
Chapter 7
Hybrid Signcryption

Tor E. Bjørstad

7.1 Background

A major limitation of many common asymmetric cryptographic primitives is that
their computational efficiency is much worse than for corresponding symmetric-
key algorithms. Hybrid cryptography is the branch of asymmetric cryptography that
aims to overcome this weakness, by using symmetric primitives as components to
improve the overall performance and flexibility of a larger asymmetric scheme.

The canonical example of the hybrid approach is hybrid encryption. In these
schemes, a symmetric encryption algorithm, such as a block cipher in a secure mode
of operation, is used to overcome the relative slowness and restricted message space
of traditional public-key encryption schemes. Informally, this is done by using the
public-key scheme to transmit a one-time symmetric key in a secure manner and
using that key to encrypt subsequent communication with the symmetric cipher.
This yields an overall scheme which is fast, efficient, and practical, even when
encrypting long messages.

Although the basic concept of hybrid encryption has been common knowledge
in the cryptographic community for many years, a formal construction paradigm
was first suggested in the late 1990s by Cramer and Shoup [68]. Their KEM +
DEM model splits a hybrid encryption scheme into two parts: an asymmetric key
encapsulation mechanism (KEM) and a symmetric data encapsulation mechanism
(DEM). The main benefit of this model is that the security of the KEM and DEM can
be analyzed separately, under the knowledge that generic composition of a secure
KEM and a secure DEM is essentially as secure as the component parts. Although
not all hybrid encryption schemes fit into this framework, it has proven itself as a
useful model for analysis in both theory and practice.

The original signcryption scheme proposed by Zheng [203] (as discussed in
Sects. 3.3 and 4.3) is a natural example of the benefits of the hybrid approach in sign-
cryption. Using a public-key signature scheme as his starting point, Zheng showed
how to reap the benefits of both signatures and encryption at a low additional cost,

T. E. Bjørstad (B)
Department of Informatics, The Selmer Center, University of Bergen, Bergen, Norway
e-mail: tor.bjorstad@ii.uib.no

A.W. Dent, Y. Zheng (eds.), Practical Signcryption, Information Security
and Cryptography, DOI 10.1007/978-3-540-89411-7_7,
C© Springer-Verlag Berlin Heidelberg 2010

121

122 T.E. Bjørstad

by using a symmetric key encryption scheme as a black-box component. A similar
approach is used in many of the most efficient signcryption schemes in the literature
(see Chaps. 4, 5, and 6). Hence it is of interest to study how hybrid techniques can
be used to build signcryption schemes in a more general setting, to gain a better
understanding of how these efficient schemes work.

It turns out that the formal analysis of hybrid signcryption schemes is more com-
plicated than that of hybrid encryption. This stems from the increased complexity
of obtaining message authenticity and integrity in addition to confidentiality. As
discussed at depth in Chaps. 2 and 3, it is necessary to consider not only straight-
forward attacks against the authenticity and confidentiality of messages, but also
more complex issues such as the distinction between outsider and insider attacks.
As we shall see in Sects. 7.3 and 7.4 entirely different construction paradigms are
needed to obtain appropriate models for outsider-secure and insider-secure hybrid
signcryption.

A formal composition model for hybrid signcryption was first proposed by
Dent in 2004, yielding an efficient model for signcryption KEMs in the outsider-
secure setting [71, 73]. Dent’s construction of outsider-secure signcryption KEMs
is directly analogous to the corresponding construction of regular encryption KEMs.
However, it is fundamentally impossible to produce an insider-secure signcryption
KEM in this model. A model for insider-secure signcryption KEMs was also pro-
posed by Dent in [71, 72]. This model covers Zheng’s original scheme. However,
this construction is quite complex and has a poor security reduction. This meant
that the concrete security of Zheng’s scheme appears significantly worse when
analyzed in Dent’s model, than in the non-hybrid setting of original security proof
[12, 13, 36].

An improved model for insider-secure hybrid signcryption was given by Bjørstad
and Dent [37], based on encryption tag-KEMs [5, 4] rather than regular encryption
KEMs. As it turns out, this model provides a simpler description of signcryption
schemes than its predecessor, and the generic security reduction for the signcryption
tag-KEM + DEM construction is better. Zheng’s signcryption scheme remains the
canonical example of an (insider-secure) hybrid signcryption scheme, as it may be
expressed in the signcryption tag-KEM + DEM setting with only a minor modifica-
tion. In this model, the concrete security analysis of Zheng’s scheme yields a similar
result to that of the original proof of security [12, 13, 37].

The formal security analysis of hybrid signcryption has historically been per-
formed in the simpler two-user (ADR) model presented in Chap. 2, rather than in a
full multi-user (BSZ) setting presented in Chap. 3. Meanwhile, the multi-user secu-
rity model is more suitable in the analysis of insider-secure signcryption schemes,
where it is a reasonable assumption that an adversary may corrupt or otherwise
obtain the private keys of legitimate users. A proof of security of signcryption tag-
KEMs in the multi-user model may also have further applications, for example,
in analysis of efficient key establishment protocols (discussed in Chap. 11). Initial
study of the multi-user security of signcryption tag-KEMs was first performed by
Yoshida and Fujiwara [200], although this text somewhat extends their results.

This chapter will commence by introducing the basic construction of hybrid
encryption schemes in the KEM + DEM setting in Sect. 7.2. Following this, the

7 Hybrid Signcryption 123

adaptation of hybrid encryption KEMs to outsider-secure signcryption KEMs will
be described in Sect. 7.3. Finally, the use of tag-KEMs to describe insider-secure
hybrid signcryption will be examined in detail in Sect. 7.4.

7.1.1 A Brief Word on Notation

This chapter contains many situations in which one algorithm (with access to one
set of oracles) runs a second algorithm (with access to a different set of oracles)
as a subroutine. In order for the main algorithm to simulate the correct execution
environment for the sub-algorithm, the main algorithm must simulate the oracles to
which the sub-algorithm is expecting access. This is rather cumbersome to write in
the typical AO(x) notation; hence, we introduce a new notation for this chapter and
write A(x;O) for an algorithm which takes as input x and has access to an oracle O.

If we are writing out the definition of an algorithm B that runs an algorithm
A(x;O) as a subroutine, we will first detail the algorithm B and then detail a second
algorithm O which explains how B responds to A’s oracle queries. In other words,
B will run the sub-algorithm A and use the sub-algorithm O to respond to A’s oracle
queries. This allows for a more compact and easily readable presentation of the main
algorithm.

7.2 Preliminaries

In order to study the construction of secure hybrid signcryption schemes, it is highly
instructive to first consider the basic KEM + DEM framework used to model hybrid
encryption schemes. As a part of this, the necessary properties of data encapsulation
mechanisms (DEMs) used as black-box components in hybrid schemes are defined.

7.2.1 The Hybrid Framework

To serve as a gentle introduction to the world of hybrid cryptography, it is instructive
to discuss briefly the traditional KEM + DEM framework for hybrid encryption
schemes [68]. This framework nicely illustrates the basic methodology employed
and will be built upon later when discussing more complex constructions used for
signcryption. We begin by defining the basic building blocks.

Definition 7.1 (KEM) A key encapsulation mechanism KEM = (Setup, KeyGen,
Encap, Decap) is a tuple of four algorithms:

• A probabilistic algorithm Setup that takes a security parameter 1k as input, and
returns some global information param that are common to all users of an instan-
tiation of the scheme.

• A probabilistic algorithm KeyGen that takes the global information param as
input and outputs a public/private keypair (sk, pk).

124 T.E. Bjørstad

• A probabilistic algorithm Encap that takes a public key pk as input and outputs
a pair (K ,C), where K is a key and C is the encapsulation of K .

• A deterministic algorithm Decap that takes a private key sk and an encapsulation
C as input and outputs either a key K or the unique error symbol ⊥.

All variables may be represented as bitstrings of various lengths. In particular, the
key K is a bitstring of a specific, fixed length determined by the security parameter.
A KEM must be sound, in the sense that given a valid keypair (sk, pk) and a valid

encapsulation (K ,C)
R← Encap(pk), the output of Decap(sk,C) will be K .

Definition 7.2 (DEM) A data encapsulation mechanism DEM = (Enc, Dec) is a
tuple of two algorithms:

• A deterministic algorithm Enc that takes a key K and a message m as input and
outputs a ciphertext C . We denote this C ← EncK (m).

• A deterministic algorithm Dec that takes a key K and a ciphertext C as input
and outputs either message m or the unique error symbol ⊥. We denote this m or
⊥← DecK (C).

The soundness criterion for a DEM is that the basic identity m = DecK
(

EncK (m)
)

holds.
Given a KEM and DEM where the KEM outputs keys of suitable length for use

with the DEM, a hybrid public-key encryption scheme (as defined in Sect. 1.3.3)
can be constructed in a straightforward manner:

1. The Setup algorithm is run once to generate common information for all users.
2. Each user then runs KeyGen to generate their own public/private keypair.
3. When a sender S wants to transmit a message m to a receiver R, he computes

(K ,C1)
R← Encap(pkR) and encrypts the message as C2 ← EncK (m). The

ciphertext C ← (C1,C2) is then transmitted to R.
4. When the recipient R receives the ciphertext C from S, she extracts (C1,C2)

from C , computes the symmetric key K ← Decap(skR,C1), and obtains the
message m ← DecK (C2).

The above construction is a sound encryption scheme assuming the soundness of
the KEM and DEM. Our main benefit of separating the encryption scheme into a
KEM and a DEM is that the security of the components can be analyzed separately.
Considering the basic building blocks instead of the entire scheme simplifies anal-
ysis and allows hybrid encryption schemes to be tailor-made, since choice of KEM
and DEM can be made independently.

In order to build signcryption schemes instead of encryption schemes, it is tempt-
ing to start by modifying the basic specification of a KEM given in Definition 7.1
and changing as little as possible. As we will observe in Sect. 7.3.1 this leads us to
Dent’s basic framework for outsider-secure signcryption KEMs [71, 73]. Before we
look at this, however, it is necessary to define what sort of security criteria we need
the DEMs to fulfill in order to use them in building hybrid signcryption schemes.

7 Hybrid Signcryption 125

7.2.2 Security Criteria for Data Encapsulation Mechanisms

Whereas the main goal of Sects. 7.3 and 7.4 will be to work out secure alternatives
to KEMs that can be used to build efficient signcryption schemes, the DEM of Def-
inition 7.2 shall largely be left alone. This has a perfectly reasonable explanation:
When attempting to create a new type of public-key scheme based on models for
hybrid encryption, our goal is best reached by altering the public-key component
used. However, before we can start discussing hybrid signcryption schemes, we
must first define which security properties we expect a secure DEM to fulfill.

As our requirements will differ in the case of insider-secure and outsider-secure
signcryption, several different requirements will be given. In practice, all these
requirements may be realized by a secure symmetric encryption algorithm (such
as AES-CTR), possibly together with an authentication mechanism in form of a
message authentication code (MAC) [68]. As in the case of regular (non-hybrid)
signcryption, we distinguish between security criteria required for a scheme to pro-
vide confidentiality and criteria required to provide authenticity and integrity.

The standard notion of confidentiality in cryptography is that of indistinguisha-
bility (IND). In the particular case of data encapsulation mechanisms, the two
notions that we are interested in are those of one-time IND-CPA security and one-
time IND-CCA security, described in Sect. 1.3.4. As we shall see, almost para-
doxically, we will require IND-CCA-secure DEMs for constructing outsider-secure
signcryption schemes and IND-CPA-secure DEMs for constructing insider-secure
signcryption schemes.

With respect to authenticity and integrity, we define a DEM to be integrally
secure (INT-CCA) if there is no efficient adversary that can create valid cipher-
texts C . This corresponds to the usual notion of unforgeability and gives a receiver
faith that a valid ciphertext must have been generated legitimately. In practice, this
is usually achieved by using a MAC. As we will see, INT-CCA security is only
required for the outsider-secure hybrid constructions. The INT-CCA game between
the challenger and adversary A is quite simple and runs as follows.

1. The challenger generates a random symmetric key K ∗ of appropriate length for
the security parameter.

2. The adversary runs A on the input 1k . When A terminates, it outputs a ciphertext
C∗. During its execution, A may query an encryption oracle that for a given input
message m outputs EncK ∗(m) and a decryption oracle that for a given ciphertext
C outputs DecK ∗(C).

The adversary wins the game whenever DecK (C∗) = ⊥ and C∗ was never output
by the encryption oracle. The advantage of A is simply Pr [A wins].

Definition 7.3 (Unforgeable DEM) We say that a DEM is unforgeable (INT-CCA
secure) if the advantage of any polynomial-time adversary in the INT-CCA game is
negligible with respect to the security parameter k.

126 T.E. Bjørstad

7.3 Hybrid Signcryption with Outsider Security

Signcryption schemes with outsider security are useful for communication between
a set of trusted parties, as they are both more efficient with respect to computational
cost and simpler to design and analyze than their insider-secure counterparts. The
problem of constructing a framework for outsider-secure hybrid signcryption was
first considered by Dent [71, 73] and can be solved by a fairly straightforward adap-
tation of the KEM/DEM construction for hybrid encryption discussed in Sect. 7.2.1.
Although outsider-secure signcryption has largely been overlooked in the research
literature, we believe that these schemes are useful and have practical applications.
Our treatment closely follows Dent’s original.

7.3.1 An Outsider-Secure Signcryption KEM

The main idea behind Dent’s outsider-secure signcryption KEM [71, 73] is to use
the traditional encryption KEM (described in Sect. 7.2.1) as a starting point and alter
as little as possible to obtain something that behaves like as a signcryption scheme.
This is reasonably straightforward: Instead of a single algorithm KeyGen, we should
specify two algorithms, one used to generate sending (“signing”) keys and a separate
algorithm to generate keys for receiving (“decrypting”) messages. Furthermore, the
encapsulation algorithm must now take the private key of the sender and the public
key of the receiver as input, and vice versa for the decapsulation algorithm. This
leads directly to the following specification of an outsider-secure signcryption KEM
(SKEM).

Definition 7.4 (Signcryption KEM) An (outsider-secure) signcryption KEM
SKEM = (Setup, KeyGenS, KeyGenR, Encap, Decap) is a tuple of five algorithms.

• A probabilistic algorithm Setup that takes a security parameter 1k as input and
returns some global information param that are common to all users of an instan-
tiation of the scheme.

• A probabilistic algorithm KeyGenS that takes the global information param as
input and outputs a public/private keypair (skS, pkS) used for sending messages.

• A probabilistic algorithm KeyGenR that takes the global information param
as input and outputs a public/private keypair (skR, pkR) used for receiving
messages.

• A probabilistic algorithm Encap that takes the sender’s private key skS and the
receiver’s public key pkR as input, and outputs a pair (K ,C), where K is a key
and C is the encapsulation of K .

• A deterministic algorithm Decap that takes the sender’s public key pkS , the
receiver’s private key skR , and a key encapsulation C as input, and outputs either
a symmetric key K or the unique error symbol ⊥.

By combining the signcryption KEM with a standard DEM, we obtain a hybrid
signcryption scheme in the obvious manner.

7 Hybrid Signcryption 127

Fig. 7.1 Data flow in the outsider-secure signcryption KEM + DEM construction

Definition 7.5 (SKEM+DEM hybrid signcryption scheme) Suppose that
(Setup, KeyGenS, KeyGenR, Encap, Decap) is a signcryption KEM and
(Enc, Dec) is a DEM and that the keys produced by the signcryption KEM are
of appropriate length for use with the DEM for all security parameters k. Then
we can construct a hybrid signcryption scheme by using the Setup, KeyGenS , and
KeyGenR algorithms from the SKEM and defining the algorithms Signcrypt and
Unsigncrypt as follows:

• The Signcrypt algorithm takes as input the private key of the sender skS ,

the public key of the receiver pkR , and a message m. It computes (K ,C1)
R←

Encap(skS, pkR) and C2 ← EncK (m) and outputs the signcryptext C ←
(C1,C2).

• The Unsigncrypt algorithm takes as input the public key of the sender pkS ,
the private key of the receiver skR , and a signcryptext C . It parses C to obtain
(C1,C2) and computes Decap(pkS, skR,C1). If Decap returned⊥, then the algo-
rithm must output ⊥ and halt. Otherwise, it computes DecK (C2). The output of
Dec is either ⊥ or a message m, in either case the algorithm outputs the result
and halts.

The data flow between the Signcrypt and Unsigncrypt algorithms is illustrated
in Fig. 7.1.

7.3.2 Security Criteria for Outsider-Secure Signcryption KEMs

The main advantage of the KEM + DEM construction paradigm is that we may
analyze the security of the KEM and DEM separately, with no significant loss of
concrete security. It is therefore necessary to give a precise specification of what it
means for a signcryption KEM to be secure. To attain outsider security we require
that the SKEM preserves the confidentiality of encapsulated keys, which is the same
as the confidentiality requirement for encryption KEMs [68]. Additionally, a sign-
cryption KEM must preserve the authenticity and integrity of the encapsulated key,
to ensure that some third party may not alter the encapsulated key in any meaningful
fashion. These security notions are expressed in the usual manner, by way of formal
attack games.

128 T.E. Bjørstad

With respect to confidentiality, we adapt the indistinguishability criterion to the
signcryption KEM setting. More precisely, we want that any polynomial-time adver-
sary A is unable to distinguish between a real key K0 output by the Encap algorithm
from a key K1 drawn uniformly at random from the set of possible keys. For a given
security parameter k, this may be expressed through the following game between
the challenger and a two-stage adversary A = (A1,A2):

1. The challenger runs the appropriate algorithms to generate some global infor-
mation param and private/public keys for the sender and the receiver, denoted
(skS, pkS) and (skR, pkR), respectively.

2. The adversary runs A1 on the input (param, pkS, pkR). During its execution, A1
may query two oracles:

• The encapsulation oracle OEncap takes an arbitrary public receiving key pk
as input and returns the result of computing Encap(skS, pk).

• The decapsulation oracle ODecap takes an arbitrary public sending key
pk and an encapsulation C as input and returns the result of computing
Decap(pk, skR,C).

The algorithm terminates by outputting some state information state.

3. The challenger generates a valid encapsulation (K0,C∗) R← Encap(pkS, skR),
as well as a random key K1 of the correct length. It then chooses a random bit

b
R← {0, 1} and fixes the challenge encapsulation as (Kb,C∗).

4. The adversary runs A2 on the input (Kb,C∗, state). During its execution, A2
may query the same oracles as before, with the restriction that it may not query
the decapsulation oracle on the challenge encapsulation (pkS,C∗). It terminates
by returning a guess b′ for the value of b.

The adversary wins the game if b = b′. The adversary’s advantage is defined to be
|Pr [b = b′] − 1/2|.
Definition 7.6 (Indistinguishable signcryption KEM) A signcryption KEM is
said to be indistinguishable (IND-CCA2 secure) if the advantage of any polynomial-
time adversary A in the IND-CCA2 game is negligible with respect to the security
parameter k.

With respect to authenticity and integrity, Dent defines the security criterion in
terms of indistinguishability of the real signcryption KEM and an ideal version of
the same [71, 73]. This definition may seem somewhat unusual, as it is more com-
mon to see authenticity criteria specified in terms of an unforgeability requirement.
However, an adversary creating forgeries of a signcryption KEM may in fact be used
to distinguish said SKEM from an ideal one [71, 73]. As we will see, the definition
using the notion of an ideal signcryption KEM turns out to be precisely what is
needed to prove that our hybrid signcryption in Definition 7.5 is outsider secure. It
also makes a nice parallel to the previous definition of IND-CCA2 security. For
confidentiality, we needed the keys output by the encapsulation algorithm to be
indistinguishable from random keys, the requirement for authenticity and integrity is
that the entire signcryption KEM is indistinguishable from a random (i.e., ideal) one.

7 Hybrid Signcryption 129

Given a signcryption KEM SKEM = (Setup, KeyGenS, KeyGenR, Encap,
Decap) we define the corresponding ideal signcryption KEM to be the
five-tuple of algorithms Sim.SKEM = (Sim.Setup, KeyGenS, KeyGenR,

Sim.Encap, Sim.Decap), together with an internal state list KeyList containing
key/encapsulation pairs. The simulated algorithms are defined as follows:

• The simulated setup algorithm Sim.Setup takes the security parameter 1k as
input and runs Setup to obtain the global information param. It then initializes
KeyList as an empty list and returns param.

• The simulated encapsulation algorithm Sim.Encap takes the keys skS and pkR
as input. It then performs the following steps:

1. Compute an encapsulation (K ,C) using the real encapsulation algorithm
Encap(skS,pkR).

2. Check whether there exists a pair (K ′,C) in KeyList. If this is the case, the
algorithm returns K ′ and halts.

3. Otherwise, the algorithm generates a new K ′ of appropriate length uniformly
at random, adds (K ′,C) to KeyList, returns K ′, and halts.

• The simulated decapsulation algorithm Sim.Decap takes the keys pkS and skR

together with an encapsulation C as input. It then performs the following steps:

1. Check whether there exists a pair (K ,C) in KeyList. If this is the case, the
algorithm returns K and halts.

2. Otherwise, the algorithm runs the real decapsulation algorithm Decap
(pkS,skR,C). If the decapsulation fails and outputs ⊥, the algorithm returns
⊥ and halts.

3. If Decap did not return ⊥, the algorithm generates a new K of appropriate
length uniformly at random, adds (K ,C) to KeyList, returns K , and halts.

It is clear from the above specification that the simulated signcryption KEM is self-
consistent. Furthermore, it is “ideal” in the sense that we desire: an encapsulation
C reveals no information about the encapsulated key K (since the key is chosen
uniformly at random and independently of C). We say that the signcryption KEM
is left-or-right secure (LoR-CCA) if there is no efficient algorithm to distinguish
between the real and the idealized signcryption KEMs. For a given security param-
eter k, the LoR-CCA game proceeds as follows:

1. The challenger picks a bit b
R← {0, 1} at random.

2. The challenger generates global information param, either by running Setup if
b was 0 or by running Sim.Setup if b was 1. The challenger then generates
private/public keys for the sender and the receiver in the ordinary manner using
KeyGenS and KeyGenR .

3. The adversary runs A on the input (pkS, pkR). During its execution, A may
query decapsulation and encapsulation oracles as specified in the previous IND-
CCA2 game. However, the responses to A’s queries are computed using the real

130 T.E. Bjørstad

Encap and Decap algorithms if b = 0 and the ideal algorithms Sim.Encap and
Sim.Decap if b = 1. A terminates by outputting a guess b′ for the value of b.

The adversary wins the game if b = b′. The adversary’s advantage is defined as
|Pr[b = b′] − 1/2|.
Definition 7.7 (LoR-CCA-secure signcryption KEM) A signcryption KEM is
said to be left-or-right (LoR-CCA) secure if the advantage of any polynomial-
time adversary A in the LoR-CCA game is negligible with respect to the security
parameter k.

Definition 7.8 (Outsider-secure signcryption KEM) A signcryption KEM is said
to be outsider secure if it is both indistinguishable and left-or-right secure.

7.3.3 Security of the SKEM + DEM Construction

Having specified the security models in use for a signcryption KEM and DEM,
it remains to show that the hybrid signcryption scheme of Definition 7.5 is an
outsider-secure signcryption scheme satisfying the relevant security criteria defined
in Chap. 3. The proof of this is quite straightforward and is quite similar to the origi-
nal proof that hybrid encryption schemes are IND-CCA2 secure given in [68]. Since
both security models for the signcryption KEMs are based on indistinguishability
of certain attributes of the KEM from random in the view of the outside attacker,
we state a well-known lemma used in the proofs. This can be thought of as a more
general version of Lemma 1.1.

Lemma 7.1 (Distinguisher lemma) Let G0 and G1 be two games. Suppose that an

experimenter picks b
R← {0, 1} uniformly at random and proceeds to play Gb with

a distinguisher algorithm that outputs a guess b′ of the value of b. Then

2
∣
∣Pr [b = b′] − 1/2

∣
∣ = ∣

∣Pr [b′ = 0|b = 0] − Pr [b′ = 0|b = 1]∣∣. (7.1)

The result follows from simple manipulation of conditional probabilities, see, for
example, [71]. We proceed to prove that Dent’s outsider-secure signcryption KEM
can be used to build an outsider-secure hybrid signcryption scheme.

Theorem 7.1 (Security of SKEM + DEM hybrid signcryption) Let SC be a hybrid
signcryption scheme constructed from a signcryption KEM (Definition 7.4) and a
DEM (Definition 7.2). If the signcryption KEM is IND-CCA2 secure and the sign-
cryption DEM is one-time IND-CCA secure, then the hybrid signcryption scheme is
multi-user outsider FSO/FUO-IND-CCA2 secure (Definition 3.1) with the bound

εSC,IND-CCA2 ≤ 2 εSKEM,IND-CCA2 + εDEM,IND-CCA (7.2)

where the ε values denote the maximal success probability of adversaries in the
specified attack games. Furthermore, if the signcryption KEM is LoR-CCA secure

7 Hybrid Signcryption 131

and the signcryption DEM is INT-CCA secure, then the hybrid signcryption scheme
is multi-user outsider FSO/FUO-sUF-CMA secure (Definition 3.2) with the bound

εSC,sUF-CMA ≤ 2 εSKEM,LoR-CCA + εDEM,INT-CCA (7.3)

Proof The proofs of the two statements are remarkably similar. In both cases,
we proceed by modifying the original (FSO/FUO-IND-CCA2 or FSO/FUO-sUF-
CMA) attack game for SC in a way that relates to the corresponding (IND-CCA2 or
LoR-CCA) security criterion for the signcryption KEM. Lemma 7.1 is used to do
this. Finally, we show that the adversary must break the (IND-CCA or INT-CCA)
security of the DEM to gain any advantage in the modified game. We consider first
the case of indistinguishability.

Let A = (A1,A2) be an adversary against the FSO/FUO-IND-CCA2 security
of SC, G0 be the regular FSO/FUO-IND-CCA2 game for outsider-secure sign-
cryption as given by Definition 3.1, and X0 the event that the adversary wins in
G0. Next we define a modified game G1. The difference between G0 and G1 is
that the challenge ciphertext is computed using a random symmetric key K1. In
other words, the challenge ciphertext C∗ = (C∗1 ,C∗2) is constructed by computing

(K0,C∗1)
R← Encap(skS, pkR), drawing another key K1 uniformly at random from

the keyspace, and then using it to compute C∗2 ← EncK1(m). In order to remain
consistent, the challenger should also use K1 to answer any unsigncryption oracle
query of the form

(

pkS, (C
∗
1 , ·)

)

. Hence, the difference between G0 and G1 lies
solely in how the signcryption KEM operates. The two games correspond to the
situations b = 0 and 1 in the IND-CCA2 game against the signcryption KEM.

Let X1 be the event that A wins G1. We argue that probability |Pr[X0]−Pr[X1]|
is bounded by 2εSKEM,IND-CCA2, where εSKEM,IND-CCA2 is the advantage of a spe-
cific adversary D against the IND-CCA2 security of the signcryption KEM used
to construct SC. The idea is that the distinguisher D plays either G0 or G1 with a
regular adversary A against the full signcryption scheme, depending on the value of
the hidden bit b which D is trying to determine. By Lemma 7.1, any non-negligible
difference in the advantage of A can be leveraged by D to break the signcryption
KEM, and the stated bound is obtained for the game transition.

Next, consider the probability that X1 does in fact occur. We argue that this is
the same as εDEM,IND-CCA. This follows from the way that G1 is defined. The first
part of the challenge C∗1 reveals no direct information about which message was
signcrypted, since the symmetric key K1 was chosen independently and uniformly
at random. Thus, to gain a non-negligible advantage in G2, the adversary must
somehow learn something from the symmetric ciphertext C∗2 . The adversary is able
to mount a chosen ciphertext attack, since decryption oracle queries of the form
(

pkS, (C
∗
1 , ·)

)

must be decrypted using K1 to maintain consistency. More formally,
we show by construction that an adversary A playing the game G1 can be con-
verted into an IND-CCA adversary B against the DEM with essentially the same
advantage. A specification of such an adversary is shown in Fig. 7.3.

132 T.E. Bjørstad

To summarize, we have shown that the difference |Pr[X0] − Pr[X1]| is bounded
by 2εSKEM,IND-CCA2 while Pr [X1] itself is essentially equal to εDEM,IND-CCA, thus
obtaining the stated bound.

For authenticity and integrity, the proof is highly similar in both approach and
execution and will therefore not be specified in the same level of detail. Again we
consider an adversary A, this time attacking the FSO/FUO-sUF-CMA security of
SC. Again, we let G0 to be the regular FSO/FUO-sUF-CMA attack game given by
Definition 3.2 and X0 to be the event that A wins G0. Our subsequent game G1 is
similar to G0, but modified so that an ideal signcryption KEM is used instead of the
regular one. It is straightforward to construct a new distinguisher similar to the one
given in Fig. 7.2, which relates the difference between G0 and G1 to the advantage
of a LoR-CCA adversary against the signcryption KEM. Furthermore, the advantage

Fig. 7.2 A complete specification of the distinguisher algorithm D for the SKEM

Fig. 7.3 A complete specification of the distinguisher algorithm B for the DEM

7 Hybrid Signcryption 133

of A in G1 can be shown to be bounded by that of an INT-CCA adversary against
the DEM, by a construction similar to that of Fig. 7.3. This concludes the proof. ��

Although we have established that the combination of a signcryption KEM and
DEM can be used to build outsider-secure hybrid signcryption schemes, more com-
plex constructions are needed for insider security. This stems from the observa-
tion that there is no connection between the encapsulations generated by Encap
and the actual message that is being signcrypted. In fact, the receiver can create
a valid signcryptext for an arbitrary message m given a single valid signcryption
C = (C1,C2), by computing K ← Decap(pkS, skR,C1) and computing a new
value C ′2 ← EncK (m). Hence the scheme is trivially forgeable by an inside attacker
and has no way of providing non-repudiation. From this, we observe that in order
to build insider-secure hybrid signcryption the signcryption KEM must somehow
prevent the adversary from tampering with m or C2.

7.3.4 Outsider-Secure Hybrid Signcryption in Practice

Outsider-secure signcryption has not been the target of much research since the
distinction was first recognized by An et al. [10]. This is unfortunate, as it is possible
to construct outsider-secure schemes that are simpler and more efficient than their
insider-secure counterparts. These schemes would clearly be suitable for any real-
world settings where insider attacks are not part of the threat model. The only known
outsider-secure signcryption KEM was proposed by Dent in [71, 73]. It is extremely
simple, has a low additional computational cost, and is based on the well-known
ECIES encryption KEM [2, 101]. The ECISS1-KEM is specified in Fig. 7.4. In
the two-user setting, this scheme has been proven to be secure (in the random oracle
model), with respect to the computational Diffie–Hellman problem in the underlying
group2 [71, 73]. A tighter bound can be obtained by considering the security relative
to the Gap Diffie–Hellman problem instead.

Fig. 7.4 A complete specification of the ECISS-KEM

1 ECISS stands for elliptic-curve integrated signcryption scheme.
2 Note that the alternate scheme suggested without a security proof in [71] is insecure [92].

134 T.E. Bjørstad

The ECISS scheme is a good example of how outsider-secure signcryption can
be obtained at low additional cost compared to regular encryption and underlines the
close relationship between outsider-secure signcryption KEMs and secure encryp-
tion KEMs. Comparing ECISS-KEM and ECIES-KEM, the only significant differ-
ence lies in how the input to the key derivation function H is computed. In the
encryption-only scheme, the shared value is computed from the (receiver’s) public
key and the random value r as pkr = gsk·r . For signcryption, the Diffie–Hellman
value pkskS

R = pkskR
S = gskS ·skR is multiplied with gr instead.

The original proof that ECISS-KEM is secure in the two-user model from [71]
may readily be extended to the multi-user setting. However, to keep the reduction
tight it is necessary to make the proof relative to the Gap Diffie–Hellman problem.
One minor change to the original scheme is also required, namely that the public
keys of the sender and receiver are included as input to the hash function. This has
little practical significance, but enables us to keep sessions between different pairs
of users distinct in the proof. As the proofs for IND-CCA2 and LoR-CCA security
are almost identical, only the former will be shown here.

Theorem 7.2 (Multi-user security of ECISS) The ECISS signcryption KEM is IND-
CCA2 secure in the random oracle model, with respect to the Gap Diffie–Hellman
problem. In particular, let A be an adversary that breaks the IND-CCA2 security
of ECISS-KEM with advantage εK E M , while making at most qE encapsulation and
qD decapsulation oracle queries. Then there exists an algorithm B solving the GDH
problem whose advantage is given by

εKEM ≤ εGDH + qE + qD

q
. (7.4)

Proof Let B be an algorithm which tries to solve the Gap Diffie–Hellman problem
(as defined in Sect. 4.1) in G. The algorithm receives as input two random group
elements ga and gb and will try to compute gab by using an adversary A against
the ECISS signcryption KEM as a subroutine. During its execution, B may query a
DDH oracle on triplets (gx , gy, gz) which tests whether gxy = gz .

Our approach will be to use the challenge values ga and gb in place of the public
keys pkS and pkR . This means that skS and skR will not be known to B and thus
we have to be careful when simulating the encapsulation and decapsulation ora-
cles. Partial consistency is maintained through our simulation of the key derivation
function H as a random oracle and using the DDH oracle to verify that the correct
relation between the public keys, C and κ , are maintained. The goal of B is to obtain
values C and κ such that C · gab = κ , in which case gab can be recovered.

We will use two lists to keep track of oracle queries by A. As opposed to [71],
it will also be necessary to keep track of the public keys used in the oracle queries.
Let EncapList be a list of tuples (pkS, pkR,C, K) and HashList be a list of tuples
(pk, pk′, κ, K). It is necessary to specify how B should respond to queries from A
to the encapsulation, decapsulation, and random oracles, so that these responses are
self-consistent and follow the correct distributions:

7 Hybrid Signcryption 135

• For an encapsulation oracle query pk, B should first pick a random group ele-
ment C . If there is an entry (pkS, pk,C, K) in EncapList, then output the pair
(C, K). Otherwise, if there is an entry (pkS, pk, κ, K) in HashList such that
(pkS, pk, κ/C) is a DDH triple, output the pair (C, K). If neither is the case,
then generate a random key K , store (pkS, pk,C, K) in EncapList, and output
the pair (C, K).

• On a decapsulation oracle query (pk,C), B must first check EncapList for any
previous entries (pk, pkR,C, K). If such an entry is found, K must be output
to maintain consistency. Otherwise, HashList is checked for conforming entries
(pk, pkR, κ, K) such that (pkS, pk, κ/C) is a DDH triple, in which case K is
returned. If no match is found in either list, then generate a random key K , store
(pk, pkR,C, K) in EncapList, and return K .

• Finally, on random oracle queries (κ, pk, pk′), one should first check HashList
whether the same query has been made before, in which case the same K should
be returned. If this is not the case, B checks whether EncapList contains any
entries (pk, pk′,C, K) such that (pk, pk′, κ/C) is a DDH triple, in which case K
is returned. If no match is found in the list, a random key K is generated and
HashList is updated accordingly.

Note that it is simple for B to deal with the flexible oracle queries, since the
information about which public keys are in use is embedded in every query. By using
the public keys and the supplied DDH oracle, B is also able to maintain consistency
between queries to the three oracles. A new entry is only added to EncapList during
an oracle query if the corresponding triplet of keys and encapsulation have not been
used in a previous query to any of the oracles. Similarly, a new entry is added to
HashList only if the result has not been fixed (directly or indirectly) previously.
Since all new encapsulations and keys are generated by sampling uniformly at ran-
dom, the variables will also follow the correct distributions.

We now consider what happens when B plays the IND-CCA2 game for ECISS-
KEM with A. As previously stated, B uses the GDH challenge values gx andgy

as the public keys pkS and pkR , generates param from the description of the
group, and runs A1 on (param, pkS, pkR), while simulating the oracles as speci-
fied. Eventually A1 terminates, outputting some state. To generate a challenge, B
first picks a group element C∗ and a key K0 uniformly at random and adds the
value (pkS, pkR,C∗, K0) to EncapList. After choosing another random key K1 and
a random bit b, B runs A2 on the parameters (state,C∗, Kb). During the execution
of A2, the oracles may be queried as before, with the restriction that the decapsu-
lation query (pkS,C∗) is forbidden. Eventually A2 will output some bit b′, which
is ignored by B. Instead, B checks whether there are entries in (pkS, pkR,C, K) in
EncapList and (pkS, pkR, κ, K) in HashList such that (pkS, pkR, κ/C) is a DDH
triple. In this case, κ/C is returned as the solution to the GDH problem; otherwise,
a random group element is picked.

Analyzing the advantage of B, we notice that the encapsulation and decapsulation
algorithms are simulated perfectly at all times, except during the generation of the
challenge C∗. With respect to C∗ there are two things that may go wrong; either a

136 T.E. Bjørstad

previous oracle query made by A1 has already fixed a relation between pkS , pkR , C∗,
and some K or a future encapsulation oracle query by A2 on pkR may accidentally
reveal the key associated with C∗. Under the assumption that A is only allowed
to make a polynomial number of oracle queries, the probability that either of this
happens is negligible and bounded above by qE+qD

q .
However, because K0 and K1 are sampled uniformly at random and indepen-

dently of C∗, the only other way that A can learn anything about the value of b is to
submit a query (κ∗, pkS, pkR) to the random oracle, where κ∗/C∗ = gskS ·skR = gxy .
But in this case B immediately obtains the solution to the Gap Diffie–Hellman prob-
lem instance.3 Hence the advantage of B in the GDH game will be no worse than
that of A. This completes the proof. ��

7.4 Hybrid Signcryption with Insider Security

The problem of constructing a framework for insider-secure hybrid signcryption is
significantly more complex than the outsider-secure setting, precisely due to the
need to protect against insider-specific attacks. We briefly discuss why it appears
necessary to use public-key signatures as a starting point, rather than encryption
KEMs. Furthermore, we point out the shortcomings of Dent’s proposed insider-
secure signcryption KEM model [71, 72]. The main focus of the chapter is to present
the concept of signcryption tag-KEMs [37] and how they avoid the main problems
of Dent’s model. Examples of schemes that fit the signcryption tag-KEM framework
include a modified version of Zheng’s signcryption scheme (as described in Sect. 3.3
and 4.3).

7.4.1 From Outsider to Insider Security

While outsider security is sufficient for communication between a trusted set of
users, insider security is necessary for more general communication networks,
where multiple users who may or may not trust each other wish to communicate in
a secure fashion. It is also a necessary (though not sufficient) condition for creating
signcryption schemes with non-repudiation functionality [130]—see Sect. 2.2.2. As
we saw in Sect. 7.3.3, the model for hybrid signcryption proposed in Sect. 7.3 can
never provide insider security, because there is no link between the key encapsula-
tion and the message that is being signcrypted. The logical consequence of this is
that any model for an insider-secure signcryption KEM must provide some form

3 The way the oracles are simulated, B may also learn the target value from other queries involving
pkS and pkR , but something other than the challenge.

7 Hybrid Signcryption 137

of integrity service for the message that is being signcrypted, to verify that the
relationship between message, key, and encapsulation has not been altered by the
adversary. In effect, the encapsulation should provide a signature on all the relevant
data for the specific message to be signcrypted, including the public keys of sender
and receiver, the encapsulated symmetric key, and the message itself.

Recalling the semantics of a public-key signature scheme and pursuing this idea,
it appears reasonable that the encapsulation algorithm should be changed to take
the message m as input, as well as the public keys skS and pkR . However, to ver-
ify the signature on m, it must first be decrypted. Hence it becomes necessary to
specify two algorithms that are used to unsigncrypt a signcryptext: a decapsulation
algorithm to recover the symmetric key K and a verification algorithm to verify that
the “signature” part of the encapsulation is valid. On the positive side, it appears
reasonable that the security requirement for the DEM can be relaxed to IND-CPA,
since the insider-secure signcryption KEM must enforce the integrity of the message
anyhow.

Following this intuitive approach yields the original insider-secure signcryption
KEMs proposed by Dent [71, 73]. Unfortunately, it is not a particularly pleasant
model to work with. One possible reason for this is the fact that it instantiates an
example of the “encrypt-and-sign” paradigm, as discussed in Chap. 2 [10]. This
means that special considerations have to be taken to avoid information about the
signed message leaking through the key encapsulation. Specifically, the security
criteria required of the signcryption KEM to provide confidentiality turn out to be
quite awkward in Dent’s model. To create an indistinguishable signcryption KEM
one must consider two separate attack scenarios: one in which the adversary tries
to distinguish a real key output by the encapsulation algorithm from a random key
(similar to the IND-CCA2 requirement for outsider-secure signcryption KEMs in
Sect. 7.3.2) and another in which the adversary tries to distinguish between encap-
sulations of two different messages. In the case of integrity, the standard criterion of
strong existential unforgeability (of valid encapsulations) may be applied.

Another flaw of the intuitive approach followed above lies in the proof of the
composition theorem for outsider-secure KEM + DEM. In Dent’s original proof,
the confidentiality of hybrid signcryption relies on the authenticity/integrity of the
KEM as well as its confidentiality [71, 72]. This is not very intuitive and leads to
poor concrete security: as shown by Bjørstad, the security bound for confidentiality
of Zheng’s signcryption scheme in the original scheme-specific proof [12, 13] is
much tighter than the corresponding proof of security using the functionally equiv-
alent signcryption KEM + DEM formulation [36]. Although Bjørstad suggests an
alternate proof of confidentiality avoiding the need for unforgeability, this reimposes
the requirement that the DEM must be IND-CCA and is therefore little better in
practice. In short, the intuitive definition of an insider-secure signcryption KEM
sketched in this section leads to a scheme that does not really simplify the analy-
sis and typically achieves worse security results than a direct proof specific to the
scheme under consideration. It follows that a different model is needed to make the
concept of insider-secure hybrid signcryption useful.

138 T.E. Bjørstad

7.4.2 Signcryption Tag-KEMs

A way to resolve the problems encountered in the previous section appeared in
early 2005, when Abe et al. proposed an alternate construction paradigm for hybrid
encryption, called tag-KEMs [4, 5]. The main idea of tag-KEMs is that the encap-
sulation algorithm is constructed in two steps: one in which the symmetric key is
generated and another where the key is encapsulated in some manner together with
an arbitrary string called a tag. As we shall see, the security requirement for tag-
KEMs also forces the key encapsulation to preserve the integrity of the tag. The
authors proceed to present a hybrid construction in which the symmetric cipher-
text from the DEM is used as the tag and show that this yields an elegant hybrid
encryption scheme where the DEM only needs to be secure against passive attackers
(IND-CPA).

It is tempting to adapt the tag-KEM construction paradigm to the insider-secure
signcryption setting, precisely because our immediate goal is to design signcryption
KEMs that provide integrity services and only require an IND-CPA-secure DEM
to make the composition secure. In the hybrid signcryption setting this also acts
as an example of the “encrypt-then-sign” paradigm, since the “signature” part of
the encapsulation is made on the ciphertext tag instead of on the message itself. It is
not unreasonable to expect that such a construction will be more well-behaved under
formal analysis, since there is no longer any possibility that the signature component
can leak any information about the plaintext to an attacker.4 Using Abe et al. [4, 5]
as inspiration, Bjørstad and Dent [37] give the following formal specification of the
tag-KEM construction for signcryption.

Definition 7.9 (Signcryption tag-KEM) A signcryption tag-KEM SCTK =
(Setup, KeyGenS, KeyGenR, Sym, Encap, Decap) is defined as a tuple of six algo-
rithms:

• A probabilistic common parameter generation algorithm, Setup. It takes as input
a security parameter 1k and returns all the global information param needed by
users of the scheme, such as choice of groups or hash functions.

• A probabilistic sender key generation algorithm KeyGenS . It takes as input the
global information param and outputs a public/private keypair (skS, pkS) that is
used to send signcrypted messages.

• A probabilistic receiver key generation algorithm KeyGenR . It takes as input the
global information param and outputs a public/private keypair (skR, pkR) that is
used to receive signcrypted messages.

4 The alternate “sign-then-encrypt” construction might be even more appealing, because it keeps
the formal signature where it logically and semantically belongs: on the plaintext. However, it does
not appear to be practical to build a model for hybrid signcryption schemes instantiating this con-
cept, due to the need to divide the signcryption KEM into separate “signature” and “encapsulation”
parts, and the complex information flows resulting from this.

7 Hybrid Signcryption 139

• A probabilistic symmetric key generation algorithm Sym. It takes as input the
private key of the sender skS and the public key of the receiver pkR and outputs a
symmetric key K together with internal state information ω.

• A probabilistic key encapsulation algorithm Encap. It takes as input some state
information ω and an arbitrary tag τ , and returns an encapsulation C .5

• A deterministic decapsulation and verification algorithm Decap. It takes as input
the sender’s public key pkS , the receiver’s private key skR , an encapsulation C ,
and a tag τ . The algorithm returns either a symmetric key K or the unique error
symbol ⊥.

By combining the above signcryption tag-KEM with a DEM, we obtain a hybrid
signcryption scheme as follows.

Definition 7.10 (SCTK+DEM hybrid signcryption scheme) Suppose that (Setup,
KeyGenS, KeyGenR, Sym, Encap, Decap) is a signcryption tag-KEM and
(Enc, Dec) a DEM and that the keys produced by the signcryption tag-KEM are of
appropriate length for use with the DEM for all security parameters k. Then we can
construct a hybrid signcryption scheme by using the Setup, KeyGenS , and KeyGenR
from the SCTK and defining the algorithms Signcrypt and Unsigncrypt as
follows.

• The Signcrypt algorithm takes as input the private key of the sender skS , the
public key of the receiver pkR , and a message m. It performs the following steps:

1. Compute Sym(skS, pkR) to obtain a symmetric key K and state infor-
mation ω.

2. Compute EncK (m) to produce a ciphertext C2.
3. Compute Encap(ω,C2), using C2 as the tag τ to produce the ciphertext C1.
4. Output the signcryptext C ← (C1,C2) and halt.

• The Unsigncrypt algorithm takes as input the public key of the sender pkS ,
the private key of the receiver skR , and a ciphertext C . It performs the following
steps:

1. Parse C to obtain its component parts C1 and C2.
2. Compute K ← Decap(pkS, skR,C1,C2), using C1 as the encapsulation and

C2 as the tag.
3. If Decap returned ⊥, output ⊥, and halt. Otherwise, compute m ←

DecK (C2).
4. Output m and halt.

5 In principle, this algorithm can always be represented as a deterministic algorithm, which takes
as input the appropriate amount of random bits embedded in ω as a string. In practice this is often
the case, as random nonces may be chosen as part of Encap and used to create a random K , and
then passed along to Sym as part of ω. However, from a theoretical point of view, if Encap is only
expected polynomial time, the deterministic version will have an (arbitrarily small) probability of
failing.

140 T.E. Bjørstad

Fig. 7.5 Data flow in the insider-secure signcryption tag-KEM + DEM construction

The data flow between the Signcrypt and Unsigncrypt algorithms is illus-
trated in Fig. 7.5. Notice in particular how the symmetric ciphertext C2 is used as
the “tag” input to both Encap and Decap.

As it turns out, it is quite possible to express Zheng’s signcryption scheme as a
signcryption tag-KEM + DEM construction. However, it requires the trivial alter-
ation of having the “signature” part of the scheme act on the symmetric ciphertext
instead of the message itself. The resulting scheme is essentially the scheme of
Gamage et al.—see Sect. 4.3.3. This is not expected to have any effect on the overall
security of the scheme, an assumption that is verified independently by Bjørstad and
Dent [37]. A concrete specification of the “Zheng signcryption tag-KEM” is given in
Fig. 7.6. Since Zheng’s scheme is known to be secure (in the random oracle model)
[12, 13] this yields confidence that the signcryption tag-KEM construction is viable
and useful, provided that a good generic security reduction can be made. As we shall
see in Sects. 7.4.3 and 7.4.4 this is indeed the case.

7.4.3 Security Criteria for Signcryption Tag-KEMs

For the signcryption tag-KEM construction to be viable, we need clear and well-
defined notions of what it means for a signcryption tag-KEM to be secure. Further-
more, these notions must be useful by themselves, so that it is possible to prove
that suggested signcryption tag-KEMs fulfill them and admit an efficient security
reduction for the generic hybrid signcryption scheme obtained by combining an
SCTK with a DEM. As we observed in Sect. 7.4.1, this is not always achievable.
However, in the signcryption tag-KEM setting we find intuitive and simple notions
of security for both confidentiality and authenticity/integrity. We will define these
security notions analogously with the main definitions given in Chap. 3, specifically
the multi-user outsider model for confidentiality and the multi-user insider model
for unforgeability. (Extensions to the other models given in Chap. 3 can be simply
made using the techniques in this section.)

7 Hybrid Signcryption 141

Fig. 7.6 A complete specification of the Zheng signcryption tag-KEM (Zheng-SCTK). This
scheme should be compared with the Gamage et al. specification in Sect. 4.3.3

A signcryption tag-KEM maintains confidentiality when it is impossible for an
adversary to distinguish whether a given key K is embedded in an encapsulation C
or not. This is the only requirement needed. However, as the adversary is allowed
to specify the tag and may access flexible oracles, this is sufficient to ensure that
the encapsulation is not malleable with respect to the tag. Since the symmetric key
generation and encapsulation algorithms do not receive the unencrypted plaintext
as input, the additional requirement of input indistinguishability is not necessary.
For a given security parameter k, the IND-CCA2 game between challenger and a
three-stage adversary A = (A1,A2,A3) runs as follows:

1. The challenger generates a set of global information param
R← Setup(1k)

and the key pairs (skS, pkS)
R← KeyGenS(param) and (skR, pkR)

R←
KeyGenR(param) for the sender and the receiver.

2. The adversary runs A1 on the input (param, pkS, pkR). During its execution, A1
is given access to flexible symmetric key generation, encapsulation, and decap-
sulation oracles:

• The symmetric key generation oracle OSym takes a public key pk as input and

runs (K , ω)
R← Sym(skS, pk). It then stores the value of ω, hidden from the

142 T.E. Bjørstad

view of the adversary, and overwriting any previous value. The oracle outputs
the key K .

• The key encapsulation oracle OEncap takes a tag τ as input and checks
whether there is a stored ω. If there is not, it outputs ⊥. Otherwise it erases
the value of ω from storage, computes Encap(ω, τ), and outputs the result.

• The decapsulation/verification oracle ODecap takes a public sending
key pk, an encapsulation C , and a tag τ as input. It then computes
Decap(pk, skR,C, τ) and outputs the result.

A1 terminates by outputting some state information state1.

3. The challenger computes (K0, ω
∗) R← Sym(skS, pkR), generates a random sym-

metric key K1
R← K, where K is the output keyspace of the tag-KEM, and a

random bit b
R← {0, 1}.

4. The adversary runs A2 on the input (state1, Kb). During its execution, A2 may
query the oracles as before. A2 terminates by outputting an arbitrary tag τ ∗ as
well as any necessary state information state2.

5. The challenger computes the challenge encapsulation C∗ R← Encap (ω∗, τ ∗).
6. The adversary runs A3 on the input (C∗, state2). During its execution, A2 may

query the same oracles as before, with the restriction that (pkS,C∗, τ ∗) is not a
valid query to the decapsulation oracle. A3 terminates by outputting a guess b′
for the value of b.

The adversary wins the game if it is successful at guessing the hidden bit, i.e.,
b = b′. The advantage of A is defined as |Pr [b = b′] − 1/2|.
Definition 7.11 (Indistinguishable signcryption tag-KEM) A signcryption tag-
KEM is said to be (multi-user outsider) indistinguishable (IND-CCA2) secure if the
advantage of any polynomial-time adversary A in the IND-CCA2 game is negligible
with respect to the security parameter k.

It is important to note the behind-the-scenes interaction between the symmetric
key generation and encapsulation oracles in the IND-CCA2 game. This is done in
order to let the adversary perform completely adaptive encapsulations without hav-
ing access to the state information stored in ω (which may include nonces, private
keys, random coins, and other information strictly internal to the execution of the
signcryption tag-KEM).

With respect to the authenticity and integrity of signcryption tag-KEMs, we adapt
the usual notion of strong existential unforgeability. The precise requirement is that
an adversary should not be able to find encapsulation/tag pairs (C, τ) under some
sender’s key pk such that ⊥ = Decap(pk, skR,C, τ). We let the adversary choose
the receiving entity to which the adversary wishes to forge messages. The attack
game corresponding to the sUF-CMA security of a signcryption tag-KEM runs as
follows, for a given security parameter k:

1. The challenger generates a set of global information param
R← Setup(1k) and a

sender keypair (skS, pkS)
R← KeyGenS(param).

7 Hybrid Signcryption 143

2. The adversary A is run on the input (param, pkS). During its execution, A has
access to oracles for symmetric key generation and encapsulation corresponding
to the sender’s private key skS , as defined previously. A terminates by outputting
a fixed receiver keypair (skR, pkR), an encapsulation C , and a tag τ .

The adversary wins the game if ⊥ = Decap(pkS, skR,C, τ), provided that the
encapsulation oracle never returned C when queried with the tag τ and the ω loaded
from storage was not the result of a symmetric key oracle query on pkR . The advan-
tage of A is simply the probability Pr[Awins].
Definition 7.12 (Unforgeable signcryption tag-KEM) A signcryption tag-KEM is
said to be (multi-user insider) strongly unforgeable (sUF-CMA secure) if the advan-
tage of any polynomial-time adversary A in the sUF-CMA game is negligible with
respect to the security parameter k.

Definition 7.13 (Secure signcryption tag-KEM) A signcryption tag-KEM is said
to be secure if it is indistinguishable and unforgeable.

7.4.4 Security of the SCTK+DEM Construction

It remains to show that the combination of a secure signcryption tag-KEM and a
secure DEM indeed yields a secure signcryption scheme. Although the original
paper on signcryption tag-KEMs only investigated this in the two-user (ADR) model
[37], later work has extended this to the multi-user (BSZ) model as well [200].

Theorem 7.3 (Security of SCTK + DEM construction) Let SC be a hybrid sign-
cryption scheme constructed from a signcryption tag-KEM and a DEM. If the sign-
cryption tag-KEM is IND-CCA2 secure (Definition 7.9) and the DEM is IND-CPA
secure, then SC is multi-user outsider FSO/FUO-IND-CCA2 secure (Definition 3.1)
with the bound

εSC,IND-CCA2 ≤ 2 εSCTK,IND-CCA2 + εDEM,IND-CPA (7.5)

Furthermore, if the signcryption tag-KEM is sUF-CMA secure (Definition 7.12),
then SC is multi-user insider FSO/FUO-sUF-CMA secure (Definition 3.2) with the
bound

εSC,sUF-CMA ≤ εSCTK,sUF-CMA (7.6)

Proof We begin by proving the indistinguishability of the construction. The proof
uses standard techniques and has a similar approach as the corresponding proof of
security for encryption tag-KEMs [4, 5] and the proof of Theorem 7.1.

Let G0 be the regular FSO/FUO-IND-CCA2 game for multi-user-secure sign-
cryption, as described in Chap. 3. We modify G0 so that the hybrid signcryption
procedure uses a key drawn uniformly at random when computing the challenge
signcryptext, instead of the actual key output by Sym. The resulting game is referred

144 T.E. Bjørstad

Fig. 7.7 A complete specification of the distinguisher algorithm D for the SCTK

to as G1. Let X0 and X1 be the events that some adversary A guesses the correct
key in G0 and G1, respectively. We bound |Pr[X1] − Pr[X0]| ≤ 2 εSCTK,IND-CCA2
by constructing a distinguisher algorithm D = (D1,D2,D3) that uses A to win
the IND-CCA2 game against the underlying signcryption tag-KEM and applying
Lemma 7.1. As can be seen from the specification in Fig. 7.7, D simulates the envi-
ronment of A perfectly, playing either G0 or G1 depending on the hidden bit (which
D is trying to find). This is precisely what is needed to apply Lemma 7.1.

A notable difference from the proof of Theorem 7.1 is that the random
key introduced in G1 is not needed to unsigncrypt oracle queries on the form
(

pkR, (C
∗
1 ,C2)

)

. This is because of the way decapsulation works, where both the
encapsulation and the tag must have an effect on the key.

Finally, the advantage of A in G1 is easily seen to be the same as that of an
adversary B = (B1,B2) performing a passive attack on the DEM. Such an adversary
is specified in Fig. 7.8. We note that B wins the IND-CPA game by distinguishing
whether the challenge ciphertext (which from the view of B has been encrypted with
an unknown random key K) if and only if A can distinguish the correct signcryptext
which it is being wrapped into by B. A major difference from the proof of Theo-
rem 7.1 is that the adversary is no longer able to make chosen ciphertext queries
under the symmetric key used for the challenge, which is why we get away with
passive (IND-CPA) security. This completes the proof of confidentiality.

Demonstrating the unforgeability of SC relative to the corresponding signcryp-
tion tag-KEM is simpler yet. Any valid forgery of SC requires that the adversary
comes up with an encapsulation C1 that acts as a signature on the ciphertext C2.
In the language of the signcryption tag-KEM, the adversary must in some way
have constructed an encapsulation that acts as a signature on the ciphertext tag.
This is precisely what it means to break the sUF-CMA security of a signcryption
tag-KEM. Figure 7.9 gives the formal specification of an adversary B′ that is able

7 Hybrid Signcryption 145

Fig. 7.8 A complete specification of the distinguisher algorithm B for the DEM

Fig. 7.9 A complete specification of the forgery algorithm B′ for the SCTK

to forge encapsulations for the signcryption tag-KEM, given a forger for the hybrid
signcryption scheme SC.

To verify that B′ indeed constitutes an efficient forgery algorithm, we note that
it outputs a valid encapsulation (i.e., something that decapsulates to some message
m = ⊥) whenever A has outputted a valid forgery of SC. It is also a simple observa-
tion that B′ simulates the runtime environment of A perfectly, since it does not make
any independent actions and simply passes along oracle queries to the signcryption
tag-KEM oracles.

The only remaining requirement is that the value C1 had not been the end result of
any pair of oracle queries OSym(pkR) and OEncap(C2). The corresponding require-
ment of A is that the oracle simulated by OSC did not respond with C on a query of
(pkR,m). Since decapsulation is deterministic, we note that C was only returned by
OSC if m was part of the query. Furthermore, OSC will only respond with C if C1
and C2 were the output and input to OEncap. Finally, the public key pkR is passed
directly through OSC , so the only time it will be part of a query to OSym is if it was
part of the signcryption oracle query from A. We conclude that the two algorithms
A and B′ have identical advantages in their respective games. This completes the
proof. ��

The proof of Theorem 7.3 also holds in alternate security models, from the two-
user (ADR) models specified in Chap. 2 [37] and up to the full multi-user security

146 T.E. Bjørstad

models used here. It may also readily be extended to a general multi-user insider
setting, where the adversary is allowed to pick the sending keys used in the indis-
tinguishability game. As long as the same notion of security is applied to both the
hybrid signcryption scheme and the underlying signcryption tag-KEM, the general
reductions remain valid with the appropriate modifications.

7.4.5 Insider-Secure Hybrid Signcryption in Practice

As we have established, an insider-secure signcryption KEM needs to combine the
key encapsulation functionality of a regular KEM with the authenticity-preserving
and integrity-preserving features of a digital signature scheme. From prior experi-
ence with other hybrid schemes, an obvious approach would be to take a hybrid
encryption scheme as a starting point and extend it to fulfill our additional require-
ments. However, this is harder than it seems. In fact, apart from trivial compositions
combining KEMs and signature schemes, there are no known insider-secure hybrid
signcryption schemes based on encryption KEMs.

The opposite approach is to start with a secure signature scheme and tweak it in
such a way that it also acts as a KEM. One way to do this is to alter the computation
of some internal value in such a way that it depends on the keys of both sender
and receiver and using it to derive a symmetric key. This method has been more
successful, with Zheng’s original scheme [203] being the canonical example. But
there is no general method known to generate efficient hybrid signcryption schemes
from arbitrary signature schemes. However, most known insider-secure hybrid sign-
cryption schemes apply exactly the same trick as Zheng’s scheme (see Chaps. 4, 5,
and 6).

The idea used by Zheng and the others applies to signature schemes that work in
a very specific manner: to sign, one must pick a random nonce n, use it to compute a
random group element gn , which is hashed together with the message to be signed,
whereupon some computations on the result based on the signer’s private key are
performed. To verify, the public key of the signer is used to reconstruct gn from
the signature data and verify that the output of the hash is correct. A signcryption
scheme can therefore be created by modifying the first step to compute the ran-
domizer as pkn

S , requiring skS to reconstruct it from the gn computed during normal
verification. Although it has not been proven, it is conjectured that this construction
works in general; all that is currently known is that it is secure (in the random oracle
model) in several specific cases.

However, other efficient methods of constructing efficient insider-secure hybrid
signcryption schemes from scratch are not known, and existing schemes that fit into
the signcryption tag-KEM model are all based on variants of the Diffie–Hellman
problem (see Chaps. 4 and 5). The scheme proposed by Malone-Lee (see Sect. 4.6.2)
is of particular interest as it is an example of a hybrid signcryption scheme with
non-repudiation, while the schemes proposed by Bjørstad and Dent (see Sect. 4.7)
and by Libert and Quisquater (see Sect. 5.5) are of interest as they have particularly
tight security reductions.

7 Hybrid Signcryption 147

A rather different instantiation of signcryption tag-KEMs can be made by extend-
ing ordinary (non-hybrid) signcryption schemes that support transmission of asso-
ciated plaintext data together with the signcryption [167]. In these schemes, the
signcryption algorithm “binds” the associated data to the signcryptext, providing
integrity protection for both. As we have seen previously in this chapter, this is
exactly what we want. Intuitively, one may think of the plaintext label as the tag and
use the regular signcryption scheme to signcrypt a symmetric key.

This construction is useful for precisely the same reasons that makes hybrid
signcryption so appealing in the first place: it removes the restriction of non-hybrid
schemes to small message spaces, which make them inefficient and slow for long
messages. A hybrid construction using schemes with associated data was first sug-
gested by Dodis et al. in [77], building on the theory of concealment schemes (dis-
cussed further in Chap. 8). Bjørstad and Dent [37] prove that signcryption tag-KEMs
built in this manner yield the same scheme.

Formally, the syntax of a signcryption scheme with associated data differs from
usual only in the ways the associated data are handled:

• The Signcrypt algorithm takes as additional input the associated data d, so that

the syntax becomes C
R← Signcrypt(skS, pkR,m, d).

• The Unsigncrypt algorithm also requires d as part of its input, hence m ←
Unsigncrypt(pkS, skR,C, d).

• Signcryption and unsigncryption oracles are modified accordingly, so that the
adversary may choose the value of d (or leave it empty) when making oracle
queries.

The security criteria are also altered in the obvious manner, to ensure that the
integrity of the associated data is maintained. With these alterations in mind, the
construction of a signcryption tag-KEM is straightforward:

• The Sym algorithm takes sender and receiver keys skS and pkR as input. It picks a
symmetric key K uniformly at random, sets ω← (skS, pkR, K), and returns the
pair (ω, K).

• The Encap algorithm takes state information ω and a tag τ as input. It parses

(skS, pkR, K)← ω, computes C
R← Signcrypt(skS, pkR, K , τ), and returns C .

• The Decap algorithm takes keys pkS and skR , the signcryptext C , and tag τ as
input. It uses the computes K ← Unsigncrypt(pkS, skR,C, τ) and returns K .

It is quite straightforward to show that this construction is secure, and a proof will
not be given here. The main intuition is that the signcryption tag-KEM acts as a
wrapper for the underlying signcryption scheme in such a way that an adversary
has very little opportunity to do anything “interesting.” In the random oracle model,
signcryption schemes using the common “hash-and-sign” approach can often be
used in this manner by using the plaintext label as an additional input to the hash
function.

	Chapter 7 Hybrid Signcryption
	Tor E. Bjørstad
	7.1 Background
	7.1.1 A Brief Word on Notation

	7.2 Preliminaries
	7.2.1 The Hybrid Framework
	7.2.2 Security Criteria for Data Encapsulation Mechanisms

	7.3 Hybrid Signcryption with Outsider Security
	7.3.1 An Outsider-Secure Signcryption KEM
	7.3.2 Security Criteria for Outsider-Secure SigncryptionKEMs
	7.3.3 Security of the SKEM + DEM Construction
	7.3.4 Outsider-Secure Hybrid Signcryption in Practice

	7.4 Hybrid Signcryption with Insider Security
	7.4.1 From Outsider to Insider Security
	7.4.2 Signcryption Tag-KEMs
	7.4.3 Security Criteria for Signcryption Tag-KEMs
	7.4.4 Security of the SCTK+DEM Construction
	7.4.5 Insider-Secure Hybrid Signcryption in Practice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

