
Chapter 9
Parallel Signcryption

Josef Pieprzyk and David Pointcheval

9.1 Introduction

The primary motivation for signcryption was the gain in efficiency when both
encryption and signing need to be performed. These two cryptographic operations
may be done sequentially either by first encrypt and then sign (E tS) or alternatively,
by first sign and then encrypt (StE). Further gains in efficiency can be achieved
if encryption and signature are carried out in parallel (E&S). More importantly,
however, is that these efficiency gains are complemented by gains in security, i.e.,
we may use relative weak encryption and signature schemes in order to obtain a
“stronger” signcryption scheme. The reader is referred to Chaps. 2 and 3 for a
discussion of the different “strengths” of security model (e.g., outsider vs. insider
adversaries, two-user vs. multi-user setting).

9.2 Concept of Parallel Signcryption

Efficiency and security are the two main requirements for cryptographic algo-
rithms. Striking the balance between the two requirements is the real challenge.
New ever-growing Internet applications such as distance learning, video streaming,
e-commerce, e-government, e-health, etc., heavily rely on sophisticated protocols
whose explicit goals are the fast, reliable, and secure delivery of large volumes of
data.

Cryptographic protocols can be sped up by

• designing new, faster secure cryptographic algorithms—this option is not always
available as once an algorithm becomes a standard or has been incorporated into
the protocol: the designers are stuck with it for some time,
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• parallelizing operations required by the cryptographic algorithms—this approach
can be applied at the level of a single algorithm (parallel thread implementation)
and/or at the level of the protocol (parallel execution of the protocol components).

Privacy and authenticity are two basic security goals. As already discussed in the
motivation for signcryption, there are many applications that require both goals to
be achieved simultaneously. However, the main problem considered initially was the
design of encryption and signature so that their concatenation maximizes savings of
computing resources. Our goal here is to achieve the lower bound in terms of time
necessary to perform authenticated encryption and decryption, or

time(parallel Encrypt& Sign) ≈ max{time(Encrypt), time(Sign)}
and

time(parallel Decrypt& Verify) ≈ max{time(Decrypt), time(Verify)}

At best, one would expect that parallel encryption and signing will consume roughly
the same time as the most time-consuming operation (either signing or encryption
for the signcryption operation and either verifying or decrypting for the unsigncryp-
tion operation).

The parallel encryption and signing methodology was introduced by An et al.
[10]—see Chap. 2 for a detailed discussion of their results. Independently, the
concept was also developed by Pieprzyk and Pointcheval [160]. Both works
can be seen as generalizations of the signcryption concept introduced by Zheng
[203, 204]. An et al. [10] developed a security model for parallel signcryption and
present the commit-then-encrypt-and-sign (CtE&S) scheme that uses three cryp-
tographic blocks: a commitment scheme, a public key encryption scheme, and a
signature scheme (as described in Chap. 6). The solution given by Pieprzyk and
Pointcheval [160] implements the commitment part very efficiently using secret
sharing. It also shows how to combine encryption and signing so that they strengthen
each other and can be executed in parallel.

9.3 Overview of Constructions

A trivial implementation of parallel signcryption could be as simple as applying
encrypt and sign operations to the same message in parallel. This, of course, does
not work as the signature may reveal the message (see Chap. 2).

A classical solution could be the well-known envelope technique (see Fig. 9.1)
that first defines a secret session key. This key is encrypted under the public key
and is used, in parallel, to encrypt, under a symmetric encryption, a message and a
signature on it. If one assumes that the symmetric encryption has a negligible cost
(some may disagree with this claim), then this allows parallel encryption and sign-
ing. For unsigncryption, the recipient first decrypts the session key and then extracts
the message and the signature. Only when all that operations have been completed,
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Fig. 9.1 Envelope technique

can one verify the signature. Therefore, decryption and verification cannot be done
in parallel.

The commit-then-encrypt-and-sign (CtE&S) [10] is a little bit better. It is shown
in Fig. 9.2. The signcryption algorithm first commits to the message m, computing
the actual committed value c and the decommitment d (see Sect. 6.4.2). It then
encrypts d in e and signs c getting s. The unsigncryption algorithm can unsign-
crypt the ciphertext (e, c, s) by first verifying (c, s) and decrypting e into d. The
decommitment d finally helps to recover m (by opening c). However, the opening
algorithm may not be as efficient as required.
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Fig. 9.3 Generic signcryption

The two constructions presented in this chapter are in the same vein as those
presented in Chap. 6. They apply an efficient commitment scheme (proven secure
in the random oracle model [29]) which allows for weak assumptions about the
underlying encryption and signature schemes. The commitment scheme is based on
a (2, 2) Shamir secret sharing scheme (see Fig. 9.3). In a (k, n) Shamir secret sharing
scheme, a secret is shared among n parties. Any k parties out of n can recover the
secret while any group of less than k parties has no information about the secret. The
(k, n) Shamir secret sharing scheme [176] simply exploits Lagrange interpolation
of polynomials of degree k − 1.

As we use a (2, 2) Shamir secret sharing, we need a linear polynomial whose
coefficients are strongly related to the message m in a randomized way. For a ran-
dom string r , the constant coefficient is (m‖r) and the linear coefficient is h(m‖r),
where h is a hash function returning values from Zp. The polynomial, over Zp,
evaluated at two points produces two shares. One of the shares is encrypted and
the other is authenticated (in parallel). The perfectness of Shamir secret sharing
guarantees that knowledge of one of the shares provides no information (in the
information-theoretic sense) about the constant coefficient (the secret), and conse-
quently no information about the message m.

9.4 Generic Parallel Signcryption

9.4.1 Description of the Scheme

The signcryption scheme uses the following building blocks:

• an encryption scheme E = (EncKeyGen, Encrypt, Decrypt),
• a signature scheme S = (SigKeyGen, Sign, Verify),
• a large (k + 1)-bit prime p, which defines the field Zp with p ≥ 2k ,
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• a hash function h : Zp → Zp,
• two integers k1 and k2 that are two security parameters such that k = k1 + k2.

We will use a signature scheme with message recovery (see Sect. 1.3.2). This means
that the verification algorithm Verify takes as input a signature s and a public key
pksig. It outputs either a message m indicating that the signature is valid for message
m or the error symbol ⊥.

The signcryption scheme is defined by the following collection of algorithms:

• KeyGen(1k) : Compute (sksig, pksig)
R← KeyGenS(1

k)
def= SigKeyGen(1k) and

(skenc, pkenc)
R← KeyGenR(1

k)
def= EncKeyGen(1k). The sender keys are

(skS, pkS)
def= (sksig, pksig)

and the receiver keys are

(skR, pkR)
def= (skenc, pkenc)

We now consider two users, the sender with keys (skS, pkS) and the receiver with
keys (skR, pkR).

• Signcrypt(skS, pkR,m): Given a message m ∈ {0, 1}k1 that needs to be
encrypted and signed:

1. Choose a random integer r ∈ {0, 1}k2 and compute a = h(m‖r) ∈ Zp, where
(m‖r) ∈ {0, 1}k ⊆ Zp.

2. Form an instance of a (2, 2) Shamir secret sharing scheme over Zp with the
polynomial F(x) = (m‖r) + ax mod p. Define two shares s1 ← F(1) and
s2 ← F(2) in Zp.

3. Calculate in parallel c1 ← Encrypt(pkR, s1) and c2 ← Sign(skS, s2). The
ciphertext (c1, c2) is dispatched to the receiver R.

• Unsigncrypt(pkS, skR, (c1, c2)):

1. Perform decryption and signature verification in parallel:

t1 ← Decrypt(skR, c1)

and

t2 ← Verify(pkS, c2)

Note that both the Decrypt and Verify algorithms return integers in Zp

unless a failure occurs. Indeed, it is possible that Decrypt returns ⊥ if it
decides that the ciphertext is invalid. Similarly, Verify returns a message
(as the signature scheme is assumed to have message recovery) or ⊥ if the
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signature is invalid. In case of at least one failure, the decryption and verifying
algorithm Unsigncrypt returns ⊥ and stops.

2. Given the two points (1, t1) and (2, t2), use the Lagrange interpolation and
find the polynomial F̃(x) = a0 + a1x mod p for which these two points are
solutions (i.e., compute a0 = 2t1 − t2 and a1 = t2 − t1).

3. Check whether a1 = h(a0) or equivalently if t2−t1 = h(2t1−t2). If the check
holds, extract m from a0 (as a0 = (m‖r)) and return m. Otherwise, output ⊥.

9.4.2 Security Analysis

The original research of Pieprzyk and Pointcheval [160] proved the following
theorem:

Theorem 9.1 If the encryption scheme is IND-CCA2 and the signature scheme is
sUF-RMA, then the generic parallel signcryption scheme is IND-CCA and UF-
CMA secure in the outsider security model for the two-user setting.

The security model in this theorem is unfortunately weak, i.e., outsider security
for the two-user setting, without FSO/FUO. However, the multi-user setting with
FSO/FUO is covered if both IDS and IDR are included in the hash value, i.e., a =
h(IDS‖IDR‖m‖r). Furthermore, in the case of a deterministic signature, one even
gets insider security:

Theorem 9.2 If the encryption scheme is IND-CCA2 and the signature scheme is
deterministic and UF-RMA, then the generic parallel signcryption scheme, as mod-
ified above, is FSO/FUO-IND-CCA2 and FSO/FUO-UF-CMA secure in the insider
security model for the multi-user setting.

More precisely, we are going to prove the two following results.

Lemma 9.1 Suppose there exists an insider adversary A against FSO/FUO-UF-
CMA security of the generic parallel signcryption scheme, in the multi-user setting,
with advantage AdvUF−CMA

Signcrypt (k) whose running time is bounded by t and asks at
most qh queries to the random oracle h and qsc queries to the signcryption oracle.
Then, there exists an adversary B against the UF-RMA security of the signature
scheme with advantage SuccUF−RMA

Sign (k) whose running time is bounded by t ′ ≤
t + qsc(τ + O(1)), where τ denotes the maximal running time of the encryption
and signing algorithms, and that asks at most qsc queries to its signature oracle, for
which

AdvU F−C M A
Signcrypt (k) ≤ SuccUF−RMA

Sign (k)+ 2qsc × qh + qsc

2k2
.

Lemma 9.2 Suppose there exists an insider adversary A against FSO/FUO-IND-
CCA2 of the generic parallel signcryption scheme, in the multi-user setting, with
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advantage AdvIND−CCA2
Signcrypt (k) whose running time is bounded by t and who asks at

most qh queries to the random oracle h and qusc queries to the unsigncryption
oracle. Then there exists an attacker B against the IND-CCA2 security of the
encryption scheme with advantage AdvIND−CCA2

Encrypt (k) whose running time is bounded
by t ′ and that makes at most qusc queries to the unsigncryption oracle, where
t ′ ≤ t + qusc(τ + O(1)) and τ denotes the maximum running time of the decryption
and verification algorithms, and

AdvIND−CCA2
Signcrypt (k) ≤ 2× AdvIND−CCA2

Encrypt (k)+ qh + qusc

2k2−1

if the signature scheme is deterministic.

We prove the above lemmas in the random oracle model. When a random oracle
h is called, we have two possibilities. One possibility is that the query has been
already asked. In this case the answer has already been defined by the simulation
and the same answer has to be given. The second possibility is that the query has
not been asked. In this case, a random value in Zp is given. Of course, one has to
be careful when defining an answer of a random oracle as the following conditions
have to be satisfied:

• this answer must not have already been defined and
• the answer must be uniformly distributed.

Furthermore, we denote by qH the number of answers defined for h. This number
will be easily upper bounded by qh + qsc + qusc in the following simulations.

Proof (of Lemma 9.1) Assume that after qsc queries to the oracle Signcrypt,
an adversary A outputs a new ciphertext (c1, c2), which is valid with probability
AdvUF−CMA

Signcrypt (k). We use the adversary to perform an existential forgery (under a
random message attack) against the signature scheme S. For this proof, we consider
the multi-user insider security model. Hence, the attacker knows the public key pkS
of the target sender ID∗S and has access to the signcryption oracle under skS .

We first design a simulator B which has access to a list of message–signature
pairs, produced by the signing oracle under skS (the messages are assumed to have
been randomly drawn from Zp and not chosen by the adversary). It is given the pri-
vate/public keys (skR, pkR) produced by the adversary, for the encryption scheme,
and is also provided with the public key pkS of the signature scheme. Any query m
by A to the oracle Signcrypt under skS , for any recipient IDR , can be simulated
using a new valid message–signature pair (M, S), for the signature scheme. Indeed,
M is defined to be s2 and S is defined to be c2. Then, one chooses a random r . Since

s2 = (m‖r)+ 2h(ID∗S‖IDR‖m‖r) mod p = M

one needs to define the random oracle at the point (ID∗S‖IDR‖m‖r) (unless it has
already been done, which then raises the event BADH). So we get
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h(ID∗S‖IDR‖m‖r)← M − (m‖r)
2

mod p

and therefore

s1 ← (m‖r)+ h(ID∗S‖IDR‖m‖r) = M + (m‖r)
2

mod p

Using the public key of the encryption scheme for the recipient IDR , one can encrypt
s1 to obtain c1. The pair (c1, c2) is a valid ciphertext of m.

Finally, the adversary A returns a ciphertext (c1, c2) for a new message m′, for
ID∗R from ID∗S , which is valid with probability AdvU F−C M A

Signcrypt (k). With the public
key of the signature scheme, one can extract the message s2 from c2. By definition,
(s2, c2) is an existential forgery for the signature scheme. Indeed, one just has to
check whether it is a really new signed message. If this is not a new signed message,
then s2 has already been signed by the oracle Signcrypt for m‖r , where

s2 = (m‖r)+ 2h(ID∗S‖IDR‖m‖r) mod p

Note that s2 is uniquely defined in the list of the queries asked to the random oracle
h unless one has found a collision for the function

G : (x, y) �→ x + 2h(ID∗S‖y‖x) mod p

among the qsc values given by the simulation and the qH answers obtained by
the adversary (either directly from queries or implicitly defined by the simula-
tion). Because of the randomness of the random oracle h, this is upper bounded
by qsc · qH/2k .

Furthermore, one has to be sure that everything looks like in a real attack from
the adversary A point of view. However, when one defines a value for h, it may have
already been defined (event BADH). Because of the randomness of r , the probability
of such an event is less than qH/2k2 for each simulation of the oracle Signcrypt.

Finally, the probability for B to produce an existential forgery against the signa-
ture scheme is greater than

AdvUF−RMA
Sign (k) ≥ AdvUF−CMA

Signcrypt (k)− qsc · qH ×
(

1

2k2
+ 1

2k

)

≥ AdvUF−CMA
Signcrypt (k)− 2qsc · qH ×

(
1

2k2

)

Furthermore, one can easily see that qH ≤ qh + qsc, hence the result. ��
Proof (of Lemma 9.2) Assume that an adversary A has made qusc queries to the
oracle Unsigncrypt. A also has chosen a pair of messages m0 and m1 and has
received a ciphertext (c∗1, c∗2) under (skS, pkR) of either m0 or m1. The unknown
message is denoted by mb, where b is the bit the adversary wishes to find out. The
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adversary outputs a bit d which is equal to b with advantage ε such that Pr[d =
b] = 1/2+ ε.

We work with the multi-user insider security model. The attacker receives a target
receiver ID∗R public key pkR and has access to the unsigncryption oracle under skR .

We design a simulator B which is given the public key pkR of the encryption
scheme and has access to the decryption oracle Decrypt (under skR).

Any call by A to the oracle Unsigncrypt under skR , from any sender IDS ,
can be simulated using the decryption oracle Decrypt access. Indeed, for a query
(c1, c2), one first asks the query c1 to the oracle Decrypt and obtains s1. Thanks to
the public key of the signature scheme, one can get s2 from c2. This is enough to
check the validity of the ciphertext (c1, c2) and to decrypt it. We will see later if this
simulation is always possible.

Let us first show how one generates the challenge ciphertext. When B receives
the pair of messages m0 and m1 from A, it randomly chooses two random integers
r0 and r1 to produce two new messages for the encryption scheme, namely

M0 ← (m0‖r0)+ h(ID∗S‖ID∗R‖m0‖r0) mod p

M1 ← (m1‖r1)+ h(ID∗S‖ID∗R‖m1‖r1) mod p

B receives the ciphertext c∗1 of Mb and has to guess the bit b, with the help of A.
For that, it chooses a random bit b′ (hoping it to be equal to b) and defines

s∗2 ← (mb′ ‖rb′)+ 2h(ID∗S‖ID∗R‖mb′ ‖rb′) mod p

Then, it signs it using the private key skS of the signature scheme and gets c∗2. Next
it sends the pair (c∗1, c∗2) as a ciphertext of mb (for the unknown bit b). Finally, the
adversary A ends its attack, returning a bit d to B and B forwards it as its final
answer.

The simulation of A’s unsigncryption queries by B works fine for any query
(c1, c2) with c∗1 = c1, as shown above. The above simulation breaks for queries
(c∗1, c2), as the decryption oracle is prevented to be queried for the challenge cipher-
text c∗1 while the oracle Unsigncrypt accepts queries as long as c1 = c∗1, or
c2 = c∗2, or IDS = ID∗S . If A submits an unsigncryption oracle query of them
(c∗1, c2) then the simulator B returns ⊥. The event that B rejects an unsigncryption
oracle (c∗1,C2) which is actually valid is called BADD. Later, we will show that this
happens with a negligible probability.

Now, we study the advantage of the simulator B in breaking IND-CCA2 of the
encryption scheme, which is

AdvI N D−CC A2
Encrypt (k) = Pr[d = b] − 1

2
≥ Pr[d = b ∧ ¬BADD] − 1

2≥ Pr[d = b | ¬BADD] − Pr[BADD] − 1
2= 1

2 · Pr[d = b | b = b′ ∧ ¬BADD] + 1
2 · Pr[d = b | b = b′ ∧ ¬BADD]

−Pr[BADD] − 1
2



184 J. Pieprzyk and D. Pointcheval

Let us now examine each term. First note that, when b′ = b, the simulated challenge
(c∗1, c∗2) is identical to a real challenge:

ε = Pr[d = b | b′ = b] − 1/2

≤ Pr[d = b | b′ = b ∧ ¬BADD] + Pr[BADD] − 1/2

Let us now focus on the second term in the inequality (when b′ = b), by defin-
ing ASKH to be the event that the adversary A either asks (ID∗S‖ID∗R‖m0‖r0) or
(ID∗S‖ID∗R‖m1‖r1) to the random oracle h. It is equal to

Pr[d = b | b′ = b ∧ ¬BADD]
≥ Pr[d = b | b′ = b ∧ ¬BADD ∧ ¬ASKH]

×Pr[¬ASKH|b′ = b ∧ ¬BADD]

Clearly, in the case that b′ = b, the adversary may have some information (in the
theoretical sense) about

Mb = (mb‖rb)+ h(ID∗S‖ID∗R‖mb‖rb) mod p

s∗2 = (mb′ ‖rb′)+ 2h(ID∗S‖ID∗R‖mb′ ‖rb′) mod p

However, without the event ASKH, the hash values perfectly hide the first part and
therefore the answer of A is independent of b (a random variable):

Pr[d = b | b′ = b ∧ ¬BADD ∧ ¬ASKH] = 1

2

On the other hand, as we have said above, the value h(ID∗S‖ID∗R‖mi‖ri ) perfectly
hides (mi‖ri ), for i = 0, 1, and therefore one cannot get any information about
the random values r0 and r1 without a guess. The event ASKH happens with the
probability less than 2qH/2k2 . We therefore conclude

Pr[¬ASKH|b′ = b ∧ ¬BADD] ≥ 1− 2qH/2
k2

Finally, let us examine the probability Pr[BADD] of a wrong decryption reject:
c1 = c∗1 but c2 = c∗2 or IDS = ID∗S . Since this should be a valid signature, c2 is the
signature of some element s2 and c1 is the encryption of Mb such that s2 − Mb =
h(IDS‖ID∗R‖2Mb − s2).

Because of the random oracle h, the probability to find such a pair (IDS, s2)

is less than qH/2k , except the constructed pair (ID∗S, s∗2 ). But since the signature
scheme is deterministic, then c2 = c∗2 and IDS = ID∗S , and such a query cannot be
asked to the unsigncryption oracle. As a consequence,

Pr[BADD] ≤ qH

2k
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Now we collect all the terms and get

AdvIND−CCA2
Encrypt (k) ≥ 1

2

(

ε − Pr[BADD] + 1

2

)

+1

2

(
1

2
Pr[¬ASKH|b′ = b ∧ ¬BADD]

)

− Pr[BADD] − 1

2

≥ ε

2
− 3

2
Pr[BADD] − qH

2k2+1

≥ 1

2
AdvIND−CCA2

Signcrypt (k)− 3 · qH

2 · 2k
− qH

2 · 2k2

This concludes the proof, since qH ≤ qh + qusc. ��
From the efficiency point of view, this generic scheme is almost optimal since

on the sender side, only one hash value and two additions are required before the
parallel encryption and signature processes. The process needed on the receiver
side reaches the same kind of optimality. However, the security requirements of
the basic schemes, the encryption scheme E and the signature scheme S, are very
strong. Indeed, the encryption scheme is required to be semantically secure against
chosen-ciphertext attack and the signature scheme must already prevent existential
forgeries.

9.5 Optimal Parallel Signcryption

Adding a kind of OAEP technique [30], we can improve the generic scheme, in
the sense that we can weaken the security requirements of the basic primitives. The
new proposal just requires the encryption scheme to be deterministic and one way
against chosen-plaintext attack, which is a very weak security requirement—even
the plain RSA encryption scheme [165] achieves it under the RSA assumption.
The signature scheme is required to prevent universal forgeries under the random
message attack—the plain RSA signature scheme achieves this security level.

9.5.1 Description of the Scheme

The scheme is illustrated in Fig. 9.4. The building blocks are

• an encryption scheme E = (EncKeyGen, Encrypt, Decrypt),
• a signature scheme S = (SigKeyGen, Sign, Verify),
• a large k-bit prime p, which defines the field Zp, with p ≥ 2k ,
• two integers k1 and k2 that are security parameters such that k = k1 + k2,
• hash functions

f : {0, 1}k → {0, 1}k, g : {0, 1}k → {0, 1}k and h : {0, 1}∗ → {0, 1}k2
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Fig. 9.4 Optimal signcryption (encryption and signing)

The signcryption scheme works as follows:

• KeyGen(1k) : Compute (sksig, pksig)
R← KeyGenS(1

k)
def= SigKeyGen(1k) and

(skenc, pkenc)
R← KeyGenR(1

k)
def= EncKeyGen(1k). The sender keys are

(skS, pkS)
def= (sksig, pksig)

and the receiver keys are

(skR, pkR)
def= (skenc, pkenc)

We now consider two users, the sender with the keys (skS, pkS) and the receiver
with the keys (skR, pkR).

• Signcrypt(skS, pkR,m): Given a message m ∈ Zp that needs to be encrypted
and signed:

1. Choose a random integer r ∈ {0, 1}k1 and compute a = h(IDS‖IDR‖m‖r).
2. Form an instance of a (2, 2) Shamir secret sharing scheme over Zp with the

polynomial F(x) = (a‖r) + mx mod p. Define two shares s1 ← F(1) and
s2 ← F(2).
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3. Compute the transform r1 ← s1 ⊕ f (s2) and r2 ← s2 ⊕ g(r1).
4. Calculate (in parallel) c1 ← Encrypt(pkR, r1) and c2 ← Sign(skS, r2). The

ciphertext (c1, c2) is then dispatched to the receiver R.

• Unsigncrypt(pkS, skR, (c1, c2)):

1. Perform decryption and signature verification in parallel so

u1 ← Decrypt(skR, c1)

and

u2 ← Verify(pkS, c2)

Note that both the Decrypt and Verify algorithms return integers in Zp

unless some failure occurs. It is possible that Decrypt returns ⊥ if it decides
that the ciphertext is invalid. Similarly, Verify returns a message (as we are
using a signature with message recovery) or ⊥ if the signature is invalid. In
the case of a failure, the Unsigncrypt algorithm returns ⊥ and stops.

2. Compute the inversion t2 ← u2 ⊕ g(u1) and t1 ← u1 ⊕ f (t2).
3. Knowing two points (1, t1) and (2, t2), use the Lagrange interpolation and find

the polynomial F̃(x) = a0+a1x mod p, where a0 = 2t1−t2 and a1 = t2−t1.
4. Extract r from a0 and check whether h(IDS‖IDR‖a1‖r)‖r = a0 mod p. If

the check holds, return a1 as m. Otherwise, return ⊥.

9.5.2 Security Analysis

The following theorem characterizes the security of the optimal parallel signcryp-
tion. (Recall that the universal forgery notion for a signature scheme is discussed in
Sect. 1.3.2.)

Theorem 9.3 If the encryption scheme is deterministic and OW-CPA secure and the
signature scheme is deterministic and uUF-RMA secure, then the optimal parallel
signcryption scheme is FSO/FUO-IND-CCA2 and FSO/FUO-UF-CMA secure in
the insider security model for the multi-user setting.

More precisely, one can prove the two following results.

Lemma 9.3 Consider an insider adversary A against the FSO/FUO-UF-CMA
security of the optimal parallel signcryption scheme, in the multi-user setting, with
advantage AdvU F−C M A

Signcrypt (k) whose running time is bounded by t and who makes
at most qh queries to the random oracle h, qg queries to the random oracle g,
and qsc queries to the signcryption oracle. Then there exists an attacker B against
the uUF-RMA security of the signature scheme with advantage AdvuUF−RMA

Sign (k)
whose running time is bounded by t ′ ≤ t + qsc(τ + O(1)), where τ denotes the



188 J. Pieprzyk and D. Pointcheval

maximal running time of the encryption and signing algorithms, and that makes at
most qh + qsc queries to the signing oracle, for which

AdvUF−CMA
Signcrypt (k) ≤ (qh + qsc)× AdvuUF−RMA

Sign (k)+ (qg + qh + qsc)
2 + 2

2k2

Lemma 9.4 Consider an insider adversary A against the FSO/FUO-IND-CCA2
security of the generic parallel signcryption scheme, in the multi-user setting, with
advantage AdvIND−CCA2

Signcrypt (k) whose running time is bounded by t and which makes
at most qh queries to the random oracle h and qusc queries to the unsigncryption
oracle. Then there exists an attacker B against the OW-CPA security of the public
key encryption scheme with advantage AdvOW−CPA

Encrypt (k) and whose running time is
bounded by t ′ ≤ t + qusc(τ + O(1)), where τ denotes the maximal running time of
the decryption and verification algorithms, for which

AdvIND−CCA2
Signcrypt (k) ≤ AdvOW−CPA

Encrypt (k)+ qh

2k1
+ qusc

2k2

The proofs are similar to the proofs of Lemmas 9.1 and 9.2. Again, we are in the
random oracle model, and the functions f , g, and h are modeled by random oracles.
The number of queries to these oracles is q f , qg , and qh , respectively. Furthermore,
we denote by qF , qG , and qH the number of answers defined for f , g, and h, respec-
tively.

Proof (of Lemma 9.3) Assume that after qsc queries to oracle Signcrypt, an
adversary A outputs a new ciphertext (c1, c2), which is valid with the probability
AdvUF−CMA

Signcrypt (k). We use this adversary to perform a universal forgery that produces
a new signature on a designated random message μ (under a known random mes-
sage attack) against the signature scheme S. Since we are dealing with the insider
security model, the adversary has a target sender ID∗S in mind and he/she knows
the sender public key pkS . The adversary has access to the signcryption oracle
under skS . Now we design a simulator B, which has access to a list of message–
signature pairs, produced by the signing oracle (the messages are assumed to have
been randomly drawn from Zp and not chosen by the adversary). It is given the pri-
vate/public keys (skR, pkR) produced by the adversary, for the encryption scheme
of the target receiver ID∗R . Note that a valid ciphertext must satisfy the equality
h(IDS‖IDR‖m‖r)‖r = a0 mod p. Therefore, the probability of getting a valid
ciphertext (from ID∗S to ID∗R) without asking h(ID∗S‖ID∗R‖m‖r) is at most 2−k2 .
The query (ID∗S‖ID∗R‖m‖r) must have been asked to the oracle h with a probability
greater than AdvUF−CMA

Signcrypt (k)− 2−k2 . It is provided with the public key pkS of ID∗S
for the signature scheme. It is furthermore given a list of qH message–signature
(M, S) pairs, where messages are randomly chosen. B simulates A in the following
way (where any query to a random oracle is answered randomly, if nothing else is
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specified). The simulation of the h-oracle is performed as followed, after having
chosen a random index i ∈ {1, . . . , qH } and initialized a counter j to be 0. The
index i will designate the critical query we expect to be involved in the forgery:

• For any new query (ID∗S‖IDR‖m‖r) asked to h (by the adversary or by our sim-
ulation of Signcrypt—see below), we increment the counter j . If j = i , a new
valid message–signature pair (M, S) is taken from the list.

• Then, one chooses a random ρ, defines h(IDS‖IDR‖m‖r)← ρ, and sets

s1 ← ρ‖r + m mod p s2 ← ρ‖r + 2m mod p r1 ← s1 ⊕ f (s2)

• One eventually defines g(r1) ← s2 ⊕ M , which is a random value, since M is
randomly distributed. (Note that for the i-th query to h, we use the designated
message μ instead of M , expecting it to be involved in the forgery.) It may fail if
g(r1) has already been defined. However, because of the fresh random choice of
ρ, this occurs with a probability at most qG/2k2 for each fresh h-query.

For the i-th query to h, one simply chooses a random output.
In other words, any query m by A to the oracle Signcrypt can be simulated,

thanks to the above simulation of h (except for the i-th query to h). Indeed, for
answering a Signcrypt-query m from ID∗S to IDR , one simply chooses a random r ,
asks for h(ID∗S‖IDR‖m‖r), using the above simulation. Except for the i-th query to
h, the signature S involved in the pair (M, S) used for the h simulation is a signature
c2 of r2 = M . Using the public key of the receiver IDR , one can encrypt r1 in order
to obtain c1. The pair (c1, c2) is a valid ciphertext of m. If there is a signcrypt query
related to the i-th h-query, we are stuck, we then simply stop the simulation: this i-th
query cannot be involved in the forgery, because of the determinism of the process.

Finally, the adversary A produces a new ciphertext (c1, c2), from ID∗S to ID∗R ,
which is valid with the probability greater than AdvU F−C M A

Signcrypt (k), unless the above
simulation of h fails when trying to assign h(IDS‖IDR‖m‖r) ← ρ. Such a failure
happens with the probability upper bounded by qH qG/2k2 . Simulation indeed fails
if it fails for any of the messages (the number of messages is qH ).

As we have already mentioned, if a forgery is not related to a specific h-oracle
query, then the probability of success is 1/2k2 . Hence, with probability at least
AdvUF−CMA

Signcrypt (k) − (qGqH + 1)/2k2 , we have that the forgery is related to a specific
h-oracle query. With the probability 1/qH , otherwise we abort the simulation, this
ciphertext is involved in the i-th query to the h-oracle and consequently c2 is a
valid signature of μ. Either this is a new signature or it was already involved in a
ciphertext (c′1, c′2) to ID′R produced by Signcrypt. In the latter case, since c2 = c′2,
this implies that c1 = c′1 or ID∗R = ID′R . If ID′R = ID∗R , then c′1 = c1 and, thus,
because of the determinism of the encryption scheme, it means that u1 = u′1, and
then the redundancy may hold with the probability at most 1/2k2 . If IDR = ID∗R ,
then again the redundancy may hold with the probability at most 1/2k2 .

Finally, the probability for B to produce a new valid signature of μ is greater than
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AdvuUF−RMA
Sign (k) ≥ 1

qH
×

(

AdvU F−C M A
Signcrypt (k)− qGqH + 2

2k2

)

Furthermore, one can easily see that qG = qg + qH , where qH ≤ qh + qsc. ��
Proof (of Lemma 9.4) As we are dealing with the insider security model FSO/FUO-
IND-CCA2 in the multi-user setting, the adversary has a target receiver ID∗R in
mind. The adversary knows the receiver public key pkR and has access to the
Unsigncrypt oracle under skR . Further, we assume that an adversary A observed
qusc queries to the Unsigncrypt oracle. A also has chosen a pair of messages m0
and m1 and a key pair (skS, pkS) for IDS . It receives a ciphertext (c∗1, c∗2) under
(skS, pkR) of either m0 or m1. The unknown message is denoted by mb, where b is
the bit the adversary wishes to find out. The adversary A outputs a bit d which is
equal to b with the advantage ε, i.e., Pr[d = b] = 1/2+ ε. In the following, we use
a ∗ for all the internal values used in computing the challenge signcryption.

Let us first remark that because of the randomness of the random oracles f and
g, and since r∗1 ← s∗1 ⊕ f (s∗2 ) and r∗2 ← s∗2 ⊕ g(r∗1 ), to get any information
about the bit b (and thus about the encrypted and signed message), the adversary
must have got some information about the internal values s∗1 and s∗2 from either
the ciphertext or from the plaintext. The former case is only possible if the adver-
sary asks for r∗1 to the oracle g (otherwise it has no information about either s∗2
or s∗1 and thus has no information about the polynomial F , and consequently no
information about r∗). The event that the adversary A has asked the oracle g for
r∗1 is denoted by ASKG. The latter case means that the adversary has asked either
h(ID∗S‖ID∗R‖m0‖r∗) or h(ID∗S‖ID∗R‖m1‖r∗). This event is denoted by ASKR. Con-
sequently, Pr[d = b | ¬(ASKG ∨ ASKR)] = 1/2, and thus

ε = AdvIND−CCA2
Signcrypt (k)

= Pr[d = b] − 1/2

= Pr[d = b ∧ (ASKG ∨ ASKR)] + Pr[d = b ∧ ¬(ASKG ∨ ASKR)] − 1/2

= Pr[d = b |ASKG ∨ ASKR] · Pr[ASKG ∨ ASKR]
+Pr[d = b | ¬(ASKG ∨ ASKR)] · Pr[¬(ASKG ∨ ASKR)] − 1/2

≤ Pr[ASKG ∨ ASKR] + Pr[¬(ASKG ∨ ASKR)]/2− 1/2

≤ Pr[ASKG ∨ ASKR]
≤ Pr[ASKG] + Pr[ASKR | ¬ASKG]
≤ Pr[ASKG] + qh

2k1

This last inequality comes from the fact that if ASKG does not occur then the adver-
sary has no knowledge of r∗1 and so ASKR can only occur by guessing this value.

If ASKG occurs, then the plaintext r∗1 of c∗1 has to appear in the queries asked
to g. For each query asked to g, one runs the deterministic encryption algorithm
and therefore can find the plaintext of a given c∗1. So we may use the adversary A
to break OW-CPA of the encryption scheme (EncKeyGen, Encrypt, Decrypt). To
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complete the proof, we have to show how we can simulate all the oracles available
to the adversary A. We thus design a simulator B which receives the private/public
keys (skS, pkS) for the signature scheme, from the adversary A, and it is also given
the public key pkR of the encryption scheme. The simulator B works as follows:

• B is given a ciphertext c∗ (of a random message) to decrypt under the encryption
scheme E and then runs A.

• When B receives the pair of messages m0 and m1 from A, it sets c∗1 ← c∗ and
randomly chooses r∗2 that it can sign using the private key of the signature scheme
to produce c∗2. It therefore sends the pair (c∗1, c∗2) as a ciphertext of mb (for some
bit b). Finally, the adversary A follows the attack in which it cannot detect the
above simulation of the challenge from a real challenge unless the event ASKG
happens, which breaks OW-CPA.

• Before simulating the oracle Unsigncrypt, let us explain how one deals with
h-queries. Indeed, a list �h is managed. For any query h(IDS‖IDR‖m‖r), one
anticipates the signcryption:

H = h(IDS‖IDR‖m‖r) a0 = H‖r t1 = a0+m mod p t2 = a0+2m mod p

Then, u1 = t1⊕ f (t2) and u2 = t2⊕ g(u1) (using the canonical simulations of f
and g, which are new random elements for new queries). Eventually, one stores
(m, r, H, u1, u2, t1, t2) in the list �h .

• Any call by A to the oracle Unsigncrypt under pkR can be simulated using
the queries–answers of the random oracles. Indeed, to a query (c1, c2), one
first gets u2 from c2, thanks to the public key of the signature scheme (u2 =
Verify(pkS, c2)). Then, one looks up into �h for tuples (m, r, H, u1, u2, t1, t2).
Then, one checks whether one of the u1 is really encrypted in c1 under pkR ,
thanks to the deterministic property of the encryption. If no tuple is found, the
simulator outputs ⊥, considering it is a wrong ciphertext. Otherwise, the simula-
tor returns m as the plaintext.

For all the ciphertexts correctly constructed (with s2 = t2 asked to f , r1 = u1 asked
to g and (IDS‖ID∗R‖m‖r) asked to h), the simulation gets back the message. How-
ever, the adversary may produce a valid ciphertext without asking h(IDS‖ID∗R‖m‖r)
required by the above simulation. In that sole case, the simulation may not be per-
fect.

First, let us assume that (IDS‖ID∗R‖m‖r) has not been asked to h:

• If (IDS‖ID∗R‖m‖r) = (ID∗S‖ID∗R‖mb‖r∗) (the tuple involved in the challenge
ciphertext) then H ← h(IDS‖ID∗R‖m‖r) is totally random. The probability that
H‖r is equal to a0 is less than 2−k2 and so ⊥ is the correct response except with
probability 2−k2 .

• In the case where (IDS‖ID∗R‖m‖r) = (ID∗S‖ID∗R‖mb‖r∗), since the process to
produce r1 and r2 is deterministic, r1 = r∗1 and r2 = r∗2 , the same as in the chal-
lenge ciphertext. We remind that both the encryption scheme and the signature
scheme are deterministic. Then c1 = c∗1 and c2 = c∗2, which is not possible.
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Therefore, the probability that the simulation wrongly rejects a valid ciphertext is
less than 2−k2 .

If all the decryption simulations are correct (no occurrence of the event BADD),
we have seen that with a good probability the plaintext c∗1, and thus of c∗, appears
in the queries asked to g, which is immediately detected thanks to the deterministic
property of the encryption scheme so

Pr[ASKG | ¬BADD] ≥ Pr[ASKG] − Pr[BADD] ≥
(

ε − qh

2k1

)

− qusc

2k2
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