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5.1 Introduction

As has been established in the previous chapters, signcryption is a cryptographic
primitive which combines the message integrity, message origin authentication, and
(if possible) signature non-repudiation properties of a traditional digital signature
with the privacy-preserving property of a public key encryption scheme.

The last chapter discussed the construction of signcryption schemes based on the
Diffie–Hellman problem. In this chapter we look at signcryption schemes resulting
from bilinear maps, also commonly called “pairings.” Since computing a bilinear
map can be significantly slower than computing an exponentiation in a group of
the same order, the development of signcryption schemes based on bilinear maps
only makes sense if these schemes can provide an advantage over the simpler and
potentially more efficient Diffie–Hellman-based schemes. This can be in the form of
an improved security analysis or some extra property of the scheme. In this section,
we discuss some of these advantages such as ciphertext anonymity and detachable
signatures, and give examples of schemes that enjoy these properties.

Pairings were first brought to the attention of the cryptographic community when
Menezes, Okamoto, and Vanstone described an attack using the Weil pairing to
efficiently convert the Elliptic Curve Discrete Logarithm Problem (EC-DLP) to the
Discrete Logarithm Problem in a finite field, which can be solved in sub-exponential
time [138]. This is referred to as the MOV attack in the literature.

In 2000, Joux used bilinear maps in the construction of the first pairing-based
cryptographic protocol [109]. This was a tripartite Diffie–Hellman key agreement
protocol, and as such was subject to the man-in-the-middle attack. Importantly, it
was the first non-destructive use of pairings in the literature.

A third paper, by Boneh and Franklin [45, 46], really got cryptographers excited
by the new possibilities afforded by bilinear maps. It closed a long-standing
open problem in cryptography. The problem of constructing an efficient, secure

B. Libert (B)
Crypto Group, Microelectronics Laboratory, Université catholique
de Louvain, Louvain, Belgium
e-mail: benoit.libert@uclouvain.be

A.W. Dent, Y. Zheng (eds.), Practical Signcryption, Information Security
and Cryptography, DOI 10.1007/978-3-540-89411-7_5,
C© Springer-Verlag Berlin Heidelberg 2010

71



72 P.S.L.M. Barreto et al.

identity-based encryption (IBE) scheme was proposed by Shamir in 1984 [177].
In his paper Shamir proposed the first identity-based signature scheme, but left the
construction of an identity-based encryption scheme as an open problem. Seventeen
years later, in 2001, an efficient solution was proposed by Boneh and Franklin. This
solution made use of bilinear maps.

Since the original paper by Boneh and Franklin there have been many identity-
based and, indeed, non-identity-based protocols based on pairings. In addition to
IBE [45, 46], we also have many flavors of identity-based signatures [18, 57], key
agreement schemes [59, 137], and, as we shall see in Chap. 10, identity-based sign-
cryption schemes.

5.2 Bilinear Map Groups

Definition 5.1 Let k be a security parameter and p be a k-bit prime number. Let
us consider groups (G1,G2,GT ) of order p and let g1, g2 be generators of G1 and
G2, respectively. We say that (G1,G2,GT ) are bilinear map groups if there exists
a bilinear map e : G1 ×G2 → GT with the following properties:

1. Bilinearity: ∀(u, v) ∈ G1 ×G2 ∀a, b ∈ Z, we have e(ua, vb) = e(u, v)ab.
2. Non-degeneracy: ∀u ∈ G1, e(u, v) = 1 ∀v ∈ G2 if and only if u = 1G1 .
3. Computability: ∀(u, v) ∈ G1 ×G2, e(u, v) is efficiently computable.

In addition to the above general properties, the constructions described in this chap-
ter additionally need an efficient, publicly computable (but not necessarily invert-
ible) isomorphism ψ : G2 → G1 such that ψ(g2) = g1. Many other pairing-based
protocols (such as short signatures [47, 48]) require the availability of such an iso-
morphism, either in the implementation of schemes themselves or in their security
proofs.

Such bilinear map groups are known to be instantiable with ordinary elliptic
curves such as MNT curves [144] and the kind of curves studied by Barreto and
Naehrig [20]. In practice, G1 is a p-order cyclic subgroup of such a curve E(Fr )

while G2 is a subgroup of E(Frα ), where α is the “embedding degree of the group”
(i.e., the smallest integer α for which the order p of the group divides rα − 1). The
group GT is the set of p-th roots of unity in the finite field Frα . In this case, the trace
map can be used as an efficient isomorphism ψ as long as G2 is properly chosen
[183] within E(Frα ).

The property of computability is ensured by Miller’s famous algorithm [140,
141]—the detail of which is beyond the scope of this chapter. In p-order cyclic
subgroups of curves of embedding degree α, the complexity of Miller’s algorithm
is dominated by O(log p) operations in the extension field Frα containing the
group GT . Computing a pairing is generally significantly more expensive than
computing an elliptic curve scalar multiplication. Using a naïve implementation
of Miller’s algorithm, a pairing computation is more than α2 times slower than a
scalar multiplication on E(Fr ). On the other hand, a recent paper by Scott [174]
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estimates that most optimized algorithms for an embedding degree α = 2 end up
with a running time which is from two to four times as long as an RSA decryption.
Regardless, pairing-based cryptographic protocols usually strive to minimize the
number of pairing calculations they involve.

Some specific cryptographic protocols require the use of symmetric pairings,
where G1 = G2 and ψ is the identity mapping. Such symmetric pairings have
the additional commutativity property: for any pair u, v ∈ G

2
1 , e(u, v) = e(v, u).

Admissible mappings of this kind can be derived from the Weil and Tate pairings
using special endomorphisms called “distortion maps” [194] that are known to only
exist on a particular kind of curve termed “supersingular” in the literature.1 Super-
singular curves may be more susceptible to attacks than ordinary curves. Indeed,
several optimization tricks for them [17] require the use of fields of small character-
istic. The problem is that the MOV and Frey–Rück reductions [82, 138] reduce the
discrete logarithm problem over the elliptic curve to the discrete logarithm problem
in a finite field, and the discrete logarithm problem in a finite field is much easier
to solve in fields of small characteristic [65] than in fields of large characteristic
and similar overall size. Since this threat is well known, it is usually thwarted by
increasing field sizes to maintain a sufficient level of security. Therefore, protocols
where bandwidth requirements have to be minimized (e.g., [47, 48]) usually avoid
supersingular curves whenever possible.

5.3 Assumptions

The security of the first scheme described in this chapter relies on a natural variant
of the Diffie–Hellman problem introduced in [47, 48].

Definition 5.2 The co-Diffie–Hellman (co-CDH) problem in bilinear map groups
(G1,G2) is to compute gab

1 ∈ G1 given (g1, g2, ga
1 , gb

2) ∈ (G1 × G2)
2 for random

values a, b
R← Z

∗
p. The advantage of a co-CDH solver is defined as the probability

of finding gab
1 taken over the random choice of a, b and the solver’s coin tosses.

In the following, we call Advco−CDH(t, k) the maximal probability, taken over the
random choice of a, b ∈ Z

∗
p and the adversary’s coin tosses, of solving a random

co-CDH instance within time t when the security parameter is k = �log p�.
The security properties of the second scheme described in the chapter rest on the

intractability of the following problems introduced in [41, 42] which extend ideas
from [143, 170].

Definition 5.3 Consider a set of bilinear map groups (G1,G2,GT ).

1 In fact, a curve E(Fr ) is said to be supersingular if its number of points #E(Fr ) is such that
t = r + 1− #E(Fr ) is a multiple of the characteristic of Fr .
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• The q-Diffie–Hellman Inversion problem (q-DHI) consists of computing the

value g1/x
1 ∈ G1 given a tuple (g1, g2, gx

2 , g(x
2)

2 , . . . , g(x
q )

2 ) ∈ G1 × G
q+1
2 for

a randomly drawn x
R← Z

∗
p.

• The q-Strong Diffie–Hellman problem (q-SDH) consists of computing a pair

(c, g1/(x+c)
1 ) ∈ Zp × G1, given elements (g1, g2, gx

2 , g(x
2)

2 , . . . , g(x
q )

2 ) ∈ G1 ×
G

q+1
2 for a random x

R← Z
∗
p.

Again, the advantage of solvers is defined as their probability, taken over the random
choice of x and their own coin tosses, of finding the appropriate group element.
In the following, we denote by Advq-DHI(t, k) (resp. Advq-SDH(t, k)) the maximal
probability of solving a random q-DHI (resp. q-SDH) instance within time t when
the security parameter is k = �log p�.

It should be emphasized that the strength of these assumptions grows with the
parameter q (which will be the number of random oracle queries allowed for adver-
saries in games modeling their security). Since this parameter must be reasonably
large—the upper bound q ≈ 260 is frequently used in the literature—for proofs
to be meaningful, those assumptions are notably less trustworthy than the standard
computational Diffie–Hellman assumption.

However, despite recent concerns [61] regarding the hardness of the above prob-
lems, it still seems reasonable to use this scheme with an appropriate adjustment of
key size. For instance, |p| ≈ 256 seems to suffice if we settle for a security level
equivalent to AES implemented with 128-bit keys.

5.4 Signcryption for Anonymous Communications

The schemes that we present in this chapter are anonymous and have “detachable
signatures.” The term “detachable signature” means that the output of the unsign-
cryption algorithm is a plaintext and some authentication material that can be for-
warded to third parties who can check its validity using publicly available infor-
mation. This is clearly equivalent to the notion of non-interactive non-repudiation
proposed by Malone-Lee and discussed in Sect. 4.6.2.

Similar to certain identity-based signcryption schemes [51, 60], the constructions
described in this chapter are meant to provide anonymous ciphertexts which do not
reveal information on the identity of their author or recipient, much in the fashion
of key-private public key cryptosystems [21].

We therefore begin by presenting a new syntax for a signcryption scheme and
new security definitions. In particular, we will assume that there exists a single key
derivation algorithm, which produces keys that can be used for both signcryption
and unsigncryption (see Sect. 3.2.3). We present models for confidentiality, unforge-
ability, and anonymity.

For our purposes, a signcryption scheme consists of tuple of algorithms (Setup,
KeyGen, Signcrypt, Unsigncrypt, Verify). The syntax of the first three
algorithms (Setup, KeyGen, Signcrypt) remain the same as before, except that



5 Signcryption Schemes Based on Bilinear Maps 75

the key generation algorithm KeyGen produces keys that can be used for both sign-
cryption and unsigncryption. The unsigncryption algorithm takes as input a cipher-
text C , a sender public key pkS , and a receiver private key skR ; it outputs either a
message m and a detachable signature σ or an error symbol⊥. The verify algorithm
is used to verify detached signatures. It takes as input a message m, a signature σ ,
and a receiver public key pkR , and outputs either a valid symbol � or an invalid
symbol ⊥.

5.4.1 Message Privacy

The next definition captures message privacy: it is the equivalent of the multi-
user insider confidentiality security model (FSO/FUO-IND-CCA2) presented in
Sect. 3.2.1, except that we consider a single key generation algorithm.

Definition 5.4 We say that a signcryption scheme ensures message privacy against
chosen-ciphertext attacks (we call this security notion insider FSO/FUO-IND-
CCA2) if no PPT adversary has a non-negligible advantage in this game:

1. The challenger generates a private/public key pair (skU , pkU ). The private key
skU is kept secret, while the public key pkU is given to the adversary A.

2. A first performs series of queries of the following kinds:

• Signcryption queries: the adversary A produces a message m ∈ M and an
arbitrary public key pkR (which may differ from pkU ) and acquires the result
Signcrypt(param, skU , pkR,m).

• Unsigncryption queries: A produces a ciphertext C , a sender’s public key pkS ,
and acquires the result of Unsigncrypt(param, pkS, skU ,C), which consists
of a signed plaintext (m, σ ) if the obtained signed plaintext is valid for the
sender’s public key pkS and the ⊥ symbol otherwise.

These queries can be asked adaptively: each query may depend on the answers
to previous ones. After a number of queries, A produces equal-length messages
m0, m1 and an arbitrary private key skS .

3. The challenge flips a coin b
R← {0, 1} and computes the challenge signcryption

C
R← Signcrypt(param, skS, pkU ,mb) of mb with the sender’s private key skS

and the public key pkU . The ciphertext C is given to A.
4. A performs new queries as in step 2 but he/she may not ask for the unsigncryp-

tion of the challenge ciphertext C with respect to the public key pkS (i.e., the
public key that corresponds to skS). At the end of the game, he/she outputs a
bit b′ and wins if b′ = b.

A’s advantage is defined to be AdvIND
A (k) := |Pr[b′ = b] − 1/2|.
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5.4.2 Ciphertext Unforgeability and Signature Unforgeability

We define notions for message integrity (unforgeability). The main notion of
unforgeability is the same as in Chap. 3 with the exception that it is suitable for
signcryption schemes with a single key generation algorithm.

Definition 5.5 We say that a signcryption scheme is strongly existentially ciphertext
unforgeable against insider chosen message attacks (FSO/FUO-sUF-CMA) if no
PPT adversary F has a non-negligible advantage in the following game:

1. The challenger generates a key pair (skU , pkU ) and pkU is given to the forger F .
2. The forger F queries the signcryption and unsigncryption oracles in an adaptive

fashion as in Definition 5.4.
3. F eventually outputs a ciphertext C and a key pair (skR, pkR). The forger wins if

the result Unsigncrypt(param, pkU , skR,C) is a pair (m, σ ) such that (m, σ )
is a valid signature with respect to the public key pkU and C was not the output
of a signcryption query Signcrypt(param, skU , pkR,m) during the game.

As in Sect. 3.2.2, the forger is allowed to have obtained the forged ciphertext as the
result of a signcryption query for a different receiver’s public key to which the one
that the claimed forgery pertains.

Since we are concerned with specific constructions which allow receivers to
extract authentication material (such as an ordinary digital signature) from a cipher-
text and to forward it to a third party, non-repudiation with respect to this embedded
authentication material may be sufficient in many contexts. This requirement is cap-
tured by the notion of signature unforgeability which was introduced for the first
time by Boyen [51] and is recalled below.

Definition 5.6 A scheme is existentially signature unforgeable against chosen mes-
sage attacks (or has the FSO/FUO-ESUF-CMA security) if no PPT adversary F has
a non-negligible advantage against a challenger in this game:

1. The challenger generates a key pair (skU , pkU ) and pkU is given to the forger F .
2. F adaptively performs a series of queries to the signcryption and unsigncryption

oracles as in Definition 5.4.
3. F outputs a ciphertext C and a key pair (skR, pkR) and wins if the result of

Unsigncrypt(param, pkU , skR,C) is a pair (m, σ ) such that the pair (m, σ ) is
valid with respect to the public key pkU and no signcryption query involving the
message m and some receiver’s public key pk′R resulted in a ciphertext C ′ for
which the output of Unsigncrypt(param, pkU , sk′R,C ′) is (m, σ ).

Of course, considering non-repudiation with respect to underlying signatures
(instead of ciphertexts) only makes sense for schemes where the receiver extracts
a signature from the ciphertext.

A potential incentive to settle for signature unforgeability is that it may reduce
the amount of data that receivers have to forward to third parties coping with non-
repudiation disputes. For instance, the scheme described in Sect. 5.6 allows receivers
to extract short signatures from ciphertexts.
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In settings where signature unforgeability suffices, a complementary notion was
also introduced in [51]. It was called ciphertext authentication and assures that a
receiver is always convinced that a ciphertext was jointly signed and encrypted by
the same person and was not subject to a kind of man-in-the-middle attack. The
resulting model shares many similarities with the multi-user outsider unforgeability
model described in Sect. 3.2.2, with the exception that it only applies to signcryption
schemes with one key generation algorithm.

Definition 5.7 A signcryption scheme has the ciphertext authentication property
(FSO/FUO-AUTH-CMA) if no PPT adversary F has a non-negligible advantage
in the next game:

1. The challenger generates two key pairs (skS, pkS) and (skR, pkR); pkS and pkR

are given to the forger.
2. The forger F performs queries to the signcryption oracles Signcrypt(param,

skU , ·, ·) and the unsigncryption Unsigncrypt(param, ·, pkU , ·), for both
U = S and U = R, as in previous definitions.

3. F produces a ciphertext C and wins if the result of Unsigncrypt(param, pkS,

skR,C) is a pair (m, σ ) such that (m, σ ) is a valid signature for the public key
pkS and no signcryption query involving the message m and the receiver’s public
key pkR produced in the ciphertext C .

We emphasize that the latter definition is only useful in complement to the signature
unforgeability property. These properties should not be considered if one is merely
concerned with the ciphertext unforgeability in the sense of Definition 5.5.

5.4.3 Anonymity

In [51], Boyen suggested other security properties for signcryption schemes. One
of them was called ciphertext anonymity and can be thought of as extending the
notion of key privacy as considered by Bellare et al. [21] for public key encryption
schemes. Intuitively, a public key encryption scheme is anonymous if ciphertexts
convey no information about the public key that was used to create them.

In the signcryption setting, the ciphertext anonymity property is satisfied if
ciphertexts reveal no information about who created them nor about whom they
are intended to. This intuition is captured by the definition below which transposes
the one given in [51] to a traditional public key setting.

Definition 5.8 A signcryption scheme is said to be ciphertext anonymous
(FSO/FUO-ANON-CCA) if no PPT distinguisher D has a non-negligible advantage
in the following game:

1. The challenger generates two distinct key pairs (skR0, pkR0) and (skR1, pkR1).
The distinguisher D is provided with pkR0 and pkR1 .

2. D adaptively performs queries to the signcryption and unsigncryption oracles
for the key pairs (skR0, pkR0) and (skR1 , pkR1) as in previous definitions. D
eventually outputs two private keys skS0 and skS1 and a plaintext m.
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3. The challenger then flips coins b, b′ R← {0, 1} and computes a challenge cipher-

text C
R← Signcrypt(param, skSb , pkRb′ ,m).

4. D adaptively issues new queries as in step 2 with the restriction that D may not
ask for the unsigncryption of pairs (C, pkS j ), where j ∈ {0, 1} and C is the
challenge ciphertext, under either of the private keys skR0 or skR1 . Eventually, D
outputs bits d, d ′ and wins if (d, d ′) = (b, b′).

The adversary’s advantage is defined as AdvANON
D (k) := |Pr[(d, d ′) = (b, b′)]− 1

4 | .

Again, this notion captures the security against insider attacks as the distinguisher
is allowed to choose a pair of private keys among which the one used to create the
challenge ciphertext is picked by the challenger.

5.5 A Tightly Secure Scheme

This section describes a signcryption scheme whose security is tightly related to
the hardness of a natural variant of the Diffie–Hellman problem in bilinear map
groups. It was originally proposed, in a slightly modified form, by Libert and
Quisquater [123]. This method relies on the digital signature algorithm of Boneh
et al. [47, 48]. In this scheme, private keys consist of an integer x ∈ Z

∗
p and public

keys consist of a group element Y = gx
2 ∈ G2. A signature on a message m has

the shape σ = H(m)x ∈ G1 (where the hash function H maps arbitrary mes-
sages onto the cyclic group G1). This signature can be verified by checking that
e(σ, g2) = e(H(m),Y ). In order to enhance the concrete security of the reduc-
tion in the proof of ciphertext unforgeability, a random quantity U that is used for
encryption purposes also acts as a random salt to provide a tighter security reduction
in the random oracle model [29].

The scheme may be viewed as a composition of a digital signature scheme which
is existentially unforgeable against chosen message attacks (UF-CMA) [91] with a
public key encryption scheme that is only secure against chosen plaintext attacks. In
[10], it was already observed in the outsider security model that a sequential com-
position in the “sign-then-encrypt” order can amplify rather than simply preserve
the security properties of the underlying building blocks—see Theorem 2.3. This
construction gives another example showing that a CCA-secure signcryption system
(in the sense of Definition 5.4) may be obtained from weaker building blocks. Here,
in some sense, the redundancies needed to achieve CCA security are embedded in
the signature.

5.5.1 The Scheme

For the security of the scheme depicted in Fig. 5.1, it is crucial that the underlying
symmetric encryption scheme be deterministic and one-to-one: for a given plaintext
and symmetric key, there should be a single possible ciphertext. If it were possible
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Fig. 5.1 The co-CDH-based scheme

to compute another encryption of the same plaintext m given c = Enc(m), it would
be possible to generate another ciphertext (u,w, z′) given (u,w, z) and thus defeat
the chosen ciphertext security of the whole scheme.

The receiver has to forward m, v, pkR , and u to a third party to convince her that
the message actually comes from the sender. Together with u and pkR , the value
v acts as a “detachable signature” that the receiver can extract from the ciphertext
and transmit it to third parties. This signature is verified by checking that e(v, g2) =
e(H1(m‖u‖pkS‖pkR), yS).

We note that the recipient’s public key must be hashed together with the pair
(m, u) in order to achieve the strong unforgeability according to Definition 5.5.

5.5.2 Efficiency

Three exponentiations in G1 are required in the signcryption algorithm, while one
multiplication and two pairings must be performed at unsigncryption. The scheme
is at least as efficient and more compact than most sequential compositions of
the BLS signature [47, 48] with any CCA-secure Diffie–Hellman-based encryption
scheme [11, 14, 68, 83, 84, 161, 181]. For example, a sequential combination of
the BLS signature scheme [47, 48] with an ElGamal [81] encryption padded with
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the Fujisaki–Okamoto conversion [83] would involve an additional exponentiation
at decryption because of the “re-encryption phase” which checks the validity of the
ciphertext. With �1 ≈ k ≥ 171, this construction saves about 171 bits of overhead
(i.e., the difference between ciphertext and plaintext sizes) with respect to a compo-
sition of the BLS signature scheme with Fujisaki–Okamoto/ElGamal.

The scheme looks like a sequential composition of the BLS signature scheme
[47, 48] with the hybrid KEM/DEM ElGamal encryption scheme proven secure
by Cramer and Shoup [68]. Actually, the hybrid ElGamal scheme must be imple-
mented with an IND-CCA2 symmetric encryption while the above system only
needs a symmetric scheme that meets the very weak requirement of being seman-
tically secure against passive attacks (that is an attack where the adversary has no
encryption or decryption oracle in an indistinguishability scenario). Here, for fixed-
length messages, the symmetric encryption could simply be a “one-time pad” of the
message with a hash value of u‖v‖ψ(YR)

r .

5.5.3 Security

The original version [123] of this system (where τ was obtained by hashing v alone)
was found [186, 198] not to meet its intended security properties. Although a chosen
ciphertext attack was also given [187] against the modification suggested in [198],
its variant detailed in Fig. 5.1 is immune to these attacks (and the countermeasures
do not incur any significant additional cost).

The scheme is proven secure in the random oracle model (with a tight reduc-
tion) assuming the hardness of the co-CDH problem. The proof of the next theo-
rem features a tight reduction to the co-CDH problem using the property (pointed
out for the first time in [111] for a specific kind of pairing-friendly groups) that
its decisional counterpart is easy: it can be easily tested whether a given tuple
(g1, g2, ga

1 , gb
2) ∈ (G1 ×G2)

2 satisfies a = b by checking if e(g1, gb
2) = e(ga

1 , g2).

Theorem 5.1 The scheme is FSO/FUO-IND-CCA2 secure in the random oracle
model assuming that the co-CDH problem is hard and that the symmetric encryption
scheme is IND-CPA secure. For any adversary A running in time tA and making
at most qsc signcryption queries, qusc unsigncryption queries, and qHi queries to
random oracles Hi (i = 1, 2, 3), we have

AdvA(tA, k) ≤ qusc

2k−2
+ Advco-CDH

B (t ′, k)+ Advind-cpa-sym
B (t ′, |K|)

where

- Advco-CDH
B (t ′, k) stands for the maximal probability of solving the co-CDH prob-

lem in time t ′ ≤ tA + O(qusc + qH2 + qH3)tp + O(qH1)texp when the security
parameter is k and tp, texp stand for the time complexity of a pairing evaluation
and an exponentiation, respectively.
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- Advind-cpa-sym
B (t ′, |K|) is the maximal advantage2 of any adversary mounting a

chosen plaintext attack on (Enc, Dec) within time t ′ when the key size is |K|.

Proof The proof consists of a sequence of games where the first game is the real
attack game, and in the last game the adversary is essentially a passive attacker
against the symmetric encryption scheme (Enc, Dec). In the sequence, the event
that the adversary A wins in Game i is denoted Si .
Game 1 is the real attack game detailed in Definition 5.4. The adversary is given
public parameters comprising g2 ∈ G2 and g1 = ψ(g2) and the receiver’s public key

is defined as pku = gb
2 ∈ G2 for some random b

R← Z
∗
p chosen by the simulator B.

The latter uses skU = b to answer all signcryption/unsigncryption queries. Random
oracle queries are dealt with in the standard way, by returning random values in the
appropriate range. To maintain consistency and return identical outputs if the same
random oracle query is made more than once, B keeps track of all these queries
and their outputs in lists L1, L2, and L3. In the challenge phase, A outputs a pair
of messages m0,m1 and a sender’s private key sk∗S = x∗S . The simulator B flips a

fair coin d
R← {0, 1}. It also chooses a random exponent a

R← Z
∗
p and successively

computes ciphertext elements u∗ = ga
1 , v∗ = H1(md‖u∗‖gx∗S

2 ‖pku)
x∗S , w∗ = v∗ ⊕

H2(u∗‖ψ(pku)
a), τ ∗ = H3(u∗‖v∗‖ψ(pku)

a), and z∗ = Encτ∗(md). The challenge
ciphertext (u∗,w∗, z∗) is given to A who eventually outputs a bit d ′ and wins if
d ′ = d. The adversary A’s advantage is thus |Pr[S1] − 1/2|.
Game 2: In this game, the first ciphertext component u∗ = ga

1 is calculated at the
beginning of the game. This change is purely conceptual and Pr[S2] = Pr[S1].
Game 3 is the same as Game 2 but the simulator B aborts if the adversary ever
queries the unsigncryption of a ciphertext (u,w, z) such that u = u∗ = ga

1 before the
challenge phase. We call F3 the latter event. Game 3 and Game 2 are clearly identical
until it occurs and we have |Pr[S3] − Pr[S2]| ≤ Pr[F3]. Since u∗ is independent of
A’s view until the challenge phase, we have Pr[F3] ≤ qusc/p ≤ qusc/2k−1 so that
|Pr[S3] − Pr[S2]| ≤ qusc/2k−1.
Game 4: We modify the treatment of random oracle queries as well as that of sign-
cryption/unsigncryption queries. A difference with earlier games is that H2 and H3
queries are now handled using four lists L2, L ′2 and L3, L ′3.

• H1 queries: If a hash query H1(mi‖ui‖pkS,i‖pkR,i ) is made, B first checks if
the value of H1 was previously defined for that input. If it was, the previously

defined hash value h1,i is returned. Otherwise, B picks a random ti
R← Z

∗
p, returns

h1,i ← gti
1 ∈ G1, and inserts the tuple (mi , ui , pkS,i , pkR,i , ti ) into L1.

• H2 queries: If a hash query H2(ui‖Ri ) is made, for inputs (ui , Ri ) ∈ G
2
1,

B first scans list L2 to see if there exists a record (ui , Ri , h2,i , β) for some

2 This advantage is usually defined as |Pr[d = d ′] − 1/2| when the adversary chooses a pair

equal-length plaintexts m0,m1, obtains c = Encτ (md ) for a random key τ
R← K and a randomly

drawn bit d
R← {0, 1}, and outputs d ′ ∈ {0, 1}.
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bit β. If so, the previously defined value h2,i is returned. Otherwise, B checks
if (g2, ui , pku, Ri ) is a valid co-Diffie–Hellman tuple (in our notation, we write
Ri = co-DHg2(ui , pku)) by checking whether e(Ri , g2) = e(ui , pku).

– If yes, then B checks if L ′2 contains an entry of the shape (ui , ?, h2,i ) for some
string h2,i ∈ {0, 1}�1 . If yes, h2,i is returned and a record (ui , Ri , h2,i , 1) is
stored in L2. If no entry (ui , ?, h2,i ) exists in L ′2, B returns a random string

h2,i
R← {0, 1}�1 and inserts (ui , Ri , h2,i , 1) in L2.

– If (g2, ui , pku, Ri ) is not a co-DH tuple, B picks h2,i
R← {0, 1}�1 at random

and stores the tuple (ui , Ri , h2,i , 0) in L2.

• H3 queries: If a hash query H3(ui‖vi‖Ri ) is made, then B proceeds as for answer-
ing H2 queries, using lists L3 and L ′3 to maintain the consistency and checking if
(g2, ui , pku, Ri ) is a co-Diffie–Hellman tuple, namely, L3 contains entries of the
form (ui , vi , Ri , h3,i , β), with β ∈ {0, 1}. If β = 1, then H3(ui‖vi‖Ri ) = h3,i
and it holds that Ri = co-DHg2(ui , pku). If β = 0, then H3(ui‖vi‖Ri ) = h3,i
and Ri = co-DHg2(ui , pku). The auxiliary list L ′3 contains entries (ui , vi , ?, h3,i )

such that a subsequent query H3(ui‖vi‖Ri ) for which Ri = co-DHg2(ui , pku)

should receive the answer h3,i ∈ K.
• Signcryption queries: If a signcryption query on a plaintext m and a recipi-

ent’s public key pkR is made, then B picks a random r
R← Z

∗
p, computes

u = gr
1 ∈ G1, and checks if L1 contains a tuple (m, u, pku, pkR, t) indicating

that h1(m‖u‖pku‖pkR) was previously set to be gt
1. If no such tuple is found, B

picks t
R← Z

∗
p and stores the entry (m, u, pku, pkR, t) in L1. It then computes

v = ψ(pku)
t = (gb

1)
t ∈ G1. The rest follows as in the signcryption process: B

computes ψ(pkR)
r (for the pkR specified by the adversary), simulates H2 and H3

to obtain h2 = H2(u‖ψ(pkR)
r ) and τ = H3(u‖v‖ψ(pkR)

r ), and then computes
w = v⊕ h2 and z = Encτ (m). The ciphertext (u,w, z) is returned to A.

• Unsigncryption queries: For an unsigncryption query on a ciphertext C =
(u,w, z) and a sender’s public key pkS ∈ G2, B checks if list L2 contains the
sole possible tuple (u, R, h2, 1) for some R ∈ G1 and h2 ∈ {0, 1}�1 (meaning
that R = co-DHg2(u, pku) and that H2(u‖R) was set to h2 ∈ {0, 1}�1 ):

– If such an entry exists, B obtains v = w⊕ h2 and rejects C if v ∈ G1. Other-
wise, B obtains the secret key τ = H3(u‖v‖R) ∈ K (by simulating H3) and
sets m = Decτ (z). Then, B computes H = H1(m‖u‖pkS‖pku) ∈ G1 (by sim-
ulating H1) and checks whether e(v, g2) = e(H, pkS). If so, the information
(m, pku, v, u) is returned. Otherwise, C is rejected.

– If such an entry does not exist, then B checks if L ′2 contains an entry (u, ?, h2).

If such an entry does not exist either, then B chooses h2
R← {0, 1}�1 and stores

(u, ?, h2) in L ′2, so as to preserve consistency and answer h2 to a subsequent
H2 query on the input u‖co-DHg2(u, pku). In either case, B obtains the h2
value. It sets v = w ⊕ h2 ∈ {0, 1}�1 and rejects C if v ∈ G1. Then, B
scans lists L3 and L ′3, in search for an entries of the shape (u, v, R, τ, 1)
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and (u, v, ?, τ ), respectively. If no such entries exist, B picks τ
R← K at ran-

dom and inserts a record (u, v, ?, τ ) in L ′3 to make sure that a future hash
query H3(u‖v‖co-DHg2(u, pku)) will get the answer τ . Finally, B computes
m = Decτ (z). The ciphertext C is declared invalid if e(v, g2) = e(H, pkS)

where H = H1(m‖u‖pkS‖pku). If the ciphertext is deemed valid, A is
returned the information (m, pku, v, u).

It can be checked that the above simulation of the various oracles is consistent and
A’s view is not altered by these changes. It comes that Pr[S4] = Pr[S3]. We also
note that the private key skU = b is not explicitly used to answer signcryption or
unsigncryption queries.
Game 5 modifies the way to answer unsigncryption queries and add a special
rule that applies to post-challenge unsigncryption queries, namely, if A queries
the unsigncryption of a ciphertext (u,w, z) such that (u,w) = (u∗,w∗) after the
challenge phase, B returns ⊥. Two situations must be distinguished to see that this
change does not significantly alter A’s view.

- If the query pertains to the same sender’s public key as in the challenge phase
(i.e., pkS = pk∗S), we necessarily have z = z∗ (as the query is illegal other-
wise). For such a ciphertext, the underlying v = w∗ ⊕ H2(u∗‖u∗b) must be the
same as the value v∗ calculated in the challenge phase. Also, the same symmetric
key τ ∗ = H3(u∗‖v∗‖u∗b) must be used to decipher z when the unsigncryp-
tion operation is carried out normally. Since z = z∗ and given that the encryp-
tion/decryption algorithms (Enc, Dec) are bijections, the plaintext m = Decτ∗(z)
must be different from the plaintext md that was encrypted in the challenge phase.
Hence, unless we have a collision H1(m‖u∗‖pk∗S‖pku) = H1(md‖u∗‖pk∗S‖pku)

(which occurs with probability smaller than 1/|p| < 1/2k−1 when H1 is
modeled as a random oracle), v∗ cannot be a valid signature for the message
m‖u∗‖pk∗S‖pku and the unsigncryption algorithm would certainly reject it.

- If the query is made for a different sender pkS = pk∗S (and we may thus have
z = z∗ or not), the unsigncryption algorithm would still reveal the same v∗
as in the challenge phase and the same symmetric key τ ∗ = H3(u∗‖v∗‖u∗b)

would be used to decipher z. If we denote by m = Decτ∗(z) the symmet-
ric decryption of z under the key τ ∗, the ciphertext (u∗,w∗, z) would only
be accepted in earlier games in the event that H1(md‖u∗‖pk∗S‖pku)

sk∗S =
H1(m‖u∗‖pkS‖pku)

logg(pkS) (i.e., if the outputs of the random oracle H1 are
correlated in a very specific way for two different inputs). Since we are work-
ing in the random oracle model, this situation only occurs with probability
1/p < 1/2k−1.

Throughout all queries, the overall probability that the new rule causes B to reject a
ciphertext that would have been deemed valid in earlier games is at most qusc/2k−1.
We thus have |Pr[S5] − Pr[S4]| ≤ qusc/2k−1.
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Game 6 makes some last changes to the simulation. First, we modify the generation
of the challenge ciphertext (u∗,w∗, z∗). The first element u∗ is still set as u∗1 = ga

1

(B does not explicitly know a—only ga
1 ) but w∗ R← {0, 1}�1 is now chosen at random

and z∗ is generated as an encryption z∗ = Encτ∗(md) under a perfectly random key

τ ∗ R← K. The other change is that we define an event E and let the simulator halt if
it ever occurs. Event E is the occurrence of one of the following situations.

E.1 A queries oracle H2 on the input (u∗‖R) such that R = co-DHg2(u
∗, pku).

E.2 A queries oracle H3 on an input (u∗‖.‖R) such that R = co-DHg2(u
∗, pku).

We see that B is able to detect occurrences of E.1 and E.2, which both reveal the
value R = co-DHg2(g

a
1 , gb

2) = gab
1 . Since B never knows exponents a or b, it

would solve an instance of the co-CDH problem if E.1∨E.2 happens. We thus have
Pr[E .1 ∨ E .2] ≤ Advco-CDH

B (t ′, k), where t ′ ≤ tA + O(qusc + qH2 + qH3)tp +
O(qH1)texp is an upper bound on B’s computation time that takes into account the
unsigncryption queries as well as H2 and H3 queries, each requiring two pairing
evaluations.

If event E does not occur, the symmetric key τ ∗ is completely independent of A’s
view. Guessing d ∈ {0, 1} then amounts to carry out a chosen plaintext attack on
the symmetric encryption scheme (Enc, Dec). Indeed, the only way for A to observe
symmetric decryptions under τ ∗ would be to query the unsigncryption of ciphertexts
of the shape (u∗,w∗, z). Such ciphertexts are precisely rejected by the oracle due
to the rules introduced in Game 3 and Game 5. It comes that |Pr[S6] − 1/2| =
Advind-cpa-sym

B (t ′). ��
We observe that the reduction is very tight. Up to negligible terms and assuming

that Advind-cpa-sym
B (t ′) is negligible, algorithm B has the essentially same probability

to solve the co-CDH problem as the adversary’s advantage in breaking the scheme.
The cost of the reduction is also bounded by an expression which is linear in the
number of adversarial queries. That is the reason why u is included among the
arguments of H2. The scheme remains secure if v is concealed by a hash value
of ψ(pkR)

r alone but the reduction entails a number of pairing evaluations that are
quadratic in the number of adversarial queries.

Having a tight reduction to a computational problem is a notable feature of
the scheme. It contrasts with other Diffie–Hellman-based constructions which are
also CCA secure under tight reductions but rely on gap assumptions involving
oracles that do not exist. This can be lifted by implementing those schemes over
pairing-friendly groups (where some gap problems become equivalent to computa-
tional problems) but most of them keep relatively loose reductions with respect to
unforgeability (the only notable exception being Bjørstad and Dent’s CM scheme
[37] discussed in Sect. 4.7). In the present system, the reductions are also efficient
in the proof of ciphertext unforgeability.

Theorem 5.2 Assume that an adversary F has advantage AdvF (t, k) over the
FSO/FUO-sUF-CMA security of the scheme when running in time t, making qsc
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signcryption queries, qusc unsigncryption queries, and qHi queries on random ora-
cles Hi (for i = 1, 2, 3). Then, there is an algorithm B which solves the co-CDH
problem in (G1,G2) with probability

Advco-CDH
B (t ′, k) ≥ AdvF (t, k)− qsc(qH1 + qsc + qusc)+ 1

2k−1

and within running time t ′ ≤ t + O(qH2 + qH3 + qusc)tp + O(qsc)texp, where tp

and texp stand for the time required for a pairing evaluation and an exponentiation
in G1.

Proof The simulator B receives a random co-Diffie–Hellman instance (ga
1 , gb

2). It
uses F as a subroutine to solve that instance and plays the role of F’s challenger.
The forger F is initialized with the input pku = gb

2 and performs adaptive queries
that are handled by B as explained below (using lists as in the proof of Theorem 5.1):

• H1 queries: If a hash query on a tuple m‖u‖pkS‖pkR is made, then B checks to
see if the latter was previously queried. If so, then B returns the same value.

For a query on a new tuple m‖u‖pkS‖pkR , B picks t
R← Z

∗
q and defines

H1(m‖u‖pkS‖pkR) = (ga
1 )

t ∈ G1. The list L1 is updated accordingly.
• H2 queries and H3 queries are dealt with as in Game 4, the proof of Theorem 5.1.
• Signcryption queries: If a signcryption query on a message m and a receiver’s

public key pkR is made, B picks r
R← Z

∗
p and computes u = gr

1 ∈ G1. If H1 is
already defined on m‖u‖pku‖pkR , B declares “failure” and halts. Otherwise, B
picks t

R← Z
∗
p, sets H1(m‖u‖pku‖pkR) = gt

1 ∈ G1, and updates L1 accordingly.

It then computes v = ψ(pku)
t ∈ G1, h2 = H2(u‖ψ(pkR)

r ) ∈ {0, 1}�1 , w =
v ⊕ h2, τ = H3(u‖v‖ψ(pkR)

r ) ∈ K, and z = Encτ (m) ∈ C. The ciphertext
(u,w, z) is then returned to F .

• Unsigncryption queries are handled exactly as in the proof of Theorem 5.1.

At the end of the game, F produces a ciphertext (u∗,w∗, z∗) and a recipient’s
public/private key pair (sk∗R, pk∗R). At that moment, B can unsigncrypt the cipher-
text using sk∗R and, if the ciphertext is a valid forgery for the sender’s public
key pku , B can extract the message m∗ and the signature v∗. If the hash value
H1(m∗‖u∗‖pku‖pk∗R) was not explicitly defined by a query to the H1 oracle during
the simulation, then B reports “failure” and stops. Otherwise, B can extract v∗ and
the hash value H1(m∗‖u∗‖pku‖pk∗R)must have been defined to be (ga

1 )
t∗ , for some

known t∗ ∈ Z
∗
p. This implies that v∗ must be equal to (gab

1 )
t∗ , which yields the

co-Diffie–Hellman value.
It is easy to see that the probability for B to fail in answering a signcryption query

is not greater than qsc(qH1 + qsc + qusc)/p ≤ qsc(qH1 + qsc + qusc)/2k−1 (since
at each signcryption query, there is at most qH1 + qsc + qusc elements in L1). The
probability that F succeeds without explicitly making the H1(m∗‖u∗‖pku‖pk∗R)
query can be bounded by considering the following three possibilities:
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• If the value of H1(m∗‖u∗‖pku‖pk∗R) is undefined by the simulation, then the
probability that F wins is bounded by 1/2k−1 (since F must output a valid
ciphertext).

• If the value of H1(m∗‖u∗‖pku‖pk∗R) was defined by the signcryption oracle for
some query on a message m and receiver public key pkR , then we must have
m = m∗, pkR = pk∗R , and that the associated value u = u∗. Since both ciphertexts
must be valid, we have that v = v∗, and so w = w∗ and τ = τ ∗. This means
that z = z∗ by the deterministic nature of the symmetric encryption scheme.
Hence, we conclude that F outputs the result of a signcryption query, which is a
contradiction to the fact that F wins the game.

• If the value of H1(m∗‖u∗‖pku‖pk∗R) was defined by the unsigncryption oracle,
then B is still able to solve the co-CDH problem as the simulation of the unsign-
cryption oracle calls the simulated H1 oracle for all its computations.

Hence, we can conclude that the probability that the algorithm fails is bounded by
qsc(qH1 + qsc + qusc)/2k−1 + 1/2k−1 and the result follows. ��

A similar theorem to Theorem 5.1 links the anonymity property of the scheme to
the co-CDH assumption.

5.6 A Scheme with Short Detachable Signatures

Figure 5.2 describes a signcryption scheme by Libert and Quisquater [124] with a
shorter detachable signature. The construction relies on a signature scheme inde-
pendently proposed by Zhang et al. [202] and Boneh-Boyen [42]. In the latter work,
this scheme was shown to efficiently produce 160-bit signatures without requiring
the use of a special hash function mapping messages to be signed onto an elliptic
curve subgroup, unlike the original BLS short signature proposed in [47, 48]. In
[42], it was also shown that this scheme has a more efficient security reduction
in the random oracle model under the q-strong Diffie–Hellman assumption than
the reduction given by Zhang et al. [202] under the q-Diffie–Hellman inversion
assumption.

The protocol makes use of a (masked) signature as an ElGamal-like ephemeral
key as well as a checksum showing that a message was properly encrypted. The
sender first computes an exponent r ← γ /(h1(bm‖m‖pkS) + skS) ∈ Z

∗
p where γ

is randomly chosen from Z
∗
p, m ∈ {0, 1}∗ is the message to sign and encrypt, and

bm is a message-dependent bit computed as a function of m and the private key skS

according to Katz and Wang’s proof technique [113]—this helps to achieve tight
security reductions without introducing random “salts” in signatures. This exponent
r is then used to compute an ephemeral Diffie–Hellman key gr

1 as in the ElGamal
cryptosystem [81] and to scramble the secret γ using a hash value of ψ(pkR)

r ,
while a digest of γ , ψ(pkR)

r , and other elements is used to conceal the message m
using a deterministic and one-to-one symmetric encryption scheme.
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Fig. 5.2 The SDH-based scheme

The use of a masked signature as a “one-time” Diffie–Hellman key allows the
sparing of one exponentiation (actually an elliptic curve scalar multiplication) with
respect to a sequential signature/encryption composition.

When computing the second component of the ciphertext, the receiver’s public
key and the first component (which is an embedded signature as well as a Diffie–
Hellman ephemeral key) are hashed together with the “one-time” Diffie–Hellman
key ψ(pkR)

r in order to simplify the security proof.
In order to convince a third party that a recovered message m originates from

the sender S, the receiver reveals the detached signature σ , the message m, and the
associated bit bm to the third party who can run the regular signature verification

algorithm (i.e., check that e(g1, g2) = e(σ, yS · g
H1(bm‖m‖pkS)

2 )). The scheme thus
provides detachable signatures that cannot be linked to their original ciphertext:
the signature is masked by a randomly chosen factor γ and anyone observing a
valid message–signature pair can use his/her private key to build a signcryption of
that message–signature pair under his/her public key. The scheme thus provides
ciphertext unlinkability in the sense of [51].
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5.6.1 Efficiency

Besides a modular inversion, the sender only computes two exponentiations in G1.
The receiver’s workload is dominated by one pairing computation (as e(g1, g2) can
be included among the common public parameters param), two exponentiations in
G1, and one exponentiation in G2.

The scheme is described in terms of asymmetric pairings and requires the exis-
tence of a publicly computable isomorphism ψ : G2 → G1. It does not require
the hashing of arbitrary strings onto cyclic elliptic curve subgroups. Hence, the kind
of groups suggested in Sect. 4 of [183] may be employed here as they provide an
asymmetric pairing configuration e : G1×G2 → GT with an efficiently computable
isomorphism ψ : G2 → G1. It has been reported that hashing onto G2 may be
somewhat slow in such configurations. Such parameters allow the performance of
the last step of the Unsigncrypt algorithm at a reasonable speed using the specific
techniques for ordinary curves given by Barreto et al. [19].

Note that the two exponentiations that are the bulk of the sender’s workload can
be computed off-line (i.e., before knowing the message to be sent). Indeed, in an

off-line phase, the sender can pick a random r
R← Z

∗
p, compute c1 ← gr

1 and ω←
ψ(pkR)

r , store them in memory, and, then, once the message m is known, compute
γ ← r(H1(bm‖m‖pkS)+ skS) mod p, c2 ← (γ ‖bm)⊕ H2(c1‖pkR‖ω) and c3 ←
EncH3(γ ‖bm‖yR‖ω)(m). In this case, care must be taken not to re-use the same r to
sign and encrypt distinct messages because this would expose the private key.

From a bandwidth point of view, the scheme allows receivers to extract short
signatures from a ciphertext when they wish to convince a judge of the sender’s
authorship of the message (e.g., signatures of length 256 bits, using the pairing-
friendly groups suggested by Barreto and Naehrig [20]).

5.6.2 Anonymous Communications

Like the co-CDH-based scheme of Fig. 5.1, this scheme is meant to provide anony-
mous communications, where ciphertexts do not reveal the identity of the sender and
the receiver. In such a situation, it may be the case that the receiver himself/herself
does not know who the sender is upon receiving a ciphertext. We nevertheless
remark that the sender’s public key is only needed in the final step of the unsigncryp-
tion algorithm. A simple solution to the above problem is to have the sender append
a short string IDS that identifies him/her (or even his public key) to the message that
is being signcrypted. The receiver then has to perform an online lookup in a public
repository to fetch the appropriate public key pkS .

The syntax of the unsigncryption algorithm is then slightly modified as this
algorithm does not take the sender’s public key pkS as input any longer. A similar
modification can be made to the scheme of Fig. 5.1.
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5.6.3 Security

The original version of the scheme [124] was shown by Tan [188] to be vulnerable
to a chosen ciphertext attack taking advantage of a key substitution attack on the
underlying signature scheme [42, 202]. However, protecting the scheme against the
attack of Tan [188] is rather straightforward using a standard countermeasure to
immunize signature schemes from key substitution attacks: it suffices to hash the
signer’s public key along with the message to be signed. The resulting scheme is
even more efficient than the improvement of Ma [128] (subsequently also broken
by Tan [189]) as it allows for shorter detachable signatures.

The message confidentiality and existential signature unforgeability, respectively,
rely (in the random oracle model) on the intractability of the q-Diffie–Hellman
Inversion and q-strong Diffie–Hellman assumptions.

For convenience, the message confidentiality is proved under an equivalent for-
mulation of the q-DHI assumption, which we call the (q + 1)-exponent problem in

(G1,G2). This consists of computing g(x
q+1)

1 ∈ G1 given (g1, g2, gx
2 , . . . , g(x

q )
2 ). A

proof of the following result can be found in [41] but we give it for completeness.

Lemma 5.1 The q-Diffie–Hellman Inversion problem can be formulated as the

problem of computing g(x
q+1)

1 on input of (g1, g2, gx
2 , g(x

2)
2 , . . . , g(x

q )
2 ) ∈ G

q+1.

Proof Given a sequence of elements (g1, g2, gx
2 , . . . , g(x

q )
2 ), where x is uniformly

chosen in Z
∗
p, for which g(x

q+1)
1 should be found, one can easily construct a q-DHI

instance (y1, y2, y A
2 , y(A

2)
2 , . . . , y(A

q )
2 ) by setting

y1 = ψ(y2) y2 = g(x
q )

2 y A
2 = g(x

q−1)
2 . . . y(A

q )
2 = g2

This implicitly defines the value A = 1/x . Any algorithm that computes the q-DHI

solution y1/A
1 thus reveals the value g(x

q+1)
1 . ��

Theorem 5.3 The scheme is FSO/FUO-IND-CCA2 secure in the random oracle
model assuming that the q-DHI problem is intractable and that the symmetric
encryption scheme is IND-CPA secure. For any adversary A running in time tA and
making at most qsc signcryption queries, qusc unsigncryption queries, qHi queries
to random oracles Hi (i = 1, 2, 3), and qH ′ queries to H ′, we have

AdvA(tA, k) ≤ qusc

2k−2
+ (qsc + qusc)(qsc + qusc + qH3)+ q

2k−1

+ Advq-DH I
B (t ′, k)+ Advind-cpa-sym

B (t ′, |K|)

where Advind-cpa-sym
B (t ′, |K|) is defined as in Theorem 5.1 while Advq-DH I

B (t ′, k)
stands for the maximal probability of solving the q-DHI problem within running
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time t ′ ≤ tA+O(qH2+qH3qusc)tp+O(q2+qH ′ +qsc+qusc)texp when the security
parameter is k and tp and texp denote the time complexity of a pairing evaluation
and that of an exponentiation in G2, respectively.

Proof The proof proceeds with a sequence of games. The first game is the real
attack game, while in the final game the adversary has no better advantage than a
passive adversary against the symmetric encryption scheme (Enc, Dec). Throughout
the sequence, we call Si the event that the adversary A wins (by correctly guessing
the bit d ∈ {0, 1} chosen by the challenger B in the challenge phase) in Game i .
Game 1 is the real attack game. The adversary A is provided with a random gen-

erator h
R← G2, its image g = ψ(h) ∈ G1, as well as a receiver’s public key

pkU = X = hx . Throughout the game, the simulator B uses the private key
skU = x to answer signcryption and unsigncryption queries. Random oracle queries
are answered by outputting random values in the appropriate range. This is done
consistently in that, if an oracle is queried twice on the same input, the same output
is returned by B. To keep track of those queries, lists L ′, L1, L2, and L3 are used
to bookkeep all inputs and the matching outputs for oracles H ′, H1, H2, H3. In the
middle point of the game, A outputs a pair of messages (m0,m1) and a sender’s
private key sk∗S = x∗S . To generate the challenge ciphertext (c∗1, c∗2, c∗3), the simulator

B flips a fair binary coin d
R← {0, 1}, randomly chooses γ ∗ R← Z

∗
p, and generates

(c∗1, c∗2, c∗3) as c∗1 = gr∗ , c∗2 = (γ ∗‖b∗m)⊕ H2(c∗1‖X‖ψ(X)r∗), and c∗3 = Encτ∗(md)

where r∗ = γ ∗/(x∗S + H1(b∗m‖md‖pk∗S)), τ ∗ = H3(γ
∗‖b∗m‖X‖ψ(X)r∗) ∈ K, and

the bit b∗m ∈ {0, 1} is determined as b∗m = H ′(x∗S,md). In this game, the adversary
has advantage |Pr[S1] − 1/2|.
Game 2 modifies the generation of the public generator h ∈ G2 and the public

key X , namely, B defines values (g1, g2, gx
2 , g(x

2)
2 , . . . , g(x

q )
2 ) ∈ G1 × G

q+1
2 for a

randomly chosen x
R← Z

∗
p. To generate h ∈ G2, g = ψ(h) ∈ G1 and a public

key X = hx ∈ G2, B picks w1, . . . ,wq−1
R← Zp, expands the polynomial f (z) =

∏q−1
i=1 (z+wi ) =∑q−1

i=0 ci zi , and uses it to obtain a random generator h ∈ G2 and a
public key X . These can be obtained by first computing

h′ =
q−1
∏

i=0

(g(x
i )

2 )ci = g f (x)
2 and X ′ =

q
∏

i=1

(g(x
i )

2 )ci−1 = gx f (x)
2 = h′x

We call F2 the event that h′ is the identity element of G (i.e., because f (x) = 0
when one of the wi happens to be the exponent x). Since there are q − 1 values wi

and x is chosen at random, we have that the probability that f (x) = 0 is bounded
by (q − 1)/p. It is easy to see that Game 1 and Game 2 are identical unless event
F2 occurs. Hence, |Pr[S1] − Pr[S2]| ≤ Pr[F2] ≤ (q − 1)/p ≤ (q − 1)/2k−1.
Game 3 changes the game so that part of the challenge ciphertext (c∗1, c∗2, c∗2) is

computed at the beginning of the game, namely, B chooses a
R← Zp at random

and sets the first ciphertext component as c∗1 = g(x+a) = ψ(X) · ga ∈ G1, which
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implicitly defines the encryption exponent as r∗ = a + x . When A chooses mes-
sages m0,m1 and a sender’s private key sk∗S in the challenge phase, B computes
γ ∗ = r∗(sk∗S + H1(b∗m‖md‖pk∗S)) after having determined the message-dependent
bit b∗m = H ′(sk∗S,md) and computes parts c∗2 and c∗3 of the ciphertext as speci-
fied by the description of the scheme. This change is only conceptual and we have
Pr[S2] = Pr[S3].
Game 4 is the same as game 3 but B aborts if a pre-challenge unsigncryption query
involves a ciphertext (c1, c2, c3) such that c1 = c∗1. Unless this event, that we call
F4, occurs, Game 3 and Game 4 proceed identically and we have Pr[S3 ∧ ¬F4] =
Pr[S4 ∧ ¬F4] and |Pr[S4] − Pr[S3]| ≤ Pr[F4]. Since c∗1 is independent of A’s view
until the challenge phase, we must have Pr[F4] ≤ qusc/p ≤ qusc/2k−1.
Game 5 modifies the treatment of random oracle queries and the way to handle
signcryption and unsigncryption queries. We note that, for the values wi ∈ Zp that

are roots of the polynomial f (z), B can compute qsc = q−1 pairs (wi , g
1

wi+x ) using
only (g1, g2, . . . , gxq

2 ) (and without using the underlying x). Using the technique of

[42], it obtains these pairs (wi , g
1

wi+x ) by expanding fi (z) = f (z)/(z + wi ) =
∏q−2

i=0 di zi and computing

g̃i =
q−2
∏

j=0

ψ(g(x
j )

2 )θd j = gθ fi (x)
1 = g

θ
f (x)

x+wi
1 = g

1
x+wi

for i = 1, . . . , q − 1. Queries to random oracles H ′, H1 and signcryption queries
are now processed as follows:

- H ′ queries: When a query H ′(α,mi ) is made, B checks if a tuple (α,mi , bmi )

appears in L ′. If so, it returns the previously defined bmi ∈ {0, 1}. If no such
tuple is found,

- if α = x (which B can test by checking if gx
2 = gα2 if it does not explicitly

know x , as will be the case in later games), B looks up entries of the form
(?,mi , bmi ) in L ′, returns the matching bmi if such an entry is found, and
replaces the entry by (α,mi , bmi ). If no entry (?,mi , bmi ) is found, B responds

with a random bmi

R← {0, 1} and stores (x,mi , bmi ) in L ′.
- if α = x , B returns a random b

R← {0, 1} and stores (α,mi , b) in L ′.

- H1 queries: These queries are indexed by a counter t that is initially set to 1.
When a triple δ‖m‖X (involving the challenge public key X ) is submitted in a
H1 query for a new message m, B looks up L ′ for a record (?,m, bm) (where ?
is a placeholder for a currently unknown value). If no such record is found, B
picks a random bit bm

R← {0, 1} and stores (?,m, bm) in L ′ so that bm will be
associated with the message m from this point forward. The treatment of the hash
query H1(δ‖m‖X) then depends on δ ∈ {0, 1}, namely, if δ = bm , B returns wt ,
stores (δ,m, X,wt ) in L1, and increments the counter t (in such a way that B
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is able to create a valid signature on m). Otherwise (i.e., if δ = bm), B returns a

random c
R← Z

∗
p and stores (δ,m, X, c) in L1. Should H1 be queried again on the

same δ‖m‖X later on, B will look up L1 and output the value that was defined at
the first occurrence of the query.

- H2 queries are now processed using two lists L2 and L ′2. On input Y1,i‖Y2,i‖Y3,i :
B first checks if H2 was previously queried on the same input and, if
so, returns the previously defined value. Otherwise, B checks if the tuple
(h,Y1,i ,Y2,i ,Y3,i ) is a valid co-Diffie–Hellman tuple (in our notation, we write
Y3,i = co-DHh(Y1,i ,Y2,i )) by verifying if

e(Y1,i ,Y2,i ) = e(Y3,i , h).

If it is, B checks if L ′2 contains a record (Y1,i ,Y2,i , ?, ζi ), for some ζi ∈ {0, 1}k+1

and where ? is a placeholder for a currently undetermined value. In this case, ζi

is returned and an entry (Y1,i ,Y2,i ,Y3,i , ζi , 1) is added in L2. If no entry of the

shape (Y1,i ,Y2,i , ?, ζi ) is in L ′2, B returns a string ζi
R← {0, 1}k+1 and inserts

(Y1,i ,Y2,i ,Y3,i , ζi , 1) in L2. If (h,Y1,i ,Y2,i ,Y3,i ) is not a co-Diffie–Hellman

tuple, B returns a random ζi
R← {0, 1}k+1 and the entry (Y1,i ,Y2,i ,Y3,i , ζi , 0)

is added in L2.
- H3 queries: When a query H3(γ ‖bm‖pkR‖Y ) is made, B looks up the history

L3 of H3 queries. If it already contains a record (∗, pkR, γ, bm,Y, τ ) for any
value of ∗, then B returns τ ∈ K. Otherwise, B checks all entries of the form
(c1, pkR, γ, bm, ?, τ ), for some c1 ∈ G1, and tests whether one of them satisfies
Y = co-DHh(c1, pkR). If so, it returns the matching τ ∈ K and replaces the

record by (c1, pkR, γ, bm,Y, τ ) in L3. Otherwise, B returns a random τ
R← K

and stores (?, pkR, γ, bm,Y, τ ) in L3.
- Signcryption queries on a plaintext m, for an arbitrary receiver’s key pkR : We

assume that m was previously submitted in an H1 query and that the message-
dependent bit bm was previously defined. Since H1(bm‖m‖X) was (or will be)
defined to be w j for some j ∈ {1, . . . , t}, B knows that g̃ j = g1/(w j+x) appears
as a valid signature on m from A’s view. So, it computes c1 = g̃γj ∈ G1

for some γ
R← Z

∗
p. It then checks if L2 contains an entry (c1, pkR,Y3, ζ, 1)

(indicating that Y3 = co-DHh(c1, pkR)) or if L ′2 contains a record of the form
(c1, pkR, ?, ζ ). If so, B sets c2 = (γ ‖bm) ⊕ ζ ∈ {0, 1}k+1. Otherwise, it sets

c2
R← {0, 1}k+1 and inserts

(

c1, pkR, ?, (γ ‖bm) ⊕ c2
)

in L ′2. If L3 happens to
already contain an entry (∗, pkR, γ, bm, ., τ ) comprising this particular γ , B fails

(we call F5 this event). Otherwise, it picks a random symmetric key τ
R← K, sets

c3 = Encτ (m), and stores a record (c1, pkR, γ, bm, ?, τ ) in L3 (in such a way
that a subsequent H3(γ ‖bm‖pkR‖co-DHh(c1, pkR)) obtains the answer τ ). The
resulting triple (c1, c2, c3) is then returned to A.

- Unsigncryption queries: When A submits a ciphertext C = (c1, c2, c3) together
with a sender’s public key pkS , B checks whether list L2 contains the unique
entry (c1, X,Y, ζ, 1) for some elements Y ∈ G1 and ζ ∈ {0, 1}k+1 (indicating
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that Y = co-DHh(c1, X)) or whether L ′2 contains the entry (c1, X, ?, ζ ) for some
ζ ∈ {0, 1}k+1:

• If it does, B obtains (γ ‖bm) = c2 ⊕ ζ ∈ {0, 1}k+1, τ = H3(γ ‖bm‖X‖Y )
(by simulating H3) and finally m = Decτ (c3). Finally, B extracts σ = c1/γ

1
and returns the plaintext m and the signature σ if the verification equation
e(σ, pkS · hH1(bm‖m‖pkS)) = e(g, h) is satisfied.

• If it does not, B randomly picks ζ
R← {0, 1}k+1, τ

R← K, and
inserts (c1, X, ?, ζ ) into the list L ′2 (so that a subsequent H2 query on
(c1, X, co-DHh(c1, X)) will be assigned the output ζ ). It computes (γ ‖bm) =
c2 ⊕ ζ ∈ {0, 1}k+1 and aborts in the unlikely event, which we call F ′5, that
the obtained γ already appears somewhere in L3 (since γ is almost uni-
form in Zp, event F ′5 only happens with negligible probability). Otherwise,
it stores (c1, X, γ, bm, ?, τ ) in L3 (in such a way that a subsequent query
H3(γ ‖bm‖X‖co-DHh(c1, X)) will receive the answer τ . The latter is used
to compute m ← Decτ (c3). The signature σ = c1/γ

1 is checked as above. If
the verification succeeds, B returns (m, σ ). Otherwise, it outputs ⊥.

Unless event F5 or F ′5 occurs at some query, A’s view is not affected by the above
modifications. We thus have |Pr[S5] − Pr[S4]| ≤ Pr[F5 ∨ F ′5]. It is easy to see that
Pr[F5∨ F ′5] ≤ (qsc+qusc)(qsc+qusc+qH3)/2

k−1 since list L3 never contains more
than qsc + qusc + qH3 entries.
Game 6 changes the simulation of the unsigncryption oracle again and adds the
following rule. After the challenge phase, if A queries the unsigncryption of a
ciphertext (c1, c2, c3) such that (c1, c2) = (c∗1, c∗2), B returns ⊥. We consider two
cases:

- If the query is made for the same sender pkS = pk∗S , we must have c3 = c∗3.
It is easy to see that for such a ciphertext the underlying values (γ, bm) must be
the same as the pair (γ ∗, b∗m) of the challenge ciphertext. Moreover, the same
symmetric key τ ∗ = H3(γ

∗‖b∗m‖X‖ψ(X)r∗) must be used to decipher c3 when
executing the unsigncryption operation. Since c3 = c∗3 and given that the sym-
metric encryption algorithm (Enc, Dec) is a bijection, the underlying plaintext
m = Decτ∗(c3) must be different from md . Therefore, unless we have a col-
lision H1(b∗m‖m‖pk∗S) = H1(b∗m‖md‖pk∗S) (which occurs with probability at
most 1/|p| < 1/2k−1 when H1 is viewed as a random oracle), the underlying
c∗1

1/γ ∗ cannot be a valid signature for m.
- If the query is made for a different sender’s public key pkS = pk∗S (in which

case, we may have c3 = c∗3 or c3 = c∗3), the unsigncryption operation would
still reveal the same values (γ, bm) = (γ ∗, b∗m) as in the challenge phase and
the same symmetric key τ ∗ = H3(γ

∗‖b∗m‖X‖c∗1 x ) must be used to decipher
c3. However, if we denote by m = Decτ∗(c3) the symmetric decryption of c3
under that symmetric key τ ∗, the ciphertext (c∗1, c∗2, c3)would only be accepted in
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previous games if logg(pkS)+ H1(b∗m‖m‖pkS) = x∗S + H1(b∗m‖md‖pk∗S). In the
random oracle model, this only occurs with probability at most 1/p < 1/2k−1.

Throughout all queries, the probability that the new rule causes the rejection of a
ciphertext that would not have been rejected in earlier games is at most qusc/2k−1.
We thus have |Pr[S6] − Pr[S5]| ≤ qusc/2k−1.
Game 7 brings two changes to the simulation and first modifies the generation of
the challenge ciphertext C∗ = (c∗1, c∗2, c∗3) again. When A outputs messages m0,m1
together with a sender’s private key sk∗S ∈ Z

∗
p in the challenge phase, B still com-

putes c∗1 by choosing a
R← Z

∗
p and setting c∗1 = g(x+a) = ψ(X)·ga ∈ G1. However,

sk∗S is no longer used to compute c∗2 and neither are the private key skU = x and
the encryption exponent r∗ = x + a. Elements (c∗2, c∗3) are generated by draw-

ing c∗2
R← {0, 1}k+1 at random and computing c∗3 = Encτ∗(md), for a random bit

d
R← {0, 1}, using a random key τ ∗ R← K. The other change is that the simulator

B immediately halts in the event, which we call E , that either of the following
situations occurs:

E.1 A queries oracle H ′ on a pair (x, ∗), where x = skU = logg(X) is the private
key. This can be tested by checking whether X = hα at each query H ′(α, ∗).

E.2 A queries oracle H2 on an input (c∗1‖X‖Y ) such that Y = co-DHh(c∗1, X).
E.3 A queries oracle H3 on an input (γ ‖bm‖X‖Y ) such that Y = co-DHh(c∗1, X).

We observe that B can detect E.1, E.2, and E.3 without knowing the private key
skU = x . Event E.1 directly allows solving a given instance of the q-DHI problem
and so do events E.2 and E.3 as we will see.

Let us assume for now that event E does not occur. Since the proof takes place in
the random oracle model, without knowing the value H2

(

c∗1‖X‖co-DHh(c∗1, X)
)

, A
has no information on c∗2 ⊕ H2

(

c∗1‖X‖co-DHh(c∗1, X)
)

and cannot realize that the
challenge ciphertext was not properly generated. Game 7 is then identical to Game
6, which allows writing Pr[S7∧¬E] = Pr[S6∧¬E] and |Pr[S7]−Pr[S6]| ≤ Pr[E].
Moreover, as long as event E.3 does not happen, the key τ ∗ that is used to compute
c∗3 is perfectly independent of A’s view and guessing the bit d ∈ {0, 1} boils down
to mounting a chosen plaintext attack on the symmetric cipher (Enc, Dec). Indeed,
before Game 6, the only situation where A could possibly manage to see the result of
a symmetric decryption under the key τ ∗ would be by creating a valid ciphertext of
the form (c∗1, c∗2, c3) and such ciphertexts are always rejected by the unsigncryption

oracle from Game 6 onwards. We thus have |Pr[S7] − 1/2| = Advind-cpa-sym
B (t ′),

where t ′ is a bound on B’s running time (which will be determined below).
We still have to explain how B can solve a q-DHI instance if event E.2 or event

E.3 (as defined above) occurs. When, via H2 or H3 queries, B obtains the co-Diffie–
Hellman value Y = co-DHh(c∗1, X) = gx(x+a) = gθx f (x)(x+a)

1 , it expands f ′(z) =
f ′(z)(z + a) = ∑q

j=0 f j z j ∈ Zp[z] and, since Y = ∏q
j=0 ψ(g

(x j+1)
2 )θ f j , B can

compute
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g(x
q+1)

1 = [

Y 1/θ ·
q−1
∏

j=0

ψ(g(x
j+1)

2 )− f j
] 1

fq ∈ G1

and solve the (q + 1)-exponent instance.
From a computational point of view, B’s running time is dominated by q + 2

multi-exponentiations with q elements that reach an overall cost of O(q2) exponen-
tiations. Computing f (z) also involves a cost in O(q2) while computing each fi (z)
implies O(q) operations like the computation of the product f (z)(z + a). When
handling H2 and H3 queries, B also has to compute O(qH2 + qH3qusc) pairings.
Finally, answering H ′ queries, signcryption queries, and unsigncryption queries also
implies exponentiations.

The probability that event E occurs can thus be bounded by

Pr[E] ≤ Advq-DH I
B (t ′)

where t ′ ≤ tA + O(qH2 + qH3qusc)tp + O(q2 + qH ′ + qsc + qusc)texp. ��
The scheme does not necessarily provide ciphertext unforgeability; however, it

can be shown to give signature unforgeability (see Sect. 5.4.2). This means that,
while it might be possible for an attacker to produce a new valid ciphertext from a
particular sender, it is not possible for an attacker to produce a ciphertext that gives
rise to a new message/signature pair. In other words, the resulting signature must
have been originally produced by the legitimate sender.

Theorem 5.4 If an ESUF-CMA adversary F has non-negligible advantage in the
game of Definition 5.6, we can break the q-Strong Diffie–Hellman assumption in
the random oracle model. More precisely, for any forger F running in time t, mak-
ing qHi queries to oracles Hi (i = 1, 2, 3), qusc unsigncryption queries, and qsc

signcryption queries, there exists an algorithm B solving the q-SDH problem for
q = qH1 such that

AdvF (tF , k) ≤
(

1+ 2 · (1− q − 1

2k−1

)−1
)

· Advq-SDH
B (t ′, k)

+ (qsc + qusc)(qsc + qusc + qH3)+ 2q − 1

2k−1

where t ′ ≤ tF + O(qH2 + qH3qusc)tp + O(q2 + qH ′ + qsc + qusc)texp and tp and
texp stand for the same quantities as in Theorem 5.3.

Proof The proof consists of a sequence of five games. The first one is the real attack
game described by Definition 5.6. In the last game, the simulator will be able to
extract a solution to a q-SDH instance from its interaction with the adversary. In
each game of the sequence, we call Wi the event that the adversary wins.

Game 1 is the real attack game. The adversary F is given a random generator h
R←

G2, g = ψ(h) ∈ G1 and a sender’s public key pkU = X = hx . Throughout the
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game, the simulator B uses the private key skU = x to answer signcryption and
unsigncryption queries. Random oracle queries are handled in the standard way, by
returning random values in the appropriate set and producing the same output if the
same input is queried several times. The forger F eventually outputs a ciphertext
C∗ = (c∗1, c∗2, c∗3) and a key pair (sk∗R, pk∗R). He/she wins if the unsigncryption of
C∗ under sk∗R and pku is a valid triple (m∗, b∗, σ ∗) with respect to pku and if this
triple was not trivially obtained by querying the signcryption oracle (as described in
Step 3 of Definition 5.6). The advantage of F is defined as AdvF = Pr[W1].
Game 2 modifies the generation of the generator h and the sender’s public key X
which are now calculated in the same way as in Game 2 in the previous proof.
The generators h ∈ G2, g = ψ(h) ∈ G1, that are given to the forger F as a part
of the output of the common key generation algorithm, and the public key X =
hx are generated as in Game 2 in the proof of Theorem 5.3, namely, B chooses a

random polynomial f (z) =∏q−1
i=1 (z+wi ), with w1, . . . ,wq−1

R← Zp. Given values

(g1, g2, gx
2 , . . . , g(x

q )
2 ), it computes h′ = g f (x)

2 , X ′ = h′x and finally h = h′θ ,

X = X ′θ where θ
R← Zp. If f (x) happens to be zero, B can directly solve the

problem as in the proof of Theorem 5.3. At the beginning of the game, B hands the
public key pku = X = hx to F . It is easy to see that Game 1 and Game 2 are
identical unless the polynomial f (z) accidentally cancels in x . This event, which
we call F2, occurs with probability bounded by (q − 1)/p. Hence, we have that
|Pr[W1] − Pr[W2]| ≤ Pr[F2] ≤ (q − 1)/2k−1.
Game 3 modifies the treatment of all queries and handles them exactly in the same
way as in game 5 in the proof of Theorem 5.3. In this game, the private key sku = x
is not explicitly used to answer queries. In particular, signcryption queries can be
dealt with without it since, after having calculated h and the public key, B knows

q − 1 pairs of the form (wi , g
1

wi+x ). We denote by F3 and F ′3 the events that B
fails when answering a signcryption and an unsigncryption query, respectively (i.e.,
the same events as F5 and F ′5 in the proof of Theorem 5.3). Unless either F3 or
F ′3 occurs at some query, A’s view will not be affected by these changes and we
have |Pr[W3] − Pr[W2]| ≤ Pr[F3 ∨ F ′3]. As in the proof of Theorem 5.3, we have
Pr[F3 ∨ F ′3] ≤ (qsc + qusc)(qsc + qusc + qH3)/p since list L3 always contains at
most qsc + qusc + qH3 records.
Game 4 introduces a failure event F4 which is the same as event E.1 in the proof
of Theorem 5.3 (namely A queries oracle H ′ on a pair (x, ∗)). Clearly, if event F4
occurs, B can detect it and directly solve the q-SDH instance. We thus find that
Pr[F4] ≤ Advq-SDH (B) and |Pr[W4] − Pr[W3]| ≤ Advq-SDH (B).
Game 5 raises a new failure event F5 and makes B abort when it occurs. When
the adversary F halts and outputs a ciphertext C∗ = (c∗1, c∗2, c∗3) and an arbitrary

recipient’s key pair (sk∗R, pk∗R = hsk∗R ), B looks up the values H2(c∗1‖pk∗R‖c∗1sk∗R )

and τ ∗ = H3(γ
∗‖bm∗‖pk∗R‖c∗1sk∗R ), where (γ ∗‖bm∗) = c∗2⊕ H2(c∗1‖pk∗R‖c∗1sk∗R ), in

the history of random oracle queries (and simulates random oracles for itself if nec-
essary). We define F5 to be the event that the hash value H1(bm∗‖m∗‖X) was never
defined by the simulation. Since H1 is modeled as a random oracle, the probability
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that A wins without having forced the simulation to define H1(bm∗‖m∗‖X) is at
most 1/p < 1/2k−1. We thus have |Pr[W5] − Pr[W4]| ≤ Pr[F5] ≤ 1/2k−1.

We will now give an upper bound for Pr[W5]. When F outputs a fake signature
embedded in a ciphertext C∗ = (c∗1, c∗2, c∗3) and the key pair (sk∗R, pk∗R = hsk∗R ),
B can recover the fake triple

(

m∗, bm∗ , σ ∗ = g1/(H1(bm∗‖m∗‖X)+x)
)

that must be

contained in C∗ by successively computing (γ ∗‖bm∗) = c2 ⊕ H2(c∗1‖pk∗R‖c∗1sk∗R ),

τ ∗ = H3(γ
∗‖bm∗‖pk∗R‖c∗1sk∗R ), m∗ = Decτ∗(c∗3), and σ ∗ = c∗1

1/γ ∗ .
Let us first assume that m∗ was never the input of a signcryption query. Then,

with probability 1/2, bm∗ differs from the message-dependent bit b∗m∗ (that indicates
how m∗ should be signed with the private key corresponding to pku = X in the
underlying signature scheme) since the latter is independent of F’s view. Recall that

we have σ ∗ = g1/(x+h∗1) = g
θ f (x)/(x+h∗1)
1 , where h∗1 = H1(bm∗‖m∗‖X). As long as

bm∗ = b∗m∗ , we have h∗1 ∈ {w1, . . . ,wq−1} with probability at least 1 − (q − 1)/p
(since H1 is a random oracle) and (x + h∗1) does not divide f (x). In this case, a
q-SDH pair (h∗1, g∗) can then be extracted by expanding f (z)/(z + h∗1) into

γ−1

z + h∗1
+

q−2
∑

i=0

γi z
i

and computing g∗ = [

σ ∗1/θ ·∏q−2
i=0 ψ(g

(xi )
2 )−γi

] 1
γ−1 .

In the event that m∗ was the input of some signcryption query, the latter was
answered by generating the underlying signature as σ = g1/(x+H1(b∗m∗‖m∗‖X)) using
the message-dependent bit b∗m∗ . It comes that the bit bm∗ must necessarily be differ-
ent from b∗m∗ as, according to Definition 5.6, the triple (m∗, bm∗ , σ ∗) would not be a
forgery otherwise. Since bm∗ = b∗m∗ , B can extract an SDH pair as in the first case.
In either situation, we find that Pr[W5] ≤ 2 · Advq-SDH (B)+ (q − 1)/2k−1. ��

In comparison with other schemes, the disadvantage of this one is a security
reduction relying on somewhat strong assumptions as the value q must be fairly
large.
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