Chapter 2
Security for Signcryption: The Two-User Model

Jee Hea An and Tal Rabin

2.1 Introduction

Signcryption is a cryptographic primitive designed to simultaneously provide con-
fidentiality and integrity protection in a communication (see Chap. 1 for a more
detailed description of the role of signcryption in a communication architecture).
It is a public-key primitive and can be viewed as the public-key version of the
symmetric-key primitive known as authenticated encryption; indeed, the two primi-
tives share many similarities at a high level. Signcryption was originally proposed by
Zheng [203, 204] with the intention that the primitive should satisfy “Cost(Signature
& Encryption) < Cost(Signature) 4+ Cost(Encryption).” This inequality can inter-
preted in a number of ways:

e A signcryption scheme should be more computationally efficient than a naive
combination of public-key encryption and digital signatures.

e A signcryption scheme should produce a signcryption “ciphertext” which is
shorter than a naive combination of a public-key encryption ciphertext and a
digital signature.

e A signcryption scheme should provide greater security guarantees and/or greater
functionality than a naive combination of public-key encryption and digital sig-
natures.

Of course, we would ideally aim to produce a scheme which gave all three advan-
tages; however, in the absence of such a scheme, any one of these advantages may
be useful depending on the nature of the application for which signcryption is being
used. A discussion of the potential uses of signcryption in practical applications is
given in Chap. 12.

This chapter provides a formal definition for the security of signcryption in the
two-user setting and analysis of the security of signcryption schemes that are con-
structed by generically composing signature and encryption schemes in the public-

T. Rabin(=)
IBM T.J. Watson Research Center, Hawthorne, NY, USA
e-mail: talr@us.ibm.com

A.W. Dent, Y. Zheng (eds.), Practical Signcryption, Information Security 21
and Cryptography, DOI 10.1007/978-3-540-89411-7_2,
© Springer-Verlag Berlin Heidelberg 2010

22 J. H. An and T. Rabin

key setting. The first attempt to produce security models for signcryption was given
by Steinfeld and Zheng [184]; however, this work only proposed a security model
for the integrity protection property of a signcryption scheme. This chapter will be
based on the more complete treatment given by the work of An et al. [10]. The
problem of defining the security of signcryption in the public-key setting is more
involved than the corresponding task in the symmetric setting [26, 117] due to the
asymmetric nature of the former. The asymmetry of keys makes a difference in the
notions of both authenticity and privacy on two major fronts which are addressed in
this chapter.

The first difference for the public-key setting is that the security of the signcryp-
tion needs to be defined in the multi-user setting, where issues with users’ identities
need to be addressed. In contrast, authenticated encryption in the symmetric setting
can be fully defined in a much simpler two-user setting. We argue that there is
interest in the two-user setting in the public-key setting even though it does not
provide all the security guarantees. There are quite a few subtle issues with defining
the security of signcryption in the (simpler) two-user setting and thus starting in this
setting highlights these delicate issues and is non-trivial.

The asymmetry of the public-key setting not only makes a difference in the multi-
user and two-user settings but also makes a difference in the adversary’s position
depending on its knowledge of the keys. We give two definitions for security of
signcryption depending on whether the adversary is an “outsider” (i.e., a third party
who only knows the public information) or “insider” (i.e., a legal user of the net-
work, either the sender or the receiver, or someone that knows the secret key of
either the sender or the receiver). We call the former “outsider security” and the
latter “insider security.”

In this chapter, we will define security notions for both insider and outsider
security in terms of both privacy (i.e., indistinguishability against chosen ciphertext
attack, IND-CCA?2) and authenticity (i.e., strong unforgeability against chosen mes-
sage attack, SUF-CMA). We then analyze the security of the signcryption schemes
that are constructed by generically composing signature and encryption schemes in
the following three methods: Encrypt-and-Sign (£&S), Encrypt-then-Sign (£1S5),
and Sign-then-Encrypt (St€). As observed in [26, 117] in the symmetric setting, we
show that the parallel £&S method does not provide even the weak IND-CPA secu-
rity for privacy nor does it provide the strongest sUF-CMA security for authenticity
(although it provides slightly weaker UF-CMA security) in either insider or outsider
security models.

For the sequential £¢S and St€ methods, we consider the following cases: secu-
rity corresponding to the operation performed last (i.e., authenticity in the £tS
method and privacy in the St€ method) and security corresponding to the operation
performed first (i.e., privacy in the £¢S method and authenticity in the St€ method).
We show that the security of the last operation is preserved in both the insider and
the outsider security models—that is, the £¢S method inherits the authenticity prop-
erty of the base signature scheme and the St€ method inherits the privacy prop-
erty of the base encryption scheme. However, we show that the security of the first
operation may or may not be preserved depending on the security models and the

2 Security for Signcryption: The Two-User Model 23

strengths of security considered. In the strong insider security model, the security of
the first operation is not preserved against the strongest security notions of privacy
and authenticity (i.e., IND-CCA2 and sUF-CMA security) although it is preserved
against weaker security notions (e.g., IND-CPA, IND-gCCA2 [10], and UF-CMA
security). In the weaker outsider security model, on the other hand, the security of
the first operation can even be amplified as long as the security of the last operation
is strong enough, exactly as in the symmetric setting [9, 26, 117].

2.2 Definition of Signcryption in the Two-User Setting

The definition of signcryption is a little bit more involved than the corresponding
definition of authenticated encryption in the symmetric setting. Indeed, in the sym-
metric setting, we only have one specific pair of users who (1) share a single key;
(2) trust each other; (3) “know who they are”; and (4) only care about being pro-
tected from “the rest of the world.” In contrast, in the public-key setting, each user
independently publishes its public keys, after which it can send/receive messages
to/from any other user. In particular, (1) each user should have an explicit identity
(associated with its public key); (2) each signcryption has to explicitly contain the
(presumed) identities of the sender S and the receiver R; (3) each user should be
protected from every other user. As we have said, complete security notions for
signcryption schemes should be defined in the multi-user setting. However, the two-
user setting provides important insights into the subtleties of signcryption and so we
will provide the definitions for the two-user setting as a gentle introduction to the
subject. We will provide full multi-user security models in Chap. 3.

2.2.1 Two Security Notions in the Two-User Setting

2.2.1.1 Syntax

A signcryption scheme IT consists of five algorithms, /T = (Setup, KeyGeng,
KeyGenp, Signcrypt, Unsigncrypt):

e The (possibly randomized) setup algorithm Setup takes as input a security
parameter 1¥ and outputs any common parameters param required by the sign-
cryption schemes. This may include the security parameter 1%, the description
of a group G and a generator g for that group, choices for hash functions or
symmetric encryption schemes, etc.

It is important to note that this algorithm does not output a secret key. In fact,
it may be important that the algorithm does not leak any information about the
common parameters except those values which are explicitly stated as being part
of the output. The security of the scheme may be jeopardized if extra information
about the common parameters is leaked; for example, if the common parameters
include two group elements g and /4, then security may be jeopardized if the setup

24 J. H. An and T. Rabin

algorithm leaks the discrete logarithm of & with the respect to g. Hence, all users
must trust that the setup algorithm is computed correctly and securely.

e The randomized sender key generation algorithm KeyGeng takes as input the
common parameters param and outputs a pair of keys (sks, pkg), where sk is the
sender’s signing key, which is kept secret, and pkg is the sender’s verification key
pair (pkg, pkg), which is made public; we write (sks, pkg) & KeyGeng(param).

e The randomized receiver key generation algorithm KeyGeny takes as input the
common parameters param and outputs a pair of keys (skg, pkp), where skg
is the receiver’s decryption key, which is kept secret, and pkp is the receiver’s

encryption key, which is made public; we write (skg, pkg) & KeyGenpy (param).
In a complete system, a user would have two key pairs: a pair (sks, pkg) which
is used when the user is sending a message and a pair (skg, pkr) which is used
when the user is receiving a message. It is possible for a user to have a single
key pair (sk, pk) which is used for both sending and receiving messages—this
issue is discussed in depth in Sect. 5.4—but the simpler two-key presentation
suits our purposes for now. We note that we may always set pk = (pkg, pkg)
and sk = (sks, skg) and so our presentation is an example of the more general
case.

e The randomized signcryption (sign/encrypt) algorithm Signcrypt takes as input
the common parameters param, the sender’s secret key skg, the receiver’s public
key pkg, and a message m from the associated message space M. It internally
flips some coins and outputs a signcryption ciphertext C; we will typically write
C <« Signcrypt(sks, pkp, m) or C < Signcrypt(m) (omitting param, sks
and pkg for brevity).

e The deterministic unsigncryption (verify/decrypt) algorithm Unsigncrypt takes
as input the common parameters param, the sender’s public key pkg, the
receiver’s secret key skg, and the signcryption ciphertext C. It outputs either
m € M or an error symbol L which indicates that the message was not
encrypted or signed properly. We write m <— Unsigncrypt(pkg, skg, C) or
m < Unsigncrypt(C) (again, omitting the common parameters and keys).

We require that Unsigncrypt(Signcrypt(m)) = m for any m € M.

2.2.1.2 Security of Signcryption

Fix the sender S and the receiver R. The security goal is to provide both authenticity
and privacy of communicated data. In the symmetric setting, since the sender and
the receiver share the same secret key, the only security model that makes sense is
one in which the adversary is modeled as a third party or an outsider who does not
know the shared secret key. However, in the public-key setting, the sender and the
receiver do not share the same secret key but each has his/her own secret key. Due
to this asymmetry of the secret keys, we need to protect the data not only from an
outsider but also from an insider who is a legal user of the system (i.e., the sender
or the receiver themselves or someone who knows either the sender’s secret key
or the receiver’s secret key). Hence, we have an additional security notion in the

2 Security for Signcryption: The Two-User Model 25

public-key setting and we call it insider security. As opposed to the insider security,
we call the security against an outsider outsider security, which is the security that
is also considered in the symmetric setting.

Outsider Security

We define security against the strongest security notions of authenticity (the analogs
of UF-CMA or sUF-CMA for digital signature schemes) and privacy (the analog
of IND-CCA2 for public-key encryption schemes). Weaker notions could easily
be defined as well. We assume that the adversary 4 has the public information
(pkg, pkg). It also has oracle access to the functionalities of both the sender and
the receiver. Specifically, it can mount a chosen message attack on the sender by
asking the sender to produce a signcryption C of an arbitrary message m. In other
words, A has access to the signcryption oracle. Similarly, it can mount a chosen
ciphertext attack on the receiver by giving the receiver any candidate signcryption
C and receiving back the message m (where m could be 1), i.e., A has access to the
unsigncryption oracle. Notice, A cannot by itself run either the signcryption or the
unsigncryption oracles due to the lack of corresponding secret keys sks and skg.

To break the UF-CMA security of the signcryption scheme, A has to come up
with a valid signcryption C (i.e., a ciphertext C for which the unsigncryption oracle
does not return L) of a “new” message m, which it did not ask the sender to signcrypt
earlier (note that A is not required to “know” m when producing C although A can
always compute m by querying the unsigncryption oracle with C). The signcryption
scheme is said to be outsider secure in the UF-CMA sense if any PPT A has a
negligible chance of succeeding in the UF-CMA attack. To break the sUF-CMA
security of the signcryption scheme, A has to come up with a valid signcryption C
which was not returned by the sender earlier (note that C’s unsigncryption output
m does not have to be “new”). Formally, we consider a game played between a
hypothetical challenger and a PPT attacker .A:

1. The challenger generates common parameters param il Setup(1%), a sender
key pair (sks, pkg) il KeyGeng(param), and a receiver key pair (skg, pkg) &
KeyGenpy (param).

2. The attacker runs A on the input (param, pkg, pkp). The attacker may query
a signcryption oracle with a message m € M to receive the signcryption

ciphertext C il Signcrypt(sks, pkg, m). The attacker may also query an
unsigncryption oracle with a ciphertext C to receive the message m <
Unsigncrypt(pkg, skr, C). The attacker terminates with the output of a cipher-
text C.

The attacker wins the UF-CMA game if (1) m < Unsigncrypt(pkg, skr, C) satis-
fiesm # L and (2) if m was never submitted to the signcryption oracle. The attacker
wins the SUF-CMA game if (1) m < Unsigncrypt(pkg, skg, C) satisfies m # L
and (2) the signcryption oracle never returned C. The signcryption scheme is said to

26 J. H. An and T. Rabin

be outsider secure in the (s)UF-CMA sense if every PPT attacker A has a negligible
chance of succeeding in the (s)UF-CMA attack.

To break the IND-CCA?2 security of the signcryption scheme, A has to come
up with two equal-length messages mg and m. One of these will be signcrypted
at random, the corresponding signcryption challenge C* will be given to A and .4
has to guess which message was signcrypted. Here, A is forbidden to query the
unsigneryption oracle on the challenge C*. Formally, we consider a game played
between a challenger and a PPT attacker A = (A;, A3):

1. The challenger generates common parameters param & Setup(1%), a sender
key pair (sks, pkg) il KeyGeng(param), and a receiver key pair (skg, pkg) il
KeyGenp (param).

2. The attacker runs A; on the input (param, pkg, pkg). The attacker may query
a signeryption oracle with a message m € M to receive the signcryption

ciphertext C & Signcrypt(sks, pkp, m). The attacker may also query an
unsigneryption oracle with a ciphertext C to receive the message m <—
Unsigncrypt(pkg, skr, C). The attacker terminates with the output of two
equal-length messages mg, m| € M and some state information c.

3. The challenger chooses b & {0, 1} and computes the challenge ciphertext C* &
Signcrypt(sks, pkg, mp).

4. The attacker runs A, on the input of the challenge ciphertext C* and the state
information «. The attacker may query the signcryption and unsigncryption ora-
cles as before, with the exception that the attacker is forbidden from submitting
the ciphertext C* to the unsigncryption oracle. The attacker terminates with the
output of a bit »'.

The attacker wins if b = b’ and the attacker’s advantage is defined to be
e=|Prib=10b"]-1/2

The signcryption scheme is said to be outsider secure in the IND-CCA2 sense if
every PPT attacker .4 has a negligible advantage in the IND-CCA?2 attack.

Insider Security

Security notions for insider security are similar to those for outsider security, except
that the attacker is given one of the private keys of the users. In the (s)UF-CMA
game, the attacker is given the private key of the receiver, indicating that the attacker
is the receiver and that the signcryption scheme prevents a receiver from forging
a signcryption ciphertext that purports to be from the sender. This is a necessary
condition if non-repudiation is to be achieved. In the IND-CCA?2 game, the attacker
is given the private key of the sender, indicating that the attacker is the sender
and that the signcryption scheme prevents a sender from deciphering a signcryp-
tion ciphertext that has previously been produced. This means that the signcryption

2 Security for Signcryption: The Two-User Model 27

scheme protects the confidentiality of messages even if the sender’s private key is
subsequently leaked to an attacker.
The formal model for insider (s)UF-CMA security is as follows:

1. The challenger generates common parameters param & Setup(lk), a sender
key pair (sks, pkg) & KeyGeng(param), and a receiver key pair (skg, pkg) &
KeyGeng (param).

2. The attacker runs A on the input (param, pkg, skr, pkg). The attacker may query
a signcryption oracle with a message m € M to receive the signcryption cipher-

R .
text C < Signcrypt(sks, pkgr, m). (The attacker need not be given access to
an unsigncryption oracle as it can compute the unsigncryption algorithm itself
using skg.) The attacker terminates with the output of a ciphertext C.

The attacker wins the UF-CMA game if (1) m < Unsigncrypt(pkg, skr, C) satis-
fiesm # L and (2) if m was never submitted to the signcryption oracle. The attacker
wins the sSUF-CMA game if (1) m < Unsigncrypt(pkg, skgr, C) satisfies m # L
and (2) the signcryption oracle never returned C. The signcryption scheme is said to
be insider secure in the (s)UF-CMA sense if every PPT attacker A has a negligible
chance of succeeding in the (s)UF-CMA attack.

The formal model for insider IND-CCAZ2 security is as follows:

1. The challenger generates common parameters param il Setup(1¥), a sender
key pair (skg, pkg) & KeyGeng(param), and a receiver key pair (skg, pkg) &
KeyGenpy (param).

2. The attacker runs .A; on the input (param, pkg, sks, pkg). The attacker may
query an unsigncryption oracle with a ciphertext C to receive the message
m < Unsigncrypt(pkg, skg, C). (Again, the attacker does not need to be given
access to a signcryption oracle as it can compute the signcryption functionality
using sks.) The attacker terminates with the output of two equal-length messages
mq, mi; € M and some state information c.

3. The challenger chooses b & {0, 1} and computes the challenge ciphertext C* &
Signcrypt(sks, pkgp, mp).

4. The attacker runs A, on the input of the challenge ciphertext C* and the state
information «. The attacker may query the unsigncryption oracle as before, with
the exception that the attacker is forbidden from submitting the ciphertext C* to
the unsigncryption oracle. The attacker terminates with the output of a bit &'.

The attacker wins if b = b’ and the attacker’s advantage is defined to be
e =|Pr[b=b"]1-1/2]

The signcryption scheme is said to be insider secure in the IND-CCA2 sense if
every PPT attacker .4 has a negligible advantage in the IND-CCA?2 attack.

We also present an equivalent, but more elegant, definition of the insider security
model. This more elegant treatment is rarely used in practice but does highlight the

28 J. H. An and T. Rabin

relationship between signcryption schemes and the related concepts of public-key
encryption and digital signatures. We note that given any signcryption scheme
IT = (Setup, KeyGeng, KeyGenp, Signcrypt, Unsigncrypt), we can define a
corresponding induced signature scheme S = (SigKeyGen, Sign, Verify) and
encryption scheme £ = (EncKeyGen, Encrypt, Decrypt):

e Signature scheme S. The key generation algorithm SigKeyGen runs param
& Setup(lk), (sks, pkg) & KeyGeng(param), and (skg, pkp) & KeyGenp
(param). We set the signing key to sk*8 = (param, sks, pkg, pkg) and the ver-
ification key to pk”g = (param, pkg, skg, pkg), namely, the public verification
key (available to the adversary) contains the secret key of the receiver R. To
sign a message m, Sign(m) outputs C = Signcrypt(m), while the verification
algorithm Verify(C) runs m < Unsigncrypt(C) and outputs T if and only
if m # L. We note that the verification is indeed polynomial time since pk*¢
includes skg.

e Encryption scheme E£. The key generation algorithm EncKeyGen runs
param & Setup(lk), (sks, pkg) & KeyGeng(param), and (skg, pkp) &
KeyGenp (param). We set the encryption key to pk®*® = (param, sks, pkg, pkg)
and the decryption key to sk = (param, pkg, skg, pkr), namely the public
encryption key (available to the adversary) contains the secret key of the sender S.
To encrypt a message m, Encrypt(m) outputs C = Signcrypt(m), while the
decryption algorithm Decrypt(C) simply outputs Unsigncrypt(C). We note
that the encryption is indeed polynomial time since pk®*“ includes skg.

The signcryption scheme is insider (s)UF-CMA secure if the induced signature
scheme is (s)UF-CMA secure. The signcryption scheme is insider IND-CCA2
secure if the induced encryption scheme is IND-CCA2 secure.

2.2.2 Discussions on the Security Notions

2.2.2.1 Should we Require Non-Repudiation?

We note that the conventional notion of digital signatures supports non-repudiation.
Namely, the receiver R of a correctly generated signature s of the message m can
hold the sender S responsible for the contents of m. Indeed, presenting s to a third
party is sufficient for R to prove that m was indeed signed by S as long as the
signature scheme that is used to generate s is unforgeable and publicly verifiable. On
the other hand, non-repudiation does not automatically follow from the definition of
signcryption. Although signcryption allows the receiver to be convinced that m was
sent by S, it does not necessarily enable a third party to verify this fact because the
verification of the authenticity of the message m may involve the receiver’s secret
key, depending on how the signcryption scheme is built.

2 Security for Signcryption: The Two-User Model 29

We believe that non-repudiation should not be part of the definition of sign-
cryption security because the necessity of this property varies depending on the
applications. Indeed, non-repudiation might be needed in some applications, while
explicitly undesirable in others (e.g., this issue is the essence of undeniable [58]
and chameleon [119] signature schemes). We will therefore not discuss this issue
any further in this chapter. The issue of non-repudiation in signcryption schemes is
discussed further in Sects. 4.6 and 6.5.

2.2.2.2 Insider vs. Outsider Security

We illustrate some of the differences between insider and outsider security. For
example, insider security for authenticity implies non-repudiation “in principle.”
Namely, non-repudiation is certain at least when the receiver R is willing to reveal
its secret key skg (since this induces a regular signature scheme) and may be pos-
sible by other means (e.g., with the use of an appropriate zero-knowledge proof).
In contrast, outsider security leaves open the possibility that the receiver R can
generate—using its secret key—valid signcryptions of messages that were not actu-
ally sent by the sender S. In such a case, non-repudiation cannot be achieved no
matter what the receiver R does.

Despite the above issues, however, it might still seem that the distinction between
insider and outsider security is a bit contrived, especially for privacy. Intuitively,
outsider security protects the privacy of the receiver R from outside intruders who do
not know the secret key of the sender S. On the other hand, insider security assumes
that the sender S is the intruder attacking the privacy of the receiver R. But since the
sender S is the only user that can send valid signcryptions from S to R, this seems to
make little sense. Similarly for authenticity, if non-repudiation is not an issue, then
insider security seems to make little sense as it assumes that the receiver R is the
intruder attacking the authenticity of the sender §, and, simultaneously, the only user
that needs to be convinced of the authenticity of the (received) data. In many settings
outsider security might be all one needs for privacy and/or authenticity. Still, there
are some cases where the extra strength of the insider security might be important.
For example, assume an adversary A happens to steal the key of the sender S. Even
though now A can send forged messages “from S to R,” we still might not want A
to understand previous (or even future) recorded signcryptions sent from the honest
sender S to the receiver R. Similarly, if an adversary A happens to steal the key of
the receiver R, we still might not want A to send forged messages “from S to R,”
although A can now understand signcryption messages sent from the honest sender
S to the receiver R. Insider security will meet these security requirements, while the
outsider security might not.

Finally, we note that achieving outsider security could be significantly easier than
insider security. One such example will be seen in Theorems 2.3 and 2.4. Another
example is given by An [7] and shows that authenticated encryption in the symmetric
setting could be used to build outsider secure signcryption, but not insider secure
signcryption. A final example is the outsider secure signcryption KEM produced by
Dent [73] which is discussed in Sect. 7.3. In summary, one should carefully examine
if one really needs the extra guarantees of insider security.

30 J.H. An and T. Rabin
2.3 Generic Compositions of Signature and Encryption

In this section, we discuss three methods of constructing signcryption schemes that
are based on generic composition of signature and encryption: Encrypt-and-Sign
(£&S), Sign-then-Encrypt (St€), and Encrypt-then-Sign (€£1S5).

2.3.1 Construction

Let £ = (EncKeyGen, Encrypt, Decrypt) be an encryption scheme and S =
(SigKeyGen, Sign, Verify) be a signature scheme. All three methods use the same
common parameter algorithm and key generation algorithms—see Fig. 2.1. Essen-
tially, the schemes require no common parameters, while the sender and receiver
key generation algorithms are the key generation algorithms for the signature and
encryption schemes, respectively. The three construction methods are the “Encrypt-
and-Sign” (£&S) method—see Fig. 2.2; the “Encrypt-then-Sign” (£1S) method—
see Fig. 2.3; and the “Sign-then-Encrypt” (St£) method—see Fig. 2.4.

setup(1#): KeyGeng(param): KeyGeng(param):
param «— 1 (sk*%8 pksie) & 5igKeyGen(1) (skene pkere) & EnckeyGen(1¥)
Return param (sks, pkg) — (sk°i€ pk*i€) (skg,phyg) — (ske", pke"e)
Return (sks, pkg) Return (skg,pkg)

Fig. 2.1 The key generation algorithms for the generic compositions

Signcrypt(sks,pkg,m): Unsigncrypt(pkg,skr,C):
Parse sks as sk*€ Parse pkg as pk*'8
Parse pky as pk®™ Parse skg as sk
¢ & Encrypt (pke™,m) Parse C as (c,0)

m «— Decrypt(sk,c)
If Verify(pk,m, o) = L then return L
Otherwise return m

o & sign(sk® m)
C «— (c,0)
Return C

Fig. 2.2 The Encrypt-and-Sign (£&S) scheme

Signcrypt(sks,ka,m): Unsigncrypt (pks,skR,C):
Parse skg as sk*'¢ Parse pkg as pk™¢
Parse pky as pk®™© Parse skg as sk
¢ & Encrypt (pke™, m) Parse C as (c,0)
o & Sign(sk*®,c) Ifveri fy(pH’&m,)g) = 1 thenreturn L
C— (c.0) m <« Decrypt(sk,c)
Return C Return m

Fig. 2.3 The Encrypt-then-Sign (£1S) scheme

2 Security for Signcryption: The Two-User Model 31

Signcrypt(sks,pkg,m): Unsigncrypt(pk, skr,C):
Parse skg as sk*8 Parse pkg as pk™8
Parse pky as pk®"™ Parse skg as sk°™
o & sign(sk8,m) m||o « Decrypt(sk”,C)
c& Encrypt (pk, m|| o) If Verify(pk®¥,m,0) = L then return L

Return C Otherwise return m

Fig. 2.4 The Sign-then-Encrypt (St£) scheme

2.3.2 Security of the Parallel Composition Method

Among the above three generic composition methods, the “Encrypt-and-Sign”
(£&S) method allows computing encryption and signature in parallel, while in the
other two methods, they are computed sequentially. However, in terms of security,
it is easy to see that £&S does not preserve privacy since the signature will reveal
information about the message m (regardless of whether the adversary is an insider
or an outsider). To be more formal, we give an attacker A = (A, Ay) against the
IND-CCA2 property of the signcryption scheme. The attack works in two phases:

e The attacker A; outputs two distinct equal-length messages from the message
space (mq, m1).

The challenger randomly signcrypts one message to give a challenge ciphertext

(c*, 0%) & Signcrypt(sks, pkg, mp). This challenge ciphertext is given to the
attacker.

e The attacker A; checks whether o * is a valid signature on m or m| by computing
Sign(pkg, mo, 0*) and Sign(pkg, my, c*). The attacker returns the appropriate
bit b.

This may seem like a technicality, but the prospect of the digital signature leaking
information about the message is very real. There is no requirement on the digital
signature to preserve the confidentiality of the message. Indeed, digital signatures
with message recovery, discussed in Sect. 1.3.2, guarantee that the signature will
reveal the underlying message. These signature schemes still meet the strong notions
of (s)UF-CMA security, but have absolutely no confidentiality properties.

Although £&S does not preserve privacy, it is easy to see that it preserves the
UF-CMA security. Intuitively, if an adversary against the UF-CMA security of the
signcryption scheme built using £&S succeeds, it means it succeeded in forging a
signature for a “new’” message, which is exactly what it means to break the UF-CMA
security of the underlying signature scheme. However, for the sUF-CMA security (a
stronger authenticity property), the £&S method does not necessarily yield a secure
signcryption scheme for a similar reason as in the privacy case (both the encryption
part and the signature part need to be unforgeable). Notice that these results hold in
both insider and outsider security models.

32 J.H. An and T. Rabin
2.3.3 Security of the Sequential Composition Methods

In the strong insider security model, where the adversary knows all of the secret keys
except for the one being attacked, signcryption security can only be based on the
security of the underlying component whose secret key is unknown to the adversary.
For example, in the case of confidentiality, the only key that the adversary does not
know is the private key of the encryption scheme. In other words, the privacy of the
signcryption scheme can only be based on the security of the public-key encryption
scheme. Similarly, the integrity protection property of the signcryption scheme can
only be based on the security of the digital signature scheme. Hence, preserving the
security property of the underlying component is the best we can hope to achieve
with insider security. However, we show that this may not always be achieved—that
is, in the sequential composition methods (i.e., £tS and St&), depending on the
order of composition and the strength of the security property considered, the secu-
rity of the underlying component may or may not be preserved. We show this differ-
ence by dividing the security into two cases depending on whether we consider the
signcryption security property corresponding to the operation performed first or last.

When we consider the security of signcryption corresponding to the security of
the operation performed last (i.e., authenticity in the £tS method and privacy in
the St€ method), the security of the base component is preserved. In other words,
the security of the last operation is inherited by the signcryption scheme—that is,
the £tS method inherits the authenticity of the base signature scheme and the St€
method inherits the privacy of the base encryption scheme. Notice that in this case
the security of the signcryption scheme does not depend on the security of the other
component (i.e., the operation performed first). This is true regardless of the secu-
rity models (i.e., regardless of whether we consider the insider or outsider security
model).

If we consider the signcryption security corresponding to the security of the
operation performed first (i.e., privacy in the £tS method and authenticity in the
St€ method), then results differ depending on the security models and the com-
position methods. In the insider security model, the security of the first operation
is not preserved against the strongest security notions of privacy and authenticity
(i.e., IND-CCAZ2 security and sSUF-CMA security) although it is preserved against
weaker security notions (e.g., IND-CPA, IND-gCCA2 [10], and UF-CMA security).
This is because the adversary who knows the secret key of the other component
(i.e., the signature scheme in the £tS method and the encryption scheme in the
St€ method) can manipulate the given signcryption ciphertext by re-signing it and
submitting the modified ciphertext as a unsigncryption oracle query (in the attack
against the IND-CCA2 security of the £¢S method) or re-encrypting it and submit
the modified ciphertext as a forgery (in the attack against the sUF-CMA security
of the St€ method). Intuitively, this tells us that achieving the strongest security
corresponding to the security of the operation performed first is not possible when
the adversary knows the secret key of the operation performed last.

However, in the outsider security model (where the adversary does not know any
secret keys) the results are quite different. The security of the operation performed

2 Security for Signcryption: The Two-User Model 33

last can help enhance the security of the operation performed first—that is, a security
property stronger than that of the first operation can be achieved as long as the
security of the last operation is strong enough. Indeed, it turns out that, for the
EtS method, IND-CCA?2 security can be achieved from the IND-CPA security of
the base encryption scheme (which is the first operation) with the help of the sUF-
CMA security of the base signature scheme (which is the last operation). For the
St€ method, sUF-CMA security can be achieved from the UF-NMA security of the
base signature scheme (which is the first operation) with the help of the IND-CCA2
security of the base encryption scheme (which is the last operation).

We now summarize the results in the following theorems. Theorem 2.1 states
that the signcryption security corresponding to the security of the last operation is
preserved in both insider and outsider security models. In order to show that, we
consider only the strongest security notions (i.e., insider IND-CCA2 security for
privacy and insider sUF-CMA security for authenticity) as representative cases since
the proofs for other weaker notions are very similar except a few minor definitional
differences.

Theorem 2.1 If S is sUF-CMA secure, then the signcryption scheme IT built using
the EtS method is sSUF-CMA secure in the insider security model. If € is IND-CCA2
secure, then the signcryption scheme I built using the St€ method is IND-CCA2
secure in the insider security model.

Proof (1) sUF-CMA security of £¢S in the insider security model

Let A’ be a forger against the SUF-CMA security of [T built using the £1S
method in the insider security model. We can easily construct a forger 4 against
the SUF-CMA security of the signature scheme S that has identical probability

of forging signatures. Let (skssig , pkgg) be the keys of S. Given the signing ora-

cle Sign and the public verification key pksig, A picks a pair of encryption keys

(skGC, pkR) & EncKeyGen(1¥). A then hands (pksslg , kG, pkF©) to A’ as the
public key of the induced signature scheme. A can easily simulate the signcryption
query of A’ for any message m’ by first creating ¢’ < Encrypt (pk@€, m") and then
asking the signing oracle for S to sign ¢’. Finally, when A" produces a forgery C
for £tS, A outputs C as well. For sUF-CMA security, it is easy to see that if C is a
valid and “new” signcryption (i.e., either the encryption part or the signature part is
new), then C is a valid and “new” signature too (i.e., either the message part or the
signature part is new).

(2) IND-CCAZ2 security of St€ in the insider security model

Let A’ be a distinguisher against the IND-CCA?2 security of a scheme IT built
using the St€ method in the insider security model. We can easily construct a dis-
tinguisher .4 against the IND-CCAZ2 security of the encryption scheme £ as follows.

enc

Let (sk3¢, pk¥©) be the key pair of £. Given the public encryption key pk%' and

. . . Lo i sigy R
the decryption oracle Decrypt, A _plcks.a pair of signing keys (skglg , pk;lg) <«
SigKeyGen(1¥). A then hands (skSS’g , pksslg , PkF€) to A’, as the public key of the
induced encryption scheme. To simulate the unsigncryption query C’ made by A’,

34 J. H. An and T. Rabin

A first decrypts C’ into m'|lc’ using its own decryption oracle and then checks
if o’ is a valid signature of m’ and returns m’ if s’ is valid and L if not. Next,
when A’ outputs a pair of messages mo and m1, A outputs mgl|sg and m||s|, where
s; = Sign(sk®, m;). A gives A’ the same challenge C = Encrypt(pk%™, mp||sp)
it gets. Finally, A outputs the same guess b’ that A’ outputs. It is easy to see that A
has the same probability of being correct as A" has. O

The following theorem states that when considering the signcryption security
corresponding to the operation performed first, the strongest security properties
(IND-CCAZ2 security for £1S and sUF-CMA security for St€) cannot be achieved
in the insider security model.

Theorem 2.2 Let £ be any encryption scheme and S be a probabilistic signature
scheme, then the signcryption scheme IT built using the £tS method is not IND-
CCA2 secure in the insider security model. Let S be any signature scheme and & be
a probabilistic encryption scheme, then the signcryption scheme IT built using the
StE method is not sUF-CMA secure in the insider security model.

Proof (1) £tS is not IND-CCA2 secure in insider security model

We show that the £¢S method cannot achieve IND-CCAZ2 security in the insider
security model by constructing a distinguisher A against the IND-CCA2 secu-
rity of IT built using the 1S method. Let S and & be the base signature and
encryption schemes whose key pairs are (sk®, pk®) and (sk%, pk%), respec-
tively. Let pk®"“ = (sksslg, kaSlg, k%) be the induced encryption key and let sk =
(ske, pksslg, pk%¢) be the induced decryption key. Given the induced decryption
oracle Decrypt and the induced encryption key pk®™, A picks two messages
(mo, m1), where mp = 0 and m; = 1, and then outputs them to get the challenge
ciphertext C = (c, o). Next, A gets the message part ¢ and re-signs ¢ by computing

a “new” signature o’ < Sign(sky®, ¢) of ¢, where ¢’ # o, and then queries the
induced decryption oracle with C’ = (c, o”’). Notice that since we assumed S is
probabilistic (not deterministic), with a non-negligible probability one can find a
different signature for the same message in polynomial time. Since C' # C, and
o’ is a valid signature of ¢, A can obtain the decryption of c¢. Once the decrypted
message m is obtained, A compares it with its own message pair (mg, m|) and
outputs the bit b where m;, = m.

(2) St€ is not sSUF-CMA secure in insider security model

We show that the St€ method cannot achieve SUF-CMA security in the insider
security model by constructing a forger A against the sUF-CMA security of a
scheme [T built using the S7€ method. Let S and & be the base signature and
encryption schemes whose key pairs are (sk®, pk®) and (sk%, pk%), respec-
tively. Let sk*8 = (skSSlg, pksslg , k%) be the induced signature key and let k'8 =
(skge, pksslg, pk%©) be the induced verification k;y. Given the induced signing ora-
cle Sign and the induced verification key pk*$, the forger A picks a message
m and queries Sign with m to get the answer C. A then decrypts C using the

enc

decryption key sk%' to get m|ls = Decrypt(sk%', C), re-encrypt mlls to get

2 Security for Signcryption: The Two-User Model 35

C’ = Encrypt(pk{, ml|s), where C' # C, and returns C’ as a forgery. Notice
that since £ is a probabilistic encryption scheme (as opposed to deterministic), with
a non-negligible probability, A can get C’ in polynomial time such that C' # C
when re-encrypting m||s. Since C’ was never returned by the signing oracle Sign
(i.e., C' # C) and s is a valid signature of m, C’ is considered as a valid forgery
against SUF-CMA of I7T. 0O

Notice the negative results in Theorem 2.2 hold regardless of the strength of the
security of the base encryption and signature schemes. Intuitively, this means that
the security of the first operation is not protected by the last operation because both
the security goals to achieve (i.e., IND-CCA2 and sUF-CMA) and the capabilities
given to the adversary (i.e., having the secret key of one of the parties in the insider
security model) are very strong. Notice that if we weaken the security goals (e.g.,
IND-gCCA2 security [10] and UF-CMA security), then the security may be pre-
served, as shown in [10]. Notice also that if we weaken the capabilities given to the
adversary (e.g., if it is not given the secret keys as in the outsider security model),
then the security may even be amplified, as shown in the next two theorems.

Unlike the insider security model, we show that in the weaker outsider secu-
rity model, it is possible to amplify the security of encryption using signatures as
well as the security of signatures using encryption, exactly like in the symmetric
setting [9, 26, 117]. In particular, we can obtain a IND-CCA?2 secure signcryption
scheme via the £1S method from a IND-CPA secure base encryption scheme with
the aid of a “strong” base signature scheme. Similarly, we can obtain the sUF-CMA
security via the St€ method from a UF-NMA secure base signature scheme with
the aid of a “strong” base encryption scheme. This shows that the outsider security
model in the two-user setting is quite similar to the symmetric setting: namely, from
the adversarial point of view the sender and the receiver “share” the secret key
(sks, skr). We state this in the next two theorems. Specifically, the first theorem
states that the £¢S method amplifies privacy and the second theorem states that the
St€ method amplifies authenticity.

Theorem 2.3 If £ is IND-CPA secure and S is sUF-CMA secure, then the signcryp-
tion scheme IT built using EtS is IND-CCA2 secure in the outsider security model.

Proof Let A’ be the adversary breaking IND-CCA?2 security of the Encrypt-then-
Sign signcryption scheme E1S in the outsider security model. Recall, A’ only knows
(pksslg , pk%'€) and has access to the signcryption and the unsigncryption oracles
Signcrypt and Unsigncrypt. By assumption, | Pr[b’ = b] — 1/2]| is negligible,
where the probability is taken over all the randomness needed to perform the run of
A’ (as described in Sect. 2.2), b is the real index of the message being signcrypted,
and b’ is the guess of A'.

We define the event FORGED to be the event where the adversary 4" man-
ages to generate a value C’ = (¢/,) on which it calls its unsigncryption oracle
Unsigncrypt where C’ satisfies the following properties:

1. C' passes the signature validation step, i.e., Verify(pk'S, ¢/, o’) = T and
2. C’ was not given to A’ by the signcryption oracle Signcrypt.

36 J. H. An and T. Rabin

We split the executions of A’ into two groups: (a) the runs in which A’ has an
event FORGED and (b) runs when no such event happens. The distinction between
these two cases is that in (a) the adversary uses the unsigncryption oracle in a mean-
ingful way. In case (b) the unsigncryption oracle can be completely simulated, i.e.,
either the unsigncryption oracle responds with failure or it is a query which has been
asked to the signcryption oracle previously. Formally, we can show the following via
an application of Bayes theorem:

| Pr[b) = b] — 1/2]

= | Pr[A’ WINS] — 1/2]
= | Pr[A’ WINS | =FORGED] Pr[—=FORGED]

+ Pr[A’ WINS | FORGED] Pr[FORGED] — 1/2|
= | Pr[A" WINS | =FORGED](1 — Pr[FORGED])

+ Pr[A’ WINS | FORGED] Pr[FORGED] — 1/2|
= | Pr[A’ WINS | =FORGED] — 1/2

—(Pr[A’ WINS | =FORGED] — Pr[A’ WINS | FORGED]) Pr[FORGED]|

< | Pr[A’ WINS | =FORGED] — 1/2]

+|Pr[A" WINS | =FORGED] — Pr[A’ WINS | FORGED]| Pr[FORGED]
< | Pr[A’ WINS | =FORGED] — 1/2| + Pr[FORGED]

Hence, it is sufficient to bound | Pr[A" WINS | =FORGED] — 1/2| and Pr[FORGED]
by negligible functions to show our results. We will show these results in two cases.

Case 1: Pr[FORGED] is negligible

We show that we can construct a forger A which breaks sSUF-CMA security
of signature scheme S with probability at least Pr[FORGED]. The assump-
tion that the signature scheme is SUF-CMA secure shows that Pr[FORGED]
is negligible. Given the signing oracle Sign and the public verification
key pksslg, the forger A picks a pair of encryption keys (sk%'‘, pk%') il
EncKeyGen(lk). A then picks a random bit b for the index of the message
being signcrypted and hands (pksslg , PkG) to A" as the public key of the
signcryption scheme. For each signcryption query m of A’, A simulates
the signcryption oracle Signcrypt by first encrypting m using the gener-
ated encryption key pk@' to get ¢’ il Encrypt(pk%'c, m) and asking its
own signing oracle Sign to sign ¢’ to obtain o’. For each unsigncryption
query C' = (c’, o), A simulates the unsigncryption oracle by first checking
Verify(pks®, ¢/, o’) = T and then decrypting ¢’ using the decryption key
sk@¢. If C’ is a valid signcryption ciphertext, but C’ was not returned by the
signcryption oracle, then FORGED has occurred and A (correctly) outputs
(c’,0’) as an sUF-CMA forgery. If A} outputs (mg, m) to be signcrypted
in the first stage, then .4 computes the challenge ciphertext C* of the mes-
sage mp using the signcryption method above. If A’ terminates without the
event FORGED occurring, then A terminates without output. Hence, A wins
the sUF-CMA game if and only if FORGED occurs and so Pr[FORGED] is
bounded by the success probability of A in winning the sUF-CMA security
game against the signature scheme S.

2 Security for Signcryption: The Two-User Model 37

Case 2: | Pr[.A” WINS | =FORGED] — 1/2] is negligible

First, we note that since FORGED does not occur, we have that any query
C’ = (c’, o) to the unsigncryption oracle must have one of the following two
forms: (a) Verifyg(c’) =L or (b) C’ was already returned by Signcrypt
on some query m’. For a type (a) query, the oracle’s correct response is L.
For a type (b) query, the oracle’s correct response is m’. In both cases, A will
“know” the correct response returned by the unsigncryption oracle. Overall,
the unsigncryption oracle is useless: A’ can compute all the answers by itself;
hence, CPA security suffices for the encryption scheme.

Formally, we show that we can construct an adversary .4 which would
break the IND-CPA security of £. Given the public encryption key pk%'¢, A
picks a signature key pair (sk®, pks®) and gives (pkg®, pk'©) to A’ as the
public keys of the signcryption scheme. For each signcryption oracle query
m, A simulates the signcryption oracle by first encrypting m using the given
encryption key pk%' to get ¢/ & Encrypt(pk$'©, m) and then signing ¢’
using the picked signing key sk to get o’ & sign(sky®, ¢’). Akeeps track
of all the tuples (m, ¢/, o’) that were simulated by the signcryption oracle in
a table. For each unsigncryption query C' = (¢/, o’), A returns L to A’ if
C'’ is a type (a) query or it returns the corresponding m by using the table
kept in the signcryption oracle simulation if C’ is a type (b) query. If A’
outputs (mg, mp), then A outputs (mg, m) and gets the challenge ciphertext
c. A then signs ¢ to get 0 < Sign(ski?, ¢) and gives C = (c,0) to A’
as the challenge ciphertext. When A’ outputs a guess bit &', A outputs the
same bit. It is clear that if FORGED does not happen, A simulates the correct
environment for A’. Hence A succeeds in the IND-CPA game against the
public-key encryption scheme with overall advantage equal to that of A’ in
the IND-CCA2 game against the signcryption scheme. 0O

Theorem 2.4 If £ is IND-CCA?2 secure and S is UF-NMA secure, then the sign-
cryption scheme I1 built using the St€ method is sUF-CMA secure in the outsider
security model.

Proof Let A’ be an adversary attacking sUF-CMA security of the signcryption
scheme built using the St€ method in the outsider security model. Recall, A" only
knows (pksslg , PkE©), but has access to signcryption and the unsigncryption oracles
Signcrypt and Unsigncrypt. Let my, ..., m; be the queries A" asks the signcryp-
tion oracle and Cy, .. ., C; be the corresponding answers. Without loss of generality,
we assume that A" never asks its unsigneryption oracle any query C’ which is the
same as any one of C;’s returned by the signcryption oracle. Indeed, there is no need
for A to ask such a query since it already knows the answer m;.

Now, we use the standard hybrid argument. Let Envg denote the usual envi-
ronment for A’, which honestly answers all the signcryption and unsigncryption
queries of A’. Specifically, the signcryption query m; is answered by computing
o & Sign(sk?g, m;) and returning C; & Encrypt(pk@, m;llo;). Let Succo(A’)
be the success probability (i.e., that of breaking SUF-CMA security of the sign-

38 J. H. An and T. Rabin

cryption) of A" in Envy. Next, we define the following “hybrid” environments
Env;, 1 < j < t. Each Env; is identical to Envy above, except for one aspect:
for the first j queries m; (1 < i < j) to the signcryption oracle, instead of
returning C; & Encrypt(pk}“, m;||o;), Env; returns a random encryption of 0:
C;, < Encrypt(pk@, 0). We let Succ;(A’) be the success probability of A’ in
Env;. Notice, Env, answers all ¢ queries “incorrectly” (i.e., all signcryption oracle
queries are answered with random encryptions of 0).

We make two claims: (1) assuming IND-CCA2 security of £, no PPT adversary
A’ can distinguish Env;_; from Env; with non-negligible probability, for any 1 <
j =<t ie., [Succj_1(A") — Succj(A)| < negl(k), and (2) assuming UF-NMA
security of S, Succ;(A") < negl(k), for any PPT A’. Combined, claims (1) and (2)
imply our theorem, since ¢ is polynomial and we have

Succy(A) < (Succo(A') — Succi(A)) +---

oo 4 (Succi—1(A) = Succ; (A)) + Succ; (A)
(t+1) - negl(k)
negl(k)

IA

Proof of Claim (1)

If for some A', [Succj_1(A") — Succj(A")| > ¢ for non-negligible ¢, then we con-
struct an adversary A that will break the IND-CCA2 security of £ with probability &
as follows. Let (sk%'°, pk%'€) be the key pair for the encryption scheme £. Given the

enc

public encryption key pk%'® and access to the decryption oracle Decrypt, A picks a
pair of signing keys (sksslg, pk‘;lg) il SigKeyGen(1¥) and gives (pksslg, pkF) to A'.
A simulates all the unsigncryption queries C’ of A’ by using its own decryption ora-
cle on C’ to obtain (m, o), then verifying the signature o it gets back, before return-
ing the message m to A’. Simulation of the signcryption oracle is more intricate. A
simulates the answers to the first (j —1) signcryption oracle queries m; “incorrectly,”

enc

by returning C; < Encrypt(pky, 0) to A’ (i.e., returning an encryption of 0). At
the jth query m; of A’, A computes o & Sign(sk®, m;) and outputs (0, m j||o;)
to get the challenge ciphertext C; (which is an encryption of either 0 or m||o;). A
then gives C; to A" as a signeryption of m ;. From that point on, all the remaining
signcryption queries m; (j < i < t) are answered “correctly” (i.e., by computing
C; & Encrypt(pk%©, m;|lo;) where o; & Sign(sk®, m;)).

After A’ returns a candidate forgery C, A checks if C is indeed a valid forgery by
(1) checking that C is “new” (i.e., C was never returned to A’ by A as an answer to a
signcryption query in the signeryption oracle simulation) and (2) C is “valid” (A can
check this by using its decryption oracle on C to get the presumed message/signature
pair m|jo and verifying that o is a valid signature of m). If so, A guesses that the
challenge ciphertext C; was the encryption of m ||o; (i.e., A" was run in Env;_1),
else it guesses that the challenge ciphertext C; was an encryption of 0. By a method
similar to Lemma 1.1, we can show that A’s advantage is ¢/2, which is negligible
as the encryption scheme is IND-CCA2 secure. However, to complete the proof

2 Security for Signcryption: The Two-User Model 39

of claim (1), we also need to check that A never asked its decryption oracle the
challenge ciphertext C;. We assumed that A" never asks its unsigncryption oracle
any query C; which was returned by the signcryption oracle. Since A only uses the
decryption oracles to answer unsigncryption queries of A" and to decrypt C, this is
indeed so.

Proof of Claim (2)

We note that in Env, (where the signcryption answers are simulated by encrypt-
ing 0) the queries to the signcryption oracle are “useless™: A’ could have gotten
the answers by itself by computing Encrypt(pk%', 0). More formally, assuming
A’ forges a new signcryption with probability ¢ in Env,, we can build a forger .4
for the signature scheme S that will contradict the UF-NMA security of S. Let

(skSig , kSig) be the keys of the signature scheme S. Given the public verification ke,
s »PKg y g p y

K , A picks a pair of encryption keys (sk%'¢, pkS'©) & Encke Gen(1¥) and gives
p P P yp y R »PKR M g
(pksslg , PkF©) to A’ as the public key of the signcryption scheme. From there on, A
simulates the unsigncryption queries C' by computing m’|[oc” = Decrypt(sk3“, C')
and returning m’ if Verify(pky®, m’,o’) = T. It also simulates the signcryption
queries by returning Encrypt(pk%'“, 0). When A’ returns a forged ciphertext C, A
outputs the forged message/signature pair (m, o) where m|lc = Decrypt(skyc, C).
It is easy to see that A exactly recreates Env, and forges a signature only if A’ forges
a signeryption. Hence Succ; is negligible. O

2.4 Multi-user Setting

As we have mentioned, the two-user setting provides us with insight into some
interesting aspects of signcryption, but one really needs multi-user security for most
applications of signcryption. Formal definitions for the security of signcryption in a
multi-user setting will be discussed in depth in Chap. 3. In this section, we will
provide a brief introduction to multi-user security and the relationship between
multi-user security and the generic signcryption constructions.

2.4.1 Syntax

So far we have concentrated on a network of two users: the sender S and the receiver
R. Once we move to the full-fledged multi-user network, several new concerns arise.
First, users must have identities. We denote by IDy the identity of user U. We do
not impose any constraints on the identities, other than they should be easily rec-
ognizable by everyone in the network and that users can easily obtain the public
key pky; from IDy (e.g., IDy could be pk;; or IDy might enable another user to
obtain pk;; from a public-key infrastructure). Next, we change the syntax of the
signcryption algorithm Signcrypt to both take and output the identity of the sender
and the receiver. Specifically, (1) the signcryption algorithm for user S, on input

40 J. H. An and T. Rabin

(m, IDgr), uses pkp: to generate (C, IDg, IDg') and (2) the unsigncryption algo-
rithm for user R, on input (C, IDg/, IDR), uses pkg and outputs a message m’ or the
“failure” symbol L.

2.4.2 Security

To break the outsider security between a pair of designated users S and R, A is
assumed to have all the secret keys besides skg and skg and has access to the sign-
cryption oracle of § (which it can call with any IDg/ and not just IDg) and the
unsigncryption oracle for R (which it can call with any IDg and not just IDy).

To break the sUF-CMA security of the signcryption scheme, the attacker A has
to come up with a “valid” signcryption (C, IDg, IDg) of a message m where A did
not receive (C, IDg, IDg) as the result of a signcryption oracle query. It is important
to note that we do allow the attacker to attempt to generate a forgery by querying
the signcryption oracle on (m, IDg:) for IDg # ID g to receive (C, IDg, IDg/) and
outputting (C, IDgs, IDg). This is equivalent to saying that the attacker should not
be able to “translate” a signcryption ciphertext intended for R’ into a ciphertext
intended for R.

Similarly, to break IND-CCAZ2 security of the signcryption scheme, the attacker
A has to generate messages mo and m for which it can distinguish the cipher-
text Signcrypt(mo, IDs, IDg) from the ciphertext Signcrypt(m, IDg, IDg). Of
course, given a challenge (C, IDg, IDg), A is disallowed to query the unsigncryp-
tion oracle for R on the challenge (C, IDg, IDR), although queries of the form
(C, IDg/, IDg), where IDg # IDyg, are allowed.

We define insider security in an analogous manner. The only difference is that in
addition to all the information given to the adversary in the outsider security model,
the adversary is given the receiver’s secret key, skg, when attacking authenticity
(i.e., skg is the only secret that is not given to the adversary in this case) and the
sender’s secret key, sks, when attacking privacy (i.e., skg is the only secret that is
not given to the adversary in this case).

2.4.3 Extending Signcryption

We can see that the signcryption algorithms that are built by generic composition
of encryption and signature schemes (i.e., £tS and St€) are not secure in the multi-
user setting. If the £¢S method is used in the multi-user setting, then the adver-
sary A can easily break the CCA2 security, even in the outsider model. Indeed,

given the challenge C = (c, 0, IDgs, IDg), where ¢ il Encrypt(pkg, mp) and
o & Sign(sks, c), A can replace the sender’s signature with its own by computing
C' = (c,0', IDg, IDg), where o/ <& Sign(skg, ¢). If A queries the unsigncryp-
tion oracle on C’ then the oracle will respond with mj and A can trivially break
the IND-CCA?2 security of the scheme. A similar attack on authenticity holds for

2 Security for Signcryption: The Two-User Model 41

the St€ scheme. In the St€ scheme, the adversary A can easily break the sUF-
CMA security in the outsider model. It can ask S to signcrypt a message m for
R’ and get C = (Encrypt(pkg/,ml|o), Ds, IDg’), where o & Sign(pkg, m).
Then, it can recover m|lo using skp/ and forge the signcryption ciphertext C/ =
(Encrypt(pkg, m||o), IDs, IDR).

The generic composition methods suffer from the above types of attacks in the
multi-user setting, because the signature and encryption used in the signcryption
can easily be separated and are not “bound together” with the proper identities of
the sender and receiver (unlike the two-user setting or the symmetric setting). The
adversary can easily replace the signature or encryption with its own signature or
encryption. We show how to fix this problem by “binding together” the signature
and encryption used in the signcryption with the proper identities of the sender
and receiver. The following rules can effectively bind the encryption and signature
with proper identities of the sender and receiver and hence can be used to make the
signcryption schemes built by generic composition secure in the multi-user setting
(i.e. withstand above types of attacks).

1. Whenever encrypting something, include the identity of the sender IDg together
with the encrypted message.

2. Whenever signing something, include the identity of the receiver IDg together
with the signed message.

3. On the receiving side, whenever the identity of either the sender or the receiver
does not match what is expected, output L.

Hence, we get the following new analogs for the £1S and St€ schemes:

e The £1S signeryption scheme returns the signeryption ciphertext (c, o, IDs, IDg)
where ¢ & Encrypt(pkp, m||IDs) and o il Sign(sks, c||IDR).

e The St€ signeryption scheme returns the signeryption ciphertext (c, IDs, IDg)
where ¢ < Encrypt(pkg, m|o|[IDs) and o < Sign(sks, m||IDg).

For both schemes, the unsigncryption algorithms work in the obvious manner. Intu-
itively, it is easy to see that the above rules “bind” the encryption and signature
used in the signcryption with proper identities of the sender and receiver, because it
includes the intended sender and receiver identities in the ciphertext.

However, it is important to ensure that the identities cannot be tampered within
the ciphertext itself. If the encryption scheme used in the signcryption is malleable
(i.e., underlying plaintext can be modified without being detected), the adversary
may be able to modify the identities in the ciphertext which makes having the iden-
tities moot. For example, in the £S5 method, if the underlying encryption scheme
is only IND-CPA secure, the adversary may be able to modify the ciphertext to
replace the sender’s identity with its own and strip off the sender’s signature and
replace it with its own signature and identity. Hence, it is important to assume that
the underlying encryption scheme is non-malleable (or CCA2 secure) for the sign-
cryption scheme built by the £15 method to be secure even in the outsider model.
This is different from the result in the two-user setting, where the encryption scheme

42 J. H. An and T. Rabin

can be just IND-CPA secure for the signcryption built from the £¢S method to be
(IND-CCA2 and sUF-CMA) secure in the outsider model. This tells us that the
security proven in the two-user setting does not automatically translate into security
in the multi-user setting even if we follow above rules to “bind” the signature and
encryption with identities. In general, when analyzing the security of the signcryp-
tion scheme built from the generic composition methods following the above rules in
the multi-user setting, the assumptions for the underlying encryption and signature
schemes should be “strong enough” (i.e., IND-CCA2 or sUF-CMA secure) so that
the identities bound to the signature and encryption cannot be altered.

	Chapter 2 Security for Signcryption: The Two-User Model
	Jee Hea An and Tal Rabin
	2.1 Introduction
	2.2 Definition of Signcryption in the Two-User Setting
	2.2.1 Two Security Notions in the Two-User Setting
	2.2.2 Discussions on the Security Notions

	2.3 Generic Compositions of Signature and Encryption
	2.3.1 Construction
	2.3.2 Security of the Parallel Composition Method
	2.3.3 Security of the Sequential Composition Methods

	2.4 Multi-user Setting
	2.4.1 Syntax
	2.4.2 Security
	2.4.3 Extending Signcryption

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

