−, for a
quasi-saw model A induced by (W,R). Let Wi, (i = 0, 1) be the set of points of
depth i in (W,R). Without loss of generality, we may assume that every point
in W0 has an R-predecessor in W1. If A |= C(τ1, τ2), let A∗ be exactly like A
except that sA∗

and tA
∗

are both the whole space. Then A∗ |= ϕ∗. On the other
hand, if A �|= C(τ1, τ2), we add, for i = 1, 2, an extra point ui to W to connect
up the points in τA

i . Formally, let W ∗ = W ∪ {u1, u2}, where u1, u2 �∈ W , and
let R∗ be the reflexive closure of the union of R and {(z, ui) | z ∈ τA

i ∩W1}, for
i = 1, 2. Clearly, W is a regular closed subset of the topological space (W ∗, R∗).
Now define the interpretation A∗ over (W ∗, R∗) by setting sA∗

= W , tA
∗

= ∅,
tA

∗

i = τA
i ∪{ui} (i = 1, 2), and rA∗

= rA for all other variables r. Thus, A = A∗
|s,

whence, by Lemma 4, A∗ |= (ϕ[C(τ1, τ2)]−)|s, and so A∗ |= (ϕ[t �= 0]−)|s. By
construction, A∗ |=

∧
i=1,2 (c(ti) ∧ (τi · s ≤ ti)) ∧ ¬c(t1 + t2). Thus, A∗ |= ϕ∗. ❑

It follows from these lemmas that the satisfiability problem for Cc (and Ccc) is
reducible to the satisfiability problem for Bc (Bcc, respectively). For, by repeated
application of Lemmas 3 and 5, successive occurrences of C in a Cc- or Ccc-
formula may be equisatisfiably eliminated, using only logarithmic space.

As a consequence, by Theorems 3 and 4, we obtain:

Theorem 5. Satisfiability of Bc- and Bcc-formulas is, respectively, ExpTime-
and NExpTime-complete.

We remark in passing that the full reduction is not required for Theorem 5.
For the proofs of Theorems 3 and 4 in fact rely on formulas in which conjuncts
C(τ1, τ2) occur only in negative contexts (and thus Lemma 5 is enough).

5 Discussion and Further Work

In this paper, we have reported on the computational complexity of the satisfia-
bility problems for the spatial logics B, C and S4u extended with connectedness
constraints. All these logics feature variables which range over subsets of topolog-
ical spaces: regular subsets in the case of logics based on B and C, and arbitrary
subsets in the case of S4u. However, topological spaces form an extremely general
category: and it is natural to ask what happens when we restrict consideration

On the Computational Complexity of Spatial Logics 587

to particular classes of topological spaces. Most saliently of all: what happens
when these logics are interpreted over the specific topological spaces R2 or R3?

Without the ability to express connectedness, topological spatial logics are
almost completely insensitive to the underlying topology. Thus, a B-formula
is satisfiable over Rn, for any fixed n, iff it is satisfiable (over some space);
a C-formula is satisfiable over Rn, for any fixed n, iff it is satisfiable over a
connected space [23]; and an S4u-formula is satisfiable over Rn, for any fixed n,
iff it is satisfiable over a connected, dense-in-itself, separable metric space [21].
Adding connectedness constraints to these logics changes the situation radically,
however. As a simple illustration, consider the Bc formula∧

1≤i≤3

c(ri) ∧
∧

1≤i<j≤3

(
ri · rj �= 0

)
∧

(
r1 · r2 · r3 = 0

)
,

which states that there are three pairwise overlapping, connected regions whose
common part has an empty interior. Since connected subsets of R are intervals,
this formula is not satisfiable over R; yet it is satisfiable over Rn, for any n > 1.
Or again, it can be shown (see [14], p. 137) that the S4uc-formula

(v1 ∩ v2 = 0) ∧
∧

i=1,2

((v−i ⊆ vi) ∧ c(vi)) ∧ ¬c(v1 ∩ v2)

is not satisfiable over Rn (for any n); yet it is easily seen to be satisfiable over
other manifolds (even of dimension 1!).

What can we say about the complexity of determining satisfiability over these
spaces? In the one-dimensional case, matching complexity bounds are available.

Theorem 6. Satisfiability of S4ucc-formulas in topological models based on R
is PSpace-complete.

Proof. The proof is by reduction to the propositional temporal logic of the real
line, for which satisfiability is known to be PSpace-complete [19]. Since, for
C-formulas, satisfiability over connected spaces implies satisfiability over R, it
follows from [23] that this bound is tight. ❑

For n > 1, the work reported here yields lower-bound information for satisfia-
bility over Rn:

Theorem 7. Satisfiability of Cc- and Ccc-formulas in topological models based
on Rn, for each n > 1, is ExpTime- and NExpTime-hard, respectively.

Proof. Based on the fact that the models constructed in the proofs of Theorem 3
and 4 can be turned into models over R2, and so over any Rn, for n ≥ 2. ❑

It follows that the ExpTime and NExpTime lower bounds hold for satisfiability
of S4uc- and S4ucc-formulas over Rn, respectively.

We mention that, when variables are restricted to range over closed disc-
homeomorphs in R2, then the problem of determining the satisfiability of RCC-8-
constraints is known to be in NP [20]—a very surprising result, since the smallest

588 R. Kontchakov et al.

satisfying drawings may involve exponentially many intersection points [11]. At
present, no upper complexity bounds for the logics Bc, Bcc, Cc, Ccc, S4uc, in-
terpreted over Euclidean spaces of fixed dimension greater than 1 are known.

Acknowledgements. The work on this paper was partially supported by the
U.K. EPSRC research grants EP/E034942/1 and EP/E035248/1. We are grate-
ful to Dimiter Vakarelov for comments and discussions.

References

1. Borgo, S., Guarino, N., Masolo, C.: A pointless theory of space based on strong
connection and congruence. In: Aiello, L., Doyle, J., Shapiro, S. (eds.) KR, pp.
220–229. Morgan Kaufmann, San Francisco (1996)

2. Bourbaki, N.: General Topology, Part 1. Addison-Wesley, Hermann (1966)
3. Cantone, D., Cutello, V.: Decision algorithms for elementary topology I. Topolog-

ical syllogistics with set and map constructs, connectedness and cardinailty com-
position. Comm. on Pure and Appl. Mathematics XLVII, 1197–1217 (1994)

4. Cohn, A., Renz, J.: Qualitative spatial representation and reasoning. In: van Her-
melen, F., Lifschitz, V., Porter, B. (eds.) Handbook of Knowledge Representation,
pp. 551–596. Elsevier, Amsterdam (2008)

5. Davis, E.: The expressivity of quantifying over regions. Journal of Logic and Com-
putation 16, 891–916 (2006)

6. Dimov, G., Vakarelov, D.: Contact algebras and region-based theory of space: A
proximity approach, I. Fundamenta Informaticae 74, 209–249 (2006)

7. Dornheim, C.: Undecidability of plane polygonal mereotopology. In: Cohn, A.,
Schubert, L., Shapiro, S. (eds.) KR, pp. 342–353. Morgan Kaufmann, San Francisco
(1998)

8. Egenhofer, M., Franzosa, R.: Point-set topological spatial relations. International
Journal of Geographical Information Systems 5, 161–174 (1991)

9. De Giacomo, G.: Decidability of Class-Based Knowledge Representation For-
malisms. PhD thesis, Università degli Studi di Roma ‘La Sapienza’ (1995)

10. Grzegorczyk, A.: Undecidability of some topological theories. Fundamenta Math-
ematicae 38, 137–152 (1951)

11. Kratochv́ıl, J., Matoušek, J.: String graphs requiring exponential representations.
J. of Combinatorial Theory, Series B 53, 1–4 (1991)

12. Lutz, C., Wolter, F.: Modal logics of topological relations. Logical Methods in
Computer Science, 2 (2006)

13. McKinsey, J.C.C., Tarski, A.: The algebra of topology. Annals of Mathematics 45,
141–191 (1944)

14. Newman, M.: Elements of the Topology of Plane Sets of Points. Cambridge (1964)
15. Pratt-Hartmann, I.: A topological constraint language with component counting.

Journal of Applied Non-Classical Logics 12, 441–467 (2002)
16. Randell, D., Cui, Z., Cohn, A.: A spatial logic based on regions and connection. In:

Nebel, B., Rich, C., Swartout, W. (eds.) Proceedings of KR, pp. 165–176. Morgan
Kaufmann, San Francisco (1992)

17. Renz, J.: A canonical model of the region connection calculus. In: Cohn, A., Schu-
bert, L., Shapiro, S. (eds.) KR, pp. 330–341. Morgan Kaufmann, San Francisco
(1998)

On the Computational Complexity of Spatial Logics 589

18. Renz, J., Nebel, B.: Qualitative spatial reasoning using constraint calculi. In: Aiello,
M., Pratt-Hartmann, I., van Benthem, J. (eds.) Handbook of Spatial Logics, pp.
161–216. Springer, Heidelberg (2007)

19. Reynolds, M.: The complexity of the temporal logic over the reals (Manuscript,
2008), http://www.csse.uwa.edu.au/∼mark/research/Online/CORT.htm

20. Schaefer, M., Sedgwick, E., Štefankovič, D.: Recognizing string graphs in NP. Jour-
nal of Computer and System Sciences 67, 365–380 (2003)

21. Shehtman, V.: Everywhere and Here. Journal of Applied Non-Classical Logics 9,
369–380 (1999)

22. Whitehead, A.N.: Process and Reality. MacMillan Company, New York (1929)
23. Wolter, F., Zakharyaschev, M.: Spatial reasoning in RCC-8 with Boolean region

terms. In: Horn, W. (ed.) Proceedings of ECAI, pp. 244–248. IOS Press, Amster-
dam (2000)

http://www.csse.uwa.edu.au/~mark/research/Online/CORT.htm

Decidable and Undecidable Fragments of
Halpern and Shoham’s Interval Temporal Logic:

Towards a Complete Classification

Davide Bresolin1, Dario Della Monica2, Valentin Goranko3,
Angelo Montanari2, and Guido Sciavicco4,�

1 University of Verona, Verona (Italy)
davide.bresolin@univr.it

2 University of Udine, Udine (Italy)
{dario.dellamonica,angelo.montanari}@dimi.uniud.it

3 University of Witwatersrand, Johannesburg (South Africa)
valentin.goranko@wits.ac.za

4 University of Murcia, Murcia (Spain)
guido@um.es

Abstract. Interval temporal logics are based on temporal structures
where time intervals, rather than time instants, are the primitive onto-
logical entities. They employ modal operators corresponding to various
relations between intervals, known as Allen’s relations. Technically, va-
lidity in interval temporal logics translates to dyadic second-order logic,
thus explaining their complex computational behavior. The full modal
logic of Allen’s relations, called HS, has been proved to be undecidable
by Halpern and Shoham under very weak assumptions on the class of
interval structures, and this result was discouraging attempts for prac-
tical applications and further research in the field. A renewed interest
has been recently stimulated by the discovery of interesting decidable
fragments of HS. This paper contributes to the characterization of the
boundary between decidability and undecidability of HS fragments. It
summarizes known positive and negative results, it describes the main
techniques applied so far in both directions, and it establishes a number
of new undecidability results for relatively small fragments of HS.

1 Introduction

Interval temporal logics are based on interval structures over linearly ordered
domains, where time intervals, rather than time instants, are the primitive onto-
logical entities. The variety of relations between intervals in linear orders was first
studied systematically by Allen [1], who explored their use in systems for time
management and planning. Interval reasoning arises naturally in various other
fields of artificial intelligence, such as theories of action and change, natural lan-
guage analysis and processing, and constraint satisfaction problems. Temporal
� Guido Sciavicco was co-financed by the Spanish projects TIN 2006-15460-C04-01

and PET 2006 0406.

I. Cervesato, H. Veith, and A. Voronkov (Eds.): LPAR 2008, LNCS 5330, pp. 590–604, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Decidable and Undecidable Fragments of HS Interval Temporal Logic 591

logics with interval-based semantics have also been proposed as a useful for-
malism for the specification and verification of hardware [21] and of real-time
systems [11]. Thus, the relevance of interval temporal logics in many areas of
artificial intelligence and computer science is nowadays widely recognized.

Interval temporal logics feature modal operators corresponding to various pos-
sible relations over intervals. A special role is played by the thirteen different bi-
nary relations (on linear orders) known as Allen’s relations. In [15], Halpern and
Shoham introduce a modal logic for reasoning about interval structures, called HS,
with modal operators corresponding to Allen’s interval relations. Formulas of HS
are evaluated at intervals, i.e., pairs of points, and, consequently, they translate
into binary relations in interval models. Accordingly, validity in HS translates to
dyadic second-order logic, thus causing its complex and generally bad compu-
tational behavior, where undecidability is the common case and decidability is
usually achieved by imposing severe restrictions on the interval-based semantics,
which essentially reduce it to a point-based one. More precisely, HS turns out to
be undecidable under very weak assumptions on the class of interval structures
[15]: we get undecidability for any class of interval structures over linear orders
that contains at least one linear order with an infinite ascending (or descending)
chain, thus including all natural numerical time-flows N,Z,Q, and R.

For a long time, such a sweeping undecidability result has discouraged at-
tempts for practical applications and further research on interval logics. A re-
newed interest in the area has been recently stimulated by the discovery of some
interesting decidable fragments of HS [3,4,5,6,7,9]. As an effect, the identification
of expressive enough decidable fragments of HS has been added to the current
research agenda for (interval) temporal logic. While the algebra of Allen’s rela-
tions, the so-called Allen’s Interval Algebra, has been extensively studied and
completely classified from the point of view of computational complexity [17]
(tractability/intractability of the consistency problem for fragments of Interval
Algebra), the characterization of decidable/undecidable fragments of the modal
logic of Allen’s relations (HS) is considerably harder.

This paper aims at contributing to the identification of the boundary between
decidability and undecidability of HS fragments. It summarizes known positive
and negative results, it presents the main techniques so far exploited in both
directions, and it establishes new undecidability results. Two important param-
eters of the proposed classification are the set of modalities of the fragment and
the class of linearly ordered sets in which it is interpreted. We shall take into
consideration the full set of modal operators corresponding to Allen’s relations
as defined in HS, apart for the trivial one corresponding to equality, plus two
definable modalities, namely, those for the proper during relation and its inverse
proper contains (the interval logic of the proper during relation has been recently
shown to be decidable on dense orders [3]).

The paper is structured as follows. In the next section, we introduce the
framework of interval-based temporal logic with unary modalities. In Section 3,
we give an up-to-date survey of known decidable fragments. In Section 4, we first
summarize known undecidability results and then we provide a number of new

592 D. Bresolin et al.

Op. Semantics

〈A〉 M, [a, b] � 〈A〉φ⇔ ∃c(b < c.M, [b, c] � φ)
〈L〉 M, [a, b] � 〈L〉φ ⇔ ∃c, d(b < c < d.M, [c, d] � φ)
〈B〉 M, [a, b] � 〈B〉φ⇔ ∃c(a ≤ c < b.M, [a, c] � φ)
〈E〉 M, [a, b] � 〈E〉φ⇔ ∃c(a < c ≤ b.M, [c, b] � φ)
〈D〉 M, [a, b] � 〈D〉φ ⇔ ∃c, d(a < c ≤ d <

b.M, [c, d] � φ)
〈O〉 M, [a, b] � 〈O〉φ ⇔ ∃c, d(a < c ≤ b < d.M, [c, d] �

φ)
〈D〉� M, [a, b] � 〈D〉�φ ⇔ ∃c, d(a ≤ c ≤ d ≤

b.M, [c, d] � φ ∧ [c, d] �= [a, b])

Fig. 1. Formal semantics for some interval operators

undecidability results for other fragments of HS by reduction from the octant
and the N × N tiling problems.

2 Interval Logics over Linearly Ordered Sets

Let D = 〈D,<〉 be a linearly ordered set. An interval over D is an ordered pair
[a, b], where a, b ∈ D and a ≤ b. Intervals of the type [a, a] are called point
intervals ; if these are excluded, the resulting semantics is called strict interval
semantics (non-strict otherwise). In this paper, we take the more standard non-
strict semantics as default. The language of a propositional interval logic consists
of a set AP of propositional letters, any complete set of classical operators
(such as ∨ and ¬), and a set of modal operators 〈X1〉,. . . ,〈Xk〉, each of them
associated with a specific binary relation over intervals1. Formulas are defined
by the following grammar:

ϕ ::= p | π | ¬ϕ | ϕ ∨ ϕ | 〈X1〉ϕ | . . . | 〈Xk〉ϕ,
where π is a modal constant, true precisely at point intervals. We omit π when
it is definable in the language or when the strict semantics is adopted.

The semantics of an interval-based temporal logic is given in terms of interval
models M = 〈I(D), V 〉, where I(D) is the set of all intervals over D and the
valuation function V : AP �→ 2I(D) assigns to every p ∈ AP the set of intervals
V (p) over which it holds. The truth of a formula over a given interval [a, b] in a
model M is defined by structural induction on formulas:

– M, [a, b] � π iff a = b;
– M, [a, b] � p iff [a, b] ∈ V (p), for all p ∈ AP ;
– M, [a, b] � ¬ψ iff it is not the case that M, [a, b] � ψ;

1 In this paper, we restrict our attention to unary modal operators only (decidability
issues for binary modal operators are addressed in [16]).

Decidable and Undecidable Fragments of HS Interval Temporal Logic 593

– M, [a, b] � ϕ ∨ ψ iff M, [a, b] � ϕ or M, [a, b] � ψ;
– M, [a, b] � 〈Xi〉ψ iff there exists an interval [c, d] such that [a, b] RXi [c, d],

and M, [c, d] � ψ,

where RXi is the (binary) interval relation corresponding to the modal operator
〈Xi〉. In Figure 1 we list the most common unary interval operators and their se-
mantics. Moreover, we denote by 〈X〉 the transpose of each modal operator 〈X〉,
which corresponds to the inverse of the relation RX . Except for proper during
and its inverse [3], these are precisely Allen’s interval relations [1]. It is easy to
show that some of these modal operators are definable in terms of others (some of
these definitions do not work with the strict semantics), e.g., 〈D〉p = 〈B〉〈E〉p,
〈D〉�p = 〈B〉p ∨ 〈E〉p ∨ 〈B〉〈E〉p, 〈A〉p = 〈E〉([B]⊥ ∧ 〈B〉p) ∨ ([E]⊥ ∧ 〈B〉p),
〈L〉p = 〈A〉〈A〉p, 〈O〉p = 〈E〉〈B〉p, and likewise for their transposes. Moreover,
the modal constant π is definable in most sufficiently rich languages, viz.:

π = [B]⊥ = [E]⊥ = [O]⊥ = [O]⊥ = [D]�⊥. (1)

Thus, eventually, all operators corresponding to Allen’s interval relations turn out
to be definable in terms of 〈B〉,〈E〉, and their transposes (as a matter of fact, 〈A〉
was included in the original formulation of HS; its definability in terms of the other
operators was later shown in [23]).

Here we will consider all HS fragments and for that purpose we will assume
all operators listed in Figure 1 (and their transposes) to be primitive in the lan-
guage. In general, when referring to a specific fragment of HS, we name it by its
modal operators. For example, the fragment featuring the operators 〈B〉, 〈E〉 will
be denoted by BE.

Besides the usual N,Z, and Q, we introduce a suitable notation for some com-
mon classes of strict linear orders:

– Lin = the class of all linear orders;
– Fin = the class of all finite linear orders;
– Den = the class of all dense linear orders;
– Dis = the class of all discrete linear orders;
– Asc = the class of all linear orders with an infinite ascending sequence;
– Des = the class of all linear orders with an infinite descending sequence.

3 Decidable Fragments of HS

In this section, we briefly survey the maximal known decidable fragments of HS.
All early decidability results about interval logics were based on severe restric-

tions of the interval-based semantics, essentially reducing it to a point-based one.
Such restrictions include locality, according to which all atomic propositions are
point-wise and truth over an interval is defined as truth at its initial point, and ho-
mogeneity, according to which truth of a formula over an interval implies truth of
that formula over every sub-interval. By imposing such constraints, decidability
of HS can be proved by embedding it into linear temporal logic [21,23]. Decid-
ability can also be achieved by constraining the class of temporal structures over

594 D. Bresolin et al.

which the logic is interpreted. This is the case with split-structures, where any in-
terval can be “chopped” in at most one way. The decidability of various interval
logics, including HS, interpreted over split-structures, has been proved by embed-
ding them into first-order decidable theories of time granularity [20].

For some simple fragments of HS, like BB and EE, decidability has been ob-
tained without any semantic restriction by means of direct translation to the
point-based semantics and reduction to decidability of respective point-based
temporal logics [14]. In any of these logics, one of the endpoints of every inter-
val related to the current one remains fixed, thereby reducing the interval-based
semantics to the point-based one by mapping every interval of the generated sub-
model to its non-fixed endpoint. Consequently, these fragments can be polynomi-
ally translated to the linear time Temporal Logic with Future and Past TL[F,P],
thus proving that they are NP-complete when interpreted on the class of all lin-
early ordered sets or on any of N, Q, and R [12,14].

Decidability results for fragments of HS with unrestricted interval-based se-
mantics, non-reducible to point-based one, have been recently obtained by means
of a translation method. This is the case with AA, also known as Proposi-
tional Neighborhood Logic (PNL) [13]2. In [6,7], decidability in NEXPTIME of
AA has been proved by translation to the two-variable fragment of first-order
logic with binary relations over linear domains FO2[<] and reference to the
NEXPTIME-complete decidability result for FO2[<] by Otto [22] (for proof de-
tails and NEXPTIME-hardness, we refer the reader to [6,7]). Otto’s results, and
consequently the decidability of AA, apply not only to the class of all linear orders,
but also to some natural subclasses of it, such as the class of all well-founded linear
orders, the class of all finite linear orders, and N.

Finally, decidability of some fragments of HS has been demonstrated by taking
advantage of the small model property with respect to suitable classes of satisfia-
bility preserving pseudo-models. This method has been successfully applied to the
logics of subintervals D and D�, interpreted over dense linear orders [3,4,5], and
to the logic AA (resp., A), interpreted over Z (resp., N) [8,10]. In [3,4,5], Bresolin
et al. make use of this technique to develop optimal tableau systems for D and D�
that work in PSPACE. (NEXPTIME) tableau-based decision procedures for AA
over Z and A over N have been developed in [8,10]. The tableau system for A over
N has been recently generalized to the case of all linearly ordered domains [9].

4 Undecidable Fragments of HS

Undecidable fragments of HS are much more common than decidable ones. In
the following, we first summarize some well-known undecidability results, which
have been proved by means of a reduction from the non-halting problem for Tur-
ing Machines. Then, we recall recent undecidability results for 6 fragments of
HS that properly extend AA, namely, AABE, AAEB, and AAD∗, where D∗ ∈
{D,D,D�,D�}, interpreted over any class of linear orders containing a linear order
2 Since L and L are definable in AA, decidability of this fragment actually implies de-

cidability of AALL.

Decidable and Undecidable Fragments of HS Interval Temporal Logic 595

with an infinite chain, which have been obtained by means of an encoding from the
octant tiling problem [7]. Next, we show that a similar reduction from the octant
tiling problem can be exploited to prove the undecidability of other 24 fragments
of HS, namely, AD∗E, AD∗E, and AD∗O (over any class of linear orders containing
a linear order with an infinite ascending chain), AD∗B, AD∗B, and AD∗O (over any
class of linear orders containing a linear order with an infinite descending chain).
Finally, we take advantage of a reduction from the N ×N tiling problem to prove
the undecidability of BE, BE, and BE over the appropriate classes of linear orders,
thus improving the results for AABE and AAEB given in [7].

4.1 Reduction from the Non-halting Problem

The undecidability of HS with respect to most classes of linear orders has been
proved by means of a reduction from the non-halting problem for Turing Machines
[15] (in fact, the reduction is to any of the fragments ABE and ABE).

Theorem 1 (Halpern and Shoham [15]). The satisfiability problem for ABE is
undecidable in any class of linear orders that contains at least one linear order with
an infinite ascending sequence (in particular, in Lin,Den,Dis,Z,Q,R, Asc, and N).
Similarly, the satisfiability problem for ABE is undecidable in each of the classes
Lin,Den,Dis,Z,Q,R, Des, and Z−.

The undecidability of the satisfiability problem for HS in all the classes Theorem
1 refers to immediately follows.

In [18], Lodaya shows that a suitable sharpening of the reduction technique
from [15] can be exploited to prove the undecidability of the fragment BE over
dense linear orders (thus strengthening Halpern and Shoham’s result in this re-
stricted setting). As a preliminary result, he proves that the logic with the binary
chop operator C, that splits an interval in two parts (and is not definable in HS),
and the modal constant π is undecidable by means of an adaptation of the proof
for HS. Then, he shows that the operators 〈B〉 and 〈E〉, which can be easily de-
fined in terms of C and π, suffice for undecidability. In [14] it was observed that
this result actually applies to the class of all linear orders.

Theorem 2 (Lodaya, Goranko et al. [14,18]). The satisfiability problem for
BE is undecidable in the classes Lin and Den.

4.2 Reduction from the Octant Tiling Problem

The undecidability of a number of HS fragments has been proved by using varia-
tions of a reduction from the unbounded tiling problem for the second octant O of
the integer plane. This is the problem of establishing whether a given finite set of
tile types T = {t1, . . . , tk} can tile O = {(i, j) : i, j ∈ N ∧ 0 ≤ i ≤ j}. This prob-
lem can be shown to be undecidable by a simple application of the König’s Lemma
in the same way as it was used in [2] to show the undecidability of the N×N tiling
problem from that of Z ×Z one. For every tile type ti ∈ T , let right(ti), left(ti),

596 D. Bresolin et al.

up(ti), and down(ti) be the colors of the corresponding sides of ti. To solve the
problem, one must find a function f : O → T such that

right(f(n,m)) = left(f(n+ 1,m))

and
up(f(n,m)) = down(f(n,m+ 1)).

In [7], a reduction from the unbounded tiling problem for the second octant O of
the integer plane has been applied to prove the undecidability of the extensions
of AA with any of the operators 〈D〉, 〈D〉, 〈D〉�, and 〈D〉�, or with the pairs of
operators 〈B〉〈E〉 or 〈B〉〈E〉, interpreted in any class of linear orders containing a
linear order with an infinite (ascending or descending) chain.

Theorem 3 (Bresolin et al. [7]). The satisfiability problem for each of the frag-
ments AAD∗, AABE, and AAEB is undecidable in each of the classes Lin, Den,Dis,
Z,Q,R, Des, Asc, N, and Z−.

In the following, we will show that similar reductions can be exploited to prove
the undecidability of other meaningful fragments of HS.

Theorem 4. The satisfiability problem for each of the fragments AD∗E, AD∗E,
and AD∗O is undecidable in any class of linear orders containing a linear order with
an infinite ascending chain. Likewise, the satisfiability problem for the fragments
AD∗B, AD∗B, and AD∗O is undecidable in any class of linear orders containing a
linear order with an infinite descending chain.

We give the details of the proof for the case ADE; the other cases are quite similar.
We consider a signature containing, inter alia, the special propositional letters u,
tile, Id, t1, . . . , tk, bb, be, eb, and corr.

Unit-intervals.We set our framework by forcing the existence of a unique infinite
chain of so-called unit-intervals (for short, u-intervals) on the linear order, which
covers an initial segment of the model. These u-intervals will be labeled by the
propositional variable u. They will be used as cells to arrange the tiling. First of
all, we define an always in the future modality which captures future intervals only:

[G]p = p ∧ [A]p ∧ [A][A]p.

Then, u-intervals can be encoded as follows:

B1 = ¬u ∧ 〈A〉u ∧ [G](u → (¬π ∧ 〈A〉u ∧ ¬〈D〉u ∧ ¬〈D〉〈A〉u)),
B2 = [G]

∧
p∈AP ((p ∨ 〈A〉p) → 〈A〉u).

Formula B2 restricts our domain of ‘legitimate intervals’ to those composed of u-
intervals, while B1 guarantees the existence of an infinite sequence of consecutive
u-intervals, thus implying the following lemma.

Decidable and Undecidable Fragments of HS Interval Temporal Logic 597

∗
∗
∗
∗
∗
∗

. . .

t
t t
t t t . . .
t t t t
t t t t t
t t t t t t

Fig. 2. A schema of the encoding (we abbreviate tile as t)

Lemma 1. Suppose that M, [a, b] � B1. Then, there exists an infinite sequence of
points b0 < b1 < . . . in M, such that b0 = b, for each i, M, [bi, bi+1] � u, and no
other interval [c, d], with c �= d, in M satisfies u, unless c > bi for every i ∈ N, or
c < b.

Encoding a tile. Every u-interval will represent either a tile or a special marker,
denoted by ∗, that identifies the border between two Id-intervals (Id-intervals rep-
resent the rows of the tiling and will be defined later). Formally, we put:

B3 = [G](u ↔ (∗ ∨ tile)) ∧ [G](∗ → ¬tile) ∧ [G]¬(∗ ∧ 〈A〉∗),
B4 = [G](tile ↔ (

∨k
i=1 ti ∧

∧k
i,j=1,i�=j ¬(ti ∧ tj))).

If a tile is placed on a u-interval [a, b], we call a and b respectively the beginning
point and the ending point of that tile.

Encoding rows of the tiling. An Id-interval (or just Id) is an interval consisting
of a finite sequence of at least two u-subintervals. Each Id represents a row (level)
of the tiling of O. The first u-subinterval in an Id is a ∗-interval and every following
u-subinterval is the encoding of a tile (see Figure 2). The Id-intervals representing
the bottom-up consecutive levels of the tiling of O are arranged one after another
in a chain. The first Id is composed by a single tile. To prevent the existence of in-
terleaving sequences of Id-intervals, we do not allow occurrences of ∗-subintervals
inside an Id. These conditions are imposed by the following formulas:

B5 = [G]((Id → (¬u ∧ 〈A〉Id ∧ ¬〈D〉〈A〉Id))) ∧ [G](〈A〉Id ↔ 〈A〉∗),
B6 = 〈A〉(∗ ∧ 〈A〉(tile ∧ 〈A〉∗)),
B7 = B1 ∧B2 ∧B3 ∧B4 ∧B5 ∧B6.

Lemma 2. Let M, [a, b] � B7. Then, there is a sequence of points b = b01 < b11 <
. . . bk1

1 = b02 < b12 < . . . < bk2
2 = b03 < . . ., such that k1 = 2 and for every j:

1. M, [b0j , b
kj

j] � Id and no other interval [c, d], with c �= d, in M is an Id-interval,

unless possibly for c > b
kj

j for every j ∈ N, or c < b;
2. M, [b0j , b

1
j] � ∗ and no other interval [c, d], with c �= d, in M is a ∗-interval,

unless possibly for c > b
kj

j for every j ∈ N, or c < b;

598 D. Bresolin et al.

T T T T T T· · · · · · · ·. . .

bi−1
j bi

j bi+1
j bi+2

j bi−1
j+1 bi

j+1 bi+1
j+1 bi+2

j+1

bb

be

eb

bb

be
. . .

eb

Fig. 3. A representation of bb, be, and eb-intervals

3. for every i such that 0 < i < kj, M, [bij, b
i+1
j] � tile, and no other interval

[c, d], with c �= d, in M is a tile-interval, unless possibly for c > b
kj

j for every
j ∈ N, or c < b.

Definition 1. Let M, [a, b] � B7 and b01 < b11 < . . . bk1
1 = b02 < b12 < . . . < bk2

2 =
b03 . . . be the sequence of points whose existence is guaranteed by Lemma 2. For any
j, the interval [b0j , b

kj

j] is the j-th Id-interval of the sequence and, for any i ≥ 1,

the interval [bij , b
i+1
j] is the i-th tile of the Id-interval [b0j , b

kj

j].

Corresponding tiles. So far we have that, given a starting interval, the formula
B7 forces the underlying linearly ordered set to be, in the future of the current in-
terval, a sequence of Id’s, the first one of which containing exactly one tile. Now, we
want to make sure that each tile at a certain level inO (i.e., Id) always has its corre-
sponding tile at the immediate upper level. To this end, we will take advantage of
some auxiliary propositional variables, namely, bb, which is to connect the begin-
ning point of a tile to the beginning point of the corresponding tile above,be, which
is to connect the beginning point of a tile to the ending point of the corresponding
tile above, and eb, which is to connect the ending point of a tile to the beginning
point of the corresponding tile above. If an interval is labeled with any of bb, eb, or
be, we call it a corresponding interval, abbreviated corr-interval. A pictorial rep-
resentation is given in Figure 3. The next formulas force corr-intervals to respect
suitable properties so that all models satisfying them encode a correct tiling.

B8 = [G]((bb ∨ be ∨ eb) ↔ corr),
B9 = [G]¬(corr ∧ Id),
B10 = [G]((corr → ¬〈D〉Id) ∧ (Id → ¬〈D〉corr)),
B11 = [G]((corr → ¬〈A〉Id) ∧ (〈A〉(bb ∨ be) → ¬〈A〉Id)),
B12 = B8 ∧B9 ∧B10 ∧B11.

Lemma 3. Let M, [a, b] � B7 ∧ B12. Then, no Id-interval in M coincides with
a corr-interval, nor is properly contained in a corr-interval, nor a corr-interval is
properly contained in an Id-interval, unless it is an eb-interval beginning an Id.

Decidable and Undecidable Fragments of HS Interval Temporal Logic 599

The next set of formulas guarantees that the corr-intervals satisfy the respective
correspondences.

B13 = [G](〈A〉tile ↔ 〈A〉bb),
B14 = [A](〈A〉(tile ∧ 〈A〉tile) ↔ 〈E〉bb),
B15 = [G](〈A〉tile ↔ 〈A〉be),
B16 = [A]((〈E〉tile ∧ 〈A〉tile) ↔ 〈E〉be),
B17 = [G](u → (tile ↔ 〈A〉eb)),
B18 = [A](〈A〉(tile ∧ 〈A〉tile) ↔ 〈E〉eb),
B19 = B13 ∧B14 ∧B15 ∧B16 ∧B17 ∧B18.

Lemma 4. Let M, [a, b] � B7∧B12 ∧B19 and let b01 < b11 < b21 = b02 < b12 < . . . <
bk2
2 = b03 < . . . be the sequence of points whose existence is guaranteed by Lemma 2.

Then, for every i ≥ 0, j ≥ 1:

1. bij is the beginning point of a bb and a be iff 1 ≤ i ≤ kj − 1.
2. bij is the beginning point of an eb iff 2 ≤ i ≤ kj.
3. bij is the ending point of a bb and an eb iff 1 ≤ i ≤ kj − 2.
4. bij is the ending point of a be iff 2 ≤ i ≤ kj − 1.

Definition 2. Given two tile-intervals [c, d] and [e, f] in a model M, we say that
[c, d] corresponds to [e, f] if M, [c, e] � bb and M, [c, f] � be and M, [d, e] � eb.

The following formulas state the basic relationships between the three types of
correspondence:

B20 = [G]
∧

c,c′∈{bb,eb,be},c �=c′ ¬(c ∧ c′),
B21 = [G](bb → ¬〈D〉bb ∧ ¬〈D〉eb ∧ ¬〈D〉be),
B22 = [G](eb → ¬〈D〉bb ∧ ¬〈D〉eb ∧ ¬〈D〉be),
B23 = [G](be → 〈D〉eb ∧ ¬〈D〉bb ∧ ¬〈D〉be),
B24 = B20 ∧B21 ∧B22 ∧B23.

Lemma 5. Let M, [a, b] � B7 ∧B12 ∧B19 ∧B24. Then, for any j ≥ 1 and i ≥ 1:

1. the i-th tile of the j-th Id-interval corresponds to the i-th tile of the j + 1-th
Id-interval.

2. there are exactly j tiles in the j-th Id-interval.
3. no tile of the j-th Id-interval corresponds to the last tile of the j + 1-th Id-

interval.

Encoding the tiling problem. We are now ready to show how to encode the
octant tiling problem. Let φT be the conjunction of B7, B12, B19, B24, B25, and
B26, where B25 and B26 are the following two formulas:

B25 = [G]((tile ∧ 〈A〉tile) →
∨

right(ti)=left(tj)(ti ∧ 〈A〉tj)),
B26 = [G](〈A〉tile →

∨
up(ti)=down(tj)(〈A〉ti ∧ 〈A〉(bb ∧ 〈A〉tj))).

Lemma 6. Given any finite set of tiles T , the formula ΦT is satisfiable if and only
if T can tile the second octant O.

600 D. Bresolin et al.

As the model construction in the above proof can be carried out on any linear
ordering containing an infinite ascending chain of points, Theorem 4 for the logic
ADE immediately follows.

As for the other logics considered in the first half of Theorem 4, it suffices to
modify the formulas involving 〈D〉 (see [7]) and the formulas B14, B16, and B18,
which involve 〈E〉. As an example, in the case of the logic ADO, formulasB14,B16,
and B18 must be replaced with the following ones:

B′
14 = [G](〈A〉(tile ∧ 〈A〉tile) ↔ 〈A〉(tile ∧ 〈O〉bb)),

B′
16 = [G](〈A〉(tile ∧ 〈A〉tile) ↔ 〈A〉(tile ∧ 〈A〉〈O〉be)),

B′
18 = [G](〈A〉(tile ∧ 〈A〉tile) ↔ 〈A〉(tile ∧ 〈O〉eb)).

In the cases of the fragments where A is replaced with A and E (resp., E) is
replaced with B (resp., B), the proof is perfectly symmetric and it takes advantage
of the existence of an infinite descending sequence.

4.3 Reduction from the N × N Tiling Problem

In this section, we strengthen some of the results of Theorem 3 by showing that the
satisfiability problem for the fragments BE, BE, and BE is undecidable (the case
of BE was already dealt with by Theorem 2 for the classes Lin and Den). The proof
is based on a reduction from the N×N tiling problem, which is a non-trivial adap-
tation of the reduction from the same problem provided by Marx and Reynolds
to prove the undecidability of Compass Logic [19].

Theorem 5. The satisfiability problem for BE (respectively, BE) is undecidable
in any class of linear orders that contains a linear order with an infinite ascending
(respectively, descending) chain. The satisfiability problem for BE is undecidable in
any class of linear orders that contains a linear order with an infinite chain indexed
by the integers.

The encoding of the quadrant N×N is close to that given in [19] (it is based on a
suitable enumeration of its elements). From such a work, we also borrow the set
of propositional variables p, q, right, left, above, floor, and wall used in the proof.

Hereafter, we restrict ourselves to the easiest case of BE (however, the proof
can be adapted to the other two fragments). The operators of BE can be natu-
rally mapped into those of Compass Logic as follows: if M, [a, b] � 〈B〉ψ, then
M, [a, c] � ψ for some c > b and thus 〈B〉 corresponds to � in Compass Logic,
and if M, [a, b] � 〈E〉ψ, then M, [c, b] � ψ for some a < c ≤ b and thus 〈E〉
corresponds to �.

First, we define the always in the future operator [G]:

[G]ϕ = ϕ ∧ [E]ϕ ∧ [B](ϕ ∧ [E]ϕ).

Decidable and Undecidable Fragments of HS Interval Temporal Logic 601

The properties of p and q, that respectively encode the elements of the quadrant
and the successor relation over them (with respect to the given enumeration), are
expressed by the following formulas:

N1 = p,
N2 = [G](p → [B]¬p),
N3 = [G](p → [E]¬p),
N4 = [G](〈B〉p → [E]¬p),
N5 = [G](p → [E]([B]¬p),
N6 = [G](q → [B]¬q),
N7 = [G](p → 〈B〉q),
N8 = [G](q → 〈E〉p),
N9 = [G](〈B〉q → [E]¬p).

As an immediate consequence from N1-N9, we have:

N10 = [G](q → [B]¬p).

The above formulas state that both p and q are injective functions, that is, if
M, [a, b] � p, then for each c �= b M, [a, c] � ¬p and for each d �= a M, [d, b] �
¬p, and similarly for q, that p-intervals cannot be subintervals of p-intervals
(and they do not overlap), that q and p have the same domain and range, that
is, M, [a, b] � p if and only if there exists c > b such that M, [a, c] � q and
M, [a, b] � p if and only if there exists c < a such that M, [c, b] � q, and, finally,
that a p-interval cannot be a subinterval of a q-interval.

Lemma 7. For every model M and every interval [a, b] such that M, [a, b] � N1∧
. . . ∧ N9 there exists a sequence of intervals [a, b] = [a0, b0], [a1, b1], . . . such that,
for every n ≥ 0: (1) bn ≤ an+1; (2) M, [an, bn] � p; (3) M, [an, bn+1] � q; (4)
if M, [a′, b′] � p and b0 ≤ b′ < bn, then there exists m < n such that [a′, b′] =
[am, bm].

Lemma 7 corresponds to Claim 5.2, Section 5.4 in [19]. To prove Claim 5.3, we
translate formulas A6-A18 in [19] to the language BE. For a given formula ϕ, let
F (ϕ) be the conjunction of the following formulas:

[G](ϕ→ [B]¬ϕ),
[G](ϕ→ [E]¬ϕ),
[G](p → 〈B〉ϕ),
[G](ϕ→ 〈E〉p),
[G](q → [E](〈B〉ϕ→ p).

The above formulas state that ϕ is an injective function, that the domain of p is
included in the domain of ϕ, that the range of ϕ is included in the range of p, and
that the domain of ϕ is included in the domain of p (that is, the domain of p and
that of ϕ coincide).

602 D. Bresolin et al.

Formulas A6-A18 can be encoded as follows:

A6 = F (right),
A7 = F (above),
A8 = [G](〈B〉right → [E]¬right),
A9 = [G](right → 〈B〉above),
A10 = [G](right → [B](〈B〉above → [E]¬p)),

which impose that both right and above are total injective functions from p-
intervals to p-intervals, that right is strictly monotone, and that above is the com-
position of right and q, and:

A11 = floor ∧ wall,
A12 = [B]¬(floor ∧ wall) ∧ [E]¬(floor ∧ wall) ∧ [B][E]¬(floor ∧ wall),
A13 = [G]((floor ∨ wall) → p),
A14 = [G](wall → [B](q → [E](p → floor))),
A15 = [G](wall → 〈B〉(above ∧ 〈E〉wall)),
A16 = [G]((p ∧ ¬wall) → [B](above → [E]¬wall)),
A17 = [G](right → [E]¬wall),
A18 = [B](〈E〉(p ∧ ¬wall) → right ∨ 〈E〉(right ∧ 〈E〉(p ∧ ¬wall))),

which state the properties of floor and wall. Intuitively, we have the following prop-
erties: the initial interval is labeled with floor and wall and this is not the case with
any other interval; both floor and wall are p-intervals; the successor of a wall is a
floor; above every wall there is a wall, and, with the exception of the initial interval,
every wall is above a wall; right never goes to the wall, and every non-wall p-interval
has a p-interval on the left.

Finally, let φT be the conjunction of formulasN1-N9, A6-A18, and A19-A22 be-
low:

A19 = [G](p ↔
∨k

i=1 ti),
A20 = [G]

∧
i�=j ¬(ti ∧ tj),

A21 =
∧

up(ti) �=down(tj)[G]¬(ti ∧ 〈B〉(above ∧ 〈E〉tj)),
A22 =

∧
right(ti) �=left(tj)[G]¬(ti ∧ 〈B〉(right ∧ 〈E〉tj)).

The proof of the next lemma repeats, mutatis mutandis, the one in [19].

Lemma 8. A set of tiles T can tile N × N if and only if φT is satisfiable.

This concludes the proof of Theorem 5 for the case BE. A similar construction can
be carried out for the logics BE and BE. As for BE, it suffices to replace the first
quadrant with the second one, where the operator 〈B〉 corresponds to the operator
� and the operator 〈E〉 corresponds to the operator � of Compass Logic. As for
BE, the construction of the model is obtained in the third quadrant instead of the
second one.

Decidable and Undecidable Fragments of HS Interval Temporal Logic 603

5 Concluding Remarks

In this paper, we have taken into consideration the variety of HS fragments that
can be obtained by choosing suitable subsets of the set of the twelve basic modal
operators (corresponding to Allen’s relations) extended with two additional oper-
ators for subintervals. We have focused our attention on the problem of classify-
ing them with respect to decidability/undecidability (first raised by Halpern and
Shoham in [15], Problem 3). Besides a summary of the state of the art, we have
given a number of new undecidability results based on suitable reductions from
tiling problems.

The proposed classification is naturally related to definability/undefinability
relations among operators. Known definability relations reduce the number of
fragments from over 16 thousands to less than 5 thousands, and the results re-
ported in this paper cover more than half of these cases. Our study not only makes
a substantial contribution to the complete solution of the classification problem
inherited from [15], but it also suggests some directions to explore in the search of
other decidable interval logics.

It is worth pointing out that all undecidability results reported here hinge on
the existence of an infinite ascending/descending chain of intervals. Decidability
problems for interval logics over finite interval structures are still largely unex-
plored. Some positive results for PNL can be found in [6,7,8,9,10].

References

1. Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of
the ACM 26(11), 832–843 (1983)

2. Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. In: Perspec-
tives of Mathematical Logic. Springer, Heidelberg (1997)

3. Bresolin, D., Goranko, V., Montanari, A., Sala, P.: Tableau-based Decision Proce-
dure for the Logic of Proper Subinterval Structures over Dense Orderings. In: Are-
ces, C., Demri, S. (eds.) Proceedings of the 5th International Workshop on Methods
for Modalities (M4M), pp. 335–351 (2007)

4. Bresolin, D., Goranko, V., Montanari, A., Sala, P.: Tableau systems for logics of
subinterval structures over dense orderings. In: Olivetti, N. (ed.) TABLEAUX 2007.
LNCS (LNAI), vol. 4548, pp. 73–89. Springer, Heidelberg (2007)

5. Bresolin, D., Goranko, V., Montanari, A., Sala, P.: Tableau-based decision proce-
dures for the logics of subinterval structures over dense orderings. In: Journal of
Logic and Computation (to appear, 2008)

6. Bresolin, D., Goranko, V., Montanari, A., Sciavicco, G.: On decidability and expres-
siveness of propositional interval neighborhood logics. In: Artemov, S.N., Nerode,
A. (eds.) LFCS 2007. LNCS, vol. 4514, pp. 84–99. Springer, Heidelberg (2007)

7. Bresolin, D., Goranko, V., Montanari, A., Sciavicco, G.: Propositional Interval
Neighborhood Logics: Expressiveness, Decidability, and Undecidable Extensions.
Annals of Pure and Applied Logic (to appear, 2008)

8. Bresolin, D., Montanari, A., Sala, P.: An optimal tableau-based decision algorithm
for propositional neighborhood logic. In: Thomas, W., Weil, P. (eds.) STACS 2007.
LNCS, vol. 4393, pp. 549–560. Springer, Heidelberg (2007)

604 D. Bresolin et al.

9. Bresolin, D., Montanari, A., Sala, P., Sciavicco, G.: Optimal Tableaux for Right
Propositional Neighborhood Logic over Linear Orders. In: JELIA 2008. LNCS
(LNAI), vol. 5293, pp. 62–75. Springer, Heidelberg (2008)

10. Bresolin, D., Montanari, A., Sciavicco, G.: An optimal decision procedure for Right
Propositional Neighborhood Logic. Journal of Automated Reasoning 38(1-3), 173–
199 (2007)

11. Chaochen, Z., Hoare, C.A.R., Ravn, A.P.: A calculus of durations. Information Pro-
cessing Letters 40(5), 269–276 (1991)

12. Emerson, E.A.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of
Theoretical Computer Science, Formal Models and Semantics, vol. B, pp. 995–1072.
MIT Press, Cambridge (1990)

13. Goranko, V., Montanari, A., Sciavicco, G.: Propositional interval neighborhood
temporal logics. Journal of Universal Computer Science 9(9), 1137–1167 (2003)

14. Goranko, V., Montanari, A., Sciavicco, G.: A road map of interval temporal logics
and duration calculi. Journal of Applied Non-Classical Logics 14(1–2), 9–54 (2004)

15. Halpern, J., Shoham, Y.: A propositional modal logic of time intervals. Journal of
the ACM 38(4), 935–962 (1991)

16. Hodkinson, I., Montanari, A., Sciavicco, G.: Non-finite axiomatizability and unde-
cidability of interval temporal logics with C, D, and T. In: Kaminski, M., Martini,
S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 308–322. Springer, Heidelberg (2008)

17. Krokhin, A.A., Jeavons, P., Jonsson, P.: Reasoning about temporal relations: The
tractable subalgebras of Allen’s interval algebra. Journal of the ACM 50(5), 591–640
(2003)

18. Lodaya, K.: Sharpening the undecidability of interval temporal logic. In: He, J.,
Sato, M. (eds.) ASIAN 2000. LNCS, vol. 1961, pp. 290–298. Springer, Heidelberg
(2000)

19. Marx, M., Reynolds, M.: Undecidability of compass logic. Journal of Logic and Com-
putation 9(6), 897–914 (1999)

20. Montanari, A., Sciavicco, G., Vitacolonna, N.: Decidability of interval temporal log-
ics over split-frames via granularity. In: Flesca, S., Greco, S., Leone, N., Ianni, G.
(eds.) JELIA 2002. LNCS, vol. 2424, pp. 259–270. Springer, Heidelberg (2002)

21. Moszkowski, B.: Reasoning about digital circuits. Tech. rep. stan-cs-83-970, Dept.
of Computer Science, Stanford University, Stanford, CA (1983)

22. Otto, M.: Two variable first-order logic over ordered domains. Journal of Symbolic
Logic 66(2), 685–702 (2001)

23. Venema, Y.: Expressiveness and completeness of an interval tense logic. Notre Dame
Journal of Formal Logic 31(4), 529–547 (1990)

The Variable Hierarchy for the
Lattice µ-Calculus�

Walid Belkhir and Luigi Santocanale

Laboratoire d’Informatique Fondamentale de Marseille
Université de Provence

Abstract. The variable hierarchy problem asks whether every µ-term
t is equivalent to a µ-term t′ where the number of fixed-point variables
in t′ is bounded by a constant. In this paper we prove that the variable
hierarchy of the lattice µ-calculus – whose standard interpretation is
over the class of all complete lattices – is infinite, meaning that such a
constant does not exist if the µ-terms are built up using the basic lattice
operations as well as the least and the greatest fixed point operators.
The proof relies on the description of the lattice µ-calculus by means of
games and strategies.

1 Introduction

Hierarchies and expressivity issues are at the core of fixed-point theory [1,2]. The
alternation depth and the star height hierarchies have been intensively studied
[3,4,5,6,7,8] In this paper we deal with a refinement of the star height hierarchy,
the variable hierarchy introduced in [9], and consider it within the lattice µ-
calculus Lµ. The latter is a concrete representation of the theory of binary infs
and sups, and of least and greatest fixed points over complete lattices.

Let us recall the background of the lattice µ-calculus. Two-players games are
a standard model for the possible interactions between a system and its poten-
tially adverse environment [10,11,12]. It was proposed in [13] to develop a theory
of communication grounded on similar game theoretic ideas and, moreover, on
algebraic concepts such as “free lattice” [14] and “free bicomplete category” [15].
A first work pursued this idea using tools of categorical logic [16]. The proposal
was further developed in [17] where cycles were added to lattice terms to enrich
the model with possibly infinite behaviors. As a result, lattice terms were re-
placed by lattice µ-terms and their combinatorial representation, parity games.
Given two parity games G,H the witness that the relation G ≤ H holds in ev-
ery complete lattice interpretation is a winning strategy for a prescribed player,
Mediator, in a game 〈G,H〉. A game G may also be considered as modelling
a synchronous communication channel available to two users. Then, a winning
strategy for Mediator in 〈G,H〉 witnesses the existence of an asynchronous pro-
tocol allowing one user of G to communicate with the other user on H ensuring
absence of deadlocks.
� Research supported by the Agence Nationale de la Recherche, project SOAPDC.

I. Cervesato, H. Veith, and A. Voronkov (Eds.): LPAR 2008, LNCS 5330, pp. 605–620, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

606 W. Belkhir and L. Santocanale

Apart from its primary goal, that of describing complete lattices, a major
interest of this µ-calculus stems from its neat proof-theory, a peculiarity within
the theory of fixed-point logics. The idea that winning strategies for Mediator
in the game 〈G,H〉 are sort of circular proofs was formalized in [18]. More
interestingly, proof theoretic ideas and tools – the cut elimination procedure
and η-expansion, in their game theoretic disguise – have proved quite powerful
to solve deep problems arising from fixed-point theory. These are the alternation-
depth hierarchy problem [5] and the status of the ambiguous classes [19]. The
same ideas shall be of help in establishing the strictness of the variable hierarchy.

The variable hierarchy problem of Lµ asks whether every µ-term t is equivalent
to a µ-term s where the number of fixed-point variables in s is bounded by a
constant. This amounts to consider the classes

Tn = { t ∈ Lµ | t ∼ s for some s ∈ Lµ s.t. nbr(s) ≤ n } (1)

– where ∼ denotes semantic equivalence of µ-terms over complete lattices and
nbr(s) is the number of bound variables in s – and to ask whether the hierarchy
made up of the Tn collapses: is there a constant k such that Tn = Tk for every
n ≥ k? We shall work through several combinatorial refinements of the original
problem: on the one hand we consider the representation of µ-terms by means
of parity games, on the other hand we need two digraph complexity measures,
the feedback and the entanglement, that roughly speaking compute the minimal
number of bound variables of a µ-term up to α-conversion. The question about
the classes Tn shall be answered in the negative when showing that the analogous
question for the classes

Ln = {G ∈ G | G ∼ H for some H ∈ G s.t. E(H) ≤ n }

has a negative answer. Here G is the collection of parity games with draw po-
sitions, ∼ denotes semantic equivalence, and E(H) is the entanglement of the
graph of positions and moves of H . We shall construct, for each n ≥ 1, a par-
ity game Gn with two properties: (i) Gn has entanglement n, showing that Gn

belongs to Ln, (ii) Gn is semantically equivalent to no game in Ln−3. Thus, we
shall prove that the inclusions Ln−3 ⊆ Ln, n ≥ 3, are strict.

The key ideas in our proof are as follows. The games Gn are strongly synchro-
nizing.1 By playing with the η-expansion – i.e. the copycat strategy – and the
cut-elimination – i.e. composition of strategies – we prove that the syntactical
structure of a game H , semantically equivalent to a strongly synchronizing game
G, resembles that of G: every move (edge) in G can be simulated by a non empty
finite sequence of moves (a path) of H ; if two paths simulating distinct edges do
intersect, then the edges do intersect as well. We formalize such situation within
the notion of �-weak simulation. The relevant result is that if there is a �-weak
simulation of G by H , then E(G)− 2 ≤ E(H).

1 A synchronizing game [5] has the property that there exists just one winning strategy
for Mediator in 〈G, G〉, the copycat strategy. We need here to strengthen this notion.

The Variable Hierarchy for the Lattice µ-Calculus 607

The paper is organized as follows. Section 2 introduces the lattice µ-calculus:
its syntax, its semantics, the translation of µ-terms into parity games, the canon-
ical preorder. In Section 3, we firstly recall the definition of entanglement and
reduce the hierarchy problem for the classes Tn to that for the classes Ln; then
we define the �-weak simulations between graphs. In Section 4, we define strongly
synchronizing games and prove their hardness w.r.t. the variable hierarchy. In
Section 5, we construct strongly synchronizing games of arbitrary entanglement.
We sum up the discussion in our main result, Theorem 20.

Notation, preliminary definitions, elementary facts. If G is a graph, then
a path in G is a sequence of the form π = g0g1 . . . gn such that (gi, gi+1) ∈ EG

for 0 ≤ i < n. A path is simple if gi �= gj for i, j ∈ { 0, . . . , n } and i �= j. The
integer n is the length of π, g0 is the source of π, noted δ0π = g0, and gn is the
target of π, noted δ1π = gn. We denote by Π+(G) the set of simple non empty
(i.e. of length greater than 0) paths in G. A pointed digraph 〈V,E, v0〉 of root
v0, is a tree if for each v ∈ V there exists a unique path from v0 to v. A tree
with back-edges is a tuple T = 〈V, T, v0, B〉 such that 〈V, T, v0〉 is a tree, and
B ⊆ V × V is a second set of edges such that if (x, y) ∈ B then y is an ancestor
of x in the tree 〈V, T, v0〉. We shall refer to edges in T as tree edges and to edges
in B as back-edges. We say that r ∈ V is a return of T if there exists x ∈ V
such that (x, r) ∈ B. A return r is active in v if (x, r) ∈ B for some for some
descendant x of v. The feedback of a vertex v is the number of active returns of
v. The feedback of a tree with back-edges is the maximum feedback of its vertices.
We shall say that a pointed directed graph (V,E, v0) is a tree with back-edges if
there is a partition of E into two disjoint subsets T,B such that 〈V, T, v0, B〉 is
a tree with back-edges. If T is a tree with back-edges, then a path in T can be
factored as π = π1 ∗ . . . ∗ πn ∗ τ , where each factor πi is a sequence of tree edges
followed by a back-edge, and τ does not contain back-edges. Such factorization
is uniquely determined by the occurrences of back edges in π. For i > 0, let ri
be the return at the end of the factor πi. Let also r0 be the source of π. Let the
b-length of π be the number of back-edges in π. i.e. ri = δ1πi.

Lemma 1. If π is a simple path of b-length n, then rn is the vertex closest to
the root visited by π. Hence, if a simple path π lies in the subtree of its source,
then it is a tree path.

A cover or unravelling of a (finite) directed graph H is a (finite) graph K
together with a surjective graph morphism ψ : K −→ H such that for each
v ∈ VK , the correspondence sending k to ρ(k) restricts to a bijection from
{ k ∈ VK | (v, k) ∈ EK } to { h ∈ VH | (ψ(v), h) ∈ EH }.

2 The Lattice µ-Calculus Lµ

We introduce the lattice µ-calculus, denoted Lµ, and its standard semantics over
complete lattices. One may consider its semantics over µ-lattices [17] as well.

608 W. Belkhir and L. Santocanale

Syntax of Lµ. The syntax of lattice µ-terms is given by the following grammar:

t = x | " | ⊥ | t ∧ t | t ∨ t | µx.t | νx.t ,

where x ranges over X , a countable set of variables.

Semantics of Lµ over complete lattices. If t is a µ-term, then we denote
by Xt the set of free variables of t. Given a complete lattice L, we define the
interpretation of a µ-term t as the function ||t||L : LXt −→ L, where LX is the
X-fold product lattice of L with itself, in the following way:

– If t = x, then ||t||L(v) = v(x).
– If t = " (resp. t = ⊥), then ||t||L is interpreted as the constant function with

value
∨

L L, i.e. the supremum of L (resp. to
∧

L L, i.e. the infimum of L).
– If t = t1∧ t2, then ||t||L(v) = ||t1||L(v|t1)∧L ||t2||L(v|t2), where ∧L denotes the

greatest lower bound in L and v|ti is the restriction of v to Xti .
– If t = t1∨ t2, then ||t||L(v) = ||t1||L(v|t1)∨L ||t2||L(v|t2), where ∨L denotes the

least upper bound in L.
– If t = µx.t1, then we consider the monotone function φ(z) = ||t1||L(vz) –

where vz(y) = v(y) if y �= x and vz(x) = z – and let ||µx.t1||L(v) be µz.φ(z),
the least fixpoint of φ which exists and is unique in L by [20].

– Similar definition is given if t = νx.t1, by substituting each symbol µ with
the symbol ν, and the phrase least fixpoint with the phrase greatest fixpoint.

The variable hierarchy problem of Lµ. Let s, t ∈ Lµ, we write nbr(s) for
the number of bound variables in s and t ∼ s to mean that ||t||L = ||s||L holds in
every complete lattice L. Recall from Equation (1) the definition of the classes
Tn. We ask whether the hierarchy made up of these classes collapses: is there a
constant k such that Tn = Tk for every n ≥ k?

Lattice µ-terms have a natural translation into a kind of 2-players games: the
labeled parity games with draws. We first define these games, then we provide
such translation.

Labeled parity games with draws. A labeled parity game with draws is a
tuple G = 〈PosG

E , Pos
G
A, Pos

G
D,M

G, ρG, pG
� , λ

G〉 where:

• PosG
E , Pos

G
A, Pos

G
D are finite pairwise disjoint sets of positions (Eva’s posi-

tions, Adam’s positions, and draw positions).
•MG, the set of moves, is a subset of (PosG

E ∪PosG
A)× (PosG

E ∪PosG
A ∪PosG

D),
• ρG is a mapping from (PosG

E ∪ PosG
A) to N.

• pG
� ∈ PosG

E ∪ PosG
A ∪ PosG

D is the initial position.
• λG : PosG

D → X is a labelling of draw positions with variables.

These data define a game between player Eva and player Adam starting from
the initial position. The outcome of a finite play is determined according to the
normal play condition: a player who cannot move loses. It can also be a draw,
if a position in PosG

D is reached. The outcome of an infinite play { (gk, gk+1) ∈
MG }k≥0 is determined by means of the rank function ρG as follows: it is a win
for Eva iff the maximum of the set { i ∈ N | ∃ infinitely many k s.t. ρG(gk) = i }

The Variable Hierarchy for the Lattice µ-Calculus 609

is even. To simplify the notation, we shall use PosG
E,A for the set PosG

E ∪ PosG
A

and use similar notations such as PosG
E,D, etc. We let MaxG = max ρG(PosG

E,A)
if the set PosG

E,A is not empty, and MaxG = −1 otherwise. We denote by (G, g)

the game that differs from G only on the starting position, i.e. p(G,g)
� = g, and

similarly we write (G, g) to mean that the play has reached position g. With G
we shall denote the collection of all labeled parity games; as no confusion will
arise, we will call a labeled parity game with simply “game”.

Translation of µ-terms into games. The translation γ : Lµ → G is so
defined:

– If t = x, then γ(t) = x̂, where x̂ is the game with just one final draw position,
of zero priority, labeled with variable x.

– If t = ", (resp. t = ⊥) then γ(t) is the game with just one position, of zero
priority, which belongs to Adam (resp. to Eva).

– If t = t1 ∧ t2, then the game γ(t) is obtained from the games Gi = γ(ti),
i = 1, 2, by adding to the disjoint union PosG1

E,A,D � PosG2
E,A,D a new ini-

tial position pγ(t)
� ∈ Pos

γ(t)
A such that ργ(t)(pγ(t)

�) = 0; moreover the moves
(pγ(t)

� , pGi
�), i = 1, 2, are added to MG1 ∪MG2 .

– If t = t1 ∨ t2, then we define γ(t) as above, apart that pγ(t)
� ∈ Posγ(t)

E .
– For t = θx.t1, θ ∈ {µ, ν }, assume that G = γ(t1). Let pγ(t)

� be a new initial
position. Let also Posx = { g ∈ PosG

D | λG(g) = x } and Predx = { g ∈
PosG

E,A| (g, g′) ∈MG and g′ ∈ Posx }. Then we define γ(t) as follows:

• Pos
γ(t)
E = PosG

E ∪ { pγ(t)
� } if θ = µ and Posγ(t)

E = PosG
E if θ = ν.

• Pos
γ(t)
A = PosG

A if θ = µ and Posγ(t)
A = PosG

A ∪ { pγ(t)
� } if θ = ν.

• Pos
γ(t)
D = PosG

D \ Posx.
• Mγ(t) = MG

|Pos
γ(t)
E,A,D

∪ { (g, pγ(t)
�) | g ∈ Predx } ∪ { (pγ(t)

� , pG
�) }.

• ργ(t) is the extension of ρG to pγ(t)
� as follows:

∗ If θ = µ, then ργ(t)(pγ(t)
�) = MaxG ifMaxG is odd, and ργ(t)(pγ(t)

�) =
MaxG + 1 if MaxG is even.

∗ If θ = ν, then ργ(t)(pγ(t)
�)=MaxG if MaxG is even, and ργ(t)(pγ(t)

�)=
MaxG + 1 if MaxG is odd.

Let us emphasize that not every game G is of the form γ(t) for some t ∈ Lµ –
for example, the graph of positions and moves of γ(t) is a tree with back-edges
whose returns have a unique successor. It is often convenient to consider vectorial
versions of µ-calculi [2, §1.4.4, §2.7]. A vectorial µ-term can be understood as a
system of equations of form { xi =θi fi(xi,1, . . . , xi,ni) }i∈1,...,k with θi ∈ {µ, ν }.
The step that constructs a canonical solution of a system of equations by means
of scalar µ-terms is known as the Bekič principle [2, §1.4.2]. The principle implies
that the two alternatives of a µ-calculus, scalar or vectorial, are expressively
equivalent. Games in G correspond to terms of a vectorial version of the µ-
calculus Lµ: it should not be difficult for the reader to guess a translation from
systems of equations in the signature ",∧,⊥,∨ to games.

610 W. Belkhir and L. Santocanale

The preorder on G. In order to describe a preorder on the class G, we define
next a new game 〈G,H〉 for a pair of games G and H in G. This is not a parity
game with draws; to emphasize this fact, the two players are named Mediator
and Opponents instead of Eva and Adam.

Definition 2. The game 〈G,H〉 is defined as follows:

– The set of Mediator’s positions is
PosG

A × PosH
E,D ∪ PosG

A,D × PosH
E ∪ { (g, h) ∈ PosG

D × PosH
D | λG(g) �= λH(h) }

and the set of Opponents’ positions is PosG
E × PosH

E,A,D ∪ PosG
E,A,D × PosH

A

∪ { (g, h) ∈ PosG
D × PosH

D | λG(g) = λH(h) }
– Moves of 〈G,H〉 are either left moves (g, h) → (g′, h), where (g, g′) ∈ MG,

or right moves (g, h) → (g, h′), where (h, h′) ∈MH; however the Opponents
can play only with Eva on G or with Adam on H.

– A finite play is a loss for the player who can not move. An infinite play γ is
a win for Mediator if and only if its left projection πG(γ) is a win for Adam,
or its right projection πH(γ) is a win for Eva.

Definition 3. If G and H belong to G, then we declare that G ≤ H if Mediator
has a winning strategy in the game 〈G,H〉 starting from position (pG

� , p
H
�).

The following is the reason to consider such a syntactic relation:

Theorem 4 (See [17]). The relation ≤ is sound and complete with respect
to the interpretation in any complete lattice, i.e. γ(t1) ≤ γ(t2) if and only if
||t1||L ≤ ||t2||L holds in every complete lattice L.

In the sequel we shall write G ∼ H to mean that G ≤ H and H ≤ G; notice
that this coherently subsumes our previous usage of ∼. It was proved in [17] that
G ≤ G, by exhibiting the copycat strategy in the game 〈G,G〉: from a position
(g, g), it is Opponents’ turn to move either on the left or on the right board.
When they stop moving, Mediator will have the ability to copy all the moves
played by the Opponents so far to the opposite board until the play reaches the
position (g′, g′). There it was also proved that if G ≤ H andH ≤ K then G ≤ K,
a sort of cut-elimination Theorem. This result was achieved by describing a game
〈G,H,K〉 with the following properties: (i) given two winning strategies R on
〈G,H〉, and S on 〈H,K〉 there is a winning strategy R‖S on 〈G,H,K〉, that is
the composition of the strategies R and S, (ii) given a winning strategy T on
〈G,H,K〉, there exists a winning strategy T\H on 〈G,K〉.

Definition 5. Positions of the game 〈G,H,K〉 are triples (g, h, k) ∈ PosG
A,E,D ×

PosH
A,E,D × PosK

A,E,D such that

– the set of Mediator’s positions is
PosG

A × PosH
A,E,D × PosK

E,D ∪ PosG
A,D × PosH

A,E,D × PosK
E ∪ L(M),

and the set of Opponents’ positions is
PosG

E × PosH
A,E,D × PosK

E,A,D ∪ PosG
E,A,D × PosH

A,E,D × PosK
A ∪ L(O),

where L(M),L(O) ⊆ PosG
D × PosH

A,E,D × PosK
D are positions of Mediator and

The Variable Hierarchy for the Lattice µ-Calculus 611

Opponents, respectively, defined as follows. Whenever (g, h, k) ∈ PosG
D ×

PosH
A,E,D × PosK

D , then if h ∈ PosH
E,A, then the position (g, h, k) belongs to

Mediator, otherwise, i.e. h ∈ PosH
D , then the final position (g, h, k) belongs

to Opponents if and only if λG(g) = λH(h) = λK(k).
– Moves of 〈G,H,K〉 are either left moves (g, h, k) → (g′, h, k) where (g, g′) ∈
MG or central moves (g, h, k) → (g, h′, k), where (h, h′) ∈ MH, or right
moves (g, h, k) → (g, h, k′), where (k, k′) ∈MK ; however the Opponents can
play only with Eva on G or with Adam on K.

– As usual, a finite play is a loss for the player who cannot move. An infinite
play γ is a win for Mediators if and only if πG(γ) is a win for Adam on G,
or πK(γ) is a win for Eva on K.

3 Entanglement and �-Weak Simulations

In order to compute the minimum number of bound variables required in a
vectorial µ-term, a digraph measure called entanglement is needed. Its definition
is as follows: the entanglement of a digraph G is the minimum feedback of the
finite unravellings of G into a tree with back-edges. In [21], the entanglement of
G has been characterized by means of a game E(G, k), k = 0, . . . , |VG|, played
by Thief against Cops, a team of k cops.

Definition 6. The entanglement game E(G, k) of a digraph G is defined by:
– Its positions are of the form (v, C, P), where v ∈ VG, C ⊆ VG and |C| ≤ k,
P ∈ {Cops, Thief}.

– Initially Thief chooses v0 ∈ VG and moves to (v0, ∅, Cops).
– Cops can move from (v, C,Cops) to (v, C′, Thief) where C′ can be

• C : Cops skip,
• C ∪ { v } : Cops add a new Cop on the current position,
• (C \ { x }) ∪ { v } : Cops move a placed Cop to the current position.

– Thief can move from (v, C, Thief) to (v′, C, Cops) if (v, v′) ∈ EG and v′ /∈ C.
Every finite play is a win for Cops, and every infinite play is a win for Thief.

The following will constitute our working definition of entanglement: E(G), the
entanglement of G, is the minimum k ∈ { 0, . . . , |VG| } such that Cops have a
winning strategy in E(G, k).
The following proposition provides a useful variant of entanglement games.

Proposition 7. Let Ẽ(G, k) be the game played as the game E(G, k) apart that
Cops is allowed to retire a number of cops placed on the graph. Then Cops has a
winning strategy in E(G, k) if and only if he has a winning strategy in Ẽ(G, k).

A combinatorial refinement of the variable hierarchy problem. Along
this paper, when referring to the entanglement or to the feedback of a game
G ∈ G, we mean the entanglement of the its underlying graph, i.e. the of graph
of positions and moves. If we need to emphasize the distinction between a game
G and its underlying graph, then we shall use G to denote the latter. The aim

612 W. Belkhir and L. Santocanale

is now to argue that the variable hierarchy problem of Lµ resolves to a problem
on the entanglement of parity games with draws. Recall that nbr(t) denotes the
number of bound variables in t, and let us use fb(T) to denote the feedback of
a tree with back-edges T . The key observation is the following Lemma.

Lemma 8. If t ∈ Lµ, then nbr(t) ≥ fb(γ(t)) ≥ E(γ(t)). If G ∈ G and MaxG =
0, then there exists a µ-term t ∈ Lµ such that γ(t) ∼ G and nbr(t) = E(G).

We omit the proof for lack of space. Let us consider next the following classes:

LΣ1
n = {G ∈ G |MaxG = 0 and G ∼ H for some H ∈ G s.t. E(H) ≤ n } .

Let us suppose that n ≤ m and that G ∈ G is such that MaxG = 0, E(G) = m,
and G �∈ LΣ1

n . Then we can find t ∈ Lµ such that nbr(t) = m and γ(t) ∼ G.
If s ∼ t, then γ(s) ∼ G and hence nbr(s) ≥ E(γ(s)) > m. That is, for such a
t ∈ Lµ, we have t ∈ Tn \Tm. Thus, separating the classes LΣ1

n implies separation
of the classes Tn.

The �-weak simulation. We define in the following a relation between graphs,
called �-weak simulation, that shall be of use in comparing entanglements. In-
tuitively, there is a weak simulation of a graph G by H if every edge of G is
simulated by a non empty finite path of H . Observe now that, in such a situ-
ation, if the simulating paths do not intersect, except that in their endpoints,
then H contains a subgraph obtained from G by stretching edges into non empty
paths. This property implies the relation E(G) = E(H). However, for the weak
simulations that arise when considering a game H which is semantically equiva-
lent to a strongly synchronizing game G, see Section 4, only a weaker property
holds: if the simulating paths do intersect, then the edges being simulated inter-
sect in some of their endpoints. We call a weak simulation with this property a
�-weak simulation. The weaker property suffices to prove the comparison stated
at the end of this Section, Theorem 15.

Definition 9. A weak simulation (R, ς) of G by H is a binary relation R ⊆ VG ×
VH that comes with a partial function ς : VG × VG × VH −→ Π+(H), such that:
– R is surjective, i.e. for every g ∈ VG there exists h ∈ VH such that gRh,
– R is functional, i.e. if giRh for i = 1, 2, then g1 = g2,
– if gRh and g → g′, then ς(g, g′, h) is defined and g′Rh′, where h′ = δ1ς(g, g′, h).

Next we study conditions under which existence of a weak simulation of G by
H implies that E(G) is some lower bound of E(H). To this goal, let us abuse
of notation and write h ∈ ς(g, g′, h0) if ς(g, g′, h0) = h0h1 . . . hn and, for some
i ∈ { 0, . . . , n }, we have h = hi. If G = (VG, EG) is a directed graph then
its undirected version S(G) = (VG, ES(G)) is the undirected graph such that
{g, g′} ∈ ES(G) iff (g, g′) ∈ EG or (g′, g) ∈ EG. We say that G has girth at least
k if G does not contain loops, (g, g′) ∈ EG implies (g′, g) �∈ EG, and the shortest
cycle in S(G) has length at least k.

Definition 10. We say that a weak simulation (R, ς) of G by H is a �-weak sim-
ulation (or that it has the �-property) if G has girth at least 4, and if (g, g′), (g̃, g̃′)
are distinct edges of G and h ∈ ς(g, g′, h0), ς(g̃, g̃′, h̃0), then |{ g, g′, g̃, g̃′ }| = 3.

The Variable Hierarchy for the Lattice µ-Calculus 613

We explain next this property. Given (R, ς), consider the set C(h) = { (g, g′) ∈
EG | ∃h0 s.t. h ∈ ς(g, g′, h0) }.

Lemma 11. Let (R, ς) be a �-weak simulation of G by H. If C(h) is not empty,
then there exists an element c(h) ∈ VG such that for each (g, g′) ∈ C(h) either
c(h) = g or c(h) = g′. If moreover |C(h)| ≥ 2, then this element is unique.

That is, C(h) considered as an undirected graph, is a star. Since c(h) is unique
whenever |C(h)| ≥ 2, then c(h) is a partial function which is defined for all h
with |C(h)| ≥ 2. This allows to define a partial function f : VH −→ VG, which
is defined for every h for which C(h) �= ∅, as follows:

f(h) =

⎧⎪⎨⎪⎩
c(h), |C(h)| ≥ 2 ,
g, if C(h) = { (g, g′) } and h has no predecessor in H ,

g′, if C(h) = { (g, g′) } and h has a predecessor in H .

(2)

Let us remark that if h ∈ ς(g, g′, h0), then f(h) ∈ { g, g′ }. If gRh and h has no
predecessor, then f(h) = g. Also, if h′ is the target of ς(g, g′, h0) and g′ has a
successor, then f(h′) = g′.

Lemma 12. If (R, ς) is a �-weak simulation of G by H and ρ : K −→ H is an
unravelling of H, then there exists a �-weak simulation (R̃, ς̃) of G by K.

If H is a tree with back-edges, rooted at h0, then we say that a winning strategy
for Cops in the game E(H, k) from position (h0, ∅, Cops) is rigid if every time
Thief has to move from a position of form (v, C, Thief) then for every back-edge
(v, u) ∈ BH we have u ∈ C.

Lemma 13. Let H be a tree with back-edges, rooted at h0, of feedback k, then
Cops has a rigid winning strategy in E(H, k) from the position (h0, ∅, Cops).

Remark 14. Let us remark that, by using a rigid strategy, (i) every path cho-
sen by Thief in H is a tree path, (ii) if the position in E(H, k) is of the form
(h,C, Thief), and h′ �= h is in the subtree of h, then the unique tree path from
h to h′ does contain no cops, apart possibly for the vertex h.

We establish next the connection between �-weak simulations and entanglement.

Theorem 15. If (R, ς) is a �-weak simulation of G by H, then E(G) ≤ E(H)+2.

Proof. Let k = E(H). We shall define first a strategy for Cops in the game
Ẽ(G, k + 2). In a second time, we shall prove that this strategy is a winning
strategy for Cops.

Let us consider Thief’s first move in Ẽ(G, k+2). This move picks g ∈ G leading
to the position (g, ∅, Cops) of Ẽ(G, k+2). Cops answers by occupying the current
position, i.e. he moves to (g, { g }, Thief). After this move, Cops also chooses a
tree with back-edges of feedback k to which H unravel, π : T (H) −→ H , such
that the root h0 of T (H) satisfies gRπ(h0). We can also suppose that h0 is not

614 W. Belkhir and L. Santocanale

a return, thus it has no predecessor. According to Lemma 12 we can lift the
�-weak simulation (R, ς) to a �-weak simulation (R̃, ς̃) of G by T (H). In other
words, we can suppose from now on that H itself is a tree with back-edges of
feedback k rooted at h0 and, moreover, that gRh0.

From this point on, Cops uses a memory to choose how to place cops in the
game Ẽ(G, k + 2). To each Thief’s position (g, CG, Thief) in Ẽ(G, k + 2) we
associate a data structure (the memory) consisting of a triple M(g, C, Thief) =
(p, c, h), where c, h ∈ VH and p ∈ VH ∪{⊥} (we assume that ⊥ �∈ VH). Moreover
c is an ancestor of h in the tree and, if p �= ⊥, then p is an ancestor of c as well.

Intuitively, we are matching the play in Ẽ(G, k + 2) with a play in E(H, k),
started at the root h0 and played by Cops according to a rigid strategy, Lemma
13. Thus c is the vertex of H currently occupied by Thief in the game E(H, k).2

Instead of recalling all the play (that is, the history of all the positions played
so far), we need to record the last position played in E(H, k): this is p, which
is undefined when the play begins. Cops on G are positioned on the images of
Cops on H by the function f defined in (2). Moreover, Cops eagerly occupies the
last two vertices visited on G. Thief’s moves on G are going to be simulated by
sequences of Thief’s moves on H , using the �-weak simulation (R, ς). In order
to make this possible, a simulation of the form ς(g̃, g, h̃) must be halted before
its target h; the current position c is such halt-point. This implies that the
simulation of g → g′ by (R, ς) and the sequence of moves in H matching Thief’s
move on G are sligthly out of phase. To cope with that, Cops must guess in
advance what might happen in the rest of the simulation and this is why he puts
cops on the current and previous positions in G. We also need to record h, the
target of the previous simulation into the memory.

The previous considerations are formalized by requiring the following condi-
tions to hold. To make sense of them, let us say that f({ p }) = f(p) if p ∈ VH

and that f({ p }) = ∅ if p = ⊥. In the last two conditions we require that p �= ⊥.

• CG = f(CH(c)) ∪ f({ p }) ∪ { g } , (COPS)
• f(c) = g, and f(h′) ∈ f({ p }) ∪ { g }, if

h′ lies on the tree path from c to h , (TAIL)

• f(p) → g , f(p)Rh̃ for some h̃ ∈ VH , c ∈ ς(f(p), g, h̃),

and h is the target of ς(f(p), g, h̃) , (HEAD)
• on the tree path from p to c, c is the only vertex s.t. f(c) = g . (HALT)

Since h0 has no predecessors, then gRh0 implies f(h0) = g. Thus, at the
beginning, the memory is set to (⊥, h0, h0) and conditions (COPS) and (TAIL)
hold.

Consider now a Thief’s move of the form (g, CG, Thief) → (g′, CG, Cops),
where g′ �∈ CG. If g′ has no successor, then Cops simply skips, thus reaching a

2 More precisely we are associating to the position (g,CG, Thief) of E(G,k + 2) a
position (c, CH , Thief) in E(H,k), where CH is a superset of the set of returns that
are active in c, see Remark 14.

The Variable Hierarchy for the Lattice µ-Calculus 615

winning position. Let us assume that g′ has a successor, and write ς(g, g′, h) =
hh1 . . . hn, n ≥ 1; observe that f(hn) = g′. If for some i = 1, . . . , n hi is not in
the subtree of c, then the strategy halts, Cops abandons the game and looses.
Otherwise, all the path π = c . . . hh1 . . . hn lies in the subtree of c. By eliminating
cycles from π, we obtain a simple path σ, of source c and target hn, which entirely
lies in the subtree of c. By Lemma 1, σ is the tree path from c to hn. An explicit
description of σ is as follows: we can write σ as the compose σ0 � σ1, where the
target of σ0 and source of σ1 is the vertex of ς(g, g′, h) which is closest to the
root h0; moreover σ0 is a prefix of the tree path from c to h, and σ1 is a postfix
of the path ς(g, g′, h).

We cut σ as follows: we let c′ be the first vertex on this path such that
f(c′) = g′. Thief’s move g → g′ on G is therefore simulated by Thief’s moves
from c to c′ on H . This is possible since every vertex lies in the subtree of c and
thus it has not yet been explored. Cops consequently occupies the returns on
this path, thus modifying CH to C′

H = CH(c′) = (CH \X)� Y , where X ⊆ CH

and Y is a set of at most k vertexes containing the last returns visited on the
path from c to c′.

After the simulation onH , Cops moves to (g′, C′
G, Thief) in Ẽ(G, k+2), where

C′
G = f(C′

H) ∪ { g, g′ }. Let us verify that this is an allowed move according to
the rules of the game. We remark that f(Y) ⊆ f({ p }) ∪ { g, g′ } and therefore

C′
G = f(CH \X) ∪ f(Y) ∪ { g, g′ }

= (f(CH \X) ∪ (f(Y) \ { g′ }) ∪ { g }) ∪ { g′ } = A ∪ { g′ } ,

where A = f(CH \X)∪(f(Y)\{ g′ })∪{ g } ⊆ f(CH)∪f({ p })∪{ g } = CG. After
the simulation Cops also updates the memory to M(g′, C′

G, Thief) = (c, c′, hn).
Since f(c) = g, then condition (COPS) clearly holds. Also, f(c) = g → g′,
gRh and hn is the target of ς(f(c), g′, h). We have also that c′ ∈ σ1 and hence
c′ ∈ ς(f(c), g′, h), since otherwise c′ ∈ σ0 and f(c′) ∈ { f(p), g }, contradicting
f(c′) = g′ and the condition on the girth of G. Thus condition (HEAD) holds as
well. Also, condition (HALT) holds, since by construction c′ is the first vertex
on the tree path from c to h such that f(c′) = g′. Let us verify that condition
(TAIL) holds: by construction f(c′) = g′, and the path from c′ to hn is a postfix
of ς(g, g′, h), and hence f(h′) ∈ { g, g′ } if h′ lies on this tree path.

Let us now prove that the strategy is winning. If Cops never abandons, then
an infinite play in Ẽ(G, k + 2) would give rise to an infinite play in E(H, k), a
contradiction. Thus, let us prove that Cops will never abandon. To this goal we
need to argue that when Thief plays the move g → g′ on G, then the simulation
ς(g, g′, h) = hh1 . . . hn lies in the subtree of c. If this is not the case, let i be the
first index such that hi is not in the subtree of c. Therefore hi is a return and, by
the assumptions on H and on rigid strategy, hi ∈ CH(c). Since hi ∈ ς(g, g′, h),
f(hi) ∈ { g, g′ }. Observe, however that we cannot have f(hi) = g′, otherwise
g′ ∈ f(CH(c)) ⊆ CG. We deduce that f(hi) = g and that g ∈ f(CH) ⊆ CG.

Since CG �= ⊥, then (g, CG, Thief) is not the initial position of the play, so
that, if M(g, CG, Thief) = (p, c, h), then p �= ⊥. Let us now consider the last
two moves of the play before reaching position (g, CG, Thief). These are of the

616 W. Belkhir and L. Santocanale

form (f(p), C̃G, Thief) → (g, C̃G, Cops) → (g, CG, Thief), and have been played
according to this strategy. Since g �∈ C̃G, it follows that the Cop on hi has been
dropped on H during the previous round of the strategy, simulating the move
f(p) → g on G by the tree path from p to c. This is however in contradiction
with condition (HALT), stating that c is the only vertex h on the tree path from
p to c such that f(h) = c. �	

4 Strongly Synchronizing Games

In this section we define strongly synchronizing games, a generalization of syn-
chronizing games introduced in [5]. We shall show that, for every game H equiv-
alent to a strongly synchronizing game G, there is a �-weak simulation of G by
H . Let us say that G ∈ G is bipartite if MG ⊆ PosG

E×PosG
A,D ∪ PosG

A×PosG
E,D.

Definition 16. A game G is strongly synchronizing if it is bipartite, it has
girth strictly greater than 4 and, for every pair of positions g, k, the following
conditions hold:

1. if (G, g) ∼ (G, k) then g = k.
2. if (G, g) ≤ (G, k) and (G, k) �≤ (G, g), then k ∈ PosG

E and (k, g) ∈ MG, or
g ∈ PosG

A and (g, k) ∈MG.

A consequence of the previous definition is that the only winning strategy for
Mediator in the game 〈G,G〉 is the copycat strategy. Thus strongly synchronizing
games are synchronizing as defined in [5]. We list next some useful properties of
strongly synchronizing games.

Lemma 17. Let G be a strongly synchronizing and let (g, g′), (g̃, g̃′) ∈ MG be
distinct.

1. If (G, g) ∼ x̂ then g ∈ PosG
D and λ(g) = x.

2. If g, g̃ ∈ PosG
E and, for some game H and h ∈ PosH , we have

(G, g′) ≤ (H,h) ≤ (G, g) and (G, g̃′) ≤ (H,h) ≤ (G, g̃) ,
then g = g̃ or g′ = g̃′, and |{ g, g′, g̃, g̃′ }| = 3.

3. If g ∈ PosG
E and g̃ ∈ PosG

A and, for some H and h ∈ PosH , we have
(G, g′) ≤ (H,h) ≤ (G, g) and (G, g̃) ≤ (H,h) ≤ (G, g̃′) ,
then g = g̃′ or g′ = g̃, and |{ g, g′, g̃, g̃′ }| = 3.

We are ready to state the main result of this section.

Proposition 18. Let G be a strongly synchronizing game, and let H ∈ G be
such that G ≤ H ≤ G, then there is a �-weak simulation of G by H.

Proof. Let S, S′ be two winning strategies for Mediator in 〈G,H〉 and 〈H,G〉,
respectively. Let T = S||S′ be the composal strategy in 〈G,H,G〉. Say that gRh
if (g, h, g) is a position of T and g, h belong to the same player. We consider
first R and prove that it is functional and surjective. If giRh, i = 1, 2 then
(g1, h, g1) and (g2, h, g2) are positions of T , hence (G, g1) ≤ (H,h) ≤ (G, g1)
and (G, g2) ≤ (H,h) ≤ (G, g2), consequently (G, g1) ∼ (G, g2) implies g1 = g2,

The Variable Hierarchy for the Lattice µ-Calculus 617

by definition 16. For surjectivity, we can assume that (a) all the positions of G
are reachable from the initial position pG

� , (b) pG
� and pH

� belong to the same
player (by possibly adding to H a new initial position leading to the old one).
Since T\H is the copycat strategy, given g ∈ PosG

E,A,D, from the initial position
(pG

� , p
H
� , p

G
�) of 〈G,H,G〉, the Opponents have the ability to reach a position of

the form (g, h, g). The explicit construction of the function ς will show that h
can be chosen to belong to the same player as g.

We construct now the function ς so that (R, ς) is a weak simulation. If gRh
and (g, g′) ∈ MG, then we construct π = h, . . . , h′ such that g′Rh′. Since G is
bipartite, then h �= h′ and π is nonempty. We let ς(g, g′, h) be a reduction of π
to a nonempty simple path.

We assume (g, h) ∈ (PosG
E , Pos

H
E), the case (g, h) ∈ (PosG

A, Pos
H
A) is dual.

From position (g, h, g) it is Opponent’s turn to move on the left, they choose a
move (g, g′) ∈MG. Since G is bipartite, we have either g′ ∈ PosG

D or g′ ∈ PosG
A.

Case (i). If g′ ∈ PosG
D then the strategy T suggests playing a finite path on H ,

(g′, h, g) →∗ (g′, h∗, g), possibly of zero length, and then it will suggest to play on
the external right board. An infinite path played only on H cannot arise, since T
is a winning strategy and such an infinite path is not a win for Mediator. Since
T\H is the copycat strategy, T suggests the only move (g′, h∗, g) → (g′, h∗, g′).
From this position T suggests playing a path onH leading to a final draw position
hf ∈ PosH

D as follows (g′, h∗, g′) →∗ (g′, hf , g
′), such that λG(g′) = λH(hf),

therefore g′Rhf .
Case (ii). If g′ ∈ PosG

A then from position (g′, h, g) it is Mediator’s turn to
move. We claim that T will suggest playing a nonempty finite path (g′, h, g) →+

(g′, h′, g) on the central board H , where h′ ∈ PosH
A , and then suggests the move

(g′, h′, g) → (g′, h′, g′). Let h̃ ∈ PosH
A,E,D be such that the position (g′, h̃, g)

has been reached from (g′, h, g), through a (possibly empty) sequence of central
moves, by playing with T . Then T cannot suggest a move on the left board
(g′, h̃, g) → (g′′, h̃, g), since T\H is the copycat strategy. Also, if h̃ ∈ PosH

E ,
T cannot suggest a move on the right board (g′, h̃, g) → (g′, h̃, g̃). The reason
is that T = S||S′, and the position (h̃, g) of 〈H,G〉 does not allow a Media-
tor’s move on the right board. Thus a sequence of central moves on H is sug-
gested by T and, as mentioned above, this sequence cannot be infinite. We claim
that its endpoint h′ ∈ PosH

A . We already argued that h′ �∈ PosH
E , let us ar-

gue that h′ �∈ PosH
D . If this were the case, then strategy T suggests the only

move (g′, h′, g) → (g′, hn, g
′), hence (G, g′) ∼ (H,h′). By Lemma 17.1, we get

g′ ∈ PosG
D, contradicting g′ ∈ PosG

A.
This proves that (R, ς) is a weak simulation. We prove next that (R, ς) has

the �-property, thus assume that h∗ ∈ ς(g, g′, h0), ς(g̃, g̃′, h̃0). Let us suppose
first that g, g̃ ∈ PosH

E . By looking at the construction of these paths, we observe
that the two sequences of moves

(g, h0, g) → (g′, h0, g) →∗ (g′, h∗, g) →∗ (g′, hn, g) → (g′, hn, g
′) ,

(g̃, h̃0, g̃) → (g̃′, h̃0, g̃) →∗ (g̃′, h∗, g̃) →∗ (g̃′, h̃m, g̃) → (g̃′, h̃m, g̃
′) ,

618 W. Belkhir and L. Santocanale

may be played in the game 〈G,H,G〉, according to the winning strategy
T = S||S′. We have therefore that (G, g′) ≤ (H,h∗) ≤ (G, g) and (G, g̃′) ≤
(H,h∗) ≤ (G, g̃).3 Consequently |{ g, g′, g̃, g̃′ }| = 3, by Lemma 17.2. If g ∈ PosG

E

and g̃ ∈ PosG
A, a similar argument shows that the positions (g′, h∗, g) and

(g̃, h∗, g̃′) may be reached with T and hence (G, g′) ≤ (H,h∗) ≤ (G, g) and
(G, g̃) ≤ (H,h∗) ≤ (G, g̃′). Lemma 17.3 implies that |{ g, g′, g̃, g̃′ }| = 3. Finally,
the cases (g, g̃) ∈ { (PosG

A, Pos
G
A), (PosG

A, Pos
G
E) } are handled by duality. This

completes the proof of Proposition 18. �	

5 Construction of Strongly Synchronizing Games

In this section we complete the hierarchy theorem by constructing, for n ≥ 1,
strongly synchronizing games Gn such that E(Gn) = n. The game G2 appears in
Figure 1. The general definition of the game Gn is as follows. Let [n] denote the

v0,0,0��������
E

x0,0,0����������

v0,0,1������������
��

�

A
x0,0,1����������

v0,0,2����������

E
x0,0,2����������

v0,0,3����������

A
x0,0,3����������

v0,0,4����������

E
x0,0,4����������

v0,0,5����������

A
x0,0,5����������

v0,1,1�����������
��

��

A
x0,1,1����������

v0,1,2����������

E
x0,1,2����������

v0,1,3����������

A
x0,1,3����������

v0,1,4����������

E
x0,1,4����������

v0,1,5����������

A
x0,1,5����������

v1,0,0��������
E

x1,0,0����������

v1,0,1������������
��

�

A
x1,0,1�������� ��

v1,0,2����������

E
x1,0,2�������� ��

v1,0,3����������

A
x1,0,3�������� ��

v1,0,4����������

E
x1,0,4�������� ��

v1,0,5����������

A
x1,0,5�������� ��

v1,1,1�����������
��

��

A
x1,1,1����������

v1,1,2����������

E
x1,1,2����������

v1,1,3����������

A
x1,1,3����������

v1,1,4����������

E
x1,1,4����������

v1,1,5����������

A
x1,1,5����������

�� ���� ��

Fig. 1. The game G2

set { 0, . . . , n− 1 } and let In = { (i, j, k) ∈ [n]× [n]× [6] | k = 0 implies j = 0 }.
For P ∈ {E,P } and xP ∈ { 0, 1 } with xP = 0 iff P = E, let

PosGn

P = { vi,j,k | (i, j, k) ∈ In and kmod 2 = xP } , PosGn

D = {wy | y ∈ In } .

Let X = { xi,j,k | i, j ≥ 0, k ∈ [n] } be a countable set of variables, the labelling of
draw positions, λGn : PosGn

D −→ X , sends wi,j,k to xi,j,k. The movesMGn either

3 Similar inequalites may be derived even if h∗ ∈ PosH
D . In this case the moves in the

central board may be interleaved with the move on the right board.

The Variable Hierarchy for the Lattice µ-Calculus 619

lie on some cycle, vi,0,0 → vi,j,1, vi,j,k → vi,j,k+1, k = 1, . . . , 4, vi,j,5 → vj,0,0 or
lead to draw positions, vi,j,k → wi,j,k. Finally, the priority function ρGn assigns
a zero priority to all positions.

Proposition 19. The games Gn are strongly synchronizing and E(Gn) = n.

We are now ready to state the main achievement of this paper.

Theorem 20. For n ≥ 3, the inclusions Ln−3 ⊆ Ln are strict. Therefore the
variable hierarchy for the lattice µ-calculus is infinite.

By the previous Proposition the game Gn ∈ Ln. Also, since Gn is strongly
synchronizing, if H ∼ Gn, then there exists a �-weak simulation of Gn by H . It
follows by Theorem 15 that n− 2 ≤ E(H). Therefore Gn �∈ Ln−3.

References

1. Bloom, S.L., Ésik, Z.: Iteration theories. EATCS Monographs on Theoretical Com-
puter Science. Springer, Berlin (1993)

2. Arnold, A., Niwiński, D.: Rudiments of µ-calculus. Studies in Logic and the Foun-
dations of Mathematics, vol. 146. North-Holland, Amsterdam (2001)

3. Bradfield, J.C.: The modal mu-calculus alternation hierarchy is strict. Theor. Com-
put. Sci. 195(2), 133–153 (1998)

4. Arnold, A.: The µ-calculus alternation-depth hierarchy is strict on binary trees.
Theor. Inform. Appl. 33(4-5), 329–339 (1999)

5. Santocanale, L.: The alternation hierarchy for the theory of µ-lattices. Theory
Appl. Categ. 9, 166–197 (2002)

6. Santocanale, L., Arnold, A.: Ambiguous classes in µ-calculi hierarchies. Theor.
Comput. Sci. 333(1-2), 265–296 (2005)

7. Eggan, L.C.: Transition graphs and the star-height of regular events. Mich. Math.
J. 10, 385–397 (1963)

8. Braquelaire, J.P., Courcelle, B.: The solutions of two star-height problems for reg-
ular trees. Theor. Comput. Sci. 30(2), 205–239 (1984)

9. Berwanger, D., Grädel, E., Lenzi, G.: The variable hierarchy of the µ-calculus is
strict. Theory Comput. Syst. 40(4), 437–466 (2007)

10. Blass, A.: A game semantics for linear logic. Ann. Pure Appl. Logic 56(1-3), 183–
220 (1992)

11. Nerode, A., Yakhnis, A., Yakhnis, V.: Concurrent programs as strategies in games.
In: Moschovakis, Y.N. (ed.) Logic from Computer Science, pp. 405–479. Springer,
Heidelberg (1992)

12. Abramsky, S., Jagadeesan, R.: Games and full completeness for multiplicative lin-
ear logic. J. Symb. Logic 59(2), 543–574 (1994)

13. Joyal, A.: Free lattices, communication and money games. In: Logic and scientific
methods. Synthese Lib, vol. 259, pp. 29–68. Kluwer Acad. Publ., Dordrecht (1997)

14. Freese, R.: Free lattices. Math. Surveys and Monographs. vol. 42, AMS (1995)
15. Joyal, A.: Free bicomplete categories. C. R. Math. Canada 17(5), 219–224 (1995)
16. Cockett, J.R.B., et al.: Finite sum-product logic. Theory Appl. Categ. 8, 63–99

(2001)
17. Santocanale, L.: Free µ-lattices. Jour. of Pure and Applied Algebra 168(2-3), 227–

264 (2002)

620 W. Belkhir and L. Santocanale

18. Santocanale, L.: A calculus of circular proofs and its categorical semantics. In:
Nielsen, M., Engberg, U. (eds.) FOSSACS 2002. LNCS, vol. 2303, pp. 357–371.
Springer, Heidelberg (2002)

19. Arnold, A., Santocanale, L.: Ambiguous classes in the games mgr-calculus hierar-
chy. In: Gordon, A.D. (ed.) FOSSACS 2003. LNCS, vol. 2620, pp. 70–86. Springer,
Heidelberg (2003)

20. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific J.
Math. 5, 285–309 (1955)

21. Berwanger, D., Grädel, E.: Entanglement – A measure for the complexity of di-
rected graphs with applications to logic and games. In: Baader, F., Voronkov, A.
(eds.) LPAR 2004. LNCS, vol. 3452, pp. 209–223. Springer, Heidelberg (2005)

A Formalised Lower Bound on
Undirected Graph Reachability

Ulrich Schöpp

Insititut für Informatik
Ludwig-Maximilians-Universität München

Oettingenstraße 67, D-80538 München, Germany

Abstract. We study the expressivity of Jumping Automata on Graphs (JAGs), an
idealised model of computation with logarithmic space. JAGs operate on graphs
by using finite control and a constant number of pebbles. In this paper we revisit
the proof of Cook & Rackoff that JAGs cannot decide s-t-reachability in undi-
rected graphs. Cook & Rackoff prove this result by constructing, for any given
JAG, a finite graph that cannot be traversed exhaustively by the JAG. We gen-
eralise this result from the graphs constructed by Cook & Rackoff to a general
class of group action graphs. We establish a bound on the number of nodes that
a JAG can visit on such action graphs. This generalisation allows us to strengthen
the result of Cook & Rackoff to the existence of a graph of small degree whose
diameter (rather than its number of nodes) is larger than the number of nodes
the JAG can visit. The main result has been formalised in the theorem prover Coq,
using Gonthier’s tactic language SSREFLECT.

1 Introduction

Many LOGSPACE-algorithms can be viewed as taking some structured input, e.g. a
graph, on which they operate by means of a constant number of pointers, e.g. to the
nodes of the graph. Describing LOGSPACE-algorithms as such pointer programs is not
only usually easier than working directly with Turing Machines, it is also useful for
studying the nature of computation with logarithmic space. With current techniques
only very few results can be proven about what cannot be done in logarithmic space.
Computation models of idealised pointer algorithms are more accessible and may serve
as a starting point for obtaining insight into the general problem.

A classic example of a class of pointer algorithms introduced for this purpose are the
Jumping Automata on Graphs (JAGs) of Cook & Rackoff [1]. JAGs operate on graphs
with a local ordering, which means that the outgoing edges of each node are numbered
consecutively starting from 1. A JAG is an automaton with finite control that can place a
constant number of pebbles on the input graph. In each step the automaton may observe
the incidence relation of the pebbles, i.e. it can tell which of its pebbles happen to lie
on the same graph node. Using this information it may then change its state and move
a pebble of its choice along a graph edge (identified by a number) or jump it to the
location of another pebble.

With these operations, JAGs capture a minimal core of what one would expect pointer
programs to be able to do. Although JAGs do not capture all reasonable pointer

I. Cervesato, H. Veith, and A. Voronkov (Eds.): LPAR 2008, LNCS 5330, pp. 621–635, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

622 U. Schöpp

programs, a good knowledge of their properties should be helpful in analysing the ex-
pressivity of extensions that capture larger classes of pointer programs. For example,
JAGs lack the ability to decide if all nodes of the input graph have some property, since
they cannot reach an isolated component of the input graph if the start configuration
does not place a pebble on it. One way of removing this unnatural limitation is to study
extensions of JAGs with universal iteration, where it is possible for the machine to iterate
with one pebble over all graph nodes. Deterministic Transitive Closure (DTC) logic on
locally ordered graphs features first-order quantifiers and may be viewed as an extension
of JAGs of this kind. Since the computation of an extended JAG with universal iteration
amounts to a sequence of ordinary JAG-computations interrupted by iteration-jumps,
we believe that a good knowledge of ordinary JAG-computations should be helpful in
analysing the expressivity of the extended JAG-model.

One interesting problem to consider when studying the expressivity of idealised com-
putation models for deterministic LOGSPACE is that of s-t-reachability in undirected
graphs. Reingold has recently shown that this problem can be solved in logarithmic
space [10]. His algorithm may be expressed as a pointer program that has access to a
constant number of counting registers of logarithmic size [9]. However, many models
of pointer programs that have been studied before do not feature such counting registers
and are not able to encode them by pointer arithmetic. Examples of such models include
the above-mentioned JAGs and DTC-logic on locally ordered graphs. Indeed, it has been
shown by Cook & Rackoff [1] that JAGs cannot decide undirected reachability. For
DTC-logic it is not known if undirected reachability for locally ordered graphs can be
expressed, but Etessami & Immerman [2] have shown that the result of Cook & Rackoff
can be used to obtain a partial negative result. This evidence raises the interesting ques-
tion if counting registers are necessary for pointer programs to decide s-t-reachability
in undirected graphs.

The study of this question has led us to revisit the proof of Cook & Rackoff that JAGs
cannot decide reachability in undirected graphs. Cook & Rackoff obtain this result by
constructing, for any JAG J , a graph that has more nodes than J can visit. In this paper
we show that this proof can be generalised to yield the stronger result that there exists a
graph whose diameter is larger than the number of nodes that J can visit. We formulate
this result in a general way, so that it can be used for other graphs, without having to
adapt the proof again. We expect the strengthening of Cook & Rackoff’s result to be
useful for analysing the expressivity of a JAG-model with universal iteration.

One of the main contributions of this paper is the formalisation of the main result
in the theorem prover Coq, thus giving the highest confidence in the correctness of
Cook & Rackoff’s proof and the generalisation we make in this paper. We discuss the
formalisation after presenting the proof that has been formalised.

2 Outline

We start with an informal outline of Cook & Rackoff’s proof leading us to the general-
isations in this paper.

Cook & Rackoff study the behaviour of JAGs on the d-dimensional torus of side-
length m. The nodes of this graph are d-tuples of numbers from 0 to m − 1. To define

A Formalised Lower Bound on Undirected Graph Reachability 623

the edges, define an addition on nodes by pointwise addition modulo m and for each
i ∈ {1, . . . , d} define gi to be the vector having the number 1 in the i-th component
and 0 elsewhere. Then, for each i, there is an undirected edge between x and x+ gi.

The reason for studying these graphs is their cyclicity in all directions. If the pebble-
moves of a JAG become periodic after a certain amount of time then, by the cyclic nature
of the graph, there will be a repeat of pebble configurations not long after. The aim is
now to show that for any JAG J we can choose m and d large enough, so that a repeat
of configurations appears before J has had the time to visit all graph nodes. The key to
doing this is to derive a good upper bound on the time the moves of J become periodic.

A bound on the time the pebble moves of a JAG J become periodic can be obtained
by showing that J can only behave in a limited number of ways. The behaviour of J
from a certain starting configuration is the sequence of moves it makes together with the
states it assumes. If any computation is longer than the number of possible behaviours
then two configurations from which J behaves the same must appear in the sequence,
so that the pebble moves between those configurations will be repeated periodically.

To analyse in how many different ways a JAG may behave, it is useful to introduce
a notion of extended state. Since we must analyse the behaviour of any JAG, we do not
know, in general, what information the JAG stores in its state. To be able to say some-
thing about all machines, we study what information a machine could maximally obtain
about the graph and the position of the pebbles. To see what a JAG could learn about
the torus, notice first that the neighbourhoods of all nodes in this graph are isomorphic.
Hence, the only thing a JAG J can learn about this graph is the relative position of peb-
bles. At the start of the computation J knows only which pebbles lie on the same node,
but otherwise has no information about their relative positions. During the course of the
computation, the JAG could now (if it had enough states) keep track of the relative dis-
tance of any two pebbles that did coincide on the same node at some point earlier in the
computation. For any two pebbles the relative distance can be described as a d-vector z,
such that if x and y are the positions of the pebbles then x = y+z holds. In each step of
the JAG, the known pebble distances can be updated according to the move, for example
by adding gi in the case of a pebble move along edge i.

We call the extended state the state of the JAG together with the maximal information
of relative pebble distances recorded as just outlined. An important property of extended
states is that many pebble-collisions can be predicted from it. If the distance of two
pebbles is known in an extended state, then one can tell by looking at the extended state
whether or not they will collide in the next computation step. Unexpected collisions may
only happen in edge moves and only between pebbles whose distance is not already
known. After such a collision the distance of the colliding pebble becomes known.
Cook & Rackoff call this event a coalition, since if we consider the equivalence relation
on pebbles of “having known distance,” two equivalence classes are united at this point.
If P denotes the set of pebbles of the JAG then in each computation sequence there
can appear only |P | coalitions, as an equivalence relation on P can have at most |P |
equivalence classes. Notice furthermore that in steps with a coalition, the extended state
after the step is determined by the previous extended state together with the information
which pebbles collided unexpectedly. In all other steps, the new extended state after the
step is completely determined by the extended state before the step.

624 U. Schöpp

The bounds on the number of possible different behaviours of a JAG can now be es-
tablished by induction on the number of coalitions. In computations without any coali-
tion, the behaviour of the JAG is uniquely determined by the extended state at the start
of the computation. A bound can then be given easily. It depends only on the number
of states and pebbles of the JAG. For the induction step, consider the behaviour of a
JAG in computation sequences with up to k+ 1 coalitions. By induction hypothesis, we
know how many behaviours there are in computations with at most k coalitions. Now
it is not hard to show that a JAG behaves the same in two computations with (k + 1)
coalitions if in both computations it behaves the same before the (k+ 1)-th coalition, if
the (k + 1)-th coalition appears at the same time in both computations, and if the same
pebbles collide in these two coalitions. Because of this observation and the induction
hypothesis, we can give a bound on the number of possible behaviours of the JAG, pro-
vided we can find an upper bound on the time when a (k + 1)-th coalition occurs. This
can be done as follows. A (k + 1)-th coalition can only appear if the computation has
not gone into a loop before reaching it. Using the cyclicity of the torus and the induc-
tion hypothesis, we can get a bound on the number of different configurations that may
appear in any computation sequence with up to k coalitions. This bound may be used to
find an upper bound on the length of computation sequences that have neither reached
a loop nor a (k + 1)-th coalition. This then allows one to give an upper bound on the
time of a (k + 1)-th coalition and therefore can be used to give a bound on the number
of possible behaviours of the JAG in computations with at most (k + 1) coalitions.

The result one obtains from this estimation is that there exists a constant c such that
any JAG with |P | pebbles and |Q| states can visit at most (|Q|m)c|P |

nodes in the d-
dimensional torus of side-lengthm. If we choose d > 2c|P | andm = |Q| then any such
machine can visit at most (|Q|m)c|P |

= m2c|P |
< md nodes. Since the torus has md

nodes, the machine can therefore not traverse it exhaustively.
Examination of this proof shows that only a few properties of the d-dimensional torus

of side-lengthm are used in it: (i) the neighbourhoods of all nodes are isomorphic; (ii)
by recording the distance of two pebbles, one can predict when two pebbles with known
distance will collide; and (iii) the graph has exponentm, meaning that if we repeat the
same edge movesm times then we return to the place we started from.

Based on this observation, we generalise the proof of Cook & Rackoff to a class of
action graphs that have these three properties. We show that this generalisation allows
us to strengthen the result of Cook & Rackoff to the existence of a graph in which
the JAG can visit less nodes than the diameter of the graph, rather than its number
of nodes.

3 Action Graphs

Action graphs are given by a node set with a group action. We write groups multiplica-
tively and write eD or just e for the unit element of group D. The exponent of a group
D is the smallest number m such that xm = eD holds for all x ∈ D. An action ,
of a group D on a set V is a function , : V × D → V satisfying v , eD = v and
v , (x · y) = (v , x) , y for all v ∈ V and x, y ∈ D. A group action , is free if
v , x = v implies x = eD for all v ∈ V and x ∈ D.

A Formalised Lower Bound on Undirected Graph Reachability 625

Definition 1. Let V be a finite set of nodes,D be a finite group with elements g1, . . . , gd,
and , be a group action of D on V . Then the action graphG(V,D,(g,,) is the locally
ordered graph with node set V , in which the i-th edge from v goes to v , gi for all
v ∈ V and i ∈ {1, . . . , d}. This action graph is a free action graph if the group action
is free. We say that this graph has exponent m if the group D does.

We work with free action graphs in order to satisfy requirements (i) and (ii) above.
In such graphs any two nodes look the same, i.e. have the same isomorphism type, so
that (i) is satisfied. For (ii) we note that we can use group elements to keep track of
pebble distances: a group element x represents the distance of pebble locations v and w
if w = v , x holds. We can then predict pebble collisions from known distances, since
if x represents the distance of v and w then we have v = w if and only if x = e. Finally,
to satisfy (iii) we will consider action graphs of (small) exponentm.

An important example of free action graphs are Cayley graphs. The Cayley graph
C(D,(g) of the group D with respect to the group elements (g is the free action graph
G(D,D,(g, ·), where · is the group multiplication. Any free action graphG(V,D,(g,,)
is in fact the disjoint union of one or more copies of the Cayley graph C(D,(g).

Example 2. For all m, d > 0, the d-dimensional torus of side-length m is the Cayley
graphGm,d = C(Dm,d, g1, . . . , g2d), whereDm,d is the commutative group (Z/mZ)d

of d-tuples of the cyclic group of order m with pointwise addition, and the vectors
g1, . . . , g2d are defined such that for any i ∈ {1, . . . , d} we have gi = −gi+d and the
tuple gi has a 1 in the i-th position and 0s elsewhere. We use additive notation for the
groupDm,d.

The graph Gm,d is undirected, since for any edge from v to v + gi there is also an
edge from v + gi to v + gi − gi = v. This graph Gm,d has degree 2d and exponentm.
It has md nodes and its diameter is at most md. �	

Having defined action graphs, we can now state the main result we aim to show in this
paper in the following proposition.

Proposition 3. There exists a constant c, such that, for any free action graph G with
exponentm and any JAG J with |Q| states and |P | pebbles, the number of nodes that J

can visit from any start configuration on G is at most (m|Q|)c|P |
.

We prove this proposition in the next section. In the rest of the present section, we
discuss how it generalises the result of Cook & Rackoff by instantiating it with different
free action graphs.

With the family of graphsGm,d, the proposition is just the result of Cook & Rackoff.
If d > 2c|P | and m = |Q| then no JAG J with |P | pebbles and |Q| states can visit all
nodes in Gm,d. We note that the degree 2d depends only on the number of pebbles and
not on the number of states. This is important, for example for proving the corollary
that no JAG can decide reachability of graphs of degree three [1].

One motivation for generalising the result of Cook & Rackoff was to construct graphs
of small degree, in which the number of nodes a JAG can visit is not only smaller than
the number of nodes in the graph, but also than the length of the shortest path between
certain two nodes. The degree of these graphs should again depend only on the number

626 U. Schöpp

of pebbles. This rules out the graphs defined by Cook & Rackoff. We next construct a
family of graphs Hm,d with the desired property.

The undirected graph Hm,d can be understood as arising from Gm,md by replacing
each node with a copy of Gm,d. This is illustrated for m = d = 2 in the figure depict-
ing G2,22 and H2,2 below. With this definition,Hm,d has a large diameter like Gm,md ,
but unlike Gm,md the degree of Hm,d exceeds that of Gm,d only by two.

Formally,Hm,d has node set (Z/mZ)Vm,d ×Vm,d, where Vm,d is the node set ofGm,d.
There are edges between 〈f, x〉 and 〈f, x + gi〉 for all i ∈ {1, . . . , d} and also edges
between 〈f, x〉 and 〈(λi. if i = x then f(i) + 1 else f(i)) , x〉. Notice how in the last
edge, the second component of the pair acts as an address for the increment.

The graph Hm,d may be described as the Cayley graph of a wreath product. We
recall (a special case of) this concept here. Let A and B be groups. The wreath product
A 9 B is a group with carrier set BA × A, where BA denotes the set of all functions
from the carrier set of A to that of B. The multiplication is defined by

〈f, x〉 · 〈g, y〉 = 〈λi. f(i) · g(x−1 · i), x · y〉.

If gA
1 , . . . , g

A
n and gB

1 , . . . , g
B
m are generators of the groups A and B respectively, then

{〈λi. eB, g
A
i 〉 | 1 ≤ i ≤ n} ∪ {〈λi. if i = eA then gB

j else eB, eA〉 | 1 ≤ j ≤ m} is
a set of generators for A 9B. Furthermore, if A has exponentmA, B has exponentmB

and B is commutative then A 9B has exponentmA ·mB .

Example 4. For positive natural numbers m and d define the free action graph Hm,d

to be the Cayley graph on the group Dm,d 9 (Z/mZ) with respect to the elements
g1, . . . , g2(d+1) defined as follows. For the elements g1, . . . , gd+1 take generators of
Dm,d 9 (Z/mZ), obtained from those of Dm,d and Z/mZ as described above. The rest
of the elements are defined by gi+(d+1) = g−1

i for all i ∈ {1, . . . , d+ 1}.
The choice of (g as a list of generators that is closed under inverses makes Hm,d a

connected undirected graph. Its exponent exponent is m2. The diameter of Hm,d is at
least md, since for all nodes x and all i ∈ {1, . . . , d + 1} the nodes x and x , gi are
vectors that differ in at most one component, so that a path from 〈λi. 0, 0〉 to 〈λi. 1, 1〉
must have length at least md. �	

Using Prop. 3 we now get that any JAG J with |P | pebbles and |Q| states can visit

only (m2|Q|)c|P |
nodes in Hm,d. By choosing d > 3c|P | and m = |Q|, we get that J

can visit (m2|Q|)c|P |
= m3c|P |

< md nodes in Hm,d. But the diameter of Hm,d is at
least md, so that its diameter is greater than the number of nodes J can visit in it.

We note that one can further widen the gap between the nodes that J can visit and
the diameter of the graph by iterating the construction of Hm,d from Gm,d, that is by
studying the Cayley graph for the wreath product ((Dm,d 9 (Z/mZ)) 9 (Z/mZ) etc.

A Formalised Lower Bound on Undirected Graph Reachability 627

4 Reachability

In this section we give a proof of Prop. 3, which we have formalised in Coq. We start
by giving a proper definition of Jumping Automata on Graphs.

Definition 5 (Jumping Automaton on Graphs). A jumping automaton on graphs is
a triple (Q,P, δ) consisting of a finite set Q of states, a finite set P of pebbles and
a function δ : Q × ΣP → Q × MP , where the set ΣP of observations is the set of
equivalence relations on P and MP := (P × P) ∪ (P × N) is the set of moves.

Thus a JAG is a finite state machine that in each step obtains an input of type ΣP and
makes an output of type MP . The input in ΣP is intended to contain the information
which two pebbles lie on the same graph node. The intention for the moves is such
that a move 〈x, y〉 ∈ P × P represents the jump of pebble y to x and a move 〈x, i〉 ∈
P × N represents the move of pebble x along edge number i. We use the suggestive
notation [x:=y] and [x:=succi(x)] for the two kinds of moves.

Concretely, a JAG can operate on a (ΣP ,MP)-state space.

Definition 6 (State Space). A (Σ,M)-state space (S, [−], ·) consists of a state set S,
an observation function [−] : S → Σ and a move function (−) · (−) : S ×M → S.

We introduce the notion of state space not with the aim of generalising JAGs, but in
order to make it clear which properties depend on the concrete construction of the state
space. In the end, we are only interested in state spaces generated by graphs.

A locally ordered graph G with vertex set V gives rise to a (ΣP ,MP)-state space
SP (G) whose state set consists of all functions ρ ∈ P → V that place the pebbles
on the graph nodes. The observation function [−] maps a function ρ to the equivalence
relation [ρ] ∈ ΣP defined by 〈x, y〉 ∈ [ρ] ⇐⇒ ρ(x) = ρ(y). Thus, that a JAG can
see whether or not any two pebbles lie on the same graph node. The move function
(−) · (−) formalises pebble jumps and edge moves in the evident way.

A configuration of a JAG J = (Q,P, δ) on a state space (S, [−], ·) is a pair 〈q, ρ〉 ∈
Q× S of a machine state q ∈ Q and an external state ρ ∈ S. Write Conf J,S for the set
of configurations. The transition relation −→J,S on configurations is the least relation
such that δ(q, [ρ]) = 〈q′,m〉 implies 〈q, ρ〉 −→J,S 〈q′, ρ · m〉. Write −→∗

J,S for the
reflexive transitive closure of −→J,S . Since −→J,S is a deterministic relation, we have,
for any configuration C, a unique configuration that is reached from C in k steps. We
write C(k) for it.

4.1 Abstraction

We now work towards the proof of Prop. 3, which in its essence is that of Cook &
Rackoff [1]. In this section, we define a framework for stating abstractly the properties
that are needed in this proof.

As outlined in Sect. 2, the proof of Prop. 3 goes by giving a bound on the time
when the moves of a JAG become periodic and showing that on a free action graph such
a periodicity must soon lead to a configuration of the JAG being repeated. To give a
bound on when the moves of a JAG become periodic, we formalise what a JAG could
possibly learn about the positions of its pebbles on a free action graph. We capture this
using the notion of abstraction that we introduce next.

628 U. Schöpp

Definition 7. An abstraction of a (Σ,M)-space (S, [−], ·) is a set X together with
functions init : S → X , ω0 : X ×M → X and ω1 : X ×M ×Σ → X and relations
� ⊆ X × S and predictable ⊆ X ×M ×Σ, such that for all ρ, ρ′ ∈ S, ξ ∈ X and
m ∈M the following properties all hold:

1. init(ρ) � ρ.
2. ξ � ρ implies ω1(ξ,m, [ρ ·m]) � ρ ·m.
3. ξ � ρ and 〈ξ,m, [ρ ·m]〉 ∈ predictable implies ω1(ξ,m, [ρ ·m]) = ω0(ξ,m).
4. ξ � ρ and ξ � ρ′ implies [ρ] = [ρ′].

We think of the elements of X as the abstract knowledge that may be obtained about
configurations. The statement ξ � ρ expresses that the abstract knowledge ξ is consis-
tent with configuration ρ. The value init(ρ) represents the abstract knowledge that can
be read off directly from ρ without any knowledge on the history of the computation.

There are two step functions ω0 and ω1 in order to distinguish between predictable
and non-predictable steps. In a predictable step, the successor abstract state depends
only on the previous abstract state and the move, while a non-predictable step may
further depend on the observation in the state-space after the move. This reflects the
distinction in Cook & Rackoff’s proof between steps without a coalition and those with
a coalition. When no coalition occurs then one can determine the known distances after
the step from those before the step, while in the event of a coalition, one additionally
needs to know which pebbles collided unexpectedly.

Extremal examples of abstractions can be obtained by letting X = Σ and X = S,
where in the former case no step is predictable, while in the latter all are.

For a JAG J = (Q,P, δ) and an abstractionX for state-space S, we define extended
configurations to be configurations together with an abstract value of the state. The set
of extended configurations is given by Conf J,S(X) = {〈q, ρ, ξ〉 ∈ Q×S×X | ξ � ρ}.

The transition relation of the JAG J can now be partitioned into predictable and non-
predictable steps, as given by the two rules below.

δ(q, [ρ]) = 〈q′,m〉 〈ξ,m, [ρ ·m]〉 ∈ predictable
(PREDICTABLE)

〈q, ρ, ξ〉 =−→J,S 〈q′, ρ ·m, ω0(ξ,m)〉

δ(q, [ρ]) = 〈q′,m〉 〈ξ,m, [ρ ·m]〉 �∈ predictable
(NON-PREDICTABLE)

〈q, ρ, ξ〉 >−→J,S 〈q′, ρ ·m, ω1(ξ,m, [ρ ·m])〉

Clearly, both E
=−→ F and E

>−→ F imply πCE −→ πCF , where we write πCE for
the projection from an extended configuration to the ordinary configuration it contains.
We also write πQE ∈ Q, πSE ∈ S and πXE ∈ X for the evident projections.

In the rest of this paper we use the equivalence relations :QX and :QΣ on extended
configurations defined by:

E :QX F ⇐⇒ πQE = πQF ∧ πXE = πXF

E :QΣ F ⇐⇒ πQE = πQF ∧ [πSE] = [πSF]

Note that we have :QΣ ⊆ :QX by item 4 in Def. 7. Furthermore, if E :QΣ F
holds then the machine J will make the same moves from these two configurations,
i.e. δ(πQE, [πSE]) = δ(πQF, [πSF]).

A Formalised Lower Bound on Undirected Graph Reachability 629

Lemma 8 (Determinacy of abstract values)

1. If E :QX F , E
=−→ E′ and F

=−→ F ′ hold, then so does E′ :QX F ′.

2. If E :QX F , E
>−→ E′, F

>−→ F ′ and [πSE
′] = [πSF

′], then also E′ :QX F ′.

4.2 Reachability

In this section we prove Prop. 3. Fix a free action graph G = G(V,D, g1, . . . , gn,,)
with exponentm and a JAG J = (Q,P, δ). We omit subscripts J , P , G where possible.

First we define the instance of an abstraction that formalises the ‘maximum possible
knowledge’ a JAG can obtain about a free action graph, as outlined above. The following
lemma contains all the properties that we need of it.

Lemma 9. There exists an abstraction X of the state-space S(G) such that:

1. The function init : S(G) → X can be written as the composition of two functions
init1 : S(G) → Σ and init2 : Σ → X .

2. There exists a function [−] : X → Eq(P), such that if ξ � ρ, ξ′ � ρ and [ξ] = [ξ′]
all hold then so does ξ = ξ′.

3. There exists a measure function µ : Conf (X) → {1, . . . , |P |} satisfying the fol-
lowing three properties for all E,F ∈ Conf (X), C ∈ Conf , k ∈ N and ξ ∈ X .
(a) E

=−→S(G) F implies µ(F) = µ(E).
(b) E

>−→S(G) F implies µ(F) = µ(E) − 1.
(c) µ (〈C, init(πSC)〉(k)) ≥ µ (〈C, ξ〉(k)).

Proof. The abstraction X is the set of partial functions P × P ⇀ D whose domain
is an equivalence relation. The functions describe partial knowledge about the relative
displacement of any two pebbles. This is formalised by the relation �:

ξ � ρ ⇐⇒ ∀x, y ∈ P. (ξ(x, y) �= ⊥ =⇒ ρ(y) = ρ(x) , ξ(x, y))
∧ (ρ(x) = ρ(y) ∈ V =⇒ ξ(x, y) = eD)

The functions ω0 and ω1 return the updated knowledge of the relative distances af-
ter a move. The two functions ω0 and ω1 differ only in their handling of edge moves
[x:=succi(x)]. In an edge move, it is possible that two pebbles collide whose relative
distance is not yet known. In the function ω0 it is assumed that such a collision does not
happen, while ω1 handles this possibility. Note that in order to tell whether a collision
has occurred, it is necessary to observe the state-space after the move. Hence, collisions
can only be accounted for in ω1.

The function ω0 is defined by the equations below, which hold for all ξ ∈ X , x, y ∈
P , u, v ∈ P \{x} and i ∈ N, and in which we let gi := eD if i exceeds the degree ofG.

ω0 (ξ, [x:=y]) (x, x) = eD ω0 (ξ, [x:=succi(x)]) (x, x) = eD

ω0 (ξ, [x:=y]) (x, v) = ξ(y, v) ω0 (ξ, [x:=succi(x)]) (x, v) = g−1
i · ξ(x, v)

ω0 (ξ, [x:=y]) (u, x) = ξ(u, y) ω0 (ξ, [x:=succi(x)]) (u, x) = ξ(u, x) · gi

ω0 (ξ, [x:=y]) (u, v) = ξ(u, v) ω0 (ξ, [x:=succi(x)]) (u, v) = ξ(u, v)

630 U. Schöpp

Here, we follow the convention that any expression containing an undefined subexpres-
sion is itself undefined. We omit the definition of ω1, which extends that of ω0 by a
special case to update the known relative distances in case of an unpredicted collision.

The function init is defined such that init(ρ)(x, y) = eD holds when x[ρ]y does and
init(ρ)(x, y) is undefined for all other x, y ∈ P . For µ(q, ρ, ξ) we take the number of
equivalence classes in the domain of ξ. Finally, we define the set predictable to contain
those triples 〈ξ,m, σ〉 for which the measure of ξ is the same as that of ω1(ξ,m, σ).

The required properties then follow by a straightforward (but tedious and lengthy)
calculation from the properties of free action graphs. �	

Having proved this lemma, it remains to observe that the proof of Cook & Rackoff can
be carried out with just the abstract structure defined in the lemma.

Let k ∈ N. In this section we first establish a bound on the number of configurations
that appear in computations of up to k + 1 steps. Since k is arbitrary and the bound
will not depend on k, this shall be enough to bound the number of configurations in
computation sequences of arbitrary length.

The proof of the bound goes by induction on how often in a computation sequence
the measure from Lemma 9 strictly decreases. The points of decrease are called coali-
tions, in reference to the fact that in the abstract values from the proof of Lemma 9 two
equivalence classes are united at these points.

Definition 10 (Coalition). Let E ∈ Conf (X) and n ∈ N. The n-th coalition is the
smallest number coalnE ≤ k+1 satisfying µ(E(coalnE)) ≤ P−n or coalnE = k+1.

We aim to give an upper bound on the number An defined by

An := max
C∈Conf

|{C(i) | i < coaln+1〈C, init(C)〉}| .

To do so, we also need to give an upper bound on the number of different possible
behaviours of J . Similarity of behaviour up to the n-th coalition is captured by the
equivalence relation ∼n⊆ Conf (X) × Conf (X) defined by

E ∼n F ⇐⇒ ∀i ≤ n. coal iE = coal iF ∧ E(coal iE) :QX F (coal iF).

If E and F are ∼n-related then the JAG J makes the same moves in the computation
sequences starting withE and F , up to any time before the (n+1)-th coalition in either
sequence. This follows from the next lemma, which is a consequence of Lemma 8 and
the fact that J always makes the same moves from :QΣ-related configurations.

Lemma 11. If E ∼n F and i < coaln+1E and i < coaln+1F all hold then so does
E(i) :QX F (i) and E(i) :QΣ F (i).

The following necessary condition for E ∼n+1 F also follows using Lemma 8.

Lemma 12. To show E ∼n+1 F it suffices to show that E ∼n F , coaln+1E =
coaln+1F and [πSE(coaln+1E)] = [πSF (coaln+1F)] all hold.

Define an equivalence relation ≈n for similar behaviour on ordinary configurations:

C ≈n C
′ ⇐⇒ 〈C, init(πSC)〉 ∼n 〈C′, init(πSC

′)〉.

Let Rn be the number of equivalence classes of ≈n.

A Formalised Lower Bound on Undirected Graph Reachability 631

We can now bound the numbers Rn and An by induction on n. We start with the
bound on Rn. The bound on An appears in Lemma 16 below.

Lemma 13. For all n ∈ N, the following two inequalities hold.

R0 ≤ |Q| · |P ||P | (1)

Rn+1 ≤ Rn · (2 +An · |P ||P |) · |P ||P | (2)

Proof. Ad (1). We have coal0(E) = 0 for all E. We therefore know that C ≈0 C
′ is

equivalent to πQC = πQC
′ and init(πSC) = init(πSC

′). The result follows since
there are only |P ||P | possibilities for init(πSC), which follows from Lemma 9.1 and
because there are at most |P ||P | equivalence classes on P .

Ad (2). We use Lemma 12 to decompose the equivalence classes of ≈n+1. The as-
serted bound then follows because: (i) The equivalence relation ≈n has at most Rn

equivalence classes. (ii) There are (2 +An · |P ||P |) possibilities for coaln+1(E). It can
be either k+1 or must be below 1+An · |P ||P |, since after at most 1+An · |P ||P | steps
a configuration will be repeated, by definition of An and Lemma 9.2, and if a repeat
appears then the (n+ 1)-th coalition must be k+ 1. (iii) Finally, [πSE(coaln+1E)] has
at most |P ||P | possible values. �	

For any list of moves α ∈ M∗, an action on pebble assignments ρ ∈ S(G) can be
defined by ρ ·ε = ρ and ρ · (mα) = (ρ ·m) ·α. With this notation we have the following
lemma, whose proof is just like that of Lemma 4.6 of [1].

Lemma 14. Let G be a free action graph with exponentm. Let α ∈M∗ be a sequence
of moves. Then the sequence (ρi ∈ S(G))i≥0 defined by ρ0 = ρ and ρi+1 = ρi · α has
the property ρ|P | = ρ|P |+m·|P |!.

Lemma 15. If πCE ≈n πCF and i < coaln+1E and i < coaln+1F all hold then so
does E(i) :QΣ F (i).

Proof. Using Lemma 9.3.(c) one gets i < coaln+1E ≤ coaln+1〈πCE, init(πSE)〉
and likewise for F . This implies 〈πCE, init(πSE)〉(i) :QΣ 〈πCF, init(πSF)〉(i) by
Lemma 11. But the assertion follows from this, because it is easily seen that πCE(i) =
πC(〈πCE, init(πSE)〉(i)) and a similar equation forF hold and that πCE(i)=πCF (i)
implies E(i) :QΣ F (i).

Lemma 16. For all n the inequality An ≤ (1 + |P | +m · |P |!) · Rn holds.

Proof. Consider a computation E −→ E(1) −→ . . . −→ E(l) with l < coalnE.
Suppose, for a contradiction, there are more than (1 + |P | + m · |P |!) · Rn con-
figurations in {πCE(0), . . . , πCE(l)}. Then, by definition of Rn, there exist i and j
with 1 ≤ i < j ≤ Rn and πCE(i) ≈n πCE(j). Using Lemma 15, this implies
E(r) :QΣ E(r + (j − i)) for all r with i ≤ r ≤ l − (j − i). Hence, there is
a sequence of moves α of length (j − i) ≤ Rn that is repeated from point E(i)
onwards. By Lemma 14, it follows that some configuration appears twice in the list
πCE(i), πCE(i+ (j − i)), . . . , πCE(i+ (|P | +m · |P |!) · (j − i)). The JAG must
therefore go into a loop after at most (1 + |P |+m · |P |!) ·Rn steps, which implies the
required contradiction. �	

632 U. Schöpp

Proof (of Prop. 3). Using Lemmas 13 and 16, it is straightforward to find a constant c,
such that A|P | ≤ (Qm)c|P |

holds. (In Coq we have c = 232 by a crude estimation.)
The required assertion follows from this, since c does not depend on k and we have
coal |P |+1E = k + 1 by the properties of µ. �	

Up to this point, the results in this section have been fully formalised in Coq, where we
have excluded uninteresting trivial cases by assuming 0 < |Q|, 1 < m and 1 < |P |.

Corollary 17 (Cook & Rackoff 1980). For each finite set P there is a d such that no
JAG J = (Q,P, δ) decides s-t-reachability on undirected graphs of degree d.

Proof. Construct a graph of two disjoint copies of Hm,d and connect the two nodes
given by vectors with (m−1) in all components. Let s and t be the two nodes consisting
of all zeros. If m and d are large enough then J , when started with each pebble on one
of the two nodes s or t, cannot reach the edge connecting the two copies ofHm,d, since
its distance from s and t in Hm,d is larger than the number of nodes that J can visit.
Hence, J cannot distinguish this graph from the one with this edge removed. �	

Corollary 18 (Cook & Rackoff 1980). No JAG decides s-t-reachability on undirected
graphs of degree 3.

5 Formalisation in Coq

One of the main contributions of this paper is the formalisation of the results in the
previous section, up to and including the proof of Prop. 3 (as remarked above, we elude
trivial cases in the formalisation by assuming 0 < |Q|, 1 < m and 1 < |P |). The for-
malisation also comprises the construction of the graphsGm,d and Hm,d from Sect. 3.

The presentation in the previous section can be understood as an overview of the
formalisation1 in ordinary mathematical notation. Indeed, most of the lemmas in the
previous section correspond directly to lemmas in the Coq development. To give a con-
crete example, Lemma 12 appears in the formalisation in the following ASCII notation.

Lemma decomp_sim: forall k n E1 E2,
(sim k n E1 E2) -> (coal k n.+1 E1 == coal k n.+1 E2)
-> observe (piS (coalE k n.+1 E1))

= observe (piS (coalE k n.+1 E2))
-> (sim k n.+1 E1 E2).

The proofs in the formalisation also follow closely the informal outline in the previous
section. The main difficulty in making it possible for the formal development to remain
close to the informal proofs has been to define the basic types in an appropriate way.
In the last section we have used classical logic, which appears to be at odds with Coq’s
intuitionistic meta-logic, and we have used counting arguments, such as that there are
at most |P ||P | equivalence relations on a finite set P , which are not readily available
in Coq. In this section we discuss the basic choices that have allowed us to faithfully
formalise the proofs from the last section.

1 Available from: http://www.tcs.ifi.lmu.de/∼schoepp/formalcr.html

A Formalised Lower Bound on Undirected Graph Reachability 633

The formalisation consists of approximately 5000 lines of code. It is written in the
tactic language SSREFLECT 1.1 developed by Gonthier, Mahboubi and Théry [7,6],
which has its origin in Gonthier’s formalisation of the four-colour theorem [4]. We have
chosen this tactic language for its conciseness and expressivity and because it contains
an excellent library for working with finite sets.

Small-scale Reflection. Based on his experience from formalising the four colour the-
orem [4], Georges Gonthier has advocated a proof methodology that emphasises the use
of computation at the propositional level [5]. One central idea is to express the truth of
a predicate ϕ on some structured data typeA that one wants to work with as a computa-
tional problem. This means that one writes a function f : A→ bool, where bool is the
data type with elements true and false, such that f(x) is true if and only if the log-
ical proposition ϕ(x) holds. The function f may implement a decision procedure, for
example. Then, one proves correctness of the decision procedure in the logic, i.e. that
ϕ(x) holds if and only if f(x) = true does. As a result, if one wants to prove ϕ(M)
for some particular element M , one may replace this goal by f(M) = true and have
the proof system reduce the function f . If M is a closed value having the property ϕ
then f(M) will reduce to true, leaving the trivial goal true = true. Even ifM is not
a closed value, it is in many cases still possible to reduce f(M) partially and so make
progress in a proof. In this way, propositions are proved by evaluating functions.

The general idea then is to write predicates as functional programs and to prove their
correctness. Since boolean-valued functions are very often used in place of predicates,
there is a coercion so that one can just write f(x) instead of f(x) = true. The tactic
language SSREFLECT provides a convenient environment for carrying out proofs with
such boolean-valued predicates in Coq. For instance, in our formalisation we have used
a function iforall: ∀A : finType. (A → bool) → bool of universal quantification
on finite sets. SSREFLECT provides the convenient concept of views that, after proving
the equivalence of iforall(f) and ∀x. f(x) once, allows one to treat occurrences of
iforall(f) in essentially the same way as an ordinary quantification.

The approach of modelling predicates as bool-valued functions has been very impor-
tant for the formalisation in this paper. Since bool-valued functions must return either
true or false, they validate the law of excluded middle, and we have used this fact
many times to formalise the classical arguments in this paper. Also, our construction of
quotients on finite types, described below, relies on predicates being bool-valued.

SSREFLECT turned out to be very well-suited for working with finite sets and decid-
able predicates in a way that is similar to classical logic. It contains a library of finite
sets, which are being modelled as types with decidable equality and an enumeration of
their elements as a (necessarily finite) list. With this library it is possible to prove, for
example, the following pigeonhole principle in a few lines and in a way that is very
close to a standard informal classical proof.

Lemma pigeon : ∀d1 d2 : finType, f : d1 → d2.

(card d2 < card d1) → (∃x, y : d1. (negb (x == y)) && (f x == f y))

Here, == denotes decidable equality, negb stands for negation and && for conjunction.
This example illustrates that by using boolean-valued predicates, we can formalise

classical arguments as conveniently as in a theorem prover with classical logic, such as,

634 U. Schöpp

say, Isabelle/HOL, while at the same time being able to use Coq’s convenient depen-
dently typed programming facilities.

Finite Functions. The formalisation of the proofs from Sect. 4 depends, among other
things, on being able to count the number of configurations that appear in a computation
sequence. Since configurations are modelled by functions from pebbles to graph nodes,
we must therefore be able to count functions with finite domain and codomain.

To do this, we use the intensional representation of finite functions by their graphs
proposed by Gonthier et al. [8]. However, we use functions with finite codomain as
opposed to just a decidable codomain in [8], since we also need to prove cardinality
properties, such as that the finite function space X → Y has cardinality |Y ||X|.

An intensional representation of functions is useful also to avoid problems with
Coq’s equality being intensional, as observed in [8]. Two finite functions f, g : X → Y
are extensionally equal if and only if their intensional representations are equal in Coq’s
intensional equality. Since one can write in Coq functions to convert a finite function to
its intensional representation and vice versa, one can therefore work with the intensional
representation of functions instead of functions themselves. With implicit coercions,
one can treat intensionally represented functions almost like ordinary ones.

It is furthermore not hard to show that the functions between finite sets form them-
selves a finite set with decidable equality. As a result, finite functions may be used in
the construction of finite sets, which is useful for defining finite wreath products, for ex-
ample. Another example, where decidable equality == on finite functions is useful, is
the definition of the function iforall, which decides whether a given boolean-valued
predicate holds for all elements of a finite set. It may be defined simply by

iforall(A : finType)(f : A→ bool) : bool :=
(fgraph of fun f) == (fgraph of fun (λx. true)),

where fgraph of fun converts a function to its intensional representation.

Equivalence Relations and Quotients. The proofs in Sect. 4 rely on being able to
count the equivalence classes of ≈n and to show that there are at most |P ||P | equiva-
lence relations on finite P . To formalise such arguments, we have developed a repre-
sentation of equivalence relations and quotients on finite sets.

We represent equivalence relations on a finite set A by functions of type A→ A→
bool together with proofs of reflexivity, symmetry and transitivity. Using a boolean-
valued function to represent relations allows us to give an intensional representation of
equivalence relations, just like for finite functions, and to define quotient types.

To define an intensional representation of equivalence relations, we use a choice
function for finite sets provided by SSREFLECT. This choice function computes, for
each finite set A and each predicate f : A → bool, an element a of A that satisfies
f(a), if such an element exists. In particular, suppose R of type A→ A→ bool is an
equivalence relation. The equivalence class of a is given by R(a) : A → bool. Using
the choice function, we can pick a canonical element from this equivalence class. In this
way, we can represent the equivalence relation R by a finite function of type A → A,
which maps each element of A to a canonical representative of its equivalence class.

For the intensional representation of equivalence classes, we then simply take the
choice functionsA→ A that arise from this construction. In particular, using the results

A Formalised Lower Bound on Undirected Graph Reachability 635

on finite functions, we can define it as a finite data type with decidable equality. It
follows immediately that there can be no more than |A||A| equivalence relations on A.

With this groundwork, it is easy to construct quotient types. We define the quotient
A/R simply as the image of the choice function A → A that represents R. This being
a finite type, we can use it to count the number of equivalence classes, as is required
to formalise the proof of Cook & Rackoff. All in all, we can work with finite quotients
just as we are used to in informal work.

The construction of the intensional representation of equivalence relations relies on
relations being modelled as boolean-valued functions A → A → bool. It would not
work with Prop instead of bool, since no choice function would be available then. The
relations from Def. 7 are therefore all modelled as boolean-valued functions.

6 Conclusion

Once the right basic definitions had been found, the formalisation of the main results
using Coq and SSREFLECT has been surprisingly smooth. We hope that this positive
experience can be repeated in the formalisation of further results from complexity the-
ory. We are aware only of little existing work in this direction, e.g. [3]. By formalising
a non-trivial result from complexity theory we have given evidence that the current
theorem prover technology is ready for this task.

Acknowledgements. I wish to thank Martin Hofmann for interesting discussions and
anonymous referees for their constructive comments. This work was supported by the
DFG project Pro.Platz (programming language aspects of sublinear space complexity).

References

1. Cook, S.A., Rackoff, C.: Space lower bounds for maze threadability on restricted machines.
SIAM Journal of Computing 9(3), 636–652 (1980)

2. Etessami, K., Immerman, N.: Reachability and the power of local ordering. Theoretical Com-
puter Science 148(2), 261–279 (1995)

3. Gamboa, R., Cowles, J.R.: A mechanical proof of the Cook-Levin theorem. In: Slind, K.,
Bunker, A., Gopalakrishnan, G.C. (eds.) TPHOLs 2004, vol. 3223, pp. 99–116. Springer,
Heidelberg (2004)

4. Gonthier, G.: A computer-checked proof of the four-colour theorem. Technical report,
http://research.microsoft.com/∼gonthier/4colproof.pdf

5. Gonthier, G.: Notations of the four colour theorem proof. Technical report,
http://research.microsoft.com/∼gonthier/4colnotations.pdf

6. Gonthier, G., Mahboubi, A.: A small scale reflection extension for the Coq system. INRIA
Technical Report (December 2007)

7. Gonthier, G., Mahboubi, A., Théry, L.: SSReflect extension for Coq, Version 1.1,
http://www.msr-inria.inria.fr/Projects/math-components

8. Gonthier, G., Mahboubi, A., Rideau, L., Tassi, E., Théry, L.: A modular formalisation of
finite group theory. In: TPHOLs, pp. 86–101 (2007)

9. Lu, P., Zhang, J., Poon, C.K., Cai, J.: Simulating undirected st-connectivity algorithms on
uniform JAGs and NNJAGs. In: ISAAC, pp. 767–776 (2005)

10. Reingold, O.: Undirected st-connectivity in log-space. In: STOC, pp. 376–385 (2005)

http://research.microsoft.com/~gonthier/4colproof.pdf
http://research.microsoft.com/~gonthier/4colnotations.pdf
http://www.msr-inria.inria.fr/Projects/math-components

Improving Context-Sensitive Dependency Pairs�

Beatriz Alarcón1, Fabian Emmes2, Carsten Fuhs2, Jürgen Giesl2,
Raúl Gutiérrez1, Salvador Lucas1,

Peter Schneider-Kamp2, and René Thiemann3

1 DSIC, Universidad Politécnica de Valencia, Spain
2 LuFG Informatik 2, RWTH Aachen University, Germany

3 Institute of Computer Science, University of Innsbruck, Austria

Abstract. Context-sensitive dependency pairs (CS-DPs) are currently
the most powerful method for automated termination analysis of context-
sensitive rewriting. However, compared to DPs for ordinary rewriting,
CS-DPs suffer from two main drawbacks: (a) CS-DPs can be collapsing.
This complicates the handling of CS-DPs and makes them less powerful
in practice. (b) There does not exist a “DP framework” for CS-DPs which
would allow one to apply them in a flexible and modular way. This paper
solves drawback (a) by introducing a new definition of CS-DPs. With
our definition, CS-DPs are always non-collapsing and thus, they can be
handled like ordinary DPs. This allows us to solve drawback (b) as well,
i.e., we extend the existing DP framework for ordinary DPs to context-
sensitive rewriting. We implemented our results in the tool AProVE and
successfully evaluated them on a large collection of examples.

1 Introduction

Context-sensitive rewriting [23,24] models evaluations in programming langua-
ges. It uses a replacement map µ with µ(f) ⊆ {1, ..., arity(f)} for every function
symbol f to specify the argument positions of f where rewriting may take place.
Example 1. Consider this context-sensitive term rewrite system (CS-TRS)

gt(0, y) → false p(0) → 0
gt(s(x), 0) → true p(s(x)) → x

gt(s(x), s(y)) → gt(x, y) minus(x, y) → if(gt(y, 0),minus(p(x), p(y)), x) (1)
if(true, x, y) → x div(0, s(y)) → 0
if(false, x, y) → y div(s(x), s(y)) → s(div(minus(x, y), s(y)))

with µ(if) = {1} and µ(f) = {1, . . . , arity(f)} for all other symbols f to model
the usual behavior of if: in if(t1, t2, t3), one may evaluate t1, but not t2 or t3. It
will turn out that due to µ, this CS-TRS is indeed terminating. In contrast, if
one allows arbitrary reductions, then the TRS would benon-terminating:
� Authors from Valencia were partially supported by the EU (FEDER) and the Span-

ish MEC/MICINN, under grants TIN 2007-68093-C02-02 and HA 2006-0007. B.
Alarcón was partially supported by the Spanish MEC/MICINN under FPU grant
AP2005-3399. R. Gutiérrez was partially supported by the Spanish MEC/MICINN,
under grant TIN 2004-7943-C04-02. Authors from Aachen were supported by the
DAAD under grant D/06/12785 and by the DFG under grant GI 274/5-2.

I. Cervesato, H. Veith, and A. Voronkov (Eds.): LPAR 2008, LNCS 5330, pp. 636–651, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Improving Context-Sensitive Dependency Pairs 637

minus(0, 0) →+ if(gt(0, 0), minus(0, 0), 0) →+ if(..., if(gt(0, 0), minus(0, 0), 0), ...) →+ ...

There are two approaches to prove termination of context-sensitive rewriting.
The first approach transforms CS-TRSs to ordinary TRSs, cf. [13,26]. But trans-
formations often generate complicated TRSs where all termination tools fail.

Therefore, it is more promising to adapt existing termination techniques from
ordinary term rewriting to the context-sensitive setting. Such adaptions were
done for classical methods like RPO or polynomial orders [8,19,25]. However,
much more powerful techniques like the dependency pair (DP) method [6] are
implemented in almost all current termination tools for TRSs. But for a long
time, it was not clear how to adapt the DP method to context-sensitive rewriting.

This was solved first in [1]. The corresponding implementation in the tool
mu-term [3] outperformed all previous tools for termination of CS rewriting.

Nevertheless, the existing results on CS-DPs [1,2,4,20] still have major dis-
advantages compared to the DP method for ordinary rewriting, since CS-DPs
can be collapsing. To handle such DPs, one has to impose strong requirements
which make the CS-DP method quite weak and which make it difficult to ex-
tend refined termination techniques based on DPs to the CS case. In particular,
the DP framework [14,17,21], which is the most powerful formulation of the DP
method for ordinary TRSs, has not yet been adapted to the CS setting.

In this paper, we solve these problems. After presenting preliminaries in
Sect. 2, we introduce a new notion of non-collapsing CS-DPs in Sect. 3. This new
notion makes it much easier to adapt termination techniques based on DPs to
context-sensitive rewriting. Therefore, Sect. 4 extends the DP framework to the
context-sensitive setting and shows that existing methods from this framework
only need minor changes to apply them to context-sensitive rewriting.

All our results are implemented in the termination prover AProVE [16]. As
shown by the empirical evaluation in Sect. 5, our contributions improve the power
of automated termination analysis for context-sensitive rewriting substantially.

2 Context-Sensitive Rewriting and CS-Dependency Pairs

See [7] and [23] for basics on term rewriting and context-sensitive rewriting,
respectively. Let Pos(s) be the set of positions of a term s. For a replacement
map µ, we define the active positions Posµ(s): For x ∈ V let Posµ(x) = {ε}
where ε is the root position. Moreover, Posµ(f(s1, . . . , sn)) = {ε} ∪ {i p | i ∈
µ(f), p ∈ Posµ(si)}. We say that s�µ t holds if t = s|p for some p ∈ Posµ(s) and
s�µ t if s�µ t and s �= t. Moreover, s�

�µ
t if t = s|p for some p ∈ Pos(s)\Posµ(s).

We denote the ordinary subterm relations by � and �.
A CS-TRS (R, µ) consists of a finite TRS R and a replacement map µ. We

have s ↪→R,µ t iff there are � → r ∈ R, p ∈ Posµ(s), and a substitution σ with
s|p = σ(�) and t = s[σ(r)]p. This reduction is an innermost step (denoted i↪→R,µ)
if all t with s|p �µ t are in normal form w.r.t. (R, µ). A term s is in normal form
w.r.t. (R, µ) if there is no term t with s ↪→R,µ t. A CS-TRS (R, µ) is terminating
if ↪→R,µ is well founded and innermost terminating if i↪→R,µ is well founded.

638 B. Alarcón et al.

Let D = {root(�) | �→ r ∈ R} be the set of defined symbols. For every f ∈ D,
let f � be a fresh tuple symbol of same arity, where we often write “F” instead of
“f �”. For t = f(t1, . . . , tn) with f ∈ D, let t� = f �(t1, . . . , tn).

Definition 2 (CS-DPs [1]). Let (R, µ) be a CS-TRS. If �→ r ∈ R, r�µt, and
root(t) ∈ D, then �� → t� is an ordinary dependency pair.1 If �→ r ∈ R, r�µ x
for a variable x, and � ��µ x, then �� → x is a collapsing DP. Let DPo(R, µ) and
DPc(R, µ) be the sets of all ordinary resp. all collapsing DPs.

Example 3. For the TRS of Ex. 1, we obtain the following CS-DPs.

GT(s(x), s(y)) → GT(x, y) (2) M(x, y) → IF(gt(y, 0), minus(p(x),p(y)), x) (5)
IF(true, x, y) → x (3) M(x, y) → GT(y, 0) (6)
IF(false, x, y) → y (4) D(s(x), s(y)) → D(minus(x, y), s(y)) (7)

D(s(x), s(y)) → M(x, y) (8)

To prove termination, one has to show that there is no infinite chain of DPs. For
ordinary rewriting, a sequence s1 → t1, s2 → t2, . . . of DPs is a chain if there
is a substitution σ such that tiσ reduces to si+1σ.2 If all tiσ are terminating,
then the chain is minimal [14,17,22]. But due to the collapsing DPs, the notion
of “chains” has to be adapted when it is used with CS-DPs [1]. If si → ti is a
collapsing DP (i.e., if ti ∈ V), then instead of tiσ ↪→∗

R,µ si+1σ (and termination
of tiσ for minimality), one requires that there is a term wi with tiσ �µ wi and
w�

i ↪→∗
R,µ si+1σ. For minimal chains, w�

i must be terminating.

Example 4. Ex. 1 has the chain (5), (3), (5) as IF(gt(s(y), 0), minus(p(x),p(s(y))), x)
↪→∗

R,µ IF(true, minus(p(x),p(s(y))), x) ↪→(3),µ minus(p(x),p(s(y))) and (minus(p(x),
p(s(y))))� = M(p(x),p(s(y))) is an instance of the left-hand side of (5).

A CS-TRS is terminating iff there is no infinite chain [1]. As in the non-CS
case, the above notion of chains can also be adapted to innermost rewriting. Then
a CS-TRS is innermost terminating iff there is no infinite innermost chain [4].

Due to the collapsing CS-DPs (and the corresponding definition of “chains”),
it is not easy to extend existing techniques for proving absence of infinite chains
to CS-DPs. Therefore, we now introduce a new improved definition of CS-DPs.

3 Non-collapsing CS-Dependency Pairs

Ordinary DPs only consider active subterms of right-hand sides. So Rule (1) of
Ex. 1 only leads to the DP (5), but not to M(x, y) → M(p(x), p(y)). However, the
inactive subterm minus(p(x), p(y)) of the right-hand side of (1) may become ac-
tive again when applying the rule if(true, x, y) → x. Therefore, Def. 2 creates a
collapsing DP like (3) whenever a rule �→ r has a migrating variable x with r�µ

x, but � ��µ x. Indeed, when instantiating the collapse-variable x in (3) with an
instance of the “hidden term” minus(p(x), p(y)), one obtains a chain which sim-
ulates the rewrite sequence from minus(t1, t2) over if(...,minus(p(t1), p(t2)), ...)
1 A refinement is to eliminate DPs where � �µ t, cf. [1,9].
2 We always assume that different occurrences of DPs are variable-disjoint and consider

substitutions whose domains may be infinite.

Improving Context-Sensitive Dependency Pairs 639

to minus(p(t1), p(t2)), cf. Ex. 4. Our main observation is that collapsing DPs are
only needed for certain instantiations of the variables. One might be tempted to
allow only instantiations of collapse-variables by hidden terms.3

Definition 5 (Hidden Term). Let (R, µ) be a CS-TRS. We say that t is a
hidden term if root(t) ∈ D and if there exists a rule �→ r ∈ R with r �

�µ
t.

In Ex. 1, the only hidden term is minus(p(x), p(y)). But unfortunately, only al-
lowing instantiations of collapse-variables with hidden terms would be unsound.

Example 6. Consider µ(g) = {1}, µ(a) = µ(b) = µ(f) = µ(h) = ∅ and the rules

a → f(g(b)) (9) h(x) → x
f(x) → h(x) b → a

The CS-TRS has the following infinite rewrite sequence:

a ↪→R,µ f(g(b)) ↪→R,µ h(g(b)) ↪→R,µ g(b) ↪→R,µ g(a) ↪→R,µ . . .

We obtain the following CS-DPs according to Def. 2:

A → F(g(b)) H(x) → x (10)
F(x) → H(x) B → A

The only hidden term is b, obtained from Rule (9). There is also an infinite chain
that corresponds to the infinite reduction above. However, here the collapse-
variable x in the DP (10) must be instantiated by g(b) and not by the hidden
term b, cf. the underlined part above. So if one replaced (10) by H(b) → b, there
would be no infinite chain anymore and one would falsely conclude termination.

The problem in Ex. 6 is that rewrite rules may add additional symbols like g
above hidden terms. This can happen if a term g(t) occurs at an inactive position
in a right-hand side and if an instantiation of t could possibly reduce to a term
containing a hidden term (i.e., if t has a defined symbol or a variable at an active
position). Then we call g(�) a hiding context, since it can “hide” a hidden term.
Moreover, the composition of hiding contexts is again a hiding context.

Definition 7 (Hiding Context). Let (R, µ) be a CS-TRS. The function sym-
bol f hides position i if there is a rule �→ r ∈ R with r�

�µ
f(r1, . . . , ri, . . . , rn),

i ∈ µ(f), and ri contains a defined symbol or a variable at an active position. A
context C is hiding iff C = � or C has the form f(t1, . . . , ti−1, C

′, ti+1, . . . , tn)
where f hides position i and C′ is a hiding context.

Example 8. In Ex. 6, g hides position 1 due to Rule (9). So the hiding con-
texts are �, g(�), g(g(�)), . . . In the TRS of Ex. 1, minus hides both positions
1 and 2 and p hides position 1 due to Rule (1). So the hiding contexts are
�, p(�),minus(�,�), p(p(�)),minus(�, p(�)), . . .

To remove collapsing DPs s→ x, we now restrict ourselves to instantiations of x
with terms of the form C[t] where C is a hiding context and t is a hidden term.
So in Ex. 6, the variable x in the DP (10) should only be instantiated by b, g(b),
3 A similar notion of hidden symbols was presented in [2,4], but there one only used

these symbols to improve one special termination technique (the dependency graph).

640 B. Alarcón et al.

g(g(b)), etc. To represent these infinitely many instantiations in a finite way, we
replace s→ x by new unhiding DPs (which “unhide” hidden terms).

Definition 9 (Improved CS-DPs). For a CS-TRS (R, µ), if DPc(R, µ) �=∅,
we introduce a fresh4 unhiding tuple symbol U and the following unhiding DPs:

• s→ U(x) for every s→ x ∈ DPc(R, µ),
• U(f(x1, . . . , xi, . . . , xn)) → U(xi) for every function symbol f of any arity n

and every 1 ≤ i ≤ n where f hides position i, and
• U(t) → t� for every hidden term t.

Let DPu(R, µ) be the set of all unhiding DPs (where DPu(R, µ)=∅, if DPc(R, µ)
= ∅). Then the set of improved CS-DPs is DP(R, µ) = DPo(R, µ)∪DPu(R, µ).

Example 10. In Ex. 6, instead of (10) we get the unhiding DPs

H(x) → U(x), U(g(x)) → U(x), U(b) → B.

Now there is indeed an infinite chain. In Ex. 1, instead of (3) and (4), we obtain:5

IF(true, x, y)→U(x) (11) U(p(x))→U(x) (15)
IF(false, x, y)→U(y) (12) U(minus(x, y))→U(x) (16)

U(minus(p(x), p(y)))→M(p(x), p(y)) (13) U(minus(x, y))→U(y) (17)
U(p(x))→P(x) (14)

Clearly, the improved CS-DPs are never collapsing. Thus, now the definition of
(minimal)6 chains is completely analogous to the one for ordinary rewriting.

Definition 11 (Chain). Let P and R be TRSs and let µ be a replacement
map. We extend µ to tuple symbols by defining µ(f �) = µ(f) for all f ∈ D and
µ(U) = ∅.7 A sequence of pairs s1 → t1, s2 → t2, . . . from P is a (P ,R, µ)-chain
iff there is a substitution σ with tiσ ↪→∗

R,µ si+1σ and tiσ is terminating w.r.t.
(R, µ) for all i. It is an innermost (P ,R, µ)-chain iff tiσ

i↪→∗
R,µ si+1σ, siσ is in

normal form, and tiσ is innermost terminating w.r.t. (R, µ) for all i.

Our main theorem shows that improved CS-DPs are still sound and complete.

Theorem 12 (Soundness and Completeness of Improved CS-DPs). A
CS-TRS (R, µ) is terminating iff there is no infinite (DP(R, µ),R, µ)-chain and
innermost terminating iff there is no infinite innermost (DP(R, µ),R, µ)-chain.

Proof. We only prove the theorem for “full” termination. The proof for innermost
termination is very similar and can be found in [5].
4 Alternatively, one could also use different U-symbols for different collapsing DPs.
5 We omitted the DP U(p(y))→ P(y) that is “identical” to (14).
6 Since we only regard minimal chains in the following, we included the “minimality

requirement” in Def. 11, i.e., we require that all tiσ are (innermost) terminating.
As in the DP framework for ordinary rewriting, this restriction to minimal chains is
needed for several DP processors (e.g., for the reduction pair processor of Thm. 21).

7 We define µ(U) = ∅, since the purpose of U is only to remove context around hidden
terms. But during this removal, U’s argument should not be evaluated.

Improving Context-Sensitive Dependency Pairs 641

Soundness

M∞,µ contains all minimal non-terminating terms: t ∈ M∞,µ iff t is non-termi-
nating and every r with t�µ r terminates. A term u has the hiding property iff

• u ∈ M∞,µ and
• whenever u�

�µ
s�µ t

′ for some terms s and t′ with t′ ∈ M∞,µ, then t′ is an
instance of a hidden term and s = C[t′] for some hiding context C.

We first prove the following claim:

Let u be a term with the hiding property and let u ↪→R,µ v �µ w
with w ∈ M∞,µ. Then w also has the hiding property. (18)

Let w �
�µ
s �µ t

′ for some terms s and t′ with t′ ∈ M∞,µ. Clearly, this also
implies v �

�µ
s. If already u � s, then we must have u �

�µ
s due to the minimality

of u. Thus, t′ is an instance of a hidden term and s = C[t′] for a hiding context C,
since u has the hiding property. Otherwise, u��s. There must be a rule �→ r ∈ R,
an active context D (i.e., a context where the hole is at an active position), and
a substitution δ such that u = D[δ(�)] and v = D[δ(r)]. Clearly, u ��s implies
δ(�) ��s and D ��s. Hence, v�

�µ
s means δ(r)�

�µ
s. (The root of s cannot be

above � in D since those positions would be active.) Note that s cannot be at
or below a variable position of r, because this would imply δ(�) � s. Thus, s is
an instance of a non-variable subterm of r that is at an inactive position. So
there is a r′ �∈ V with r �

�µ
r′ and s = δ(r′). Recall that s �µ t

′, i.e., there is a
p ∈ Posµ(s) with s|p = t′. If p is a non-variable position of r′, then δ(r′|p) = t′

and r′|p is a subterm with defined root at an active position (since t′ ∈ M∞,µ

implies root(t′) ∈ D). Hence, r′|p is a hidden term and thus, t′ is an instance of a
hidden term. Moreover, any instance of the context C′ = r′[�]p is hiding. So if we
define C to be δ(C′), then s = δ(r′) = δ(r′)[t′]p = δ(C′)[t′] = C[t′] for the hiding
context C. On the contrary, if p is not a non-variable position of r′, then p = p1 p2
where r′|p1 is a variable x. Now t′ is an active subterm of δ(x) (more precisely,
δ(x)|p2 = t′). Since x also occurs in �, we have δ(�)�δ(x) and thus u�δ(x). Due
to the minimality of u this implies u �

�µ
δ(x). Since u �

�µ
δ(x) �µ t

′, the hiding
property of u implies that t′ is an instance of a hidden term and that δ(x) = C[t′]
for a hiding context C. Note that since r′|p1 is a variable, the context C′ around
this variable is also hiding (i.e., C′ = r′[�]p1). Thus, the context C = δ(C′)[C]
is hiding as well and s = δ(r′) = δ(r′)[δ(x)[t′]p2]p1 = δ(C′)[C[t′]] = C[t′].

Proof of Thm. 12 using Claim (18)

If R is not terminating, then there is a t ∈ M∞,µ that is minimal w.r.t. �. So
there are t, ti, si, t

′
i+1 such that

t
> ε
↪−→∗

R,µ t1
ε→R s1 �µ t

′
2

> ε
↪−→∗

R,µ t2
ε→R s2 �µ t

′
3

> ε
↪−→∗

R,µ t3 . . . (19)

where ti, t′i ∈ M∞,µ and all proper subterms of t (also at inactive positions)
terminate. Here, “ε” (resp. “> ε”) denotes reductions at (resp. strictly below)
the root.

642 B. Alarcón et al.

Note that (18) implies that all ti have the hiding property. To see this, we
use induction on i. Since t trivially has the hiding property (as it has no non-
terminating proper subterms) and all terms in the reduction t > ε

↪−→∗
R,µ t1 are

from M∞,µ (as both t, t1 ∈ M∞,µ), we conclude that t1 also has the hiding
property by applying (18) repeatedly. In the induction step, if ti−1 has the hiding
property, then one application of (18) shows that t′i also has the hiding property.
By applying (18) repeatedly, one then also shows that ti has the hiding property.

Now we show that t�i →+
DP(R,µ) t

′
i+1

� and that all terms in the reduction

t�i →+
DP(R,µ) t

′
i+1

� terminate w.r.t. (R, µ). As t′i+1
� > ε
↪−→∗

R,µ t
�
i+1, we get an in-

finite (DP(R, µ),R, µ)-chain.
From (19) we know that there are �i → ri ∈ R and pi ∈ Posµ(si) with

ti = �iσ, si = riσ, and si|pi = riσ|pi = t′i+1 for all i. First let pi ∈ Pos(ri) with
ri|pi /∈ V . Then ��i → (ri|pi)� ∈ DPo(R, µ) and t�i = ��iσ →DPo(R,µ) (ri|pi)�σ =
t′i+1

�. Moreover, as ti, t′i+1 ∈ M∞,µ, the terms t�i and t′i+1
� are terminating.

Now let pi be at or below the position of a variable xi in ri. By minimality of
ti, xi only occurs at inactive positions of �i. Thus, ��i → U(xi) ∈ DPu(R, µ) and
ri = Ci[xi] where Ci is an active context. Recall that ti = �iσ has the hiding
property and that ti ��µ

σ(xi)�µ t
′
i+1. Thus, we have σ(xi) = C[t′i+1] for a hiding

context C and moreover, t′i+1 is an instance of a hidden term. Hence we obtain:
t�
i = σ(��

i)
→DPu(R,µ) U(σ(xi)) since ��

i → U(xi) ∈ DPu(R, µ)
= U(C[t′

i+1]) for a hiding context C
→∗

DPu(R,µ) U(t′
i+1) since U(C[x])→∗

DPu(R,µ) U(x) for any hiding context C

→DPu(R,µ) t′
i+1

� since t′
i+1 is an instance of a hidden term and

U(t)→DPu(R,µ) t� for any instance t of a hidden term

All terms in the reduction above are terminating. The reason is that again
ti, t

′
i+1 ∈ M∞,µ implies that t�i and t′i+1

� are terminating. Moreover, all terms
U(. . .) are normal forms since µ(U) = ∅ and since U does not occur in R.

Completeness

Let there be an infinite chain v1 → w1, v2 → w2, ... of improved CS-DPs. First,
let the chain have an infinite tail consisting only of DPs of the form U(f(x1, ..., xi,
..., xn)) → U(xi). Since µ(U) = ∅, there are terms ti with U(t1)

ε→DP(R,µ)U(t2)
ε→DP(R,µ)... Hence, t1 �µ t2 �µ .. which contradicts the well-foundedness of �µ.

Now we regard the remaining case. Here the chain has infinitely many DPs
v → w with v = �� for a rule � → r ∈ R. Let vi → wi be such a DP and let
vj → wj with j > i be the next such DP in the chain. Let σ be the substitution
used for the chain. We show that then v�

iσ ↪→∗
R,µ C[v�

jσ] for an active context
C. Here, (f �(t1, . . . , tn))� = f(t1, . . . , tn) for all f ∈ D. Doing this for all such
DPs implies that there is an infinite reduction w.r.t. (R, µ).

If vi → wi ∈ DPo(R,µ) then the claim is trivial, because then j = i + 1 and
v�

iσ ↪→R,µ C[w�
iσ] ↪→∗

R,µ C[v�
i+1σ] for some active context C.

Otherwise, vi → wi has the form vi → U(x). Then v�
iσ ↪→R,µ C1[σ(x)] for an

active context C1. Moreover, U(σ(x)) reduces to U(δ(t)) for a hidden term t and

Improving Context-Sensitive Dependency Pairs 643

a δ by removing hiding contexts. Since hiding contexts are active, σ(x) = C2[δ(t)]
for an active context C2. Finally, t�δ > ε

↪−→∗
R,µ vjσ and thus, tδ > ε

↪−→∗
R,µ v

�
jσ. By

defining C = C1[C2], we get v�
iσ ↪→+

R,µ C[v�
jσ]. �	

4 CS Dependency Pair Framework

By Thm. 12, (innermost) termination of a CS-TRS is equivalent to absence
of infinite (innermost) chains. For ordinary rewriting, the DP framework is the
most recent and powerful collection of methods to prove absence of infinite chains
automatically. Due to our new notion of (non-collapsing) CS-DPs, adapting the
DP framework to the context-sensitive case now becomes much easier.8

In the DP framework, termination techniques operate on DP problems instead
of TRSs. Def. 13 adapts this notion to context-sensitive rewriting.

Definition 13 (CS-DP Problem and Processor). A CS-DP problem is
a tuple (P ,R, µ, e), where P and R are TRSs, µ is a replacement map, and
e ∈ {t, i} is a flag that stands for termination or innermost termination. We
also call (P ,R, µ)-chains “(P ,R, µ, t)-chains” and we call innermost (P ,R, µ)-
chains “(P ,R, µ, i)-chains”. A CS-DP problem (P ,R, µ, e) is finite if there is
no infinite (P ,R, µ, e)-chain.

A CS-DP processor is a function Proc that takes a CS-DP problem as input
and returns a possibly empty set of CS-DP problems. The processor Proc is sound
if a CS-DP problem d is finite whenever all problems in Proc(d) are finite.

For a CS-TRS (R, µ), the termination proof starts with the initial DP problem
(DP(R, µ),R, µ, e) where e depends on whether one wants to prove termination
or innermost termination. Then sound DP processors are applied repeatedly.
If the final processors return empty sets, then (innermost) termination is proved.
Since innermost termination is usually easier to show than full termination, one
should use e = i whenever possible. As shown in [12], termination and innermost
termination coincide for CS-TRSs (R, µ) where R is orthogonal (i.e., left-linear
and without critical pairs). So (DP (R, µ),R, µ, i) would be the initial DP prob-
lem for Ex. 1, even when proving full termination. In Sect. 4.1 - 4.3, we recapitu-
late 3 important DP processors and extend them to context-sensitive rewriting.

4.1 Dependency Graph Processor

The first processor decomposes a DP problem into several sub-problems. To this
end, one determines which pairs can follow each other in chains by constructing
a dependency graph. In contrast to related definitions for collapsing CS-DPs in
[1,4], Def. 14 is analogous to the corresponding definition for non-CS rewriting.

Definition 14 (CS-Dependency Graph). For a CS-DP problem (P ,R, µ, e),
the nodes of the (P ,R, µ, e)-dependency graph are the pairs of P, and there is
an arc from v → w to s→ t iff v → w, s→ t is a (P ,R, µ, e)-chain.
8 For this reason, we omitted the proofs in this section and refer to [5] for all proofs.

644 B. Alarcón et al.

Example 15. Fig. 1 shows the dependency graph for Ex. 1, for both e ∈ {t, i}.9

(7)
		

 (8)

 (5)

������������
��

(2)
��

(12)

��

�����

��

(11)

��

�����

��

��

(16)
��

�� ��

��
(15)

��
��

�����
�� (17)

��
��

�����
��

(13)

��

Fig. 1. Dependency graph for Ex. 1

A set P ′ �= ∅ of DPs is a cycle if
for every v→w, s→t∈P ′, there is
a non-empty path from v→w to
s→ t traversing only pairs of P ′.
A cycle P ′ is a strongly connected
component (“SCC”) if P ′ is not a
proper subset of another cycle.

One can prove termination se-
parately for each SCC. Thus, the
following processor (whose sound-
ness is obvious and completely
analogous to the non-context-
sensitive case) modularizes termi-
nation proofs.

Theorem 16 (CS-Dependency Graph Processor). For d = (P ,R, µ, e),
let Proc(d) = {(P1,R, µ, e), . . . , (Pn,R, µ, e)}, where P1, . . . ,Pn are the SCCs of
the (P ,R, µ, e)-dependency graph. Then Proc is sound.

Example 17. The graph in Fig. 1 has the three SCCs P1 = {(2)}, P2 = {(7)},
P3 = {(5), (11)-(13), (15)-(17)}. Thus, the initial DP problem (DP(R, µ),R, µ, i)
is transformed into the new problems (P1,R, µ, i), (P2,R, µ, i), (P3,R, µ, i).

As in the non-context-sensitive setting, the CS-dependency graph is not com-
putable and thus, one has to use estimations to over-approximate the graph. For
example, [1,4] adapted the estimation of [6] that was originally developed for
ordinary rewriting: Cap

µ(t) replaces all active subterms of t with defined root
symbol by different fresh variables. Multiple occurrences of the same such sub-
term are also replaced by pairwise different variables. Ren

µ(t) replaces all active
occurrences of variables in t by different fresh variables (i.e., no variable occurs
at several active positions in Ren

µ(t)). So Ren
µ(Cap

µ(IF(gt(y, 0),minus(p(x),
p(y)), x))) = Ren

µ(IF(z,minus(p(x), p(y)), x)) = IF(z′,minus(p(x), p(y)), x).
To estimate the CS-dependency graph in the case e = t, one draws an arc

from v → w to s→ t whenever Ren
µ(Cap

µ(w)) and s unify.10 If e = i, then one
can modify Cap

µ and Ren
µ by taking into account that instantiated subterms

at active positions of the left-hand side must be in normal form, cf. [4]. Cap
µ
v (w)

is like Cap
µ(w), but the replacement of subterms of w by fresh variables is not

done if the subterms also occur at active positions of v. Similarly, Ren
µ
v (w) is

like Ren
µ(w), but the renaming of variables in w is not done if the variables

9 To improve readability, we omitted nodes (6) and (14) from the graph. There are
arcs from the nodes (8) and (13) to (6) and from all nodes (11), (12), (15), (16), (17)
to (14). But (6) and (14) have no outgoing arcs and thus, they are not on any cycle.

10 Here (and also later in the instantiation processor of Sect. 4.3), we always assume
that v → w and s → t are renamed apart to be variable-disjoint.

Improving Context-Sensitive Dependency Pairs 645

also occur active in v. Now we draw an arc from v → w to s → t whenever
Ren

µ
v (Cap

µ
v (w)) and s unify by an mgu θ where vθ and sθ are in normal form.11

It turns out that for the TRS of Ex. 1, the resulting estimated dependency
graph is identical to the “real” graph in Fig. 1.

4.2 Reduction Pair Processor

There are several processors to simplify DP problems by applying suitable well-
founded orders (e.g., the reduction pair processor [17,21], the subterm criterion
processor [22], etc.). Due to the absence of collapsing DPs, most of these pro-
cessors are now straightforward to adapt to the context-sensitive setting. In the
following, we present the reduction pair processor with usable rules, because it is
the only processor whose adaption is more challenging. (The adaption is similar
to the one in [4,20] for the CS-DPs of Def. 2.)

To prove that a DP problem is finite, the reduction pair processor generates
constraints which should be satisfied by a µ-reduction pair (�,;) [1]. Here, � is
a stable µ-monotonic quasi-order, ; is a stable well-founded order, and � and
; are compatible (i.e., ; ◦ � ⊆ ; or � ◦ ; ⊆ ;). Here, µ-monotonicity means
that si � ti implies f(s1, ..., si, ..., sn) � f(s1, ..., ti, ..., sn) whenever i ∈ µ(f).

For a DP problem (P ,R, µ, e), the generated constraints ensure that some
rules in P are strictly decreasing (w.r.t. ;) and all remaining rules in P and
R are weakly decreasing (w.r.t. �). Requiring � � r for all � → r ∈ R en-
sures that in a chain s1 → t1, s2 → t2, ... with tiσ ↪→∗

R,µ si+1σ, we have tiσ �
si+1σ for all i. Hence, if a reduction pair satisfies the constraints, then one can
delete the strictly decreasing pairs from P as they cannot occur infinitely often
in chains.

To improve this idea, it is desirable to require only a weak decrease of certain
instead of all rules. In the non-context-sensitive setting, when proving innermost
termination, it is sufficient if just the usable rules are weakly decreasing [6]. The
same is true when proving full termination, provided that � is Cε-compatible,
i.e., c(x, y) � x and c(x, y) � y holds for a fresh function symbol c [17,22].

For a term containing a symbol f , all f -rules are usable. Moreover, if the
f -rules are usable and f depends on h (denoted f �R h) then the h-rules
are usable as well. Here, f �R h if f = h or if there is a symbol g with
g �R h and g occurs in the right-hand side of an f -rule. The usable rules
of a DP problem are defined to be the usable rules of the right-hand sides of
the DPs.
11 These estimations can be improved further by adapting existing refinements to the

context-sensitive case. However, different to the non-context-sensitive case, for e = i
it is not sufficient to check only for unification of Cap

µ
v (w) and s (i.e., renaming

variables with Ren
µ
v is also needed). This can be seen from the non-innermost ter-

minating CS-TRS (R, µ) from [4, Ex. 8] with R = {f(s(x), x) → f(x, x), a → s(a)}
and µ(f) = {1}, µ(s) = ∅. Clearly, Cap

µ
F(s(x),x)(F(x, x)) = F(x, x) does not unify

with F(s(y), y). In contrast, Ren
µ
F(s(x),x)(Cap

µ
F(s(x),x)(F(x, x))) = F(x′, x) unifies with

F(s(y), y). Thus, without using Ren
µ
F(s(x),x) one would conclude that the dependency

graph has no cycle and wrongly prove (innermost) termination.

646 B. Alarcón et al.

As in [4,20], Def. 18 adapts12 the concept of usable rules to the CS setting,
resulting in U�(P ,R, µ). But as shown in [20], for CS rewriting it is also helpful
to consider an alternative definition of “dependence” �R,µ where f also depends
on symbols from left-hand sides of f -rules. Let Fµ(t) (resp. F�µ(t)) contain all
function symbols occurring at active (resp. inactive) positions of a term t.

Definition 18 (CS-Usable Rules). Let Rls(f) = {�→ r ∈ R | root(�) = f}.
For any symbols f, h and CS-TRS (R, µ), let f �R,µ h if f = h or if there is a
symbol g with g �R,µ h and a rule �→ r ∈ Rls(f) with g ∈ Fµ(r). Let f �R,µ h
if f = h or if there is a symbol g with g �R,µ h and a rule �→ r ∈ Rls(f) with
g ∈ F�µ(�) ∪ F(r). We define two forms of usable rules:

U�(P ,R, µ) =
⋃

s→t∈P,f∈Fµ(t),f�R,µg Rls(g)
U�(P ,R, µ) =

⋃
s→t∈P,f∈F�µ(s)∪F(t),f�R,µg

Rls(g) ∪
⋃

�→r∈R,f∈F�µ(r),f�R,µg
Rls(g)

Example 19. We continue Ex. 17. U�(P1,R, µ) = ∅ for P1 = {(2)}, since there
is no defined symbol at an active position in the right-hand side GT(x, y) of (2).
For P2 = {(7)}, U�(P2,R, µ) are the minus-, if-, and gt-rules, since minus occurs
at an active position in D(minus(x, y), s(y)) and minus depends on if and gt. For
P3 = {(5), (11)-(13), (15)-(17)}, U�(P3,R, µ) are the gt- and p-rules, as gt and
p are the only defined symbols at active positions of right-hand sides in P3.

In contrast, all U�(Pi,R, µ) contain all rules except the div-rules, as minus
and p are root symbols of hidden terms and minus depends on if and gt.

As shown in [4,20], the direct adaption of the usable rules to the context-sensitive
case (i.e., U�(P ,R, µ)) can only be used for conservative CS-TRSs (if e = i) resp.
for strongly conservative CS-TRSs (if e = t).13 Let Vµ(t) (resp. V�µ(t)) be all
variables occurring at active (resp. inactive) positions of a term t.

Definition 20 (Conservative and Strongly Conservative). A CS-TRS
(R, µ) is conservative iff Vµ(r) ⊆ Vµ(�) for all rules � → r ∈ R. It is strongly
conservative iff it is conservative and moreover, Vµ(�)∩V�µ(�) = ∅ and Vµ(r)∩
V�µ(r) = ∅ for all rules �→ r ∈ R.

Now we can define the reduction pair processor.

Theorem 21 (CS-Reduction Pair Processor). Let (�,;) be a µ-reduction
pair. For a CS-DP Problem d = (P ,R, µ, e), the result of Proc(d) is

• {(P \ ;,R, µ, e)}, if P ⊆ (; ∪ �) and at least one of the following holds:

12 The adaptions can also be extended to refined definitions of usable rules [15,17].
13 The corresponding counterexamples in [4,20] show that these restrictions are still

necessary for our new notion of CS-DPs. In cases where one cannot use U� , one can
also attempt a termination proof where one drops the replacement map, i.e., where
one regards the ordinary TRS R instead of the CS-TRS (R, µ). This may be helpful,
since U� is not necessarily a subset of the non-context-sensitive usable rules, as a
function symbol f also �-depends on symbols from left-hand sides of f -rules.

Improving Context-Sensitive Dependency Pairs 647

(i) U�(P ,R, µ) ⊆ �, P ∪ U�(P ,R, µ) is strongly conservative, � is Cε-compatible
(ii) U�(P ,R, µ) ⊆ �, P ∪ U�(P ,R, µ) is conservative, e = i
(iii) U�(P ,R, µ) ⊆ �, � is Cε-compatible
(iv) R ⊆ �

• {d}, otherwise.

Then Proc is sound.

Example 22. As U�(P1,R, µ) = ∅ and P1 = {(2)} is even strongly conservative,
by Thm. 21 (i) or (ii) we only have to orient (2), which already works with the
embedding order. So (P1,R, µ, i) is transformed to the empty set of DP problems.

For P2 = {(7)}, U�(P2,R, µ) contains the if-rules which are not conservative.
Hence, we use Thm. 21 (iii) with a reduction pair based on the following max-
polynomial interpretation [10]: [D(x, y)] = [minus(x, y)] = [p(x)] = x, [s(x)] =
x+1, [if(x, y, z)] = max(y, z), [0] = [gt(x, y)] = [true] = [false] = 0. Then the DP
(7) is strictly decreasing and all rules from U�(P2,R, µ) are weakly decreasing.
Thus, the processor also transforms (P2,R, µ, i) to the empty set of DP problems.

Finally, we regard P3 = {(5), (11)-(13), (15)-(17)} where we use Thm. 21 (iii)
with the interpretation [M(x, y)] = [minus(x, y)] = x + y + 1, [IF(x, y, z)] =
[if(x, y, z)] = max(y, z), [U(x)] = [p(x)] = [s(x)] = x, [0] = [gt(x, y)] = [true] =
[false] = 0. Then the DPs (16) and (17) are strictly decreasing, whereas all other
DPs from P3 and all rules from U�(P3,R, µ) are weakly decreasing. So the
processor results in the DP problem ({(5), (11)-(13), (15)},R, µ, i).

Next we apply [M(x, y)] = [minus(x, y)] = x+ 1, [IF(x, y, z)] = max(y, z + 1),
[if(x, y, z)] = max(y, z), [U(x)] = [p(x)] = [s(x)] = x, [0] = [gt(x, y)] = [true] =
[false] = 0. Now (12) is strictly decreasing and all other remaining DPs and usable
rules are weakly decreasing. Removing (12) yields ({(5), (11), (13), (15)},R, µ, i).

Thm. 21 (iii) and (iv) are a significant improvement over previous reduction pair
processors [1,2,4,20] for the CS-DPs from Def. 2. The reason is that all previous
CS-reduction pair processors require that the context-sensitive subterm relation
is contained in � (i.e., �µ ⊆ �) whenever there are collapsing DPs. This is a
very hard requirement which destroys one of the main advantages of the DP
method (i.e., the possibility to filter away arbitrary arguments).14 With our new
non-collapsing CS-DPs, this requirement is no longer needed.

Example 23. If one requires �µ⊆ �, then the reduction pair processor would fail
for Ex. 1, since then one cannot make the DP (7) strictly decreasing. The reason
is that due to 2 ∈ µ(minus), �µ⊆ � implies minus(x, y) � y. So one cannot “filter
away” the second argument of minus. But then a strict decrease of DP (7) to-
gether with µ-monotonicity of � implies D(s(x), s(s(x))) ; D(minus(x, s(x)),
s(s(x))) � D(s(x), s(s(x))), in contradiction to the well-foundedness of ;.
14 Moreover, previous CS-reduction pair processors also require f(x1, . . . , xn) �

f �(x1, . . . , xn) for all f ∈ D or f(x1, . . . , xn) # f �(x1, . . . , xn) for all f ∈ D. This
requirement also destroys an important feature of the DP method, i.e., that tuple
symbols f � can be treated independently from the original corresponding symbols
f . This feature often simplifies the search for suitable reduction pairs considerably.

648 B. Alarcón et al.

4.3 Transforming Context-Sensitive Dependency Pairs

To increase the power of the DP method, there exist several processors to trans-
form a DP into new pairs (e.g., narrowing, rewriting, instantiating, or forward
instantiating DPs [17]). We now adapt the instantiation processor to the context-
sensitive setting. Similar adaptions can also be done for the other processors.15

The idea of this processor is the following. For a DP s → t, we investigate
which DPs v → w can occur before s→ t in chains. To this end, we use the same
estimation as for dependency graphs in Sect. 4.1, i.e., we check whether there is
an mgu θ of Ren

µ(Cap
µ(w)) and s if e = t and analogously for e = i.16 Then

we replace s → t by the new DPs sθ → tθ for all such mgu’s θ. This is sound
since in any chain . . . , v → w, s → t, . . . where an instantiation of w reduces to
an instantiation of s, one could use the new DP sθ → tθ instead.

Theorem 24 (CS-Instantiation Processor). Let P ′ = P � {s → t}. For
d = (P ′,R, µ, e), let the result of Proc(d) be (P ∪ P ,R, µ, e) where

– P = {sθ → tθ | θ = mgu(Ren
µ(Cap

µ(w)), s), v → w ∈ P ′}, if e = t
– P = {sθ → tθ | θ = mgu(Ren

µ
v (Cap

µ
v (w)), s), v → w ∈ P ′, sθ, vθ normal}, if e = i

Then Proc is sound.

Example 25. For the TRS of Ex. 1, we still had to solve the problem ({(5), (11),
(13), (15)},R, µ, i), cf. Ex. 22. DP (11) has the variable-renamed left-hand side
IF(true, x′, y′). So the only DP that can occur before (11) in chains is (5) with the
right-hand side IF(gt(y, 0),minus(p(x), p(y)), x). Recall Ren

µ(Cap
µ(IF(gt(y, 0),

minus(p(x), p(y)), x))) = IF(z′,minus(p(x), p(y)), x), cf. Sect. 4.1. So the mgu is
θ = [z′/true, x′/minus(p(x), p(y)), y′/x]. Hence, we can replace (11) by

IF(true,minus(p(x), p(y)), x) → U(minus(p(x), p(y))) (20)

Here the CS variant of the instantiation processor is advantageous over the non-
CS one which uses Cap instead of Cap

µ, where Cap replaces all subterms with
defined root (e.g., minus(p(x), p(y))) by fresh variables. So the non-CS processor
would not help here as it only generates a variable-renamed copy of (11).

When re-computing the dependency graph, there is no arc from (20) to (15)
as µ(U) = ∅. So the DP problem is decomposed into ({(15)},R, µ, i) (which is
easily solved by the reduction pair processor) and ({(5), (20), (13)},R, µ, i).

Now we apply the reduction pair processor again with the following rational
polynomial interpretation [11]: [M(x, y)] = 3

2x + 1
2y, [minus(x, y)] = 2x + 1

2y,
[IF(x, y, z)] = 1

2x + y + 1
2z, [if(x, y, z)] = 1

2x + y + z, [U(x)] = x, [p(x)] =
[gt(x, y)] = 1

2x, [s(x)] = 2x+ 2, [true] = 1, [false] = [0] = 0. Then (20) is strictly
decreasing and can be removed, whereas all other remaining DPs and usable rules
15 In the papers on CS-DPs up to now, the only existing adaption of such a processor

was the straightforward adaption of the narrowing processor in the case e = t, cf.
[2]. However, this processor would not help for the TRS of Ex. 1.

16 The counterexample of [4, Ex. 8] in Footnote 11 again illustrates why Ren
µ
v is also

needed in the innermost case (whereas this is unnecessary for non-CS rewriting).

Improving Context-Sensitive Dependency Pairs 649

are weakly decreasing. A last application of the dependency graph processor then
detects that there is no cycle anymore and thus, it returns the empty set of DP
problems. Hence, termination of the TRS from Ex. 1 is proved. As shown in our
experiments in Sect. 5, this proof can easily be performed automatically.

5 Experiments and Conclusion

We have developed a new notion of context-sensitive dependency pairs which
improves significantly over previous notions. There are two main advantages:

(1) Easier adaption of termination techniques to CS rewriting
Now CS-DPs are very similar to DPs for ordinary rewriting and consequently,
the existing powerful termination techniques from the DP framework can
easily be adapted to context-sensitive rewriting. We have demonstrated this
with some of the most popular DP processors in Sect. 4. Our adaptions
subsume the existing earlier adaptions of the dependency graph [2], of the
usable rules [20], and of the modifications for innermost rewriting [4], which
were previously developed for the notion of CS-DPs from [1].

(2) More powerful termination analysis for CS rewriting
Due to the absence of collapsing CS-DPs, one does not have to impose extra
restrictions anymore when extending the DP processors to CS rewriting, cf.
Ex. 23. Hence, the power of termination proving is increased substantially.

To substantiate Claim (2), we performed extensive experiments. We imple-
mented our new non-collapsing CS-DPs and all DP processors from this paper
in the termination prover AProVE [16].17 In contrast, the prover mu-term [3]
uses the collapsing CS-DPs. Moreover, the processors for these CS-DPs are not
formulated within the DP framework and thus, they cannot be applied in the
same flexible and modular way. While mu-term was the most powerful tool for
termination analysis of context-sensitive rewriting up to now (as demonstrated
by the International Competition of Termination Tools 2007 [27]), due to our
new notion of CS-DPs, now AProVE is substantially more powerful. For instance,
AProVE easily proves termination of our leading example from Ex. 1, whereas
mu-term fails. Moreover, we tested the tools on all 90 context-sensitive TRSs
from the Termination Problem Data Base that was used in the competition. We
used a time limit of 120 seconds for each example. Then mu-term can prove
termination of 68 examples, whereas the new version of AProVE proves termi-
nation of 78 examples (including all 68 TRSs where mu-term is successful).18

Since 4 examples are known to be non-terminating, at most 8 more of the 90
examples could potentially be detected as terminating. So due to the results of
this paper, termination proving of context-sensitive rewriting has now become

17 We also used the subterm criterion and forward instantiation processors, cf. Sect. 4.
18 If AProVE is restricted to use exactly the same processors as mu-term, then it still

succeeds on 74 examples. So its superiority is indeed mainly due to the new CS-DPs
which enable an easy adaption of the DP framework to the CS setting.

650 B. Alarcón et al.

very powerful. To experiment with our implementation and for details, we refer
to http://aprove.informatik.rwth-aachen.de/eval/CS-DPs/.

References

1. Alarcón, B., Gutiérrez, R., Lucas, S.: Context-sensitive dependency pairs. In: Arun-
Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 297–308. Springer,
Heidelberg (2006)

2. Alarcón, B., Gutiérrez, R., Lucas, S.: Improving the context-sensitive dependency
graph. In: Proc. PROLE 2006. ENTCS, vol. 188, pp. 91–103 (2007)

3. Alarcón, B., Gutiérrez, R., Iborra, J., Lucas, S.: Proving termination of context-
sensitive rewriting with Mu-term. Pr. PROLE 2006. ENTCS, vol. 188, p. 105–115
(2007)

4. Alarcón, B., Lucas, S.: Termination of innermost context-sensitive rewriting using
dependency pairs. In: Konev, B., Wolter, F. (eds.) FroCos 2007. LNCS, vol. 4720,
pp. 73–87. Springer, Heidelberg (2007)

5. Alarcón, B., Emmes, F., Fuhs, C., Giesl, J., Gutiérrez, R., Lucas, S., Schneider-
Kamp, P., Thiemann, R.: Improving context-sensitive dependency pairs. Technical
Report AIB-2008-13 (2008), http://aib.informatik.rwth-aachen.de/

6. Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theo-
retical Computer Science 236, 133–178 (2000)

7. Baader, F., Nipkow, T.: Term Rewriting and All That, Cambridge (1998)
8. Borralleras, C., Lucas, S., Rubio, A.: Recursive path orderings can be context-

sensitive. In: Voronkov, A. (ed.) CADE 2002. LNCS, vol. 2392, pp. 314–331.
Springer, Heidelberg (2002)

9. Dershowitz, N.: Termination by abstraction. In: Demoen, B., Lifschitz, V. (eds.)
ICLP 2004. LNCS, vol. 3132, pp. 1–18. Springer, Heidelberg (2004)

10. Fuhs, C., Giesl, J., Middeldorp, A., Schneider-Kamp, P., Thiemann, R., Zankl,
H.: Maximal termination. In: Voronkov, A. (ed.) RTA 2008. LNCS, vol. 5117, pp.
110–125. Springer, Heidelberg (2008)

11. Fuhs, C., Navarro-Marset, R., Otto, C., Giesl, J., Lucas, S., Schneider-Kamp, P.:
Search techniques for rational polynomial orders. In: Autexier, S., Campbell, J.,
Rubio, J., Sorge, V., Suzuki, M., Wiedijk, F. (eds.) AISC 2008, Calculemus 2008,
and MKM 2008. LNCS (LNAI), vol. 5144, pp. 109–124. Springer, Heidelberg (2008)

12. Giesl, J., Middeldorp, A.: Innermost termination of context-sensitive rewriting. In:
Ito, M., Toyama, M. (eds.) DLT 2002. LNCS, vol. 2450, pp. 231–244. Springer,
Heidelberg (2003)

13. Giesl, J., Middeldorp, A.: Transformation techniques for context-sensitive rewrite
systems. Journal of Functional Programming 14(4), 379–427 (2004)

14. Giesl, J., Thiemann, R., Schneider-Kamp, P.: The dependency pair framework:
Combining techniques for automated termination proofs. In: Baader, F., Voronkov,
A. (eds.) LPAR 2004. LNCS, vol. 3452, pp. 301–331. Springer, Heidelberg (2005)

15. Giesl, J., Thiemann, R., Schneider-Kamp, P.: Proving and disproving termina-
tion of higher-order functions. In: Gramlich, B. (ed.) FroCos 2005. LNCS (LNAI),
vol. 3717, pp. 216–231. Springer, Heidelberg (2005)

16. Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1.2: Automatic termina-
tion proofs in the dependency pair framework. In: Furbach, U., Shankar, N. (eds.)
IJCAR 2006. LNCS, vol. 4130, pp. 281–286. Springer, Heidelberg (2006)

http://aprove.informatik.rwth-aachen.de/eval/CS-DPs/
http://aib.informatik.rwth-aachen.de/

Improving Context-Sensitive Dependency Pairs 651

17. Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and improving
dependency pairs. Journal of Automatic Reasoning 37(3), 155–203 (2006)

18. Gramlich, B.: Generalized sufficient conditions for modular termination of rewrit-
ing. Appl. Algebra in Engineering, Comm. and Computing 5, 131–151 (1994)

19. Gramlich, B., Lucas, S.: Simple termination of context-sensitive rewriting. In: Proc.
RULE 2002, pp. 29–41. ACM Press, New York (2002)

20. Gutiérrez, R., Lucas, S., Urbain, X.: Usable rules for context-sensitive rewrite sys-
tems. In: Voronkov, A. (ed.) RTA 2008. LNCS, vol. 5117, pp. 126–141. Springer,
Heidelberg (2008)

21. Hirokawa, N., Middeldorp, A.: Automating the dependency pair method. Informa-
tion and Computation 199(1,2), 172–199 (2005)

22. Hirokawa, N., Middeldorp, A.: Tyrolean Termination Tool: techniques and features.
Information and Computation 205(4), 474–511 (2007)

23. Lucas, S.: Context-sensitive computations in functional and functional logic pro-
grams. Journal of Functional and Logic Programming 1998(1), 1–61 (1998)

24. Lucas, S.: Context-sensitive rewriting strategies. Inf. Comp. 178(1), 293–343 (2002)
25. Lucas, S.: Polynomials for proving termination of context-sensitive rewriting. In:

Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 318–332. Springer,
Heidelberg (2004)

26. Lucas, S.: Proving termination of context-sensitive rewriting by transformation.
Information and Computation 204(12), 1782–1846 (2006)

27. Marché, C., Zantema, H.: The termination competition. In: Baader, F. (ed.) RTA
2007. LNCS, vol. 4533, pp. 303–313. Springer, Heidelberg (2007)

28. Urbain, X.: Modular & incremental automated termination proofs. Journal of Au-
tomated Reasoning 32(4), 315–355 (2004)

Complexity, Graphs, and the Dependency Pair
Method�

Nao Hirokawa1 and Georg Moser2

1 School of Information Science, Japan Advanced Institute of Science
and Technology, Japan
hirokawa@jaist.ac.jp

2 Institute of Computer Science, University of Innsbruck, Austria
georg.moser@uibk.ac.at

Abstract. This paper builds on recent efforts (Hirokawa and Moser,
2008) to exploit the dependency pair method for verifying feasible, i.e.,
polynomial runtime complexities of term rewrite systems automatically.
We extend our earlier results by revisiting dependency graphs in the
context of complexity analysis. The obtained new results are easy to
implement and considerably extend the analytic power of our existing
methods. The gain in power is even more significant when compared to
existing methods that directly, i.e., without the use of transformations,
induce feasible runtime complexities. We provide ample numerical data
for assessing the viability of the method.

1 Introduction

Term rewriting is a conceptually simple but powerful abstract model of compu-
tation that underlies much of declarative programming. Runtime complexity is a
notion for capturing time complexities of functions defined by a term rewriting
system (TRS for short) introduced in [1] (but see also [2,3,4]). In recent research
we revisited the basic dependency pair method [5] in order to make it applicable
for complexity analysis, cf. [1]. The dependency pair method introduced by Arts
and Giesl [5] is one of the most powerful methods in termination analysis. The
method enables us to use several powerful techniques including, usable rules,
reduction pairs, argument filterings, and dependency graphs. Our main results
in [1] show how natural improvements of the dependency pair method, like usable
rules, reduction pairs, and argument filterings become applicable in the context
of complexity analysis. In this paper, we will extend these recent results further.

The dependency pair method for termination analysis is based on the obser-
vation that from an arbitrary non-terminating term one can extract a minimal
non-terminating subterm. For that one considers dependency pairs that essentially
encode recursive calls in a TRS. Notice that with respect to the TRS defined in
Example 1 below, one finds 8 such pairs (see Section 4 for further details).
� This research is partly supported by FWF (Austrian Science Fund) project P20133,

Grant-in-Aid for Young Scientists 20800022 of the Ministry of Education, Culture,
Sports, Science and Technology of Japan, and STARC.

I. Cervesato, H. Veith, and A. Voronkov (Eds.): LPAR 2008, LNCS 5330, pp. 652–666, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Complexity, Graphs, and the Dependency Pair Method 653

Example 1. Consider the TRS R which computes the greatest common divisor.1

1: 0 � y → true 6: gcd(0, y) → y

2: s(x) � 0 → false 7: gcd(s(x), 0) → s(x)
3 : s(x) � s(y)) → x � y 8: gcd(s(x), s(y)) → ifgcd(y � x, s(x), s(y))
4 : x− 0 → x 9: ifgcd(true, s(x), s(y)) → gcd(x− y, s(y))
5 : s(x) − s(y) → x− y 10: ifgcd(false, s(x), s(y)) → gcd(y − x, s(x))

A very well-studied refinement of the dependency pair method are dependency
graphs. To show termination of a TRS, it suffices to guarantee that none of the
cycles in DG(R) [5] can give rise to an infinite rewrite sequence. (Here a cycle C
is a nonempty set of dependency pairs of R such that for every two pairs s→ t
and u → v in C there exists a nonempty path in C from s → t to u → v.)
More precisely it suffices to prove for every cycle C in the dependency graph
DG(R), that there are no C-minimal rewrite sequences (see [7], but also [8,9]).
To achieve this one may consider each cycle independently, i.e., for each cycle it
suffices to find a reduction pair (�,;) (cf. Section 2) such that R ⊆ �, C ⊆ �
and C ∩ ; �= ∅, i.e., at least one dependency pair in C is strictly decreasing.

Example 2 (continued from Example 1). The dependency graph DG(R), whose
nodes are the mentioned 8 dependency pairs, has the following form

1318

16

12 17

15

14 11

This graph contains the maximal cycles {11}, {14}, and {13, 15, 17}, where the
latter contains two sub-cycles. As already mentioned, it suffices to consider each
of these five cycles individually.

The main contribution of this paper is to extend the dependency graph refine-
ment of the dependency pair method to complexity analysis. This is a challenging
task, and we face a couple of difficulties, documented via suitable examples be-
low. To overcome these obstacles we adapt the standard notion of dependency
graph suitably and introduce weak (innermost) dependency graphs, based on
weak dependency pairs, which have been studied in [1]. Moreover, we observe
that in the context of complexity analysis, it is not enough to focus on the
(maximal) cycles of a (weak) dependency graph. Instead, we show how cycle
detection is to be replaced by path detection, in order to salvage the (standard)
technique of dependency graphs for runtime complexity considerations.

The remainder of the paper is organised as follows. After recalling basic no-
tions in Section 2. We recall in Section 3 main results from [1] that will be
extended in the sequel. In Section 4 we establish our dependency graph analysis
for complexity analysis. Finally, we conclude in Section 5, where we assess the
applicability of our method.
1 This is Example 3.6a in Arts and Giesl’s collection of TRSs [6].

654 N. Hirokawa and G. Moser

2 Preliminaries

We assume familiarity with term rewriting [10,11], but briefly review basic con-
cepts and notations.

Let V denote a countably infinite set of variables and F a signature. The set
of terms over F and V is denoted by T (F ,V) (T for short). The root symbol of
a term t is either t itself, if t ∈ V , or the symbol f , if t = f(t1, . . . , tn). The set
of positions Pos(t) of a term t is defined as usual. We write PosG(t) ⊆ Pos(t)
for the set of positions of subterms whose root symbol is contained in G ⊆ F .
The descendants of a position with respect to a rewrite sequence are defined as
usual, cf. [11]. The subterm relation is denoted as �. Var(t) (Fun(t)) denotes
the set of variables (functions) occurring in a term t. The size |t| of a term is
defined as the number of symbols in t. A term rewrite system R over T (F ,V)
is a finite set of rewrite rules l → r, such that l /∈ V and Var(l) ⊇ Var(r). The
smallest rewrite relation that contains R is denoted by →R, and its transitive
and reflexive closure by →∗

R. We simply write → for →R if R is clear from
context. A term s ∈ T (F ,V) is called a normal form if there is no t ∈ T (F ,V)
such that s → t. The innermost rewrite relation i−→R of a TRS R is defined on
terms as follows: s i−→R t if there exists a rewrite rule l → r ∈ R, a context C,
and a substitution σ such that s = C[lσ], t = C[rσ], and all proper subterms of
lσ are normal forms of R. The set of defined symbols is denoted as D, while the
constructor symbols are collected in C. We call a term t = f(t1, . . . , tn) basic if
f ∈ D and ti ∈ T (C,V) for all 1 � i � n.

We call a TRS terminating if no infinite rewrite sequence exists. The n-fold com-
position of → is denoted as →n and the derivation length of a terminating term t
with respect to a TRS R and rewrite relation →R is defined as:
dl(s,→R) := max{n | ∃t s →n t}. Let R be a TRS and T be a set of terms.
The runtime complexity function with respect to a relation → on T is defined as
follows:

rc(n, T,→) := max{dl(t,→) | t ∈ T and |t| � n} .

In particular we are interested in the (innermost) runtime complexity with re-
spect to →R (i−→R) on the set Tb of all basic terms.2 More precisely, the runtime
complexity function (with respect to R) is defined as rcR(n) := rc(n, Tb,→R) and
we define the innermost runtime complexity function as rci

R(n) := rc(n, Tb,
i−→R).

Notice that the derivational complexity function (with respect to R) becomes de-
finable as follows: dcR(n) := rc(n, T ,→R), where T denotes the set of all terms
T (F ,V), compare [12]. We sometimes say the (innermost) runtime complexity
of R is linear, quadratic, or polynomial if rc(i)

R is bounded by a linear, quadratic,
or polynomial function in n, respectively.

A proper order is a transitive and irreflexive relation and a preorder is a
transitive and reflexive relation. A proper order ; is well-founded if there is
no infinite decreasing sequence t1 ; t2 ; t3 · · · . An F -algebra A consists of a

2 We can replace Tb by the set of terms f(t1, . . . , tn) with f ∈ D, whose arguments ti

are in normal form, while keeping all results in this paper.

Complexity, Graphs, and the Dependency Pair Method 655

carrier set A and an interpretation fA for each function symbol in F . A well-
founded and monotone algebra (WMA for short) is a pair (A, >), where A is
an algebra and > is a well-founded proper order on A such that every fA is
monotone in all arguments. An assignment α : V → A is a function mapping
variables to elements in the carrier, and [α]A(·) denotes the usual evaluation
function associated with A. A WMA naturally induces a proper order >A on
terms: s >A t if [α]A(s) > [α]A(t) for all assignments α : V → A. For the reflexive
closure � of >, the preorder �A is similarly defined. Clearly the proper order
>A is a reduction order, i.e., if R ⊆ >A, for a TRS R, then we can conclude
termination of R. A rewrite preorder is a preorder on terms which is closed under
contexts and substitutions. A reduction pair (�,;) consists of a rewrite preorder
� and a compatible well-founded order ; which is closed under substitutions.
Here compatibility means the inclusion � · ; · � ⊆ ;. Note that for any WMA
A the pair (�A, >A) constitutes a reduction pair.

We call a WMA A based on the natural numbers N a polynomial interpreta-
tion, if all functions fA are polynomials. A polynomial P (x1, . . . , xn) (over the
natural numbers) is called strongly linear if P (x1, . . . , xn) = x1 + · · · + xn + c
where c ∈ N. A polynomial interpretation is called linear restricted if all construc-
tor symbols are interpreted by strongly linear polynomials and all other function
symbols by linear polynomials. If on the other hand the non-constructor symbols
are interpreted by quadratic polynomials, the polynomial interpretation is called
quadratic restricted. Here a polynomial is quadratic if it is a sum of monomials
of degree at most 2 (see [13]). It is easy to see that if a TRS R is compatible
with a linear or quadratic restricted interpretation, the runtime complexity of
R is linear or quadratic, respectively (see [1] but also [3]). Finally, we introduce
a very restrictive class of polynomial interpretations: strongly linear interpreta-
tions (SLI for short). A polynomial interpretation is called strongly linear if all
functions fA are interpreted as strongly linear polynomials.

3 Complexity Analysis Based on the Dependency Pair
Method

In this section, we recall central definitions and results established in [1]. We
kindly refer the reader to [1] for additional examples and underlying intuitions.

We write C〈t1, . . . , tn〉X to denote C[t1, . . . , tn], whenever root(ti) ∈ X for all
1 � i � n and C is an n-hole context containing no X-symbols. Let t be a term.
We set t� := t if t ∈ V , and t� := f �(t1, . . . , tn) if t = f(t1, . . . , tn). Here f � is
a new n-ary function symbol called dependency pair symbol. For a signature F ,
we define F � = F ∪ {f � | f ∈ F}.
Definition 3. Let R be a TRS. If l→ r ∈ R and r = C〈u1, . . . , un〉D∪V then the
rewrite rule l� → com(u�

1, . . . , u
�
n) is called a weak dependency pair of R. Here

com is defined with a fresh n-ary function symbol c (corresponding to l→ r) as
follows: com(t1, . . . , tn) is t1 if n = 1, and c(t1, . . . , tn) otherwise. The symbol c
is called compound symbol. The set of all weak dependency pairs is denoted by
WDP(R).

656 N. Hirokawa and G. Moser

Example 4 (continued from Example 1). The set WDP(R) consists of the next
ten weak dependency pairs.

11: 0 �� y → c1 16: gcd�(0, y) → y

12: s(x) �� 0 → c2 17: gcd�(s(x), 0) → x

13: s(x) �� s(y) → x �� y 18: gcd�(s(x), s(y)) → ifgcd
�(y � x, s(x), s(y))

14 : s(x) −� 0 → x 19: ifgcd
�(true, s(x), s(y)) → gcd�(x− y, s(y))

15 : s(x) −� s(y) → x−� y 20: ifgcd
�(false, s(x), s(y)) → gcd�(y − x, s(x))

Definition 5. Let R be a TRS. If l → r ∈ R and r = C〈u1, . . . , un〉D then the
rewrite rule l� → com(u�

1, . . . , u
�
n) is called a weak innermost dependency pair

of R. The set of all weak innermost dependency pairs is denoted by WIDP(R).

Definitions 3 and 5 should be compared to the definition of “standard” depen-
dency pairs.

Definition 6 ([5]). The set DP(R) of (standard) dependency pairs of a TRS
R is defined as {l� → u� | l→ r ∈ R, u � r, root(u) ∈ D}.

Example 7 (continued from Example 1). As already mentioned in the Introduc-
tion, the TRS R admits 8 (standard) dependency pairs. Notice that the sets
DP(R) and WDP(R) are incomparable. For example 0 �� y → c1 ∈ WDP(R) \
DP(R), while gcd�(s(x), s(y)) → y �� x ∈ DP(R) \ WDP(R).

We write f �d g if there exists a rewrite rule l → r ∈ R such that f = root(l)
and g is a defined symbol in Fun(r). For a set G of defined symbols we denote by
R�G the set of rewrite rules l → r ∈ R with root(l) ∈ G. The set U(t) of usable
rules of a term t is defined as R�{g | f �∗

d g for some f ∈ Fun(t)}. Finally, if P is
a set of (weak or weak innermost) dependency pairs then U(P) =

⋃
l→r∈P U(r).

Proposition 8 ([1]). Let R be a TRS and let t ∈ Tb. If t is terminating with
respect to → then dl(t,→) � dl(t�,→U(P)∪P), where → denotes →R or i−→R
depending on whether P = WDP(R) or P = WIDP(R).

We recall the notion of relative rewriting [11]. Let R and S be TRSs. We write
→R/S for →∗

S · →R · →∗
S and we call →R/S the relative rewrite relation of R

over S. (Note that →R/S = →R, if S = ∅.) Let A denote a strongly linear
interpretation.

Proposition 9 ([1]). Let R and S be TRSs, and A an SLI compatible with
S. There exist constants K and L, depending only on R and A, such that
dl(t,→R∪S) � K · dl(t,→R/S) + L · |t| for all terminating terms t on R∪ S.

We need some further definitions. Let R be a TRS, let P a set of weak or weak
innermost dependency pairs of R and let G denote a mapping associating a
term (over F � and V) and a proper order ; with a natural number. An order
; on terms is G-collapsible for a TRS R if s →P∪U(P) t and s ; t implies

Complexity, Graphs, and the Dependency Pair Method 657

G(s,;) > G(t,;). An order ; is collapsible for a TRS R, if there is a mapping
G such that ; is G-collapsible for R.3

We write T �
b for {t� | t ∈ Tb}. The set T �

c is inductively defined as follows (i)
T � ∪ T ⊆ T �

c , where T � = {t� | t ∈ T }. And (ii) c(t1, . . . , tn) ∈ T �
c , whenever

t1, . . . , tn ∈ T �
c and c a compound symbol. A proper order ; on T �

c is called safe if
c(s1, . . . , si, . . . , sn) ; c(s1, . . . , t, . . . , sn) for all n-ary compound symbols c and
all terms s1, . . . , sn, t with si ; t. A reduction pair (�,;) is called collapsible
for a TRS R if ; is collapsible for R. It is called safe if the well-founded order
; is safe. In order to construct safe reduction pairs one may use safe algebras,
i.e., weakly monotone well-founded algebras (A,;) such that the interpretations
of compound symbols are strictly monotone with respect to ;. It is easy to see
that if (A, >) is a safe algebra then (�A, >A) is a safe reduction pair.

Proposition 10 ([1]). Let R be a TRS, let A an SLI, let P be the set of weak
or weak innermost dependency pairs, and let (�,;) be a safe and G-collapsible
reduction pair such that U(P) ⊆ � and P ⊆ ;. If in addition U(P) ⊆ >A then
for any t ∈ Tb, there exist constants K and L (depending only on R and A) such
that dl(t,→) � K · G(t�,;) + L · |t|. Here → denotes →R or i−→R depending on
whether P = WDP(R) or P = WIDP(R).

Suppose the assertions of the proposition are met and there exists a polynomial
p such that G(t�,;) � p(|t|) holds. Then, as an easy corollary to Proposition 10,
we observe that the runtime complexity induced by R is majorised by p.

4 Dependency Graphs

In this section, we study a natural refinement of the dependency pair method,
namely dependency graphs (see [5,7,14,8]) in the context of complexity analy-
sis. We start with a brief motivation. Let R be a TRS, let P denote a set of
weak or weak innermost dependency pairs and let (si)i=0,...,n denote a maximal
derivation D with respect to R with s0 ∈ Tb. In order to estimate the length � of
this derivation it suffices to estimate the length of the derivation t0 →∗

U(P)∪P tn,
where t0 = s�

0 ∈ T �
b , cf. Proposition 8. If we suppose compatibility of U(P) with

a strongly linear interpretation A, we may estimate the derivation length � by
finding one (safe and collapsible) reduction pair (�,;) such that U(P) ⊆ � and
P ⊆ ; holds, cf. Proposition 10. On the other hand in termination analysis—as
already mentioned in the Introduction—it suffices to guarantee that for any cy-
cle C in the dependency graph DG(R), there are no C-minimal rewrite sequences,
cf. [7]. Hence, we strive to extend this idea to complexity analysis.

4.1 From Cycle Analysis to Path Detection

Let us recall the definition of a dependency graph and extend it suitably to weak
and weak innermost dependency pairs.
3 Note that most reduction orders are collapsible. E.g. if A is a polynomial interpre-

tation then >A is collapsible, as one may take any α and set G(t,>A) := [α]A(t).

658 N. Hirokawa and G. Moser

Definition 11. Let R be a TRS over a signature F and let P be the set of
weak, weak innermost, or (standard) dependency pairs. The nodes of the weak
dependency graph WDG(R), weak innermost dependency graph WIDG(R), or
dependency graph DG(R) are the elements of P and there is an arrow from
s→ t to u→ v if and only if there exist a context C and substitutions σ, τ : V →
T (F ,V) such that tσ →∗ C[uτ], where → denotes →R or i−→R depending on
whether P = WDP(R), P = DP(R) or P = WIDP(R), respectively.

Example 12 (continued from Example 4). The weak dependency graph WDG(R)
has the following form.

11 13 12 15 14 19 18 20 16 17

We recall a theorem on the dependency graph refinement in conjunction with
usable rules and innermost rewriting (see [7], but also [15]). Similar results hold
in the context of full rewriting, see [9,8].

Theorem 13 ([7]). A TRS R is innermost terminating if for every maximal
cycle C in the dependency graph DG(R) there exists a reduction pair (�,;) such
that U(C) ⊆ � and C ⊆ ;.

The following example shows that we cannot directly employ Theorem 13 in the
realm of complexity analysis. Even though in this setting we can restrict our
attention to a specific strategy: innermost rewriting.

Example 14. Consider the TRS Rexp

exp(0) → s(0) d(0) → 0

exp(r(x)) → d(exp(x)) d(s(x)) → s(s(d(x)))

DP(Rexp) consists of three pairs: 1: exp�(r(x)) → d�(exp(x)), 2: exp�(r(x)) →
exp�(x), and 3: d�(s(x)) → d�(x). Hence the dependency graph DG(Rexp) con-
tains two maximal cycles: {2} and {3}. It is easy to see how to define two
reduction pairs (�A, >A) and (�B, >B) such that the conditions of the theorem
are fulfilled. For that it suffices to define interpretations A and B, respectively.
Because one can find suitable linear restricted ones for A and B, compatibil-
ity with these interpretations apparently induces linear runtime complexity of
Rexp, cf. [3,1] (even for full rewriting). However, we must not conclude linear
innermost runtime complexity for Rexp in this setting, as Rexp formalises the
exponentiation function and setting tn = exp(rn(0)) we obtain dl(tn,

i−→R) � 2n

for each n � 0. Thus the innermost runtime complexity of Rexp is exponential.

Note that the problem exemplified by Example 14 cannot be circumvented by
replacing the dependency graph employed in Theorem 13 with weak (innermost)
dependency graphs. Furthermore, observe that while Proposition 8 allows us to
replace in Example 14 the innermost rewrite relation i−→R by the (sometimes
simpler) rewrite relation i−→U(DP(R))∪DP(R), this is of no help: The exponential

Complexity, Graphs, and the Dependency Pair Method 659

length of t�n in Example 14 with respect to U(DP(R)) ∪ DP(R) is not due to
the cycles {2} or {3}, but achieved through the non-cyclic pair 1 and its usable
rules. These observations are cast into Definition 15, below.

A graph is called strongly connected if any node is connected with every other
node by a path. A strongly connected component (SCC for short) is a maximal
strongly connected subgraph.4

Definition 15. Let G be a graph, let ≡ denote the equivalence relation induced
by SCCs, and let P be a SCC in G. The set of all source nodes in G/≡ is denoted
by Src. Let l → r be a dependency pair in G, let K ∈ G/≡ and let C denote the
SCC represented by K. Then we write l→ r ∈ K if l → r ∈ C.

Example 16 (Continued from Example 12). There are 8 SCCs in WDG(R), al-
most all except {18, 19, 20} being trivial. Hence the graph WDG(R)/≡ has the
following form and Src = {{13}, {15}, {17}, {18, 19, 20}}.

11 13 12 15 14 {18,19,20} 16 17

4.2 Refinement Based on Path Detection

We re-consider the motivating derivation D:

t0 →U(P)∪P t1 →U(P)∪P · · · →U(P)∪P tn , (1)

where t0 ∈ T �
b . To simplify the exposition, we set P = WDP(R) and G =

WDG(R). Momentarily we assume that all compound symbol are of arity 0, as
is for instance the case in Example 4. Above we asserted that there exists an SLI
A such that U(P) ⊆ >A. Hence Proposition 9 is applicable. Thus, to estimate the
length of the derivation (1) it suffices to consider the following relative rewriting
derivation:

t0 →P/U(P) t1 →P/U(P) · · · →P/U(P) tn . (2)

Exploiting the given assumptions, it is not difficult to see that derivation (2) is
representable as follows:

t0 →�1
P1/U(P1)

t�1 →�2
P2/U(P1)∪U(P2)

· · · →�m

Pm/U(P1)∪···∪U(Pm) tn (3)

where, (P1, . . . ,Pm) is a path in G/≡ with P1 ∈ Src. Since the length � of the
pictured →P/U(P)-rewrite sequence equals �1 + · · · + �m, this suggests that we
can estimate each �j (j ∈ {1, . . . ,m}) independently. We assume the existence
of a family of SLIs Bj (j ∈ {1, . . . ,m}) such that U(P1) ∪ · · · ∪ U(Pj) ⊆ �Bj

and Pj ⊆ >Bj holds for every i. From this we can conclude �j = O(|t�j |) for all
j ∈ {1, . . . ,m}. The next step is to estimate each �j by a function (preferable a
polynomial) in |t0|. As each of the WMAs Bj is assumed to be strongly linear,
we can even conclude [α0]Bj (t�j) = Ω(|t�j |).(Here α0 denotes the assignment

4 Note that in the literature SCCs are sometimes defined as maximal cycles. This
alternative definition is of limited use in our context.

660 N. Hirokawa and G. Moser

mapping any variable to 0.) In sum, we obtain for each j ∈ {1, . . . ,m}, the ex-
istence of a constant cj such that |t�j | � cj · |t0| and thus there exists a linear
polynomial p(x) such that �j � p(|t0|). However, some care is necessary in as-
sessing this observation: Note that the given argument cannot be used to deduce
polynomial runtime complexity, if we weaken the assumption that the algebras
Bj are strongly linear only slightly. Hence, we replace the direct application of
Proposition 9 as follows.

Lemma 17. n � dl(s,→R2/S1∪S2) whenever s→S1
∗ · →R2/S2

n u.

Proof. Straightforward. �	

We lift the assumption that all compound symbols are of arity at most 0. Per-
haps surprisingly this generalisation complicates the matter considerably. First
a maximal derivation need no longer be of the form given in (3) which is exem-
plified by Example 18 below.

Example 18. Consider the TRS R = {f(0) → leaf, f(s(x)) → branch(f(x), f(x))}
The set WDP(R) consists of the two weak dependency pairs: 1: f�(0) → c1

and 2: f�(s(x)) → c2(f�(x), f�(x)). Hence the weak dependency graph WDG(R)
contains 2 SCCs: {2} and {1}. Clearly Src = {{2}}. Let tn = f�(sn(0)). Consider
the following sequence:

t2 →{2}
2 c2(c2(t0, t0), t1) →{1} c2(c2(c1, t0), t1)

→{2} c2(c2(c1, t0), c2(t0, t0)) →{1}
3 c2(c2(c1, c1), c2(c1, c1)) .

This derivation does not have the form (3), because it is based on the sequence
({2}, {1}, {2}, {1}), which is not a path in WDG(R)/≡.

Notice that the derivation in Example 18 can be reordered (without affecting
its length) such that the derivation becomes based on a path. Still, not every
derivation can be abstracted to a path. Consider a maximal (with respect to
subset inclusion) component of WDG(R)/≡. Clearly this component forms a
directed acyclic graph G, and without loss of generality we can conceive G as a
tree T with root in Src. Suppose further that T is not degenerated to a branch.
Then a given derivation may only be abstractable by different paths in T , as
exemplified by Example 19.

Example 19. Consider the TRS R = {f → c(g, h), g → a, h → a}. Thus WDP(R)
consists of three dependency pairs: 1: f� → c1(g�, h�), 2: g� → c2, and 3: h� → c3.
Let P := WDP(R), then Then clearly P = WDG(R) = WDG(R)/≡. Consider
the following derivation

f� →P c1(g�, h�) →P c1(c2, h�) →P c1(c2, c3) .

This derivation is composed from the paths ({1}, {2}) and ({1}, {3}).
Fortunately, we can circumvent these obstacles. Let P denote the set of weak
or weak innermost dependency pairs of a TRS R. We make the following easy
observation.

Complexity, Graphs, and the Dependency Pair Method 661

Lemma 20. Let G denote a weak or weak innermost dependency graph. Let
C ⊆ G and let D : s→∗

C/U(P) t denote a derivation based on C with s ∈ T �
c . Then

D has the following form: s = s0 →C/U(P) s1 →C/U(P) · · · →C/U(P) sn = t where
each si ∈ T �

c .

Proof. It is easy to see that D has the presented form and that for each i ∈
{0, . . . , n} there exists a context C such that si = C[u�

1, . . . , u
�
r] and C consists

of compound symbols only. This establishes the lemma. �	
Motivated by Example 18 we observe that a weak (innermost) dependency pair
containing an m-ary (m > 1) compound symbol can only induces m indepen-
dent derivations. Hence, we can reorder derivations to achieve the structure of
derivation (3). This is formally proven via the next two lemmas.

Lemma 21. Let G denote a weak or weak innermost dependency graph and let
K and L denote two different nodes in G/≡ such that there is no edge from K
to L. Let s0 ∈ T �

c and suppose the existence of a derivation D of the following
form: s0 →n

K/U(P) sn →∗
U(P) t0 →m

L/U(P) tm. Then there exists a derivation D′

which has the form t′0 →m
L/U(P) t

′
m →∗

U(P) s
′
0 →n

K/U(P) s
′
n with t′0 ∈ T �

c .

Proof. Consider the following two dependency pairs: 1: u�
k → com(v�

k1, . . . , v
�
kr)

and 2: u�
l → com(v�

l1, . . . , u
�
lr). Here the dependency pair 1 belongs to K and

denotes the last dependency pair employed in D before the path leaves K into
L, while 2 denotes the first pair in L. The assumption that there is no edge
connecting K and L can be reformulated as follows:

(†) No context C and no substitutions σ, τ : V → T (F ,V) exist such that
com(v�

k1σ, . . . , v
�
krσ) →∗

U(P) C[u�
lτ] holds.

To prove the lemma, we proceed by induction on n. It suffices to consider the
step case n > 1. By assumption the last rewrite step in the subderivation
D0 : s0 →n

K/U(P) sn employs dependency pair 1. Let p ∈ Pos(sn) denote the
position of the reduct com(v�

k1τ, . . . , v
�
krτ) in sn. By assumption there exists a

derivation sn →∗
U(P) t0. Let q ∈ Pos(sn) denote the position of the redex in sn

that is contracted as first step in this reduction. Without loss of generality we
can assume that both positions are parallel to each other. Otherwise one of the
following cases applies. Either p < q or p � q. But clearly the first case contra-
dicts the assumption (†). Hence, assume the second. But this is also impossible.
Lemma 20 yields that sn|q∈ T �

c , which contradicts that q is redex with respect
to U(P). Repeating this argument we see that position p has exactly one descen-
dant in t0. A similar argument shows that all redex positions in the subderivation
D1 : t0 →m

L/U(P) tm are parallel to (descendants of) p. Hence, we can move the
last rewrite step sn−1 →K sn in the derivation D0 after the derivation D1. Note
that in each of the terms (ti)i=1,...,m the position p exists and denotes the term
com(v�

k1τ, . . . , v
�
krτ). Hence, the replacement of com(v�

k1τ, . . . , v
�
krτ) everywhere

by u�
kσ does not affect the validity of the rewrite sequence. Furthermore the set

T �
c is closed under this operation. Now, induction hypothesis becomes applicable

to derive the existence of the sought derivation D′. �	

662 N. Hirokawa and G. Moser

Let G denote a weak or weak innermost dependency graph and let D : s →�

t denote a derivation, such that s ∈ T �
b . Here → denotes either →P/U(P) or

i−→P/U(P). We say that D is based on (P1, . . . ,Pm) in G/≡ if D is of form

s
(i)−→�1

P1/U(P) · · ·
(i)−→�m

Pm/U(P) t ,

with �1, . . . , �m � 0. We arrive at the main lemma of this section.

Lemma 22. Let P denote a set of weak or weak innermost dependency pairs,
let s ∈ T �

b and let D : s →� t denote a maximal derivation, where → denotes
→P/U(P) or i−→P/U(P) respectively. Suppose that D is based on (P1, . . . ,Pm) and
P1 ∈ Src. Then there exists a derivation D′ : s→� t based on (P ′

1, . . . ,P ′
m′), with

P ′
1 ∈ Src such that all P ′

i (i ∈ {1, . . . ,m′}) are pairwise distinct.

Proof. Without loss of generality, we restrict our attention to weak dependency
pairs. To prove the lemma, we consider a sequence (P1, . . . ,Pm), where there
exist indices i, j and k with i < j < k and Pi = Pk. By induction on j − i
we show that this path is transformable into a sequence (P ′

1, . . . ,P ′
m′) of the

required form. It suffices to prove the step case. Moreover, we can assume without
loss of generality that k = j + 1. Consider the two dependency pairs: 1: l�j →
com(u�

j1, . . . , u
�
jr) and 2: l�k → com(u�

k1, . . . , u
�
kr). Dependency pair 1 belongs

to Pj and denotes the last dependency pair employed in D before the sequence
leaves Pj into Pk, while 2 denotes the first pair in Pk. We consider two cases:

1. Assume there exist a context C and substitutions σ, τ : V → T (F ,V) such
that the following holds: com(u�

j1σ, . . . , u
�
jrσ) →∗ C[l�kτ]. Thus by definition

of weak dependency graphs the node in WDG(R) representing dependency
pair 1 is connected to the node representing dependency pair 2. In particular
every node in the SCCs represented by Pi = Pk is connected to every node
in the SCC represented by Pj . This implies that Pi = Pj = Pk contradicting
the assumption.

2. Otherwise, there is no edge between Pj and Pk in the graph G/≡ and by
the assumptions on (P1, . . . ,P�) we find a derivation of the following form:
D0 : sj1 →p

Pj/U(P) sjp →∗
U(P) sk1 →q

Pk/U(P) skq . Due to Lemma 21 there
exists a derivation D1 : s′k1

→q
Pk/U(P) s

′
kq

→∗
U(P) s

′
j1

→p
Pj/U(P) s

′
jp

so that
the number of (weak) dependency pair steps is unchanged. The sequence
(P1, . . . ,Pj ,Pk, . . . ,Pm) is reorderable into (P1, . . . ,Pk,Pj , . . . ,Pm) without
affecting the length � of the →P/U(P)-rewrite sequence. By assumption k =
j + 1, hence induction hypothesis becomes applicable and we conclude the
existence of a path (P ′

1, . . . ,P ′
m′) fulfilling the assertions of the lemma. �	

Finally, we arrive at the main contribution of this paper.

Theorem 23. Let R be a TRS, let P be the set of weak or weak innermost
dependency pairs, let A denotes the maximum arity of compound symbols and
let K denotes the number of SCCs in the weak (innermost) dependency graph G.
Suppose t ∈ T �

b is (innermost) terminating and define

Complexity, Graphs, and the Dependency Pair Method 663

L(t) := max{dl(t,→Pm/S) | (P1, . . . ,Pm) is a path in G/≡ such that P1 ∈ Src} ,

where S = P1∪· · ·∪Pm−1∪U(P1∪· · ·∪Pm). Then dl(t, (i)−→P/U(P)) � AK ·K ·L(t).

Proof. Let (P1, . . . ,Pm) be a path in P/≡ such that P1 ∈ Src and let D : t→� u,
denote a maximal derivation based on this path. (Here → denotes →P/U(P) or
i−→P/U(P).) Lemma 22 yields that D has the following form:

t = t0 →�1
P1/U(P1)

t�1 →�2
P2/U(P1)∪U(P2)

· · · →�m

Pm/U(P1)∪···∪U(Pm) tn = u , (4)

where t0 ∈ T �
b and ti ∈ T �

c for all i � 1. It suffices to estimate �j for all j = 1, . . . ,m
suitably. Let j be arbitrary, but fixed. Consider the subderivationD′ of (4) where
m is replaced by j. Clearly D′ is contained in the following derivation:

t→∗
P1∪···∪Pi−1∪U(P1)∪···∪U(Pj−1) · →

�j

Pj/U(P1)∪···∪U(Pj)
t�j

Hence Lemma 17 is applicable, thus �j � dl(t,→Pj/P1∪···∪Pj−1∪U(P1)∪···∪U(Pj)).
As U(P1) ∪ · · · ∪ U(Pj) ⊆ U(P1 ∪ · · · ∪ Pj) we conclude �j � L(t) and obtain
� = �1 + �2 + · · · + �m � K · L(t).

Above we argued that any connected component in P/≡ is a tree. Clearly the
number of nodes in this tree is less than AK−1

A−1 and an arbitrary derivation can
at most be based on AK−1

A−1 -many different paths. As the length of a derivation
D based on a specific path can be estimated by K · L(t), we conclude that the
length of an arbitrary derivation is less than AK−1

A−1 · K · L(t) � AK · K · L(t).
This completes the proof of the theorem. �	
Theorem 23 together with Proposition 9 form a suitable analog of Theorem 13:
Let P be the set of weak or weak innermost dependency pairs. Suppose for
every path (P1, . . . ,Pm) in P there exist an SLI Am compatible with the usable
rules of

⋃m
i=1 Pi. Assume the existence of a safe and G-collapsible reduction

pairs (�m,;m) such that U(
⋃m

i=1 Pi)∪
⋃m−1

i=1 Pi is compatible with �m and Pm

compatible with ;m. Then for any t ∈ Tb the derivation height dl(t, (i)−→) with
respect to (innermost) rewriting is linearly bounded in G(t�,;m) and |t|.
Corollary 24. Let R be a TRS, let P be the set of weak (innermost) dependency
pairs, and let G denote the weak (innermost) dependency graph. Suppose for
every path (P1, . . . ,Pm) in G/≡ there exist an SLI Am and linear (quadratic)
restricted interpretations Bm such that (�Bm , >Bm) forms a safe reduction pair
with (i) U(P1∪· · ·∪Pm) ⊆ >Am (ii) P1∪· · ·∪Pm−1∪U(P1∪· · ·∪Pm) ⊆ �Bm,
and (iii) Pm ⊆ >Bm. Then the runtime complexity of a TRS R is linear or
quadratic, respectively.

Proof. Observe that the assumptions imply that any basic term t ∈ Tb is termi-
nating with respect to R: Any infinite derivation with respect to R starting in
t can be translated into an infinite derivation with respect to U(R) ∪ P (see [1,
Lemma 16]). Moreover, as the number of paths in G/≡ is finite, there exists a
component Pi that represents an infinite rewrite sequence. This is a contradic-
tion. Without loss of generality, we assume P = WDP(P) and G = WDG(P).
Notice that the reduction pair (�Bm , >Bm) is safe and collapsible. Hence for

664 N. Hirokawa and G. Moser

all m, the length of any →Pm/S-rewrite sequence is less than pm(|t|), where
pm denotes a linear (or quadratic) polynomial, depending on |t| only. (Here
S = P1∪· · ·∪Pm−1∪U(P1 ∪· · ·∪Pm).) In analogy to the operator L, we define
M(t) :=max{dl(t,→Pm∪S) | (P1, . . . ,Pm) is a path in G/≡ such that P1 ∈ Src}.
An application of Proposition 9 yields M(t) = O(pm(|t|)). Following the pattern
of the proof of the Theorem, we establish the existence of a polynomial p such
that dl(t,→P∪U(P)) � p(|t|) holds for any basic term t. Finally, the corollary
follows by an application of Proposition 8. �	

As mentioned above, in the dependency graph refinement for termination analy-
sis it suffices to guarantee for each cycle C that there exists no C-minimal rewrite
sequences. For that one only needs to find a reduction pair (�,;) such that
R ⊆ �, C ⊆ � and C ∩ ; �= ∅. Thus, considering Theorem 23 it is tempting to
think that it should suffice to replace strongly connected components by cycles
and the stronger conditions should apply. However this intuition is deceiving as
shown by the next example.

Example 25. Consider the TRSR of f(s(x), 0)→ f(x, s(x)) and f(x, s(y))→ f(x, y).
WDP(R) consists of 1: f�(s(x), 0) → f�(x, s(x)) and 2: f�(x, s(y)) → f�(x, y), and
the weak dependency graph WDG(R) contains two cycles {1, 2} and {2}. There
are two linear restricted interpretations A and B such that {1, 2} ⊆ �A ∪ >A,
{1} ⊆ >A, and {1} ⊆ >B. Here, however, we must not conclude linear runtime
complexity, because the runtime complexity of R is at least quadratic.

5 Conclusion

In this section we provide (experimental) evidence on the applicability of the
technique for complexity analysis established in this paper. We briefly consider
the efficient implementation of the techniques provided by Theorem 23 and
Corollary 24. Firstly, in order to approximate (weak) dependency graphs, we
adapted (innermost) dependency graph estimations using the functions TCAP
(ICAP) [14]. Secondly, note that a graph including n nodes may contain an expo-
nential number of paths. However, to apply Corollary 24 it is sufficient to handle
only paths in the following set. Notice that this set contains at most n2 paths.

{(P1, . . . ,Pk) | (P1, . . . ,Pm) is a maximal path and k � m} ,

Example 26 (continued from Example 16). For WDG(R)/≡ the above set con-
sists of 8 paths: ({13}), ({13}, {11}), ({13}, {12}), ({15}), ({15}, {14}), ({17}),
({18, 19, 20}), and ({18, 19, 20}, {16}). In the following we only consider the last
three paths, since all other paths are similarly handled.

– Consider ({17}). Note U({17}) = ∅. By taking an arbitrary SLI A and the
linear restricted interpretation B with gcd�

B(x, y) = x and sB(x) = x+ 1, we
have ∅ ⊆ >A, ∅ ⊆ �B, and {17} ⊆ >B.

– Consider ({18, 19, 20}). Note U({18, 19, 20}) = {1, . . . , 5}. By taking the SLI
A and the linear restricted interpretation B with 0A = trueA = falseA = 0,
sA(x) = x+1, x−Ay = x �A y = x+y+1; 0B = trueB = falseB = x �B y=0,

Complexity, Graphs, and the Dependency Pair Method 665

Table 1. Results for Linear Runtime Complexities

full rewriting innermost rewriting
direct Prop.8 Prop.10 Cor.24 Prop.8 Prop.10 Cor.24

success 139 138 119 137 143 128 147
(161) (179) (170) (189)

15 21 18 52 21 21 65
failure 1535 1518 1560 1510 1511 1551 1499

1789 3185 152 1690 3214 214 1625
timeout 5 23 0 32 25 0 33

Table 2. Results for Quadratic Runtime Complexities

full rewriting innermost rewriting
direct Prop.8 Prop.10 Cor.24 Prop.8 Prop.10 Cor.24

success 179 172 125 141 172 126 146
(191) (210) (192) (213)

623 732 295 616 725 278 787
failure 745 699 1499 1434 699 1496 1431

4431 4522 1128 2883 4536 1062 2856
timeout 753 807 55 104 807 57 102

sB(x) = x+ 2, x−B y = x, gcd�
B(x, y) = x+ y+ 1, and ifgcd

�
B(x, y, z) = y+ z,

we obtain {1, . . . , 5} ⊆ >A, {1, . . . , 5} ⊆ �B, and {18, 19, 20} ⊆ >B.
– Consider ({18, 19, 20}, {16}). Note U({16}) = ∅. By taking the same A and

also B, we have {1, . . . , 5} ⊆ >A, {1, . . . , 5, 18, 19, 20} ⊆ �B, and {16} ⊆ >B.

Thus, all path constraints are handled by linear restricted interpretations. Hence,
the runtime complexity function of R is linear.

Moreover, to deal efficiently with polynomial interpretations, the issuing con-
straints are encoded in propositional logic in a similar spirit as in [16]. Assign-
ments are found by employing a state-of-the-art SAT solver, in our case MiniSat5.
Furthermore, SLIs are handled by linear programming. Based on these ideas we
implemented a complexity analyser. As suitable test bed we used the rewrite sys-
tems in the Termination Problem Data Base version 4.0.6 The presented tests
were performed single-threaded on a 1.50 GHz Intel® Core™ Duo Processor
L2300 and 1.5 GB of memory. For each system we used a timeout of 60 seconds.
In interpreting defined and dependency pair symbols, we restrict the search to
polynomials in the range {0, 1, . . . , 5}. Table 1 (2) shows the experimental results
for linear (quadratic) runtime complexities based on linear (quadratic) restricted
interpretations.7 Text written in italics below the number of successes or failures
indicates total time (in seconds) of success cases or failure cases, respectively.8

5 http://minisat.se/.
6 See http://www.lri.fr/~marche/tpdb/.
7 For full experimental evidence see http://www.jaist.ac.jp/~hirokawa/08b/.
8 Sum of numbers in each column may be less than 1679 because of stack overflow.

http://minisat.se/
http://www.lri.fr/~marche/tpdb/
http://www.jaist.ac.jp/~hirokawa/08b/

666 N. Hirokawa and G. Moser

The columns marked “Prop. 10” and “Cor. 24” refer to the applicability of the
respective results. For sake of comparison, in the parentheses we indicate the
number of successes by the method of the column or by Proposition 8.

In concluding, we observe that the experimental data shows that the here
introduced dependency graph refinement for complexity analysis extends the
analytic power of the methods introduced in [1]. Notice the significant difference
between those TRSs that can be handled by Propositions 8, 10 in contrast to
those that can be handled either by Proposition 8 or by Corollary 24. Moreover
observe the gain in power in relation to direct methods, compare also [3,4].

References
1. Hirokawa, N., Moser, G.: Automated complexity analysis based on the dependency

pair method. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008.
LNCS, vol. 5195, pp. 364–379. Springer, Heidelberg (2008)

2. Lescanne, P.: Termination of rewrite systems by elementary interpretations. Formal
Aspects of Computing 7(1), 77–90 (1995)

3. Bonfante, G., Cichon, A., Marion, J.Y., Touzet, H.: Algorithms with polynomial
interpretation termination proof. JFP 11(1), 33–53 (2001)

4. Avanzini, M., Moser, G.: Complexity analysis by rewriting. In: Garrigue, J.,
Hermenegildo, M.V. (eds.) FLOPS 2008. LNCS, vol. 4989, pp. 130–146. Springer,
Heidelberg (2008)

5. Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. TCS 236,
133–178 (2000)

6. Arts, T., Giesl, J.: A collection of examples for termination of term rewriting using
dependency pairs. Technical Report AIB-2001-09, RWTH Aachen (2001)

7. Giesl, J., Arts, T., Ohlebusch, E.: Modular termination proofs for rewriting using
dependency pairs. JSC 34(1), 21–58 (2002)

8. Hirokawa, N., Middeldorp, A.: Tyrolean termination tool: Techniques and features.
IC 205, 474–511 (2007)

9. Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and improving
dependency pairs. JAR 37(3), 155–203 (2006)

10. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
Cambridge (1998)

11. Terese: Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Sci-
ence, vol. 55. Cambridge University Press, Cambridge (2003)

12. Hofbauer, D., Lautemann, C.: Termination proofs and the length of derivations. In:
Dershowitz, N. (ed.) RTA 1989. LNCS, vol. 355, pp. 167–177. Springer, Heidelberg
(1989)

13. Contejean, E., Marché, C., Tomás, A.P., Urbain, X.: Mechanically proving termi-
nation using polynomial interpretations. JAR 34(4), 325–363 (2005)

14. Giesl, J., Thiemann, R., Schneider-Kamp, P.: Proving and disproving termina-
tion of higher-order functions. In: Gramlich, B. (ed.) FroCos 2005. LNCS (LNAI),
vol. 3717, pp. 216–231. Springer, Heidelberg (2005)

15. Hirokawa, N., Middeldorp, A.: Automating the dependency pair method.
IC 199(1,2), 172–199 (2005)

16. Fuhs, C., Giesl, J., Middeldorp, A., Schneider-Kamp, P., Thiemann, R., Zankl, H.:
SAT solving for termination analysis with polynomial interpretations. In: Marques-
Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 340–354. Springer,
Heidelberg (2007)

Uncurrying for Termination�

Nao Hirokawa1, Aart Middeldorp2, and Harald Zankl2

1 School of Information Science
Japan Advanced Institute of Science and Technology, Japan

hirokawa@jaist.ac.jp
2 Institute of Computer Science
University of Innsbruck, Austria

{aart.middeldorp,harald.zankl}@uibk.ac.at

Abstract. First-order applicative term rewrite systems provide a natu-
ral framework for modeling higher-order aspects. In this paper we present
a transformation from untyped applicative term rewrite systems to func-
tional term rewrite systems that preserves and reflects termination. Our
transformation is less restrictive than other approaches. In particular,
head variables in right-hand sides of rewrite rules can be handled. To
further increase the applicability of our transformation, we present a
version for dependency pairs.

1 Introduction

In this paper we are concerned with proving termination of first-order applicative
term rewrite systems. These systems provide a natural framework for modeling
higher-order aspects found in functional programming languages. The signature
of an applicative term rewrite system consists of constants and a single binary
function symbol called application and denoted by the infix and left-associative
symbol ◦. Proving termination of applicative term rewrite systems is challenging
because the rewrite rules lack sufficient structure. As a consequence, simplifica-
tion orders are not effective as ◦ is the only function symbol of non-zero arity.
Moreover, the dependency pair method is of little help as ◦ is the only defined
non-constant symbol.

The main contribution of this paper is a new transformation that recovers
the structure in applicative rewrite rules. Our transformation can deal with par-
tial applications as well as head variables in right-hand sides of rewrite rules.
The key ingredient is the addition of sufficiently many uncurrying rules to the
transformed system. These rules are also crucial for a smooth transition into
the dependency pair framework. Unlike the transformation of applicative de-
pendency pair problems presented in [10,17], our uncurrying processor preserves
minimality (cf. Section 6), which means that it can be used at any node in a
modular (non-)termination proof attempt.
� This research is supported by FWF (Austrian Science Fund) project P18763, Grant-

in-Aid for Young Scientists 20800022 of the Ministry of Education, Culture, Sports,
Science and Technology of Japan, and STARC.

I. Cervesato, H. Veith, and A. Voronkov (Eds.): LPAR 2008, LNCS 5330, pp. 667–681, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

668 N. Hirokawa, A. Middeldorp, and H. Zankl

The remainder of this paper is organised as follows. After recalling existing
results in Section 2, we present a new uncurrying transformation and prove that
it is sound and complete for termination in Section 3. Despite its simplicity, the
transformation has some subtleties which are illustrated by several examples.
Two extensions to the dependency pair framework are presented in Section 4.
Our results are empirically evaluated in Section 5 and we conclude with a dis-
cussion of related work in Section 6. Parts of Section 3 were first announced
in a note by the first two authors that was presented at the 3rd International
Workshop on Higher-Order Rewriting (Seattle, 2006).

2 Preliminaries

We assume familiarity with term rewriting [5] in general and termination [20] in
particular.

Definition 1. An applicative term rewrite system (ATRS for short) is a TRS
over a signature that consists of constants and a single binary function symbol
called application denoted by the infix and left-associative symbol ◦. In examples
we often use juxtaposition instead of ◦.

Every ordinary TRS can be transformed into an applicative rewrite system by
currying.

Definition 2. Let F be a signature. The currying system C(F) consists of the
rewrite rules fi+1(x1, . . . , xi, y) → fi(x1, . . . , xi) ◦ y for every n-ary function
symbol f ∈ F and every 0 � i < n. Here fn = f and, for every 0 � i < n, fi is
a fresh function symbol of arity i.

The currying system C(F) is confluent and terminating. Hence every term t has
a unique normal form t↓C(F).

Definition 3. Let R be a TRS over the signature F . The curried system R↓C(F)
is the ATRS consisting of the rules l↓C(F) → r↓C(F) for every l → r ∈ R. The
signature of R↓C(F) contains the application symbol ◦ and a constant f0 for every
function symbol f ∈ F .

In the following we write R↓C for R↓C(F) whenever F can be inferred from the
context or is irrelevant. Moreover, we write f for f0.

Example 4. The TRS R = {0+y → y, s(x)+y → s(x+y)} is transformed into the
ATRS R↓C = {+ 0 y → y,+ (s x) y → s (+ x y)}. Every rewrite sequence in R
can be transformed into a sequence in R↓C , but the reverse does not hold. For
instance, with respect to the above example, the rewrite step + (s (+ 0)) 0 →
s (+ (+ 0) 0) in R↓C does not correspond to a rewrite step in R. Nevertheless,
termination of R implies termination of R↓C .

Theorem 5 (Kennaway et al. [15]). A TRS R is terminating if and only if R↓C
is terminating. �	

Uncurrying for Termination 669

As an immediate consequence we get the following transformation method for
proving termination of ATRSs.

Corollary 6. An ATRS R is terminating if and only if there exists a terminat-
ing TRS S such that S↓C = R (modulo renaming). �	

In [10] this method is called transformation A. As can be seen from the following
example, the method does not handle partially applied terms and, more seriously,
head variables. Hence the method is of limited applicability as it cannot cope
with the higher-order aspects modeled by ATRSs.

Example 7. Consider the ATRS R (from [2])

1 : id x→ x 4: map f nil → nil

2: add 0 → id 5: map f (: x y) → : (f x) (map f y)
3 : add (s x) y → s (add x y)

Rules 1 and 4 are readily translated into functional form: id1(x) → x and
map2(f, nil) → nil. However, we cannot find functional forms for rules 2 and
3 because the ‘arity’ of add is 1 in rule 2 and 2 in rule 3. Because of the presence
of the head variable f in the subterm f x, there is no functional term t such
that t↓C = : (f x) (map f y). Hence also rule 5 cannot be transformed.

3 Uncurrying

In this section we present an uncurrying transformation that can deal with
ATRSs like in Example 7. Throughout this section we assume that R is an
ATRS over a signature F .

Definition 8. The applicative arity aa(f) of a constant f ∈ F is defined as the
maximum n such that f ◦ t1 ◦ · · · ◦ tn is a subterm in the left- or right-hand side
of a rule in R. This notion is extended to terms as follows:

aa(t) =

{
aa(f) if t is a constant f
aa(t1) − 1 if t = t1 ◦ t2

Note that aa(t) is undefined if the head symbol of t is a variable.

Definition 9. The uncurrying system U(F) consists of the following rewrite
rules fi(x1, . . . , xi) ◦ y → fi+1(x1, . . . , xi, y) for every constant f ∈ F and every
0 � i < aa(f). Here f0 = f and, for every i > 0, fi is a fresh function symbol
of arity i. We say that R is left head variable free if aa(t) is defined for every
non-variable subterm t of a left-hand side of a rule in R. This means that no
subterm of a left-hand side in R is of the form t1 ◦ t2 where t1 is a variable.

The uncurrying system U(F), or simply U , is confluent and terminating. Hence
every term t has a unique normal form t↓U .

670 N. Hirokawa, A. Middeldorp, and H. Zankl

Definition 10. The uncurried system R↓U is the TRS consisting of the rules
l↓U → r↓U for every l→ r ∈ R.

Example 11. The ATRS R of Example 7 is transformed into R↓U :

id1(x) → x map2(f, nil) → nil

add1(0) → id map2(f, :2(x, y)) → :2(f ◦ x,map2(f, y))
add2(s1(x), y) → s1(add2(x, y))

The TRS R↓U is an obvious candidate for S in Corollary 6. However, as can be
seen from the following example, the rules of R↓U are not enough to simulate
an arbitrary rewrite sequence in R.

Example 12. The non-terminating ATRS R = {id x→ x, f x→ id f x} is trans-
formed into the terminating TRS R↓U = {id1(x) → x, f1(x) → id2(f, x)}. Note
that R↓U↓C = {id1 x→ x, f1 x→ id2 f x} is different from R.

In the above example we need rules that connect id2 and id1 as well as f1 and
f. The natural idea is now to add U(F). In the following we write U+(R,F) for
R↓U(F) ∪U(F). If F can be inferred from the context or is irrelevant, U+(R,F)
is abbreviated to U+(R).

Example 13. Consider the ATRS R in Example 12. We have aa(id) = 2 and
aa(f) = 1. The TRS U+(R) consists of the following rules

id1(x) → x id ◦ x→ id1(x) f ◦ x→ f1(x)
f1(x) → id2(f, x) id1(x) ◦ y → id2(x, y)

and is easily shown to be terminating.

As the above example shows, we do not yet have a sound transformation. The
ATRS R admits the cycle f x→ id f x→ f x. In U+(R) we have f1(x) → id2(f, x)
but the term id2(f, x) does not rewrite to f1(x). It would if the rule id x y → x y
were present in R. This inspires the following definition.

Definition 14. Let R be a left head variable free ATRS. The η-saturated ATRS
Rη is the smallest extension of R such that l ◦ x → r ◦ x ∈ Rη whenever
l→ r ∈ Rη and aa(l) > 0. Here x is a variable that does not appear in l → r.

The rules added during η-saturation do not affect the termination behaviour of
R, according to the following lemma whose straightforward proof is omitted.
Moreover, Rη is left head variable free if and only if R is left head variable free.

Lemma 15. If R is a left head variable free ATRS then →R = →Rη . �	

We can now state the main result of this section.

Theorem 16. A left head variable free ATRS R is terminating if U+(Rη) is
terminating.

Uncurrying for Termination 671

It is important to note that the applicative arities used in the definition of
U+(Rη) are computed before η-saturation.

Example 17. The non-terminating ATRS R = {f → g a, g → f} is transformed
into U+(Rη) = {f → g1(a), g → f, g1(x) → f◦x, g◦x→ g1(x)} because aa(f) = 0.
The resulting TRS is non-terminating. Uncurrying with aa(f) = 1 produces the
terminating TRS {f → g1(a), g → f, g1(x) → f1(x), g ◦ x→ g1(x), f ◦ x→ f1(x)}.

Before presenting the proof of Theorem 16, we revisit Example 7.

Example 18. Consider again the ATRS R of Example 7. Proving termination of
the transformed TRS U+(Rη)

id1(x) → x : ◦ x→ :1(x) id ◦ x→ id1(x)
add1(0) → id :1(x) ◦ y → :2(x, y) add ◦ x→ add1(x)

add2(0, y) → id1(y) add1(x) ◦ y → add2(x, y)
add2(s1(x), y) → s1(add2(x, y)) s ◦ x→ s1(x)

map2(f, nil) → nil map ◦ x→ map1(x)
map2(f, :2(x, y)) → :2(f ◦ x,map2(f, y)) map1(x) ◦ y → map2(x, y)

is straightforward with the dependency pair method (recursive SCC algorithm
with three applications of the subterm criterion).

The following two lemmata state factorisation properties which are used in the
proof of Theorem 16. The easy induction proofs are omitted.

Lemma 19. Let s and t be terms. If aa(s) > 0 then s↓U ◦ t↓U →∗
U (s ◦ t)↓U . If

aa(s) � 0 or if aa(s) is undefined then s↓U ◦ t↓U = (s ◦ t)↓U . �	

For a substitution σ, we write σ↓U for the substitution {x �→ σ(x)↓U | x ∈ V}.

Lemma 20. Let σ be a substitution. For every term t, t↓Uσ↓U →∗
U (tσ)↓U . If t

is head variable free then t↓Uσ↓U = (tσ)↓U . �	

Proof (of Theorem 16). We show that s↓U →+
U+(Rη) t↓U whenever s→Rη t. This

entails that any infinite Rη derivation is transformed into an infinite U+(Rη)
derivation. The theorem follows from this observation and Lemma 15. Let s =
C[lσ] and t = C[rσ] with l → r ∈ Rη. We use induction on the size of the
context C.

– If C = � then s↓U = (lσ)↓U = l↓Uσ↓U and r↓Uσ↓U →∗
U (rσ)↓U = t↓U by

Lemma 20. Hence s↓U →+
U+(Rη) t↓U .

– Suppose C = � ◦ s1 ◦ · · · ◦ sn and n > 0. Since Rη is left head variable free,
aa(l) is defined. If aa(l) = 0 then

s↓U = (lσ ◦ s1 ◦ · · · ◦ sn)↓U = lσ↓U ◦ s1↓U ◦ · · · ◦ sn↓U
= l↓Uσ↓U ◦ s1↓U ◦ · · · ◦ sn↓U

and

672 N. Hirokawa, A. Middeldorp, and H. Zankl

r↓Uσ↓U ◦ s1↓U ◦ · · · ◦ sn↓U →∗
U (rσ)↓U ◦ s1↓U ◦ · · · ◦ sn↓U

→∗
U (rσ ◦ s1 ◦ · · · ◦ sn)↓U = t↓U

by applications of Lemmata 19 and 20. Hence s↓U →+
U+(Rη) t↓U . If aa(l) > 0

then l ◦ x → r ◦ x ∈ Rη for some fresh variable x. We have s = C′[(l ◦ x)τ]
and t = C′[(r ◦x)τ] for the context C′ = �◦s2 ◦ · · · ◦sn and the substitution
τ = σ ∪ {x �→ s1}. Since C′ is smaller than C, we can apply the induction
hypothesis which yields the desired result.

– In the remaining case C = s1 ◦ C′. The induction hypothesis yields

C′[lσ]↓U →+
U+(Rη) C

′[rσ]↓U

If aa(s1) � 0 or if aa(s1) is undefined then s↓U = s1↓U ◦ C′[lσ]↓U and
t↓U = s1↓U ◦C′[rσ]↓U by Lemma 19. If aa(s1) > 0 then s1↓U = fi(u1, . . . , ui)
for the head symbol f of s1 and some terms u1, . . . , ui. So

s↓U = fi+1(u1, . . . , ui, C
′[lσ]↓U)

and
t↓U = fi+1(u1, . . . , ui, C

′[rσ]↓U)

Hence in both cases we obtain s↓U →+
U+(Rη) t↓U . �	

The next example shows that the left head variable freeness condition cannot be
weakened to the well-definedness of aa(l) for every left-hand side l.

Example 21. Consider the non-terminating ATRS R={f (x a) → f (g b), g b →
h a}. The transformed TRS U+(Rη) consists of the rules

f1(x ◦ a) → f1(g1(b)) f ◦ x→ f1(x) h ◦ x→ h1(x)
g1(b) → h1(a) g ◦ x→ g1(x)

and is terminating because its rules are oriented from left to right by the lex-
icographic path order with precedence ◦ ; g1 ; f1 ; h1 ; a ; b. Note that
aa(f (x a)) = 0.

The uncurrying transformation is not always useful.

Example 22. Consider the one-rule TRS R = {C x y z u → x z (x y z u)}
from [7]. The termination of R is proved by the lexicographic path order with
empty precedence. The transformed TRS U+(Rη) consists of

C4(x, y, z, u) → x ◦ z ◦ (x ◦ y ◦ z ◦ u)
C ◦ x→ C1(x) C2(x, y) ◦ z → C3(x, y, z)

C1(x) ◦ y → C2(x, y) C3(x, y, z) ◦ u→ C4(x, y, z, u)

None of the tools that participated in the termination competitions between
2005 and 2007 is able to prove the termination of this TRS.

Uncurrying for Termination 673

We show that the converse of Theorem 16 also holds. Hence the uncurrying
transformation is not only sound but also complete for termination. (This does
not contradict the preceding example.)

Definition 23. For a term t over the signature of the TRS U+(R), we denote
by t↓C′ the result of identifying different function symbols in t↓C that originate
from the same function symbol in F . The notation ↓C′ is extended to TRSs and
substitutions in the obvious way.

Example 24. For the ATRS R of Example 12 we have R↓U↓C′ = R.

Lemma 25. For every t, C, and σ, C[tσ]↓C′ = C↓C′ [t↓C′σ↓C′].

Proof. Straightforward induction on C and t. �	
Lemma 26. Let R be a left head variable free ATRS. If s and t are terms over
the signature of U+(R) then s→Rη↓U t if and only if s↓C′ →Rη t↓C′ .

Proof. This follows from Lemma 25 and the fact that Rη↓U↓C′ = Rη. �	
Lemma 27. Let R be a left head variable free ATRS. If s and t are terms over
the signature of U+(R) and s→U t then s↓C′ = t↓C′ .

Proof. This follows from Lemma 25 in connection with the observation that all
rules in U↓C′ have equal left- and right-hand sides. �	
Theorem 28. If a left head variable free ATRS R is terminating then U+(Rη)
is terminating.

Proof. Assume that U+(Rη) is non-terminating. Since U is terminating, any
infinite rewrite sequence has the form s1 →Rη↓U t1 →∗

U s2 →Rη↓U t2 →∗
U · · · .

Applications of Lemmata 26 and 27 transform this sequence into s1↓C′ →Rη

t1↓C′ = s2↓C′ →Rη t2↓C′ = · · · . It follows that Rη is non-terminating. Since
→R = →Rη by Lemma 15, we conclude that R is non-terminating. �	
We conclude this section by describing a trivial mirroring technique for TRSs.
This technique can be used to eliminate some of the left head variables in an
ATRS.

Definition 29. Let t be a term. The term tM is defined as follows: tM = t if
t is a variable and tM = f(tMn , . . . , tM1) if t = f(t1, . . . , tn). Moreover, if R is a
TRS then RM = {lM → rM | l→ r ∈ R}.
We obviously have s→R t if and only if sM →RM tM . This gives the following
result.

Theorem 30. A TRS R is terminating if and only if RM is terminating. �	
Example 31. Consider the one-rule ATRS R = {x (a a a) → a (a a) x}. While R
has a head variable in its left-hand side, the mirrored version RM = {a (a a) x→
x (a a a)} is left head variable free. The transformed TRS U+((RM)η)

a2(a1(a), x) → x ◦ a2(a, a) a ◦ x→ a1(x) a1(x) ◦ y → a2(x, y)

is easily proved terminating with dependency pairs and a linear polynomial in-
terpretation.

674 N. Hirokawa, A. Middeldorp, and H. Zankl

4 Uncurrying with Dependency Pairs

In this section we incorporate the uncurrying transformation into the dependency
pair framework [4,9,11,13,17]. Let R be a TRS over a signature F . The signature
F is extended with dependency pair symbols f � for every symbol f ∈ {root(l) |
l → r ∈ R}, where f � has the same arity as f , resulting in the signature F �. If
l→ r ∈ R and t is a subterm of r with a defined root symbol that is not a proper
subterm of l then the rule l� → t� is a dependency pair of R. Here l� and t� are the
result of replacing the root symbols in l and t by the corresponding dependency
pair symbols. The set of dependency pairs of R is denoted by DP(R). A DP
problem is a pair of TRSs (P ,R) such that the root symbols of the rules in P
do neither occur in R nor in proper subterms of the left- and right-hand sides
of rules in P . The problem is said to be finite if there is no infinite sequence
s1

ε−→P t1 →∗
R s2

ε−→P t2 →∗
R · · · such that all terms t1, t2, . . . are terminating

with respect to R. Such an infinite sequence is said to be minimal. The main
result underlying the dependency pair approach states that termination of a
TRS R is equivalent to finiteness of the DP problem (DP(R),R).

In order to prove a DP problem finite, a number of DP processors have been
developed. DP processors are functions that take a DP problem as input and
return a set of DP problems as output. In order to be employed to prove ter-
mination they need to be sound, that is, if all DP problems in a set returned
by a DP processor are finite then the initial DP problem is finite. In addition,
to ensure that a DP processor can be used to prove non-termination it must
be complete which means that if one of the DP problems returned by the DP
processor is not finite then the original DP problem is not finite.

In this section we present two DP processors that uncurry applicative DP
problems, which are DP problems over applicative signatures containing two
application symbols: ◦ and ◦�.

4.1 Uncurrying Processor

Definition 32. Let (P ,R) be an applicative DP problem. The DP processor U1
is defined as

(P ,R) �→
{
{(P↓U(F),U+(Rη,F))} if P ∪R is left head variable free
{(P ,R)} otherwise

where F consists of all function symbols of P ∪R minus the root symbols of P.

Theorem 33. The DP processor U1 is sound and complete.

Proof. Let F be the set of function symbols of P ∪ R minus the root symbols
of P . We first show soundness. Let (P ,R) be an applicative DP problem with
the property that P ∪ R is left head variable free. Suppose the DP problem
(P↓U ,U+(Rη)) is finite. We have to show that (P ,R) is finite. Suppose to the
contrary that (P ,R) is not finite. So there exists a minimal rewrite sequence

s1
ε−→P t1 →∗

R s2
ε−→P t2 →∗

R · · · (1)

Uncurrying for Termination 675

By Lemmata 15 and 20 together with the claim in the proof of Theorem 16, this
sequence can be transformed into s1↓U

ε−→P↓U u1 →∗
U t1↓U →∗

U+(Rη) s2↓U
ε−→P↓U

u2 →∗
U t2↓U →∗

U+(Rη) · · · . It remains to show that all terms u1, u2, . . . are
terminating with respect to U+(Rη). Fix i. We have ui↓C′ = ti↓U↓C′ = ti. Due
to the minimality of (1), ti is terminating with respect to R and, according to
Lemma 15, also with respect to Rη. Hence, due to the proof of Theorem 28, ui

is terminating with respect to U+(Rη).
Next we show completeness of the DP processor U1. So let (P ,R) be an

applicative DP problem with the property that P ∪ R is left head variable free
and suppose that the DP problem (P↓U ,U+(Rη)) is not finite. So there exists a
minimal rewrite sequence s1

ε−→P↓U t1 →∗
U+(Rη) s2

ε−→P↓U t2 →∗
U+(Rη) · · · . Using

Lemmata 26 and 27 this sequence can be transformed into s1↓C′
ε−→P t1↓C′ →∗

Rη

s2↓C′
ε−→P t2↓C′ →∗

Rη
· · · . In order to conclude that the DP problem (P ,R) is

not finite, it remains to show that the terms t1↓C′ , t2↓C′ , . . . are terminating
with respect to Rη. This follows from the assumption that the terms t1, t2, . . .
are terminating with respect to U+(Rη) in connection with Lemma 26. �	
The following example from [17] shows that the A transformation of [10] is not
sound because it does not preserve minimality.1

Example 34. Consider the applicative DP problem (P ,R) with P consisting of
the rewrite rule (g x) (h y) � z → z z � z and R consisting of the rules

c x y → x c (g x) y → c (g x) y
c x y → y c x (g y) → c x (g y)

The DP problem (P ,R) is not finite because of the following minimal rewrite
sequence:

(g x) (h x) � (c g h x) ε−→P (c g h x) (c g h x) � (c g h x)

→R (g x) (c g h x) � (c g h x)

→R (g x) (h x) � (c g h x)

Applying the DP processor U1 produces (P↓U ,U+(Rη)) with P↓U consisting of
the rewrite rule g1(x) ◦ h1(y) ◦� z → z ◦ z ◦� z and U+(Rη) consisting of the rules

c2(x, y) → x c2(g1(x), y) → c2(g1(x), y) g ◦ x→ g1(x)
c2(x, y) → y c2(x, g1(y)) → c2(x, g1(y)) h ◦ x→ h1(x)

c ◦ x→ c1(x) c1(x) ◦ y → c2(x, y)

This DP problem is not finite:

g1(x) ◦ h1(x) ◦� (c2(g, h) ◦ x) ε−→P↓U (c2(g, h) ◦ x) ◦ (c2(g, h) ◦ x) ◦� (c2(g, h) ◦ x)
→∗

U+(Rη) (g ◦ x) ◦ (h ◦ x) ◦� (c2(g, h) ◦ x)

→∗
U+(Rη) g1(x) ◦ h1(x) ◦� (c2(g, h) ◦ x)

Note that c2(g, h) ◦ x is terminating with respect to U+(Rη).
1 Since minimality is not part of the definition of finite DP problems in [10], this does

not contradict the results in [10].

676 N. Hirokawa, A. Middeldorp, and H. Zankl

The uncurrying rules are essential in this example, even though in the original
DP problem all occurrences of each constant have the same number of arguments.
Indeed, the A transformation leaves out the uncurrying rules, resulting in a DP
problem that admits infinite rewrite sequences but no minimal ones since one
has to instantiate the variable z in g1(x) ◦ h1(y) ◦� z → z ◦ z ◦� z by a term
that contains a subterm of the form c2(g1(s), t) or c2(s, g1(t)) and the rules
c2(g1(x), y) → c2(g1(x), y) and c2(x, g1(y)) → c2(x, g1(y)) ensure that these
terms are non-terminating.

4.2 Freezing

A drawback of U1 is that dependency pair symbols are excluded from the uncur-
rying process. Typically, all pairs in P have the same root symbol ◦�. The next
example shows that uncurrying root symbols of P can be beneficial.

Example 35. After processing the ATRS consisting of the rule a x a → a (a a) x
with the recursive SCC algorithm and U1, the rule a1(x) ◦� a → a1(a1(a)) ◦� x
must be oriented. This cannot be done with a linear polynomial interpretation.
If we transform the rule into a�

2(x, a) → a�
2(a1(a), x) this becomes trivial.

To this end we introduce a simple variant of freezing [19].

Definition 36. A simple freeze is a partial mapping � that assigns to a function
symbol of arity n > 0 an argument position i ∈ {1, . . . , n}. Every simple freeze
� induces the following partial mapping on non-variable terms t = f(t1, . . . , tn),
also denoted by �:

– if �(f) is undefined or n = 0 then �(t) = t,
– if �(f) = i and ti = g(u1, . . . , um) then

�(t) = �
f
g (t1, . . . , ti−1, u1, . . . , um, ti+1, . . . , tn)

where �f
g is a fresh m+ n− 1-ary function symbol,

– if �(f) = i and ti is a variable then �(t) is undefined.

We denote {�(l) → �(r) | l→ r ∈ R} by �(R).

Now uncurrying for dependency pair symbols is formulated with the simple freeze
�(◦�) = 1, transforming fn(t1, . . . , tn) ◦� tn+1 to �

◦�

fn
(t1, . . . , tn, tn+1). Writing

f �
n+1 for �◦

�

fn
, we obtain the uncurried term f �

n+1(t1, . . . , tn, tn+1). In Example 35
we have �({a1(x) ◦� a → a1(a1(a)) ◦� x}) = {a�

2(x, a) → a�
2(a1(a), x)}.

Definition 37. A term t is strongly root stable with respect to a TRS R if
tσ →∗

R · ε−→R u does not hold for any substitution σ and term u. Let � be a
simple freeze. A DP problem (P ,R) is �-stable if �(P) is well-defined and ti is
strongly root stable for R whenever s→ f(t1, . . . , tn) ∈ P and �(f) = i.

Uncurrying for Termination 677

Definition 38. Let (P ,R) be a DP problem and � a simple freeze. The DP
processor � is defined as

(P ,R) �→
{
{(�(P),R)} if (P ,R) is �-stable
{(P ,R)} otherwise

Furthermore, the DP processor U2 is defined as the composition � ◦ U1, where
�(◦�) = 1.

Theorem 39. The DP processor � is sound and complete.

Proof. We show that every minimal rewrite sequence s1
ε−→P t1 →∗

R s2
ε−→P

t2 →∗
R · · · can be transformed into the minimal sequence �(s1)

ε−→�(P) �(t1) →∗
R

�(s2)
ε−→�(P) �(t2) →∗

R · · · and vice versa. This follows from the following three
observations.

si
ε−→P ti if and only if �(si)

ε−→�(P) �(ti)

We have si
ε−→P ti if and only if si = lσ and ti = rσ with l → r ∈ P . Since

�(P) is well-defined, the latter is equivalent to �(si) = �(lσ) = �(l)σ ε−→�(P)
�(r)σ = �(rσ) = �(ti).

ti →∗
R si+1 if and only if �(ti) →∗

R �(si+1)

Since ti and si+1 have the same root symbol we can write ti = f(u1, . . . , un)
and si+1 = f(u′1, . . . , u′n). If �(f) is undefined or n = 0 then �(si) = si →∗

R
ti = �(ti). Suppose �(f) = k. Since ti is an instance of a right-hand side
of a pair in P and �(P) is well-defined, uk cannot be a variable. Write
uk = g(v1, . . . , vm). According to �-stability, uk is root stable and thus
u′k = g(v′1, . . . , v

′
m). Hence

ti = f(u1, . . . , uk−1, g(v1, . . . , vm), uk+1, . . . , un)
si+1 = f(u′1, . . . , u

′
k−1, g(v

′
1, . . . , v

′
m), u′k+1, . . . , u

′
n)

and

�(ti) = �
f
g (u1, . . . , uk−1, v1, . . . , vm, uk+1, . . . , un)

�(si+1) = �
f
g (u′1, . . . , u

′
k−1, v

′
1, . . . , v

′
m, u

′
k+1, . . . , u

′
n)

Consequently, ti →∗
R si+1 if and only if uj →∗

R u′j for 1 � j � n with j �= k
and vj →∗

R v′j for 1 � j � m if and only if �(ti) →∗
R �(si+1).

ti terminates wrt R if and only if �(ti) terminates wrt R
This follows immediately from the observation above that all reductions in
ti take place in the arguments uj or vj . �	

Corollary 40. The DP processor U2 is sound and complete. �	

The next example shows that �-stability is essential for soundness.

678 N. Hirokawa, A. Middeldorp, and H. Zankl

Example 41. Consider the non-terminating ATRS R consisting of the two rules
f a → g a and g → f, which induces the infinite DP problem (P ,R) with P
consisting of the rules f � a → g � a and f � a → g�. Since P↓U = P and U1 is
sound, the DP problem (P ,U+(Rη)) is also infinite. The set �(P↓U) consists of
f�1(a) → g�

1(a) and f�1(a) → g�. Clearly, the DP problem (�(P),U+(Rη)) is finite.
Note that (P ,U+(Rη)) is not �-stable as g ε−→U+(Rη) f.

Since �-stability is undecidable in general, for automation we need to approxi-
mate strong root stability. We present a simple criterion which is based on the
term approximation TCAP from [10], where it was used to give a better approx-
imation of dependency graphs.

Definition 42 ([10]). Let R be a TRS and t a term. The term TCAPR(t) is
inductively defined as follows. If t is a variable, TCAPR(t) is a fresh variable.
If t = f(t1, . . . , tn) then we let u = f(TCAPR(t1), . . . ,TCAPR(tn)) and define
TCAPR(t) to be u if u does not unify with the left-hand side of a rule in R, and
a fresh variable otherwise.

Lemma 43. A term t is strongly root stable for a TRS R if TCAPR(t) /∈ V.

Proof. The only possibility for TCAPR(t) /∈ V is when t = f(t1, . . . , tn) and
u = f(TCAPR(t1), . . . ,TCAPR(tn)) does not unify with a left-hand side of a
rule in R. Assume to the contrary that t is not strongly root stable. Then there
are a substitution σ and a left-hand side l of a rule in R such that tσ >ε−−→∗

R lτ .
Write l = f(l1, . . . , ln). We have tσ = f(t1σ, . . . , tnσ) with tiσ →∗

R liτ for
1 � i � n. Hence TCAPR(ti)δi = liτ for some substitution δi ([10, proof of
Theorem 13]). Since the terms TCAPR(t1), . . . ,TCAPR(tn) are linear and do not
share variables, it follows that u unifies with l, contradicting the assumption. �	

Example 44. Consider the DP problem (P↓U ,U+(Rη)) of Example 35 with P↓U
= {a1(x) ◦� a → a1(a1(a)) ◦� x} and U+(Rη) = {a ◦ x → a1(x), a1(x) ◦ y →
a2(x, y), a2(x, a) → a2(a1(a), x)}. Since TCAPU+(Rη)(a1(a1(a))) = a1(a1(a)) is
not a variable, a1(a1(a)) is strongly root stable. Hence (P↓U ,U+(Rη)) is �-stable.

5 Experiments

The results of this paper are implemented in the termination prover TTT2.
2

For experimentation the 195 ATRSs from the termination problem data base
(TPDB)3 have been employed. All tests have been performed on a single core of
a server equipped with eight dual-core AMD Opteron R© processors 885 running
at a clock rate of 2.6GHz and 64GB of main memory. Comprehensive details
of the experiments4 give evidence that the proposed transformations can be
implemented very efficiently, e.g., for the most advanced strategy all 195 systems

2 http://colo6-c703.uibk.ac.at/ttt2/
3 http://www.lri.fr/∼marche/tpdb/
4 http://colo6-c703.uibk.ac.at/ttt2/uncurry/

http://colo6-c703.uibk.ac.at/ttt2/
http://www.lri.fr/~marche/tpdb/
http://colo6-c703.uibk.ac.at/ttt2/uncurry/

Uncurrying for Termination 679

Table 1. Experimental results

direct as processor
6 16 16+30 none A U1 U2

subterm criterion 1 47 48 41 – 41 58

matrix (dimension 1) 4 90 101 66 71 95 101

matrix (dimension 2) 7 108 131 108 115 136 138

are analyzed within about 15 seconds. We considered two popular termination
methods, namely the subterm criterion [13] and matrix interpretations [8] of
dimensions one and two and with coefficients ranging over {0, 1}. Both methods
are integrated within the dependency pair framework using dependency graph
reasoning and usable rules as proposed in [10,11,12].

Table 1 differentiates between applying the transformations as a preprocess-
ing step (direct) or within the dependency pair framework (as processor). The
direct method of Corollary 6 (Theorem 16, Theorems 16 and 30) applies to 10
(141, 170) systems. If used directly, the numbers in the table refer to the sys-
tems that could be proved terminating in case of a successful transformation.
Mirroring (when termination of the original system could not be proved) does
increase applicability of our (direct) transformation significantly. The right part
of Table 1 states the number of successful termination proofs for the processors
A (transformation A from [10,17]), U1 (Definition 32), and U2 (Definition 38)
which shows that the results of this paper really increase termination proving
power for ATRSs. Since transformation A does not preserve minimality (Ex-
ample 34) one cannot use it together with the subterm criterion. (In [17] it is
shown that minimality is preserved when the transformation A is fused with
the reduction pair and usable rules processors.) It is a trivial exercise to extend
mirroring to DP problems. Our experiments revealed that (a) mirroring works
better for the direct approach (hence we did not incorporate it into the right
block of the table) and (b) the uncurrying processors should be applied before
other termination processors.

Although Theorem 16 and the processor U2 are incomparable in power we
recommend the usage of the processor. One reason is the increased strength and
another one the modularity which allows to prevent pitfalls like Example 22. Last
but not least, the processors U1 and U2 are not only sound but also complete
which makes them suitable for non-termination analysis. Unfortunately TTT2
does only support trivial methods for detecting non-termination of TRSs but
we anticipate that these processors ease the job of proving non-termination of
ATRSs considerably.

6 Related Work

The A transformation of Giesl et al. [10] works only on proper applicative DP
problems, which are DP problems with the property that all occurrences of each

680 N. Hirokawa, A. Middeldorp, and H. Zankl

constant have the same number of arguments. No uncurrying rules are added
to the processed DP problems. This destroys minimality (Example 34), which
seriously hampers the applicability of the A transformation. Thiemann [17, Sec-
tions 6.2 and 6.3] addresses the loss of minimality by incorporating reduction
pairs, usable rules, and argument filterings into the A transformation. (These
refinements were considered in the column labeled A in Table 1.) In [17] it is
further observed that the A transformation works better for innermost termina-
tion than for termination. A natural question for future work is how U1 and U2
behave for innermost termination.

Aoto and Yamada [1,2] present transformation techniques for proving termi-
nation of simply typed ATRSs. After performing η-saturation, head variables
are eliminated by instantiating them with ‘template’ terms of the appropriate
type. In a final step, the resulting ATRS is translated into functional form.

Example 45. Consider again the ATRS R of Example 7. Suppose we adopt the
following type declarations: 0 : int, s : int → int, nil : list, (:) : int → list → list,
id : int → int, add : int → int → int, and map : (int → int) → list → list. The head
variable f in the right-hand side : (id x) (map f y) has type int → int. There
are three template terms of this type: s, id, and add z. Instantiating f by these
three terms in Rη produces the ATRS R′:

id x→ x map f nil → nil

add 0 → id map s (: x y) → : (s x) (map s y)
add 0 y → id y map id (: x y) → : (id x) (map id y)

add (s x) y → s (add x y) map (add z) (: x y) → : (add z x) (map (add z) y)

The TRS R′↓U is terminating because its rules are oriented from left to right
by the lexicographic path order. According to the main result of [2], the simply
typed ATRS R is terminating, too.

The advantage of the simply typed approach is that the uncurrying rules are not
necessary because the application symbol has been eliminated from R′↓U . This
typically results in simpler termination proofs. It is worthwhile to investigate
whether a version of head variable instantiation can be developed for the untyped
case. We would like to stress that with the simply typed approach one obtains
termination only for those terms which are simply typed. Our approach, when it
works, provides termination for all terms, irrespective of any typing discipline.
In [3] the dependency pair method is adapted to deal with simply typed ATRSs.
Again, head variable instantiation plays a key role.

Applicative term rewriting is not the only model for capturing higher-order
aspects. The S-expression rewrite systems of Toyama [18] have a richer structure
than applicative systems, which makes proving termination often easier. Recent
methods (e.g. [6,14]) use types to exploit strong computability, leading to pow-
erful termination methods which are directly applicable to higher-order systems.
In [16] strong computability is used to analyse the termination of simply typed
ATRSs with the dependency pair method.

Uncurrying for Termination 681

References

1. Aoto, T., Yamada, T.: Termination of simply typed term rewriting by translation
and labelling. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 380–394.
Springer, Heidelberg (2003)

2. Aoto, T., Yamada, T.: Termination of simply-typed applicative term rewriting
systems. In: HOR 2004. Technical Report AIB-2004-03, RWTH Aachen. pp. 61–65
(2004)

3. Aoto, T., Yamada, T.: Dependency pairs for simply typed term rewriting. In: Giesl,
J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 120–134. Springer, Heidelberg (2005)

4. Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theo-
retical Computer Science 236(1-2), 133–178 (2000)

5. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
Cambridge (1998)

6. Blanqui, F., Jouannaud, J.-P., Rubio, A.: HORPO with computability closure: A
reconstruction. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI),
vol. 4790, pp. 138–150. Springer, Heidelberg (2007)

7. Dershowitz, N.: 33 Examples of termination. In: French Spring School of Theoret-
ical Computer Science. LNCS, vol. 909, pp. 16–26. Springer, Heidelberg (1995)

8. Endrullis, J., Waldmann, J., Zantema, H.: Matrix interpretations for proving ter-
mination of rewrite systems. Journal of Automated Reasoning 40(2-3), 195–220
(2008)

9. Giesl, J., Thiemann, R., Schneider-Kamp, P.: The dependency pair framework:
Combining techniques for automated termination proofs. In: Baader, F., Voronkov,
A. (eds.) LPAR 2004. LNCS, vol. 3452, pp. 301–331. Springer, Heidelberg (2005)

10. Giesl, J., Thiemann, R., Schneider-Kamp, P.: Proving and disproving termina-
tion of higher-order functions. In: Gramlich, B. (ed.) FroCos 2005. LNCS (LNAI),
vol. 3717, pp. 216–231. Springer, Heidelberg (2005)

11. Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and improving
dependency pairs. Journal of Automated Reasoning 37(3), 155–203 (2006)

12. Hirokawa, N., Middeldorp, A.: Automating the dependency pair method. Informa-
tion and Computation 199(1-2), 172–199 (2005)

13. Hirokawa, N., Middeldorp, A.: Tyrolean termination tool: Techniques and features.
Information and Computation 205(4), 474–511 (2007)

14. Jouannaud, J.P., Rubio, A.: Polymorphic higher-order recursive path orderings.
Journal of the ACM 54(1) (2007)

15. Kennaway, R., Klop, J.W., Sleep, M.R., de Vries, F.J.: Comparing curried and
uncurried rewriting. Journal of Symbolic Computation 21(1), 15–39 (1996)

16. Kusakari, K., Sakai, M.: Enhancing dependency pair method using strong com-
putability in simply-typed term rewriting. Applicable Algebra in Engineering,
Communication and Computing 18(5), 407–431 (2007)

17. Thiemann, R.: The DP Framework for Proving Termination of Term Rewriting.
PhD thesis, RWTH Aachen, Available as technical report AIB-2007-17 (2007)

18. Toyama, Y.: Termination of S-expression rewriting systems: Lexicographic path
ordering for higher-order terms. In: van Oostrom, V. (ed.) RTA 2004. LNCS,
vol. 3091, pp. 40–54. Springer, Heidelberg (2004)

19. Xi, H.: Towards automated termination proofs through freezing. In: Nipkow, T.
(ed.) RTA 1998. LNCS, vol. 1379, pp. 271–285. Springer, Heidelberg (1998)

20. Zantema, H.: Termination. In: Terese (ed.) Term Rewriting Systems 2003. Cam-
bridge Tracts in Theoretical Computer Science, vol. 55, pp. 181–259. Cambridge
University Press, Cambridge (2003)

Approximating Term Rewriting Systems: A
Horn Clause Specification and Its

Implementation�

John P. Gallagher and Mads Rosendahl

Computer Science, Building 42.2, Roskilde University, DK-4000 Denmark
{jpg,madsr}@ruc.dk

Abstract. We present a technique for approximating the set of reach-
able terms of a given term rewriting system starting from a given initial
regular set of terms. The technique is based on previous work by other
authors with the same goal, and yields a finite tree automaton recognising
an over-approximation of the set of reachable terms. Our contributions
are, firstly, to use Horn clauses to specify the transitions of a possi-
bly infinite-state tree automaton defining (at least) the reachable terms.
Apart from being a clear specification, the Horn clause model is the basis
for further automatic approximations using standard logic program anal-
ysis techniques, yielding finite-state tree automata. The approximations
are applied in two stages: first a regular approximation of the model of
the given Horn clauses is constructed, and secondly a more precise re-
lational abstraction is built using the first approximation. The analysis
uses efficient representations based on BDDs, leading to more scalable
implementations. We report on preliminary experimental results.

1 Introduction

We consider the problem of automatically approximating the set of reachable
terms of a term rewriting system (TRS) given a set of initial terms. The problem
has been studied in several contexts such as flow analysis of higher-order func-
tional languages [20], cryptographic protocol analysis [16] and more generally
the static analysis of any programming language whose operational semantics
is expressed as a TRS [2]. The applications have in common the goal of prov-
ing properties of the set of all reachable terms of the TRS, which is infinite in
general. It is obviously sufficient to show that the required property holds in
an over-approximation of the reachable set. Safety properties, namely assertions
that some given terms are not reachable, form an important class of properties
that can proved using over-approximations.

For practical application of this principle it is necessary to describe the over-
approximations in some decidable formalism so that the properties can be effec-
tively checked. Regular tree languages, described by tree grammars or finite tree

� Work supported by the Danish Natural Science Research Council project SAFT:
Static Analysis Using Finite Tree Automata.

I. Cervesato, H. Veith, and A. Voronkov (Eds.): LPAR 2008, LNCS 5330, pp. 682–696, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Approximating TRS: A Horn Clause Specification and Its Implementation 683

automata, provide a suitable formalism. Thus we focus on the specific problem
of deriving a regular tree language containing the set of reachable terms of a
TRS, starting from a possibly infinite set of initial terms also expressed as a
regular tree language. Our approach builds on work by Feuillade et al. [9] and
also by Jones [20] and Jones and Andersen [21] (an updated version of [20]).

In Section 2 we review the basic notions concerning term rewriting systems and
regular tree languages expressed as finite tree automata. Following this, Section
3 contains a Horn clause specification of a possibly infinite tree automaton over-
approximating the reachable terms of a given TRS and initial set. The problem is
thus shifted to computing the model of this set of Horn clauses, or some approxi-
mation of the model. In Section 4, methods of approximating Horn clause models
are outlined, drawing on research in the abstract interpretation of logic programs.
Section 5 explains how BDD-based methods can be used to compute the (approxi-
mate) models, enhancing the scalability of the approach. Some initial experiments
are reported. Finally, Section 6 contains a discussion of related workand concludes.

2 Term Rewriting Systems and Their Approximation

A term rewriting system (TRS for short) is formed from a non-empty finite signa-
ture Σ and a denumerable set of variables V . Term(Σ ∪ V) denotes the smallest
set containing V such that f(t1, . . . , tn) ∈ Term(Σ ∪ V) wherever t1, . . . , tn ∈
Term(Σ∪V) and f ∈ Σ has arity n. Term(Σ) denotes the subset of Term(Σ∪V)
containing only variable-free (ground) terms. The set of variables in a term t is
denoted vars(t). A substitution is a function V → Term(Σ ∪V); substitutions are
naturally extended to apply to Term(Σ ∪ V). We write substitution application
in postfix form – tθ stands for the application of substitution θ to t. A term t′ is
a ground instance of term t if t′ is ground and t′ = tθ for some substitution θ. As
for notation, variable names from V will start with a capital letter and elements
of Σ will start with lower-case letters, or numbers.

A term rewriting system is a set of rules of the form l → r, where l, r ∈
Term(Σ ∪ V). In a rule l → r, l is called the left-hand-side (lhs) and r the
right-hand-side (rhs). We consider here TRSs formed from a finite set of rules,
satisfying the conditions l �∈ V and vars(r) ⊆ vars(l). A left- (resp. right-) linear
TRS is one in which no variable occurs more than once in the lhs (resp. rhs) of
a rule. In this paper we consider only left-linear TRSs.

The operational semantics of a TRS is defined as the reflexive, transitive
closure of a relation ⇒ over Term(Σ) × Term(Σ). The ⇒ relation captures the
concept of a “rewrite step”. Intuitively, t1 ⇒ t2 for t1, t2 ∈ Term(Σ) holds if
there is a subterm of t1 that is a ground instance of the lhs of some rewrite rule;
t2 is the result of replacing that subterm by the corresponding instance of the
rhs. More precisely, define a (ground) context to be a term from Term(Σ ∪ {•})
containing exactly one occurrence of •. Let c be a context; define c[t] ∈ Term(Σ)
to be the term resulting from replacing • by t ∈ Term(Σ). Then given a TRS,
we define the relation ⇒ as the set of pairs of the form c[lθ] ⇒ c[rθ] where c is
a context, l → r is a rule in the TRS and there is a substitution θ such that lθ

684 J.P. Gallagher and M. Rosendahl

is a ground instance of l (and hence rθ is also ground). The reflexive, transitive
closure of ⇒ is denoted ⇒∗. Given a set of ground terms S and a TRS, the set
of terms reachable from S is defined as reach(S) = {t | s ∈ S, s⇒∗ t}.

We are not concerned here with important aspects of TRSs such as confluence,
rewrite strategies, or the distinction between constructors and defined functions.
Details on TRSs can be found in the literature, for example in [8].

2.1 Finite Tree Automata

Finite tree automata (FTAs) can be seen as a restricted class of rewriting system.
An FTA with signature Σ is a finite set of ground rewrite rules over an extended
signature Σ ∪Q where Q is a set of constants (unary function symbols) disjoint
from Σ, called states. A set Qf ⊆ Q is called the set of accepting or final states.
Each rule is of the form f(q1, . . . , qn) → q where q1, . . . , qn, q ∈ Q and f ∈ Σ has
arity n. The relation ⇒∗ is defined as for TRSs in general but we are interested
mainly in pairs t ⇒∗ q where t ∈ Term(Σ) and q ∈ Qf . In such a case we say
that there is a successful run of the FTA for term t, or that t is accepted by
the FTA. For a given FTA A we define L(A), the term language of A, to be
{t ∈ Term(Σ) | t is accepted by A}.

The main point of interest of FTAs is that they define so-called regular tree
languages, which have a number of desirable computational properties. Given an
FTA A it is decidable whether L(A) is empty, finite or infinite, and whether a
given term t ∈ L(A). Furthermore, regular tree languages are closed under union,
intersection and complementation; given FTAs A1 and A2, we can construct an
FTA A1 ∪ A2 such that L(A1 ∪ A2) = L(A1) ∪ L(A2), and similarly for the
intersection and complementation operations.

A bottom-up deterministic FTA, or DFTA, is one in which no two rules have
the same lhs. A complete FTA is one in which there is a rule f(q1, . . . , qn) → q
for every f ∈ Σ of arity n, and states q1, . . . , qn ∈ Q. It can be shown that
for every FTA there is a complete DFTA (usually with a different set of states)
accepting the same language. Further information about FTAs and regular tree
languages can be found in the literature, for example in [6].

2.2 Approximation of TRSs

The set of reachable states of a TRS is not in general a regular tree language. For
instance consider the TRS containing a single rule f(X,Y) → f(g(X), h(Y)). The
set reach({f(a, b)}) is {f(gk(a), hk(b)) | k > 0}, and it can be shown that there
is no FTA that accepts precisely this set of terms. However, given a TRS and an
initial set of terms S there is always an FTAA such that L(A) ⊇ reach(S). In such
a situationL(A) is called an over-approximation of reach(S). There could of course
be more than one possible FTA defining an over-approximation and generally we
prefer the most precise, that is, smallest over-approximations. Here, as usual in
static analysis problems, there is a trade-off between complexity and precision; the
more precise the approximation, the more expensive it tends to be to construct it.

There are a number of cases where an FTA gives a perfectly precise approxi-
mation, that is, there exists an FTA A such that L(A) = reach(S). These cases

Approximating TRS: A Horn Clause Specification and Its Implementation 685

Term Rewriting System FTA defining initial terms
plus(0, X)→ X. even(qpo)→ qf .
plus(s(X), Y)→ s(plus(X, Y)). even(qpe)→ qf .
even(0)→ true. s(qeven)→ qodd.
even(s(0))→ false. s(qodd)→ qeven.
even(s(X))→ odd(X). plus(qodd, qodd)→ qpo.
odd(0)→ false. plus(qeven, qeven)→ qpe.
odd(s(0))→ true. 0 → qeven.
odd(s(X))→ even(X). (Accepting state is qf)

Fig. 1. A TRS and an FTA (from [9]) defining the initial terms in Example 1

are often characterised by syntactic conditions on the TRS and the initial set S.
Discussion of various classes for which this holds is contained in [19,6,9].

Example 1. To illustrate these concepts we use the TRS in Figure 1 taken from
[9]. The TRS defines the operation plus on natural numbers in successor nota-
tion (i.e. n represented by sn(0)), and the predicates even and odd on natural
numbers. The FTA (call it A) defines the set of “calls” even(plus(n1, n2)) where
n1, n2 are either both even or both odd. It can be checked that, for example
even(plus(s(0), s(s(s(0))))) ⇒∗ qf in the FTA, meaning that it is contained
in the set of initial terms, and that even(plus(s(0), s(s(s(0))))) ⇒∗ true in the
TRS. The property to be proved here is that false �∈ reach(L(A)), in other words,
that the sum of two even or two odd numbers is not odd.

This example happens to be one where the set reach(L(A)) is precisely ex-
pressible as an FTA. The procedure given in [9] can compute this FTA and check
that false is not accepted by it, thus proving the required property. (As we will
see our method can also achieve this).

3 Horn Clause Specification of Reachable Term
Approximations

In this section we present a procedure for constructing an over-approximating
FTA, given a term rewriting system R and an initial set of terms S. We assume
that R is left-linear and that S is regular tree language specified by an FTA.

Our procedure is based initially on the one given in [9] and is also inspired by
[20]. However unlike these works we express the procedure as a set of Horn clauses
in such as way as to allow the construction of a tree automaton with an infinite
set of states. In other words, the Horn clauses have a possible infinite model. Fol-
lowing this, we draw on existing techniques for approximating Horn clause models
to produce an FTA approximation. We argue that this is a flexible and scalable
approach, which exploits advances made in the analysis of logic programs.

3.1 Definite Horn Clauses

We first define definite Horn clauses and their semantics. Definite Horn clauses
form a fragment of first-order logic. Let Σ be a set of function symbols, V a

686 J.P. Gallagher and M. Rosendahl

set of variables and P be a set of predicate symbols. An atomic formula is an
expression of the form p(t1, . . . , tn) where p ∈ P is an n-ary predicate symbol
and t1, . . . , tn ∈ Term(Σ ∪ V). A definite Horn clause is a logical formula of the
form ∀((u1 ∧ . . . ∧ um) → u) (m ≥ 0) where u1, . . . , um, u are atomic formulas.
If m = 0 the clause is called a fact or unit clause. A fact is often written as
true → u. The symbol ∀ indicates that all variables occurring in the clause are
universally quantified over the whole formula.

From now on we will write Horn clauses “backwards” as is the convention in
logic programs, and use a comma instead of the conjunction ∧. The universal
quantifiers are also implicit. Thus a Horn clause is written as u← u1, . . . , um or
u← true in the case of facts.

The semantics of a set of Horn clauses is obtained using the usual notions of
interpretation and model from classical logic. An interpretation is defined by (i)
a domain of interpretation which is a non-empty set D; (ii) a pre-interpretation
which is a function mapping each n-ary function f ∈ Σ to a function Dn → D;
and (iii) a predicate interpretation which assigns to each n-ary predicate in P a
relation in Dn. A model of a set of Horn clauses is an interpretation that satisfies
each clause (using the usual notion of “satisfies” based on the meanings of the
logic connectives and quantifiers; see for example [22] or any textbook on logic).

The Herbrand interpretation is of special significance. The domain D of a Her-
brand interpretation is Term(Σ); the pre-interpretation maps each n-ary func-
tion f to the function f̂ : Term(Σ)n → Term(Σ) defined by f̂(t1, . . . , tn) =
f(t1, . . . , tn). A Herbrand interpretation of the predicates assigns each n-ary
predicate a relation in Term(Σ)n. Such a relation can be conveniently represented
as a set of ground atomic formulas p(t1, . . . , tn) where t1, . . . , tn ∈ Term(Σ).
There exists a least Herbrand model (which may be infinite) of a set of definite
Horn clauses, which is the most concrete interpretation; it contains exactly those
ground atomic formulas that are true in every interpretation.

As will be discussed in Section 4, models other than Herbrand models are of
interest for the purpose of abstracting the meaning of a set of Horn clauses.

Horn Clause representation of FTAs A simple Horn Clause representation of
an FTA with signature Σ and set of states Q can be obtained by regarding the
rewrite arrow → as a binary predicate and Σ ∪ Q as the signature of the Horn
clause language. An FTA rule f(q1, . . . , qn) → q is thus a unit Horn clause or
fact written as (f(q1, . . . , qn) → q) ← true.

3.2 Tree Automata Approximation of Reachable Terms

We now return to the problem of computing an FTA over-approximating the set
of reachable terms of a left-linear TRS. The approach taken in [9] is based on
the notion of completion. Intuitively, this works as follows. Let l → r be a rule
in the TRS and suppose that I is the FTA defining the set of initial terms. Then
the FTA A defining reach(L(I)) has to be such that

(i) L(A) ⊇ L(I) and

Approximating TRS: A Horn Clause Specification and Its Implementation 687

(ii) if there is some ground instance of l, say lθ, where θ is a substitution map-
ping variables to FTA states, such that lθ ⇒∗ q in A, for some FTA (not
necessarily final) state q then rθ ⇒∗ q should also hold in A.

We illustrate the principle referring to Example 1. Consider the second rule of
the TRS, plus(s(X), Y) → s(plus(X,Y)). There exists a substitution θ, namely
{X = qeven, Y = qodd} such that plus(s(X), Y)θ ⇒∗ qpo using the initial
FTA. Hence by requirement (ii) the FTA for the reachable terms should be
such that s(plus(X,Y))θ ⇒∗ qpo. This could be ensured by adding the rules
plus(qeven, qodd) → q0, s(q0) → qpo, for some state q0.

We now show how we can construct a set of Horn clauses HA capturing
requirements (i) and (ii). The Horn clauses will be such that their minimal
Herbrand model will be a set of atomic formulas f(q1, . . . , qn) → q defining the
rules of the required FTA. First of all, HA contains the clauses corresponding to
the rules in I, which ensures condition (i) above.

Secondly, consider requirement (ii). Given a TRS rule l → r, we construct
Horn clauses as follows. Define the operation flatlhs(t → Y) as follows, where
t ∈ Term(Σ ∪ V) and Y ∈ V :

– flatlhs(t→ Y) = {t→ Y }, if t has no non-variable proper subterms;
– flatlhs(t → Y) = flatlhs(t′ → Y) ∪ {f(X1, . . . , Xn) → Y ′}, if f(X1, . . . , Xn)

(n ≥ 0) is a proper subterm of t whose arguments are all variables, Y ′ is a
fresh variable and t′ is the result of replacing the subterm f(X1, . . . , Xn) by
Y ′ in t.

Example 2. Consider the rule even(s(0)) → false. Then flatlhs(even(s(0)) → Y0)
is {0 → Y1, s(Y1) → Y2, even(Y2) → Y0}.

The following claim establishes that the flattened form can be used to check the
condition that there exists a substitution such that lθ ⇒∗ q.

Claim. Let t be a linear term, A an FTA and Y a variable not occurring in t.
Then there is a substitution θ mapping variables of t to FTA states such that
tθ ⇒∗ q for some FTA state q if and only if the conjunction ∧(flatlhs(t→ Y)) is
satisfiable in the set of FTA rules.

Now we come to the critical aspect; how to ensure that rθ ⇒∗ q whenever
lθ ⇒∗ q. The key question is how to choose the states in the intermediate steps
of the derivation that is to be constructed (e.g. the state q0 above). This question
is discussed in detail in [9]. Essentially, in order not to lose precision, a new set
of states should be created unique to that derivation, that is, depending only
on the rule l → r and the substitution θ. However, when applied repeatedly to
the same rule this strategy can lead to the creation of an infinite number of new
states. An abstraction function is introduced in [9], whose purpose is to specify
how to introduce a finite set of states in order to satisfy requirement (ii). The
question of finding the “right” abstraction function becomes crucial.

Example 3. Consider the TRS rule f(X) → f(g(X)). Suppose the initial FTA
contains a rule f(q0) → q1. Applying the completion principle, we find the

688 J.P. Gallagher and M. Rosendahl

substitution θ0 = {X = q0} such that f(X)θ0 ⇒∗ q1. To build the required
derivation f(g(q0)) ⇒∗ q1 we create a new state q2 and add the rules g(q0) → q2
and f(q2) → q1. Applying the completion again we find a substitution θ1 =
{X = q2} such that f(X)θ1 ⇒∗ q1, and then try to construct a derivation
f(g(q2)) ⇒∗ q1. If we choose the same intermediate state q2 we add unintended
derivations (such as g(g(q2)) ⇒∗ q2). Therefore we pick a fresh state q3 and add
the rules g(q2) → q3 and f(q3) → q1. Clearly this process continues indefinitely
and an infinite number of states would be added. A solution using an abstraction
function, as in [9], might indeed pick the same state q2 in both completion steps,
but at the cost of possibly adding non-reachable terms.

Our approach is different; we defer the decision on how to abstract the states and
define a construction that can introduce an infinite number of states. Given a
TRS rule l→ r, associate with each occurrence of a non-variable proper subterm
w of r a unique function symbol, say qw, whose arity is the number of distinct
variables within w. Define flatrhs(t→ Y) as follows.

– flatrhs(t → Y) = {t → Y }, if t has no non-variable proper subterms except
possibly “state” terms of form qw′(Z̄);

– flatrhs(t → Y) = flatlhs(t′ → Y) ∪ {f(s1, . . . , sn) → qw(Z̄)}, if f(s1, . . . , sn)
(n ≥ 0) is a proper subterm of t whose arguments si are all either variables
or state terms, qw is the function symbol associated with that subterm, Z̄ is
the tuple of distinct variables in the subterm, and t′ is the result of replacing
the subterm f(s1, . . . , sn) by qw(Z̄) in t.

The terms qw(Z̄) represent newly created FTA states. The arguments Z̄ are
substituted during the completion step and thus the states are unique to their
position in r and the substitution θ associated with a completion step.

Example 4. Consider the rule in Example 3 above. Associate the unary function
q2 with the subterm g(X) of the rhs. Then flatrhs(f(g(X)) → Y0) is {g(X) →
q2(X), f(q2(X)) → Y0}.

Now, the completion step simply adds new rules corresponding to the flattened
form of the rhs.

Example 5. Again, considering Example 3, the first step adds the rules g(q0) →
q2(q0) and f(q2(q0)) → q1. The second step adds rules g(q2(q0)) → q2(q2(q0))
and f(q2(q2(q0))) → q1, and so on.

If the rhs of a rule is a variable, the procedure flatrhs does not apply. In such
cases, we replace the rule with a set of rules, one for each n-ary function f in
Σ, in which the variable is substituted throughout in both lhs and rhs by a term
f(Z1, . . . , Zn), where Z1, . . . , Zn are fresh distinct variables.

Example 6. The rule plus(0, X) → X in Figure 1 is replaced by the rules
plus(0, 0) → 0, plus(0, s(Z)) → s(Z), plus(0, plus(Z1, Z2)) → plus(Z1, Z2), and
so on for each function in the signature.

Approximating TRS: A Horn Clause Specification and Its Implementation 689

odd(B)->D :- 0->A, odd(B)->C, plus(A,C)->D.
false->C :- 0->A, false->B, plus(A,B)->C.
true->C :- 0->A, true->B, plus(A,B)->C.
even(B)->D :- 0->A, even(B)->C, plus(A,C)->D.
s(B)->D :- 0->A, s(B)->C, plus(A,C)->D.
0->C :- 0->A, 0->B, plus(A,B)->C.
plus(B,C)->E :- 0->A, plus(B,C)->D, plus(A,D)->E.
plus(A,C)->q0(A,C) :- s(A)->B, plus(B,C)->D.
s(q0(A,C))->D :- s(A)->B, plus(B,C)->D.
true->B :- 0->A, even(A)->B.
false->C :- 0->A, s(A)->B, even(B)->C.
odd(A)->C :- s(A)->B, even(B)->C.
false->B :- 0->A, odd(A)->B.
true->C :- 0->A, s(A)->B, odd(B)->C.
even(A)->C :- s(A)->B, odd(B)->C.

%Initial FTA rules
even(qpo)->qf :- true. plus(qodd,qodd)->qpo :- true.
even(qpe)->qf :- true. plus(qeven,qeven)->qpe :- true.
s(qeven)->qodd :- true. 0->qeven :- true.
s(qodd)->qeven :- true.

Fig. 2. Horn Clauses for the TRS and FTA in Figure 1

The Horn clauses specifying the completion can now be constructed. For each
rule l → r in the TRS (with variable rhs rules replaced as just shown) let
Q be a variable not occurring in the rule. Construct the set of Horn clauses
{H ← ∧(flatlhs(l → Q)) | H ∈ flatrhs(r → Q)}.

Example 7. Consider the rule plus(s(X), Y) → s(plus(X,Y)) from Example 1.
Let q0 be the unique function symbol associated with the subterm plus(X,Y)
of the rhs. Then the two Horn clauses for the rule are:

(plus(X,Y) → q0(X,Y)) ← (s(X) → Q1), (plus(Q1, Y) → Q).
(s(q0(X,Y)) → Q) ← (s(X) → Q1), (plus(Q1, Y) → Q).

These rules, together with all the others for the TRS and FTA in Figure 1, are
shown in Figure 2. Note that the first seven clauses correspond to the instances
of the rule plus(0, X) → X .

The minimal Herbrand model of a Horn clause program constructed in this way
contains a set of tree automaton rules. If the model is finite it represents an FTA
A, whose states are teh states occurring in the rules and whose final states are the
same as those of the initial FTA I (which is a subset of A). In this case we claim
that L(A) ⊇ reach(L(I)). The Horn clause program directly captures the require-
ments (i) and (ii) discussed at the start of Section 3.2. Furthermore, conditions
under which L(A) = reach(L(I)) can be obtained using the formal techniques in
[9] as a guide, but this is beyond the scope of this paper. Our primary interest is
in handling the case where the model is infinite and therefore not an FTA.

690 J.P. Gallagher and M. Rosendahl

Even where A is infinite, the ⇒∗ and the set L(A) are defined; L(A) con-
tains reach(L(I)), though L(A) is no longer a regular language. The problem
of reasoning about the reachable terms reach(L(I)) is now shifted to the prob-
lem of reasoning about L(A). In our approach, we use static analysis techniques
developed for approximating Horn clauses models.

4 Tree Automata Approximations of Horn Clause Models

The minimal Herbrand model of a definite Horn clause program P can be com-
puted as the least fixed point of an immediate consequences operator TP ; the
least fixed point is the limit of the sequence {T n

P (∅)}, n = 0, 1, 2, . . . [22]. In
general this sequence does not terminate because the model of P is infinite.

As it happens the program in Figure 2 has a finite model and hence the se-
quence converges to a limit in a finite number of steps. Furthermore the minimal
Herbrand model thus obtained contains no rule with lhs false, thus proving the
required property since false cannot possibly be reachable.

However, in general the fixpoint construction does not terminate, as already
noted. In this case we turn to general techniques for approximating the models
of Horn clauses, developed in the field of static analysis of logic programs. Such
methods are mostly based on abstract interpretation [7].

4.1 FTA Approximation of the Minimal Model

The problem of computing regular tree language approximations of logic pro-
grams has its roots in automatic type inference [23,5,18]. Later, various authors
developed techniques for computing tree grammar approximations of the model
of a logic program [17,10,12,26,27,15]. Approaches based on solving set con-
straints [17] can be contrasted with those computing an abstract interpretation
over a domain of tree grammars, but all of these have in common that they de-
rive a tree grammar in some form, whose language over-approximates the model
of the analysed program. The most precise of these techniques, such as [17,10,15]
compute a general FTA (rather than a top-down deterministic tree grammar).

These techniques (specifically, the implementation based on [15]) have been
applied to our Horn clause programs defining the reachable terms in a TRS. This
yields an FTA describing a superset of the model of the Horn clause program.
More precisely, let P be a Horn clause program and M [[P]] be the minimal
Herbrand model of P . We derive an FTA AP such that L(AP) ⊇M [[P]].

In our case, M [[P]] contains the rules of a tree automaton and the approximat-
ing FTA AP describes a superset of M [[P]]; that is, L(AP) is a set of rules. (It is
important not to confuse the FTA derived by regular tree approximation of the
Horn clause model from the tree automaton represented by the model itself).
AP could in principle be used itself in order to reason about reachability prop-
erties, but the possibilities here seem to be limited to checking whether rules of
a certain syntactic form are present in the model. The main purpose of the ap-
proximation AP is as a stepping stone for deriving a more precise approximation
and obtaining an FTA approximation of reach(L(I)).

Approximating TRS: A Horn Clause Specification and Its Implementation 691

Term Rewriting System
plus(0, X) → X. even(s(X))→ odd(X).
plus(s(X), Y)→ s(plus(X,Y)). odd(0)→ false.
times(0, X)→ 0. odd(s(0))→ true.
times(s(X), Y)→ plus(Y, times(X,Y)). odd(s(X))→ even(X).
square(X)→ times(X,X). even(square(X))→ odd(square(s(X))).
even(0)→ true. odd(square(X))→ even(square(s(X))).
even(s(0))→ false.

FTA defining initial terms
even(s1)→ s0. square(s2)→ s1.
0 → s2.

Fig. 3. Another TRS and an FTA (from [9])

4.2 Relational Abstract Interpretation Based on an FTA

In [13] it was shown that an arbitrary FTA could be used to construct an ab-
stract interpretation of a logic program. The process has the following steps: (i)
construct an equivalent complete deterministic FTA (or DFTA) from the given
FTA; define a finite pre-interpretation whose domain is the set of states of the
DFTA; (iii) compute the least model with respect to that pre-interpretation
using a terminating iterative fixpoint computation. The general approach of us-
ing pre-interpretations as abstractions was developed in [3,4] and a practical
framework and experiments establishing its practicality were described in [11].

The abstract models derived from FTAs in this way are relational abstrac-
tions; they are optimal in the sense that they are the most precise models based
on the derived pre-interpretation. The computed model is in general more pre-
cise than the language of the original FTA from which the pre-interpretation is
constructed. A simple example illustrates the kind of precision gain. Given the
standard program for appending lists

append([],Ys,Ys). append([X|Xs],Ys,[X|Zs]) :- append(Xs,Ys,Zs).

the FTA approximation methods cited yield the rules {append(list, any, any) →
append type, [] → list, [any|list] → list} together with some rules defining any.
It can be seen that no information is returned about the second and third ar-
guments of append. The pre-interpretation obtained by determinising this FTA
has a domain {list, nonlist} with interpretation D given by

D([]) = list,D([list|list]) = D([nonlist|list]) = list,
D([list|nonlist] = D([nonlist|nonlist] = nonlist.

The minimal model with respect to this pre-interpretation is the relation

{append(list, list, list), append(list, nonlist, nonlist)}

which is more precise, containing relational information on the dependency be-
tween the second and third arguments. Note that no further information is

692 J.P. Gallagher and M. Rosendahl

odd(B)->D :- 0->A, odd(B)->C, plus(A,C)->D.
false->C :- 0->A, false->B, plus(A,B)->C.
true->C :- 0->A, true->B, plus(A,B)->C.
even(B)->D :- 0->A, even(B)->C, plus(A,C)->D.
square(B)->D :- 0->A, square(B)->C, plus(A,C)->D.
times(B,C)->E :- 0->A, times(B,C)->D, plus(A,D)->E.
s(B)->D :- 0->A, s(B)->C, plus(A,C)->D.
0->C :- 0->A, 0->B, plus(A,B)->C.
plus(B,C)->E :- 0->A, plus(B,C)->D, plus(A,D)->E.
plus(A,C)->q0(A,C) :- s(A)->B, plus(B,C)->D.
s(q0(A,C))->D :- s(A)->B, plus(B,C)->D.
0->C :- 0->A, times(A,B)->C.
times(A,C)->q1(A,C) :- s(A)->B, times(B,C)->D.
plus(C,q1(A,C))->D :- s(A)->B, times(B,C)->D.
times(A,A)->B :- square(A)->B.
true->B :- 0->A, even(A)->B.
false->C :- 0->A, s(A)->B, even(B)->C.
odd(A)->C :- s(A)->B, even(B)->C.
false->B :- 0->A, odd(A)->B.
true->C :- 0->A, s(A)->B, odd(B)->C.
even(A)->C :- s(A)->B, odd(B)->C.
s(A)->q2(A) :- square(A)->B, even(B)->C.
square(q2(A))->q3(A) :- square(A)->B, even(B)->C.
odd(q3(A))->C :- square(A)->B, even(B)->C.
s(A)->q4(A) :- square(A)->B, odd(B)->C.
square(q4(A))->q5(A) :- square(A)->B, odd(B)->C.
even(q5(A))->C :- square(A)->B, odd(B)->C.
even(s1)->s0 :- true.
square(s2)->s1 :- true.
0->s2 :- true.

Fig. 4. Horn Clauses for the TRS and FTA in Figure 3

supplied beyond the original FTA; the analysis just exploits more fully the in-
formation available in the FTA.

Let P be a Horn clause program constructed from a TRS, as shown in Section
3. A pre-interpretation D maps each state of the possibly infinite automaton in
the model M [[P]] onto one of the finite number of domain elements of D. Let
f(q1, . . . , qn) → q ∈M [[P]]. D is extended to rules as follows: D(f(q1, . . . , qn) →
q) = f(D(q1), . . . ,D(qn)) → D(q). Define the FTA MD[[P]] = {D(l → r) |
l → r ∈ M [[P]]}. It is trivial to show that L(MD[[P]]) ⊇ L(M [[P]]), and hence
L(MD[[P]]) ⊇ reach(L(I)).

Example 8. Consider the example in Figure 3, also taken from [9]. This example
is intended to show that the square of any even (resp. odd) number is even (resp.
odd). In order to prove this it is sufficient to show that false is not reachable
from the given initial FTA. Applying the Horn clause construction we obtain
the program in Figure 4. The model of this program is not finite. We compute

Approximating TRS: A Horn Clause Specification and Its Implementation 693

an FTA approximation of this program using the method of [15]. The output
FTA is automatically refined by splitting all non-recursive states as follows. Let
q be a non-recursive state having rules l1 → q, . . . , lk → q (k > 1) in the FTA.
Introduce fresh states q1, . . . , qk and replace the rules for q with rules l1 →
q1, . . . , lk → qk. Then replace each rule containing q by k copies with q replaced
by q1, . . . , qk respectively. This transformation (which is optional) preserves the
language of the automaton and gives a more fine-grained abstraction. Following
this we construct a pre-interpretation containing 53 elements which are the states
of the determinised transformed FTA and compute the abstract model of the
Horn clause program. The model contains no rule false → s0, thus proving the
required property. Compare this automatic approach (no information is supplied
beyond the TRS and the initial FTA) with the semi-automatic method described
in [9] in which an abstraction is introduced on the fly with no obvious motivation
for the particular abstraction chosen.

Other approximation techniques are available apart from those illustrated in Ex-
ample 8. For example, a pre-interpretation Dpos can be defined as
Dpos(q(, . . . ,) = q; this simply abstracts each state by the identifier of the
position in the TRS where it originated, ignoring the substitution θ. The result
is closely related to the approximation obtained by Jones [20].

5 BDD-Based Implementation

In [14] it was shown that static analysis of logic programs using abstraction
based on FTAs could be implemented using BDD-based techniques. The main
components of this method are (i) a generic tool for computing the model of a
Datalog program [25] and (ii) a compact representation (product form) of the
determinised FTA used to construct the pre-interpretation. Determinisation can
cause exponential blow-up in the number of states and rules, but our experience
is that the number of states remains manageable. The number of rules can blow
up in any case but using the product form often yields orders of magnitude
reduction in the representation size. The product form can also be represented
as a Datalog program.

(Definite) Datalog programs consist of Horn clauses containing no function
symbols of arity more than zero. Our Horn clauses contain such functions but they
are easily transformed away; an atomic formula of the form f(X1, . . . , Xn) → Y
is transformed to rule f(X1, . . . , Xn, Y) which conforms to the Datalog syntax.
Details of how to represent the pre-interpretation and the determinised FTA as
Datalog clauses can be found in [14].

Preliminary experiments using examples from [9,1] indicate that the BDD-
based tool gives substantial speedup compared to other approaches. The evenodd
and evensq examples are those in Figures 1 and 3. smart, combi and nspk were
kindly supplied by the authors of [1], where they are described in more detail.
smart and nspk are cryptographic protocol models, while combi is simply a
combinatorial example which produces a large FTA. In Figure 5, P gives the
number of clauses in the Horn clause program, the two D columns give the size

694 J.P. Gallagher and M. Rosendahl

Name P D size D time model proof
(states) (msecs) (msecs)

evenodd 22 17 20 50 �
evensq 30 53 66 179 �
smart 123 97 (pos) 8 3270 �
combi 44 25 54 38 n/a
nspk 56 183 1782 1170 ×

Fig. 5. Experimental results

of the pre-interpretation and the time required to generate it, and the next col-
umn shows the time taken to compute the model. The last column indicates
whether the required property was proved. In the case of nspk the property
was not proved in the abstract model. The generation of the pre-interpretation
for smart as described in Section 4 exhausted memory; however the simpler
pre-interpretation (Dpos, see Section 4) was sufficient to prove the required prop-
erty. Timings were taken on a machine with a dual-core Athlon 64-bit proces-
sor, with 4GByte RAM, and the tools are implemented in Ciao Prolog and the
bddbddb tool developed by Whaley [29,28]. These results indicate that the model
computation appears to scale well, but further research on generating useful
pre-interpretation is needed, and comparing with the strategies for generating
abstractions in other approaches, especially the Timbuk system [16].

6 Discussion and Conclusions

The most closely related work to ours, as already mentioned, is that of Feuillade
et al. [9]. That research has yielded impressive experimental results and extensive
analysis of the various classes of TRS that have exact solutions. A tool (Timbuk
[16]) has been developed to support the work. Our approach contrasts with
that work by being completely automatic, relying more on established analysis
techniques based on abstract interpretation, and by permitting a BDD-based
implementation that should give greater scalability.

The work of Jones and Andersen [20,21] pre-dates the above work though the
authors of [9] seem to be unaware of it. It has some similarities with the above
work, in that it is based on a completion procedure. It differs in allowing a more
flexible tree grammar to represent the reachable terms. However this flexibility
leads to a more complex completion procedure. The set of FTA states (tree
grammar non-terminals) is fixed in their procedure. Their work is concerned
with flow analysis and follows in the footsteps of tree grammar approximation
going back to Reynolds [24].

The next stage in our research is to experiment with the various available
regular tree approximation algorithms for Horn clauses, and the generation of
pre-interpretations from the resulting FTAs. Following this we hope to perform
substantial experiments on the scalability and precision of our techniques, build-
ing on the promising application on smaller examples so far.

Approximating TRS: A Horn Clause Specification and Its Implementation 695

Acknowledgements. We thank the anonymous referees for LPAR 2008 for de-
tailed and helpful comments.

References

1. Balland, E., Boichut, Y., Moreau, P.-E., Genet, T.: Towards an efficient imple-
mentation of tree automata completion. In: Meseguer, J., Roşu, G. (eds.) AMAST
2008. LNCS, vol. 5140, pp. 67–82. Springer, Heidelberg (2008)

2. Boichut, Y., Genet, T., Jensen, T.P., Roux, L.L.: Rewriting approximations for fast
prototyping of static analyzers. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533,
pp. 48–62. Springer, Heidelberg (2007)

3. Boulanger, D., Bruynooghe, M.: A systematic construction of abstract domains.
In: LeCharlier, B. (ed.) SAS 1994. LNCS, vol. 864, pp. 61–77. Springer, Heidelberg
(1994)

4. Boulanger, D., Bruynooghe, M., Denecker, M.: Abstracting s-semantics using a
model-theoretic approach. In: Hermenegildo, M., Penjam, J. (eds.) PLILP 1994.
LNCS, vol. 844, pp. 432–446. Springer, Heidelberg (1994)

5. Bruynooghe, M., Janssens, G.: An instance of abstract interpretation integrating
type and mode inferencing. In: Kowalski, R., Bowen, K. (eds.) Proceedings of
ICLP/SLP, pp. 669–683. MIT Press, Cambridge (1988)

6. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Ti-
son, S., Tommasi, M.: Tree Automata Techniques and Applications (1999),
http://www.grappa.univ-lille3.fr/tata

7. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of the 4th ACM Symposium on Principles of Programming Languages, Los Angeles,
pp. 238–252 (1977)

8. Dershowitz, N., Jouannaud, J.-P.: Rewrite systems. In: Handbook of Theoretical
Computer Science, Formal Models and Semantics, vol B, pp. 243–320. Elsevier and
MIT Press (1990)

9. Feuillade, G., Genet, T., Tong, V.V.T.: Reachability analysis over term rewriting
systems. J. Autom. Reasoning 33(3-4), 341–383 (2004)

10. Frühwirth, T., Shapiro, E., Vardi, M., Yardeni, E.: Logic programs as types for
logic programs. In: Proceedings of the IEEE Symposium on Logic in Computer
Science, Amsterdam (July 1991)

11. Gallagher, J.P., Boulanger, D., Sağlam, H.: Practical model-based static analy-
sis for definite logic programs. In: Lloyd, J.W. (ed.) Proc. of International Logic
Programming Symposium, pp. 351–365. MIT Press, Cambridge (1995)

12. Gallagher, J.P., de Waal, D.: Fast and precise regular approximation of logic pro-
grams. In: Van Hentenryck, P. (ed.) Proceedings of the International Conference
on Logic Programming (ICLP 1994), Santa Margherita Ligure. MIT Press (1994)

13. Gallagher, J.P., Henriksen, K.S.: Abstract domains based on regular types. In:
Demoen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132, pp. 27–42. Springer,
Heidelberg (2004)

14. Gallagher, J.P., Henriksen, K.S., Banda, G.: Techniques for scaling up analyses
based on pre-interpretations. In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005.
LNCS, vol. 3668, pp. 280–296. Springer, Heidelberg (2005)

15. Gallagher, J.P., Puebla, G.: Abstract interpretation over non-deterministic finite
tree automata for set-based analysis of logic programs. In: Krishnamurthi, S., Ra-
makrishnan, C.R. (eds.) PADL 2002. LNCS, vol. 2257. Springer, Heidelberg (2002)

http://www.grappa.univ-lille3.fr/tata

696 J.P. Gallagher and M. Rosendahl

16. Genet, T., Tong, V.V.T.: Reachability analysis of term rewriting systems with
timbuk. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001. LNCS, vol. 2250,
pp. 695–706. Springer, Heidelberg (2001)

17. Heintze, N., Jaffar, J.: A Finite Presentation Theorem for Approximating Logic
Programs. In: Proceedings of the 17th Annual ACM Symposium on Principles of
Programming Languages, pp. 197–209. ACM Press, San Francisco (1990)

18. Horiuchi, K., Kanamori, T.: Polymorphic type inference in Prolog by abstract
interpretation. In: Proc. 6th Conference on Logic Programming. LNCS, vol. 315,
pp. 195–214. Springer, Heidelberg (1987)

19. Jacquemard, F.: Decidable approximations of term rewriting systems. In:
Ganzinger, H. (ed.) RTA 1996. LNCS, vol. 1103, pp. 362–376. Springer, Heidel-
berg (1996)

20. Jones, N.: Flow analysis of lazy higher order functional programs. In: Abramsky, S.,
Hankin, C. (eds.) Abstract Interpretation of Declarative Languages, Ellis-Horwood
(1987)

21. Jones, N.D., Andersen, N.: Flow analysis of lazy higher-order functional programs.
Theor. Comput. Sci. 375(1-3), 120–136 (2007)

22. Lloyd, J.: Foundations of Logic Programming, 2nd edn. Springer, Heidelberg (1987)
23. Mishra, P.: Towards a theory of types in Prolog. In: Proceedings of the IEEE

International Symposium on Logic Programming (1984)
24. Reynolds, J.C.: Automatic construction of data set definitions. In: Morrell, J. (ed.)

Information Processing, vol. 68, pp. 456–461. North-Holland, Amsterdam (1969)
25. Ullman, J.: Principles of Knowledge and Database Systems, vol. 1. Computer Sci-

ence Press (1988)
26. Van Hentenryck, P., Cortesi, A., Le Charlier, B.: Type analysis of Prolog using

type graphs. Journal of Logic Programming 22(3), 179–210 (1994)
27. Vaucheret, C., Bueno, F.: More precise yet efficient type inference for logic pro-

grams. In: Hermenegildo, M.V., Puebla, G. (eds.) SAS 2002. LNCS, vol. 2477, pp.
102–116. Springer, Heidelberg (2002)

28. Whaley, J., Lam, M.S.: Cloning-based context-sensitive pointer alias analysis using
binary decision diagrams. In: Pugh, W., Chambers, C. (eds.) PLDI, pp. 131–144.
ACM, New York (2004)

29. Whaley, J., Unkel, C., Lam, M.S.: A bdd-based deductive database for program
analysis (2004), http://bddbddb.sourceforge.net/

http://bddbddb.sourceforge.net/

A Higher-Order Iterative Path Ordering

Cynthia Kop and Femke van Raamsdonk

Vrije Universiteit, Department of Theoretical Computer Science,
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

kop@few.vu.nl, femke@few.vu.nl

Abstract. The higher-order recursive path ordering (HORPO) defined
by Jouannaud and Rubio provides a method to prove termination of
higher-order rewriting. We present an iterative version of HORPO by
means of an auxiliary term rewriting system, following an approach ori-
ginally due to Bergstra and Klop. We study well-foundedness of the ite-
rative definition, discuss its relationship with the original HORPO, and
point out possible ways to strengthen the ordering.

1 Introduction

This paper is about termination of higher-order rewriting, where bound variables
may be present. An important method to prove termination of first-order term
rewriting is provided by the recursive path ordering (RPO) defined by Dershowitz
[4]. Jouannaud and Rubio [6] define the higher-order recursive path ordering
(HORPO) which extends RPO to the higher-order case. The starting point is a
well-founded ordering on the function symbols which is lifted to a relation ; on
terms, such that if l ;+ r for every rewrite rule l → r, then rewriting terminates.

Klop, van Oostrom and de Vrijer [10] present, following an approach originally
due to Bergstra and Klop [1], the iterative lexicographic path ordering (ILPO)
by means of an auxiliary term rewriting system. ILPO can be understood as an
iterative definition of the lexicographic path ordering (LPO), a variant of RPO
[9]. They show that ILPO is well-founded, and that ILPO and LPO coincide if
the underlying relation on function symbols is transitive.

The starting point of the present work is the question whether also for HORPO
an iterative definition can be given. We present HOIPO, a higher-order iterative
path ordering, which is defined by means of an auxiliary (higher-order) term
rewriting system, following the approach of [10]. HOIPO can be considered as an
extension of ILPO obtained by a generalization to the higher-order case and the
addition of comparing arguments as multisets.

We show well-foundedness of HOIPO as in [6] using the notion of computability
and the proof technique due to Buchholz [3], see also [5]. It then follows that
HOIPO provides a method for proving termination of higher-order rewriting.
Further, we show that HOIPO includes HORPO but not vice versa. So HOIPO
is (slightly) stronger than HORPO as a termination method; the reason is that
the fine-grained approach permits one to postpone the choice of smaller terms.

I. Cervesato, H. Veith, and A. Voronkov (Eds.): LPAR 2008, LNCS 5330, pp. 697–711, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

698 C. Kop and F. van Raamsdonk

2 Preliminaries

In this paper we mainly consider higher-order rewriting as defined by Jouannaud
and Okada [5], also called Algebraic Functional Systems (AFSs) [16, Chapter 11].
The terms are simply typed λ-terms with typed constants. Every system has β
as one of its rewrite rules. That is, in AFSs we do not work modulo β as for
instance in HRSs [12]. Below we recall the main definitions.

Definition 1 (Types). We assume a set S of sorts also called base types. The
set T of simple types is defined by the grammar T ::= S | (T → T).

Types are denoted by σ, τ, ρ, As usual → associates to the right and we
omit outermost parentheses. A type declaration is an expression of the form
(σ1 × . . . × σm) → σ with σ1, . . . , σm and σ types. If m = 0 then such a type
declaration is shortly written as σ. Type declarations are not types, but are
used for typing terms. In the remainder of this paper we assume a set V of
typed variables, denoted by x : σ, y : τ, z : ρ, . . ., with countably many variables
of every type. In the following definitions we assume in addition a set F of
function symbols, each equipped with a unique type declaration, denoted by
f : (σ1 × . . .× σm) → σ, g : (τ1 × . . .× τn) → τ,

Definition 2 (Terms). The set T(F ,V) of terms over F and V is the smallest
set consisting of all expressions s for which we can infer s : σ for some type σ
using the following clauses:

(var) x : σ if x : σ ∈ V
(app) @(u, t) : σ if u : τ → σ and t : τ
(abs) λx : τ. t : τ → ρ if x : τ ∈ V and t : ρ
(fun) f(s1, . . . , sm) : σ if f : (σ1 × . . .× σm) → σ ∈ F

and s1 : σ1, . . . , sm : σm

The application of n terms is sometimes written as @(t1, . . . , tn); here n ≥ 2 and
t1 may be an application itself. Note that a function symbol f : (σ1×. . .×σm) →
σ must get exactly m arguments, and that σ is not necessarily a base type.
Occurrences of x in t in the term λx : τ. t are bound. We consider equality on
terms modulo α-conversion, denoted by =. If we want to mention explicitly the
type of a (sub)term then we write s : σ instead of simply s.

A substitution [x := s], with x and s finite vectors of equal length, is the
homomorphic extension of the type-preserving mapping x �→ s from variables
to terms. Substitutions are denoted by γ, δ, . . ., and the result of applying the
substitution γ to the term s is denoted by sγ. Substitutions do not capture free
variables; we assume that bound variables are renamed if necessary.

Definition 3 (Rewrite rule). A rewrite rule over F and V is a pair of terms
(l, r) in T(F ,V) of the same type, such that all free variables of r occur in l.

A rewrite rule (l, r) is usually written as l → r. A higher-order rewrite system
is specified by a set F of function symbols with type declarations, and a set of
rewrite rules over F and V . The rewrite rules induce a rewrite relation which is
defined as follows; note that matching is modulo α, not modulo αβ nor αβη.

A Higher-Order Iterative Path Ordering 699

Definition 4 (Rewrite relations). Given a set of rewrite rules R over F and
V , the rewrite relation →R is defined by the following clauses:

(head) lγ →R rγ if l→ r ∈ R
and γ a substitution

(fun) f(s1, . . . , si, . . . , sn) →R f(s1, . . . , s′i, . . . , sn) if si →R s′i
(app-l) @(s, t) →R @(s′, t) if s→R s′

(app-r) @(s, t) →R @(s, t′) if t→R t′

(abs) λx : σ. s→R λx : σ. s′ if s→R s′

The β-reduction relation, denoted by →β , is induced by the β-reduction rule
@(λx : σ. s, t) →β s[x := t]. The rewrite relation of (F ,R), denoted by →, is
defined as the union of →R and β-reduction: → = →R ∪ →β. As usual, the
transitive closure of → is denoted by →+ and the reflexive-transitive closure of
→ is denoted by →∗.

Example 1 (Recursor). The rewrite system Rec for recursor on natural numbers
uses a base type N and function symbols 0 : N, S : (N) → N, rec : (N×N× (N →
N → N)) → N. The rewrite rules of Rec are as follows:

rec(0, y, z) → y
rec(S(x), y, z) → @(z, x, rec(x, y, z))

Addition of natural numbers can now be represented by the following term:

λx : N. λy : N. rec(x, y, λu : N. λv : N. S(v))

Example 2 (Map). The rewrite system Map uses base types N for natural num-
bers, and natlist for lists of natural numbers. The function symbols are nil : natlist,
cons : (N × natlist) → natlist, map : (natlist × (N → N)) → natlist. The rewrite
rules of Map are as follows:

map(nil, z) → nil
map(cons(h, t), z) → cons(@(z, h),map(t, z))

3 The Higher-Order Recursive Path Ordering

The starting point of the recursive path ordering due to Dershowitz [4] is a well-
founded ordering on the function symbols, which is lifted to a reduction ordering
;rpo on the set of terms. That is, the rewriting system is terminating if l ;rpo r
for every rewrite rule l → r. Jouannaud and Rubio [6] present an extension of
RPO to the higher-order case, here called HORPO. Below we recall the definition
of HORPO and in the next section we introduce its fine-grained iterative version.

We have chosen to work with the definition as in [6] and not with later versions
as for instance [8,2]; we will come back to this issue in the last section.

In the following, multisets are denoted by {{. . .}}. If > is a binary relation, then
the multiset extension of>, denoted by>MUL, is defined as follows:X∪Y >MUL

X∪Z, with ∪ the disjoint union of multisets, if Y �= ∅ and ∀z ∈ Z. ∃y ∈ Y. y > z.

700 C. Kop and F. van Raamsdonk

Sequences are denoted by [. . .]. The lexicographic extension of >, denoted by
>LEX , is defined as follows: [s1, . . . , sm] >LEX [s′1, . . . , s

′
m] if either s1 > s′1 or

s1 = s′1 and [s2, . . . , sm] >LEX [s′2, . . . , s′m]. If > is a well-founded relation, then
both >MUL and >LEX are well-founded.

We assume that the set of function symbols F is the disjoint union of FMUL

and FLEX. If f ∈ FMUL then its arguments will be compared with the multiset
extension of HORPO, and if f ∈ FLEX then its arguments will be compared with
the lexicographic extension of HORPO. We assume a well-founded precedence �

on F . Finally, in the remainder we identify all base types.

Definition 5 (HORPO). We have s ; t for terms s : σ and t : σ if one of the
following conditions holds:

(H1) s = f(s1, . . . , sm)
there is an i ∈ {1, . . . ,m} such that si < t

(H2) s = f(s1, . . . , sm), t = g(t1, . . . , tn)
f � g
s ;; {t1, . . . , tn}

(H3LEX) s = f(s1, . . . , sm), t = f(t1, . . . , tm), f ∈ FLEX

[s1, . . . , sm] ;LEX [t1, . . . , tm]
s ;; {t1, . . . , tm}

(H3MUL) s = f(s1, . . . , sm), t = f(t1, . . . , tm), f ∈ FMUL

{{s1, . . . , sm}} ;MUL {{t1, . . . , tm}}
(H4) s = f(s1, . . . , sm), t = @(t1, . . . , tn) with n ≥ 2

s ;; {t1, . . . , tn}
(H5) s = @(s1, s2), t = @(t1, t2)

{{s1, s2}} ;MUL {{t1, t2}}
(H6) s = λx : σ. s0, t = λx : σ. t0

s0 ; t0

Here < denotes the reflexive closure of ;, and ;MUL and ;LEX denote the
multiset and lexicographic extension of ;. Further, following the notation from
[11], the relation ;; between a functional term and a set of terms is defined
as follows: s = f(s1, . . . , sm) ;; {t1, . . . , tn} if for every i ∈ {1, . . . , n} we have
either s ; ti, or there exists j ∈ {1, . . . ,m} such that sj < ti.

The first four clauses of the definition stem directly from the first-order defini-
tion of RPO, with the difference that instead of the requirement s ;; {t1, . . . , tn}
for HORPO, we have for RPO the simpler s ; ti for every i. This is not possible
for the higher-order case because of the type requirements; the relation ; is only
defined on terms of equal type (after identifying all base types).

Jouannaud and Rubio prove well-foundedness of ; ∪ →β. HORPO provides a
method to prove termination of higher-order rewriting: a higher-order rewrite
system (F ,R) is terminating if l ; r for every rewrite rule l → r ∈ R.

Example 3 (Recursor). We prove termination of the recursor on natural numbers
using HORPO. For the first rewrite rule, we have rec(0, y, z) ; y by (H1). We
use (H4) to show rec(S(x), y, z) ; @(z, x, rec(x, y, z)). There are three remaining

A Higher-Order Iterative Path Ordering 701

proof obligations. First, we have z < z by reflexivity of <. Second, we have S(x) <
x by clause (H1). Third, we have rec(S(x), y, z) ; rec(x, y, z) by assuming rec to
be a lexicographic function symbol and using again S(x) ; x, and reflexivity.

Example 4 (Map). The first rewrite rule is oriented using (H1). In order to orient
the second rewrite rule we apply (H2) with map�cons. Then first we need to show
map(cons(h, t), z) ; @(z, h) which follows from (H4). Second we need to show
map(cons(h, t), z) ; map(t, z) using (H3MUL). (Alternatively one can assume
map to be a lexicographic function symbol.) Note that in this example we need
the collapse of all base types to one.

4 An Iterative Version of HORPO

In this section we present an iterative version of HORPO, called HOIPO. HOIPO
is defined by means of a term rewriting system that intuitively step by step
transforms a term into a term that is smaller with respect to HORPO. We will
add marked function symbols: if F is a set of function symbols, then F∗ is defined
to be a copy of F which contains for every f ∈ F a symbol f∗ with the same
type declaration. We follow the approach and notations as in [10].

Definition 6 (HOIPO). We assume a set of function symbols F divided in
FMUL and FLEX, and a relation � on F . The rewriting system H(F ,�) uses
function symbols in F ∪ F∗ and contains the following rules:

f(x1, . . . , xm) →put f∗(x1, . . . , xm)
f∗(x1, . . . , xm) →select xi (a)
f∗(x1, . . . , xm) →copy g(lτ1 , . . . , lτn) (b)(f)

f∗(x1, . . . , si, . . . , xm) →lex f(x1, . . . , xi−1, s
′
i, lσi+1 , . . . , lσm) (c)(d)(f)

f∗(x1, . . . , si, . . . , xm) →mul f(r1, . . . , ri−1, s
′
i, ri+1, . . . , rm) (c)(e)(g)

f∗(x1, . . . , xm) →ord f∗(xπ−11, . . . , xπ−1m) (e)(h)
f∗(x1, . . . , xm) →appl @(lρ1→...→ρk→σ, lρ1 , . . . , lρk

) (f)

We assume that the typing and arity constraints are met (after identifying all
base types). In particular the left- and right-hand sides of rewrite rules must
have the same type, and f : (σ1 × . . . × σm) → σ, and g : (τ1 × . . . × τn) → σ.
Further, the rules are subject to the following conditions:

(a) i ∈ {1, . . . ,m},
(b) f � g,
(c) si →put s

′
i,

(d) f ∈ FLEX,
(e) f ∈ FMUL,
(f) we use the notation lρ for some term of type ρ; either lρ = f∗(x1, . . . , xm) or

lρ = xj for some j, as long as the type constraints are met; it is not a fixed
term: we can choose different values for lσi and lσj even if σi = σj ,

(g) we use the notation rj for some term of type σj : either si →put rj , or rj = xj

(h) π a type-preserving permutation of 1, . . . ,m.

702 C. Kop and F. van Raamsdonk

The first four rewrite rules stem directly from the first-order term rewriting
system Lex defined in [10] which is used to define ILPO, an iterative definition of
the lexicographic path order. They are adapted because of the typing constraints,
just as the clauses (H1), (H2), (H3MUL), (H3LEX) in the definition of HORPO
are typed versions of the clauses of the definition of first-order RPO. We now
first discuss the intuitive meaning of the rewrite rules of HOIPO and then give
some examples.

– The put-rule can be considered as the start of a proof obligation for HORPO.
It expresses the intention to make a functional term smaller. It is exactly
the same as the put-rule of the first-order rewriting system for ILPO.

– The select-rule expresses that selecting a direct argument of a functional term
makes it smaller. It roughly corresponds to clause (H1) of the definition of
HORPO . It is exactly the same as the select-rule in the rewriting system
for ILPO. However, the use of the rule in the higher-order setting is weaker
because of the typing constraints. For instance, with f : (o → o) → o,
g : o → (o → o), a : o, we cannot reduce f(g(a)) : o to a : o in H using
the rules put and select, because we would need to go via g(a) which has
type o→ o. In the first-order setting we have f(g(a)) →put f

∗(g(a)) →select
g(a) →put g

∗(a) →select a.
– The copy-rule makes copies of the original term under a function symbol

that is smaller with respect to �. This corresponds to clause (H2) of the
definition of HORPO. The choice for lσi in the right-hand side of the rule
corresponds to the ;; relation used in (H2). The first-order version of the
rule is

f∗(x) →copy g(f∗(x), . . . , f∗(x)) (if f � g)

There the left-hand side is copied at all argument positions of g, which cannot
be done in the higher-order case because of the typing constraints.

– The lex-rule implements the lexicographic extension of HORPO and can be
applied to lexicographic functional terms only. The first i− 1 arguments are
not changed. The ith argument is marked, meaning we will make it smaller.
The arguments i+ 1 till m may increase, but are bounded by the left-hand
side. That is, on those positions we put either the original term (left-hand
side) or a direct argument. The first-order version of this rewrite rule is:

f∗(x, g(y), z) →lex f(x, g∗(y), l, . . . , l) (for l = f∗(x, g(y), z))

Here the put-reduct of the argument g(y) can be given directly, and at all
positions thereafter the left-hand side can be put. For the higher-order case
this is not possible because instead of a functional term we can also have an
application or an abstraction.

– The mul- and ord-rule implement the multiset extension of HORPO and
can be applied to multiset functional terms only. With a � b we have for
instance f(x, a, c) →put f

∗(x, a, c) →ord f
∗(x, c, a) →mul f(a∗, c, a∗) →copy

f(b, c, a∗) →copy f(b, c, b). We cannot reduce f(x, a, c) to f(b, c, b) using the
first-order rules put, select, copy, and lex, so the mul-rule cannot be derived
from those rules.

A Higher-Order Iterative Path Ordering 703

The ord-rule expresses that the order of the arguments of a multiset func-
tional term do not matter (but remain subject to the typing constraints).
This rule does not express a decrease in HORPO.

– The appl-rule corresponds to clause (H4) of the definition of HORPO and is
typical for the higher-order case. The idea is that the application of terms
that are all smaller than the original term is smaller than the original term.
We have lρ1→...→ρk→σ = xi and ρ1 → . . .→ ρk → σ = σi for some i.

The rewrite relation induced by the rules of H(F ,�) is denoted by →H, and the
union of →H and β-reduction is denoted by →Hβ . How can HOIPO be used to
prove termination? The claim is that a system (F ,R) is terminating if we have
l→+

Hβ r for every rewrite rule l → r ∈ R. This is proved in the following section;
here we first look at three examples of the use of HOIPO.

Example 5 (Recursor). For the first rewrite rule we have:

rec(0, y, z) →put rec∗(0, y, z) →select y

For the second rewrite rule we assume rec ∈ FLEX. Then:

rec(S(x), y, z) →put rec∗(S(x), y, z) →appl @(z, S(x), rec∗(S(x), y, z)) →put
@(z, S∗(x), rec∗(S(x), y, z)) →select @(z, x, rec∗(S(x), y, z)) →lex
@(z, x, rec(S∗(x), y, z)) →select @(z, x, rec(x, y, z))

Example 6 (Map). We take map � cons and map ∈ FLEX. For the first rewrite
rule we have:

map(nil, z) →put map∗(nil, z) →select nil

For the second rewrite rule we have (base types are identified):

map(cons(h, t), z) →put map∗(cons(h, t), z) →copy
cons(map∗(cons(h, t), z),map∗(cons(h, t), z)) →appl
cons(@(z, cons(h, t)),map∗(cons(h, t), z)) →put
cons(@(z, cons∗(h, t)),map∗(cons(h, t), z)) →select
cons(@(z, h),map∗(cons(h, t), z)) →lex cons(@(z, h),map(cons∗(h, t), z)) →select
cons(@(z, h),map(t, z))

5 Termination

In this section we prove the following theorem:

Theorem 1. A system (F ,R) is terminating if there exists a well-founded or-
dering � on the terms over F such that l→+

Hβ r in H(F ,�).

This means that HOIPO provides a termination method, as was already claimed
in the previous section. The proof of Theorem 1 proceeds as follows; we follow the
approaches of [10,6]. We define a labelled rewrite relation →Hω (Definition 7)
and consider its union with β-reduction, denoted by →Hωβ . It is shown that

704 C. Kop and F. van Raamsdonk

→+
Hωβ and →+

Hβ coincide on the set of terms over F , so without marks or labels
(Lemma 1). Then we show termination of →Hωβ (Theorem 3). It follows that
→+

Hβ is a transitive relation on the terms over F , that is closed under contexts
and substitutions, and that is moreover well-founded. Hence it is a reduction
ordering, that is, l →+

Hβ r for every rewrite rule l → r implies that rewriting is
terminating. HOIPO is more fine-grained than HORPO and also its termination
proof is more fine-grained that the one for HORPO. We continue by presenting
the labelled version of HOIPO, which is used to prove termination of →Hβ .

5.1 The Labelled System

We assume a set F of function symbols, which is the disjoint union of lexico-
graphic and multiset function symbols, and a well-founded ordering � on F .
We define a copy Fω of F as follows: for every f ∈ F , the set Fω contains the
labelled function symbol fn for every natural number n. An unlabelled function
symbol f is also denoted as fω; then every function symbol in F ∪ Fω can be
denoted by fα with α an ordinal of at most ω. The usual ordering on N is
extended by n < ω for every n ∈ N.

Definition 7 (Labelled HOIPO). The rewriting system Hω(F ,�) uses func-
tion symbols in F ∪ Fω and contains the following rules:

fω(x1, . . . , xm) →put fp(x1, . . . , xm)
fp(x1, . . . , xm) →select xi (a)

fp+1(x1, . . . , xm) →copy gω(lτ1 , . . . , lτn) (b)(f)
fp+1(x1, . . . , si, . . . , xm) →lex fω(x1, . . . , xi−1, s

′
i, lσi+1 , . . . , lσm) (c)(d)(f)

fp+1(x1, . . . , si, . . . , xm) →mul fω(r1, . . . , ri−1, s
′
i, ri+1, . . . , rm) (c)(e)(g)

fp+1(x1, . . . , xm) →ord fp(xπ−11, . . . , xπ−1m) (e)(h)
fp+1(x1, . . . , xm) →appl @(lρ1→...→ρk→σ, lρ1 , . . . , lρk

) (f)

Here p is an arbitrary natural number. As in Definition 6 we assume that the
type- and arity constraints are met. In addition we have the following conditions;
here (a), (b), (d), (e), and (h) are exactly the same as in Definition 6, and (c),
(f) and (g), provide the crucial differences.

(a) i ∈ {1, . . . ,m},
(b) f � g,
(c) si →put s

′
i with label p

(d) f ∈ FLEX,
(e) f ∈ FMUL,
(f) we use the notation lρ for some term of type ρ; either lρ = fp(x1, . . . , xm) or

lρ = xj for some j, as long as the type constraints are met; it is not a fixed
term: we can choose different values for lσi and lσj even if σi = σj ,

(g) we use the notation rj for some term of type σj : either si →put rj with label
p, or rj = xj ,

(h) π a type-preserving permutation of 1, . . . ,m.

A Higher-Order Iterative Path Ordering 705

The rewrite relation induced by the rewrite rules of Hω(F ,�) is denoted by
→Hω, and the union of →Hω and β-reduction is denoted by →Hωβ. The following
examples illustrate that in Hω the labels provide more control over the reduction
relation than the marks.

Example 7 (Map). We take map � cons and map ∈ FLEX. For the first rewrite
rule we have:

map(nil, z) →put map0(nil, z) →select nil

For the second rewrite rule we have:

map(cons(h, t), z) →put map2(cons(h, t), z) →copy
cons(map1(cons(h, t), z),map1(cons(h, t), z)) →appl
cons(@(z, cons(h, t)),map1(cons(h, t), z)) →put
cons(@(z, cons0(h, t)),map1(cons(h, t), z)) →select
cons(@(z, h),map1(cons(h, t), z)) →lex cons(@(z, h),map(cons0(h, t), z)) →select
cons(@(z, h),map(t, z))

Example 8. As remarked in [10], the rewriting system →H may contain loops.
For instance, for a : σ and f : σ → σ with a � f we have a →put a

∗ →copy
f(a∗) →put f

∗(a∗) →select a
∗. The loop on marked terms has no counterpart in

the labelled system.

We now show that the reflexive closures →+
Hβ and →+

Hωβ coincide on the set of
terms without labels.

Lemma 1. We have →+
Hβ = →+

Hωβ on the set of terms over F .

Proof. First note that the marks and labels do not control β-reduction.
In order to show →+

Hβ ⊆ →+
Hωβ we consider a rewrite sequence s→+

Hβ t that
does not consist of β-reduction steps only. The first step with respect to HOIPO
is induced by the put-rule. The total number of HOIPO steps is finite, say n. We
now lift the rewrite sequence in Hβ to a rewrite sequence in Hωβ by using in
the first put-step of the latter the label n. The values for the other labels then
follow easily.

In order to show →+
Hωβ ⊆ →+

Hβ, note that a step in labelled HOIPO is mapped
to a step in HOIPO by replacing a label p (for any natural number p) by the
mark ∗. A label ω is just a notational device and in fact denotes ‘no label’. �	

5.2 Computability

We will make use of the notion of computability due to Tait and Girard [15].
Here we define computability with respect to →Hωβ.

Definition 8. A term s : σ is said to be computable with respect to →Hωβ if:

– σ is a base type, and s is strongly normalizing with respect to →Hωβ,
– σ = τ → ρ for some τ and ρ, and for every t : τ with t computable with

respect to →Hωβ we have that @(s, t) is computable with respect to →Hωβ .

706 C. Kop and F. van Raamsdonk

As in [6,11] variables are not by definition computable, but are proved to be
computable. We do not consider computability modulo a convertibility relation
on terms as in [11] because we work with typed variables and not with envi-
ronments. The following two lemma’s are concerned with (standard) properties
of computability and correspond to Property 3.4 (i), (ii), (iii), (v) in [6] and to
Lemma 6.3 and Lemma 6.5 in [11].

Lemma 2

(a) If s : σ is computable then s : σ is strongly normalizing with respect to →Hωβ.
(b) If s : σ is computable and s→Hωβ t then t is computable.
(c) If s : σ is not an abstraction (or: s : σ is neutral) and t is computable for

every t with s→Hωβ t, then s is computable.

The three items are proved simultaneously by induction on the structure of type.
A consequence of the third point is that variables are computable.

Lemma 3. Consider an abstraction λx : σ. s : σ → τ . If s[x := t] is computable
for every computable t : σ, then λx : σ. s is computable.

The proof proceeds by showing that all one-step reducts of @(λx : σ. s, t) are
computable and then applying Lemma 2(c).

We proceed by showing that a functional term f(s1, . . . , sm) is computable
if all its direct arguments are computable. The proof of the following lemma
employs a technique due to Buchholz [3], also already present in [5], that is for
instance also used in [6,10].

Lemma 4. If s1 : σ1, . . . , sm : σm are computable, then fα(s1, . . . , sm) is com-
putable.

Proof. Assume computable terms s1 : σ1, . . . , sm : σm and a function sym-
bol f : (σ1 × . . . × σm) → τ , and an ordinal α with α ≤ ω. We prove that
fα(s1, . . . , sm) is computable by well-founded induction on the triple (f, s, α),
ordered by the lexicographic product of the following three orderings: first �

on function symbols, second the lexicographic (for f ∈ FLEX) or multiset (for
f ∈ FMUL) extension of →Hωβ on vectors of computable terms, and third the
ordering > on natural numbers extended with ω > n for every n ∈ N. We denote
this ordering by >>.

The induction hypothesis is: If (f, s, α) >> (g, t, β) with t = t1, . . . , tn com-
putable terms, then gβ(t1, . . . , tn) is computable.

Because s = fα(s1, . . . , sm) is neutral (i.e. not an abstraction), by Lemma
2 (c) it is sufficient to prove that all one-step reducts of s are computable. So
we suppose that fα(s1, . . . , sm) →Hωβ t and proceed by showing computability
of t. If the rewrite step takes place inside one of the si, then t is computable
by the induction hypothesis for the second component (note that f does not
increase). Otherwise, fα(s1, . . . , sk) →Hωβ t is a head step. We consider 4 of the
7 possibilities.

A Higher-Order Iterative Path Ordering 707

– Suppose that fω(s1, . . . , sm) →put f
p(s1, . . . , sm). (Note that in this case

α = ω.) Then t = fp(s1, . . . , sm) is computable by the induction hypothesis
for the third component, because the first two components of the triple do
not change, and ω > p for every natural number p.

– Suppose that fp+1(s1, . . . , sm) →copy g
ω(t1, . . . , tn). For every tj with j ∈

{1, . . . , n} we have either tj = fp(s1, . . . , sm) or tj = sk for some k ∈
{1, . . . ,m}. In the first case tj is computable by the induction hypothesis
on the third component. In the second case tj is computable by assumption.
Therefore (t1, . . . , tn) consists of computable terms. Now computability of
t = g(t1, . . . , tn) follows by the induction hypothesis on the first component.

– Suppose that fp+1(s1, . . . , sm) →mul fω(t1, . . . , ti−1, s
′
i, ti+1, . . . , tm). For

every j ∈ {1, . . . , i − 1, i + 1, . . . ,m} we have either si →put tj or tj = sj .
In the first case tj is computable by the assumption that si is computable and
Lemma 2(b). In the second case tj is computable by assumption. Further, s′i is
a put-reduct of si and hence computable by assumption and Lemma 2(b). We
conclude that (t1, . . . , ti−1, s

′
i, ti+1, . . . , tm) consists of computable terms. Now

computability of t = fω(t1, . . . , ti−1, s
′
i, ti+1, . . . , tm) follows by the induction

hypothesis on the second component, because the multiset {{s1, . . . , sm}} is
greater than the multiset {{t1, . . . , ti−1, s

′
i, ti+1, . . . , tm}} in the multiset ex-

tension of →Hωβ .
– Suppose that fp+1(s1, . . . , sm)→appl @(t0, t1, . . . , tn). For every j∈{0, . . . , n}

we have either tj = fp(s1, . . . , sm) or tj = sk for some k ∈ {1, . . . ,m}. In the
first case, tj is computable by the induction hypothesis on the third compo-
nent of the triple. In the second case, tj is computable by assumption. Now
computability of t follows because by definition the application of computable
terms is computable.

From the complete case analysis follows that all one-step reducts of s are com-
putable. Hence by Lemma 2(c) the term s is computable. �	

We now show that all terms (possibly with labels) are computable, by showing
the stronger statement that the application of a computable substitution to an
arbitrary term yields a computable term. A substitution is said to be computable
if all terms in its range are computable. The proof of the following theorem
proceeds by induction on the definition of terms.

Theorem 2 (Computability of all terms). Let s : σ be an arbitrary term
over F ∪ Fω and let γ be a computable substitution. Then sγ is computable.

Because the empty substitution is computable, it follows from this theorem that
all terms over F∪Fω are computable. By Lemma 2 it then follows that all terms
are strongly normalizing with respect to →Hωβ.

Theorem 3 (Termination). The rewriting relation →Hωβ is terminating on
the set of terms over F ∪ Fω.

This concludes the proof of Theorem 1.

708 C. Kop and F. van Raamsdonk

6 HOIPO Contains HORPO

The rewriting system H follows the definition of HORPO quite closely. In this
section we show that indeed HOIPO contains HORPO. We assume a set of func-
tion symbols F and work also with marked terms over F ∪ F∗.

Theorem 4. Let s and t be terms over F . If s ; t then s→∗
H t.

Proof. Assume s ; t. We prove by induction on the structure of s and t that there
is some s′ such that s →put s

′ →∗
H t. The induction hypothesis (IH) is: for all q

and r, if q is a subterm of s, or (q = s and r is a subterm of t), then q ; r implies
q →put q

′ →∗
H r (for some term q′). We consider all possible cases for s ; t.

(H1) We have s = f(s1, . . . , sm) and there is an i ∈ {1, . . . ,m} such
that si < t. If si ; t then by the IH (first component) si →put
s′i →∗

H t. If si = t then also si →∗
H t. Hence in both cases s →put

f∗(s1, . . . , sm) →select si →∗
H t.

(H2) We have s = f(s1, . . . , sm), t = g(t1, . . . , tn), f � g, and s ;;
{t1, . . . , tn}.

For every i ∈ {1, . . . , n} we have either s ; ti or sj < ti for some
j ∈ {1, . . . ,m}. In the first case we define li = f∗(s1, . . . , sm). In the
second case we define li = sj .

In the first case we have by the IH s →put s
′ →∗

H ti. Because
for this s′ (which is a put-reduct of s) either s′ = f∗(s1, . . . , sm) or
f∗(s1, . . . , sm) →lex/mul s

′, this yields li = f∗(s1, . . . , sm) →∗
H ti.

In the second case, if sj ; ti for some j ∈ {1, . . . ,m}, we have by
the IH sj →put s

′
j →∗

H ti. Hence we have li = sj →∗
H ti (also if sj = ti).

Now we have s →put f∗(s1, . . . , sm) →copy g(l1, . . . , ln) →∗
H

g(t1, . . . , tn).
(H3LEX) We have s = f(s1, . . . , sm) and t = f(t1, . . . , tm) with f ∈ FLEX, and

[s1, . . . , sm] ;LEX [t1, . . . , tm] and s ;; {t1, . . . , tm}.
There is an i ∈ {1, . . . ,m} such that s1 = t1, . . . , si−1 = ti−1, si ;

ti. Moreover, for every j ∈ {i+1, . . . ,m} we have either s ; tj or sk <
tj for some k. By an analysis as in (H2) we can define for every j ∈
{i+ 1, . . . ,m} a term lj such that lj →∗

H tj . Because si ; ti we have
by the IH some term s′i such that si →put s

′
i →∗

H ti. Combining this
yields s →put f

∗(s1, . . . , sm) →lex f(s1, . . . , si−1, s
′
i, li+1, . . . , ln) →∗

H
f(s1, . . . , si−1, ti, ti+1, . . . , tn).

(H3MUL) We have s = f(s1, . . . , sm), t = f(t1, . . . , tm), f ∈ FMUL, and more-
over {{s1, . . . , sm}} ;MUL {{t1, . . . , tm}}.

By definition of the multiset ordering, we can write {{s1, . . . , sm}}=
A∪B ∪C, {{t1, . . . , tm}} = A∪D, for all ti ∈ D there is some sj ∈ B
such that sj ; ti, and, since we are working with multisets of equal
size, |B| ≥ 1.

Suppose |B|= 1; write A= {{si1 , . . . , sik
}}= {{tj1 , . . . , tjk

}}, B=
{{sn}}. Since sn > tx for all x /∈ {j1, . . . , jk} we can derive by the
induction hypothesis that for such x there is some s′n where sn→put
s′n→∗

H tx.

A Higher-Order Iterative Path Ordering 709

Now, let π be a permutation that maps each ix to jx; then always
sπ−1jx

= tjx , and sπ−1(πn) > tπn (because πn is not one of the jx). So
f(s1, . . . , sm) →put f

∗(s1, . . . , sm) →ord f
∗(sπ−11, . . . , sπ−1m) →mul

f(r1, . . . , rm) →∗
H f(t1, . . . , tm), where ri = sπ−1i = ti if i is one of

the jx, sn →put ri →∗
H ti otherwise.

For the case |B| > 1, we observe that a comparison X >MUL Y
can always be decomposed into a sequence X = X1 � X2 � . . . �

Xn = Y where each Xi � Xi+1 is an atomic >MUL step as described
above, and that →∗

H is transitive.
(H4) We have s = f(s1, . . . , sm), t = @(t1 : ρ1, . . . , tn : ρn) with n ≥

2, and s ;; {t1, . . . , tn}. By an analysis as in (H2), we can define
for every i ∈ {1, . . . , n} a term li such that li →∗

H ti. Note that
ρ1 = ρ2 → . . . → ρn → σ. Therefore, s →put f

∗(s1, . . . , sm) →appl
@(l1, . . . , ln) →∗

H @(t1, . . . , tn).
(H5) We have s = @(s1, s2), t = @(t1, t2) and {{s1, s2}} ;MUL {{t1, t2}}.

Because of the typing constraints either s1 ; t1 and s2 = t2 or
s1 < t1 and s2 ; t2. In the first case, we have by the IH s1 →put
s′1 →∗

H t1. Therefore, s →put @(s′1, s2) →∗
H t1s2 = t. In the second

case, we have by the IH s2 →put s
′
2 →∗

H t2. Additionally, s1 →∗
H t1,

although this may be in 0 steps. Therefore, s →put @(s1, s′2) →∗
H

@(s1, t2) →∗
H @(t1, t2) = t.

(H6) We have s = λx : σ. s0, t = λx : σ. t0, and s0 ; t0. By the IH, s0 →put
s′0 →∗

H t0. Hence s = λx : σ. s0 →put λx : σ. s′0 →∗
H λx : σ. t0 = t. �	

7 HORPO Does Not Contain HOIPO

In this section we present a rewrite rule l → r for which l ;+ r in HORPO does
not hold, but for which we can prove l →+

Hβ r. This shows that HORPO does
not contain HOIPO; the crux is that postponing the choice for a smaller term
can sometimes be useful.

We consider the the following rewrite rule l → r, using function symbols
G,H : o→ o→ o and A,B : o and f : (o× o→ o) → o (so f is the only function
symbol that takes arguments):

f(B, λz : o.@(G, z, z)) → @(G, f(B, λz : o.@(H, z, z)), f(A, λz : o.@(G, z, z)))

In addition assume that there are rewrite rules that enforce G�H and f�B�A.
We have l →+

Hβ r:

l = f(B, λz : o.@(G, z, z))
→put f∗(B, λz : o.@(G, z, z))
→appl @(λz : o.@(G, z, z), f∗(B, λz : o.@(G, z, z)))
→β @(G, f∗(B, λz : o.@(G, z, z)), f∗(B, λz : o.@(G, z, z)))
→lex @(G, f(B, λz : o.@(G∗, z, z)), f∗(B, λz : o.@(G, z, z)))
→lex @(G, f(B, λz : o.@(G∗, z, z)), f(B∗, λz : o.@(G, z, z)))
→copy @(G, f(B, λz : o.@(H, z, z)), f(B∗, λz : o.@(G, z, z)))
→copy @(G, f(B, λz : o.@(H, z, z)), f(A, λz : o.@(G, z, z))) = r

710 C. Kop and F. van Raamsdonk

It is easy to see that l ; r does not hold. But do we have l ;+ r? We show
that this is not the case. Suppose that l ;+ t for some term t. We can prove by
induction, first over the length of the ;-sequence, second on the size of t, that t
must have one of the following forms:

(a) f(A, λz : o.@(L, z, z)) with L ∈ {G,H}
(b) f(B, λz : o.@(H, z, z))
(c) @(λz : o.@(L, z, z),K) with L ∈ {G,H} and l ;+ K
(d) @(L,K1,K2) with L ∈ {G,H} and there exists some K such that l ;+ K

and K ;∗ K1,K ;∗ K2.

The reason that there are so few possibilities is that A and H are minimal with
respect to ;, and B,G only compare to A,H .

Now, r has form (d). So there has to be some K of one of the forms above such
that K ;∗ K1,K ;∗ K2. However, using induction we can see that whenever
s ; t it can not hold that t contains f,G or B without s containing that symbol
too. So if K has form (a) it can not reduce to a term with B in it, form (b) will
not reduce to a term with G in it, and the last two forms will never reduce to a
term with G in it.

So we see that following the same idea as in the iterative version does not work
because there is no term t satisfying the following three conditions: f(B, λz :
o.@(G, z, z)) ;∗ t, and t ;∗ f(B, λz : o.@(H, z, z)), and t ;∗ f(A, λz :
o.@(G, z, z)).

A similar phenomenon seems to occur when comparing HOIPO to the stronger
definition of ; as given in [2]. The following system can be proven to be ter-
mination using HOIPO. However, it does not seem to have an easy termination
proof using ; as defined in [2]. The system consists of the following rewrite
rules: {g(x, y, z) → f(f(x, z), z), f(x, z) → B,B → A, f(B, λx : o.g(x, x, z)) →
g(f(A, λx : o.g(x, x, z)), f(B, λx : o.B), z)} using the function symbols f :
(o× (o→ o)) → o, g : (o× o× (o→ o)) → o, B : o, and A : o.

Finally, note that the problem illustrated above is easily solved by adding a
pairing operator to the system which is smaller than the other function symbols.

8 Concluding Remarks

We have defined an iterative version of HORPO as defined in [6]. Other, more
advanced, definitions of HORPO are given in [7,2]. We have on purpose chosen
for the definition from [6], because it is conceptually and technically very clear;
it even has been proof-checked in Coq [11]. Moreover, because it is the most
basic variant, it is the best starting point for an investigation to stronger order-
ings. In fact, the present definition of HOIPO already lead to some ideas about
strengthening the ordering, which will be developed in more detail.

Having said that, clearly the termination method provided by HOIPO is, just
as the one provided by HORPO, rather weak. For instance, it cannot be used
to prove termination of developments in the untyped λ-calculus, which can be
done in a higher-order iterative ordering in longer versions of [10], following [13].
Therefore, in further work we intend to consider extensions of HOIPO which may

A Higher-Order Iterative Path Ordering 711

or may not be defined as iterative definitions of more sophisticated variants of
HORPO. We then need to compare those extensions with the more sophisticated
versions of HORPO [7,2], as well as with the long version of [10].

One of the natural next steps is to extend HOIPO using the notion of com-
putable closure, to define iterative versions of HORPO for other frameworks of
higher-order rewriting (CRSs or HRSs) [14], or to replace the ordering on func-
tion symbols by interpretations on terms.

Acknowledgements. We are very grateful to the referees of an earlier version and
to the referees of LPAR 2008 for their remarks.

References

1. Bergstra, J., Klop, J.W.: Algebra of communicating processes. Theoretical Com-
puter Science 37(1), 171–199 (1985)

2. Blanqui, F., Jouannaud, J.-P., Rubio, A.: The computability path ordering: The
end of a quest. In: Kaminski, M., Martini, S. (eds.) CSL 2008. LNCS, vol. 5213,
pp. 1–14. Springer, Heidelberg (2008)

3. Buchholz, W.: Proof-theoretic analysis of termination proofs. Annals of Pure and
Applied Logic 75(1–2), 57–65 (1995)

4. Dershowitz, N.: Orderings for term rewriting systems. Theoretical Computer Sci-
ence 17(3), 279–301 (1982)

5. Jouannaud, J.-P., Okada, M.: A computation model for executable higher-order
algebraic specification languages. In: Proceedings of LICS 1991, Amsterdam, The
Netherlands, pp. 350–361 (July 1991)

6. Jouannaud, J.-P., Rubio, A.: The higher-order recursive path ordering. In: Pro-
ceedings of LICS 1999, Trento, Italy, pp. 402–411 (July 1999)

7. Jouannaud, J.-P., Rubio, A.: Higher-order orderings for normal rewriting. In: Pfen-
ning, F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 387–399. Springer, Heidelberg (2006)

8. Jouannaud, J.-P., Rubio, A.: Polymorphic higher-order recursive path orderings.
Journal of the ACM 54(1), 1–48 (2007)

9. Kamin, S., Lévy, J.-J.: Two generalizations of the recursive path ordering. Univer-
sity of Illinois (1980)

10. Klop, J.W., van Oostrom, V., de Vrijer, R.: Iterative lexicographic path orders.
In: Futatsugi, K., Jouannaud, J.-P., Meseguer, J. (eds.) Algebra, Meaning, and
Computation. LNCS, vol. 4060, pp. 541–554. Springer, Heidelberg (2006)

11. Koprowski, A.: Coq formalization of the higher-order recursive path ordering. Tech-
nical Report CSR-06-21, Eindhoven University of Technology (August 2006)

12. Nipkow, T.: Higher-order critical pairs. In: Proceedings of LICS 1991, Amsterdam,
The Netherlands, pp. 342–349 (July 1991)

13. van Oostrom, V.: Personal communication (2008)
14. van Raamsdonk, F.: On termination of higher-order rewriting. In: Middeldorp, A.

(ed.) RTA 2001. LNCS, vol. 2051, pp. 261–275. Springer, Heidelberg (2001)
15. Tait, W.W.: Intensional interpretations of functionals of finite type I. Journal of

Symbolic Logic 32(2), 198–212 (1967)
16. Terese: Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Sci-

ence, vol. 55. Cambridge University Press, Cambridge (2003)

Author Index

Abel, Andreas 497
Alarcón, Beatriz 636
Aminof, Benjamin 183
Andraus, Zaher S. 343
Arapinis, Myrto 128
Armant, Vincent 113
Aśın, Roberto 16

Baaz, Matthias 451
Backes, Michael 353
Baumgartner, Peter 258
Belkhir, Walid 605
Berg, Matthias 353
Bezem, Marc 47
Brázdil, Tomáš 230
Bresolin, Davide 590
Brožek, Václav 230
Brünnler, Kai 482

Charatonik, Witold 543
Chaudhuri, Kaustuv 467
Ciabattoni, Agata 451
Clarke, Edmund M. 182

Dague, Philippe 113
Dax, Christian 214
Delaune, Stéphanie 128
Della Monica, Dario 590
Dubrovin, Jori 290

Eiter, Thomas 377
Emmes, Fabian 636
Endrullis, Jörg 79

Fermüller, Christian G. 451
Fuchs, Alexander 258
Fuhs, Carsten 636

Gabbay, Murdoch J. 158
Gallagher, John P. 682
Giesl, Jürgen 636
Glimm, Birte 391
Goranko, Valentin 590
Grabmayer, Clemens 79
Gutiérrez, Raúl 636

Habermehl, Peter 558
Hendriks, Dimitri 79
Henzinger, Thomas A. 333
Hirokawa, Nao 652, 667
Hofmann, Martin 158
Holeček, Jan 230
Honsell, Furio 143
Hottelier, Thibaud 333
Huang, Ge 421

Iosif, Radu 558

Jakl, Michael 436
Järvisalo, Matti 31
Junttila, Tommi 31, 290

Kazakov, Yevgeny 391
Klaedtke, Felix 214
Kontchakov, Roman 574
Kop, Cynthia 697
Kovács, Laura 333
Kremer, Steve 128
Kučera, Antońın 230
Kupferman, Orna 183

Langholm, Tore 406
Lenisa, Marina 143
Lev, Omer 183
Libkin, Leonid 97, 198
Liffiton, Mark H. 343
Liquori, Luigi 143
Lucas, Salvador 636
Lynce, Inês 1

Maher, Michael 421
Manquinho, Vasco 1
Marques-Silva, Joao 1
McKinley, Richard 482
McLaughlin, Sean 174
Middeldorp, Aart 667
Monniaux, David 243
Montanari, Angelo 590
Moser, Georg 652
Murano, Aniello 318

714 Author Index

Napoli, Margherita 318
Niemelä, Ilkka 31
Nieuwenhuis, Robert 16, 47

Oliveras, Albert 16
Ortiz, Magdalena 377

Parente, Mimmo 318
Pfenning, Frank 174
Pichler, Reinhard 62, 436
Pratt-Hartmann, Ian 574
Pulina, Luca 528

Rodŕıguez-Carbonell, Enric 16, 47
Rosendahl, Mads 682
Rümmele, Stefan 436
Rümmer, Philipp 274

Saabas, Ando 305
Sakallah, Karem A. 343
Samer, Marko 512
Santocanale, Luigi 605
Savenkov, Vadim 62
Scagnetto, Ivan 143

Schneider-Kamp, Peter 636
Schöpp, Ulrich 621
Sciavicco, Guido 590
Šimkus, Mantas 377
Simon, Laurent 113
Sirangelo, Cristina 97

Tacchella, Armando 528
Thiemann, René 636
Tinelli, Cesare 258
To, Anthony Widjaja 198

Unruh, Dominique 353

van Raamsdonk, Femke 697
Veanes, Margus 305
Vojnar, Tomáš 558

Wolter, Frank 574
Woltran, Stefan 436
Wrona, Micha�l 543

Zakharyaschev, Michael 574
Zankl, Harald 667

	Title Page
	Preface
	Organization
	Table of Contents
	Session 1. Constraint Solving
	Symmetry Breaking for Maximum Satisfiability
	Introduction
	Preliminaries
	Propositional Satisfiability
	Symmetries
	Symmetry Breaking
	Maximum Satisfiability

	Symmetry Breaking for MaxSAT
	From CNF Formulas to Colored Graphs
	Plain Maximum Satisfiability
	Partial and WeightedMaximum Satisfiability
	Evaluating Alternative Formulations

	Experimental Results
	Related Work
	Conclusions
	References

	Efficient Generation of Unsatisfiability Proofs and Cores in SAT
	Introduction
	In-Memory Algorithms

	Short Overview on DPLL Algorithms for SAT
	Basic Algorithms, Only for Core Extraction
	First Algorithm: Marker Literals
	Second Algorithm: Initial Ancestor Lists
	Experiments: The First Two Algorithms vs. Our Basic Solver

	Algorithms for Extracting Proofs and Cores
	In-Memory Parent Information
	Our New Method with Child Count
	Experiments

	Conclusions and Future Work
	References

	Justification-Based Local Search with Adaptive Noise Strategies
	Introduction
	Constrained Boolean Circuits
	Justification-Based Non-clausal SLS
	On the PAC Property in BC SLS
	Experiments with Non-PAC and PAC Variant with Fixed Noise Parameter

	Adaptive Noise Strategies for BC SLS
	Adaptive Noise in the Context of BC SLS

	Conclusions
	References

	The Max-Atom Problem and Its Relevance
	Introduction
	Models of Conjunctions of Max-Atoms
	Max-Derivations
	Chaining Inference System and Membership in Co-NP
	PTIME Equivalences
	Conclusions and Future Directions
	References

	Session 2. Knowledge Representation 1
	Towards Practical Feasibility of Core Computation in Data Exchange
	Introduction
	Preliminaries
	Basic Notions
	Core Computation with FindCore

	Enhanced Core Computation
	Implementation and Experimental Results
	Conclusion
	References

	Data-Oblivious Stream Productivity
	Introduction
	Stream Specifications
	Data-Oblivious Analysis
	The Production Calculus
	Translation into Production Terms
	Translation of Flat and Friendly Nesting Symbols
	Translation of Stream Constants

	Deciding Data-Oblivious Productivity
	Conclusion and Further Work
	References

	Reasoning about XML with Temporal Logics and Automata
	Introduction
	Motivating Examples
	Unranked Trees and Automata
	Logics on Trees: TLtree and XPath
	Tree Logic into Query Automata: A Translation
	An Application: Reasoning about Document Navigation
	An Application: Reasoning about Views
	Conclusion
	References

	Distributed Consistency-Based Diagnosis
	Introduction
	From CNF Diagnosis to DNF Diagnosis
	Centralized Model-Based Diagnosis

	Diagnosing Peer-to-Peer Settings
	A Network of DNF Models
	Distributions with Trees

	Algorithm
	A General View on M2DT
	Structures and Algorithm
	Primitives of M2DT
	Properties

	Related Works
	Conclusion
	References

	Session 3. Proof-Theory 1
	From One Session to Many: Dynamic Tags for Security Protocols
	Introduction
	Messages and Intruder Capabilities
	Messages
	Intruder Capabilities

	Model for Security Protocols
	Syntax
	Scenarios and Sessions
	Constraint Systems
	Secrecy

	Transformation of Protocols
	Our Transformation
	Main Theorem
	OtherWays of Tagging

	Proof of Our Main Result
	Constraint Solving Procedure
	Proof of Theorem 1

	Future Work
	References

	A Conditional Logical Framework
	Introduction
	The System
	Instantiating LF$_{K}$ to Modal Logics
	Properties of LF$_{K}$
	Conclusions and Directions for Future Work
	References

	Nominal Renaming Sets
	Introduction
	Nominal Renaming Sets
	Support of Nominal Renaming Sets

	The Exponential
	The Atoms-Exponential A ⇒ X
	Presheaf and Topos Structure of Ren
	Tripos Structure on Ren
	Conclusions
	References

	Imogen: Focusing the Polarized Inverse Method for Intuitionistic Propositional Logic
	Introduction
	The Polarized Inverse Method
	Focusing
	Polarized Formulas
	From Focused Proofs to Big-Step Inferences
	The Inverse Method with Big-Step Rules

	Optimizations and Heuristics
	Inference Engine
	Evaluation
	Conclusion
	References

	Invited Talk
	Model Checking – My 27-Year Quest to Overcome the State Explosion Problem

	Session 4. Automata
	On the Relative Succinctness of Nondeterministic B\"{u}chi and co-B\"{u}chi Word Automata
	Introduction
	Preliminaries
	Automata on Infinite Words

	From NBW to NCW
	The Languages L_{k}
	Upper Bounds for L_{k}
	Lower Bounds for L_{k}

	From NCW to NBW
	The Languages L'_{k}
	Upper Bounds for L'_{k}
	Lower Bounds for L'_{k}

	Discussion
	References

	Recurrent Reachability Analysis in Regular Model Checking
	Introduction
	Preliminaries
	Recurrent Reachability: The Word Case
	Recurrent Reachability: The Tree Case
	Future Work
	References

	Alternation Elimination by Complementation
	Introduction
	Background
	Alternation-Elimination Scheme
	Memoryless Runs as Words
	Reduction to Complementation
	On Weak and Loop-Free Automata

	Instances of the Alternation-Elimination Scheme
	Novel Complementation Constructions
	Revisiting Alternation-Elimination Constructions

	Conclusion
	References

	Discounted Properties of Probabilistic Pushdown Automata
	Introduction
	Basic Definitions
	Discounted Properties of Probabilistic PDA
	Computing the Discounted Properties of Probabilistic PDA
	The Application of Newton’sMethod
	The Relationship between Discounted and Non-discounted Properties

	Conclusions
	References

	Session 5. Linear Arithmetic
	A Quantifier Elimination Algorithm for Linear Real Arithmetic
	Introduction
	The Algorithm
	Generalities
	Building Blocks

	Quantifier Elimination Algorithm
	Generalized Models
	Main Algorithm

	Possible Changes and Extensions
	ALL-SAT Then Project (Mod1)
	Removals from Negated Set (Mod2)
	Extra Modulo Theory

	Comparison with Other Algorithms
	Complexity Bounds
	Practical Results

	Conclusion and Future Work
	References

	${\mathscr{ME}(\text{\normalfont LIA})}$ - Model Evolution with Linear Integer Arithmetic Constraints
	Introduction
	Calculus Preview
	Constraints and Constrained Clauses
	Constrained Clauses

	Constrained Contexts
	The Calculus
	Soundness and Completeness

	Conclusions and Further Work
	References

	A Constraint Sequent Calculus for First-Order Logic with Linear Integer Arithmetic
	Introduction
	Preliminaries
	A Constraint Sequent Calculus for First-Order Logic
	Adding Integer Arithmetic
	Built-In Handling of Presburger Arithmetic
	Exhaustive Proofs
	The Construction of Exhaustive Proofs for PA Problems
	Deciding Presburger Arithmetic by Recursive Proving

	Fair Construction of Proofs
	Related Work
	Conclusions and Future Work
	References

	Encoding Queues in Satisfiability Modulo Theories Based Bounded Model Checking
	Introduction
	BMC and the Queue Interface
	Queue Encodings
	A Shifting-Based Approach
	A Cyclic Approach
	A Linear Approach

	Tag-Based Tuple Element Compression
	Experiments
	Single Queue Stress Test
	Bounded Model Checking of UML Models

	Conclusions
	References

	Session 6. Verification
	On Bounded Reachability of Programs with Set Comprehensions
	Introduction
	Model Programs and Bounded Reachability
	One Step Reachability
	Bounded Reachability of Basic Model Programs
	Implementation
	Related Work
	References

	Program Complexity in Hierarchical Module Checking
	Introduction
	Preliminary
	TreeAutomata
	Deciding Hierarchical Module Checking
	Conclusions
	References

	Valigator: A Verification Tool with Bound and Invariant Generation
	Introduction
	Valigator: System Description
	Generation of Verification Conditions
	Invariant Inference
	Proving Verification Conditions

	Conclusion
	References

	Reveal: A Formal Verification Tool for Verilog Designs
	Introduction
	The Reveal Verification System
	Case Studies
	Results and Analysis
	Datapath Abstraction
	Refinement Convergence
	Refinement Lemmas
	Discovering Genuine Bugs
	Performance of VIS, VCEGAR, and UCLID

	Conclusions
	References

	Invited Talks
	A Formal Language for Cryptographic Pseudocode
	Introduction
	Our Contribution
	Related Work
	Paper Outline

	Notation
	A Primer in Probability Theory
	Syntax and Semantics of the Language
	Cryptographic Requirements of the Language
	Syntax of the Language
	Semantics of the Language

	Defining Polynomial Runtime
	Defining Program Relations
	Denotational Equivalence
	Observational Equivalence
	Computational Indistinguishability

	Fundamental Properties of the Language
	A Chaining Rule for Denotations
	The CIU Theorem
	Exchanging Lines
	The Fundamental Lemma

	Embedding the Type System in HOL
	Higher-Order Logic
	Embedding Programs into HOL
	Syntax

	Examples
	Conclusion and Future Work
	References

	Reasoning Using Knots
	Introduction
	Model Representation Using Knots
	The Knot Technique
	Other Techniques
	Features
	Knots and Mosaic Techniques

	Applications
	Knots in Logic Programming
	Knots in Description Logics

	Conclusion
	References

	Session 7. Knowledge Representation 2
	Role Conjunctions in Expressive Description Logics
	Introduction
	Preliminaries
	\SHQR Is \EXPTIME-Complete
	\SHIR Is \TWOEXPTIME-Complete
	\SHOIFR Is \NTWOEXPTIME-Hard
	Conclusions
	References

	Default Logics with Preference Order: Principles and Characterisations
	Introduction
	Basic Notions
	Core Principles
	Minimal and Weak Order Compliance
	Interlude: Blind Rejection and Empty Inclusion
	Order Compliance and Closed Order Compliance
	Progressive Extension Predicates
	Further Directions
	References

	On Computing Constraint Abduction Answers
	Introduction
	Background
	Recognising Answers
	Maximally General Answers
	Fully Maximal Answers
	Conclusion
	References

	Fast Counting with Bounded Treewidth
	Introduction
	Preliminaries
	Counting All Models
	Counting the Minimal Models
	Horn Abduction
	Experimental Evaluation
	Conclusion
	References

	Session 8. Proof-Theory 2
	Cut Elimination for First Order G¨odel Logic by Hyperclause Resolution
	Introduction
	FirstOrderG¨odel Logic and Hypersequents
	Overview of hyperCERES
	Skolemization and De-Skolemization
	Characteristic Hyperclauses and Reduced Proofs
	Hyperclause Resolution
	Projection of Hyperclauses into HG-Proofs
	Final Remarks
	References

	Focusing Strategies in the Sequent Calculus of Synthetic Connectives
	Introduction
	A Sequent Calculus of Synthetic Connectives
	Synthetic Permutations
	Strategies
	Conclusions and Future Work
	References

	An Algorithmic Interpretation of a Deep Inference System
	Introduction
	A Deep Inference System for Intuitionistic Logic
	Reduction

	The Relation with Natural Deduction
	Discussion
	References

	Weak βη-Normalization and Normalization by Evaluation for System F
	Introduction and Related Work
	Church-Style System F
	Type Interpretation by Kripke Relations
	Fundamental Lemma
	Weak β-Normalization
	Weak βη-Normalization
	Normalization by Evaluation
	Judgmental Equality
	The Normalization Algorithm
	Completeness of NbE
	Soundness of NbE

	Conclusion
	References

	Session 9. Quantified Constraints
	Variable Dependencies of Quantified CSPs
	Introduction
	Preliminaries
	Dependency Schemes
	Standard Dependency Scheme
	Triangle Dependency Hierarchy

	Conclusion
	References

	Treewidth: A Useful Marker of Empirical Hardness in Quantified Boolean Logic Encodings
	Introduction
	Preliminaries
	Treewidth and Empirical Hardness
	Treewidth and Useful Preprocessing
	Related Work and Conclusions
	References

	Tractable Quantified Constraint Satisfaction Problems over Positive Temporal Templates
	Introduction
	Preliminaries
	Filter Representation of Temporal Relations
	Positive Temporal Relations
	Non Unary Surjective Polymorphisms of Positive Temporal Relations
	Classes of Different Power of Cp-Definability

	Proof of Theorem 6
	Filters of Range 2
	Filters of Range Greater Than 2

	Proof of Theorem 2
	References

	A Logic of Singly Indexed Arrays
	Introduction
	Counter Automata
	Flat Counter Automata with DBM Transition Rules

	A Logic of Integer Arrays
	Syntax
	Semantics
	Examples

	Undecidability of the Logic {\bf SIL}
	Decidability of the Satisfiability Problem for $\exists^*\forall^*$-{\bf SIL}
	Normalisation
	Translating Normalised Formulae into FCADBM

	Conclusion
	References

	Session 10. Modal and Temporal Logics
	On the Computational Complexity of Spatial Logics with Connectedness Constraints
	Introduction
	Topological Logics
	Topological Logics with Connectedness
	Computational Complexity
	Upper Complexity Bounds
	Lower Complexity Bounds

	Discussion and Further Work
	References

	Decidable and Undecidable Fragments of Halpern and Shoham’s Interval Temporal Logic: Towards a Complete Classification
	Introduction
	Interval Logics over Linearly Ordered Sets
	Decidable Fragments of HS
	Undecidable Fragments of HS
	Reduction from the Non-halting Problem
	Reduction from the Octant Tiling Problem
	Reduction from the $\mathbb{N}\times\mathbb{N}$ Tiling Problem

	Concluding Remarks
	References

	The Variable Hierarchy for the Lattice μ-Calculus
	Introduction
	The Lattice μ-Calculus \Boolmu
	Entanglement and \star-Weak Simulations
	Strongly Synchronizing Games
	Construction of Strongly Synchronizing Games
	References

	A Formalised Lower Bound on Undirected Graph Reachability
	Introduction
	Outline
	Action Graphs
	Reachability
	Abstraction
	Reachability

	Formalisation in Coq
	Conclusion
	References

	Session 11. Rewriting
	Improving Context-Sensitive Dependency Pairs
	Introduction
	Context-Sensitive Rewriting and CS-Dependency Pairs
	Non-collapsing CS-Dependency Pairs
	CS Dependency Pair Framework
	Dependency Graph Processor
	Reduction Pair Processor
	Transforming Context-Sensitive Dependency Pairs

	Experiments and Conclusion
	References

	Complexity, Graphs, and the Dependency Pair Method
	Introduction
	Preliminaries
	Complexity Analysis Based on the Dependency Pair Method
	Dependency Graphs
	From Cycle Analysis to Path Detection
	Refinement Based on Path Detection

	Conclusion
	References

	Uncurrying for Termination
	Introduction
	Preliminaries
	Uncurrying
	Uncurrying with Dependency Pairs
	Uncurrying Processor
	Freezing

	Experiments
	Related Work
	References

	Approximating Term Rewriting Systems: A Horn Clause Specification and Its Implementation
	Introduction
	Term Rewriting Systems and Their Approximation
	Finite Tree Automata
	Approximation of TRSs

	Horn Clause Specification of Reachable Term Approximations
	Definite Horn Clauses
	Tree Automata Approximation of Reachable Terms

	Tree Automata Approximations of Horn Clause Models
	FTA Approximation of the Minimal Model
	Relational Abstract Interpretation Based on an FTA

	BDD-Based Implementation
	Discussion and Conclusions
	References

	A Higher-Order Iterative Path Ordering
	Introduction
	Preliminaries
	The Higher-Order Recursive Path Ordering
	An Iterative Version of \textsf{HORPO\ }
	Termination
	The Labelled System
	Computability

	\textsf{HOIPO\ } Contains \textsf{HORPO\ }
	\textsf{HORPO\ } Does Not Contain \textsf{HOIPO\ }
	Concluding Remarks
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

