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Preface

Software-intensive systems have become increasingly important for a multitude
of products and services from all sectors of the economy, our national and in-
ternational infrastructure, and our daily lives. The ongoing decrease in size and
cost of microprocessors and storage devices is leading to the development of ever
more distributed and decentralized systems. Systems are assembled as dynamic
federations of autonomous and evolving components instead of monolithic appli-
cations, they perform tasks of staggering complexity with continuously chang-
ing requirements and in a permanently evolving environment. In the near fu-
ture novel technologies will allow the construction of systems with millions of
nodes, and systems will be likely to contain subsystems based on new computing
paradigms such as molecular computing.

To identify these emergent trends, their impact on the information society
in the next 10–15 years, and the challenges they present to computing, software
engineering, cognition and intelligence, the European Commission has estab-
lished two Coordinated Actions: initially the project “Beyond the Horizon”1

and then, starting in 2006, the project “InterLink”2. Both projects are coordi-
nated by the European Research Consortium for Informatics and Mathematics
(ERCIM EEIG) and funded by the Future and Emerging Technologies (FET)
Unit of the European Commission. The ongoing project InterLink is composed
of three thematic working groups: software-intensive systems and new comput-
ing paradigms; ambient computing and communication environments; intelligent
and cognitive systems.

This volume presents the results of the working group on software-intensive
systems and novel computing paradigms. The objective was to imagine the land-
scape in which the next generations of software-intensive systems will operate.
To this end three workshops were organized on this topic. Participation in the
workshops was by invitation only. Over 30 leading researchers from Europe,
Asia, Australia, USA, and Canada presented and discussed future R&D direc-
tions, challenges, and visions in the emerging areas of software-intensive systems
and new computing paradigms. Each workshop was structured by a three-step
process: At first the participants presented those topics and developments they
considered to be the most interesting and challenging in the field. Then the
participants split into working groups according to the central themes that had
been identified in the initial presentations. In a concluding plenary session the
results of the working groups were integrated.

From the beginning of the workshops it was evident that future software-
intensive systems will feature massive numbers of nodes per system, operate

1 http://beyond-the-horizon.ics.forth.gr/
2 http://interlink.ics.forth.gr/
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in open, non-deterministic environments, deal with large amounts of data, in-
teract with humans or other software-intensive systems, and adapt to new re-
quirements, technologies or environments without redeployment. To character-
ize software-intensive systems with these properties, the workshop participants
agreed on the term “ensembles.” Key research topics comprise the design of
emergent systems, management of uncertainty, dependability and trustworthi-
ness of ensembles.

Another important aspect is the development of self-organizing systems with
autonomic behavior. Present programming paradigms are less and less adequate
the more autonomous software-intensive systems become. New paradigms have
to be invented, implemented and evaluated in order to develop high-quality and
efficient “ensemble computing systems.” Unconventional computing paradigms
inspired by biology, chemistry, life or nature are active areas of research areas.
The field is now mature enough that true applications in realistic environments
can be built and also deployed on traditional Von-Neumann architectures.

This volume starts with an overview of the current state of the art and the
research challenges in engineering software-intensive systems. The remainder of
the book consists of invited papers of the working group participants and is struc-
tured in three major parts: ensemble engineering, theory and formal methods,
and novel computing paradigms. These papers cover a broad spectrum of rele-
vant topics ranging from methods, languages and tools for ensemble engineering,
socio-technical and cyber-physical systems, ensembles in urban environments,
formal methods and mathematical foundations for ensembles, orchestration lan-
guages to disruptive paradigms such as molecular and chemical computing.

Many persons contributed to the success of our workshop series. We offer sin-
cere thanks to all of them. We are particularly grateful to Jessica Michel, Patricia
Ho-Hune, and Florence Pesce of ERCIM for their invaluable work and effort in
preparing and organizing the workshops. Their friendly manner and managerial
skills contributed a great deal to the success of the workshops. We thank our
workshop hosts in Urbana-Champaign, Grigore Rosu and José Meseguer, for
a productive and friendly work environment. The InterLink project would not
have been possible without the scientific coordination of Constanine Stephanidis,
Dimitris Plexouxakis, and Antonis Argyros. We thank the EC project officers
Wide Hogenhout, Thomas Skordas, and Walter van der Velde for their continu-
ing encouragement and support. We are also grateful to Springer for their helpful
collaboration and assistance in producing this volume. Our sincere thanks go to
all authors for the high quality of their scientific contributions and for accom-
modating our tight schedule. Finally, we thank all workshop participants for the
lively discussions and their deep insights into the subject matter.

September 2008 Martin Wirsing
Jean-Pierre Banâtre

Matthias Hölzl
Axel Rauschmayer
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Engineering of Software-Intensive Systems:
State of the Art and Research Challenges

Matthias Hölzl, Axel Rauschmayer, and Martin Wirsing

Institut für Informatik, Ludwig-Maximilians-Universität München

Abstract. Software-intensive systems become more and more impor-
tant in our everyday lives. But their increasing complexity makes it dif-
ficult to develop and maintain them. This chapter gives an overview of
the state of the art of building software-intensive systems and outlines
research challenges that have been identified by the InterLink working
group “software-intensive systems and new computing paradigms”.

1 Introduction

Developments in ICT have a large influence on the gains in productivity and
prosperity that society has seen in recent years [1]. This development is respon-
sible for software being in control of increasing numbers of systems whose failure
may have critical consequences—for infrastructure, economy, or the safety of
human lives.

These systems are becoming increasingly distributed and decentralized,
assembled as dynamically changing orchestrations of autonomous services, ex-
pected to adapt to continuously changing requirements and environments. Re-
cent developments in the design of microprocessors and in emerging technologies,
such as nanotechnology, will lead to massive increases in the number of nodes
of a typical system, while potentially increasing the expected failure rate of in-
dividual components. Subsystems based on new paradigms, such as molecular
computing or quantum computing, may transition from research laboratories to
commercial products in the next years.

It is imperative that we develop the engineering techniques to reliably design,
develop and deploy these novel systems. In this chapter, we summarize the cur-
rent state of the art in the area of engineering software-intensive systems and
present research challenges.

Scope

The area of “software-intensive systems” encompasses many large and active
fields of industrial practice and academic research, ranging from systems and
software engineering to network technologies and hardware. It is also closely con-
nected to fields such as control theory and cybernetics; some research directions
for software-intensive systems are directly or indirectly inspired by chemistry,
biology, the social sciences and many other areas. Given the enormous scope of

M. Wirsing et al. (Eds.): Software-Intensive Systems, LNCS 5380, pp. 1–44, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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the field it is obviously impossible to detail the state of the art of the whole field,
or even to produce an exhaustive survey of all concerned areas. On the other
hand, just focusing on a few areas that we consider important or interesting
would not serve the purpose this chapter. We have therefore tried to reach a
compromise by surveying all topics that are directly relevant to the engineering
of software-intensive systems and giving enough pointers to the literature that
the interested reader can explore the topics in more depth.

Structure of This Chapter

This chapter consists of three main sections; the first two are concerned with the
state of the art of software-intensive systems, the third outlines research chal-
lenges: In Sect. 2, “Foundations”, we present properties of systems and areas of
research which are relevant to the engineering of software-intensive systems. In
Sect. 3, “Engineering”, we focus on the engineering process itself, in particular
on software engineering processes, tools and techniques. The distinction between
these two parts is not precise and does not represent a judgement on the im-
portance of the individual areas. For example, security might as well have been
in the engineering part as security aspects pervade many areas of systems engi-
neering, and clearly it is one of the most important properties for many systems.
Sect. 4 presents several research challenges that we expect to have great impact
on the development of software-intensive systems in the next 10–15 years.

The “state of the art” presented in this chapter can roughly be divided into
three categories:

– State of the practice: the processes, techniques and tools used to develop
software-intensive systems.

– Incremental research: research about software-intensive systems in areas
which are believed to be well-understood, where the direction of the research
is relatively clear and most research contributions are of an incremental na-
ture.

– Research frontier: research areas where we may have an idea of the goal we
are trying to reach but where we do not yet know how to reach that goal
and whether the desired result is achievable.

We address all three categories, without explicitly indicating for every topic in
which category we consider it to belong. In general, most of our effort is focused
on the research frontier.

Related Work

One of the most important European publications in the state-of-the-art as-
sessment of software-intensive systems is without doubt the ITEA Technology
Roadmap for Software-Intensive Systems [2]. This report structures the field
of software-intensive systems into four software-technology clusters, each with
several technology categories and presents an overview of the state of the art,
and short term, mid term and long term challenges for technologies in these
categories.
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This chapter was strongly influenced the work of WG6 of the IST-FET Co-
ordinated Action “Beyond-the-Horizon.” The final report [3] identifies several
important research directions and topics in the field of software-intensive sys-
tems.

One resource that provided important material for the the state of the practice
was the IEEE Software special issue about this topic [4] which contains relevant
articles about variations in software development practices, the different soft-
ware development approaches adopted in different countries [5], the use of doc-
umentation [6], requirements engineering [7], software reviews [8], product-line
engineering [9], embedded software engineering [10], “Internet speed” software
development [11], and the relationship between state of the art and state of
the practice [12]. These reports are particularly valuable since most published
literature is concerned with “best practice” and not the “actual practice.”

2 Foundations

The following topics cover important foundations for the engineering of software-
intensive systems which have a direct influence on the engineering process.
Progress in research or practice in one of these areas impacts the engineering of
systems. We have structured Part 2 as follows:

– Devices: the individual nodes present in a software-intensive system.
– Content: data, information and knowledge which is acquired, stored and

processed by the system.
– Interoperability and Interaction between systems as well as between humans

and systems.
– Adaptation to new environments, new requirements or new regulations.
– Assurance: Quality of service and experience, security, dependability.

These areas are not a complete partition of the foundations for software-
intensive systems: on the one hand there is a certain amount of overlap between
the individual areas, on the other hand there are many links between the areas
and it is not always clear into which area an individual research challenge falls.
Therefore the division should be understood as a presentational device, not as a
proposal for a taxonomy of the field. Our division is slightly different from the
one adopted in the ITEA report [2], reflecting the facts that we are more focused
on long-term research and general software-intensive systems, whereas ITEA has
a stronger emphasis on short or mid-term research and embedded systems.

Furthermore we are concerned almost exclusively with technical matters which
impact the development of software for systems; we do not address other topics
that clearly play an important role in the engineering of systems, such as legal
issues, the psycho-social context, or hardware design.

2.1 Devices

The development of software-intensive systems is in large parts driven by im-
provements in the available hardware for programmable controllers and comput-
ers: the dramatic decrease in cost, size, and energy consumption of integrated
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circuits and the availability of computational elements based on new principles
enables engineers to control devices with software for which this was not eco-
nomically feasible only a few years ago; the widespread integration of software
in devices in turn enables novel features for many classes of devices, such as
network connectivity for household appliances.

The use of software as control mechanism has many advantages for the devel-
opment of systems, as software can easily implement complex control behaviors
that would be difficult to realize in hardware. Furthermore, software is more
malleable than hardware and can therefore better serve as the “glue” between
individual components. On the other hand, the increasing use of software in
systems poses some new problems: the more complex behaviors of individual
components may lead to more difficulties in determining and controlling the
overall system behavior and to unintended interactions between components.

In the following sections we examine the state of the art of traditional micro-
controllers and CPUs, of micro- and nano-scale devices, and of synthetic biol-
ogy. We also give a very short overview of devices based on novel computing
paradigms and sensors.

Miniaturized Devices. In the last 40 years the number of transistors that can
be (inexpensively) placed on an integrated circuit has been growing exponentially
[13], and it is expected that this trend will continue for some more time to
come [14]. This has led to very inexpensive microprocessors and micro-controllers
that enable designers to use flexible software-based control for devices which were
previously purely mechanical and enabled many new devices, such as cellular
phones or PDAs. In addition to having more devices with computer control,
computers in embedded devices are becoming increasingly more powerful [15].
A state-of-the-art assessment for integrated circuits is beyond the scope of this
chapter but state-of-the-art reports for various application domains are readily
available, e.g., [16]. The increasing integration of computational elements with
physical artifacts is sometimes called cyber-physical systems [17], an overview of
the state-of-the art and planned research is [18].

The increasing number of transistors on integrated circuit also means that
support for multiple parallel threads or processes is becoming more prevalent
on desktop computers [19], techniques such as hyper-threading or multiple cores
are available on most current microprocessors for desktops and servers.

The trend towards more integration is taken even further in the area of
miniaturized devices with the integration of whole systems or network into a
single device, called Systems-on-Chip (SoC) or Networks-on-Chip (NoC) [20].
Micro-fabrication technology is sufficiently advanced that systems-on-chip can
be built which consist of electronics, sensors and actuators on a single silicon sub-
strate. In this case they are commonly called Micro-Electro-Mechanical Systems
(MEMS) [21, 22, 23, 24, 25]. MEMS are currently used in products as varied as
accelerometers, gyroscopes, or the print-heads of ink-jet printers, to name only a
few areas. Some of the research areas currently pursued in the MEMS sector are
improvements in micro-fabrication technology, both for high- and low-volume
production of MEMS, as well as packaging of MEMS.
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The large number of chips deployed in systems means that the issue of power
consumption becomes more important. Devices which consume less energy are
not only cheaper and more environmentally friendly they also provide advantages
from a purely technical point of view, as they generate less heat and require
less battery power. Many power reduction techniques for microprocessors are
currently employed and developed, [26] presents an overview of the state of
the art in the area. The development of power sources for mobile and wireless
systems is a task which is actively pursued both industry and research, partly by
improvements to the power density of batteries and partly by the development
of novel power sources such as fuel cells.

Further miniaturization of systems can be expected from the emerging field
of nanotechnology and the corresponding area of Nano-Electro-Mechanical Sys-
tems (NEMS). In contrast to microelectronics there are, as yet, few commercial
applications of nanotechnology outside of nanomaterials. Nanoelectronics can
be used to build miniaturized replacements for components such as FPGAS out
of nano-material [27], but also to improve certain aspects of more traditional
design, e.g., interconnects in integrated circuits [28]. As with microelectron-
ics, a state-of-the-art assessment of nanotechnology is beyond the scope of this
chapter.

There are several implications that increasing miniaturization has for the area
of system design: the most obvious and visible aspect is that systems now gen-
erally contain several or even large numbers of controllers and programmable
components, with widely differing computational power, see Section 3.2. Many
systems now include sensors as essential components, see Section 2.2.

Another important trend is the increasing adaptation of systems and com-
ponents to their particular task and the flexible assembly of parts with limited
functionality into more powerful ensembles. Examples are reconfigurable com-
puting [29], micro-robotics, and claytronics [30, 31, 32].

The growing number of system components and the inherent defect rate in
the production of micro- and nano-scale systems mean that future systems will
have to deal with a higher percentage of inoperative nodes, and more frequent
failures of individual nodes in the course of their operation. Inoperative nodes in
nano-devices can be identified using tests and then bypassed by post-fabrication
configuration. To be feasible this will require changed design-flows for these de-
vices [33]. But miniaturization also leads to increased sensitivity to the environ-
ment and a higher rate of transient errors. Therefore miniaturization requires ad-
ditional design efforts to design dependable systems [34]. Current research in the
area concerns, e.g., the design of fault-tolerant virtual reconfigurable circuits [35],
self-replicating hardware [36], or self-organizing SIMD architecture [37].

Devices Based on Novel Computing Paradigms. There is ongoing re-
search in the area of novel computing paradigms. We will address the software-
development issues and opportunities of these approaches in Part 3, in this
section we are concerned with devices built out of non-traditional material,
e.g. DNA. In general, these areas are not yet far enough developed to have in-
dustrial applications, but interesting results have been obtained in research labs.
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Research for building and manipulating objects at the nanoscale level in physics,
chemistry and molecular biology reveals promising approaches to unconventional
computing [38, 39], as foreseen by R. Feynman [40] and later popularised by
E. Drexler [41].

Microfluidics-based biochips provide new kinds of sensors for biochemical anal-
ysis; biomechatronics aims to integrate bio-sensors and -computers into the hu-
man body for rehabilitation and augmentation purposes. In both areas rapid
progress is made in research and experimental trials [42, 43], and commercial
applications can be expected in the next few years. It is, at this point of time,
not entirely clear how these developments will influence the design of software-
intensive systems, but in particular military applications of biomechatronics
seem likely.

Another important area of molecular computing is concerned with using DNA
for computational purposes [44]. While there are efficient DNA computers for
certain specialized problems, molecular computing is still subject to the same
theoretical limitations as classical computation, although it is possible to build
computing devices with massive parallelism.

In the field of molecular biology, harnessing molecules to compute can be
traced back at least to [45] and research in this field explodes with the landmark
experiment of L. Adleman [46]. Molecules can be used for their physical inter-
actions or their chemical reactions [47, 48, 49] or, in a biological context, using
the gene regulation machinery of a cell to achieve some computations [50,51,52].
These computations can be designed and implemented directly “by hand” or
using directed evolution [53, 54].

In this context, synthetic biology [55, 56, 57] emerges as a new engineering
discipline at the convergence of genetic engineering and computer science. It
encompasses the design and the implementation of complex artificial biological
systems for a variety of applications. The web site [58] is a good introduction.
The web site of iGEM, the international Genetically Engineered Machine com-
petition, [59] gives an outline of the envisioned applications. In this new area, the
pace of the technological changes seems to be consistent with Moore’s law [60].
Computer science is relevant for their development at two levels. At the engi-
neering level it addresses the topics of:

– how to specify and design a set of standard (biological) components with
well-defined characteristics and performances that can be used and reused
in the building of (artificial) biological systems;

– how to hierarchize and compose these biological components;
– which design methodology and computer tools can help the development of

these kind of systems;
– how to reverse-engineer existing biological modules to optimize them and to

adapt them to the needs of synthetic biology.

At the programming level, synthetic biology poses many of the challenges
sketched in the previous section: a massive number (billions) of unreliable el-
ementary entities that interact and cooperate dynamically and randomly. It is
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nevertheless necessary to ensure a global emergent behavior, robust and persis-
tent in time, that can serve as a foundation for computing.

The main question is how to “instruct” the enormous population of elementary
entities to obtain a global and coherent behavior from the local regulation (in-
teraction, cooperation, development) of the elementary processes. It is crucial to
note that this is similar to the problems encountered in large software-intensive
systems. Recognizing this fact, emerging new research fields such as amorphous
computing, spatial computing, autonomic computing, organic computing, etc.,
are investigating properties of artificial systems which are usually attributed to
living systems such as self-organization, self-healing, self-optimization, or sus-
tainability.

Another important non-traditional computation paradigm is quantum com-
puting, where quantum-mechanical phenomena are used as essential ingredients
of computations. These computers may offer large theoretical complexity im-
provements on certain classes of problems, such as the factorization of large
integers and computing discrete logarithms, and they offer provable complexity
advantages for at least one other problem, quantum database search. The former
would obviously influence the design of software-intensive systems if quantum
computers became available commercially, since public-key methods are often
based on one of these mechanisms [61]. For a more detailed description of the
capabilities of quantum computers and their applicability to different areas we
refer to the IST-FET publication [62], the ERA-Pilot Project [63], and [64].

2.2 Content

In addition to inexpensive and miniaturized devices, content is one of the main
drivers for the development and adaptation of new software-intensive systems.
The main trend is to go from dealing with raw signals or data to information
and knowledge. We adopt the ITEA definitions of data as “raw representation
in binary format,” information as “representation of knowledge that can be un-
derstood by a user,” i.e., data that is structured, annotated with metadata and
that possesses a well-defined semantics, and knowledge as “information that is
of interest to users.” In general, according to this point of view, information and
knowledge can only be distinguished by taking into account the point of view of
the user of the data, not by their representation. See [65] for a more in-depth
treatment of this question. While we are aware that these definitions are in many
ways problematic and the assignment of data into the various categories to a cer-
tain extend arbitrary, the concepts of data/information/knowledge nevertheless
define an important conceptual distinction and it seems beneficial to use them
in a way that is consistent with other existing documents.

We have structured this section, similar to the corresponding technology clus-
ters in the ITEA roadmap, into sections about content acquisition and process-
ing, content representation, and data and content management.

Content Acquisition and Processing. The acquisition of content can be
divided into two distinct areas which nevertheless share many of the same issues:
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acquiring data from sensors and acquiring data that already exists in digital form
in the system’s environment.

The improvements in the production of MEMS allow the wide deployment of
sensors and sensor networks. Sensor networks are widely used in areas such as
environmental monitoring, 3D shape recognition or target detection and tracking
[66,67,68,69,70]. Fusion of sensor data from diverse sensors and sensor networks
can be used to achieve functionality that surpasses that possible from single
sensors. Mechanisms to integrate data from different sensors are already widely
used in industrial and military applications, but data fusion is also a currently
very active field of research [71, 72]

In many wireless sensor networks it is not easily possible to replace the batter-
ies of the sensors. Therefore energy-efficiency is an important issue. Efficient use
of the limited energy budget can be made by optimizing sensor placement [73],
possibly taking into account irregularities in the environmental conditions [74],
or by improved power management [75, 76]. Reconfiguration of the sensor net-
work is another method to reduce power consumption which can additionally be
used to increase performance [77], or provide a level of self-organization [78] to
the network.

Closely related to the issue of power consumption are techniques for ensuring
coverage of the sensor network’s operational area [79,80]. Most often designers of
wireless sensor networks try to reduce superfluous redundancy as this negatively
affects the energy budget and simultaneously increases network congestion [81].

When integrating the data of many sensors operating independently, it be-
comes important to ensure that the individual data items are temporally [82,
83,84] and spatially [85] correlated, and to monitor the correctness of the trans-
mitted data [86]. Many sensor networks are deployed in hostile environments.
Here, in addition to ensuring the correctness of the data, self-protection of the
network becomes another important issue [87].

Another important aspect for sensor data is the context-sensitivity of captur-
ing and interpretation. It is in general not practical or desirable to permanently
capture the data from all available sensors. Therefore software-intensive systems
have to be able to derive their current and future operating context and decide
which data should be retained, which data should be processed and summarized,
and which data should not be captured.

Given the large amount of data available both from sensors and other sources
it becomes more important to automatically “understand” the data, i.e., to an-
alyze trends, to make predictions, or to derive abstractions from data and infor-
mation without or with little human interventions. There is significant scientific
progress reported in this area [88,89,90,91,92] but the application of these tech-
niques to currently deployed systems seems to be limited to specialized areas.
However, because of the large possible impact it is likely that the research will
be adopted by more commercial products in the next years.

Content Representation. Over the last decade, many successful standards
for representing structured and semi-structured data and metadata have been
defined and widely adopted in industrial applications. The most significant is
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the XML standard [93] and a series of related standards, such as namespaces,
inclusions (XInclude), the XML Information Set (Infoset), etc. See [94] for a
complete list of the relevant standards.

Similar standards for better data modeling such as the Meta Object Facility
(MOF, [95]) and Resource Description Framework (RDF) [96] have been de-
fined and adopted by the industry, but they are not as popular as XML. An
ongoing area of research are ontology languages for formally describing knowl-
edge. Examples include the Knowledge Interchange Format (KIF, [97]), the Cyc
Representation Language (CycL, [98]), Description Logics (DL, [99]) and the
DL-based Web Ontology Language (OWL, [100, 101]). No clear winner among
these languages seems to be emerging, but there are efforts underway to unify
them, e. g. N3Logic [102], Simple Common Logic [103], and the Ontology Defi-
nition Metamodel (ODM, [104]).
Research challenges include:

– Constructing knowledge bases: How can we codify information so that it can
be used to solve problems automatically? Existing (and continually updated)
examples include Cyc [105, 106], Wordnet [107], and the Suggested Upper
Merged Ontology (SUMO, [108]).

– Managing ontologies: Ontology debugging [109], ontology visualization [110],
ontology evolution [111], and ontology versioning [112].

– Mapping natural language texts to and from ontologies. Less ambitious,
partially solved versions of this problem are:
• RDFa allows one to reversibly merge text and data for publication on

the web [113].
• Controlled natural language can be used to specify and query knowledge

[114,115].
• With the recent popularity of tagging, some semantic information is

already available (in weblogs, photo collections, etc.) [116].
– Beyond ontological reasoning: Many application domains necessitate knowl-

edge representations and reasoning that go beyond what standard ontologies
provide. Examples include geospatial data and fuzzy time data [117].

– Enhancing applications such as integrated development environments or even
office suites with semantic technology.

Other visible trends are the integration of multimedia content and active content
into systems, and the separation of content from presentation. These trends are,
of course, inspired by the availability of network bandwidth and the increasing
variety of devices on which content is consumed. In both areas mature standards
exist, e.g., GIF, PNG, JPEG, MP3, OGG or MPG for images, audio and video
content, ECMAScript-enabled browsers with XHTML and CSS for active con-
tent with separated presentation. Proprietary solutions such as Java (e. g. via
BluRay), Adobe Flash or Microsoft Silverlight will also play an important role
in these areas.

Data and Content Management. The management of data and content
is an area where the increasing distribution of systems poses great challenges
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with issues ranging from the identity of data, systems and people over digital
rights/restrictions management and privacy to search and resource management.

Even centralized systems have issues with the identity of data items: databases
often contain multiple entries for single items. This problem is compounded in
federated information systems (FIS), where a single data item may be divided
between different nodes of the system [118]. Furthermore, the integration of
heterogeneous data with independently evolving schema representations is still
an active area of research with no universally applicable solutions.

Consistency and integrity of data are more difficult to ensure in distributed
systems, in particular in systems operating in open environments in which nodes
may dynamically join and leave the network and where individual nodes may
have competing goals. This topic is addressed further in Section 2.4.

The increasing variety of devices on which multimedia content can be dis-
played and the wide range of their capabilities gives rise to the recoding of
content, either to upgrade the content quality of stored data without changing
its meaning, or to reduce the transmitted data for devices with limited capabili-
ties or slow network connections. Various commercial and open source solutions
exist for the latter application, but upgrading content quality remains a mostly
manual process. Related to this issue is the certification of content: currently
there exist reliable mechanisms for public exchange of keys and for signing files,
but no adequate technologies to certify the content of a file independent of its
encoding in a particular format.

Another content management issue that has been investigated for a long time
is the protection of content and the management of digital rights and restric-
tions [119]. While both commercial and academic research in this area have
increased the capabilities of content protection technologies there are virtually
no examples of software or content that has not been duplicated without the
copyright holder’s permission shortly after it was made public. The currently
most successful approaches rely on either permanent or periodic connections to
the Internet, or a hardware “dongle” which either contains data that is impor-
tant for the execution of the application, or which executes important parts of
the application logic. This situation is even more pronounced for content which
is intended for consumption by people, such as music or videos. Here most ap-
proaches to enforce copyrights have been unsuccessful while imposing significant
inconveniences on legitimate users, and currently the trend in the music business
seems to be to provide unprotected content on disks and even online. A related
issue is watermarking [120] of digital content which enables the embedding of
information of metadata into media files such that it cannot be easily removed.

The possibility to store and process previously unimaginable amounts of data
also poses new challenges in the related areas of data mining, search, and pri-
vacy. On the one hand, the large amounts of cheaply available data and process-
ing capability and the integration of previously unconnected databases enable
many new forms of data mining technology, and many businesses routinely mine
their databases for purposes ranging from customer satisfaction analysis to fraud
recognition. However, this amount of data mining also raises serious privacy
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concerns which are currently only partially addressed by technical and regula-
tory measures [121].

Other issues arising from the increasingly large amounts of distributed data
in modern software-intensive systems are resource management, including data
backups, and retrieving data. Resource management concerns the traditional
topics pertaining to data management in federated information systems, such as
the distribution of data to the individual nodes, horizontal and vertical parti-
tioning of data, but increasingly also issues such as retention of data according
to various regulations and laws and the related topic of “distributed garbage
collection,” i.e., identifying data that is no longer needed and can be deleted.
Pragmatic solutions for these problems exist, but they are often very labor-
intensive and not amenable to automation.

Currently data retrieval from databases or semi-structured data collections is
either performed by queries in languages such as SQL or by syntactic keyword
searches. Many research efforts to improve the quality of searches exist, e.g.,
in the areas of adaptive information extraction [122], association mining [123],
software retrieval services [124], or indexing for search [125], graph mining [126],
and in related areas such as autonomous hypertext authoring [127], evaluation
of search services [128], interestingness measures for data mining [129]. That
research is currently not widely used in industrial applications [116]. Similar
observations can be made for the integration of different data sources [130].

2.3 Interoperability and Interaction

An important aspect of software-intensive systems is the interoperation of dis-
tributed components and the interaction of users with the system. In the fol-
lowing sections we present the aspects of networking, system-system interaction
and human-system interaction.

Networking. Today’s network infrastructure seems to increasingly develop into
the direction of “IP everywhere” with a host of different underlying infrastruc-
tures such as Ethernet and wireless LAN. The identification of devices can there-
fore often be performed by their IP address. The well-known shortage of IPV4
addresses has been addressed by the development of the IPV6 protocol, which
is deployed on current network equipment and personal computers, and also in-
creasingly on networked embedded devices. However adaption of IPV6 has been
slow, most networks still rely on IPV4. An overview of the current issues in the
development of networks can be found in [131].

One trend is the increasing importance of mobile and ad-hoc networks and
their particular properties [132], e.g., scalability of wireless networks [133], in-
ference analysis [134], or delay and capacity trade-offs [135]. A current research
area which is particularly relevant for wireless networks is the topology of net-
works, e.g., controlling the network topology [136], or topology aggregation tech-
niques [137]. Another topic is quality of service (QoS), which we address in
Sect. 2.5.

The increasing number of personal devices and computers with network access
has led to the growing importance of networks which are not structured according
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to the client/server paradigm. Peer-to-peer networks and data grids are the
most prominent examples, a survey of peer-to-peer content distribution networks
is [138], a survey of data grids is [139] . Since they no longer rely on central servers
such networks present new challenges, for example some nodes in peer-to-peer
networks may deliberately introduce mislabeled content, techniques to avoid this
are, e.g., ranking of peers [140]. Many nodes in current networks can perform
multiple functions, as client, server, router, etc. The looser definition of the roles
necessitates a more dynamic configuration of the network, e.g., by automated
resource announcement and discovery, by auto-configuring and self-managing
nodes.

An interesting aspect of software-intensive systems is the combination of
network transparency and location awareness. Location awareness exists to a
limited extend, e.g., by automated discovery of Bluetooth devices or printers.
However, current systems generally have too little knowledge about the state
and desires of their users to consistently take the right decisions about device
selection; improvements in location awareness will therefore be closely related to
improvements in human-computer interaction and semantics-based interactions,
see Section 2.3.

The wide range of different devices and network connections varying several
orders of magnitude in throughput and latency necessitate differences in the
communication styles and in the data sent over the network. Currently this
scaling is mostly done manually, either on the server side or even by clients
having to select different resources according to their capabilities.

System-System Interaction. Interactions between nodes of software-
intensive systems and between different systems are today commonly based on
cross-platform integration technologies, such as web services or CORBA, with
standards such as XML [93] serving as data interchange format. However, in-
tegration of heterogeneous data from different systems generally has to be per-
formed manually, e.g., by writing XSLT transformations between the different
data representation. Checks for correctness and consistency of conversions are
usually purely syntactic.

Coordination of different nodes or interacting systems is often programmed
in coordination or orchestration languages such as WS-BPEL [141], which are
essentially programming languages augmented with some features for program-
ming compositions and possibly integrated into a middleware. Orc [142,143] is an
orchestration language that defines a minimal set of primitives for orchestrations
with a well-defined semantics. Service-level and quality-of-service agreements are
mostly contracts in natural language which are not explicitly represented in the
architecture or data of the system; their fulfillment is often monitored outside
the usual system operation.

Current research in these areas is directed towards formal foundations and a
more semantic understanding on the part of the systems so that declarative spec-
ifications of the desired system behavior, service-level or quality of service can be
used to automatically negotiate the necessary contracts with possible partners
and to create an orchestration of the system that fulfills the requirements.
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The changing network structure described in Section 2.3, with devices which
are not always connected to a network, emphasizes the need to replicate data.
Replication is of course also useful for well-known other reasons [144]. Often
traditional database techniques are not particularly well-suited for the struc-
ture of modern software-intensive systems. For example, it is difficult to ensure
ACID properties without relying on a central coordinator and in a network
where partitioning is likely to occur. Therefore techniques such as relaxed trans-
actions or optimistic replication [145] or are often used instead of their tra-
ditional counterparts. To ensure reliability of the resulting systems additional
techniques have to be used to compensate for the weaker guarantees provided
by the infrastructure, e.g., rollback-recovery [146], compensation [147,148,149],
or measures that change the system structure, e.g., by distributing the computa-
tion to fault-tolerant and transactional agents [150], or by provisioning backend
databases reactively [151]. Another aspect which can be improved by distributed
operation is scalability to extremely large data sets; one example is Google’s
Bigtable [152].

Human-System Interaction. In current systems human-system interaction
is often based on interaction with keyboard and mouse or touchscreen, color dis-
plays and the WIMP (window, icon, menu, pointing-device) paradigm. Current
research and development efforts are directed to design simple, self-explaining
user interfaces, often with support for multimedia components or gesture-based
and multi-modal interaction [153,154]. Research prototypes are exploring areas
such as natural language interaction and “disappearing computers,” i.e., em-
bedded devices which either have no visible user interface at all, or where the
user-interface is integrated into a real-world item and the software is controlled
by interaction with that item. This research also leads in the direction of systems
with which the user can interact in natural language [155,156,157,158], or which
use sensors to react to the environment and the user [159,160,161].

The inverse direction is also an active topic in the development of human-
system interactions: interactive worlds, simulations of real environments and
augmented reality. Currently, interactive multi-user environments are commer-
cially available and used for tasks such as social networking, online conferences
or training. A popular example is Second Life [162]. One of the issues currently
being addressed by the providers and users of these communities as well as by
academic research is the management of virtual identities and the virtual repre-
sentation of real-world items.

More generally, the increasing pervasiveness of software-intensive systems
raises questions about better models for the acceptance of technology by users
[163] and long-term human-computer relationships [164].

One issue related to human-computer interaction is managing the quality of
the user experience and providing context-aware user interfaces that adapt to
the user’s personality, emotional state, current activities and the social context
[165, 166, 167, 158, 168]. This is a challenging and active research area which
will probably become more influential in the development of future products, in
particular consumer devices, in the foreseeable future. Other aspects in the user
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experience are accessibility [169,170] and the impact that delays, e.g., caused by
network congestion, have on the user experience [171].

One aspect of the user experience that is often neglected in traditional ap-
proaches is that the user interface ensures privacy and security of the user’s data
and that it clearly communicates the implication of user interactions for these
areas. It may be possible that formal methods for the design and checking of
user interfaces [172,173] can prove advantageous in this area.

The presentation of systems that consist of many independent, dynamically
configured parts is another current challenge in the area of human-system inter-
action. Current technologies, such as portlets, provide relatively low-level inte-
gration, where each node can display its own data. The approaches to present a
more unified user interface for dynamically orchestrated systems will probably
depend on a semantic analysis of the composition and the available data.

2.4 Resilience, Adaptation and Emergence

We call resilience the ability of a system to recover rapidly from negative influ-
ences such as component failure. Adaptation is the ability of a system to react in
a useful manner to situations and environments that were not explicitly foreseen
at the time of its development or deployment. In the software engineering liter-
ature, emergent behavior is often defined as behavior that cannot be localized
in one component of the system but that instead arises from the structure and
interaction of several independent parts of the system. Under this definition,
non-functional properties such as performance are emergent properties [174] for
all but the simplest systems. However, some authors use the term “emergent
properties” only for properties that negatively impact the work of a system in
ways that its designers did not foresee. Outside the software engineering liter-
ature, the term “emergence” is often used to denote more specific properties;
see [175] for a extensive overview and references to the literature.

Many researchers agree that adaptation and emergent behaviors will be key
features of future software-intensive systems [176, 3] that pervade all aspects of
their design and operation. The Volume see [177] contains a variety of viewpoints
and background information.

While we have beautiful and intricate mathematical theories of complex dy-
namic systems [178, 179, 180], our current understanding of the concepts and
theories for designing adaptive systems, or the mechanisms for controlling and
exploiting emergent behaviors are rudimentary at best. We cannot reliably pre-
dict emergent behaviors of systems, let alone design systems that exhibit desir-
able emergent behaviors; current software possesses few properties that can be
described as truly adaptive. The current state of the art are systems with sev-
eral different configurations which can switch configurations based on external
or internal criteria [181] or rule-based systems that exhibit a limited amount of
adaptation [182]. We have currently no means to predict or exploit the emergent
behavior in complex systems, and current engineering practices therefore try to
eliminate the possibilities for emergent behavior as far as possible.
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Most research about adaptation is interdisciplinary with cooperation between
biologists, economists, social scientists, physicists, mathematicians and computer
scientists, and drawing on areas such as control theory, cybernetics, systems
theory, complexity theory, catastrophe theory, etc. Many publications on the
subject can be obtained from [183].

Research directions in computer science that might impact the development
of future adaptive systems are for example

– context-awareness; [184, 168];
– automated reasoning about ontologies [185];
– automated reasoning about real-world data and problems [186];
– machine learning, user profiling and profiling of other systems, e.g., learning-

based content management, learning- and profile-based user-interface selec-
tion [187];

– using “ambient intelligence” [188];
– self-* properties, such as self-configuration, self-monitoring, self-healing, self-

tuning [189].

Emergent behavior and adaptation also influences the design of the human-
computer interaction as it will be necessary to provide users of the system with
enough information to allow them to monitor or control emergence [190].

Understanding emergence and developing tools to control and exploit emer-
gent behavior will be one of the great research challenges in the next years.

2.5 Assurance

We use the term assurance to denote binding commitments that a system makes
about properties that it promises to maintain (or that the user reasonably ex-
pects the system to maintain).

Quality of Service/Experience. One area of assurance is the quality of ser-
vice (QoS) and the quality of user experience that the system provides. This
encompasses many possible properties, such as guaranteed availability, maxi-
mum response times for certain interactions, guaranteed delivery of content, etc.
Most current QoS agreements are written in natural language and not available
as precise specifications for systems. Researchers are currently developing meth-
ods to automatically negotiate QoS agreements, but current approaches are not
yet suitable for most applications. Furthermore, this is an area which is inti-
mately connected to legal and contractual requirements which are beyond the
scope of this chapter.

On a technical level, QoS concerns topics such as scheduling resources [191],
the development of algorithms to ensure required levels of QoS [192,193], or find-
ing routes that satisfy certain QoS requirements [194]. On a more abstract level,
formalisms to specify and verify QoS requirements [195,196] play an important
role in current research. Related to the issue of quality of service are compli-
ance [197, 198] and service-level agreements. In particular the formalization of
service-level agreements is an important current research topic [199].

The quality of experience that a system shows is closely connected to both its
technical ability to provide the service that its users expect, and to its human-
computer interface as discussed in Section 2.3.
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Security and Trust. We use the following definitions inspired by [200]: a
trusted system or component is one whose failure can break the security policy;
a trustworthy system is one that won’t fail. There are several approaches to se-
curity engineering, both formal and informal. However experience with existing
systems shows, that trusted systems fail with alarming regularity; the number
of security breaches of Web-based system has almost doubled in 2007 compared
to 2006. The increasing importance of networked systems in e-commerce and
business transactions means that further research in the development of secure
systems has to be a priority. However, many of the security breaches have relied
on implementation errors rather than on conceptual weaknesses of the security
systems [201]. Therefore, further improvements in the implementation of trusted
systems and system components will be an important ingredient in the develop-
ment of trustworthy software-intensive systems. Two of the leading researchers
in computer security go so far as to claim: “In the past decade, cryptography
has done more to damage the security of digital systems than it has to enhance
it. [. . . ] the mathematics of cryptography is almost never the weakest link. The
fundamentals of cryptography are important, but far more important is how
those fundamentals are implemented and used.” [202].

Increasing network connectivity increases both the perceived and actual risk
for systems [203,204]. There is a lot of material available about network security
threats, [205] is a good overview of the state of the art as of 2002. An introduction
to secure web applications is [206]. A survey of network defense mechanisms is
available as [207], socio-technical aspects of security are addressed in [200, 201,
208], among many other sources. An important aspect of security is the detection
of and response to security threats [209].

The increasing distribution of systems leads to several security issues which
are currently not sufficiently well understood. One such problem is the security
of protected data in environments with untrusted components.

Key management [210,211], access control [212,213], and more generally iden-
tity management are important problems in distributed systems. Many current
systems rely on user names and passwords to authenticate their users. But as
many users have to use dozens of different systems each day the management of
passwords becomes unwieldy, leading many users to use the same password for
all systems. Therefore a single compromised system can give an attacker access
to user accounts on many other systems. Hardware-based solutions, such as to-
kens, smart cards or biometric systems exist and are often deployed to secure
government or cooperate networks, however they are not commonly used for
other purposes, such as authenticating Web sites. Single-sign-on solutions are
technically feasible and have been deployed for some time, but they suffer from
several problems: a security breach in a single-sign-on system can have dramatic
consequences for the users since all their accounts are compromised, and the ser-
vice providers relying on the single-sign-on provider have to entrust data about
all their users to another company. For further information see [200,214].

Another issue with single-sign-on is privacy: the authentication provider can
observe all visits of users to protected sites and correlate this information.
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Similar privacy concerns exist in the area of online payment, as the of credit
cards or payment services such as PayPal is directly traceable to the person mak-
ing the payment. Anonymous online cash is technically feasible, but not widely
used. In general, approaches to issues such as privacy, anonymity, pseudonymity,
unobservability and unlinkability exist in research but are not widely deployed.

Many attack vectors exploit the interaction between different systems and rely
on mismatches in the security boundaries between systems to subvert security
mechanisms [201]. One current research direction to overcome these problems
is the use of bio-inspired models to improve the security of networks [215]. As
mentioned in Section 2.1, the availability of quantum computers would allow
attacks on public-key cryptosystems and on protocols based on them. However
it would also enable the use of quantum cryptography which is provably secure
against certain kinds of attack [61].

One currently unsolved problem is to ensure that trustworthiness can be ob-
served by the user of the system. In general users and administrators of today’s
systems have no mechanism to identify whether their data is transmitted to other
systems, whether confidential data is retained, etc. Similarly the user interface
has to be designed in a way that it respects the privacy of the user [216] without
making the system inconvenient to use. Research in this area will be related
to the research on context-aware user interfaces described in Section 2.3. There
are some mechanisms to ensure that software has not been tampered with, e.g.,
by verifying secure hashes of the binaries and system data, however experience
shows that these systems can often be bypassed, either because of implemen-
tation errors in the security system itself or because flaws in the system which
are not directly related to the security components can be used to replace the
program together with the authenticating information.

Since security breaches can never be completely ruled out, the ability to recog-
nize if security breaches have happened is important. Intrusion detection systems
that attempt to monitor the whole system and recognize both intrusion attempts
and successful intrusions into parts of the system are commercially available and
widely deployed. Their use is currently mostly confined to larger networks and
servers although intrusion detection systems for single PCs or workstations exist.
We are not aware of intrusion detection systems for programmable embedded de-
vices, except for devices powerful enough to run software for desktop computers
or workstations.

From a practical point of view, many security problems remain in operating
systems and applications, but recently some significant increases have been made
regarding the security in widely deployed operating systems, for example the in-
troduction of mandatory access controls (MACs) or address-space randomization
in the Red Hat Linux distribution [217,218]. Various studies have examined the
security of open-source versus closed-source software [219,220].

To summarize, while there exist many areas in which future research is needed
to ensure system security, most observed security breaches seem to rely at least
partly on implementation errors, either because the designer of the security
system was not aware of the often subtle implications of design choices on the
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quality of the security system, or because the chosen implementation techniques
were not adequate to build secure systems.

3 Engineering

The engineering of software-intensive systems poses many challenges, mostly
because the complexity of software-intensive systems. We have structured this
part of this chapter into several topics:

– Engineering processes: the various process models for system- and software
engineering.

– Distribution, Heterogeneity and Reuse: approaches to deal with the dis-
tributed nature of and the heterogeneous components invariably found in
systems, and reuse of existing components and system parts.

– Separation of concerns: approaches to structure the often multi-dimensional
requirements.

– Tool and language support: The growing complexity of today’s systems can-
not be handled without adequate languages to express the requirements,
design and implementation, and without support from tools.

– Engineering for Resilience, Adaptivity and Emergence: engineering tech-
niques for systems that are resilient to failures, that can adapt to or be
adapted to unforeseen circumstances, and techniques for controlling emer-
gent behavior.

3.1 Engineering Processes

In the process of engineering software-intensive systems one has to distinguish
between two activities: system engineering and software engineering. Systems
engineering [221, 222] is concerned with development of the whole system, the
result of systems engineering are documents that describe the system architec-
ture and the distribution of the system functionality to individual components
of the system. Various methods for systems engineering exist, a commonly used
set of procedures for the system engineering process is codified in the IEEE stan-
dard 1220 [223]. Reports on the state-of-practice show, that many companies do
not follow a defined systems engineering process [7].

Software engineering is concerned with the development of the software for
system components; the result of software engineering are software artifacts. An
overview of the state of the art for software engineering can be found in [174].

Both systems and software engineering have to identify often complex require-
ments. An overview of the current state of the art in this area is given in [7,224],
information about requirements for security and trust can be found in [225].
The article [226] provides an experience report for modeling systems with high
dependability requirements.

Unless they can reuse components from earlier projects or commercial off-
the-shelf (COTS) components, developers of software-intensive systems are faced
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with the co-development of hard- and software. Because of the longer times re-
quired to develop and produce the hardware the co-development is often driven
by the hardware requirements, although the situation is starting to change [7].
Often the teams responsible for software and hardware development are not
well integrated, leading to misunderstandings and impedance mismatches in
the developed artifacts. Techniques such as model-driven systems development
[227,228] and simulation [229] are used to address these issues. Important issues
in the requirements process are determining and managing the interaction of dif-
ferent requirements [230], and tracing the requirements throughout the software
development process.

In the following paragraphs we will focus mostly on software engineering. .
There is an ongoing discussion about which software development process

models are best suited for particular circumstances, and how tools and languages
should support the process. Currently two directions which might appear contra-
dictory seem to be prevalent. One trend is the use of model based development,
mostly based on the UML [231]. In industrial practice the models are often
manually implemented, or development is manually continued after initial code
has been generated from the models. A lot of research is currently undertaken
towards approaches such as MDA [232, 233] which use transformational tech-
niques to generate the complete code of the system directly from models. For
model-based approaches the conformance and consistency of different models
and different views is an important issue under active research, e.g., [234], but
for which, as yet, few practial solutions exist.

The opposing trend is the rise of agile approaches [235, 236, 237, 238] which
stress the importance of incremental design and implementation over “up-front
modeling.” These approaches have gained many supporters in recent years, and
many companies have started to include agile methods into their development
process. It is likely that both kinds of process models, model driven and agile,
will be used in practice for the foreseeable future.

Many parts of systems can be seen as members of a “family of components”
which is used in several systems but where customization is necessary for dif-
ferent uses. The software development side for such components is addressed by
approaches such as software product lines [239,240,9] or software factories [241].
Product line engineering tries to build families of products as configurations or
variations of a single model; applicable design and modeling techniques are, e.g.,
domain-driven design [242] and feature modeling.

At a lower level of abstraction, design patterns are a common method to
reuse modeling or implementation abstractions. General references are [243] for
implementation-centric patterns, and [244,245,246,247,248,249] for architectural
design patterns. The “Pattern Languages of Program Design” (PLoP) confer-
ences are conferences dedicated to design patterns. Patterns for particular do-
mains such as sensor networks are also widely published and used [250].

Testing has always been an important part of the development process of
software-intensive systems. An overview is given in [251]. In industrial practice,
the importance of early testing of individual components (unit testing) has been



20 M. Hölzl, A. Rauschmayer, and M. Wirsing

particularly stressed by agile approaches which rely on the coverage of their test
suite to detect regressions during refactoring [235]. Important testing aspects
for systems are methods to compose test suites and cost-effective regression
testing [252].

Formal methods are increasingly being used in the development of software-
intensive systems. Automated theorem provers such as ACL2 [253], PVS [254],
Specware [255], Coq [256], and HOL [257] have successfully been used to verify
parts of microprocessors [258], similarly model checkers such as Spin [259, 260],
SMV [261], and Blast [262] are finding increasing application in particular in the
area of finding defects in concurrent software designs. Model checkers have also
recently been used to improve the performance of test suites, e.g., by eliminating
redundant test cases [263,264,265].

3.2 Distribution, Heterogeneity and Reuse

Software engineering has to adjust to the fact that typical software products
are becoming more complex, more distributed and less tightly integrated. Com-
ponent techniques and languages promise the re-use of architecture and compo-
nents, thereby increasing the level of abstraction at which the software developer
works. Several techniques have been proposed to increase reconfigurability and
facilitate fault localization in systems [266], to simplify or automate the config-
uration of distributed systems [267] or for feature location [268,269]

To cope with the massive number of nodes in current and future systems
new abstractions have been proposed that are inspired by biological or chemical
metaphors [270,271], see also Sect. 2.1 on page 6.

Other approaches to handle the increasing distribution of systems are based on
notions of actors [272,273,274] or agents [275,276,277]. Here current research in-
cludes, among many other topics, protocols for multi-agent interaction [278], and
tropos to increase the variability [279], or security of agent-based systems [280]

In recent years services have become the dominant technology for distributed
computing. [268] gives an overview of the currently used technologies for Web
services, [281] is a more conceptual overview of the field. Active research on
services is performed in many areas, such as negotiation [282], service-level-
agreements [199], choreography and orchestration [283], or verification of service-
oriented systems [284,285].

Two independent roadmaps for service-oriented computing have been devel-
oped independently: one by the NESSI technology platform [286] and the other
one by the International Conference on Service Oriented Computing. A num-
ber of European and international research programs are currently investigating
the field of service engineering, among them Bionets [287], Cascadas [288],
Ontogrid [289], Sims [290], Sodium [291], Plastic [292], Sensoria [293],
One [294], Astro [295], Aosd [296], Music [297], WS-Diamond [298], Secse

[299], Infrawebs [300], Dip [301], Amigo [302], Ws2 [303], Esfors [304],
S3ms [305], Trustcom [306], Athena [307] and Dedisys [308]. An introduc-
tion to many of the European projects and their goals can be found in the
forthcoming [309].
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3.3 Separation of Concerns

Many requirements or system functionalities, for example logging or transac-
tions, cannot easily be encapsulated in a single component but rather represent
functionality that spans many different parts of a system. These functionali-
ties are called “cross-cutting concerns” [310]. Object-oriented or functional soft-
ware development approaches provide no direct support for encapsulating these
cross-cutting concerns, therefore several extensions have been proposed under
the name aspect-oriented programming (AOP). The common theme of different
approaches to AOP is that different concerns of the program are specified sep-
arately and then combined in a modular way. Introductory articles about AOP
are [311,312].

The best-known approach to AOP is the AspectJ extension to Java [313].
AspectJ introduces several concepts that are not present in standard object-
oriented languages: join-points are points in the execution of programs, point-
cuts are collections of join-points, and advice are method-like constructs that can
be attached to point-cuts. This allows the modular implementation of features
such as logging or transactions which would normally be distributed throughout
the application. Other approaches to aspect-orientated programming are, e.g.,
based on adaptive methods [314], composition filters [315, 316], or on multi-
dimensional separation of concerns [317, 318]. Aspect-orientation is currently
also introduced into modeling languages such as the UML, see, e.g., [319].

Aspect-orientation is closely related to the more general topics of computa-
tional reflection [320, 321] and meta-object protocols [322]. With the increasing
need for dynamic adaptation and modification, aspect-oriented approaches based
on general reflection and metaobject-protocols [323, 324] seem to be promising
areas of research.

A problem similar to cross-cutting concerns is context-sensitive behavior. Re-
cent research in this area is, e.g., ContextL [325,326] in the area of programming
languages and modes for software architecture [181].

Most approaches that address separation of concerns perform non-local trans-
formations of models or software. Therefore not all testing and verification tech-
niques are applicable without modification. One recent research effort in the area
of verification is incremental aspect model-checking [327].

Model-based development approaches have advocated the use of various dif-
ferent but related models to represent systems for a long time. Model-integrated
development [328,329] is a model-based approach to software development that
uses domain-specific models to represent different concerns. Viewpoints have
been proposed in [330, 331] for a similar purpose. Related to these approaches
are approaches to ensure traceability [332] between different architectural views,
and between models and programs.

3.4 Language and Tool Support

A trend toward variety can be observed in the area of programming languages.
Whereas a decade ago most software was developed in C/C++ with scripting
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languages such as Perl playing an important role in web applications, today
C/C++ are still prominent but no longer ubiquitous. Statically typed languages
with more modern features such as garbage collection and introspection, the most
common being Java and C#, are heavily used, particularly in the development
of enterprise applications but also in other areas, and some languages with more
advanced type systems, such as Scala [333] or F# [334] seem to become more
visible in mainstream publications. On the other hand, dynamically typed lan-
guages are currently also seeing a significant rise in popularity, often integrated
into the Java or .Net platforms. We expect these trends to continue in the next
years, with increasing effort expended on cross-language interoperability.

A number of research efforts try to enhance the expressiveness of program
source code. One example is the area of domain-specific languages [335]: here the
goal is to simplify the development of systems for particular areas by first defining
a language in which the necessary concepts can be concisely expressed and then
writing the application in this language. Another approach is to employ concern
graphs [336] to document how the implementations of concerns are distributed
throughout the source code.

In recent years modern languages have been more widely used in the devel-
opment of real-time and embedded systems than previously. This was caused in
part by the increasing computational power available on these devices, but also
by research efforts to provide support for real-time systems in the run-time of
modern languages, e.g., by providing real-time garbage collection [337]. Novel
methods for programming massively distributed systems are currently under
investigation [338,339].

For many systems the notion of shutting them down to perform upgrades or
maintenance is no longer feasible. This is not a completely new phenomenon, since
for example, the power grid has to continue working, even if parts of its infras-
tructure are updated. However the increasing number of large-scale, distributed
systems will make this situation more common. Most current tools are not well
suited to develop for systems in which no distinction between development- and
run-time exist, and not even for systems where individual parts can be replaced
at run-time, although research and some industrial solutions exist [340].

4 Research Challenges

After reviewing the state of the art of engineering software-intensive systems,
we now take a look into the future: What are the research challenges facing us
in this area? The following is derived from the results of the workshops of the
InterLink Working Group 1.

Many of the numerous challenges that we expect to see in the development
of software-intensive systems can be classified as belonging to one of the fol-
lowing areas: massive numbers of nodes per system, open and non-deterministic
environments, and adaptation:
Massive Numbers of Nodes per System. A massive increase in the num-

ber of nodes of future software-intensive systems will be one of the most
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visible features: the development of multi-core processors with tens to thou-
sands of cores integrated on a single chip implies that even single-chip sys-
tems will have to be treated as consisting of large numbers of individual
nodes, the availability of cheap, low-energy mobile devices ensures that we
will see an increasing number of elements with computational capability in
the next years. Both of these trends are true even for systems built out
of traditional computing devices. Furthermore, new manufacturing methods
such as nanotechnology, synthetic biology, or MEMS will give rise to new
kinds of ensembles, many of them with potentially millions of computational
nodes.

Open and Non-Deterministic Environments. Currently many PDAs, mo-
bile phones, personal computers, workstations and servers used in commer-
cial environments are networked—via local area networks, dedicated wide
area networks, or globally via the Internet. We are currently seeing this
trend for many other devices, such as embedded systems, or even RFID-
equipped consumer goods, as well. The increase in available devices in turn
entices service providers to offer new services or to remove service offers
that are no longer profitable or that have been superseded by newer of-
fers. Therefore, software-intensive systems can no longer expect to operate
in the environment that was current during their design time—they have
to replace services that are no longer available with others that offer simi-
lar functionality; they should also take advantage of new services provided
by the network environment that were not foreseen when the system was
designed.

Adaptation. The situation mentioned in the previous paragraph is one in-
stance of a more general situation: future systems will often have to operate
under conditions that differ significantly from the ones for which they were
designed. They should not only be able to adapt to changes in their net-
work environment, they should also be able to work reliably in the face of
changes to their execution platform: even today reinstalling all necessary
programs is a major burden when we switch to a new computer. Since fu-
ture software-intensive systems will be more ubiquitous, more distributed,
and will assimilate a large number of adaptations during their operation, the
prospect of reinstalling them from scratch when switching to a new platform
becomes infeasible. Therefore we need to develop systems that can adapt to
different environments, to different users, etc.

We call this future generation of software-intensive systems ensembles. Ensemble
engineering is the science and engineering discipline of complex, integrated en-
sembles of computing elements. The huge impact—both positive and negative—
that ensembles will have on society means that we need to understand ways to
reliably and predictably model, design, and program them.

Ensemble engineering is closely connected to, and incorporates ideas from,
other research areas such as software engineering, artificial intelligence, complex
adaptive systems and non-conventional programming paradigms. Ensembles can
be categorized along several different axes, for example:
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– Physical—Virtual: Is the system mainly concerned with sensing and acting
in the real world, or is it purely virtual, or is it somewhere in between?

– Homogenous—Inhomogenous: Is the system made of (large numbers of) iden-
tical parts, is it made of (a large number of) different components taken from
a few different types of component, or does it consist of a large number of
parts, all of which are different.

– Cooperative—Competitive: Do the individual parts cooperate to achieve a
certain task or do they compete with each other. There might also be systems
which are in-between, such as a system where the components are cooperating
but competing for a scarce resource to fulfill their individual tasks.

Further distinctions between systems are the topology of their communication
links, the average computational power of the nodes, or the purpose of the sys-
tem, etc. While some research topics are specific to a certain kind of ensemble
or a certain application area, many are common to all ensembles.

4.1 Research Challenges for Ensemble Engineering

In the InterLink WG1 workshops, the following long-term research challenges
have been identified. They can be classified as one of the categories “properties
of ensembles”, “specification and design”, “assurances”, and “implementation
and verification”.

Properties of Ensembles. The increase in scale along a variety of dimensions
leads to ensembles having either new unique properties or displaying properties
of traditional systems, but on a much larger scale.

– Harnessing the stochastic behavior and massive scale. There are several rea-
sons for stochastic behavior in ensembles: Large numbers of independent
parallel devices can usually not be synchronized without creating inefficien-
cies; the resulting behavior can often only be described in a stochastic man-
ner because of the huge number of combinatorical possibilities. Furthermore,
massive numbers of components cause high probabilities for failures of in-
dividual components, even if the probability of failure for any individual
component is relatively low. This effect is compounded by techniques such
as nano-technology which inheerently have high component defect rates.
With current development methods both stochastic behavior and massive
scale pose problems for system development. This does not necessarily have
to be the case, as can be seen in biological systems which harness these
effects in order to achieve resilience and adaptation. We need to find ways
to do the same in software-intensive systems as well.

– Resilience, adaptation, and controlled emergence. Today’s systems are overly
brittle: a single failure in a typical computer program will cause it to “crash,”
failure of single components impede the functionality of the overall system,
security breaches leave whole systems exposed to attackers. We have to de-
velop methods to build resilient systems, that can cope with component
faliures or security breaches in individual components without degrading
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the overall system performance or security; we have to build systems that
can adapt to changing situations or requirements without significant human
intervention or redeployment; we have to control emergent behaviors and
harness the positive aspects of emergence.

– Operating in open environments, recognizing and exploiting opportunities.
This challenge repeats a point that has already been mentioned several times:
dynamicity and openness of environments present significant obstacles to
system performance and reliability. We need to find ways to reverse this
situation and build systems that can recognize and exploit opportunities
arising in these circumstances.

– Designing and predicting emergent behavior. Many of the behaviors of ensem-
bles result not from actions of a single entity but rather from the combined
activities of several independent nodes, either in a pre-planned or in a spon-
taneous manner. We need to better understand the behavior of concurrent
systems, so that we can design and predict these emergent behaviors.

– Mobility of code, data, and devices. In some situations, mobility of code or
data can be used to increase the responsiveness, performance or reliability
of systems, or to work around system limitations, such as low network band-
with. Mobility of devices leads to a dynamically changing network topology
and the need for services to adapt to the continuous appearance and disap-
pearance of nodes in a system.

– Integration of heterogeneous and federated data. With large systems, dis-
tributed across several organizational boundaries and integrating parts from
different vendors, we can no longer expect the system to share a single,
homogenous data model. Instead we have to find ways to integrate hetero-
geneous, federated, and mutually inconsistent data sources that invariably
form part of large systems.

Specification and Design. The emergent behavior and open-ended nature of
ensembles poses new challenges for specification and design.

– Deducing a global specification from local rules, and finding local rules that pro-
duce a desired global behavior. Influencing the global behavior by making local
changes. It will often be no longer possible to design the complete system ac-
cording to a certain specification; instead we will have to integrate services as
parts into a larger environment. We will thus no longer be able to use a top-
down approach to specify the system behavior. Instead we will have to develop
methods for influencing the global system behavior by affecting only the local
environment of individual components, not the global system behavior.

– Abstractions and models for massively parallel, open-ended systems. We cur-
rently lack the necessary abstractions and foundations to describe, model,
and design massively parallel systems. New theoretical foundations and ab-
stractions are urgently needed.

Assurances. Ensembles being both adaptive andbeing used in safety-critical sys-
tems makes it a necessity that one can give assurances regarding their performance.
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– Replacing the notion of correctness with the one of “fitness for a purpose.”
For systems operating in complex, dynamically changing, open-ended envi-
ronments it is often no longer useful or even possible to specify a notion of
correctness. Instead we need to design systems that are “fit for a particu-
lar purpose” and can achieve their desired results in varying and changing
situations.

– Social and emotional perception, quality of experience. Current human-com-
puter interactions are mostly influenced by the limitations of the computer:
it is neither aware of the changing social context in which an interaction may
take place, nor of the emotional or physical state of its users. As software-
intensive systems pervade ever increasing parts of our professional and pri-
vate lives, the interaction has to be focused more on the quality of experience
for the human users.

– Assurance guarantees, certification, and formal verification of ensembles. Fu-
ture systems, that adapt to their environment, exploit new oportunities, and
take into account their user’s emotional state should still provide perfor-
mance guarantees and limits (e.g., not harming people). We need to develop
ways to certify these systems and to formally verify their properties.

– Privacy, identity management, security, and trust. As the importance of our
online presence and identity have increased the problems of privacy, iden-
tity management, security and trust have become more apparent—althogh
often only because of negative consequences that received media attention.
For future systems we need to develop methods and tools to ensure these
properties, and techniques to reliably communicate the security aspects of
actions to users.

– Quality of service, quality of experience. To build reliable systems, com-
ponents need to be able to negotiate quality of service criteria, preferably
without manual intervention, and then be able to perform according to these
criteria. On a higher level, many systems need to provide a certain “quality
of experience” for their users.

Implementation and Verification. If we are to ever build ensembles with
the high standards we have set so far, we will need tools for doing so. These
tools will be both evolutionary improvements of current tools, but will also need
to incorporate revoluationary ideas to enable the above mentioned goals.

– Programming languages, development environments, and compiler technol-
ogy for ensembles. Current programming languages, development environ-
ments and compilers are not adequate for the development of long-running,
adaptive systems. For example, they lack features for monitoring, debugging,
patching, or upgrading deployed systems from the development environment,
or for upgrading systems while they are operating. They also offer no sup-
port for dealing with distributed systems which are only locally consistent,
a situation which arises frequently in ensembles.

– Testing and verification of ensembles. Many of the complexities in the devel-
opment of ensembles arise from the interactions of concurrently executing,
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(semi-)autonomous nodes. While test and verification methods have greatly
improved in the last years, they are still not sufficient for current or future
systems. In particular, verification of large or open systems are still unsolved
problems.

– Multi-paradigm programming. In current software systems, several formal
languages exist next to each other: General-purpose languages such as Java,
database languages such as SQL, specification languages, etc. These lan-
guages adhere to different paradigms which means that development en-
vironments need to support several paradigms. Furthermore, diversity in
programming languages will always exist (as there is too much knowledge
encoded in legacy source code). Thus, one needs to support legacy paradigms
in addition to new break-through paradigms.

– Dynamism in programming languages. Dynamism in programs appears in
several facets: Boundaries between programs dissolve, as integration will be
much more fine-grained. Formerly clearly separated software lifecycle stages
(testing, deployment, updates) are becoming more tightly interlocked. Fur-
thermore, self-* properties, especially where humans are concerned introduce
additional levels of reactivity and dynamism. The challenge is to provide ad-
equate tools and methods for dealing with this kind of dynamism: How can
their design and implementation be supported? What kind of assurances can
we give?

4.2 Research Areas

The discussions of the InterLink WG1 have focused on three research areas:

– Physical ensembles, which are intimately connected to the physical world in
space and time. They are equipped with sensors and actuators and have to
take into account issues of locality and resource constraints. Examples are
real-time embedded systems, claytronics, modular robots or programmable
matter. These systems combine discrete and continuous, non-linear domains,
and they exhibit complex interaction patterns between components. Coordi-
nation in space and time with limited resources is one of the major challenges
faced by physical ensembles.

– Organic software and systems engineering addresses the challenge of design-
ing software for ensembles that is reliable, predictable, with guarantees for
security and trust, that acts autonomously and has self-* properties, and
harnesses emergent behavior. Approaches to organic software engineering
may use bio-inspired and swarm algorithms and rely on nature-inspired pro-
gramming paradigms, but they also include traditional software development
techniques and formal methods.

– Societal computing addresses the problem of composing “living” and evolving
societal software systems from parts that were not designed to be composed
together and which may partially compete with each other while partially
cooperating. These systems will require languages and environments which
blur the distinction between compile-time and run-time and between design,
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implementation and deployment. Research in this area will have to inves-
tigate the dynamics of purposive interactions and the structure of evolv-
ing societal architectures: evolution of societal software systems has to be
a long-term process that goes beyond single-run adaptation, and systems
have to maintain societal coherence while supporting diversity and context
awareness.

5 Conclusion

Software-intensive systems play an important role in almost every part of hu-
man society: Transportation systems, communication systems, energy networks,
medical technology, etc. That is, they exist today, but they are very difficult to
construct. This document gave an overview of how software-intensive systems
are currently built. It then describes areas where software-intensive systems will
face even greater challenges in the future: The number of nodes per system
will increase, systems will be deployed in environments that are more and more
open and non-deterministic, and adaptation in these environments will be es-
sential. Software-intensive systems to which this characterization applies have
been called ensembles by the InterLink WG1. This document described areas of
research that might help with meeting the challenges of engineering ensembles.
That ensembles will be crucial for social and economic competetiveness in the
future is virtually certain, it is now upon the research community to help build,
harness, and understand them.
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256. Bertot, Y., Castéran, P., Huet, G., Paulin-Mohring, C.: Interactive Theorem Prov-
ing and Program Development. Springer, Heidelberg (2004)

257. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. Springer, Heidelberg (2002)

258. Russinoff, D., Kaufmann, M., Smith, E., Summers, R.: Formal verification of
floating-point rtl at amd using the acl2 theorem prover. In: Simonov, N. (ed.)
Proceedings of the 17th IMACS World Congress on Scientific Computing (July
2005)

259. Holzmann, G.J.: The Spin Model Checker: Primer and Reference Manual.
Addison-Wesley Professional, Reading (2004)

260. Spin: Web site of the SPIN Model Checker (2008) (last visited: 2008-01-24), www.
spinroot.com

261. Edmund, M., Clarke, O.G., Peled, D.A.: Model Checking. MIT Press, Cambridge
(2000)

262. Henzinger, T., Jhala, R., Majumdar, R., Sutre, G.: Software verification with
blast. In: Ball, T., Rajamani, S.K. (eds.) SPIN 2003, vol. 2648, pp. 235–239.
Springer, Heidelberg (2003)

www.spinroot.com
www.spinroot.com


Engineering of Software-Intensive Systems 41

263. Fraser, G., Wotawa, F.: Improving model-checkers for software testing. qsic 0,
25–31 (2007)

264. Fraser, G., Wotawa, F.: Using ltl rewriting to improve the performance of model-
checker based test-case generation. In: A-MOST, pp. 64–74. ACM, New York
(2007)

265. Fraser, G., Wotawa, F.: Redundancy based test-suite reduction. In: Dwyer, M.B.,
Lopes, A. (eds.) FASE 2007. LNCS, vol. 4422, pp. 291–305. Springer, Heidelberg
(2007)

266. Ren, S., Yu, Y., Chen, N., Tsai, J.J.P., Kwiat, K.: The role of roles in support-
ing reconfigurability and fault localizations for open distributed and embedded
systems. ACM Trans. Auton. Adapt. Syst. 2(3), 10 (2007)

267. Papadopoulos, P., Bruno, G., Katz, M.: Beyond beowulf clusters. Queue 5(3),
36–43 (2007)

268. Erl, T.: Service-Oriented Architecture—Concepts, Technology and Design. Pren-
tice Hall Service-Oriented Computing Series. Prentice-Hall, Englewood Cliffs
(2005)

269. Edwards, D., Simmons, S., Wilde, N.: An approach to feature location in dis-
tributed systems. Journal of Systems and Software 79(1), 57–68 (2006)

270. Babaoglu, O., Canright, G., Deutsch, A., Caro, G.A.D., Ducatelle, F., Gam-
bardella, L.M., Ganguly, N., Jelasity, M., Montemanni, R., Montresor, A., Urnes,
T.: Design patterns from biology for distributed computing. ACM Trans. Auton.
Adapt. Syst. 1(1), 26–66 (2006)
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Abstract. Software development is difficult, even if we control most of
the operational parameters and if the software is designed to run on a
single machine. But in the future we will face an even more challenging
task: engineering ensembles consisting of thousands, or even millions, of
nodes, all operating in parallel, with open boundaries, possibly unreli-
able components and network links, and governed by multiple entities. To
develop reliable and trustworthy software for these kinds of systems we
need to go far beyond the current state of the art and address fundamen-
tal problems in software development. We present some challenges and
promising avenues for research about software-engineering for ensembles.

1 Introduction

“I found that writing software was much more difficult than anything else I had
done in my life.” These words from well-known computer scientist Donald E.
Knuth [1] illustrate the challenges faced by software engineers, even when writ-
ing traditional software. And yet the situation is about to become even more
demanding: we are moving from isolated applications running in a fairly well-
determined environment to ensembles—software-intensive systems with massive
numbers of nodes, operating in open and non-deterministic environments in
which they have to interact with humans or other software-intensive systems.
Ensembles will have to dynamically adapt to new requirements, technologies or
environmental conditions without redeployment and without interruption of the
system’s functionality, thereby blurring the distinction between design-time and
run-time.

This move from engineering traditional systems to ensembles is not triggered
by idle desire on the part of software engineers; large, networked software-
intensive systems are already forming indispensable parts of our infrastructure,
from power grids to financial trading systems, and failures of these systems can
have dramatic consequences for our economy and well-being.

While many of the problems posed by traditional software are difficult but
manageable, some of the challenges posed by ensembles are beyond the current
state of the art for software and systems engineering. For example, while some
methods exist for building systems with a limited amount of adaptivity in re-
stricted contexts, we are not aware of any software system that can reliably
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adapt to changing requirements in realistic, open-ended scenarios over signifi-
cant time frames; and it is moreover not yet clear which theoretical foundations,
engineering principles and development tools are really adequate for building
such a system.

That is not to say that we cannot build complex systems; the number of systems
currently in operation shows that we have some successes when building systems
with current engineering techniques. However, these systems are generally difficult
and expensive to build andmaintain, often brittle in the face of unexpected circum-
stances, and too frequently plagued by security holes and reliability problems.

Therefore we need a two-pronged approach to develop a discipline of software-
engineering for ensembles. We need incremental improvements to the current
practice for developing systems, and we need to investigate radical and trans-
formative ideas that may push the subject in new directions. In the first strand
of research it will be easier to achieve results that can be integrated into tra-
ditional software development processes, but it is unlikely that we will achieve
the above-stated goals for ensembles without fundamental changes in the way
we understand and build systems.

In the rest of the paper we will address some of the problems posed by en-
sembles and propose some directions for future research—both incremental and
disruptive—that we consider to be promising.

2 Difficulties in Software-Development

In his influential articles [2,3] Frederick P. Brooks pointed out that the diffi-
culty in the development of software has both essential and accidental factors.
To paraphrase, essential difficulties are those inherent in understanding and ad-
dressing the problem the software system is meant to solve, while accidental
difficulties are those arising from the tools and methods used in the production
of the software. In [2] Brooks identified four main reasons for essential difficul-
ties in the development of software: the complexity of the problems that software
addresses, the requirement of conformity to complex external interfaces and busi-
ness processes, the changeability of software which leads to continuous demands
for additional functionality, and the invisibility of software artifacts which pre-
vents us from using physical or spatial intuitions. Brooks also suggested four
promising ways to address these difficulties which might be summarized as:

– Buying software or components instead of building from scratch.
– Iterative development and rapid prototyping instead of waterfall models.
– Growing software organically, i.e., gradually adding features to a system

instead of trying to specify and build the complete system from the outset.
– Recruiting and training great conceptual designers.

While there have been some arguments about the details of Brooks’s theses,
it is interesting to note that the essence of both papers is still relevant today,
more than 20 years after the first paper was written; the principles advocated
by supporters of agile development methods seem to echo many of these results.



Software Engineering for Ensembles 47

(a) Two workstations (b) Two workstations, low
bandwidth

(c) Workstation and cluster (d) Mobile phone and workstation

(e) Two mobile phones (f) Two mobile phones and
workstation

Fig. 1. Possible environments for the prime computation

Developing software for ensembles creates new difficulties related to the scale
of the systems, the need to adapt to changing environments and requirements,
emergent properties resulting from interactions between nodes, and uncertainty
during design-time and run-time. These difficulties are not accidental and prob-
ably will not succumb to “silver bullet” solutions.

To illustrate some of the challenges, we consider a very simple, if artificial,
problem: communicate all prime number in the interval [m, n] from node A to
node B. There are various well-known algorithms for solving this problem [4],
e.g., node A might use the Sieve of Eratosthenes or a probabilistic primality test
to compute all primes in the range [m, n] and then transmit this list to node B.

In the description of the solution we have made several implicit assumptions
that may not be correct when we develop for ensembles: we have assumed that
the network capacity between the nodes is sufficient to transmit the list of primes
and that node A is sufficiently powerful to compute the solution. In Figure 1 we
have depicted different scenarios that may occur in an ensemble: Fig. 1(a) rep-
resents the original situation: two workstations connected by a high-bandwidth
network. In Fig. 1(b) two workstations are connected by a low-bandwidth con-
nection. In this case it may not be feasible to transmit a long list of primes to
node B, instead it might be necessary to transmit the individual results when
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Fig. 2. Probable environment in an ensemble

they are needed, or even a program to compute the primes. In Fig. 1(c) node B
represents a powerful cluster where it would be advantageous to use a parallel
algorithm. It might also happen, as depicted in Fig. 1(d) that the program is
running on a mobile phone that does not itself possess the resources to com-
pute the desired solution. In that case an appropriate solution would again be to
transmit the program to compute the primes to node B. However, if the situation
is as in Fig. 1(e) and two devices with limited resources are communicating, then
this solution is no longer applicable. Instead the devices might try to discover
another node C that can perform the computation on their behalf and transmit
the results to B.

In order to successfully operate in an ensemble, even our simple program
would have to acquire significant complexity, with different strategies to solve
the problem, depending on intricate knowledge of its execution platform and
its environment. To keep the example manageable we did not try to take into
account many other complications arising in real systems, e.g., the scale or non-
determinism of the system, the need to minimize communication costs, fulfilling
service-level agreements, or security considerations. Furthermore, in future en-
sembles the situation will rarely be as simple as in Fig. 1, a more likely scenario is
Fig. 2, where the environment contains human operators, physical devices, nodes
operating according to new computing paradigms, etc. It is evident that man-
ually specifying how to deal with all possible interactions will not be feasible
except for the simplest ensembles. Instead we need formalisms and languages
that allow developers to focus on individual aspects at different stages in the
development process and then combine the solutions into a coherent program.

In the next section we will argue that we consider model-based approaches
mandatory for a successful discipline of ensemble engineering, but that “model-
based development” as it is currently understood in the software-engineering
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community has some deficiencies that need to be rectified to fully support the de-
velopment of ensembles. The subsequent sections on adaptation and emergence,
distributed development, development tools, and domain-specific development,
all expand on the idea of model-based development.

3 Modeling and Programming for Ensembles

The most successful strategy to combat complexity is to address the problem at a
higher level of abstraction. This trend has been visible throughout the history of
computing, where we have moved from assembly language to modern high-level
programming and modeling languages. Currently, object-oriented techniques and
languages are prevalent in the development of most new software systems; UML
models [5] are routinely used, and have mostly replaced other modeling notations
in mainstream software development. While these techniques have been success-
ful for traditional software development, there are several issues with current
modeling approaches when considering the requirements of ensembles:

– The formalisms used to model systems do not have a well-defined semantics.
– The executable code has no way to reference its model.
– Models are mostly “shallow.”

3.1 Semantics of Models

There are many types of models defined in the UML specification, but the se-
mantics of UML is often complex or non-intuitive, and sometimes inconsistent:
the UML specification contains many extension points which deliberately leave
certain aspects of the language underspecified. An example of a semantic prob-
lem in the definition of UML 2.0 is given in [6], where the authors argue that the
definition of associations has semantic implications which are not represented in
the syntax and may easily be misunderstood. The article [7] by Steve Cook and
Stuart Kent contains a a more detailed discussion of problems with the current
UML specification, in particular for the generation of executable code from UML
models and the definition of domain-specific extensions for UML. We will argue
in the next subsection that the model should be available for inspection and
reasoning at run-time; a simple, well-defined semantics is therefore mandatory.

On the other hand, UML is often useful to guide discussions between stake-
holders and developers, while typical knowledge-representation or specification
languages require a degree of mathematical sophistication from their users that
cannot be expected in typical development projects.

An important challenge is therefore to develop modeling languages that com-
bine simple, well-specified semantics with high expressivity and good usability for
developers. Those languages used to communicate with stakeholders should also
be understandable for domain experts and customers. When a suitable language
is already widely used in a certain domain, mapping it into the modeling language
should be semantically straightforward and achievable by automated tools. This
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is related to research in the areas of model-integrated development [8,9] and
model-driven architecture [10,11], where domain models are used to generate
executable code and have therefore to be equipped with a precise semantics.

3.2 Robust Formal Methods

A semantically well-defined modeling language enables the use of formal meth-
ods, such as model checking or theorem proving, during design time and at run
time. While formal methods are not yet widely used in industrial software devel-
opment, considerable progress has been made in developing efficient, automated
tools that can be used by developers to increase the quality of software. The book
by Johann M. Schumann [12] contains an overview of the state of the art in the
area, as of 2001; more recent advances can be found, e.g., in the proceedings of
CADE [13] or IJCAR [14]. Improvements in implementation technology and the-
oretical discoveries have led to tools that can solve increasingly large problems
automatically, e.g., John Rushby argues in [15] that SMT (satisfiability modulo
theories) solvers are an example for this sort of disruptive innovation.

However, one of the problems with formal methods is that their behavior
is often unpredictable: only the most expert users can quickly and accurately
estimate whether a certain model or a certain set of parameters can be checked
given the available resources. If formal methods are to play an important part
in the run-time environment of ensembles they will have to be more robust, i.e.,
the run-time has to be able to reliably determine which tools are applicable in a
given situation, e.g., by being able to estimate the expected execution time and
the quality of the expected results for various tools.

3.3 Connecting the Code to Its Models

In current software development practice models are used to develop or generate
the code, but the code has no possibility to access its models during runtime.
Being able to reason about their models and environments would open many
avenues for programs to adapt to unforeseen circumstances: to cope with the
situations presented in Fig. 1 it is not enough for a program to have a subroutine
that computes a list of primes, it needs to have a model of its environment and
connectivity, and it needs to know the resources needed by various methods to
check for primality in order to choose an appropriate strategy. It would be even
better if the different nodes in the systems had a shared notion of “checking
primality of a number” so that each node could choose an appropriate strategy
according to its capabilities.

To achieve this, code, models, and requirements have to be closely integrated:
the program has to be able to determine, while it is executing, which models are
relevant to the executing code; on the other hand, if new requirements cause a
model to be changed, the code implementing this model has to be modified on the
fly to satisfy the updated specifications. Irrespective of automated adaptation
of programs taking place, this kind of traceability [16,17] between requirements,
models, and code, offers great advantages for the development and debugging of
programs.
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As for reasoning about models, several powerful specification and verifica-
tion systems are currently available and used in industrial applications, e.g.,
ACL2 [18], PVS [19,20], or Kestrel Specware [21]. These would be prime can-
didates for creating program-integrated models, since their ability to create use-
ful specification that can, in many cases, directly be executed has already been
established. However they are targeted at human developers and cannot directly
be used to reason about programs in a fully automated manner:

– Provers for these systems are interactive and rely on the developer to provide
required lemmata or to discharge proof obligations. Integrating these systems
into programs would require fully automated theorem provers, which are cur-
rently not feasible for their powerful logics; it would require a breakthrough in
the development of theorem prover technology to develop a system that can
decide a large number of interesting problems without human intervention.

– Proofs of interesting properties often take a long time, even with human
guidance. This time may not be available when the prover is used to recon-
figure a software component.

– The provers often use more resources than typical nodes in an ensemble may
have.

There are two research directions that promise significant long-term progress: one
is the development of formalisms that are expressive enough to model interesting
programproperties while having low computational complexity, at least for a prac-
tically relevant class of problems. Interesting developments on this front are cur-
rentlytakingplace,e.g., intheareaofdescription logics [22]andtemporal logics [23].
Modal logics [24],whichallowthe reasoningabout thebelief ofotheragentsandmay
be appropriate for programs that try to reason in depth about their environment.
Interdisciplinary research with areas such as knowledge representation [25,26,27],
expert systems [28], or model-based diagnostics [29] may be effective.

Another promising research direction is the integration of approaches such
as theory resolution [30] or special-purpose decision-procedures into general-
purpose reasoning systems [31]. While the research in this area has a long history,
promising results have recently been obtained, e.g., by the Cyc project [32]: the
study [33] shows that the Cyc reasoner, which contains a large number of special-
purpose decision procedures for the huge Cyc knowledge base of common-sense
knowledge, outperforms a sophisticated first-order prover by several orders of
magnitude on a number of decision problems. We return to this problem in
Section 7.

3.4 Surface and Deep Models

The distinction between “surface systems” and “deep systems” was defined in
an article by Peter E. Hart [34] as follows:

By surface systems I mean those having no underlying representa-
tion of such fundamental concepts as causality, intent, or basic physical
principles; deep systems, by contrast, attempt to represent concepts at
this level.
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While the distinction between deep systems (also called “causal models” [35])
and surface systems (which have also been called “shallow models,” [29] “empir-
ical associations,” [35] or “compiled-knowledge systems” [36] in the literature) is
neither objective nor unambiguous, it nevertheless expresses an important dif-
ference. Most models that we use in software engineering can be classified as
surface models, since they express the information required for the software to
function but not the reasons why the system behaves the way it does, or what
consequences the actions of the system have.

For example, a model of a university management system typically includes
associations between the student and university or course, but it does not contain
enough information to conclude that being exmatriculated may have serious
consequences for a student, or that posting exam questions on the web may not
be advisable before the exam takes place (but might be permissible after the
exam is over). This is not problematic when the models are used by developers
as an aid in the development process, or when they are used for code generation
purposes, and therefore the greater simplicity and lower cost to build surface
models is justified. However, when models guide (non-interactive) adaptation,
inclusion of “deep” knowledge in models seems to be almost mandatory. How
this can be achieved in practice is still largely a question for future research; the
free availability of the OpenCyc knowledge base [37] presents many interesting
opportunities for research in this area. There may also be interesting confluences
with research on rationale management [38] which tries to capture the design
rationales of software developers. Interesting research direction in this area may
also include the combination of structural causality models [39,40] with models
that represent the effects of actions, such as the situation calculus [41,42], the
event calculus [43]. The article [44] represents a first step in this direction.

4 Adaptation and Emergence

We call adaptation the capability of a system to change its behavior according to
new requirements or environment conditions. The term emergence has been used
to describe various phenomena: in the software engineering literature it is often
used to describe global phenomena, not arising from any single component [45];
in the literature about complex system it is often used with more specific deno-
tations, for example Mark A. Bedau defines weak emergence as [46]: “Macrostate
P of [a system] S with microdynamic D is weakly emergent iff P can be derived
from D and S’s external conditions but only by simulation.” In this section it is
mostly this latter denotation of emergence that we are concerned with.

4.1 Adaptation Mechanisms

To formalize the discussion of adaptation we assume that we have models of the
program (Prog), the environment (Env), the connection between the program
and the environment (Link) and the desired result of the computation (Res).
These models can be expressed at various levels of abstraction, depending on
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the details of the situation. For example, Prog might be a non-executable spec-
ification of the program, or it might be the executable program. We assume,
however, that we have a semantic consequence relation |= available. Then we
can describe the correctness of the program in its environment as follows:

Prog,Env,Link |= Res. (1)

A weaker1, but often useful, formulation is to ensure that the correct result is
not incompatible with the program in a given environment, although the correct
result need not be implied (i.e., Prog, Env, Link and Res are consistent):

Prog,Env,Link,Res �|= ⊥. (2)

This latter version allows, e.g., reasoning in many cases where some of the data
in the models is still unknown. Note that these formalizations are very similar
to those used in model-based problem solving [29].

If we call Prog1 the program that computes the primes between m and n
on node A, Prog2 the program that transmits the code to node B, and Env(i)
(Link(i)) the environment (links) depicted in Fig. i, then we have:

Prog1,Env(1(a)),Link(1(a)) |= Res Prog2,Env(1(a)),Link(1(a)) |= Res
Prog1,Env(1(d)),Link(1(d)) �|= Res Prog2,Env(1(d)),Link(1(d)) |= Res
Prog1,Env(1(e)),Link(1(e)) �|= Res Prog2,Env(1(e)),Link(1(e)) �|= Res

The first two equations state that either computing the result on node A or
transmitting the program to node B leads to a correct result in the case of two
connected workstations, the third equation states that the mobile phone is not
able to compute the solution on its own while the fourth equation states that
it can compute the solution by transmitting the program to the workstation.
The last two equations demonstrate that two connected phones have no way
to compute the solution (without reconfiguration), no matter which of the two
programs they use.

Adaptation of a program to a changing environment denotes the following
process: we have a program that works correctly in a certain environment and
configuration

Prog,Env,Link |= Res

and the environment changes to Env′. We are now looking for a new program
Prog′ such that2

Prog′,Env′,Link |= Res.

Adaptation to changed requirements is, in the presented formalism, similar
to adaptation to a changed environment. In this case, instead of modifying the
1 We assume that Prog,Env,Link �|= ⊥.
2 If the result Res depends on the environment, then instead of Res the adapted

program Prog′ may have to satisfy a different result Res′ which can be derived from
Res and the changes in the environment.
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environment model, the result model Res is replaced by the updated model Res′.
Similarly, reconfiguration can be modeled by modifying Link instead of Prog.

The example in Fig. 1 illustrates the simplest case for adaptation: we have a
fixed number of programs (Prog1, Prog2) that we can substitute for each other.
This essentially corresponds to uses of the Strategy pattern. A more interesting
example is if we have a set of (models of) partial programs Progi, i ∈ I such
that (models of) valid programs can be obtained as

ProgJ =
⋃
j∈J

Progj

for certain subsets J ⊆ I. If we can identify the situations in which the pro-
gram PJ generated by a subset J is applicable, the adaptation process roughly
corresponds to context-oriented programming [47,48].

It is currently not customary to rely on explicit models of program and en-
vironment to perform the described adaptations; rather the situations in which
each program or partial program is applicable are identified as the program is de-
veloped, and the reconfiguration is then performed by hard-coded program logic
without resorting to a model, either by switching the strategy, or by enabling or
disabling contexts.

The previous discussion suggests several interesting topics for future research:
we have stated that adaptation happens when the environment changes from
Env to Env′. In general it is not easy to determine that the environment has
changed, or, if a change has occurred, what the new environment looks like.
Research in this area will be able to profit from results in model-based problem
solving and automated diagnosis [29]. Once a change in the environment has been
identified, another challenge is to determine whether adaptation is necessary, i.e.,
whether Prog,Env′,Link |= Res still holds. For efficiency reasons it will normally
not be possible to prove this formula using automated theorem proving, and
more efficient ways to test the validity of this formula should be investigated for
various modeling and programming paradigms.

The formalism mentioned above says nothing about useful strategies to cre-
ate candidate programs for Prog′. One possibility is to have a fixed number of
possible adaptations, or a set of building blocks for programs, as described in
the examples above. Another possibility is to have certain “adaptation oper-
ators” that can modify a class of models. These operators might range from
well-understood operations, such as linearly interpolating between the output
values of two programs, to operations with unpredictable consequences, such as
random permutations of model fragments, i.e., evolutionary algorithms operat-
ing on models. Various experiments in using evolutionary approaches to design
circuits with interesting characteristic [49] and facilities for self-repair [50] have
been reported. In cases where we have millions of parallel nodes, which are diffi-
cult to exploit for controlled design, the parallel evolution of several alternative
solutions might deliver better results than normal design techniques. Adrian
Thompson notes in [51] that evolutionary design is the only feasible approach
in situations where neither the forward nor inverse model are tractable; a situ-
ation which might appear frequently in ensembles. The papers [52,53] by John
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R. Koza present an optimistic opinion about the feasibility of this approach. In
our estimation it is not clear whether the obtained results are representative and
further research in this area is needed.

Reasoning about, or dynamically changing, the model, is only useful if the
results are reflected in the behavior of the system, in other words, there has
to be a causal connection between the internal model and the program. This
implies that the program should have a stratified or meta-level architecture that
can easily support these changes. While meta-level architectures have been thor-
oughly investigated [54] in languages such as Smalltalk or Common Lisp, and are
widely used in dynamic languages such as Python, Ruby, or Groovy, many inter-
esting problems remain. For example, the specification of meta-object protocols
is still done in an ad-hoc manner, in this area ideas from the Component com-
munity might be fruitfully incorporated. Another interesting research question is
how declarative meta-level reasoners can be grounded in the base program and
how this grounding can be used to increase the performance of the reasoning
process [55].

4.2 Limiting Adaptation and Emergence

An important consideration for adaptive systems, in particular when using evo-
lutionary techniques but also in more controlled approaches, is how to verify
that the resulting design still satisfies the specification? It is, after all, not diffi-
cult to design scenarios where interaction between different components lead to
undesirable “weakly emergent” behavior.

When working with logical models it might, in some cases, be possible to
prove that the result of an adaptation is correct, but in general this will be too
resource intensive and unpredictable. Furthermore, this approach presupposes
that the composition of well-defined local behaviors does not result in a system
that exhibits undesirable behaviors on a global level. This is not generally true
as, e.g., the game of Life [56] shows, where even very simple local interactions
can lead to unpredictable global behavior [57,58].

The investigation of architectural patterns and invariants might prove fruitful,
e.g., by combining redundancy of the evolved components with a (provably cor-
rect) controller that disables the outputs of components not fulfilling their spec-
ification. This raises a number of interesting questions regarding the adaptivity
of the controller, e.g., how does the controller determine whether its specification
still fulfills the requirements in the current environment?

5 Distributed Development

Ensembles are distributed systems with large-scale parallelism. As such their de-
signers need to address many difficulties that arise from parallelism and
non-determinism, such as partial failure, network latencies, problems of data
replication and synchronization, and many others. For lack of space we cannot
address these topics, but we are convinced that the research directions proposed
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in this paper are also highly relevant for managing distribution. The web site
of the FET Proactive Initiative on massive ICT systems [59] contains further
information on future research directions in this area.

The distributed nature of ensembles influences not only their run time, it also
plays an important role during design time. Many ensembles will be developed
by independent, distributed teams, where no team has a complete view of the
system, where geographically dispersed members work together on individual
components and where new components can rarely be developed without taking
the existing parts of the ensemble into account.

To facilitate concurrent development by independent teams, systems are usu-
ally divided into subsystems with fixed interfaces during an early stage of the
system engineering process. While sub-system designers are free to develop the
internals of the sub-system, the interfaces between different parts of the system
are generally frozen. The expectation is that the interfaces between components
change infrequently, while the division into subsystems remains fixed throughout
the project.

The designers of a (sub-)system usually build several models for horizontal or
vertical slices of the system; these models are commonly called viewpoints [60,61].
The different viewpoints of a system are not completely independent. In many
cases they have certain intersections, e.g., several viewpoints may contribute
functionality to the same method, or they may describe the same component in
different formalisms.

The program that implements the models normally discards the information
provided by the separation into different viewpoints: all viewpoints of the model
are combined into a monolithic program, contributions from different viewpoints
may even be intermixed in a single method-body, and in many cases there is no
explicit mapping between program and model elements.

Some modern languages, such as C#, Smalltalk or Ruby allow a limited
amount of separation between different viewpoints, e.g., by providing partial
classes. Aspects, e.g., in AspectJ [62] or HyperJ [63] address this problem in
more depth by adding mechanisms for separation of concerns or subject-oriented
programming to programming languages. Our own approach [64] provides a con-
struct called protocols that can express the integration of several viewpoints with
partially shared functionality on the programming-language level. Aspect orien-
tation is an active area of research; many results can be found in the proceedings
of the Aspect-Oriented Software Development conferences [65].

The reasons for introducing aspect-oriented techniques remain equally valid
on the system level and for modeling languages instead of programming lan-
guages [66,67,68]. In particular, often there is no single “best” decomposition
of a system into subsystems but many aspects cut across subsystems. Fixing
the system components and interfaces during the early design stages therefore
often leads to inflexible designs that are difficult to adapt to changing customer
requirements during the system life cycle [69]. Further research is needed to
develop approaches that add flexibility to the structure of systems and allow
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designers to postpone more decisions to later stages in the development process,
when more information about the real needs of the system’s users is available.

6 Improved Tools and Languages

Tools are important to suppress or simplify many of the accidental difficulties in
the software development process. For large projects they are also instrumental in
navigating models and source code. It is likely that the development of improved
tools for programming languages such as Java has played an important role in
their industry-wide adoption.

To be useful, improvements in languages have to be accompanied by sup-
port for the new features in development environments. For example, we argue
that individual viewpoints that can be combined into a program can reduce
the effort to develop programs. However, just defining the necessary language
constructs is, in itself, not helpful. It is also necessary to provide corresponding
tools that can display individual viewpoints, as well as the result of combining
several or all viewpoints of a system, etc., and to integrate the new language
constructs into the navigation mechanisms of the development environment, the
debugger, etc.

One example where research on tools is needed is support for code and model
transformations and, in particular, refactorings. Currently most refactoring tools
work on the level of an abstract syntax tree; this leads to many “edge cases”
where refactorings are not semantics-preserving [70,71]. Furthermore, refactor-
ings are currently language-specific, and cannot be easily applied across abstrac-
tion layers or to program parts written in different languages. In order to gain
flexibility in the system development process, first-class, semantics-based sup-
port for model and program transformation should be investigated.

This research also has connections to development tools traditionally not di-
rectly concerned with programming or modeling languages. For example, version
control systems work on a purely syntactic basis; if a refactoring is transmitted
between developers via the version control system, the information that a refac-
toring was performed is at best contained in the commit logs and tool-specific
metadata, but it is not available to the repository itself. The need to understand
the semantics of the program therefore extends to tools such as code reposi-
tories. This topic is closely connected to approaches for modeling change as a
first-class entity, see the article [72] in this volume for a comprehensive overview.
Semantics-based approaches promise particularly large benefits in distributed
settings, which are becoming increasingly common because of the availability of
distributed version control systems, such as [73,74,75,76].

One other area where tool support is important is in understanding and mod-
ifying systems after they have adapted. If the system model changes because the
system adapted autonomously to different environmental conditions or require-
ments, the developer has to be able to understand the reasons for the adaptation
and the consequences of the change. Furthermore, if several instances of a sys-
tem are deployed, they will, in general, adapt in different ways. When updates
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to these systems are deployed, they should respect these adaptations. How this
can be achieved is an interesting topic for future research.

7 Domain-Specific Development

The domain of a software system plays a prominent role in almost all develop-
ment approaches, e.g., in the form of requirements analysis and system mod-
els [45]. Some recent development approaches place particular emphasis on the
importance of a detailed understanding of the domain [77] or problem con-
texts [78], but this is mostly done in an informal context.

Several development approaches try to use domain knowledge in a more formal
manner. For example, software product lines [79], software factories [80], and the
step-wise refinement approach of AHEAD [82,83] are approaches based on gen-
erative programming [81] which propose to develop families of related programs.
This is achieved by modeling the domain and possible features of programs and
by building generators that can create programs with certain combinations of
features and non-functional properties from configuration specifications. While
this approach has applications in certain domains, it is not yet clear whether it
can be successful as a general method for developing software.

Similarly, domain-specific languages (DSLs) are sometimes claimed to facili-
tate the development of certain software systems by providing a simple language
for specifying the problem. Here we can distinguish between internal DSLs where
the DSL is embedded in a general-purpose programming language and external
DSLs where the DSL is a stand-alone implementation [84]. Both variants have
a long tradition in certain communities; external DSLs are common in the Unix
operating system and internal DSLs have extensively been used systems built in
Lisp [85]. Experience shows that while DSLs often have significant advantages
there are also some problems: the behavior of DSLs is often specified by refer-
ence to the behavior of an implementation, and in particular external DSLs lead
to a proliferation of languages that a developer has to understand. Techniques
for precisely specifying DSLs and easily deriving an implementation from the
specification remain relevant and challenging research topics.

Returning to Section 3.4, an interesting research topic is the development of
theories for various application domains that can be used as deep models, or
as background knowledge for deep models. These theories could be equipped
with (interfaces to) reasoning components for particular aspects of the domain.
For example, a theory for university management might define notions such
as “university,” “student,” “lecture,” and their relationships. Associated tools
might include a constraint solver for creating timetables and room assignments,
or a planner for proposing courses that a student should attend. Here other
research, for example in the area of the Semantic Web, might offer opportunities
for collaboration.
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8 Conclusions

We have presented some challenges that ensembles present to the software engi-
neer and highlighted research directions that, in our opinion, offer opportunities
for improving the state of the art in software engineering in the next 10–15 years.
These research directions are often continuations of research that is already in
progress. That is not a surprising situation, since currently deployed large, com-
plicated systems already exhibit most of the characteristics of ensembles.

However, this does not mean that the problems of software engineering for
ensembles have already been solved and that today’s development practices are
already sufficient: development projects for large systems regularly transgress
the allocated budget while delivering only fractions of the planned functional-
ity; the resulting systems invariably suffer from security holes and unforeseen
failures. For example, September 16, 2008, the Munich suburban train system
had to operate on an emergency program for several hours, and the main track
was completely shut down for 45 minutes, because the control center was mal-
functioning and had to be rebooted. In March 2008, a nuclear power plant in
the USA executed an emergency shutdown after a software update was installed
on a computer operating on the plant’s business network [86]. In August 2008
a computer-virus was found on a laptop on board the International Space Sta-
tion [87].

These examples illustrate that even the most essential, dangerous, and, hope-
fully, well-maintained systems can be brittle, unreliable, and insecure; software
often plays an important role in their failures. It is, of course, not possible to
eliminate all errors. But we should be able to expect software that is at least
as robust, reliable and trustworthy as other engineered devices. We think that
the research directions presented in this paper promise to take us a step closer
towards this goal.
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Abstract. Few real software systems are built completely from scratch
nowadays. Instead, systems are built iteratively and incrementally, while
integrating and interacting with components from many other systems.
Adaptation, reconfiguration and evolution are normal, ongoing processes
throughout the lifecycle of a software system. Nevertheless the platforms,
tools and environments we use to develop software are still largely based
on an outmoded model that presupposes that software systems are closed
and will not significantly evolve after deployment. We claim that in order
to enable effective and graceful evolution of modern software systems,
we must make these systems more amenable to change by (i) providing
explicit, first-class models of software artifacts, change, and history at
the level of the platform, (ii) continuously analysing static and dynamic
evolution to track emergent properties, and (iii) closing the gap between
the domain model and the developers’ view of the evolving system. We
outline our vision of dynamic, evolving software systems and identify the
research challenges to realizing this vision.

1 Introduction

Software inevitably changes, but our development methods, programming lan-
guages, development environments and run-time systems generally assume that
one is building a closed, internally consistent application, which will not signif-
icantly change after deployment. Anticipated evolution can be built in to some
extent, for example by applying well-known design patterns, but unanticipated
changes in requirements are hard to accommodate without reengineering the
system, redeploying it, and possible migrating persistent data.

The vision of an eternal software-intensive system is that of a system that
can survive such unanticipated changes with little or no human intervention at
the lowest level [59]. We claim that this vision can only be realized if software
change is enabled in a fundamental way in our platforms, run-time environments
and development environments [42]. In particular, not only software systems
themselves, but their development and support environments need to be far
more dynamic than they are today. Specifically, what does this entail?

– First of all, we need to provide platforms in terms of programming languages
and run-time environments that make it possible to manipulate and operate
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on change as a first-class entity. This in turn implies that an evolving soft-
ware system is not only model-driven, but actually “self-aware” — it must
have a first-class representation of itself available to enable change. To con-
trol the scope of change, change itself should be represented as a first-class,
high-level entity. To manage change over time, the history of the system
must also be accessible and first-class (see Section 2).

– Second, an evolving software system must be capable of analyzing itself,
and in particular of recognizing emergent properties. This means that the
evolution of the static and dynamic models must be monitored, and the
resulting data be analyzed as the system is running (see Section 3).

– Third, to enable continuous evolution, a software system must close the gap
between the development and deployment views of itself. Domain models,
usage models, and features, for example, must be made explicit in the system
to facilitate change (see Section 4).

We will explore these themes in some detail, in each case summarizing previous
work, and establishing a research agenda for further work. We conclude with
summary remarks about next steps.

2 Self-aware Platforms to Support Change

Traditionally, the development and deployment of software are viewed as being
separate in time and space: first a system is developed, then it is deployed.
Indeed, in the classical view, we deal with two completely different artifacts: the
source code that can be developed, debugged and understood on the one hand,
and on the other hand a generated, closed, non-understandable binary program
that just can be run.

Classical development plays out like a finite game with fixed rules and bound-
aries. Evolving software systems, on the other hand, are better thought of as
infinite games without fixed rules or boundaries [5]. Evolving systems will not
have a clear separation of development and deployment. The system will con-
tinue to evolve when it is already deployed. The systems of the future will not
be developed from the outside as a finite game. Development itself will be part
of the infinite game of the system. Evolution needs to happen in parts of the
system, while it is running.

We cannot afford to stop and restart a continuously evolving software sys-
tem, just as we cannot stop and restart the Internet. The Internet has been up
and running since 1969, although many of its atoms have been changed many
times since then. The software intensive systems of the future will need to learn
from these loosely-coupled, long-lived systems. To support this view, we need
appropriate core technologies in terms of programming languages and run-time
systems that can serve as a platform for developing evolving software systems.

2.1 Previous Work

In order to enable change at run-time, an evolving system must be able to
fully reflect on itself, that is, it must be self-aware. It is not enough to be
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model-driven. The models must be explicit and accessible to the run-time sys-
tem. A reflective system provides a description of itself available from within.
This description can be queried (introspection) as well as changed (interces-
sion). In the past, computational reflection has been an active area of research
[13,15,41,55]. Nevertheless, languages used in industry today do not provide full
reflection, and many mainstream languages have no self representation at all
(for example C and C++). More recently created languages like Java and C#
support limited introspection, but no intercession.

In recent years, dynamic languages have attracted much attention [43] and
are increasingly being used in industry (e.g., Python, Ruby, Smalltalk). Dynamic
languages provide a representation that can be queried and changed at run-time
and thus are reflective. But even in these dynamic languages, the support for
reflection is limited. The structural representation of the program stops at the
granularity of the method. Classes and methods are represented as objects and
available to be queried and changed, but the structure of the methods themselves
is not represented. Behavioral reflection is limited as we cannot change behavior
on a fine-grained level. In addition, when applying behavioral reflection to the
system (as opposed to an application), the programmer will soon run into the
problem of meta-object call recursion [11].

We have extended structural reflection to model the structure of methods:
sub-method reflection [8] represents the complete structure, down to the code
itself. The representation can be annotated and thus can be used for integrating
tools. One example is feature annotation [10]. Instead of recording full traces
to analyze features, we can simply annotate the static structure of the system
with feature information. Partial behavioral reflection [51,58] provides means to
select where and when a meta-object is activated and allows us to define which
information is passed to the meta-object. We can introduce behavioral changes
at run-time which provides the basis to supporting unanticipated change to the
systems. Examples range from tools like tracers or profilers [51] to changes of
the language semantics, for example transactional memory [47]. The problem
of meta-object call recursion is solved by representing meta-level execution as a
context and by making meta-object activation context-aware [11].

It is well-established that suitable abstractions are needed to enable program-
ming in the large [45]. But in the case of scale, we need to think again: are
existing abstractions good enough for very large software systems? For example,
as software gets larger the assumption that every part of the system must stay
in sync with every other part is not very convincing because the systems of the
future will be so large that we will never be able to evolve them in a single,
synchronous step. As a consequence, an evolving system must be able to cope
with multiple, inconsistent views of itself.

Inconsistency is only tolerable if specific and individual views appear to be
locally consistent. Instead of allowing all changes to be globally visible, we need
a means to control the scope of changes. That is, evolving systems must sup-
port a notion of context and the run-time infrastructure must be context-aware.
Being able to dispatch on context means that we need to support a form of
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context-oriented programming [7,27]. Visibility of changes can then be restricted
to the context in which these changes are guaranteed to be valid.

Changeboxes [9] provide a mechanism for encapsulating change as a first-class
entity in a running software system. Changeboxes support multiple, concurrent
and possibly inconsistent views of software artifacts within the same running
system. Since changeboxes are first-class, they can be manipulated to control
the scope of change in a running system. Furthermore, changeboxes capture
the semantics of change. Changeboxes can be used, for example, to encapsulate
refactorings, or to replay or analyze the history of changes.

2.2 Research Agenda

We maintain that both reflection and context are crucial to support change and
evolution. There has been much recent progress, but more research is needed. In
particular, the key ideas emerging from previous research need to be consolidated
and integrated into a comprehensive model.

Efficient and Practical Reflective Languages. Sub-method structural reflection
and partial behavioral reflection are improvements over conventional reflective
systems. One problem with reflection, even with efficient partial reflection [51,58]
is performance. With behavioral reflection, we introduce new behavior that re-
places the default behavior. One example is method lookup. The default lookup
is extremely optimized and realized in the virtual machine, so any reflective
redefinition is often slower by an order of magnitude. This difference in perfor-
mance can render a system unusable in practice. We need to integrate reflection
better into the virtual machine, leveraging the dynamic code generator of mod-
ern just-in-time compilers. Another interesting question is how to resolve static
typing with reflection. Type-systems reason about properties that can be guar-
anteed in the future, whereas reflection is about changing the future. We need a
way to check reflective change before it is applied to the system.

Backward Compatibility. Backward compatibility is the enemy of forward evolv-
ability. Nevertheless, we cannot live in a world where the old is ignored. An
often overlooked property of software is that new systems can simulate the old,
and the recent trends in hardware virtualization have shown that simulation of
the old is far easier than for the new to stay compatible. A snapshot of an old
Windows machine can run on a virtual machine forever, whereas keeping an op-
erating system compatible forever is bound to fail. Programming languages for
evolving systems should provide backwards compatibility in the same way: we
need a first class description of the history of all code of the system, freeing the
present from being compatible with the past while at the same time providing
the possibility to go back in time easily. The system should provide complete,
runnable snapshots of itself at any point in the past. Our work on changeboxes
forms one first step towards this goal. However, changeboxes are only concerned
with code, thus an important aspect of future work is the problem of migrating
data between versions.
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Contextual Reflection. Context appears to be deeply related to reflection. In
the case of changeboxes, the currently active changebox provides a context for
execution. For partial behavioral reflection, we solve the problem of meta-object
call recursion by representing the execution of the meta-level as a context [11].
We think that the next step is to revisit these cases and integrate the notion of
context into the reflective model of the language and the virtual machine.

Languages Supporting Multiple Views. In general, we need to explore multi-
dimensional object systems. After achieving a reflective model that is aware
of context, the next step is to build language support that makes this concept
available to the programmer. Some very relevant work has been done in the past,
for example the work on PIE [4,22,23,24], Us [56] and more recently ContextL
and ContextS [7,27]. More research is needed to explore how to combine these
ideas with contextual reflection and changeboxes.

Evolving Languages. Evolving systems need languages that support continuous
development and evolution. But there is another aspect when considering the
language itself: to think that we can envision the perfect language to realize all
future systems is to treat language design like a finite game. Thus a language
suited for implementing ever-evolving software systems needs to be itself an
evolving system. An evolving language must evolve to incorporate new ideas and
practices while it is used. It needs to be extensible and growable from within [57].

3 Monitoring and Analyzing Change

To change a system we must first understand the system and the consequences
of change. Since change inevitably causes the system to drift from its initial
documentation, the most reliable source of information is the system itself. A
self-aware system can reflect on its own specification, which is an aid to static
analysis. But emergent properties as well as program failures can only be moni-
tored with the help of dynamic analysis [26].

Ideally, a productive system should constantly monitor and analyze itself. This
would allow us to discover properties that are only visible over a longer period of
time, such as performance degradation, memory leaks, shifts in how the system
is used, effects of structural changes etc. Furthermore, collecting detailed data
about the program execution can provide crucial information to uncover the
cause of program failures.

3.1 Previous Work

Program failures for large, long-lived software systems can be hard to reproduce,
and hard to simulate in a test environment. As a consequence, systems need to dy-
namically analyze their behavior to gather execution history while they are run-
ning and allow for remote and safe debugging inside the live system. To be able to
reason about the run-time behavior of a system, dynamic information has to be
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linked with the model of the software structure. A platform that provides an inte-
grated, high-level model of its own structure, design, and behavior (see Section 2)
would offer an appropriate foundation for building self-analyzing systems.

The challenge we face with such an architecture is that the current state of
the art in dynamic analysis does not permit run-time information to be gathered
below the method level in live systems due to performance reasons. The main
obstacles are (i) code instrumentation requires a system to be restarted, (ii)
run-time overhead can be huge (up to a factor of 100 or more for non-trivial
programs [34]), and (iii) available memory to store the gathered data limits the
analysis to only few and short user sessions.

Most existing dynamic analysis approaches are detached from the run-time
environment, i.e., virtual machine, and hence have only limited means to adapt
and reconfigure the system at runtime without restarting it. Instrumentation
code is weaved into the application code at compile time, for instance through
bytecode manipulation. This additional code then generates data during execu-
tion, which is either stored as a trace of events in memory or in a database where
it is processed post mortem. An evolving system that needs to be running all the
time cannot be restarted to reconfigure the analyzer. Therefore, the run-time
analysis of a self-aware system needs to be an integral part of its run-time envi-
ronment. Like this, no hard-wired instrumentation code is required, but rather
the analyzer is a self-aware component of the virtual machine. The analyzer
needs to be always running and capable of adjusting its own behavior, much like
garbage collectors are always active in modern virtual machines.

We have addressed some of these problems as follows [37,39,38]. We have
extended the object memory model of conventional object-oriented virtual ma-
chines by representing object references as real objects on the heap. In this way
we seamlessly integrate historical execution data into the object model of the
virtual machine. Our approach discards unneeded historical execution data by
employing the standard garbage collector of the VM. We showed that this ap-
proach can dramatically improve the data explosion problem and has much lower
execution overheads compared to other back-in-time debuggers [34,46] that are
not implemented at the virtual machine level.

We have extended the common dynamic analysis model with the notion of
object aliases. That is, object references are explicitly represented in our model,
which allows us to track the flow of objects in the system or to analyze how side
effects are produced [40,38].

By enabling dynamic analysis on live systems, innovative debugging and anal-
ysis techniques come within reach. In a recent study, Liblit et al. examined bug
symptoms for various programs and found that in 50% of the cases the execution
stack contains essentially no information about the bug’s cause [35]. Back-in-time
debuggers [28,34,46] allow the developer to explore the program state at those
points in time that are no longer represented on the run-time stack. We are cur-
rently exploring the development of a highly performant back-in-time debugger
on top of our history-aware VM.
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In evolving software systems, the changes to the static parts are directly ac-
cessible as first class entities. As such, in evolving software systems, not only the
run-time is dynamic, but also the static part is dynamic when seen from an his-
torical perspective. Treating history as a first-class entity enables analyses of the
evolution of software artifacts [17]. For example, we can predict where changes
are likely to occur [19], we can detect classes that are changed frequently [21],
or we can identify crosscutting concerns by detecting which parts change at the
same time and in the same way [18].

Given the size of evolving systems, they will not be developed by an isolated
team, but rather by several teams that are physically distributed. In this context,
the social aspect of the development will become increasingly important [6]. Thus,
analysis should also include reasoning about how developers collaborate [2,20,25].

3.2 Research Agenda

In the long-term, we expect that run-time monitoring of program execution and
evolution will become not only practical but essential to the survival of long-
lived software systems. To make this a reality however, further research will be
needed in the following areas.

Efficient Run-time Analysis. Dynamic analysis will only be widely adopted if it
is cheap in time and space. The emergence of multi-core architectures for off-
the-shelf desktop and laptop machines suggests that parallelization should be
explored as one way to reduce the execution time. Even though future hardware
capacity will allow for storing more data more efficiently, more advanced mod-
els for discarding unneeded data are important, as faster running systems also
produce data faster.

Detecting Emergent Properties. High-level run-time models are needed to reason
about the system from within the system. In an object-oriented system, recording
method execution events alone is not enough for certain analyses and for debug-
ging. Also, a run-time model should be seamlessly connected with the static
model, which captures structural program entities and their evolution. This al-
lows for recognizing links between the behavior of a system and its evolution and
can serve as a source of information for maintainers in their development envi-
ronment. By correlating static and dynamic information over time, one should be
able to detect emergent properties, such as maintenance hot spots, performance
bottlenecks and other opportunities for refactoring and reengineering.

Automatic Model Reconstruction. Heterogeneous and legacy sources of informa-
tion can be obstacles to analysis and evolution. Yet another complicating factor is
the use of different programming languages and media such as mainstream com-
piled languages, scripting languages, domain specific languages, HTML, XML
and query languages within the same system. Furthermore, some of the lan-
guages used will be either legacy languages or dialects (such as legacy dialects
of C++). Post-hoc parsing of components built with these languages will be
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difficult and error-prone since the original language specifications may not be
available. Thus, an evolving software can be seen as a multi-dimensional space
of data that needs to be continuously analyzed. Techniques will be needed to
automatically reconstruct high-level models and meta-models from lower-level
data, without necessarily having up-to-date access to the syntax specifications..
Possible approaches include abstraction from examples [44] and formal concept
analysis [1,36], amongst many others.

4 Enabling Change for the Developer

The evolution, or rather continuous development, of evolving systems places
special demands on the development environment. To some extent systems can
be designed for evolution. But if we see the development of an evolving system
as an infinite game, it becomes clear that one cannot anticipate all forms of
evolution.

Current IDEs focus on providing the developer only with a static view of
the source code without offering any information about how the code is actu-
ally executed at run-time, about why a bug occurred, or about whether there
are performance issues or memory consumption problems. Furthermore, modern
IDEs do not provide means to bridge the gap between the users’ view and the
developers’ view of the system. For instance, it is hard to locate and understand
a specific feature of a large system by studying its sources code alone.

We envision a development environment in which change is enabled by bridg-
ing the static and dynamic views of the system and by bringing the results of
dynamic analysis to the IDE. Ultimately, the IDE should be an active player
in the development process, enabling developers to interactively manipulate and
extend the system at a high level of abstraction.

4.1 Previous Work

Support for refactoring, reorganizing and reengineering must be part of the evolv-
ing system. The state-of-the-art in refactoring support is still in its infancy [16].
Many modern IDEs provide some automated mechanisms to change and evolve
software systems but they tend to be low level, like renaming a class or mov-
ing a method [49]. Furthermore, developers receive little guidance in identifying
opportunities for refactoring [33], and the knowledge about performed refactor-
ings is usually not kept. A promising approach is to offer a better versioning
system that is able to store the high level knowledge about a change [48] and
then provide this information for further analysis [12].

Empirical studies report that a developer performing maintenance tasks on
a system spends at least 35% of the time in navigating source code [31]. A
maintenance-oriented IDE should present the developer with a working set of
source code containing all functionality for a specific maintenance task to reduce
the navigational load. By monitoring the programmer’s activity to get a degree-
of-interest for program elements scattered across a large code base, the IDE can
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reveal code elements that are likely to be important for the task at hand [30].
Other proposals [50,54] focus on emphasizing relations between source artifacts
by recommending related artifacts based on the past sequence of browsing, or by
characterizing the kinds of changes that have taken place during development
sessions [48].

Hermion is an experimental IDE that brings run-time information to the de-
veloper to better support maintenance tasks [53]. Dynamic information gathered
at run-time provides the developer with the possibility to directly navigate to ac-
tual senders and implementors of messages, or to navigate to the actual concrete
types to which variables have been dynamically bound. Statistical data about
the run-time call graph is also integrated into the static code views, and is dy-
namically updated as the code under development is further exercised. Dynamic
monitoring is realized by means of mechanisms in the underlying reflectivity
framework (see Section 2) which support unanticipated partial behavioural re-
flection [51]. This allows running code to be instrumented on-the-fly at a high
level of abstraction, and without modifying the underlying source code.

Visualizations can convey complex information in a condensed and effective
manner. Extensions to the VisualWorks Smalltalk IDE (e.g., RBCrawler) inte-
grate various well-known visualizations such as class blueprints [14], polymetric
views [32] or system complexity views [32]. They are well integrated in the static
source navigation tools of this IDE, however, they do not take dynamic infor-
mation into account and are thus just a starting point for further work.

One particularly useful application of visualization is to correlate static views
of software components, with the features of the running systems. Feature-driven
browsing exploits run-time information gathered when exercising features and
presents this information as a visual map [52]. This enables us to quickly iden-
tify the components responsible for a feature and to highlight the dependencies
between different features. As this feature visualization is integrated in the IDE,
the developer can also better assess the impact of a source code level change on
various features of the system if there is an explicit mapping between features
and source artifacts available.

4.2 Research Agenda

Today’s IDEs are largely passive players in the development process, though
there is a clear and gradual trend towards IDEs and tools that play a more
active role. We believe that further research is needed here to make the IDE a
more active player in enabling change. Some promising research tracks follow.

Automatic and Continuous Execution. Not only should the IDE provide com-
plete information, it should also do this efficiently to avoid slowing down the
development process. To achieve efficient integration of dynamic information, we
envision applying the concept of continuous integration by running the system
automatically and continuously in the background. This relieves the developer
from the burden of having to manually trigger the execution of the system while
modifying it.
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Full Coverage. Since manually triggered dynamic analyses normally do not
cover the entire system (i.e., all system’s features), the IDE should assume
the responsibility to ensure full coverage and cover all code still being used
by the application. The IDE should analyze all execution paths through the
system by running the code currently being studied by the developer. If sys-
tem monitoring and analysis (see Section 3) can be made sufficiently efficient
and non-intrusive, possibly by exploiting the possibilities of parallel hardware,
information gathered from the execution of the live system by real users and
certainly also of recorded scripts could also be fed automatically back to the
IDE.

Exploiting Fine-grained Change Histories. Software is currently developed fol-
lowing a checkout/change/commit life cycle. This approach hides the local events
and changes from the overall development. To limit this loss of information de-
velopers are advised to commit as often as possible in the central repository.
In the future we envision a central environment that is tightly integrated with
the versioning system and that stores all changes performed on the system. Fur-
thermore, instead of being snapshot-based, change logs will capture the intent
of changes, such as common refactoring operations. This information can then
be fed back into the IDE so that developers can immediately access historical
information in a productive and integrated way.

Autonomous System Evolution. The IDE as an active player should be able to
autonomously perform many maintenance tasks. For instance, the IDE should
be able to automatically detect defects, and with the help of dynamic analysis,
suggest repair strategies to the developer. If a certain feature of such an evolving
system is broken, the environment should be able to locate this feature in source
code and determine which classes or methods need to be corrected to successfully
solve the issue. Fine-grained historical information about changes to the software
supporting the defective features should also be a valuable input to automatically
provide focus to the developer to correct the defect.

Model-Centric Development. Software developers today generally edit and ma-
nipulate textual representations of the systems being developed, i.e., as source
code. However, text is by definition static while the resulting system is dynamic
and neither knows nor cares about the textual representation from which it has
initially been built. We envision a system in which the developer directly ma-
nipulates high-level models that more closely represent the conceptual entities
of the software application. Such an approach would be model-centric rather
than “model-driven”, since models would directly represent the running appli-
cation, rather than serving to generate it. Such a system could be realized by a
visual programming environment that enables developers to develop and change
directly the dynamic structure, e.g., by working with visual components of a sys-
tem’s behavior that can be dragged, dropped, parameterized, adapted, extended
and reorganized, directly modifying the behavior.
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5 Concluding Remarks

We have argued that traditional approaches to software development do not
adequately support the inevitable change that software will undergo during its
lifetime. We have summarized some current and ongoing research activities to
enable change for long-lived software systems, and we have presented an agenda
of critical research topics for further investigation. Briefly, we see the need for
further research in the following three related areas:

– Self-aware platforms to enable change. In order to enable change for soft-
ware applications, the underlying platform (i.e., programming language and
run-time environment) must support change in a deep way. Such systems
must therefore be reflective, by means of high-level models. Change must be
modeled as a first-class entity, so that changes can be manipulated and rea-
soned about. Finally, the platform must be context-aware so that the scope
of change can be controlled to ensure safe evolution at run-time. We have
argued that these ingredients are necessary for a future generation of self-
aware, long-lived, evolving software applications. Some of these ideas have
been prototyped, but much research is needed before they are ready to be
adopted in mainstream platforms.

– Monitoring and analyzing change. A long-lived, evolving software system
must provide means to monitor and analyze change, both in terms of
short-term, dynamic adaptations, and long-term software evolution. Dy-
namic analysis today is mostly post hoc. For performance reasons it is gen-
erally impractical to monitor and analyze live systems. Novel techniques for
monitoring, debugging and analyzing live systems are being developed, but
further research is needed to make these approaches practical, for example
by exploiting the possibilities of the emerging class of multi-core processors.
Further research is also needed to detect emergent properties of long-lived
evolving software systems, particularly in terms of correlating static and dy-
namic software structures. Automatic detection of maintenance hot spots,
performance bottlenecks, and opportunities for refactoring are some of the
areas where further research is needed.

– Enabling change for the developer. Modern application development envi-
ronments essentially provide developers with static views of the application
source code. Particularly in the case of object-oriented software development,
the gap between the static and the run-time structures implies that much
valuable information is simply not available to the developer. By bringing
together static and dynamic views of the live system, many opportunities
present themselves to improve the productivity of the developer. For in-
stance, dynamic information integrated into the static software views pro-
vides richer navigation possibilities. Further research is needed to make the
IDE itself an active player that exercises, tests and analyzes the live system
as it is being developed, actively updates the static views with the results of
dynamic analysis, automatically detects defects and actively suggests repair
strategies, and keeps track of changes and their intent at a finer granular-
ity than is currently supported. As a long-term goal, we envision IDEs that
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are not so much focussed on editing source code, but rather support direct
manipulation and transformation of models of the live system under devel-
opment.

As a closing remark, we note that this kind of research is almost impossible to
carry out effectively by isolated researchers. A certain critical mass in terms of
software infrastructure is needed before research results stabilize and new ideas
can be built on top of older ones. Much of current research results in prototypes
that do not even begin to achieve the level of stability that is needed before
other researchers can build something new on top of them.

On the one hand, we advocate that the research process will need to acknowl-
edge and to reward the engineering effort. In the future, research and engineering
must meet to face the wide space opened by evolving systems. On the other hand,
just like evolving systems will not be the result of one team’s work, we advocate
that research will need to break the group boundary and open towards research
networks [3].

Bringing together research and engineering will also bring together two worlds
that are now rather separated: research and practice. Practitioners face real
problems and need new ideas to solve these problems, but cannot afford the time
and effort to experiment with unproven ideas. Researchers need real problems to
develop new ideas, but cannot afford the effort to fully validate and mature these
ideas in a practical setting. Each group is under pressure to get their products
out the door with acceptable quality and minimum cost. As a consequence few
new ideas get proven in practice, and real problems of practitioners tend not to
propagate in the research environment. The perceived cost of collaboration is
just too high.

A first step to bring these groups together and reduce the cost of collaboration
is to provide an infrastructure in which new ideas can be quickly implemented,
tested and adopted. The need for collaboration to build a successful infrastruc-
ture can be seen in the wide adoption of Eclipse as a platform [29]. Many teams
contribute to Eclipse due to its open architecture, and many researchers are
using it for implementing their vision. While Eclipse is not an academic ex-
ercise, it does facilitate software evolution research. To facilitate relevant and
collaborative research into evolving software intensive systems, an analogous
common infrastructure will be needed upon which both research and practice
can build.
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Abstract. One of the main challenges raised by software-intensive systems re-
sides in the fact that their complexity derives not so much from their size but 
the number and nature of the interactions that characterise their behaviour. In 
this paper, we discuss one of the aspects that contribute to this kind of complex-
ity – that, more and more, people are involved, not as users, but as integral 
players of such systems – which requires research that can lead to new methods 
and techniques for engineering what are called ‘socio-technical systems’. 

1   Introduction 

Software is becoming an integral part of a range of products and services performing 
vital functions in all sectors of economic and social activity. In such software-
intensive systems, software applications are required to interact, in a seamless way, 
with other software components, devices, sensors, and humans. Examples include 
large-scale heterogeneous systems such as: embedded systems for all sorts of  
industry-relevant applications (automotive, avionics, etc); systems controlling critical 
infrastructures such as defence, energy, health, telecommunications, and transport; 
business applications with decision-making capabilities; and systems that ensure es-
sential services for the functioning of society (e.g. e-government and e-learning).  

One of the main challenges raised by software-intensive systems results from the 
fact that their complexity derives not so much from their size but the number and na-
ture of the interactions (planned and unplanned) that characterise their behaviour.  In 
this paper, we discuss one of the aspects that contribute to this kind of complexity: the 
fact that, more and more, people are involved, not as users, but as integral players of 
such systems. 

Projects that are currently being funded and the remit of future calls already an-
nounced by several different research funding agencies address the involvement of 
people with ICT from a user-centric perspective. For example, this can concern 
adaptability of software to a user’s physical or emotional state and needs, or ensuring 
that people’s activities are supported (even enhanced) by ICT systems that are context 
and situation aware, inter alia. Instead, the challenge that we address in this paper 
concerns the ‘logical’ involvement of people as players in systems, contributing to the 
achievement of a global system goal (and not necessarily that of their own individual 
goals). That is to say, we are concerned with the role that people play in the services 
that are provided collectively by systems, and the ability of such systems to procure 
and bind to people at real time for the provision of required services.  
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One of the bottlenecks that needs to be removed for supporting the engineering of 
such software-intensive systems is the fact that the toolboxes that we have built for 
modelling and implementing complex software systems cannot cope with interactions 
that are not causal but only biddable (i.e., whose execution cannot be ensured by  
software). These toolboxes also fail to take into account the fact that people behave 
according to different degrees of compliance, entitlement, and normative positions 
relative to rôles that they are expected to play in such systems. This is the scenario that 
we discuss in the paper. In Section 2, we provide further motivation to the research 
area and its challenges. In Section 3, we identify some of the scientific and technical 
aspects of the challenge. In Section 4, we discuss what (and how) we can use from the 
state of the art. Finally, in Section 5, we present some concluding remarks. 

2   Socio-technical Systems 

Following a terminology that was coined 60 years ago in the area of organisational 
theory, we call socio-technical systems those software-intensive systems that involve 
complex interactions between software components, devices and social components 
(people or groups of people), not as users of the software but as players engaged in 
common tasks. As already explained, our particular interest in such systems is in pro-
viding the means for software components to be built that can interact with people in 
order to ensure that the behaviour that emerges from such interactions meets required 
global system properties. For instance, this means having the right methods and tech-
niques to develop software that can control the way people interact with given me-
chanical devices (say a doctor operates a ventilator), but also provide the context that 
enables people to act according to the roles that are assigned to them within the sys-
tem (say a surgeon is given access to private data of the patient and the instruments 
required for the operation that he/she is performing).  

A key property of socio-technical systems is that they need to adapt to changes that 
occur in the domain in which they operate in order to ensure that they deliver the ser-
vices to or control the behaviour of the components. For instance, one can think that a 
software component assigns different permissions to different categories of staff when 
controlling a given piece of equipment. Hence, in the case of health systems, if a doc-
tor replaces, say, a nurse during an operation, the software should adapt itself to the 
operating conditions that correspond to the change of interactions.   

A particular difficulty in engineering adaptive socio-technical systems derives 
from the fact that given organisational rules may need to be violated for the system to 
reconfigure itself to operate in what are non-normative or sub-ideal situations. For 
instance, under normal circumstances, the software that is controlling a routine check-
up may prevent a nurse from operating some kinds of devices but, if an emergency is 
detected, the software should adapt to the new role that the nurse is required to per-
form in, say, a life-critical operation, by withdrawing some of those restrictions and 
providing information that a doctor would normally know or have access to (like an 
allergy to penicillin). 
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What makes socio-technical systems so distinctive and worthy of specific study is 
the fact that social components cannot be designed, as software and mechani-
cal/hardware entities can, to comply with system rules; instead, they constitute what 
Michael Jackson calls a ‘biddable domain’: they can be “enjoined to adhere to a cer-
tain behaviour, but may or may not obey the injunction” [17]. More precisely, socio-
technical systems operate in domains that, like e-health, involve both interactions that 
are causal and interactions that are only biddable: 

• Through causal interactions, software can bring about changes required to  
ensure correct behaviour of the whole system like switching on a respiratory 
system during an operation. For instance, software can ensure that data is trans-
mitted in the right format between the instruments that are monitoring the vital 
signs of a patient and those that are controlling the administration of certain 
drugs during an operation, and prevent a nurse from accidentally violating given 
safety limits; this is a case in which the interaction between the software and the 
nurse is “causal”. 

• Other interactions are not causal: for instance, software cannot control that data 
that needs to be monitored or controlled by staff is actually acted upon; software 
can control that the right data finds its way to the right reports and made avail-
able to the people with the right permissions, but not that people use it in the 
right way, or that people assume only the roles for which they are qualified or 
authorised. Such interactions, which typically involve social components (hu-
man or organisational), are only biddable; ‘right’ is a notion established through 
norms and regulations to which people or social bodies are supposed to abide 
but can well violate.   

We must stress that biddable interactions should not be confused with unreliable 
causal ones. Unreliability of technical components due to the possibility of failure is a 
dependability concern that can be minimised by improving the technology and replac-
ing unreliable units as new generations of components become available. Usually, 
there are measurable parameters that are known to vary within fixed ranges, making it 
possible for systems to be engineered in such a way that they can be guaranteed to 
operate with agreed levels of reliability. In contrast, unpredictability is intrinsic to 
human behaviour, which suggests that it needs to be addressed as a feature of social 
components and not as a fault.   

A particular concern in the development of socio-technical systems is to make 
them able to self-adapt, at run-time, to situations in which social components are not 
operating according to their ‘job profile’, be it because they violated given rules or the 
context changed in ways that requires them to operate under a new role for which 
they are not qualified.  In such circumstances, we cannot force the social components 
to change their behaviour, but we can reconfigure the technical and social system that 
they are interacting with in order to adapt it to a new operating context. Of course, 
people can be trained to operate with given equipment, and equipment can be de-
signed so as to make it more human-friendly, but these are concerns that fall under the 
scope of usability – itself a challenge but not the one that concerns us here. 
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The following are some of the research challenges that we have identified: 

• Methodology – One is naturally drawn to think of adopting an Artificial Intelli-
gence methodology, but the nature of the challenge requires a different ap-
proach.  Much of AI is ‘agent-centric’, i.e. AI approaches are typically oriented 
to satisfying the goals of self-interested and autonomous individuals – agents. In 
such multi-agent systems, the emphasis is on the ability of agents to coexist in a 
shared environment and pursue their respective goals in the presence and/or in 
co-operation with others. A methodology for socio-technical systems should be 
‘interaction’ or ‘context’-centric in the sense that the focus should be in the con-
texts of interaction that software should enable, not so much in the agents that 
would operate in such contexts. This is also different from making de-
vices/artefacts “intelligent”: it’s the contexts in which such (dumb) artefacts and 
(potentially clever) people interact that need to be “intelligent” (for lack of a 
better word). It is not Artificial (agent) Intelligence that one needs but perhaps 
Artificial (collective) Consciousness in the sense of forms of (purposeful) 
awareness developed in identified contexts. 

• Formalisms and languages – As discussed above, interactions with people are 
not always causal but biddable: one can ask a person to do something without 
being sure that they will do it. The kind of formalisms that one tends to use in 
software and system engineering assume causal domains, i.e. actions that one 
bids for will be taken (unless the machine is broken or faulty, in which case it 
should be replaced or repaired). The same problem can be recognised in the 
techniques that are typically used for modelling workflows in organisations: 
most of the time, they are based on causal models of interaction and fail to take 
into account the fact that human reactions cannot be programmed or hardwired; 
workflows tend to be implemented in ways that are far too coercive and rigid to 
sustain interactions with people, leading to fatal incompatibilities with human 
forms of interaction that derive from more relaxed and casual, if not opportunis-
tic behaviour. Therefore, one would need to develop formalisms that reflect 
mixed causal and biddable domains. 

• Ideality – In socio-technical contexts, one needs to be able to represent and rea-
son about different levels of ideality, where sub-ideality is not the same thing as 
inconsistency but a deviation from a norm or desired situation. In particular, one 
the challenges that needs to be met is to be able to endow systems with the abil-
ity to self-reconfigure as a means of adapting to sub-ideal situations, possibly by 
minimising levels of service degradation. 

• Compositionality – In software and system engineering one typically develops 
parts or components in ways that they can be put together, i.e. we address 
‘physiological’ complexity [13]. In the kind of environments that we have in 
mind, people and machines/artefacts are not components in this sense: they pre-
exist the environments that they join, they do not result from a process of de-
composition. The contexts that we need to provide for them to operate together 
need to address social complexity [13] as it arises from their interactions, which 
involves unpredictability and adaptability. 

• Interference – In the absence of compositionality, one needs to take into account 
the way contexts interfere when they overlap, leading potentially to multiple de-
grees of sub-ideality. 
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3   Scientific and Technical Aspects 

The engineering of software-intensive systems in general, and socio-technical systems 
in particular, requires a methodological approach in which software components are 
no longer produced ab initio to be integrated in well-defined contexts but, instead, 
endowed with increasing levels of autonomy and ability to be connected, at run-time, 
to other system components. Although individual software components may well be 
designed according to classic correctness criteria, the challenge now is to make sure 
that the components and the interactions in place at any given state of the system 
make required properties emerge, making the system fit for purpose. This is different 
from designing systems that satisfy given customer requirements and, in a classical 
sense, are correct.  

Therefore, there is a challenge to develop methods, tools and theoretical founda-
tions for socio-technical systems that address fitness instead of correctness. Figure 1 
recognises the three different levels at which we need to operate: the models that we 
build and use to control the evolution of the system; the formalisms in which we can 
reason about and simulate the behaviour of given configurations of a system; and the 
physical entities (software, devices, people) and their interactions that constitute the 
realisations of the system in operation. 

One of the goals of the middle layer is to offer a uniform model from which one 
can infer properties and validate scenarios of possible configurations. However, these 
models should also be used to define the reconfiguration operations through which  
the system can (self-)adapt to changes in the domains of operation by detecting that 
the models no longer fit the domain. For this purpose, we need to work on the rela-
tionships between the three levels. The property layer is of a formal nature, either 
provided by a logic in which properties can be formulated and reasoned about, or sce-
narios that can be simulated and animated directly from the models. This is repre-
sented in Figure 2 through the symbol |– , which should be taken to represent not 
only logical inference but also simulation and animation. 

The other important relationships are the ones between the models and the real 
domains, what in the picture we represent through dashed arrows labelled fT, fA, fS 
that we call fits. Depending on the nature of the domain, this fit can be formally de-
fined and checked. This is what happens in the case of software domains, in which 
case the fit expresses the way a program implements a specification. In the case of the 
domains that arise in control and embedded systems, the fit needs to operate an ab-
straction from a model of the target plant to the mathematical domain over which the 
models are expressed; research in hybrid system modelling provides examples of such 
abstractions. In the case of other domains, like humans, the fit cannot be formalised. 
In this case, the model then acts as a normative design, i.e. it expresses the norms that 
social components are expected to observe and on the basis of which the interactions 
make require properties emerge. What is important is that, in case of both devices and 
social components, these fits can be monitored so that we can detect situations in 
which they cease to be valid, either because social components fail to operate accord-
ing to the norms, or devices are not operating within given bounds. 
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Therefore, the model layer should provide the means for: 

• Validating the correctness of configurations through formal verification of prop-
erties (e.g. model-checking), simulations, testing of scenarios (e.g. for possible 
feature interactions), and so on; 

• Defining the reconfiguration operations that should be performed when given 
fits break for social or technical components. 

Given this, we foresee several research directions that would need to be pursued: 

• Scientific foundations and models that can support processes and a methodology 
for adaptation, including design techniques that allow one to interleave design 
time and run-time activities; 

• Mathematical models for interconnection and emergence; it is necessary to de-
velop a framework in which different models of system behaviour can be 
brought together, in order to be able to reason about emergent properties; exam-
ples include stochastic models that can reflect unpredictable behaviour, deontic 
logics for normative systems that can provide models for biddable domains, be-
sides more traditional models for hybrid systems; algebraic techniques could be 
used for emergence and interactions; 

• Social models of human components that can provide hierarchies of roles with 
associated notions of responsibilities, capabilities, duties, inter alia; 

• Support for verification, validation, and simulation for properties such as confi-
dentiality, security, inter alia; 

• Means for testing the validity of fits, e.g. critical equipment is monitored for 
minimal levels of operation (through sensors), and human components are re-
quired to sign-in for the role that they play; 

• Formal models of reconfiguration (language and semantics) for adaptability, 
from (on-line) algorithms for adaptation and reconfiguration to high-level lan-
guages and mechanisms that can express fine and coarse grained evolution; 

• Engineering socio-technical systems for specific domains such as e-health, e-
government, e-transport; 

• Notations such as extensions of the UML. 

4   Progress Beyond the State of the Art 

In this section, we discuss a (necessarily limited and biased) number of the methods 
and techniques that we think can contribute to the engineering of socio-technical sys-
tems and point out to their limitations and ways of overcoming them. 

4.1   Normative Systems 

The usefulness of deontic logic for modelling the behavioural aspects of systems has 
been recognised by more than 20 years [e.g., 12,20,21,23,27]. Basically, deontic logic 
can be said to provide a formal framework for dealing with the notions of permission, 
prohibition, and duty or obligation [29]. The topic is also the subject of a series of 
specialist conferences (DEON) held biannually since 1991 [22]. 
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What is new and appealing in these deontic accounts of behaviour from the point 
of view of interactions with social components is the clear separation that is achieved 
at the formal level between the descriptive aspects (‘how things are’) and the pre-
scriptive aspects (‘how things should be’). Indeed, the use of the deontic concepts 
permits the definition of correct or normative behaviour of a system, but leaves open 
the possibility of meeting forms of behaviour that do not comply with the norms. That 
is to say, this formal framework does not force us to work only within the context of 
normative forms of behaviour: even if normative behaviours are not possible, a deon-
tic model is not necessarily inconsistent. Instead, it allows the derivation of informa-
tion from violation states in a positive way: as pointed out in [30], information on 
which violations can take place can be used to decide on which corrective actions 
must be taken, or on which sanctions to apply when facing non-compliant behaviour 
[23], and so on. 

The advantages of using deontic concepts for modelling organisational processes is 
also well established [e.g. 1,4,24]. Because an organisational model needs to capture 
models and enforce social patterns of behaviours of business processes operating in 
open environments, one needs mechanisms to systemise, defend and recommend right 
and wrong behaviour which in turn can inspire trust into the processes that will join 
them. It is essential that one can monitor both the expected (requested) and the enti-
tled (empowered) aspects of actions, to deal with possible violations (of what needs to 
be done or what one is entitled to do) by detection and sanction, and so on, for which 
it is necessary to have a formal framework over which one can reason about different 
degrees of compliance, entitlement, and normative positions in general [19,24]. 

This is why we consider that deontic logic and related formalisms that support 
normative systems provide a good starting point for modelling the biddable aspects of 
interactions, much in the same way that other modal logics like temporal logic have 
been used for modelling their causal aspects. 

4.2   Architectural Connectors 

The area of software architecture [e.g.,10,11,25] has been promoting an interaction-
centric approach to modularisation through connectors [2] that coordinate interactions 
as external entities. In the connector-based approach, coordination mechanisms can be 
superposed dynamically over the interactions without the components being aware of 
the way their interactions are being coordinated. In this approach, evolution can be 
made to be compositional over the architectural structure of the system [3], and self-
adaptation can be addressed at the architectural level [15].  

Architectural approaches have proved to work well when the interactions being 
coordinated are among software components in traditional software configurations. 
An architectural connector consists of (1) a set of roles that capture the types of the 
components that can be interconnected and (2) a glue that enforces an interaction pro-
tocol between any components that instantiate the roles. The formalisms that are used 
for the roles and glue tend to be process-oriented, for instance CSP processes [16] in 
the language Wright [2], action-based reactive systems in CommUnity [14], and 
event-condition-action rules in the CCC approach [3]. As already argued, these for-
malisms are not adequate for interactions that involve social components. Hence, one 
would need to investigate how architectural connectors can be extended to  
socio-technical systems: 
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• If one considers the notion of architectural connector in Wright [2], CommUnity 
[14], or CCC [13], extensions of the notion of role would need to be developed 
that can model human roles and capabilities, and also formalisms through which 
the glue (the software executed by the connector) can take into account the bid-
dable nature of interactions. This is where graph-based representations of roles 
and capabilities and deontic logics would provide a good starting point. 

• On the other hand, socio-technical systems require connectors to be dynamic in the 
sense that they will be able to reconfigure themselves in order to adapt to changes of 
context. These reconfigurations may imply changing components but also just the 
roles that they play and the policies (glue) according to which they interact. 

4.3   Problem Frames 

The interaction-centric view of architectures blends well with Jackson’s Frames  
approach to problem analysis and decomposition as explained in [5]. Architectural 
techniques lie essentially in the ‘solution domain’, i.e. they address the configuration 
of a system whose components have been identified, and its evolution through recon-
figuration with identified new components and/or connectors. However, for such an 
architectural framework to provide effective support for modelling socio-technical 
systems, one needs to address the ‘problem domain’. By this we mean the ability to 
work over an explicit decomposition of the problem domain that can identify the 
components that intervene in the system, the assumptions that they make about each 
other in the way they are interconnected, and the way the satisfaction of given system 
requirements emerges from these interactions. This is exactly the role of approaches 
to problem analysis and decomposition such as Jackson’s Problem Frames [18]. 

Problem Frames encapsulate both real world and system objects, and describe the 
interactions between them. People, as system objects, lie in biddable domains which 
are different from causal domains in that correct behaviour cannot be ensured by 
causing objects to act in pre-determined ways. The problem decomposition and archi-
tectural techniques developed by Hall and Rapanotti [26] to incorporate Problem 
Frames in representing human knowledge and guiding development of real-world 
socio-technical systems seem to provide a good starting point, in particular in what 
concerns the formalisation of collaboration patterns that have been proposed for mod-
elling both human-human and human-machine interactions [8].  

Like for the ‘architectural connector’ view, a major difference between Problem 
Frames and what we require for socio-technical systems is in the dynamic nature of 
the requirements, i.e. when one needs to adapt the interactions to changes of context. 
Typically, where a problem frame would capture a normative or ideal behaviour that 
enforces a requirement, we need some sort of scheme that can also capture sub-ideal 
situations that may arise from, say, humans violating permissions or not obeying in-
junctions, or changes of context that violate the roles assigned to social components. 

4.4   Program Correctness 

The aim of the models and the mathematical techniques that we see supporting the 
engineering of socio-technical systems is not to establish correctness as normally  
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understood in program development and software engineering. Our purpose is to make 
sure that the components and the interactions in place at any given state of the system 
make required properties emerge, making the system fit for purpose. This property 
relies on the relationships between the models and the real domains, what we call fits 
(recall Figure 2). Depending on the nature of the domain, this fit can be formally de-
fined and checked. This is what happens in the case of software domains, in which 
case the fit expresses the way a program implements a specification.  

What we said holds in an ideal situation.  In a sub-ideal situation, not all require-
ments of a purpose can be satisfied and it is important to measure the degree of fitness 
of the different possible behaviours in order to find the "best fit". Possible approaches 
to measuring fitness could be to build on results on test coverage (for a comprehen-
sive overview see [6]), topological approximations or soft constraints [7]. The testing 
approach would try to identify inputs with a high probability of incorrect behaviour 
and to extrapolate from these test cases. In topological approximations, initial seg-
ments of program traces are compared. With soft constraints logical properties of the 
program are declaratively specified and fitness is computed by checking constraint 
satisfaction over an appropriate semi-ring. We deem soft constraints to be a promising 
approach to fitness as they have proved to be very flexible in describing non-
functional requirements [9], partial constraint satisfaction [7], and preferences [31]. 

In the case of the domains that arise in control and embedded systems, the fit needs 
to operate an abstraction from a model of the target plant to the mathematical domain 
over which the models are expressed; research in hybrid system modelling provides 
examples of such abstractions. In the case of social domains, the fit cannot be  
formalised; the model acts as a normative design, i.e. it expresses the norms that so-
cial components are expected to observe and on the basis of which the interactions 
make require properties emerge.   

From the point of view of architectural connectors, it is important that these fits are 
monitored so that we can detect situations in which they cease to be valid, either be-
cause social components fail to operate according to the norms, or devices are not 
operating within given bounds. The latter is a typical situation of dependability for 
which several techniques have been developed; the former is essential for ensuring 
dynamicity of trust in the sense of socio-technical systems.  

5   Concluding Remarks 

Socio-technical systems raise additional challenges over the engineering of software-
intensive systems because they exhibit interactions that involve social components, 
which cannot be modelled and controlled in the same way as those that involve only 
technical components (software or otherwise). We have argued that the formalisms, 
methods, languages, and techniques that are normally used for supporting the engi-
neering of software systems cannot be applied directly to socio-technical systems. We 
have also pointed to ways in which we think the state of the art can be extended to 
meet the new challenges. 

In particular, we foresee that software engineering methods and techniques such as 
problem frames and architectural connectors can be extended in several ways, includ-
ing the use of different logics and mathematical domains (e.g. deontic logic).  
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However, these extensions need to be taken with care because the intended scope is 
not of traditional software engineering, but socio-technical system engineering. That 
is, our interest in problem frames and architectural connectors is not for supporting 
software requirements, specification and design, but in the methods and techniques 
that we can borrow for supporting the engineering of systems that may involve soft-
ware applications as technical components but, primarily, complex interactions be-
tween social and technical components. In particular, the models of the social and 
technical components need only to be indicative in the sense of [18], i.e. assumptions 
not requirements. Naturally, assumptions on technical components may well need to 
be guaranteed by programs that control them, but the goal of the models layer in Fig-
ure 1 is not to identify the requirements that such programs need to fulfil: we are do 
not see scope for a classical top-down method of engineering socio-technical systems 
but a method of developing software applications that can make socio-technical sys-
tems adaptable and ‘fit for purpose’. 
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Abstract. The design of cyber physical systems (CPS) presents many challenges 
because of their complexity, strong safety requirements, distribution, and real-
time nature. We propose a novel paradigm, based on the idea of using simplicity 
to control complexity, to achieve highly reliable CPS designs. The goal is to em-
body design rules of this complexity-control nature in highly reusable, very ro-
bust, and formally verified architectural patterns. We discuss some preliminary 
work and experiments illustrating how this can be done for CPS systems. 

1   Introduction 

The convergence of sensing, control, communication and coordination in cyber-
physical systems (CPS) such as modern airplanes, the power grid, transportation  
systems, and medical device networks, poses enormous challenges because of their 
complexity. The following aspects seem particularly challenging: 

• Distributed and concurrent interactions between the cyber and physical sub-
systems. 

• Strong QoS requirements including real-time, fault tolerance, safety and se-
curity requirements. 

• The risk of dramatic losses, including losses of human lives, when these sys-
tems malfunction and/or are penetrated by cyber–terrorist attacks. 

System complexity implies an overwhelming number of states to be checked. This 
is one of the greatest challenges to the development of reliable software. Unfortu-
nately, many useful features are inherently complex. Furthermore, in many complex 
CPS systems, there are components that are beyond verification. For example, after 
major surgery, a patient is allowed to "operate" an infusion pump with potentially 
lethal pain killers (patient controlled analgesia (PCA)). When pain is severe, the pa-
tient can push a button to get more pain-relieving medication. This is an example of a 
safety critical device controlled by an error-prone operator (the patient). Nevertheless, 
the PCA system as a whole needs to be certifiably safe in spite of mistakes made by 
the patient. In the following, we first consider software component reliability. 

There are two main approaches to software reliability. One is the fault avoidance 
method using formal specification and verification methods and a rigorous software 
development process such as FAA’s DO 178B standard for flight control software. 
Another approach is based on using methods that make systems fault-tolerant by  
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design, for example by design diversity [17]. A promising hybrid approach, advocated 
in [1] and also in recent work on “runtime verification and monitoring” (see, e.g., [7] 
and references there), consists in developing fault-tolerant system architectures that 
can detect system faults and can use highly reliable, verified components to ensure 
safe behavior even in the presence of faults and of unreliable components. Fault-
avoidance methods, such as methods based on model checking or theorem proving, 
provide high confidence, but are hard to scale up when used in isolation as the only 
approach to achieving system reliability. The trend towards large Cyber Physical Sys-
tems (CPS) makes the application of fault avoidance methods even more difficult. On 
the other hand, methods based on fault-tolerance that do not leverage formal methods 
technology make systems more robust, but cannot by themselves provide high assur-
ance. We believe that a hybrid approach that combines fault-tolerant architectures 
with formal verification is needed to support the design of safe and highly robust CPS 
systems. In Section 2 we first review the results from [1], which examine the relation 
between software diversity, complexity and software reliability. Building upon this 
insight, we outline a method based on formalized architecture patterns as a solution 
for building safe and reliable CPS systems in Section 3. In Section 4 we briefly dis-
cuss some related work and  present some conclusions. 

2   Diversity, Complexity and Software Reliability  

Will we have a more reliable software system by putting all the efforts into a single 
program, or by dividing the limited resources to develop several programs for the 
same purpose that provide diversity and can be used for fault-tolerance? To get some 
insight into this question, let us develop a simple model to analyze the relationship 
between reliability, development effort, and the logical complexity of software. Com-
putational complexity measures the amount of resources needed to complete a compu-
tation. In a similar way, the “logical complexity” of a software system should measure 
the amount of effort needed to verify its correctness.  

Methods that can decrease a system’s logical complexity are of paramount impor-
tance. It is important to note the difference between initial logical complexity and 
residual logical complexity. A program could have high logical complexity initially. 
However, if it has been formally verified and can be used as is1, then its residual logi-
cal complexity is zero. The value of formally verified architectures is to make residual 
complexity small. In the following, the term “complexity” refers to residual logical 
complexity unless stated otherwise. Based on what has been observed in software 
development, we propose three postulates: 

• P1: Complexity Breeds Bugs: Everything else being equal, the more complex the 
software project is, the harder to make the resulting system reliable.  

• P2: All Bugs Are Not Equal:  System design errors are much more important and 
costly than coding errors; they are also subtler and more difficult to detect and 
correct. 

• P3: All Budgets are Finite: There is only a finite amount of effort (budget) that 
we can spend on any project. 

                                                           
1 It is important to point out that we cannot simply use a known reliable component in a new 

environment without verifying the assumptions made by the component. 



94 L. Sha and J. Meseguer 

P1 implies that for a given mission duration t, the reliability of software decreases 
as complexity increases. P2 implies that for a given degree of complexity, the reliabil-
ity function has a monotonically decreasing rate of improvement with respect to de-
velopment effort. This is because easy to spot coding errors will be found and fixed 
with modest effort, but subtle coding errors and, more importantly, design errors are 
much more costly to find and fix. P3 implies that diversity is not free. That is, if we 
go for diversity, we must divide the available effort in some way.   

For example, a simple reliability model that satisfies the three postulates is the 
commonly used exponential reliability function R(t) = e–lt and assume that the failure 
rate, l, is proportional to the software complexity, C, and inversely proportional to the 
development effort, E. That is, R(t) = e–kCt/E. To focus on the interplay between com-
plexity and development effort, we normalize the mission duration t to 1 and let the 
scaling constant k = 1. As a result, we can rewrite the reliability function with a nor-
malized mission duration in the form R(E, C) = e–C/E. Under this model, the higher the 
complexity, the more effort is needed to achieve a given degree of reliability. R(E, C) 
also has a monotonically decreasing rate of reliability improvement, demonstrating 
that the remaining errors are subtler and, therefore, detecting and correcting them re-
quires more effort. Finally, the available budget E should be the same for whatever 
fault-tolerance method is used. 

Under this model, we were able to show that single version programming has 
higher reliability than 3 version programming under a wide range of conditions [1]. 
However, the highest reliability architecture structure is to have a simple and verifi-
able alternative that can provide the essential services in spite of the faults and fail-
ures in the complex full feature alternative. To illustrate this idea, let us consider the 
problem of sorting. In sorting, the critical property is to sort items correctly. The de-
sirable property is to sort them fast. Suppose that we could formally verify a Bubble 
Sort program but were unable to verify a ComplexFastSort program. Can we make 
use of this slow Bubble Sort as a watchdog for ComplexFastSort? Yes, we can. 

As illustrated in Figure 1, to guard against all possible faults of ComplexFastSort, 
we put these two programs in two 
virtual machines. In addition, we 
develop a verified object called 
“permute” that will: (i) allow 
ComplexFastSort to perform all 
the list operations to rearrange 
the order of the input item in the 
input list, but not to modify, add 
or delete any list item; and (ii) 
check in linear time  that the out-
put of ComplexFastSort is indeed 
sorted. Finally, we set a timer based on the promised speed of ComplexFastSort if it is 
supposed to be faster than the BubbleSort. If ComplexFastSort does finish in time and 
we check that the answer is correct, then the result is given as output; if it does not finish 
in time or does so but with an incorrect answer, then BubbleSort sorts the data items.  

It is important to note that this sorting system is provably correct for all possible 
new sorting components, including the use of a human to do the sorting. Furthermore, 
there is a lower bound on performance and this lower bound can be improved by  

Fig. 1. An Always Correct Sorting System 
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replacing BubbleSort by a faster and formally verified sorting program. The moral of 
this story is that we can exploit the features and performance of complex components 
even if we cannot verify them, as long as we can guarantee the critical properties by 
simple software and an appropriate architecture pattern. In this way we can leverage 
the power of formal methods to provide high assurance in the system development 
process.  We call this architecture principle “using simplicity to control complexity.”  

Checking the correctness of an output before using it, such as in the sorting exam-
ple, belongs to a fault tolerant approach known as recovery block [19]. However, in 
CPS applications, it is not always possible to determine if every command from a 
complex controller is correct (meeting the specifications). Fortunately, it is safe to 
execute an incorrect control command, 
provided that the plant’s stability mar-
gins can still be met and hence the re-
sulting errors are recoverable [1]. The 
simplex architecture allows us to safely 
exploit complex high performance con-
trol subsystems that may have residual 
errors by using a simple high assurance 
subsystem and by monitoring the result-
ing stability margin if a command were 
executed (Figure 2) [1]. That is, if a 
command might lead to instability, we 
always reject it; otherwise we give it 
the benefit of doubt. A noteworthy ex-
ample of “using simplicity to control 
complexity” in practice is the flight control system of Boeing 777 [18]. It uses triple-
triple redundancy for hardware reliability. At the software application level, it uses 
two controllers. The sophisticated control software specifically developed for Boeing 
777 is the normal controller. The secondary controller is based on the control laws 
originally developed for Boeing 747. The normal controller is much more complex 
and is able to deliver optimized flight control over a wide range of conditions. On the 
other hand, control laws developed for Boeing 747 have been used for over 25 years. 
It is a mature old technology – simple, reliable and well understood. From our per-
spective, we will call it a simple component, since it has low residual complexity. To 
exploit the advantage of advanced control technologies and to ensure a very high de-
gree of reliability, Boeing 777 under the normal controller should fly within the sta-
bility envelope of its secondary controller. This is a fine example of using simplicity 
to control complexity. 

In the following, we will illustrate the idea of complexity control in the context of a 
medical system and how we can formalize useful complexity control architecture patterns. 

3   Formalized Architecture Patterns with Computer-Aided 
Verification 

Complex and unverifiable components, e.g., human operators and highly complex 
software components, are unavoidable. Fortunately, we can ensure critical properties 

Fig. 2. Simplex architecture 
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and lower bounds on performance using: (1) formally verified complexity control 
architecture patterns, and (2) formally verified simple components for essential ser-
vices. That is, under a given fault model we need to verify the following properties: 

• Protection: The architecture software and the simple component cannot be 
corrupted by faults from the unverified complex software components. 

• Timeliness: The simple and verified components must be executed within 
timing constraints. 

• Fault tolerance: in spite of all the faults under the fault model, the simple, 
verified component will function correctly. 

Since architecture patterns often need to be adapted for new application require-
ments, we need to not only verify a collection of commonly used architecture pat-
terns, but also provide computer aided verification for the adaptation of architecture 
patterns. Furthermore, since in software practice model-based approaches are the 
most common way of capturing architectural designs and architectural patterns, it is 
important to provide formal verification support for architecture patterns expressed in 
software modeling languages. To make all this possible we, together with our students 
at UIUC and in collaboration with Artur Boronat at the University of Leicester and 
Peter Olveczky at the University of Oslo, Darren Cofer and Steve Miller of Rockwell 
Collins, and Peter Feiler, Jorgen Hansson and Dionisio de Niz of SEI are currently 
working on several mutually-reinforcing tasks:  

• Complexity control architectures and design rules for avionics and medical 
systems. 

• Formalized SAE AADL [3] subset to specify these architectures.  
• Use of MOMENT2 [6][8] to automatically transform AADL models into al-

gebraic expressions in Maude for formal analysis purposes and for further 
transformation into Real-Time Maude [9] specifications. 

• Formal semantics of AADL in Real-Time Maude, and automatic transfor-
mation of AADL models into Real-Time Maude specifications based on 
such semantics, to provide both symbolic simulation and formal verification 
by model checking for AADL models. 

In the following, we use a simple example to illustrate how this approach works. 

Example: According to the APSF 
Newsletter from Winter 2004, "A 32-
year-old woman was having a 
laparoscopic cholecystectomy (surgi-
cal removal of the gallbladder) per-
formed under general anesthesia. 
During that procedure and at the 
surgeon's request, a plain film x-ray 
was shot during a cholangiogram. 
The anesthesiologist stopped the ven-
tilator for the x-ray. The x-ray tech-
nician was unable to remove the film 
because of its position beneath the 
table. The anesthesiologist attempted 
to help the technician, but found it 

Fig. 3. Composition 1 of ventilator machine 
(VM) with X-ray machine and controller 
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difficult because the gears on the table had jammed. Finally, the x-ray was removed, 
and the surgical procedure recommenced. At some point, the anesthesiologist glanced 
at the EKG and noticed severe bradycardia. He realized he had never restarted the 
ventilator. This patient ultimately died." 

This accident could have been prevented by automation. There are two candidate 
compositions, however. 

Composition 1: Network the x-ray machine and ventilator together with a control 
station. The control station could command the ventilation to pause, the x-ray ma-
chine to take a picture, and then command the ventilator to resume. In addition, two 
watch-dog timers could be added to the control station. The first one limits the maxi-
mum duration of each pause. The second one ensures that pauses are separated by a 
minimum duration. Both of them are configuration time constants set by medical per-
sonnel. However, such a design is unacceptable, because if either the network or the 
control station fail, after commanding the ventilator to pause, the ventilator will be 
stuck at the pause state.  

Composition 2: A better de-
sign is to put these two timers 
inside the ventilator. From an 
architecture perspective, the 
latter design minimizes the 
safety dependency tree into a 
single node: the ventilator. 
Under this design, as long as 
the ventilator is verifiably 
safe, the overall system is safe 
in spite of the faults and fail-
ures in the network, the com-
mand station and the x-ray 
machine. From a safety per-
spective, we can now safely 
integrate the ventilator into 
different networks with differ-
ent but interoperable consoles 
and x-ray machines without 
recertifying the safety of the 
system, because the network, 
x-ray machine and console are 
not part of the safety depend-
ency tree. 

From the perspective of 
Simplex architecture [1], in 
composition 2 the ventilator is 
required to be verifiably safe. 
Once this is done, it can safely 
collaborate with non-safety 
critical devices such as the 
network and a command  

Fig. 4. Composition 2 of ventilator machine (VM) 
with X-ray machine and controller 

Fig. 5. AADL to Real-Time Maude Translation 
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station. The command station and network should be industrial grade, not certifiably 
safe because certifying the OS and the network is prohibitively expensive. Further-
more, if they were certified, any change in OS and network would trigger recertifica-
tion. And any non-safety critical device or network information flows connected with 
this certified network would trigger recertification. Minimizing the use of certifiably 
safe components, especially the infrastructure components such as OS and network, is 
critical to the economics of medical device networks. 

Under the Simplex architecture, non-safety critical devices can be added, modified 
and replaced without jeopardizing safety invariance, provided that architecture design 
rules are followed. This is done by ensuring that the safety invariants are satisfied by 
the set of safety critical components. In this example, the safety invariants of the ven-
tilator are the limit on the maximal duration of each pause, and the limit on the mini-
mal duration of separation between pauses. These invariants are specified by means of 
configuration time constant set by medical personnel and enforced by the two timers 
at runtime. Under the assumption that medical personnel set the constants correctly 
and the timers embedded in the ventilator design work, the ventilator is safe for all 
possible inputs from the command station, because the timeouts are not a function of 
inputs from the commands.  

The ventilator pause is instantiated from the command station and the command 
goes through the network. Thus, we say that the architecture uses the network, x-ray 
and command station, but the safety does NOT depend on them. This “use but not 
depend” is a key principle of the Simplex architecture, which minimizes the use of 
safety critical components, while maximizing the safe utilization of non-critical com-
ponents. When critical components use but do not depend on less critical components, 
we say that the system safety dependency relation is well-formed. Otherwise, we say 
that there is (safety) dependency inversion.  

As illustrated in Figure 5, to check if a candidate composition is well formed is 
done by first developing a model of the composition in AADL with a behavior speci-
fication. The AAD model is then translated into Real-Time Maude using its rewriting 
logic semantics and MOMENT2. The fault model is a specification of possible incor-
rect state transitions. Using the Real-Time Maude models of faulty transitions in un-
verified components and of the system, we were able to verify by model checking that 
the AADL model of the ventilator operation satisfies the two safety invariants on 
maximum pause time and on minimum time between pauses and is therefore verifia-
bly safe for such invariants. Furthermore, the liveness property that the X-ray will be 
taken during the pause of the ventilator in the absence of faults was also verified. 

4   Related Work and Conclusions 

Due to both space limitations and the wide range of related areas, we cannot give a 
proper comparison with related work. We can, however, mention some sample in-
stances of work that is somehow related to some aspects of our approach. First of all, 
in the area of formal analysis tools for real-time systems we can mention other tools 
such as, for example, Upaal [10], HyTech [11], and Kronos [12]. As already men-
tioned, the approach in [1] is related to recent work in runtime monitoring  and run-
time verification; this is a very active area with regular conferences and it is hardly 
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possible to give comprehensive references; we refer to [7] and references there as a 
good entry point into the subject. The ideas on formally-based architectural patterns 
are related to work on modular system specification and verification, particularly to 
work supporting assume-guarantee reasoning about modular components. Again, this 
is a large research area, but we can mention, for example, [13][14] and references 
there. There is also extensive work in combining model-based approaches and formal 
methods that we cannot do justice to; let us just mention [15], as an alternative formal 
framework for MOF different from that of MOMENT2, and the work in [16], as ex-
amples of papers in that area that are close to our work. Fault tolerant approaches for 
engineering robust software systems are also a vast area. We can however mention 
[17], which provides a good survey of this area. 

The convergence of sensing, control, communication and coordination in cyber-
physical systems such as modern airplanes, power grid, transportation systems, and 
medical device networks poses enormous challenges because of their complexity. 
Work in all the areas mentioned above is certainly relevant and useful. However, to 
address the hard challenges of CPS system design, we focus on a synergistic combi-
nation of specific technologies to support model-based design of highly reliable CPS 
systems. These combined technologies include: architectural patterns, fault-tolerant 
techniques, model-based software engineering, and object-based formal specification 
and verification of real-time systems.  
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Abstract. This paper discusses event-based semantics in the context of the
emerging concept of Cyber Physical Systems and describes two related formal
models concerning policy-based coordination and Interactive Agents.

1 Introduction

Cyber-physical systems (CPSs) integrate computing and communication with monitor-
ing and/or control of entities in the physical world. Sensing and manipulation of the
physical world occurs locally, system behavior emerges as a result of communication
and other forms of interaction. Example CPSs include automobiles, aircraft, air traf-
fic control, power grids, oil refineries, medical devices, patient monitoring, and smart
structures. Software is becoming an increasingly important element of the operation of
these systems, and must do so dependably, safely, securely, efficiently and in real-time.

CPSs go beyond traditional embedded and distributed systems. They are often long
lasting, with 24x7 operation and must evolve without losing stability. Some CPSs or
their components have stringent QoS requirements, others are more flexible.
Traditional embedded and critical systems are closed, not only in the sense of closed
physical locations or dedicated networks, but also closed with respect to their computa-
tional boundaries, i.e., all the participating elements in the systems are known initially.
Thanks to network technology and mobility, today’s embedded systems are shifting to-
wards openness and federation This leads to multi-scale, wide area critical systems with
real-time requirements, all this still with certification requirements, a major verification
challenge. The openness brings more convenience and flexibility for controlling the
systems. However, it also introduces extra complexity into the systems: large scale, un-
certainty, and dynamics—entities can come into or leave from the systems, and makes
the coordination of entities even harder.

QoS requirements, such as timing properties, fault-tolerance, security, etc., dictate
how individual entities of the system being considered coordinate with each other. For
instance, a deadline constraint on a task indicates that there must exist another entity
that is coordinated with the constrained task. Or the deadline misses its meaning. If we
consider computation is to achieve the system’s functional requirements, QoS require-
ments are reflected through coordination among computational entities. With this view,
embedded or critical systems are compositions of two main elements—computation
and coordination.

A solid semantic foundation is crucial for design, deployment, monitoring and adap-
tation of CPSs. Such a foundation must support reasoning locally about individual com-
ponents and globally about system wide properties. Our hypothesis is that event-based

M. Wirsing et al. (Eds.): Software-Intensive Systems, LNCS 5380, pp. 101–115, 2008.
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semantics can provide such a foundation. In Section 2 we discuss the general idea of
event-based semantics. A sampling of related work is presented in Section 3. This is
followed by brief overviews of two specific ideas: PAGODA—a policy and goal-based
approach to modeling autonomous system components, and Interactive agents—which
combines a policy based coordination model and an extension of the notion of actors to
include interactions other than messages.

2 Event-Based Semantics

We begin with a discussion of various notions of event, followed by essential features,
and challenges to be met in developing event-based semantics for CPSs.

2.1 What Is an Event?

An instance of an action? An occurrence in time and space? A change of condition?
There are many notions of event, different notions being useful for different purposes,
including:

– In the actor model of computation an event is a message send or receive.
– In the process algebra model of computation an event is an action shared by two

processes.
– In the world of linguistics events may happen over time or be nested. For example:

Tim and Ben played World of WarCraft. They completed a quest.

We can classify event models along several dimensions:

– punctual (for example, message send/receive) vs durative (for example, filling the
tank, attending a class)

– single vs stream (for example, card reader readings, periodic chemical sensor read-
ings, or object tracking)

– change vs action/observation.

In addition, event models may have different underlying temporal models: causal or-
dering (before/after), discrete time, continuous time.

It is important for an event-based semantic to include many different notions of event,
and to allow moving from one to another in meaningful ways.

2.2 Why Event-Based?

What are the essential features of event-based semantics? One key feature of events is
that they concern interactions between components and observations rather that internal
state. This enables specification and reasoning at higher-levels while integrating easily
with more detailed information. Another key feature of events is the notion of causal
partial order that reflects the physical reality that for events separated in space we may
not be able to decide a linear order (and should not depend on it).
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– Events are a natural way to think about reactive systems, such as CPSs. They pro-
vide a natural way to specify components of open systems in terms of interfaces and
observable behavior. Events also can form the basis for specifying coordination and
composition of components.

– Global state and local state can be abstracted to event partial orders. The causal
partial order of an event semantics captures dependencies/consequences and al-
lows reasoning about what must have happened in the past, given some reasonable
assumptions about the behavior of system components. Further, by (logically) lo-
cating events, reasoning can be localized, and will scale.

– Event models can be used to give semantics to specifications, as well and to support
runtime observation/monitoring adaptation, security decisions, trust building. They
support new programming abstractions that deal with actions and interactions rather
than state transformations.

– Events may have associated evidence, for example the sensor generating low level
events, the algorithm used to extract information (colors, shapes, faces, sound pat-
terns, . . . ), rules used to infer higher level events from lower level events (location
of a person, end of lecture), or human input.

2.3 Challenge Areas

There are many challenges to realizing the full promise of event-based semantics. The
overall challenge is to develop general mathematical models together with domain spe-
cific refinements that are both natural and expressive. Beyond models its is crucial to
develop logics and reasoning principles. Finally these models and logics need tools to
make them usable for analysis, synthesis, and transformations. Below we discuss some
of things an appropriate event model should capture and some of the issues that will be
faced in doing so.

Identifying, Modeling and Reasoning About Interdependencies. It is critical to enable
increasing dynamic (computer) control that is safe and without unpleasant surprises.
Consider for example, a power grid versus a transportation system. One the one hand,
some elements of the transportation system depend on the power grid: trolly cars, fuel
pumps, logistics planning. On the other hand changes in the transportation system may
affect loads on the power grid. How can event partial orders combined with event time-
lines enable effective modeling and analysis? For example, an event based model could
express dynamic consequences of dependencies, not just static relations.

Dealing with Time, Space, Scale, and Uncertainty. Time resolution of observation and
actions. Events must be communicated in time to be useful. An example is sub second
control on a power grid. Local event and control models may change over time. One
example is different aircraft flight modes—takeoff, landing, or cruising. Another exam-
ple is traffic control for high density landing of aircraft, weather and traffic patterns can
change things substantially. Thus we must be able to model and reason about changes
of event structures over time.

Systems operate at multiple time scales, for example realtime control of a single de-
vice in the context of scheduling of train/air traffic or coordination of human activity. An
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event-based semantics is needed that supports reasoning at each scale and integrating
multiple scales.

Event hierarchies and rules for deriving high level events from lower level evidence
or refining high level events to lower level events such as actions are needed.

Privacy Issues for Human Centric CPS. Access to dynamic data raises new issues as
patterns over time, together with context, can enable unexpected inference of informa-
tion. An example: the water company may monitor patterns of water usage, for the
purpose of optimizing flow control. Maybe be able to detect activity such as shower,
toilet flush, running a dishwasher. If the electricity company and the water company
shared information, it might be possible to infer more refined differences. Electricity
patterns for a dishwasher might be different than those for a washing machine. Clearly
there is the possibility of invasiveness if such inferences are made (and exposed) .

Notice that the dynamic data can be modeled as event streams and transformations
on event streams can be used to control what information is exposed. Much work devel-
oping formal ‘threat’ models (knowledge context and ability of entity accessing data)
is needed to realize this possibility.

Composition Composing is not just putting things together in parallel! It is also nec-
essary to provide a means of interaction, and a means of constraining possible interac-
tions. For example,

– What network and communication protocols are needed to enable interacting with
physical systems?

– What coordination primitives are needed to describe event-based compositions that
involve physical systems?

– What properties of the components and their composition are important?

Incomplete specifications are often more elegant and easier for a designer or im-
plementor to work with, but they are generally not composable—as the missing infor-
mation leaves open the possibility of interference or unexpected combined behaviors.
Arguments for composition properties typically assume all events are known, while in
a given event model some information will be implicit in the model. Assume/guarantee
formalizations can help, but when composing using multiple models it will be crucial to
make explicit all information relevant to the composition. A possible approach to cross
model composition is to develop meta-models that make explicit model assumptions.

Another aspect of composition is composing evidence—proofs, statistical confidence
levels, trust. For example, low level events or event streams may be combined an ab-
stracted to infer higher level events. Event models are a good basis for thinking about
situation awareness, and it may be important to know how and event was detected,
before taking action.

New Models for Thinking About Things Top to Bottom. Currently embedded systems
have their control loop in the hardware or a realtime operating system. This does not
scale and does not work well in open systems. How can thinking in terms of events lead
to better models?
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New Languages Based on New Models of Computation and Interaction. Languages are
needed for event-based requirements, executable specification, composing, monitoring,
and even programming. Considerations include

– the ability to change the way instructions/descriptions are interpreted
– scoping visibility and effects of actions
– containing effects of errors or unexpected events—both physical and cyber
– programming concepts with resource sensitivity built in
– what can be monitored, detected and/or controlled?

3 Related Work

In the following we review a sampling of work related to event-based semantics.

Events Vs. State, Partial Order Vs. Interleaving. In [26,25] an argument is presented
that the traditional computer science model of concurrent programming using state-
based models and threads incurs unnecessary complexity and results in code that is
difficult to debug. For sequential computation and function composition they work
nicely. When deterministic sequential threads are composed in parallel they become
non-deterministic and difficult to manage. A tag based signal model is proposed build-
ing on [24]. The domain of tags comes equipped with an ordering relation, events are
tag-value pairs, and signals are sets of events describing incremental evolution of a sys-
tem. Components modeled in terms of signals compose naturally. The model is elab-
orated to model both components and connectors, thus capturing interactions and also
introducing the possibility of feedback loops. A mathematical theory based on topolog-
ical concepts has been developed to give a compositional semantics to the components-
connector wiring diagrams [27].

In [9] Clinger proves the existence of global times for event diagrams (a form of
event partial orders) corresponding to possible interleavings. This provides an associ-
ated interleaving model allowing one to reason sequentially or about partial orders.

Rewriting logic [28,30] extends equational logic with local rewrite rules that model
change over time. Proofs in rewriting logic can also be thought of as computations.
Since rules are applied locally, a computation step may involve multiple parallel
rewrites, while an equivalent computation carries these out one step at a time. In [29] it
was shown that in a restricted class of rewrite theories modeling object / actor systems,
there is an isomorphism between equivalence classes of proofs/computations and the
event partial order generated by the computation.

In [36] an abstract interpretation of time is proposed to model systems involving
preemptive scheduling. In this approach, models of the individual process are composed
into a single time domain with the result being an infinite state timed automaton called
a time domain automaton. Each state of such an automaton represents an equivalence
class of all possible execution interleavings that result in that particular event ordering.
Abstract interpretation combined with constraint solving techniques are used to make
the model amenable to analysis.
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Event Models for Actors. The actor model [20,2,1] is a model of concurrent and dis-
tributed computation based on asynchronous message passing. Actors are reactive en-
tities that encapsulate state and control and interact with other actors only by sending
and receiving messages. Events are the basis of semantics of actor languages and sys-
tems. Grief [18] introduced the notion of event diagram which captures the linear order
of events at each actor and the causal order between message sends and corresponding
receives. Baker and Hewitt [5] proposed a set of laws characterizing these event partial
orders. In [33] a compositional notion of Actor Algebra is developed. Actor Algebra
models include interfaces, specifications, event diagrams, and interaction paths with
mappings between the different algebras.

PastTime Distributed Temporal Logic (PtDTL). PtDTL, a variant of PastTime Tem-
poral logic was introduced in [32]. This logic reasons not over interleavings and linear
sequences of past states, but over partially ordered sets of events causally in the past. As
for event diagrams, events are located and the logic introduces epistemic operators that
allow reasoning about what holds at the most recent causally previous state of another
actor or process. The logic is used as the basis of an efficient algorithm for distributed
monitoring.

Causal Logic of Events. Causal Logic of Events (CLE) [8,6,7] is a logic for distributed
computing that has the explanatory and technical power of constructive logics of com-
putation. CLE provides a proof technology that supports correct-by-construction pro-
gramming based on the notion that concurrent processes can be extracted from proofs
that specifications are achievable. A methodology for specifying distributed systems in
CLE has been developed and implemented in NuPrl [3]. Requirements for a distributed
system are expressed in terms of events, these requirements are then refined to collec-
tions of constraints called Message Automata (MAs) that imply the original require-
ments. MAs can be compiled to standard languages such as Java. Models of message
automata are event diagrams, with events localized and the event order at each location
a total order. Working bottom up, system properties can be inferred from MAs. Event
classes and laws for composition allow specification and reasoning at a higher level of
abstraction. The logical framework also supports timing properties, for example using
variables that are trajectories of values rather than discrete values. The methodology
has been applied to a variety of networking and security protocols.

Strand Spaces as an Event Model for Security and Location. Key exchange has logi-
cally simple goals, agnostic to communication concerns. In contrast, location protocols
have quantitative goals, and models must consider transmission properties and use ge-
ometry. Strand spaces are a mathematical model that provides a special-purpose exe-
cution semantics, called Bundles, based on a causal partial order, that is complete for
symbolic analysis of key exchange [16]. Reasoning about properties such as authenti-
cation or confidentiality makes combined use of causality and cryptographic properties.
Strand spaces have been used to model and analyze a variety of security related proto-
cols, including key exchange, contract negotiations, and secure payments systems.

Metric strand spaces are introduced in order to also reason about space and time.
Bundles in a metric strand space have a distance and time elapse measures on some pairs
of events that obey axioms reflecting by a model of transmission speed [19]. Secure
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location protocols combine cryptography with the physics of message transmission.
The cryptographic operations authenticate the principals and preserve confidentiality,
while the physics of message transmission constrain their possible locations. In the case
of metric strand spaces, the strand space model is enriched by associating a space-time
location with each node. The strands follow the world lines of principals. Some bundles
are compatible with the physics of message transmission – e.g. the maximum message
transmission speed – while others are not. An assertion true in every bundle compatible
with the physics is a valid conclusion of a secure location protocol.

CEL and strand spaces are similar in a number of ways. They share notions of causal
order and the need to express limitations on the adversary. Strand spaces have a notion
of unique origination that is similar to the CEL notion of nonce. The two formalism dif-
fer in their treatment of (logical) locality: in CEL locality encompasses multiple activi-
ties of a single principle or actor and may allow sharing of information across multiple
threads/activities. In contrast the Strand space model explicitly isolates each activity of
a principal (a strand) enforcing further localization.

Event Streams and Uncertainty. Event-based semantics is natural for many real-time
embedded applications. In such applications the issue of temporal uncertainty is a
common and challenging problem. Temporal uncertainty comes from the inherent re-
strictions in the underlying sensing layer, such as the temporal/spatial limitations of
sampling, inaccurate clocks and unpredictable network latency. Although events occur
instantaneously (dense time) in the physical world, an event occurrence often cannot be
assigned a precise time owing to the above limitations. PTMON (Probabilistic Timing
MONitor) [42,41] is a generic framework for incorporating various uncertainty mod-
els on event time stamps, developed in the context of monitoring timing constraints on
event streams. A monitor task is formulated by timing constraints in a simple real-time
temporal logic and satisfaction/violation of these formulas is checked at run time. Given
a probability model of the temporal distance from event occurrence to event detection,
timing constraints based on event occurrences can be transformed to those based on
event detection. This transformation enables the early detection of timing constraint
violations. Applications include real-time baggage tracking, wireless process control,
remote monitoring, online multimedia downloading, and teleconference.

Grounding High-Level Event Definition. High-level event-based models require a pre-
cise notion of events in the model. A formal way of defining high-level events in terms
of low-level system state helps to define a faithful abstraction for an event-based model.
The logic of events and conditions (LEC) [22] is a two-sorted logic bridging the gap be-
tween state-based formalisms, commonly found in low-level models, and higher-level
event formalisms. Conditions represent an abstract view of the system state, with prim-
itive conditions being state predicates over the observable state variables in the system.
Primitive events can also be directly observed during a system run. The use of LEC for
event definition was developed in the context of run-time verification. The same sepa-
ration of concerns used in run-time verification can be applied to high-level modeling
in general. The basic approach is to provide an event-based model that uses high-level
events as atomic building blocks, reducing the size and complexity of the model. The
event definition layer provides grounding of the high-level model in the implicit low-
level model. It can be used to establish a mapping between behaviors of the high-level
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and low-level models, which can be used to demonstrate, without ever constructing the
low-level model explicitly, that the high-level model is a faithful representation of the
system.

Event Models for Pervasive Spaces. The Responsphere Infrastructure is a campus-level
pervasive computing and communication infrastructure at University of California at
Irvine (http://www.responsphere.org). It consists of a variety of sensors (video cam-
eras, sensor mounted mobile robots, people counters, RFID, acoustic sensors, thermal
and gas sensors) dispersed over approximately a third of the campus, connected via a
variety of network and communication technologies (802.11, cellular, mesh, and power-
line networks). It includes dense sensing in a few chosen buildings where it monitors all
corridors, entries, exits, and public areas using cameras. In addition, some designated
public spaces and laboratories are instrumented with RFID readers. Responsphere also
includes mobile sensor mounted robots with communication capabilities that can be
programmed for autonomous data collection. Responsphere serves as a test bed for de-
veloping a variety of pervasive functionalities, for example, using a mixture of video
and RFID technologies to implement social policies of a shared common facility within
a particular building. Examples include reminding people to switch off the coffee ma-
chine and conducting social experiments to study recycling behavior. In addition Re-
sponsphere has been used to conduct and monitor a variety of emergency drills such as
building and region evacuations. The SATware System [21] (http://satware.ics.uci.edu)
is a scalable middleware, that runs on Responsphere and provides seamless access to
sensor and event level data. Applications access this information via a SQL style query
language referred to as SATQL, at both the physical (e.g., raw sensor feeds) and se-
mantic levels (i.e., at the level of entities, activities, and events). The key concept is that
of a virtual sensor that empowers programmers to define and detect semantic concepts
thereby realizing information abstraction. Virtual sensors are mapped (at run-time) to
a graph of operators which are implemented over physical sensor streams. Challenges
for management and programming of pervasive spaces include privacy and trustworthi-
ness, evidence for judging semantic event reports, trading function for privacy, and self
monitoring and adaptation.

4 Policy- and Goal-Based Operation of Autonomous Agents

There is a growing interest in autonomous agents that interact with and affect their
environment, and have some ability to observe, reason, and adapt. As part of a larger
system agents should also be able to compete for resources but also to cooperate for
mutual benefit or to achieve an overall goal.

PAGODA (Policy And GOal based Distributed Autonomy) is a modular architecture
for design of interactive autonomous systems. A PAGODA system is a collection of
PAGODA nodes cooperating to achieve some mutual goal. A PAGODA node (agent)
interacts with its environment by sensing and affecting, driven by goals to achieve and
constrained by policies. The PAGODA architecture was inspired by studying architec-
tures developed for autonomous space systems, especially the MDS architecture [15]
and its precursors [31]. Software for deep space missions must be
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– autonomous—operating remotely for extended time
– robust—operating under unpredictable conditions
– dependable—mission failure is costly

In PAGODA policy-based coordination is used at two levels: local modular combina-
tion of components making up an agents behavior; and coordination of a distributed
system of agents constraining the possible interaction scenarios to meet end-to-end re-
quirements.

The long term objective of the PAGODA project is to develop techniques for speci-
fication and analysis that take advantage of the modularity and the declarative nature of
policy- and goal-based systems. PAGODA has been developed in the context of projects
providing driving applications, including a rover (for example for exploration or patrol)
[13,14] and software defined radios [40] supporting specific missions. Other potential
applications include reactive/adaptive planners, cognitive radios, software assistants,
and self-configuring systems.

Our approach is based on the Reflective Russian Dolls (RRD) model of distributed
object reflection [29,34] which in turn is founded on the rewriting logic formal model-
ing framework [28,30]. In [34] a general approach to modeling policy-based coordina-
tion using RRD was presented. The question addressed by PAGODA is how to specify
autonomous behavior that meets or achieves its goals (subject to constraints on exter-
nal conditions) in a modular and declarative manner using models of its environment.
Our solution is to factor the behavior into components, each with a specific role, that
combine to achieve the desired result.

4.1 PAGODA Nodes

Figure 1 shows the principal components of a PAGODA node: a knowledge base (KB),
a reasoner (R), a monitor (M), a learner (L), and a ‘hardware’ abstraction layer (HAL).
These interact with each other and the environment under the control of a
coordinator (C).

The knowledgebase (KB) is the centerpiece. It contains knowledge that is shared
and updated by the remaining components. This knowledge includes a wide range of
information:

– Goals that specify what the node or system is trying to achieve. A goal could be a
very high-level goal such as carrying out a scientific experiment or tuning param-
eters to achieve a given quality of service; or lower level goals that correspond to
actions that can be carried out.

– Policies that constrain the allowed actions / interactions of a node or system. A
policy might reduce the number of choices for setting parameters, for example
based on importance of different competing effects. Another policy might deter-
mine trade-offs between speed and power usage. Other policies might control ag-
gregation and abstraction of information used locally or communicated to other
agents.

– A device model that specifies the HAL interface: parameters/knob that can be set
(effecting) and read (sensing) and their relationships. At the system level the model
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Fig. 1. PAGODA node architecture

should also specify how values sensed at different nodes can be combined to deter-
mine non-local system properties, and the relationships of such properties to higher
level goals.

– An environment model, representing relevant features of the environment in which
the node is operating, including information about other nodes. For a mobile node
this could include terrain information or building maps.

– Node state, which includes values of variables determined by sensor readings and
deduced from actions and information collected from other nodes. It also includes
‘situation’ information such as the stage in a complex task/mission or progress
towards achieving a goal.

– History, a log of events–goals received, knob settings and sensor readings, monitor
alerts, and so on.

The job of the reasoner component (R) is to determine proper parameter settings in
response to goals requests: new goals, starting a new stage of a current goal, or alerts
raised due to unexpected sensor values, indicating that adjustments need to be made.
The reasoner uses information from the KB as a basis for its deductions: the device and
environment model, the goals and policies, and the current state. When new parameter
settings are determined, the reasoner also provides justifications such as what sensor
values and/or what relationships from the device model were used to infer the new
settings. This can be used for diagnostics if things don’t go as expected. The reasoner
also specifies sensors that should be monitored and conditions on sensor reading under
which the reasoner to be alerted to take corrective action.

The monitor component (M) receives monitoring tasks from the reasoner, reads and
evaluates specified sensors, and sends alerts to the reasoner when sensor readings are
not within specified limits.

The job of the learner component (L) is to improve the model used by the reasoner
to infer appropriate knob settings. In passive mode it observes events such as goals,
settings, sensor readings and alerts and attempts to improve relationships specified by
the model based on this information. A learner may also have an active mode where it
is allowed to propose experimental settings and observe the results.
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The hardware abstraction layer component (HAL) is an interface to the sensors and
effectors used by the node. It plays the role of device driver, handling knob setting and
sensor reading requests. In a real system the HAL might map requests to a format that is
understood by the actual hardware, or even to a lower level abstraction layer. The intent
is that these interactions should obey the ‘physics’ specified by the device model, but the
node needs to be prepared for things to go wrong—some hardware component breaks,
the environment is different than expected, it is being operated outside the expected
operational mode, and so on.

The coordinator (C) controls message semantics for internal components and me-
diates interactions with the external world. The coordinator is responsible for ensur-
ing specified relationships between the events (message deliveries) seen by different
components, and for meeting logging and notification requirements. It also enforces
component level synchronization constraints (only delivering messages for which the
component is enabled). The coordinator actions are specified declaratively by policies.
Note that coordinator policies are similar in spirit, to policies used by the reasoner, but
different in detail.

Each PAGODA component type has an interface specified using events. The seman-
tics of given component is an event-based semantics in the spirit of the Actor Algebra
discussed in Section 2. This enables event-based composition of components and their
semantics. Composition with a coordinator can be treated as a vertical composition in
the spirit of [12].

This architecture provides a simple means of plugging in different component in-
stances. PAGODA node components interact with other node components based on
component type not on component instance identity. Thus it is easy to have multiple
reasoners, knowledge bases, learners, etc., by simply modifying the coordinator policy
to choose appropriate component instances. Different reasoners might be appropriate
for different situations or goals, knowledge might be split into categories and stored in
separate KB instances, or two KB instances might contain knowledge at different levels
of abstraction appropriate for different situations.

Additional components types could be easily incorporated. For example a component
capable of knowledge abstraction or aggregation could be invoked from time to time
by the coordinator to infer higher-level information from sensor data or information
received from peers. Such a component could be used to raise the level of abstraction
at which the reasoner or learner operates.

5 Interactive Agents

Much has been written contrasting interactive computation and other models such as
Turing machines and logic programming [37,38,39]. Our focus is on modeling and
reasoning about the capabilities enabled by interactivity.

An interactive agent must be aware of its surroundings, and it may also affect its
environment. It may need to negotiate, cooperate, or compete. A formal framework for
modeling interactive agents was introduced in [35]. The framework was based on the
need to consider the following features in the design of interactive agents.
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– An agent has a boundary consisting of points of interaction with the environment.
From the outside only what crosses the boundary is visible. Interaction points could
be sensors, such as light detectors or thermometers, effectors such as switches or
dials, or message queues for exchange of messages with other agents.

– An agent has actions that it can execute. It may also have goals, knowledge (about
its environment and itself), policies constraining actions, or strategies for achieving
goals.

– Internally an agent may have multiple concurrent activities; observing and process-
ing sensory information; refining goals to subgoals, choosing actions, executing
actions; evaluating and analyzing results: did actions have expected effect? updat-
ing knowledge by learning and inference;

– Interactivity means internal processes must be interruptible.

The framework is based on rewriting logic and a reflective model of coordination
for managing an agents activities. New forms of interaction are introduced to model
both message and channel/signal based interactions, and to pave the way for modeling
continuous interactions. The compositional interaction semantics of [33,12] is extended
to handle the new forms of interaction. The aims of the framework include:

– a higher level means of specifying and understanding agent behavior
– a place to classify agents with different ‘skills’
– a formal design space to represent a variety of design decisions and to study trade-

offs resulting from decisions such as adaptability vs. predictability;

One advantage of the proposed framework is that specifications are executable, allowing
prototyping of designs at many stages. In addition, such specifications are formally
analyzable using the Maude rewriting logic system, and connections with other formal
systems.

Briefly, interactive agents are formalized as actor like objects with rules for commu-
nication by messages, interaction through interface points, and policies for coordinating
activities, also represented as (sub)agents. What the agent reads at an interaction point
is controlled by the environment. What the environment can read is controlled by the
agent (by a write action).

An interaction path is a (possibly infinite) sequence of interactions (events as viewed
from an imaginary external observer). Each computation of an agent (allowed by the
rewrite rules) gives rise to a set of interaction paths consisting of the (non-silent) in-
teractions labeling the transitions (rewrite rule applications). The observable semantics
of an interactive agent is thus the set of interaction paths of its possible computations.
This definition derives from earlier work developing interaction semantics for actors
[33,12], ideas from Timed Data Stream semantics for the Reo coordination model [4],
and signal event semantics [23]. Interaction semantics is similar in spirit to the Inter-
active Stream Languages of [17]. The ideas are also related to work on interfaces of
reactive and concurrent systems such as, [10,11].

Interaction semantics is compositional both vertically and horizontally. The semantics
of the horizontal (parallel) composition of two systems is done by zipping compatible
paths, one from the semantics of each system. Two paths are compatible if their subse-
quences of complimentary interactions, such as out/write in one and in/read in the other



Cyber-Physical Systems and Events 113

match. In the composed path, these interactions become silent transitions and disappear,
and the remaining interactions are merged. (See [33] for details in the case of horizontal,
actor-actor composition, and [12] for vertical, actor-metaactor, composition.)

6 Conclusion

Cyber physical systems (CPSs) are an emerging phenomena. These systems are often
not only software intensive, but also are tightly integrated with physical system, leading
to many new challenges for design and development. We have proposed event-based se-
mantics as a semantic foundation for Cyber physical Systems. We discussed a variety of
notions of event, essential features and challenges for developing event-based seman-
tics for CPSs. We also sketched two compositional models, one for autonomous agents
and one for interactive agents. The latter providing forms of interaction such as needed
in CPSs.
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Abstract. With the advance of ubiquitous computing and ambient in-
telligence, several thousands of sensors and mobile devices can collabo-
rate with each other in order to collect sensing information in wide areas
and distribute location-aware information in real-time. In urban districts,
several types of ubiquitous applications will be deployed and used in par-
allel in near future. It is known that reliability and performance of such
ubiquitous applications are strongly affected by node mobility, fluctu-
ation of node density, data transmission mechanisms (protocols), and
so on. Therefore, in order to design and deploy such ubiquitous appli-
cations in urban districts as societal systems, we must anticipate the
behavior pattern (mobility) of pedestrians and vehicles in those areas
and develop resilient design methodology for high-reliable deployment
and management of ubiquitous devices in underlying wireless commu-
nication environments. Intellectual management of a large amount of
sensing information in mobile wireless Internet environments is also be-
coming important. Here, we focus on large-scale mobile wireless ubiqui-
tous systems in urban districts as complex software-intensive systems,
and discuss about research challenges for their design and deployment.

Keywords: Software-intensive systems, ubiquitous systems, MANET,
urban planning, software design methodology.

1 Introduction

Due to the progress of the Internet and wireless communication technology, mo-
bile wireless communication systems/applications are becoming popular. Those
technology will be used for indoor services, localization, location-aware services,
and so on. Mobile Ad-hoc Networks (MANETs) are expected to be useful and
important as a way for achieving future affluent ambient society. In near fu-
ture, several types of ubiquitous systems/applications will be deployed in urban
districts where several thousands of sensors and ubiquitous devices will collab-
orate with each other in order to collect sensing information in wide areas and
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distribute location-aware information in real-time. This will make our life more
convenient and affluent.

In order for mega scale ubiquitous systems to become popular as societal
systems, high reliability and robustness are required. However, designing and
deploying such mega scale ubiquitous systems are very complicated tasks since
it is hardly possible to construct realistic testbeds in real world for performance
evaluation and reliability checking. Moreover, constituents of such ubiquitous
systems are not stationary, and it is known that their mobility models greatly
affect their performance and reliability [1,2,6,9,11]. Therefore, we must carefully
consider mobility of humans, mobile sensors, robots and vehicles. Thus there
are strong demands for software design methodology which allows us to design,
analyze and validate such ubiquitous systems/applications in simple and effective
ways. In near future, a large amount of sensing information will be used in urban
life. By combining different types of sensing information, we might be able to
generate more useful information for our life. Intellectual management of a large
amount of sensing information in mobile wireless Internet environments is also
becoming important.

There are several research challenges in designing future software-intensive
systems [8,24]. Here, we focus on designing mega scale ubiquitous systems in ur-
ban districts and discuss about research challenges for their design and deploy-
ment. The expected design methodology should consider the following points :
(1) mobility influence of sensor/ubiquitous devices, (2) efficient and high-reliable
deployment of ubiquitous devices, and (3) well-regulated urban planning for de-
ployment of ubiquitous systems. In the following sections, we discuss about those
topics in details.

2 Designing Mega Scale Ubiquitous Systems

2.1 Sensing Information in Future Urban Life

In near future, a large amount of sensing information will be used in urban
life. For example, as environmental monitoring, meteorological sensors might
be deployed in urban districts, and they collect temperature, humidity, wind
direction in those areas. By analyzing a large amount of meteorological data
and regional data such as building information, we might be able to cope with
heat island phenomena in urban districts. We can expect to take measures to
meet those situations based on sensing information.

Sensing old constructions such as old buildings, bridges and roads becomes
much more important in near future. It might become one of the most valuable
sensor applications. Such information will be useful for maintaining old high-
ways/roads and detecting deterioration of old constructions. Sensing vital signs
of humans also becomes important. Those information can be used for emer-
gency medical services and monitoring of chronic diseases. Monitoring objects
using cameras can be used for several purposes in urban areas and factories. For
future factory automation, new types of sensors, monitors and mobile robots
might be used.
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More accurate GPS and wireless localization devices will be developed. Loca-
tion information of moving objects/pedestrians will be more popular for future
ITS and location-aware services such as shop advertisement services consider-
ing pedestrians’ favorite, real-time route navigation services, autonomous traffic
control in crowded passages, and so on. Observation of children and old persons
in urban areas will also become useful for keeping emotional trust in urban life.
Sensors can localize each moving object and estimate its moving speed and di-
rection. On future roads, those collected data will be informed to approaching
vehicles for road safety.

In the above environments, a large amount of sensing information will be col-
lected and held in mobile wireless Internet environments. In order for managing
those information, we need intellectual mechanisms for extracting useful informa-
tion from different types of sensing information. Ensemble engineering is needed
for adequate search, quick response and accurate location-aware services. Uncer-
tain numbers of objects/users also need to be treated in those environments.

2.2 Ubiquitous Services on MANETs

In future ambient society, several ubiquitous services in urban districts are con-
sidered. Some examples are listed below.

– Communication services : Now wireless LAN devices are getting cheaper
and smaller so that they can be embedded into cellular phones, PDA and
small sensor/ubiquitous devices. A plausible story is that communication
between two end mobile nodes in the same local region is performed through
communication channels of cellular phones and wireless LAN by seamlessly
switching the two communication channels depending on connectivity and
usable bandwidth of the wireless LAN. This will be effective to avoid waste
of network resources. In such situations, node mobility and adopted proto-
cols strongly affect the quality of communication. The deployment of base
stations (or relay nodes) also affects it.

– Information delivery services : MANETs might be used to gather/distribute
several types of information such as advertisements in city sections, safety
information for disaster relief and traffic congestion information to neigh-
boring vehicles. In those services, in order to reduce the number of dissem-
ination messages, position-based information dissemination may be used to
deliver messages. In position-based information dissemination, each mobile
node decides when it should distribute the received messages to its neigh-
bors, depending on the (history of) positions of the node like geocasting
[14,20]. In this case, node mobility might affect message delivery ratios and
required dissemination intervals. By anticipating node mobility in advance,
we might be able to find a suitable dissemination policy for achieving better
information acquisition ratios with a smaller number of messages.

– Mobile server services : Suppose that mobile nodes have enough process-
ing power and storage space in order to execute server/database programs
directly on the nodes. Then they can act as servers (mobile servers) that
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provide information stored on the nodes to their neighbors. Here, we call
such services as mobile server services. A plausible service example is that a
mobile node executes a weblog server program on the node, and other nodes
nearby the server node will access to the weblog through MANETs. In urban
areas such as stations, large shopping malls and baseball/soccer stadiums,
people might simultaneously request similar information such as routes to
specific destinations, bargain information in the malls and highlight scenes
of their watching sports. To realize this kind of services on MANETs, con-
tent caching on mobile servers becomes a very important technology. This
is effective to avoid traffic concentration and to improve content discovery
ratios. This encourages us to design mobility-aware caching strategies.

2.3 Mobility Modeling in Urban Districts

As we described in Section 1, constituents of the above ubiquitous systems are
not stationary, and it is known that their mobility models greatly affect the per-
formance and reliability [1,2,6,9,11]. Therefore, in order to evaluate the perfor-
mance of those systems and check their reliability precisely, we need to consider
more realistic mobility models. However, the reality of mobility models is always
a compensation for the complexity. In particular, modeling real movement of
mobile nodes with high fidelity for evaluation of town-widely deployed networks
needs detailed observation or survey of those people moving from place to place
along streets. Obviously such observation is not easily carried out due to cost,
privacy and some other reasons.

In Fig. 1, we show flows of pedestrians in front of Osaka railway station.
Fig. 1(a) denotes Random Way Point (RWP) mobility where pedestrians move
randomly. In Fig. 1(b), pedestrians also move randomly but follow the form of
sidewalks. Fig. 1(c) shows a realistic mobility model called Urban Pedestrian Flow
(UPF) [10,11], which is very close to real pedestrians’ flows (in [10], we have shown
that its estimation error is at most 8%). In UPF mobility, the number of pedes-
trians at each sidewalk is decided based on simple observation of pedestrian flows
at multiple intersections, and the moving direction of each pedestrian at every

Fig. 1. Mobility Models : (a) Random Way Point (RWP), (b) City Section Mobility,
(c) Urban Pedestrian Flow (UPF)
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Fig. 2. Comparison of Packet Arrival Ratios between UPF and RWP

intersection is decided based on this calculation. Note that fluctuation of node
density is rather large in Fig. 1(c) while it is uniform in Fig. 1(a) and Fig. 1(b).

We have designed a shop advertisement service for pedestrians around Osaka
railway station where the bargain information of a department store is dissemi-
nated, and investigated the packet arrival ratios using several diffusion policies.
We show the results in Fig. 2 where x-axis denotes the simulation time and y-axis
denotes the number of nodes which have received the bargain information. We
have changed the places of three base stations disseminating the bargain informa-
tion by considering node densities obtained from UPF mobility in Fig. 1(c). We
have also adopted two diffusion policies. As shown in Fig. 2, the arrangement of the
base stations and diffusion policies do not give large influence for RWP (random)
mobility since the node density is uniform. On the other hand, they give rather
large influence for UPF (realistic) mobility since the node density varies depend-
ing on sidewalks and a suitable arrangement of the base stations achieves better
performance. Detailed experiments about the difference of performance charac-
teristics between RWP mobility and UPF mobility are shown in [11].

Recently many researches about transmission of traffic information among ve-
hicles by using inter-vehicle communication without any load side infrastructures
have been studied. In order to evaluate performance of such inter-vehicle commu-
nication, traffic simulators are widely used. However, in general, most of exist-
ing traffic simulators have been designed to reproduce statistically derived traffic
flows (macroscopic models) since the goal of their usage is to evaluate traffic condi-
tions such as prediction of traffic jams and traffic demands. Therefore, in such traf-
fic simulators, distance between two following vehicles is uniformly implemented
based on given statistical flow rates. If vehicles are running at the same interval,
and if the interval is smaller than the wireless communication range, the success
ratio of inter-vehicle communication between two sequential vehicles becomes very
high. As the result, the success ratio of multi-hop communication among sequen-
tially running vehicles also becomes high. In reality, vehicles are usually moving in
groups of five or ten by following their front vehicle whose speed is relatively slow.
Some vehicles among those vehicles might pass through from the current lane to
the next lane. Thus, another groups of vehicles arise. In those situations, although
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(1) 3 vehicles / 1km (2) 6 vehicles / 1km

(3) 9 vehicles / 1km (4) 12 vehicles / 1km

Fig. 3. Ratios of Reachable Pairs

the success ratio of multi-hop communication among sequentially running vehicles
in a group is high, the success ratio of multi-hop communication between vehicles
in different two groups becomes low if there are empty road sections between the
two groups where no vehicles are running.

In [17], we have proposed a more realistic behavior model of vehicles (micro-
scopic model) where we follow the basic vehicular mobility of an existing traffic
simulator [16] so that the realbottleneck capacity and saturation flow rate on roads
can be preserved. However, in the proposed model, for representing more realistic
microscopic vehicular mobility, we modify the vehicular mobility where vehicles
run at different speeds and distances between two vehicles vary. Each vehicle also
selects its own favorite lane depending on its current speed and surrounding situ-
ation, and decides whether it should follow its preceding vehicles when it reaches
the tail of a group of sequentially running vehicles. It can pass through when it
reaches very slow vehicles. We have compared the average and distribution of ve-
hicular distances in traffic flows reproduced by our microscopic model and its origi-
nal macroscopic model with real ones, which can be obtained from observation for
several cities’ roads shown in Google Earth. The correlation coefficient between
our microscopic model and real ones is 0.9411 while the corresponding correlation
coefficient between the original macroscopic model and real ones is 0.3975. This
shows that our microscopic model is sufficiently close to real ones.

In Fig. 3, we show the results of a simple experiment. Here, we say that a pair
of vehicles is reachable when there exists a multi-hop wireless path between them.
We have compared the macroscopic mobility (shown as “original” in Fig. 3) and
proposed microscopic mobility (shown as “modified” in Fig. 3), and evaluated
the success ratios of multi-hop wireless communication. In this simulaiton we set
the maximum radio transmission range as 250m. Then, we compared the ratio
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of reachable pairs. We have used highway maps in Tokyo and Autobahn, and
generated 3, 6, 9 and 12 vehicles per 1km in average through the simulation.

For the case of 3 vehicles per 1km (Fig. 3(1)), the ratio of reachable pairs is
less than 7% for the both cases because the number of vehicles is too small to
make multi-hop paths. On the other hand, for the case of 6 vehicles per 1km
(Fig. 3(2)), the ratio of reachable pairs in the original mobility gets more than
50%, while that of the proposed microscopic mobility does not reach 10%. In the
traffic flow made by the original simulator, there are a lot of vehicles running at
almost the same distance (about 200−210m). For the case of 9 vehicles per 1km,
the ratios of reachable pairs in the both mobility are drastically different (Fig.
3(3)). For the case of 12 vehicles per 1km, the difference becomes rather small
since the node density becomes high and the success ratios of multi-hop wireless
communication in the microscopic mobility also become high (Fig. 3(4)). Thus,
we can find that it is very important to consider more precise vehicular mobility
in order to evaluate performance and reliability of inter-vehicle communication.

3 Research Challenges

3.1 Mobility Aware Design Methodology

In urban areas, several location-aware services are developing and/or planned.
For example, the following typical ubiquitous services can be considered : (a)
ITS services using inter-vehicle communication, (b) shop advertisement services
for cellular phones with wireless LAN chips, and (c) emergency communication
services in disaster districts. In such services, we cannot expect uniform node
density nor random mobility. Most of pedestrians and vehicles follow traffic flows
toward the same directions, and the node density varies depending on the loca-
tions since there are a lot of signals and obstacles in urban districts.

Although several research work considering mobility influence have been done
in the areas of wireless communication networks, most of those work mainly fo-
cuses on the performance influence at lower network layers such as the MAC layer
and the physical layer (for survey, see [1,2]). Those research work is very impor-
tant to achieve high-reliable wireless communication in various environments.
However, from the point of views of design and implementation of ubiquitous
applications and large-scale software intensive-systems used in urban districts,
we need to consider more upper layers’ performance influence.

In our research group, we have developed mobile ad-hoc network simulator
called MobiREAL [10,11,12,15] where it provides a new methodology to model
and simulate realistic mobility of nodes and enables to evaluate MANET appli-
cations in more actual environments. It can simulate realistic mobility of humans
and vehicles, and enables to change their behavior depending on a given applica-
tion context. We adopt a probabilistic rule-based model called Condition Prob-
ability Event (CPE) model [11] to describe the behavior of mobile nodes, which
is often used in cognitive modeling of human behavior. We describe mobility
of those mobile nodes using C++ libraries designed for MobiREAL. The pro-
posed model allows us to describe how mobile nodes change their destinations,
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routes and speeds/directions based on their positions, surroundings (obstacles
and neighboring nodes), information obtained from applications, and so on. It
focuses on evaluation of MANET applications in urban districts, and applies
it to evaluation of several ITS services and emergency communication services
[18,19,21].

There are also similar research work which focuses on the upper layer design
of ubiquitous applications. In order to develop high-reliable and autonomous
ambient network services, more research work is needed so that ubiquitous ap-
plications used in urban districts have enough stability. Below, we will list typical
research challenges in mobility aware design methodology.

– Formal modeling techniques about movement of pedestrians and vehicles :
If we want to inform emergency information to people in disaster areas,
we must carefully consider how people arrive at refuges via their evacua-
tion routes, and make evacuation plans. If we want to design ITS systems
for traffic safety, we need to precisely estimate how pedestrians and vehi-
cles are moving at intersections and danger zones. There are some research
work about behavioral characteristic of pedestrians and vehicles. Based on
those research results, we need to formally specify the movement of pedes-
trians and vehicles. If we can use formal languages and models for specifying
pedestriansf (vehicular) behavior in urban areas, the design and analysis of
mobility-aware ubiquitous systems becomes much easier.

– City-scale simulation environments : Network simulators such as ns-2, Glo-
MoSim, OPNET and QualNet have been widely used for evaluation of net-
work traffic. Some of them can be used for evaluation of mega-scale mobile
wireless networks such as campus-scale, city-scale and Internet-scale net-
works. However, as we mentioned above, most network simulators mainly
focuses on the performance evaluation at lower network layers. Also, only
simple mobility such as random based mobility is considered for performance
evaluation of MANET applications. If we want to estimate arrival time and
ratios of emergency information to people in disaster areas, we need simula-
tion and/or emulation environments that can treat city maps and city-scale
movement of pedestrians and vehicles.

– More realistic emulation environments : In some ubiquitous applications,
we might want to reproduce the I/O of real applications in realistic envi-
ronments because performance analysis based on statistical data does not
always match user perception. For example, from statistical data, we cannot
precisely imagine the difference of performance characteristic between video
streams with stable 1 Mbps and those with fluctuating 0.8-1.2 Mbps. There-
fore, if we can use APIs that allow real mobile terminals to connect to the
simulated networks without modification of applications and protocols, and
if we can reproduce the I/O of the target applications in real-time, the de-
signer can imagine how the target ubiquitous applications work in real world.
For this purpose, several hybrid approaches of simulation and emulation are
studied, and some prototype tools such as TROWA, MobiNET and TWINE
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have been developed [12,13,25]. Design of such emulation environments is
one of important research challenges (see Fig. 4).

3.2 Deployment of Ubiquitous Devices in Urban Districts

Ubiquitous devices are attractive as means for providing intellectual services
in urban districts. Some electric companies have been developing small ubiq-
uitous devices, each of which contains CPU, memory, wireless communication
device, rechargeable battery and so on (e.g. less than 1cm3 CPU device with Zig-
Bee chip and button type battery). Although their computation power is rather
small, those devices can be considered as small computers. In near future, several
thousands of such small sensor devices are deployed in urban districts. Software
for those sensors might need to be updated. Those devices have not only soft-
ware for their own purpose but also the corresponding data and parameters.
The values of such data and parameters may vary depending on location, node
density and deployment, usable bandwidth, users’ preferences, and so on. For
example, two devices at different locations might have different map informa-
tion in order to offer location-aware services. Thus, depending on locations and
situations, different data and parameters might need to be set. This means that
several thousands of small computers exchange programs/data through mobile
wireless networks in the target areas. Manual setting and management of those
programs/data values are complicated tasks and human errors might often oc-
cur. Therefore, we need more advanced middleware and tools for setting and
management of those data/parameter values automatically.

In the research areas of grid computing and large-scale P2P applications, sev-
eral types of middleware have been developed, which allocate programs and data
to several thousands of remote computers and/or ask each of them to process
small pieces of huge data. The grid middleware mainly supports to allocate pro-
grams and data to remote computers (e.g. [5]). The P2P middleware supports
to distribute directory information to wide-spread P2P terminals and/or form
suitable routes autonomously by avoiding bottleneck channels.
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We can find several hints from middleware of grid computing and P2P appli-
cations in order to develop middleware for design and implementation of ubiq-
uitous applications. Compared with grid middleware and P2P middleware, the
middleware for ubiquitous applications in urban districts must have much more
functions. It should have functions which manage mobile wireless networks. For
grid computing and P2P applications, we can assume that two remote nodes can
reach each other via TCP/IP connection. Although packet errors are considered,
basically the target networks are considered as stable static networks. On the
other hand, MANET applications connecting ubiquitous devices are sometimes
disconnected and separated. They are not stable. They might be re-connected.
Therefore, the middleware for ubiquitous applications should have functions for
monitoring surrounding network environments and adjusting the correspond-
ing parameter values for each device autonomously. More powerful functions for
exceptional handling are also required.

Below, we will list typical research challenges in deployment of ubiquitous
devices in urban districts.

– Deployment of a large amount of ubiquitous devices : As we discussed above,
we need techniques for automatic deployment of ubiquitous devices and their
parameter adjustment. If we have a plan to deploy million-order sensor de-
vices in urban districts, we must consider how those sensors can communi-
cate with each other by avoiding congestion. We need to develop intellec-
tual techniques for cost-effective deployment of sensors. If we can estimate
node density and mobility for the target areas, we might be able to find
suitable deployment of sensors and routing of packets. Also, if we consider
million-order sensor devices, there might be several faulty sensors and/or
those with dead battery. Some sensors might not be able to store their as-
signed data because of network errors, memory errors and some other rea-
sons. We also need techniques to find such faulty nodes quickly and recover
them.

– Seamless update of target software-intensive systems : In general, most of
software-intensive systems will be often updated after their deployment. Sev-
eral thousands of people and vehicles might use ubiquitous devices even in
a small city. Software update, parameter tuning and distribution of com-
mon data will be often carried out in urban districts. Since manual deploy-
ment and management need huge costs, it is needed that a few manage-
ment staffs can control the target area’s ubiquitous systems. Efficient mass
update, parameter tuning and data distribution are one of key techniques
for management of urban sized ubiquitous systems. For this purpose, we
might be able to use mobile agent (and/or multi-agent) techniques which
support million-order sensor devices simultaneously. Reprogramming tech-
niques in wireless sensor networks (WSNs) might also be used (see [22]
for survey of reprogramming in WSNs). We need techniques for updat-
ing the current version of software-intensive systems seamlessly. Since some
software-intensive systems are used as societal systems, we might not be
able to stop their operations. We must develop effective design methodology
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for updating those devices without any stop of their operation. Building
adaptive ubiquitous applications is one of the most interesting research
topics.

– Testbeds for emulating target systems : When large-scale software-intensive
systems are deployed in urban districts, several thousands of ubiquitous de-
vices might be deployed on roads and walls of buildings. In order to make
such systems societal ones, we need (1) testbeds for emulating the target
software-intensive systems, (2) animating facilities for precise analysis of the
behavior of people and vehicles, and (3) tools for checking whether target
software-intensive systems can work well as societal systems under several
environments of the target cities. Thoroughgoing preparations and rehearsals
are definitely needed for constructing societal systems. As large-scale test-
beds for WSNs, for example, there are MoteLab [23] and CitySense [3].
They usually provide management functions like online distribution of ex-
ecution codes to mitigate maintenance costs. In [7], we have designed and
developed an integrated environment called D-sense for supporting develop-
ment of WSNs. D-sense supports protocol design by high-level design APIs.
Also it provides seamless collaboration of its simulator and real networks for
performance evaluation and distributed debugging. D-sense aims at com-
prehensive support of design, development and performance analysis. Fur-
ther research for constructing more intellectual testbeds in mobile wireless
network environments is needed.

3.3 Urban Planning for Deployment of Ubiquitous Systems

Currently, most of MANET applications are evaluated independently of other
MANET applications. In wired networks, if two applications are deployed in par-
allel, they might share the common bandwidth and channels. This might make
performance of the two applications decrease. However, by building additional
channels, the bandwidth shortage problem might be solved. On the other hand, in
mobile wireless networks, sharing the common channels might make heavy packet
collisions. It might also be difficult to build additional wireless channels when the
bandwidth shortage problem occurs since in general the number of usable wireless
channels at each urban district is limited. Thus, in order to deploy multiple ubiq-
uitous applications in urban districts, each ubiquitous application should consider
a way to adjust the usage of given wireless channels. Thoughtless deployment of
several ubiquitous systems at the same urban district and selfish bandwidth usage
might confuse the operation of deployed ubiquitous applications.

We need some new software design paradigms for installing new applications
into the current ones without stopping the current deployed applications. Ideally,
when we deploy a new software-intensive system in a target city, it is desirable
that we can automatically decide how the new software-intensive system should
be installed from given city maps, their surrounding environments and underlying
network resources, and that we can understand how much performance and reli-
ability the software-intensive system can achieve when it is deployed. Also, if the
new software-intensive system requires sensing data which have been already used
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for other software-intensive systems, the collection/delivery methods of the sens-
ing data might have to be re-arranged. Such re-arrangement should be also carried
out automatically when a new urban planning is issued. We also need some tools
for urban planning and management so that the urban planners can recognize the
current situations. The well-regulated deployment planning as the common ICT
basis in urban environments will become very important in near future.

Below, we will list typical research challenges in urban planning.

– Middleware and tools for well-regulated urban planning : When we make ur-
ban planning, enough scalability is needed so that mega scale devices can
be easily treated on such environments. For this purpose, we need to de-
velop middleware and tools for well-regulated urban planning for installing
large-scale software-intensive systems in target urban districts. In urban dis-
tricts, we can use both wired/wireless networks and cellular networks. As
urban environments, we should consider roads, buildings, factories, shops,
underground cites, malls, stations, bridges, parks, transportations and so
on. The middleware and tools should support several millions of ubiquitous
devices where different parameter values depending on target environments
need to be suitably set to those devices. When developing such middleware
and tools, we might be able to obtain some hints from grid middleware. It
is true. However, logically grid computing assumes homogeneous computing
resources. On the other hand, future software-intensive systems in urban
districts take different actions depending on their locations and surrounding
environments. Several types of heterogeneous sensing devices must be sup-
ported simultaneously. Thus, we need to develop new software technology
for well-regulated urban planning.

– Virtual worlds for understanding target software-intensive systems : In gen-
eral, if software-intensive systems are used in urban districts as societal sys-
tems, high reliability and availability are required. The urban planners and
government officials might want to imagine how new software-intensive sys-
tems will be operated. For this purpose, usage of tools for constructing 2D-
or 3D- virtual worlds might be useful. For example, we can use Second Life
and SimCity as tools for constructing virtual towns. They provide some
functions for constructing virtual towns. Several companies also sell precise
3D town maps for real big cities. However, in those tools and maps, we can-
not handle wired/wireless communication infrastructures of target cities. We
also cannot specify node mobility for people and vehicles in the cities. When
we make evacuation planning in disaster areas, we need to specify usable
communication resources and mobility of people and vehicles. If we can use
tools for constructing virtual worlds based on specified communication re-
sources and node mobility, they can make urban planners understand target
software-intensive systems more precisely.

– Techniques for preserving safeness and emotional trust : If software-intensive
systems are used as societal systems, malicious users might disturb their op-
eration. Therefore, we definitely need mechanisms for detecting and
removing faulty, selfish and/or malicious mobile devices autonomously.
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When considering mega scale ubiquitous systems, we always need to assume
that some ubiquitous devices might be faulty and/or malicious. Since a lot
of ubiquitous devices are deployed, those devices should equip mechanisms
for autonomously detecting faulty and/or malicious devices and removing
them from the target system. Recently, Japanese government has a motto
“ANSIN and ANZEN” for the development of the future ICT technologies.
“ANSIN” and “ANZEN” mean “emotional trust” and “safety”, respectively.
It is obvious that those social systems require “safety”. However, in order
for residents in future ICT societies to live in affluent circumstances, they
need to feel that the future services using such ubiquitous devices can really
help the life of those residents. Thus, we also need to consider “emotional
trust” when we make urban planning.

3.4 Further Research Challenges

Here, we give some other research challenges for developing future large-scale
software-intensive systems in urban districts.

In urban districts, there are a lot of pedestrians and vehicles. When a pedes-
trian reaches a pedestrian crossing, its road surface sensors might detect such a
pedestrian’ approach and inform it to the surrounding vehicles. Simultaneously,
such vehicles might receive information detecting invisible vehicles’ approach
from street corners. Such services are considered as popular future intellectual
ITS services in many countries. Several types of information is transmitted at
the intersections. Since those information need to reach target vehicles on time,
the designers of those systems need to consider real-time constraints among sev-
eral ubiquitous services so that safety information can reach the target vehicles
and pedestrians on time. In such environments, vehicles and pedestrians issue
several queries simultaneously. Some of queries are the same (or similar) and
content caching on mobile nodes might offer high throughput. As we explained
in Section 2.2, mobile server services might become popular when mobile nodes
have enough computation power and storage space in near future.

Below, we will list typical research challenges concerning with the above topics.

– Testing, verification and abstraction techniques : We need to logically check
whether deployed ubiquitous devices can work correctly as a total software-
intensive system. It is important that we can check whether the total system
can satisfy the constraints given in the specification. Since even if each de-
vice satisfies specified constraints, it is not clear whether the total system
also do so. Currently, for example, model checking techniques are becoming
popular, and they become useful for verifying the correctness of practical
hardware and embedded systems. Some software model checking techniques
are also proposed for guaranteeing the quality of complex software. There
also exist proof techniques to guarantee given real-time constraints and per-
formance requirements. Although those techniques are becoming very pop-
ular and powerful, for example, model checking techniques for FSM and TA
might cause the so-called state explosion problem in general. Since we need
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to consider mega scale ubiquitous systems, we must find new types of ab-
straction techniques so that we can prove the correctness of such mega scale
distributed systems in reasonable time. Even if it is not easy to apply such
proof techniques because of their complex structure, theoretical testing tech-
niques might be useful. The assertion-based design methodology [4] might
be also useful. We might need some hybrid techniques combining traditional
verification (testing) techniques with some abstraction techniques (or some
hierarchical analysis techniques). Thus, testing and verification techniques
are becoming much more important in near future.

– Intellectual data mining techniques in information-explosion era : In urban
districts, several sensing data are collected and those information is trans-
fered to servers. It is very important to extract useful information from those
enormous data sets and inform them to pedestrians and vehicles in urban
districts. In general, people can only wait a few seconds when they issue
their queries. If their answers cannot be replied in a few seconds, people
will not use such ubiquitous services. Several services are simultaneously op-
erated. So, each query need to be processed in a short period. Intellectual
data mining techniques and caching mechanisms need to be proposed so that
million-ordered transactions in a small area can be processed in real time.
This is also a challenging research theme.

4 Conclusion

In this paper, we are discussing about research challenges for the design and de-
velopment of large-scale software-intensive systems used in urban districts. The
well-regulated urban planning can make affluent and comfortable living envi-
ronments. Similarly, the well-regulated deployment and operation of ubiquitous
systems can make high-reliable and affluent ubiquitous society. The research
for design and deployment of large-scale software-intensive systems for affluent
urban life is one of the exciting research themes for coming decades.
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Abstract. The ‘ensembles’ identified by the InterLink working group
on Software Intensive Systems comprise vast numbers of components
adapting and interacting in complex and even unforeseen ways. If the
analysis of ensembles is difficult, their synthesis, or engineering, is down-
right intimidating. We show, following a recent three-level approach to
agent-oriented software engineering, that it is possible to specialise that
intimidating task to three levels of abstraction (the ‘micro’, ‘macro’ and
‘meso’ levels), each potentially manageable by interesting extensions of
standard formal software engineering. The result provides challenges for
formal software engineering but opportunities for ensemble engineering.

1 Introduction

Physical ensembles [6] incorporating potentially massive numbers of nodes,
which interact with their physical environment and which may be adaptive and
intelligent, offer a promising means of building many complex applications. A
necessary condition for the widespread adoption and acceptance of physical en-
sembles, however, is trust in the dependability of such systems. Given the com-
plexity of ensembles, it is our opinion that such trust can be achieved only using
formal engineering methods.

The formal methods that exist today have not been developed to handle the
complexity and scale proposed for physical ensembles. Hence, there is a need
to develop new approaches. The nature of physical ensembles means these new
approaches will vary depending on the level of observation applicable to the
system being developed. Following Zambonelli and Omicini’s summary of agent-
oriented software engineering [21], we adopt three levels for observing ensembles:
the micro, macro and meso levels (see Figure 1).

The micro level is applicable to ensembles which have a manageable number
of components. For the purposes of ensemble engineering, we interpret that to
mean ‘distinct components’: there may be a huge number of identical kinds (at
this level of abstraction) of each component. Otherwise, engineering would be
impractical. At this level, the behaviour of each component and each component
interaction can be formally modelled and analysed. An example of such an en-
semble is the system of sensors and actuators controlling a smart home designed,
for example, for energy efficiency, or assisted living, i.e., allowing an elderly or
disabled person to live alone.
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                micro  -  details of components and their 

                                        interactions

       macro   -  collective behaviour

                of the system

   meso –  assurance that components

   achieve macro behaviour

Fig. 1. Levels of observation

The macro level is applicable to ensembles comprising massive numbers of com-
ponents, possibly distributed over a network and operating in a dynamic and un-
controllable environment. It is not feasible to engineer such systems in terms of
individual components. Instead, means of engineering the collective behaviour of
the components are required. An example of such an ensemble is an ad hoc sen-
sor network deployed in an urban environment, e.g., to monitor traffic jams and
accidents and wirelessly communicate such information to drivers in the vicinity
[16]. The collective behaviour in this case would be congestion-free traffic flow.

The meso level is seen as pertaining when an existing micro-level component
is added to an existing macro-level system. In [21], concern centres on verifying
that the deployment of a micro-level system within a macro-level one does not
compromise the behaviour of either system. In our approach, the macro-level
system is the specification of the whole system, the micro level contains the
implementation, and the meso level embodies designs by which the members of
the micro level achieve the behaviour specified at the macro level. For example
in the sensor network, the meso level would contain structures to enable (GPS
aware) vehicles to communicate with traffic sensors and each other. In top-down
development of a system, the meso level bridges the gap between the macro and
micro levels, showing what a micro-level component must achieve in addition to
its unilateral micro-level behaviour. By requiring that the micro- and macro-level
behaviours are not compromised, that returns us to the outlook of [21].

2 Micro-level Ensemble Engineering

The key challenge at the micro level of observation is the extension and mod-
ification of traditional formal methods. Much work has been done on formal
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methods in the areas of continuous real-time [4,22], probability [10,8] and mobil-
ity [11,3], all areas of importance for physical ensembles. However, other areas of
equal importance have received only limited attention; in particular, the areas
of spatial location, autonomy and intelligence, and adaptation.

2.1 Spatial Location

The spatial location of components in some ensembles is vital. For example,
in an industrial manufacturing setting the precise location and orientation of a
robot working in a team with other robots is a necessary part of its specification if
collisions are to be avoided and cooperation achieved. Other applications such as
claytronics [5] or free-flight air traffic control [2,15] also require precise locations
of components to be specified.

For some applications a discrete notion of space may be sufficient, in others
continuous space may be required. In either case, new formal methods should
be developed where space is a first-class concept, rather than just modelled.
Approaches to incorporating real-time into formal methods should offer some
guidance.

2.2 Autonomy and Intelligence

In most existing formal methods, components are reactive. They do not have
goals and plans that enable them to act autonomously. Although much work has
been done in the artificial intelligence (AI) community on goal-oriented decision
making, there has been little integration of this work with formal methods, or
with software engineering in general. Most often, AI techniques, when used, are
introduced during the implementation phase of a project, rather than during
high-level requirements analysis and design phases.

Incorporating AI techniques with formal methods is essential if we are to
promote their consideration at the highest levels of system abstraction. Possible
approaches include new formal methods based on agent-based approaches [20]
and machine learning [13], or on non-standard logics, such as fuzzy logic [7] or
non-monotonic logics [1], which can be used to model intelligent decision making
processes.

2.3 Adaptation

Components in ensembles will need to adapt their behaviour to respond to un-
foreseen changes in their environment. It is possible to model changes in be-
haviour within a single specification using, for example, appropriate operators
for combining behaviours [19]. It is also possible to do so if the state spaces
of the various adaptations have a uniform abstraction [17]. However, deciding
on the kinds of changes which are allowable for truly adaptive components is
difficult.

Research on changing high-level requirements of real-time specifications has
shown that all such changes can be modelled as a sequence of refinements and a
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minimal set of basic rules [18]. Similarly, changes to component configurations
in an object-oriented setting can be modelled as a sequence of refinements and
a minimal set of rules [9]. Hence, it seems feasible that a formal calculus of
specification change could be developed.

By establishing a formal relationship between pairs of specifications, such
a calculus would enable us to reason about changes to a given specification. In
particular, it would enable us to determine the effect a change has on established
properties of the specification. This would potentially enable us to reason about
the effects of adaptation, and to determine the limits of adaptability that would
maintain critical properties at both the component and system levels.

3 Macro-level Ensemble Engineering

A macro-level system can be specified simply as a combination of all the micro-
level components (described unilaterally), conjoined with a condition ensuring
that the result behaves as desired. Typically that condition captures behaviour
that is thought of as being emergent : not a consequence of the behaviours of the
unilateral micro-level components. Without it, the specification would allow un-
desirable behaviours resulting from the undisciplined interaction of components
at the micro level. Such a specification trades clarity for any hint of implementa-
tion strategy. It is at the meso level that the emergent condition is to be achieved,
somehow, from the micro components.

In the traffic-sensor example, the micro-level might describe the system in
terms of components (cars, public transport and commercial vehicles) ‘interact-
ing’ on the roads; there are many instances of each component. Then the macro
specification would contain those, mediated by a predicate ensuring the smooth
flow of traffic. Such behaviour is of course emergent when viewed from the level
of an individual vehicle.

It is to be expected that, because of the huge number of components in an
ensemble, macro-level behaviour is captured using distributions (in the sense of
statistics) and even notions of convergence in space or time (to describe the ef-
fects of adaptability in achieving what might be termed ‘societal stability’). That
must in turn affect the definition of conformance of a design to its specification.
But conformance ‘at a certain confidence level’ may not sit well with abstraction
[14] and so must be investigated.

4 Meso-level Ensemble Engineering

The goal of the meso level is to ensure that refinement holds when a macro-scale
specification, MacroSpecification, is augmented with a micro-scale component,
MicroComponent, as part of the design process. In terms of the symbol � for
‘valid refinement’,

MacroSpecification � MicroComponent ∧MacroSpecification′ .
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Now the right-hand side specifies a design in which the ingredients combine
to achieve the ensemble specification on the left. In the traffic-sensor example,
a design achieving free traffic flow might incorporate the relay of information
from traffic sensors to vehicles which use GPS and data from neighbouring cars
to regulate their velocity (speed in current route or change of route) to avoid
traffic jams. It is important to acknowledge the role played by human drivers in
the adaptability necessary to achieve emergence: each smart car might offer its
driver a choice of possibilities and different driver preferences might be expected
to substitute for the randomisation required in network routing algorithms to
avoid repeated blockages.

Designs at the meso level are complicated by the fact that components in both
the micro and macro levels may be mobile and hence the systems may merge,
blurring their boundaries. From the viewpoint of just the micro level, it would
be usual to place assumptions on the environment of a component. Similarly,
to engineer a macro-level system requires assumptions about the interactions
between the components at the meso level.

To exploit the proposed formal approach, we need to formalise the allowable
meso-level interaction patterns and verify that the behaviour and assumptions of
the components in the micro-level system conform to these patterns. Suitable for-
malisms could be built on process algebras, especially those supporting mobility
[11,3], adding elements of, for example, game theory to capture the more com-
plex behaviour possible with autonomous, intelligent components. Also relevant
to such formalisms is current work on languages for orchestrating distributed
systems [12].

5 Summary

To engineer physical ensembles formally, we propose extensions to traditional
formal methods and the way they are applied at three levels of observation:

1. At the micro level where we have a manageable number of distinct compo-
nents, we require extensions to existing formal methods which
– have a first-class concept of spatial location,
– incorporate AI techniques to capture autonomy and intelligence, and
– have theories, beyond refinement, relating specifications in order to rea-

son about adaptability.

2. At the macro level where the number of components is massive and it is not
feasible to think in terms of individual components, we need a notion of an
emergence condition which captures the desired collective behaviour of the
system and, importantly, rules out undesirable behaviours. We also need to
investigate the conformance of designs to specifications where behaviour is
statistically defined.

3. At the meso level where we introduce micro-level components as part of de-
signing a macro-scale system, we need formalisms which allow us to capture
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and reason about complex interaction patterns. It is at this level that we
move from the clarity of emergence predicates at the macro level, to the
strategies employed to satisfy those predicates at the micro-level.

Acknowledgements. The authors thank Kirsten Winter for discussions on
these ideas and comments on an early draft of this paper.
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Structured Interacting Computations
(A Position Paper)�

William Cook and Jayadev Misra

The University of Texas at Austin

Abstract. Today, concurrency is ubiquitous, in desktop applications,
client-server systems, workflow systems, transaction processing and web
services. Design of concurrent systems, particularly in the presence of
communication failures, time-outs and interrupts, is still difficult and
error-prone. Theoretical models of concurrency focus on expressive power
and simplicity, but do not provide high-level constructs suitable for
programming. We have been developing a theory, called Orc (for or-
chestration), and its practical applications. In this paper, we describe
our philosophy in designing Orc. The guiding principle is to structure
a concurrent program in a hierarchical manner, and permit interactions
among subsystems in a controlled fashion. The interactions are described
by value passing ; the mode of communication (i.e., whether the value is
passed over a channel or kept as shared data, etc.) is left unspecified.

1 Introduction

1.1 Nature of Concurrency

Today, concurrency is ubiquitous, in desktop applications, client-server systems,
workflow systems, transaction processing and web services. Concurrency will
continue to permeate many areas, such as manufacturing and inventory control,
medical applications, command and control systems, and embedded systems in
automobiles and avionics. These trends will require all but the simplest applica-
tions to be structured as part of an interacting computation. In particular, such
computations must coordinate multiple activities, manage communication and
handle failures, time-outs and interrupts as they leverage concurrent services.

The internet has brought concurrency to the fore, promising a truly global
computer where all services and data are available to all users at all time. In
particular, an application ought to be able to call upon remote services, utilizing
remote data, and have the results be piped to yet other remote services. The
notions of data and service migration, application discovery, and downloading
of services for local executions should be totally transparent to the users and
other applications in a global computer. The hope is that, ultimately, the entire
mankind is connected, not just in sharing common news, but in collaborating
on various activities which span time scales from milliseconds to decades.
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This promise of the internet has not been met, nor even (discounting the
pun) remotely met. Today, the internet functions merely as a communication
service provider. It is typically used for downloading large amounts of data (news
pages or video, for instance), or for point-to-point communication, as in email or
remote application invocation (whether implemented synchronously or via store-
and-forward). True internet computing will invoke multiple available services
concurrently, initiate data and program discovery and exchange, allow time-outs
and degrade gracefully under failure.

Concurrency in embedded systems, as in video games, automobiles and avion-
ics, are yet more specialized. The applications (and the physical components)
are expected to meet stringent real-time constraints and handle faults without
end-user intervention. Synchronization among components is a common activity,
though it is far less so among components of a wide-area system like the internet.

A general model of concurrency will have to encompass concurrent computa-
tions that may interact at a frequency of milliseconds (as in avionics) to those
in which communication may occur once in a month (as in workflow systems).

1.2 Interaction Mechanisms

Historically, the form of interaction among components has been influenced by
the available hardware. The initial applications of concurrency were in the design
of specialized systems such as operating systems. Simple locking mechanisms,
such as semaphores, were adequate for such applications, to prevent simultane-
ous access to shared data on a single computer. These methods worked well for
communications among a limited number of components. Later, more sophisti-
cated techniques, such as critical region, monitors and transactions have been
employed to restrict access to shared data.

There have been major theoretical advances in recent years in describing in-
teractions. Several process algebras, such as CSP [6], CCS [8], π-calculus [9] and
join calculus [1], have been developed with the sole purpose of describing in-
teractions. These algebras have not only inspired practical developments, such
as polyphonic abstractions in C#[1], but also established the capabilities of in-
teracting systems. In particular, π-calculus can simulate λ-calculus in a natural
manner; thus, interactions alone in that system can simulate the power of a
Turing machine.

Transactions [5] have been particularly effective in terms of practical devel-
opments, because they place far less burden on the programmer in managing
concurrency. The programmer writes sequential code, and then declares a code
fragment to be a transaction. She imagines that during execution of a transac-
tion, it is the only piece of software executing in the world. No other software
can have any influence on it during this time. This illusion, known as atomicity,
is implemented by a transaction processing system which restricts (or delays)
certain requests to shared data. Further, elaborate precautions are taken to en-
sure that shared data is in a legal state after canceling of a transaction, because
the transaction may be canceled after changing the value of data. A transaction
is required to explicitly commit in order to effect permanent state changes in
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data. These implementation details are hidden from the programmer, making
transactions appear as non-interacting, atomic code fragments.

There are still several outstanding issues in the treatment of interactions.
While the theoretical models, such as π-calculus, seem to capture the essence
of interactions, it has proved difficult to translate these ideas into a practical
setting; join calculus is an effort in this direction. For many applications, the
programmer should not have to work at the level of channel-based communica-
tion or primitive synchronization.

Transactionspose adifferent set ofproblems.The semantics of transactions, par-
ticularly nested transactions, have not yet been adequately defined. Integration
of transactions with other concurrency features, such as locks and communicat-
ing processes, have not been addressed. Integration with real-time features (and,
hence, deploying transactions for embedded system design) remains a problem.

2 Structured Concurrent Programming

We have been working on a theory, called Orc (for orchestration), and its practical
applications1. We describe below our principle in designing Orc. The guiding phi-
losophy in the design is to permit structuring the programin a hierarchicalmanner,
while permitting interactions among subsystems in a controlled fashion. The inter-
actions are described by value passing; the mode of communication (i.e., whether
the value is passed over a channel or kept as shared data, etc.) is left unspecified.

2.1 Site

A cornerstone of Orc design is to permit integration of components. There are
numerous software components designed by third parties that can be used in
building an application. These components may be part of a general purpose
library, or designed with the express purpose of solving a specific problem. A
component could be a procedure to invert a matrix, compress a jpeg file, return
the latest quote on a stock, or do a search of the internet (in the last case, the
component is a giant piece of software, like the Google search engine). Typically,
a component is called a service; we adopt the more neutral term site. Note that
a site does not necessarily denote a web site, though a site could have a web
interface. Orc has been designed to orchestrate the execution of sites.

An orchestration may involve humans, modeled as sites. A program which co-
ordinates the rescue efforts after an earthquake will have to accept inputs from
the medical staff, firemen and the police, and direct them by sending commands
and information to their hand-held devices. Humans communicate with the or-
chestration by sending digital inputs (key presses) and receiving output suitable
for human consumption (print, display or audio).

As described above, our sites are quite general. They need not be just functions
in a mathematical sense. A site may return different values at different times.
1 The Orc home page, at http://orc.csres.utexas.edu/, contains pointers to re-

search papers and a prototype implementation.
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A site could also possibly change the state of some system (imagine buying
an airline ticket online; the site that implements this procedure changes the
airline’s database). A site need not be sequential code (consider an internet
search engine). By permitting a very general definition of site, we expect to utilize
all the software that are publicly available, as well as those that are designed
for specific applications. In fact, the basic arithmetic and logical functions are
also regarded as sites (this aspect of Orc is reminiscent of pure object oriented
programming, like Smalltalk). So, we can remove considerations of data types
from our theory, relegating them to sites. A practical system may implement
primitive data types, or even more complex ones like XML [4], by inline code,
thus mitigating any loss of efficiency. And, we can build our theory independent
of the kind of data that are being manipulated or passed to and from sites.

We impose few restrictions on the interface of a site. A site is called like a pro-
cedure, and it is expected to return at most one value. There is no guarantee that
a site actually returns a value. A site specification may include the amount of
time taken for a site to respond, or there may be no such guarantee. The restric-
tion that a site returns no more than one value, rather than a stream of values,
simplifies the theory considerably. Further, a stream of outputs can be handled
by asking the site to send one value in each call, and send acknowledgement for
each value received, which prompts the next call.

Removing data types from Orc has the consequence that Orc programs are
stateless. There is no point in storing any value, because Orc provides no machin-
ery for manipulating data except through site calls. Therefore, the value returned
by a site is never stored, but used as parameters of site calls. Although the Orc
language itself does not support mutable state, sites are frequently stateful.

What happens to the value returned by a site? Suppose we call CNN (), site
CNN () responds with a news page, and there are no other site calls to be made.
Effect of evaluating the expression CNN () is to call the site and publish the value
returned by it. Publication has no physical meaning; think of it as the result of
computation.

2.2 Combinators

The next major design issue in Orc is to invent its combinators. A combinator
in Orc combines two expressions to form another expression. We have primitive
expressions, like CNN (), which are merely site calls. By applying the combina-
tors, we can create arbitrarily complex expressions. Additionally, we create a
hierarchical structure of the program which is amenable to inductive analysis.

For expressions f and g, we have three combinators: (1) symmetric composi-
tion, written as f | g, which allows independent execution of f and g; the sites
called by f and g individually are called by f | g and the values published by f
and g are published by f | g, (2) sequential composition (also called piping or
push), written as f >x> g, which initiates a new instance of g for every value
published by f ; the value is bound to name x in that instance of g, and the
values published by all instances of g are the ones published by f >x> g, (3)
asymmetric composition (also called pull), written as f <x< g, which evaluates
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f and g independently, but the site calls in f that depend on x are suspended
until x is bound to a value; the first value from g is bound to x, evaluation of g
is then terminated and suspended calls in f are resumed; the values published
by f are the ones published by f <x< g. A more complete description of the
Orc language features may be found at [10,7].

We have a definition mechanism for expressions. A definition is of the form
E(p) ∆ f , as is standard in the style of declarative programming. The parame-
ters of the definition, p, may appear in expression f . Additionally, name E may
appear in f to introduce a recursive definition. Definitions serve to simplify the
program structure, much like definitions in functional programming.

It is important to note that an Orc expression may publish multiple value (or
none at all) unlike a functional expression that produces a single value. Unlike
functional composition, compositions of Orc expressions are given by sequential
composition, of the form f >x> g, which may create multiple instances of g,
each of which may also publish multiple values.

2.3 An Evaluation of the Design

We draw the reader’s attention to some the features that have been omitted. As
described earlier, data types and their operators are not part of the Orc language.
There is no conditional; we rely upon a fundamental Orc site: if (b), where b is
a boolean, returns a signal (a unitary data value) if b is true and does not re-
spond (remains silent) if b is false. This site can be used to effect a computation
in which responses received from sites can be filtered. There is no looping mech-
anism, whose effect we simulate using recursion. There is no specific communi-
cation mechanism. For instance, if f and g need to communicate in f | g, they
will have to call a common site into which f , for example, may write and g may
read; see the example below. The site may implement a channel, shared memory
or rendezvous-based communication. Also absent are notions such as processes,
fork-join or synchronization [10]. A fork-join calls two sites M and N in parallel
and publishes a pair of their values after they both complete their executions.

(let(u, v) <u< M) <v< N , where let (x) publishes the value of x

Real time is not a built-in feature. We postulate a fundamental site, called
Rtimer(), which returns a signal after a specified amount of time. Time-out of
expression f is simulated by running a call to Rtimer() as a concurrent expres-
sion and aborting f if Rtimer() responds first: let(x) <x< (f � Rtimer(10)). A
similar mechanism is used to interrupt execution of an expression.

One of the more interesting aspects of sites is that a site response may be
a site. This allows us to discover services in the internet by calling a site that
returns the service site. More interestingly, we can employ such a higher-order
site to create a channel that becomes local to an expression. Thus,

BuildChannel() >c> f >x> (c.put(x) | c.get >x> g)

allows f and g to communicate over a local channel c, which was created by
calling BuildChannel(). This example also illustrates the use of compound sites



144 W. Cook and J. Misra

containing multiple entry points, in the style of object-oriented programming. In
this case the channel site has two entry points, put and get. This mechanism is
completely general so that a variety of communication primitives can be added
to a program by having similar builder-sites. We have shown that such sites can
be used to create logical clocks, thus supporting discrete event simulation [7].

It is easy to see that we need some combinator to allow concurrent execution
of programs (which is given by symmetric composition), for sequencing compu-
tations (given by sequential composition) and abortion or interrupt (given by
asymmetric composition). However, the form of the combinators, especially for
asymmetric composition, was far from obvious, and it is not clear that these are
the only concerns in concurrent programming. A considerable amount of experi-
mentation helped in determining these forms, applying the combinators to solve
typical practical problems in concurrency and deriving their algebraic properties.
There is a number of small programming exercises in [10,7]. The formal seman-
tics of Orc is treated in [12], and its simplicity emboldens us. The combinators
also satisfy a number of algebraic identities, which we describe next.

2.4 Algebraic Identities

Some of these identities are inspired by Kleene algebra (the algebra of regular ex-
pressions), for which we treat >x> as a generalization of concatenation and | as
alternation.There is no counterpart ofKleene star inOrc, its effect being subsumed
by recursive definitions, and there is no counterpart of <x< in Kleene algebra.

Notation. We write x �∈ f , for variable x and expression f , to denote that x is
not a free variable in f . Below M is an arbitrary site and 0 represents a site that
never responds. Signal is a site that responds immediately with a signal.

f | 0 = f
f | g = g | f
(f | g) | h = f | (g | h)
0 >x> f = 0
(f >x> g) >y> h = f >x> (g >y> h), if x �∈ h
Signal � f = f
f >x> let(x) = f
(f | g) >x> h = (f >x> h) | (g >x> h)
(f <x< g) <y< h = f <x< (g <y< h), if y �∈ f
(f | g) <x< h = (f <x< h) | g, if x �∈ g
(f >y> g) <x< h = (f <x< h) >y> g, if x �∈ g
((f <x< g) <y< h) = ((f <y< h) <x< g), if y �∈ g and x �∈ h

(f <x< g) = f | (0 <x< g), if x �∈ f

0 <x< M = M � 0

It is worth noting that the following laws of Kleene algebra do not hold in
Orc: (1) idempotence of | , i.e., f | f �= f , (2) right zero, i.e., f >x> 0 �= 0, (3)
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left distributivity of >x> over | , i.e., f >x> (g | h) �= (f >x> g) | (f >x> h).
The last non-identity is also a non-identity in π-calculus.

2.5 Concluding Remarks

We have expressed our views on what is required for concurrent system design
and how Orc meets some of these challenges. Some of our early studies of sys-
tem design using Orc have been encouraging. We are still trying to understand
how transactions may be defined in Orc. Also, work is underway to exploit the
platforms designed to facilitate communications among web services, such as
SOAP[2], WSDL[3] and UDDI[11], and the XML standard [4] for parameter
passing.
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Abstract. Formal methods have proven beneficial in the industrial de-
velopment of software-intensive systems; not in replacing traditional en-
gineering methods, but in complementing them. They provide means of
checking for ambiguities and inconsistencies in requirements, as well as
verifying safety and liveness properties, and the correctness of designs.

As complexity increases, the formal methods employed need to deal
with a number of concerns. Primarily they need to be able to model a
diverse range of software and hardware components. Ideally, they should
also be capable of supporting requirement changes allowing ‘ideal’ func-
tional specifications to be transformed to reflect actual implementations.
Additionally, they should support the introduction of architectural de-
sign into functional specifications; including designs involving complex
dynamic architectures.

This paper proposes one approach to deal with these concerns. The
approach builds on and combines three separate areas of research on
integrating formal methods, formal requirements development and for-
mal design derivation. Developing more general theories and techniques
that can be applied across a wide range of formal notations remains a
significant research challenge.

1 Introduction

Software-intensive systems are those where software components are embedded
in a predominantly non-software environment. This environment may comprise
electronic and mechanical hardware devices, sensors measuring physical phe-
nomenon, and even people. They include highly decentralised systems such as
those used for telecommunications and web services, as well as embedded sys-
tems such as fly-by-wire aircraft, heart pacemakers and process control systems
of chemical and electrical power plants.

Engineering such heterogeneous and decentralised systems is challenging. Fur-
thermore, such systems are often mission-critical or safety-critical in the sense
that their failure could result in massive costs, or in harm or loss of life. Expe-
rience has shown that applying formal methods alongside standard engineering
approaches to the development of these systems can be extremely beneficial, e.g.,
[9,36]. They can be used to find ambiguities and inconsistencies in complex sets of
requirements, they can be used to verify essential safety and liveness properties,
and they can be used to verify that complex designs meet requirements.
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To formally model the diverse components of such systems, however, it is de-
sirable that more than one notation be utilised. For hardware components and
sensors, we would like a notation supporting real-time and continuous variables.
For software components, we would like support for the representation and ma-
nipulation of complex data. We also need a means for composing components so
that they can operate and interact concurrently. Few formalisms, if any, provide
direct support for all of these features.

For components which interface with the real-world, we would also like to
be able to start with an ‘ideal’ specification which only approximates the fi-
nal implementation. If we were specifying an embedded controller, for exam-
ple, the abstract specification should not need to account for timing delays and
quantisation errors. This can obscure the desired (as opposed to implemented)
functionality of the system. It can force the specifier to be distracted by de-
tails of the physical implementation and complicate formal analysis. Hence, a
means of incrementally modifying specifications to better reflect reality is highly
desirable.

Similarly, details of the final implementation architecture of a highly decen-
tralised system may obscure essential system functionality and complicate rea-
soning. Additionally, the architecture may not be able to be predicted until
further into the development process. Hence, there is also a need to allow archi-
tectural design to be incrementally added to formal specifications.

Importantly, these specification changes need to be supported without losing
the benefits of reasoning at the more abstract level of the initial functional spec-
ification. Developing general theories and techniques, applicable to a wide range
of formal notations, to address these issues is a significant research challenge.
In this paper, we make a first step towards this greater goal by proposing an
approach to handling these issues based on a specific formal notation, Real-Time
Object-Z [34]. This notation is an integration of the object-oriented, state-based
formalism Object-Z [28] and the real-time Timed Interval Calculus (TIC) [11].
Both of the base formalisms have previously found successful application in the
development of software-intensive systems in industry: Object-Z in the telecom-
munications sector [9], and TIC in the aerospace sector [36].

Real-Time Object-Z is presented along with an overview of the field of in-
tegrating formal methods in Section 2. In Section 3, we present an existing
approach to allowing requirements changes to TIC specifications and discuss its
use with Real-Time Object-Z. In Section 4, we discuss recent work on intro-
ducing architectural design into Object-Z, and show how it can be adapted to
Real-Time Object-Z. We conclude in Section 5 with a discussion of further chal-
lenges arising from the types of software-intensive systems likely to be developed
and deployed in the coming decades.

2 Integrating Formal Methods

To model software-intensive systems it is inevitable that we will need to use more
than one formal notation. A single system may include such disparate aspects
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as complex data, concurrency and mobility, and real-time and probability. Few
specification languages, if any, are suited to modelling all such aspects. Even if
we were only interested in developing the software components, it is essential to
also model their environment to get their specifications right [14].

This has led to a growing interest over the past decade in the integration
of formalisms. The earliest of this work in the late 1990’s focused on the in-
tegration of modular state-based formalisms such as Object-Z [28] and B [1]
with process algebras such as CSP [15] and CCS [24]. A number of approaches
were developed including Object-Z/CSP [32], CSP-OZ [12] and CSP‖B [27]. The
motivation behind these approaches was to allow the specification of concurrent
components with more complex state than allowable with process algebras alone.
More recent work along these lines has seen the integration of Object-Z and B
with the π-calculus [25] to support systems with mobility as well as concurrency
[35,17].

The need to also model real-time constraints in many applications addition-
ally led to the integration of state-based formalisms with real-time process al-
gebras. For example, TCOZ [18] integrates Object-Z with Timed CSP [5]. To
better support the specification of software-intensive systems, TCOZ also allows
continuous variables [19].

State-based notations have also been directly integrated with formalisms sup-
porting continuous variables. Most notably, Object-Z has been combined with
the Timed Interval Calculus (TIC) [11] by Smith and Hayes [34], and CSP-OZ
has been integrated with the Duration Calculus [4] by Hoenicke and Olderog
[16]. The former combination referred to as Real-Time Object-Z is discussed in
detail below.

2.1 Real-Time Object-Z

Real-Time Object-Z [34] is an integration of Object-Z and TIC aimed at spec-
ifying systems in which both complex data structures and continuous real-time
variables play a role. Components are specified using Object-Z’s class construct
extended with TIC predicates describing the component’s environmental assump-
tions and effects. These predicates constrain the behaviour of the Object-Z class
and define its interactions with its continuous environment. For example, given
that T denotes absolute time (in seconds), the following expresses that a variable1

v : T → R becomes equal to a continuous and differentiable (denoted by the func-
tion symbol � [10]) variable u : T � R within 0.1 seconds whenever u > 10.

〈u > 10〉 ⊆ 〈δ = 0.1〉 ; 〈v = u〉

The brackets 〈 〉 are used to specify a set of time intervals. The left-hand side
of the above predicate denotes the set of all time intervals where, for all times
t in the intervals, u(t) is greater than 10. The right-hand side of the above
expression comprises two sets of intervals. The first uses the reserved symbol
1 Variables in TIC are total functions mapping times to the value the variable assumes

at those times.
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δ which denotes the duration of an interval. Hence, this set contains all those
intervals with duration 0.1 seconds. The second set denotes all intervals in which
(for all times in the intervals) v equals u. It is combined with the first set
of intervals using the concatenation operator ‘;’. This operator forms a set of
intervals by joining intervals from one set to those of another whenever their
end points meet. (One endpoint must be closed and the other open [11]). Hence,
the right-hand side of the predicate specifies all those intervals where after 0.1
seconds, v equals u. The entire predicate, therefore, states (using ⊆) that all
intervals where u is greater than 10, are also intervals where, after 0.1 seconds,
v equals u.

The structure of a Real-Time Object-Z class is as follows where the assumption
and effect are TIC predicates denoting environmental assumptions, and the effect
of the specified system when these assumptions hold, respectively.

ClassName
constant definitions
state schema
initial state schema
operations

assumption

effect

The constant definitions include continuous environmental variables that act as
inputs to the specified system. These variables are declared as functions over
all time consistent with the TIC style. They are distinguished by having their
names end with the symbol “?”.

The state schema includes the declaration of both local variables, and envi-
ronmental variables that act as outputs to the specified system. The latter are
distinguished by having their names end with the symbol “!”.

The initial state schema includes a predicate which constrains the initial val-
ues of the variables declared in the state schema. The operations detail possible
state transitions. Each operation has a list of the variables which it may change,
referred to as a delta-list , and a predicate constraining the relationship between
the values of the variables before and after the operation. Those after the op-
eration are denoted using primes, i.e., x ′ is the value of variable x after an
operation.

As an example of Real-Time Object-Z, consider specifying a speedometer
(based on that specified in [19]) which calculates the speed of a vehicle by de-
tecting the rotation of one of its wheels: the speed is calculated by dividing
the wheel circumference by the time taken for a single rotation. We assume a
maximum speed of 60 metres per second (216 km/hr).

MaxSpeed == 60 −metres per second



150 G. Smith

The speed output by the speedometer is a natural number between 0 and
MaxSpeed .

Speed == 0 . . MaxSpeed −metres per second

The complete specification of the speedometer is provided by the following class.

Speedometer
wheel circum == 3 −metres

wheel angle? : T � R

last calculation : T

speed ! : Speed

INIT

last calculation < τ − 2 ∗ wheel circum
speed ! = 0

CalculateSpeed
∆(last calculation, speed !)

wheel angle?(τ) mod 2π = 0
∀ t : (τ . . . τ ′] • wheel angle?(t) mod 2π �= 0
last calculation ′ = τ
speed !′ = wheel circum/(τ − last calculation) ± 0.5

〈|s wheel angle? |� 2π ∗MaxSpeed/wheel circum〉 = 〈true〉

〈wheel angle? mod 2π = 0〉 ; 〈wheel angle? mod 2π �= 0〉 ⊆
〈true〉 ; 〈CalculateSpeed〉 ; 〈true〉

The speedometer’s environment includes a continuous variable (wheel angle?)
representing the angle of the wheel in radians from some fixed position. The
speedometer calculates the speed (speed !) from the wheel angle, which implicitly
records the number of whole revolutions of the wheel, and the wheel circum-
ference (wheel circum). To do this it keeps track of the time of the last speed
calculation in a state variable last calculation.

Initially, this variable is set to a time more than 2 ∗ wheel circum seconds
before the current time τ . This ensures that the first speed calculation, when
the wheel starts rotating, will be zero (since the calculated speed is a natural
number with units metres per second and a wheel rotation time of more than
2 ∗ wheel circum corresponds to a speed of less than 0.5 metres per second).
Ensuring the first speed calculation is zero is necessary because the wheel may
not undergo a full rotation before it occurs.

The operation CalculateSpeed calculates the speed to the nearest natural num-
ber based on the wheel circumference and the time since the last calculation.
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Its delta-list includes both last calculation, which it sets to the current time τ
at the start of the operation, and speed !. It is enabled each time the wheel passes
the point corresponding to a multiple of 2π radians. The first two predicates of
the operation ensure that the wheel angle mod 2π is 0 only for the first time
instant of the operation. This prevents the wheel completing an entire rotation
before CalculateSpeed has finished executing. (Note that intervals of real num-
bers can be specified using combinations of the brackets [ ] for closed intervals
and ( ) for open intervals.)

The latter constraint is feasible since the class’s assumption predicate limits
the rate of change of wheel angle? (s v denotes the derivative of a differentiable
variable v [10]). This assumption also ensures that the speed calculated by the
final predicate of CalculateSpeed is less than or equal to MaxSpeed . (Note that
〈true〉 denotes the set of all possible intervals.)

To ensure that CalculateSpeed occurs every time the wheel passes the point
corresponding to 0 radians, the class’s effect predicate states that CalculateSpeed
occurs in a sub-interval of any interval where the wheel angle mod 2π is 0, and
then becomes non-zero.

Semantics and Refinement. Specifications in TIC are also usually expressed
in terms of assumption and effect predicates (following the approach of the timed
refinement calculus [20]). The semantics of such specifications is given in terms
of the set A of behaviours over all time satisfying the assumption, and the set
E of behaviours over all time satisfying the effect, σ(A,E ). The basis for the
integration of Object-Z and TIC in Real-Time Object-Z is a mapping of the
existing Object-Z semantics to a similar set B of behaviours over all time [34].
This allows the semantics of a class to be given as σ(A,E ∩ B) where A and E
are the class’s assumption and effect predicates respectively.

Within the integration, both the Object-Z and TIC parts of a specification are
given their standard meaning. This allows them to be considered separately for
the purposes of reasoning and refinement. Refinement [26,6] refers to the trans-
formation of a specification to another while preserving externally observable
properties. It is used to relate abstract specifications to more concrete specifica-
tions reflecting an implementation.

Importantly, in Real-Time Object-Z whenever one part of the specification
is refined according to the techniques available for its formalism (Object-Z or
TIC), the entire specification is also refined [34]. This follows from the fact
that a specification with semantics σ(A,E ) is refined by another with semantics
σ(A′,E ′) when the assumption of the latter is the same as or weaker than that
of the former (i.e., A ⊆ A′), and the effect of the latter is the same as or
stronger than that of the former (i.e., E ′ ⊆ E ) [20]. Hence, a refinement of the
TIC part of a Real-Time Object-Z specification will result in a refinement of
the entire specification. Furthermore, a refinement of the Object-Z part will not
allow additional behaviours (i.e., B ′ ⊆ B) [7], and hence will also result in a
refinement of the entire specification.

The notion of refinement is central to the effective use of formal methods. We
want our initial specifications to be void of implementation detail for reasons
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of clarity and ease of analysis. However, we also want to show that the actual
implementation is consistent with such a specification. This can be achieved by
showing that another specification which includes the details of the implementa-
tion is a refinement of the abstract specification. Limitations with this approach,
and proposed solutions are discussed in the following sections.

3 Requirements Change

Refinement is a linear process predicated on the existence of a perfect abstract
specification which anticipates all of the necessary characteristics of the final
implementation. For software-intensive systems, this would mean accounting for
low-level details such as timing delays and quantisation errors. Consider, for
example, the TIC predicate relating variables u and v of Section 2. This spec-
ification is, in fact, unrealisable. We could not implement a system which sets
a variable v to be equal to a continuous real-world variable u. The reading of
variable u (by a sensor) would necessarily include some finite error. Hence, the
best we could hope for is that v = u ± e for some small e.

However, including such errors in an initial abstract specification not only
makes the specification more difficult to understand, it also complicates reason-
ing about the specification. For example, what was a deterministic assignment
to v becomes non-deterministic. Therefore, we would prefer to specify systems
‘ideally’ without referring to such physical characteristics of the implementation.

This raises the question then of how we relate such ‘ideal’ specifications to
implementations. This is not possible using refinement. To address this issue,
complementary approaches to refinement, such as realisation [29,33] and re-
trenchment [2], have been proposed. We discuss the former below.

3.1 Realisation

Realisation, like refinement, is a stepwise-development approach. Realisation
steps allow a specification to be changed, either by introducing new requirements
or by modifying existing ones. Importantly, the realisation steps transform not
only the specification, but also any formal properties already proven about that
specification. This allows formal reasoning carried out on the original specifica-
tion to be reused after the specification has been modified, avoiding the need to
repeat formal proofs.

A complete set of realisation rules for TIC is presented in [29] and applied to
a non-trivial case study in [33]. As an example, consider the rule which allows an
assumption to be added to a specification. Such a transformation could not occur
via refinement which only allows the weakening of the overall assumption. The
rule states how properties of the specification are transformed when it is applied.

If P is a property of a specification with assumption A and effect E then
B ⇒ P is a property of the specification with assumption A ∧ B and
effect E .
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For example, assume the predicate involving variables u and v in Section 2 and
modified to include an error e as above is the effect predicate of a specification
with no assumption, i.e., the assumption predicate is true. From this specification
we are able to prove that ∀ t : T • u(t) > 10⇒ v(t + 0.1) = u(t + 0.1)± e. It is
not possible to implement this specification, however, unless the rate of change of
u is restricted. Hence, we need to introduce an assumption ∀ t : T •|s u(t) |� R
where R is the maximum rate of change. Our property is consequently changed
to (∀ t : T •|s u(t) |� R) ⇒ (∀ t : T • u(t) > 10 ⇒ v(t + 0.1) = u(t + 0.1)± e).
The other realisation rules detailed in [29] work similarly.

Given the semantics of a Real-Time Object-Z class described in Section 2.1,
adding an assumption to the TIC part of a class, adds the same assumption to
the entire class. Hence, the rule above can also be used with Real-Time Object-Z.
The other realisation rules involve replacing environmental variables with new
variables that are explicitly related to the original ones allowing the introduction
of timing delays and errors (see [29] for details). For example, consider the rule
for modifying an environmental input variable.

If P is a property of a specification with assumption A, effect E and
an input u then (∀ u • F ⇒ A) ⇒ (∃ u • F ∧ P) is a property of the
specification where u is replaced by a fresh variable related to u by F .

In contrast to the rule for adding assumptions, applying this rule to the TIC
part of the class will not apply it to the entire class. The Object-Z part has
been written expecting the original ‘ideal’ input, not the new input. To use such
a rule with Real-Time Object-Z, however, we can retain the original variable
in the Object-Z part of the class (as a local variable) and relate it to the new
environmental variable by including F as part of the class’s effect predicate.

Hence, we can apply the existing realisation rules to the TIC part of a Real-
Time Object-Z class in order to move towards a more realistic specification. Note,
however, that some real-time constraints occur in the Object-Z part of a class. A
complete realisation approach would therefore need a way of also transforming
these constraints.

4 Architectural Design

Just as time delays and quantisation errors may obscure desired functionality and
complicate reasoning, so too may elements of the implementation architecture
of a software-intensive system. For example, certain components such as system
clocks, while necessary in the final implementation, unnecessarily complicate a
purely functional specification. Also, in some cases, the architecture may only
be decided upon later in the development process than when the specification is
required. For these reasons, it is desirable to be able to introduce architectural
design into an initial specification.

To do this, refinement may be used as the design should not change the
high-level requirements. To support such an approach, Smith [30] has integrated
Real-Time Object-Z with the process algebra CSP [15]. This integration is based
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on that of Object-Z/CSP [32], and provides a mapping between the semantics
of Real-Time Object-Z classes and CSP processes. This allows such classes to be
combined using CSP operators; in particular, the parallel operator of CSP is used
so that the occurrence of an operation in one class is synchronised with that in
another with the same name. The semantic mapping allows such synchronising
operations to merely overlap in time and not necessarily have common start or
end times (see [30] for details).

Given this integration with CSP, we could develop a means of introducing
architecture into specifications via refinement (such an approach for Object-
Z/CSP is presented in [8]). However, the architectures we can readily specify with
CSP operators are limited. In particular, CSP has not been designed to represent
dynamic architectures where the number of components and their interaction
with each other change over time (although there is limited work on this topic
[38]). This could perhaps be overcome by using a process algebra such as the π-
calculus [25] rather than CSP. In this section, however, we consider an alternative
approach based on using the constructs of Object-Z itself.

4.1 Specification Refactoring

Object-Z supports modelling using object-oriented concepts such as inheritance
and object instantiation. Smith [31] shows that this makes it well suited to the
specification of mobile systems. Specifically, the creation and passing of object
references can readily model architectures which can change dynamically.

In recent work, McComb and Smith [21,23,22] have investigated an idea akin
to refactoring in object-oriented programming to introduce and remove archi-
tectural structure within Object-Z specifications. We discuss the adaptation of
this work here for Real-Time Object-Z.

Assume we want to implement the speedometer of Section 2 in terms of the
three components in Figure 1. That is, a wheel sensor component sends pulses to
the main speedometer component whenever the wheel completes a rotation. The
latter component counts pulses from a clock component in order to calculate the
speed.

To derive a specification reflecting this architecture, we begin by refining the
class Speedometer of Section 2 to separate the concerns of the three components.

Wheel
sensor

Clock

Speedometerangle
wheel speed

Fig. 1. Speedometer design
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To do this, we add a new constant denoting the clock period (freq = 1 MHz),
replace the variable last calculation by a variable which counts the clock pulses
(count), and add a variable denoting the time of the last clock pulse (last clock).
Since the original class calculated the speed to the nearest 0.5 metres/second, the
class below is a refinement provided that the clock frequency is sufficient to allow
at least MaxSpeed/0.5 clock pulses in the minimum possible wheel rotation time
wheel circum/MaxSpeed . The frequency of 1MHz is sufficient to ensure this.

Speedometer
wheel circum == 3 −metres
freq == 106 −hertz

wheel angle? : T � R

count : N

last clock : T

speed ! : Speed

INIT

count > 2 ∗ wheel circum ∗ freq
last clock = τ
speed ! = 0

ClockPulse
∆(last clock)

τ = last clock − 1/freq
last clock ′ = τ
τ ′ < τ + 1/freq

IncCount
∆(count)

count ′ = count + 1

Count =̂ ClockPulse ∧ IncCount

WheelPulse
wheel angle?(τ) mod 2π = 0
∀ t : (τ . . . τ ′] • wheel angle?(t) mod 2π �= 0

NewSpeed
∆(count , speed !)

count ′ = 0
speed !′ = wheel circum/(count/freq))± 0.5

CalculateSpeed =̂ WheelPulse ∧ NewSpeed

〈|s wheel angle? |� 2π ∗MaxSpeed/wheel circum〉 = 〈true〉

〈wheel angle? mod 2π = 0〉 ; 〈wheel angle? mod 2π �= 0〉 ⊆
〈true〉 ; 〈WheelPulse〉 ; 〈true〉

〈δ � 1/freq〉 ⊆ 〈true〉 ; 〈ClockPulse〉 ; 〈true〉

The operation CalculateSpeed is redefined as the conjunction of two new oper-
ations WheelPulse and NewSpeed , and new operations ClockPulse and IncCount
are conjoined to form a final new operation Count . (Note that we adopt the view
of [21] which allows widening a class’s interface under refinement.) The predicate
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of ClockPulse together with a new effect predicate ensures that the operation
occurs every 10−6 seconds.

We then refactor the class into the following three classes.

Speedometer

sensor : WheelSensor
clock : Clock
count : N

speed ! : Speed

INIT

count > 2 ∗ sensor .wheel circum ∗ clock .freq
clock .INIT

IncCount
∆(count)

count ′ = count + 1

Count =̂ clock .ClockPulse ∧ IncCount

NewSpeed
∆(count , speed !)

count ′ = 0
speed !′ = sensor .wheel circum/(count/clock .freq)) ± 0.5

CalculateSpeed =̂ sensor .WheelPulse ∧ NewSpeed

true

true

WheelSensor
wheel circum == 3 −metres

wheel angle? : T � R

WheelPulse
wheel angle?(τ) mod 2π = 0
∀ t : (τ . . . τ ′] • wheel angle?(t) mod 2π �= 0

〈|s wheel angle? |� 2π ∗MaxSpeed/wheel circum〉 = 〈true〉

〈wheel angle? mod 2π = 0〉 ; 〈wheel angle? mod 2π �= 0〉 ⊆
〈true〉 ; 〈WheelPulse〉 ; 〈true〉
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Clock
freq == 106 −hertz

last clock : T

INIT

last clock = τ

ClockPulse
∆(last clock)

τ = last clock − 1/freq
last clock ′ = τ
τ ′ < τ + 1/freq

true

〈δ � 1/freq〉 ⊆ 〈true〉 ; 〈ClockPulse〉 ; 〈true〉

For this refactoring to preserve the observable properties of the initial specifi-
cation, we require that the new Speedometer class is a refinement of the original
one. In order to prove this, we first need to provide a semantics of object instan-
tiation in Real-Time Object-Z. This semantics needs to extend that for Object-Z
to (a) ensure that operations on an object synchronise as required with those
in the class where the object is declared, and (b) take into account the TIC
assumption and effect predicates in an object’s class.

The first extension is required so that, for example, the IncCount operation
in the final Speedometer class above occurs whenever the ClockPulse operation
of clock occurs. Simply conjoining the operations does not ensure this as the τ
variables of the operations are local to their respective classes.

One approach to ensure synchronisation is to equate the τ variable of an object
with that of the class in which it is declared. This is overly restrictive, however.
In our example, it would force the conjoined operations from Speedometer and
Clock to have identical start and end times. In general, synchronising operations
may simply overlap.

An alternative approach is to introduce an implicit output variable t ! : T to
every operation and an implicit predicate τ � t ! � τ ′. Since conjoined operations
need to agree on output variables such as t !, they would need to have at least
one time in common between their start and end times. That is, they would need
to overlap in time (without necessarily sharing start and end times) as desired.

To tackle the second extension, we can make use of the fact that, as in other
object-oriented languages, self referencing of classes is allowed in Object-Z [28].
This enables us to define a single class which is equivalent to a system of inter-
acting classes. The idea, inspired by McComb’s work on refactoring in Object-Z
[22], is to create one class which has all the features of every class in the system,
and so can act as the class of every object. The approach is illustrated for a
class C with a single reference to an object of class D below (where α and β
are non-intersecting sets of declarations of variables and constants, and X and
Y are non-intersecting sets of operations).
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C

α
d : D

INIT

P

X

A

E

D

β

INIT

Q

Y

B

F

is (in the absence of object aliasing) semantically equivalent to

C ′

α
d : C ′

β

INIT

P ∧ Q

X
Y

A ∧ B

E ∧ F

While the object referenced by variable d is of class C ′, rather than D , in C ′,
class C ′ has all the features that are dereferenced in the predicate P and schemas
in the set X , i.e., all the features of the original class D . Furthermore, the assump-
tion B and effect F of the original class D are applied to these features.

To handle more general architectures, we can replace the declaration d : C ′

in C ′ above, with d : Id �→ C ′ to represent an arbitrary number of objects each
indexed via a value from a set Id . The corresponding declaration of objects in
class C would be d : Id �→ D . Since the operations in X could modify the objects
which make up the range of d , dynamic architectures could be readily modelled.

5 Future Directions

This paper has examined three areas of research in formal methods that are rele-
vant to software-intensive systems: the use of multiple formalisms, the
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incremental introduction of physical characteristics to functional specifications,
and the incremental introduction of architectural design. It has also considered
issues in combining the ideas from these areas with the goal of providing support
for requirements analysis and design assurance in the traditional engineering of
such systems.

The types of software-intensive systems envisaged in the coming decades pro-
vide additional challenges to those we have addressed in this paper. Firstly, the
decreasing cost and size of computational devices will lead to increasingly dis-
tributed systems. Massive numbers of components will interact and potentially
move about networks in order to jointly perform complex tasks. Object-oriented
formalisms, such as Object-Z, seem well suited to this challenge since they al-
low models comprising arbitrarily large collections of dynamically linked objects.
The main issue will be the derivation of complex designs consisting of massive
numbers of objects to fulfil high-level requirements. The refactoring approach
presented in Section 4 could provide a basis for this. The original approach for
Object-Z by McComb has been proven complete in the sense that the deriva-
tion of any valid architecture is possible [22]. To make derivation of large-scale
architectures practical, however, would require the additional development of
high-level design ‘tactics’ driving the application of large sequences of simple
refactoring rules.

Additionally, the components of future systems will need to become more
adaptive, able to autonomously change their behaviour based on their perceived
environment. This suggests the systems will be multi-agent systems [37]. The
combination of the modularity and expressive logic of Object-Z makes it again
suited to the challenge of formalising such systems. In fact, Object-Z has already
been independently proposed as a modelling language for multi-agent systems
[13]. The concept of realisation discussed in Section 3 may also be useful for
such systems. It could be used to determine how the properties of a compo-
nent change as its behaviour changes. This would enable the specification of
complex adaptable behaviour in terms of a number of specifications of simpler
behaviour.

Finally, new technologies will be introduced into future systems. These tech-
nologies may make use of radically different computing paradigms and materi-
als (e.g., nanotechnology). It is inevitable that some of these will require new
formalisms and methods of reasoning. Hence there will be a need for further in-
tegration of notations. The semantic mapping approach to integration discussed
in Section 2 allows the straightforward introduction of new notations as it re-
quires no changes to the syntax or semantics of the notations involved. Addition-
ally, further investigation into the integration of formal methods and standard
modelling and analysis techniques from engineering and science, in particular
numerical methods, is required [3].

Acknowledgements.The author would like to acknowledge ARC Discovery
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Abstract. The complex systems lying at the heart of ensemble engineer-
ing exhibit emergent behaviour: behaviour that is not explicitly derived
from the functional description of the ensemble components at the level
of abstraction at which they are provided. Emergent behaviour can be
understood by expanding the description of the components to refine
their functional behaviour; but that is infeasible in specifying ensem-
bles of realistic size (although it is the main implementation method)
since it amounts to consideration of an entire implementation. This po-
sition paper suggests an alternative. ‘Emergence’ is clarified using levels
of abstraction and a method proposed for specifying ensembles by aug-
menting the functional behaviour of its components with a system-wide
‘emergence predicate’ accounting for emergence. Examples are given to
indicate how conformance to such a specification can be established. Fi-
nally an approach is suggested to Ensemble Engineering, the relevant
elaboration of Software Engineering. On the way, the example is consid-
ered of an ensemble composed of artificial agents and a case made that
there emergence can helpfully be viewed as ethics in the absence of free
will.

1 Introduction

The large complex systems that currently exist, either by explicit design or by ac-
cretion, have been called ensembles by the Interlink Working Group on software
intensive systems and new computing paradigms (see the Interim Management
Report [36]). Examples include the power grid, the internet and large systems
of agents (including swarms etc.). Naturally there is healthy debate about the
characteristic properties of an ensemble, amongst which are included: a massive
number of components and behaviour that is open and adaptive (as a result of
being situated in the real world) and emergent and statistical (rather than being
able predominantly to be addressed at the individual level).

To assist the process of classification, the Interlink group has divided ensem-
bles into two kinds, physical and societal. Examples of the former are: very large
� Supported by the National Natural Science Foundation of China under Grant No.

60773208.
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adaptive sensor or robot systems; systems composed of programmable molecules;
advanced manufacturing systems; the internet. Examples of the latter are: large
traffic systems; swarm or colony behaviour; systems of interacting businesses; the
stockmarket. Typically ensembles are systems of systems that were not necessar-
ily designed to be composed but adapt, reconfigure and self-organise. Common
to all should be a theory of ensembles, and ensemble engineering.

Ensembles are engineering products, too recent for appropriate supporting the-
ories to have arisen. Such theories would provide the right abstractions for specify-
ing, developing, reasoning about and programming ensembles. Without them, the
state of the art will remain at the engineering level; with them there is the prospect
of controlling and thus further exploiting ensembles. For standard systems, that
is the domain of Software Engineering and its foundation, Formal Methods.

The group ended its second workshop having made considerable progress in
demarking areas of interest for future medium and longer-term work, but with
some uncertainty concerning emergent behaviour. Clearly, it felt, emergence is
a unifying theme across the spectrum of examples. Yet if an ensemble exhibits
behaviours not predictable from those of its components, what part can Formal
Methods play in ensemble engineering? After all, the utility of Formal Methods
lies in the specification of systems and the verification of implementations or
designs against their specifications. Does such reductionism mean that these
systems lie outside the scope of Formal Methods? And what might ensemble
engineering look like?

Those are the topics addressed in this position paper (of which [15] is a pre-
liminary version). Its purpose is: to clarify the place of emergence in the types of
system quoted above (Section 2); to consider typical examples and be guided by
them (Section 3); and to suggest an agenda for laying a foundation of ensemble
engineering (Section 5). On the way it is observed that in the special case of
ensembles of agents, the emergent behaviour can profitably be thought of as the
result of ethical protocols of the agents, imposed at a societal level. That leads, if
the agents are artificial, to an interesting theory of ethics weaker than the usual
theory (for sentient agents, based on free will); it is discussed in Section 4.

2 Ensembles

A definition of ‘ensemble’ based on any of the quantitative features like those
mentioned in the previous section (size, as measured say by number of compo-
nents, and so on) is not going to support a very interesting theory,1 regardless
of the number of its exemplars. This section proposes instead to study the im-
portant place of emergence in such systems by abstracting all other properties
and defining an ensemble to be a system exhibiting emergent behaviour. That
way any conclusions apply to all the examples above.
1 ‘Theory’ here is interpreted in the formal sense of comprising only the consequences

of the definition. Thus interest focuses on a definition strong enough to support an
interesting and appropriate theory whilst being weak enough to apply to the range
of desired examples.
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But then a definition of ‘emergence’ is required. ‘Emergence’ is an established
term about which the working group expressed rough consensus only after con-
siderable discussion—presumably reflecting the divergence of interpretations in
the literature. Again, and for the same reason as with the definition of ‘ensem-
ble’, this paper takes a minimalist view and restricts the definition of ‘emergence’
to just ‘system behaviour not derivable (at the stated level of abstraction) from
the behaviour of its components alone’. This suppresses any ‘element of surprise’
sometimes discussed in the philosophy of emergence [8]. The details are as follows.

2.1 Levels of Abstraction

The term ‘emergence’ was coined by Lewes [21] in 1875 since when it has enjoyed
a lively and varied existence. Perhaps that is why a comprehensive history is
difficult to find.2 Since the twentieth century, it has been associated with complex
systems. Indeed it seems that each twist of science or philosophy imbues the term
with its own flavour.

The present contribution is no exception. It arises from Formal Methods and
its rigorous description at a prescribed ‘level of abstraction’ (LoA for short;
plural: LoAs). But the basis of our approach is far from new. According to
Pepper over 80 years ago,

The theory of emergence involves three propositions: (1) that there are
levels of existence . . . (2) that there are marks which distinguish these
levels from one another . . . (3) that it is impossible to deduce marks of
a higher level from those of a lower level . . .

S. C. Pepper, [26].

We use the familiar notation of Formal Methods to interpret Pepper’s ‘levels of
existence’ as ‘LoAs’ in a way which is entirely conceptual, so that the levels need
not correspond to any naive idea of observation. But first it is necessary to recall
the notion of LoA, on which Formal Methods is based.

A formal description of a system consists, regardless of the notation used, of
a predicate whose free variables are the system observables, and which therefore
determine the LoA of the description. For analogue, differentiable, systems the ob-
servables are rates of change of system parameters and the predicate corresponds
to the solution of a differential equation which yields the system state at any given
time. In that case the standard concepts of Differential Analysis complement those
of Computer Science to facilitate description and analysis (see Section 3.2).

But if the system is discrete, so that the observables assume only finitely-many
values, then the predicate can be expressed in terms of system state, input and
output.3 There the notations and concepts of Formal Methods are required to
structure (particularly, large) descriptions and provide them with semantics. For
hybrid systems a combination of both those styles is to be expected.
2 Sketch histories of emergence are given in the Stanford Encyclopedia of Philosophy

[31] and Wikipedia [34].
3 Of course there is a trade-off between state and input-output history; hence the need

for ‘can be expressed’.
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In either the discrete or non-discrete case, the result is a predicate whose free
variables determine the LoA of the system description. To liberate our treatment
from any particular Formal Method, we make the following definitions.

Definition (LoA). An observable is a typed variable together with an informal
interpretation of what it represents. (For example l : R3 might be an observable
representing location of an object in Euclidean space.) An observable is discrete
iff its type is finite.

A level of abstraction, LoA, consists of a finite nonempty set of observables. A
LoA is discrete iff each of its observables is discrete; it is called analogue iff each
of its observables is not discrete; and otherwise (if some observables are discrete
and some are not) it is called hybrid.

A behaviour at a given LoA is a predicate whose free variables are the observ-
ables of that LoA; values of the observables making the predicate true correspond
to the specified ‘system behaviour’. (For example the predicate ensuring that the
location l = (x , y, z ) lies in the first quadrant, namely x ≥ 0 ∧ y ≥ 0 ∧ z = 0,
describes a system behaviour of the object mentioned above.)

Suppose a system is captured at two LoAs as follows. At level A it has be-
haviour pA. Level C is defined to extend level A by fresh observables from some
type B , C = A ∪ B , and to have behaviour pC = pC (a, b). We say that the
former is abstract and the latter concrete iff pA is weaker than pC with the new
observables abstracted:

(∃ b : B · pC (a, b)) ⇒ pA.

(For example augmenting the observable l above with an observable t : R for
time and constraining the location to lie on the x axis, yields a concrete obser-
vation/behaviour.) Sometimes the abstract level is called high and the concrete
low. �

For more elaborate examples of those concepts and an extension to the more
involved relationship between abstract and concrete that pertains when the latter
is a data representation of the former, we refer to [11].

2.2 Emergence

Now emergence is simply explained: the LoA at which the system is observed lies
at a lower level than that at which the components are specified. In the case of
a flock of birds, for example, the components are the birds specified unilaterally
at a LoA sufficient for just that purpose; but the flock is observed at a LoA
consisting of the previous one augmented by further observables relating to flock
behaviour (for example, ‘location of a bird in the flock’ makes sense only at the
flock level—although a distributed implementation might enforce it by providing
each bird with a (bird dependent) ‘strategy’ for its location within the flock).
More detailed behaviour is now able to be observed at the (lower) flock level:
the required emergent behaviour situates birds correctly.

For a system to exhibit emergence, not all behaviour possible at the lower level
may satisfy the desired criterion for emergence. For example there are ‘potential
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flocks’ that position birds incorrectly, and so do not conform to the required
(emergent) definition of flock. Otherwise, the low-level observables just intro-
duced would not serve to discriminate any behaviours and all low-level behaviour
would appear emergent. But then all low-level behaviour would be anticipated
in the high-level behaviour, contrary to the desired meaning of ‘emergence’. This
apparently subtle point forms an essential part of the definition.

Definition (Emergence). Suppose a system is described at two LoAs, A and
C , as above. The system is said to exhibit emergent behaviour, or simply emer-
gence, as expressed by behaviour (i.e. predicate) emC of C , if emC ⇒ pC and
emC describes some behaviours not determined by pA:

∃ a : A · ∃ b, b′ : B · emC (a, b) ∧ ¬emC (a, b′) . (1)

Because it describes emergent behaviour, the predicate emC is called the emer-
gence predicate of the pair of system descriptions. �

The setting for the definition of emergence uses the simplest common relationship
between A and C : the latter is a restriction (by the emergence predicate) of an
extension (by the fresh variables) of the former. More complicated settings are
possible (for example, if C is a restriction of a data refinement of A).

Because the observables b are fresh, an observation a, b cannot be made at
the abstract level. But to ensure that it cannot be trivially inferred from an ab-
stract observation, condition (1) is imposed. The following contrived but simple
example is designed to clarify that point.

Example. A system is designed to have abstract behaviours consisting of a : B

(where B denotes the type of Booleans) and concrete behaviours having type
c = (a, b) : B× B. Three putative emergence predicates are defined:

em0(a, b) =̂ ¬a
em1(a, b) =̂ true
em2(a, b) =̂ ¬b ∨ a .

Neither em0 nor em1 can be considered emergent because neither uses the aug-
menting (fresh) variable b to specialise behaviours. In either case the behaviour
could be modelled, by suitable interpretation, at just the abstract level. That is
not true of em2, just because it satisfies condition (1). �

Here is a less contrived example, to be elaborated in Section 3.2.

Example. In the case of the flock of birds, a : A consists of the states of the birds,
independent of each other but parameterised to make them individual; so A is a
(large) product space with one component for each bird. The type B includes a
component for ‘location within the flock’. The predicate em includes a conjunct
placing each bird in its correct (though perhaps approximate, depending on the
exact nature of the description) location. On the other hand, introduction of an
observable corresponding to ‘flock sleep’ does not produce emergent behaviour
if it occurs exactly when all individual birds sleep. �
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In some Formal Methods, like alphabetised process algebra, the two descriptions
emC and its abstraction ∃ b : B · emC are deemed incomparable, exactly because
the types of their free variables differ. Such theories are therefore not obvious
candidates as the basis for a theory in which passage from components to the
whole ensemble (or vice versa) is required. In others like data refinement, trans-
lation via a simulation relation is required before the two levels of behaviour can
be directly compared.

2.3 Ensembles

Having clarified the definitions of ‘LoA’ and ‘emergence’, the definition of ‘en-
semble’ is now straightforward.

Definition (Ensemble). A system forms an ensemble iff it has emergent be-
haviour: its components are described abstractly whilst its system-wide be-
haviour is described as the combination of the abstract components augmented
by variables and, in terms of them, an emergence predicate. �

Thus a system forms an ensemble if its behaviour is not derivable (at the stated
LoA) from that of its components alone. How is an ensemble to be described? In
Section 3 a mild variant of the notation Object-Z [10] is used because it allows
the components to be described in a modularised manner, and an emergence
predicate to be added.

It is important to appreciate that the definition depends on LoA: a system
may exhibit emergence and so form an ensemble when described at one pair of
LoAs but not at another. This property of the definition is crucial for ensemble
engineering, as will appear. At a more fundamental level, it resolves the tension
between emergence and reductionism.

2.4 Reductionism

The concept of emergence can be viewed as providing a ‘patch’ to fill a gap in
the systematic reduction of the behaviour of the whole to that of its parts: with
reductionism [35]. But how is that to be reconciled with Formal Methods, which
after all relies on the gap-free decomposition of a complex system into formalised
components. If that methodology does not capture all system behaviour then it
is seriously flawed. This section provides a reconciliation.

The tension between emergence and reductionism is long standing and has
been extremely well documented since Descartes. Much of the confusion can
be clarified by making explicit the LoA of a description (as described in the
previous section) [11]. As will be seen from the examples in Section 3 and,
as already pre-empted, at the specification level there is typically insufficient
state in the components to account for emergent behaviour of the ensemble. To
expand component state would be tantamount to describing an implementation;
but then what was emergent in the specification would no longer be emergent
in the implementation. What is emergent at one level of abstraction (for us, the
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abstract level of specification) may not be at another (for us, the implementation
level).

Formal Methods supports the top-down incremental derivation of a system
from its specification. At intermediate stages the resulting construct, usually
called a design, is part specification and partly executable (already code). It is to
be expected, then, that derivation will yield intermediate LoAs in which the en-
semble’s functionality is being captured in an efficiently executable manner—as
usual—but also that the emergent behaviour is gradually being accounted for.

A design thus represents a step towards ensuring that the specified com-
ponents are fit for ensuring the emergent behaviour. At the specification level
(exhibiting emergence) the components by themselves (i.e. before incorporating
the emergence predicate) are not fit; at the implementation level (since no emer-
gence remains) they are fit; and in between they are being modified to make
them fit. Throughout this paper ‘fit’ refers to just that conformance.

2.5 Related Approaches

Fromm [13] argues that the generality of the concept of emergence makes any
definition unlikely and so instead proposes a taxonomy. Whilst examples are
useful, so too is standard Mathematics for framing general concepts. That is the
approach taken here.

Whilst emergence has been seen here as the explicit structuring of phenomena
at one LoA in terms of those at another, there is a more extreme position in the
study of Mind according to which, for example,

. . . human level intelligence is too complex and little understood to be
correctly decomposed into the right subspecies at the moment and that
even if we knew the right subspecies we still wouldn’t know the right
interfaces between them. Furthermore, we will never understand how to
decompose human intelligence until we’ve had a lot of practice with a
simpler level intelligence. R. A. Brooks, [1].

There is, of course, considerable support for this position concerning the all-
encompassing notion of intelligence. But the last quoted sentence might be seen
as suggestive that simpler forms of intelligence and more restricted LoA be stud-
ied first. The hope would then be that a hierarchy of incremental LoAs be used
to understand the more detailed behaviour—an approach with which Formal
Methods has substantial experience. Damper [8] also discusses reductionism and
emergence from the perspective of LoAs. Although we have found that LoAs
clarify much of the Philosophical discussion, the fundamental question remains
of whether or not there exist ensembles (like Mind) and emergent behaviour
(like consciousness) that is not reducible. We take no position on the question.
The techniques provided in this paper are designed for the ensembles arising in
Computer Science.

In the general setting of complex systems Gell-Mann [14] has suggested that the
study of such phenomena be called plectics. He introduces ‘granularity’, which is
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conveniently formalised using LoAs. Examples from Artificial Life have played a
formative part in our work. For an older summary we refer to Cariani [4].

Ryan [29] makes the important point that, in our terms, when applied to open
systems (which ensembles typically are) the concrete LoA may capture compo-
nents in the environment of the abstract LoA. Although the definition he gives
appears to allow it, he debars statistical phenomena from being emergent. That
makes his formalism inappropriate for our use here (see Sections 3.1 and 3.2).
Chen et al. [5] use transition systems (apparently with deterministic transitions)
to introduce a classification of emergence, based on Ryan’s definition, motivated
by systems expressed in process algebra.

For a recent summary of much of the related work that we have no space to
review here, we refer to the survey by Deguet et al. [9].

3 Examples

The emergent behaviour of an ensemble with a large number of components
may be (partly) statistical in nature. That is something with which ‘traditional’
Software Engineering has little experience in spite of the availability of proba-
bilistic [24] and societal [25] algorithms from Computer Science. So the purpose
of the first example, a fair coin, is to consider in as simple a setting as possible
the essence of statistical emergence, stripped of the attendant functionality that
would make a realistic ensemble more complex. It is to be expected that the sta-
tistical ‘ingredient’ must, by the standards of Statistics, be trivial. The purpose
of the example is thus to clarify: how does a statistical property emerge, how is
it to be specified (using formal methods) and how is it to be implemented and
conformance checked?

The second example, a flock of birds, sketches a dynamically changing ensem-
ble seen from the viewpoint of emergence. A standard from Artificial Life, we
again abstract detail to concentrate on position and velocity of each bird in the
flock; the points being made—for instance, concerning distributed versus cen-
tralised control in a design that conforms to the specification of an ensemble—do
not lie in the detail. Interest centres on the manner in which the distributed im-
plementation conforms to emergence specified and how they are expressed in a
manner accessible to ensemble engineering.

3.1 Coin Tossing

By abstracting almost all the functionality in an agent-based ensemble, we are
led to the following example of a simple ensemble exhibiting statistical behaviour
consisting of (a large number of) tosses of a coin. The abstracted components
of the ensemble are identical: each is a single coin toss. The ensemble, however,
consists of the (large number of) tosses, and the emergent behaviour is the
bias—in this case zero—of the coin. Thus there is no way to infer the emergent
behaviour from any collection of single components.

In the first specification, the ensemble is countably infinite, permitting ex-
pression of the usual criterion that two events 0 and 1 (representing heads and
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FairCoin

Coin
t : 0 | 1

Ensemble
E : N → Coin

Emergence
limn→∞ n−1 ∑

0≤j<n E (j ).t = 1/2

Fig. 1. Specification of the ‘probabilistic’ fair coin

tails) to be equally probable. In (approximiately) the notation of Object-Z [10],
emergent behaviour may be described as if it were liveness of a state-based
system. See Figure 1. The system is named FairCoin. It has three local con-
stituents: a component named FairCoin.Coin whose observable t is either 0 or
1; a countable collection of such components, called FairCoin.Ensemble; and
an emergence predicate FairCoin.Emergence. The first is used simply in order
to define the second, whilst the third is conjoined with the second to yield the
system behaviours.

Though statistically standard, that infinite ensemble is of mere theoretical
interest. A more realistic ensemble contains only a finite number of (unordered)
tosses. Then the limit is replaced by some agreed statistical approximation: the
fraction of heads in the total number of tosses deviates from half by an amount
interpreted as fair at a certain confidence level (based on the binomial distri-
bution and, for a large ensemble, its approximation to the normal distribution
using the central limit theorem).

Treating the size N of the ensemble and the degree c : [0, 1] of confidence
as parameters (although the latter is typically expressed as a percentage), write
Fair(E , c) to mean that the bag E of tosses is fair at the c-confidence level: the
difference

| N−1 ∑
e∈E e.t − 1/2 |

lies within the bound dictated by the confidence level c. See Figure 2.
The obvious implementation consists of the iterated toss of a coin which is fair

by construction. The program P 1
2
⊕ Q is equally likely to be P or Q [23], and

may be implemented directly using a random-number generator. The statistical
behaviour of the implementation is now not emergent because it is inferred
directly from the iterated components. Again, see Figure 2.

Conformance of FairCoinImp to FairCoinSpec then follows by standard
Statistics (or probability theory, actually, via the binomial distribution). Indeed
the criterion is the standard one: the behaviour of FairCoinImp is a special case
of that described by FairCoinSpec.
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FairCoinSpec

Coin
t : 0 | 1

Ensemble[N ]
E ′ : bagN Coin

Emergence[c]
Fair(E ′, c)

FairCoinImp

Coin
t := 0 1

2
⊕ t := 1

System[N ]
F : bagN Coin

Fig. 2. Specification and implementation of the fair coin

By concentrating on just emergent statistical phenomena, that example has
been devoid of interesting state. However it is easy to incorporate a mechanism.
For example in interactive science museums can often be found a peg board with
pegs configured in such a way to deflect balls into columns that exhibit a binomial
(or other) distribution. Such a mechanism is readily modelled as a loop in which,
on each iteration, its Boolean variable is assigned 0 (a ball goes to the left) or 1
(to the right) with equal probability (say); and that loop is iterated N times.

The fair coin is representative of a well-known family of examples of emergence
in which more interesting distributional behaviour (than binomial) emerges as
the result of a more subtle generating mechanism. The family includes Zipf’s
law, Benford’s law and so on. A typically thorough but old treatment of such
laws is given by Knuth [18]; see more recently [3,22].

For instance many realistic random variables are lognormally distributed (that
is, the logarithm of the variable is normally distributed); that skews them to
the right. Examples are heights (usually assumed to be normal), particle sizes,
ore deposits, incomes across the population and so on. These days the most
convincing explanations for lognormal genesis are founded on the mere process
of classifying data. However an elegant mechanism was given by Kolmogorov
[19]. An attribute (income, or ore) is dispersed in the population by a series of
steps; dispersal is proportional to the power of some constant, but random at
each step; so taking logarithms the central limit applies to produce a normal
distribution. Such a mechanism can be coded like the peg board above, and
produces an example combining both nontrivial state in each component, but
statistical emergence in the ensemble.

3.2 Flocks

An ensemble in which more truly dynamic behaviour emerges is that of a flock of
birds (swarm of bees, school of fish, herd of quadrupeds, etc.); see for example [2].
The components are the individuals, described autonomously (now we abstract
statistical behaviour to concentrate on distribution). Such a description suffices
to specify the actions of the birds independent of other birds but en masse. It
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FlockSpec
Bird
l , v : R → R3

v = Dl

Ensemble[size]
F : Psize Bird

EmergenceSpec
∃ l̂ , v̂ : F × F → R3 · Flocking(F , l̂ , v̂)

FlockImp

Bird
l , v : R → R3

v = Dl

Ensemble[size]
F : Psize Bird

Init
initially(F ,H , β)

EmergenceImp
∀ b : Bird · D(b.v) =

∑
c:Bird (c.v − b.v) effect(b, c)

Fig. 3. An (abstracted) specification, FlockSpec, and an implementation, FlockImp,
clarifying the part played by emergence in a flock. At both levels the flock consists
of a finite set of birds each of which has, at any time, a location l and velocity v ,
the latter of which is the derivative of the former. The emergence predicate Flocking
defines flocking behaviour of the ensemble and is given by Definition (3). In FlockImp
it is achieved by updating the velocity of each bird according to the average of the
difference between its current velocity and that of the other birds, weighted according
to the function effect : Bird ×Bird → R given by Definition (2). The predicate initially
represents a condition on its arguments for the convergence to hold in EmergenceSpec.

does not account for behaviour of the ensemble as a whole, like flocking, which
is thus emergent.

The ensemble is specified in outline as for the previous example; see Figure 3.
The specification of the unilateral individuals is given first, with some parameters
to account for differences between individuals. Then a collection of individuals,
the colony, is defined (a set suffices if individuals are uniquely determined by
their parameters). Finally emergence is described. Now it is more subtle, since
the behaviour of the colony may result in dynamic reconfigurability: a flock
may temporarily divide when confronted by a predator, or other obstacle, and
afterwards recombine. Techniques must be developed to describe such reconfig-
urability elegantly and in a structured manner (but so far little seems to have
been done c.f [30]).

In this example, the emergence predicate accounts for the flocking behaviour
of individuals. The idea of determining the motion of an individual by averaging
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that of its neighbours appears first (in this context) to be due to Reynolds
[28]. His model, boids, is based on a heuristic in which ‘collision avoidance’ has
higher priority than ‘matching the velocity of neighbours’ which in turn has
higher priority than ‘staying close to neighbours’. A more detailed quantitative
model, in a more general but less heuristic setting, was simulated by Vicsek et al.
[33]. That model was treated analytically by Jadbabai et al. [17], who produced
convergence results in both discrete and continuous time; adverse local effects
(like collision or noise) were not considered there, although leadership of the
flock was included.

The most comprehensive analytical results to date are due to Cucker and
Smale [6,7] whose treatment extends that of Jadbabai to three dimensions, in-
cluding noise, for both discrete and continuous time. For contrast with the pre-
vious example, we consider the continuous case. Suppose that each bird b has
attributes location l(t) : R3 and velocity v(t) : R3 at any time t : R. In the flock,
an individual’s velocity is incremented by a weighted average of the difference
between its velocity and those of other birds (the weighting can be instantiated
to allow only neighbours to influence that update). In [7] bird interaction is de-
termined by a function effect : Bird × Bird → R giving the effect of its first
argument on its second. The symmetric instantiation

effect(b, c) =̂ H (1+ ‖ b.l − c.l ‖2)−β (2)

is shown to be sufficient for flocking, for constants H > 0, β ≥ 0 and a simple
condition relating those constants to the initial values (b.l)0 and (b.v)0 for the
location and velocity, respectively, of each bird b.

Flocking is defined by the condition that both inter-bird distances and ve-
locities converge: for a finite set F of birds b with time-dependent location and
velocity observables b.l , b.v : R → R3 there are (unique) time-independent inter-
bird location and velocity functions l̂ , v̂ : F × F → R3 for which this predicate
holds:

Flocking(F , l̂ , v̂) =̂ ∀ b, c : F ·
(
‖(b.l)(t)− (c.l)(t)− l̂(b, c)‖ → 0
‖(b.v)(t)− (c.v)(t)− v̂(b, c)‖ → 0

)
(3)

where the norm is the usual Euclidian norm and convergence is with time tending
to infinity.

If D denotes differentiation with respect to time then, for all b : F , the
differential equations

D(b.l) = b.v
D(b.v) = −

∑
c:Bird effect(b, c) (b.v − c.v)

ensure Flocking, (recall that on the right the b.v−c.v is a function of t) assuming
simple conditions on the initial state of the flock (i.e. on the initial values of
b.l and b.v) and the constants H and β from Definition (2); see [7], Theorem 1.
Writing initially(F ,H , β) for (the conjunction of) those initialisation conditions,
the resulting specification and implementation are given in Figure 3.
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An implementation—at least a design for one—can, as in any distributed
system, vary in its degree of distribution. At one extreme it is centralised; at
the other it is entirely distributed. A distributed design would incorporate extra
information in each individual to account for behaviour of the group, perhaps
with a relatively small amount of randomness in response to the environment.
A centralised design—which would seem less appropriate in this case—includes
extra components (omniscience, with access to the state of each individual) to
account for the emergent behaviour of the group. Techniques for the description
of distributed designs are well developed in Computer Science. The criterion for
conformance of a design to a specification is again that each behaviour exhibited
by the design is allowed by the specification. But sufficient conditions, respecting
the modularisation of the ensemble, must be developed.

4 Emerging Ethics

4.1 Ethics without Free Will?

An important case of a multi-agent ensemble is that in which the agents are artifi-
cial. Whilst there is no (mathematical) definition of that term (it is ‘agent’ which
is contentious, not ‘artificial’ !), it seems to be accepted that an artificial agent
must be interactive, autonomous and adaptable [12]. In particular, only certain
programs are agents. A typical example is provided by reactive software consid-
ered at a level of abstraction at which, typically by employing machine learning
and making probabilistic choices, it adapts to interactions with its environment.
Reconfigurability may be a particular feature; but anyway as a result of adaptabil-
ity, the ensemble exhibits emergence (compared with the more abstract view).

It is important that such systems be specified. Otherwise their behaviour as
they adapt is unpredictable. But there seems to be almost no experience of that:
such systems seem to be considered entirely at the implementation level.

In society, an ensemble composed of sentient agents, such emergence can be
seen as the result of either laws or ethical principles. When the agents are human
(subject to the usual exceptions involving mental immaturity due either to youth
or mental state) and so exhibit free will, the field of Ethics provides normative
principles by which that dynamic multi-agent ensemble, society, functions within
the desired tolerances. But those principles (like deontologism, consequentialism,
utilitarianism etc.) rely entirely on the agent possessing free will; and they tend
largely to focus on the individual.4 So in the absence of free will, for example in
a multi-agent ensemble composed of artificial agents, an alternative foundation
must be provided: new normative principles must be developed which do not
depend on the agents possessing free will and which apply squarely to systems.5

4 The ethical platforms of various companies and organisations make interesting read-
ing; they all seem to be strongly influenced by individual (human) ethics, even to
the treatment of take-overs.

5 In so far as laws carry over to the artificial case, they are readily specified as func-
tional properties, to be satisfied like any safety property.
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The question is whether or not such principles can be strong enough to support
an interesting theory. The answer seems to be positive.6 Such principles will at
first seem strange from the point of view of Ethics, for precisely the reason that
they are not founded on free will. In many cases they do not look particularly
‘ethical’, pertaining instead simply to functionality of the multi-agent ensemble.
But their utility is to be measured by the way in which, like the principles of
standard Ethics, they enable behaviour of agents (collective behaviour, in the
case studied here) to be specified, implemented and analysed. They ensure fitness
of agents.

‘Ground zero’ of such principles for multi-agent systems is the ‘principle of
distribution’ [27] according to which each system action should be as distributed
as possible. It finds application in many distributed systems, including those
from socio-economics and politics. The case of an individual (artificial) agent is
considered in [12]; further examples appear in [32]. Indeed ethical considerations,
when interpreted in this suitably abstracted manner not involving free will, play
an important part in motivating the designs of many distributed systems [30].

4.2 Emergence and Conformance

Section 3 has demonstrated that it is both appropriate and convenient to specify
an ensemble as a conjunction of components augmented by an emergence pred-
icate (each may of course be a conjunction). More generally an ensemble might
be naturally expressed in terms of further ensembles. It would be of interest to
consider laws that transform an ensemble to some canonical form.

It would also be of interest to consider various kinds of emergence. We have
concentrated on statistical (Section 3.1) and limiting spatial/temporal (Section
3.2) behaviour. There might be a temptation, for example, to say what an en-
semble ‘ought’ to do. Indeed it is to be expected that deontic logic will provide
an important notation for expressing types of emergence. But it must be stressed
that a property is only of use if conformance to it can be established. It is as well
to be specific, since new techniques are to be expected in ensemble engineering:

A specification is a system description against which conformance can
be decided.

Such is the case, for instance, for a large family of probabilistic properties
based on expectations. It might at first be thought otherwise, on the grounds
that any finite behaviour is consistent with a given frequency being attained in
the limit. In fact the highly successful theory [23] has been assumed implicitly
in the examples in Section 3.

But for deontic logic the position seems to be far from successful. There ap-
pears to be no denotational semantics and the only (Kripke) semantics already
assumes on the possible worlds a semantic notion of duty. Thus it is of no help

6 The name ‘information ethics’ has been given to that weaker theory, and investigated
by the Information Ethics Group at Oxford [16].
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to say, without further clarification, that an ensemble’s emergent (or any other)
behaviour is that it ought to perform some action.

Having decided a denotational semantics for ensembles exhibiting emergent
behaviour, laws and criteria for conformance will be important.

5 Conclusion

The importance of societal engineering and ensemble engineering seems assured.
This position paper has considered one aspect of both: the place of emergent phe-
nomena in such systems and the manner in which it can be formalised and im-
plemented. That seems sufficient to justify the following research agenda whose
purpose is to clarify the importance of emergence. The result is expected to be a
foundation for ensemble engineering in the context of the Interlink programme.

1. Description. Developing notation for specifying ensembles and for express-
ing designs of ensembles. The use of Object-Z here has been a first attempt.
What emergence predicates arise (as stastistical distribution and spatio-
temporal convergence have here) and how are they best expressed? Can
deontic logic be made useful? (And if so, does it have a denotational se-
mantics that can be used for the verification of laws, as has been done for
probabilism [23]?) What intermediate designs arise in ensuring that a com-
ponent agent conforms to emergent behaviour?

2. Conformance. Give criteria, and practical sufficient conditions, for one de-
sign to conform to a specification or another design. This necessarily includes
a semantics for the notations developed in the previous part. For the stan-
dard and probabilistic descriptions used here that has already been done via
Object-Z and the probabilistic guarded command language pGCL. But, as a
warning: the Software Engineering of probabilistic systems is far from easy
because of the interaction between probabilism and nondeterminism. What
about other emergence predicates? And the return to fitness of individuals
and the system? The semantics makes available sound laws, which justify
the extent to which a conjunction of ensembles may be reduced to a single
ensemble. That should be investigated.

3. Case studies. Consider a range of case studies, representative of realis-
tic ensembles. Important examples include those featured in this proceed-
ings, agent-based ensembles, dynamically reconfigurable ensembles, machine
learning, and designs that account for emergence with varying degrees of
distribution. In particular the specification of the environmental emergence
exhibited by adaptive (machine learning) systems seems both interesting
and important.7 Vital here is the ‘self-stability’ of such dynamic ensembles
to return to their ‘stable’ system state after perturbations.

4. Model checking. Show that some of the case studies conform to their spec-
ifications by automated verification of the sufficient conditions established
above.

7 The approach of Section 3 can be applied to show that learning may be treated as
emergence; see [15], Section 3.3.
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More speculative topics, that are nonetheless of interest, include:

1. Continuous ensembles? With a very large number of similar components,
is there a place for reasoning as if the ensemble were infinite and then using
an approximation for large finite ensembles? That would permit the standard
theory of differentiability to be used to reason about the limiting case, and
afterwards use a discrete approximation to infer behaviour of the ensemble
in hand. If such an approach is of use, what is the place of hybrid ensembles?

2. Game theory In ‘strategic’ ensembles, whose component agents compete for
advantage, it is to be expected that the best theories available for describing
emergent behaviour are game theoretic. It would be interesting to have a
realistic but feasible case study of this kind.

3. Artificial ethics? Is it useful to pursue the idea of the ethical responsibility
of artifical agents, and to use emergent ‘ethical’ qualities in specifying them?
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Abstract. We study some of the mathematical challenges presented by
the need to support ensemble engineering, concentrating on likely contri-
butions from category theory and universal algebra. Particular attention
is paid to dealing with missing data, modelling dynamics and interaction,
and analysing inconsistencies.

Keywords: Ensemble engineering, category theory, universal algebra,
inconsistency analysis.

1 Introduction

This volume, and much of the earlier work of the INTERLINK Working Group 1
(WG1), has advocated ensemble engineering as an important new computing
paradigm. For a discussion of ensembles, the reader is referred to [3] in which
ensemble engineering is defined (page 19) as “the science and engineering disci-
pline of complex, integrated ensembles of computing elements . . . [and] ways to
reliably and predictably model, design, and program them”.

The growth in the development of distributed systems, mobile technologies,
agent-based systems, multi-processor embedded systems, and the construction
of interoperations for legacy systems all contribute engineering techniques that
can be useful for ensemble engineering. At the same time, the challenges of
very large numbers of nodes, adaptive technologies which blur the boundary
between development time and operation time, open environments, and emergent
behaviour, will require the development of new mathematical techniques for
reliable design.

Some of the mathematics expected to be of value can be predicted already.
Probabilistic analyses, differential equations, the modal logic of games, and many
aspects of complex systems theory are all relevant. This paper explores the
prospects of providing mathematical support for ensemble engineering using one
less known mathematical tool — category theoretic universal algebra. After some
background material and a brief example of specification via category theoretic
universal algebra we deal in turn with the need to develop mathematics for the
� Research partially supported by the Australian Research Council. I thank the anony-

mous referees for useful comments and the editors for encouraging me to include the
survey material in Sections 2 and 3.
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dynamics of algebras, proposals for the study and management of the integra-
tion of systems, how to deal with limited data at the local level of computational
elements, how to deal with limited data during interoperation between compu-
tational elements, and a proposal for the analysis of systems in the presence of
inconsistencies.

2 Remarks on Category Theory

Some readers of this volume will have little or no experience with the branch of
mathematics known as category theory. The remainder of this paper attempts to
outline results which follow from category theoretic analysis without including
the mathematical details. Of course, there is a risk of “falling between two stools”
— those who understand category theory may feel cheated by the missing details,
while those with no experience of category theory may wonder what it’s all about.

To try to address the first group, the category theorists, I have included precise
statements of the category theory involved whenever I can do that with a few
words. Those without experience of category theory should just read past the
technical terms when they appear.

For the second group I say a few words informally about category theory in this
section. Mostly I try to avoid full definitions, talking about category theory rather
than trying to provide an exposition of a graduate course in a page or two.

Nevertheless, we begin with some detailed definitions: A category is a directed
(multi-) graph, together with a composition for arrows in the graph defined
whenever two arrows meet head to tail (viz A �� B �� C, with the resulting
composite a single arrow from A to C). If the two composable arrows are called f
and g then the composite is denoted gf (note the order which corresponds to the
usual (algebraic) notation for composite functions). The composition operation
is required to be associative (so h(gf) = (hg)f) and to have identities.

Since in every category composition of arrows is associative, any string of ar-
rows A �� B �� . . . �� T in a category has a unique composite.
Of course, different strings might have the same composite. If another string of
arrows A �� C �� . . . �� T has the same composite the diagram made
up of the two strings is said to commute. Some examples of commutative triangles
and a commutative square appear in Section 4.

Common examples of categories arise from classes of mathematical struc-
tures and the arrows, often called morphisms, between them. For example, the
category of finite sets has as objects all finite sets and as arrows the functions be-
tween the sets. Similarly there are categories whose objects are groups and whose
arrows are group homomorphisms; topological spaces with continuous maps;
graphs with graph homomorphisms; etc. There is even a category whose ob-
jects are all “small” categories and whose arrows are the appropriate morphisms
for categories — graph morphisms φ which respect the composition meaning
that φ(gf) = φ(g)φ(f) and φ takes identity arrows to identity arrows — called
functors. (Do not be concerned about “size” issues which cause no difficulties
provided one correctly uses classes).
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Finite categories are quite common in computer science applications. They
are easily presented by giving their finite underlying graph and tabulating the
(finitely many) compositions.

Categories were introduced during the 1940s, originally to make precise the
notion of natural transformation — a kind of morphism between functors. The
language of categories has since become widely used in many ares of mathe-
matics, and category theory itself has had an important role in unifying and
organising disparate areas of mathematics.

Categories are disarmingly simple — a category is merely a graph together
with a composition which is associative and has identities. What is surprising is
that such a simple notion can have much “semantic power”. A large part of that
power comes from the discovery during the 1950s that notions nowadays known
as limits and colimits, including products, coproducts, pullbacks and pushouts,
can be described solely as properties of arrows within a category. Such properties
typically take the form “for all arrows of a certain kind there is a unique arrow
of another kind making certain diagrams commute”, and because of the initial
universal quantifier (“for all”) they are known as universal properties. Another
kind of universal property, cartesian morphisms, plays a role in Section 8.

The existence of objects with certain universal properties is sometimes called
an exactness condition. For example, to say that a category, like the category of
finite sets, has all finite products (which it does), is an exactness condition. A
category which has all finite limits is called finitely complete. Finite completeness
is quite a strong exactness condition, but we do sometimes require more, for
example the existence of finite coproducts (Section 4). The category of finite
sets has all of these exactness conditions and more besides.

3 Categorical Universal Algebra

In the 1960s, F.W. Lawvere discovered and developed categorical universal alge-
bra. Lawvere observed that using finite products and commutative diagrams he
could construct a category which encapsulated all of the information required for
a particular branch of algebra, say group theory. The category is called the theory
of a group. Every finite group arises as a finite product preserving functor from
the theory to the category of finite sets. Indeed more: The category whose objects
are such functors and whose arrows are the natural transformations between them
is equivalent to the category of finite groups and group homomorphisms.

Similarly other areas of algebra arise correspondingly from other theories.
Monoids, semigroups, rings and many other algebraic structures can be treated in
exactly the same way. And theorems proved about the categories using category
theoretic tools are theorems of universal algebra.

In order to further generalise from fully defined operations (like the product
of elements of a group) to partially defined operations (like the composition of
arrows in a category) one needs to replace “finite products” with more general
limits. For example, a certain pullback can be used to abstractly specify the
composable pairs of arrows in an abstract category. Thus, one is led to the notion



182 M. Johnson

of a theory as a category with certain exactness properties, and algebras as
functors from the theory to a category of sets which preserve the exactness
properties. Commutative diagrams in the theory still correspond to axioms that
the algebras are required to satisfy.

In the 1970s Lawvere and others developed categorical logic, most explicitly
in topos theory, in which certain universal properties can be used to represent
standard logical constructions. Categorical logic is important to us here because
category theory can be used to specify systems as well as algebras, and restric-
tions on those systems are often expressed in logical terms which can, since the
1970s, be rephrased into category theoretic specifications.

To conclude this very brief historical survey we note that in the 1980s people
began widely using category theory and universal algebra (although not usually
category theoretic universal algebra) for specifications in computer science. In
the 1990s the author and others used Lawvere style category theoretic universal
algebra to specify information systems while others used category theory for
program language semantics or even to introduce programming constructs (eg
monads in Haskell). Since 2000 the author and his colleague Rosebrugh have
been using category theory to study view updates (Section 8), and view updates
to engineer system interoperations (for arguably very very small ensembles).

4 System Specification Using Universal Algebra

This section briefly reviews the mathematical foundation the author has used for
system specification using category theory. It is based on categorical universal
algebra, which is the basis of classic algebraic specification techniques [2]. We
assume some familiarity with elementary category theory, as might be obtained
in [1], [11] or [13]. For the purposes of this paper we will just outline the basic
ideas. A fuller treatment can be found in, for example, [7].

A theory is a finitely complete category, frequently with other exactness prop-
erties (for example finite coproducts in much of the author’s work with his col-
leagues Rosebrugh and Dampney). A specification is a presentation for a theory,
usually given via a sketch [1]. A model or state for a theory is a finite limit
preserving, and whatever other exactness properties might have been specified
preserving, functor from the theory to the category of finite sets. A model is also
called in more mathematical treatments an algebra.

A model should be thought of as a snapshot of the system in operation, while
the theory constrains the possible snapshots — in a sense the theory embodies
all of the information that is required in all possible snapshots.

These formalities allow us to be quite precise about our systems, and to begin
to analyse them mathematically. but they also have other advantages some of
which we will note here:

– The theory is invariant — there are usually many different presentations of
the same system, and we don’t wish to deal with artifacts of any particular
presentation. For any given system the theories will be equivalent categories
no matter which presentation is used.
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– The theory includes the constraints, axioms or business rules that are im-
portant to capture at specification time, and to enforce at operation time.
Indeed, the power of the exactness properties permits, via categorical logic,
the specification and enforcement of logically delicate constraints.

– The theory can be constructed so as to include mathematical representations
of the data and properties that can be derived from particular states (models)
of the system. For example, when the system in question is a database,
the theory will include (automatically because of the required finite limits)
representations of all of the queries that can be applied to the database.

Example 1. Figure 1 is fragment of a theory for a health informatics system
[5]. Models of this theory include sets representing for example all of the in-
patient operations for which details are stored in the system and all of the
hospitals for which details are stored in the system, along with a function between
them indicating which operation took place in which hospital. The theory itself
includes many more base datatypes together with nodes representing all possible
queries of the database, and arrows representing all derived operations among
datatypes.

In a little more detail:

– The graph shown is a type diagram. The three monic arrows (those with
extra tails to indicate that they should be realised as injective functions)
indicate subtypes. The other arrows are functions (operations) which given
an instance of their domain type will return an instance of their codomain
type. The names on nodes and arrows have no formal significance but do
indicate the real world semantics being captured in the specification and
will be used from now on in our discussion.

– The commutativity of the two triangles represents a typical real-world con-
straint: Every in-patient operation conducted at a particular hospital by a
particular medical practitioner must take place under a practice agreement
(a type of contract) between that hospital and that practitioner. If, instead
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Fig. 1. A fragment of a theory for a health informatics system
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the left hand triangle were not required to commute then it would still be the
case that every operation took place under an agreement, but Dr A could
operate under Dr B’s practice agreement. In many information models, sit-
uations like this do not even include the arrow marked under, and thus they
store the contractual information, but do not specify the constraint — it is
expected to be added at implementation time.

– The square is also commutative and is required to be a pullback. This en-
sures that the specialists are precisely those medical practitioners who are
members of a college which occurs in the subtype Specialisation. This is im-
portant because the registration procedures (not shown) for specialists are
different from those for other medical practitioners.

– Subtype inclusion arrows, and other arrows that are required to be monic in
models, are so specified using pullbacks.

– As is common practice, attributes are not shown in Figure 1, but they are
important. They are usually large fixed value sets, often of type integer
(with specified bounding values), string (of specified maximum length),
date etc. Some examples for this theory include the validity period of a
practice agreement, the name and the address of a person, the classification
of a hospital, the date of an operation, the provider number of a medical
practitioner and many more. Strictly, they are all part of the theory.

It is worth noting that in contrast with most algebras that arise in mathemat-
ics, information systems are usually very many-sorted (based on many different
sets like Hospital, Person, College etc) and most operations are unary (at, by, isa
etc). Also in many algebraic specifications essentially unique models (algebras)
are sought, frequently by taking initial algebra semantics for example. In con-
trast ensembles frequently need to collect data maintaining histories or sets of
instances for each datatype.

5 Dynamics

The utility of categorical universal algebra for abstract specification of software
and systems, including areas as diverse as information systems and programming
language semantics, is well-established. So, rather than rehearsing those argu-
ments we will begin by considering one of the limitations of present work — the
mathematical treatment of the dynamics of algebras is relatively undeveloped in
modern universal algebra.

Universal algebra specifies and studies individual algebras, or varieties of alge-
bras with certain properties, but only rarely does it deal with algebras changing
through for example adding or deleting an element. Yet this dynamic nature is
central for the study of systems that process information — a snapshot of the
system at a moment in time is an algebra, and as the system acquires more
information, perhaps by the addition of a new instance of some type (eg, an in-
sertion of a new entity instance in a database), the algebra is modified to become
another algebra.
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One well-understood, but fairly limited, instance of algebra dynamics is the
extension of a field or a ring by an indeterminate (R �� R[x]). In a more general
sense algebras can be modified by quotienting or by operating on them with other
algebras (taking for example the product — see the next section). But there is little
theory to support “Given a group G, add an element with the following properties
(expressed in terms of other elements of G) to get a new group G′”.

A certain amount of theoretical development of dynamics has been done in [8]
which developed a mathematical foundation that unifies the treatment of speci-
fications, updates (dynamics), and categories of algebras for a class of database
systems. Nevertheless, much remains to be done.

6 Interactions among System Components

One of the outstanding features of ensembles of computational elements is the
interaction of those elements. While ensemble interaction should be dynamic, and
possibly adaptive, it is nevertheless important to design and manage interactions
and to model them mathematically.

The traditional universal algebra approach to modelling and designing interac-
tions between systems involved calculating pushouts in the category of theories.
This has been an effective technique, but it may be seen as less appropriate for
ensembles as it views the ensemble as a static system constructed from parts.

R.F.C Walters and his colleagues have an ongoing programme of research into
a (bi-) categorical calculus of processes which accurately models the composition
of systems including representations of concurrency and feedback (see for exam-
ple [9] and [10]). The processes may be viewed as algebras in our framework,
and algebras can be composed using algebra operations akin to product, sum,
and trace. More recently the researchers have incorporated timing issues into
their mathematical model. It seems likely that approaches such as these will be
very useful in ensemble engineering, although much of the work is still oriented
towards viewing the ensemble as a constructed system rather than as a dynamic
evolving agglomeration.

Another approach advocated by the author [4] focuses on managing the com-
munications between extant systems using techniques outlined in Section 8. The
basis for studying interactions is quite like the pushout approach: We begin with
a span of theories IE �� V �� IE′, two of which, IE and IE′, are the theories
of independent computational elements while the third (V) is a representation
of their interactions, typically the common information on which they will at-
tempt to remain synchronised. The synchronisation techniques (Section 8) are
quite different from the calculation of a pushout, but more importantly for this
section the systems specified by IE and IE′ remain independent and can in prin-
ciple move in and out of communication rather than being parts of a composite
system calculated via pushout.

So, we have at least three promising techniques to analyse and design interac-
tions among elements of ensembles. In all three cases there is still much to do to
develop the mathematical approaches to more fully support ensemble engineering.
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7 Limited Data at Computational Elements

One of the most significant aspects of an ensemble is the need to deal with semi-
structured rather than fully-structured data. In a dynamic world with many
adaptive elements joining and leaving an ensemble, it’s hard to imagine how
complete sets of data can be captured, communicated and maintained.

The problem of incomplete data has long been dealt with in the database
community by using NULLs — invalid data values that act as place holders for
missing data. Nevertheless, NULLs have had at best an ambiguous status in
the theory, frequently they were retro-fitted long after a design which de facto
assumed perfect data availability. And when they were considered in the theory
they led to widely differing treatments using so-called three-valued logics.

The first observation to be made here is that missing values have no impor-
tance in and of themselves — one doesn’t need a NULL value to store the fact
that there is nothing to store. The delicacy in dealing with missing values arises
because operations may need to take undefined values.

Now partial operations are easily represented category theoretically. Suppose
f : A �� B is an operation which might be only partially defined on its domain
A. Then in the theory which establishes the type of f we don’t include an arrow
A �� B but rather a span A ���� A′ �� B. Thus A′ is the type standing
for those instances of A on which f is defined, and notice that in a dynamic
system this provides full flexibility — instances of elements of A can be added
to, or deleted from, A′ as information becomes available.

Interestingly, and delicately, the span approach is not equivalent to using
NULLs. In the latter case a partially defined f : A �� B would be represented
by a fully defined f ′ : A �� (B + 1) where the extra element of the codomain
is the NULL. The two approaches are Morita equivalent (ie have equivalent
categories of models, see [6]) on the assumption that the subobject A′ �� �� A
is complemented and this is not usually the case. The difference is important in
dynamic environments: To define f on a new value a ∈ A is extra information and
is represented in the span case by inserting a into A′, but when f ′ has codomain
B + 1 extending the domain of definition really means reassigning values for f ′

(formerly f ′(a) = 1, but once f becomes defined at a then f ′(a) = b for some
b ∈ B).

8 Limited Data during Interoperation

Another source of limited data arises in dynamic environments when, for exam-
ple, systems interoperate via a span of theories IE �� V �� IE′ as proposed
in Section 6.

Suppose we aim to keep, as far as possible, the algebra for IE synchronised
with the algebra for IE′ on common parts indicated by V. In categorical univer-
sal algebra an algebra for a theory IE′ is an appropriate functor IE′ �� Set.
Thus an algebra for IE′ yields an algebra for V by composition with the theory
morphism V �� IE′. Now, how can we modify the algebra (system snapshot)
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for IE so that it remains synchronised with the new algebra for V? This is the
view update problem. The problem is genuinely difficult because of missing data.
A change in the algebra for IE′ by an insert say, may result in a change in the
algebra for V also by an insert. That insert is properly defined, since all the
information that a V-algebra needs is available in the IE′-algebra. But trying to
propagate the insert to the extant IE-algebra may be impossible (if for example
there are constraints that are required to be satisfied by IE-algebras that do
not appear in V-algebras), or ambiguous (if for example there are operations in
IE-algebras that are not fully determined by operations in V-algebras).

To engineer effective interoperationswe need to determine those occasionswhen
view-updating maybe impossible since they are real limitations to interoperations,
and for those situations where view-updating may be ambiguous because there are
multiple solutions we seek a “best” solution — one for which the change to the IE-
algebra is minimal. In category theoretic terms we seek a universal solution to the
view updating problem and analysing the situation shows that the solution is given
by well-known cartesian and op-cartesian morphisms [7].

Importantly the two types of missing data (treated in this section and the
preceding section) interact well: In work still being written up the author shows
that when operations support missing data using the span approach outlined in
the previous section, and an insert leads to an ambiguous view update because
such an operation is not fully-determined, the least defined extension of the
operation will be a component of an op-cartesian morphism.

Of course there is much work to be done in testing the utility of these ap-
proaches for full ensemble engineering, but they have already proved their value
in smaller scale system interoperations.

9 Analysing Systems in the Presence of Inconsistencies

Finally we consider one important mathematical limitation that can arise in deal-
ing with ensembles. With loosely coupled, or indeed uncoupled, dynamic systems
of open computing elements one can’t ensure consistency — unexpected or mal-
functioning elements might occasionally join an ensemble and exhibit properties
which contradict ensemble invariants. This shouldn’t be surprising. Conflicting
systems often exist, and frequently operate effectively for extended periods in
at least a narrow domain in the real world. But for mathematical tools such
inconsistencies can be damning. A single inconsistency in a mathematical model
invalidates everything that the model purports to demonstrate.

In fact, it is easy to see how the difference arises. Real systems have various
flows of control and inconsistencies can co-exist for extended periods without
being invoked together and coming into conflict. The system behaviour is de-
termined by the traces of execution. In contrast mathematical structures exist
in their Platonic entirety. If a contradiction exists, its effects cannot be dis-
tinguished from deductions that would have been valid in its absence. Every
“behaviour” of the mathematical structure, everything that it proves, is brought
into doubt by the presence of the inconsistency.
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Recent work by Catherine Menon [12] addresses this problem using ideas from
view updating. Menon develops what she calls CCF, the categorical consistency
framework.

Menon has developed a framework which maintains mathematically the
distinctions between modules and permits an analysis of the modules and an
exploration of their joint consistency without in fact building them all into a
mathematical model which would itself exhibit any inconsistency which was
present.

Menon’s work is a first step in an area that will need to become well-developed
if we are to provide proper mathematical support for truly open and dynamic
ensembles rather than using older mathematical techniques to analyse snapshots
of ensembles as large static systems constructed from fixed components.

10 Conclusion

It is clear that a great range of mathematical techniques will be important for
ensemble engineering. Some exist. Others will be developed to meet the new
challenges that arise.

This paper has focused particularly on categorical universal algebra and ex-
plored some of the probable applications, and some of the current limitations,
of extant universal algebra for ensemble engineering. We’ve demonstrated that
some of the difficult problems of ensemble engineering can be addressed using
recent developments based on categorical universal algebra, particularly the rep-
resentations of missing data and the solution of view update problems, neither
of which played a part in earlier applications of universal algebra. We look for-
ward to many more similar developments in mathematical support for ensemble
engineering.
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Abstract. The complexity of the software-intensive systems requires
working with notions as explicit locations in a distributed system, in-
teraction among the mobile processes restricted by interaction time-
outs, time scheduling, and restricted resource access. In order to work
these notions, we use a timed and distributed variant of the π-calculus
having explicit locations, types for restricting the resource access, and
time constraints for interaction in distributed systems. Using observation
predicates, several behavioural notions are defined and related: (global)
barbed bisimulations, (global) typed barbed bisimulation, timed (global)
barbed bisimulations, timed (global) typed barbed bisimulation and full
timed global typed barbed bisimulation. These bisimulations form a lat-
tice according to their distinguishing power.

1 Introduction

Software-intensive systems are complex systems where processes interact with
other processes, involving several devices, sensors and applications distributed
over heterogeneous networks at various locations. Society’s dependence on such
software-intensive systems is increasing. Working under dynamic conditions,
software-intensive systems should exhibit adaptive and anticipatory behaviour
taking care of many aspects involving a spatial distribution and a relative time
of interaction among processes. In this paper we explore novel computing models
and investigate new behaviour bisimulations for software-intensive systems.

Modelling software-intensive systems requires notions as locations, interaction
among the distributed processes, resource access and time scheduling. Starting
from the π-calculus [8], distributed π-calculus (Dπ) was introduced and studied
in [7] as an extension with explicit locations and types. In order to add time con-
straints for distributed systems, we have introduced timed distributed π-calculus
(tDπ) as an extension of the π-calculus with locations, types and timers [3].
The distributed processes are controlled by message communication and time
scheduling. Time is important, both for restricting communication availability
and for enforcing limited resource access (the communication channels repre-
sent resources). tDπ could be included in the class of control-driven models;
the triggering events in tDπ are either the communications on channels, or the
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migration with go, or the expiration of a timer. Using timers in coordinating
distributed processes, tDπ goes beyond the coordination by using (only) mes-
sages transmitted among processes, or by restricting the actions permitted on
channels using channel types. Timers and the time constraints provide temporal
synchronisation and scheduling.

Bisimulation is an important concept used for analysing and comparing the
processes behaviour; a bisimulation relation equates processes which behave
in the same way according to the assumptions defined by the bisimulation.
Bisimulations represent the adequate way of capturing behavioural
(in)distinguishability of complex systems. The simplicity and richness of the
theory of bisimulation made it interesting to define several variants and exten-
sions. The focus of the paper is the behavioural notions and their relations. The
paper defines twelve barbed bisimulations, and study their distinguishing power
by defining several relationships between these versions of barbed bisimulation
for tDπ. The results express the fact that the more aspects are observed, the
finer is the corresponding bisimulation. The existence of this family of barbed
bisimulations allow to select the right behavioural equivalence depending on the
aspects under consideration.

In Section 2 we briefly present the syntax and semantics of the software-
intensive model based on the formalism presented in [3]. Some technical results
are mentioned: the typing system and typing rules are sound with respect to
the dynamic semantics given by reduction rules and equivalence relation. A
barb predicate holds if the process respects the observation criteria imposed by
its definition. Four barbed bisimulations and eight timed barbed bisimulations
are presented in Section 3. The bisimulations are compared by proving first an
inclusion with equality, and then giving a counterexample to prove the strict
inclusion; the discriminating power of the bisimulations is given by the sets of
barbs used by them.

2 A Computation Model for Software-Intensive Systems

The complexity of the software-intensive systems requires working with notions
as explicit locations of a distributed system, interaction among the distributed
processes restricted by interaction timeouts, time scheduling, and restricted re-
source access. In order to work these notions, we use a timed and distributed
variant of the π-calculus having explicit locations, types for resource access,
and time constraints for interaction in distributed systems. Timers over channel
names are used in order to define timeouts for communications, and timers over
channel types are used in order to restrict their existence inside the type environ-
ment of the process. All these timers are decreasing in a uniform way for all the
involved clocks (the existence of a global clock is not necessary). The channels
are discarded (no communication is possible on these channels) whenever their
timers expire; similarly, a channel type is lost when its attached timer expires.
In this formalism denoted shortly by tDπ, waiting for a communication on a
channel is no longer indefinite (like in π or Dπ); if no communication happens
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in a predefined interval of time, the waiting process goes to another state. This
approach leads to a method of sharing the channels in time.

The timer ∆t of each channel makes the channel available for communication
only for the period of time determined by the discrete value t. We consider timers
for both input and output channels. The reason for adding timers to outputs
comes from the fact that in distributed systems we have both multiple clients and
multiple servers. This means that clients may switch from one server to another
depending on the waiting time. To simplify our presentation we choose a simpler
π-calculus and omit the syntax for matching or summation. A communication
channel is considered a fixed resource at a location. The syntax of Input and of
Output communication uses a pair of processes. For instance, an Input expression
a∆t?(X : T ).(P, Q) evolves to P whenever a communication is established during
the interval of time given by ∆t; otherwise it evolves to Q. The variable X is
considered bound only in P , and we should provide its type T by defining a
typing relation.

Table 1. Syntax of tDπ

u ::= x
| a∆t

l ::= x
| k

v ::= bv
| u | l
| u@l
| (v1,..,vn)

X::= x
| X@l
| (X1,..,Xn)

Variable Name
Timed Channel
Variable Name
Location Name
Base Value
Name
Located Name
Tuple of Values
Variable
Located Variable
Tuple of Variables

P , Q ::= stop
| P | Q
| (ν u : A)P
| go l.(P, Q)
| u!〈v〉.(P, Q)
| u?(X :T ).(P, Q)
| ∗P

M , N ::= M | N
| (ν u@l : T )N
| l[[P ]]Γ

Termination
Composition
Channel Restriction
Movement
Output
Input
Replication
Composition
Located Restriction
Located Process

Two channels are equal a∆t1
1 = a∆t2

2 if and only if a1 = a2 and t1 = t2. Waiting
indefinitely on a channel a is allowed by considering ∆t as ∞. For example, an
output process defined by the expression a∞!〈v〉.(P, Q) awaits forever to send
the value v, simulating the behaviour of an output process in untimed π-calculus.
In the expression below, two processes are running in parallel and can interact
along the common channel a:

a∆t!〈v〉.(P, Q) | a∆t′
?(X : T ).(P ′, Q′) −→ P |P ′{v/X}

Each located process is labelled with a type environment Γ which is a set of
location types. The purpose of the type environment associated with a specific
process is to restrict the range of accessible resources the process can access.
Formally, Γ ⊆ L×K is a relation associating to a location name a location type.
A location type is a set of location capabilities which may contain channel types,
move capability (i.e., permission to migrate to that location), or channel creation
capability (i.e., permission to create channels). A channel type may contain the
channel capabilities read (r), write (w), and read only (ro). A process which
has a channel type res{r〈T 〉, w〈T ′〉, ro〈T ′′〉} can receive messages of type T and
send messages of type T ′. The ro capability behaves as r with the difference that
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the types of the received messages are not added to the type environment of the
process. A type environment increases (new types are added) when a name is
received along a r〈 〉 channel. With ro〈 〉 capability we describe processes which
may use a received channel only if their type environment has a corresponding
channel type. In Dπ the resources are accumulated, but they can never be lost
(discarded). We extend the channel types of Dπ with timers of the form ∆t.
Communication is now permitted on channels only in the interval of time given
by the timer value t (i.e. until the timer of the channel type expires). These
timers define the existence of the channel types inside the type environment.
Timers decrease in a uniform way with each ”tick” of a clock (this way ensures
that we are working uniformly on each location and it is not necessary to consider
the existence of a global clock; a synchronization mechanism taking into account
two different clocks is enough to get a sound description of the timing aspects).
Upon expiration, the channel types are discarded. Timers are created once with
the channel types, and are activated when the types are added to the type
environment.

The types arepresented in [3]. Starting froma set ofbase types (Integer,Boolean,
etc.), a subtyping relation<: is defined similarly to the subtyping relation ofDπ [7].
Note that the intuitivebehaviour of the subtyping relation is the inverseof the inclu-
sion of sets (A <: B for types means A ⊃ B for sets). A process moves to a location
(by performing a go action), and waits for a period of time to establish a communi-
cation on a particular channel; the capabilities r/w/ro for the fixed resources tell a
process what is it allowed to do when it reaches a location. When a process receives
new channel names, types for the new channels become available. It means that the
processes can communicate on the new channels according to the new types. For
example, if a process receives through an input channel a located name a@k, then it
gains the capability to move to locationk, and to communicate on channel a. A pro-
cesswhichhas a channel typewith the capability r〈T 〉 can receive (without generat-
ing errors) only messages of type T. When the channel type res{r〈T 〉} is extended
with r〈T ′〉, it follows naturally that the process is able now to receive messages of a
richer type: T and T ′. The equality between channel types does not depend on their
timers; the equality must be tested only for names and capabilities.

We define a function ψ which affects only the set of capabilities. It decreases
the timers of the channel types and removes the types with an expired timer. By
removing channel types, it is possible to get location types with only go capability
(we call them empty locations). A process can move to an empty location, but
there it does not have the capability to perform any action, and consequently
produces a runtime error. Thus ψ removes also the empty locations.

Definition 1. (Cleanup function)
ψ :P∆→P∆ is defined over the set P∆ of located processes such that

ψ(l[[P ]]Γ ) = l[[P ]]Γ ′

where l can be any location in the distributed system and Γ ′ is obtained from Γ
where every type c :res 〈 〉∆t, t > 1, t �= ∞ is changed to c :res 〈 〉∆(t− 1), and
every c :res 〈 〉∆1 disappears. Location types of form loc :{go} are removed.
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Based on the vision that software-intensive systems will contain subsystems using
biologically inspired computing principles, we give here an example inspired by
the immune systems, showing how to model a complex system, and how a system
described in tDπ is working.

Example 1. The example illustrates the use of the timers introduced in tDπ. T
cells are among the most understood cells in the immune system. they are able
to destroy the cells to which they bound. Their recognition method uses a T cell
receptor (TCR) which is capable to recognize antigens nested in some class of
histocompatibility molecules.

A common situation is when an organism gets a virus infection. In this case,
the virus invades certain cells in the body. When it gets inside a cell, the virus
starts to multiply and, at the end of the process, the whole virus population
evades the cell. Early in this process of infection, the cells display fragments of
the viral proteins at the surface of the membrane such that T cells can bind to
the infected cells and destroy them before the fresh crop of viruses is released.
This process can be summarized in the following simplified way: when a virus
enters the cell, it offers itself for decoding. If it is read and decoded, then it
can be destroyed. But the virus gets stronger in time, and if the decoder does
not decode it, after a while the virus stops from offering the reading port and
becomes free. A behaviour like the one described above is hard to model with
the typical process algebra tools; for tDπ it illustrates its expressive power.

A molecule infected by a virus offers at a port the possibility to the cyto-
toxic molecules like CD8+ to read and initiate the signalling pathway for the
destruction sequence before the newly created viruses are released. We call such
molecules improperly antigens (the tDπ process is lV [[Anti]]∆V ) because, in the
first stage of the viral infection, they present at the surface of the membrane
binding sites of antigen reminiscences.

lV [[Anti]]ΓV

Anti = a∆9!〈inf〉.(c∆5?(v : T ).(Destroy, Anti), GoFree)

ΓV = {lV : loc{a : A, c : A′, . . .}, . . .}
A = res〈 〉∆20

The antigen process Anti at location lV sends information on output channel
a! and awaits for the destroying signal on input channel c? for a short period
of time (given by the value of its timer ∆5). The problem is that if the correct
corresponding T cell does not arrive in time to recognize the virus, this one
becomes mature enough and multiply to infect other cells.

ΓV is the type environment of the located process lV [[Anti]]ΓV ; it is basically
a set of timed channel permissions which restrict the behaviour of the molecule.
For example, for the output channel a! we have two timers: the channel timer
∆9 which restricts the amount of time to wait for an interaction with a T cell,
and the channel type timer ∆20 which says that after 20 units of time the virus
is mature enough and will no longer offer the output channel for interaction.

We model each molecule type as a process running at a particular location. To
simulate the interaction of two molecules, the active one migrates to the location
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of the passive one, and interact on a common channel. We define a coordinating
process which runs at the special location lCo in parallel with the other processes
representing the interacting molecules.

Co = C1 |C2 | . . . |Cn

Certain initial values are assigned to timers by looking at predetermined
known biological facts about the reaction times or the putative times; the reac-
tion with the least putative time is executed.

The T cell decoders di[[TDeci]]∆di
decode information and send back answers.

We present here the interaction of the T cells with some fictive decoders. Their
natural behaviour is more or less the same, as T cells work to recognize viruses.
The T cell molecules are

lAi [[CD8i]]∆Ai

CD8i = go lV .a∆7?(i : I).go di.b
∆5!〈i〉.d∆5?(c@l :

A@K).(go l.c∞!〈Destroy〉, stop)
∆Ai = {lV : loc {a : A}, di : loc{. . .}, . . .}

We have several kinds of T cells denoted by CD8i, each of them running at
their specific locations lAi . They go at the location of the antigen lV and receive
on the input channel a? the information about the infecting virus. After receiving
the information, a CD8i migrates to the location di of the decoder and retrans-
mits the information for decoding, after which it awaits for an answer which will
start or not the destroying sequence of the infected cell. By assigning different
timer values to each type of T cell molecule, we get different behaviours for each
cell. The CD8 process with the lowest value on channel a interacts with the
virus. This is a possible strategy in biology, where for the most common viruses
we find many compatible T cells. We consider the following system composed of
new virus and several T cells and decoders:

lC [[Co]]∆C | lV [[Anti]]∆V | lA1 [[CD81]]∆A1
| . . .

. . . | lA7 [[CD87]]∆A7
| . . . d9[[TDec9]]∆d9

Let us suppose we have a new virus such that only TDec6 understands its
definition. The process CD86 has a high timer value for channel a, and so it
cannot interact with the virus until we reach a situation where the type of
channel a is A = res〈〉∆1 and the timer on the input channel a? of CD83 is less
than the timer of CD86. We have an interaction between the antigen and CD83:

lV [[Anti]]∆V | lA3 [[CD83]]∆A3
| . . . −→

Since the timer of the output channel a! of the antigen expires, its channel
type A is lost and the time-stepping function φ∆ changes the process Anti to
GoFree, because no more interactions can be achieved on channel a.

lV [[GoFree]]∆V | lA6 [[CD86]]∆A6
| . . .

2.1 Semantics

The passage of time is formalised by a time-stepping function φ∆ defined over
the set P∆ of located processes. The possible communications are performed at
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every tick of the clock. Active channels are those that could be involved in these
communications. φ∆ affects the active channels which do not communicate at
the tick of the clock (the channels involved in communication disappear together
with their timers). Due to timers, the capabilities can be lost, which leads to
”errors”. We define φ∆ to check the existence of the needed types and change
the process accordingly. As φ∆ decreases the channel timers we also extend it to
take care of the type environments by applying the cleanup function ψ. In the
definition of φ∆ we omit the channel type and the transmitted message in the
input and output processes for brevity.

Well-typedness of processes is defined by a set of static rules; a detailed pre-
sentation of these rules is given in [3]. These rules express the behaviour of a
process with regard to its types. If a process wants to communicate on a channel
for which it has no capability, it can still be well-typed if the so-called safety
process Q is well-typed.

Definition 2. (Time-stepping function)
We define φ∆ : P∆ → P∆, where Γ ′ is obtained by application of the cleanup

function ψ. Note that we use a concise notation a∆t.(R, Q) to stand for both
a∆t!〈v〉.(R, Q) and a∆t?(X : T ).(R, Q).

φ∆(l[[P ]]Γ ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k[[R]]Γ ′ if P ≡ go k.(R, Q) and Γ (k) <: loc{go}
l[[Q]]Γ ′ if P ≡ go k.(R, Q) and k �∈ dom(Γ )
l[[a∆(t−1).(R, Q)]]Γ ′ if P ≡ a∆t.(R, Q), t > 1 and t�= ∞
l[[Q]]Γ ′ if P ≡ a∆t.(R, Q), t ≤ 1
l[[Q]]Γ ′ if P ≡ a∆t.(R, Q), t > 1 and Γ ≮: Γ (l, a)
φ∆(l[[R]]Γ ) | φ∆(l[[Q]]Γ ) if P ≡ R | Q
(νa@l :A)φ∆(l[[R]]Γ{a@l:A})if P ≡ (νa : A)R
l[[P ]]Γ ′ otherwise

We write Γ � P and say that process P is well-typed with respect to type en-
vironment Γ ; we also write Γ �k P and say that P is well-typed to run at
location k. To say that P ≡ a∆t!〈v〉.(R, Q) is well-typed to run at location k
with respect to type environment Γ , the following statements should hold: (i)
Γ �k v :T which means that v is a well-formed value at location k of type T ; (ii)
Γ �k a : res{w〈T 〉}∆t which means that channel a exists at location k and may
communicate values of type T for another t units of time; (iii) Γ �k R; Γ �k Q
which means that R and Q are well-typed at location k.

Since function ψ changes the capability set Γ by removing channel and loca-
tion types, we are interested if the process is still well-typed under the new Γ ′.
The following lemma relates the typing environment of the processes with the
passage of time. For complete proofs see [3].

Lemma 1. (Well-typedness is preserved by the cleanup function)
If Γ � l[[P ]]∆ then Γ � ψ(l[[P ]]∆).

We consider the located processes ranged over by N and M (e.g., N represents
l[[P ]]Γ ). We denote by �→ the fact that rules (RΓ -COM1) and (RΓ -COM2)

cannot be applied. Using these notations, the operational semantics of tDπ is
given by the smallest relation defined by the following reduction rules:
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(RΓ -IDLE)
l[[P ]]Γ �→

l[[P ]]Γ → φ∆(l[[P ]]Γ )

(RΓ -COM1)

Γ (l, a) <: res{r〈T 〉}
l[[a∆t!〈v〉.(P, Q)]]∆ | l[[a∆t′

?(X : T ).(P ′, Q′)]]Γ →
ψ(l[[P ]]∆) | ψ(l[[P ′{v/X}]]Γ�{v@l:T})

(RΓ -COM2)

Γ (l, a) <: res{ro〈T 〉}
l[[a∆t!〈v〉.(P, Q)]]∆ | l[[a∆t′

?(X : T ).(P ′, Q′)]]Γ →
ψ(l[[P ]]∆) | ψ(l[[P ′{v/X}]]Γ )

(RΓ -PAR)
N → N ′ M → M ′

N | M → N ′ | M ′ (RΓ -RES)
N → N ′

(νa@l : T )N → (νa@l : T )N ′

(RΓ -CONG)
N ≡ N ′ N → M M ≡ M ′

N ′ → M ′

In (RΓ -IDLE) the function φ∆ decreases the timers on channels, and for the
expired timers the function discards the channels. We have two communication
rules which depend on the type of the channel. In (RΓ -COM2) we consider
ro〈 〉 channels, and the process may use the received information without adding
the new type to its type environment Γ , as the case in rule (RΓ -COM1). In
these cases the type environments are affected by the cleanup function ψ. In
rule (RΓ -PAR) a process M reduces to M ′ by (RΓ -IDLE) rule if it has no
internal communication reductions. Because the movement syntax enters under
the application of function φ∆, we have no (RΓ -GO) rule. At each tick of the
clock (RΓ -IDLE) is applied to go processes and to processes which do not enter
any communication.

A run-time error system of tDπ is presented in [3] as a set of rules describing
a relation err−→ denoting the generation of an error. A run-time error occurs only
when the channel or location type is in the type environment (when a process
tries to do something against the types accumulated in its type environment).

The soundness of the new formalism is given by the following results. We
follow a method introduced in [5]; the proofs can be found in [3].

Lemma 2. If Γ � l[[P ]]∆ then Γ � φ∆(l[[P ]]∆).

Theorem 1. (Subject Reduction) For all located processes

(a) If N ≡ N ′, then Γ � N if and only if Γ � N ′.
(b) If Γ � N and N → N ′, then Γ � N ′.

Subject reduction ensures that once well-typed, a process remains well-typed.
Contrary to the general approach in functional programming, in tDπ well-
typedness must be preserved also by the structural equivalence relation. In the
following we give a result of type safety which is needed to get a complete proof of
the soundness property of tDπ. This result states that if a system is well-typed,

then it cannot give rise to run-time errors, and this is denoted by P
err

�−→.

Theorem 2. For all located processes N and all type environments Γ such that

Γ � N we have N
err

�−→.



198 G. Ciobanu

3 Bisimulations in Software-Intensive Systems

Whenever the operational semantics is defined by a reduction relation (i.e., no
labels over transitions), the observation predicates are fundamental ingredients
in describing the behaviour. They allow to observe the interaction capabilities
of the processes, and to compare the evolution of two systems. There are mainly
four observation coordinates in tDπ: one involves the name of the communica-
tion channel (Milner and Sangiorgi’s barbed bisimulation), another is given by
the locations, a third one is given by the type environment, and finally, a forth
one is given by time. Several barbed bisimulations can be defined. Two processes
are barbed bisimilar if they satisfy the same observation predicates and, by per-
forming a reduction, can evolve to processes that are still barbed bisimilar. The
main purpose of this section is to emphasize the diversity of choices offered by
tDπ for comparing the behaviour of processes. We define four barbed bisimula-
tions which can be found in the literature in similar forms, and add several new
extensions which involve time. Finally, a total of twelve barbed bisimulations
form a lattice presented in Figure 1.

Following the presentation of barbed bisimulation in [9], we specify first what
is observable, and what is unobservable. To simplify the presentation we choose
as observable only the communication along the located channel names, without
considering the transmitted messages. In tDπ we have synchronous communica-
tion on fixed located channels. In consequence, the observables can be both input
and output communications. We consider as unobservable the movement with go,
the application of the time-stepping function φ∆, and the internal interaction of
processes. For instance, in order to observe if a process P communicates on the in-
put channel name a? at location k, the observerwaits for an output communication
along the same channel namea! at the same locationk.We consider that anuntimed
observer cannot distinguish the values of the timers on channel names or on chan-
nel types. On the other hand, a timed observer can trace the timers of the channel
types inside the type environment, and/or the timers of the channel names.
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Fig. 1. Barbed bisimulations for tDπ and their related distinguishing power
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Definition 3. A barb predicate ↓µ where µ ∈ {a?, a!} with a being any channel
name, is defined inductively by the following system of rules where we denote by
µ the names of the input or output channels (e.g. if µ = a? then µ = a).

a∆t!〈v〉.(P, Q)↓a! a∆t?(X : T ).(P, Q)↓a?

P ↓µ

P |Q↓µ

P ↓µ and a �= µ

(ν a : A)P ↓µ

P ↓µ
∗P ↓µ

Additionally, a process P satisfies the predicate ⇓µ, denoted P ⇓µ, if and only if
there is a sequence of reductions P �Q leading from P to Q, and Q↓µ.

Definition 4. A barbed bisimulation S is a symmetric binary relation over pro-
cesses that for all P, Q ∈ S implies

if P ↓µ, then Q↓µ for any barb ↓µ;
if P → P ′, then Q→ Q′ and (P ′, Q′) ∈ S. Two processes are barbed bisimilar,

denoted P
�∼B Q, if and only if (P, Q) ∈ S for some barbed bisimulation S.

The barbs and the barbed bisimulation are naturally applied to located processes
N . The barbed bisimulation �∼B is the coarsest bisimulation in this paper; the
observer is restricted to observe only communications. A general notion of barbs
is given in [6] in terms of acceptances s1A1 . . . snAn, where si is a sequence of
actions from the set of actions Act and Ai ⊂ Act. These general barbs correspond
in LTS semantics to the failure traces of van Glabbeek [11]. However we want
to look at actions separately, not at sequences si of actions. In consequence we
adopt a presentation based on the notion of barbs introduced in [9]. Note that,
even if in tDπ we do not use the summation operator, a process P may satisfy
more than one barb because of the parallel composition operator. Thus, if P ↓µ

and Q↓µ′ with µ �= µ′, then both statements P |Q↓µ and P |Q↓µ′ hold.
The weak version of the barbed bisimulation for tDπ makes less strict the

constraints of the strong bisimulation. The extension to weak barbed bisimula-
tion is general, and it can be applied to any barbed bisimulation by replacing
the barb Q ↓µ with its weak variant Q ⇓a, and the one-step reduction relation

Q→Q′ with its closure Q�Q′. We denote the weak barbed bisimulation by
�≈B.

The barbed bisimulation by itself does not offer satisfactory properties. In
order to obtain a barbed equivalence (barbed congruence), the bisimulation is
closed under all static (respectively normal) contexts [10]. A context could be
viewed as a process running in parallel with the equated processes. In [10] it is
shown that in the setting of the π-calculus, the barbed equivalence and barbed
congruence coincide with labelled early bisimilarity, respectively congruence re-
lation on the class of image-finite processes [11].

We focus on other possible barbed bisimilarities. Having locations and fixed
located communication channels, it is rather natural to strengthen the observing
power of the previous defined barbs with locations.

Definition 5. A global barb predicate ↓µ@k with µ representing input or output
communication (as described in Definition 3) is defined inductively by the fol-
lowing rules where N and M are processes located at location k, and l is any
location of the system, including k.
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k[[a∆t!〈v〉.(P, Q)]]↓a!@k k[[a∆t?(X : T ).(P, Q)]]↓a?@k

N ↓µ@k

N |M ↓µ@k

N ↓µ@k and a �= µ

(ν a@l : A)N ↓µ@k

k[[P ]] ↓µ@k

k[[∗P ]]↓µ@k

The global barbed bisimulation �∼GB and its weak variant
�≈GB are defined in

the same way as the simple barbed bisimulations given above. A global barbed
bisimulation compares processes by looking also at the location of the communi-
cation. This is of interest when we want to trace the trip of the processes through
the distributed system. Two global barbed bisimilar processes migrate through
the same set of locations in the same order.

We use O for the semantics induced by the barbed bisimulation �∼O, and O≈

for the weak case
�≈O. We give a preorder relation ≺ over barbed bisimulations to

represent that the first barbed bisimulation makes at least as much identifications
as the second. We write O ≺ O′ instead of �∼O≺ �∼O′ . By definitions, it is clear
that O≈ ≺ O. Note that in the definition of the barbed bisimulations we always
use the same reduction relation of tDπ. The difference in observational power
between the barbed bisimulations comes from the definition of the observation
predicates (barbs).

Proposition 1. (B ≺ GB) The global barbed bisimulation is strictly finer than
the barbed bisimulation:

1. B � GB, i.e. ∀N, M , if N
�∼GB M then N

�∼B M

2. GB �� B, i.e. ∃N, M , s.t. if N
�∼B M then N � �∼GB M

Proof: The proofs for this kind of statements are similar; first an inclusion
with equality, and then a counterexample to prove the strict inclusion. Bisimu-
lation relations are represented and studied as sets of process pairs. Therefore
the comparisons between bisimilarities are based on set-theoretic comparisons.
For the first part of the proof, the global observer (i.e., the global barb) can
distinguish in both processes the same communication on channel a at the same
location k. Therefore the normal observer has the same barbs on channel a in
both processes, and so the global barb implies the normal barb (N ↓µ@k⇒ N ↓µ).

Counterexample 1: Take two located processes N and M :

N = l[[a∆t!〈v〉.(P, Q)]]Γ and M = k[[a∆t!〈v′〉.(P, Q)]]Γ ′

Both N ↓a! and M ↓a! hold, and thus the two processes are barbed bisimilar:
N

�∼B M . N↓a!@l and M↓a!@k hold; however l �= k, and so N � �∼GB M . �

Another feature of tDπ is the type system used to restrict the access to resources.
In the definition of typed barbs the observability of types is restricted by the
observers distinguishing power over types. A typed barb ↓Γ

µ:A identifies a process
which can communicate on channel with the name µ and has enough permissions
determined by the channel type A with respect to the type environment Γ of
the observer.
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Definition 6. A typed barb predicate ↓Γ
µ:A is defined inductively by the follow-

ing rules where N and M are located processes (possibly located at different
locations).

Γ ′(k, a) <: Γ (k, a)
Γ (k, a) = A

k[[a∆t!〈v〉.(P, Q)]]Γ ′ ↓Γ
a!:A

Γ ′(k, a) <: Γ (k, a)
Γ (k, a) = A

k[[a∆t?(X :T ).(P, Q)]]Γ ′ ↓Γ
a?:A

N ↓Γ
µ:A

N |M ↓Γ
µ:A

N ↓Γ
µ:A and a �= µ

(ν a@l : A)N ↓Γ
µ:A

k[[P ]]Γ ′ ↓Γ
µ:A

k[[∗P ]]Γ ′ ↓Γ
µ:A

The definition of the typed barbed bisimulation �∼TB follows Definition 4, replac-
ing the barb ↓µ with the typed barb ↓Γ

µ:A. To obtain the desired equivalence we
should close the barbed bisimulation under all contexts. Equivalently, we can
close the barbed bisimulation under all observers well-typed with respect to the
type environment Γ . Thus N and M are typed barbed equivalent (and we write
N ∼TB M) iff we have N |O �∼TB M |O for all O with Γ � O.

Proposition 2. (B ≺ TB) The typed barbed bisimulation is strictly finer than
the barbed bisimulation:

1. B � TB, i.e. ∀N, M , if N
�∼TB M then N

�∼B M

2. TB �� B, i.e. ∃N, M , s.t. if N
�∼B M then N � �∼TB M

The proofs of the following results are quite similar to the line described in the
proof of Proposition 1, and they are omitted.

The global barbed bisimulation �∼GB and the typed barbed bisimulation �∼TB

are incomparable. Based on the distinction between locations and types, we can
build two processes which are equated by �∼GB, but not by �∼TB, and another
example for the opposite direction. A finer bisimulation is obtain by combining
locations and types into global typed barbed bisimulation �∼GTB. The global typed
barbs are essentially typed barbs which can also observe the location of the
communication channel. In order to choose a clear notation for global typed
barbs ↓Γ

µ@k, we direct the reader to the Definition 6 of the typed barbs. We have
the type A deduced from the fact that the global typed barb is restricted to
the type environment Γ , and the communication channel µ is local to k; hence
A = Γ .

Definition 7. A global typed barb predicate ↓Γ
µ@k is defined inductively by the

following rules; N and M are located processes at the same location k.

Γ ′(k, a) <: Γ (k, a)
k[[a∆t!〈v〉.(P, Q)]]Γ ′ ↓Γ

a!@k

Γ ′(k, a) <: Γ (k, a)
k[[a∆t?(X :T ).(P, Q)]]Γ ′ ↓Γ

a?@k

N ↓Γ
µ@k

N |M ↓Γ
µ@k

N ↓Γ
µ@k and a �= µ

(ν a@l : A)N ↓Γ
µ@k

k[[P ]]Γ ′ ↓Γ
µ@k

k[[∗P ]]Γ ′ ↓Γ
µ@k
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The definition of the global typed barbed bisimulation �∼GTB follows Definition 4,
by replacing the barb ↓µ with the global typed barb ↓Γ

µ@k.

Proposition 3. (GB ≺ GTB) The global typed barbed bisimulation is strictly
finer than the global barbed bisimulation:

1. GB � GTB, i.e. ∀N, M , if N
�∼GTB M then N

�∼GB M

2. GTB �� GB, i.e. ∃N, M , such that if N
�∼GB M , then N � �∼GTB M

Proposition 4. (TB ≺ GTB) The global typed barbed bisimulation is strictly
finer than the typed barbed bisimulation:

1. TB � GTB, i.e. ∀N, M , if N
�∼GTB M then N

�∼TB M

2. GTB �� TB, i.e. ∃N, M , such that if N
�∼TB M then N � �∼GTB M

It is clear by definition that both N ↓Γ
a!:A and M ↓Γ

a!:A hold, and thus N
�∼TB M .

However the locations of the communication channels are different (l �= k), and
thus N ↓Γ

a!@k holds, but M ↓Γ
a!@k does not hold, i.e., N � �∼GTB M .

The timed features of the new computational model are emphasized by con-
sidering timed observers able to check the values of the timers.

Definition 8. A timed barb predicate ↓tcn
µ distinguishes the communication

channel and its timer value, and is defined inductively by the following rules
(Q �↓t′

cn
µ means that the timed barb predicate ↓t′

cn
µ does not hold for process Q).

a∆t!〈v〉.(P, Q)↓tcn

a! a∆t?(X : T ).(P, Q)↓tcn

a?

P ↓tcn
µ Q �↓t′

cn
µ ∀t′ ∈ N

P |Q↓tcn
µ

P ↓tcn
µ Q↓t′

cn
µ tcn < t′cn

P |Q↓tcn
µ

P ↓tcn
µ and a �= µ

(ν a : A)P ↓tcn
µ

P ↓tcn
µ

∗P ↓tcn
µ

When treating the parallel composition operator, we choose the smallest timer
value. If Q can offer the communication channel a for a shorter time, then after
the expiration of the timer ∆t′, Q would change state by application of φ∆.
The new state Q′ may offer a complementary communication channel for P , and
thus the system composed of P and Q′ can no longer offer a communication on
channel a. We say that our timed barbs offer consistent observations.

Definition 9. A timed barbed bisimulation for channel names S is a symmetric
binary relation over processes which for all (P, Q) ∈ S implies
1. if P ↓tcn

µ , then Q↓tcn
µ for any timed barb ↓tcn

µ ;
2. if P → P ′ then Q → Q′, and (P ′, Q′) ∈ S.

Two processes are timed barbed bisimilar, denoted P
�∼tBcn Q, if and only if

(P, Q) ∈ S for some timed barbed bisimulation S.

Proposition 5. (B ≺ tBcn) The timed barbed bisimulation for channel names
is strictly finer than the barbed bisimulation:
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1. B � tBcn, i.e. ∀P, Q, if P
�∼tBcn Q then P

�∼B Q

2. tBcn �� B, i.e. ∃P, Q, such that if P
�∼B Q then P � �∼tBcn Q

We extend the timed barb with location awareness, obtaining a finer timed global
barb denoted by ↓t

µ@k which identifies the channel µ and its timer value t, and also
the location k of the channel. This barb induces a timed global barbed bisimulation
�∼tGB.

Definition 10. A timed global barb predicate ↓t
µ@k is defined inductively by the

following rules, where N and M are located processes at location k, and l can be
any location.

k[[a∆t!〈v〉.(P, Q)]]↓t
a!@k k[[a∆t?(X : T ).(P, Q)]]↓t

a?@k

N↓t
µ@k M �↓t′

µ@k ∀t′ ∈ N

N |M ↓t
µ@k

N↓t
µ@k M↓t′

µ@k t < t′

N |M ↓t
µ@k

N↓t
µ@k and a �= µ

(ν a@l : A)N↓t
µ@k

k[[P ]]↓t
µ@k

k[[∗P ]]↓t
µ@k

Proposition 6. (tBcn ≺ tGB) The timed global barbed bisimulation is strictly
finer than the timed barbed bisimulation:

1. tBcn � tGB, i.e. ∀N, M , if N
�∼tGB M then N

�∼tBcn M

2. tGB �� tBcn, i.e. ∃N, M , such that if N
�∼tBcn M , then N � �∼tGB M

Proposition 7. (GB ≺ tGB) The timed global barbed bisimulation is strictly
finer than the global barbed bisimulation:

1. GB � tGB, i.e. ∀N, M , if N
�∼tGB M then N

�∼GB M

2. tGB��GB, i.e. ∃N, M , s.t. if N
�∼GB M then N � �∼tGB M

Since we also have timers on channel types, we give a second timed variant ↓tct
µ

of the simple barbs which takes into account only the type timers. The rules for
this timed barb are similar to the ones in Definition 8. Following Definition 9,
we define timed barbed bisimulation for channel types denoted �∼tBct induced by
these barbs.

Proposition 8. (B ≺ tBct) The timed barbed bisimulation for channel types is
strictly finer than the normal barbed bisimulation:

1. B � tBct, i.e. ∀N, M , if N
�∼tBct M then N

�∼B M

2. tBct �� B, i.e. ∃N, M , s.t. if N
�∼B M then N � �∼tBct M

Timed extensions of the typed barbs could be given by looking at the channel
type timer. Our timed typed barbed bisimulation below cannot be compared with
�∼tBcn because the two bisimulations look at different timers.
Definition 11. A timed typed barb predicate ↓tΓ

µ:A, where µ ∈ {a!, a?} and
Γ (k, a) = A, is defined inductively by the following rules.
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Γ ′(k, a) <: Γ (k, a)
Γ (k, a) = res{. . .}∆t

k[[a∆s!〈v〉.(P, Q)]]Γ ′ ↓tΓ
a!:A

Γ ′(k, a) <: Γ (k, a)
Γ (k, a) = res{. . .}∆t

k[[a∆s?(X :T ).(P, Q)]]Γ ′ ↓tΓ
a?:A

N ↓tΓ
µ:A M �↓t′Γ

µ:A ∀t′ ∈ N

N |M ↓tΓ
µ:A

N ↓tΓ
µ:A M ↓t′Γ

µ:A t < t′

N |M ↓tΓ
µ:A

N ↓tΓ
µ:A and a �= µ

(ν a@l : A)N ↓tΓ
µ:A

k[[P ]]Γ ′ ↓tΓ
µ:A

k[[∗P ]]Γ ′ ↓tΓ
µ:A

We have used s as a value for the channel timer. However we do not take into
account the channel timer ∆s. The definition of the timed typed barbed bisimula-
tion �∼tTB follows Definition 4 by replacing ↓µ with the timed typed barb ↓tΓ

µ:A.

Proposition 9. (tBct ≺ tTB) The timed typed barbed bisimulation is strictly
finer than the timed barbed bisimulation for channel types:

1. tBct � tTB, i.e. ∀P, Q, if P
�∼tTB Q then P

�∼tBct Q

2. tTB �� tBct, i.e. ∃P, Q, s.t. if P
�∼tBct Q then P � �∼tTB Q

Proposition 10. (TB ≺ tTB) The timed typed barbed bisimulation is strictly
finer than the typed barbed bisimulation:

1. TB � tTB, i.e. ∀P, Q, if P
�∼tTB Q then P

�∼TB Q

2. tTB �� TB, i.e. ∃P, Q, s.t. if P
�∼TB Q then P � �∼tTB Q

To compare processes by considering all the features of the formalism, we should
observe the communication channel name and its location, the type of the chan-
nel, and also the values of the timers. As we have seen, depending on which
timers we are interested in observing, we obtain different types of timed barbed
bisimulations, and these bisimulations are incomparable.

We have two different timed global typed barb predicates: ↓Γ
t,µ@k which dis-

tinguishes only the channel timer, and ↓tΓ
µ@k which distinguishes only the type

timer. These barbs induce two partial timed global typed barbed bisimulations
denoted by �∼1tGTB and �∼2tGTB, respectively.

Proposition 11. (tGB ≺ 1tGTB) The timed global typed barbed bisimulation
of rank I is strictly finer than the timed global barbed bisimulation:

1. tGB�1tGTB, i.e. ∀P, Q, if P
�∼1tGTB Q then P

�∼tGB Q

2. 1tGTB �� tGB, i.e. ∃P, Q, s.t. if P
�∼tGB Q then P � �∼1tGTB Q

Proposition 12. (GTB ≺ 1tGTB) The timed global typed barbed bisimulation
of rank I is strictly finer than the global typed barbed bisimulation:

1. GTB � 1tGTB, i.e. ∀P, Q, if P
�∼1tGTB Q then P

�∼GTB Q

2. 1tGTB �� GTB, i.e. ∃P, Q, such that if P
�∼GTB Q then P � �∼1tGTB Q
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Proposition 13. (tTB ≺ 2tGTB) The timed global typed barbed bisimulation
of rank II is strictly finer than the timed typed barbed bisimulation:

1. tTB� 2tGTB, i.e. ∀P, Q, if P
�∼2tGTB Q then P

�∼tTB Q

2. 2tGTB �� tTB, i.e. ∃P, Q, such that if P
�∼tTB Q then P � �∼2tGTB Q

A timed global typed barbed bisimulation is denoted by P
�∼tLTB Q; it takes into

account both the timer on channel name and on channel type, but chooses only
the one with the smallest value. It is defined as in Definition 4; here we give only
the definition of the associated barb.

Definition 12. A timed global typed barb predicate, ↓tΓ
µ@k is defined inductively

by the following system of rules. We remind that we denote by µ the name of
the output or input channels {a!, a?}; where by t we denote only a discrete value
of the timer; t = min(t, t′).

Γ ′(k, a) = res{. . .}∆t′

Γ ′(k, a)<:Γ (k, a)
k[[a∆t!〈v〉.(P, R)]]Γ ′ ↓tΓ

a!@k

Γ ′(k, a) = res{. . .}∆t′

Γ ′(k, a)<:Γ (k, a)
k[[a∆t?(X :T ).(P, R)]]Γ ′ ↓tΓ

a?@k

N↓tΓ
µ@k M �↓t′Γ

µ@k ∀t′ ∈ N

N |M ↓tΓ
µ@k

N↓tΓ
µ@k M↓t′Γ

µ@k t < t′

N |M ↓tΓ
µ@k

N↓tΓ
µ@k and a �= µ

(ν a@l : A)N ↓tΓ
µ@k

k[[P ]]↓tΓ
µ@k

k[[∗P ]]↓tΓ
µ@k

We decide to use the minimum between the two timer values because of the
application of the time-stepping function φ∆ which changes the process P to R
after the expiration of the smallest timer. Looking at a channel a with a channel
timer ∆t and type timer ∆t′, we can distinguish the following two cases:

i) t > t′ : the type is removed from the type environment after t′ units
of time, and we have the following case of Definition 2 of φ∆: l[[P ]]Γ =
l[[a∆t.(Q, R)]]Γ , t > 1, and Γ ≮: Γ (l, a);

ii) t′ > t : the timer of the channel a expires after t units of time, and we have
the following case of Definition 2 of φ∆: l[[P ]]Γ = l[[a∆t.(Q, R)]]Γ and t ≤ 1.

In both cases φ∆(l[[P ]]Γ ) = l[[R]]Γ ′ .

Proposition 14. (GTB ≺ tGTB) The timed global typed barbed bisimulation is
strictly finer than the global typed barbed bisimulation:

1. GTB� tGTB, i.e. ∀P, Q, if P
�∼tGTB Q then P

�∼GTB Q

2. tGTB��GTB, i.e. ∃P, Q, such that if P �∼GTB Q then P � �∼tGTB Q

1tGTB, 2tGTB, and tGTB are incomparable (counterexamples can show that
processes which can be equated by one barbed bisimulation cannot be equated
by the other).

The full timed global typed barbed bisimulation has the greatest discriminating
power among the bisimulations presented in this paper; it defines the largest
number of equivalence classes over processes.
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Definition 13. A full timed global typed barb predicate, ↓t,t′Γ
µ@k is defined induc-

tively by the following system of rules:

Γ ′(k, a)<:Γ (k, a)
Γ (k, a)=res{. . .}∆t′

k[[a∆t!〈v〉.(P, R)]]Γ ′ ↓t,t′Γ
a!@k

Γ ′(k, a)<:Γ (k, a)
Γ (k, a)=res{. . .}∆t′

k[[a∆t?(X :T ).(P, R)]]Γ ′ ↓t,t′Γ
a?@k

N ↓t,t′Γ
µ@k M ↓t,t′Γ

µ@k

N |M ↓t,t′Γ
µ@k

N ↓t,t′Γ
µ@k and a �= µ

(ν a@l : A)N ↓t,t′Γ
µ@k

k[[P ]] ↓t,t′Γ
µ@k

k[[∗P ]]↓t,t′Γ
µ@k

The definition of the full timed global typed barbed bisimulation �∼ftGTB follows
Definition 4, replacing the barb ↓µ by ↓t,t′Γ

µ@k . As the full barb traces both the
values of the timers on the channel name and channel type, it is simple to prove
that 1tGTB ≺ ftGTB, 2tGTB ≺ ftGTB and tGTB ≺ ftGTB.

Proposition 15. (tGTB ≺ ftGTB) The full timed global typed barbed bisimu-
lation is strictly finer than the timed global typed barbed bisimulation:

1. tGTB �ftGTB, i.e. ∀P, Q, if P
�∼ftGTB Q then P

�∼tGTB Q

2. ftGTB�� tGTB, i.e. ∃P, Q, such that if P
�∼tGTB Q then P � �∼ftGTB Q

Proof: For the first part of the proof we observe that the barb ↓t,t′Γ
µ@k dis-

tinguishes the values of both timers. If P
�∼ftGTB Q implies that P ↓t,t′Γ

µ@k and

Q ↓t,t′Γ
µ@k hold. This means that the values of the channel type timers are equal,

and also the values of the channel name timers are equal; this means that the
two minimum values are also equal. This implies that both processes respect
the same timed global typed barb ↓tΓ

µ@k; thus N ↓t,t′Γ
µ@k⇒↓

tΓ
µ@k. For the second

part we can give a counterexample where the located processes are equated by
the barbed bisimulation �∼tGTB. The same processes do not have corresponding
equal timer values, and therefore they are not equated by �∼ftGTB. �

4 Conclusion

Timed distributed π-calculus is presented as a computation model of software-
intensive systems. It has explicit notions of location and time, it deals explicitly
with resources allocation, secure resource usage and management. Important
constraints in new distributed applications are given by timeout coordination
realized by a discrete and relative notion of time given by various types of timers.
A non-monotonic behaviour of the systems are given by the timeout recovery
processes. We use an example to describe the process coordination in time and
space, suggesting how to use this model to model an adaptive behaviour in open
distributed systems.

We introduce timed distributed π-calculus in [3] as a timed and distributed
extension of the π-calculus. The essential ingredients are represented by timers
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on channels and channel types. Thus tDπ combines the temporal constraints
with types and locations in order to give the possibility of modelling located
and timed interactions between distributed processes with time restricted re-
source access. In this paper, after presenting briefly the syntax and semantics
of the timed distributed π-calculus, we define several observation predicates and
their corresponding barbed bisimulations, establishing relations between them.
We emphasise the diversity of choices for several behavioural equivalences which
can be defined in the framework of tDπ calculus. The defined bisimulations in-
volve locations, types, timers on channels, and timers on channel types. The
bisimulations are organised in a lattice (Figure 1) according to their distinguish-
ing power. Depending on the aspect we intend to observe, a suitable barbed
bisimulation can be selected from this lattice. The lattice can be used to rea-
son about the distinguishing power of such bisimulations, comparing them and
finding the right place in the lattice of any bisimulation defined for distributed
systems with locations, types and timers.

The coordination aspects of the timed distributed π-calculus are discussed in
[2] where a student is moving from one location to another location by interact-
ing with a bus, a tram, and two cabs. The system is described both in timed
distributed π-calculus and timed mobile ambients. Timed mobile ambients are
presented in [1], and they are essentially mobile ambients with types and timers.
The main difference between timed distributed π-calculus and timed mobile am-
bients is given by the representation of space ; the space used in tDπ is flat,
while in timed mobile ambients we have a more realistic account of physical
distribution by using a hierarchical representation of space.
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Jean-Pierre Banâtre1, Pascal Fradet2, and Yann Radenac1,�
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Abstract. In 2001, we gave a survey of more than fifteen years of re-
search on the chemical paradigm which had been a source of inspiration
in many different research areas. The present article presents a digest of
recent advances concerning the chemical reaction model. We focus to a
large extent on: (1) upgrading the basic model to a higher order formal-
ism allowing reactions to be part of solutions and to take part in reactions
and (2) generalizing standard multisets to hybrid and infinite multisets,
thus providing new forms of interactions between elements. These nov-
elties, incorporated in the HOCL language (High Order Chemical Lan-
guage), provide natural and elegant ways of expressing properties related
to coordination and self-organization of systems. Finally, we present cur-
rent research directions which strive to make the chemical reaction model
effective particularly in the programming of large-scale, highly parallel
applications such as Grids.

1 Introduction

Recent years showed that new software intensive systems, such as service-
oriented architectures [1], web services and cloud computing [2], are entering the
main stream. Such distributed systems spread over the Internet and have more
and more users, resources and services. As their popularity grows and the size
of their applications scales up, their programming becomes a major challenge.
Sequential languages do not fit whereas parallel languages based on explicit coor-
dinated processes are too complex when considering a huge number of processes.
Still, most current approaches are based on conventional programming languages
extended by a library that let the programmer tackle low level issues such as
the distribution over the resources or the management of the dynamicity and
failures of these systems.
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Another approach is investigated here: instead of extending standard pro-
gramming languages, we develop and use a high level unconventional program-
ming language. Recent work on “chemical” programming [3,4,5] showed that it
could easily describe grid and autonomous systems. In this article, we review
the chemical model of computation, present recent developments, case studies
and research directions which show that chemical programming is an interesting
candidate to specify software intensive systems.

The Gamma formalism was proposed in [6] as a new paradigm for paral-
lel computing. Basically, it captures the intuition of computation as the global
evolution of a collection of atomic values interacting freely. Gamma can be in-
troduced intuitively through the chemical reaction metaphor. The unique data
structure in Gamma is the multiset which can be seen as a chemical solution. A
simple program is made of a reaction condition and an action. Execution pro-
ceeds by replacing elements satisfying the reaction condition by the elements
specified by the action. The result of a Gamma program is obtained when a
stable state is reached, that is to say, when no more reactions can take place.

For example, the computation of the maximum element of a non empty mul-
tiset can be described by the reaction rule:

replacex, y by x if x ≥ y

meaning that any couple of elements x and y of the multiset is replaced by x
if the condition is fulfilled. This process goes on till a stable state is reached,
that is to say, when only the maximum element remains. Note that, in this
definition, nothing is said about the order of evaluation of the comparisons.
If several disjoint pairs of elements satisfy the condition, the reactions can be
performed in parallel.

The literature about Gamma has been quite prolific and, for a large part, is
summarized in [7]. In the last five years, a strong momentum has led to sev-
eral extensions of the basic concept of multiset on two respects: the nature of
these elements and the multiplicity of its elements. The first generalization con-
sists of allowing elements of multisets to be chemical programs (or reactions)
themselves. On a computational viewpoint, this leads to a higher order chemi-
cal language, thus allowing explicit manipulation of chemical programs though
chemical reactions. This extension is formalized by the γ-calculus, a minimal
higher-order calculus that summarizes in a few rules the essence of higher-order
chemical programming. By extending that calculus with constants, operators,
types and expressive patterns, a higher-order chemical programming language
(HOCL) can be built.

The second extension generalizes the multiplicity of multiset elements. We
consider hybrid multisets [8] which can contain elements with either positive or
negative multiplicity. An element x with a negative multiplicity −k is seen as
an anti-element able to annihilate k occurrences of x. We consider also elements
with an infinite multiplicity called multiplets. For example, the multiplet 1∞

represents a multiset containing an unbounded number of 1’s. This can be used
to represent an element which can be part of an arbitrary number of simultaneous
parallel reactions.
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Section 2 summarizes the state of affairs as of year 2001 (a Gamma story).
Section 3 defines the fundamentals of chemical programming with the presen-
tation of the γ-calculus, the λ-calculus of chemical programming. We proceed
by extending that simple model into an expressive Higher-Order Chemical Lan-
guage (here starts the HOCL story), which is enriched with generalized multisets.
Section 4 show how HOCL can express classical synchronization schemes and
autonomous systems. Section 5 focuses on more prospective research concerned
with the design of effective chemical programming systems. Section 6 gives our
personal insight for the future of this approach and concludes.

2 The Chemical Reaction Model

Initially, the chemical reaction model was proposed by Jean-Pierre Banâtre and
Daniel Le Métayer in [9] through the Gamma programming model. Thereafter,
Gamma has inspired many contributions [7].

2.1 Gamma

The Gamma [6] formalism was proposed to capture the intuition of computation
as the global evolution of a collection of atomic values interacting freely. Gamma
is a kernel language which can be introduced intuitively through the chemical re-
action metaphor. The unique data structure in Gamma is the multiset which can
be seen as a chemical solution. A simple program is a pair (Reaction condition,
Action). Execution proceeds by replacing in the multiset elements satisfying the
reaction condition by the products of the action. The result is obtained when a
stable state is reached, that is to say when no more reactions can take place. The
following is an example of a Gamma program computing the maximum element
of a non-empty set.

max = replacex, y by y if x ≤ y

The side condition x ≤ y specifies a property to be satisfied by the selected ele-
ments x and y. These elements are replaced in the set by the value y. Nothing is
said in this definition about the order of evaluation of the comparisons. If several
disjoint pairs of elements satisfy the condition, the reactions can be performed in
parallel. In order to write a program computing the maximum of a set of values
in a “traditional” language, we would first have to choose a representation for
the set. This representation could typically be an array for an imperative lan-
guage or a list for a declarative language. The program would be defined as an
iteration through the array, or a recursive walk through the list. The important
point is that the data structure would impose constraints on the order in which
elements are accessed. Of course, parallel versions of imperative or functional
programs can be defined (solutions based on the “divide and conquer” paradigm
for example), but none of them can really model the total absence of ordering
between elements that is achieved by the Gamma program. The essential feature
of the Gamma programming style is that a data structure is no longer seen as
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a hierarchy that has to be walked through or decomposed by the program in
order to extract atomic values. Atomic values are gathered into one single bag
and the computation is the result of their individual interactions. A related no-
tion is the “locality principle” in Gamma: individual values may react together
and produce new values in a completely independent way. As a consequence, a
reaction condition cannot include any global condition on the multiset such as ∀-
properties or properties on the cardinality of the multiset. The locality principle
is crucial because it makes it easier to reason about programs and it encapsulates
the intuition that there is no hidden control constraints in Gamma programs.

Let us now consider the problem of computing the prime numbers less than
a given value n. The basic idea of the algorithm can be described as follows:
“start with the set of values from 2 to n and remove from this set any element
which is the multiple of another element”. So the Gamma program is built as the
sequential composition of iota which computes the set of values from 2 to n and
rem which removes multiples. The program iota itself is made of two reactions:
the first one splits an interval x:y with x = y in two parts and the second one
replaces any interval x:x by the value x.

primes(n) = rem(iota({2:n}))
iota = replacex:y by x:((x + y)/2), (((x + y)/2) + 1):y if x �= y

replacex:y by x if x = y
rem = replacex, y by y if multiple(x, y)

The first reaction increases the size of the multiset, the second one keeps it
constant and the third one makes the multiset shrink. In contrast with the usual
sequential or parallel solutions to this problem (usually based on the successive
application of sieves [6]), the Gamma program proceeds through a collection
of atomic actions applying on individual and independent pieces of data. The
program does not introduce any constraint on the way the comparisons are
carried out.

A small number of program schemes are indeed necessary to write most appli-
cations. Five schemes (basic reactions), called tropes (for Transmuter, Reducer,
OPtimiser, Expander, Selector) are particularly useful. For example, a trans-
muter is a rule that transform one molecule into another one, a reducer is a rule
that outputs less molecules than the number of molecules that have reacted, etc.
Further details about tropes may be found in [10].

The interested reader can find in [6] a longer series of examples chosen from a
wider range of domains: string processing problems, graph problems,
geometric problems. Gamma has also been used in a project aiming at exper-
imenting high-level programming languages for prototyping image processing
applications [11,12]. In [13], an operating system kernel is defined in Gamma
and proven correct.

2.2 Implementations

A property of Gamma which is often presented as an advantage is its potential
for concurrent interpretation. In principle, due to the locality property, each
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tuple of elements fulfilling the reaction condition can be handled simultaneously.
It should be clear however that managing all this parallelism efficiently can
be a difficult task and complex choices have to be made in order to map the
chemical model on parallel architectures. Several parallel implementations have
been proposed:

– Distributed memory implementations. Two protocols have been proposed
[14,15] for the distributed implementation of Gamma on network of commu-
nicating machines. They differ in the way rewritings are controlled. either
centralized or distributed [16,17].

– Shared memory implementations. The multiset is the unique data structure
from which elements are extracted and where elements resulting from the re-
action are stored. A specific software architecture has been developed in [18]
in order to provide an efficient Gamma implementation on a Sequent multi-
processor machine.

– Hardware implementation. The tropes defined above have been used as a
basis for the design of a specialized hardware architecture [19]. A hardware
skeleton is associated with each trope and these skeletons are parametrized
and combined according to the program to be implemented.

2.3 Linguistic Extensions

Several linguistic extensions of Gamma have been proposed: composition oper-
ators for Gamma, higher-order Gamma, and Structured Gamma.

For the sake of modularity, it is desirable that a language offer a rich set of
operators for combining programs. [20] presents of a set of operators for Gamma
and studies their semantics and the corresponding calculus of programs. The two
basic operators considered in this paper are the sequential composition P1 ◦ P2
and the parallel composition P1 + P2. The intuition behind P1 ◦ P2 is that the
stable multiset reached after the execution of P2 is given as argument to P1. On
the other hand, the result of P1 +P2 is obtained (roughly speaking) by executing
the reactions of P1 and P2 (in any order, possibly in parallel), terminating only
when neither can proceed further.

Another approach for the introduction of composition operators in a language
consists in providing a way for the programmer to define them as higher-order
programs. This is the traditional view in the functional programming area and it
requires to be able to manipulate programs as ordinary data. This is the approach
followed in [21] which proposes a higher-order version of Gamma. Contrary to
HOCL (see Section 3), reactions are kept separate from the multiset and cannot
be considered as first-class citizens.

The choice of the multiset as the unique data constructor is central in the
design of Gamma. However, this may lead to programs which are unnecessary
complex when the programmer needs to encode specific data structures. For
example, it is necessary to resort to pairs (index, value) to represent sequences.
The solution proposed in [22] is based on a notion of structured multiset which
can be seen as a set of addresses satisfying specific relations and associated with
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a value. Types, defined as graph grammars, characterize precisely the structure
of the multiset. Structured Gamma allows the programmer to define his own
types and have his programs checked according to the type definitions.

2.4 Gamma as a Bridge between Specifications and Implementations

Until now, we have presented Gamma as a programming language. Gamma can
also be seen as a very high-level language bridging the gap between specification
languages and low-level (implementation oriented) languages.

In order to prove the correctness of a program in an imperative language, a
common practice consists in splitting the property into two parts: the invariant
which holds during the whole computation, and the variant which is required to
hold only at the end of the computation. In the case of total correctness, it is also
necessary to prove that the program must terminate. The important observation
concerning the variant property is that a Gamma program terminates when no
more reaction can take place, which means that no tuples of elements satisfy
the reaction condition. So we obtain the variant of the program by taking the
negation of the reaction condition. In order to prove the termination of the
program, we have to provide a well-founded ordering (an ordering such that
there is no infinite descending sequences of elements) and to show that the
application of an action decreases the multiset according to this ordering. To
this aim, we can resort to a result from [23] allowing the derivation of a well-
founded ordering on multisets from a well-founded ordering on elements of the
multiset.

A method for the derivation of Gamma programs from specifications in first
order logic is proposed in [24]. The basic strategy consists in splitting the spec-
ification into a conjunction of two properties which will play the roles of the
invariant and the variant of the program to be derived. The interested reader
can find a more complete treatment of several examples in [24].

As mentioned earlier, the philosophy of Gamma is to introduce a clear sep-
aration between correctness issues and efficiency issues in program design. In
particular, Gamma can be seen as a specification language which does not intro-
duce unnecessary sequentiality. As a consequence, designing a reasonably efficient
implementation of the language is not straightforward. The hardest problem con-
cerns the construction of all tuples to be checked for reaction. A blind approach
to this problem leads to an intractable complexity but a thorough analysis of the
possible relationships between the elements of the multiset and the shape of the
reaction condition may lead to improvements which highly optimize the execu-
tion and produce acceptable performances. In his thesis, C. Creveuil [25] studied
several optimizations to refine Gamma programs into well-known versions of se-
quential algorithms. Several proposals have been made to enrich Gamma with
features which could be exploited by a compiler to reduce the overhead associ-
ated with the “magic stirring” process. For example, the language of schedules
[26] provides extra information about control in Gamma programs, and local
linear logic [27] as well as Structured Gamma [22] structure the multiset. We
come back to these issues when we present our future prospects (Section 5).
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2.5 Gamma as of Source of Inspiration

The chemical reaction model has served as the basis of a number of works in
various, often unexpected, research directions.

The Chemical Abstract Machine. The chemical abstract machine (or Cham) [28]
was proposed by Berry and Boudol to describe the operational semantics of pro-
cess calculi. The most important additions to Gamma are the notions of mem-
brane and airlock mechanism. Membranes are used to encapsulate solutions and
to force reactions to occur locally. In terms of multisets, a membrane can be used
to introduce multiset of molecules inside a multiset that is to say “to transform
a solution into a single molecule” [29]. The airlock mechanism is used to de-
scribe communications between an encapsulated solution and its environment.
The Cham was used in [28] to define the semantics of various process calculi
(TCCS, Milners π-calculus of mobile processes) and a concurrent lambda calcu-
lus. A Cham for the call-by-need reduction strategy of λ-calculus is defined in
[29]. The Cham has inspired a number of other contributions.

Shape Types. The work around Structured Gamma showed that many data
structures could be described as graph grammars and manipulated by reactions.
Shape-C is an extension of C which integrates the notion of types as graph
grammars (called here shapes) and reactions. The notion of graph grammars
is powerful enough to describe most complex data structures (see [30] for a
description of skip lists, red-black trees, left-child-right-sibling trees in terms of
graph grammars). Due to their precise characterization of data structures, shape
types are a very useful facility for the construction of safe programs.

Software Architectures. Another related area of application which has attracted
a great amount of interest is the formal definition of software architectures. Typ-
ical examples of software architectures are the “client-server organization”, “lay-
ered systems”, “blackboard architecture”. Despite the popularity of this topic,
little attention has focused on methods for comparing software architectures or
proving that they satisfy certain properties. The chemical reaction model has
been used for specifying software architectures [31] and architecture styles [32].
One major benefit of the approach is that it makes it possible to define several
architectures for a given application and compare them in a formal way.

Influences of the chemical reaction model can be found in other domains
such as visual languages [33], protocols for shared virtual memories [34] or logic
programming [35].

3 Higher-Order Chemical Model

In the higher-order chemical model, reaction rules are considered as molecules in-
side the chemical solution. This feature has lead to the computation model called
the γ-calculus, which has been extended as the HOCL programming language,
and which has been extended again by generalizing multiplicities.
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M ::= x ; variable
| γ〈x〉.M ; γ-abstraction
| M1, M2 ; multiset
| 〈M〉 ; solution

(γ〈x〉.M), 〈N〉 −→ M [x := N ] if Inert(N) ; γ-reduction

M1, M2 ≡ M2, M1 ; commutativity
M1, (M2, M3) ≡ (M1, M2), M3 ; associativity

Fig. 1. Syntax and rules of γ-terms (i.e., molecules)

3.1 The γ-Calculus

The γ-calculus [36] can be seen as a formal and minimal basis for the chemical
paradigm in much the same way as the λ-calculus is the formal basis of the
functional paradigm.

The fundamental data structure of the γ-calculus is the multiset. Computa-
tion can be seen either intuitively, as chemical reactions of elements agitated
by Brownian motion, or formally, as higher-order, associative and commutative
(AC), multiset rewritings. The syntax of γ-terms (also called molecules) is given
in Fig. 1. A γ-abstraction is a reactive molecule which consumes a molecule (its
argument) and produces a new one (its body). Molecules are composed using
the AC multiset constructor “,”. A solution encapsulates molecules and keeps
them separate. It serves to control and isolate reactions.

The γ-calculus bears clear similarities with the λ-calculus. They both rely
on the notions of (free and bound) variable, abstraction and application. A
λ-abstraction and a γ-abstraction both specify a higher-order rewrite rule. How-
ever, λ-terms are tree-like whereas the AC nature of the application operator “,”
makes γ-terms multiset-like. Associativity and commutativity (AC) formalize
Brownian motion and make the notion of solution necessary, if only to distin-
guish between a function and its argument.

The conversion rules and the reduction rule of the γ-calculus are gathered
in Fig. 1. Chemical reactions are represented by a single rewrite rule, the γ-
reduction, which applies a γ-abstraction to a solution. A molecule (γ〈x〉.M), 〈N〉
can be reduced only if the content N of the solution argument is a closed term
made exclusively of γ-abstractions or exclusively of solutions (which may be
active). So, a molecule can be extracted from its enclosing solution only when
it has reached an inert state. This is an important restriction that permits the
ordering of rewritings. Without this restriction, the contents of a solution could
be extracted in any state and the solution construct would lose its purpose.
Reactions can occur in parallel as long as they apply to disjoint sub-terms. A
molecule is in normal form if all its molecules are inert.

The λ-calculus can easily be encoded within the γ-calculus (see [36] for more
details). In fact, the γ-calculus is more expressive than the λ-calculus since it
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(γ〈x〉.γ〈y〉.x), 〈A〉, 〈B〉 ≡ (γ〈x〉.γ〈y〉.x), 〈B〉, 〈A〉
↓ ↓

(γ〈y〉.A), 〈B〉 (γ〈y〉.B), 〈A〉
↓ ↓

A �≡ B

Fig. 2. The γ-calculus is not confluent

can also express non-deterministic programs. For example, if A and B are two
distinct normal forms, then Fig. 2 shows that the γ-calculus is not confluent.

3.2 HOCL : A Higher-Order Chemical Language

The γ-calculus is a quite expressive higher-order calculus. However, it is too low
level to be used as a practical programming language (it looks like assembler).
Compared to the original Gamma [6] and other chemical models [21,37], it lacks
two fundamental features:

– Reaction condition. In Gamma, reactions are guarded by a condition that
must be fulfilled in order to apply them. Compared to γ where inertia and
termination are described syntactically, conditional reactions give these no-
tions a semantic nature.

– Atomic capture. In Gamma, any fixed number of elements can take part in
a reaction. Compared to a γ-abstraction which reacts with one element at a
time, a n-ary reaction takes atomically n elements which cannot take part
in any other reaction at the same time.

These two extensions are orthogonal and enhance greatly the expressivity of
chemical calculi.

HOCL (Higher Order Chemical Language) is a programming language based
on the γ-calculus extended with reaction condition, atomic capture, rich pattern
language, expressions, types, pairs, empty solutions, naming and a syntax with
keywords.

One-shot rules are denoted by oneP by M if C which react with molecules
that match the pattern P and satisfy the reaction condition C. They are replaced
by the molecule M . Formally, we have:

N, oneP by M if C −→ φM if φ = match(P, N) ∧ φC

where φ is the substitution obtained by matching P with N .
Many programs are naturally expressed by applying the same reaction an ar-

bitrary number of times. HOCL introduces n-shot rules which are not consumed
by the reaction (they correspond to fix point of abstractions in the γ-calculus).
We denote them by the same syntax as in Gamma:

replaceP by M if C
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Such a molecule reacts like one-shot rules but it remains in the solution after
the reaction and can be used as many times as necessary.

N, replaceP by M if C−→φM,replace P by M if C if φ=P match N∧φC

A HOCL program is an unstable solution of molecules. The execution of that
program consists in performing the reactions (modulo AC) until a stable state
is reached (i.e., no more reaction can occur). A standard Gamma program can
be represented in HOCL by encoding its reaction rules by n-shot rules placed
in the multiset. If needed, a rule can be removed by another rule in a reaction,
thanks to the higher-order nature of the language (c.f. naming below).

Expressions. Expressions in HOCL consist in integer, boolean, string constants
and associated operations. This extension is very standard and does not need fur-
ther explanation. For example, a HOCL program computing the prime numbers
smaller than 10 could be:

let sieve = replacex, y by x if x divide y in〈sieve, 2, 3, 4, 5, 6, 7, 8, 9, 10〉

Types. The functional core of HOCL (the expressions) is statically typed us-
ing standard types. We do not describe the typing rules which are the same
as any (first-order) statically typed functional language. The chemical style of
programming has been designed to be very flexible. In particular, solutions con-
tain usually molecules of different types (e.g., reactions, integers, etc.). Types
are particularly useful in patterns where they serve to select values. The type is
specified in a pattern by the operator ’::’. We make use of type inference to cir-
cumvent type annotations in patterns. For instance, we may write γ(x)"V #.x+1
instead of γ(x::Int)"V #.x + 1 since the type of x can be statically inferred.

Pairs and Tuples. This extension, denoted here by A1:A2, is very standard.
Note that the elements of a pair are atoms and not multisets. Pairs of multisets
would play a role similar to solutions by providing a way of isolating compound
molecules from each other.

Empty Solutions. The notion of empty solution in HOCL comes from the pattern
ω which can match any molecules even the “empty one” (introduced below). This
pattern is very convenient to extract elements from a solution. For example, the
following reaction extracts 1’s from its solution argument.

rmunit = replace〈x, ω〉by〈ω〉 if x = 1

The pattern ω matches the rest of the solution which is returned as result. If the
solution contains only a 1 then ω matches the empty molecule and the empty
solution is returned:

rmunit, 〈2, 1, 3〉 −→ 〈2, 3〉 and rmunit, 〈1〉 −→ 〈〉
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When a molecule M is decomposed into M1, M2 to match a pattern P1, P2,
one of M1 or M2 can now be the empty molecule ∅. Reaction rules involving ω
patterns need a special treatment. Consider, for example, the reaction

(replace〈x, ω〉by ω), 〈1〉, 2

With the usual reduction rules, this molecule would reduce to ∅, 2 which is not
a legal molecule.

Naming. Reaction rules can be named (or tagged) using the syntax name = x,
where name is a constant, and x the variable that will match the unnamed rule.
Note that if others atoms can be named using pairs (e.g., name:a), it would not
be appropriate to use pairs to tag rules since they would not be able to react
with other molecules anymore. Names are used to match and extract specific
reactions. We assume that when the let operator names a reaction. For example,
in the following example, the reaction incrementing the integer is named succ.
After an arbitrary number of increments, the reaction stop removes succ from
the solution:

let succ = replacexby x + 1 in
let stop = one succ = x, ω by ω in
〈1, succ, stop〉

This example also illustrates non-determinism in HOCL since the resulting so-
lution may be any integer.

Example of a distributed versions system (DVS). As a more involved
example, we consider several persons editing concurrently a document made out
of a set of files. These editors are distributed over a network and each one works
on one node of that network. Each node is independent from the others. Each
editor makes his own modifications in the files and commits them locally on his
node. So each editor keeps a local version (and its history) of these files. That
version consists in the start files and several ordered patches applied to them:
this history is called a branch. From time to time, two or more editors merge
their branches so that an editor propagates (pushes) its modifications to others
and/or get changes from other editors.

The following example is inspired from Monotone, a distributed version con-
trol system (http://venge.net/monotone/). Versions are identified by a hash
which is used to check whether two branches are identical (denoted by b1 �= b2).
The system can also identify modifications applied to a branch b1 that have not
been taken into account in another branch b2 (denoted by b1 �⊂ b2). The system
provides also the function Merge(b1, b2) which returns a branch that contains all
modifications from two given branches b1 and b2. If a conflict occurs, the initia-
tor of the merge must resolve it. For simplicity sake, we assume in this example
that the function Merge always succeeds: either there is not any conflict, or if
any conflict occurs it is solved by an editor.

An editor can express his dependency on modifications made by other ed-
itors. If the editor on node Ni depends on modifications made by editor on
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dvs =
let edit = replace bby Edit(b) in
letpush = replace b1, b2

by b1,Merge(b1, b2)
if Serve(b1, b2) ∧ b1 �⊂ b2

in
let sync = replace b1, b2

byMerge(b1, b2),Merge(b2, b1)
if Serve(b1, b2) ∧ Serve(b2, b1) ∧ b1 �= b2

in
let crash = replace b1 by Start if Crash(b1) in
let freeze = replace (edit = e), xby x in
letnewVersion = replace 〈b1, x〉byNewRelease(b1), 〈b1, edit , x〉 in
〈〈B1, . . . , Bn, edit , push , sync, crash , freeze〉,newVersion〉

Fig. 3. Distributed Versions System

node Nj then the boolean function Serve(bi, bj) will be true. In other words,
modifications present in the branch bi should be propagated to the branch bj .
They may be both dependent on each other. Since any branch can merge with
any other branch, editors have to organize themselves so that all modifications
from all editors are taken into account sooner or later. For example, the Serve
function may induce a tree where modifications may be propagated from the
root to the leaves and vice versa. Or they may be organized as a ring, or
any other structure. Regularly, a freeze (snapshot) of the document is made
to release a new version to users. This is performed by a call to the function
NewRelease.

The overall system is described the program of Fig. 3. It consists in a solution
containing all branches bi. The reaction rule edit represents the edition of any
branch. It adds a modification to a branch, a call to the function Edit . Reaction
rules push and sync merge branches: push propagates modifications in one way,
and sync synchronizes two branches. If a node crashes (Crash(bi)), the editor
loses the corresponding branch. The reaction rule crash resets the corresponding
branch to an empty branch (Start). At any time, the reaction freeze can initi-
ate a snapshot of the document by removing the edition rule edit to stop any
modification. When the solution becomes inert, all branches linked by a Serve
relation are up to date and the reaction newVersion can occur. It uses a branch
that has all the modifications (it depends on the relations Serve) to release a
new version (a call to NewRelease) and regenerates the system by adding the
rule edit to allow new modifications for the next release. Figure 4 gives a possible
state reached by a system with 5 editors. The edition is pending and two releases
have been made (Version1 and Version2 ).

This example illustrates several properties of HOCL :

– The execution is non-deterministic. Any two branches may react to merge
their differences (if at least one of them serves the other). Merges (reactions
push and sync) may not occur each time a modification is made on a branch.
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Fig. 4. A possible state of the DVS

In fact, editions and merges are asynchronous: several editions may occur
before a merge.

– The execution is potentially parallel. Several editions may occur at the same
time and several merges may happen at the same time if they deal with
disjoint branches.

– The system is autonomic in that it is self-repairing. If a crash occurs, we lose
a branch, but a simple push or sync with another branch allows to recover
all modifications that have been propagated (however the editor loses all
his local non-propagated modifications). Other autonomic properties may
be included in a chemical program. The interested reader is referred to [3]
for more details on autonomic chemical programs.

– The specification is higher-order and manipulates reaction rules to express
coordination. The freeze reaction removes the edit rule to stop edition. The
newVersion rule waits for inertia to call NewRelease which illustrates a basic
sequentiality coordination. The newVersion rule relaunches also the system
by re-generating the solution with the rule edit .

3.3 Multiplets, Infinite and Hybrid Multisets

Another generalization is to extend the class of multisets to infinite multisets
and elements with a negative multiplicity. The extension amounts to introducing
operations to explicitly manipulate the finite or infinite, positive or negative,
multiplicity of elements.

Multiplets. A multiplet is a finite multiset of identical elements. This notion
relies on an equality relation between elements. Considering multiplets of reac-
tion rules would cause semantic problems as it would require an equality relation
between programs; whereas multiplets of solutions would pose implementations
issues. In this paper, we limit ourselves to multiplets of basic values (integers,
booleans, strings). Multiplets are defined and matched using an exponential no-
tation. If v is a basic value then vk (k > 0) denotes a multiplet of k elements
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let choose = γ〈x::String, ω〉.x in
letwheel = 〈“cherry”, “lemon”, “bell”, “bar”, “plum”, “orange”, “melon”, “seven”〉 in
letwin = γ(x::String)3.“Jackpot!” in
〈wheel, wheel, wheel, choose, choose, choose, win〉

Fig. 5. The Jackpot! program

v. Similarly, if x is a variable of a basic type (x::B), xk denotes a multiplet of
k elements. In order to match multiplets, the language of patterns is extended
likewise. A pattern, P k matches any multiplet of k identical elements matching
P . For example, the reaction replacing four 1’s by four 2’s can be specified as

γ(x4)"x = 1#.24 or equivalently γ(x, x, x, x)"x = 1#.2, 2, 2, 2

Another elementary example is the n-shot reaction rule computing the root set
of a multiplet by removing repeatedly pairs of identical elements:

toSet1 = replacex2 by x

In the Jackpot! (see Fig. 5), the rules choose pick up non-deterministically an
element from the solutions representing the three wheels of a slot machine. The
win rule checks if the three drawn symbols are identical, i.e., if it can match a
multiplet of size 3.

Variable-Sized Multiplets. A first generalization of multiplets is to allow
variables in the exponentiation of constants or patterns. The size of a multiplet
becomes dynamic.

Let v be a basic constant and V an integer expression, then vV denotes a
multiplet. If the normal form of V is the integer k then vV ≡ vk. We assume
in this section that k > 0. If k = 0 the multiplet is empty and is treated in
much the same way as a ω-variable which has matched the empty molecule (c.f.
Section 3.2). The case of a negative exponent is dealt with in Section 3.3.

A pattern P x matches any strictly positive number of identical basic values.
For example, the n-shot rule computing the root set of a multiplet of the previous
section can be expressed using variable sized multiplet matching:

toSet2 = replace xn by x if n > 1

Whereas the previous version (toSet1) eliminated duplicates two by two, the rule
toSet2 eliminates a variable number of (potentially greater than 2) duplicates
at each step.

Infinite Multiplets. Another generalization consists in infinite multiplets. Let
v be a basic value or a variable with a basic type, then v∞ denotes an infinite
multiplet made of an infinity of copies of v. We do not introduce patterns of the
form P∞ to match an infinity of identical elements. Indeed, extracting an infinity
of elements from an infinity would not be well defined. Instead we introduce
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a pattern matching all occurrences of a constant in the solution. Using such
patterns, infinite multiplets can be manipulated as a single atomic molecule.

The pattern P x matches all identical atoms occurring in the enclosing solution.
The substitution returned by a successful match maps the variable x to the finite
or infinite multiplicity of the matched value.

For example, the n-shot reaction computing the root set of a multiplet of the
previous sections can now be expressed as follows:

toSet3 = replace xn by x if n > 1

All duplicates of an element are removed in one reaction rule. For example, the
solution 〈a10, b4, toSet3〉 is rewritten in two steps:

〈a10, b4, toSet3〉 −→ 〈a, b4, toSet3〉 −→ 〈a, b, toSet3〉

As another example, consider the traditional quicksort program where a set
of integers has to be compared with a predefined pivot. In order to distinguish
the pivot from the other integers, we assume that the pivot has a special type
Pivot (e.g., a type synonym of Int). In the following solution all integers lower
or equal to the pivot are removed. We consider the pivot as a infinite multiplet
of an integer of type Pivot (5∞ here):

〈5∞, 8, 3, 6, 4, 5, 3, replace(p::Pivot), x, ω by ω if x ≤ p〉

As the number of pivots is infinite, all possible reactions may be carried out
independently. This is a way of expressing the fact that the pivot is a read only
element and as such can be accessed concurrently. The use of read only elements
in chemical specifications has been proposed in [38].

Negative Multiplicities. Hybrid multisets [39,8] are a generalization of mul-
tisets where the multiplicity of elements can be negative. A molecule v−1 can be
viewed as a piece of “antimatter” or an anti-v. Positive and negative multiplets of
the same value cannot cohabit in the same solution, they merge into one multiplet
whose exponent is the sum of their exponent. Assuming a representation of nega-
tive values v−1, a negativemultiplet v−k is defined as k occurrences of v−1. The pat-
tern P−1 is defined as matching (the representation of) v−1 such that P match v.
The pattern P−k is defined as k occurrences of P−1. The intended semantics en-
forces that v and v−1 cannot be in a solution at the same time. When negative
multiplicities are allowed, the negative and positive multiplets of the identical ele-
ments must be merged after each reaction before proceeding with other reactions.
In other words, reactions become global rewritings w.r.t. their solution.

As an example of use of negative multiplicities, rational numbers p
q are rep-

resented by a molecule which contains the prime factorization of p and q but
with negative multiplicities for the latter. For example, 20

9 is represented by the
molecule 〈22, 5, 3−2〉. The product of rational numbers is computed simply by
putting them in the same solution. For example, the product 20

9 ∗
15
8 is performed

by merging their representations:

〈22, 5, 3−2〉, 〈3, 5, 2−3〉, γ(〈f〉, 〈g〉).〈f, g〉 −→ 〈52, 3−1, 2−1〉
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Infinite negative multiplets can be used to filter out all occurrences of an
element (present or to come) within a solution. Let pi be the reaction computing
the product of a multiset of integers. Then, the integer 1, being the neutral
element of the product, can be deleted prior to performing pi. The pi operator
may be encoded by:

pi = γ〈x〉.〈1−∞, x, (replace x, y by x ∗ y)〉

Before considering any product, all 1’s are annihilated, for example:

〈22, 9, 13, 5, 6〉, pi−→ 〈1−∞, 22, 9, 5, 6, (replacex, y by x ∗ y)〉 −→ . . .

Note that (by type inference) the pattern x, y exactly matches two integers (and
not anti-1’s). Furthermore, since 1−∞ is in the solution, x and y will never match
a 1. After stabilization, 1−∞ must be replaced by 1 (in case that the solution
contained only 1’s) and then the reaction rule can be removed.

Other examples that come to mind include the specifications of a garbage col-
lector that destroys useless molecules by generating their negative counterpart,
or an anti-virus that generates v−∞ each time it identifies a virus v. The nega-
tive multiplet will remove all occurrences (present or future) of the corresponding
virus from the solution.

[40] gives the operational semantics of multiplets, variable sized, infinite and
negative multiplets.

4 Applications and Case Studies

We illustrate the expressive power of our higher-order model by encoding several
well known coordination mechanisms in HOCL. We also describe the application
of HOCL to the specification of self-organizing systems.

4.1 Chemical Coordination

Classical coordination can be expressed in a chemical manner [41]. The chemical
reaction model already includes some basic coordination mechanisms that can
be used to express more elaborate coordination mechanisms.

HOCL is a programming language that already provides some primitive co-
ordination structures: namely, parallel execution, mutual exclusion, the atomic
capture and the serialization and parallelization of computations.

Parallel Execution. When two reactions involve two separate multisets of reac-
tives, both reactions can occur at the same time. For example, when computing
the sum of a multiset of integers:

〈42, 6, 14, 5, 2, 8, 5, 42, 89, add = replacex, y by x + y〉

several reactions involving the rule add may occur at the same time. Parallel
execution relies on a fundamental property of HOCL : mutual exclusion.
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Mutual Exclusion. The mutual exclusion property states that a molecule cannot
take part to several reactions at the same time. For example, several reactions
can occur at the same time in the previous solution (e.g., (42,89) at the same
time as (5,5), etc.). Without mutual exclusion, the same number could occur in
several reactions at the same time. In this case, our previous program would not
represent the sum of a multiset since, for example, 89 would be allowed to react
with 2 and 6 and be replaced by 91 and 95.

Atomic Capture. Another fundamental property of HOCL is the atomic capture.
A reaction rule takes all its arguments atomically. Either all the required argu-
ments are present or no reaction occurs. If all the required arguments are present,
none of them may take part in another reaction at the same time. Atomic cap-
ture is useful to express non blocking programs. For example, the famous dining
philosophers problem can be expressed in HOCL as follows:

eat = replace Fork:f1, Fork:f2 by Phi:f1 if f2 = f1 + 1 mod N

think = replace Phi:f by Fork:f, Fork:(f + 1 mod N) if true

Initially the multiset contains N forks (i.e., N pairs Fork:1, . . . , Fork:N) and
the two n-shot reaction rules eat and think. The eat rule looks for two adjacent
forks Fork:f1 and Fork:f2 with f2 = f1 + 1 mod N and “produces” the eating
philosopher Phi:f1. This reaction relies on the atomic capture property: the
two forks are taken simultaneously (atomicity) and this prevents deadlocks. The
think rule “transforms” an eating philosopher into two available forks. This rule
models the fact that any eating philosopher can be stopped non deterministically
at anytime.

Serialization. A key motivation of chemical models in general, and HOCL in
particular, is to be able to express programs without any artificial sequentiality
(i.e., sequentiality that is not imposed by the logic of the algorithm). However,
even within this highly unconstrained and parallel setting, sequencing of actions
can be expressed. Sequencing relies on the fact that a rule needing to access
a sub-solution has to wait for its inertia. The reaction rule will react after (in
sequence) all the reactions inside the sub-solution have completed. The HOCL
program that computes all the primes lower than a given integer N can be
expressed by a sequence of actions that first computes the integers from 1 to N
and then applies the rule sieve:

〈〈iota, N〉, thensieve〉

where
thensieve = one〈iota = r, x, ω〉by sieve, ω

iota = replacexby x, x− 1 if x > 1
sieve = replacex, y by x if x div y

The rule iota generates the integers from N to 1 using the notation x to denote
a distinguished (e.g., tagged) integer. The one-shot rule thensieve waits for the
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inertia of the sub-solution. When it is inert, the generated integers are extracted
and put next to the rule sieve (iota and the tagged integer 1 are removed). The
wait for the inertia has serialized the iota and sieve operations.

Most of the existing chemical languages share these basic features. They all
have conditional reactions with atomic capture of elements. On the other hand,
they usually do not address fairness issues.

[41] develops more advanced mechanisms such as rendez-vous, shared vari-
ables, Linda primitives, Petri nets and Kahn Process Networks.

4.2 Self-organization

Principle. N -shot abstractions are well fitted to express self-management prop-
erties. For example, computing the prime numbers up to 5 can be expressed as:

〈sieve, 2, 3, 4, 5〉 −→ 〈sieve, 2, 3, 5〉

where sieve is the reaction rule that removes an integer if it finds a divisor. The
molecule “sieve” is part of the result (stable state). If new integers are added
(perturbation), reactions may start again until a new inert solution is reached
(new stable state). For example, if we need the prime numbers up to 10, we may
just add integers to the previous inert solution:

〈sieve, 2, 3, 4, 5〉, γ〈x〉.〈x, 6, 7, 8, 9, 10〉

and the solution will re-stabilize to 〈sieve, 2, 3, 5, 7〉. The molecule “sieve” can
be seen as an invariant: it describes the valid inert states (here, set of prime
numbers). In the next section, we make use of this property to add several self-
management features to a mail system.

A Self-Organizing Mail System Example. In [3], we describe an autonomic
mail system within the higher-order chemical framework. This example illus-
trates the adequacy of the chemical paradigm to the description of autonomic
systems.

Several self-management features for the mail system have been developed:
self-organization, self-healing (by providing emergency mail servers), self-
optimization (by enabling the emergency server and load-balancing messages
between it and the main server) and self-configuration (managing mobile clients).

The mail system is described as a chemical solution where some sub-solutions
described mailboxes, mail servers and network. Some rules are in charge of for-
warding messages to their recipient by moving messages from sub-solutions to
other sub-solutions. Thus sending and receiving a message is performed by self-
organization. Adding a message to be sent in the system perturbs the system. A
message sent but not received create a unbalance detected by rules which perform
the correct operation to reach a balance where the message sent is delivered.

[3] shows also that other self-management properties can be programmed with
HOCL. For example, self-healing can be set by using an emergency mail servers.
Some rules are in charge of detecting that a main server has failed, then they
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add some new rules in the system which use an emergency server (changing
dynamically the behavior of the system). In a similar way, self-optimization can
be expressed by some rules which enable the emergency server and load-balance
messages between it and the main server, and self-configuration by some rules
that manage mobile clients.

Each self-management property is represented by a set of rules. Adding a self-
property to the mail system consists simply in adding the corresponding rules
to the main solution representing the system.

This description should be regarded as a high-level parallel and modular spec-
ification. It allows to design and reason about autonomic systems at an appro-
priate level of abstraction. The resulting programs are quite elegant; they rely
essentially on the higher-order and chemical nature of Gamma. A direct im-
plementation of the chemical specifications is likely to be quite inefficient and
further refinements are needed; this is another exciting research direction.

5 Prospects

The very high-level nature of HOCL makes it stand somewhere between a spec-
ification language and an implementation oriented language. As a consequence,
direct and naive implementations of chemical programs usually lead to very inef-
ficient systems. Our current research focuses on making chemical programming
effective. Two directions are being explored:
– The refinement of chemical programs. The goal is to express separately im-

plementation choices so that the chemical program can be refined into a
lower level and more efficient version.

– Domain-specific chemical languages. The objective is to propose specialized,
restricted and effective chemical languages for domains such as autonomic
or grid computing.

5.1 Refinement of Chemical Programs

A chemical program focuses on the base functionalities and usually disregards
optimizations and implementation tricks. This is reflected by the unconstrained
data structures (multisets) and evaluation strategies (non deterministic chaotic
reactions).

Consider, as a simple illustration, the maximum segment sum problem [42]
expressed as a reaction rule. The input parameter is a sequence of integers. A
segment is a subsequence of consecutive elements and the sum of a segment is
the sum of its values. The program returns the maximum segment sum of the
input sequence. Each element of the segment is represented by a triplet (i, v, s)
where i denotes the index of the element in the sequence, v the value of the
element, and s serves to computes the maximum segment sum. The following
reaction computes sums for each segment.

replace (xi, xv, xs), (yi, yv, ys)
by (xi, xv, xs), (yi, yv, xs + yv)
if yi = xi + 1 ∧ xs + yv > ys
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Initially, the reaction is in a multiset of triples of the form (i, v, v). A sequence
v1: . . . :vn is represented by the multiset (1, v1, v1), . . . , (n, vn, vn). For example,
the sequence 3:1: − 1:2 is represented as (1, 3, 3), (2, 1, 1), (3,−1,−1), (4, 2, 2).
When the multiset is stable, in each triplet (i, v, s) s denotes the maximum
segment sum ending at index i. It is then sufficient to select the triplet (i, v, s)
with the greatest s to solve the classic problem. The previous sequence will
stabilize with the following triplets

(1, 3, 3), (2, 1, 4), (3,−1, 3), (4, 2, 5)

and the maximum segment sum is 5 and ends at index 4. No execution order is
specified and it is easy the see that the worst case complexity is O(n3) with n
the size of the sequence (e.g., using a strategy choosing the first element (i, v, s)
in decreasing order of i). Remember that the standard imperative algorithm of
maximum segment sum has a linear time complexity.

The higher complexity of chemical programs has two main reasons:

– the selection of tuples is largely unspecified. In the example, only successive
elements of the sequence can react. The successor relation is not explicit in
the multiset representation; the reaction cannot directly pick two successive
elements without testing the first field of the triplets;

– the detection of termination. Consider a multiset of size N with a unique
k-ary reaction returning k elements (i.e., maintaining the cardinal of the
multiset). All possible k-uples should be tested to decide termination, a
O(Nk) operation.

In [25], Creveuil studied transformations of Gamma programs aimed at im-
proving these two points. The optimizations depended on properties which had
to be checked manually. This approach can be seen as a methodology to refine
Gamma programs manually.

Our aim is to study and propose linguistic tools to help the programmer to
express implementation issues and program refinement. Several techniques and
research directions are worth studying. We review them in turn.

Data Representation. The lack of support for structuring data in HOCL
should not be surprising since the motivation behind chemical programming is
to be able to describe programs exhibiting as few ordering constraints as pos-
sible. An unfortunate consequence however is that the programmer sometimes
has to resort to artificial encodings to express his algorithm. For instance, the
maximum segment sum algorithm shown above is expressed in terms of triplets
with indexes. The lack of structuring facility is detrimental both for reasoning
about programs and for implementing them.

In [22], we proposed a solution to this problem for Gamma without jeopardiz-
ing the basic qualities of the language. We introduce structured multiset which
is specified by a type (a graph grammar) expressing a form of neighborhood
between the molecules of the solution. It allows the programmer to define his
own types and have his programs type checked. Graph grammars can model
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most classic pointer data structures such as lists, trees, doubly-linked circular
lists, etc. The List type is defined based on a binary relation next x y stating
that the address y is the successor of the address x. For example, the previous
sequence of triplets is represented as next a b, next b c,next c d where a, b, c, d
are addresses whose value fields are a.v = a.s = 3, b.v = b.s = 1, c.v = c.s = −1,
d.v = d.s = 2. The maximum segment sum program can be expressed as

replace next x y
by next x y, y.s: = x.s + y.s
if x.s + y.v > y.s

Here only successors are compared and the complexity drops to O(n2).
Another approach is followed in the MGS project [43]. In MGS, data struc-

tures are formalized as a chain complex (a discrete topological space labeled by
values) [44]. In this setting, a multiset is a space where all elements are neigh-
bors whereas a sequence is a space where neighbors are the consecutive elements
of the sequence. The abstract topological point of view enhances chemical pro-
gramming and enables the unification in a same programming language of several
computational models.

By restricting the possible reactions, data structures also make the implemen-
tation more efficient. It is still unclear how such approaches can be adapted in a
higher-order setting. In any case, data structures and a type system well suited
to HOCL remain to be studied and developed.

Evaluation Strategies. For the same reasons as data structures (i.e., intro-
ducing as few contraints as possible), there is no support for expressing specific
reduction strategies in Gamma or HOCL. Controlling the evaluation strategy is
particularly useful to remove the cost of checking termination. As above, this
can be achieved using types and data structures. In [22], we refined the List type
with two extra relations used to distinguish between inert and active elements.
A specific strategy can be expressed subsequently by taking these new relations
into account within reactions. With these new relations, the maximum segment
sum program can be expressed as a one-pass walk through the list. Of course, it
must be proved that the strategy is correct (i.e., find the same normal forms as
the original program).

Another approach is followed by the rewriting community using strategy lan-
guages. For example, Elan [45] proposes a language to express complex user-
defined strategies using primitives such as sequential composition, iteration and
(non-)deterministic choices. Rewriting rules and strategies are expressed at the
same level in their own dedicated language.

Aspects of Implementation. Ideally, the specification of the base function-
ality (as a chemical program) would remain separate from the specification of
implementation choices. In particular, data structures and evaluation strategies
should be expressed separately and then used to automatically refine the chem-
ical program. This idea is similar to Aspect Oriented Programming (AOP) [46]
that isolates aspects (such as security, synchronization or error handling) whose
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implementation would otherwise yield tangled code. In AOP, such aspects are
specified separately and integrated into the program by an automatic transfor-
mation process called weaving. In the chemical context, the idea would be to
consider data representation and evaluation strategy aspects. Weaving would
take the chemical program plus the aspects and would produce a lower-level
program integrating these implementation choices.

5.2 Domain Specific Chemical Languages

A second approach to guarantee efficient implementations is to restrict and spe-
cialize HOCL. Such an approach has been explored for the Gamma language
where five schemes (basic reactions) have been identified [10]. Many applica-
tions can be expressed using only those schemes. An important benefit is that
these schemes can be implemented more efficiently.

Autonomic computing is a good candidate for the design of a domain specific
chemical language. Autonomicity (e.g. self-healing, self-protection, self-
optimization, etc.) is naturally expressed as reaction rules maintaining an invari-
ant [47]. In each case, the corresponding behavior can be seen as the stabilization
of the system after a transient perturbation. It is very likely that the expres-
sion of self-∗ properties does not need the full expressive power of HOCL. Also,
reactions always proceed from a stable multiset to which a small collection of el-
ements is added (the perturbation). It should be possible to specialize/optimize
the implementation for this peculiar rewriting scheme (only reactions involving
the new elements have to be considered).

We are currently investigating another application domain: grid computing.
Grids are systems made of a huge number of independent resources connected
through a network. Every resource supplies some of its capabilities (memory,
computation power and network) to the grid, so that the power of a grid is the
sum of the powers of all the resources it is made of. A grid operating system
must take into account the characteristics of the resources: their huge number,
their heterogeneity, their non-reliability and their dynamicity.

Chemical programming can be a good candidate for grid programming and co-
ordination. The chemical paradigm suits the requirements of a grid programming
language for at least two reasons: (1) the locality principle, that suggests to write
reactions involving few molecules compared to the size of the solution, increases
the potential parallelism and allows computation to be performed without a
global view, and (2) the self-organization property of the chemical coordination
is the best coordination mechanism for such a dynamic system.

In [4], the objective is to design a Desktop Grid that is based on a peer-to-
peer approach in which there is not a unique server any more to coordinate the
execution of computations on unused PCs. The coordination of computations
is described by a high level description of the coordination based on chemical
programs. However, we do not argue here that all computations must be ex-
pressed using chemical rules since it will lead to a very ineffective Desktop Grid
system. Basic computations have to be implemented using existing program-
ming languages, such as Java to handle resource heterogeneity. The multiset is
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implemented in a distributed way by having each PC provide part of their mem-
ory resources to store data, chemical rules and basic computations. Therefore,
when an unused PC is willing to join a Chemical Desktop Grid, it accesses the
multiset, downloads the basic computation, such as a Java bytecode, and starts
executing the chemical rules.

Using the same approach as in [47], a “chemical” desktop grid can be described
by a HOCL program. A chemical grid is viewed as a chemical solution of resources
where reaction rules describe their coordination. A program is written in two
steps that separate two concerns. The first concern is to describe the computation
at the functional level (coordination of functions) and the second concern is the
computation related to the execution of the previous functional computation in
a distributed system (coordination of resources). [4] goes further and provides
an example of a ray-tracer described by a HOCL program that it then refined
into a HOCL program simulating its execution as a chemical grid.

A future research about the application of the chemical paradigm to grid
programming is the implementation. An efficient implementation on grid would
be based on distributed versions of previous parallel implementations of Gamma
[14,15,18]. Another technique may be based on using chemical data-structures,
like in Structured Gamma, to reinforce the locality in finding reacting molecules.
The provided grid chemical language would propose some abstract mechanism
that may be implemented in an efficient way on a distributed system.

In related works, the chemical programming model has also been used to
describe workflows and their execution in a distributed system [48,49]. Nature is
a great source of inspiration to tackle the problems posed by grids. For example,
Organic Grids [50] are based on self-organizing autonomous agents inspired by
biological systems to discover new resources in a grid.

6 Conclusion

To summarize the main progress achieved in recent years concerning the chemical
reaction paradigm, one can emphasize:

1. the use of a very general version of multisets with elements possessing various
kinds of (finite or infinite) multiplicities;

2. the introduction of a higher order model of computation (HOCL) dealing
with such general data structures.

Basically, the chemical paradigm (as introduced in HOCL) offers four basic prop-
erties: mutual exclusion, atomic capture, parallelization and serialization. These
properties have been exploited in order to give a chemical expression of well
known coordination schemes such as CSP rendezvous, shared variables, Linda’s
primitives, Petri nets and Kahn Process Networks in HOCL. They have also
been used to specify autonomic systems at a high-level [41].

We believe that the chemical programming approach is a good candidate to
program large scale distributed systems such as service infrastructures and Grids.
More precisely, we are exploring the use of HOCL to perform the orchestration
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of a large number of services for applications that require self-adaptation and
fault-tolerance. The objective is to be able to adapt the workflow of an exist-
ing application depending of the occurrence of logical and physical failures that
might happened within a Grid or Service infrastructures. HOCL provide a co-
herent framework for self-adaptation by allowing rules to react on rules stored
in the multiset; both the workflow and its adaptation are expressed by a set of
HOCL rules.

As a final conclusion, borrowing the final sentence of the ”fifteen year after”
survey [7], we hope that this survey has shown that the chemical reaction model
is a particularly simple and fruitful paradigm; no doubt that new surprising and
exciting developments are yet to come.
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Abstract. The chemical paradigm is an unconventional programming
paradigm well fitted to the high-level specification of parallel systems.
Based on the fixed point iterations of local rules, its use has been advo-
cated for the programming of autonomic and amorphous systems. How-
ever, this model lacks an explicit handling of spatial relationships.

In this contribution, we first show how the chemical paradigm can
be extended beyond multisets to arbitrary topological collections. Topo-
logical collections handle in a uniform way sophisticated data structures
required in algorithmics as well as distributed data structures needed for
the programming of autonomic or amorphous systems. Then we adapt a
well-known result on multiset ordering to the more general case of topo-
logical collections. Well-founded ordering on topological collection can be
used to prove the termination of the fixed point iteration of local rules.

1 Introduction

1.1 Gamma and the Chemical Paradigm

Introduced by the Gamma language, the chemical reaction metaphor [BCM88]
describes computations in terms of reactions between molecules representing
data, in a chemical solution represented as a multiset. A multiset is a generaliza-
tion of a set that allows several occurrences of the same element. Computation
proceeds by rewriting elements of a multiset according to conditions and trans-
formation rules. The result of a chemical program is obtained when a stable
solution is reached, i.e. when no reaction can take place anymore. For example,
the reaction

convex hull = replace x, y, z, u by x, y, z if inside(u; x, y, z)

M. Wirsing et al. (Eds.): Software-Intensive Systems, LNCS 5380, pp. 235–254, 2008.
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replaces four points x, y, z and u by the first three points (i.e. u is removed) if u is
inside the triangle x, y, z [BL90]. These replacements are repeated until a stable
state is reached, that is to say, when no quadruple (x, y, z, u) can be found. The
final stable solution contains exactly the elements defining the convex hull of the
multiset of points specified in the initial solution.

1.2 Gamma and the Autonomic Computing Challenge

The goal of Autonomic Computing [Hor01] is to realize self-managing computer
and software relying on properties of:

– self-organization: autonomous configuration of the components into a dy-
namic architecture dedicated to the satisfaction of the defined requirements;

– self-healing: autonomous detection and correction of hardware and software
faults; and

– self-optimization: autonomous monitoring, control of resources and reconfig-
uration to ensure an optimal functioning.

The chemical paradigm has been claimed well suited to express autonomic prop-
erties: the reaction rules correspond to the local actions to be taken to react to
a perturbation. Several convincing examples have been developed [BRF04].

We believe that the relevance of the chemical paradigm for the specification
and the high-level programming of large autonomic and parallel/distributed sys-
tems comes from two fundamental characteristics:

1. the multiset data structure and the multiset rewriting device suitably rep-
resent the orderless interactions (reactions) between elements that occur in
large parallel or open systems;

2. the computation of a stable state such that self-* behaviors can been seen as
the stabilization of the system on a fixed point after a transient perturbation.

However, these two general statements must be refined:

– The direct interactions of arbitrary elements in a system are not always al-
lowed nor desirable. The system may exhibit some data organization and
only “neighbor” elements may interact. The neighborhood relationship may
represent physical (spatial distribution, localization of the resources) or log-
ical constraints (inherent to the problem to be solved).

– A multiset stable w.r.t. the reactions represents a solution computed by the
program or an admissible state of an autonomic system. This state is best
characterized by global properties (e.g. the extremal points in a multiset of
points in the convex hull computation) while the reactions represent local
changes (e.g. the removal of one point fulfilling some conditions). Therefore,
the real difficulty of chemical programming lies in the relation between the
local changes and the desired global property.

In this paper, we present some concepts and tools in the field of algebraic topol-
ogy that can be used to build more structured chemical solutions (section 2). For
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the second point, we adapt a well-known result on multiset ordering that can
be used to establish the convergence of local iterations of reactions (section 3).
This result is a first step in the development of a toolbox of theoretical tools
that can be used to link the local changes of elements to the global behavior of
a system.

2 Introducing Space in the Chemical Paradigm

2.1 From Multisets to Sequences and Beyond

Multisets are a “loose organization” where more structured data require some
encoding to be represented. For example, a sequence of elements can be encoded
into a multiset M of pairs [i, x] where i is the index of the value x. With this
encoding, the reaction

sort bag = replace [i, x], [j, y] by [i, y], [j, x] if (j = i + 1) ∧ (x > y)

replaces a couple of consecutive out-of-order pairs by the couple of consecutive
ordered ones. These replacements go on until a stable state is reached, that is to
say, when no orderless couple remains. Thus, the final stable solution corresponds
to the sorting of the sequence encoded in M .

A more straightforward approach is desirable and possible. A multiset of val-
ues in V can be formalized as an element of the free associative and commutative
monoid (V ∗, +) where + is the operation that merges two multisets. Then, a mul-
tiset is a formal sum and a reaction rule is a rewriting rule on a term in (V ∗, +)
modulo associativity and commutativity [DJ90]. In this framework, the comma
between multiset elements in the pattern of the rule1 is another notation for the
+ operator.

From this point of view, it is easy to adapt the chemical paradigm to handle
sequences: a sequence is an element of a monoid which is only associative. We can
use term rewriting modulo associativity to formalize reaction rules on sequences.
Thus, reaction:

sort sequence = replace x, y by y, x if x > y

applied on a sequence S directly corresponds to a kind of bubble sort. In this
rule, the comma in the pattern represents the associative operator of the monoid
and is interpreted as the concatenation of sequences. The rule is at the same
time more readable because there is no artificial encoding of the sequence data
structure into a multiset of pairs, and potentially more efficient because only
consecutive elements are matched.

The path followed to extend the chemical paradigm on sequence cannot be
easily generalized: rewriting modulo some theory is usually hard and needs ad
hoc developments. For instance, at this point there is no satisfactory theory

1 The pattern of the rule is the term between replace and by.
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for rewriting on arrays. However, an alternative framework, focusing on the
topological relationships in the data structure, can be developed. This framework
encompasses multisets and sequences to include arbitrary data structures.

A Topological Approach. The idea is to consider the comma that appears
in the pattern of a rule, not as a data structure constructor, but as a neigh-
borhood relationship that depends on the data structure on which the rule is
applied [GM02a]. In a multiset, all elements are neighbor, which accounts for
the associativity and commutativity that enables arbitrary rearrangements of
the term that represents the multiset. All other data organizations arise as a
restriction of this “universal neighborhood relationship”. For instance, in a se-
quence, the neighborhood relationships are restricted to a linear graph.

By considering various topologies, one may recover well-known computation
models: nested multisets correspond to membrane systems [Pău02], constraining
the universal topology provided by multisets to nested sequences leads to Lin-
denmayer systems [RS92]; restriction to discrete lattice corresponds to cellular
automata and more general crystalline computations [TM87]. And topologies
with higher dimensions can be used to give a direct finite formulation of field
equations in classical physical theories [Ton01] with obvious interests for numer-
ical applications [PS93].

2.2 A Short MGS Presentation

The MGS project [GM02b, Gia03] is based on the previous idea: data structures
are defined relying on topological notions to specify their neighborhood relation-
ships. In the rest of this section, we show how the notion of data structure can
be identified with the notion of field on some underlying space. Such objects can
be rewritten, leading to a novel form of case-based definition of function. These
notions are illustrated through some simple but informative examples.

Data Structures as Discrete Fields. In MGS, a data structure is handled as
a field that associates a scalar value to each point of an underlying space [GS08].
The structure of this underlying space is of interest for the computation at hand.
For example, a multiset of n elements is a field over a space composed of n points.
More specifically, the underlying space may represent some meaningful entity
for the problem. For instance, in a simulation of the temperature distribution
throughout a room, the underlying space is the room. In a distributed compu-
tation, the underlying space represents the connectivity between the processing
elements.

The spatial structure of the underlying space is used to record the neighbor-
hood relationships needed by the computation. If the computation of the value
v associated with a point σ requires the value v′ associated with an other point
σ′, then σ and σ′ must be, somehow, neighbors in the underlying space. For
example, in a simply linked list, the elements are linearly accessed: the second
after the first, the third after the second, etc., inducing an oriented linear space.
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In the context of a programming language, the topology of the underlying
space must be algebraically defined to avoid the handling of untractable contin-
uous objects. For technical reasons, it is more convenient and more general to
associate values with some subspaces of the underlying space rather than with
points only (a point being an elementary subspace). Moreover, in this paper
we are only interested in the topological properties of the underlying space: the
properties related to a metric will not be considered here.

These constraints can be satisfied using abstract cellular complexes to specify
the underlying space. Abstract cellular complexes are a variant of cellular com-
plexes developed in algebraic topology [Hen94]: a particular class of topological
spaces that are partitioned into pieces of elementary space called topological cells.
Each cell is homeomorphic to an open ball in Rd. By the term abstract, we mean
here that only the combinatorial structure of cellular complexes is preserved
while the geometric characteristic functions mapping cells to open balls are left
apart [Kov01].

The corresponding notion of data structure is called topological collection in
MGS. Topological collections are formalized by topological chains, a notion de-
veloped in homology theory [Mun84]. Chains are functions that associate values
with the cells of abstract cellular complexes. In the following, we will often drop
the term “abstract”: we only consider abstract cellular complexes and abstract
topological cells.

Transformations of Topological Collection. In the chemical paradigm,
multiset transformations are defined using rules and can be formalized by
associative-commutative rewriting [DJ90]. This schema can be extended to topo-
logical collections, relying on the notion of chain rewriting defined in [GS08].

The global transformation of a topological collection C consists in the parallel
application of a set of local transformations. A local transformation is speci-
fied by a rewriting rule that specifies the changes of a subcollection. An MGS
transformation T is accordingly specified by a set of rules:

trans T = { ... ; rule; ... }

A rule is a basic transformation that takes the following form:

pattern ⇒ expression

where pattern in the left hand side (lhs) of the rule matches a subcollection B
of the collection A on which the transformation is applied. The subcollection B
is substituted in A by the collection C computed by the evaluation of the right
hand side (rhs) expression of the rule.

The Pattern Language. Several pattern languages have been developed in MGS.
In this paper, we only consider a subset of the path patterns. The grammar of
this fragment of pattern expressions is:

β ::= x | p, p′ | p ∗ | p as x | p/exp
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where p, p′ are patterns, x ranges over the pattern variables and exp is an expres-
sion evaluating to a boolean value. Such patterns can be used to match a path:
a finite sequence of elements ei where ei+1 is a neighbor of ei. The explanations
below give an informal semantics for these patterns.

variable: a pattern variable x matches exactly one element of the topological
collection, that is, a cell σ and its associated value v. A variable can only be
defined once in a pattern (patterns are linear) but it may be used elsewhere
in the expressions of the rule where it denotes the value v.

neighbor: p, p′ is a pattern that matches two connected paths p and p′. The
connection relationship depends on the topology of the collection. For ex-
ample, x, y matches two elements such that y is a neighbor of x.

repetition: pattern p∗ matches a subcollection of connected elements matched
by p.

binding: a binding p as x gives the name x to the path matched by p. This name
can be used anywhere in the rest of the rule. E.g., the pattern (x, y) as d
matches two connected elements and the corresponding sequence of two el-
ements can be referred through the variable d.

guard: p/exp matches the collections matched by p such that exp holds. For
instance, y / y > 3 matches an element y whose associated value is greater
than 3.

The Right Hand Side of a Rule. In a rewriting rule, the lhs and the rhs of the
rule denote objects of the same type. For instance, in multiset rewriting, the lhs
matches a multiset which is replaced by the multiset computed in the rhs. In
term rewriting, the lhs matches a tree which is replaced by the tree computed
by the rhs. In graph rewriting, the lhs of a rule matches a graph and the rhs
computes a graph to be inserted in place of the matched one. Etc.

Sophisticated data structure make harder the definition of the the rhs and
of the associated replacement operation. However, the structure of a path pat-
tern can be used to drastically simplify the rhs of an MGS rule. A path pattern
matches a path, that is, a sequence. Therefore, the rhs of the rule can evaluate
to a sequence, no matter how complex the considered data structure is. The
substitution of the matched path by the sequence computed in the rhs is done
element-wise. Having a matched path and a rhs sequence of the same length
is a constraint that can be relaxed for some collection types. For example, if a
transformation is applied on a monoidal collection (i.e. a set, a multiset or a
sequence), the rhs can be of arbitrary length. From now on, the expression in
the rhs of a rule must be interpreted as a sequence construction.

2.3 The MGS Programming Language

MGS is an experimental programming language that embeds the idea of topo-
logical collections and their transformations into the framework of a functional
language. Collections are just new kinds of values and transformations are func-
tions acting on collections and defined by a specific syntax using rules. The set
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of values has a rich type structure used in the definition of pattern-matching,
rule and transformations. The collection types in MGS range from totally un-
structured with sets and multisets to more structured with sequences, trees,
Voronöı diagrams, Cayley graphs, arbitrary graphs, Generalized Maps [Lie94]. . .
and abstract cellular complexes which subsume all other collection types.

A transformation T is a function on collections and a first-class value. For
instance, a transformation can be passed as an argument to another function or
be returned as a result. This feature allows to sequence and compose transfor-
mations very easily.

The expression T (c) denotes the application of one transformation step to the
collection c. As said above, a transformation step consists in the application of
the rules (modulo the rule application’s strategy). A transformation step can be
easily iterated:

T [n] (c) denotes n iterations of the application of T on c

T [fixpoint] (c) denotes the application of T until a fixpoint is reached

Several rule application strategies and transformation application strategies have
been defined, including asynchronous and stochastic ones [SMC+08]. Synchronous
rule application strategies (several rules are applied in parallel in one application
of a transformation) are non-deterministic: only non-intersecting paths are rewrit-
ten and these paths are non-deterministically chosen (priorities or probabilities
can be used to have a finer control). For example, the maximal parallel applica-
tion strategy apply as many rules as possible in parallel that is, when rewriting
occurs, there is no path in the remaining elements that can be matched by the lhs
of a rule. This strategy is similar to the one used in Lindenmayer systems [RS92].

2.4 A Few Examples

Obviously, all Gamma chemical programs can be translated easily in MGS. We
give below some examples that take advantage of the spatial structure of the
topological collection. After two simple examples on sequences, we focus on
computations on a regular grid and on a graph because such data structures
are not algebraic data structures, and therefore the usual approach based on
term rewriting is not applicable.

MGS has been involved in sophisticated simulation applications in biology,
like neurulation [SM07], cell mobility [SM05], growth of plant meristem at a cel-
lular level [BdR+06], or simulations at various scales of a synthetic multicellular
bacterium [IGE07]. Classical algorithms (various sorting procedures, graph al-
gorithmics, optimization processes, mesh refinement algorithms, etc.) have also
been easily developed, see [Mic07].

Bubble Sort. In the MGS syntax, the sort sequence program in section 2.1 is
specified by the following transformation:

trans sort sequence = { x, y / x>y ⇒ y, x }
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As mentioned above, the rhs of the rule is a sequence construction: the comma
is then interpreted as the sequence constructor. The transformation must be
iterated until a fixed point is reached. Note that the fixed point is reached re-
gardless the rule application strategy. This result can be established by the tools
presented in section 3.

Duplicate Removal. It is easy to remove the contiguous duplicated elements in
a list using the iteration of the transformation:

trans remove duplicate = { x, y / x=y ⇒ x }

The pattern x, y / x=y selects two contiguous elements labeled by the same
value. Such occurrences are replaced by only one element. Note that the rhs
must be interpreted as a sequence of only one element. The conversion between
an element and the corresponding singleton is implicit.

Bead Sort. Various meshes can be described in MGS. For example, the NEWS
lattice is specified by the following type declaration:

gbf NEWS =
〈North,East ,West ,South;North + South = 0,East + West = 0〉

This declaration introduces a “group based data-field” or GBF [GM01]. The
underlying space of a GBF is the Cayley graph of the abelian group presentation
specified by the right hand side of the declaration. The vertices of the Cayley
graph are linked by edges labeled by the group generators North, East , etc.

The bead-sort is an original way to sort positive integers proposed by [ACD02].
This sorting algorithm considers a column of numbers written in unary basis.
The first schema below pictures the numbers 3, 2, 4 and 2 where the beads stand
for the digits. The sorting is done by letting the beads fall down as shown on the
second schema. The numbers can be implemented by a regular grid of booleans
where true stands for a digit and false for the absence of digit as shown on the
third and fourth schema.
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The bead-sort is achieved by iterating the application of the following transfor-
mation until a fixpoint is reached:

trans bead sort = {x/(x = false) |North> y/(y = true) ⇒ y, x}

The construction |North> refines the comma operator, constraining the element
y to be a North-neighbor of x.
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Hamiltonian Path. A graph is an MGS topological collection. Expressing in MGS
the search of an Hamiltonian path in a graph is straightforward:

exception Not Found , Found ; ;
trans H = { x∗ as path/size(path) = size(self) ⇒ raise Found(path) }; ;
fun hamiltonian(g) = try

H(g); raise Not Found
with Found(path) → path; ;

Transformation H uses an iterated pattern x∗ that matches a path. The keyword
self refers to the collection the transformation is applied on. The size of a graph
returns the number of its vertices. So, if the length of path is the same as the
number of vertices in the graph, then path is an Hamiltonian path (patterns are
linear without repeated matched element). The rhs raises an exception which
is trapped in function hamiltonian. The normal return of H is followed by the
raising of the Not Found exception in function hamiltonian.

3 From Local Changes to Global Specifications

The notions introduced in MGS for spatial organization can be used to handle
directly: (a) highly organized data structures used in algorithms (like trees, ar-
rays, etc.), (b) semi-structured data like those managed in XML applications
(XML schema are well represented by nested topological collections) or (c) to
take into account the data distribution over a network. The network architecture
can be static and regular (e.g., as in a tightly coupled parallel architecture) or
more fuzzy and dynamic (e.g., as in a grid on the Internet, in a P2P system or
in an amorphous medium [AAC+00]). In either case, the communication cost
between processing elements induces a neighborhood relationship. The states of
the processing elements together with this neighborhood relationship constitute
a topological collection. If any point-to-point communication exhibits the same
uniform cost, the corresponding topology is the topology of a multiset.

3.1 Self-* Properties and Fixed Point Iterations of Local Rules

In this point of view, the state of an autonomic system is a (distributed) topolog-
ical collection. The evolution of an autonomic system is specified through local
evolution rules that define the (local) evolution of a small subpart of the system.
A topological collection stable w.r.t. the reactions represents an admissible state
of the autonomic system. A perturbation or an interaction with the environ-
ment corresponds to a change in the topological collection: the addition or the
removal of some elements or a modification of the neighborhood relationship.
This framework is illustrated in Fig. 1.

Thus, an autonomic system can be defined in this framework if one can infer
that the asynchronous parallel applications of local rules lead to stable points
exhibiting some required properties. Some theoretical tools can be used in this
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steady state

perturbation

resilience

Fig. 1. Autonomic computing via trajectory stabilization. An autonomic system can
be seen as a distributed dynamical system. In this diagram, the states of the dynamical
system are figured as a plane and the system’s evolutions are given by a trajectory. The
surface represents some potential, for instance a quantitative evaluation of the diver-
gence of the system from a desired behavior. When some transient perturbations make
the system leave its steady state, the local transformations triggered by the matching
of some rules eventually lead to the return of the system’s state to an admissible state.

difficult task. In the rest of this presentation, we develop several topological
collection orderings based on multiset orderings [DM79]. Such orderings can be
used to prove the convergence of an autonomic system towards a fixed point.

The framework pictured in Fig. 1 can be made more precise in the following
way. We suppose that the state of an autonomic system is described by a topo-
logical collection c ∈ C where C is the state space of the system. The autonomic
program driving the autonomic system is specified by a unique transformation T .
The admissible states s of the corresponding autonomic system are fixed points
of T : s = T (s). A perturbation of the system corresponds to a state s′ such that
s′ �= T (s′). The trajectory of the system after the perturbation is given by the
sequence s0 = s′, s1 = T (s0), . . . , sn+1 = T (sn). The problem is then to know
whether the sequence sn converges towards a fixed point in a finite number of
steps. A classical approach is to exhibit a well-founded ordering 2 ≺ of the state
space C such that sn+1 ≺ sn.

2 An ordering is well-founded if it contains no infinite descending sequences of ele-
ments. For countable sets, a well-founded ordering ≺ can be specified by giving a
mapping τ onto the positive integers such that c ≺ c′ ⇔ τ (c) < τ (c′). The “poten-
tial” surface in Fig. 1 figures such a function τ .
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In this context, it would be very useful to exhibit various well-founded or-
derings on arbitrary topological collections. To this end, we can adapt the well-
known multiset ordering introduced in [DM79].

3.2 Multiset Ordering

For a partially-ordered set of values (V, <), the multiset ordering % on M(V )
the multisets over V , is defined as follows: A % B if for some X, Y ∈ M(V )
such that X �= ∅ and X ⊂ B,

A = (B −X) ∪ Y and ∀y ∈ Y, ∃x ∈ X, y < x

In other words, A is obtained from B by removing some elements (those in X) and
their replacement with a finite number of elements (those in Y ) that are smaller
than one of the element of X . The definition of the relation% relies on the relation
< and we will write%< when we need to make such dependence explicit.

In the previous definition, set operators denote their multiset analogs: the
equality A = B of two multisets, for example, means that any element occurring
exactly n times in A, also occurs exactly n times in B. The union of two multisets
A + B is a multiset containing m + n occurrences of any element occurring m
times in A and n times in B. A ⊂ B means that for any element occurring
n times in A, this element occurs m times in B with n < m. If A ⊂ B, then
B−A is a multiset where any element occurring n times in A and m times in B,
occurs m−n times. Union and difference between multisets are extended to the
addition and the removal of elements: A + x = A + {x} and A− x = A− {x}.

The result demonstrated in [DM79] is that %< is well-founded iff < is well-
founded. This result can be generalized in two ways to topological collections
more general than multisets.

3.3 Forgetting the Spatial Structure

The first approach simply consists in forgetting the additional spatial structure
of a topological collection. Thus, we can associate to each topological collection c
the multiset m(c) of the values associated with the cells of c. Assuming that% is
well-founded, the order≺ defined by c ≺ c′ iff m(c) %m(c′), is also well-founded.
We write ≺� when we want to make explicit the underlying multiset ordering.

A Toy Example. To illustrate the use of a well-founded topological collection
ordering ≺, we consider a wireless sensor network targeted at environmental
monitoring, like for example the one described in [SKHH06]. Each node reacts
to environmental changes and, to fix the idea, the goal of the system is to record
the maximal temperature over the covered area. For this purpose, each node i
stores a current maximal temperature ti and updates it by comparison with its
neighbors. A perturbation is the change of one ti to record a new local maximum.

The state of the autonomic system is a topological collection c ∈ C where C can
be for instance the set of vertex-labeled undirected graphs (a vertex represents
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a node, an edge between two vertices corresponds to nodes able to interact, and
the label of the vertex i is the current maximal temperature ti). We further
suppose that there is only one strongly connected component. The behavior of
the system is specified as the iteration of the following transformation:

trans propagate = { t, t′/t′ < t ⇒ t, t }

(the local change of a ti is considered as an external change and not modeled here).
It is straightforward to prove that in absence of a perturbation, the system

will reach a state where all ti are equal. This property is a global one and must
be deduced from the application of the local rule. Although this result is obvious,
its proof illustrates the use of a well-founded topological collection ordering.

Constant Fields are the Fixed Points. First, the topological collections c where
each cell has the same value t, are the only fixed points of the propagate trans-
formation. Indeed, if c is a fixed point, we cannot find in c a pair of cells σ and
σ′ labeled by the values t and t′ such that t < t′ (the relation < is the classical
numerical comparison over the integers).

Exhibiting a Well-Founded Ordering. We may suppose that the temperature is
bounded by a sufficiently big positive number tmax. Thus the set V = {−∞, . . . ,
tmax}with the order � defined by (t�t′) ⇔ (t′ < t) is well-founded. Consequently,
the order onM(V ) defined by %� is well-founded, as well as ≺��

on C.

The System’s Trajectory is Decreasing. As a matter of fact, if c′ = propagate(c)
and c′ �= c, we have c′ ≺��

c because m(c′) = m(c) − t + t′ with t, t′ ∈ m(c)
and t′ � t, and so m(c′) %� m(c). This just shows that the sequence T n(c) is
decreasing and since the order is well-founded, it implies that it converges in a
finite number of steps to some fixed point.

3.4 Topological Collection as Generalized Multisets

Forgetting the spatial structure is useful only if the fixed point does not depend
on the spatial structure of the topological collection, which is generally not true.

It is possible at the same time to keep the spatial structure of a topological
collection c and to consider it as a kind of generalized multiset. To see the con-
nection between both notions, we need to introduce some formal definitions. The
reader is warned that the following definitions are truncated to only focus on the
multiset structure of a topological collection. The algebraic structure required to
represent the spatial organization of a topological collection (dimension of a cell,
boundary operator, the neighborhood relationships, etc.) is ignored. Complete
definitions can be found in [GM02b, GS08].

Definition 1 (Cells, Abstract Cellular Complexes and Chains). Let S
be a set of symbols called the universal set of cells. An abstract cellular complex
K is a partially ordered subset of S. We write K the set of all abstract cellular
complexes.
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Let K be a complex and G be an abelian group. The set of functions from K
to G, null almost everywhere, is called the set of topological chains of K to G,
and is written CK(G).

The elements of CK(G) are easily representable by finite formal sums:

∀c ∈ CK(G), c =
∑
σ∈K

c(σ).σ

where c(σ).σ is the formal product that represents the association of the value
c(σ) ∈ G with the cell σ ∈ S. Thanks to the abelian group structure imposed on
G, the set CK(G) is an abelian group considering the addition +CK(G) defined by:

∀c1, c2 ∈ CK(G), c1 +CK(G) c2 =
∑
σ∈K

(c1(σ) +G c2(σ)).σ

where +G denotes the group operation in the group G. The proof is straightfor-
ward. If the context is clear, the subscript in the notation of the group operation
will be dropped.

While they seem useless in our context, the group structure on the set of
values and the induced group structure on chains are really meaningful to deal
with topological collections:

– 0G.σ means that no value is associated with σ (0G is the neutral element in
the group G),

– the neutral element of CK(G) represents the empty data structure,
– the operator +CK(G) adds a new association of a value v ∈ G with a cell

σ ∈ K in a data structure c: c + v.σ,
– the opposite −CK(G) removes an association: c− v.σ = c + (−v).σ.

We have mentioned above that a topological collection c can be represented
as a finite formal sum

∑
σ∈K c(σ).σ. We interpret this sum as a set of pairs

mp(c) = {(σ, c(σ)) : σ ∈ S and c(σ) �= 0V }

A set is a special kind of multiset and so can be ordered using a multiset ordering
based on the ordering of the set elements. Hence the desired definition and
theorem:

Theorem 1. Let (V, <) a partially-ordered set of values, and (S, �) a partially-
ordered universal set of cells. Then the topological collection ordering is the
partial-order ≺ defined on CK(V ) by: c ≺ c′ iff mp(c) ≺(�×<) mp(c′) where
(�×<) is the lexicographic or the element-wise ordering on S×V . The relation
≺ is well-founded iff � and < are well-founded.

In words, a collection c is smaller than a collection c′ if c can be obtained from c′

by replacing some valued cells by some other valued cells, in arbitrary number,
provided that the introduced cells and/or the associated values are smaller.
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3.5 Correction of the Eratosthenes’s Sieve

To illustrate the previous result, we consider the fixed point iteration of the
following transformation3:

trans prime = {
x/(x > 0), 0 ⇒ 0, −x;

x/(x ≥ 0), y/(y < 0), 1/(−y > x) ⇒ x,−y, 1;

x/(x ≥ 0), y/(y < 0), 1/(−y < x) ⇒ x, 1;

x/(x ≥ 0), y/(y < 0), z/(z > 0)/(−y > x) ∧ (−y < z) ⇒ x,−y, y, z;

x/(x < 0), y/(y > 0) ∧ (y ≤ −x) ∧ (x%y �= 0) ⇒ y, x;

x/(x < 0), y/(y > 0) ∧ (y ≤ −x) ∧ (x%y = 0) ⇒ y;

x/(x < 0), y/(y > 0) ∧ (y > −x) ∧ (y%x �= 0) ⇒ y, x;

x/(x < 0), y/(y > 0) ∧ (y > −x) ∧ (y%x = 0) ⇒ x;

}

We assume that this process is applied on a sequence that begins with a zero and
ends with a one. This transformation maintains a sorted sequence (sorted at the
exception of the ending one) of relatively prime positive integers. An external
perturbation consists in introducing an arbitrary integer x > 0 at the beginning
of the sequence. If all the integers up to m > 1 are introduced, in any order, the
sequence stabilizes on the sorted sequence of prime numbers up to m.

In the rules, the operator ∧ is the boolean conjunction operator and % is the
modulo operator. The fourth rule increases the length of the sequence while some
other rules shrink it. So the convergence is not obvious. The idea behind this
program is similar to the sieve of Eratosthenes but adapted in order to admit
the orderless introduction of the integers. The perturbation x “travels” along
the sequence, from the beginning to the end of the sequence. This “traveling
number” is distinguished from the other numbers in the sequence using a negative
number (note that there is no constraint in the perturbation, so several “traveling
numbers” may coexist in the sequence). This number and the next are tested
to check if they are relatively prime. The “traveling number” is inserted in the
sequence at the correct position in order to maintain a sorted sequence and the
propagation continues to check the primality of the rest of the sequence.

The correction of this algorithm is easy to establish with the previous tool. We
focus on the convergence, that is: a fixed point is reached in a finite number of
steps. It is sufficient to exhibit a well-founded order such that a rule application
to sequence c1 gives raise to a smaller sequence c2. We take the topological
collection order induced by the following order on cells and values:

– Cells are ordered in descending order “from left to right”. For instance, the
sequence 0, 2, 3, 1 is represented by the sum 0.σ0 + 2.σ1 + 3.σ2 + 1.σ3 and

3 This transformation is derived from a natural implementation of the sieve of Era-
tosthenes, see [GM02b]. This program is not intended to be readable and has been
chosen to illustrate the approach on an arbitrary set of rules and conditions.
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σ3 � σ2 � σ1 � σ0. We assume that only a finite number of cells has been
used, so � is well-founded. This assumption is satisfied because a cell is
created each time a new integer is introduced and we suppose that there is
a bounded number of introductions.

– Relative integers are ordered as follows: let N be the greatest integer intro-
duced in the sequence. Then the set of values V = {−N, . . . , N} used in the
program is ordered by : −N > −N + 1 > · · · > −1 > N > N − 1 > · · · >
1 > 0. This order is well-founded. Note that V is a subset of the abelian
group (Z, +) and this is enough for our purpose.

Finally, we consider the lexicographic order on the pairs (cell, value). It is
straightforward to check that each rule applied to a sequence c1 gives raise to a
smaller sequence c2. We will sketch only three rules for illustration:

– The first rule does not change the sequence length. Its application replaces in
a sequence c1 the submultiset x.σ0+0.σ1 by 0.σ0+(−x).σ1 where σ1�σ0 and
x > 0. We have x.σ0 > 0.σ0 (because x > 0) and x.σ0 > (−x).σ1 (because
σ1 � σ0). It follows that c2 ≺ c1.

– Rule 4 is the only rule that increases the sequence length. The submultiset:

c1 = x.σ0 + y.σ1 + z.σ2 where σ2 � σ1 � σ0 and 0 ≤ x and y < 0

is replaced by

c2 = x.σ0 + (−y).σ1 + y.σ2 + z.σ′
2 where σ′

2 � σ2

We have c2 ≺ c1 because y.σ1 > (−y).σ1 (y is strictly negative and so
−y > y > 0). We have also y.σ1 > y.σ2 and y.σ1 > z.σ′

2 because σ′
2 �σ2 �σ1.

– The application of rule 8, the last rule of the transformation, decreases the
sequence since it removes one element.

So, since the successive sequences are decreasing in a well-founded order the
sequence must converge in a finite number of steps.

3.6 The Group Structure and the Ordering of the Values

We cannot assume that every set of values V we may consider, carries a group
structure. The group operation is useful to manage the association of a value to
a cell but it is in some sense external to the proper definition of V . Hopefully,
in absence of any “natural” group operation on V , we can use a mathematical
trick to turn any set V into an abelian group.

Definition 2 (Abelianization of a set). Let V be an arbitrary set. The Z-
module freely generated by the elements of V , written A(V ), is the free abelian
group generated by the elements of V . An element g of A(V ) can be written has
a formal sum:

∑
v∈V zv.v where zv belongs to Z.
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In the following, we consider only “finite formal sum” where only a finite subset
of coefficients zv are different from zero. The structure of Z-module generalizes
the structure of multiset: as a matter of fact, any multiset m ∈ M(V ) can be
represented by a formal sum with positive coefficients zv. So, A(V ) generalizes
M(V ) by allowing a negative number of occurrences.

Given g ∈ A(V ), we can distinguish between the positive and the negative
coefficients of g, that is:

g = (
∑
v∈V1

zv.v)− (
∑

v′∈V2

zv′ .v)

with V1, V2 ⊂ V . Assuming V1 ∩ V2 = ∅ and all coefficients z strictly positive,
the decomposition of g is unique and we write: g = g+ − g−. Both sums g+

and g− are multisets on V and this justify the following definition of the abelian
ordering.

Definition 3 (Abelian ordering). Let (V, <) be a partially-ordered set of
values. The abelian ordering � on A(V ) is defined as follows: g � g′ iff
(g+, g−) < (g′+, g′−) where < is the lexicographic ordering or the element-wise
ordering and where the elements of the pair are compared using the multiset
ordering on M(V ).

Theorem 2. Let (V, <) a well-founded partially-ordered set of values, and (S, �)
a well-founded partially-ordered universal set of cells. Let ≺ be the topological
collection ordering defined on CK(Abel(V )) by: c ≺ c′ iff mp(c) ≺(�×�) mp(c′)
where � is the abelian ordering induced by < on A(V ) and (� × �) is the
lexicographic or the element-wise ordering on S×A(V ). Then, the relation ≺ is
well-founded.

4 Conclusion

In this paper we have shown how the declarative chemical programming
paradigm can be enhanced to take into account logical and physical spatial orga-
nization using some notions developed in algebraic topology. This new framework
is investigated in the MGS experimental programming language. At the core of
this extension is the idea that a data structure can be conceived as a physi-
cal field. This notion is not entirely new and we review below some previous
work.

The chemical paradigm has been advocated for the development of amorphous
and autonomic systems. In a second part, we have adapted the well-founded
multiset ordering, a classical tool used to prove program termination, to show
how the convergence of a fixed point iteration can be established for topological
collections. The parallel between autonomic systems and self-stabilizing systems
has been recently noticed and we sketch some differences.

Data Structure as Field. The notion of data field is an old one in computer
science: it already appeared in the development of recurrence equations and
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dates at least from [KMW67]. The term “data field” seems to be used for the
first time in [CiCL91]. The notions of data field and data parallelism have been
explicitly brought together in [Lis93]. This approach is also close to the notion of
pvar or xapping [SH86] in the context of the Connection Machine. However, in
all these works, the set of points is simply an integer lattice (points are elements
of Zn) and is often left implicit.

Topological collections consider, for the underlying space, more general spaces
than integer lattices or even arbitrary graphs, in order to accommodate a large
variety of spatial organizations [GM02a]. This generality will ease the devel-
opment of various applications, for example in simulation by allowing a direct
representation of the modeled entities. As a matter of fact, many physical quan-
tities have different values at various points in space (temperature field, velocity
field, potential, etc.). In addition, the value associated with a spatial domain
often depends on the dimension of the domain [Ton74], e.g. a concentration for
a volume and a flux for the surface bounding this volume. Such generality will
also facilitate portability by offering a uniform abstraction of arbitrary spatial
computing media (e.g.: grids, amorphous computers, chemical reaction diffusion
computers, DNA self-assembly, natural or synthetic cellular assemblies, etc.).

Self-Stabilization and the Self-* Paradigms. Recent works in the self-
stabilization community [BDHY07, BDH+08] advocate the use of self-
stabilization as a provable property to achieve the goal of self-* paradigms for
systems. Usually, a self-stabilizing system is designed to start in any possible
configuration where processors, processes, communication devices, etc. are in an
arbitrary state. The approach exemplified here follows the same line. However, it
is more abstract (communications are abstracted by the data movements within
a topological collection) and less demanding concerning the initial state. We
want to underline that our goal is not to develop algorithmic tools for design-
ing self-stabilizing systems but to show that well-known approaches in program
semantics can be adapted to new programming paradigms advocated for amor-
phous and autonomic applications.

Future Work. Our future research directions follow two paths. First, we need
to investigate further how classical tools in the semantics of programs can be
adapted to the case of perpetual autonomic systems. The other direction tries
to import some tools from dynamical system theory to design and study the
semantics of autonomic systems. A first step in this direction is the development
of a discrete analog of differential operators for topological collections [GS08].
Our idea is to rely on topological and geometrical results (fixed-point theorem,
existence of objects defined by differential equations, integration theorem) to
design, control and validate global behaviors from the specification of local ones.
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Banâtre at IRISA are gratefully acknowledged for stimulating discussions and
interactions on the chemical paradigm an its application to autonomic systems.
The authors also wish to thank the organizers of the InterLink workshop series



252 J.-L. Giavitto, O. Michel, and A. Spicher

for making these fertile workshops possible. The work presented here are partially
funded by the ANR NanoProg, the ANR AutoChem, a BQR of the University
of Evry and the CNRS.

References

[AAC+00] Abelson, H., Allen, D., Coore, D., Hanson, C., Homsy, G., Knight, T.F.,
Nagpal, R., Rauch, E., Sussman, G.J., Weiss, R.: Amorphous computing.
CACM: Communications of the ACM 43 (2000)

[ACD02] Arulanandham, J.J., Calude, C.S., Dinneen, M.J.: Bead-Sort: A natural
sorting algorithm. EATCS Bull. 76, 153–162 (2002)
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1 Trends in Mainstream Computing

Computing as we have known it for 60 years is based on the von Neumann stored-
program concept and its ubiquitous implementation in the form of electronic instruction
processors. For the past four decades, processors have been fabricated using
semiconductor integrated circuits, the dominant material being silicon, and the dom-
inant technology CMOS. Relentless miniaturization has been decreasing feature size
and increasing both the operating frequency and the number of elements per chip, giv-
ing rise to so-called Moore’s law (which we interpret broadly to mean the expectation
of an exponential improvement in salient performance parameters).

Much has been said about the imminent demise of Moore’s law. Yet, hardware en-
gineers keep finding ways to extract more performance out of silicon processes and
architects out of instruction processors. New nanometer-scale processes are coming on
line, new copper interconnects promise renewed clock speedups. Meanwhile, multiple
cores on a chip provide an easy way to redeem chip real estate.

The trend of the past is likely to continue, unchanged in the main, for some time.
Note, however, that deployment of multiple cores in each chip, thus in each desktop
computer, will demand reconsidering how performance is to be delivered to the indi-
vidual applications run by the individual user. While certain graphics and video appli-
cations offer easily exploited parallelism, many others do not, and a challenge in this
domain will be to make them usably parallel without heroic effort on the part of the pro-
grammer. While this problem is being addressed on the software side, hardware tweaks
permit using spare cores for a boost in sequential performance [1].

In due course, fundamental scaling limits will be encountered, most of all the prob-
lem of heat dissipation inherent to devices in which an electronic charge is used for
state representation. Completely new alternatives to traditional silicon (CMOS) fab-
rication are being pursued at the level of devices, such as single-electron transistors,
carbon nanotubes, silicon nanowires, molecular switches, nanomagnets, quantum dots,
chemically assembled electronics, chemical logic gates with optical outputs, and three-
dimensional semiconductor integration.

Alternative architectures (beyond instruction processors) are also being explored,
such as amorphous computing [2] , spatial computing [3], blob computing [4], cell
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matrix computing, chaos computing, and the entire field of quantum computing; here I
will focus on chemical computing.1

2 Present State of DNA Computing

While inorganic chemistry was recognized early on as being capable of modelling com-
putation, esp. analogue computation, DNA computing today seems especially promis-
ing, primarily because of the inherent nature of DNA as information carrier. That is,
the specificity of Watson-Crick binding permits encoding a wide variety of signals that
can be processed using reactions that are for the most part modularly designed. We ex-
amine in which sense DNA-based experiments perform computation and interpret them
in terms of conventional mathematical notions of computation. We also examine their
commonalities, in particular the question of DNA word design.

DNA computation in its original formulation [5, 6, 7, 8, 9, 10, 11] seeks to employ
the massive parallelism inherent in the small scale of molecules to speed up decision
problems. The essential property of nucleic acids, specific hybridization (formation
of the double helix) [12, 13, 14, 15] is either exploited to encode solutions as long
strings of nucleotides, generate large numbers of random strings and check them in
a small number of steps, often manual such as PCR (though more reliable detection
is now available [16]), or to construct solutions directly through oligonucleotide self-
assembly. A number of NP-complete decision problems have been rendered in this
fashion [17, 18, 19, 20], and encodings for general computation [21, 22, 23, 24, 25] and
combinatorial games [26] have also been proposed. A limitation of the approach is the
need for large amounts of nucleic acid [27]; with amounts that could be afforded in the
laboratory, or at all, and the low speed of laboratory steps, it has been difficult to out-
perform electronic computers. Another limitation has been in imperfect specificity of
nucleic acid hybridization. Research in this area has ranged from the physico-chemical
constraints on usable nucleotide strings (e.g., melting points; secondary structure) to
tools for systematic string generation .

Further variations on the theme of DNA computation have included using proteins
instead of nucleic acids, for a larger alphabet [28], sophisticated forms of self-assembly
[29, 30], to avoid manual operations, and cellular computation in which cells (real or
simulated) are viewed as elementary computational elements, with some form of com-
munication among multiple cells [31, 32, 33, 34, 35, 36, 37, 13, 38, 39, 40, 41, 42, 43, 44,
45, 29, 46]. DNA-based self-assembly can also be a vehicle for autonomous fabrica-
tion of massively parallel self-organizing processors, which could even be conventional
instruction processors [47].

While early on it was believed that DNA computing might be a competitor to elec-
tronics in solving hard computational problems, the focus has now shifted to the use of
DNA to compute in environments where it is uniquely capable of operating, such as in
smart drug delivery to individual cells [48, 49].

1 I will consider experimental approaches; I will not consider chemically (or biochemically)
inspired formal computing systems such as membrane computing (P-systems) (Păun) and the
gamma formalism (Banâtre).
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3 Enzymatic DNA Computing

I have been most directly involved with chemical computing based on DNA enzymes
(deoxyribozymes). In this approach to computing—either digital or analog, depending
on the interpretation—signals are represented by concentrations of designated molec-
ular species. While such systems can be devised with protein enzymes, we have used
smaller DNA enzyme molecules. Deoxyribozymes are enzymes made of DNA that cat-
alyze DNA reactions such as by cleaving a DNA strand into two or ligating two strands
into one. Cleaving enzymes (phosphodiesterases) can be modified to include allosteric
regulation sites to which specific control molecules can bind and so affect the catalytic
activity. There is a type of regulation site to which a control molecule must bind be-
fore the enzyme can bind to the substrate, thus the control molecule promotes catalytic
activity. Another type of regulation site allows the control molecule to alter the confor-
mation of the enzyme’s catalytic core, such that even if the substrate has bound to the
enzyme, no cleavage occurs; thus this control molecule suppresses or inhibits catalytic
activity. An allosterically regulated enzyme can be interpreted as a logic gate, its control
molecules as inputs to the gate, and its cleavage products as the outputs. This basic logic
gate corresponds to a conjunction, e.g., a∧b∧¬c, here assuming two allosteric promo-
tory sites and one allosteric inhibitory site, and using a and b as signals encoded by the
promotor input molecules and c as a signal encoded by the inhibitor input molecule.
In the laboratory, deoxyribozyme logic gates are constructed via a modular design that
combines molecular beacon stem-loops [50] with hammerhead-type deoxyribozymes.
A gate is active when its catalytic core is intact (not modified by an inhibitory input)
and its substrate recognition region is free (owing to the promotive inputs which open
the stem-loops), allowing the substrate to bind and be cleaved. Correct functioning of
individual gates can be experimentally verified through fluorescent readouts [51].

The gates use oligonucleotides as both inputs and outputs, so cascading gates is
possible without external interfaces (such as, e.g., photoelectronics). The inputs are
compatible with sensor molecules [52] that could detect cellular disease markers. Final
outputs can be tied to release of small molecules. Two gates are coupled in series if the
product of an “upstream” gate specifically activates a “downstream” gate. All products
and inputs (i.e., external signals) must be sufficiently different to minimize the error
rates of imperfect oligonucleotide matching, and they must not bind to one another (this
is an area of active research). Cascade connections of gates have been experimentally
validated (e.g., from an upstream ligase to a downstream phosphodiesterase [53]).

Multiple elementary gates have been constructed, so there is a large number of equiv-
alent ways that any given Boolean function can be realized—equivalent in terms of dig-
ital function, but not in speed or cost of realization. For instance, a single four-input gate
may be preferable to a cascade with three two-input gates. Clearly, construction of de-
oxyribozyme logic circuits bears resemblance to traditional low-level logic design, but,
perhaps because the technology has not matured, with many more options to explore.

3.1 Simple Enzymatic Circuits

Deoxyribozyme logic gates have been used to build computational devices. A half-
adder was achieved by combining three two-input gates in solution [54]. It can be
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implemented using an XOR gate for the sum bit and an AND gate for the carry bit.
The XOR gate, in turn, is implemented using two ANDNOT gates. The two substrates
used are fluorogenically marked with tetramethylrhodamine and with fluorescein, and
the activity of the device can be followed by tracking the fluorescence at two distinct
wavelengths.

3.2 Enzymatic Game Automata

Using deoxyribozyme logic gates, an automaton for the game of tic-tac-toe has been
constructed [55, 56]. To understand how this was achieved, we first briefly examine
the structure of that game. A sequential game is a game in which players take turns
making decisions known as moves. A game of perfect information is a sequential game
in which all the players are informed before every move of the complete state of the
game. A strategy for a player in a game of perfect information is a plan that dictates
what moves that player will make in every possible game state. A strategy tree is a
(directed, acyclic) graph representation of a strategy. The nodes of the graph represent
reachable game states. The edges of the graph represent the opponent’s moves. The
target node of the edge contains the strategy’s response to the move encoded on the
edge. A leaf represents a final game state, and can, usually, be labelled either win, lose,
or draw. Thus, a path from the root of a strategy tree to one of its leaves represents a
game.

In a tree, there is only one path from the root of the tree to each node. This path
defines a set of moves made by the players in the game. A player’s move set at any
node is the set of moves made by that player up to that point in a game. For example,
a strategy’s move set at any node is the set of moves dictated by the strategy along
the path from the root to that node. A strategy is said to be feasible if, for every pair
of nodes in the decision tree for which the opponent’s move sets are equal, one of the
following two conditions holds: (1) the vertices encode the same decision (i.e., they
dictate the same move), or (2) the strategy’s move sets are equal. A feasible strategy
can be successfully converted into Boolean logic implemented using monotone logic
gates, such as the deoxyribozyme logic gates.

In the tic-tac-toe automaton, the following simplifying assumptions are made to re-
duce the number and complexity of needed molecular species. The automaton moves
first and its first move is into the center. Because of symmetry, the first move of the hu-
man, which must be either a side move or a corner move, is restricted to one particular
corner and one particular side.

The game tree in Figure 1 represents the chosen strategy for the automaton. For
example, if the human opponent moves into square 1 following the automaton’s opening
move into square 5, the automaton responds by moving into square 4 (as indicated on
edge 21). If the human then moves into square 6, the automaton responds by moving
into square 3 (edge 22). If the human then moves into square 7, the automaton responds
by moving into square 2 (edge 23). Finally, if the human then moves into square 8, the
automaton responds by moving into square 9, and the game ends in a draw.

This strategy is feasible [57]; therefore, following a conversion procedure, it is possi-
ble to reach a set of Boolean formulae that realize it, given in Table 1. The arrangement
of deoxyribozyme logic gates corresponding to the above formulae is given in Figure 2.
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Table 1. Boolean formulae resulting from the tic-tac-toe game tree

o1 = i4

o2 = (i6 ∧ i7 ∧¬i2)∨ (i7 ∧ i9 ∧¬i1)∨ (i8 ∧ i9 ∧¬i1)

o3 = (i1 ∧ i6)∨ (i4 ∧ i9)

o4 = i1

o5 = 1

o6 = (i1 ∧ i2 ∧¬i6)∨ (i1 ∧ i3 ∧¬i6)∨ (i1 ∧ i7 ∧¬i6)∨ (i1 ∧ i8 ∧¬i6)∨ (i1 ∧ i9 ∧¬i6)

o7 = (i2 ∧ i6 ∧¬i7)∨ (i6 ∧ i8 ∧¬i7)∨ (i6 ∧ i9 ∧¬i7)∨ (i9 ∧ i2 ∧¬i1)

o8 = i9 ∧ i7 ∧¬i4

o9 = (i7 ∧ i8 ∧¬i4)∨ (i4 ∧ i2 ∧¬i9)∨ (i4 ∧ i3 ∧¬i9)∨ (i4 ∧ i6 ∧¬i9)∨ (i4 ∧ i7 ∧¬i9)∨ (i4 ∧ i8 ∧¬i9)

This is the initial state of the nine wells of a well-plate in which the automaton is real-
ized in the laboratory.

The play begins when Mg2+ ions are added to all nine wells, activating only the
deoxyribozyme in well 5, i.e., prompting the automaton to play its first move into the
center. After that, the game branches according to the opponent’s inputs.

Building this automaton was relatively straightforward in the lab, once the logic was
elucidated. The second-generation automaton [56], which plays the full game, and has
many more concurrently operating gates that analyze many more inputs, required a
great deal of tuning in the laboratory.

4 Computing with Chemical Open Systems and Recurrent
Circuits

The first oscillatory chemical reaction was discovered by Belousov in the fifties but
for a while remained little known [58]. Once this Belousov-Zhabotinsky reaction be-
came better known and its mechanisms understood [59, 60, 61], it inspired treatments
of chemical computation devices, made out of hypothetical large systems of coupled
chemical reactions with many stable states [62, 63, 64, 65, 66, 67, 68, 69]; moreover
information-theoretic connections were made with Maxwell’s daemon [70], and,
chaotic behavior having been observed, with unpredictability [71, 72, 73]. Chemical
reactions, owing to diffusion, have a spatial component in addition to the temporal.
Therefore the oscillatory Belousov-Zhabotinsky reaction gives rise to waves [74]; this
was used to implement computation on a prefabricated spatial pattern by wave superpo-
sition [75]. Recently an oligonucleotide periodic system was shown [76] (see also [77]).

It has been suggested that computational devices based on chemical kinetics are
Turing-equivalent [78], but one must consider the inherently finite number of reac-
tions and molecular species possible [79], and the difficulty of constructing them in
practice [80, 81]. Deoxyribozyme logic provides a systematic method for such a con-
struction, and recurrent circuits, including flip-flops and oscillators, have been designed
in silico on the basis of it [82, 83]. The great cost of DNA material is an obstacle to
large-scale experiments at present.
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Fig. 1. Game tree for the symmetry-pruned game of tic-tac-toe, drawn as the diagram of a Mealy
automaton. Each state is labelled according to the inputs seen on the path to it. Each edge is
labelled a/b(n), where b is the output that is activated on input a, and n is the edge identifier.
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Fig. 2. Realizing a tic-tac-toe automaton using deoxyribozyme logic. The center well contains
a consitutively active deoxyribozyme. Each of the eight remaining wells contains a number of
deoxyribozyme logic gates as indicated.

Beyond the laboratory, certain naturally occurring coupled biochemical reactions of
this kind have been identified (in signalling and metabolic pathways) and their com-
putational nature has been suggested [84, 85, 86, 87, 88, 14]. We note in passing that
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there have also been early suggestions for irreversible logic gates as models of chemi-
cal kinetics [89] inspired by observations of biological systems [90]. Recently, there has
been interest in natural computing, in particular to multicellular slime molds that exhibit
multiple life phases and dynamically adaptive optimization behaviors that can be inter-
preted as computation, such as in the Dictyostelium and the Physarum. I am exploring
computational aspects of much smaller agents, molecular robotic assemblies [91].

5 Assessment

(Bio)chemical computing is not ready for prime time as a means of creating practical
computing devices for everyday use. It is unlikely it will ever supplant electronic com-
puters, but it may soon find niche uses: (1) Analogue computation in those cases where
the structure of the problem being explored parallels the structure of the (bio)chemical
system. (2) Autonomous computation in environments where electronics cannot be de-
ployed.

Lack of programmability, modular design, and error correction (or estimation for
the analogue case) remain serious deficiencies—and new research should resolve these
issues.
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