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Foreword

Scientific exploration follows many directions, and this is as true for a technological
science like “cryptography” as it is for any physical science. One central scientific
direction involves finding new notions, new primitives, and new methods; defining
them; implementing them; and then showing and proving the characteristics of these
findings. In modern cryptography, the definition of new basic primitives and their
security properties has been one of the primary activities of the last few decades
(since the field was conceived in the later part of the twentieth century).

Once a primitive is defined, a number of investigative directions take place: One
direction is showing the basic tools (mathematical assumptions and basic cryp-
tographic functions) that are necessary and sufficient for the primitive. A second
direction involves finding more efficient implementations, where efficiency is mea-
sured in terms of the complexity of the primitive (such as the time it takes, the
space it consumes, the messages used, the rounds of communication employed). A
third direction is extending the properties of the basic primitive and modifying it to
achieve other interesting important tasks, or making sure it operates in a different
environment than it was originally intended for. Yet, a fourth direction is finding
system’s needs and applications that crucially exploit the primitive (either inher-
ently, as a functional enhancement of an application or as a contributor to efficiency
improvement); this direction eventually leads to actual working systems that can be
exploited by actual computing systems. Note that other directions for investigation
are known, such as reductions between primitives, generalization of primitives into
a super-primitive. Once a primitive is born, its development often progresses in quite
unexpected and mysterious ways.

Two of the cornerstones of modern cryptography are public-key encryption as
implemented via public-key cryptosystems and digital signatures as implemented
by signature schemes. Public-key cryptosystems are a concealment mechanism.
Employing the cryptosystem enables a party (a sender) to encrypt a confidential
message to a second party (a receiver) without the need to share an initial secret;
the only thing needed is for the receiver to publicize the public portion of its key
(the encryption key), while keeping secret the decryption key. Digital signatures, on
the other hand, are an integrity mechanism. These enable a party to send a message
with a signature tag that verifies the origin of the message (i.e., authenticates the
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vi Foreword

sender) to any receiver; the only thing needed is for the sender to initially publicize
its public verification key while keeping secret the corresponding signing key.

There are a very high number of variations of the concepts of public-key cryp-
tosystems and digital signature schemes. Many properties have been added, and the
definition and characteristic of these primitive, as well as efficient implementations
of them and their variations, have been thoroughly investigated. These primitives
have also been implemented as important underlying components in various security
protocols used to secure computing and communication infrastructures (the Internet,
the Web, the mobile networks, and so on).

The book “Practical Signcryption” by Alex Dent and Yuliang Zheng consid-
ers a very interesting primitive, originally the brainchild of Yuliang Zheng, called
“Signcryption.” The name of this primitive tells it all: It is a primitive that combines
the functionality of digital signatures and that of public-key encryption. Often in
science, when primitives are defined, there is an issue with their combination and
interoperability. Note that in computer science in general, the notion of combination
is very important, since complex structures need to be developed in pieces, and
therefore modularity is a critical notion which enables the development of pieces
which can be combined into more complete systems. Combination can be performed
in many ways. For example, one can envision a simple concatenation of the prim-
itives (i.e., performing the first and then the second); however, even such a simple
combination presents a challenge in cryptographic research, since the combination
may not preserve the security properties of each of the components.

Signcryption is a result of realizing that often one wants to send a message that
is concealed (readable only by the intended receiver) and authenticated (verified
as originating from the specified sender). This combination is natural in numerous
applications. The original motivation for “signcryption” (which is a much shorter
word than the expression “signature and encryption”) was to gain efficiency, namely
to allow both actions to be done more efficiently than just a serial composition of the
two components (e.g., to get a shorter cryptogram representing both encryption and
signature than is obtained merely by first encrypting the message into a ciphertext
and then signing the ciphertext).

Once the above was shown possible, at that very moment, a new primitive was
born and the book covers the many aspects of developments around this primitive of
signcryption. These developments include achieving efficient constructions, achiev-
ing provably secure constructions under various models, getting efficient schemes in
various algebraic domains, getting new techniques to design the primitives in vari-
ous settings, and getting applications and actual implementations of it. The book
covers all these areas by chapters that are written by the world-renowned cryp-
tographers who have been in the frontier of research and who have actually been
responsible for many of these numerous interesting developments. Note further that
the authors of the various chapter demonstrate, by their wide geographical spread,
the global nature of advanced cryptographic research nowadays.

The story of signcryption has taught us that “combining natural primitives” has
strong research and development potential in many ways, and especially it has a
good chance in reducing complexities when measured against a naive combination.
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In fact, I learned this lesson myself and applied it a few years after signcryption had
been conceived. Together with J. Katz, we studied the combination of private key
encryption and message authentication codes (which is the “symmetric key cryptog-
raphy” equivalent of what signcryption is in the “public-key cryptography” area).
This primitive, now called “authenticated encryption,” which has also been studied
by a number of other groups has found numerous applications and is an outcome of
the approach pioneered by the notion of signcryption.

The “Practical Signcryption” book can be a handbook on the state of the art of
signcryption, specifically, and, at the same time, can serve as a way to historically
view how this specific subject has evolved. On a more general level, the book can
serve as an example how cryptographic primitives are conceived and how research
in this general area evolves, going through various stages from the theoretical and
mathematical development stage all the way to the practical stage (i.e., into sys-
tems and standardization). In other words, the book serves two purposes: (1) it is
the definitive source on signcryption and (2) it is also a prototypical example to
learn from how research on cryptographic primitives is performed by the crypto-
graphic research community. Indeed, the book on combining cryptographic primi-
tives, itself, combines these two purposes in a very elegant way! I think the book
is, in fact, a fundamental and timely contribution to the cryptographic literature,
and I congratulate Alex, Yuliang, and the various chapter authors for their unique
achievement!

New York, NY Moti Yung
April 2010
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The concept for this book was initially created because we believe that signcryption
is a fundamentally useful technology that is under-used in practical applications. It
often seems bizarre to us that implementations will use complex modular exponen-
tiation optimizations to achieve small efficiency improvements while ignoring the
50% efficiency saving that can be made by combining confidentiality and integrity
protection operations into a single signcryption operation! We hope that the book
will convince researchers, implementors, and standardization bodies to consider the
use of efficient signcryption technologies in their work.

This book is the result of a long project and we would like to thank all of the
authors for their efforts and their patience. We would also like to thank Springer-
Verlag for their patience.

Yuliang Zheng would particularly like to thank Hideki Imai for his pioneer-
ing work in coded modulation which inspired him to develop signcryption. The
endeavor to develop signcryption came to fruition while Yuliang was with the
beautiful Mornington Peninsula campus of Monash University in Australia. He is
indebted to ex-colleagues at Monash for their support during the initial stage of
development of signcryption. In addition to authors of chapters of this book, Yuliang
would also like to thank those researchers whose work on signcryption could not be
included into this book. Their contributions to the design and analysis, as well as
practical applications, of signcryption techniques are equally significant. Further-
more, Yuliang would like to extend his gratitude to colleagues at the University
of North Carolina at Charlotte for numerous discussions on research over the past
decade. Finally Yuliang would like to thank his wife Quinnie and two wonderful
children for their continued love, support, and patience.

Alex Dent would particularly like to thank the Information Security Group in
Royal Holloway, University of London, for their support during the writing/editing
of this book. It should also be acknowledged that part of the work of editing this
book was undertaken while Alex was visiting the Computer Science Department of
New York University and the Graduate Center of the City University of New York.
He would like to thank them for the opportunity to visit their universities. Lastly, he
would like to thank his family for their continued support and Carrie for being such
a wonderful person.
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Some of the individual chapter authors would also like to acknowledge the help
that they have received. These include

• John Malone-Lee (Chap. 6) would like to thank Wenbo Mao whose idea it was
originally to use the RSA function for signcryption in this way.

• Yevgeniy Dodis (Chap. 8) would like to thank Jee Hea An and Tal Rabin for their
collaboration on the subject of signcryption.

• Josef Pieprzyk (Chap. 9) was supported by Australian Research Council Discov-
ery grants DP0663452 and DP0987734.

• Xavier Boyen (Chap. 10) would like to thank Paulo Barreto for useful feedback
on an early draft of the chapter.

• Alex Dent (Chap. 11) would like to thank Colin Boyd for taking the time to read
and comment on this chapter. These comments much improved the chapter.

London, UK Alexander W. Dent
Charlotte, NC Yuliang Zheng
May 2010
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Chapter 1
Introduction

Yuliang Zheng

1.1 Historical Development of Signcryption

1.1.1 Coded Modulation

In a typical communications system, data from an originator undergoes a sequence
of transformations prior to being transported to its intended recipient. These trans-
formations may include source encoding to compress the data or remove unwanted
redundant information from the data, authentication tagging to ensure the detection
of unauthorized modification, encryption to prevent the data from being accessible
to unauthorized parties while en route, error correction encoding to allow the recip-
ient to detect and correct transmission errors, and finally modulation of data signals
for transmission over a communications channel between the originator and the
recipient. Generally the communications channel is not only prone to transmission
error but also considered to be insecure. Upon arriving at the recipient, the data is
subject to matching decoding transformations in reserve order. Figure 1.1 depicts
the various operations on data while traveling across a communications channel.
Note that in the figure, authentication is applied before encryption is carried out.
Alternatively, encryption can be applied first, followed by authentication.

Error-correcting codes and modulation techniques have been at the core of dig-
ital communications engineering and research from the mid-twentieth century. As
a typical communications channel has only a limited bandwidth, one of the central
questions is how to minimize the loss of effective data transmission rate incurred
by error-correcting codes. Another important question is how to reap the full bene-
fits of an increased data transmission rate offered by multi-level/phase modulation
without suffering worsening interference among signals. While a great number of
error-correcting codes and modulation techniques had been discovered accompany-
ing the advent of digital communications after the Second World War, historically,
error correction and modulation had always been carried out separately.

Y. Zheng (B)
University of North Carolina, Charlotte, NC, USA
e-mail: yzheng@uncc.edu
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2 Y. Zheng

Fig. 1.1 A communications system

During the 1970s, researchers embarked on the pursuit of techniques for com-
bining error correction and modulation with the aim of achieving performance gain
without requiring the expansion of bandwidth or incurring a significant reduction
of data transmission rate. The most successful of those efforts was represented by
the work of Ungerboeck [190–193] and, independently, of Imai and Hirakawa [97]
(see also [197]). Ungerboeck focused on blending together trellis or convolution
codes and multi-level modulation without sacrificing bandwidth efficiency, whereas
Imai and Hirakawa had the same goal but used a different approach, which was to
combine block error-correcting codes and multi-level modulation.

Coded modulation addresses simultaneously two issues that appear mutually
contradictory: (1) high transmission reliability and (2) high transmission efficiency.
The hybrid technique, whether it is based on trellis codes or block error-correcting
codes, makes reliable and bandwidth-efficient data transmission a reality (see
Fig. 1.2).

1.1.2 Musings on Blending

The 1980s were an exciting period for those who worked in telecommunication.
At the time, Professor Hideki Imai led a number of research projects at Yoko-

Fig. 1.2 Coded modulation for bandwidth-efficient communications
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hama National University in Japan. These projects covered virtually all important
technical aspects pertaining to data processing and communications. Specifically,
the research projects addressed source coding, cryptography, error-correcting codes,
modulation, and coded modulation.

I joined Professor Imai’s group to pursue my graduate studies in the mid-1980s.
Although my research area was cryptography, I was fortunate to be able to partic-
ipate in weekly seminars with fellow students who worked on a range of different
research projects. I still vividly remember that at one of the long seminars that
extended well into the late evening, a fellow student started to explain the Imai-
Hirakawa coded multi-level modulation technique [97] when I felt somewhat tired
after a long day’s studies and discussions. I was immediately intrigued by the idea of
blending error-correcting codes and modulation together to obtain a better solution
than applying them separately. Over the next few years I maintained strong interest
in coded modulation. What I felt most fascinating was not only the beauty of ideas
behind the technology but also the amazing velocity at which the technology was
perfected, standardized, and applied in practice.

As a cryptographic researcher witnessing the rapid maturing and adoption of
coded modulation in digital communications, I asked myself a quite natural question
whether it was feasible to combine two cryptographic primitives into something that
would be more efficient than employing the two primitives separately. The question
accompanied me during the entire remaining period of my graduate studies. Years
after I finished my PhD and moved “Down Under”, I found it hard for me to stay
completely away from musings on the same question.

Two of the most important functions of modern cryptography are the assurance of
data confidentiality and that of data integrity. Confidentiality can be achieved using
encryption algorithms or ciphers, whereas integrity can be provided by the use of
authentication techniques.

Encryption algorithms fall into one of two broad groups: private key encryption
and public key encryption. Likewise, authentication techniques can be categorized
by private key authentication algorithms and public key digital signatures. When
examining a cryptographic algorithm, one needs to take into account not only the
strength or level of security the algorithm can offer but also the computational time
it takes to perform the algorithm, together with the message expansion incurred by
the algorithm. When two cryptographic algorithms offer a similar level of security,
computational time and message expansion become a focal point of comparison.
As a rule, smaller computational time and shorter message expansion are generally
considered more desirable.

While both private key encryption and private key authentication admit very fast
computation with minimal message expansion, public key encryption and digital
signatures generally require heavy computation, such as exponentiations involv-
ing very large integers, together with message expansion proportional to security
parameters (such as the size of a large composite integer or the size of a large
finite field). Figure 1.3 illustrates the computational and message overhead incurred
when digital signatures and public key encryption are applied in succession to a
message.
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Fig. 1.3 Digital signature followed by public key encryption

I realized that there were at least two types of combinations that appeared to be
meaningful in practice:

1. private key encryption combined with private key authentication and
2. public key encryption combined with digital signatures.

I also realized that the most important goal of a successful combination of two
different cryptographic algorithms should be for the resultant solution not only to
be faster to compute but also to admit shorter message expansion, when compared
to applying the two original algorithms separately.

I set my sight on the second type of combinations, namely combinations of public
key encryption and digital signatures, for a number of reasons:

1. Future widespread use of battery-powered small devices such as smart cards,
smart phones, personal digital assistants (PDAs), electronic passports, electronic
wallets, and other types of gadgets would require new public key cryptographic
techniques that consume as little battery power as possible.

2. Applications in a resource-constrained environment such as contactless wire-
less identification tokens and unattended remote data collection systems would
require the use of public key cryptographic algorithms that not only are fast to
compute but also introduce minimum data expansion.

3. Finding combined public key cryptographic solutions appeared more
challenging.

4. I felt that my experience in designing techniques for “immunizing” public key
encryption against chosen ciphertext attacks [210, 211] would be useful in
addressing the new challenge. The essence of these “immunization” techniques
was to use authentication tags, especially those generated by a (keyed) one-way
hash algorithm, to transform an unstructured plaintext into a highly structured
one prior to the application of public key encryption. The transformation inca-
pacitates a chosen ciphertext attacker who attempts to create a new ciphertext
without already knowing the corresponding plaintext. Some of the ideas were
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later elaborated as the “random oracle” model and plaintext awareness by other
researchers and constituted an important foundation for public key encryption
that admitted provable security.

1.1.3 Signcryption

After setting as my goal the combination of public key encryption and digital signa-
tures, I narrowed down candidate algorithms to ElGamal public key encryption and
signature, especially those that relied for their security on the hardness of discrete
logarithm on a subgroup of a large finite field, due to their outstanding efficiency as
well as the availability of their counterparts on elliptic curves.

1.1.3.1 ElGamal Public Key Encryption and Signature in a Subgroup

The specific version of ElGamal public key encryption and digital signatures I was
interested in involved three parameters that were public to all:

1. p: a large prime.
2. q: a prime factor of p − 1.
3. g: an integer in the range of [1, . . . , p − 1] with order q modulo p.

Consider two users Alice and Bob. Alice has a private key xa chosen uniformly at
random from [1, . . . , q − 1]. She also has ya = gxa mod p as her matching public
key. Likewise, Bob’s private key is an integer xb chosen uniformly at random from
[1, . . . , q − 1] and his public key is yb = gxb mod p.

Now assume that Alice wishes to send a message m to Bob in a secure manner.
Alice first looks up Bob’s public key yb in a public key directory. She then picks a
random integer x from [1, . . . , q−1] and calculates t = yx

b mod p. This is followed
by employing an appropriate one-way hash algorithm hash to compute from t an
encryption key k = hash(t) for an appropriate private key cipher (E, D). Finally
Alice sends to Bob the following pair of data items as a ciphertext of m:

ElGamal Encryption: (c1, c2) = (gx mod p, Ek(m))

where E is the encryption algorithm of the private key cipher.
Upon receiving (c1, c2), Bob can recover k by computing k = hash(cxb

1 mod p).
He can then use k and the decryption algorithm D of the same private key cipher to
decrypt c2 and obtain m.

Alice’s signature on a message m is composed of two numbers r and s which are
defined as

ElGamal Signature: (r, s) = (gx mod p, (hash(m)− xa · r)/x mod (p − 1))
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where x is a random number picked from [1, . . . , q − 1] and hash is an appropriate
one-way hash algorithm. Bob and any other party can verify the authenticity of
Alice’s signature on the message m by using her publicly available key ya .

There are numerous variants of and improvements to the original ElGamal sig-
nature. The most notable ones include the NIST Digital Signature Standard (DSS)
or Digital Signature Algorithm (DSA) [149] and the Schnorr signature [173]. These
two signature techniques are defined as

DSS: (r, s) = ((gx mod p) mod q, (hash(m)+ xa · r)/x mod q)

Schnorr: (r, s) = (hash(gx mod p,m), (x − xa · r) mod q)

Two more interesting variants are obtained by further shortening variants of the
DSS. These two shortened versions are called SDSS1 and SDSS2 and are defined
as

SDSS1: (r, s) = (hash(gx mod p,m), x/(r + xa) mod q)

SDSS2: (r, s) = (hash(gx mod p,m), x/(1+ xa · r) mod q)

1.1.3.2 Basic Signcryption Algorithms

Looking closely at the ElGamal encryption and signature algorithms, one notices
that both contains the following item:

gx mod p

This quantity can be viewed as playing the role of an “ephemeral key” in both algo-
rithms. An interesting question is whether it is possible to let the same “ephemeral
key” serve as a conduit linking the encryption and signature algorithms together.

Further, one notices that gx mod p does not explicitly appear in any of the four
variants of the ElGamal signature described above. Nevertheless the quantity can be
easily derived from these signatures by a signature verifier. All these four variants
exhibit a significantly shorter signature size than the original ElGamal signature.
This brings up yet another interesting question, that is whether it is possible to com-
bine ElGamal encryption and signature in such a way that the resultant algorithm
does not contain gx mod p.

After a number of trials and errors, I was able to firm up my thinking in the
southern winter of 1996. The outcome, which I called “signcryption,” was a nice
combination of ElGamal encryption and signature that answered both questions
above in the affirmative. I will explain the combination that is based on SDSS1.
In describing the signcryption technique, I use Hash to denote a one-way hash algo-
rithm, KH to denote a keyed one-way hash algorithm, and (E, D) a private key
cipher.
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Basic Algorithm
Signcryption of m by Alice the Sender

1. Pick x uniformly at random from [1, . . . , q − 1],
and let k = Hash(yx

b mod p).
Split k into k1 and k2 of appropriate length.

2. c = Ek1(m).
3. r = K Hk2(m).
4. s = x/(r + xa) mod q.
5. Output (c, r, s) as the ciphertext to be sent to Bob.

Basic Algorithm
Unsigncryption of (c, r, s) by Bob the Recipient

1. Recover k from r , s, g, p, ya and xb

by k = Hash((ya · gr )s·xb mod p).
2. Split k into k1 and k2.
3. m = Dk1(c).
4. Output m as a valid message originated from Alice

only if K Hk2(m) = r . Output “Reject” otherwise.

The technique was first detailed in a patent application in Oct. 1996 [207],
although the research paper was not published until almost a year later at
Crypto’97 [203, 204].

1.1.4 Provably Secure Signcryption

Following the publication of the basic signcryption algorithm discussed above,
finding formal proofs for both confidentiality and unforgeability of the algorithm
emerged as the next challenge. I was fortunate to have Ron Steinfeld joining my lab
at Monash University as a PhD student in the southern fall of 1999. Ron took my
advice to look into formal proofs for the security of signcryption. We soon realized
that identifying a right security model for signcryption was of most importance. In
late 1999 we made the first step in that direction: we were able to find a security
proof for the unforgeability of a factoring-based signcryption algorithm. The result
was presented at ISW2000 [184], leaving proofs for the confidentiality of the sign-
cryption algorithm as an open problem.

I welcomed Joonsang Baek to join my lab as a PhD student in early 2000. Shortly
after his arrival, Joonsang started to work with Ron and myself on security proofs
for signcryption. The joint research turned out to be extremely fruitful, resulting
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in the establishment of a strong security model for signcryption in the multi-user
setting and formal security proofs for both unforgeability and confidentiality in that
model [12, 13].

Independent of work at my lab, An, Dodis, and Rabin succeeded in obtaining
proofs for the security of a broad class of joint public key encryption and digital
signatures in the two-user setting [10]. These results and our results for the multi-
user setting were mutually complementary, representing an important step toward
designing signcryption that admits provable security.

The original signcryption algorithm required a few tweaks in order for its security
to be proved with mathematical rigor [12, 13]. The tweaked algorithm employs two
separate one-way hash algorithms G and H . The former was used to generate a key
for a private key cipher whereas the latter to compute the value of r . In addition,
both Alice’s public key and Bob’s public key participated in the hash computation
of r , whereby the ciphertext was tightly bound to both Alice and Bob, thwarting
possible abuse by dishonest Alice or Bob.

Provably Secure Algorithm
Signcryption of m by Alice the Sender

1. Pick x uniformly at random from [1, . . . , q − 1].
2. k = yx

b mod p.
3. τ = G(k).
4. c = Eτ (m).
5. r = H(m, ya, yb, k).
6. If r + xa = 0 (mod q) then go back to Step 1;

otherwise let s = x/(r + xa) mod q.
7. Output (c, r, s) as the ciphertext to be sent to Bob.

Provably Secure Algorithm
Unsigncryption of (c, r, s) by Bob the Recipient

1. k = (yagr )s·xb mod p.
2. τ = G(k).
3. m = Dτ (c).
4. If H(m, ya, yb, k) = r then output m as a valid message originated

from Alice; otherwise output “Reject”.

1.2 Extensions, Standardization, and Future Research Directions

Signcryption has since been extended to elliptic curves [209], integer factoriza-
tion [131, 184, 206], and pairings [122]. Furthermore researchers have designed
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Fig. 1.4 Signcryption in a communications system

numerous signcryption techniques that have additional useful properties such as
hybrid constructions for long messages [37, 73], direct verifiability by a third
party [15], threshold [80], blindness [199], with an identity as public key [51], cer-
tificateless [16], proxy [85], and many others. This book serves as an introduction to
all the practical forms of signcryption. For further references, the reader is directed
to “Signcryption Central” (www.signcryption.org) which serves as an information
portal for recent developments in the field.

In a different direction, Jutla studied the integration of private key encryption
and private key message authentication, giving rise to authenticated encryption or
authencryption [112].

More recently, the significance of signcryption in real-world applications has
gained recognition by experts in data security. Since 2007, a technical committee
within the International Organization for Standardization (ISO/IEC JTC 1/SC 27)
has been developing an international standard for signcryption techniques [102].
Techniques to be included in the standard must meet ISO’s stringent requirements,
especially those pertinent to security, performance, and maturity.

In conclusion, I would like to bring the reader’s attention to Fig. 1.4 which
depicts a communications system where both coded modulation and signcryption
are employed, achieving gains not only in communications efficiency and reliability
but also in data security, all with minimal overhead. One cannot help but ask, Are
additional types of blending still possible?

1.3 Notation and Security Notions

The development of signcryption schemes was preceded by, and makes use of, many
other types of cryptographic scheme; it is not our intention to describe each of these
earlier systems in detail, but a certain amount of introduction is necessary in order
to explain the development of signcryption schemes effectively. In this section, we
will give notation and security notions that will be used throughout the rest of the
book.
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1.3.1 Algorithms and Assignment

We follow the now common notation of using an arrow to denote assignment. If f
is a function, then y ← f (x) denotes the assignment to the variable y the value of
the function f applied to the value x . Similarly, if A is a deterministic algorithm,
then y ← A(x) denotes the assignment to the variable y the value obtained by
running the algorithm A on the input x . If A has access to the oracle O, then we
write y ← AO(x).

For a probabilistic algorithm A, we write y
R← A(x) to denote the assignment to

the variable y the value obtained by running the algorithm A on the input x using
a fresh set of random coins. If we wish to specify that A is run using a specific set
of coins R, then we write y ← A(x; R). Furthermore, if S a finite set, then we

write y
R← S to denote the assignment to y of an element of S chosen uniformly at

random. This allows us to use the symbol “=” to be used in algorithms to denote
the comparison of two variables.

We will often wish to assess the probability that an event S occurs given that a
series of related random variables have been defined according to a set of distribu-
tions (X,Y, Z , . . .). We write this as

Pr[S : X,Y, Z , . . .] (1.1)

Hence,

Pr[b = b′ : b R← {0, 1}, b′ R← {0, 1}] (1.2)

denotes the probability that a bit b is equal to the bit b′ when both b and b′ are drawn
uniformly at random from the set {0, 1}. Thus,

Pr[b = b′ : b R← {0, 1}, b′ R← {0, 1}] = 1/2 (1.3)

We will often want to show that an “efficient” algorithm only has a “small”
probability of breaking a cryptographic scheme or solving a mathematical problem.
All of our algorithms will be parameterized by some security parameter k. In our
terms, an “efficient” algorithm is a probabilistic, polynomial-time (PPT) algorithm.
A probabilistic algorithm A is polynomial time if there exists a polynomial p for
which A(x) always terminates within p(k) steps, regardless of the value of the ran-
dom coins. In our terms, a probability is “small” if it is negligible in the security
parameter. A function f is negligible in the security parameter if for all polynomials
p there exists an integer N (p) such that f (k) ≤ 1/|p(k)| for all k ≥ N (p). We will
occasionally use the shorthand negl(k) to denote a negligible function and use the
notation f (x) ≤ g(x)+negl(k) to represent the fact that | f (k)−g(k)| is a negligible
function.



1 Introduction 11

Lastly, if x and y are bitstrings, then |x | is the length of x in bits and x‖y is
the concatenation of x and y. Furthermore, (x, y) is a binary representation of the
ordered pair of x and y.

1.3.2 Signature Schemes

The first cryptographic primitive that we wish to consider is a digital signature
scheme. A signature scheme is a public key primitive that provides origin authen-
tication, data integrity, and non-repudiation for a piece of data. It is one of the two
components that a signcryption scheme seeks to emulate.

1.3.2.1 Signature Schemes with Appendix

A signature scheme with appendix (or simply “a signature scheme”) is characterized
by three polynomial-time algorithms (SigKeyGen, Sign, Verify):

• The key generation algorithm SigKeyGen is a probabilistic algorithm that takes
as input the security parameter 1k and outputs a key pair (sksig, pksig), written

(sksig, pksig)
R← SigKeyGen(1k). The private signing key sksig is kept secret.

The public verification key pksig is widely distributed.
• The signing algorithm Sign is a probabilistic algorithm that takes as input a

message m and the private key sksig, and outputs a signature s, written s
R←

Sign(sksig,m).
• The verification algorithm Verify is a deterministic algorithm that takes as input

a message m, a signature s, and a public verification key pksig. It outputs either
a success symbol � to indicate the signature is correct or a failure symbol ⊥ to
denote that the signature is incorrect.

We require that for any key pair (sksig, pksig)
R← SigKeyGen(1k) and message m,

we have that Verify(pksig,m, s) = � whenever s
R← Sign(sksig,m).

A signature scheme with appendix produces signature values that are designed to
be appended to a message as the message is being sent from a sender to a receiver.
The signature is not designed to convey any part of the message and hence the entire
message has to be sent along with the signature. We stress that the signature scheme
does not provide confidentiality protection: while the signature is not designed to
convey any information about the message, there is no guarantee that an attacker
cannot determine any information about the message from the signature.

1.3.2.2 Signature Schemes with Message Recovery

An alternative to a signature scheme with appendix is a signature scheme with mes-
sage recovery. A signature scheme with message recovery allows the message to
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be recovered from the signature.1 Sending a signature with message recovery is
typically more bandwidth efficient than sending the concatenation of a message and
a signature with appendix.

The syntax of a signature scheme with message recovery is very similar to a sig-
nature scheme with appendix. A signature scheme with message recovery is defined
by a triple of polynomial-time algorithms (SigKeyGen, Sign, Verify):

• The key generation algorithm SigKeyGen is a probabilistic algorithm that takes
as input the security parameter 1k and outputs a key pair (sksig, pksig), written

(sksig, pksig)
R← SigKeyGen(1k). The private signing key sksig is kept secret.

The public verification key pksig is widely distributed.
• The signing algorithm Sign is a probabilistic algorithm that takes as input a

message m and the private key sksig and outputs a signature s, written s
R←

Sign(sksig,m).
• The verification algorithm Verify is a deterministic algorithm that takes as input

a signature s and a public verification key pksig. It outputs either a message m
or a failure symbol ⊥ to denote that the signature is incorrect, written m ←
Verify(pksig, s).

We require that for any key pair (sksig, pksig)
R← SigKeyGen(1k) and message m,

we have that Verify(pksig, s) = m whenever s
R← Sign(sksig,m).

1.3.2.3 Security

The security requirements for a signature scheme were first described by Gold-
wasser et al. [91]. We present these security requirements using the syntax of a sig-
nature scheme with appendix; similar requirements exist for a signature scheme with
message recovery. In both cases, we seek to bound the probability that an efficient
attacker can create a false signature. This probability is assessed via the following
game between a probabilistic, polynomial-time (PPT) attacker and a hypothetical
challenger:

1. The challenger generates a key pair (sksig, pksig)
R← SigKeyGen(1k).

2. The attacker runs AO(1k, pksig). The attacker has access to an oracle O (which
will be described subsequently). The attacker terminates by outputting a message
m∗ and a signature s∗.

1 Technically, a signature scheme with message recovery often only allows part of the message
(sometimes called the recoverable part of the message) to be recovered from the signature. The
remaining part of the message (sometimes called the non-recoverable part of the message) has to
be sent along with signature. This is known as partial message recovery. However, any signature
scheme with partial message recovery can be transformed into a scheme with full message recovery
by concatenating the non-recoverable part of the message with the signature. Hence, in this book,
we will only consider signature schemes with full message recovery.
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The attacker has access to an oracle O. The power of this oracle defines the attack
model for the attack: it specifies the power that the attacker has in the attack.

• In a chosen message attack (CMA), the attacker has access to a signature oracle,

which takes as input a message m and outputs a signature s
R← Sign(sksig,m).

A chosen message attack seeks to emulate the normal mode of use of a signature
scheme, in which an attacker can observe signatures produced by a legitimate
party, perhaps in some adversarially chosen way.

• In a no-message attack (NMA), the oracle gives no response. This is equivalent
to an attack model in which the attacker does not have access to the oracle.

The attacker attempts to forge a signature. There are two ways which we can
assess whether the attacker succeeds in forging a signature.

• In the existential unforgeability (UF) game, the attacker is said to win if it outputs
a pair (m∗, s∗) where Verify(pksig,m∗, s∗) = � and the attacker never queried
the signature oracle with the message m∗.

• A slightly stronger notion of security is that of strong existential unforgeability
(sUF). The attacker is said to win the strong unforgeability game if it outputs a
pair (m∗, s∗) where Verify(pksig,m∗, s∗) = � and the attacker never queried
the signature oracle with the message m∗ and received the response s∗.

The difference between the two games is that in the unforgeability game the attacker
is attempting to forge a signature on an unsigned message, whereas in the strong
unforgeability game the attacker is attempting to either forge a signature on an
unsigned message or forge a new signature on a previously signed message.

Definition 1.1 (Secure signature scheme) A signature scheme is said to be GOAL-
ATK secure (where GOAL∈{UF,sUF} and ATK∈{NMA,CMA}) if the probability
that an attacker can win the GOAL game with oracle access as defined in the ATK
model is negligible as a function of the security parameter for all probabilistic,
polynomial-time attackers.

1.3.2.4 Weakened Security Notions for Finite Message Spaces

So far we have considered signature schemes that take arbitrary messages m ∈
{0, 1}∗ as input; however, we may consider weakened security notions for signature
schemes that have a finite message space M. For a finite message space, we may
define a new attack model and success criteria.

In the case of the success criteria, we may ask the attacker to produce a forged

signature for a randomly chosen message m∗ R←M. This leads to a new description
for the attack game that a probabilistic, polynomial-time attacker A is playing:

1. The challenger generates a key pair (sksig, pksig)
R← SigKeyGen(1k) and a mes-

sage m∗ R←M.
2. The attacker runs AO(1k, pksig,m∗). The attacker has access to an oracle O. The

attacker terminates by outputting a signature s∗.
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Again, we may define two success criteria for this security game:

• In the universally unforgeability (uUF) game, the attacker is said to win if
Verify(pksig,m∗, s∗) = � and the attacker never queried the signature oracle
with the message m∗.

• In the strong universally unforgeability (suUF) game, the attacker is said to win
if Verify(pksig,m∗, s∗) = � and the attacker never queried the signature oracle
with the message m∗ and received the response s∗.

Clearly, any scheme that is existentially unforgeable (respectively, strongly exis-
tentially unforgeable) is universally unforgeable (respectively, strong universally
unforgeable).

In the case of the attack model, we can consider a situation where the attacker is
given access to an oracle O that will return a randomly chosen message m

R←M
and a signature s

R← Sign(sksig,m) on that message. We term this a random mes-
sage attack (RMA). It is easy to see that this attack model lies between the notions
of a no message attack (NMA) and a chosen message attack (CMA).

Definition 1.2 (Secure signature scheme) A signature scheme with a finite mes-
sage space is said to be GOAL-ATK secure (where GOAL∈ {UF,sUF,uUF,suUF}
and ATK∈{NMA,RMA,CMA}) if the probability that an attacker can win the GOAL
game with oracle access as defined in the ATK model is negligible as a function of
the security parameter for all probabilistic, polynomial-time attackers.

1.3.3 Public Key Encryption

The other cryptographic primitive that a signcryption scheme seeks to emulate is
public key encryption. This primitive provides confidentiality protection for a mes-
sage, although it does not guarantee data integrity or provide origin authentication.

1.3.3.1 Syntax

A public key encryption scheme consists of three polynomial-time algorithms
(EncKeyGen, Encrypt, Decrypt):

• The key generation algorithm EncKeyGen is a probabilistic algorithm that takes
as input a security parameter 1k and outputs a key pair (skenc, pkenc), written

(skenc, pkenc)
R← EncKeyGen(1k). The public encryption key pkenc is widely dis-

tributed, while the private decryption key skenc should be kept secret. The public
key defines a message space M and a ciphertext space C.

• The encryption algorithm Encrypt is a probabilistic algorithm that takes a mes-
sage m ∈M and the public key pkenc as input and outputs a ciphertext C ∈ C,

written C
R← Encrypt(pkenc,m).
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• The decryption algorithm Decrypt is a deterministic algorithm that takes a
ciphertext C ∈ C and the private key skenc as input and outputs either a message
m ∈M or the failure symbol ⊥, written m ← Decrypt(skenc,C).

For correctness, we require that for all key pairs (pkenc, skenc)
R← EncKeyGen(1k)

and messages m ∈ M, we have that m ← Decrypt(skenc,C) whenever C
R←

Encrypt(pkenc,m).
In some cases, it may be advantageous for public/private key pairs to be based

on some common parameters—e.g., a description of a group, a generator for that
group, some randomly generated group elements. If this is required, then we assume
the existence of a Setup algorithm which outputs these common parameters param.
This algorithm must be run by some trusted entity (which is trusted to run the algo-
rithm correctly, securely delete any internal data, and widely publish the results).
The common parameters param are assumed to be an implicit input to the other
algorithms in the scheme.

1.3.3.2 Security

A secure encryption scheme is one in which a ciphertext reveals no information
about the underlying message. The generally accepted notion of security for an
encryption scheme is given by the indistinguishability (IND) game. In this game,
an attacker is considered to be a pair of probabilistic, polynomial-time algorithms
A = (A1,A2). For a public key encryption scheme, the IND games run as follows:

1. The challenger generates a key pair (skenc, pkenc)
R← EncKeyGen(1k).

2. The attacker runs AO
1 (1

k, pkenc) to produce a pair of equal length messages
(m0,m1) and some state information α.

3. The challenger randomly chooses a bit b
R← {0, 1} and computes the challenge

ciphertext C∗ R← Encrypt(pkenc,mb).
4. The attacker runs AO

2 (C
∗, α) to produce a bit b′.

The attacker wins the game if b = b′. The attacker’s advantage is defined to be

AdvIND
A (k) = |Pr[b = b′] − 1/2| (1.4)

Just as with signature schemes, the oracle defines the power that the attacker has
in the attack model. There are two options:

• In a chosen ciphertext attack (CCA2), the attacker has access to a decryption
oracle, which takes as input a ciphertext C ∈ C and outputs the message m ←
Decrypt(skenc,C). The only restriction is that A2 is not allowed to query the
decryption oracle on the challenge ciphertext C∗.

• In a chosen plaintext attack (CPA), the oracle gives no response. Again, this is
equivalent to an attack model in which the attacker does not have access to an
oracle.
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Definition 1.3 (Secure public key encryption scheme) A public key encryption
scheme is said to be IND-ATK secure (where ATK∈{CPA,CCA2}) if the advantage
that an attacker has in winning the IND game with oracle access as defined in the
ATK model is negligible as a function of the security parameter for all probabilistic,
polynomial-time attackers.

Lastly, we provide a useful lemma which can help bound the advantage of an
attacker.

Lemma 1.1 If A is an attacker with advantage AdvIND
A , then

2 · Adv IND
A = |Pr[b′ = 0 | b = 0] − Pr[b′ = 0 | b = 1]| (1.5)

1.3.3.3 Weakened Security Notions for Finite Message Spaces

Just as for signature schemes, if we know that the message space M of a public
key encryption scheme is finite, then we may consider weaker security notions. In
particular, we can consider a notion of one-way (OW) security. In this game, the
attacker is considered to be a probabilistic, polynomial-time algorithm A. The OW
attack game is as follows:

1. The challenger generates a key pair (skenc, pkenc)
R← EncKeyGen(1k), a message

m∗ R←M, and a ciphertext C∗ R← Encrypt(pkenc,m∗).
2. The attacker runs A(1k, pkenc,C∗). A outputs a message m.

The attacker is said to win the OW-CPA game if m = m∗.

Definition 1.4 (One-way public key encryption scheme) A public key encryption
scheme is said to be OW-CPA secure if the probability that an attacker has in win-
ning the OW-CPA game is negligible as a function of the security parameter for all
probabilistic, polynomial-time attackers.

One-way (OW) security is, conceptually, a weaker notion of security than indis-
tinguishability (IND). Indeed, a scheme that is IND-CPA secure and has a message
space M = {0, 1}�(k), where �(k) is a polynomial in the security parameter k, is
necessarily OW-CPA secure.

1.3.4 Symmetric Encryption

While signcryption is a public key primitive, we will frequently make use of a sym-
metric encryption scheme as a subroutine in a larger primitive.

1.3.4.1 Syntax

A symmetric encryption scheme is a pair of deterministic algorithms (Enc, Dec):
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• The encryption algorithm Enc takes as input a symmetric key K and a message
m ∈M and outputs a ciphertext C ∈ C, written C ← EncK (m).

• The decryption algorithm Dec takes as input a symmetric key K and a ciphertext
C ∈ C and outputs either a message m ∈ M or the failure symbol ⊥, written
m ← DecK (C).

For correctness, for any symmetric key K , we require that m = DecK (EncK (m)).

1.3.4.2 One-Time Security

The security requirements for symmetric encryption are similar to that of public
key encryption. Again, it makes use of the indistinguishability (IND) security game
and an attacker which is considered to be a pair of probabilistic, polynomial-time
attackers (A1,A2). The one-time notion of security works as follows:

1. The challenger generates a random key K
R← {0, 1}k .

2. The attacker runs A1(1k) to produce a pair of equal length messages (m0,m1)

and some state information α.
3. The challenger randomly chooses a bit b

R← {0, 1} and computes the challenge
ciphertext C∗ ← EncK (mb).

4. The attacker runs AO
2 (C

∗, α) to produce a bit b′.

Again, the attacker wins the game if b = b′ and the attacker’s advantage is defined
to be

AdvOT
A (k) = |Pr [b = b′] − 1/2| (1.6)

Once again, the power of the attack model is defined by the oracle O and there
are two possibilities for the oracle:

• In a chosen ciphertext attack (CCA), the attacker has a decryption oracle, which
takes as input a ciphertext C and outputs a message m ← DecK (C). The only
restriction is that the attacker is not allowed to query the decryption oracle on the
challenge ciphertext C∗.

• In a chosen plaintext attack (CPA), the decryption oracle gives no response. This
is equivalent to an attack model in which the attacker does not have access to an
oracle.

Note that, even in the CCA attack model, the attacker only has access to the oracle
after the challenge ciphertext is issued.

Definition 1.5 (Secure Symmetric Encryption Scheme) A symmetric encryption
scheme is said to be IND-ATK secure (where ATK∈{CPA,CCA}) if the advantage
that an attacker has in winning the IND game with oracle access as defined in the
ATK model is negligible as a function of the security parameter for all probabilistic,
polynomial-time attackers.
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1.3.5 Message Authentication Codes

A message authentication code (MAC) is a checksum value that can be computed
on a message using a secret symmetric key to assure a recipient of the integrity and
origin of the message. In many ways, it can be viewed as the symmetric version
of a digital signature scheme, although it cannot provide a non-repudiation service
without the involvement of a trusted third party.

A message authentication code (MAC) is defined by a deterministic MAC algo-
rithm MAC. This algorithm takes as input a symmetric key K and a message m ∈M
and outputs a fixed length output tag.

The security requirement for a MAC scheme is similar to that of a digital sig-
nature scheme. An attacker is considered to be a probabilistic, polynomial-time
algorithm A that runs in the following security model:

1. The challenger generates a random key K
R← {0, 1}k .

2. The attacker runs A(1k) to produce a message m and a MAC tag tag. During its
execution, the MAC algorithm is allowed to access a MAC oracle, which takes
as input a message m and outputs MACK (m).

The attacker wins the game if MACK (m) = tag and m was never queried to the MAC
oracle.

Definition 1.6 (Secure MAC Algorithm) A MAC algorithm is said to be secure
if the advantage that an attacker has in winning the above game is negligible as a
function of the security parameter for all probabilistic, polynomial-time attackers.
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Chapter 2
Security for Signcryption: The Two-User Model

Jee Hea An and Tal Rabin

2.1 Introduction

Signcryption is a cryptographic primitive designed to simultaneously provide con-
fidentiality and integrity protection in a communication (see Chap. 1 for a more
detailed description of the role of signcryption in a communication architecture).
It is a public-key primitive and can be viewed as the public-key version of the
symmetric-key primitive known as authenticated encryption; indeed, the two primi-
tives share many similarities at a high level. Signcryption was originally proposed by
Zheng [203, 204] with the intention that the primitive should satisfy “Cost(Signature
& Encryption) � Cost(Signature) + Cost(Encryption).” This inequality can inter-
preted in a number of ways:

• A signcryption scheme should be more computationally efficient than a naive
combination of public-key encryption and digital signatures.

• A signcryption scheme should produce a signcryption “ciphertext” which is
shorter than a naive combination of a public-key encryption ciphertext and a
digital signature.

• A signcryption scheme should provide greater security guarantees and/or greater
functionality than a naive combination of public-key encryption and digital sig-
natures.

Of course, we would ideally aim to produce a scheme which gave all three advan-
tages; however, in the absence of such a scheme, any one of these advantages may
be useful depending on the nature of the application for which signcryption is being
used. A discussion of the potential uses of signcryption in practical applications is
given in Chap. 12.

This chapter provides a formal definition for the security of signcryption in the
two-user setting and analysis of the security of signcryption schemes that are con-
structed by generically composing signature and encryption schemes in the public-
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key setting. The first attempt to produce security models for signcryption was given
by Steinfeld and Zheng [184]; however, this work only proposed a security model
for the integrity protection property of a signcryption scheme. This chapter will be
based on the more complete treatment given by the work of An et al. [10]. The
problem of defining the security of signcryption in the public-key setting is more
involved than the corresponding task in the symmetric setting [26, 117] due to the
asymmetric nature of the former. The asymmetry of keys makes a difference in the
notions of both authenticity and privacy on two major fronts which are addressed in
this chapter.

The first difference for the public-key setting is that the security of the signcryp-
tion needs to be defined in the multi-user setting, where issues with users’ identities
need to be addressed. In contrast, authenticated encryption in the symmetric setting
can be fully defined in a much simpler two-user setting. We argue that there is
interest in the two-user setting in the public-key setting even though it does not
provide all the security guarantees. There are quite a few subtle issues with defining
the security of signcryption in the (simpler) two-user setting and thus starting in this
setting highlights these delicate issues and is non-trivial.

The asymmetry of the public-key setting not only makes a difference in the multi-
user and two-user settings but also makes a difference in the adversary’s position
depending on its knowledge of the keys. We give two definitions for security of
signcryption depending on whether the adversary is an “outsider” (i.e., a third party
who only knows the public information) or “insider” (i.e., a legal user of the net-
work, either the sender or the receiver, or someone that knows the secret key of
either the sender or the receiver). We call the former “outsider security” and the
latter “insider security.”

In this chapter, we will define security notions for both insider and outsider
security in terms of both privacy (i.e., indistinguishability against chosen ciphertext
attack, IND-CCA2) and authenticity (i.e., strong unforgeability against chosen mes-
sage attack, sUF-CMA). We then analyze the security of the signcryption schemes
that are constructed by generically composing signature and encryption schemes in
the following three methods: Encrypt-and-Sign (E&S), Encrypt-then-Sign (E tS),
and Sign-then-Encrypt (StE). As observed in [26, 117] in the symmetric setting, we
show that the parallel E&S method does not provide even the weak IND-CPA secu-
rity for privacy nor does it provide the strongest sUF-CMA security for authenticity
(although it provides slightly weaker UF-CMA security) in either insider or outsider
security models.

For the sequential E tS and StE methods, we consider the following cases: secu-
rity corresponding to the operation performed last (i.e., authenticity in the E tS
method and privacy in the StE method) and security corresponding to the operation
performed first (i.e., privacy in the E tS method and authenticity in the StE method).
We show that the security of the last operation is preserved in both the insider and
the outsider security models—that is, the E tS method inherits the authenticity prop-
erty of the base signature scheme and the StE method inherits the privacy prop-
erty of the base encryption scheme. However, we show that the security of the first
operation may or may not be preserved depending on the security models and the
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strengths of security considered. In the strong insider security model, the security of
the first operation is not preserved against the strongest security notions of privacy
and authenticity (i.e., IND-CCA2 and sUF-CMA security) although it is preserved
against weaker security notions (e.g., IND-CPA, IND-gCCA2 [10], and UF-CMA
security). In the weaker outsider security model, on the other hand, the security of
the first operation can even be amplified as long as the security of the last operation
is strong enough, exactly as in the symmetric setting [9, 26, 117].

2.2 Definition of Signcryption in the Two-User Setting

The definition of signcryption is a little bit more involved than the corresponding
definition of authenticated encryption in the symmetric setting. Indeed, in the sym-
metric setting, we only have one specific pair of users who (1) share a single key;
(2) trust each other; (3) “know who they are”; and (4) only care about being pro-
tected from “the rest of the world.” In contrast, in the public-key setting, each user
independently publishes its public keys, after which it can send/receive messages
to/from any other user. In particular, (1) each user should have an explicit identity
(associated with its public key); (2) each signcryption has to explicitly contain the
(presumed) identities of the sender S and the receiver R; (3) each user should be
protected from every other user. As we have said, complete security notions for
signcryption schemes should be defined in the multi-user setting. However, the two-
user setting provides important insights into the subtleties of signcryption and so we
will provide the definitions for the two-user setting as a gentle introduction to the
subject. We will provide full multi-user security models in Chap. 3.

2.2.1 Two Security Notions in the Two-User Setting

2.2.1.1 Syntax

A signcryption scheme Π consists of five algorithms, Π = (Setup, KeyGenS,

KeyGenR, Signcrypt, Unsigncrypt):

• The (possibly randomized) setup algorithm Setup takes as input a security
parameter 1k and outputs any common parameters param required by the sign-
cryption schemes. This may include the security parameter 1k , the description
of a group G and a generator g for that group, choices for hash functions or
symmetric encryption schemes, etc.

It is important to note that this algorithm does not output a secret key. In fact,
it may be important that the algorithm does not leak any information about the
common parameters except those values which are explicitly stated as being part
of the output. The security of the scheme may be jeopardized if extra information
about the common parameters is leaked; for example, if the common parameters
include two group elements g and h, then security may be jeopardized if the setup
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algorithm leaks the discrete logarithm of h with the respect to g. Hence, all users
must trust that the setup algorithm is computed correctly and securely.

• The randomized sender key generation algorithm KeyGenS takes as input the
common parameters param and outputs a pair of keys (skS, pkS), where skS is the
sender’s signing key, which is kept secret, and pkS is the sender’s verification key

pair (pkS, pkR), which is made public; we write (skS, pkS)
R← KeyGenS(param).

• The randomized receiver key generation algorithm KeyGenR takes as input the
common parameters param and outputs a pair of keys (skR, pkR), where skR

is the receiver’s decryption key, which is kept secret, and pkR is the receiver’s

encryption key, which is made public; we write (skR, pkR)
R← KeyGenR(param).

In a complete system, a user would have two key pairs: a pair (skS, pkS) which
is used when the user is sending a message and a pair (skR, pkR) which is used
when the user is receiving a message. It is possible for a user to have a single
key pair (sk, pk) which is used for both sending and receiving messages—this
issue is discussed in depth in Sect. 5.4—but the simpler two-key presentation
suits our purposes for now. We note that we may always set pk = (pkS, pkR)

and sk = (skS, skR) and so our presentation is an example of the more general
case.

• The randomized signcryption (sign/encrypt) algorithm Signcrypt takes as input
the common parameters param, the sender’s secret key skS , the receiver’s public
key pkR , and a message m from the associated message space M. It internally
flips some coins and outputs a signcryption ciphertext C ; we will typically write
C ← Signcrypt(skS, pkR,m) or C ← Signcrypt(m) (omitting param, skS

and pkR for brevity).
• The deterministic unsigncryption (verify/decrypt) algorithm Unsigncrypt takes

as input the common parameters param, the sender’s public key pkS , the
receiver’s secret key skR , and the signcryption ciphertext C . It outputs either
m ∈M or an error symbol ⊥ which indicates that the message was not
encrypted or signed properly. We write m ← Unsigncrypt(pkS, skR,C) or
m ← Unsigncrypt(C) (again, omitting the common parameters and keys).

We require that Unsigncrypt(Signcrypt(m)) = m for any m ∈M.

2.2.1.2 Security of Signcryption

Fix the sender S and the receiver R. The security goal is to provide both authenticity
and privacy of communicated data. In the symmetric setting, since the sender and
the receiver share the same secret key, the only security model that makes sense is
one in which the adversary is modeled as a third party or an outsider who does not
know the shared secret key. However, in the public-key setting, the sender and the
receiver do not share the same secret key but each has his/her own secret key. Due
to this asymmetry of the secret keys, we need to protect the data not only from an
outsider but also from an insider who is a legal user of the system (i.e., the sender
or the receiver themselves or someone who knows either the sender’s secret key
or the receiver’s secret key). Hence, we have an additional security notion in the
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public-key setting and we call it insider security. As opposed to the insider security,
we call the security against an outsider outsider security, which is the security that
is also considered in the symmetric setting.

Outsider Security

We define security against the strongest security notions of authenticity (the analogs
of UF-CMA or sUF-CMA for digital signature schemes) and privacy (the analog
of IND-CCA2 for public-key encryption schemes). Weaker notions could easily
be defined as well. We assume that the adversary A has the public information
(pkS, pkR). It also has oracle access to the functionalities of both the sender and
the receiver. Specifically, it can mount a chosen message attack on the sender by
asking the sender to produce a signcryption C of an arbitrary message m. In other
words, A has access to the signcryption oracle. Similarly, it can mount a chosen
ciphertext attack on the receiver by giving the receiver any candidate signcryption
C and receiving back the message m (where m could be⊥), i.e., A has access to the
unsigncryption oracle. Notice, A cannot by itself run either the signcryption or the
unsigncryption oracles due to the lack of corresponding secret keys skS and skR .

To break the UF-CMA security of the signcryption scheme, A has to come up
with a valid signcryption C (i.e., a ciphertext C for which the unsigncryption oracle
does not return⊥) of a “new” message m, which it did not ask the sender to signcrypt
earlier (note that A is not required to “know” m when producing C although A can
always compute m by querying the unsigncryption oracle with C). The signcryption
scheme is said to be outsider secure in the UF-CMA sense if any PPT A has a
negligible chance of succeeding in the UF-CMA attack. To break the sUF-CMA
security of the signcryption scheme, A has to come up with a valid signcryption C
which was not returned by the sender earlier (note that C’s unsigncryption output
m does not have to be “new”). Formally, we consider a game played between a
hypothetical challenger and a PPT attacker A:

1. The challenger generates common parameters param
R← Setup(1k), a sender

key pair (skS, pkS)
R← KeyGenS(param), and a receiver key pair (skR, pkR)

R←
KeyGenR(param).

2. The attacker runs A on the input (param, pkS, pkR). The attacker may query
a signcryption oracle with a message m ∈M to receive the signcryption

ciphertext C
R← Signcrypt(skS, pkR,m). The attacker may also query an

unsigncryption oracle with a ciphertext C to receive the message m ←
Unsigncrypt(pkS, skR,C). The attacker terminates with the output of a cipher-
text C .

The attacker wins the UF-CMA game if (1) m ← Unsigncrypt(pkS, skR,C) satis-
fies m = ⊥ and (2) if m was never submitted to the signcryption oracle. The attacker
wins the sUF-CMA game if (1) m ← Unsigncrypt(pkS, skR,C) satisfies m = ⊥
and (2) the signcryption oracle never returned C . The signcryption scheme is said to
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be outsider secure in the (s)UF-CMA sense if every PPT attacker A has a negligible
chance of succeeding in the (s)UF-CMA attack.

To break the IND-CCA2 security of the signcryption scheme, A has to come
up with two equal-length messages m0 and m1. One of these will be signcrypted
at random, the corresponding signcryption challenge C∗ will be given to A and A
has to guess which message was signcrypted. Here, A is forbidden to query the
unsigncryption oracle on the challenge C∗. Formally, we consider a game played
between a challenger and a PPT attacker A = (A1,A2):

1. The challenger generates common parameters param
R← Setup(1k), a sender

key pair (skS, pkS)
R← KeyGenS(param), and a receiver key pair (skR, pkR)

R←
KeyGenR(param).

2. The attacker runs A1 on the input (param, pkS, pkR). The attacker may query
a signcryption oracle with a message m ∈M to receive the signcryption

ciphertext C
R← Signcrypt(skS, pkR,m). The attacker may also query an

unsigncryption oracle with a ciphertext C to receive the message m ←
Unsigncrypt(pkS, skR,C). The attacker terminates with the output of two
equal-length messages m0,m1 ∈M and some state information α.

3. The challenger chooses b
R← {0, 1} and computes the challenge ciphertext C∗ R←

Signcrypt(skS, pkR,mb).
4. The attacker runs A2 on the input of the challenge ciphertext C∗ and the state

information α. The attacker may query the signcryption and unsigncryption ora-
cles as before, with the exception that the attacker is forbidden from submitting
the ciphertext C∗ to the unsigncryption oracle. The attacker terminates with the
output of a bit b′.

The attacker wins if b = b′ and the attacker’s advantage is defined to be

ε = |Pr [b = b′] − 1/2|

The signcryption scheme is said to be outsider secure in the IND-CCA2 sense if
every PPT attacker A has a negligible advantage in the IND-CCA2 attack.

Insider Security

Security notions for insider security are similar to those for outsider security, except
that the attacker is given one of the private keys of the users. In the (s)UF-CMA
game, the attacker is given the private key of the receiver, indicating that the attacker
is the receiver and that the signcryption scheme prevents a receiver from forging
a signcryption ciphertext that purports to be from the sender. This is a necessary
condition if non-repudiation is to be achieved. In the IND-CCA2 game, the attacker
is given the private key of the sender, indicating that the attacker is the sender
and that the signcryption scheme prevents a sender from deciphering a signcryp-
tion ciphertext that has previously been produced. This means that the signcryption
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scheme protects the confidentiality of messages even if the sender’s private key is
subsequently leaked to an attacker.

The formal model for insider (s)UF-CMA security is as follows:

1. The challenger generates common parameters param
R← Setup(1k), a sender

key pair (skS, pkS)
R← KeyGenS(param), and a receiver key pair (skR, pkR)

R←
KeyGenR(param).

2. The attacker runs A on the input (param, pkS, skR, pkR). The attacker may query
a signcryption oracle with a message m ∈M to receive the signcryption cipher-

text C
R← Signcrypt(skS, pkR,m). (The attacker need not be given access to

an unsigncryption oracle as it can compute the unsigncryption algorithm itself
using skR .) The attacker terminates with the output of a ciphertext C .

The attacker wins the UF-CMA game if (1) m ← Unsigncrypt(pkS, skR,C) satis-
fies m = ⊥ and (2) if m was never submitted to the signcryption oracle. The attacker
wins the sUF-CMA game if (1) m ← Unsigncrypt(pkS, skR,C) satisfies m = ⊥
and (2) the signcryption oracle never returned C . The signcryption scheme is said to
be insider secure in the (s)UF-CMA sense if every PPT attacker A has a negligible
chance of succeeding in the (s)UF-CMA attack.

The formal model for insider IND-CCA2 security is as follows:

1. The challenger generates common parameters param
R← Setup(1k), a sender

key pair (skS, pkS)
R← KeyGenS(param), and a receiver key pair (skR, pkR)

R←
KeyGenR(param).

2. The attacker runs A1 on the input (param, pkS, skS, pkR). The attacker may
query an unsigncryption oracle with a ciphertext C to receive the message
m ← Unsigncrypt(pkS, skR,C). (Again, the attacker does not need to be given
access to a signcryption oracle as it can compute the signcryption functionality
using skS .) The attacker terminates with the output of two equal-length messages
m0,m1 ∈M and some state information α.

3. The challenger chooses b
R← {0, 1} and computes the challenge ciphertext C∗ R←

Signcrypt(skS, pkR,mb).
4. The attacker runs A2 on the input of the challenge ciphertext C∗ and the state

information α. The attacker may query the unsigncryption oracle as before, with
the exception that the attacker is forbidden from submitting the ciphertext C∗ to
the unsigncryption oracle. The attacker terminates with the output of a bit b′.

The attacker wins if b = b′ and the attacker’s advantage is defined to be

ε = |Pr[b = b′] − 1/2|

The signcryption scheme is said to be insider secure in the IND-CCA2 sense if
every PPT attacker A has a negligible advantage in the IND-CCA2 attack.

We also present an equivalent, but more elegant, definition of the insider security
model. This more elegant treatment is rarely used in practice but does highlight the
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relationship between signcryption schemes and the related concepts of public-key
encryption and digital signatures. We note that given any signcryption scheme
Π = (Setup, KeyGenS, KeyGenR, Signcrypt, Unsigncrypt), we can define a
corresponding induced signature scheme S = (SigKeyGen, Sign, Verify) and
encryption scheme E = (EncKeyGen, Encrypt, Decrypt):

• Signature scheme S. The key generation algorithm SigKeyGen runs param
R← Setup(1k), (skS, pkS)

R← KeyGenS(param), and (skR, pkR)
R← KeyGenR

(param). We set the signing key to sksig = (param, skS, pkS, pkR) and the ver-
ification key to pksig = (param, pkS, skR, pkR), namely, the public verification
key (available to the adversary) contains the secret key of the receiver R. To
sign a message m, Sign(m) outputs C = Signcrypt(m), while the verification
algorithm Verify(C) runs m ← Unsigncrypt(C) and outputs � if and only
if m = ⊥. We note that the verification is indeed polynomial time since pksig

includes skR .
• Encryption scheme E . The key generation algorithm EncKeyGen runs

param
R← Setup(1k), (skS, pkS)

R← KeyGenS(param), and (skR, pkR)
R←

KeyGenR(param). We set the encryption key to pkenc = (param, skS, pkS, pkR)

and the decryption key to skenc = (param, pkS, skR, pkR), namely the public
encryption key (available to the adversary) contains the secret key of the sender S.
To encrypt a message m, Encrypt(m) outputs C = Signcrypt(m), while the
decryption algorithm Decrypt(C) simply outputs Unsigncrypt(C). We note
that the encryption is indeed polynomial time since pkenc includes skS .

The signcryption scheme is insider (s)UF-CMA secure if the induced signature
scheme is (s)UF-CMA secure. The signcryption scheme is insider IND-CCA2
secure if the induced encryption scheme is IND-CCA2 secure.

2.2.2 Discussions on the Security Notions

2.2.2.1 Should we Require Non-Repudiation?

We note that the conventional notion of digital signatures supports non-repudiation.
Namely, the receiver R of a correctly generated signature s of the message m can
hold the sender S responsible for the contents of m. Indeed, presenting s to a third
party is sufficient for R to prove that m was indeed signed by S as long as the
signature scheme that is used to generate s is unforgeable and publicly verifiable. On
the other hand, non-repudiation does not automatically follow from the definition of
signcryption. Although signcryption allows the receiver to be convinced that m was
sent by S, it does not necessarily enable a third party to verify this fact because the
verification of the authenticity of the message m may involve the receiver’s secret
key, depending on how the signcryption scheme is built.
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We believe that non-repudiation should not be part of the definition of sign-
cryption security because the necessity of this property varies depending on the
applications. Indeed, non-repudiation might be needed in some applications, while
explicitly undesirable in others (e.g., this issue is the essence of undeniable [58]
and chameleon [119] signature schemes). We will therefore not discuss this issue
any further in this chapter. The issue of non-repudiation in signcryption schemes is
discussed further in Sects. 4.6 and 6.5.

2.2.2.2 Insider vs. Outsider Security

We illustrate some of the differences between insider and outsider security. For
example, insider security for authenticity implies non-repudiation “in principle.”
Namely, non-repudiation is certain at least when the receiver R is willing to reveal
its secret key skR (since this induces a regular signature scheme) and may be pos-
sible by other means (e.g., with the use of an appropriate zero-knowledge proof).
In contrast, outsider security leaves open the possibility that the receiver R can
generate—using its secret key—valid signcryptions of messages that were not actu-
ally sent by the sender S. In such a case, non-repudiation cannot be achieved no
matter what the receiver R does.

Despite the above issues, however, it might still seem that the distinction between
insider and outsider security is a bit contrived, especially for privacy. Intuitively,
outsider security protects the privacy of the receiver R from outside intruders who do
not know the secret key of the sender S. On the other hand, insider security assumes
that the sender S is the intruder attacking the privacy of the receiver R. But since the
sender S is the only user that can send valid signcryptions from S to R, this seems to
make little sense. Similarly for authenticity, if non-repudiation is not an issue, then
insider security seems to make little sense as it assumes that the receiver R is the
intruder attacking the authenticity of the sender S, and, simultaneously, the only user
that needs to be convinced of the authenticity of the (received) data. In many settings
outsider security might be all one needs for privacy and/or authenticity. Still, there
are some cases where the extra strength of the insider security might be important.
For example, assume an adversary A happens to steal the key of the sender S. Even
though now A can send forged messages “from S to R,” we still might not want A
to understand previous (or even future) recorded signcryptions sent from the honest
sender S to the receiver R. Similarly, if an adversary A happens to steal the key of
the receiver R, we still might not want A to send forged messages “from S to R,”
although A can now understand signcryption messages sent from the honest sender
S to the receiver R. Insider security will meet these security requirements, while the
outsider security might not.

Finally, we note that achieving outsider security could be significantly easier than
insider security. One such example will be seen in Theorems 2.3 and 2.4. Another
example is given by An [7] and shows that authenticated encryption in the symmetric
setting could be used to build outsider secure signcryption, but not insider secure
signcryption. A final example is the outsider secure signcryption KEM produced by
Dent [73] which is discussed in Sect. 7.3. In summary, one should carefully examine
if one really needs the extra guarantees of insider security.
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2.3 Generic Compositions of Signature and Encryption

In this section, we discuss three methods of constructing signcryption schemes that
are based on generic composition of signature and encryption: Encrypt-and-Sign
(E&S), Sign-then-Encrypt (StE), and Encrypt-then-Sign (E tS).

2.3.1 Construction

Let E = (EncKeyGen, Encrypt, Decrypt) be an encryption scheme and S =
(SigKeyGen, Sign, Verify) be a signature scheme. All three methods use the same
common parameter algorithm and key generation algorithms—see Fig. 2.1. Essen-
tially, the schemes require no common parameters, while the sender and receiver
key generation algorithms are the key generation algorithms for the signature and
encryption schemes, respectively. The three construction methods are the “Encrypt-
and-Sign” (E&S) method—see Fig. 2.2; the “Encrypt-then-Sign” (E tS) method—
see Fig. 2.3; and the “Sign-then-Encrypt” (StE) method—see Fig. 2.4.

Fig. 2.1 The key generation algorithms for the generic compositions

Fig. 2.2 The Encrypt-and-Sign (E&S) scheme

Fig. 2.3 The Encrypt-then-Sign (EtS) scheme
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Fig. 2.4 The Sign-then-Encrypt (StE) scheme

2.3.2 Security of the Parallel Composition Method

Among the above three generic composition methods, the “Encrypt-and-Sign”
(E&S) method allows computing encryption and signature in parallel, while in the
other two methods, they are computed sequentially. However, in terms of security,
it is easy to see that E&S does not preserve privacy since the signature will reveal
information about the message m (regardless of whether the adversary is an insider
or an outsider). To be more formal, we give an attacker A = (A1,A2) against the
IND-CCA2 property of the signcryption scheme. The attack works in two phases:

• The attacker A1 outputs two distinct equal-length messages from the message
space (m0,m1).

The challenger randomly signcrypts one message to give a challenge ciphertext

(c∗, σ ∗) R← Signcrypt(skS, pkR,mb). This challenge ciphertext is given to the
attacker.

• The attacker A2 checks whether σ ∗ is a valid signature on m0 or m1 by computing
Sign(pkS,m0, σ

∗) and Sign(pkS,m1, σ
∗). The attacker returns the appropriate

bit b.

This may seem like a technicality, but the prospect of the digital signature leaking
information about the message is very real. There is no requirement on the digital
signature to preserve the confidentiality of the message. Indeed, digital signatures
with message recovery, discussed in Sect. 1.3.2, guarantee that the signature will
reveal the underlying message. These signature schemes still meet the strong notions
of (s)UF-CMA security, but have absolutely no confidentiality properties.

Although E&S does not preserve privacy, it is easy to see that it preserves the
UF-CMA security. Intuitively, if an adversary against the UF-CMA security of the
signcryption scheme built using E&S succeeds, it means it succeeded in forging a
signature for a “new” message, which is exactly what it means to break the UF-CMA
security of the underlying signature scheme. However, for the sUF-CMA security (a
stronger authenticity property), the E&S method does not necessarily yield a secure
signcryption scheme for a similar reason as in the privacy case (both the encryption
part and the signature part need to be unforgeable). Notice that these results hold in
both insider and outsider security models.
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2.3.3 Security of the Sequential Composition Methods

In the strong insider security model, where the adversary knows all of the secret keys
except for the one being attacked, signcryption security can only be based on the
security of the underlying component whose secret key is unknown to the adversary.
For example, in the case of confidentiality, the only key that the adversary does not
know is the private key of the encryption scheme. In other words, the privacy of the
signcryption scheme can only be based on the security of the public-key encryption
scheme. Similarly, the integrity protection property of the signcryption scheme can
only be based on the security of the digital signature scheme. Hence, preserving the
security property of the underlying component is the best we can hope to achieve
with insider security. However, we show that this may not always be achieved—that
is, in the sequential composition methods (i.e., E tS and StE), depending on the
order of composition and the strength of the security property considered, the secu-
rity of the underlying component may or may not be preserved. We show this differ-
ence by dividing the security into two cases depending on whether we consider the
signcryption security property corresponding to the operation performed first or last.

When we consider the security of signcryption corresponding to the security of
the operation performed last (i.e., authenticity in the E tS method and privacy in
the StE method), the security of the base component is preserved. In other words,
the security of the last operation is inherited by the signcryption scheme—that is,
the E tS method inherits the authenticity of the base signature scheme and the StE
method inherits the privacy of the base encryption scheme. Notice that in this case
the security of the signcryption scheme does not depend on the security of the other
component (i.e., the operation performed first). This is true regardless of the secu-
rity models (i.e., regardless of whether we consider the insider or outsider security
model).

If we consider the signcryption security corresponding to the security of the
operation performed first (i.e., privacy in the E tS method and authenticity in the
StE method), then results differ depending on the security models and the com-
position methods. In the insider security model, the security of the first operation
is not preserved against the strongest security notions of privacy and authenticity
(i.e., IND-CCA2 security and sUF-CMA security) although it is preserved against
weaker security notions (e.g., IND-CPA, IND-gCCA2 [10], and UF-CMA security).
This is because the adversary who knows the secret key of the other component
(i.e., the signature scheme in the E tS method and the encryption scheme in the
StE method) can manipulate the given signcryption ciphertext by re-signing it and
submitting the modified ciphertext as a unsigncryption oracle query (in the attack
against the IND-CCA2 security of the E tS method) or re-encrypting it and submit
the modified ciphertext as a forgery (in the attack against the sUF-CMA security
of the StE method). Intuitively, this tells us that achieving the strongest security
corresponding to the security of the operation performed first is not possible when
the adversary knows the secret key of the operation performed last.

However, in the outsider security model (where the adversary does not know any
secret keys) the results are quite different. The security of the operation performed
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last can help enhance the security of the operation performed first—that is, a security
property stronger than that of the first operation can be achieved as long as the
security of the last operation is strong enough. Indeed, it turns out that, for the
E tS method, IND-CCA2 security can be achieved from the IND-CPA security of
the base encryption scheme (which is the first operation) with the help of the sUF-
CMA security of the base signature scheme (which is the last operation). For the
StE method, sUF-CMA security can be achieved from the UF-NMA security of the
base signature scheme (which is the first operation) with the help of the IND-CCA2
security of the base encryption scheme (which is the last operation).

We now summarize the results in the following theorems. Theorem 2.1 states
that the signcryption security corresponding to the security of the last operation is
preserved in both insider and outsider security models. In order to show that, we
consider only the strongest security notions (i.e., insider IND-CCA2 security for
privacy and insider sUF-CMA security for authenticity) as representative cases since
the proofs for other weaker notions are very similar except a few minor definitional
differences.

Theorem 2.1 If S is sUF-CMA secure, then the signcryption scheme Π built using
the E tS method is sUF-CMA secure in the insider security model. If E is IND-CCA2
secure, then the signcryption scheme Π built using the StE method is IND-CCA2
secure in the insider security model.

Proof (1) sUF-CMA security of E tS in the insider security model
Let A′ be a forger against the sUF-CMA security of Π built using the E tS

method in the insider security model. We can easily construct a forger A against
the sUF-CMA security of the signature scheme S that has identical probability
of forging signatures. Let (sksig

S , pksig
S ) be the keys of S. Given the signing ora-

cle Sign and the public verification key pksig
S , A picks a pair of encryption keys

(skenc
R , pkenc

R )
R← EncKeyGen(1k). A then hands (pksig

S , skenc
R , pkenc

R ) to A′ as the
public key of the induced signature scheme. A can easily simulate the signcryption

query of A′ for any message m′ by first creating e′ R← Encrypt(pkenc
R ,m′) and then

asking the signing oracle for S to sign e′. Finally, when A′ produces a forgery C
for E tS, A outputs C as well. For sUF-CMA security, it is easy to see that if C is a
valid and “new” signcryption (i.e., either the encryption part or the signature part is
new), then C is a valid and “new” signature too (i.e., either the message part or the
signature part is new).

(2) IND-CCA2 security of StE in the insider security model
Let A′ be a distinguisher against the IND-CCA2 security of a scheme Π built

using the StE method in the insider security model. We can easily construct a dis-
tinguisher A against the IND-CCA2 security of the encryption scheme E as follows.
Let (skenc

R , pkenc
R ) be the key pair of E . Given the public encryption key pkenc

R and

the decryption oracle Decrypt, A picks a pair of signing keys (sksig
S , pksig

S )
R←

SigKeyGen(1k). A then hands (sksig
S , pksig

S , pkenc
R ) to A′, as the public key of the

induced encryption scheme. To simulate the unsigncryption query C ′ made by A′,
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A first decrypts C ′ into m′‖σ ′ using its own decryption oracle and then checks
if σ ′ is a valid signature of m′ and returns m′ if s′ is valid and ⊥ if not. Next,
when A′ outputs a pair of messages m0 and m1, A outputs m0‖s0 and m1‖s1, where
si = Sign(sksig

S ,mi ). A gives A′ the same challenge C = Encrypt(pkenc
R ,mb‖sb)

it gets. Finally, A outputs the same guess b′ that A′ outputs. It is easy to see that A
has the same probability of being correct as A′ has. ��

The following theorem states that when considering the signcryption security
corresponding to the operation performed first, the strongest security properties
(IND-CCA2 security for E tS and sUF-CMA security for StE) cannot be achieved
in the insider security model.

Theorem 2.2 Let E be any encryption scheme and S be a probabilistic signature
scheme, then the signcryption scheme Π built using the E tS method is not IND-
CCA2 secure in the insider security model. Let S be any signature scheme and E be
a probabilistic encryption scheme, then the signcryption scheme Π built using the
StE method is not sUF-CMA secure in the insider security model.

Proof (1) E tS is not IND-CCA2 secure in insider security model
We show that the E tS method cannot achieve IND-CCA2 security in the insider

security model by constructing a distinguisher A against the IND-CCA2 secu-
rity of Π built using the E tS method. Let S and E be the base signature and
encryption schemes whose key pairs are (sksig

S , pksig
S ) and (skenc

R , pkenc
R ), respec-

tively. Let pkenc= (sksig
S , pksig

S , pkenc
R ) be the induced encryption key and let skenc=

(skenc
R , pksig

S , pkenc
R ) be the induced decryption key. Given the induced decryption

oracle Decrypt and the induced encryption key pkenc, A picks two messages
(m0,m1), where m0 = 0 and m1 = 1, and then outputs them to get the challenge
ciphertext C = (c, σ ). Next, A gets the message part c and re-signs c by computing

a “new” signature σ ′ R← Sign(sksig
S , c) of c, where σ ′ = σ , and then queries the

induced decryption oracle with C ′ = (c, σ ′). Notice that since we assumed S is
probabilistic (not deterministic), with a non-negligible probability one can find a
different signature for the same message in polynomial time. Since C ′ = C , and
σ ′ is a valid signature of c, A can obtain the decryption of c. Once the decrypted
message m is obtained, A compares it with its own message pair (m0,m1) and
outputs the bit b where mb = m.

(2) StE is not sUF-CMA secure in insider security model
We show that the StE method cannot achieve sUF-CMA security in the insider

security model by constructing a forger A against the sUF-CMA security of a
scheme Π built using the StE method. Let S and E be the base signature and
encryption schemes whose key pairs are (sksig

S , pksig
S ) and (skenc

R , pkenc
R ), respec-

tively. Let sksig = (sksig
S , pksig

S , pkenc
R ) be the induced signature key and let pksig =

(skenc
R , pksig

S , pkenc
R ) be the induced verification key. Given the induced signing ora-

cle Sign and the induced verification key pksig, the forger A picks a message
m and queries Sign with m to get the answer C . A then decrypts C using the
decryption key skenc

R to get m‖s = Decrypt(skenc
R ,C), re-encrypt m‖s to get
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C ′ = Encrypt(pkenc
R ,m‖s), where C ′ = C , and returns C ′ as a forgery. Notice

that since E is a probabilistic encryption scheme (as opposed to deterministic), with
a non-negligible probability, A can get C ′ in polynomial time such that C ′ = C
when re-encrypting m‖s. Since C ′ was never returned by the signing oracle Sign
(i.e., C ′ = C) and s is a valid signature of m, C ′ is considered as a valid forgery
against sUF-CMA of Π . ��

Notice the negative results in Theorem 2.2 hold regardless of the strength of the
security of the base encryption and signature schemes. Intuitively, this means that
the security of the first operation is not protected by the last operation because both
the security goals to achieve (i.e., IND-CCA2 and sUF-CMA) and the capabilities
given to the adversary (i.e., having the secret key of one of the parties in the insider
security model) are very strong. Notice that if we weaken the security goals (e.g.,
IND-gCCA2 security [10] and UF-CMA security), then the security may be pre-
served, as shown in [10]. Notice also that if we weaken the capabilities given to the
adversary (e.g., if it is not given the secret keys as in the outsider security model),
then the security may even be amplified, as shown in the next two theorems.

Unlike the insider security model, we show that in the weaker outsider secu-
rity model, it is possible to amplify the security of encryption using signatures as
well as the security of signatures using encryption, exactly like in the symmetric
setting [9, 26, 117]. In particular, we can obtain a IND-CCA2 secure signcryption
scheme via the E tS method from a IND-CPA secure base encryption scheme with
the aid of a “strong” base signature scheme. Similarly, we can obtain the sUF-CMA
security via the StE method from a UF-NMA secure base signature scheme with
the aid of a “strong” base encryption scheme. This shows that the outsider security
model in the two-user setting is quite similar to the symmetric setting: namely, from
the adversarial point of view the sender and the receiver “share” the secret key
(skS, skR). We state this in the next two theorems. Specifically, the first theorem
states that the E tS method amplifies privacy and the second theorem states that the
StE method amplifies authenticity.

Theorem 2.3 If E is IND-CPA secure and S is sUF-CMA secure, then the signcryp-
tion scheme Π built using E tS is IND-CCA2 secure in the outsider security model.

Proof Let A′ be the adversary breaking IND-CCA2 security of the Encrypt-then-
Sign signcryption scheme E tS in the outsider security model. Recall, A′ only knows
(pksig

S , pkenc
R ) and has access to the signcryption and the unsigncryption oracles

Signcrypt and Unsigncrypt. By assumption, |Pr[b′ = b] − 1/2| is negligible,
where the probability is taken over all the randomness needed to perform the run of
A′ (as described in Sect. 2.2), b is the real index of the message being signcrypted,
and b′ is the guess of A′.

We define the event FORGED to be the event where the adversary A′ man-
ages to generate a value C ′ = (c′, σ ′) on which it calls its unsigncryption oracle
Unsigncrypt where C ′ satisfies the following properties:

1. C ′ passes the signature validation step, i.e., Verify(pksig
S , c′, σ ′) = � and

2. C ′ was not given to A′ by the signcryption oracle Signcrypt.



36 J. H. An and T. Rabin

We split the executions of A′ into two groups: (a) the runs in which A′ has an
event FORGED and (b) runs when no such event happens. The distinction between
these two cases is that in (a) the adversary uses the unsigncryption oracle in a mean-
ingful way. In case (b) the unsigncryption oracle can be completely simulated, i.e.,
either the unsigncryption oracle responds with failure or it is a query which has been
asked to the signcryption oracle previously. Formally, we can show the following via
an application of Bayes theorem:

|Pr[b′ = b] − 1/2|
= |Pr[A′ WINS] − 1/2|
= |Pr[A′ WINS | ¬FORGED]Pr[¬FORGED]
+Pr[A′ WINS | FORGED]Pr[FORGED] − 1/2|
= |Pr[A′ WINS | ¬FORGED](1− Pr[FORGED])
+Pr[A′ WINS | FORGED]Pr[FORGED] − 1/2|
= |Pr[A′ WINS | ¬FORGED] − 1/2
−(Pr[A′ WINS | ¬FORGED] − Pr[A′ WINS | FORGED])Pr[FORGED]|

≤ |Pr[A′ WINS | ¬FORGED] − 1/2|
+|Pr[A′ WINS | ¬FORGED] − Pr[A′ WINS | FORGED]|Pr[FORGED]
≤ |Pr[A′ WINS | ¬FORGED] − 1/2| + Pr[FORGED]

Hence, it is sufficient to bound |Pr[A′ WINS | ¬FORGED] − 1/2| and Pr[FORGED]
by negligible functions to show our results. We will show these results in two cases.

Case 1: Pr[FORGED] is negligible
We show that we can construct a forger A which breaks sUF-CMA security
of signature scheme S with probability at least Pr[FORGED]. The assump-
tion that the signature scheme is sUF-CMA secure shows that Pr[FORGED]
is negligible. Given the signing oracle Sign and the public verification

key pksig
S , the forger A picks a pair of encryption keys (skenc

R , pkenc
R )

R←
EncKeyGen(1k). A then picks a random bit b for the index of the message
being signcrypted and hands (pksig

S , pkenc
R ) to A′ as the public key of the

signcryption scheme. For each signcryption query m of A′, A simulates
the signcryption oracle Signcrypt by first encrypting m using the gener-

ated encryption key pkenc
R to get c′ R← Encrypt(pkenc

R ,m) and asking its
own signing oracle Sign to sign c′ to obtain σ ′. For each unsigncryption
query C ′ = (c′, σ ′), A simulates the unsigncryption oracle by first checking
Verify(pksig

S , c′, σ ′) = � and then decrypting c′ using the decryption key
skenc

R . If C ′ is a valid signcryption ciphertext, but C ′ was not returned by the
signcryption oracle, then FORGED has occurred and A (correctly) outputs
(c′, σ ′) as an sUF-CMA forgery. If A′1 outputs (m0,m1) to be signcrypted
in the first stage, then A computes the challenge ciphertext C∗ of the mes-
sage mb using the signcryption method above. If A′ terminates without the
event FORGED occurring, then A terminates without output. Hence, A wins
the sUF-CMA game if and only if FORGED occurs and so Pr[FORGED] is
bounded by the success probability of A in winning the sUF-CMA security
game against the signature scheme S.
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Case 2: |Pr[A′ WINS | ¬FORGED] − 1/2| is negligible
First, we note that since FORGED does not occur, we have that any query
C ′ = (c′, σ ′) to the unsigncryption oracle must have one of the following two
forms: (a) VerifyS(c

′) =⊥ or (b) C ′ was already returned by Signcrypt
on some query m′. For a type (a) query, the oracle’s correct response is ⊥.
For a type (b) query, the oracle’s correct response is m′. In both cases, A will
“know” the correct response returned by the unsigncryption oracle. Overall,
the unsigncryption oracle is useless: A′ can compute all the answers by itself;
hence, CPA security suffices for the encryption scheme.

Formally, we show that we can construct an adversary A which would
break the IND-CPA security of E . Given the public encryption key pkenc

R , A
picks a signature key pair (sksig

S , pksig
S ) and gives (pksig

S , pkenc
R ) to A′ as the

public keys of the signcryption scheme. For each signcryption oracle query
m, A simulates the signcryption oracle by first encrypting m using the given

encryption key pkenc
R to get c′ R← Encrypt(pkenc

R ,m) and then signing c′

using the picked signing key sksig
S to get σ ′ R← Sign(sksig

S , c′). A keeps track
of all the tuples (m, c′, σ ′) that were simulated by the signcryption oracle in
a table. For each unsigncryption query C ′ = (c′, σ ′), A returns ⊥ to A′ if
C ′ is a type (a) query or it returns the corresponding m by using the table
kept in the signcryption oracle simulation if C ′ is a type (b) query. If A′
outputs (m0,m1), then A outputs (m0,m1) and gets the challenge ciphertext

c. A then signs c to get σ
R← Sign(sksig

S , c) and gives C = (c, σ ) to A′
as the challenge ciphertext. When A′ outputs a guess bit b′, A outputs the
same bit. It is clear that if FORGED does not happen, A simulates the correct
environment for A′. Hence A succeeds in the IND-CPA game against the
public-key encryption scheme with overall advantage equal to that of A′ in
the IND-CCA2 game against the signcryption scheme. ��

Theorem 2.4 If E is IND-CCA2 secure and S is UF-NMA secure, then the sign-
cryption scheme Π built using the StE method is sUF-CMA secure in the outsider
security model.

Proof Let A′ be an adversary attacking sUF-CMA security of the signcryption
scheme built using the StE method in the outsider security model. Recall, A′ only
knows (pksig

S , pkenc
R ), but has access to signcryption and the unsigncryption oracles

Signcrypt and Unsigncrypt. Let m1, . . ., mt be the queries A′ asks the signcryp-
tion oracle and C1, . . ., Ct be the corresponding answers. Without loss of generality,
we assume that A′ never asks its unsigncryption oracle any query C ′ which is the
same as any one of Ci ’s returned by the signcryption oracle. Indeed, there is no need
for A to ask such a query since it already knows the answer mi .

Now, we use the standard hybrid argument. Let Env0 denote the usual envi-
ronment for A′, which honestly answers all the signcryption and unsigncryption
queries of A′. Specifically, the signcryption query mi is answered by computing

σi
R← Sign(sksig

S ,mi ) and returning Ci
R← Encrypt(pkenc

R ,mi‖σi ). Let Succ0(A′)
be the success probability (i.e., that of breaking sUF-CMA security of the sign-
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cryption) of A′ in Env0. Next, we define the following “hybrid” environments
Env j , 1 ≤ j ≤ t . Each Env j is identical to Env0 above, except for one aspect:
for the first j queries mi (1 ≤ i ≤ j) to the signcryption oracle, instead of

returning Ci
R← Encrypt(pkenc

R ,mi‖σi ), Envi returns a random encryption of 0:

Ci
R← Encrypt(pkenc

R , 0). We let Succ j (A′) be the success probability of A′ in
Env j . Notice, Envt answers all t queries “incorrectly” (i.e., all signcryption oracle
queries are answered with random encryptions of 0).

We make two claims: (1) assuming IND-CCA2 security of E , no PPT adversary
A′ can distinguish Env j−1 from Env j with non-negligible probability, for any 1 ≤
j ≤ t , i.e., |Succ j−1(A′) − Succ j (A′)| ≤ negl(k), and (2) assuming UF-NMA
security of S, Succt (A′) ≤ negl(k), for any PPT A′. Combined, claims (1) and (2)
imply our theorem, since t is polynomial and we have

Succ0(A′) ≤ (Succ0(A′)− Succ1(A′))+ · · ·
· · · + (Succt−1(A′)− Succt (A′))+ Succt (A′)

≤ (t + 1) · negl(k)

= negl(k)

Proof of Claim (1)
If for some A′, |Succ j−1(A′) − Succ j (A′)| > ε for non-negligible ε, then we con-
struct an adversary A that will break the IND-CCA2 security of E with probability ε
as follows. Let (skenc

R , pkenc
R ) be the key pair for the encryption scheme E . Given the

public encryption key pkenc
R and access to the decryption oracle Decrypt, A picks a

pair of signing keys (sksig
S , pksig

S )
R← SigKeyGen(1k) and gives (pksig

S , pkenc
R ) to A′.

A simulates all the unsigncryption queries C ′ of A′ by using its own decryption ora-
cle on C ′ to obtain (m, σ ), then verifying the signature σ it gets back, before return-
ing the message m to A′. Simulation of the signcryption oracle is more intricate. A
simulates the answers to the first ( j−1) signcryption oracle queries mi “incorrectly,”
by returning Ci ← Encrypt(pkenc

R , 0) to A′ (i.e., returning an encryption of 0). At

the j th query m j of A′, A computes σ j
R← Sign(sksig

S ,m j ) and outputs (0,m j‖σ j )

to get the challenge ciphertext C j (which is an encryption of either 0 or m j‖σ j ). A
then gives C j to A′ as a signcryption of m j . From that point on, all the remaining
signcryption queries mi ( j < i ≤ t) are answered “correctly” (i.e., by computing

Ci
R← Encrypt(pkenc

R ,mi‖σi ) where σi
R← Sign(sksig

S ,mi )).
After A′ returns a candidate forgery C , A checks if C is indeed a valid forgery by

(1) checking that C is “new” (i.e., C was never returned to A′ by A as an answer to a
signcryption query in the signcryption oracle simulation) and (2) C is “valid” (A can
check this by using its decryption oracle on C to get the presumed message/signature
pair m‖σ and verifying that σ is a valid signature of m). If so, A guesses that the
challenge ciphertext C j was the encryption of m j‖σ j (i.e., A′ was run in Env j−1),
else it guesses that the challenge ciphertext C j was an encryption of 0. By a method
similar to Lemma 1.1, we can show that A’s advantage is ε/2, which is negligible
as the encryption scheme is IND-CCA2 secure. However, to complete the proof
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of claim (1), we also need to check that A never asked its decryption oracle the
challenge ciphertext C j . We assumed that A′ never asks its unsigncryption oracle
any query Ci which was returned by the signcryption oracle. Since A only uses the
decryption oracles to answer unsigncryption queries of A′ and to decrypt C , this is
indeed so.

Proof of Claim (2)
We note that in Envt (where the signcryption answers are simulated by encrypt-
ing 0) the queries to the signcryption oracle are “useless”: A′ could have gotten
the answers by itself by computing Encrypt(pkenc

R , 0). More formally, assuming
A′ forges a new signcryption with probability ε in Envt , we can build a forger A
for the signature scheme S that will contradict the UF-NMA security of S. Let
(sksig

S , pksig
S ) be the keys of the signature scheme S. Given the public verification key

pksig
S , A picks a pair of encryption keys (skenc

R , pkenc
R )

R← EncKeyGen(1k) and gives

(pksig
S , pkenc

R ) to A′ as the public key of the signcryption scheme. From there on, A
simulates the unsigncryption queries C ′ by computing m′‖σ ′ = Decrypt(skenc

R ,C ′)
and returning m′ if Verify(pksig

R ,m′, σ ′) = �. It also simulates the signcryption
queries by returning Encrypt(pkenc

R , 0). When A′ returns a forged ciphertext C , A
outputs the forged message/signature pair (m, σ )where m‖σ = Decrypt(skenc

R ,C).
It is easy to see that A exactly recreates Envt and forges a signature only if A′ forges
a signcryption. Hence Succt is negligible. ��

2.4 Multi-user Setting

As we have mentioned, the two-user setting provides us with insight into some
interesting aspects of signcryption, but one really needs multi-user security for most
applications of signcryption. Formal definitions for the security of signcryption in a
multi-user setting will be discussed in depth in Chap. 3. In this section, we will
provide a brief introduction to multi-user security and the relationship between
multi-user security and the generic signcryption constructions.

2.4.1 Syntax

So far we have concentrated on a network of two users: the sender S and the receiver
R. Once we move to the full-fledged multi-user network, several new concerns arise.
First, users must have identities. We denote by IDU the identity of user U . We do
not impose any constraints on the identities, other than they should be easily rec-
ognizable by everyone in the network and that users can easily obtain the public
key pkU from IDU (e.g., IDU could be pkU or IDU might enable another user to
obtain pkU from a public-key infrastructure). Next, we change the syntax of the
signcryption algorithm Signcrypt to both take and output the identity of the sender
and the receiver. Specifically, (1) the signcryption algorithm for user S, on input
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(m, IDR′), uses pkR′ to generate (C, IDS, IDR′) and (2) the unsigncryption algo-
rithm for user R, on input (C, IDS′ , IDR), uses pkS′ and outputs a message m′ or the
“failure” symbol ⊥.

2.4.2 Security

To break the outsider security between a pair of designated users S and R, A is
assumed to have all the secret keys besides skS and skR and has access to the sign-
cryption oracle of S (which it can call with any IDR′ and not just IDR) and the
unsigncryption oracle for R (which it can call with any IDS′ and not just IDS).

To break the sUF-CMA security of the signcryption scheme, the attacker A has
to come up with a “valid” signcryption (C, IDS, IDR) of a message m where A did
not receive (C, IDS, IDR) as the result of a signcryption oracle query. It is important
to note that we do allow the attacker to attempt to generate a forgery by querying
the signcryption oracle on (m, IDR′) for IDR = IDR′ to receive (C, IDS, IDR′) and
outputting (C, IDS, IDR). This is equivalent to saying that the attacker should not
be able to “translate” a signcryption ciphertext intended for R′ into a ciphertext
intended for R.

Similarly, to break IND-CCA2 security of the signcryption scheme, the attacker
A has to generate messages m0 and m1 for which it can distinguish the cipher-
text Signcrypt(m0, IDS, IDR) from the ciphertext Signcrypt(m1, IDS, IDR). Of
course, given a challenge (C, IDS, IDR), A is disallowed to query the unsigncryp-
tion oracle for R on the challenge (C, IDS, IDR), although queries of the form
(C, IDS′ , IDR), where IDS′ = IDS , are allowed.

We define insider security in an analogous manner. The only difference is that in
addition to all the information given to the adversary in the outsider security model,
the adversary is given the receiver’s secret key, skR , when attacking authenticity
(i.e., skS is the only secret that is not given to the adversary in this case) and the
sender’s secret key, skS , when attacking privacy (i.e., skR is the only secret that is
not given to the adversary in this case).

2.4.3 Extending Signcryption

We can see that the signcryption algorithms that are built by generic composition
of encryption and signature schemes (i.e., E tS and StE) are not secure in the multi-
user setting. If the E tS method is used in the multi-user setting, then the adver-
sary A can easily break the CCA2 security, even in the outsider model. Indeed,

given the challenge C = (c, σ, IDS, IDR), where c
R← Encrypt(pkR,mb) and

σ
R← Sign(skS, c), A can replace the sender’s signature with its own by computing

C ′ = (c, σ ′, IDS′ , IDR), where σ ′ R← Sign(skS′ , c). If A queries the unsigncryp-
tion oracle on C ′ then the oracle will respond with mb and A can trivially break
the IND-CCA2 security of the scheme. A similar attack on authenticity holds for
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the StE scheme. In the StE scheme, the adversary A can easily break the sUF-
CMA security in the outsider model. It can ask S to signcrypt a message m for

R′ and get C = (Encrypt(pkR′ ,m‖σ), IDS, IDR′), where σ
R← Sign(pkS,m).

Then, it can recover m‖σ using skR′ and forge the signcryption ciphertext C ′ =
(Encrypt(pkR,m‖σ), IDS, IDR).

The generic composition methods suffer from the above types of attacks in the
multi-user setting, because the signature and encryption used in the signcryption
can easily be separated and are not “bound together” with the proper identities of
the sender and receiver (unlike the two-user setting or the symmetric setting). The
adversary can easily replace the signature or encryption with its own signature or
encryption. We show how to fix this problem by “binding together” the signature
and encryption used in the signcryption with the proper identities of the sender
and receiver. The following rules can effectively bind the encryption and signature
with proper identities of the sender and receiver and hence can be used to make the
signcryption schemes built by generic composition secure in the multi-user setting
(i.e. withstand above types of attacks).

1. Whenever encrypting something, include the identity of the sender IDS together
with the encrypted message.

2. Whenever signing something, include the identity of the receiver IDR together
with the signed message.

3. On the receiving side, whenever the identity of either the sender or the receiver
does not match what is expected, output ⊥.

Hence, we get the following new analogs for the E tS and StE schemes:

• The E tS signcryption scheme returns the signcryption ciphertext (c, σ, IDS, IDR)

where c
R← Encrypt(pkR,m‖IDS) and σ

R← Sign(skS, c‖IDR).
• The StE signcryption scheme returns the signcryption ciphertext (c, IDS, IDR)

where c
R← Encrypt(pkR,m‖σ‖IDS) and σ

R← Sign(skS,m‖IDR).

For both schemes, the unsigncryption algorithms work in the obvious manner. Intu-
itively, it is easy to see that the above rules “bind” the encryption and signature
used in the signcryption with proper identities of the sender and receiver, because it
includes the intended sender and receiver identities in the ciphertext.

However, it is important to ensure that the identities cannot be tampered within
the ciphertext itself. If the encryption scheme used in the signcryption is malleable
(i.e., underlying plaintext can be modified without being detected), the adversary
may be able to modify the identities in the ciphertext which makes having the iden-
tities moot. For example, in the E tS method, if the underlying encryption scheme
is only IND-CPA secure, the adversary may be able to modify the ciphertext to
replace the sender’s identity with its own and strip off the sender’s signature and
replace it with its own signature and identity. Hence, it is important to assume that
the underlying encryption scheme is non-malleable (or CCA2 secure) for the sign-
cryption scheme built by the E tS method to be secure even in the outsider model.
This is different from the result in the two-user setting, where the encryption scheme
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can be just IND-CPA secure for the signcryption built from the E tS method to be
(IND-CCA2 and sUF-CMA) secure in the outsider model. This tells us that the
security proven in the two-user setting does not automatically translate into security
in the multi-user setting even if we follow above rules to “bind” the signature and
encryption with identities. In general, when analyzing the security of the signcryp-
tion scheme built from the generic composition methods following the above rules in
the multi-user setting, the assumptions for the underlying encryption and signature
schemes should be “strong enough” (i.e., IND-CCA2 or sUF-CMA secure) so that
the identities bound to the signature and encryption cannot be altered.



Chapter 3
Security for Signcryption: The Multi-User
Model

Joonsang Baek and Ron Steinfeld

3.1 Introduction

This chapter presents security models for confidentiality and unforgeability of sign-
cryption schemes in the multi-user setting. A family of security models for sign-
cryption in both two-user and multi-user settings was presented by An et al. [10] in
their work on signcryption schemes built from black-box signature and encryption
schemes—see Chap. 2. (The first well-defined security model for unforgeability
of signcryption schemes in the two-user setting was given earlier by Steinfeld and
Zheng [184].) These models are referred to as the “ADR model” in this chap-
ter. Multi-user models for confidentiality and unforgeability also appeared inde-
pendently in the work of Baek et al. [12, 13] on the security of Zheng’s original
signcryption scheme. These multi-user models are referred to as the “BSZ model”
throughout the rest of this chapter. The BSZ models are equivalent to certain multi-
user ADR models. For consistency with Chap. 2, we use in this chapter the terminol-
ogy introduced by ADR to classify multi-user attack models as insider or outsider
models.

A central difference between the multi-user BSZ model and the two-user ADR
models is the extra power of the adversary. In the BSZ model, the attacker may
choose receiver (resp. sender) public keys when accessing the attacked users’ sign-
cryption (resp. unsigncryption) oracles. In signcryption schemes built from separate
signature and encryption primitives, this extra power can be easily dealt with by a
“semi-generic” conversion which converts any scheme secure in the two-user model
to one secure in the multi-user model, as described in Sect. 2.4. But for signcryption
schemes that share some functionality between the signature and the encryption
components, such as is the case for Zheng’s signcryption scheme, described in
Sect. 3.3 and in further detail in Sect. 4.3, the extra power of the adversary in the
multi-user model may be much more significant, and a careful case-by-case analysis
is required to establish security of such schemes in the multi-user model.
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This chapter is organized as follows. Section 3.2 contains definitions for and
discussions about the BSZ model for both confidentiality and unforgeability of sign-
cryption in the multi-user setting. We also discuss the extra power available to the
adversary in the multi-user BSZ model vs. the two-user ADR model. Finally, in
Sect. 3.3, we review Zheng’s signcryption scheme and its security as an application
of the multi-user BSZ model. This analysis is done to demonstrate the difference
between the ADR security model and the BSZ security model. Further analysis of
this signcryption scheme and its variants is given in Sect. 4.3.

3.2 The BSZ Model

In this section, we review the definitions of confidentiality and unforgeability of
signcryption in the BSZ model in great detail. Throughout this chapter, we will
use the same notational syntax for generic signcryption schemes as is defined in
Sect. 2.2.1.

3.2.1 Confidentiality of Signcryption in the Multi-User BSZ Model

As in the two-user setting covered in Chap. 2, the multi-user setting also has two
types of models depending on the identity of the attacker: an insider model and an
outsider model. We discuss the two models in turn.

Outsider Security

The outsider model assumes an attack by an entity who does not know either
of the attacked users’ secret keys (i.e., the attacker does not know the sender or
receiver’s secret keys). In the BSZ model, this confidentiality notion of signcryp-
tion is specially termed “indistinguishability of signcryptext against chosen cipher-
text attack with access to ‘flexible’ signcryption/unsigncryption oracles (FSO/FUO-
IND-CCA2).” The indistinguishability of signcryptext (abbreviated by “IND”) here
means that there is no polynomial-time adversary that can learn any information
about the plaintext from the signcryptext except for its length. In contrast to the
standard chosen ciphertext attack for encryption schemes [148, 164], in the chosen
ciphertext attack for signcryption, it is assumed that an adversary has access to two
oracles that perform signcryption and unsigncryption. Importantly, in the signcryp-
tion case, these oracles are flexible in the sense that the adversary can freely choose
the public keys with which those oracles perform signcryption and unsigncryption.
(Note that this feature is unique in the BSZ model.) In the following, we review the
formal definition of the multi-user outsider confidentiality in the FSO/FUO-IND-
CCA2 sense.

Definition 3.1 Let A = (A1,A2) be a two-stage adversary trying to break the con-
fidentiality of messages between the (fixed) sender S and the (fixed) receiver R.
Consider the following attack game:
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1. The Setup algorithm is run and the resulting common parameters, denoted by
param, is sent to any interested parties including S, R, and A1.

2. The KeyGenS and KeyGenR algorithms are run to generate S and R’s pub-
lic/private key pairs, denoted by (skS, pkS) and (skR, pkR), respectively. The
public keys (pkS, pkR) are given to A1.

3. A1 submits a series of signcryption and unsigncryption queries. Each signcryp-
tion query consists of a pair (pk,m)where pk is a receiver’s public key generated
by A1 at will and m is a message. On receiving this, the signcryption oracle

computes a signcryptext C
R← Signcrypt(param, skS, pk,m) and returns it to

A1. Each unsigncryption query consists of a pair (pk′,C) where pk′ denotes
a sender’s public key generated by A1 at will and C is a signcryptext. On
receiving this, the unsigncryption oracle performs unsigncryption by computing
Unsigncrypt(param, pk′, skR,C) and returns the result to A1.

4. A1 outputs a pair of equal-length plaintexts (m0,m1) and a state string α. On

receiving this, the signcryption oracle picks b
R← {0, 1} at random, computes

a target signcryptext C∗ R← Signcrypt(param, skS, pkR,mb), and runs A2 on
input (C∗, α).

5. A2 submits a number of signcryption/unsigncryption queries as A1 did in Step 3.
A restriction here is that A2 is not allowed to query (pkS,C∗) to the unsign-
cryption oracle. (Note, however, that A2 can query the unsigncryption oracle on
(pk′,C∗) for any pk′ = pkS and on (pkS,C) for any C = C∗.)

6. A2 outputs its guess b′ ∈ {0, 1} for the value of b chosen in Step 4.

A is said to win the game if b′ = b. A’s advantage is defined to be

ε = |Pr [b = b′] − 1/2|

We say that the signcryption scheme achieves multi-user outsider confidentiality in
the FSO/FUO-IND-CCA2 sense if any polynomial-time adversary A wins the above
game with negligible advantage.

We emphasize again that in the above definition, the signcryption and unsign-
cryption oracles are not constrained to be executed only under pkR and pkS ,
respectively—the receiver R and the sender S’s public keys can be replaced by the
public keys generated by the adversary. Accordingly, access to these oracles gives
the adversary the full chosen-plaintext/ciphertext power with the ability to choose
the sender and receiver’s public keys, as well as the message and signcryptext.

Insider Security

Unlike the outsider setting where the attacker only knows the public keys of the
attacked pair of users S and R, the insider model deals with the setting where an
attacker, knowing the secret key of the sender S, tries to decrypt signcryptexts sent
by that sender. Indeed, in order to give the attacker as much power as possible,
we allow the attacker to choose the sender’s key pair. The formal definition of this
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model is identical to the one given above for the outsider model, except for the
following changes:

• In Step 2, the key generation algorithm is run just once, to generate the attacked
receiver’s key pair (skR, pkR), and pkR is given to A1.

• In Steps 3 and 5, A has access to R’s unsigncryption oracle, but no signcryp-
tion oracle (as either S’s keys are undefined or S’s private key is known to the
adversary).

• In Step 4, A1 outputs an attacked sender’s key pair (skS, pkS), in addition to
(m0,m1, α). The key skS is used to produce the challenge signcryptext C∗ as in
the outsider model.

We call the corresponding security notion multi-user insider confidentiality in the
FSO/FUO-IND-CCA2 sense.

Discussion

As also acknowledged in [10], the insider confidentiality model is under normal
circumstances not of significant importance because it effectively assumes that the
sender S is trying to decrypt (unsigncrypt) a signcryptext which was sent by herself.
Thus, this model appears only useful in providing “forward secrecy,” i.e., providing
security under the special circumstances in which an adversary who breaks into
S’s system obtains her secret key in order to unsigncrypt a message previously
signcrypted by S to R. As pointed out by Zheng in the full version of the original
signcryption paper [204], this insecurity can be considered a positive feature, called
“past message recovery”, since it allows S to store signcryptexts and unsigncrypt
them in the future when desired. In view of this discussion, we believe that for most
applications it suffices for a signcryption scheme to achieve confidentiality in the
“multi-user outsider” model. We should point out that a practical advantage of the
outsider model is that it tends to be easier to achieve, and many natural and efficient
schemes are secure in the outsider model but not secure in the insider model. (In
particular, Zheng’s original scheme [204] falls in this category.)

In Step 4, we have required that the attacker outputs both the public and the
private key for the sender. It is possible to propose a stronger security model, similar
to the secret key ignorant unforgeability notion described in Sect. 3.2.2, in which the
attacker only outputs a sender public key pkS in Step 4. The signcryption oracle then
computes the associated private key skS and the signcryption of the message mb as
before. This means that the process of computing the challenge ciphertext is not
necessarily polynomial time; however, this is not a problem, as there is no intrinsic
requirement that a security model must be expressed as a polynomial-time process.
(We only require that the signcryption scheme and the adversary are polynomial
time.) The signcryption literature is currently confused as to which of these models
best represents multi-user insider confidentiality, with some papers preferring the
weaker notion of insider security and some papers preferring the stronger notion.
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3.2.2 Unforgeability of Signcryption in the Multi-User BSZ Model

We now review the definition of unforgeability for signcryption in the multi-user
model, again addressing the two settings of outsider and insider adversary in turn.
We also discuss some further stronger unforgeability model variants (“strong” and
“secret key ignorant” unforgeability).

Outsider Security

In this model, the adversary’s goal is to forge a valid signcryptext from a given
sender S to a given receiver R, where the adversary represents some third party.
The adversary is given S and R’s (random) public keys and has access to S’s flexi-
ble signcryption oracle and R’s flexible unsigncryption oracle, which will perform
signcryption/unsigncryption for any message/ciphertexts and receiver/sender public
keys chosen by the adversary at will. A more precise formal definition is presented
in the following definition.

Definition 3.2 Let A be an adversary trying to forge a valid signcryptext from the
sender S to the receiver R. Consider the following attack game:

1. The Setup algorithm is run and the resulting common parameters, denoted by
param, is sent to any interested parties including S, R, and A.

2. The KeyGenS and KeyGenR algorithms are run to generate S and R’s pub-
lic/private key pairs, denoted by (skS, pkS) and (skR, pkR), respectively. The
public keys (pkS, pkR) are given to A.

3. A submits a series of signcryption and unsigncryption queries. Each signcryption
query consists of a pair (pk,m) where pk is a receiver’s public key generated by
A at will and m is a message. On receiving this, the signcryption oracle computes

a signcryptext C
R← Signcrypt(param, skS, pk,m) and returns it to A. Each

unsigncryption query consists of a pair (pk′,C) where pk′ is a sender’s public
key generated by A at will and C is a signcryptext. On receiving this, the unsign-

cryption oracle computes the message m
R← Unsigncrypt(param, pk′, skR,C)

and returns it to A.
4. A outputs a signcryptext C∗.

We say that A wins the game if the following requirements are satisfied: (1) C∗ is
a valid signcryptext from S to the receiver R (this means that the unsigncryption
oracle which performs unsigncryption under the public key pkS and the private key
skR does not reject C∗) and (2) A did not query (pkR,m∗) to the signcryption oracle,
where m∗ is the plaintext of the signcryptext C∗ (i.e., the message m∗ was never
signcrypted to the receiver public key pkR).

We say that the signcryption scheme achieves multi-user outsider unforgeabil-
ity in the FSO/FUO-UF-CMA sense if any polynomial-time adversary A wins the
above game with negligible probability.

Note that the above definition rules out both (i) a “conventional forgery,” where
the message m∗ is “new”, and (ii) a “receiver transfer forgery,” where the forgery
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message m∗ was previously queried to S’s signcryption oracle but was never sign-
crypted under the receiver key pkR . We remark that the “receiver transfer forgery”
was called a “double spending attack” in [204], due to its implication in e-commerce
payment applications.

We should also emphasize that the above outsider model does not prevent forgery
of valid signcryptexts by the receiver and hence the receiver cannot (unlike the sit-
uation with standard digital signatures) use a valid signcryptext to convince a third
party that the message was sent by the sender. Consequently, the model does not
allow for non-repudiation. Thus we view this model as useful only for assuring the
receiver himself of the authenticity of the message.

Insider Security

The insider unforgeability model considers the setting in which the adversary is
the receiver R. Accordingly, in this model, the adversary chooses the keys of R.
The formal definition is identical to the outsider notion except for the following
modifications:

• In Step 2, only the sender key generation algorithm is run, in order to generate
the attacked sender’s public/private key pair (skS, pkS).

• In Step 3, A has access to S’s signcryption oracle, but no unsigncryption oracle
(note that R’s keys are not yet defined).

• In Step 4, A outputs a receiver’s public/private key pair (skR, pkR) and a sign-
cryptext C∗. The conditions of winning the game are as in the outsider model.

We call the corresponding security notion multi-user insider unforgeability in the
FSO/FUO-UF-CMA sense.

Since this model rules out forgeries even by the receiver, a valid signcryptext may
be used to convince a third party that the sender sent the message, thus also giving
an opportunity for non-repudiation. However, there is no intrinsic algorithm which
produces the evidence that demonstrates that a signcryptext is a signcryption of a
particular message and from a particular sender, without revealing the receiver’s pri-
vate key. The concept of non-repudiation is discussed in more detail in Sects. 2.2.2,
4.6, and 5.6.

Strong Unforgeability

As in the two-user setting, the above models may be considered a “weak” form
of unforgeability since they do not prevent the creation of new valid signcryptexts
corresponding to an existing signcrypted message. In some applications, such as
authenticated key exchange protocols, one may demand that such forgeries also be
ruled out. The corresponding unforgeability notions are called Strong Unforgeability
(sUF) and can be defined in either the outsider or the insider model. The change
required to the above weak unforgeability formal definitions is to modify the second
attacker winning condition as follows: (2) A did not receive C∗ as a response to a
query (pkR,m∗) to the signcryption oracle, where pkR is R’s public key.
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Note that A would still win the strong unforgeability game if he received C∗
as response to a signcryption query (pk,m) with pk = pkR (a “receiver transfer”
forgery). A scheme that is secure in the strong unforgeability model is said to be
multi-user insider unforgeable in the FSO/FUO-sUF-CMA sense.

Secret Key Ignorant Unforgeability

Again, we note that in the insider security model the adversary is asked to output a
valid receiver’s key pair (skR, pkR). We can weaken this security model to simply
requiring the attacker to output a receiver public key pkR . The winning conditions
remain the same; however, it may require the computation of the receiver private
key skR in order to verify that C∗ is a valid signcryptext from S to R. The original
security model ensures security in situations where an attacker must register their
public keys with some trusted authority (such as a PKI) in such a way that proves the
user knows the private key corresponding to the public key that it is registering. This
ensures that if the adversary outputs a valid public key pkR then it must also prove
that it knows the corresponding private key skR . However, security in the secret key
ignorant (SKI) model ensures security in situations where users are not required
to prove knowledge of a private key skR when registering the public key pkR . This
security model may be harder to achieve in practice, but the security guarantees may
be invaluable in some situations.

Furthermore, in some signcryption schemes, particularly Zheng’s scheme [204]
described in Sects. 3.3 and 4.3, convincing a third party of the validity of a signcryp-
text (i.e., achieving non-repudiation) without compromising the receiver’s secret
key requires a carefully designed signcryptext validity verification protocol to be
run between the receiver and the third party. (For example, such a protocol may
be a zero-knowledge proof of membership for the appropriate “language”—see the
protocols in [204] for further details.) However, the above insider unforgeability def-
inition is not sufficiently strong to support such a verification protocol, since it does
not rule out forgeries of valid signcryptexts for which the attacker does not know
the corresponding receiver’s secret key. (The adversary may instead just know some
information related to the secret key which still suffices for passing the signcryptext
validity verification protocol with the third party.)

To address both these issues, one may strengthen the above insider unforgeabil-
ity definition to also rule out “secret key ignorant” (SKI) forgeries in which the
adversary does not know the receiver’s secret key. The formal definition involves
the following change to the insider FSO/FUO-UF-CMA model:

• In Step 4, A outputs a receiver’s public key pkR and a signcryptext C∗. The
conditions of winning the game are as in the outsider model, where the private key
skR corresponding to pkR is computed by the challenger in verifying the forgery.
(Note that the challenger does not run in polynomial time in this definition.)

We call the corresponding security notion multi-user insider unforgeability in the
FSO/FUO-UF-CMA-SKI sense. Note that this is the full BSZ multi-user insider
unforgeability model defined in [13].
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3.2.3 Further Discussions on the Multi-User BSZ Model

3.2.3.1 The Extra Power of Multi-User Model vs. Two-User Model

The extra power given to the adversary in the multi-user model is the ability to
access flexible signcryption and unsigncryption oracles which allow the adversary
to specify the receiver’s and sender’s public keys (respectively) in addition to the
message and signcryptext (respectively). In a practical application, such an attack
might be conducted by the adversary by requesting a new public key certificate from
the Certificate Authority (CA) each time he wants to query the sender’s signcryption
oracle with a new public key of his choice. A signcryption scheme meeting the
multi-user model must be secure even if the adversary can get public key certificates
issued for as many public keys as it wishes. In some applications it may be possible
to place significant constraints on the public keys in such a way that additional
checks by the CA ensure that users “know” the private key associated with their
public key. However, we believe that for the sake of wide applicability one should
be conservative and avoid such assumptions if possible.

We emphasize that the security of signcryption in the two-user model does not
imply security in the multi-user model. Furthermore, there is no known efficient
(in particular, not using encryption/signature primitives) generic conversion of a
“two-user secure” signcryption scheme into a “multi-user secure” one. (The “semi-
generic” efficient conversion given by ADR in Sect. 2.4 only works for the schemes
which are built from separate signature and encryption primitives.) More precisely,
we prove the following theorem.

Theorem 3.1 There exists a signcryption scheme unforgeable in the two-user model
but forgeable in the multi-user model.

Proof Let Π = (Setup, KeyGenS, KeyGenR, Signcrypt, Unsigncrypt) be a
signcryption scheme unforgeable in the two-user model. Let (skS, pkS) be a sin-
gle sender S’s private/public key pair. Similarly let (skR, pkR) be a single receiver
R’s private/public key pair. Suppose that skS = b1b2 · · · bn where bi ∈ {0, 1} for
i = 1, . . . , n. (Namely, bi represents each bit of the private key skS .)

We now construct a signcryption scheme Π ′ = (Setup′, KeyGen′S , KeyGen′R ,
Signcrypt′, Unsigncrypt′) as follows:

• Setup′, KeyGen′S , KeyGen′R are identical to Setup, KeyGenS , KeyGenR .
• Signcrypt′(param, skS, pkR,m) = bi‖Signcrypt(param, skS, pkR,m), where

i ← f (pkR) is determined as a function of pkR . We choose this function f to be
efficiently computable and onto {1, . . . , n}, so for each i ∈ {1, . . . , n} there exists
a receiver public key pki (which is easily computable) such that f (pki ) = i .

• Unsigncrypt′ ignores the first bit of signcryptexts, processing the remaining
portion identically to the Unsigncrypt algorithm of Π .

In the two-user model, a forging adversary for Π ′ can only query the sender’s sign-
cryption oracle with one receiver public key, which is fixed for the whole attack,
and hence in this model, the forger can only get a single bit of the secret key. Con-
sequently the new scheme is still unforgeable. In the multi-user model, however,
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the adversary can quickly get all the bits of the sender’s secret key by querying
the signcryption oracle with just n different receiver public keys, so the scheme is
easily forgeable in the multi-user setting. Note that the scheme remains forgeable in
the multi-user setting, for the same reason, even after applying the “semi-generic”
conversion of [10] described in Sect. 2.4. ��

3.2.3.2 One Key Pair Generation vs. Two Key Pair Generation

Before moving to the next section, we make the following comments on the key gen-
eration algorithm in the multi-user BSZ model. In our definition of the multi-user
security model presented in this chapter, we assume the traditional PKI setting in
which each user generates two independent key pairs, one for sending (authentica-
tion) and the other for receiving (confidentiality). In most signcryption schemes, the
sender and receiver’s key generation algorithms are identical, and a user may wish
to use a single key pair for both sending and receiving. However, such a one key
generation setting opens up additional capabilities for attacks and requires some
modifications to the security models. Namely, the models should be modified to
allow the adversary to access two additional oracles: the sender’s unsigncryption
oracle and the receiver’s signcryption oracle (except in the case of the insider secu-
rity models where only a single oracle needs to be added). Due to this difference
in attack models, it is important to state whether the one key generation setting is
assumed or not when analyzing the security of a signcryption scheme. More details
are given in Sect. 5.4.

3.3 Example: The Security of Zheng’s Signcryption Scheme in
the BSZ Model

As an example of how the BSZ model can be applied, we discuss the security of
Zheng’s original signcryption scheme [203]. However, we postpone giving a formal
description of Zheng’s scheme and stating its security formally until Chap. 4. The
purpose of this section is to explain how the different types of security in the BSZ
model have meaning in analyzing security of a given signcryption scheme. We give
a description of the scheme in Fig. 3.1.

In terms of confidentiality, Zheng’s original signcryption scheme is proven to be
multi-user outsider secure in the FSO/FUO-IND-CCA2 sense, in the random oracle
model [29], relative to the “Gap Diffie–Hellman (GDH) [152]” problem. (Readers
are referred to Sect. 4.2 for precise definition of the GDH problem.) The reason why
Zheng’s original signcryption scheme does not provide insider confidentiality is as
follows. An adversary that knows the sender’s private key xS and the signcryptext
(c, r, s) can easily compute x = s(r + xS) and so compute the symmetric key
τ = G(yx

R) and the corresponding message m = Decτ (c).
In terms of unforgeability, Zheng’s signcryption scheme achieves unforgeability

in the multi-user insider secret-key-ignorant FSO-UF-CMA-SKI sense, in the ran-
dom oracle model, assuming that the Gap Discrete Log (GDL) problem is hard.
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Fig. 3.1 Zheng’s signcryption scheme

Informally, the GDL problem is, given ga for random a ∈ Z
∗
q , to compute a with the

help of a Decisional Diffie–Hellman (DDH) oracle which, on input (g, ga, gb, z),
outputs 1 if z = gab and 0 otherwise. (Readers are referred to Sect. 4.2 for precise
definition of the GDL problem.) Note that the GDL problem is possibly a harder
problem than the GDH problem.

To understand why the hardness of GDL problem is necessary for the unforge-
ability of Zheng’s scheme in the multi-user model, but not necessary in the two-user
model, one can show that, using an efficient algorithm to solve the GDL problem
as a subroutine, an adversary that breaks unforgeability of Zheng’s scheme in the
multi-user setting can be constructed as follows. The adversary is given the sender’s
public key yS = gxS and runs the GDL algorithm to recover the sender’s secret
key xS . When the GDL algorithm wishes to check whether a tuple of the form
(g, yS = gxS , u, z) is a valid Diffie–Hellman tuple (i.e., whether z = uxS or
not), where u and z are chosen by the GDL algorithm, the unforgeability adversary
queries the sender’s signcryption oracle on an arbitrary message m with receiver’s
public key set to be u. When the signcryption oracle returns signcryptext (c, r, s),
the adversary checks whether H(m‖yS‖u‖(z · ur )s) is equal to r . If z = uxS , we
have that (z · ur )s = u(xS+r)s is equal to the key K used by the signcryption oracle,
and the adversary’s test will pass, while if z = uxS , the adversary’s test will fail with
overwhelming probability. Hence, a multi-user unforgeability adversary can use a
GDL algorithm to break the system by testing validity of Diffie–Hellman tuples
via queries to the attacked sender’s signcryption algorithm. Note the attack cannot
be mounted in the two-user model, where the receiver’s public key in signcryption
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queries cannot be controlled by the adversary. This is another example which shows
that evaluating the two-user security of a signcryption scheme is not sufficient for
establishing its multi-user security.

In view of its strong multi-user confidentiality and unforgeability properties,
Zheng’s scheme would be suitable for use in a wide range of application envi-
ronments, even in settings where user public keys are registered without proving
knowledge of the corresponding secret keys. But due to the scheme’s lack of insider
confidentiality, it may not be suitable for applications in which the sender’s key is
likely to be compromised (for example, a highly mobile sending device which may
be easily lost). In such environments, the loss of the sender’s key would potentially
compromise all past messages sent by the sender, whereas for an insider-secure
scheme, a quick revocation of the sender’s key can prevent security breaches from
occurring.
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Chapter 4
Signcryption Schemes Based
on the Diffie–Hellman Problem

Paulo S.L.M. Barreto, Benoît Libert, Noel McCullagh, and
Jean-Jacques Quisquater

4.1 Introduction

In this chapter we examine various signcryption schemes based on the Diffie–
Hellman problem. Importantly, this set of schemes includes the original signcryption
scheme by Zheng [203] and also several constructions with enhanced properties, for
example, the scheme by Bao and Deng [15].

Zheng’s discovery was extremely practical and insightful, it removed the con-
struction of cryptographic schemes from the purely mathematical and instead
focused on how cryptographic primitives were used in practice.

From a practical point of view, often when information is considered sensitive
enough to be encrypted it must also be signed. Intuitively, if we think of information
as important enough to warrant encrypting, then it is also be useful to know the
authority behind the message. For example, a company internal memo, say with
projected sales figures, would need to be signed by an appropriate authority to carry
any weight, while it would also need to be encrypted so only the specified company
employees could access it.

Zheng’s original construction was very efficient. It was built on a modification
of the ElGamal signature and carefully exploits randomness reuse to authenticate
and encrypt the message more efficiently than simply encrypting the message using
ElGamal encryption.

We see that while the original scheme had message origin authentication from
the receivers viewpoint, it had no clear and efficient non-repudiation property—see
Sect. 3.3. We will go on to see the problems in trying to incorporate efficient non-
repudiation. Obviously no scheme where a signature on the message is transmitted
in the clear can enjoy the indistinguishability of ciphertexts property. Gamage et al.
[86] unknowingly avoided the latter problem by carefully appending a signature on
the ciphertext. Therefore any third party would be able to determine the origin of the
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ciphertext, if not the actual content of the message. As we will see, this unfortunately
does not completely solve non-repudiation concerns.

In 2002, Shin et al. [178] proposed a Diffie–Hellman style construction that
enjoys a secure and efficient non-repudiation procedure allowing receivers to con-
vince a third party of the origin of a message. In 2005, Malone-Lee [130] suggested
a similar technique and proposed a scheme extending Schnorr’s signature scheme
[173] that was additionally supported by a proof of unforgeability.

4.2 Diffie–Hellman Problems

Definition 4.1 Let k be a security parameter and p be a k-bit prime number. Let us
consider a cyclic group G of order p with a random generator g.

• The Discrete Logarithm problem (DL) is to compute a given (g, ga) ∈ G
2 for

randomly chosen a
R← Z

∗
p. An algorithm B has advantage ε if the probability

that B outputs the correct solution is at least ε.
• The Computational Diffie–Hellman problem (CDH) is to compute gab ∈ G given

(g, ga, gb) ∈ G
3 for randomly chosen a, b

R← Z
∗
p. An algorithm B has advantage

ε if the probability that B outputs the correct solution is at least ε.
• The Decisional Diffie–Hellman problem (DDH) is to distinguish the distribution

of “Diffie–Hellman tuples” DDH := {(g, ga, gb, gab) | a, b
R← Z

∗
p} from that

of “random tuples” Drand := {(g, ga, gb, gc) | a, b, c
R← Z

∗
p}. We say that an

algorithm B solving the DDH problem has advantage ε if

∣
∣Pr[B(g, ga, gb, gab)=1 | a, b

R← Z
∗
p]−Pr[B(g, ga, gb, gc)=1 | a, b, c

R← Z
∗
p]

∣
∣

is at least ε. Solving a DDH instance amounts to decide whether c = ab mod p
given a tuple (g, ga, gb, gc) ∈ G

3.
• The Gap Diffie–Hellman problem (GDH) is the problem of solving the CDH

problem on (g, ga, gb) with the help of a DDH oracle which, on input of a tuple
(gx , gy, gz) ∈ G

3, will return 1 if z = xy mod p and 0 otherwise. An algorithm
B has advantage ε if the probability that B outputs a correct solution to the CDH
problem is at least ε.

• The Gap Discrete Logarithm problem (GDL) is the problem of solving a DL
problem on (g, ga) with the help of a DDH oracle (described above). An algo-
rithm B has advantage ε if the probability that B outputs a correct solution to the
DL problem is at least ε.

The Gap Diffie–Hellman assumption was introduced by Okamoto and
Pointcheval [152] with the motivation of providing security proofs for signature
schemes with special properties. It is stronger than its variant termed “Strong Diffie–
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Hellman assumption” previously considered in [2].1 The latter posits the infeasi-
bility of solving a CDH instance (g, ga, gb) with the help of a restricted DDH
oracle which, on input of a pair (X,Y ) ∈ G

2, will return 1 if Y = Xa and 0
otherwise.

4.3 Zheng’s Construction and Its Variants

This section presents the first realization of the signcryption primitive, as proposed
by Zheng [203] in 1997. It was built on a modification of the ElGamal signa-
ture scheme [81] dubbed SDSS (as a shorthand for Shortened Digital Signature
Scheme). In this scheme, the signer holds a public/private key pair (pk, sk) where

pk = gsk ∈ G and sk
R← Z

∗
p. A signature on a message m is a pair

(r, s) =
(

h(m‖gx ),
x

r + sk
mod p

)

where h : {0, 1}∗ → Z
∗
p is a hash function and x is a random element from Z

∗
p. A

signature (r, s) can be verified by checking whether r = h
(

m‖(pk · gr )s
)

.
Zheng’s signcryption algorithm relies on a careful reuse of the random value x

to implement a non-interactive Diffie–Hellman key agreement using the recipient’s
public key. We first describe the variant for which a security proof was provided in
[12, 13] before showing several modifications considered in the late 1990s.

4.3.1 Zheng’s Original Scheme

The specification of Zheng’s signcryption scheme is given in Fig. 4.1. The speci-
fication involves a symmetric encryption scheme, as described in Sect. 1.3.4. The
key property of the scheme is that a signature (r, s) allows re-computing the group
element

gx = (pkS gr )s mod p

1 The latter assumption should not be confused with another assumption introduced by Boneh and
Boyen [42] and named “q-Strong Diffie–Hellman.” The assumption of [42] is very different and
states the intractability of computing a pair (c, g1/(c+a)) ∈ Zp × G given (g, ga, g(a

2), . . . , g(a
q ))

for randomly chosen a
R← Z

∗
p . This problem is described in more detail in Chap. 5.
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Fig. 4.1 Zheng’s original scheme

generated by the signer. The quantity simultaneously acts as a component of the
signature scheme and an ephemeral Diffie–Hellman key in a non-interactive key
agreement, as in the ElGamal [81] or ECIES [2] public key encryption schemes.

The scheme is remarkable in terms of efficiency since the sender jointly authen-
ticates and encrypts the message thanks to a single modular exponentiation; hence,
the scheme is almost as efficient as the ECIES public key encryption scheme on
which it is based [2].

An inherent limitation of this scheme is that receivers have no secure and effi-
cient way to convince a third party that the sender is the actual originator of the
message m. A suggestion given in [203, 204] was to let the receiving party forward
κ ← ωskR mod p and 〈c, r, s〉 to the third party. The receiver then had to provide
a zero-knowledge proof that the logarithm of pkR for the base g equals the discrete
logarithm of κ with respect to the base ω = (pkSgr )s mod p. Unfortunately, as
shown in [159], disclosing κ = ωskR mod p and the pair (r, s) gives away gskSskR

which harms the confidentiality of any subsequent communication between both
parties.

Somewhat surprisingly, a formal security proof for Zheng’s scheme remained
lacking until 2002 [12, 13]. The following security results are proven in [12, 13] in
the model of Baek, Steinfeld, and Zheng described in Chap. 3. Theorem 4.1 states
that this scheme protects the confidentiality of messages in the multi-user outsider
FSO/FUO-IND-CCA2 security model, while Theorem 4.2 establishes the unforge-
ability property in the multi-user insider secret-key-ignorant FSO-UF-CMA-SKI
security model. Both proofs resort to the random oracle methodology [29].
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Theorem 4.1 If the GDH problem is hard and the symmetric encryption scheme is
IND-CPA secure, then Zheng’s scheme is multi-user outsider FSO/FUO-IND-CCA2
secure in the random oracle model. Concretely, if there exists

• an attacker A = (A1,A2) against the multi-user outsider FSO/FUO-IND-CCA2
security that runs in time t, makes at most qsc queries to the signcryption ora-
cle, makes at most qusc queries to the unsigncryption oracle, makes at most qG

queries to the G-oracle, makes at most qH queries to the H-oracle, and has
advantage AdvIND

A (k),

then there exists

• an algorithm B that runs in time O(t2), makes at most (qG + qH )(qsc + qusc)

queries to the DDH oracle and has advantage AdvGDH
B (k) in solving the Gap

Diffie–Hellman problem, and
• an attacker B′ = (B′1,B′2) against the IND-CPA property of the symmetric

encryption scheme that runs in time O(t2) and has advantage AdvSY M
B′ (k)

such that

AdvIND
A (k) ≤ 2AdvGDH

B (k)+ AdvSYM
B′ (k)

+qsc(qG + qH + qsc + qusc + 2)

2k−1
+ (qH + 2qusc)

2k−1

Theorem 4.2 If the Gap Discrete Logarithm problem is hard, then Zheng’s scheme
is multi-user insider secret-key-ignorant FSO-UF-CMA-SKI secure in the random
oracle model. More precisely, if there exists

• an attacker A that runs in time t, makes at most qsc queries to the signcryption
oracle, makes at most qG queries to the G-oracle, makes at most qH queries to
the H-oracle and breaks the security of the scheme with probability AdvUF

A (k)

then there exists

• an algorithm B that breaks the Gap Discrete Logarithm problem that runs in time
O(t2), makes at most 2qsc(qG + qH )+ 2qH queries to the DDH oracle, and has
advantage AdvG DL

B (k)

such that

AdvUF
B (k) ≤ 2

(

qH AdvGDL
A (k)

)1/2 + qsc(qsc + qG + qH )+ qH + 1

2k − 1

We mention that Zheng’s construction was revisited in several recent works [37,
72] which analyze it in a hybrid setting. We refer the reader to Chap. 7 for a detailed
study of this canonical scheme in such a model.
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4.3.2 The Bao–Deng Modification

In 1998, Bao and Deng [15] proposed a modification of Zheng’s construction that
aims to allow receivers to efficiently convince a third party of the origin of a received
message and thus provide the non-repudiation property of digital signatures. This
scheme is described in Fig. 4.2.

This method allows a receiver to convince a court of the sender’s authorship for
m by simply revealing m and (r, s) which is nothing but a signature on m.

Unfortunately, this non-repudiation procedure seriously harms the confidentiality
of the scheme which obviously becomes insecure under any definition of privacy
based on the idea of indistinguishable encryptions [90]. Indeed, the ciphertext con-
tains a signature (r, s) on the plaintext and thus leaks information on the latter. An
adversary can easily decide which one of m0 and m1 is the message enciphered by a
given ciphertext (c, r, s) by simply checking the signature (r, s) for m0 and m1. This
security concern was reported for the first time by Shin et al. [178] who described
another scheme built on the DSA signature with the motivation to overcome this
limitation. Other constructions (such as [196, 201]) turn out to suffer from a similar
weakness.

Fig. 4.2 The Bao–Deng scheme

4.3.3 A Modification with Public Verifiability

In 1999, Gamage et al. [86] suggested a modification of the Bao–Deng scheme
which allows anyone (e.g., firewalls) to publicly verify the origin of a ciphertext
without learning anything about the plaintext. The scheme is given in Fig. 4.3.
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Fig. 4.3 The Gamage et al. scheme

In this scheme, a ciphertext (c, r, s) can be thought of as containing a signature
(r, s) on the encrypted message c. This is accomplished in such a way that a fire-
wall can verify that (r, s) is a valid signature on c. It is worth stressing that this
approach departs from a naive Encrypt-then-Sign composition (see Chap. 2) in that
c is enciphered using a symmetric key derived from a Diffie–Hellman “session key”
generated by the randomness x that is involved in the signing procedure.

This modification avoids the security concern encountered in the Bao–Deng
construction, but it unfortunately does not provide an efficient method allowing
receivers to prove the origin of the plaintext m to third parties.

The security of the above scheme was never explicitly analyzed in the multi-user
setting and its original description [86] did not specify to hash bind along with c
and ω in the calculation or r .2 To make it easier to observe the differences among
schemes, we nevertheless retain the binding information among the inputs of the
hash function.

4.4 An Encrypt-then-Sign Composition

In [108], Jeong et al. proposed a construction combining a non-interactive Diffie–
Hellman key agreement with any strongly unforgeable signature scheme and any

2 Neither did the original specification—given in [203]—of Zheng’s proposal. It was in [12] that
the binding information was taken as argument by H for the first time (in order to prove security
in the multi-user setting).
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Fig. 4.4 The Jeong et al. scheme

semantically secure secret key cryptosystem, which they termed the DHEtS scheme.
The security of signature schemes is discussed in Sect. 1.3.2. The scheme is
described in Fig. 4.4.

At a high level, it bears resemblance with a previous proposal [7] which was
itself inspired from the ECIES public key encryption scheme [2].

Proofs of security were given in [108]. The confidentiality security is proven in
the multi-user outsider confidentiality FSO/FUO-IND-CCA2 security model. The
unforgeability is proven in the multi-user insider strong unforgeability FSO-sUF-
CMA security model. Similar to proofs given in [2], they do not involve random ora-
cles [29] but the proof of confidentiality requires a complex assumption (that even-
tually looks as strong as the random oracle model). This “Oracle Diffie–Hellman
assumption” [2] posits the hardness of distinguishing the hash value H(gu‖gab)

from a random string of the same length given (u, g, ga, gb)
R← Z

∗
p × G

3 even

with the help of an oracle which returns H(X1‖Xb
2) on input of arbitrary pairs

(X1, X2) ∈ G2 with X2 = ga .
It is also worth mentioning that this scheme is as essentially slow as using the

Encrypt-then-Sign techniques—when the encryption layer is implemented with the
ECIES cryptosystem [2]—described in Chap. 2.

4.5 A Scheme with Unforgeability Based on Factoring

In 2000, Steinfeld and Zheng [184] described a scheme which is provably unforge-
able assuming the hardness of factoring. This construction extends a signature
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Fig. 4.5 The Steinfeld–Zheng scheme

scheme due to Pointcheval [162] (which is itself a modification of the GPS signature
scheme [89]) and can be seen as performing a Diffie–Hellman operation in a group
of hidden order. The scheme is described in Fig. 4.5. In this description, the notation
ordG(g) stands for the order of an element g in a group G.

The Steinfeld–Zheng method requires a trusted party to generate system-wide
parameters that include an RSA modulus N = pq of particular shape: as in [162],
the security proof requires that all odd prime factors of ϕ(N ) be larger than a certain
bound 2�. Neither the sender nor the receiver is allowed to know the prime factors
of N . They must have confidence in the authority, which is assumed not to mali-
ciously generate N or use its knowledge of the prime factors to mount an attack.
However, this authority is not needed beyond the setup phase and can be shut down
after having carried out its task.

As in [89, 162], the element y is calculated in Z, without a modular reduction.
This scheme is not endowed with a practical non-repudiation procedure. Stein-

feld and Zheng proved (in the random oracle model) its unforgeability in the two-
user setting under a factoring assumption which slightly differs from the standard
one: the RSA modulus N has indeed a specific shape and an element g of large
(though much smaller than

√
N ) order is also public. Finding a proof of confiden-

tiality in a suitable model was left as an open problem [184].
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4.6 Schemes with Non-repudiation

In 2002, Shin et al. [178] were the first to notice the security weakness in the Bao–
Deng [15] and Yum and Lee [201] schemes. To solve these problems, they put forth
the first example of a Diffie–Hellman style construction that enjoys a secure and
efficient non-repudiation procedure allowing receivers to convince third parties of
the sender’s authorship of a plaintext.

With the same motivations, Malone-Lee [130] independently suggested a similar
technique and came up with a scheme extending Schnorr’s signature scheme[173].
This section gives a description of those schemes.

4.6.1 A DSA-Based Construction

This system, called SC-DSA+ by Shin et al. [178] and described in Fig. 4.6, is an
extension of a modified version of the DSA signature [149].

Receivers can extract a non-repudiation material from the ciphertext and hand
it to third parties as evidence of the plaintext’s origin. To this end, they only have
to forward m, bind, τ2 together with the pair (e1, e2) to the judge who can simply
verify a (modified) DSA signature: the message is accepted if H(m‖bind‖τ2) =
se1 mod q where s = ((ge1pke2

S mod p) mod q)/e2 mod q. From a security point
of view, including τ2 among the arguments of H is crucial since the scheme would
be subject to the same weakness as the Bao–Deng construction otherwise.

Fig. 4.6 The Shin et al. scheme
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Shin et al. [178] proved the confidentiality of SC-DSA+ in a variant of the model
of Baek et al. [12, 13] in which the attacker has access to a fixed signcryption ora-
cle, rather than a flexible signcryption oracle—see Chap. 3, under the Gap Diffie–
Hellman assumption. Their security model does not take into account information
that may be leaked if the attacker requests non-repudiation information for some
ciphertexts. They did not provide a formal proof of unforgeability and settled for
arguing that if the DSA signature is existentially unforgeable, so is SC-DSA+.

4.6.2 A Scheme Built on Schnorr’s Signature Scheme

In 2005, Malone-Lee [130] described another system which is somewhat similar to
SC-DSA+. It was built on Schnorr’s signature scheme [173] and dubbed SCNINR as
a shorthand for “Signcryption with Non-Interactive Non-Repudiation.” This scheme
is described in Fig. 4.7.

For non-repudiation purposes, the recipient has to forward m, bind, τ2, and (r, s)
to a third parties who can simply verify a Schnorr signature.

Malone-Lee [130] proved the security of the SCNINR scheme in a multi-user
model drawing inspiration from the one considered by Bellare et al. [22] for public
key encryption. Malone-Lee’s security model lies somewhere between the two-user
model (see Chap. 2) and the multi-user model (see Chap. 3). The model allows for
the existence of multiple users; however, none of these users are considered to be

Fig. 4.7 Malone-Lee’s SCNINR scheme
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under the control of the attacker and therefore the model may be considered to be
closer to a two-user outsider model. The model also allows the attacker access to
oracles which simulate the non-repudiation process, thus proving the security of
the scheme even in situations in which the attacker can observe non-repudiation
interactions.

In this multi-user scenario, and using the random oracle model, the confidential-
ity of SCNINR is proved under the CDH assumption while the unforgeability relies
on the Discrete Logarithm assumption. While the confidentiality property rests on
the CDH assumption, it is worth pointing out that the proof of this fact only holds
for a very specific choice of groups [111] where the DDH problem is easy (and
where CDH and GDH problems are thus equivalent) and that might be inherently
more subject to attacks than general groups. However, as mentioned in [130], the
confidentiality can be proven under the stronger GDH assumption when the scheme
is implemented with general groups.

4.7 The CM Scheme

In 2006 [37], Bjørstad and Dent showed a general framework for construct-
ing (hybrid) signcryption schemes3 from certain key encapsulation mechanisms

Fig. 4.8 The CM scheme

3 More hybrid constructions are described in Chap. 7.
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(KEMs) termed tag-KEMs [4, 5]. They notably described yet another Diffie–
Hellman-like construction based on Chevallier-Mames’ signature scheme [62].

This particular system, depicted in Fig. 4.8, is slightly less efficient than schemes
that have been covered so far in this chapter. In comparison with the scheme of
Fig. 4.1, for instance, it incurs longer ciphertexts and two extra exponentiations at
the sender’s end. However, the CM scheme inherits the advantage of the underlying
signature scheme, which is a tight security reduction (in the random oracle model)
to a well-studied intractability assumption (in this case, the hardness of the CDH
problem). This feature turns out to be rare in the realm of Diffie–Hellman style
constructions. Indeed, the unforgeability of previously known schemes was only
demonstrated under relatively loose reductions to less classical assumptions (such
as the Gap Discrete Logarithm or the Gap Diffie–Hellman assumption).

On the other hand, the security of the CM signcryption scheme was only analyzed
in the two-user setting with respect to both confidentiality and unforgeability. It is an
interesting open problem to see whether its security can be established in the same
adversarial model as that of Zheng’s system.



Chapter 5
Signcryption Schemes Based on Bilinear Maps

Paulo S.L.M. Barreto, Benoît Libert, Noel McCullagh, and
Jean-Jacques Quisquater

5.1 Introduction

As has been established in the previous chapters, signcryption is a cryptographic
primitive which combines the message integrity, message origin authentication, and
(if possible) signature non-repudiation properties of a traditional digital signature
with the privacy-preserving property of a public key encryption scheme.

The last chapter discussed the construction of signcryption schemes based on the
Diffie–Hellman problem. In this chapter we look at signcryption schemes resulting
from bilinear maps, also commonly called “pairings.” Since computing a bilinear
map can be significantly slower than computing an exponentiation in a group of
the same order, the development of signcryption schemes based on bilinear maps
only makes sense if these schemes can provide an advantage over the simpler and
potentially more efficient Diffie–Hellman-based schemes. This can be in the form of
an improved security analysis or some extra property of the scheme. In this section,
we discuss some of these advantages such as ciphertext anonymity and detachable
signatures, and give examples of schemes that enjoy these properties.

Pairings were first brought to the attention of the cryptographic community when
Menezes, Okamoto, and Vanstone described an attack using the Weil pairing to
efficiently convert the Elliptic Curve Discrete Logarithm Problem (EC-DLP) to the
Discrete Logarithm Problem in a finite field, which can be solved in sub-exponential
time [138]. This is referred to as the MOV attack in the literature.

In 2000, Joux used bilinear maps in the construction of the first pairing-based
cryptographic protocol [109]. This was a tripartite Diffie–Hellman key agreement
protocol, and as such was subject to the man-in-the-middle attack. Importantly, it
was the first non-destructive use of pairings in the literature.

A third paper, by Boneh and Franklin [45, 46], really got cryptographers excited
by the new possibilities afforded by bilinear maps. It closed a long-standing
open problem in cryptography. The problem of constructing an efficient, secure
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identity-based encryption (IBE) scheme was proposed by Shamir in 1984 [177].
In his paper Shamir proposed the first identity-based signature scheme, but left the
construction of an identity-based encryption scheme as an open problem. Seventeen
years later, in 2001, an efficient solution was proposed by Boneh and Franklin. This
solution made use of bilinear maps.

Since the original paper by Boneh and Franklin there have been many identity-
based and, indeed, non-identity-based protocols based on pairings. In addition to
IBE [45, 46], we also have many flavors of identity-based signatures [18, 57], key
agreement schemes [59, 137], and, as we shall see in Chap. 10, identity-based sign-
cryption schemes.

5.2 Bilinear Map Groups

Definition 5.1 Let k be a security parameter and p be a k-bit prime number. Let
us consider groups (G1,G2,GT ) of order p and let g1, g2 be generators of G1 and
G2, respectively. We say that (G1,G2,GT ) are bilinear map groups if there exists
a bilinear map e : G1 ×G2 → GT with the following properties:

1. Bilinearity: ∀(u, v) ∈ G1 ×G2 ∀a, b ∈ Z, we have e(ua, vb) = e(u, v)ab.
2. Non-degeneracy: ∀u ∈ G1, e(u, v) = 1 ∀v ∈ G2 if and only if u = 1G1 .
3. Computability: ∀(u, v) ∈ G1 ×G2, e(u, v) is efficiently computable.

In addition to the above general properties, the constructions described in this chap-
ter additionally need an efficient, publicly computable (but not necessarily invert-
ible) isomorphism ψ : G2 → G1 such that ψ(g2) = g1. Many other pairing-based
protocols (such as short signatures [47, 48]) require the availability of such an iso-
morphism, either in the implementation of schemes themselves or in their security
proofs.

Such bilinear map groups are known to be instantiable with ordinary elliptic
curves such as MNT curves [144] and the kind of curves studied by Barreto and
Naehrig [20]. In practice, G1 is a p-order cyclic subgroup of such a curve E(Fr )

while G2 is a subgroup of E(Frα ), where α is the “embedding degree of the group”
(i.e., the smallest integer α for which the order p of the group divides rα − 1). The
group GT is the set of p-th roots of unity in the finite field Frα . In this case, the trace
map can be used as an efficient isomorphism ψ as long as G2 is properly chosen
[183] within E(Frα ).

The property of computability is ensured by Miller’s famous algorithm [140,
141]—the detail of which is beyond the scope of this chapter. In p-order cyclic
subgroups of curves of embedding degree α, the complexity of Miller’s algorithm
is dominated by O(log p) operations in the extension field Frα containing the
group GT . Computing a pairing is generally significantly more expensive than
computing an elliptic curve scalar multiplication. Using a naïve implementation
of Miller’s algorithm, a pairing computation is more than α2 times slower than a
scalar multiplication on E(Fr ). On the other hand, a recent paper by Scott [174]
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estimates that most optimized algorithms for an embedding degree α = 2 end up
with a running time which is from two to four times as long as an RSA decryption.
Regardless, pairing-based cryptographic protocols usually strive to minimize the
number of pairing calculations they involve.

Some specific cryptographic protocols require the use of symmetric pairings,
where G1 = G2 and ψ is the identity mapping. Such symmetric pairings have
the additional commutativity property: for any pair u, v ∈ G

2
1 , e(u, v) = e(v, u).

Admissible mappings of this kind can be derived from the Weil and Tate pairings
using special endomorphisms called “distortion maps” [194] that are known to only
exist on a particular kind of curve termed “supersingular” in the literature.1 Super-
singular curves may be more susceptible to attacks than ordinary curves. Indeed,
several optimization tricks for them [17] require the use of fields of small character-
istic. The problem is that the MOV and Frey–Rück reductions [82, 138] reduce the
discrete logarithm problem over the elliptic curve to the discrete logarithm problem
in a finite field, and the discrete logarithm problem in a finite field is much easier
to solve in fields of small characteristic [65] than in fields of large characteristic
and similar overall size. Since this threat is well known, it is usually thwarted by
increasing field sizes to maintain a sufficient level of security. Therefore, protocols
where bandwidth requirements have to be minimized (e.g., [47, 48]) usually avoid
supersingular curves whenever possible.

5.3 Assumptions

The security of the first scheme described in this chapter relies on a natural variant
of the Diffie–Hellman problem introduced in [47, 48].

Definition 5.2 The co-Diffie–Hellman (co-CDH) problem in bilinear map groups
(G1,G2) is to compute gab

1 ∈ G1 given (g1, g2, ga
1 , gb

2) ∈ (G1 × G2)
2 for random

values a, b
R← Z

∗
p. The advantage of a co-CDH solver is defined as the probability

of finding gab
1 taken over the random choice of a, b and the solver’s coin tosses.

In the following, we call Advco−CDH(t, k) the maximal probability, taken over the
random choice of a, b ∈ Z

∗
p and the adversary’s coin tosses, of solving a random

co-CDH instance within time t when the security parameter is k = �log p�.
The security properties of the second scheme described in the chapter rest on the

intractability of the following problems introduced in [41, 42] which extend ideas
from [143, 170].

Definition 5.3 Consider a set of bilinear map groups (G1,G2,GT ).

1 In fact, a curve E(Fr ) is said to be supersingular if its number of points #E(Fr ) is such that
t = r + 1− #E(Fr ) is a multiple of the characteristic of Fr .
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• The q-Diffie–Hellman Inversion problem (q-DHI) consists of computing the

value g1/x
1 ∈ G1 given a tuple (g1, g2, gx

2 , g(x
2)

2 , . . . , g(x
q )

2 ) ∈ G1 × G
q+1
2 for

a randomly drawn x
R← Z

∗
p.

• The q-Strong Diffie–Hellman problem (q-SDH) consists of computing a pair

(c, g1/(x+c)
1 ) ∈ Zp × G1, given elements (g1, g2, gx

2 , g(x
2)

2 , . . . , g(x
q )

2 ) ∈ G1 ×
G

q+1
2 for a random x

R← Z
∗
p.

Again, the advantage of solvers is defined as their probability, taken over the random
choice of x and their own coin tosses, of finding the appropriate group element.
In the following, we denote by Advq-DHI(t, k) (resp. Advq-SDH(t, k)) the maximal
probability of solving a random q-DHI (resp. q-SDH) instance within time t when
the security parameter is k = �log p�.

It should be emphasized that the strength of these assumptions grows with the
parameter q (which will be the number of random oracle queries allowed for adver-
saries in games modeling their security). Since this parameter must be reasonably
large—the upper bound q ≈ 260 is frequently used in the literature—for proofs
to be meaningful, those assumptions are notably less trustworthy than the standard
computational Diffie–Hellman assumption.

However, despite recent concerns [61] regarding the hardness of the above prob-
lems, it still seems reasonable to use this scheme with an appropriate adjustment of
key size. For instance, |p| ≈ 256 seems to suffice if we settle for a security level
equivalent to AES implemented with 128-bit keys.

5.4 Signcryption for Anonymous Communications

The schemes that we present in this chapter are anonymous and have “detachable
signatures.” The term “detachable signature” means that the output of the unsign-
cryption algorithm is a plaintext and some authentication material that can be for-
warded to third parties who can check its validity using publicly available infor-
mation. This is clearly equivalent to the notion of non-interactive non-repudiation
proposed by Malone-Lee and discussed in Sect. 4.6.2.

Similar to certain identity-based signcryption schemes [51, 60], the constructions
described in this chapter are meant to provide anonymous ciphertexts which do not
reveal information on the identity of their author or recipient, much in the fashion
of key-private public key cryptosystems [21].

We therefore begin by presenting a new syntax for a signcryption scheme and
new security definitions. In particular, we will assume that there exists a single key
derivation algorithm, which produces keys that can be used for both signcryption
and unsigncryption (see Sect. 3.2.3). We present models for confidentiality, unforge-
ability, and anonymity.

For our purposes, a signcryption scheme consists of tuple of algorithms (Setup,
KeyGen, Signcrypt, Unsigncrypt, Verify). The syntax of the first three
algorithms (Setup, KeyGen, Signcrypt) remain the same as before, except that
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the key generation algorithm KeyGen produces keys that can be used for both sign-
cryption and unsigncryption. The unsigncryption algorithm takes as input a cipher-
text C , a sender public key pkS , and a receiver private key skR ; it outputs either a
message m and a detachable signature σ or an error symbol⊥. The verify algorithm
is used to verify detached signatures. It takes as input a message m, a signature σ ,
and a receiver public key pkR , and outputs either a valid symbol � or an invalid
symbol ⊥.

5.4.1 Message Privacy

The next definition captures message privacy: it is the equivalent of the multi-
user insider confidentiality security model (FSO/FUO-IND-CCA2) presented in
Sect. 3.2.1, except that we consider a single key generation algorithm.

Definition 5.4 We say that a signcryption scheme ensures message privacy against
chosen-ciphertext attacks (we call this security notion insider FSO/FUO-IND-
CCA2) if no PPT adversary has a non-negligible advantage in this game:

1. The challenger generates a private/public key pair (skU , pkU ). The private key
skU is kept secret, while the public key pkU is given to the adversary A.

2. A first performs series of queries of the following kinds:

• Signcryption queries: the adversary A produces a message m ∈ M and an
arbitrary public key pkR (which may differ from pkU ) and acquires the result
Signcrypt(param, skU , pkR,m).

• Unsigncryption queries: A produces a ciphertext C , a sender’s public key pkS ,
and acquires the result of Unsigncrypt(param, pkS, skU ,C), which consists
of a signed plaintext (m, σ ) if the obtained signed plaintext is valid for the
sender’s public key pkS and the ⊥ symbol otherwise.

These queries can be asked adaptively: each query may depend on the answers
to previous ones. After a number of queries, A produces equal-length messages
m0, m1 and an arbitrary private key skS .

3. The challenge flips a coin b
R← {0, 1} and computes the challenge signcryption

C
R← Signcrypt(param, skS, pkU ,mb) of mb with the sender’s private key skS

and the public key pkU . The ciphertext C is given to A.
4. A performs new queries as in step 2 but he/she may not ask for the unsigncryp-

tion of the challenge ciphertext C with respect to the public key pkS (i.e., the
public key that corresponds to skS). At the end of the game, he/she outputs a
bit b′ and wins if b′ = b.

A’s advantage is defined to be AdvIND
A (k) := |Pr[b′ = b] − 1/2|.
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5.4.2 Ciphertext Unforgeability and Signature Unforgeability

We define notions for message integrity (unforgeability). The main notion of
unforgeability is the same as in Chap. 3 with the exception that it is suitable for
signcryption schemes with a single key generation algorithm.

Definition 5.5 We say that a signcryption scheme is strongly existentially ciphertext
unforgeable against insider chosen message attacks (FSO/FUO-sUF-CMA) if no
PPT adversary F has a non-negligible advantage in the following game:

1. The challenger generates a key pair (skU , pkU ) and pkU is given to the forger F .
2. The forger F queries the signcryption and unsigncryption oracles in an adaptive

fashion as in Definition 5.4.
3. F eventually outputs a ciphertext C and a key pair (skR, pkR). The forger wins if

the result Unsigncrypt(param, pkU , skR,C) is a pair (m, σ ) such that (m, σ )
is a valid signature with respect to the public key pkU and C was not the output
of a signcryption query Signcrypt(param, skU , pkR,m) during the game.

As in Sect. 3.2.2, the forger is allowed to have obtained the forged ciphertext as the
result of a signcryption query for a different receiver’s public key to which the one
that the claimed forgery pertains.

Since we are concerned with specific constructions which allow receivers to
extract authentication material (such as an ordinary digital signature) from a cipher-
text and to forward it to a third party, non-repudiation with respect to this embedded
authentication material may be sufficient in many contexts. This requirement is cap-
tured by the notion of signature unforgeability which was introduced for the first
time by Boyen [51] and is recalled below.

Definition 5.6 A scheme is existentially signature unforgeable against chosen mes-
sage attacks (or has the FSO/FUO-ESUF-CMA security) if no PPT adversary F has
a non-negligible advantage against a challenger in this game:

1. The challenger generates a key pair (skU , pkU ) and pkU is given to the forger F .
2. F adaptively performs a series of queries to the signcryption and unsigncryption

oracles as in Definition 5.4.
3. F outputs a ciphertext C and a key pair (skR, pkR) and wins if the result of

Unsigncrypt(param, pkU , skR,C) is a pair (m, σ ) such that the pair (m, σ ) is
valid with respect to the public key pkU and no signcryption query involving the
message m and some receiver’s public key pk′R resulted in a ciphertext C ′ for
which the output of Unsigncrypt(param, pkU , sk′R,C ′) is (m, σ ).

Of course, considering non-repudiation with respect to underlying signatures
(instead of ciphertexts) only makes sense for schemes where the receiver extracts
a signature from the ciphertext.

A potential incentive to settle for signature unforgeability is that it may reduce
the amount of data that receivers have to forward to third parties coping with non-
repudiation disputes. For instance, the scheme described in Sect. 5.6 allows receivers
to extract short signatures from ciphertexts.
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In settings where signature unforgeability suffices, a complementary notion was
also introduced in [51]. It was called ciphertext authentication and assures that a
receiver is always convinced that a ciphertext was jointly signed and encrypted by
the same person and was not subject to a kind of man-in-the-middle attack. The
resulting model shares many similarities with the multi-user outsider unforgeability
model described in Sect. 3.2.2, with the exception that it only applies to signcryption
schemes with one key generation algorithm.

Definition 5.7 A signcryption scheme has the ciphertext authentication property
(FSO/FUO-AUTH-CMA) if no PPT adversary F has a non-negligible advantage
in the next game:

1. The challenger generates two key pairs (skS, pkS) and (skR, pkR); pkS and pkR

are given to the forger.
2. The forger F performs queries to the signcryption oracles Signcrypt(param,

skU , ·, ·) and the unsigncryption Unsigncrypt(param, ·, pkU , ·), for both
U = S and U = R, as in previous definitions.

3. F produces a ciphertext C and wins if the result of Unsigncrypt(param, pkS,

skR,C) is a pair (m, σ ) such that (m, σ ) is a valid signature for the public key
pkS and no signcryption query involving the message m and the receiver’s public
key pkR produced in the ciphertext C .

We emphasize that the latter definition is only useful in complement to the signature
unforgeability property. These properties should not be considered if one is merely
concerned with the ciphertext unforgeability in the sense of Definition 5.5.

5.4.3 Anonymity

In [51], Boyen suggested other security properties for signcryption schemes. One
of them was called ciphertext anonymity and can be thought of as extending the
notion of key privacy as considered by Bellare et al. [21] for public key encryption
schemes. Intuitively, a public key encryption scheme is anonymous if ciphertexts
convey no information about the public key that was used to create them.

In the signcryption setting, the ciphertext anonymity property is satisfied if
ciphertexts reveal no information about who created them nor about whom they
are intended to. This intuition is captured by the definition below which transposes
the one given in [51] to a traditional public key setting.

Definition 5.8 A signcryption scheme is said to be ciphertext anonymous
(FSO/FUO-ANON-CCA) if no PPT distinguisher D has a non-negligible advantage
in the following game:

1. The challenger generates two distinct key pairs (skR0, pkR0) and (skR1, pkR1).
The distinguisher D is provided with pkR0 and pkR1 .

2. D adaptively performs queries to the signcryption and unsigncryption oracles
for the key pairs (skR0, pkR0) and (skR1 , pkR1) as in previous definitions. D
eventually outputs two private keys skS0 and skS1 and a plaintext m.
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3. The challenger then flips coins b, b′ R← {0, 1} and computes a challenge cipher-

text C
R← Signcrypt(param, skSb , pkRb′ ,m).

4. D adaptively issues new queries as in step 2 with the restriction that D may not
ask for the unsigncryption of pairs (C, pkS j ), where j ∈ {0, 1} and C is the
challenge ciphertext, under either of the private keys skR0 or skR1 . Eventually, D
outputs bits d, d ′ and wins if (d, d ′) = (b, b′).

The adversary’s advantage is defined as AdvANON
D (k) := |Pr[(d, d ′) = (b, b′)]− 1

4 | .

Again, this notion captures the security against insider attacks as the distinguisher
is allowed to choose a pair of private keys among which the one used to create the
challenge ciphertext is picked by the challenger.

5.5 A Tightly Secure Scheme

This section describes a signcryption scheme whose security is tightly related to
the hardness of a natural variant of the Diffie–Hellman problem in bilinear map
groups. It was originally proposed, in a slightly modified form, by Libert and
Quisquater [123]. This method relies on the digital signature algorithm of Boneh
et al. [47, 48]. In this scheme, private keys consist of an integer x ∈ Z

∗
p and public

keys consist of a group element Y = gx
2 ∈ G2. A signature on a message m has

the shape σ = H(m)x ∈ G1 (where the hash function H maps arbitrary mes-
sages onto the cyclic group G1). This signature can be verified by checking that
e(σ, g2) = e(H(m),Y ). In order to enhance the concrete security of the reduc-
tion in the proof of ciphertext unforgeability, a random quantity U that is used for
encryption purposes also acts as a random salt to provide a tighter security reduction
in the random oracle model [29].

The scheme may be viewed as a composition of a digital signature scheme which
is existentially unforgeable against chosen message attacks (UF-CMA) [91] with a
public key encryption scheme that is only secure against chosen plaintext attacks. In
[10], it was already observed in the outsider security model that a sequential com-
position in the “sign-then-encrypt” order can amplify rather than simply preserve
the security properties of the underlying building blocks—see Theorem 2.3. This
construction gives another example showing that a CCA-secure signcryption system
(in the sense of Definition 5.4) may be obtained from weaker building blocks. Here,
in some sense, the redundancies needed to achieve CCA security are embedded in
the signature.

5.5.1 The Scheme

For the security of the scheme depicted in Fig. 5.1, it is crucial that the underlying
symmetric encryption scheme be deterministic and one-to-one: for a given plaintext
and symmetric key, there should be a single possible ciphertext. If it were possible
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Fig. 5.1 The co-CDH-based scheme

to compute another encryption of the same plaintext m given c = Enc(m), it would
be possible to generate another ciphertext (u,w, z′) given (u,w, z) and thus defeat
the chosen ciphertext security of the whole scheme.

The receiver has to forward m, v, pkR , and u to a third party to convince her that
the message actually comes from the sender. Together with u and pkR , the value
v acts as a “detachable signature” that the receiver can extract from the ciphertext
and transmit it to third parties. This signature is verified by checking that e(v, g2) =
e(H1(m‖u‖pkS‖pkR), yS).

We note that the recipient’s public key must be hashed together with the pair
(m, u) in order to achieve the strong unforgeability according to Definition 5.5.

5.5.2 Efficiency

Three exponentiations in G1 are required in the signcryption algorithm, while one
multiplication and two pairings must be performed at unsigncryption. The scheme
is at least as efficient and more compact than most sequential compositions of
the BLS signature [47, 48] with any CCA-secure Diffie–Hellman-based encryption
scheme [11, 14, 68, 83, 84, 161, 181]. For example, a sequential combination of
the BLS signature scheme [47, 48] with an ElGamal [81] encryption padded with
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the Fujisaki–Okamoto conversion [83] would involve an additional exponentiation
at decryption because of the “re-encryption phase” which checks the validity of the
ciphertext. With �1 ≈ k ≥ 171, this construction saves about 171 bits of overhead
(i.e., the difference between ciphertext and plaintext sizes) with respect to a compo-
sition of the BLS signature scheme with Fujisaki–Okamoto/ElGamal.

The scheme looks like a sequential composition of the BLS signature scheme
[47, 48] with the hybrid KEM/DEM ElGamal encryption scheme proven secure
by Cramer and Shoup [68]. Actually, the hybrid ElGamal scheme must be imple-
mented with an IND-CCA2 symmetric encryption while the above system only
needs a symmetric scheme that meets the very weak requirement of being seman-
tically secure against passive attacks (that is an attack where the adversary has no
encryption or decryption oracle in an indistinguishability scenario). Here, for fixed-
length messages, the symmetric encryption could simply be a “one-time pad” of the
message with a hash value of u‖v‖ψ(YR)

r .

5.5.3 Security

The original version [123] of this system (where τ was obtained by hashing v alone)
was found [186, 198] not to meet its intended security properties. Although a chosen
ciphertext attack was also given [187] against the modification suggested in [198],
its variant detailed in Fig. 5.1 is immune to these attacks (and the countermeasures
do not incur any significant additional cost).

The scheme is proven secure in the random oracle model (with a tight reduc-
tion) assuming the hardness of the co-CDH problem. The proof of the next theo-
rem features a tight reduction to the co-CDH problem using the property (pointed
out for the first time in [111] for a specific kind of pairing-friendly groups) that
its decisional counterpart is easy: it can be easily tested whether a given tuple
(g1, g2, ga

1 , gb
2) ∈ (G1 ×G2)

2 satisfies a = b by checking if e(g1, gb
2) = e(ga

1 , g2).

Theorem 5.1 The scheme is FSO/FUO-IND-CCA2 secure in the random oracle
model assuming that the co-CDH problem is hard and that the symmetric encryption
scheme is IND-CPA secure. For any adversary A running in time tA and making
at most qsc signcryption queries, qusc unsigncryption queries, and qHi queries to
random oracles Hi (i = 1, 2, 3), we have

AdvA(tA, k) ≤ qusc

2k−2
+ Advco-CDH

B (t ′, k)+ Advind-cpa-sym
B (t ′, |K|)

where

- Advco-CDH
B (t ′, k) stands for the maximal probability of solving the co-CDH prob-

lem in time t ′ ≤ tA + O(qusc + qH2 + qH3)tp + O(qH1)texp when the security
parameter is k and tp, texp stand for the time complexity of a pairing evaluation
and an exponentiation, respectively.
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- Advind-cpa-sym
B (t ′, |K|) is the maximal advantage2 of any adversary mounting a

chosen plaintext attack on (Enc, Dec) within time t ′ when the key size is |K|.

Proof The proof consists of a sequence of games where the first game is the real
attack game, and in the last game the adversary is essentially a passive attacker
against the symmetric encryption scheme (Enc, Dec). In the sequence, the event
that the adversary A wins in Game i is denoted Si .
Game 1 is the real attack game detailed in Definition 5.4. The adversary is given
public parameters comprising g2 ∈ G2 and g1 = ψ(g2) and the receiver’s public key

is defined as pku = gb
2 ∈ G2 for some random b

R← Z
∗
p chosen by the simulator B.

The latter uses skU = b to answer all signcryption/unsigncryption queries. Random
oracle queries are dealt with in the standard way, by returning random values in the
appropriate range. To maintain consistency and return identical outputs if the same
random oracle query is made more than once, B keeps track of all these queries
and their outputs in lists L1, L2, and L3. In the challenge phase, A outputs a pair
of messages m0,m1 and a sender’s private key sk∗S = x∗S . The simulator B flips a

fair coin d
R← {0, 1}. It also chooses a random exponent a

R← Z
∗
p and successively

computes ciphertext elements u∗ = ga
1 , v∗ = H1(md‖u∗‖gx∗S

2 ‖pku)
x∗S , w∗ = v∗ ⊕

H2(u∗‖ψ(pku)
a), τ ∗ = H3(u∗‖v∗‖ψ(pku)

a), and z∗ = Encτ∗(md). The challenge
ciphertext (u∗,w∗, z∗) is given to A who eventually outputs a bit d ′ and wins if
d ′ = d. The adversary A’s advantage is thus |Pr[S1] − 1/2|.
Game 2: In this game, the first ciphertext component u∗ = ga

1 is calculated at the
beginning of the game. This change is purely conceptual and Pr[S2] = Pr[S1].
Game 3 is the same as Game 2 but the simulator B aborts if the adversary ever
queries the unsigncryption of a ciphertext (u,w, z) such that u = u∗ = ga

1 before the
challenge phase. We call F3 the latter event. Game 3 and Game 2 are clearly identical
until it occurs and we have |Pr[S3] − Pr[S2]| ≤ Pr[F3]. Since u∗ is independent of
A’s view until the challenge phase, we have Pr[F3] ≤ qusc/p ≤ qusc/2k−1 so that
|Pr[S3] − Pr[S2]| ≤ qusc/2k−1.
Game 4: We modify the treatment of random oracle queries as well as that of sign-
cryption/unsigncryption queries. A difference with earlier games is that H2 and H3
queries are now handled using four lists L2, L ′2 and L3, L ′3.

• H1 queries: If a hash query H1(mi‖ui‖pkS,i‖pkR,i ) is made, B first checks if
the value of H1 was previously defined for that input. If it was, the previously

defined hash value h1,i is returned. Otherwise, B picks a random ti
R← Z

∗
p, returns

h1,i ← gti
1 ∈ G1, and inserts the tuple (mi , ui , pkS,i , pkR,i , ti ) into L1.

• H2 queries: If a hash query H2(ui‖Ri ) is made, for inputs (ui , Ri ) ∈ G
2
1,

B first scans list L2 to see if there exists a record (ui , Ri , h2,i , β) for some

2 This advantage is usually defined as |Pr[d = d ′] − 1/2| when the adversary chooses a pair

equal-length plaintexts m0,m1, obtains c = Encτ (md ) for a random key τ
R← K and a randomly

drawn bit d
R← {0, 1}, and outputs d ′ ∈ {0, 1}.
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bit β. If so, the previously defined value h2,i is returned. Otherwise, B checks
if (g2, ui , pku, Ri ) is a valid co-Diffie–Hellman tuple (in our notation, we write
Ri = co-DHg2(ui , pku)) by checking whether e(Ri , g2) = e(ui , pku).

– If yes, then B checks if L ′2 contains an entry of the shape (ui , ?, h2,i ) for some
string h2,i ∈ {0, 1}�1 . If yes, h2,i is returned and a record (ui , Ri , h2,i , 1) is
stored in L2. If no entry (ui , ?, h2,i ) exists in L ′2, B returns a random string

h2,i
R← {0, 1}�1 and inserts (ui , Ri , h2,i , 1) in L2.

– If (g2, ui , pku, Ri ) is not a co-DH tuple, B picks h2,i
R← {0, 1}�1 at random

and stores the tuple (ui , Ri , h2,i , 0) in L2.

• H3 queries: If a hash query H3(ui‖vi‖Ri ) is made, then B proceeds as for answer-
ing H2 queries, using lists L3 and L ′3 to maintain the consistency and checking if
(g2, ui , pku, Ri ) is a co-Diffie–Hellman tuple, namely, L3 contains entries of the
form (ui , vi , Ri , h3,i , β), with β ∈ {0, 1}. If β = 1, then H3(ui‖vi‖Ri ) = h3,i
and it holds that Ri = co-DHg2(ui , pku). If β = 0, then H3(ui‖vi‖Ri ) = h3,i
and Ri = co-DHg2(ui , pku). The auxiliary list L ′3 contains entries (ui , vi , ?, h3,i )

such that a subsequent query H3(ui‖vi‖Ri ) for which Ri = co-DHg2(ui , pku)

should receive the answer h3,i ∈ K.
• Signcryption queries: If a signcryption query on a plaintext m and a recipi-

ent’s public key pkR is made, then B picks a random r
R← Z

∗
p, computes

u = gr
1 ∈ G1, and checks if L1 contains a tuple (m, u, pku, pkR, t) indicating

that h1(m‖u‖pku‖pkR) was previously set to be gt
1. If no such tuple is found, B

picks t
R← Z

∗
p and stores the entry (m, u, pku, pkR, t) in L1. It then computes

v = ψ(pku)
t = (gb

1)
t ∈ G1. The rest follows as in the signcryption process: B

computes ψ(pkR)
r (for the pkR specified by the adversary), simulates H2 and H3

to obtain h2 = H2(u‖ψ(pkR)
r ) and τ = H3(u‖v‖ψ(pkR)

r ), and then computes
w = v⊕ h2 and z = Encτ (m). The ciphertext (u,w, z) is returned to A.

• Unsigncryption queries: For an unsigncryption query on a ciphertext C =
(u,w, z) and a sender’s public key pkS ∈ G2, B checks if list L2 contains the
sole possible tuple (u, R, h2, 1) for some R ∈ G1 and h2 ∈ {0, 1}�1 (meaning
that R = co-DHg2(u, pku) and that H2(u‖R) was set to h2 ∈ {0, 1}�1 ):

– If such an entry exists, B obtains v = w⊕ h2 and rejects C if v ∈ G1. Other-
wise, B obtains the secret key τ = H3(u‖v‖R) ∈ K (by simulating H3) and
sets m = Decτ (z). Then, B computes H = H1(m‖u‖pkS‖pku) ∈ G1 (by sim-
ulating H1) and checks whether e(v, g2) = e(H, pkS). If so, the information
(m, pku, v, u) is returned. Otherwise, C is rejected.

– If such an entry does not exist, then B checks if L ′2 contains an entry (u, ?, h2).

If such an entry does not exist either, then B chooses h2
R← {0, 1}�1 and stores

(u, ?, h2) in L ′2, so as to preserve consistency and answer h2 to a subsequent
H2 query on the input u‖co-DHg2(u, pku). In either case, B obtains the h2
value. It sets v = w ⊕ h2 ∈ {0, 1}�1 and rejects C if v ∈ G1. Then, B
scans lists L3 and L ′3, in search for an entries of the shape (u, v, R, τ, 1)
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and (u, v, ?, τ ), respectively. If no such entries exist, B picks τ
R← K at ran-

dom and inserts a record (u, v, ?, τ ) in L ′3 to make sure that a future hash
query H3(u‖v‖co-DHg2(u, pku)) will get the answer τ . Finally, B computes
m = Decτ (z). The ciphertext C is declared invalid if e(v, g2) = e(H, pkS)

where H = H1(m‖u‖pkS‖pku). If the ciphertext is deemed valid, A is
returned the information (m, pku, v, u).

It can be checked that the above simulation of the various oracles is consistent and
A’s view is not altered by these changes. It comes that Pr[S4] = Pr[S3]. We also
note that the private key skU = b is not explicitly used to answer signcryption or
unsigncryption queries.
Game 5 modifies the way to answer unsigncryption queries and add a special
rule that applies to post-challenge unsigncryption queries, namely, if A queries
the unsigncryption of a ciphertext (u,w, z) such that (u,w) = (u∗,w∗) after the
challenge phase, B returns ⊥. Two situations must be distinguished to see that this
change does not significantly alter A’s view.

- If the query pertains to the same sender’s public key as in the challenge phase
(i.e., pkS = pk∗S), we necessarily have z = z∗ (as the query is illegal other-
wise). For such a ciphertext, the underlying v = w∗ ⊕ H2(u∗‖u∗b) must be the
same as the value v∗ calculated in the challenge phase. Also, the same symmetric
key τ ∗ = H3(u∗‖v∗‖u∗b) must be used to decipher z when the unsigncryp-
tion operation is carried out normally. Since z = z∗ and given that the encryp-
tion/decryption algorithms (Enc, Dec) are bijections, the plaintext m = Decτ∗(z)
must be different from the plaintext md that was encrypted in the challenge phase.
Hence, unless we have a collision H1(m‖u∗‖pk∗S‖pku) = H1(md‖u∗‖pk∗S‖pku)

(which occurs with probability smaller than 1/|p| < 1/2k−1 when H1 is
modeled as a random oracle), v∗ cannot be a valid signature for the message
m‖u∗‖pk∗S‖pku and the unsigncryption algorithm would certainly reject it.

- If the query is made for a different sender pkS = pk∗S (and we may thus have
z = z∗ or not), the unsigncryption algorithm would still reveal the same v∗
as in the challenge phase and the same symmetric key τ ∗ = H3(u∗‖v∗‖u∗b)

would be used to decipher z. If we denote by m = Decτ∗(z) the symmet-
ric decryption of z under the key τ ∗, the ciphertext (u∗,w∗, z) would only
be accepted in earlier games in the event that H1(md‖u∗‖pk∗S‖pku)

sk∗S =
H1(m‖u∗‖pkS‖pku)

logg(pkS) (i.e., if the outputs of the random oracle H1 are
correlated in a very specific way for two different inputs). Since we are work-
ing in the random oracle model, this situation only occurs with probability
1/p < 1/2k−1.

Throughout all queries, the overall probability that the new rule causes B to reject a
ciphertext that would have been deemed valid in earlier games is at most qusc/2k−1.
We thus have |Pr[S5] − Pr[S4]| ≤ qusc/2k−1.
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Game 6 makes some last changes to the simulation. First, we modify the generation
of the challenge ciphertext (u∗,w∗, z∗). The first element u∗ is still set as u∗1 = ga

1

(B does not explicitly know a—only ga
1 ) but w∗ R← {0, 1}�1 is now chosen at random

and z∗ is generated as an encryption z∗ = Encτ∗(md) under a perfectly random key

τ ∗ R← K. The other change is that we define an event E and let the simulator halt if
it ever occurs. Event E is the occurrence of one of the following situations.

E.1 A queries oracle H2 on the input (u∗‖R) such that R = co-DHg2(u
∗, pku).

E.2 A queries oracle H3 on an input (u∗‖.‖R) such that R = co-DHg2(u
∗, pku).

We see that B is able to detect occurrences of E.1 and E.2, which both reveal the
value R = co-DHg2(g

a
1 , gb

2) = gab
1 . Since B never knows exponents a or b, it

would solve an instance of the co-CDH problem if E.1∨E.2 happens. We thus have
Pr[E .1 ∨ E .2] ≤ Advco-CDH

B (t ′, k), where t ′ ≤ tA + O(qusc + qH2 + qH3)tp +
O(qH1)texp is an upper bound on B’s computation time that takes into account the
unsigncryption queries as well as H2 and H3 queries, each requiring two pairing
evaluations.

If event E does not occur, the symmetric key τ ∗ is completely independent of A’s
view. Guessing d ∈ {0, 1} then amounts to carry out a chosen plaintext attack on
the symmetric encryption scheme (Enc, Dec). Indeed, the only way for A to observe
symmetric decryptions under τ ∗ would be to query the unsigncryption of ciphertexts
of the shape (u∗,w∗, z). Such ciphertexts are precisely rejected by the oracle due
to the rules introduced in Game 3 and Game 5. It comes that |Pr[S6] − 1/2| =
Advind-cpa-sym

B (t ′). ��
We observe that the reduction is very tight. Up to negligible terms and assuming

that Advind-cpa-sym
B (t ′) is negligible, algorithm B has the essentially same probability

to solve the co-CDH problem as the adversary’s advantage in breaking the scheme.
The cost of the reduction is also bounded by an expression which is linear in the
number of adversarial queries. That is the reason why u is included among the
arguments of H2. The scheme remains secure if v is concealed by a hash value
of ψ(pkR)

r alone but the reduction entails a number of pairing evaluations that are
quadratic in the number of adversarial queries.

Having a tight reduction to a computational problem is a notable feature of
the scheme. It contrasts with other Diffie–Hellman-based constructions which are
also CCA secure under tight reductions but rely on gap assumptions involving
oracles that do not exist. This can be lifted by implementing those schemes over
pairing-friendly groups (where some gap problems become equivalent to computa-
tional problems) but most of them keep relatively loose reductions with respect to
unforgeability (the only notable exception being Bjørstad and Dent’s CM scheme
[37] discussed in Sect. 4.7). In the present system, the reductions are also efficient
in the proof of ciphertext unforgeability.

Theorem 5.2 Assume that an adversary F has advantage AdvF (t, k) over the
FSO/FUO-sUF-CMA security of the scheme when running in time t, making qsc
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signcryption queries, qusc unsigncryption queries, and qHi queries on random ora-
cles Hi (for i = 1, 2, 3). Then, there is an algorithm B which solves the co-CDH
problem in (G1,G2) with probability

Advco-CDH
B (t ′, k) ≥ AdvF (t, k)− qsc(qH1 + qsc + qusc)+ 1

2k−1

and within running time t ′ ≤ t + O(qH2 + qH3 + qusc)tp + O(qsc)texp, where tp

and texp stand for the time required for a pairing evaluation and an exponentiation
in G1.

Proof The simulator B receives a random co-Diffie–Hellman instance (ga
1 , gb

2). It
uses F as a subroutine to solve that instance and plays the role of F’s challenger.
The forger F is initialized with the input pku = gb

2 and performs adaptive queries
that are handled by B as explained below (using lists as in the proof of Theorem 5.1):

• H1 queries: If a hash query on a tuple m‖u‖pkS‖pkR is made, then B checks to
see if the latter was previously queried. If so, then B returns the same value.

For a query on a new tuple m‖u‖pkS‖pkR , B picks t
R← Z

∗
q and defines

H1(m‖u‖pkS‖pkR) = (ga
1 )

t ∈ G1. The list L1 is updated accordingly.
• H2 queries and H3 queries are dealt with as in Game 4, the proof of Theorem 5.1.
• Signcryption queries: If a signcryption query on a message m and a receiver’s

public key pkR is made, B picks r
R← Z

∗
p and computes u = gr

1 ∈ G1. If H1 is
already defined on m‖u‖pku‖pkR , B declares “failure” and halts. Otherwise, B
picks t

R← Z
∗
p, sets H1(m‖u‖pku‖pkR) = gt

1 ∈ G1, and updates L1 accordingly.

It then computes v = ψ(pku)
t ∈ G1, h2 = H2(u‖ψ(pkR)

r ) ∈ {0, 1}�1 , w =
v ⊕ h2, τ = H3(u‖v‖ψ(pkR)

r ) ∈ K, and z = Encτ (m) ∈ C. The ciphertext
(u,w, z) is then returned to F .

• Unsigncryption queries are handled exactly as in the proof of Theorem 5.1.

At the end of the game, F produces a ciphertext (u∗,w∗, z∗) and a recipient’s
public/private key pair (sk∗R, pk∗R). At that moment, B can unsigncrypt the cipher-
text using sk∗R and, if the ciphertext is a valid forgery for the sender’s public
key pku , B can extract the message m∗ and the signature v∗. If the hash value
H1(m∗‖u∗‖pku‖pk∗R) was not explicitly defined by a query to the H1 oracle during
the simulation, then B reports “failure” and stops. Otherwise, B can extract v∗ and
the hash value H1(m∗‖u∗‖pku‖pk∗R)must have been defined to be (ga

1 )
t∗ , for some

known t∗ ∈ Z
∗
p. This implies that v∗ must be equal to (gab

1 )
t∗ , which yields the

co-Diffie–Hellman value.
It is easy to see that the probability for B to fail in answering a signcryption query

is not greater than qsc(qH1 + qsc + qusc)/p ≤ qsc(qH1 + qsc + qusc)/2k−1 (since
at each signcryption query, there is at most qH1 + qsc + qusc elements in L1). The
probability that F succeeds without explicitly making the H1(m∗‖u∗‖pku‖pk∗R)
query can be bounded by considering the following three possibilities:
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• If the value of H1(m∗‖u∗‖pku‖pk∗R) is undefined by the simulation, then the
probability that F wins is bounded by 1/2k−1 (since F must output a valid
ciphertext).

• If the value of H1(m∗‖u∗‖pku‖pk∗R) was defined by the signcryption oracle for
some query on a message m and receiver public key pkR , then we must have
m = m∗, pkR = pk∗R , and that the associated value u = u∗. Since both ciphertexts
must be valid, we have that v = v∗, and so w = w∗ and τ = τ ∗. This means
that z = z∗ by the deterministic nature of the symmetric encryption scheme.
Hence, we conclude that F outputs the result of a signcryption query, which is a
contradiction to the fact that F wins the game.

• If the value of H1(m∗‖u∗‖pku‖pk∗R) was defined by the unsigncryption oracle,
then B is still able to solve the co-CDH problem as the simulation of the unsign-
cryption oracle calls the simulated H1 oracle for all its computations.

Hence, we can conclude that the probability that the algorithm fails is bounded by
qsc(qH1 + qsc + qusc)/2k−1 + 1/2k−1 and the result follows. ��

A similar theorem to Theorem 5.1 links the anonymity property of the scheme to
the co-CDH assumption.

5.6 A Scheme with Short Detachable Signatures

Figure 5.2 describes a signcryption scheme by Libert and Quisquater [124] with a
shorter detachable signature. The construction relies on a signature scheme inde-
pendently proposed by Zhang et al. [202] and Boneh-Boyen [42]. In the latter work,
this scheme was shown to efficiently produce 160-bit signatures without requiring
the use of a special hash function mapping messages to be signed onto an elliptic
curve subgroup, unlike the original BLS short signature proposed in [47, 48]. In
[42], it was also shown that this scheme has a more efficient security reduction
in the random oracle model under the q-strong Diffie–Hellman assumption than
the reduction given by Zhang et al. [202] under the q-Diffie–Hellman inversion
assumption.

The protocol makes use of a (masked) signature as an ElGamal-like ephemeral
key as well as a checksum showing that a message was properly encrypted. The
sender first computes an exponent r ← γ /(h1(bm‖m‖pkS) + skS) ∈ Z

∗
p where γ

is randomly chosen from Z
∗
p, m ∈ {0, 1}∗ is the message to sign and encrypt, and

bm is a message-dependent bit computed as a function of m and the private key skS

according to Katz and Wang’s proof technique [113]—this helps to achieve tight
security reductions without introducing random “salts” in signatures. This exponent
r is then used to compute an ephemeral Diffie–Hellman key gr

1 as in the ElGamal
cryptosystem [81] and to scramble the secret γ using a hash value of ψ(pkR)

r ,
while a digest of γ , ψ(pkR)

r , and other elements is used to conceal the message m
using a deterministic and one-to-one symmetric encryption scheme.
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Fig. 5.2 The SDH-based scheme

The use of a masked signature as a “one-time” Diffie–Hellman key allows the
sparing of one exponentiation (actually an elliptic curve scalar multiplication) with
respect to a sequential signature/encryption composition.

When computing the second component of the ciphertext, the receiver’s public
key and the first component (which is an embedded signature as well as a Diffie–
Hellman ephemeral key) are hashed together with the “one-time” Diffie–Hellman
key ψ(pkR)

r in order to simplify the security proof.
In order to convince a third party that a recovered message m originates from

the sender S, the receiver reveals the detached signature σ , the message m, and the
associated bit bm to the third party who can run the regular signature verification

algorithm (i.e., check that e(g1, g2) = e(σ, yS · g
H1(bm‖m‖pkS)

2 )). The scheme thus
provides detachable signatures that cannot be linked to their original ciphertext:
the signature is masked by a randomly chosen factor γ and anyone observing a
valid message–signature pair can use his/her private key to build a signcryption of
that message–signature pair under his/her public key. The scheme thus provides
ciphertext unlinkability in the sense of [51].
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5.6.1 Efficiency

Besides a modular inversion, the sender only computes two exponentiations in G1.
The receiver’s workload is dominated by one pairing computation (as e(g1, g2) can
be included among the common public parameters param), two exponentiations in
G1, and one exponentiation in G2.

The scheme is described in terms of asymmetric pairings and requires the exis-
tence of a publicly computable isomorphism ψ : G2 → G1. It does not require
the hashing of arbitrary strings onto cyclic elliptic curve subgroups. Hence, the kind
of groups suggested in Sect. 4 of [183] may be employed here as they provide an
asymmetric pairing configuration e : G1×G2 → GT with an efficiently computable
isomorphism ψ : G2 → G1. It has been reported that hashing onto G2 may be
somewhat slow in such configurations. Such parameters allow the performance of
the last step of the Unsigncrypt algorithm at a reasonable speed using the specific
techniques for ordinary curves given by Barreto et al. [19].

Note that the two exponentiations that are the bulk of the sender’s workload can
be computed off-line (i.e., before knowing the message to be sent). Indeed, in an

off-line phase, the sender can pick a random r
R← Z

∗
p, compute c1 ← gr

1 and ω←
ψ(pkR)

r , store them in memory, and, then, once the message m is known, compute
γ ← r(H1(bm‖m‖pkS)+ skS) mod p, c2 ← (γ ‖bm)⊕ H2(c1‖pkR‖ω) and c3 ←
EncH3(γ ‖bm‖yR‖ω)(m). In this case, care must be taken not to re-use the same r to
sign and encrypt distinct messages because this would expose the private key.

From a bandwidth point of view, the scheme allows receivers to extract short
signatures from a ciphertext when they wish to convince a judge of the sender’s
authorship of the message (e.g., signatures of length 256 bits, using the pairing-
friendly groups suggested by Barreto and Naehrig [20]).

5.6.2 Anonymous Communications

Like the co-CDH-based scheme of Fig. 5.1, this scheme is meant to provide anony-
mous communications, where ciphertexts do not reveal the identity of the sender and
the receiver. In such a situation, it may be the case that the receiver himself/herself
does not know who the sender is upon receiving a ciphertext. We nevertheless
remark that the sender’s public key is only needed in the final step of the unsigncryp-
tion algorithm. A simple solution to the above problem is to have the sender append
a short string IDS that identifies him/her (or even his public key) to the message that
is being signcrypted. The receiver then has to perform an online lookup in a public
repository to fetch the appropriate public key pkS .

The syntax of the unsigncryption algorithm is then slightly modified as this
algorithm does not take the sender’s public key pkS as input any longer. A similar
modification can be made to the scheme of Fig. 5.1.
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5.6.3 Security

The original version of the scheme [124] was shown by Tan [188] to be vulnerable
to a chosen ciphertext attack taking advantage of a key substitution attack on the
underlying signature scheme [42, 202]. However, protecting the scheme against the
attack of Tan [188] is rather straightforward using a standard countermeasure to
immunize signature schemes from key substitution attacks: it suffices to hash the
signer’s public key along with the message to be signed. The resulting scheme is
even more efficient than the improvement of Ma [128] (subsequently also broken
by Tan [189]) as it allows for shorter detachable signatures.

The message confidentiality and existential signature unforgeability, respectively,
rely (in the random oracle model) on the intractability of the q-Diffie–Hellman
Inversion and q-strong Diffie–Hellman assumptions.

For convenience, the message confidentiality is proved under an equivalent for-
mulation of the q-DHI assumption, which we call the (q + 1)-exponent problem in

(G1,G2). This consists of computing g(x
q+1)

1 ∈ G1 given (g1, g2, gx
2 , . . . , g(x

q )
2 ). A

proof of the following result can be found in [41] but we give it for completeness.

Lemma 5.1 The q-Diffie–Hellman Inversion problem can be formulated as the

problem of computing g(x
q+1)

1 on input of (g1, g2, gx
2 , g(x

2)
2 , . . . , g(x

q )
2 ) ∈ G

q+1.

Proof Given a sequence of elements (g1, g2, gx
2 , . . . , g(x

q )
2 ), where x is uniformly

chosen in Z
∗
p, for which g(x

q+1)
1 should be found, one can easily construct a q-DHI

instance (y1, y2, y A
2 , y(A

2)
2 , . . . , y(A

q )
2 ) by setting

y1 = ψ(y2) y2 = g(x
q )

2 y A
2 = g(x

q−1)
2 . . . y(A

q )
2 = g2

This implicitly defines the value A = 1/x . Any algorithm that computes the q-DHI

solution y1/A
1 thus reveals the value g(x

q+1)
1 . ��

Theorem 5.3 The scheme is FSO/FUO-IND-CCA2 secure in the random oracle
model assuming that the q-DHI problem is intractable and that the symmetric
encryption scheme is IND-CPA secure. For any adversary A running in time tA and
making at most qsc signcryption queries, qusc unsigncryption queries, qHi queries
to random oracles Hi (i = 1, 2, 3), and qH ′ queries to H ′, we have

AdvA(tA, k) ≤ qusc

2k−2
+ (qsc + qusc)(qsc + qusc + qH3)+ q

2k−1

+ Advq-DH I
B (t ′, k)+ Advind-cpa-sym

B (t ′, |K|)

where Advind-cpa-sym
B (t ′, |K|) is defined as in Theorem 5.1 while Advq-DH I

B (t ′, k)
stands for the maximal probability of solving the q-DHI problem within running
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time t ′ ≤ tA+O(qH2+qH3qusc)tp+O(q2+qH ′ +qsc+qusc)texp when the security
parameter is k and tp and texp denote the time complexity of a pairing evaluation
and that of an exponentiation in G2, respectively.

Proof The proof proceeds with a sequence of games. The first game is the real
attack game, while in the final game the adversary has no better advantage than a
passive adversary against the symmetric encryption scheme (Enc, Dec). Throughout
the sequence, we call Si the event that the adversary A wins (by correctly guessing
the bit d ∈ {0, 1} chosen by the challenger B in the challenge phase) in Game i .
Game 1 is the real attack game. The adversary A is provided with a random gen-

erator h
R← G2, its image g = ψ(h) ∈ G1, as well as a receiver’s public key

pkU = X = hx . Throughout the game, the simulator B uses the private key
skU = x to answer signcryption and unsigncryption queries. Random oracle queries
are answered by outputting random values in the appropriate range. This is done
consistently in that, if an oracle is queried twice on the same input, the same output
is returned by B. To keep track of those queries, lists L ′, L1, L2, and L3 are used
to bookkeep all inputs and the matching outputs for oracles H ′, H1, H2, H3. In the
middle point of the game, A outputs a pair of messages (m0,m1) and a sender’s
private key sk∗S = x∗S . To generate the challenge ciphertext (c∗1, c∗2, c∗3), the simulator

B flips a fair binary coin d
R← {0, 1}, randomly chooses γ ∗ R← Z

∗
p, and generates

(c∗1, c∗2, c∗3) as c∗1 = gr∗ , c∗2 = (γ ∗‖b∗m)⊕ H2(c∗1‖X‖ψ(X)r∗), and c∗3 = Encτ∗(md)

where r∗ = γ ∗/(x∗S + H1(b∗m‖md‖pk∗S)), τ ∗ = H3(γ
∗‖b∗m‖X‖ψ(X)r∗) ∈ K, and

the bit b∗m ∈ {0, 1} is determined as b∗m = H ′(x∗S,md). In this game, the adversary
has advantage |Pr[S1] − 1/2|.
Game 2 modifies the generation of the public generator h ∈ G2 and the public

key X , namely, B defines values (g1, g2, gx
2 , g(x

2)
2 , . . . , g(x

q )
2 ) ∈ G1 × G

q+1
2 for a

randomly chosen x
R← Z

∗
p. To generate h ∈ G2, g = ψ(h) ∈ G1 and a public

key X = hx ∈ G2, B picks w1, . . . ,wq−1
R← Zp, expands the polynomial f (z) =

∏q−1
i=1 (z+wi ) =∑q−1

i=0 ci zi , and uses it to obtain a random generator h ∈ G2 and a
public key X . These can be obtained by first computing

h′ =
q−1
∏

i=0

(g(x
i )

2 )ci = g f (x)
2 and X ′ =

q
∏

i=1

(g(x
i )

2 )ci−1 = gx f (x)
2 = h′x

We call F2 the event that h′ is the identity element of G (i.e., because f (x) = 0
when one of the wi happens to be the exponent x). Since there are q − 1 values wi

and x is chosen at random, we have that the probability that f (x) = 0 is bounded
by (q − 1)/p. It is easy to see that Game 1 and Game 2 are identical unless event
F2 occurs. Hence, |Pr[S1] − Pr[S2]| ≤ Pr[F2] ≤ (q − 1)/p ≤ (q − 1)/2k−1.
Game 3 changes the game so that part of the challenge ciphertext (c∗1, c∗2, c∗2) is

computed at the beginning of the game, namely, B chooses a
R← Zp at random

and sets the first ciphertext component as c∗1 = g(x+a) = ψ(X) · ga ∈ G1, which
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implicitly defines the encryption exponent as r∗ = a + x . When A chooses mes-
sages m0,m1 and a sender’s private key sk∗S in the challenge phase, B computes
γ ∗ = r∗(sk∗S + H1(b∗m‖md‖pk∗S)) after having determined the message-dependent
bit b∗m = H ′(sk∗S,md) and computes parts c∗2 and c∗3 of the ciphertext as speci-
fied by the description of the scheme. This change is only conceptual and we have
Pr[S2] = Pr[S3].
Game 4 is the same as game 3 but B aborts if a pre-challenge unsigncryption query
involves a ciphertext (c1, c2, c3) such that c1 = c∗1. Unless this event, that we call
F4, occurs, Game 3 and Game 4 proceed identically and we have Pr[S3 ∧ ¬F4] =
Pr[S4 ∧ ¬F4] and |Pr[S4] − Pr[S3]| ≤ Pr[F4]. Since c∗1 is independent of A’s view
until the challenge phase, we must have Pr[F4] ≤ qusc/p ≤ qusc/2k−1.
Game 5 modifies the treatment of random oracle queries and the way to handle
signcryption and unsigncryption queries. We note that, for the values wi ∈ Zp that

are roots of the polynomial f (z), B can compute qsc = q−1 pairs (wi , g
1

wi+x ) using
only (g1, g2, . . . , gxq

2 ) (and without using the underlying x). Using the technique of

[42], it obtains these pairs (wi , g
1

wi+x ) by expanding fi (z) = f (z)/(z + wi ) =
∏q−2

i=0 di zi and computing

g̃i =
q−2
∏

j=0

ψ(g(x
j )

2 )θd j = gθ fi (x)
1 = g

θ
f (x)

x+wi
1 = g

1
x+wi

for i = 1, . . . , q − 1. Queries to random oracles H ′, H1 and signcryption queries
are now processed as follows:

- H ′ queries: When a query H ′(α,mi ) is made, B checks if a tuple (α,mi , bmi )

appears in L ′. If so, it returns the previously defined bmi ∈ {0, 1}. If no such
tuple is found,

- if α = x (which B can test by checking if gx
2 = gα2 if it does not explicitly

know x , as will be the case in later games), B looks up entries of the form
(?,mi , bmi ) in L ′, returns the matching bmi if such an entry is found, and
replaces the entry by (α,mi , bmi ). If no entry (?,mi , bmi ) is found, B responds

with a random bmi

R← {0, 1} and stores (x,mi , bmi ) in L ′.
- if α = x , B returns a random b

R← {0, 1} and stores (α,mi , b) in L ′.

- H1 queries: These queries are indexed by a counter t that is initially set to 1.
When a triple δ‖m‖X (involving the challenge public key X ) is submitted in a
H1 query for a new message m, B looks up L ′ for a record (?,m, bm) (where ?
is a placeholder for a currently unknown value). If no such record is found, B
picks a random bit bm

R← {0, 1} and stores (?,m, bm) in L ′ so that bm will be
associated with the message m from this point forward. The treatment of the hash
query H1(δ‖m‖X) then depends on δ ∈ {0, 1}, namely, if δ = bm , B returns wt ,
stores (δ,m, X,wt ) in L1, and increments the counter t (in such a way that B
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is able to create a valid signature on m). Otherwise (i.e., if δ = bm), B returns a

random c
R← Z

∗
p and stores (δ,m, X, c) in L1. Should H1 be queried again on the

same δ‖m‖X later on, B will look up L1 and output the value that was defined at
the first occurrence of the query.

- H2 queries are now processed using two lists L2 and L ′2. On input Y1,i‖Y2,i‖Y3,i :
B first checks if H2 was previously queried on the same input and, if
so, returns the previously defined value. Otherwise, B checks if the tuple
(h,Y1,i ,Y2,i ,Y3,i ) is a valid co-Diffie–Hellman tuple (in our notation, we write
Y3,i = co-DHh(Y1,i ,Y2,i )) by verifying if

e(Y1,i ,Y2,i ) = e(Y3,i , h).

If it is, B checks if L ′2 contains a record (Y1,i ,Y2,i , ?, ζi ), for some ζi ∈ {0, 1}k+1

and where ? is a placeholder for a currently undetermined value. In this case, ζi

is returned and an entry (Y1,i ,Y2,i ,Y3,i , ζi , 1) is added in L2. If no entry of the

shape (Y1,i ,Y2,i , ?, ζi ) is in L ′2, B returns a string ζi
R← {0, 1}k+1 and inserts

(Y1,i ,Y2,i ,Y3,i , ζi , 1) in L2. If (h,Y1,i ,Y2,i ,Y3,i ) is not a co-Diffie–Hellman

tuple, B returns a random ζi
R← {0, 1}k+1 and the entry (Y1,i ,Y2,i ,Y3,i , ζi , 0)

is added in L2.
- H3 queries: When a query H3(γ ‖bm‖pkR‖Y ) is made, B looks up the history

L3 of H3 queries. If it already contains a record (∗, pkR, γ, bm,Y, τ ) for any
value of ∗, then B returns τ ∈ K. Otherwise, B checks all entries of the form
(c1, pkR, γ, bm, ?, τ ), for some c1 ∈ G1, and tests whether one of them satisfies
Y = co-DHh(c1, pkR). If so, it returns the matching τ ∈ K and replaces the

record by (c1, pkR, γ, bm,Y, τ ) in L3. Otherwise, B returns a random τ
R← K

and stores (?, pkR, γ, bm,Y, τ ) in L3.
- Signcryption queries on a plaintext m, for an arbitrary receiver’s key pkR : We

assume that m was previously submitted in an H1 query and that the message-
dependent bit bm was previously defined. Since H1(bm‖m‖X) was (or will be)
defined to be w j for some j ∈ {1, . . . , t}, B knows that g̃ j = g1/(w j+x) appears
as a valid signature on m from A’s view. So, it computes c1 = g̃γj ∈ G1

for some γ
R← Z

∗
p. It then checks if L2 contains an entry (c1, pkR,Y3, ζ, 1)

(indicating that Y3 = co-DHh(c1, pkR)) or if L ′2 contains a record of the form
(c1, pkR, ?, ζ ). If so, B sets c2 = (γ ‖bm) ⊕ ζ ∈ {0, 1}k+1. Otherwise, it sets

c2
R← {0, 1}k+1 and inserts

(

c1, pkR, ?, (γ ‖bm) ⊕ c2
)

in L ′2. If L3 happens to
already contain an entry (∗, pkR, γ, bm, ., τ ) comprising this particular γ , B fails

(we call F5 this event). Otherwise, it picks a random symmetric key τ
R← K, sets

c3 = Encτ (m), and stores a record (c1, pkR, γ, bm, ?, τ ) in L3 (in such a way
that a subsequent H3(γ ‖bm‖pkR‖co-DHh(c1, pkR)) obtains the answer τ ). The
resulting triple (c1, c2, c3) is then returned to A.

- Unsigncryption queries: When A submits a ciphertext C = (c1, c2, c3) together
with a sender’s public key pkS , B checks whether list L2 contains the unique
entry (c1, X,Y, ζ, 1) for some elements Y ∈ G1 and ζ ∈ {0, 1}k+1 (indicating
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that Y = co-DHh(c1, X)) or whether L ′2 contains the entry (c1, X, ?, ζ ) for some
ζ ∈ {0, 1}k+1:

• If it does, B obtains (γ ‖bm) = c2 ⊕ ζ ∈ {0, 1}k+1, τ = H3(γ ‖bm‖X‖Y )
(by simulating H3) and finally m = Decτ (c3). Finally, B extracts σ = c1/γ

1
and returns the plaintext m and the signature σ if the verification equation
e(σ, pkS · hH1(bm‖m‖pkS)) = e(g, h) is satisfied.

• If it does not, B randomly picks ζ
R← {0, 1}k+1, τ

R← K, and
inserts (c1, X, ?, ζ ) into the list L ′2 (so that a subsequent H2 query on
(c1, X, co-DHh(c1, X)) will be assigned the output ζ ). It computes (γ ‖bm) =
c2 ⊕ ζ ∈ {0, 1}k+1 and aborts in the unlikely event, which we call F ′5, that
the obtained γ already appears somewhere in L3 (since γ is almost uni-
form in Zp, event F ′5 only happens with negligible probability). Otherwise,
it stores (c1, X, γ, bm, ?, τ ) in L3 (in such a way that a subsequent query
H3(γ ‖bm‖X‖co-DHh(c1, X)) will receive the answer τ . The latter is used
to compute m ← Decτ (c3). The signature σ = c1/γ

1 is checked as above. If
the verification succeeds, B returns (m, σ ). Otherwise, it outputs ⊥.

Unless event F5 or F ′5 occurs at some query, A’s view is not affected by the above
modifications. We thus have |Pr[S5] − Pr[S4]| ≤ Pr[F5 ∨ F ′5]. It is easy to see that
Pr[F5∨ F ′5] ≤ (qsc+qusc)(qsc+qusc+qH3)/2

k−1 since list L3 never contains more
than qsc + qusc + qH3 entries.
Game 6 changes the simulation of the unsigncryption oracle again and adds the
following rule. After the challenge phase, if A queries the unsigncryption of a
ciphertext (c1, c2, c3) such that (c1, c2) = (c∗1, c∗2), B returns ⊥. We consider two
cases:

- If the query is made for the same sender pkS = pk∗S , we must have c3 = c∗3.
It is easy to see that for such a ciphertext the underlying values (γ, bm) must be
the same as the pair (γ ∗, b∗m) of the challenge ciphertext. Moreover, the same
symmetric key τ ∗ = H3(γ

∗‖b∗m‖X‖ψ(X)r∗) must be used to decipher c3 when
executing the unsigncryption operation. Since c3 = c∗3 and given that the sym-
metric encryption algorithm (Enc, Dec) is a bijection, the underlying plaintext
m = Decτ∗(c3) must be different from md . Therefore, unless we have a col-
lision H1(b∗m‖m‖pk∗S) = H1(b∗m‖md‖pk∗S) (which occurs with probability at
most 1/|p| < 1/2k−1 when H1 is viewed as a random oracle), the underlying
c∗1

1/γ ∗ cannot be a valid signature for m.
- If the query is made for a different sender’s public key pkS = pk∗S (in which

case, we may have c3 = c∗3 or c3 = c∗3), the unsigncryption operation would
still reveal the same values (γ, bm) = (γ ∗, b∗m) as in the challenge phase and
the same symmetric key τ ∗ = H3(γ

∗‖b∗m‖X‖c∗1 x ) must be used to decipher
c3. However, if we denote by m = Decτ∗(c3) the symmetric decryption of c3
under that symmetric key τ ∗, the ciphertext (c∗1, c∗2, c3)would only be accepted in
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previous games if logg(pkS)+ H1(b∗m‖m‖pkS) = x∗S + H1(b∗m‖md‖pk∗S). In the
random oracle model, this only occurs with probability at most 1/p < 1/2k−1.

Throughout all queries, the probability that the new rule causes the rejection of a
ciphertext that would not have been rejected in earlier games is at most qusc/2k−1.
We thus have |Pr[S6] − Pr[S5]| ≤ qusc/2k−1.
Game 7 brings two changes to the simulation and first modifies the generation of
the challenge ciphertext C∗ = (c∗1, c∗2, c∗3) again. When A outputs messages m0,m1
together with a sender’s private key sk∗S ∈ Z

∗
p in the challenge phase, B still com-

putes c∗1 by choosing a
R← Z

∗
p and setting c∗1 = g(x+a) = ψ(X)·ga ∈ G1. However,

sk∗S is no longer used to compute c∗2 and neither are the private key skU = x and
the encryption exponent r∗ = x + a. Elements (c∗2, c∗3) are generated by draw-

ing c∗2
R← {0, 1}k+1 at random and computing c∗3 = Encτ∗(md), for a random bit

d
R← {0, 1}, using a random key τ ∗ R← K. The other change is that the simulator

B immediately halts in the event, which we call E , that either of the following
situations occurs:

E.1 A queries oracle H ′ on a pair (x, ∗), where x = skU = logg(X) is the private
key. This can be tested by checking whether X = hα at each query H ′(α, ∗).

E.2 A queries oracle H2 on an input (c∗1‖X‖Y ) such that Y = co-DHh(c∗1, X).
E.3 A queries oracle H3 on an input (γ ‖bm‖X‖Y ) such that Y = co-DHh(c∗1, X).

We observe that B can detect E.1, E.2, and E.3 without knowing the private key
skU = x . Event E.1 directly allows solving a given instance of the q-DHI problem
and so do events E.2 and E.3 as we will see.

Let us assume for now that event E does not occur. Since the proof takes place in
the random oracle model, without knowing the value H2

(

c∗1‖X‖co-DHh(c∗1, X)
)

, A
has no information on c∗2 ⊕ H2

(

c∗1‖X‖co-DHh(c∗1, X)
)

and cannot realize that the
challenge ciphertext was not properly generated. Game 7 is then identical to Game
6, which allows writing Pr[S7∧¬E] = Pr[S6∧¬E] and |Pr[S7]−Pr[S6]| ≤ Pr[E].
Moreover, as long as event E.3 does not happen, the key τ ∗ that is used to compute
c∗3 is perfectly independent of A’s view and guessing the bit d ∈ {0, 1} boils down
to mounting a chosen plaintext attack on the symmetric cipher (Enc, Dec). Indeed,
before Game 6, the only situation where A could possibly manage to see the result of
a symmetric decryption under the key τ ∗ would be by creating a valid ciphertext of
the form (c∗1, c∗2, c3) and such ciphertexts are always rejected by the unsigncryption

oracle from Game 6 onwards. We thus have |Pr[S7] − 1/2| = Advind-cpa-sym
B (t ′),

where t ′ is a bound on B’s running time (which will be determined below).
We still have to explain how B can solve a q-DHI instance if event E.2 or event

E.3 (as defined above) occurs. When, via H2 or H3 queries, B obtains the co-Diffie–
Hellman value Y = co-DHh(c∗1, X) = gx(x+a) = gθx f (x)(x+a)

1 , it expands f ′(z) =
f ′(z)(z + a) = ∑q

j=0 f j z j ∈ Zp[z] and, since Y = ∏q
j=0 ψ(g

(x j+1)
2 )θ f j , B can

compute
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g(x
q+1)

1 = [

Y 1/θ ·
q−1
∏

j=0

ψ(g(x
j+1)

2 )− f j
] 1

fq ∈ G1

and solve the (q + 1)-exponent instance.
From a computational point of view, B’s running time is dominated by q + 2

multi-exponentiations with q elements that reach an overall cost of O(q2) exponen-
tiations. Computing f (z) also involves a cost in O(q2) while computing each fi (z)
implies O(q) operations like the computation of the product f (z)(z + a). When
handling H2 and H3 queries, B also has to compute O(qH2 + qH3qusc) pairings.
Finally, answering H ′ queries, signcryption queries, and unsigncryption queries also
implies exponentiations.

The probability that event E occurs can thus be bounded by

Pr[E] ≤ Advq-DH I
B (t ′)

where t ′ ≤ tA + O(qH2 + qH3qusc)tp + O(q2 + qH ′ + qsc + qusc)texp. ��
The scheme does not necessarily provide ciphertext unforgeability; however, it

can be shown to give signature unforgeability (see Sect. 5.4.2). This means that,
while it might be possible for an attacker to produce a new valid ciphertext from a
particular sender, it is not possible for an attacker to produce a ciphertext that gives
rise to a new message/signature pair. In other words, the resulting signature must
have been originally produced by the legitimate sender.

Theorem 5.4 If an ESUF-CMA adversary F has non-negligible advantage in the
game of Definition 5.6, we can break the q-Strong Diffie–Hellman assumption in
the random oracle model. More precisely, for any forger F running in time t, mak-
ing qHi queries to oracles Hi (i = 1, 2, 3), qusc unsigncryption queries, and qsc

signcryption queries, there exists an algorithm B solving the q-SDH problem for
q = qH1 such that

AdvF (tF , k) ≤
(

1+ 2 · (1− q − 1

2k−1

)−1
)

· Advq-SDH
B (t ′, k)

+ (qsc + qusc)(qsc + qusc + qH3)+ 2q − 1

2k−1

where t ′ ≤ tF + O(qH2 + qH3qusc)tp + O(q2 + qH ′ + qsc + qusc)texp and tp and
texp stand for the same quantities as in Theorem 5.3.

Proof The proof consists of a sequence of five games. The first one is the real attack
game described by Definition 5.6. In the last game, the simulator will be able to
extract a solution to a q-SDH instance from its interaction with the adversary. In
each game of the sequence, we call Wi the event that the adversary wins.

Game 1 is the real attack game. The adversary F is given a random generator h
R←

G2, g = ψ(h) ∈ G1 and a sender’s public key pkU = X = hx . Throughout the
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game, the simulator B uses the private key skU = x to answer signcryption and
unsigncryption queries. Random oracle queries are handled in the standard way, by
returning random values in the appropriate set and producing the same output if the
same input is queried several times. The forger F eventually outputs a ciphertext
C∗ = (c∗1, c∗2, c∗3) and a key pair (sk∗R, pk∗R). He/she wins if the unsigncryption of
C∗ under sk∗R and pku is a valid triple (m∗, b∗, σ ∗) with respect to pku and if this
triple was not trivially obtained by querying the signcryption oracle (as described in
Step 3 of Definition 5.6). The advantage of F is defined as AdvF = Pr[W1].
Game 2 modifies the generation of the generator h and the sender’s public key X
which are now calculated in the same way as in Game 2 in the previous proof.
The generators h ∈ G2, g = ψ(h) ∈ G1, that are given to the forger F as a part
of the output of the common key generation algorithm, and the public key X =
hx are generated as in Game 2 in the proof of Theorem 5.3, namely, B chooses a

random polynomial f (z) =∏q−1
i=1 (z+wi ), with w1, . . . ,wq−1

R← Zp. Given values

(g1, g2, gx
2 , . . . , g(x

q )
2 ), it computes h′ = g f (x)

2 , X ′ = h′x and finally h = h′θ ,

X = X ′θ where θ
R← Zp. If f (x) happens to be zero, B can directly solve the

problem as in the proof of Theorem 5.3. At the beginning of the game, B hands the
public key pku = X = hx to F . It is easy to see that Game 1 and Game 2 are
identical unless the polynomial f (z) accidentally cancels in x . This event, which
we call F2, occurs with probability bounded by (q − 1)/p. Hence, we have that
|Pr[W1] − Pr[W2]| ≤ Pr[F2] ≤ (q − 1)/2k−1.
Game 3 modifies the treatment of all queries and handles them exactly in the same
way as in game 5 in the proof of Theorem 5.3. In this game, the private key sku = x
is not explicitly used to answer queries. In particular, signcryption queries can be
dealt with without it since, after having calculated h and the public key, B knows

q − 1 pairs of the form (wi , g
1

wi+x ). We denote by F3 and F ′3 the events that B
fails when answering a signcryption and an unsigncryption query, respectively (i.e.,
the same events as F5 and F ′5 in the proof of Theorem 5.3). Unless either F3 or
F ′3 occurs at some query, A’s view will not be affected by these changes and we
have |Pr[W3] − Pr[W2]| ≤ Pr[F3 ∨ F ′3]. As in the proof of Theorem 5.3, we have
Pr[F3 ∨ F ′3] ≤ (qsc + qusc)(qsc + qusc + qH3)/p since list L3 always contains at
most qsc + qusc + qH3 records.
Game 4 introduces a failure event F4 which is the same as event E.1 in the proof
of Theorem 5.3 (namely A queries oracle H ′ on a pair (x, ∗)). Clearly, if event F4
occurs, B can detect it and directly solve the q-SDH instance. We thus find that
Pr[F4] ≤ Advq-SDH (B) and |Pr[W4] − Pr[W3]| ≤ Advq-SDH (B).
Game 5 raises a new failure event F5 and makes B abort when it occurs. When
the adversary F halts and outputs a ciphertext C∗ = (c∗1, c∗2, c∗3) and an arbitrary

recipient’s key pair (sk∗R, pk∗R = hsk∗R ), B looks up the values H2(c∗1‖pk∗R‖c∗1sk∗R )

and τ ∗ = H3(γ
∗‖bm∗‖pk∗R‖c∗1sk∗R ), where (γ ∗‖bm∗) = c∗2⊕ H2(c∗1‖pk∗R‖c∗1sk∗R ), in

the history of random oracle queries (and simulates random oracles for itself if nec-
essary). We define F5 to be the event that the hash value H1(bm∗‖m∗‖X) was never
defined by the simulation. Since H1 is modeled as a random oracle, the probability
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that A wins without having forced the simulation to define H1(bm∗‖m∗‖X) is at
most 1/p < 1/2k−1. We thus have |Pr[W5] − Pr[W4]| ≤ Pr[F5] ≤ 1/2k−1.

We will now give an upper bound for Pr[W5]. When F outputs a fake signature
embedded in a ciphertext C∗ = (c∗1, c∗2, c∗3) and the key pair (sk∗R, pk∗R = hsk∗R ),
B can recover the fake triple

(

m∗, bm∗ , σ ∗ = g1/(H1(bm∗‖m∗‖X)+x)
)

that must be

contained in C∗ by successively computing (γ ∗‖bm∗) = c2 ⊕ H2(c∗1‖pk∗R‖c∗1sk∗R ),

τ ∗ = H3(γ
∗‖bm∗‖pk∗R‖c∗1sk∗R ), m∗ = Decτ∗(c∗3), and σ ∗ = c∗1

1/γ ∗ .
Let us first assume that m∗ was never the input of a signcryption query. Then,

with probability 1/2, bm∗ differs from the message-dependent bit b∗m∗ (that indicates
how m∗ should be signed with the private key corresponding to pku = X in the
underlying signature scheme) since the latter is independent of F’s view. Recall that

we have σ ∗ = g1/(x+h∗1) = g
θ f (x)/(x+h∗1)
1 , where h∗1 = H1(bm∗‖m∗‖X). As long as

bm∗ = b∗m∗ , we have h∗1 ∈ {w1, . . . ,wq−1} with probability at least 1 − (q − 1)/p
(since H1 is a random oracle) and (x + h∗1) does not divide f (x). In this case, a
q-SDH pair (h∗1, g∗) can then be extracted by expanding f (z)/(z + h∗1) into

γ−1

z + h∗1
+

q−2
∑

i=0

γi z
i

and computing g∗ = [

σ ∗1/θ ·∏q−2
i=0 ψ(g

(xi )
2 )−γi

] 1
γ−1 .

In the event that m∗ was the input of some signcryption query, the latter was
answered by generating the underlying signature as σ = g1/(x+H1(b∗m∗‖m∗‖X)) using
the message-dependent bit b∗m∗ . It comes that the bit bm∗ must necessarily be differ-
ent from b∗m∗ as, according to Definition 5.6, the triple (m∗, bm∗ , σ ∗) would not be a
forgery otherwise. Since bm∗ = b∗m∗ , B can extract an SDH pair as in the first case.
In either situation, we find that Pr[W5] ≤ 2 · Advq-SDH (B)+ (q − 1)/2k−1. ��

In comparison with other schemes, the disadvantage of this one is a security
reduction relying on somewhat strong assumptions as the value q must be fairly
large.



Chapter 6
Signcryption Schemes Based on the RSA
Problem

Alexander W. Dent and John Malone-Lee

6.1 Introduction

The first practical public-key encryption scheme and digital signature scheme were
proposed in 1978 by Rivest et al. [165]. While the original public-key encryption
scheme would not be considered secure by modern standards, the RSA transform
has been the basis of dozens of public-key encryption schemes and digital sig-
nature schemes. These schemes have proven very successful and have been very
widely deployed in industry. However, despite being widely used in the design of
public-key encryption and digital signature schemes, the RSA transform has not
been widely used in the construction of signcryption schemes.

The basic RSA transform makes use of two large prime numbers (p, q) and an
integer e which is coprime to p−1 and q−1. The RSA public key contains an RSA
modulus N = pq and the encryption exponent e. The RSA private key consists of
the RSA modulus N and the decryption exponent d = e−1 mod (p − 1)(q − 1).
Note that the decryption exponent can easily be computed if one knows the
prime factorization of N . The public key defines a permutation on the set ZN

as x �→ xe mod N . This permutation is undone via the inverse transformation
x �→ xd mod N .

The security of the RSA transform comes from the problem of computing e-th
roots modulo N . Indeed, it has been shown that the problem of computing an RSA
decryption exponent d from the RSA public key (N , e) is as difficult as factoring N ,
as knowledge of (N , e, d) is sufficient to factor N in polynomial time [135]. This
fact explains the difficulty in using the RSA transform in signcryption schemes. For
a signcryption scheme to be insider secure, it must be possible to reveal the private
key of one of the parties without compromising security, which implies that the
ability to factor that party’s modulus must not impact the security of the scheme.
Hence, any signcryption scheme that is purely based on the RSA transform requires
two transforms: one using the sender’s RSA parameters, upon which the security
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of the data origin authentication service depends, and one using the receiver’s RSA
parameters, upon which the security of the data confidentiality service depends.
This implies that any RSA-based signcryption scheme must intrinsically involve at
least two “expensive” operations. Furthermore, each of these operations must use a
different modulus and so acts as a permutation of different sets. This incompatibility
between the domains of the two RSA transforms further complicates the construc-
tion of an efficient signcryption scheme.

The aim of an RSA-based signcryption scheme is therefore to achieve good secu-
rity guarantees, while minimizing the ciphertext expansion and using only two RSA
transformations. In this chapter we will review the early attempts to construct sign-
cryption schemes based on the use of RSA moduli before focusing our efforts on
the signcryption schemes that can be derived from the use of the RSA transform and
certain padding schemes. Schemes of this type were proposed by Malone-Lee and
Mao [131] and by Dodis et al. [77, 78]. All of these padding schemes are based on
Feistel networks, which are used to add redundancy and randomness to messages
before applying the RSA transforms. The resulting padding schemes can also be
thought of in terms of commitment schemes and therefore have some similarities to
the signcryption schemes based on concealment discussed in Chap. 8.

6.2 The RSA Transform

The RSA transform was introduced by Rivest, Shamir, and Adleman in 1978 [165].
The formal statement of the problem is a little more complex than the colloquial
description given in the previous section. The exact definition of the problem
depends upon the distribution from which the two prime numbers p and q are
drawn. For our purposes, this is defined by a probabilistic, polynomial-time RSA
parameter generation algorithm RSAGen, which takes as input a security parameter
1k and outputs two primes (p, q) with the property that N = pq is a k-bit integer.
The exact description of the distribution is important as certain distributions lead
to easily solvable versions of the RSA problem. We define the Euler function φ as
φ(N ) = (p − 1)(q − 1). The formal description of the RSA problem is as follows:

Definition 6.1 Let k be a security parameter and RSAGen be an RSA parameter gen-
eration algorithm:

• Suppose that (p, q)
R← RSAGen(1k) and N ← pq. The factoring problem is to

compute (p, q) when given N .

• Suppose that (p, q)
R← RSAGen(1k), N ← pq, e

R← Z
∗
φ(N ), and y

R← ZN . The
RSA problem is to compute x such that xe = y mod N when given (N , e, y).

• Suppose that (p, q)
R← RSAGen(1k), N ← pq, and y

R← ZN . The e-th root
problem is to compute x such that xe = y mod N when given (N , y).

• Suppose that (p, q)
R← RSAGen(1k), N ← pq, e

R← Z
∗
φ(N ), and y

R← ZN . The

�′(k)-partial RSA problem is to compute x ∈ {0, 1}�′(k) such that (x‖x ′)e = y
mod N for some x ′ ∈ {0, 1}k−�′(k) when given (N , e, y).
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The only difference between the RSA problem and the e-th root problem is that the
encryption exponent e is fixed in the e-th root problem, while it is randomly chosen
in the RSA problem. The choice of a specific value for e can lead to efficiency gains
in the signcryption and unsigncryption algorithms, but the security of the scheme
would then rely on the difficulty of the e-th root problem, which may be easier to
solve than the RSA problem.

There is a direct relationship between the partial RSA problem and the RSA
problem, as demonstrated by Coron et al. [67].

Lemma 6.1 If A is an algorithm that solves the partial RSA problem with proba-
bility ε in time t, where 2k−1 < N < 2k , �′(k) > 64, and k/�′(k)2 < 2−6, then
there exists an algorithm B that solves the RSA problem with success probability ε′
in time t ′, where

n =
⌈

5k
4�′(k)

⌉

ε′ ≥ ε(εn − 2−k/8)

t ′ ≤ nt + poly(k)

With current research, the fastest method to solve either the RSA problem or the
e-th root problem (for odd values of e > 1) is to factor the modulus N . However,
no proof exists to show that this must always be the case, and it is possible that the
RSA or e-th root problems are significantly easier than the corresponding factoring
problem. As has already been mentioned, the exact method for generating the primes
p and q is important, as some distributions for p and q lead to an easily solvable
factoring problem. Luckily, it has been argued that, for sufficiently large k, it suffices
to select p and q at random from all k/2-bit primes [166]. Several estimates have
been given as to the security given by moduli of different lengths, with one of the
most trusted recent estimations given by Lenstra [120]:

RSA modulus
bit length

Conservative equivalent
symmetric key length

Optimistic equivalent
symmetric key length

1, 024 72 72
1, 280 78 80
1, 536 82 85
2, 048 88 95
3, 072 99 112
4, 096 108 125
8, 192 135 163

6.3 Dedicated RSA-Based Signcryption Schemes

Most RSA-based signcryption schemes are perhaps most correctly viewed as appli-
cations of generic constructions which make use of a padding scheme and a pair of
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trapdoor permutations. We will discuss these constructions in Sect. 6.4. However,
there are two constructions which rely on the RSA-style techniques without relying
directly on the RSA transform: the Steinfeld–Zheng construction [184] discussed in
Sect. 4.5 and Zheng’s extension of this scheme [206]. These schemes make use of
techniques similar to Zheng’s original Diffie–Hellman-based signcryption scheme
(discussed in Sect. 4.3) but using a version of the Schnorr signature scheme in a
(hidden) prime-order subgroup of Z

∗
N .

6.4 Signcryption from Padding Schemes

In this section we will develop the theory behind the construction of signcryption
schemes from padding schemes [77, 78]. This will culminate in the “Two Birds One
Stone” signcryption scheme proposed by Malone-Lee and Mao [131]. This scheme
is described in Sect. 6.5. In all cases, the schemes only provide signcryption for
fixed-length messages. However, this can be extended to cover the signcryption of
messages of any length up to a given bound using a suitable padding scheme.

6.4.1 Trapdoor Permutations

A trapdoor permutation is defined by a probabilistic, polynomial-time generation
algorithm Gen which takes as input a security parameter 1k and outputs a pair of

PPT functions ( f, f −1)
R← Gen(1k). Both of these functions are permutations over

some set of bitstrings {0, 1}�(k) and each function is the inverse of the other.

Definition 6.2 (Trapdoor one-way function) The trapdoor permutation defined by
Gen is one-way if every PPT attacker A has negligible probability in the following
experiment:

Pr[x = f −1(y) : x
R← A( f, y), y

R← {0, 1}�(k), ( f, f −1)
R← Gen(1k)]

The RSA transform is believed to be a trapdoor one-way permutation, except
that it is defined over the set ZN , rather than over a set of bitstrings {0, 1}�(k), which
complicates the application of these techniques in practice. This problem will be
discussed further as we introduce the different constructions.

6.4.2 Extractable Commitments

An extractable commitment scheme has all the properties of a standard commitment
scheme. In addition it has the property that there is an extraction algorithm that,
for any commitment, can extract a unique decommitment with high probability.
This extraction algorithm has to “observe” the construction of the commitment. The
extractable commitment schemes that are used in these constructions are all built
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from cryptographic hash functions and the formal security analysis of the resulting
schemes is all done in the random oracle model [29]. We will not go into details of
the security proofs here, suffice to say that the extraction algorithm only needs to
observe the random oracle queries made during the construction of the commitment.
The interested reader will find the details in [78].

Formally, an extractable commitment scheme consists of three PPT algorithms:
Commit, Open, and Extract. Given a message m, Commit(m) outputs a pair
(c, d). Here c represents a commitment to the message m and d the correspond-
ing decommitment. The output of Open(c, d) is m if (c, d) is a valid commit-
ment/decommitment pair for message m; otherwise the output is ⊥. There is the
usual correctness requirement that Open(Commit(m)) = m for all messages m in
the appropriate message space.

Informally, we require that the commitment hides all information about the
underlying message and that there exists an extraction algorithm that can recover the
correct decommitment corresponding to a commitment if it can observe the random
oracle queries made while creating the commitment. More formally, we require the
following:

• Hiding: For all PPT attackers A = (A1,A2), the following advantage εhide is
negligible:

∣
∣
∣ Pr

[

b = b′ : (m, ω)
R← A1(1k), (c0, d)

R← Commit(m),
c1

R← {0, 1}|c0|, b
R← {0, 1}, b′ R← A2(cb, ω)

]

− 1

2

∣
∣
∣

• Extractability: If A is an algorithm, then let T (A) denote the transcripts of all
random oracle queries and responses made by A during its execution. Then we
require that the following advantage εext is negligible:

Pr[Extract(c, T (A)) = d ∧ Open(c, d) =⊥ : (c, d)
R← A(1k)]

The extractability property implies the binding property that we would expect
from a commitment scheme. Consider an algorithm A that outputs (c, d, d ′) where
d = d ′ but for which Open(c, d) =⊥ and Open(c, d ′) =⊥. Then we can conclude
that Extract(c, T (A)) = d as (c, d) is a valid commitment. However, by the same
argument, we can also conclude that Extract(c, T (A)) = d ′, which is a contradic-
tion. Hence, we are forced to conclude that it is infeasible to construct an algorithm
A which outputs (c, d, d ′).

We construct an extractable commitment scheme using a hash function
H : {0, 1}|d| → {0, 1}|c|. In the security proofs of Dodis et al. [77, 78], this hash
function is modeled as a random oracle [29]. Suppose that we wish to commit to a
message m. We first split m into two bitstrings m1 and m2 such that m = m1‖m2.
Next a random bitstring r ∈ {0, 1}(|d|−|m2|) is chosen. The commitment and corre-
sponding decommitment are computed as follows:
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m1 m2 r

H

c d

Fig. 6.1 An extractable commitment scheme

c ← (m1‖0(|c|−|m1|))⊕ H(m2‖r)
d ← m2‖r

Here 0(|c|−|m1|) denotes a string of |c| − |m1| zeros. Clearly this scheme is parame-
terized by |m1|, |m2|, |c|, and |d|. We give a graphical illustration in Fig. 6.1. The
Open process involves computing m2‖r ← d and m1‖t ← c⊕ H(d). The message
m = m1‖m2 is returned only if t = 0(|c|−|m1|); otherwise an error message ⊥ is
returned.

This scheme is a generalization that, given appropriate choices of parameters,
and when used with particular Feistel padding schemes, reduces to existing padding
schemes [30, 31]. If |m1| = 0 and the P-Pad scheme, described in Sect. 6.4.3, is
used, then this gives the PSS-R padding scheme [31]. Similarly, if |m2| = 0 and the
P-Pad scheme is used, then we obtain the OAEP padding scheme [30]. Both PSS
and OAEP were designed by Bellare and Rogaway.

6.4.3 Padding-Based Signcryption Schemes

We are now in a position to describe the padding-based signcryption schemes.
In all cases, the sender’s public key will be a trapdoor one-way permutation
pkS = fS and the sender’s private key will be the corresponding inverse permutation
skS = f −1

S . Similarly, the receiver’s public key will also be defined by a trapdoor
one-way permutation pkR = fR and skR = f −1

R . In all cases, the signcryption
scheme will begin by applying an extractable commitment scheme to the message,
resulting in the commitment pair (c, d). Then a padding scheme will be applied
to create “shares” (w, s). Finally, the sender’s and receiver’s permutations will be
applied to the shares in order to produce a ciphertext.

All of the padding schemes are based on Feistel networks. A Feistel network
takes as input a pair (L , R) and makes use of a round function F . The output of one
round of a Feistel network is (L ′, R′) where

L ′ = R and R′ = F(R)⊕ L
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It is easy to see that such a procedure is invertible, even if F itself is not, as

R = L ′ and L = F(R)⊕ R′

All the padding schemes here will make use of one or more rounds of a Feistel
network. The round functions are constructed using cryptographic hash functions

G : {0, 1}∗ → {0, 1}|d| and H : {0, 1}∗ → {0, 1}|c|

where |c| and |d| denote the lengths of c and d in the commitment scheme (respec-
tively). We denote the padding operation Pad and the corresponding de-padding
operation Depad. We also make use of an extractable commitment scheme with a
commitment algorithm Commit and an opening algorithm Open. For security, we
require that |c|, |d|, |r |, and |c| − |m1| are sufficiently large.

We define three padding schemes and the corresponding signcryption schemes:
parallel padding, sequential padding, and extended sequential padding. We note
that one important feature of these schemes is that they do not assume that users
have separate keys for sending and receiving ciphertexts: a single transform fU is
sufficient for a user U to act as both sender and receiver. In order to incorporate
this into the security model, we use the one-key model discussed in Sect. 3.2.3 and
outlined in Sect. 5.4.

6.4.3.1 Signcryption Based on the Parallel Padding Scheme

The parallel padding scheme (P-Pad) is described in Fig. 6.2. The resulting sign-
cryption scheme is given in Fig. 6.3 and is shown graphically in Fig. 6.4.

We quote the security results for completion. We give some intuition as to why
these theorems hold in Sect. 6.4.4 and prove the security of a related scheme using
similar techniques in Sect. 6.5.2.

Fig. 6.2 The parallel padding (P-Pad) scheme

Fig. 6.3 The parallel padding signcryption scheme
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Fig. 6.4 Signcryption schemes from Feistel padding

Theorem 6.1 For any algorithm, let qS denote the number of signcryption queries
made by the algorithm, qU denote the number of unsigncryption queries made by
the algorithm, and qG denote the number of queries to the random oracle model-
ing the hash function G made by the algorithm. Let εtdp be the advantage of some
attacker against the trapdoor one-way permutation, let εhide be the advantage of
some attacker against the hiding property of the commitment scheme, and let εext be
the advantage of some attacker against the extractability property of the commitment
scheme.

If there exists a PPT attacker that has advantage εcca against the multi-user
insider FSO/FUO-IND-CCA2 security property of the parallel padding signcryp-
tion scheme, then

εcca ≤ εtdp +
(

qS + 2
)(

(qS + qG)2
−|c| + εhide

)+ qU (εext + 2−|d|)+ 2εext

If there exists a PPT attacker that has advantage εcma against the multi-user
insider FSO/FUO-sUF-CMA security property of the parallel padding signcryption
scheme, then

εcma ≤ qGεtdp + qS
(

(qS + qG)2
−|c| + εhide

)+ (

qU + 2
)(

εext + 2−|d|
)+ 6εext

Note that it is fairly simple to apply the two RSA transforms in the parallel
padding scheme: one simply ensures that the two shares (w, s) are less than the
corresponding moduli (NR, NS). This can be done either by setting |w| = |NR | − 1
and |s| = |NS| − 1 or by repeatedly running the commitment algorithm until the
signcryption gives rise to values (w, s) which are in the correct range.
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Fig. 6.5 The sequential padding (S-Pad) scheme

Fig. 6.6 The sequential padding signcryption scheme

6.4.3.2 Signcryption Based on the Sequential Padding Scheme

The sequential padding (S-Pad) scheme is slightly more complicated than the par-
allel padding scheme: one extra round of Feistel network is required. The padding
scheme is given in Fig. 6.5 and the signcryption scheme is given in Fig. 6.6. Again,
the scheme is shown graphically in Fig. 6.4. The padding scheme is a two-round
Feistel network using G as the round function in the first round and H as the round
function in the second round.

Again, we state the security result for completion.

Theorem 6.2 For any algorithm, let qS denote the number of signcryption queries
made by the algorithm, qU denote the number of unsigncryption queries made by
the algorithm, qG denote the number of queries to the random oracle modeling the
hash function G made by the algorithm, and qH denote the number of queries to
the random oracle modeling the hash function H made by the algorithm. Let εtdp

be the advantage of some attacker against the trapdoor one-way permutation, εhide

be the advantage of some attacker against the hiding property of the commitment
scheme, and εext be the advantage of some attacker against the extractability prop-
erty of the commitment scheme.

If there exists a PPT attacker that has advantage εcca against the multi-user
insider FSO/FUO-IND-CCA2 security property of the sequential padding signcryp-
tion scheme, then

εcca ≤ εtdp +
(

qS + qG + qH
)22−|d|

+(

qS + qU
)(

(2qG + qS)2
−|c| + εhide + εext

)+ 3qGεhide

If there exists a PPT attacker that has advantage εcma against the multi-user
insider FSO/FUO-sUF-CMA security property of the sequential padding signcryp-
tion scheme, then

εcma ≤ qGεtdp +
(

qS + qG + qH
)22−|d|

+(

qS + qU
)(

(qG + qS)2
−|c| + εhide + 4εext

)
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Note that the sequential signcryption scheme (and the extended sequential sign-
cryption scheme) is not secure in the secret key ignorant model as the attacker can
always set fS = fR and remove the trapdoor permutations from the description of
the signcryption scheme.

It is much harder to alter the sequential padding scheme so that it uses the RSA
transform in place of arbitrary one-way permutations. This is due to the fact that
the sender’s RSA transform defines a permutation over ZNS and the receiver’s RSA
transform defines a permutation over ZNR , and so the result of the first transform
may not constitute a valid input to the second transform. The problem will be dis-
cussed in more depth when we discuss the RSA-TBOS scheme in Sect. 6.5.1.

6.4.3.3 Signcryption Based on the Extended Sequential Padding Scheme

The extended sequential padding scheme is identical to the sequential padding
scheme. The difference is in how it is applied to construct a signcryption scheme.
The net effect is, at the cost of a slightly longer ciphertext, one obtains a tighter
proof of security when using extended sequential padding. The resulting X-Pad
signcryption scheme is given in Fig. 6.7 and shown graphically in Fig. 6.4.

Theorem 6.3 For any algorithm, let qS denote the number of signcryption queries
made by the algorithm, qU denote the number of unsigncryption queries made by
the algorithm, qG denote the number of queries to the random oracle modeling the
hash function G made by the algorithm, and qH denote the number of queries to
the random oracle modeling the hash function H made by the algorithm. Let εtdp

be the advantage of some attacker against the trapdoor one-way permutation, εhide

be the advantage of some attacker against the hiding property of the commitment
scheme, and εext be the advantage of some attacker against the extractability prop-
erty of the commitment scheme.

If there exists a PPT attacker that has advantage εcca against the multi-user
insider FSO/FUO-IND-CCA2 security property of the extended sequential padding
signcryption scheme, then

εcca ≤ εtdp +
(

qS + qG + qH
)22−|d|

+(

qS + qU
)(

(2qG + qS)2
−|c| + εhide + εext

)+ 3qGεhide

If there exists a PPT attacker that has advantage εcma against the multi-user
insider FSO/FUO-sUF-CMA security property of the extended sequential padding
signcryption scheme, then

Fig. 6.7 The extended sequential padding signcryption scheme
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εcma ≤ qGεtdp +
(

qS + qG + qH
)22−|d|

+(

qS + qU
)(

(qG + qS)2
−|c| + εhide + 4εext

)

The security reductions lose the same amount of tightness in both the sequential
and extended sequential padding-based schemes. However, the extended sequential
padding-based scheme is perhaps to be regarded as more secure as the derived algo-
rithm which breaks the trapdoor one-way permutation is more efficient. The details
can be found in Dodis et al. [77]. Again, the problem of using RSA transform with
this construction is discussed in Sect. 6.5.1.

6.4.4 Proof Intuition

Here we provide some intuition about how the notion of extractable commitments,
as introduced in Sect. 6.4.2, can be used when arguing formally about the security
of the resulting signcryption schemes. Our treatment is only intuitive. Formal results
may be found in [77, 78].

We take the P-Pad signcryption scheme as an illustrative example. The semantic
security proof for the P-Pad scheme by Dodis et al. [77, 78] holds under the assump-
tion that the trapdoor permutation fR is one-way. As part of the proof, we must
show that the attacker is not able to break the security of the scheme by querying
the unsigncryption oracle or the signcryption oracle. This is achieved by showing
that we can use the properties of the random oracle model and the extractable com-
mitment scheme to build a simulation of the signcryption and unsigncryption oracle
without needing to invert the function fR .

Consider a ciphertext (χ,ψ) submitted to the unsigncryption oracle. We may
easily recover s as fS(ψ). In the random oracle model, we may record the inputs
bind‖c to the random oracle G and the respective outputs. Furthermore, due to the
extractability property of the commitment scheme, for each input c we may deter-
mine if c is a valid commitment to some value and, if so, the corresponding decom-
mitment d. Hence, we may search for a pair (c, d) such that G(bind‖c) ⊕ d = s
and fR(c) = χ . If such a pair exists, then we can return the message Open(c, d).
Otherwise we return the error symbol ⊥.

Similarly, if we consider a signcryption query made on the message m, then
we can use the random oracle to create a valid ciphertext. We first compute

(c, d)
R← Commit(m) and choose a random value for s. The ciphertext is com-

puted as χ ← fR(c) and ψ ← fS(s), and the random oracle is “fixed” so that
G(bind‖c) = s ⊕ d. It can be shown that, with high probability, this “fixing” of the
random oracle is unnoticed by the adversary and so the adversary is given a valid
signcryption of the message m.

However, it can be shown that the attacker must query the G-oracle on the com-
mitment c∗ used to create the challenge ciphertext in order to break the security of
the scheme. (If the attacker does not query the G-oracle on c∗, then the attacker
cannot learn any information about the corresponding decommitment d∗ and so
cannot learn any information about the message due to the hiding property of the
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commitment scheme.) If the attacker does query the G-oracle on c∗ then the attacker
has managed to invert fR on the challenge ciphertext χ∗, which breaks the security
of the trapdoor one-way permutation.

The unforgeability of the scheme follows for similar reasons. We can simulate
signcryption and unsigncryption oracles as in the proof of confidentiality. How-
ever, in order to forge a signcryption on any message, it can be shown that this
means the attacker must forge a signcryption on a new value of s, i.e., a value of s
which the signcryption oracle has not used to produce a signcryption. Now, since
s = G(bind‖c)⊕ d and G is a random oracle, this is equivalent to inverting fS on
a random input, which breaks the security of the trapdoor one-way permutation.

6.5 Signcryption Based on RSA-TBOS

Independent of, and slightly prior to, the abstract treatment provided by Dodis et al.
[77, 78], a similar padding-based scheme was proposed by Malone-Lee and Mao
under the title of “Two Birds One Stone (TBOS)” signcryption [131]. We present
a slightly modified treatment of that algorithm which can be proven secure in the
multi-user model.

6.5.1 The TBOS Construction

The abstract TBOS scheme is given in Fig. 6.8. The scheme uses a version of
the extractable commitment scheme described in Sect. 6.4.2, the parallel padding
scheme described in Sect. 6.4.3.1, and trapdoor permutations in a manner similar
to that of the sequential signcryption scheme described in Sect. 6.4.3.2. The overall
result is that this construction is very similar to the sequential signcryption scheme,
but uses a Feistel network with one fewer round. However, this efficiency gain
comes at the cost of weakened security guarantees.

The original construction was designed and proven secure in a two-user model.
However, we have reformulated the scheme in terms of a one-key multi-user model.
A security proof for this construction is given in Sect. 6.5.2.

We now adapt this scheme to use the RSA permutation in place of an arbitrary
trapdoor permutation. The RSA permutation is defined over the ZN and, as dis-

Fig. 6.8 The TBOS signcryption scheme with an arbitrary permutation
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cussed in the introduction, we require different values of N to be defined for the
sender permutation and the receiver permutation. While we could have defined the
abstract constructions in terms of permutations over arbitrary sets, which would
allow the use of a single RSA transform, there is a problem in that the two per-
mutations used in the signcryption constructions will necessarily act over differ-
ent sets. In particular, if the sender public and private keys consist of the integers
(NS, eS) and (NS, dS), and the receiver public/private key consists of the inte-
gers (NR, eR) and (NR, dR), then it is unclear how to perform signcryption if
f −1
S (w, s) = (w‖s)dS mod NS is an integer greater than NR . Similarly, it is unclear

how to perform unsigncryption if f −1
R (w, s) = (w‖s)dR mod NR is an integer

greater than NS . We term this the domain problem of RSA signcryption.
The RSA-TBOS construction is given in Fig. 6.9. Note that this scheme does

not make use of a Setup algorithm. By Theorems 6.4 and 6.5 and Lemma 6.1,
the security of this scheme is related to the difficulty in solving the RSA problem.
Further details can be found in [131].

The RSA-TBOS signcryption scheme deals with the domain problem in two
ways. First, the signcryption algorithm fails if a random value r is chosen such
that the result value of w‖s is greater than NS . If such a situation occurs, then the
message can still be the subject of signcryption, but a different value of r should
be chosen. It is unlikely that more than two values of r will need to be chosen.
Second, if the intermediate ciphertext C ′ is greater than NR then the signcryption
algorithm computes a smaller, related value by forcing the most significant bit to

Fig. 6.9 The RSA-TBOS signcryption scheme
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be zero. The result is guaranteed to be an integer in the correct domain. It may
be thought that this would lead to security or useability weaknesses, as there now
exist two potential messages which lead to the same ciphertext: the intermediate
ciphertext C ′ may occur as a result of a message m and a random value r which
gives rise to a pair (w, s) satisfying (w‖s)eS mod NS = C ′ or as the result of a
message m′ and a random value r ′ which gives rise to a pair (w′, s′) satisfying
(w′‖s′)eS mod NS = C ′ + 2k−1 > NR . However, since (m, r) = (m′, r ′) and H is
a random oracle, the probability that H(bind,m‖r) = w and H(bind,m′‖r ′) = w′
is very small. Hence, with very high probability, only one solution will be a valid
ciphertext. This allows us to adapt the security proofs for the abstract construction
to the RSA-TBOS construction.

An unfortunate consequence of the solution to the domain problem in the RSA-
TBOS signcryption scheme is that the unsigncryption oracle may have to perform an
extra exponentiation in the unsigncryption process in order to recover the message
(or determine that the ciphertext is invalid). Malone-Lee and Mao [131] give two
methods of avoiding this problem:

• The first method is for the signcryption algorithm to fail if it produces a value
C ′ > NR . As with the case where the algorithm fails if (w‖s) > NS , the sign-
cryption algorithm could still act on the message, but a new value of r should be
chosen.

• The second method is to append a bit b to the ciphertext which is set to 1 when-
ever the intermediate value C ′ is greater than NR . In this case, the unsigncryption
algorithm would always compute C ′ ← C ′+2b(k−1) as part of its unsigncryption
process.

Although separate formal security arguments have not been presented for these
schemes, they would appear to be as secure as the original construction, as the
methods used in the proof for the simulation of the signcryption and unsigncryption
oracles can provide information as to the size of the intermediate value C ′.

Lastly, we note that the scheme can easily be altered to provide non-repudiation.
To attest to a message m, the receiver only has to provide the intermediate value C ′
computed during the unsigncryption process. It is simple to verify that this is the
correct intermediate value for the ciphertext, by checking that C = fR(C ′), and to
compute the corresponding message as in the normal unsigncryption process.

6.5.2 Security Proof for the TBOS Signcryption Scheme

Since we have reformulated the TBOS scheme in the multi-user model, we are
forced to re-prove the security of the scheme. The security of the abstract TBOS
scheme depends upon a non-standard assumption related to the hardness of inverting
a trapdoor one-way permutation.

Definition 6.3 (Partial bi-directional one-way permutations) Let k be a security
parameter and Gen define a family of trapdoor permutations over {0, 1}�(k) and
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let �′(k) ≤ �(k) for all k. The family is partial bi-directional one-way if any PPT
attacker A has negligible probability in the following experiment:

Pr

[

f2( f −1
1 (C)) = w‖s : w

R← A( f1, f2,C), C ← {0, 1}�(k),
( f2, f −1

2 )
R← Gen(1k), ( f1, f −1

1 )
R← Gen(1k)

]

for some s, where w ∈ {0, 1}�′(k).
The definition can be thought of as capturing the difficulty of finding even part of

the inverse of the function f1◦ f −1
2 . This function is a permutation which is one-way

in both directions; however, knowledge of one trapdoor allows the computation of
the function in one direction. This strongly resembles the ordering of the use of
permutations in the sequential padding signcryption schemes. Obviously, the prob-
lem of recovering the entire input f2( f −1

1 (C)) given ( f1, f2,C) is equivalent to the
problem of recovering f −1

1 (C) given ( f1,C). However, the problem of recovering
part of the input of f2( f −1

1 (C)) given ( f1, f2,C) does not appear to be equivalent to
the problem of recovering part of the input of f −1

1 (C) from ( f1,C) except perhaps
in special cases.

Theorem 6.4 Let A be a PPT attacker against the multi-user one-key outsider
FSO/FUO-IND-CCA2 security of the signcryption scheme with advantage εcca and
suppose that A makes at most qS queries to the signcryption oracle, qU queries to
the unsigncryption oracle, qG queries to the random oracle modeling the hash func-
tion G, and qH queries to the random oracle modeling the hash function H. Then
there exists a PPT attacker B against the partial bi-direction one-way permutation
with advantage εtdp such that

εcca ≤ (qG + qH + qS)εtdp + (qH + qS)(qG + qH + qS)2
−|c|

+(qH + qS)
22−|r | + qS2−|r | + qU (2

−|c| + 2−(|c|+|d|))

Proof Suppose that A = (A1,A2) is an attacker against the multi-user one-key
outsider FSO/FUO-IND-CCA2 security of the signcryption scheme. Suppose that
the attacker A is run using the challenge sender public key f ∗S and the challenge
receiver public key f ∗R . We begin by explaining how we will simulate the oracles to
which the attacker has access:

• G-oracle: If the G-oracle is queried with an input (bind,w) then the oracle
searches for an entry (bind,w, t) on GLIST. If such an entry exists, then the

oracle returns t . Otherwise, the oracle generates t
R← {0, 1}|d|, stores (bind,w, t)

on GLIST, and returns t .
• H-oracle: If the H -oracle is queried with an input (bind,m‖r) then the oracle

searches for an entry (bind,m‖r,w,C) on HLIST. If such an entry exists, then the
oracle returns w. If bind cannot be split into fS‖ fR , then the oracle is simulated

trivially in the same manner as the G-oracle. Otherwise, the oracle chooses x
R←

{0, 1}|c|+|d|, computes y ← fS(x) and C ← fR(x), and splits y as y1‖y2 where
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y1 ∈ {0, 1}|c| and y2 ∈ {0, 1}|d|. If the G-oracle is defined on (bind, y1) then
the algorithm fails. If not, the oracle stores (bind,m‖r, y1,C) on HLIST and
(bind, y1, y2 ⊕ m‖r) on GLIST and returns y1.

• Signcryption: If the signcryption oracle is queried on the sender public key
fU ∈ { f ∗S , f ∗R}, the receiver public key fR , and the message m, then the oracle

computes bind ← fU‖ fR , chooses r
R← {0, 1}|r | and x

R← {0, 1}|c|+|d|, com-
putes y ← fU (x) and C ← fR(x), and splits y as y1‖y2 where y1 ∈ {0, 1}|c|
and y2 ∈ {0, 1}|d|. If the H -oracle is defined on (bind,m‖r) or the G-oracle
is defined on (bind, y1) then the algorithm fails. Otherwise, the oracle adds
(bind,m‖r, y1,C) to HLIST, (bind, y1, y2 ⊕ m‖r) to GLIST, and returns C .

• Unsigncryption: If the unsigncryption oracle is queried on the sender public key
fS , the receiver public key fU ∈ { f ∗S , f ∗R}, and the ciphertext C , then the oracle
computes bind← fS‖ fU and searches the HLIST for an entry (bind,m‖r, x,C).
If such an entry exists, then the oracle returns m. Otherwise, it returns ⊥.

These simulations are perfect as long as one of the following four exceptions do not
occur:

• The H -oracle is forced to define a G-oracle entry on some value (bind, y1)which
is already defined. For each H -oracle query, y1 is a randomly chosen value of
{0, 1}|c|. Since |GLIST| ≤ qG +qH +qS , we have that the probability that y1 has
been part of a previous query is bounded by (qG+qH +qS)2−|c|. Thus, when we
consider all H -oracle queries, the probability that the simulation fails is bounded
by qH (qG + qH + qS)2−|c|.

• The signcryption oracle is forced to define a H -oracle query on some value
(bind,m‖r) which is already defined. However, since r is chosen at random
and |HLIST| ≤ qH + qS , we have that this occurs with probability at most
qS(qH + qS)2−|r |.

• The signcryption oracle is forced to define a G-oracle query on some value
(bind, y1) which is already defined. Again, since y1 is chosen at random and
|GLIST| ≤ qG + qH + qS , we have that this occurs with probability at most
qS(qG + qH + qS)2−|c|.

• The unsigncryption oracle returns ⊥ for some valid ciphertext. This can only
occur if the H -oracle has not been queried on the underlying values (bind,m‖r)
for which H(bind,m‖r) = w. Since H is a random oracle, the probability that
H(bind,m‖r) would be defined to be w is 2−|c|. Hence, the probability that the
simulation fails is bounded by qU 2−|c|.

We define an algorithm which uses these simulated oracles to break the partial one-
way property of the challenge user’s public key. The algorithm B runs as follows:

1. B receives the public keys ( f1, f2) and the challenge value C∗. B sets f ∗S = f2
and f ∗R = f1.

2. B runs A1 on ( f ∗S , f ∗R). If A queries an oracle, then these are answered using
the simulated oracles above, with the exception that B halts if A queries the
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unsigncryption oracle with C∗ and the sender public key f ∗S . A1 terminates with
the output of two equal-length messages (m0,m1) and some state information ω.

3. B runs A2 on the input (C∗, ω). If A2 makes an oracle query, then these are
answered using the simulated oracles above. A2 terminates with the output of a
bit b′.

4. B selects a random input on GLIST and outputs this as the solution to the problem
instance.

We now consider B’s success probability. Let asterisks denote variables that would
be associated with the computation of the challenge ciphertext C∗. Hence, we have
that C∗ is an encryption of m∗ ∈ {m0,m1} using randomness r∗ and involve the
computation of the intermediate variables bind∗, c∗, d∗,w∗, and s∗. B’s simulation
of A’s environment is perfect unless one of the following events occurs:

• A1 queries the unsigncryption oracle on ( f ∗S ,C∗). Since C∗ is chosen at random,
we have that this occurs with probability bounded by qU 2−k .

• A2 makes an unsigncryption oracle query which returns ⊥ as the correct entry
(bind∗,m∗‖r∗, y1,C) is not included on HLIST. However, in this case we must
have that C = C∗ and so the query is illegal. Therefore, the probability that this
event occurs is 0.

• A makes a G-oracle, H -oracle, or signcryption oracle query which defines the
G-oracle’s action on (bind∗,w∗). In this case, the simulation fails; however, it
allows the possibility that B can recover the solution to the challenge. We let this
event be denoted E and note that Pr[E] ≥ (qG + qH + qS)εtdp. All of the further
analysis is predicated on the event E not occurring.

• A makes an H -oracle on (bind∗,m∗‖r∗). However, if E does not occur, then
r∗ is information theoretically hidden from the attacker A. Thus, this H -oracle
query can occur only with probability bounded by qH (qH + qS)2−|r |. We let this
event be denoted by E ′.

• A makes a signcryption oracle query which defines the action of the H -oracle
on (bind∗,m∗‖r∗). Since r is chosen at random during the simulation of the
signcryption oracle, this occurs with probability bounded by qS2−|r |.

Lastly, we note that if E and E ′ do not occur, then the attacker A can have no advan-
tage in breaking the FSO/FUO-IND-CCA2 security of the signcryption scheme.
Hence,

εcca ≤ (qG + qH + qS)εtdp + (qH + qS)(qG + qH + qS)2
−|c|

+(qH + qS)
22−|r | + qS2−|r | + qU (2

−|c| + 2−(|c|+|d|))

This concludes the proof. ��
Theorem 6.5 Let A be a PPT attacker against the multi-user insider FSO/FUO-
sUF-CMA security of the signcryption scheme with advantage εcma and suppose
that A makes at most qS queries to the signcryption oracle, qU queries to the
unsigncryption oracle, qG queries to the random oracle modeling the hash function
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G, and qH queries to the random oracle modeling the hash function H. Then there
exists a PPT attacker B against the one-way permutation with advantage εtdp such
that

εcma ≤ qHεtdp + (qH + qS + 1)(qG + qH + qS)2
−|c|

+qS(qH + qS)2
−|r | + (qU + 1)2−|c|

Proof Suppose that A is an attacker against the multi-user one-key insider
FSO/FUO-sUF-CMA security of the signcryption scheme. Suppose that A is run
on the challenge sender public key f ∗S . We simulate the oracles as in the previous
theorem (with the exception that there is no pre-specified challenge receiver key f ∗R
and a slight modification to the H -oracle which is described below). We describe an
algorithm B which breaks the one-way security of f ∗S :

1. B receives the challenge function f ∗S and the challenge value y∗. B splits y∗ as
w∗‖s∗ where w∗ ∈ {0, 1}|c|.

2. B randomly chooses an index i∗ R← {1, 2, . . . , qH }. This index defines B’s
“guess” as to the H -oracle query corresponding to the forgery that A eventually
outputs.

3. B runs A on f ∗S . If A queries an oracle, then B answers using the simulators
described in the previous theorem, with the exception of the i∗-th new query to
the H -oracle:

• If the i∗-th new query to the H oracle is on input (bind∗,m∗‖r∗) where
bind∗ = f ∗S ‖ f ∗S , then B stores (bind∗,m∗‖r∗,w∗,w∗‖s∗) on HLIST and
(bind∗,w∗, s∗ ⊕ m∗‖r∗) on GLIST and returns w∗.

• If the i∗-th new query to the H oracle is on input (bind∗,m∗‖r∗) where
bind∗ = f ∗S ‖ f ∗S , then B stores (bind∗,m∗‖r∗,w∗, ?) on HLIST and
(bind∗,w∗, s∗ ⊕ m∗‖r∗) on GLIST and returns w∗.

In either case, if the G-oracle is already defined on the input (bind∗,w∗) then B
terminates. A terminates with the output of a receiver key pair ( f ∗R, f ∗R

−1) and a
ciphertext C .

4. B outputs f ∗R
−1(C).

For notational convenience, we let C∗ denote the encryption of m∗ using the ran-
domness r∗ using the public keys defined in bind∗. In other words, C∗ is the
ciphertext associated with the i∗-th query to the H -oracle. If B’s simulation was
perfect, then the entry (bind∗,m∗‖r∗,w∗,C∗) would be added to HLIST instead
of (bind∗,m∗‖r∗,w∗, ?). B correctly simulates the oracles to which A has access
unless (a) any of the four conditions identified in the previous theorem holds, (b) the
G-oracle is already defined on (bind∗,w∗), or (c) A submits the ciphertext C∗ and
the sender public key fS to the unsigncryption oracle where bind∗ = fS‖ f ∗S . We
have already shown that condition (a) occurs with probability at most

(qH + qS)(qG + qH + qS)2
−|c| + qS(qH + qS)2

−|r | + qU 2−|c|
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and, since w∗ is chosen at random, condition (b) occurs with probability at most
(qG + qH + qS)2−|c|.

In order that B should correctly invert the challenge, it must correctly inject the
challenge into the correct H -oracle query. If A outputs a ciphertext for which the
H -oracle is not defined on the underlying values (bind,m‖r), then the probability
that it is a correct forgery is bounded by 2−|c|. If A did make such a query, then this
will be the i∗-th query to the H -oracle with probability 1/qH . If this event occurs,
then B outputs the correct solution to the challenge problem.

We now claim that our simulation of the unsigncryption oracle is sufficient such
that condition (c) does not occur. If B is going to successfully invert the challenge,
then we will require that bind∗ = f ∗S ‖ f ∗R . Recall that f ∗S is defined by the challenge
instance, while f ∗R is defined by the attacker. Therefore, if B correctly guesses the
value of i∗ and condition (c) occurs, then bind∗ = f ∗S ‖ f ∗S . However, in this case,
we do add the correct value to HLIST and simulate unsigncryption correctly. We
therefore conclude that

εcma ≤ qHεtdp + (qH + qS + 1)(qG + qH + qS)2
−|c|

+qS(qH + qS)2
−|r | + (qU + 1)2−|c|

This concludes the proof. ��
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Chapter 7
Hybrid Signcryption

Tor E. Bjørstad

7.1 Background

A major limitation of many common asymmetric cryptographic primitives is that
their computational efficiency is much worse than for corresponding symmetric-
key algorithms. Hybrid cryptography is the branch of asymmetric cryptography that
aims to overcome this weakness, by using symmetric primitives as components to
improve the overall performance and flexibility of a larger asymmetric scheme.

The canonical example of the hybrid approach is hybrid encryption. In these
schemes, a symmetric encryption algorithm, such as a block cipher in a secure mode
of operation, is used to overcome the relative slowness and restricted message space
of traditional public-key encryption schemes. Informally, this is done by using the
public-key scheme to transmit a one-time symmetric key in a secure manner and
using that key to encrypt subsequent communication with the symmetric cipher.
This yields an overall scheme which is fast, efficient, and practical, even when
encrypting long messages.

Although the basic concept of hybrid encryption has been common knowledge
in the cryptographic community for many years, a formal construction paradigm
was first suggested in the late 1990s by Cramer and Shoup [68]. Their KEM +
DEM model splits a hybrid encryption scheme into two parts: an asymmetric key
encapsulation mechanism (KEM) and a symmetric data encapsulation mechanism
(DEM). The main benefit of this model is that the security of the KEM and DEM can
be analyzed separately, under the knowledge that generic composition of a secure
KEM and a secure DEM is essentially as secure as the component parts. Although
not all hybrid encryption schemes fit into this framework, it has proven itself as a
useful model for analysis in both theory and practice.

The original signcryption scheme proposed by Zheng [203] (as discussed in
Sects. 3.3 and 4.3) is a natural example of the benefits of the hybrid approach in sign-
cryption. Using a public-key signature scheme as his starting point, Zheng showed
how to reap the benefits of both signatures and encryption at a low additional cost,
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by using a symmetric key encryption scheme as a black-box component. A similar
approach is used in many of the most efficient signcryption schemes in the literature
(see Chaps. 4, 5, and 6). Hence it is of interest to study how hybrid techniques can
be used to build signcryption schemes in a more general setting, to gain a better
understanding of how these efficient schemes work.

It turns out that the formal analysis of hybrid signcryption schemes is more com-
plicated than that of hybrid encryption. This stems from the increased complexity
of obtaining message authenticity and integrity in addition to confidentiality. As
discussed at depth in Chaps. 2 and 3, it is necessary to consider not only straight-
forward attacks against the authenticity and confidentiality of messages, but also
more complex issues such as the distinction between outsider and insider attacks.
As we shall see in Sects. 7.3 and 7.4 entirely different construction paradigms are
needed to obtain appropriate models for outsider-secure and insider-secure hybrid
signcryption.

A formal composition model for hybrid signcryption was first proposed by
Dent in 2004, yielding an efficient model for signcryption KEMs in the outsider-
secure setting [71, 73]. Dent’s construction of outsider-secure signcryption KEMs
is directly analogous to the corresponding construction of regular encryption KEMs.
However, it is fundamentally impossible to produce an insider-secure signcryption
KEM in this model. A model for insider-secure signcryption KEMs was also pro-
posed by Dent in [71, 72]. This model covers Zheng’s original scheme. However,
this construction is quite complex and has a poor security reduction. This meant
that the concrete security of Zheng’s scheme appears significantly worse when
analyzed in Dent’s model, than in the non-hybrid setting of original security proof
[12, 13, 36].

An improved model for insider-secure hybrid signcryption was given by Bjørstad
and Dent [37], based on encryption tag-KEMs [5, 4] rather than regular encryption
KEMs. As it turns out, this model provides a simpler description of signcryption
schemes than its predecessor, and the generic security reduction for the signcryption
tag-KEM + DEM construction is better. Zheng’s signcryption scheme remains the
canonical example of an (insider-secure) hybrid signcryption scheme, as it may be
expressed in the signcryption tag-KEM + DEM setting with only a minor modifica-
tion. In this model, the concrete security analysis of Zheng’s scheme yields a similar
result to that of the original proof of security [12, 13, 37].

The formal security analysis of hybrid signcryption has historically been per-
formed in the simpler two-user (ADR) model presented in Chap. 2, rather than in a
full multi-user (BSZ) setting presented in Chap. 3. Meanwhile, the multi-user secu-
rity model is more suitable in the analysis of insider-secure signcryption schemes,
where it is a reasonable assumption that an adversary may corrupt or otherwise
obtain the private keys of legitimate users. A proof of security of signcryption tag-
KEMs in the multi-user model may also have further applications, for example,
in analysis of efficient key establishment protocols (discussed in Chap. 11). Initial
study of the multi-user security of signcryption tag-KEMs was first performed by
Yoshida and Fujiwara [200], although this text somewhat extends their results.

This chapter will commence by introducing the basic construction of hybrid
encryption schemes in the KEM + DEM setting in Sect. 7.2. Following this, the
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adaptation of hybrid encryption KEMs to outsider-secure signcryption KEMs will
be described in Sect. 7.3. Finally, the use of tag-KEMs to describe insider-secure
hybrid signcryption will be examined in detail in Sect. 7.4.

7.1.1 A Brief Word on Notation

This chapter contains many situations in which one algorithm (with access to one
set of oracles) runs a second algorithm (with access to a different set of oracles)
as a subroutine. In order for the main algorithm to simulate the correct execution
environment for the sub-algorithm, the main algorithm must simulate the oracles to
which the sub-algorithm is expecting access. This is rather cumbersome to write in
the typical AO(x) notation; hence, we introduce a new notation for this chapter and
write A(x;O) for an algorithm which takes as input x and has access to an oracle O.

If we are writing out the definition of an algorithm B that runs an algorithm
A(x;O) as a subroutine, we will first detail the algorithm B and then detail a second
algorithm O which explains how B responds to A’s oracle queries. In other words,
B will run the sub-algorithm A and use the sub-algorithm O to respond to A’s oracle
queries. This allows for a more compact and easily readable presentation of the main
algorithm.

7.2 Preliminaries

In order to study the construction of secure hybrid signcryption schemes, it is highly
instructive to first consider the basic KEM + DEM framework used to model hybrid
encryption schemes. As a part of this, the necessary properties of data encapsulation
mechanisms (DEMs) used as black-box components in hybrid schemes are defined.

7.2.1 The Hybrid Framework

To serve as a gentle introduction to the world of hybrid cryptography, it is instructive
to discuss briefly the traditional KEM + DEM framework for hybrid encryption
schemes [68]. This framework nicely illustrates the basic methodology employed
and will be built upon later when discussing more complex constructions used for
signcryption. We begin by defining the basic building blocks.

Definition 7.1 (KEM) A key encapsulation mechanism KEM = (Setup, KeyGen,
Encap, Decap) is a tuple of four algorithms:

• A probabilistic algorithm Setup that takes a security parameter 1k as input, and
returns some global information param that are common to all users of an instan-
tiation of the scheme.

• A probabilistic algorithm KeyGen that takes the global information param as
input and outputs a public/private keypair (sk, pk).
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• A probabilistic algorithm Encap that takes a public key pk as input and outputs
a pair (K ,C), where K is a key and C is the encapsulation of K .

• A deterministic algorithm Decap that takes a private key sk and an encapsulation
C as input and outputs either a key K or the unique error symbol ⊥.

All variables may be represented as bitstrings of various lengths. In particular, the
key K is a bitstring of a specific, fixed length determined by the security parameter.
A KEM must be sound, in the sense that given a valid keypair (sk, pk) and a valid

encapsulation (K ,C)
R← Encap(pk), the output of Decap(sk,C) will be K .

Definition 7.2 (DEM) A data encapsulation mechanism DEM = (Enc, Dec) is a
tuple of two algorithms:

• A deterministic algorithm Enc that takes a key K and a message m as input and
outputs a ciphertext C . We denote this C ← EncK (m).

• A deterministic algorithm Dec that takes a key K and a ciphertext C as input
and outputs either message m or the unique error symbol ⊥. We denote this m or
⊥← DecK (C).

The soundness criterion for a DEM is that the basic identity m = DecK
(

EncK (m)
)

holds.
Given a KEM and DEM where the KEM outputs keys of suitable length for use

with the DEM, a hybrid public-key encryption scheme (as defined in Sect. 1.3.3)
can be constructed in a straightforward manner:

1. The Setup algorithm is run once to generate common information for all users.
2. Each user then runs KeyGen to generate their own public/private keypair.
3. When a sender S wants to transmit a message m to a receiver R, he computes

(K ,C1)
R← Encap(pkR) and encrypts the message as C2 ← EncK (m). The

ciphertext C ← (C1,C2) is then transmitted to R.
4. When the recipient R receives the ciphertext C from S, she extracts (C1,C2)

from C , computes the symmetric key K ← Decap(skR,C1), and obtains the
message m ← DecK (C2).

The above construction is a sound encryption scheme assuming the soundness of
the KEM and DEM. Our main benefit of separating the encryption scheme into a
KEM and a DEM is that the security of the components can be analyzed separately.
Considering the basic building blocks instead of the entire scheme simplifies anal-
ysis and allows hybrid encryption schemes to be tailor-made, since choice of KEM
and DEM can be made independently.

In order to build signcryption schemes instead of encryption schemes, it is tempt-
ing to start by modifying the basic specification of a KEM given in Definition 7.1
and changing as little as possible. As we will observe in Sect. 7.3.1 this leads us to
Dent’s basic framework for outsider-secure signcryption KEMs [71, 73]. Before we
look at this, however, it is necessary to define what sort of security criteria we need
the DEMs to fulfill in order to use them in building hybrid signcryption schemes.
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7.2.2 Security Criteria for Data Encapsulation Mechanisms

Whereas the main goal of Sects. 7.3 and 7.4 will be to work out secure alternatives
to KEMs that can be used to build efficient signcryption schemes, the DEM of Def-
inition 7.2 shall largely be left alone. This has a perfectly reasonable explanation:
When attempting to create a new type of public-key scheme based on models for
hybrid encryption, our goal is best reached by altering the public-key component
used. However, before we can start discussing hybrid signcryption schemes, we
must first define which security properties we expect a secure DEM to fulfill.

As our requirements will differ in the case of insider-secure and outsider-secure
signcryption, several different requirements will be given. In practice, all these
requirements may be realized by a secure symmetric encryption algorithm (such
as AES-CTR), possibly together with an authentication mechanism in form of a
message authentication code (MAC) [68]. As in the case of regular (non-hybrid)
signcryption, we distinguish between security criteria required for a scheme to pro-
vide confidentiality and criteria required to provide authenticity and integrity.

The standard notion of confidentiality in cryptography is that of indistinguisha-
bility (IND). In the particular case of data encapsulation mechanisms, the two
notions that we are interested in are those of one-time IND-CPA security and one-
time IND-CCA security, described in Sect. 1.3.4. As we shall see, almost para-
doxically, we will require IND-CCA-secure DEMs for constructing outsider-secure
signcryption schemes and IND-CPA-secure DEMs for constructing insider-secure
signcryption schemes.

With respect to authenticity and integrity, we define a DEM to be integrally
secure (INT-CCA) if there is no efficient adversary that can create valid cipher-
texts C . This corresponds to the usual notion of unforgeability and gives a receiver
faith that a valid ciphertext must have been generated legitimately. In practice, this
is usually achieved by using a MAC. As we will see, INT-CCA security is only
required for the outsider-secure hybrid constructions. The INT-CCA game between
the challenger and adversary A is quite simple and runs as follows.

1. The challenger generates a random symmetric key K ∗ of appropriate length for
the security parameter.

2. The adversary runs A on the input 1k . When A terminates, it outputs a ciphertext
C∗. During its execution, A may query an encryption oracle that for a given input
message m outputs EncK ∗(m) and a decryption oracle that for a given ciphertext
C outputs DecK ∗(C).

The adversary wins the game whenever DecK (C∗) = ⊥ and C∗ was never output
by the encryption oracle. The advantage of A is simply Pr [A wins].

Definition 7.3 (Unforgeable DEM) We say that a DEM is unforgeable (INT-CCA
secure) if the advantage of any polynomial-time adversary in the INT-CCA game is
negligible with respect to the security parameter k.
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7.3 Hybrid Signcryption with Outsider Security

Signcryption schemes with outsider security are useful for communication between
a set of trusted parties, as they are both more efficient with respect to computational
cost and simpler to design and analyze than their insider-secure counterparts. The
problem of constructing a framework for outsider-secure hybrid signcryption was
first considered by Dent [71, 73] and can be solved by a fairly straightforward adap-
tation of the KEM/DEM construction for hybrid encryption discussed in Sect. 7.2.1.
Although outsider-secure signcryption has largely been overlooked in the research
literature, we believe that these schemes are useful and have practical applications.
Our treatment closely follows Dent’s original.

7.3.1 An Outsider-Secure Signcryption KEM

The main idea behind Dent’s outsider-secure signcryption KEM [71, 73] is to use
the traditional encryption KEM (described in Sect. 7.2.1) as a starting point and alter
as little as possible to obtain something that behaves like as a signcryption scheme.
This is reasonably straightforward: Instead of a single algorithm KeyGen, we should
specify two algorithms, one used to generate sending (“signing”) keys and a separate
algorithm to generate keys for receiving (“decrypting”) messages. Furthermore, the
encapsulation algorithm must now take the private key of the sender and the public
key of the receiver as input, and vice versa for the decapsulation algorithm. This
leads directly to the following specification of an outsider-secure signcryption KEM
(SKEM).

Definition 7.4 (Signcryption KEM) An (outsider-secure) signcryption KEM
SKEM = (Setup, KeyGenS, KeyGenR, Encap, Decap) is a tuple of five algorithms.

• A probabilistic algorithm Setup that takes a security parameter 1k as input and
returns some global information param that are common to all users of an instan-
tiation of the scheme.

• A probabilistic algorithm KeyGenS that takes the global information param as
input and outputs a public/private keypair (skS, pkS) used for sending messages.

• A probabilistic algorithm KeyGenR that takes the global information param
as input and outputs a public/private keypair (skR, pkR) used for receiving
messages.

• A probabilistic algorithm Encap that takes the sender’s private key skS and the
receiver’s public key pkR as input, and outputs a pair (K ,C), where K is a key
and C is the encapsulation of K .

• A deterministic algorithm Decap that takes the sender’s public key pkS , the
receiver’s private key skR , and a key encapsulation C as input, and outputs either
a symmetric key K or the unique error symbol ⊥.

By combining the signcryption KEM with a standard DEM, we obtain a hybrid
signcryption scheme in the obvious manner.
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Fig. 7.1 Data flow in the outsider-secure signcryption KEM + DEM construction

Definition 7.5 (SKEM+DEM hybrid signcryption scheme) Suppose that
(Setup, KeyGenS, KeyGenR, Encap, Decap) is a signcryption KEM and
(Enc, Dec) is a DEM and that the keys produced by the signcryption KEM are
of appropriate length for use with the DEM for all security parameters k. Then
we can construct a hybrid signcryption scheme by using the Setup, KeyGenS , and
KeyGenR algorithms from the SKEM and defining the algorithms Signcrypt and
Unsigncrypt as follows:

• The Signcrypt algorithm takes as input the private key of the sender skS ,

the public key of the receiver pkR , and a message m. It computes (K ,C1)
R←

Encap(skS, pkR) and C2 ← EncK (m) and outputs the signcryptext C ←
(C1,C2).

• The Unsigncrypt algorithm takes as input the public key of the sender pkS ,
the private key of the receiver skR , and a signcryptext C . It parses C to obtain
(C1,C2) and computes Decap(pkS, skR,C1). If Decap returned⊥, then the algo-
rithm must output ⊥ and halt. Otherwise, it computes DecK (C2). The output of
Dec is either ⊥ or a message m, in either case the algorithm outputs the result
and halts.

The data flow between the Signcrypt and Unsigncrypt algorithms is illustrated
in Fig. 7.1.

7.3.2 Security Criteria for Outsider-Secure Signcryption KEMs

The main advantage of the KEM + DEM construction paradigm is that we may
analyze the security of the KEM and DEM separately, with no significant loss of
concrete security. It is therefore necessary to give a precise specification of what it
means for a signcryption KEM to be secure. To attain outsider security we require
that the SKEM preserves the confidentiality of encapsulated keys, which is the same
as the confidentiality requirement for encryption KEMs [68]. Additionally, a sign-
cryption KEM must preserve the authenticity and integrity of the encapsulated key,
to ensure that some third party may not alter the encapsulated key in any meaningful
fashion. These security notions are expressed in the usual manner, by way of formal
attack games.
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With respect to confidentiality, we adapt the indistinguishability criterion to the
signcryption KEM setting. More precisely, we want that any polynomial-time adver-
sary A is unable to distinguish between a real key K0 output by the Encap algorithm
from a key K1 drawn uniformly at random from the set of possible keys. For a given
security parameter k, this may be expressed through the following game between
the challenger and a two-stage adversary A = (A1,A2):

1. The challenger runs the appropriate algorithms to generate some global infor-
mation param and private/public keys for the sender and the receiver, denoted
(skS, pkS) and (skR, pkR), respectively.

2. The adversary runs A1 on the input (param, pkS, pkR). During its execution, A1
may query two oracles:

• The encapsulation oracle OEncap takes an arbitrary public receiving key pk
as input and returns the result of computing Encap(skS, pk).

• The decapsulation oracle ODecap takes an arbitrary public sending key
pk and an encapsulation C as input and returns the result of computing
Decap(pk, skR,C).

The algorithm terminates by outputting some state information state.

3. The challenger generates a valid encapsulation (K0,C∗) R← Encap(pkS, skR),
as well as a random key K1 of the correct length. It then chooses a random bit

b
R← {0, 1} and fixes the challenge encapsulation as (Kb,C∗).

4. The adversary runs A2 on the input (Kb,C∗, state). During its execution, A2
may query the same oracles as before, with the restriction that it may not query
the decapsulation oracle on the challenge encapsulation (pkS,C∗). It terminates
by returning a guess b′ for the value of b.

The adversary wins the game if b = b′. The adversary’s advantage is defined to be
|Pr [b = b′] − 1/2|.
Definition 7.6 (Indistinguishable signcryption KEM) A signcryption KEM is
said to be indistinguishable (IND-CCA2 secure) if the advantage of any polynomial-
time adversary A in the IND-CCA2 game is negligible with respect to the security
parameter k.

With respect to authenticity and integrity, Dent defines the security criterion in
terms of indistinguishability of the real signcryption KEM and an ideal version of
the same [71, 73]. This definition may seem somewhat unusual, as it is more com-
mon to see authenticity criteria specified in terms of an unforgeability requirement.
However, an adversary creating forgeries of a signcryption KEM may in fact be used
to distinguish said SKEM from an ideal one [71, 73]. As we will see, the definition
using the notion of an ideal signcryption KEM turns out to be precisely what is
needed to prove that our hybrid signcryption in Definition 7.5 is outsider secure. It
also makes a nice parallel to the previous definition of IND-CCA2 security. For
confidentiality, we needed the keys output by the encapsulation algorithm to be
indistinguishable from random keys, the requirement for authenticity and integrity is
that the entire signcryption KEM is indistinguishable from a random (i.e., ideal) one.
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Given a signcryption KEM SKEM = (Setup, KeyGenS, KeyGenR, Encap,
Decap) we define the corresponding ideal signcryption KEM to be the
five-tuple of algorithms Sim.SKEM = (Sim.Setup, KeyGenS, KeyGenR,

Sim.Encap, Sim.Decap), together with an internal state list KeyList containing
key/encapsulation pairs. The simulated algorithms are defined as follows:

• The simulated setup algorithm Sim.Setup takes the security parameter 1k as
input and runs Setup to obtain the global information param. It then initializes
KeyList as an empty list and returns param.

• The simulated encapsulation algorithm Sim.Encap takes the keys skS and pkR
as input. It then performs the following steps:

1. Compute an encapsulation (K ,C) using the real encapsulation algorithm
Encap(skS,pkR).

2. Check whether there exists a pair (K ′,C) in KeyList. If this is the case, the
algorithm returns K ′ and halts.

3. Otherwise, the algorithm generates a new K ′ of appropriate length uniformly
at random, adds (K ′,C) to KeyList, returns K ′, and halts.

• The simulated decapsulation algorithm Sim.Decap takes the keys pkS and skR

together with an encapsulation C as input. It then performs the following steps:

1. Check whether there exists a pair (K ,C) in KeyList. If this is the case, the
algorithm returns K and halts.

2. Otherwise, the algorithm runs the real decapsulation algorithm Decap
(pkS,skR,C). If the decapsulation fails and outputs ⊥, the algorithm returns
⊥ and halts.

3. If Decap did not return ⊥, the algorithm generates a new K of appropriate
length uniformly at random, adds (K ,C) to KeyList, returns K , and halts.

It is clear from the above specification that the simulated signcryption KEM is self-
consistent. Furthermore, it is “ideal” in the sense that we desire: an encapsulation
C reveals no information about the encapsulated key K (since the key is chosen
uniformly at random and independently of C). We say that the signcryption KEM
is left-or-right secure (LoR-CCA) if there is no efficient algorithm to distinguish
between the real and the idealized signcryption KEMs. For a given security param-
eter k, the LoR-CCA game proceeds as follows:

1. The challenger picks a bit b
R← {0, 1} at random.

2. The challenger generates global information param, either by running Setup if
b was 0 or by running Sim.Setup if b was 1. The challenger then generates
private/public keys for the sender and the receiver in the ordinary manner using
KeyGenS and KeyGenR .

3. The adversary runs A on the input (pkS, pkR). During its execution, A may
query decapsulation and encapsulation oracles as specified in the previous IND-
CCA2 game. However, the responses to A’s queries are computed using the real
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Encap and Decap algorithms if b = 0 and the ideal algorithms Sim.Encap and
Sim.Decap if b = 1. A terminates by outputting a guess b′ for the value of b.

The adversary wins the game if b = b′. The adversary’s advantage is defined as
|Pr[b = b′] − 1/2|.
Definition 7.7 (LoR-CCA-secure signcryption KEM) A signcryption KEM is
said to be left-or-right (LoR-CCA) secure if the advantage of any polynomial-
time adversary A in the LoR-CCA game is negligible with respect to the security
parameter k.

Definition 7.8 (Outsider-secure signcryption KEM) A signcryption KEM is said
to be outsider secure if it is both indistinguishable and left-or-right secure.

7.3.3 Security of the SKEM + DEM Construction

Having specified the security models in use for a signcryption KEM and DEM,
it remains to show that the hybrid signcryption scheme of Definition 7.5 is an
outsider-secure signcryption scheme satisfying the relevant security criteria defined
in Chap. 3. The proof of this is quite straightforward and is quite similar to the origi-
nal proof that hybrid encryption schemes are IND-CCA2 secure given in [68]. Since
both security models for the signcryption KEMs are based on indistinguishability
of certain attributes of the KEM from random in the view of the outside attacker,
we state a well-known lemma used in the proofs. This can be thought of as a more
general version of Lemma 1.1.

Lemma 7.1 (Distinguisher lemma) Let G0 and G1 be two games. Suppose that an

experimenter picks b
R← {0, 1} uniformly at random and proceeds to play Gb with

a distinguisher algorithm that outputs a guess b′ of the value of b. Then

2
∣
∣Pr [b = b′] − 1/2

∣
∣ = ∣

∣Pr [b′ = 0|b = 0] − Pr [b′ = 0|b = 1]∣∣. (7.1)

The result follows from simple manipulation of conditional probabilities, see, for
example, [71]. We proceed to prove that Dent’s outsider-secure signcryption KEM
can be used to build an outsider-secure hybrid signcryption scheme.

Theorem 7.1 (Security of SKEM + DEM hybrid signcryption) Let SC be a hybrid
signcryption scheme constructed from a signcryption KEM (Definition 7.4) and a
DEM (Definition 7.2). If the signcryption KEM is IND-CCA2 secure and the sign-
cryption DEM is one-time IND-CCA secure, then the hybrid signcryption scheme is
multi-user outsider FSO/FUO-IND-CCA2 secure (Definition 3.1) with the bound

εSC,IND-CCA2 ≤ 2 εSKEM,IND-CCA2 + εDEM,IND-CCA (7.2)

where the ε values denote the maximal success probability of adversaries in the
specified attack games. Furthermore, if the signcryption KEM is LoR-CCA secure
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and the signcryption DEM is INT-CCA secure, then the hybrid signcryption scheme
is multi-user outsider FSO/FUO-sUF-CMA secure (Definition 3.2) with the bound

εSC,sUF-CMA ≤ 2 εSKEM,LoR-CCA + εDEM,INT-CCA (7.3)

Proof The proofs of the two statements are remarkably similar. In both cases,
we proceed by modifying the original (FSO/FUO-IND-CCA2 or FSO/FUO-sUF-
CMA) attack game for SC in a way that relates to the corresponding (IND-CCA2 or
LoR-CCA) security criterion for the signcryption KEM. Lemma 7.1 is used to do
this. Finally, we show that the adversary must break the (IND-CCA or INT-CCA)
security of the DEM to gain any advantage in the modified game. We consider first
the case of indistinguishability.

Let A = (A1,A2) be an adversary against the FSO/FUO-IND-CCA2 security
of SC, G0 be the regular FSO/FUO-IND-CCA2 game for outsider-secure sign-
cryption as given by Definition 3.1, and X0 the event that the adversary wins in
G0. Next we define a modified game G1. The difference between G0 and G1 is
that the challenge ciphertext is computed using a random symmetric key K1. In
other words, the challenge ciphertext C∗ = (C∗1 ,C∗2 ) is constructed by computing

(K0,C∗1 )
R← Encap(skS, pkR), drawing another key K1 uniformly at random from

the keyspace, and then using it to compute C∗2 ← EncK1(m). In order to remain
consistent, the challenger should also use K1 to answer any unsigncryption oracle
query of the form

(

pkS, (C
∗
1 , ·)

)

. Hence, the difference between G0 and G1 lies
solely in how the signcryption KEM operates. The two games correspond to the
situations b = 0 and 1 in the IND-CCA2 game against the signcryption KEM.

Let X1 be the event that A wins G1. We argue that probability |Pr[X0]−Pr[X1]|
is bounded by 2εSKEM,IND-CCA2, where εSKEM,IND-CCA2 is the advantage of a spe-
cific adversary D against the IND-CCA2 security of the signcryption KEM used
to construct SC. The idea is that the distinguisher D plays either G0 or G1 with a
regular adversary A against the full signcryption scheme, depending on the value of
the hidden bit b which D is trying to determine. By Lemma 7.1, any non-negligible
difference in the advantage of A can be leveraged by D to break the signcryption
KEM, and the stated bound is obtained for the game transition.

Next, consider the probability that X1 does in fact occur. We argue that this is
the same as εDEM,IND-CCA. This follows from the way that G1 is defined. The first
part of the challenge C∗1 reveals no direct information about which message was
signcrypted, since the symmetric key K1 was chosen independently and uniformly
at random. Thus, to gain a non-negligible advantage in G2, the adversary must
somehow learn something from the symmetric ciphertext C∗2 . The adversary is able
to mount a chosen ciphertext attack, since decryption oracle queries of the form
(

pkS, (C
∗
1 , ·)

)

must be decrypted using K1 to maintain consistency. More formally,
we show by construction that an adversary A playing the game G1 can be con-
verted into an IND-CCA adversary B against the DEM with essentially the same
advantage. A specification of such an adversary is shown in Fig. 7.3.



132 T.E. Bjørstad

To summarize, we have shown that the difference |Pr[X0] − Pr[X1]| is bounded
by 2εSKEM,IND-CCA2 while Pr [X1] itself is essentially equal to εDEM,IND-CCA, thus
obtaining the stated bound.

For authenticity and integrity, the proof is highly similar in both approach and
execution and will therefore not be specified in the same level of detail. Again we
consider an adversary A, this time attacking the FSO/FUO-sUF-CMA security of
SC. Again, we let G0 to be the regular FSO/FUO-sUF-CMA attack game given by
Definition 3.2 and X0 to be the event that A wins G0. Our subsequent game G1 is
similar to G0, but modified so that an ideal signcryption KEM is used instead of the
regular one. It is straightforward to construct a new distinguisher similar to the one
given in Fig. 7.2, which relates the difference between G0 and G1 to the advantage
of a LoR-CCA adversary against the signcryption KEM. Furthermore, the advantage

Fig. 7.2 A complete specification of the distinguisher algorithm D for the SKEM

Fig. 7.3 A complete specification of the distinguisher algorithm B for the DEM
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of A in G1 can be shown to be bounded by that of an INT-CCA adversary against
the DEM, by a construction similar to that of Fig. 7.3. This concludes the proof. ��

Although we have established that the combination of a signcryption KEM and
DEM can be used to build outsider-secure hybrid signcryption schemes, more com-
plex constructions are needed for insider security. This stems from the observa-
tion that there is no connection between the encapsulations generated by Encap
and the actual message that is being signcrypted. In fact, the receiver can create
a valid signcryptext for an arbitrary message m given a single valid signcryption
C = (C1,C2), by computing K ← Decap(pkS, skR,C1) and computing a new
value C ′2 ← EncK (m). Hence the scheme is trivially forgeable by an inside attacker
and has no way of providing non-repudiation. From this, we observe that in order
to build insider-secure hybrid signcryption the signcryption KEM must somehow
prevent the adversary from tampering with m or C2.

7.3.4 Outsider-Secure Hybrid Signcryption in Practice

Outsider-secure signcryption has not been the target of much research since the
distinction was first recognized by An et al. [10]. This is unfortunate, as it is possible
to construct outsider-secure schemes that are simpler and more efficient than their
insider-secure counterparts. These schemes would clearly be suitable for any real-
world settings where insider attacks are not part of the threat model. The only known
outsider-secure signcryption KEM was proposed by Dent in [71, 73]. It is extremely
simple, has a low additional computational cost, and is based on the well-known
ECIES encryption KEM [2, 101]. The ECISS1-KEM is specified in Fig. 7.4. In
the two-user setting, this scheme has been proven to be secure (in the random oracle
model), with respect to the computational Diffie–Hellman problem in the underlying
group2 [71, 73]. A tighter bound can be obtained by considering the security relative
to the Gap Diffie–Hellman problem instead.

Fig. 7.4 A complete specification of the ECISS-KEM

1 ECISS stands for elliptic-curve integrated signcryption scheme.
2 Note that the alternate scheme suggested without a security proof in [71] is insecure [92].
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The ECISS scheme is a good example of how outsider-secure signcryption can
be obtained at low additional cost compared to regular encryption and underlines the
close relationship between outsider-secure signcryption KEMs and secure encryp-
tion KEMs. Comparing ECISS-KEM and ECIES-KEM, the only significant differ-
ence lies in how the input to the key derivation function H is computed. In the
encryption-only scheme, the shared value is computed from the (receiver’s) public
key and the random value r as pkr = gsk·r . For signcryption, the Diffie–Hellman
value pkskS

R = pkskR
S = gskS ·skR is multiplied with gr instead.

The original proof that ECISS-KEM is secure in the two-user model from [71]
may readily be extended to the multi-user setting. However, to keep the reduction
tight it is necessary to make the proof relative to the Gap Diffie–Hellman problem.
One minor change to the original scheme is also required, namely that the public
keys of the sender and receiver are included as input to the hash function. This has
little practical significance, but enables us to keep sessions between different pairs
of users distinct in the proof. As the proofs for IND-CCA2 and LoR-CCA security
are almost identical, only the former will be shown here.

Theorem 7.2 (Multi-user security of ECISS) The ECISS signcryption KEM is IND-
CCA2 secure in the random oracle model, with respect to the Gap Diffie–Hellman
problem. In particular, let A be an adversary that breaks the IND-CCA2 security
of ECISS-KEM with advantage εK E M , while making at most qE encapsulation and
qD decapsulation oracle queries. Then there exists an algorithm B solving the GDH
problem whose advantage is given by

εKEM ≤ εGDH + qE + qD

q
. (7.4)

Proof Let B be an algorithm which tries to solve the Gap Diffie–Hellman problem
(as defined in Sect. 4.1) in G. The algorithm receives as input two random group
elements ga and gb and will try to compute gab by using an adversary A against
the ECISS signcryption KEM as a subroutine. During its execution, B may query a
DDH oracle on triplets (gx , gy, gz) which tests whether gxy = gz .

Our approach will be to use the challenge values ga and gb in place of the public
keys pkS and pkR . This means that skS and skR will not be known to B and thus
we have to be careful when simulating the encapsulation and decapsulation ora-
cles. Partial consistency is maintained through our simulation of the key derivation
function H as a random oracle and using the DDH oracle to verify that the correct
relation between the public keys, C and κ , are maintained. The goal of B is to obtain
values C and κ such that C · gab = κ , in which case gab can be recovered.

We will use two lists to keep track of oracle queries by A. As opposed to [71],
it will also be necessary to keep track of the public keys used in the oracle queries.
Let EncapList be a list of tuples (pkS, pkR,C, K ) and HashList be a list of tuples
(pk, pk′, κ, K ). It is necessary to specify how B should respond to queries from A
to the encapsulation, decapsulation, and random oracles, so that these responses are
self-consistent and follow the correct distributions:
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• For an encapsulation oracle query pk, B should first pick a random group ele-
ment C . If there is an entry (pkS, pk,C, K ) in EncapList, then output the pair
(C, K ). Otherwise, if there is an entry (pkS, pk, κ, K ) in HashList such that
(pkS, pk, κ/C) is a DDH triple, output the pair (C, K ). If neither is the case,
then generate a random key K , store (pkS, pk,C, K ) in EncapList, and output
the pair (C, K ).

• On a decapsulation oracle query (pk,C), B must first check EncapList for any
previous entries (pk, pkR,C, K ). If such an entry is found, K must be output
to maintain consistency. Otherwise, HashList is checked for conforming entries
(pk, pkR, κ, K ) such that (pkS, pk, κ/C) is a DDH triple, in which case K is
returned. If no match is found in either list, then generate a random key K , store
(pk, pkR,C, K ) in EncapList, and return K .

• Finally, on random oracle queries (κ, pk, pk′), one should first check HashList
whether the same query has been made before, in which case the same K should
be returned. If this is not the case, B checks whether EncapList contains any
entries (pk, pk′,C, K ) such that (pk, pk′, κ/C) is a DDH triple, in which case K
is returned. If no match is found in the list, a random key K is generated and
HashList is updated accordingly.

Note that it is simple for B to deal with the flexible oracle queries, since the
information about which public keys are in use is embedded in every query. By using
the public keys and the supplied DDH oracle, B is also able to maintain consistency
between queries to the three oracles. A new entry is only added to EncapList during
an oracle query if the corresponding triplet of keys and encapsulation have not been
used in a previous query to any of the oracles. Similarly, a new entry is added to
HashList only if the result has not been fixed (directly or indirectly) previously.
Since all new encapsulations and keys are generated by sampling uniformly at ran-
dom, the variables will also follow the correct distributions.

We now consider what happens when B plays the IND-CCA2 game for ECISS-
KEM with A. As previously stated, B uses the GDH challenge values gx andgy

as the public keys pkS and pkR , generates param from the description of the
group, and runs A1 on (param, pkS, pkR), while simulating the oracles as speci-
fied. Eventually A1 terminates, outputting some state. To generate a challenge, B
first picks a group element C∗ and a key K0 uniformly at random and adds the
value (pkS, pkR,C∗, K0) to EncapList. After choosing another random key K1 and
a random bit b, B runs A2 on the parameters (state,C∗, Kb). During the execution
of A2, the oracles may be queried as before, with the restriction that the decapsu-
lation query (pkS,C∗) is forbidden. Eventually A2 will output some bit b′, which
is ignored by B. Instead, B checks whether there are entries in (pkS, pkR,C, K ) in
EncapList and (pkS, pkR, κ, K ) in HashList such that (pkS, pkR, κ/C) is a DDH
triple. In this case, κ/C is returned as the solution to the GDH problem; otherwise,
a random group element is picked.

Analyzing the advantage of B, we notice that the encapsulation and decapsulation
algorithms are simulated perfectly at all times, except during the generation of the
challenge C∗. With respect to C∗ there are two things that may go wrong; either a
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previous oracle query made by A1 has already fixed a relation between pkS , pkR , C∗,
and some K or a future encapsulation oracle query by A2 on pkR may accidentally
reveal the key associated with C∗. Under the assumption that A is only allowed
to make a polynomial number of oracle queries, the probability that either of this
happens is negligible and bounded above by qE+qD

q .
However, because K0 and K1 are sampled uniformly at random and indepen-

dently of C∗, the only other way that A can learn anything about the value of b is to
submit a query (κ∗, pkS, pkR) to the random oracle, where κ∗/C∗ = gskS ·skR = gxy .
But in this case B immediately obtains the solution to the Gap Diffie–Hellman prob-
lem instance.3 Hence the advantage of B in the GDH game will be no worse than
that of A. This completes the proof. ��

7.4 Hybrid Signcryption with Insider Security

The problem of constructing a framework for insider-secure hybrid signcryption is
significantly more complex than the outsider-secure setting, precisely due to the
need to protect against insider-specific attacks. We briefly discuss why it appears
necessary to use public-key signatures as a starting point, rather than encryption
KEMs. Furthermore, we point out the shortcomings of Dent’s proposed insider-
secure signcryption KEM model [71, 72]. The main focus of the chapter is to present
the concept of signcryption tag-KEMs [37] and how they avoid the main problems
of Dent’s model. Examples of schemes that fit the signcryption tag-KEM framework
include a modified version of Zheng’s signcryption scheme (as described in Sect. 3.3
and 4.3).

7.4.1 From Outsider to Insider Security

While outsider security is sufficient for communication between a trusted set of
users, insider security is necessary for more general communication networks,
where multiple users who may or may not trust each other wish to communicate in
a secure fashion. It is also a necessary (though not sufficient) condition for creating
signcryption schemes with non-repudiation functionality [130]—see Sect. 2.2.2. As
we saw in Sect. 7.3.3, the model for hybrid signcryption proposed in Sect. 7.3 can
never provide insider security, because there is no link between the key encapsula-
tion and the message that is being signcrypted. The logical consequence of this is
that any model for an insider-secure signcryption KEM must provide some form

3 The way the oracles are simulated, B may also learn the target value from other queries involving
pkS and pkR , but something other than the challenge.
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of integrity service for the message that is being signcrypted, to verify that the
relationship between message, key, and encapsulation has not been altered by the
adversary. In effect, the encapsulation should provide a signature on all the relevant
data for the specific message to be signcrypted, including the public keys of sender
and receiver, the encapsulated symmetric key, and the message itself.

Recalling the semantics of a public-key signature scheme and pursuing this idea,
it appears reasonable that the encapsulation algorithm should be changed to take
the message m as input, as well as the public keys skS and pkR . However, to ver-
ify the signature on m, it must first be decrypted. Hence it becomes necessary to
specify two algorithms that are used to unsigncrypt a signcryptext: a decapsulation
algorithm to recover the symmetric key K and a verification algorithm to verify that
the “signature” part of the encapsulation is valid. On the positive side, it appears
reasonable that the security requirement for the DEM can be relaxed to IND-CPA,
since the insider-secure signcryption KEM must enforce the integrity of the message
anyhow.

Following this intuitive approach yields the original insider-secure signcryption
KEMs proposed by Dent [71, 73]. Unfortunately, it is not a particularly pleasant
model to work with. One possible reason for this is the fact that it instantiates an
example of the “encrypt-and-sign” paradigm, as discussed in Chap. 2 [10]. This
means that special considerations have to be taken to avoid information about the
signed message leaking through the key encapsulation. Specifically, the security
criteria required of the signcryption KEM to provide confidentiality turn out to be
quite awkward in Dent’s model. To create an indistinguishable signcryption KEM
one must consider two separate attack scenarios: one in which the adversary tries
to distinguish a real key output by the encapsulation algorithm from a random key
(similar to the IND-CCA2 requirement for outsider-secure signcryption KEMs in
Sect. 7.3.2) and another in which the adversary tries to distinguish between encap-
sulations of two different messages. In the case of integrity, the standard criterion of
strong existential unforgeability (of valid encapsulations) may be applied.

Another flaw of the intuitive approach followed above lies in the proof of the
composition theorem for outsider-secure KEM + DEM. In Dent’s original proof,
the confidentiality of hybrid signcryption relies on the authenticity/integrity of the
KEM as well as its confidentiality [71, 72]. This is not very intuitive and leads to
poor concrete security: as shown by Bjørstad, the security bound for confidentiality
of Zheng’s signcryption scheme in the original scheme-specific proof [12, 13] is
much tighter than the corresponding proof of security using the functionally equiv-
alent signcryption KEM + DEM formulation [36]. Although Bjørstad suggests an
alternate proof of confidentiality avoiding the need for unforgeability, this reimposes
the requirement that the DEM must be IND-CCA and is therefore little better in
practice. In short, the intuitive definition of an insider-secure signcryption KEM
sketched in this section leads to a scheme that does not really simplify the analy-
sis and typically achieves worse security results than a direct proof specific to the
scheme under consideration. It follows that a different model is needed to make the
concept of insider-secure hybrid signcryption useful.
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7.4.2 Signcryption Tag-KEMs

A way to resolve the problems encountered in the previous section appeared in
early 2005, when Abe et al. proposed an alternate construction paradigm for hybrid
encryption, called tag-KEMs [4, 5]. The main idea of tag-KEMs is that the encap-
sulation algorithm is constructed in two steps: one in which the symmetric key is
generated and another where the key is encapsulated in some manner together with
an arbitrary string called a tag. As we shall see, the security requirement for tag-
KEMs also forces the key encapsulation to preserve the integrity of the tag. The
authors proceed to present a hybrid construction in which the symmetric cipher-
text from the DEM is used as the tag and show that this yields an elegant hybrid
encryption scheme where the DEM only needs to be secure against passive attackers
(IND-CPA).

It is tempting to adapt the tag-KEM construction paradigm to the insider-secure
signcryption setting, precisely because our immediate goal is to design signcryption
KEMs that provide integrity services and only require an IND-CPA-secure DEM
to make the composition secure. In the hybrid signcryption setting this also acts
as an example of the “encrypt-then-sign” paradigm, since the “signature” part of
the encapsulation is made on the ciphertext tag instead of on the message itself. It is
not unreasonable to expect that such a construction will be more well-behaved under
formal analysis, since there is no longer any possibility that the signature component
can leak any information about the plaintext to an attacker.4 Using Abe et al. [4, 5]
as inspiration, Bjørstad and Dent [37] give the following formal specification of the
tag-KEM construction for signcryption.

Definition 7.9 (Signcryption tag-KEM) A signcryption tag-KEM SCTK =
(Setup, KeyGenS, KeyGenR, Sym, Encap, Decap) is defined as a tuple of six algo-
rithms:

• A probabilistic common parameter generation algorithm, Setup. It takes as input
a security parameter 1k and returns all the global information param needed by
users of the scheme, such as choice of groups or hash functions.

• A probabilistic sender key generation algorithm KeyGenS . It takes as input the
global information param and outputs a public/private keypair (skS, pkS) that is
used to send signcrypted messages.

• A probabilistic receiver key generation algorithm KeyGenR . It takes as input the
global information param and outputs a public/private keypair (skR, pkR) that is
used to receive signcrypted messages.

4 The alternate “sign-then-encrypt” construction might be even more appealing, because it keeps
the formal signature where it logically and semantically belongs: on the plaintext. However, it does
not appear to be practical to build a model for hybrid signcryption schemes instantiating this con-
cept, due to the need to divide the signcryption KEM into separate “signature” and “encapsulation”
parts, and the complex information flows resulting from this.
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• A probabilistic symmetric key generation algorithm Sym. It takes as input the
private key of the sender skS and the public key of the receiver pkR and outputs a
symmetric key K together with internal state information ω.

• A probabilistic key encapsulation algorithm Encap. It takes as input some state
information ω and an arbitrary tag τ , and returns an encapsulation C .5

• A deterministic decapsulation and verification algorithm Decap. It takes as input
the sender’s public key pkS , the receiver’s private key skR , an encapsulation C ,
and a tag τ . The algorithm returns either a symmetric key K or the unique error
symbol ⊥.

By combining the above signcryption tag-KEM with a DEM, we obtain a hybrid
signcryption scheme as follows.

Definition 7.10 (SCTK+DEM hybrid signcryption scheme) Suppose that (Setup,
KeyGenS, KeyGenR, Sym, Encap, Decap) is a signcryption tag-KEM and
(Enc, Dec) a DEM and that the keys produced by the signcryption tag-KEM are of
appropriate length for use with the DEM for all security parameters k. Then we can
construct a hybrid signcryption scheme by using the Setup, KeyGenS , and KeyGenR
from the SCTK and defining the algorithms Signcrypt and Unsigncrypt as
follows.

• The Signcrypt algorithm takes as input the private key of the sender skS , the
public key of the receiver pkR , and a message m. It performs the following steps:

1. Compute Sym(skS, pkR) to obtain a symmetric key K and state infor-
mation ω.

2. Compute EncK (m) to produce a ciphertext C2.
3. Compute Encap(ω,C2), using C2 as the tag τ to produce the ciphertext C1.
4. Output the signcryptext C ← (C1,C2) and halt.

• The Unsigncrypt algorithm takes as input the public key of the sender pkS ,
the private key of the receiver skR , and a ciphertext C . It performs the following
steps:

1. Parse C to obtain its component parts C1 and C2.
2. Compute K ← Decap(pkS, skR,C1,C2), using C1 as the encapsulation and

C2 as the tag.
3. If Decap returned ⊥, output ⊥, and halt. Otherwise, compute m ←

DecK (C2).
4. Output m and halt.

5 In principle, this algorithm can always be represented as a deterministic algorithm, which takes
as input the appropriate amount of random bits embedded in ω as a string. In practice this is often
the case, as random nonces may be chosen as part of Encap and used to create a random K , and
then passed along to Sym as part of ω. However, from a theoretical point of view, if Encap is only
expected polynomial time, the deterministic version will have an (arbitrarily small) probability of
failing.
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Fig. 7.5 Data flow in the insider-secure signcryption tag-KEM + DEM construction

The data flow between the Signcrypt and Unsigncrypt algorithms is illus-
trated in Fig. 7.5. Notice in particular how the symmetric ciphertext C2 is used as
the “tag” input to both Encap and Decap.

As it turns out, it is quite possible to express Zheng’s signcryption scheme as a
signcryption tag-KEM + DEM construction. However, it requires the trivial alter-
ation of having the “signature” part of the scheme act on the symmetric ciphertext
instead of the message itself. The resulting scheme is essentially the scheme of
Gamage et al.—see Sect. 4.3.3. This is not expected to have any effect on the overall
security of the scheme, an assumption that is verified independently by Bjørstad and
Dent [37]. A concrete specification of the “Zheng signcryption tag-KEM” is given in
Fig. 7.6. Since Zheng’s scheme is known to be secure (in the random oracle model)
[12, 13] this yields confidence that the signcryption tag-KEM construction is viable
and useful, provided that a good generic security reduction can be made. As we shall
see in Sects. 7.4.3 and 7.4.4 this is indeed the case.

7.4.3 Security Criteria for Signcryption Tag-KEMs

For the signcryption tag-KEM construction to be viable, we need clear and well-
defined notions of what it means for a signcryption tag-KEM to be secure. Further-
more, these notions must be useful by themselves, so that it is possible to prove
that suggested signcryption tag-KEMs fulfill them and admit an efficient security
reduction for the generic hybrid signcryption scheme obtained by combining an
SCTK with a DEM. As we observed in Sect. 7.4.1, this is not always achievable.
However, in the signcryption tag-KEM setting we find intuitive and simple notions
of security for both confidentiality and authenticity/integrity. We will define these
security notions analogously with the main definitions given in Chap. 3, specifically
the multi-user outsider model for confidentiality and the multi-user insider model
for unforgeability. (Extensions to the other models given in Chap. 3 can be simply
made using the techniques in this section.)
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Fig. 7.6 A complete specification of the Zheng signcryption tag-KEM (Zheng-SCTK). This
scheme should be compared with the Gamage et al. specification in Sect. 4.3.3

A signcryption tag-KEM maintains confidentiality when it is impossible for an
adversary to distinguish whether a given key K is embedded in an encapsulation C
or not. This is the only requirement needed. However, as the adversary is allowed
to specify the tag and may access flexible oracles, this is sufficient to ensure that
the encapsulation is not malleable with respect to the tag. Since the symmetric key
generation and encapsulation algorithms do not receive the unencrypted plaintext
as input, the additional requirement of input indistinguishability is not necessary.
For a given security parameter k, the IND-CCA2 game between challenger and a
three-stage adversary A = (A1,A2,A3) runs as follows:

1. The challenger generates a set of global information param
R← Setup(1k)

and the key pairs (skS, pkS)
R← KeyGenS(param) and (skR, pkR)

R←
KeyGenR(param) for the sender and the receiver.

2. The adversary runs A1 on the input (param, pkS, pkR). During its execution, A1
is given access to flexible symmetric key generation, encapsulation, and decap-
sulation oracles:

• The symmetric key generation oracle OSym takes a public key pk as input and

runs (K , ω)
R← Sym(skS, pk). It then stores the value of ω, hidden from the
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view of the adversary, and overwriting any previous value. The oracle outputs
the key K .

• The key encapsulation oracle OEncap takes a tag τ as input and checks
whether there is a stored ω. If there is not, it outputs ⊥. Otherwise it erases
the value of ω from storage, computes Encap(ω, τ), and outputs the result.

• The decapsulation/verification oracle ODecap takes a public sending
key pk, an encapsulation C , and a tag τ as input. It then computes
Decap(pk, skR,C, τ ) and outputs the result.

A1 terminates by outputting some state information state1.

3. The challenger computes (K0, ω
∗) R← Sym(skS, pkR), generates a random sym-

metric key K1
R← K, where K is the output keyspace of the tag-KEM, and a

random bit b
R← {0, 1}.

4. The adversary runs A2 on the input (state1, Kb). During its execution, A2 may
query the oracles as before. A2 terminates by outputting an arbitrary tag τ ∗ as
well as any necessary state information state2.

5. The challenger computes the challenge encapsulation C∗ R← Encap (ω∗, τ ∗).
6. The adversary runs A3 on the input (C∗, state2). During its execution, A2 may

query the same oracles as before, with the restriction that (pkS,C∗, τ ∗) is not a
valid query to the decapsulation oracle. A3 terminates by outputting a guess b′
for the value of b.

The adversary wins the game if it is successful at guessing the hidden bit, i.e.,
b = b′. The advantage of A is defined as |Pr [b = b′] − 1/2|.
Definition 7.11 (Indistinguishable signcryption tag-KEM) A signcryption tag-
KEM is said to be (multi-user outsider) indistinguishable (IND-CCA2) secure if the
advantage of any polynomial-time adversary A in the IND-CCA2 game is negligible
with respect to the security parameter k.

It is important to note the behind-the-scenes interaction between the symmetric
key generation and encapsulation oracles in the IND-CCA2 game. This is done in
order to let the adversary perform completely adaptive encapsulations without hav-
ing access to the state information stored in ω (which may include nonces, private
keys, random coins, and other information strictly internal to the execution of the
signcryption tag-KEM).

With respect to the authenticity and integrity of signcryption tag-KEMs, we adapt
the usual notion of strong existential unforgeability. The precise requirement is that
an adversary should not be able to find encapsulation/tag pairs (C, τ ) under some
sender’s key pk such that ⊥ = Decap(pk, skR,C, τ ). We let the adversary choose
the receiving entity to which the adversary wishes to forge messages. The attack
game corresponding to the sUF-CMA security of a signcryption tag-KEM runs as
follows, for a given security parameter k:

1. The challenger generates a set of global information param
R← Setup(1k) and a

sender keypair (skS, pkS)
R← KeyGenS(param).
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2. The adversary A is run on the input (param, pkS). During its execution, A has
access to oracles for symmetric key generation and encapsulation corresponding
to the sender’s private key skS , as defined previously. A terminates by outputting
a fixed receiver keypair (skR, pkR), an encapsulation C , and a tag τ .

The adversary wins the game if ⊥ = Decap(pkS, skR,C, τ ), provided that the
encapsulation oracle never returned C when queried with the tag τ and the ω loaded
from storage was not the result of a symmetric key oracle query on pkR . The advan-
tage of A is simply the probability Pr[Awins].
Definition 7.12 (Unforgeable signcryption tag-KEM) A signcryption tag-KEM is
said to be (multi-user insider) strongly unforgeable (sUF-CMA secure) if the advan-
tage of any polynomial-time adversary A in the sUF-CMA game is negligible with
respect to the security parameter k.

Definition 7.13 (Secure signcryption tag-KEM) A signcryption tag-KEM is said
to be secure if it is indistinguishable and unforgeable.

7.4.4 Security of the SCTK+DEM Construction

It remains to show that the combination of a secure signcryption tag-KEM and a
secure DEM indeed yields a secure signcryption scheme. Although the original
paper on signcryption tag-KEMs only investigated this in the two-user (ADR) model
[37], later work has extended this to the multi-user (BSZ) model as well [200].

Theorem 7.3 (Security of SCTK + DEM construction) Let SC be a hybrid sign-
cryption scheme constructed from a signcryption tag-KEM and a DEM. If the sign-
cryption tag-KEM is IND-CCA2 secure (Definition 7.9) and the DEM is IND-CPA
secure, then SC is multi-user outsider FSO/FUO-IND-CCA2 secure (Definition 3.1)
with the bound

εSC,IND-CCA2 ≤ 2 εSCTK,IND-CCA2 + εDEM,IND-CPA (7.5)

Furthermore, if the signcryption tag-KEM is sUF-CMA secure (Definition 7.12),
then SC is multi-user insider FSO/FUO-sUF-CMA secure (Definition 3.2) with the
bound

εSC,sUF-CMA ≤ εSCTK,sUF-CMA (7.6)

Proof We begin by proving the indistinguishability of the construction. The proof
uses standard techniques and has a similar approach as the corresponding proof of
security for encryption tag-KEMs [4, 5] and the proof of Theorem 7.1.

Let G0 be the regular FSO/FUO-IND-CCA2 game for multi-user-secure sign-
cryption, as described in Chap. 3. We modify G0 so that the hybrid signcryption
procedure uses a key drawn uniformly at random when computing the challenge
signcryptext, instead of the actual key output by Sym. The resulting game is referred
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Fig. 7.7 A complete specification of the distinguisher algorithm D for the SCTK

to as G1. Let X0 and X1 be the events that some adversary A guesses the correct
key in G0 and G1, respectively. We bound |Pr[X1] − Pr[X0]| ≤ 2 εSCTK,IND-CCA2
by constructing a distinguisher algorithm D = (D1,D2,D3) that uses A to win
the IND-CCA2 game against the underlying signcryption tag-KEM and applying
Lemma 7.1. As can be seen from the specification in Fig. 7.7, D simulates the envi-
ronment of A perfectly, playing either G0 or G1 depending on the hidden bit (which
D is trying to find). This is precisely what is needed to apply Lemma 7.1.

A notable difference from the proof of Theorem 7.1 is that the random
key introduced in G1 is not needed to unsigncrypt oracle queries on the form
(

pkR, (C
∗
1 ,C2)

)

. This is because of the way decapsulation works, where both the
encapsulation and the tag must have an effect on the key.

Finally, the advantage of A in G1 is easily seen to be the same as that of an
adversary B = (B1,B2) performing a passive attack on the DEM. Such an adversary
is specified in Fig. 7.8. We note that B wins the IND-CPA game by distinguishing
whether the challenge ciphertext (which from the view of B has been encrypted with
an unknown random key K ) if and only if A can distinguish the correct signcryptext
which it is being wrapped into by B. A major difference from the proof of Theo-
rem 7.1 is that the adversary is no longer able to make chosen ciphertext queries
under the symmetric key used for the challenge, which is why we get away with
passive (IND-CPA) security. This completes the proof of confidentiality.

Demonstrating the unforgeability of SC relative to the corresponding signcryp-
tion tag-KEM is simpler yet. Any valid forgery of SC requires that the adversary
comes up with an encapsulation C1 that acts as a signature on the ciphertext C2.
In the language of the signcryption tag-KEM, the adversary must in some way
have constructed an encapsulation that acts as a signature on the ciphertext tag.
This is precisely what it means to break the sUF-CMA security of a signcryption
tag-KEM. Figure 7.9 gives the formal specification of an adversary B′ that is able
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Fig. 7.8 A complete specification of the distinguisher algorithm B for the DEM

Fig. 7.9 A complete specification of the forgery algorithm B′ for the SCTK

to forge encapsulations for the signcryption tag-KEM, given a forger for the hybrid
signcryption scheme SC.

To verify that B′ indeed constitutes an efficient forgery algorithm, we note that
it outputs a valid encapsulation (i.e., something that decapsulates to some message
m = ⊥) whenever A has outputted a valid forgery of SC. It is also a simple observa-
tion that B′ simulates the runtime environment of A perfectly, since it does not make
any independent actions and simply passes along oracle queries to the signcryption
tag-KEM oracles.

The only remaining requirement is that the value C1 had not been the end result of
any pair of oracle queries OSym(pkR) and OEncap(C2). The corresponding require-
ment of A is that the oracle simulated by OSC did not respond with C on a query of
(pkR,m). Since decapsulation is deterministic, we note that C was only returned by
OSC if m was part of the query. Furthermore, OSC will only respond with C if C1
and C2 were the output and input to OEncap. Finally, the public key pkR is passed
directly through OSC , so the only time it will be part of a query to OSym is if it was
part of the signcryption oracle query from A. We conclude that the two algorithms
A and B′ have identical advantages in their respective games. This completes the
proof. ��

The proof of Theorem 7.3 also holds in alternate security models, from the two-
user (ADR) models specified in Chap. 2 [37] and up to the full multi-user security
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models used here. It may also readily be extended to a general multi-user insider
setting, where the adversary is allowed to pick the sending keys used in the indis-
tinguishability game. As long as the same notion of security is applied to both the
hybrid signcryption scheme and the underlying signcryption tag-KEM, the general
reductions remain valid with the appropriate modifications.

7.4.5 Insider-Secure Hybrid Signcryption in Practice

As we have established, an insider-secure signcryption KEM needs to combine the
key encapsulation functionality of a regular KEM with the authenticity-preserving
and integrity-preserving features of a digital signature scheme. From prior experi-
ence with other hybrid schemes, an obvious approach would be to take a hybrid
encryption scheme as a starting point and extend it to fulfill our additional require-
ments. However, this is harder than it seems. In fact, apart from trivial compositions
combining KEMs and signature schemes, there are no known insider-secure hybrid
signcryption schemes based on encryption KEMs.

The opposite approach is to start with a secure signature scheme and tweak it in
such a way that it also acts as a KEM. One way to do this is to alter the computation
of some internal value in such a way that it depends on the keys of both sender
and receiver and using it to derive a symmetric key. This method has been more
successful, with Zheng’s original scheme [203] being the canonical example. But
there is no general method known to generate efficient hybrid signcryption schemes
from arbitrary signature schemes. However, most known insider-secure hybrid sign-
cryption schemes apply exactly the same trick as Zheng’s scheme (see Chaps. 4, 5,
and 6).

The idea used by Zheng and the others applies to signature schemes that work in
a very specific manner: to sign, one must pick a random nonce n, use it to compute a
random group element gn , which is hashed together with the message to be signed,
whereupon some computations on the result based on the signer’s private key are
performed. To verify, the public key of the signer is used to reconstruct gn from
the signature data and verify that the output of the hash is correct. A signcryption
scheme can therefore be created by modifying the first step to compute the ran-
domizer as pkn

S , requiring skS to reconstruct it from the gn computed during normal
verification. Although it has not been proven, it is conjectured that this construction
works in general; all that is currently known is that it is secure (in the random oracle
model) in several specific cases.

However, other efficient methods of constructing efficient insider-secure hybrid
signcryption schemes from scratch are not known, and existing schemes that fit into
the signcryption tag-KEM model are all based on variants of the Diffie–Hellman
problem (see Chaps. 4 and 5). The scheme proposed by Malone-Lee (see Sect. 4.6.2)
is of particular interest as it is an example of a hybrid signcryption scheme with
non-repudiation, while the schemes proposed by Bjørstad and Dent (see Sect. 4.7)
and by Libert and Quisquater (see Sect. 5.5) are of interest as they have particularly
tight security reductions.
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A rather different instantiation of signcryption tag-KEMs can be made by extend-
ing ordinary (non-hybrid) signcryption schemes that support transmission of asso-
ciated plaintext data together with the signcryption [167]. In these schemes, the
signcryption algorithm “binds” the associated data to the signcryptext, providing
integrity protection for both. As we have seen previously in this chapter, this is
exactly what we want. Intuitively, one may think of the plaintext label as the tag and
use the regular signcryption scheme to signcrypt a symmetric key.

This construction is useful for precisely the same reasons that makes hybrid
signcryption so appealing in the first place: it removes the restriction of non-hybrid
schemes to small message spaces, which make them inefficient and slow for long
messages. A hybrid construction using schemes with associated data was first sug-
gested by Dodis et al. in [77], building on the theory of concealment schemes (dis-
cussed further in Chap. 8). Bjørstad and Dent [37] prove that signcryption tag-KEMs
built in this manner yield the same scheme.

Formally, the syntax of a signcryption scheme with associated data differs from
usual only in the ways the associated data are handled:

• The Signcrypt algorithm takes as additional input the associated data d, so that

the syntax becomes C
R← Signcrypt(skS, pkR,m, d).

• The Unsigncrypt algorithm also requires d as part of its input, hence m ←
Unsigncrypt(pkS, skR,C, d).

• Signcryption and unsigncryption oracles are modified accordingly, so that the
adversary may choose the value of d (or leave it empty) when making oracle
queries.

The security criteria are also altered in the obvious manner, to ensure that the
integrity of the associated data is maintained. With these alterations in mind, the
construction of a signcryption tag-KEM is straightforward:

• The Sym algorithm takes sender and receiver keys skS and pkR as input. It picks a
symmetric key K uniformly at random, sets ω← (skS, pkR, K ), and returns the
pair (ω, K ).

• The Encap algorithm takes state information ω and a tag τ as input. It parses

(skS, pkR, K )← ω, computes C
R← Signcrypt(skS, pkR, K , τ ), and returns C .

• The Decap algorithm takes keys pkS and skR , the signcryptext C , and tag τ as
input. It uses the computes K ← Unsigncrypt(pkS, skR,C, τ ) and returns K .

It is quite straightforward to show that this construction is secure, and a proof will
not be given here. The main intuition is that the signcryption tag-KEM acts as a
wrapper for the underlying signcryption scheme in such a way that an adversary
has very little opportunity to do anything “interesting.” In the random oracle model,
signcryption schemes using the common “hash-and-sign” approach can often be
used in this manner by using the plaintext label as an additional input to the hash
function.



Chapter 8
Concealment and Its Applications
to Authenticated Encryption

Yevgeniy Dodis

8.1 Introduction

In this chapter we will study a recent cryptographic primitive called concealment,
which was introduced by Dodis and An [75, 76] because of its natural applications to
authenticated encryption. A concealment is a publicly known randomized transfor-
mation, which, on input m, outputs a hider h and a binder b. Together, h and b allow
one to recover m, but separately (1) the hider h reveals “no information” about m,
while (2) the binder b can be “meaningfully opened” by at most one hider h. While
setting b← m, h ← ∅ is a trivial concealment, the challenge is to make |b| � |m|,
which we call a “non-trivial” concealment. We will examine necessary and sufficient
assumptions for building various flavors of concealment and give simple, general,
and efficient constructions of concealments.

We also discuss two main applications of concealments to the area of authen-
ticated encryption. First, following [6, 75, 76], we show that concealment is the
right cryptographic primitives to enable one to extend the domain of authenti-
cated encryption. Specifically, let AE be an authenticated encryption scheme (either
public-or symmetric-key)1 designed to work on short messages. Using conceal-
ments, we can transform AE into a new authenticated encryption scheme AE ′ on
longer messages as follows. To encrypt a longer message m, one uses a concealment
scheme to get h and b and then outputs the authenticated ciphertext AE ′(m) =
〈AE(b), h〉.

Second, the above paradigm leads to a very simple and general solution to the
problem of remotely keyed (authenticated) encryption (RKAE) [39, 40], so far pri-
marily studied in the symmetric-key setting. In this problem, one wishes to split
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1 We note that authenticated encryption in the public-key setting is typically called signcryption
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encryption throughout.
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the task of high bandwidth authenticated encryption between a secure, but low
bandwidth/computationally limited, device and an insecure, but computationally
powerful, host. Following [75, 76], we show that the composition paradigm above
gives a provably secure solution for RKAE: for an authenticated encryption of m,
the host simply sends a short value b to the device (which stores the actual secret
key for AE), gets back AE(b), and outputs 〈AE(b), h〉.

8.1.1 Domain Extension of Authenticated Encryption

We start by examining the natural question of securely extending the domain
of authenticated encryption. Specifically, assume we have a secure authenticated
encryption scheme AE (either symmetric- or public-key; see Footnote 1) which
works on “short” messages. How then do we build a secure authenticated encryp-
tion scheme AE ′ for “long” messages out of AE? (Throughout, we should interpret
“short” as having very small length, like 256 bits; “long” stands for fixed, but consid-
erably larger length, possibly on the order of gigabytes.) In the context of authen-
ticated encryption, this question was formally studied by Dodis and An [75, 76]
(whose work we closely follow here). However, domain extension clearly has rich
history in the context of many other cryptographic primitives. We briefly review
some of this work, since it will suggest the first solutions to our problem as well.

First, in the context of regular chosen plaintext secure (CPA secure) encryption,
we can simply split the message into blocks and encrypt it “block-by-block.” Of
course, this solution multiplicatively increases the size of the ciphertext, so a lot
of work has been developed into designing more efficient solutions. In the public-
key setting, the classical “hybrid” encryption solution reduces the problem into that
in the symmetric-key setting. Namely, one encrypts, using the public key, a short
randomly chosen symmetric key τ and uses τ to symmetrically encrypt the actual
message m. As for the symmetric-key setting, one typically uses one of many secure
modes of operations on block ciphers (such as CBC mode; see [139]), which typi-
cally (and necessarily) add only one extra block of redundancy when encrypting a
long message m. For authentication, a different flavor of techniques is usually used.
Specifically, a common method is to utilize a collision-resistant hash function [69]
H which maps a long input m into a short output such that it is hard to find a
“collision” H(m0) = H(m1) for m0 = m1. Then one applies the given authentica-
tion mechanism for short strings to H(m) to authenticate the much longer m. This
works, for example, for digital signatures (this is called “hash-then-sign”), message
authentication codes (MACs), and pseudorandom functions (for the latter two, other
methods are possible; see [8, 24, 25, 38] and the references therein).

8.1.1.1 First Solution Attempt

One way to use this prior work is to examine generic constructions of authenticated
encryption using some of the above primitives and apply the above “compression”
techniques to each basic primitive used. For example, in the symmetric-key set-
ting we can take the “Encrypt-then-MAC” solution [26] for authenticated encryp-



8 Concealment and Its Applications to Authenticated Encryption 151

tion, using the CBC mode for encryption and the CBC-MAC [25] for message
authentication, and build a specific authenticated encryption on long messages using
only a fixed-length block cipher. Even better, in this setting we could utilize some
special purpose, recently designed modes of operation for authenticated encryption,
such as IACBC [112] or OCB [168]. Similar techniques could be applied in the
public-key setting using the “hybrid” technique for encryption, “hash-then-sign” for
signatures, and any of the three generic signature/encryption compositions presented
in Chaps. 2 and 3.

In other words, prior work already gives us some tools to build “long” authenti-
cated encryption from other “short” primitives.

8.1.1.2 Why Examine This Problem Then?

The first reason is in its theoretical value. It is a very interesting structural question
to design an elegant amplification from “short” to “long” authenticated encryption,
without building the “long” primitive from scratch. For example, in the public-key
setting especially, it is curious to see if there is a common generalization of such dif-
ferent looking methods as “hybrid” encryption and “hash-then-sign” authentication.
Indeed, we shall see that this generalization yields a very elegant new primitive, cer-
tainly worth studying on its own. The second reason is that it gives one more option
to designing “long-message” authenticated encryption. And having such an option
may bring other advantages (e.g., efficiency, ease of implementation) depending on
its application and implementation. Consider, for example, the public-key setting,
where authenticated encryption is usually called signcryption [203, 204] (see Foot-
note 1). With any of the generic signature-encryption compositions described in
Chap. 2, signcryption of a long messages will eventually reduce to a regular signa-
ture plus an encryption of some short message. With our paradigm, it will reduce to
a single signcryption on a short message, which can potentially be faster than doing
a separate signature and encryption. Indeed, this potential efficiency gain was the
main motivation of Zheng [203, 204] to introduce signcryption in the first place!

Finally, our technique has important applications on its own. In particular, we
show that it naturally leads to a very general, yet simple solution to the problem
of remotely keyed authenticated encryption (RKAE) [39, 40, 125], discussed in
Sect. 8.1.2. None of the other techniques we mentioned seem to yield a solution
to this problem.

8.1.1.3 Main Construction and a New Primitive: Concealment

Following [75, 76], we seek to amplify a given “short” authenticated encryption
scheme AE into a “long” authenticated encryption scheme AE ′ as follows. First, we

somehow split the long message m into two parts (h, b)
R← T (m) using some trans-

form T , where |b| � |m|, and then define AE ′(m) = 〈AE(b), h〉. We investigate the
question of which transformations T suffice in order to make AE ′ a “secure” authen-
ticated encryption? The work of Dodis and An [75, 76] and Alt [6] completely char-
acterizes these transformations T , which are called concealments. Specifically, they
show that AE ′ is secure if and only if T is an “appropriate” concealment scheme,
where “appropriate” depends on the exact setting we consider, as discussed later.
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Intuitively, a concealment T has to be invertible and also satisfy the follow-
ing properties: (1) the hider h reveals no information about m; (2) the binder b
“commits” one to m in a sense that it is hard to find a valid (h′, b) where h′ = h.
Property (2) has three formalizations leading to the notions of regular, relaxed, and
super-relaxed concealment schemes. Super-relaxed concealments will turn out to be
necessary and sufficient [6, 75, 76] for the symmetric-key setting and the so-called
outside-secure public-key setting (see Chaps. 2 and 3). Relaxed concealments will
be necessary and sufficient [6, 75, 76] for the stronger and more desirable insider-
secure public-key setting (see Chaps. 2 and 3). Finally, regular concealments will be
necessary and sufficient [75, 76] for the problem of RKAE (in either the symmetric-
or the public-key settings). We also remark that concealments look very similar to
commitment schemes at first glance, but there are few crucial differences, making
these notions quite distinct. This comparison will be discussed in Sect. 8.2.

Finally, we are left with the question of constructing concealment schemes.
First, we show that non-trivial (i.e., |b| < |m|) concealment schemes require the
existence of one-way functions. Additionally, ensuring the regular binding prop-
erty requires the existence of collision-resistant hash functions (CRHFs). From a
positive perspective, we give a very efficient general construction of (all kinds of)
concealments matching the necessary requirements stated above. Our construction
uses any one-time-secure symmetric-key encryption (which can be built efficiently
from pseudorandom generators or standard block ciphers) to ensure message hiding
and a certain family of hash functions: almost universal hash functions (AUHFs)
[185] for super-relaxed binding, universal one-way hash function (UOWHFs) [147]
for relaxed binding, and collision-resistant hash functions (CRHFs) [69] for regu-
lar binding. When instantiated with standard components, our constructions have a
binder b whose length is only proportional to the security parameter and is inde-
pendent of the message length, while the length of the hider h is roughly equal
to the length of the message. In fact, one special case of our construction looks
very similar to the famous Optimal Asymmetric Encryption Padding (OAEP) [30],
although without relying on random oracles!

To summarize, concealments are very natural cryptographic gadgets and can be
efficiently built from standard assumptions. In particular, they give an efficient way
to implement a “long” authenticated encryption scheme from a “short” one. Finally,
we describe a powerful application of concealments and our amplification technique
to the problem of RKAE, which deserves a separate introduction.

8.1.2 Remotely Keyed Authenticated Encryption

The problem of “remotely keyed encryption” (RKE) was first introduced by
Blaze [39] in the symmetric-key setting. Intuitively, RKE is concerned with the
problem of “high bandwidth encryption with low bandwidth smartcards.” Essen-
tially, one would like to store the secret key in a secure, but computationally
bounded and low bandwidth, card, while a powerful host performs most of the
operations for encryption/decryption using occasional access to the card. Of course,
the communication between the host and the card should be minimal as well. The
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original work of Blaze lacked formal modeling of the problem, but inspired a lot of
subsequent research. The first formal modeling of RKE was done by Lucks [125],
who chose to interpret the question as that of implementing a remotely key pseu-
dorandom permutation (or block cipher), which we will call an RK-PRP. Lucks’
paper was further improved—both in terms of formal modeling and constructions—
by an influential work of Blaze et al. [40]. For one thing, they observed that the
PRP’s length-preserving property implies that it cannot be semantically secure when
viewed as encryption. Thus, in addition to RK-PRP, which they called a “length-
preserving RKE,” they introduced the notion of a “length-increasing RKE,” which
is essentially meant to be the notion of remotely keyed authenticated encryption,
so we will call it RKAE. In other words, the informal notion of “RKE” was really
formalized into two very distinct notions of RK-PRP and RKAE, none of which
is really a plain encryption scheme. Blaze et al. [40] gave formal definitions and
constructions of RKAE and RK-PRP, and Lucks [126] subsequently improved the
RK-PRP constructions of [40].

While the RKAE definition of Blaze et al. [40] was an important first step
towards properly formalizing this new notion (as opposed to the notion of RK-
PRPs), their definition is convoluted and quite non-standard (it involves an “arbiter”
who can fool any adversary). It looks nothing like the formal, universally accepted
notion of regular (not remotely keyed) authenticated encryption [26, 33, 114]. Of
course, there is a very objective reason for this, as the formal definition for authenti-
cated encryption appeared after the work of [40]. Additionally, Blaze et al. perhaps
tried to make their definition of “length-increasing RKE” look as close as possible
to their definition of “length-preserving RKE” (i.e., RK-PRP). Still, we believe that
the definition of RKAE should be based on the definition of regular authenticated
encryption, rather than trying to mimic the definition of a somewhat related, but
different concept. Thus, we will follow the work of Dodis and An [75, 76] who gave
a simpler and more natural definition, which looks much closer to the definition
of regular authenticated encryption. Additionally, Dodis and An [75, 76] naturally
extend the whole concept of RKAE to the public-key setting, since it is equally
applicable in this case too.2 Notice, in the public-key setting the notion of RK-PRP
makes no sense, which additionally justifies our choice to base our definition on that
of regular authenticated encryption.

Another closely related work is that of Jakobsson et al. [107], who also effec-
tively studied the problem of RKAE (despite calling it RKE even though authen-
tication is considered as part of the requirement). We note that the definition of
[107] looks much closer to the one of [75, 76]. However, there are still significant
differences that make the latter notion stronger.3 For example, Jakobsson et al. [107]
do not support chosen ciphertext attack in its full generality (i.e., no card access is
given to the adversary after the challenge is received) and also require the adversary

2 In this chapter, though, we will concentrate on the more popular symmetric-key setting, only
briefly mentioning the simple extension to the public-key setting.
3 Except that both [107] and [40] insist on achieving some kind of pseudorandomness of the output.
Even though our constructions achieve it as well, we feel this requirement is not crucial for any
application of RKAE and was mainly put to make the definition look similar to RK-PRPs.
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to “know” the messages corresponding to forged ciphertexts. We also mention that
their main scheme uses an “OAEP”-like transform and their security analysis crit-
ically uses random oracles. As we show, using another (in fact, simpler) variant
of OAEP for RKAE, we can eliminate random oracles from the analysis. Thus, a
special case of our construction gives an equally simple and efficient scheme, which
is provably secure in the standard model.

Finally, we mention the work of Joux et al. [110]. From our perspective, it showed
that naive “remotely keyed” implementation of many natural block cipher modes of
operations for (authenticated) encryption, such as CBC or IACBC, is completely
insecure from the perspective of RKE/RKAE. In such naive implementations, the
card stores the key to the block cipher, while the host does everything by itself
except when it needs to evaluate the block cipher (or its inverse), in which case it
calls the card. We notice that this means that to perform a single (authenticated)
encryption/decryption, the host needs to adaptively access the card for a number
of times proportional to the length of the (long) message. Perhaps not surprisingly,
this gives too much power to the “blockwise-adaptive” adversary, allowing him to
easily break the security of such naive RKE/RKAE implementations. In contrast,
in our RKAE solutions the host accesses the card once and on a very short input,
irrespective of the length of the message it actually processes. In fact, in one of the
solutions of [75, 76] (see “extensions” paragraph below), the card only performs a
single block cipher call per invocation!

Therefore, the work of Joux et al. [110] supports our prior claim that direct “long”
authenticated encryption schemes, such as IACBC [112], do not appear to be natu-
rally suited for RKAE, as they seem to be easily breakable by a simple “blockwise-
adaptive” adversary.

8.1.2.1 RKAE Constructions

In addition to giving a simple and natural definition of RKAE, Dodis and An
[75, 76] showed that our construction of “long-message” authenticated encryption
from “short-message” authenticated encryption provides a very natural, general,
and provably secure solution to the problem of RKAE. Recall, we had AE ′(m) =
〈AE(b), h〉, where (h, b) was output by some transformation T , and |b| � |m|.
This immediately suggests the following protocol for RKAE. The host computes
(h, b) and sends short b to the card, which stores the secret key. The card computes

short c
R← AE(b) and sends it to the host, which outputs 〈c, h〉. Authenticated

decryption is similar. Again, one can ask the question which transformations T will
suffice to make this simple scheme secure. Not surprisingly, Dodis and An [75, 76]
showed that concealment schemes were necessary and sufficient, even though in
this case one needs the regular binding property of concealments and must utilize
CRHFs. Overall, the above result gives a general and intuitively simple solution to
the problem of RKAE. Also, it generalizes the previous “different looking” solutions
of [40, 107], both of which can be shown to use some particular concealment and/or
“short” authenticated encryption.
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8.1.2.2 Extensions

All the techniques mentioned above naturally support authenticated encryption with
associated data [167]. Intuitively, associated data allows one to “bind” a public label
to the message, which does not need to be encrypted, but needs to be authenticated.
Viewing the label as part of the message is a possible solution, but not the most effi-
cient one, as was convincingly shown by [167]. As shown by Dodis and An [75, 76],
these efficiency gains carry over to the questions studied in this chapter. However,
we omit the details here and instead refer to [75, 76].

Also, we remark again that all our results apply to both the public- and the
symmetric-key authenticated encryption. The only exception is the following exten-
sion from [75, 76] that makes sense only in the symmetric-key setting. They asked
the question if one can replace the given “short” authenticated encryption AE by
a (strong) pseudorandom permutation (i.e., a block cipher, since AE is applied
on short inputs). This would enhance the practical usability of our composition
even more. As shown by [75, 76], although arbitrary concealments are generally
not enough to ensure the security of the enhanced scheme AE ′, some mild extra
restrictions—enjoyed by the natural concealment constructions—make them suffi-
cient for this purpose as well!4 Again, we refer to [75, 76] for more details.

8.2 Definition of Concealment

Intuitively, a concealment scheme efficiently transforms a message m into a pair
(h, b) such that (1) (h, b) together reveal m; (2) the hider h reveals no information
about m; and (3) the binder b “commits” one to m in a sense that it is hard to find a
valid (h′, b) where h′ = h. A formal description is given below.

8.2.1 Syntax

A concealment scheme consists of three efficient algorithms: (Setup, Conceal,
Open). The setup algorithm Setup(1k), where k is the security parameter, outputs a
public concealment key ck (possibly empty, but often consisting of public parame-
ters). Given a message m from the corresponding message space M, the randomized
concealment algorithm Concealck(m) outputs a concealment pair (h, b), where h
is the hider of m and b is the binder to m. For brevity, we will usually omit ck,

writing (h, b)
R← Conceal(m). Sometimes we will write h(m) (resp. b(m)) to

denote the hider (resp. binder) part of a randomly generated (h, b). The deterministic
open algorithm Openck(h, b) outputs m if (h, b) is a “valid” pair for m (i.e., could
have been generated by Conceal(m)) or ⊥ otherwise. Again, we will usually write

4 Unfortunately, the shortest length of the binder b which we can currently achieve is roughly 300
bits. This means that most popular block ciphers, such as AES, cannot be used in this setting.
However, any block cipher with a 512-bit block seems to be more than sufficient.
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x ← Open(h, b), where x ∈ M ∪ {⊥}. The correctness property of concealment
schemes says that Openck(Concealck(m)) = m for any m and ck.

8.2.2 Security of Concealment

Just like commitment schemes, concealment schemes have two security properties
called hiding and binding. However, unlike commitment schemes, these properties
apply to different parts of concealment, which makes a significant difference.

• Hiding. Even with knowledge of ck, it is computationally hard for the adversary
A to come up with two messages m1,m2 ∈ M such that A can distinguish
h(m1) from h(m2). That is, h(m) reveals no information about m. Formally, for
any probabilistic polynomial-time (PPT) adversary A, which runs in two stages
A1 and A2, we require that the probability below is at most 1

2 + negl(k) (where
negl(k) denotes some negligible function of the security parameter k):

Pr
[

σ = σ̃ : ck
R← Setup(1k), (m0,m1, α)

R← A1(ck), σ
R← {0, 1},

(h, b)
R← Concealck(mσ ), σ̃

R← A2(h, α)

]

where α is some state information. Sometime, we will write h(m0) ≈ h(m1) to
indicate that h(m0) is computationally indistinguishable from h(m1).

• Binding. Even with knowledge of ck, it is computationally hard for the adver-
sary A to come up with b, h, h′, where h = h′ such that (b, h) and (b, h′) are
both valid concealment pairs (i.e., Openck(h, b) = ⊥ and Openck(h

′, b) = ⊥).
Formally, for any PPT A, the following probability is at most negl(k):

Pr
[ h = h′ ∧

m,m′ = ⊥ : ck
R← Setup(1k), (b, h, h′) R← A(ck),

m ← Openck(h, b), m′ ← Openck(h
′, b)

]

That is, A cannot find a binder b which it can open with two different hiders.5

We immediately remark that setting b ← m and h ← ∅ satisfies the definition
above. Indeed, the challenge is to construct concealment schemes with |b| � |m|
(we call such schemes non-trivial). Since we must have |b| + |h| ≥ |m|, achieving
a very good concealment scheme implies that |h| ≈ |m|.

As we shall see, for some applications of concealment two slightly weaker forms
of binding will be enough. For the lack of better names, we call them relaxed binding
and super-relaxed binding.

5 We could have allowed A to find h = h′ as long as (h, b), (h′, b) do not open to distinct messages
m = m′. However, we will find the stronger notion more convenient.
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8.2.3 Relaxed Concealments

We consider relaxed concealment schemes, where the strict binding property above
is replaced by the relaxed binding property, which states that A cannot find binder
collisions for a randomly generated binder b(m), even if A can choose m before
learning (h(m), b(m)). Formally, for any PPT A, which runs in two stages A1 and
A2, the following probability is at most negl(k):

Pr
[ h = h′ ∧

m′ = ⊥ : ck
R← Setup(1k), (m, α)

R← A1(ck), (h, b)
R← Concealck(m),

h′ R← A2(h, b, α), m′ ← Openck(h
′, b)

]

To justify this distinction, we will see later that non-trivial (regular) concealments
will be equivalent to collision-resistant hash functions (CRHFs), while relaxed con-
cealments can be built from universal one-way hash functions (UOWHFs). By the
result of Simon [182], UOWHFs are strictly weaker primitives than CRHFs (in
particular, they can be built from regular one-way functions [147]), which implies
that relaxed concealments form a weaker cryptographic assumption than regular
concealments.

8.2.4 Super-Relaxed Concealments

Finally, we will consider an even weaker form of binding. The super-relaxed bind-
ing property states that A cannot find binder collisions for a randomly generated
binder b = b(m) without knowing the actual value b for which it is trying to find
the collisions. Formally, for any PPT A, which runs in two stages A1 and A2, the
following probability is at most negl(k):

Pr
[ h = h′ ∧

m′ = ⊥ : ck
R← Setup(1k), (m, α)

R← A1(ck), (h, b)
R← Concealck(m),

h′ R← A2(h, α), m′ ← Openck(h
′, b)

]

The only difference with related concealments introduced earlier is that A2 does
not get to see b. As we shall see, we will be able to achieve super-relaxed binding
unconditionally, namely, without even relying on one-way functions (which were
essential for relaxed and regular binding).

8.2.5 Comparison to Commitment

At first glance, concealment schemes look extremely similar to commitment
schemes. Recall, commitments also transform m into a pair (c, d), where c is the
“commitment” and d is the “decommitment.” However, in this setting the com-
mitment c is both the hider and the binder, while in our setting the hider and the
binder are distinct. This seemingly minor distinction turns out to make a very big
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difference. For example, irrespective of parameter settings, commitments always
imply the existence of one-way functions, while there are trivial concealments when
|b| = |m|. On the other hand, when |b| < |m|, we will show that concealments
require CRHFs, while quite non-trivial commitments can be built from one-way
functions [146].

Not surprisingly, the two primitives have very different applications and con-
structions. In particular, commitments are not useful for our “domain exten-
sion” applications to authenticated encryption. Interestingly, though, commit-
ments do have other applications to authenticated encryption. For example, in
the Commit-then-Encrypt-and-Sign (CtE&S) paradigm [10] studied in Chap. 9
(see also Fig. 9.2), which uses commitments to build “parallel” authenticated
encryption from regular signature and encryption schemes. Other more specialized
applications of commitments to authenticated encryption are discussed in Chap. 6.

8.3 Constructing Concealment Schemes

In this section, we give very simple and general constructions of concealment
schemes based on some “appropriate” family of hash functions (see below) and
any symmetric one-time encryption scheme.

Our construction will be split into two phases. First, we show how to achieve
hiding using a symmetric one-time encryption scheme and then we show how to
use hash functions to add binding to any scheme which already enjoys hiding. We
will conclude the section with the observation that all the assumptions we utilize in
our constructions are not only sufficient but also necessary. Thus, our constructions
are tight.

8.3.1 Achieving Hiding

We first show how to achieve the hiding property so that |b| � |m|. Recall that
a symmetric encryption scheme SE = (Enc, Dec) with keylength λ consists of

an encryption algorithm Enc and a decryption algorithm Dec. Of course, if τ
R←

{0, 1}λ, we require that Decτ (Encτ (m)) = m. For our purposes we will need the
most trivial and minimalistic notion of one-time security, as described in Sect. 1.3.4.
For a randomly chosen symmetric key τ ∈ {0, 1}λ, we let Encτ (m0) ≈ Encτ (m1)

denote that a PPT attacker cannot distinguish between the encryption of m0 and m1
in the one-time IND-CPA setting.

Of course, a regular one-time pad satisfies this notion. However, for our purposes
we will want the secret key to be much shorter than the message: |τ | � |m|. For
the most trivial such scheme, we can utilize any pseudorandom generator (PRG)
G : {0, 1}k → {0, 1}n where k � n. The secret key is a random τ ∈ {0, 1}k . To
encrypt m ∈ {0, 1}n , we compute Encτ (m) ← G(τ ) ⊕ m, and to decrypt c, we
compute Decτ (c) ← G(τ ) ⊕ c. Of course, any stronger encryption scheme will
suffice for our purposes too.
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Now, let b ← τ and h
R← Encτ (m), so that Open(b, h) ← Decb(h). It is easy

to see that this scheme satisfies the hiding (but not yet the binding) property of
concealment and also that |b| � |m| if a good one-time secure encryption is used,
such as the PRG-based scheme above.

Lemma 8.1 If SE is a one-time IND-CPA secure encryption scheme, then the above
concealment scheme satisfies hiding. Moreover, the scheme is non-trivial if and only
if the key τ is shorter than the message m (which, by the result of [98], requires the
existence of one-way functions).

8.3.2 Achieving Binding

Next, we show how to add regular/relaxed/super-relaxed binding property using
any family of collision-resistant/universal one-way/almost universal hash functions
(CRHFs/UOWHFs/AUHFs). Recall that CRHFs/UOWHFs/AUHFs are defined by
some family H = {H} of compressing functions for which no computationally
bounded attacker can find, with non-negligible probability, a collision pair x = x ′
such that H(x) = H(x ′), where H is a function randomly chosen from H. However,

• with CRHFs, we first select the function H and let the attacker find (x, x ′) based
on H .

• with UOWHFs, the attacker selects x before seeing H and only then finds x ′
based on H .

• with AUHFs, the attacker has to select both (x, x ′) before seeing H .

We will comment on the known constructions of such hash families later, here only
mentioning that AUHFs can be built unconditionally, the existence of UOWHFs
is equivalent to the existence of one-way functions [169], while the existence of
CRHFs seems to require strictly stronger computational assumptions than one-way
functions [182]. Instead, now we see how to utilize such hash functions for our
purposes of achieving the corresponding form of binding. In all the constructions we
assume Π = (Setup, Conceal, Open) already achieves hiding, and let H = {H}
be some hash family whose input size is equal to the input size of the hider h of Π .
Recall that in our schemes we will always have |h| ≈ |m|, so we expect the input
length of H to be roughly equal to the input length of our message m.

8.3.2.1 Regular Binding

Here we assume that H = {H} is a family of CRHFs. We turn the given “hid-
ing” concealment Π into Π ′ = (Setup′, Conceal′, Open′) which is a full-fledged
concealment scheme as follows:

• Setup′(1k): run ck
R← Setup(1k), H

R← H and output ck′ ← 〈ck, H〉.
• Conceal′(m): let (h, b)

R← Conceal(m), h′ ← h, b′ ← b‖H(h), and output
〈

h′, b′
〉

.
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• Open′(h′, b′): parse b′ = as b‖t , output ⊥ if H(h′) = t , and output m ←
Open(h′, b) otherwise.

Lemma 8.2 If Π satisfies the hiding property and H is a CRHF, then Π ′ is a (reg-
ular) concealment scheme.

Proof Since h′ = h, we get hiding for free. As for binding, if some A outputs
b′ = b‖t and h0 = h1 such that H(h0) = H(h1) = t , then, in particular, A outputs
a collision (h0, h1) for H, contradicting the collision resistance of H. ��

As we can see, the output size of H directly contributes to the size of our
binder b′. In practical constructions, this output size is proportional to the security
parameter k and is independent of the input length n. Since the same is true for
the key length of practical symmetric encryption schemes, we get that the size of
the binder is optimally proportional to the security parameter k. For example, using
AES-based encryption and SHA1-based hash function, |b′| = 128 + 160 = 288
bits.

8.3.2.2 Relaxed Binding

Here we assume that H = {H} is a family of UOWHFs. We turn the given “hiding”
concealment Π into Π ′′ = (Setup′′, Conceal′′, Open′′) which is a full-fledged
relaxed concealment scheme as follows:

• Setup′′ = Setup.

• Conceal′′(m): pick H ← H, compute (h, b)
R← Conceal(m), set h′′ ← h,

b′′ ← b‖H(h)‖H , and output
〈

h′′, b′′
〉

.
• Open′′(h′′, b′′): parse b′′ as b‖t‖H , output ⊥ if H(h′′) = t , and output m ←

Open(h′′, b) otherwise.

Lemma 8.3 If Π satisfies the hiding property and H is a UOWHF, then Π ′′ is a
relaxed concealment scheme.

Proof Since h′′ = h, we get hiding for free. As for binding, assume some A chooses
m0, gets back b′′ = b‖t‖H and h0, and then successfully outputs h1 = h0 such that
H(h0) = H(h1) = t . Since h0 = h(m0) is computed independently of H , we can
immediately turn this A into an attacker A′ breaking the UOWHF security of H.

A′1 will use A1 to find m0, will compute (h0, b)
R← Conceal(m0), and will output

the message h0 as the first colliding message. Upon learning random H , A′2 will run
A2 on inputs b′′ ← b‖H(h0)‖H and h0 to produce the second colliding message
h1 = h0. ��

We see that the construction is similar to the CRHF-based construction, except
we pick a new hash function for each call and append it to the binder b′′. This
ensures that H is always selected independently of the input h to which it is applied,
as required by the definition of UOWHFs. In theory, this shows that efficient relaxed
concealments, unlike regular concealments, can be built from one-way functions
(see Lemma 8.6). In practice, the message is less clear. On the one hand, the best
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theoretical constructions of UOWHFs (or even fixed-length UOWHFs) from one-
way functions have key length roughly proportional to O(k log |m|) [32, 169, 179],
which is slightly superlinear in the security parameter k when hashing long mes-
sages. For example, hashing 1 Gb message would require a binder of at least several
kilobytes, which is less desirable. On the other hand, it might be much more rea-
sonable to assume that a given “practical” hash family H is universal one way as
opposed to collision resistant. For example, Halevi and Krawczyk [94] gave sev-
eral efficient methods to construct UOWHFs with short keys (say, 160 bits) using
building blocks which are not required (and unlikely) to be collision resistant. Thus,
it seems reasonable that one might be able to construct a UOWHF family whose
output plus key size might be comparable to (or perhaps only slightly larger than)
the best reasonable output of a CRHF and yet rely on a provably weaker assumption!

8.3.2.3 Super-Relaxed Binding

To construct super-relaxed concealments, we use exactly the same construction Π ′′
as above, except we only need to assume that the hash family H = {H} is a family
of AUHFs.

Lemma 8.4 IfΠ satisfies the hiding property and H is a AUHF, thenΠ ′′ is a super-
relaxed concealment scheme.

Proof The proof is the same as of Lemma 8.3, except we observe that the attacker A
never learns the value H when breaking the super-relaxed binding. This is because
A is only given the value h′′ = h which does not include H . Thus, A effectively
produces a collision pair (h0, h1) without having any information about H , contra-
dicting the AUHF security of H. ��

It is known that one can construct AUHFs unconditionally. For example, the
classical polynomial interpolation construction (see Bernstein [35] for some history)
splits the n-bit message into blocks of size v, views each block as a coefficient of
a degree n/v polynomial p over G F[2v], and then evaluates p at a random point x
in G F[2v] (where this point x is the key for H ). This construction achieves binding
security level of n/(v2v),6 and has the key and output size equal to v. For example,
if the length of the message and the hider h is 1 Gb, to achieve security 2−80 it is
sufficient to set v = 106. Thus, using this construction with AES-based encryption,
the final length of the binder b′′ = τ‖H(h)‖H is 128+106+106 = 340 bits, which
is quite reasonable for a 1 Gb message and is only 52 bits longer than the SHA1-
based construction (for which we are required to assume the collision resistance of
SHA1 and which certainly does not achieve even a “conditional” binding security
level of 2−80).

6 Meaning that the maximal probability that two unequal messages collide under a random H is at
most n

v2v .
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8.3.2.4 Collecting the Pieces Together

To summarize, we achieved the following constructions of concealment schemes.

For the hider, all schemes set h
R← Encτ (m), where Enc is a one-time secure

encryption scheme (such as Encτ (m) = m ⊕ G(τ ), where G is a PRG, or any
block-cipher-based semantically secure encryption, such as CBC mode or CFB
mode). For regular binding we set b ← τ‖H(h), where H is chosen from a fam-
ily of CRHFs, while for the relaxed/super-relaxed binding we could make weaker
assumptions by setting b ← τ‖H(h)‖H and assuming H is chosen from a fam-
ily of UOWHFs/AUHFs. In particular, using the fact that the existence of CRHFs
or UOWHFs implies the existence of one-way functions, and, hence, of one-time
secure symmetric encryption, we get

Theorem 8.1 The hiding property of regular/relaxed/super-relaxed concealment
can be based on the existence of one-way functions (which is implied by the existence
of CRHF). The binding property of regular/relaxed/super-relaxed concealments can
be based on the existence of CRHF/one-way functions/no assumptions.

As we will see in the next subsection, the above theorem is tight in terms of the
minimal assumptions required.

8.3.2.5 Comparison with OAEP

Recall, the Optimal Asymmetric Encryption Padding (OAEP) [30] is a popular
padding scheme used in designing various encryption and signature schemes based
on trapdoor permutations. It picks a random value τ and sets h ← G(τ ) ⊕ m,
b← τ⊕H(h), where G and H are hash function (typically modeled as random ora-
cles in the analysis). This construction is very similar to the particular concealment
construction we had above, except we set b ← τ‖H(h). Namely, our construction
is slightly more “redundant” in terms of the binder b. However, this “redundancy”
is precisely makes it a secure concealment scheme. Indeed, OAEP decoding never
outputs ⊥, since it is a permutation over m and τ ; thus, OAEP does not achieve any
binding. What is interesting, though, is that our construction—which is so similar
to the OAEP—does not need to assume G and H as random oracles in the analysis!

8.3.3 Necessity of Assumptions

We show that the assumptions of Lemmas 8.1, 8.2 and 8.3 (and hence those of
Theorem 8.1) are not only sufficient, but also necessary. We start by showing that
achieving non-trivial hiding requires one-way functions, as stated in Lemma 8.1.

Lemma 8.5 If Π is non-trivial (i.e., |b| < |m|) and satisfies the correctness and
hiding properties of concealment, then one-way functions exist.

Proof We use the result of Impagliazzo and Luby [98] who showed that “non-trivial,
one-time secure interactive encryption” (NOTE) implies the existence of one-way
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functions. Here NOTE refers to any interactive protocol between Alice and Bob,
who are connected by a public channel P and a secure channel S such that (a)
at the end of the protocol Alice transmits the message m to Bob; (b) Eve, who is
passive and only observes all the communication over the public channel P , gets
no information (in the usual sense of semantic security) about m; and (c) the total
length of messages exchanged over the secure channel S (not observed by Eve) is
strictly less than the length of the message m.

Thus, it suffices to show that non-trivial concealment satisfying correctness and
hiding imply a NOTE scheme. But this is simple. Alice, on input m, runs the

concealment scheme to obtain (h, b)
R← Conceal(m) and send b over the secure

channel S and h over the public channel P . Bob can recover m from b and h (by
correctness), the length of b is shorter than the length of m (by non-triviality of Π ),
and h observed by Eve reveals no information about m (by hiding). ��

Next, we show the necessity of using CRHFs/UOWHFs to ensure the regu-
lar/relaxed binding of our constructions.

Lemma 8.6 Let Π = (Setup, Conceal, Open) be a regular (resp. relaxed) con-
cealment scheme where the binder b is shorter than the message m. Define a shrink-
ing function family H by the following generation procedure: pick a random value

r , run ck
R← Setup(1k), and output 〈ck, r〉 as a description of a random function

H ∈ H. To evaluate such H on input m, run (h, b)
R← Concealck(m) using the

randomness r and set H(m)← b. Then H is a family of CRHFs (resp. UOWHFs).

Proof AssumeΠ is a regular concealment. Using the definition of H above, finding
m0 = m1 such that H(m0) = H(m1) = b implies finding h0 = h(m0) and h1 =
h(m1) such that Openck(h0, b) = m0 = ⊥, Openck(h1, b) = m1 = ⊥, and h0 = h1
(since m0 = m1). But this clearly contradicts the binding property of concealment.

Now consider the relaxed concealment scenario, where the attacker has to choose
m0 beforehand. In this case, choosing a random H ∈ H involves choosing a
random r . Thus, when evaluating H(m0), we effectively computed a random con-

cealment (h0, b)
R← Concealck(m0) and gave it to the adversary, as required by the

definition of relaxed concealment. The rest of the proof is the same as for strong
concealments. ��

8.4 Applications to Authenticated Encryption

We now study applications of concealment to authenticated encryption. Recall,
authenticated encryption provides means for private, authenticated communica-
tion between the sender and the receiver. Namely, an eavesdropper cannot under-
stand anything from the transmission, while the receiver is sure that any successful
transmission indeed originated from the sender and has not been “tampered with.”
The intuitive idea of using concealments for authenticated encryption is simple. If
AuthEnc is an authenticated encryption scheme working on short |b|-bit messages,
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and (h, b)
R← Conceal(m), we can define AuthEnc′(m) = 〈AuthEnc(b), h〉. Intu-

itively, sending the hider h “in the clear” preserves privacy due to the hiding prop-
erty of concealments, while the authenticated encryption of the binder b provides
authenticity due to the binding property. (The exact type of the required binding
will depend on the particular setting, as explained later.)

We formalize this intuition by presenting two applications of the above paradigm.
First, we argue that it indeed yields a secure authenticated encryption scheme on
long messages from that on short messages and that this holds even if (super-)
relaxed concealments are used. Second, we show that this paradigm also gives a
very simple and general solution to remotely keyed authenticated encryption. Here,
the full power of regular binding is needed.

We remark that our applications hold for both the symmetric- and the public-
key notions of authenticated encryption (the latter is historically called signcryp-
tion [203, 204]). In terms of usability, long-message authenticated encryption is
probably much more useful in the public-key setting, since signcryption is typically
expensive. However, even in the symmetric-key setting our approach is very fast
and should favorably compare with alternative direct solutions such as “Encrypt-
then-MAC” [26]. For the remotely keyed setting, both public- and symmetric-key
models seem equally useful and important. In fact, symmetric-key “remotely keyed
encryption” is perhaps more relevant, since smartcards are currently much better
suited for symmetric-key operations. Indeed, before Dodis and An [75, 76], prior
work on “remotely keyed encryption” focused on the symmetric setting only.

8.4.1 Definition of Authenticated Encryption

We remark that formal modeling of authenticated encryption in the public-key set-
ting is somewhat more involved than that in the symmetric-key setting due to issues
such as multi-user security, “insider attacks”, and “identity fraud” (see Chaps. 2
and 3). Therefore, we first give the details of the symmetric-key setting and then
briefly sketch the changes required in the public-key setting.

8.4.1.1 Symmetric-Key Syntax

A symmetric-key authenticated encryption scheme consists of three algorithms:
AE = (AuthKeyGen, AuthEnc, AuthDec). The randomized key generation algo-
rithm AuthKeyGen(1k), where k is the security parameter, outputs a shared secret
key K and possibly a public parameter pub. Of course, pub can always be part
of the secret key, but this might unnecessarily increase the secret storage. In the
description below, all the algorithms (including the adversary’s) can have access
to pub, but we omit this dependence for brevity. The randomized authencryption
(authenticate/encrypt) algorithm AuthEnc takes as input the key K and a message
m from the associated message space M, internally flips some coins, and outputs a

ciphertext c; we write c
R← AuthEncK (m) or c

R← AuthEnc(m), omitting the key
K for brevity. The deterministic authdecryption (verify/decrypt) algorithm AuthDec
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takes as input the key K , a ciphertext c from some ciphertext space C, and outputs
m ∈M ∪ {⊥}, where ⊥ indicates that the input ciphertext c is “invalid.” We write
m ← AuthDecK (c) or m ← AuthDec(c) (again, omitting the key). We require that
AuthDecK (AuthEncK (m)) = m for any m ∈M.

8.4.1.2 Symmetric-Key Security

Fix the sender S and the receiver R. Following the standard security notions [26],
we define the attack models and goals of the adversary for both authenticity (i.e.,
sUF-CMA)7 and privacy (IND-CCA2)8 as follows. We first model our adversary A.
A has oracle access to the functionalities of both S and R. Specifically, it can mount
a chosen message attack on S by asking S to produce a ciphertext C of an arbitrary
message m, i.e., A has access to the authencryption oracle AuthEncK (·). Similarly,
it can mount a chosen ciphertext attack on R by giving R any candidate ciphertext
C and receiving back the message m (where m could be⊥), i.e., A has access to the
authdecryption oracle AuthDecK (·).9 In other words, in all the definitions below A
is given oracle access to both AuthEncK (·) and AuthDecK (·).

To break the sUF-CMA security of the authenticated encryption scheme, A has to
be able to produce a “valid” ciphertext C (i.e., AuthDecK (C) = ⊥), which was not
returned earlier by the authencryption oracle.10 Notice, A is not required to “know”
m = AuthDecK (C) when producing C . The scheme is sUF-CMA secure if for any
PPT A, Pr[A succeeds] ≤ negl(k).11

To break the IND-CCA2 security of the authenticated encryption scheme, A
first has to come up with two messages m0 and m1. One of these messages mσ

(where σ is a random bit) will be authencrypted and the corresponding cipher-

text C∗ R← AuthEncK (mσ ) will be given to A. The task of A is then to guess
the bit σ . To succeed in the CCA2 attack, A is only disallowed to ask R to
authdecrypt the challenge C∗. The scheme is IND-CCA2 secure if for any PPT A,
Pr[A succeeds] ≤ 1

2 + negl(k).

Remark 8.1 We also remark that IND-CPA security12 is the same, except A is not
given access to the authdecryption oracle. Moreover, in the symmetric-key setting
it is known that IND-CPA+sUF-CMA security implies IND-CCA2 security [26].
However, since this implication does not hold in the public-key setting, discussed
next, we do not follow this route in the symmetric-key setting.

7 Meaning “strong unforgeability against chosen message attack.”
8 Meaning “indistinguishability against chosen ciphertext attack.”
9 Of course, since S and R share the same key and use the same algorithms, there is no need to
allow for “another” chosen message attack on R or a chosen ciphertext attack on S.
10 A slightly weaker notion of UF-CMA requires C to correspond to “new” message m not sub-
mitted to AuthEncK (·).
11 Note that the definition does not prevent so-called reflection attacks, where a message produced
by S is returned back to S as a valid message from R. Such attacks can (and should) be easily
prevented by a higher level application.
12 Meaning “indistinguishability against chosen plaintext attack.”
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8.4.1.3 Public-Key Syntax

For convenience, we will use almost the same syntax as before, with the following
modifications. The key generation algorithm AuthKeyGen(1k) run by user U now
outputs the public verification/encryption key pkU and the secret signing/decryption
key skU for U . The randomized authencryption (authenticate/encrypt) algorithm
AuthEnc, run by the sender S to compose a ciphertext to the receiver R, takes
as input the secret key skS of S, the public key pkR of R, and a message m
from the associated message space M, internally flips some coins and outputs a

ciphertext c; we write c
R← AuthEnc(pkR, skS,m) or simply c

R← AuthEnc(m),
when the identities of S and R are clear. The deterministic authdecryption (ver-
ify/decrypt) algorithm AuthDec takes as input the secret key skR of R and the
public key pkS of S and outputs m ∈ M ∪ {⊥}, where ⊥ indicates that the
input ciphertext c is “invalid.” We write m ← AuthDec(skR, pkS, c) or simply
m ← AuthDec(c) (again, omitting the keys of S and R, when clear). We require
that AuthDec(skR, pkS, AuthEnc(pkR, skS,m)) = m for any m ∈M.

8.4.1.4 Public-Key Security

The security is defined similarly to the symmetric-key setting, except there are sev-
eral flavors now because the sender S and the receiver R now have different secret
keys. We refer the reader to Chaps. 2 and 3 for the discussion of some of those
flavors, here only discussing the distinction between outsider security and insider
security. Informally, in the outsider security setting the attacker tries to break privacy
or authenticity of two honest users S and R communicating between each other, by
posing as a legitimate outsider party to either S or R. In contrast, in the insider
security setting the attacker tries to break privacy or authenticity of an honest user
U by “posing” as a valid sender or recipient to U . Thus, insider security is a stronger
notion, but may not be required in some applications. We consider a full multi-user
model for both outsider and insider security (as described in Chap. 3).

8.4.2 Authenticated Encryption of Long Messages

Assume AE = (AuthKeyGen, AuthEnc, AuthDec) is a secure authenticated
encryption on |b|-bit messages. We would like to build an authenticated encryption
AE ′ = (AuthKeyGen′, AuthEnc′, AuthDec′) on |m|-bit messages, where |m|  
|b|. We start with the symmetric-key setting and later generalize to the public-key
setting.

8.4.2.1 Symmetric-Key Setting

We will employ the following composition paradigm. The key K for AE ′ is the
same as that for AE . To authencrypt m, first split it into two pieces (h, b) (so that
the transformation is invertible) and output AuthEnc′K (m) = 〈AuthEncK (b), h〉.
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The question we are asking is what are the necessary and sufficient conditions on
the transformation m �→ (h, b) so that the resulting authenticated encryption is
secure? As shown by Alt [6], correcting the prior claim of Dodis and An [75, 76],
the necessary and sufficient condition is to have the transformation above be a super-
relaxed concealment.

More formally, assume Π = (Setup, Conceal, Open) satisfies the syntax, but

not yet the security properties of a concealment scheme. We assume that ck
R←

Setup(1k) forms a public parameter pub of AE ′. We define AE ′ as stated above.

Namely, AuthEnc′(m) outputs 〈AuthEnc(b), h〉, where (h, b)
R← Conceal(m), and

AuthDec′(c, h) outputs Open(h, AuthDec(c)). Then

Theorem 8.2 If AE is secure, then AE ′ is secure if and only ifΠ is a super-relaxed
concealment scheme.

Proof For one easy direction, we show that ifΠ does not satisfy the hiding property,
then AE ′ cannot even be IND-CPA secure, let alone IND-CCA2 secure. Indeed, if
some adversary A can find two messages m0 and m1 such that h(m0) ≈ h(m1),
then obviously

AuthEnc′(m0) ≡ (AuthEnc(b(m0)), h(m0))

≈ (AuthEnc(b(m1)), h(m1)) ≡ AuthEnc′(m1) ,

contradicting IND-CPA security.
Similarly, if Π does not satisfy the super-relaxed binding property, then AE ′

cannot be sUF-CMA secure. Indeed, assume some concealment adversary A can

produce m such that when (h, b)
R← Conceal(m) is generated and h is given

to A, A can find (with non-negligible probability ε) a value h′ = h such that
Open(h′, b) = ⊥. We build a forger A′ for AE ′ using A. A′ gets m from A and
asks its authencryption oracle the value AE ′(m). A′ gets back (h, c), where c is a
valid authencryption of b and (h, b) is a random concealment pair for m. A′ gives h
to A and gets back (with probability ε) the value h′ = h such that Open(h′, b) = ⊥.
But then (h′, c) is a valid authencryption (with respect to AE ′) different from (h, c),
contradicting the sUF-CMA security of AE ′.

The other (interesting) direction was formally proven in [6, 75, 76]. Here, we
only give an informal intuition. For sUF-CMA security, by the assumed sUF-CMA
security of AE , the only way A can break sUF-CMA security of AE ′ is by “reusing”
some prior ciphertext c = AuthEnc(b) returned (together with h) by the authencryp-
tion oracle. Since AE is semantically secure, the value c does not give A any more
information about b than A can deduce from h alone.13 Thus, if A outputs a forgery
(c, h′), for some h′ = h, then A effectively broke the super-relaxed binding property
of Π . The IND-CCA2 security is proven similarly. First, the sUF-CMA security
above implies that only IND-CPA security of AE ′ needs to be proven [26]. The
latter trivially follows from the IND-CPA security of AE and the hiding property
of Π . ��

13 The formalization of this claim is somewhat subtle; see [6].
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8.4.2.2 Public-Key Setting

We generalize the above composition paradigm as follows. The new authenticated
encryption scheme AE ′ for user U will utilize the same public/secret-key pair
(pkU , skU ) as the original authenticated encryption scheme AE . To authencrypt
m from S to R, first split it into two pieces (h, b) (so that the transformation is

invertible) and output AuthEnc′(pkR, skS,m)
R← 〈

AuthEnc(pkR, skS, b), h
〉

. As
earlier, we ask what are the necessary and sufficient conditions on the transformation
m �→ (h, b) so that the resulting public-key authenticated encryption is secure? We
get a slightly different answer depending on whether we are interested in the outsider
or the insider security. As shown by Alt [6] (slightly correcting the prior claim of
[75, 76]), the necessary and sufficient condition for outsider/insider security is to
have the transformation above be a super-relaxed/relaxed concealment.

Theorem 8.3 If AE is secure, then AE ′ is outsider/insider secure if and only ifΠ is
a super-relaxed/relaxed concealment scheme.

Proof The outsider security proof is essentially identical to the symmetric-key set-
ting considered in Theorem 8.2, because the outsider public-key security is very
similar to the symmetric-key security. The only difference is that the IND-CCA2
security is no longer implied by the sUF-CMA and IND-CPA security, so it has to
be proven directly. However, it still follows from the outsider security of AE and the
super-relaxed binding property of Π . Indeed, the only way to break the IND-CCA2
security of AE ′ without breaking one for AE is to “reuse” the challenge ciphertext
c∗ = AuthEnc(b∗) with some hider h = h∗ and, moreover, to do so without having
“any information” about the actual binder b∗ (due to the privacy of AE). However,
the latter contradicts the super-relaxed binding of Π .

As for the insider security, we only sketch why relaxed binding is required, refer-
ring to [6, 75, 76] for the actual proof why it is in fact sufficient to “lift” both the
IND-CCA2 and sUF-CMA proofs of security from the outsider to the insider secu-
rity setting. The reason is because, when trying to forge a ciphertext from the target
user U to some receiver R, the attacker A can know the secret key skR of R. More
precisely, if Π does not satisfy the relaxed binding property, then AE ′ cannot be
sUF-CMA secure. Indeed, assume some concealment adversary A can produce m

such that when (h, b)
R← Conceal(m) is generated and (h, b) is given to A, A can

find (with non-negligible probability ε) a value h′ = h such that Open(h′, b) = ⊥.
We build a forger A′ (attacking user U ) for AE ′ using A. First, A′ honestly gen-
erates keys (skR, pkR) for some receiver R. Then, A′ gets m from A and asks its
authencryption oracle the value AuthEnc′(pkR,m). A′ gets back (h, c), where c is a
valid authencryption of b and (h, b) is a random concealment pair for m. Using skR ,
A retrieves the value b from c (this is the key difference from the outsider setting),
gives (h, b) to A, and gets back (with probability ε) the value h′ = h such that
Open(h′, b) = ⊥. But then (h′, c) is a “fresh” (different from (h, c)) authencryption
of some valid message from U to R, contradicting the sUF-CMA security of AE ′.

Fortunately, it was shown by Dodis and An [75, 76] that ensuring relaxed binding
not only prevents the above attack but is actually enough to argue both insider
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privacy and confidentiality (provided, of course, that one starts with an insider-
secure authenticated encryption AE). ��

8.4.3 Remotely Keyed Authenticated Encryption

Similar to the previous section, we first consider the symmetric-key setting and then
briefly sketch the extension to the public-key setting.

8.4.3.1 Symmetric-Key Syntax

A one-round remotely keyed authenticated encryption (RKAE) scheme consists
of seven efficient algorithms: RK = (KeyGen, StartEnc, CardEnc, FinishEnc,
StartDec, CardDec, FinishDec) and involves two parties called the host and the
card. The host is assumed to be powerful, but insecure (subject to break-in by an
adversary), while the card is secure but has limited computational power and low
bandwidth. The randomized key generation algorithm KeyGen(1k), where k is the
security parameter, outputs a secret key K and possibly a public parameter pub.
In the description below, all the algorithms (including the adversary’s) can have
access to pub, but we omit this dependence for brevity. This key K is stored in
the card. The process of authenticated encryption is split into the following three
steps. First, on input m, the host runs probabilistic algorithm StartEnc(m) and gets
(b, α). The value b should be short, as it will be sent to the card, while α denotes
the state information that the host needs to remember. We stress that StartEnc
involves no secret keys and can be run by anybody. Next, the card receives b and runs
probabilistic algorithm CardEncK (b) using its secret key K . The resulting (short)
value c will be sent to the host. Finally, the host runs another randomized algorithm
FinishEnc(c, α) and outputs the resulting ciphertext C as the final authencryption
of m. Again, FinishEnc involves no secret keys. The sequential composition of the
above three algorithms induces an authenticated encryption algorithm, which we
will denote by AuthEnc′K .

Similarly, the process of authenticated decryption is split into three steps as well.
First, on input C , the host runs deterministic algorithm StartDec(C) and gets
(u, β). The value u should be short, as it will be sent to the card, while β denotes
the state information that the host needs to remember. We stress that StartDec
involves no secret keys and can be run by anybody. Next, the card receives u and
runs deterministic algorithm CardDecK (u) using its secret key K . The resulting
(short) value v will be sent to the host. We note that one possible value for v will be
⊥, meaning that the card found some inconsistency in the value of u. Finally, the
host runs another randomized algorithm FinishDec(v, β) and outputs the resulting
plaintext m if v = ⊥ or ⊥, otherwise. Again, FinishDec involves no secret keys.
The sequential composition of the above three algorithms induces an authenticated
decryption algorithm, which we will denote by AuthDec′K . We also call the value
C valid if AuthDec′K (C) = ⊥.

The correctness property states for any m, AuthDec′(AuthEnc′(m)) = m.
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8.4.3.2 Security of RKAE

As we pointed out, RKAE in particular induces a regular authenticated encryption
scheme, if we combine the functionalities of the host and the card. Thus, at the very
least we would like to require that the induced scheme AE ′ = (KeyGen, AuthEnc′,
AuthDec′) satisfies the IND-CCA2 and sUF-CMA security properties of regular
authenticated encryption. Of course, this is not a sufficient guarantee in the setting
of RKAE. Indeed, such security only allows the adversary oracle access to the com-
bined functionality of the host and the card. In the setting of RKAE, the host is
anyway insecure, so the adversary should have oracle access to the functionality of
the card. Specifically, we allow our adversary A′ to have oracle access to the card
algorithms CardEncK (·) and CardDecK (·).

Just like regular authenticated encryption, RKAE has security notions for privacy
and authenticity, which we denote by RK-IND-CCA and RK-sUF-CMA, respec-
tively.

To break the RK-sUF-CMA security of RKAE, A′ has to be able to produce “one
more forgery” when interacting with the card. Namely, A′ tries to output t + 1 valid
ciphertexts C1 . . .Ct+1 after making at most t calls to CardEncK (·) (where t is any
polynomial in k). Again, we remark that A′ is not required to “know” the plaintext
values mi = AuthDec′K (Ci ). The scheme is RK-sUF-CMA secure if for any PPT
A′, Pr[A′ succeeds] ≤ negl(k). We note that this is the only meaningful authentic-

ity notion in the setting of RKAE. This is because the values c
R← CardEncK (b)

returned by the card have no “semantic” meaning of their own. So it makes no sense
to require A′ to produce a new “valid” string c. On the other hand, it is trivial for A′
to compute t valid ciphertexts C1 . . .Ct with t oracle calls to CardEnc, by simply
following to honest authencryption protocol on arbitrary messages m1 . . .mt . Thus,
security against “one more forgery” is the most ambitious goal we can try to meet
in the setting of RKAE.

To break the RK-IND-CCA security of RKAE, A′ first has to come up with
two messages m0 and m1. One of these will be authencrypted at random, the cor-

responding ciphertext C∗ R← AuthEncK (mσ ) (where σ is a random bit) will be
given to A′ and A′ has to guess the value σ . To succeed in the CCA2 attack,
A′ is only disallowed to call the card authdecryption oracle CardDecK (·) on the
well-defined value u∗, where we define StartDec(C∗) = (u∗, β∗). This value is
uniquely defined as StartDec is a deterministic algorithm. This restriction is to
prevent A′ from trivially authdecrypting the challenge. The scheme is RK-IND-
CCA secure if for any PPT A′, Pr[A′ succeeds] ≤ 1

2 + negl(k). We briefly remark
that RK-IND-CPA security is the same, except we do not give A′ access to the card
authdecryption oracle.

8.4.3.3 Canonical RKAE

A natural implementation of RKAE would have the card perform regular authenti-
cated encryption/decryption on short messages, while the host should do the special
preprocessing to produce the short message for the card from the given long mes-
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sage. Specifically, in this case we start from some auxiliary authenticated encryption
AE = (AuthKeyGen, AuthEnc, AuthDec)which works on “short” |b|-bit messages
and require that CardEnc = AuthEnc and CardDec = AuthDec. Moreover, we
would like the card to authdecrypt the same value c that it produced during authen-

cryption. In our prior notation, u = c and v = b, where c
R← AuthEncK (b). Finally,

it is natural to assume that the host outputs c as part of the final (long) ciphertext.
Putting these together, we come up with the following notion of canonical RKAE.

First, the host runs StartEnc(m), which we conveniently rename Conceal(m),
and produces (h, b), where h will be part of the final ciphertext and b is “short.”

Then it sends b to the card and gets back c
R← AuthEncK (b). Finally, it outputs C =

〈c, h〉 as the resulting authencryption of m. Similarly, to authdecrypt C = 〈c, h〉, it
sends c to the card, gets b = AuthDecK (c), and outputs FinishDec(h, b), which
we conveniently rename Open(h, b). Thus, the canonical RKAE is fully specified by
a “short” authenticated encryption AE and a triple Π = (Setup, Conceal, Open)
(where Setup is run at key generation and outputs a publicly available key pub).

The natural question we address is what security properties of Conceal and
Open are needed in order to achieve a secure canonical RKAE (provided the aux-
iliary AE is secure)? As shown by Dodis and An [75, 76], the necessary and suf-
ficient condition is to employ a secure (regular) concealment scheme. We remark
that the final induced scheme AE ′ we construct is exactly the composition scheme
we discussed in Sect. 8.4.2. However, in that application the entire authenticated
encryption was performed honestly—in particular, b was chosen by properly run-
ning Conceal(m)—so that (super-)relaxed concealments were sufficient. Here, an
untrusted host can ask the card to authencrypt any value b it wishes, so we need the
full binding power of concealments.

Theorem 8.4 If AE is secure and a canonical RK is constructed from AE and Π ,
then RK is secure if and only if Π is a (regular) concealment scheme.

Proof The proof of this result is very similar to that of Theorem 8.2 and is omitted.
We only mention why regular binding is necessary. If A can come up with a triple
(b, h, h′) such that Open(h, b) = ⊥, Open(h′, b) = ⊥, and h = h′, then we can
construct A′ breaking the RK-sUF-CMA security of AE ′ as follows. A′ asks the
card to authencrypt the value b, gets back the ciphertext c, and outputs two valid
ciphertexts 〈c, h〉 = 〈

c, h′
〉

. ��

8.4.3.4 Comparison to Previous RKAEs

We briefly compare our scheme with those of [40, 107]. First, both schemes could be
put into our framework by extracting appropriate concealment schemes. In fact, the
concealment we extract from [40] is essentially the same as our construction with

b ← τ‖H(h) and h
R← Encτ (m) (they model one-time encryption slightly differ-

ently, but this is a minor difference)! On the other hand, instead of applying arbitrary
authenticated encryption to the value of b, they build a very specific one based on
block ciphers and pseudorandom functions. To summarize, the construction of [40]
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is quite good and efficient, but focuses on a specific ad hoc implementations for both
concealment and authenticated encryption. We believe that our generality provides
many more options, as well as gives better understanding toward designing RKAE,
since our general description is much simpler than the specific scheme of [40]. As
for the scheme of [107], one can also extract an “OAEP”-like concealment out of it,
making it a special case of our framework too. However, the specific choices made
by the authors make it very hard to replace the random oracles by some provable
implementation. On the other hand, our “OAEP”-like construction (based on a PRG
and a CRHF) is equally simple, but achieves provable security without the random
oracles.

8.4.3.5 Using A Block Cipher in Place of AE
So far we considered schemes of the form 〈AuthEnc(b), h〉, where AuthEnc is
an authenticated encryption of short messages. While authenticated encryption is
gaining popularity, in the symmetric-key setting block ciphers are much more pop-
ular. Moreover, a secure block cipher—formally known as a (strong) pseudorandom
permutation—is “almost” a secure authenticated encryption. The only difference
being that it does not provide semantic security (but gives at least one-wayness).
Therefore, in the symmetric setting it is natural to consider constructions of the
form AuthEnc′(m) ← 〈PK (b), h〉, where we replace the “inner” authenticated
encryption AuthEnc by a block cipher P . This is especially relevant in the setting
of RKAE, where the above scheme would mean that the card is simply an imple-
mentation of a block cipher! As shown by Dodis and An [75, 76], while general
concealments might not be enough for such a replacement, the main scheme from
Sect. 8.3 works in the cases of interest! Below we assume that all the messages are
fixed length.

Specifically, consider the scheme with h
R← Encτ (m) and b ← τ‖H(h), where

H is collision resistant and Enc is one-time secure. Assume also that H is preimage
resistant—meaning that it is hard to find a preimage v ∈ H−1(r) of a random
value r . We note that any CRHF family H = {H}with |H(h)| < |h|−ω(log k)must
be preimage resistant. However, preimage resistance is usually required anyway
when constructing practical hash functions. Finally, assume Enc is key-one-way,
meaning that for any message m, it is hard to recover the key τ from the ciphertext
Encτ (m). Once again, this property holds for the PRG-based scheme Encτ (m) ←
G(τ ) ⊕ m as long as |m| = |G(τ )| > |τ | + ω(log k) and also for standard block-
cipher-based schemes, such as CBC. Then, the following result from [75, 76] holds:

Theorem 8.5 If (P, P−1) is a strong pseudorandom permutation, Enc is one-time
secure and key-one-way, and H comes from a family of preimage-resistant CRHFs,

then AuthEnc′K (m) = 〈c, h〉, with c← PK (τ‖H(h)) and h
R← Encτ (m), gives rise

to a secure RKAE.14

14 Clearly, this also means that this is a secure way to build a “long” authenticated encryption from
a single call to a block cipher. In fact, preimage resistance of H and key-one-wayness of Enc are
not needed in this case.
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8.4.3.6 Extension to the Public-Key Setting

This extension (with the exception of replacing authenticated encryption by a block
cipher, which makes no sense in the public-key setting) is pretty straightforward. In
fact, unlike the question of domain extension studied in Sect. 8.4.2, no new subtleties
arise in the public-key setting. Namely, when building “long” authenticated encryp-
tion from a “short” authenticated encryption, regular concealments are necessary
and sufficient to maintain either insider or outsider security.



Chapter 9
Parallel Signcryption

Josef Pieprzyk and David Pointcheval

9.1 Introduction

The primary motivation for signcryption was the gain in efficiency when both
encryption and signing need to be performed. These two cryptographic operations
may be done sequentially either by first encrypt and then sign (E tS) or alternatively,
by first sign and then encrypt (StE). Further gains in efficiency can be achieved
if encryption and signature are carried out in parallel (E&S). More importantly,
however, is that these efficiency gains are complemented by gains in security, i.e.,
we may use relative weak encryption and signature schemes in order to obtain a
“stronger” signcryption scheme. The reader is referred to Chaps. 2 and 3 for a
discussion of the different “strengths” of security model (e.g., outsider vs. insider
adversaries, two-user vs. multi-user setting).

9.2 Concept of Parallel Signcryption

Efficiency and security are the two main requirements for cryptographic algo-
rithms. Striking the balance between the two requirements is the real challenge.
New ever-growing Internet applications such as distance learning, video streaming,
e-commerce, e-government, e-health, etc., heavily rely on sophisticated protocols
whose explicit goals are the fast, reliable, and secure delivery of large volumes of
data.

Cryptographic protocols can be sped up by

• designing new, faster secure cryptographic algorithms—this option is not always
available as once an algorithm becomes a standard or has been incorporated into
the protocol: the designers are stuck with it for some time,
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• parallelizing operations required by the cryptographic algorithms—this approach
can be applied at the level of a single algorithm (parallel thread implementation)
and/or at the level of the protocol (parallel execution of the protocol components).

Privacy and authenticity are two basic security goals. As already discussed in the
motivation for signcryption, there are many applications that require both goals to
be achieved simultaneously. However, the main problem considered initially was the
design of encryption and signature so that their concatenation maximizes savings of
computing resources. Our goal here is to achieve the lower bound in terms of time
necessary to perform authenticated encryption and decryption, or

time(parallel Encrypt& Sign) ≈ max{time(Encrypt), time(Sign)}
and

time(parallel Decrypt& Verify) ≈ max{time(Decrypt), time(Verify)}

At best, one would expect that parallel encryption and signing will consume roughly
the same time as the most time-consuming operation (either signing or encryption
for the signcryption operation and either verifying or decrypting for the unsigncryp-
tion operation).

The parallel encryption and signing methodology was introduced by An et al.
[10]—see Chap. 2 for a detailed discussion of their results. Independently, the
concept was also developed by Pieprzyk and Pointcheval [160]. Both works
can be seen as generalizations of the signcryption concept introduced by Zheng
[203, 204]. An et al. [10] developed a security model for parallel signcryption and
present the commit-then-encrypt-and-sign (CtE&S) scheme that uses three cryp-
tographic blocks: a commitment scheme, a public key encryption scheme, and a
signature scheme (as described in Chap. 6). The solution given by Pieprzyk and
Pointcheval [160] implements the commitment part very efficiently using secret
sharing. It also shows how to combine encryption and signing so that they strengthen
each other and can be executed in parallel.

9.3 Overview of Constructions

A trivial implementation of parallel signcryption could be as simple as applying
encrypt and sign operations to the same message in parallel. This, of course, does
not work as the signature may reveal the message (see Chap. 2).

A classical solution could be the well-known envelope technique (see Fig. 9.1)
that first defines a secret session key. This key is encrypted under the public key
and is used, in parallel, to encrypt, under a symmetric encryption, a message and a
signature on it. If one assumes that the symmetric encryption has a negligible cost
(some may disagree with this claim), then this allows parallel encryption and sign-
ing. For unsigncryption, the recipient first decrypts the session key and then extracts
the message and the signature. Only when all that operations have been completed,
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E E
pk sessionkey

session key message signature

Fig. 9.1 Envelope technique

can one verify the signature. Therefore, decryption and verification cannot be done
in parallel.

The commit-then-encrypt-and-sign (CtE&S) [10] is a little bit better. It is shown
in Fig. 9.2. The signcryption algorithm first commits to the message m, computing
the actual committed value c and the decommitment d (see Sect. 6.4.2). It then
encrypts d in e and signs c getting s. The unsigncryption algorithm can unsign-
crypt the ciphertext (e, c, s) by first verifying (c, s) and decrypting e into d. The
decommitment d finally helps to recover m (by opening c). However, the opening
algorithm may not be as efficient as required.

(a)

(b)

message

sksig
S pkenc

R

Commit

c d

Sign Encrypt

c̃ d̃

message

Open

pksig
S skenc
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Fig. 9.2 The commit-then-encrypt-and-sign signcryption a encrypt and sign, b decrypt and verify
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Fig. 9.3 Generic signcryption

The two constructions presented in this chapter are in the same vein as those
presented in Chap. 6. They apply an efficient commitment scheme (proven secure
in the random oracle model [29]) which allows for weak assumptions about the
underlying encryption and signature schemes. The commitment scheme is based on
a (2, 2) Shamir secret sharing scheme (see Fig. 9.3). In a (k, n) Shamir secret sharing
scheme, a secret is shared among n parties. Any k parties out of n can recover the
secret while any group of less than k parties has no information about the secret. The
(k, n) Shamir secret sharing scheme [176] simply exploits Lagrange interpolation
of polynomials of degree k − 1.

As we use a (2, 2) Shamir secret sharing, we need a linear polynomial whose
coefficients are strongly related to the message m in a randomized way. For a ran-
dom string r , the constant coefficient is (m‖r) and the linear coefficient is h(m‖r),
where h is a hash function returning values from Zp. The polynomial, over Zp,
evaluated at two points produces two shares. One of the shares is encrypted and
the other is authenticated (in parallel). The perfectness of Shamir secret sharing
guarantees that knowledge of one of the shares provides no information (in the
information-theoretic sense) about the constant coefficient (the secret), and conse-
quently no information about the message m.

9.4 Generic Parallel Signcryption

9.4.1 Description of the Scheme

The signcryption scheme uses the following building blocks:

• an encryption scheme E = (EncKeyGen, Encrypt, Decrypt),
• a signature scheme S = (SigKeyGen, Sign, Verify),
• a large (k + 1)-bit prime p, which defines the field Zp with p ≥ 2k ,
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• a hash function h : Zp → Zp,
• two integers k1 and k2 that are two security parameters such that k = k1 + k2.

We will use a signature scheme with message recovery (see Sect. 1.3.2). This means
that the verification algorithm Verify takes as input a signature s and a public key
pksig. It outputs either a message m indicating that the signature is valid for message
m or the error symbol ⊥.

The signcryption scheme is defined by the following collection of algorithms:

• KeyGen(1k) : Compute (sksig, pksig)
R← KeyGenS(1

k)
def= SigKeyGen(1k) and

(skenc, pkenc)
R← KeyGenR(1

k)
def= EncKeyGen(1k). The sender keys are

(skS, pkS)
def= (sksig, pksig)

and the receiver keys are

(skR, pkR)
def= (skenc, pkenc)

We now consider two users, the sender with keys (skS, pkS) and the receiver with
keys (skR, pkR).

• Signcrypt(skS, pkR,m): Given a message m ∈ {0, 1}k1 that needs to be
encrypted and signed:

1. Choose a random integer r ∈ {0, 1}k2 and compute a = h(m‖r) ∈ Zp, where
(m‖r) ∈ {0, 1}k ⊆ Zp.

2. Form an instance of a (2, 2) Shamir secret sharing scheme over Zp with the
polynomial F(x) = (m‖r) + ax mod p. Define two shares s1 ← F(1) and
s2 ← F(2) in Zp.

3. Calculate in parallel c1 ← Encrypt(pkR, s1) and c2 ← Sign(skS, s2). The
ciphertext (c1, c2) is dispatched to the receiver R.

• Unsigncrypt(pkS, skR, (c1, c2)):

1. Perform decryption and signature verification in parallel:

t1 ← Decrypt(skR, c1)

and

t2 ← Verify(pkS, c2)

Note that both the Decrypt and Verify algorithms return integers in Zp

unless a failure occurs. Indeed, it is possible that Decrypt returns ⊥ if it
decides that the ciphertext is invalid. Similarly, Verify returns a message
(as the signature scheme is assumed to have message recovery) or ⊥ if the
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signature is invalid. In case of at least one failure, the decryption and verifying
algorithm Unsigncrypt returns ⊥ and stops.

2. Given the two points (1, t1) and (2, t2), use the Lagrange interpolation and
find the polynomial F̃(x) = a0 + a1x mod p for which these two points are
solutions (i.e., compute a0 = 2t1 − t2 and a1 = t2 − t1).

3. Check whether a1 = h(a0) or equivalently if t2−t1 = h(2t1−t2). If the check
holds, extract m from a0 (as a0 = (m‖r)) and return m. Otherwise, output ⊥.

9.4.2 Security Analysis

The original research of Pieprzyk and Pointcheval [160] proved the following
theorem:

Theorem 9.1 If the encryption scheme is IND-CCA2 and the signature scheme is
sUF-RMA, then the generic parallel signcryption scheme is IND-CCA and UF-
CMA secure in the outsider security model for the two-user setting.

The security model in this theorem is unfortunately weak, i.e., outsider security
for the two-user setting, without FSO/FUO. However, the multi-user setting with
FSO/FUO is covered if both IDS and IDR are included in the hash value, i.e., a =
h(IDS‖IDR‖m‖r). Furthermore, in the case of a deterministic signature, one even
gets insider security:

Theorem 9.2 If the encryption scheme is IND-CCA2 and the signature scheme is
deterministic and UF-RMA, then the generic parallel signcryption scheme, as mod-
ified above, is FSO/FUO-IND-CCA2 and FSO/FUO-UF-CMA secure in the insider
security model for the multi-user setting.

More precisely, we are going to prove the two following results.

Lemma 9.1 Suppose there exists an insider adversary A against FSO/FUO-UF-
CMA security of the generic parallel signcryption scheme, in the multi-user setting,
with advantage AdvUF−CMA

Signcrypt (k) whose running time is bounded by t and asks at
most qh queries to the random oracle h and qsc queries to the signcryption oracle.
Then, there exists an adversary B against the UF-RMA security of the signature
scheme with advantage SuccUF−RMA

Sign (k) whose running time is bounded by t ′ ≤
t + qsc(τ + O(1)), where τ denotes the maximal running time of the encryption
and signing algorithms, and that asks at most qsc queries to its signature oracle, for
which

AdvU F−C M A
Signcrypt (k) ≤ SuccUF−RMA

Sign (k)+ 2qsc × qh + qsc

2k2
.

Lemma 9.2 Suppose there exists an insider adversary A against FSO/FUO-IND-
CCA2 of the generic parallel signcryption scheme, in the multi-user setting, with
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advantage AdvIND−CCA2
Signcrypt (k) whose running time is bounded by t and who asks at

most qh queries to the random oracle h and qusc queries to the unsigncryption
oracle. Then there exists an attacker B against the IND-CCA2 security of the
encryption scheme with advantage AdvIND−CCA2

Encrypt (k) whose running time is bounded
by t ′ and that makes at most qusc queries to the unsigncryption oracle, where
t ′ ≤ t + qusc(τ + O(1)) and τ denotes the maximum running time of the decryption
and verification algorithms, and

AdvIND−CCA2
Signcrypt (k) ≤ 2× AdvIND−CCA2

Encrypt (k)+ qh + qusc

2k2−1

if the signature scheme is deterministic.

We prove the above lemmas in the random oracle model. When a random oracle
h is called, we have two possibilities. One possibility is that the query has been
already asked. In this case the answer has already been defined by the simulation
and the same answer has to be given. The second possibility is that the query has
not been asked. In this case, a random value in Zp is given. Of course, one has to
be careful when defining an answer of a random oracle as the following conditions
have to be satisfied:

• this answer must not have already been defined and
• the answer must be uniformly distributed.

Furthermore, we denote by qH the number of answers defined for h. This number
will be easily upper bounded by qh + qsc + qusc in the following simulations.

Proof (of Lemma 9.1) Assume that after qsc queries to the oracle Signcrypt,
an adversary A outputs a new ciphertext (c1, c2), which is valid with probability
AdvUF−CMA

Signcrypt (k). We use the adversary to perform an existential forgery (under a
random message attack) against the signature scheme S. For this proof, we consider
the multi-user insider security model. Hence, the attacker knows the public key pkS
of the target sender ID∗S and has access to the signcryption oracle under skS .

We first design a simulator B which has access to a list of message–signature
pairs, produced by the signing oracle under skS (the messages are assumed to have
been randomly drawn from Zp and not chosen by the adversary). It is given the pri-
vate/public keys (skR, pkR) produced by the adversary, for the encryption scheme,
and is also provided with the public key pkS of the signature scheme. Any query m
by A to the oracle Signcrypt under skS , for any recipient IDR , can be simulated
using a new valid message–signature pair (M, S), for the signature scheme. Indeed,
M is defined to be s2 and S is defined to be c2. Then, one chooses a random r . Since

s2 = (m‖r)+ 2h(ID∗S‖IDR‖m‖r) mod p = M

one needs to define the random oracle at the point (ID∗S‖IDR‖m‖r) (unless it has
already been done, which then raises the event BADH). So we get
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h(ID∗S‖IDR‖m‖r)← M − (m‖r)
2

mod p

and therefore

s1 ← (m‖r)+ h(ID∗S‖IDR‖m‖r) = M + (m‖r)
2

mod p

Using the public key of the encryption scheme for the recipient IDR , one can encrypt
s1 to obtain c1. The pair (c1, c2) is a valid ciphertext of m.

Finally, the adversary A returns a ciphertext (c1, c2) for a new message m′, for
ID∗R from ID∗S , which is valid with probability AdvU F−C M A

Signcrypt (k). With the public
key of the signature scheme, one can extract the message s2 from c2. By definition,
(s2, c2) is an existential forgery for the signature scheme. Indeed, one just has to
check whether it is a really new signed message. If this is not a new signed message,
then s2 has already been signed by the oracle Signcrypt for m‖r , where

s2 = (m‖r)+ 2h(ID∗S‖IDR‖m‖r) mod p

Note that s2 is uniquely defined in the list of the queries asked to the random oracle
h unless one has found a collision for the function

G : (x, y) �→ x + 2h(ID∗S‖y‖x) mod p

among the qsc values given by the simulation and the qH answers obtained by
the adversary (either directly from queries or implicitly defined by the simula-
tion). Because of the randomness of the random oracle h, this is upper bounded
by qsc · qH/2k .

Furthermore, one has to be sure that everything looks like in a real attack from
the adversary A point of view. However, when one defines a value for h, it may have
already been defined (event BADH). Because of the randomness of r , the probability
of such an event is less than qH/2k2 for each simulation of the oracle Signcrypt.

Finally, the probability for B to produce an existential forgery against the signa-
ture scheme is greater than

AdvUF−RMA
Sign (k) ≥ AdvUF−CMA

Signcrypt (k)− qsc · qH ×
(

1

2k2
+ 1

2k

)

≥ AdvUF−CMA
Signcrypt (k)− 2qsc · qH ×

(
1

2k2

)

Furthermore, one can easily see that qH ≤ qh + qsc, hence the result. ��
Proof (of Lemma 9.2) Assume that an adversary A has made qusc queries to the
oracle Unsigncrypt. A also has chosen a pair of messages m0 and m1 and has
received a ciphertext (c∗1, c∗2) under (skS, pkR) of either m0 or m1. The unknown
message is denoted by mb, where b is the bit the adversary wishes to find out. The
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adversary outputs a bit d which is equal to b with advantage ε such that Pr[d =
b] = 1/2+ ε.

We work with the multi-user insider security model. The attacker receives a target
receiver ID∗R public key pkR and has access to the unsigncryption oracle under skR .

We design a simulator B which is given the public key pkR of the encryption
scheme and has access to the decryption oracle Decrypt (under skR).

Any call by A to the oracle Unsigncrypt under skR , from any sender IDS ,
can be simulated using the decryption oracle Decrypt access. Indeed, for a query
(c1, c2), one first asks the query c1 to the oracle Decrypt and obtains s1. Thanks to
the public key of the signature scheme, one can get s2 from c2. This is enough to
check the validity of the ciphertext (c1, c2) and to decrypt it. We will see later if this
simulation is always possible.

Let us first show how one generates the challenge ciphertext. When B receives
the pair of messages m0 and m1 from A, it randomly chooses two random integers
r0 and r1 to produce two new messages for the encryption scheme, namely

M0 ← (m0‖r0)+ h(ID∗S‖ID∗R‖m0‖r0) mod p

M1 ← (m1‖r1)+ h(ID∗S‖ID∗R‖m1‖r1) mod p

B receives the ciphertext c∗1 of Mb and has to guess the bit b, with the help of A.
For that, it chooses a random bit b′ (hoping it to be equal to b) and defines

s∗2 ← (mb′ ‖rb′)+ 2h(ID∗S‖ID∗R‖mb′ ‖rb′) mod p

Then, it signs it using the private key skS of the signature scheme and gets c∗2. Next
it sends the pair (c∗1, c∗2) as a ciphertext of mb (for the unknown bit b). Finally, the
adversary A ends its attack, returning a bit d to B and B forwards it as its final
answer.

The simulation of A’s unsigncryption queries by B works fine for any query
(c1, c2) with c∗1 = c1, as shown above. The above simulation breaks for queries
(c∗1, c2), as the decryption oracle is prevented to be queried for the challenge cipher-
text c∗1 while the oracle Unsigncrypt accepts queries as long as c1 = c∗1, or
c2 = c∗2, or IDS = ID∗S . If A submits an unsigncryption oracle query of them
(c∗1, c2) then the simulator B returns ⊥. The event that B rejects an unsigncryption
oracle (c∗1,C2) which is actually valid is called BADD. Later, we will show that this
happens with a negligible probability.

Now, we study the advantage of the simulator B in breaking IND-CCA2 of the
encryption scheme, which is

AdvI N D−CC A2
Encrypt (k) = Pr[d = b] − 1

2
≥ Pr[d = b ∧ ¬BADD] − 1

2≥ Pr[d = b | ¬BADD] − Pr[BADD] − 1
2= 1

2 · Pr[d = b | b = b′ ∧ ¬BADD] + 1
2 · Pr[d = b | b = b′ ∧ ¬BADD]

−Pr[BADD] − 1
2
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Let us now examine each term. First note that, when b′ = b, the simulated challenge
(c∗1, c∗2) is identical to a real challenge:

ε = Pr[d = b | b′ = b] − 1/2

≤ Pr[d = b | b′ = b ∧ ¬BADD] + Pr[BADD] − 1/2

Let us now focus on the second term in the inequality (when b′ = b), by defin-
ing ASKH to be the event that the adversary A either asks (ID∗S‖ID∗R‖m0‖r0) or
(ID∗S‖ID∗R‖m1‖r1) to the random oracle h. It is equal to

Pr[d = b | b′ = b ∧ ¬BADD]
≥ Pr[d = b | b′ = b ∧ ¬BADD ∧ ¬ASKH]

×Pr[¬ASKH|b′ = b ∧ ¬BADD]

Clearly, in the case that b′ = b, the adversary may have some information (in the
theoretical sense) about

Mb = (mb‖rb)+ h(ID∗S‖ID∗R‖mb‖rb) mod p

s∗2 = (mb′ ‖rb′)+ 2h(ID∗S‖ID∗R‖mb′ ‖rb′) mod p

However, without the event ASKH, the hash values perfectly hide the first part and
therefore the answer of A is independent of b (a random variable):

Pr[d = b | b′ = b ∧ ¬BADD ∧ ¬ASKH] = 1

2

On the other hand, as we have said above, the value h(ID∗S‖ID∗R‖mi‖ri ) perfectly
hides (mi‖ri ), for i = 0, 1, and therefore one cannot get any information about
the random values r0 and r1 without a guess. The event ASKH happens with the
probability less than 2qH/2k2 . We therefore conclude

Pr[¬ASKH|b′ = b ∧ ¬BADD] ≥ 1− 2qH/2
k2

Finally, let us examine the probability Pr[BADD] of a wrong decryption reject:
c1 = c∗1 but c2 = c∗2 or IDS = ID∗S . Since this should be a valid signature, c2 is the
signature of some element s2 and c1 is the encryption of Mb such that s2 − Mb =
h(IDS‖ID∗R‖2Mb − s2).

Because of the random oracle h, the probability to find such a pair (IDS, s2)

is less than qH/2k , except the constructed pair (ID∗S, s∗2 ). But since the signature
scheme is deterministic, then c2 = c∗2 and IDS = ID∗S , and such a query cannot be
asked to the unsigncryption oracle. As a consequence,

Pr[BADD] ≤ qH

2k
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Now we collect all the terms and get

AdvIND−CCA2
Encrypt (k) ≥ 1

2

(

ε − Pr[BADD] + 1

2

)

+1

2

(
1

2
Pr[¬ASKH|b′ = b ∧ ¬BADD]

)

− Pr[BADD] − 1

2

≥ ε

2
− 3

2
Pr[BADD] − qH

2k2+1

≥ 1

2
AdvIND−CCA2

Signcrypt (k)− 3 · qH

2 · 2k
− qH

2 · 2k2

This concludes the proof, since qH ≤ qh + qusc. ��
From the efficiency point of view, this generic scheme is almost optimal since

on the sender side, only one hash value and two additions are required before the
parallel encryption and signature processes. The process needed on the receiver
side reaches the same kind of optimality. However, the security requirements of
the basic schemes, the encryption scheme E and the signature scheme S, are very
strong. Indeed, the encryption scheme is required to be semantically secure against
chosen-ciphertext attack and the signature scheme must already prevent existential
forgeries.

9.5 Optimal Parallel Signcryption

Adding a kind of OAEP technique [30], we can improve the generic scheme, in
the sense that we can weaken the security requirements of the basic primitives. The
new proposal just requires the encryption scheme to be deterministic and one way
against chosen-plaintext attack, which is a very weak security requirement—even
the plain RSA encryption scheme [165] achieves it under the RSA assumption.
The signature scheme is required to prevent universal forgeries under the random
message attack—the plain RSA signature scheme achieves this security level.

9.5.1 Description of the Scheme

The scheme is illustrated in Fig. 9.4. The building blocks are

• an encryption scheme E = (EncKeyGen, Encrypt, Decrypt),
• a signature scheme S = (SigKeyGen, Sign, Verify),
• a large k-bit prime p, which defines the field Zp, with p ≥ 2k ,
• two integers k1 and k2 that are security parameters such that k = k1 + k2,
• hash functions

f : {0, 1}k → {0, 1}k, g : {0, 1}k → {0, 1}k and h : {0, 1}∗ → {0, 1}k2
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Fig. 9.4 Optimal signcryption (encryption and signing)

The signcryption scheme works as follows:

• KeyGen(1k) : Compute (sksig, pksig)
R← KeyGenS(1

k)
def= SigKeyGen(1k) and

(skenc, pkenc)
R← KeyGenR(1

k)
def= EncKeyGen(1k). The sender keys are

(skS, pkS)
def= (sksig, pksig)

and the receiver keys are

(skR, pkR)
def= (skenc, pkenc)

We now consider two users, the sender with the keys (skS, pkS) and the receiver
with the keys (skR, pkR).

• Signcrypt(skS, pkR,m): Given a message m ∈ Zp that needs to be encrypted
and signed:

1. Choose a random integer r ∈ {0, 1}k1 and compute a = h(IDS‖IDR‖m‖r).
2. Form an instance of a (2, 2) Shamir secret sharing scheme over Zp with the

polynomial F(x) = (a‖r) + mx mod p. Define two shares s1 ← F(1) and
s2 ← F(2).
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3. Compute the transform r1 ← s1 ⊕ f (s2) and r2 ← s2 ⊕ g(r1).
4. Calculate (in parallel) c1 ← Encrypt(pkR, r1) and c2 ← Sign(skS, r2). The

ciphertext (c1, c2) is then dispatched to the receiver R.

• Unsigncrypt(pkS, skR, (c1, c2)):

1. Perform decryption and signature verification in parallel so

u1 ← Decrypt(skR, c1)

and

u2 ← Verify(pkS, c2)

Note that both the Decrypt and Verify algorithms return integers in Zp

unless some failure occurs. It is possible that Decrypt returns ⊥ if it decides
that the ciphertext is invalid. Similarly, Verify returns a message (as we are
using a signature with message recovery) or ⊥ if the signature is invalid. In
the case of a failure, the Unsigncrypt algorithm returns ⊥ and stops.

2. Compute the inversion t2 ← u2 ⊕ g(u1) and t1 ← u1 ⊕ f (t2).
3. Knowing two points (1, t1) and (2, t2), use the Lagrange interpolation and find

the polynomial F̃(x) = a0+a1x mod p, where a0 = 2t1−t2 and a1 = t2−t1.
4. Extract r from a0 and check whether h(IDS‖IDR‖a1‖r)‖r = a0 mod p. If

the check holds, return a1 as m. Otherwise, return ⊥.

9.5.2 Security Analysis

The following theorem characterizes the security of the optimal parallel signcryp-
tion. (Recall that the universal forgery notion for a signature scheme is discussed in
Sect. 1.3.2.)

Theorem 9.3 If the encryption scheme is deterministic and OW-CPA secure and the
signature scheme is deterministic and uUF-RMA secure, then the optimal parallel
signcryption scheme is FSO/FUO-IND-CCA2 and FSO/FUO-UF-CMA secure in
the insider security model for the multi-user setting.

More precisely, one can prove the two following results.

Lemma 9.3 Consider an insider adversary A against the FSO/FUO-UF-CMA
security of the optimal parallel signcryption scheme, in the multi-user setting, with
advantage AdvU F−C M A

Signcrypt (k) whose running time is bounded by t and who makes
at most qh queries to the random oracle h, qg queries to the random oracle g,
and qsc queries to the signcryption oracle. Then there exists an attacker B against
the uUF-RMA security of the signature scheme with advantage AdvuUF−RMA

Sign (k)
whose running time is bounded by t ′ ≤ t + qsc(τ + O(1)), where τ denotes the
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maximal running time of the encryption and signing algorithms, and that makes at
most qh + qsc queries to the signing oracle, for which

AdvUF−CMA
Signcrypt (k) ≤ (qh + qsc)× AdvuUF−RMA

Sign (k)+ (qg + qh + qsc)
2 + 2

2k2

Lemma 9.4 Consider an insider adversary A against the FSO/FUO-IND-CCA2
security of the generic parallel signcryption scheme, in the multi-user setting, with
advantage AdvIND−CCA2

Signcrypt (k) whose running time is bounded by t and which makes
at most qh queries to the random oracle h and qusc queries to the unsigncryption
oracle. Then there exists an attacker B against the OW-CPA security of the public
key encryption scheme with advantage AdvOW−CPA

Encrypt (k) and whose running time is
bounded by t ′ ≤ t + qusc(τ + O(1)), where τ denotes the maximal running time of
the decryption and verification algorithms, for which

AdvIND−CCA2
Signcrypt (k) ≤ AdvOW−CPA

Encrypt (k)+ qh

2k1
+ qusc

2k2

The proofs are similar to the proofs of Lemmas 9.1 and 9.2. Again, we are in the
random oracle model, and the functions f , g, and h are modeled by random oracles.
The number of queries to these oracles is q f , qg , and qh , respectively. Furthermore,
we denote by qF , qG , and qH the number of answers defined for f , g, and h, respec-
tively.

Proof (of Lemma 9.3) Assume that after qsc queries to oracle Signcrypt, an
adversary A outputs a new ciphertext (c1, c2), which is valid with the probability
AdvUF−CMA

Signcrypt (k). We use this adversary to perform a universal forgery that produces
a new signature on a designated random message μ (under a known random mes-
sage attack) against the signature scheme S. Since we are dealing with the insider
security model, the adversary has a target sender ID∗S in mind and he/she knows
the sender public key pkS . The adversary has access to the signcryption oracle
under skS . Now we design a simulator B, which has access to a list of message–
signature pairs, produced by the signing oracle (the messages are assumed to have
been randomly drawn from Zp and not chosen by the adversary). It is given the pri-
vate/public keys (skR, pkR) produced by the adversary, for the encryption scheme
of the target receiver ID∗R . Note that a valid ciphertext must satisfy the equality
h(IDS‖IDR‖m‖r)‖r = a0 mod p. Therefore, the probability of getting a valid
ciphertext (from ID∗S to ID∗R) without asking h(ID∗S‖ID∗R‖m‖r) is at most 2−k2 .
The query (ID∗S‖ID∗R‖m‖r) must have been asked to the oracle h with a probability
greater than AdvUF−CMA

Signcrypt (k)− 2−k2 . It is provided with the public key pkS of ID∗S
for the signature scheme. It is furthermore given a list of qH message–signature
(M, S) pairs, where messages are randomly chosen. B simulates A in the following
way (where any query to a random oracle is answered randomly, if nothing else is
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specified). The simulation of the h-oracle is performed as followed, after having
chosen a random index i ∈ {1, . . . , qH } and initialized a counter j to be 0. The
index i will designate the critical query we expect to be involved in the forgery:

• For any new query (ID∗S‖IDR‖m‖r) asked to h (by the adversary or by our sim-
ulation of Signcrypt—see below), we increment the counter j . If j = i , a new
valid message–signature pair (M, S) is taken from the list.

• Then, one chooses a random ρ, defines h(IDS‖IDR‖m‖r)← ρ, and sets

s1 ← ρ‖r + m mod p s2 ← ρ‖r + 2m mod p r1 ← s1 ⊕ f (s2)

• One eventually defines g(r1) ← s2 ⊕ M , which is a random value, since M is
randomly distributed. (Note that for the i-th query to h, we use the designated
message μ instead of M , expecting it to be involved in the forgery.) It may fail if
g(r1) has already been defined. However, because of the fresh random choice of
ρ, this occurs with a probability at most qG/2k2 for each fresh h-query.

For the i-th query to h, one simply chooses a random output.
In other words, any query m by A to the oracle Signcrypt can be simulated,

thanks to the above simulation of h (except for the i-th query to h). Indeed, for
answering a Signcrypt-query m from ID∗S to IDR , one simply chooses a random r ,
asks for h(ID∗S‖IDR‖m‖r), using the above simulation. Except for the i-th query to
h, the signature S involved in the pair (M, S) used for the h simulation is a signature
c2 of r2 = M . Using the public key of the receiver IDR , one can encrypt r1 in order
to obtain c1. The pair (c1, c2) is a valid ciphertext of m. If there is a signcrypt query
related to the i-th h-query, we are stuck, we then simply stop the simulation: this i-th
query cannot be involved in the forgery, because of the determinism of the process.

Finally, the adversary A produces a new ciphertext (c1, c2), from ID∗S to ID∗R ,
which is valid with the probability greater than AdvU F−C M A

Signcrypt (k), unless the above
simulation of h fails when trying to assign h(IDS‖IDR‖m‖r) ← ρ. Such a failure
happens with the probability upper bounded by qH qG/2k2 . Simulation indeed fails
if it fails for any of the messages (the number of messages is qH ).

As we have already mentioned, if a forgery is not related to a specific h-oracle
query, then the probability of success is 1/2k2 . Hence, with probability at least
AdvUF−CMA

Signcrypt (k) − (qGqH + 1)/2k2 , we have that the forgery is related to a specific
h-oracle query. With the probability 1/qH , otherwise we abort the simulation, this
ciphertext is involved in the i-th query to the h-oracle and consequently c2 is a
valid signature of μ. Either this is a new signature or it was already involved in a
ciphertext (c′1, c′2) to ID′R produced by Signcrypt. In the latter case, since c2 = c′2,
this implies that c1 = c′1 or ID∗R = ID′R . If ID′R = ID∗R , then c′1 = c1 and, thus,
because of the determinism of the encryption scheme, it means that u1 = u′1, and
then the redundancy may hold with the probability at most 1/2k2 . If IDR = ID∗R ,
then again the redundancy may hold with the probability at most 1/2k2 .

Finally, the probability for B to produce a new valid signature of μ is greater than



190 J. Pieprzyk and D. Pointcheval

AdvuUF−RMA
Sign (k) ≥ 1

qH
×

(

AdvU F−C M A
Signcrypt (k)− qGqH + 2

2k2

)

Furthermore, one can easily see that qG = qg + qH , where qH ≤ qh + qsc. ��
Proof (of Lemma 9.4) As we are dealing with the insider security model FSO/FUO-
IND-CCA2 in the multi-user setting, the adversary has a target receiver ID∗R in
mind. The adversary knows the receiver public key pkR and has access to the
Unsigncrypt oracle under skR . Further, we assume that an adversary A observed
qusc queries to the Unsigncrypt oracle. A also has chosen a pair of messages m0
and m1 and a key pair (skS, pkS) for IDS . It receives a ciphertext (c∗1, c∗2) under
(skS, pkR) of either m0 or m1. The unknown message is denoted by mb, where b is
the bit the adversary wishes to find out. The adversary A outputs a bit d which is
equal to b with the advantage ε, i.e., Pr[d = b] = 1/2+ ε. In the following, we use
a ∗ for all the internal values used in computing the challenge signcryption.

Let us first remark that because of the randomness of the random oracles f and
g, and since r∗1 ← s∗1 ⊕ f (s∗2 ) and r∗2 ← s∗2 ⊕ g(r∗1 ), to get any information
about the bit b (and thus about the encrypted and signed message), the adversary
must have got some information about the internal values s∗1 and s∗2 from either
the ciphertext or from the plaintext. The former case is only possible if the adver-
sary asks for r∗1 to the oracle g (otherwise it has no information about either s∗2
or s∗1 and thus has no information about the polynomial F , and consequently no
information about r∗). The event that the adversary A has asked the oracle g for
r∗1 is denoted by ASKG. The latter case means that the adversary has asked either
h(ID∗S‖ID∗R‖m0‖r∗) or h(ID∗S‖ID∗R‖m1‖r∗). This event is denoted by ASKR. Con-
sequently, Pr[d = b | ¬(ASKG ∨ ASKR)] = 1/2, and thus

ε = AdvIND−CCA2
Signcrypt (k)

= Pr[d = b] − 1/2

= Pr[d = b ∧ (ASKG ∨ ASKR)] + Pr[d = b ∧ ¬(ASKG ∨ ASKR)] − 1/2

= Pr[d = b |ASKG ∨ ASKR] · Pr[ASKG ∨ ASKR]
+Pr[d = b | ¬(ASKG ∨ ASKR)] · Pr[¬(ASKG ∨ ASKR)] − 1/2

≤ Pr[ASKG ∨ ASKR] + Pr[¬(ASKG ∨ ASKR)]/2− 1/2

≤ Pr[ASKG ∨ ASKR]
≤ Pr[ASKG] + Pr[ASKR | ¬ASKG]
≤ Pr[ASKG] + qh

2k1

This last inequality comes from the fact that if ASKG does not occur then the adver-
sary has no knowledge of r∗1 and so ASKR can only occur by guessing this value.

If ASKG occurs, then the plaintext r∗1 of c∗1 has to appear in the queries asked
to g. For each query asked to g, one runs the deterministic encryption algorithm
and therefore can find the plaintext of a given c∗1. So we may use the adversary A
to break OW-CPA of the encryption scheme (EncKeyGen, Encrypt, Decrypt). To
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complete the proof, we have to show how we can simulate all the oracles available
to the adversary A. We thus design a simulator B which receives the private/public
keys (skS, pkS) for the signature scheme, from the adversary A, and it is also given
the public key pkR of the encryption scheme. The simulator B works as follows:

• B is given a ciphertext c∗ (of a random message) to decrypt under the encryption
scheme E and then runs A.

• When B receives the pair of messages m0 and m1 from A, it sets c∗1 ← c∗ and
randomly chooses r∗2 that it can sign using the private key of the signature scheme
to produce c∗2. It therefore sends the pair (c∗1, c∗2) as a ciphertext of mb (for some
bit b). Finally, the adversary A follows the attack in which it cannot detect the
above simulation of the challenge from a real challenge unless the event ASKG
happens, which breaks OW-CPA.

• Before simulating the oracle Unsigncrypt, let us explain how one deals with
h-queries. Indeed, a list �h is managed. For any query h(IDS‖IDR‖m‖r), one
anticipates the signcryption:

H = h(IDS‖IDR‖m‖r) a0 = H‖r t1 = a0+m mod p t2 = a0+2m mod p

Then, u1 = t1⊕ f (t2) and u2 = t2⊕ g(u1) (using the canonical simulations of f
and g, which are new random elements for new queries). Eventually, one stores
(m, r, H, u1, u2, t1, t2) in the list �h .

• Any call by A to the oracle Unsigncrypt under pkR can be simulated using
the queries–answers of the random oracles. Indeed, to a query (c1, c2), one
first gets u2 from c2, thanks to the public key of the signature scheme (u2 =
Verify(pkS, c2)). Then, one looks up into �h for tuples (m, r, H, u1, u2, t1, t2).
Then, one checks whether one of the u1 is really encrypted in c1 under pkR ,
thanks to the deterministic property of the encryption. If no tuple is found, the
simulator outputs ⊥, considering it is a wrong ciphertext. Otherwise, the simula-
tor returns m as the plaintext.

For all the ciphertexts correctly constructed (with s2 = t2 asked to f , r1 = u1 asked
to g and (IDS‖ID∗R‖m‖r) asked to h), the simulation gets back the message. How-
ever, the adversary may produce a valid ciphertext without asking h(IDS‖ID∗R‖m‖r)
required by the above simulation. In that sole case, the simulation may not be per-
fect.

First, let us assume that (IDS‖ID∗R‖m‖r) has not been asked to h:

• If (IDS‖ID∗R‖m‖r) = (ID∗S‖ID∗R‖mb‖r∗) (the tuple involved in the challenge
ciphertext) then H ← h(IDS‖ID∗R‖m‖r) is totally random. The probability that
H‖r is equal to a0 is less than 2−k2 and so ⊥ is the correct response except with
probability 2−k2 .

• In the case where (IDS‖ID∗R‖m‖r) = (ID∗S‖ID∗R‖mb‖r∗), since the process to
produce r1 and r2 is deterministic, r1 = r∗1 and r2 = r∗2 , the same as in the chal-
lenge ciphertext. We remind that both the encryption scheme and the signature
scheme are deterministic. Then c1 = c∗1 and c2 = c∗2, which is not possible.
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Therefore, the probability that the simulation wrongly rejects a valid ciphertext is
less than 2−k2 .

If all the decryption simulations are correct (no occurrence of the event BADD),
we have seen that with a good probability the plaintext c∗1, and thus of c∗, appears
in the queries asked to g, which is immediately detected thanks to the deterministic
property of the encryption scheme so

Pr[ASKG | ¬BADD] ≥ Pr[ASKG] − Pr[BADD] ≥
(

ε − qh

2k1

)

− qusc

2k2

��
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Chapter 10
Identity-Based Signcryption

Xavier Boyen

10.1 Introduction

The notion of identity-based (IB) cryptography was proposed by Shamir [177] as a
specialization of public key (PK) cryptography which dispensed with the need for
cumbersome directories, certificates, and revocation lists.

We recall that in the traditional public key (or asymmetric key) cryptography
model some mechanism must be used in order to bind a particular public key to its
owner; often, this mechanism involves a trusted certificate authority (CA), whose
role is to issue certificates, which are digital signatures that bind a user’s public key
to his/her real name. Such a system is called a public key infrastructure (PKI), and
an apt metaphor for it is that of a phone book bearing the authentic seal of the phone
authority.

By contrast, the distinguishing characteristic of IB cryptography lies in its ability
to use any string as a public key, such as the real name of a person. Because of this,
IB systems implement an automatic directory with implicit binding, without the
need for costly certification and public key publication steps. Although public keys
can be computed by anyone from public information, the corresponding private key
can only be extracted by a trusted authority called the private key generator (PKG).
The PKG has custody of a master secret, which allows it to compute any private key
in the IB system. The PKG can be thought of as an identity-based analog to the CA
at the helm of a traditional public key infrastructure.

10.1.1 Identity-Based Cryptography

In his original description, Shamir had already envisioned the use of IB cryptog-
raphy for the purposes of signature and encryption. Although IB signatures could
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be constructed based on the techniques known at the time, it was only much later
that a solution for IB encryption became known [45, 46]. In both types of scheme,
individual users authenticate with the PKG in order to obtain their private key, in
person or over a secure channel. The keys may then be used as follows:

IB signature (IBS): For signing, a private key can be used by its owner
to create IB signatures: these signatures can be verified from the public
parameters of the IB system only and are binding on the signer’s name
without requiring a certificate chain.

IB encryption (IBE): In the case of encryption, the private key will be used
to decrypt any message encrypted under the recipient’s proper name (and
the IB system’s public parameters): the originator need not look up the
recipient’s key, and indeed the recipient need not even know her private
key at the time the ciphertext is created.

We note that in actual implementations, identity-based keys for signature and
encryption are likely to be distinct and incompatible; however, the abstract key gen-
eration process is the same in both instances.

Many refinements to Shamir’s model have been proposed in recent years. For
key generation, Boneh and Franklin [45, 46] suggested that systems could take
advantage of the flexibility in users’ public keys by appending validity periods to
the names of the individuals, in order to enforce a more frequent rotation of keys
and lessen or eliminate the need for revocation lists. Another refinement is the com-
bination of IB signature and IB encryption into a single IB signcryption operation
[51], for both performance and security reasons.

IB signcryption (IBSC): Consider two parties, Alice and Bob, with unique
names in some common IB system (controlled by the same PKG). Using
her private key, Alice may signcrypt a message addressed to a recipient
named Bob. Using his private key, Bob can decrypt the ciphertext and
authenticate the sender as Alice.

On top of this basic functionality, there may be advantages to using an IB
signcryption primitive that features a number of additional security properties. For
instance, Bob may wish to obtain from the decryption process a cleartext signature
by Alice stripped of its encryption: this requires that the process of unsigncryption
be separable into a pair of independent decryption/verification algorithms (we shall
call such an IBSC scheme a two-layer or detachable IBSC scheme). Additionally,
it is often desirable to have some guarantee of anonymity, which is that no outsider
should be able to recognize the parties involved in a signcrypted transmission.

The reader will notice that there are many similarities between the security prop-
erties that one can obtain from an identity-based signcryption scheme and certain
non-ID-based signcryption schemes from pairings discussed in Chap. 5. In the next
section we outline certain features specific to ID-based cryptography.
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10.1.2 Advantages and Disadvantages

Identity-based cryptosystems differ substantially from their PKI counterparts in a
number of respects. Before we turn our attention to IB signcryption per se, it is
useful to review some of the main implications of identity-based private key gen-
eration. See also Paterson and Price [157] for further discussion on the advantages
and disadvantages of identity-based cryptography.

10.1.2.1 Simplicity of Deployment

A substantial benefit of identity-based encryption over traditional public key sys-
tems is that the sender need not obtain the recipient’s certified public key prior
to initiating a secure communication. The recipient need not generate these keys
ahead of time in the first place or even archive them on the client side since the
PKG can always regenerate lost keys as needed. As a result, the number of flows of
interactions between the various parties is reduced and key management tends to be
greatly simplified, especially on the users’ side.

10.1.2.2 Expiration vs. Revocation

As a side effect of the simplified key management that IB cryptography has to offer,
the issue of compromise and revocation can be dealt with differently and more sim-
ply. Rather than deal with the long-lived keys and revocation lists typical of PKI,
it is common in IB systems to eschew explicit revocation altogether and instead
make the keys sufficiently short-lived that they will expire naturally shortly after
any compromise. Boneh and Franklin [45, 46] propose appending a time-dependent
common component, such as the number of weeks since a predetermined time in the
past, to all static identities. To revoke a user, the PKG will simply stop issuing her
new keys. This approach of using medium-lived keys is practical with IB systems,
but not in traditional PKI, due to the higher complexity of the PKI key generation
and certification process. Generally, medium-sized keys all but eliminate the need
for revocation lists, unless revocation must occur with a shorter latency than any
practical lifespan of the identity-based keys would allow.

Revocation lists are orthogonal to the IB model and can be used in conjunction
with IB cryptography if necessary. However, it is generally an advantage not to
push revocation lists to the edges of the networks (the users) and instead deal with
revocation centrally, at the PKG level. Another advantage of this is that the list of
revoked users need not be made public.

10.1.2.3 Compactness of Signatures

For signatures, the advantages of IB cryptography are less obvious, since IB signa-
tures are functionally equivalent to regular PKI signatures with full certificate chains
to the root CA; the main difference is that certificate chains are likely to occupy
much more space than an IB signature. The benefit of identity-based signatures is
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thus one of compactness. This benefit will carry over to identity-based signcryption,
provided that the ciphertext can be stripped of the encryption layer to expose a
plaintext with a regular IB signature.

IB signatures are also useful in cases where an IB encryption system is already in
use, and the keys and infrastructure can be shared. In the context of IB signcryption,
it is natural to seek to reuse the same infrastructure and keys for the signature and
the encryption functionalities.

10.1.2.4 Concentration of Trust

The main criticism facing IB cryptography stems from the high level of trust that
is bestowed upon the PKG, which has to be trusted at least to the same extent as
a CA is trusted in the traditional model. Indeed, an untrustworthy PKG will have
the power to forge signatures in the name of any user of the system, as well as the
ability to decrypt all of their private communications. One difference is that an abuse
of trust by a CA in a PKI is detectable by the afflicted party, whereas in an ID-based
infrastructure there is more potential for a malicious PKG to remain undetected.

The single point of failure that constitutes the PKG can be partially alleviated
by splitting the master secret among several PKGs under the jurisdiction of several
independent authorities, using threshold techniques as explained in [45, 46]. Addi-
tionally, one can reduce the window of vulnerability from compromise of the PKG
by instituting a policy whereby the public parameters are periodically changed, and
all expired master secrets beyond a certain age are permanently purged from the
system, which would effectively limit the interval during which any IB private key
can be issued.

10.1.2.5 Proof of Possession

A small potential benefit of identity-based cryptography, over public key infrastruc-
tures, is that public key certification in the latter requires the registrant to submit a
proof of possession of the corresponding private key, in addition to proper authen-
tication credentials, or else security can be doubted. There is no analogous step in
identity-based key extraction, which may result in one fewer point of failure.

10.1.2.6 Mandatory Key Escrow

A direct consequence of PKG-issued private keys is that the PKG acts as a manda-
tory key escrow. In certain circumstances this is not desirable, such as when the
users of the system are individuals acting on their own behalf. In other settings
the existence of a mandatory key escrow is indeed very desirable, as in corporate
environments or in any case where the private key holders are members of a larger
organization: the PKG then acts as an easy-to-administer and hard-to-circumvent
central key escrow system, which ensures continuity of decryption by the company
in the event that employees part with the organization without surrendering their
keys. In general, this is a greater concern for encryption than for signatures.
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10.1.3 From IBE to Signcryption

Although the idea of IB cryptography dates from 1984 [177], only an IB signature
scheme was actually constructed at the time, based on conventional algebraic meth-
ods in composite-order RSA groups. One had to wait until 2000 and 2001 to see
the apparition of practical IB encryption (IBE) schemes. One such IBE construc-
tion, due to Cocks [64], is based on the quadratic residuosity problem in traditional
composite-order RSA groups. A more efficient approach was independently pro-
posed in Sakai et al. [171] and Boneh and Franklin [45, 46], based on the mathe-
matical notion of a bilinear pairing constructed on certain types of elliptic curves
(see Chap. 5). Among these, Boneh and Franklin [45, 46] were the first to define
a rigorous security model for IBE and prove the security of their construction in
that model. The work of Sakai et al. [171] can be more appropriately described as
an IB key exchange protocol that uses IB public and private keys similar to the
Boneh–Franklin system. The difference is that key agreement requires secret keys
on both sides and thus requires both parties to be enrolled in the system.

Pairings had made their appearances earlier in cryptology, first in the cryptanal-
ysis of certain elliptic-curve systems with the MOV attack [138] and later in con-
structive cryptography with the creation of a tripartite key exchange protocol [109].
Also, and although IB signatures had been known long ago, it was soon realized
that pairings opened the door to simpler and more efficient constructions than those
already known. Among the first and most influential pairing-based IBS schemes, we
mention Paterson [156], Hess [96], and Cha and Cheon [57].

10.1.3.1 Combining IBE with IBS

A natural question therefore is how to combine IB signatures or authentication with
IB encryption. A direct approach would be to invoke such black-box combination
techniques as discussed in Chap. 2, starting from any IBE and IBS primitive. This
is based on the observation that the identity-based character of the primitives being
combined does not interfere with the security of the combination, provided that their
respective keys are independent.

The first real strides toward efficient IBSC constructions were, however, non-
generic. They included an authenticated key agreement scheme [59], an authenti-
cated IBE system [127], and two IB signcryption schemes from [129, 122] with
differing security properties. Such combined systems were typically more efficient
than what could be achieved by using black-box combination techniques.

10.1.3.2 Alternative IB Paradigms

In parallel, over the years one has seen the development of several alternative
approaches to IBE from pairings, with sometimes quite different characteristics and
applications. We follow the nomenclature introduced in [52].

The full-domain hash IB family is that of the celebrated original Boneh–Franklin
scheme and its many derivatives. It has many advantages, such as simplicity of
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principle and implementation. Its main drawback is its unavoidable reliance on the
random oracle model for all security reductions. The commutative blinding family
is by far the largest. It originates in Boneh and Boyen’s first IBE scheme (called
BB-1) from [41]. It is more complex, but more efficient and empirically much more
flexible, having been extended in many ways, e.g., to support parallel hierarchies
[43], attributes [93], or wildcards [3]. The exponent inversion family is also quite
well known. Its earliest instance in the random-oracle model is the Sakai–Kasahara
[170] scheme and in the standard model the Boneh–Boyen [41] second scheme
(called BB-2). Members of this family are often very efficient, but tend to require
stronger complexity assumptions, and there are only few known extensions [52].
Gentry’s [88] tight IBE scheme arguably belongs to this family.

Whereas in the past 5 years much of the activity in IB cryptography happened
in the commutative blinding paradigm, most known IBSC constructions still follow
the original full-domain hash framework (perhaps because of the simple and very
convenient IBS primitives it supports). For this reason, the concrete IBSC schemes
we discuss here are all based on the Boneh–Franklin full-domain hash paradigm.

10.1.4 Specifying an IBSC System

In this chapter, we study the question of combining IBE and IBS in a practical and
secure way into a unified IBSC system with good security properties. Indeed, it is
of great practical interest to be able to use the same IB infrastructure for signing and
encrypting, while reaping efficiency gains over generic approaches in the process.

To this end, we aim to exploit similarities between IBE and IBS and elaborate
a dual-purpose IBSC scheme based on a shared infrastructure. On the one hand, a
unified system built on a shared infrastructure should bring us efficiency rewards.
On the other hand, care must be taken to ensure that no hidden weakness arises from
the combination, which is always a risk if the same parameters and keys are used.
The questions we must address can be summarized as follows:

• Can IBE and IBS be practiced in conjunction, sharing infrastructure, parameters,
and keys, with greater efficiency than black-box constructions?

• How can such a combination be done in a secure manner?
• What emerging security properties can be gained from the combination?

We will address these questions in a two-prong approach, first by defining a stringent
security model for IBSC and then by studying an actual construction that fulfills the
security model. Both the model and the construction are borrowed from Boyen [51].

10.1.4.1 Security Models for IBSC

Following [51], we define a five-prong security model that any unified IBSC system
should satisfy. At the core, our model must capture the strong notions of security
commonly accepted in public key cryptography, adapted for IBSC: indistinguisha-
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bility of the ciphertext under adaptive chosen-ciphertext attacks and existential
unforgeability of the signature under chosen-message attacks. In both cases, we
specifically consider “insider” adversaries (see Chaps. 2 and 3).

Additionally, we propose three new security notions for IBSC: ciphertext authen-
tication, anonymity, and unlinkability. Although less conventional, these security
notions are highly desirable in practice: they serve to convince the legitimate recip-
ient that the ciphertext itself is authentic and hide its origin and destination to any
eavesdropper or man-in-the-middle impersonator (see also Chap. 5 for the related
notions for non-identity-based signcryption).

10.1.4.2 Two-layer Detachable IBSC Design

After establishing the model, we construct a compliant IBSC scheme following
a two-layer design. It consists of an inner randomized IBS component, on top of
which is grafted a simplified deterministic IBE which “reuses” the randomness of
the inner layer. This results in more compact ciphertexts than a generic composition
of IBE and IBS. The two-layer design also allows the ciphertext to be stripped of
its encryption in order to expose a signature on the decrypted message that anyone
can verify. Here, the two-layer design is furthermore well suited for multi-recipient
encryption of the same message, because the recipient-specific encryption header
can be detached in such a way to allow the signature layer and the bulk message
encryption to be shared across all recipients.

We remark that an efficient and generic approach for constructing “hybrid” sign-
cryption schemes was recently proposed in [37], based on an underlying tag-KEM,
a.k.a. key encapsulation mechanism with labels (see Chap. 7).

10.1.5 Concrete IBSC from Pairings

For concreteness, at the end of this chapter we shall study the IBSC construction of
Boyen [51], which uses the properties of bilinear pairings to achieve a detachable
sign-then-encrypt combination. In the nomenclature of [52], it is based on the full-
domain hash IB paradigm of Boneh and Franklin and has proofs of security under
the bilinear Diffie–Hellman (BDH) assumption [45, 46] in the random oracle model
[29]. This scheme was selected because it satisfies the strongest and most useful
notions of security for IBSC. Its construction borrows elements from the Boneh–
Franklin IBE [45, 46] and the Cha–Cheon IBS [57], but achieves better performance
than their generic combination.

We mention that a variation of the Boyen scheme [51] has been subsequently
proposed by Chen and Malone-Lee [60]. The latter version is slightly more efficient
but eschews some of the security properties of the original scheme, which is why
we will focus on the original construction. We also note that several other IBSC
systems have been proposed over the years [18, 122, 129, 136, 145, 170]; some of
these are even more efficient than the two schemes we just mentioned, but at the
expense of one or another important security property.
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10.2 The Identity-Based Signcryption Primitive

An identity-based signcryption scheme, or IBSC, comprises four algorithms:
Setup, Extract, Signcrypt, and Unsigncrypt. In a (two-layer) IBSC with
detachable signature, the signcryption/unsigncryption algorithms are the compo-
sition of explicit subroutines: Signcrypt = Encrypt ◦ Sign and Unsigncrypt =
Verify ◦ Decrypt.

In summary, Setup generates random instances of the common public parame-
ters and master secret; Extract computes the private key corresponding to a given
public identity string; Signcrypt produces a signature for a given message and
private key, and then encrypts the signed plaintext for a given identity (note that
the encryption routine may specifically require the signature as input); Decrypt
decrypts a ciphertext using a given private key; Verify checks the validity of a given
signature for a given message and identity. Messages are arbitrary strings in {0, 1}∗.

It is useful to decompose Signcrypt into Sign and Encrypt, even if the latter
can only be applied on the output of the former. We shall need this finer level of
granularity when discussing efficient multi-recipient signcryption in particular. With
this convention, the functions that compose a generic IBSC scheme are as follows:

• Setup(1k): On input 1k , produces a pair (msk,mpk) (where msk is a randomly
generated master secret and mpk the corresponding common public parameters,
for the security parameter k).

• Extract(mpk,msk, ID): On input ID, computes a private key sk (corresponding
to the identity ID under (msk,mpk)).

• Signcrypt(mpk, IDS, IDR, skS,m): The sequential application of

– Sign(mpk, IDS, skS,m): On input (IDS, skS,m), outputs a signature s (for
skS , under mpk), and some ephemeral state data r .

– Encrypt(mpk, IDR, skS,m, s, r): On input (IDR, skS,m, s, r), outputs an
anonymous ciphertext C (containing the signed message (m, s) encrypted for
the identity IDR under mpk).

• Unsigncrypt(mpk, skR, Ĉ): The sequential application of

– Decrypt(mpk, skR, Ĉ): On input (skR, Ĉ), outputs a triple ( ˆIDS, m̂, ŝ) (con-
taining the purported sender identity and signed message obtained by decrypt-
ing Ĉ by the private key skR under mpk).

– Verify(mpk, IDS, m̂, ŝ): On input ( ˆIDS, m̂, ŝ), outputs � “true” or ⊥ “false”
(indicating whether ŝ is a valid signature for the message m̂ by the identity
ˆIDS , under mpk).

As mentioned, we shall often view the sequential application of Sign and Encrypt
as a single function, called Signcrypt, which for all purposes may be mono-
lithic. However, we insist on keeping a formal separation between the Decrypt
and Verify algorithms that constitute the function Unsigncrypt. The separation
is necessary in order to allow the authenticity of the plaintext message to be verifi-
able by third parties, without requiring the recipient’s decryption key. The two-step
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unsigncryption process produces a decrypted message–signature pair as an interme-
diate output that is no longer bound to the recipient and is thus verifiable by anyone.
Of course, if both operations are performed in lockstep, we may refer to them as a
single Unsigncrypt function.

We have the following consistency constraints.

Definition 10.1 For master secret and common parameters (msk,mpk)
R←

Setup(1k), any identities IDS and IDR , and matching private keys skS
R←

Extract(mpk,msk, IDS) and skR
R← Extract(mpk,msk, IDR), we require for

consistency that, ∀m ∈ {0, 1}∗:

(s, r)
R← Sign(mpk, IDS, skS,m)

C
R← Encrypt(mpk, IDR, skS,m, s, r)

( ˆIDS, m̂, ŝ)← Decrypt(mpk, skR, Ĉ)

⎫

⎪⎬

⎪⎭

$⇒
ˆIDS = IDS

m̂ = m
Verify(mpk, IDS, m̂, ŝ) = �

We omit the parameters mpk and msk when understood from context.

Identity Roles for Signature and Encryption

To reduce the number of keys that need to be handed out by the PKG, it is desirable
to allow the same user private key, extracted from a given identity, to be used alter-
natively as a signing key in a sender role and as a decryption key in a recipient role.
This corresponds to the notion of one-key signcryption (see Chap. 3). The drawback
of this approach, compared to two-key signcryption, is that it may complicate the
security reduction. Furthermore, it may also be necessary for technical reasons to
disallow the same identity from assuming both the sender and the recipient roles at
once in the same ciphertext: This is the irreflexivity requirement.

If for some reason a “signcrypt-to-self” functionality is desired in a one-key sys-
tem subject to the irreflexivity requirement, it can be emulated by making available
to every user an additional “self”-identity for the sole purpose of signcrypting to
oneself. A less economical option is to duplicate each identity into a signing identity
and a decryption identity, in essence downgrading the one-key system to a two-
key system, at the cost of doubling the number of private keys to be extracted and
stored.

Notational Convention

In the sequel we consider one-key signcryption by default. For clarity, we adopt the
convention of using the subscripts “S” for the sender and “R” for the recipient.

10.3 Security Definitions

We define a number of notions of security for identity-based signcryption.
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Fundamental Properties

Our first two notions are the usual security notions for confidentiality and non-
repudiation/origin authentication, adapted to the context of IBSC. Following the
taxonomy of Chap. 2, in both cases we consider the strongest type of attacker, the
“insider,” which has access to all private keys except that of the party being attacked.

More precisely, when defining message confidentiality, we assume that the adver-
sary may obtain any private key other than that of the targeted recipient and has an
oracle that decrypts any valid ciphertext other than the challenge: this is an insider
chosen-ciphertext attack in the terminology of Chap. 2.

When defining signature non-repudiation, we correspondingly assume that the
forger has access to any private key other than that of the signer and can query an
oracle that signs and encrypts any message but the challenge: This adversary there-
fore mounts an insider chosen-message existential forgery attack in the terminology
of Chap. 2.

Peripheral Properties

We also define the complementary notions of ciphertext authentication and cipher-
text unlinkability, which allow the legitimate recipient to privately authenticate that
he was indeed the intended recipient of a particular ciphertext, but not prove this
to a third party. This is important because the message (and its universally veri-
fiable signature) does not necessarily specify who the intended recipient is; only
the ciphertext does so unequivocally by virtue of being encrypted under a partic-
ular identity. Ciphertext authentication and unlinkability are not trivial to combine
with non-repudiation and confidentiality, and we note, for example, that most IBSC
schemes proposed in the literature do not achieve all four properties at once. Cipher-
text authentication was introduced by Lynn [127] in the context of authenticated IBE
and ciphertext unlinkability was defined by Boyen [51].

Another natural property to demand is ciphertext anonymity [51], which is the
requirement that no third party should be able to discover whom a ciphertext orig-
inates from or is addressed to, without the recipient’s private key. As for confiden-
tiality, it is possible to define anonymity against insider attacks, where the adversary
has access to the sender’s signing key: this is the notion we shall consider. We
note that the anonymity requirement only guarantees security against attacks that
focus on the cryptographic aspect of IBSC; in practice, it will be equally important
that the ciphertext conveyance mechanism from sender to recipient does not betray
their identities, e.g., from a traffic analysis attack on the communication network.
Ciphertext anonymity has recently become an active subject of inquiry in other areas
of IBE; see, for example, [1, 44, 53].

Omitted Properties

A couple of additional properties of IBSC schemes have also been put forward in
the literature; these properties are redundant or conflict with the above, so we will
not define them explicitly.
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One redundant property is that of forward secrecy, suggested in the context of
IBSC first by Libert and Quisquater [122] and also by Nalla and Reddy [145], and
later formalized by McCullagh and Barreto [136]. All these papers define forward
secrecy as the infeasibility of recovering the message from an IBSC ciphertext, even
under exposure of the private key of the sender. Since it is essentially the notion
of semantic security under insider attacks defined in Chap. 2, forward secrecy is
implied by our model and we will not need to consider it explicitly.

One incompatible property that has been put forward is that of transferable veri-
fication; see, for example, Libert and Quisquater [122] and McCullagh and Barreto
[136]. Transferable verification requires that the ciphertext itself, and not just the
decrypted message, be publicly verifiable under a weakened notion of authenticity
that excludes knowledge of the message: transferable verification ensures that any-
one, including third parties, can ascertain the true originator of a ciphertext (but not
its content or the intended recipient).1

The main objection against transferable verification is that it violates intuitive
expectations of secrecy, because the sender is compelled to broadcast her identity to
everyone, in the clear and without repudiation. Transferable verification thus con-
flicts with ciphertext unlinkability. For these reasons, transferable verification is not
necessarily needed or desirable for security; rather, it should be accepted only after
due consideration of its ramifications.

Summary of the IBSC Security Notions

The five distinct IBSC security properties that we seek are thus the following:

1. Insider message confidentiality (Sect. 10.3.1): Guarantees the secrecy, or seman-
tic security, of the message among the communicating parties, against any
attacker, even if the sender’s private key is subsequently exposed. This implies
forward secrecy.

2. Insider signature non-repudiation (Sect. 10.3.2): Provides universal verifiabil-
ity that a decrypted message was written by the signer. The signature remains
binding even if the correct recipient’s private key is exposed. As usual, non-
repudiation implies message authentication and integrity.

3. Ciphertext unlinkability (Sect. 10.3.3): Allows the sender to disavow creating
a ciphertext for any given recipient, even though he/she remains bound to any
validly signed message it contains. In other words, it allows a sender to claim
that her signed message was re-encrypted for another recipient.

4. Ciphertext authentication (Sect. 10.3.4): Guarantees to the legitimate recipient,
alone, that the ciphertext and the signed message it contains were crafted by
the same entity. This property also implies ciphertext integrity and, in particular,

1 We remark that, among the three generic signcryption methods studied by Zheng [203, 204],
“encrypt-then-sign” (EtS) entails transferable verification, “sign-then-encrypt” (StE) forbids it,
and “encrypt-and-sign” (E&S) can go either way.
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reassures the recipient that the communication was secured end to end and was
not re-encrypted along the way.

5. Insider ciphertext anonymity (Sect. 10.3.5): Makes the ciphertext appear anony-
mous (hiding both the sender and the recipient identities) to anyone who does
not possess the recipient decryption key. This remains true even if the sender’s
signing key is exposed.

These properties (including the redundant forward secrecy) were first achieved
together in the IBSC construction of Boyen [51]. Subsequently, Chen and Malone-
Lee [60] made the scheme computationally more efficient by sacrificing ciphertext
unlinkability.

10.3.1 Message Confidentiality

Message confidentiality against adaptive chosen-ciphertext attacks is defined in
terms of the following game, played between a challenger and an adversary. We
combine signature and encryption into a dual-purpose oracle, to allow Encrypt
to access the ephemeral random state data r from Sign. We give the adversary
access to a decryption oracle which differs from an unsigncryption oracle in that
it returns messages and signatures for correctly formed ciphertexts, rather than just
messages.

1. Start: The challenger runs the Setup procedure for a given value of the security
parameter k and provides the common public parameters mpk to the adversary,
keeping the secret msk for itself.

2. Phase 1: The adversary makes a number of queries to the challenger, in an adap-
tive fashion (i.e., one at a time, with knowledge of the previous replies). The
following queries are allowed:

• Signcryption queries in which the adversary submits a message and two dis-
tinct identities, and obtains a ciphertext containing the message signed in the
name of the first identity and encrypted for the second identity.

• Decryption queries in which the adversary submits a ciphertext and an iden-
tity, and obtains the identity of the sender, the decrypted message, and a
valid signature, provided that (1) the decrypted identity of the sender differs
from that of the specified recipient and (2) the signature verification condi-
tion Verify = � is satisfied; otherwise, the oracle only indicates that the
ciphertext is invalid for the specified recipient.

• Private key extraction queries in which the adversary submits any identity of
its choice and obtains the corresponding private key.

3. Selection: At some point, the adversary returns two distinct messages m0 and m1
(assumed to be of equal length), a signer identity IDS , and a recipient identity
IDR , on which it wishes to be challenged. The adversary must have made no
private key extraction query on IDR .
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4. Challenge: The challenger flips b
R← {0, 1}, computes skS

R← Extract(IDS),

(s, r)
R← Sign(IDS, skS,mb), C∗ R← Encrypt(IDR, skS,mb, s, r), and returns

the ciphertext C as challenge to the adversary.
5. Phase 2: The adversary adaptively issues a number of additional signcryption,

decryption, and extraction queries, under the additional constraint that it not ask
for the private key of IDR or the decryption of C∗ under IDR .

6. Response: The adversary returns a guess b̂ ∈ {0, 1} and wins if b̂ = b.

It is emphasized that the adversary is allowed to know the private key skS corre-
sponding to the signing identity. The resulting notion is that of insider security for
confidentiality, also called forward secrecy.

This game is very similar to the IND-ID-CCA attack defined in [45, 46]; we call
it an IND-IBSC-CCA attack.

Definition 10.2 An identity-based signcryption (IBSC) scheme is said to be seman-
tically secure against adaptive chosen-ciphertext insider attacks, or IND-IBSC-CCA
secure, if no randomized polynomial-time adversary has a non-negligible advan-
tage in the above game. In other words, the advantage AdvA(k) = |Pr[b̂ = b] − 1

2 |
of every randomized polynomial-time IND-IBSC-CCA adversary A is a negligible
function of the security parameter k.

We remark that the model requires the decryption oracle to perform a validity
check before returning a decryption result, even though Decrypt does not specify
it. This requirement does not weaken the model since the verification function is
public and allows for stronger security results. We similarly ask that the oracles
enforce the irreflexivity requirement, e.g., by refusing to produce or decrypt cipher-
texts addressed to their sender.

10.3.2 Signature Non-repudiation

Signature non-repudiation is formally defined in terms of the following game,
played between a challenger and an adversary.

1. Start: The challenger runs the Setup procedure for a given value of the security
parameter k and provides the common public parameters mpk to the adversary,
keeping the secret msk for itself.

2. Query: The adversary makes a number of queries to the challenger. The attack
may be conducted adaptively and allows the same queries as in the confidential-
ity game of Sect. 10.3.1, namely signcryption queries, decryption queries, and
private key extraction queries.

3. Forgery: The adversary returns a recipient identity IDR and a ciphertext C .
4. Outcome: The adversary wins the game if the ciphertext C decrypts, under the

private key of IDR , to a signed message (IDS, m̂, ŝ) that satisfies IDS = IDR and
Verify(IDS, m̂, ŝ) = �, where we also require that (1) no private key extraction
query was made on IDS and (2) no signcryption query was made that involved m̂,
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IDS , and some recipient IDR′ , and resulted in a ciphertext C ′ whose decryption
under the private key of IDR′ is the claimed forgery (IDS, m̂, ŝ).

Such a model is very similar to the usual notion of existential unforgeability against
chosen-message attacks [163]; we call it an sUF-IBSC-CMA attack.

Definition 10.3 An IBSC scheme is said to be existentially signature-unforgeable
against chosen-message insider attacks, or sUF-IBSC-CMA secure, if no probabilis-
tic, polynomial-time adversary has a non-negligible advantage in the forgery game
above. That is, the advantage AdvA(k) = Pr[Verify(mpk, IDS, m̂, ŝ) = �] of
every randomized polynomial-time sUF-IBSC-CMA adversary A is a negligible
function of the security parameter k.

In the above experiment, the adversary is allowed to obtain the private key skR for
the forged message recipient IDR , which corresponds to the stringent requirements
of insider security for authentication (see Chaps. 2 and 3). There is one impor-
tant difference: in Chaps. 2 and 3, unforgeability and non-repudiation apply to the
ciphertext itself, which is the only sensible choice in the context of a signcryp-
tion model with a monolithic “unsigncryption” function. Here, given our two-step
Decrypt/Verify specification, we define sUF-IBSC-CMA with a notion of non-
repudiation that concentrates on the decrypted message and its signature, which
is more intuitively desirable and does not preclude ciphertext unlinkability (see
Sect. 10.3.3).

10.3.3 Ciphertext Unlinkability

Ciphertext unlinkability is the property that makes it possible for Alice to deny
having sent a given ciphertext to Bob, even if the ciphertext decrypts (under Bob’s
private key) to a message bearing Alice’s signature. In other words, the signature
should only be a proof of authorship of the plaintext message; not that the ciphertext
was addressed to a particular recipient.

Ciphertext unlinkability allows Alice, e.g., as a news correspondent in a hostile
area, to stand behind the content of her reporting, but conceals any detail regarding
the particular channel, method, place, or time of communication, lest subsequent
forensic investigations be damaging to her sources. When used in conjunction with
the multi-recipient technique of Sect. 10.4.4, ciphertext unlinkability also allows her
to make exact copies of her writings to additional recipients without anyone being
able to prove that she made those copies.

We do not present a formal experiment for this property. A sufficient condition
for this property is that, given a plaintext message signed by Alice, anyone should
be able to create from it a valid ciphertext addressed to himself with an identical
distribution as the corresponding signcryption from Alice.

Definition 10.4 An IBSC scheme is said to be ciphertext unlinkable if there exists a
polynomial-time algorithm EncryptToSelf that, given an identified signed mes-

sage (IDS,m, s) such that Verify(IDS,m, s) = �, and a private key dR
R←
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Extract(IDR), assembles a ciphertext C that is computationally indistinguishable
from a genuine encryption of (m, s) by IDS for IDR .

As mentioned earlier, ciphertext unlinkability is the reason why we considered
the notion of (plaintext) signature unforgeability in Sect. 10.3.2, instead of the usual
notion of ciphertext unforgeability as studied in the signcryption model discussed
in Chaps. 2 and 3. Indeed, if the ciphertext itself were unforgeable it would not be
unlinkable.

Note also that ciphertext unlinkability only makes sense in a detachable sign-
cryption model as in this chapter, as opposed to the monolithic model of Zheng
[203, 204] used by Malone-Lee [129] and by Libert and Quisquater [122]. Indeed,
if part of the ciphertext itself is needed to verify the authenticity of the plain-
text, ciphertext indistinguishability is lost as soon as the recipient is compelled to
expose the validity of the signature. Ciphertext unlinkability is thus a property that
is unattainable in the monolithic signcryption model.

10.3.4 Ciphertext Authentication

Ciphertext authentication is, in a sense, complementary to ciphertext unlinkability.
Whereas unlinkability required that the recipient be unable to prove the origin of
a given ciphertext to a third party, authentication allows the recipient to positively
authenticate the same ciphertext as originating from Alice: it just cannot prove it to
anyone else. Technically, we define ciphertext authentication as the requirement that
the legitimate recipient be able to match the origin of a ciphertext with that of the
signed message it contains.

A useful application is to convince the recipient that the ciphertext remained
encrypted throughout the entire transmission (because it would not pass the test if it
had been re-encrypted in transit). In particular, a ciphertext properly authenticated
in this model cannot have been the target of a (successful, active) man-in-the-middle
interception. We define ciphertext authentication in terms of the following game:

1. Start: The challenger runs the Setup procedure for a given value of the security
parameter k and provides the common public parameters mpk to the adversary,
keeping the secret msk for itself.

2. Query: The adversary makes a number of queries to the challenger as in the
confidentiality game of Sect. 10.3.1, namely signcryption queries, decryption
queries, and private key extraction queries.

3. Forgery: The adversary returns a recipient identity IDR and a ciphertext C .
4. Outcome: The adversary wins the game if C decrypts, under the private key of

IDR , to a signed message (IDS, m̂, ŝ) such that IDS = IDR and that satisfies
Verify(IDS, m̂, ŝ) = �, provided that (1) no private key extraction query was
made on either IDS or IDR and (2) C did not result from a signcryption query
with sender and recipient identities IDS and IDR .
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We contrast the above experiment, which is a case of “outsider” security for authen-
tication on the whole ciphertext, with the scenario for signature non-repudiation,
which required insider security on the signed plaintext only. We call the above
experiment an AUTH-IBSC-CMA attack.

Definition 10.5 An IBSC scheme is said to be existentially ciphertext-unforgeable
against chosen-message outsider attacks, or AUTH-IBSC-CMA secure, if no ran-
domized polynomial-time adversary has a non-negligible advantage in the preced-
ing game. That is, the advantage AdvA(k) = Pr[Verify(IDS, m̂, ŝ) = �] of every
randomized polynomial-time sUF-IBSC-CMA adversary A is a negligible function
of the security parameter k.

10.3.5 Ciphertext Anonymity

Ciphertext anonymity is the last property we define. It requires that the ciphertext
leak no knowledge about its originator or its intended recipient to a polynomially
bounded adversary. (Naturally, the ciphertext must be decipherable by the intended
recipient without that information.)

Ciphertext anonymity against adaptive chosen-ciphertext attacks is defined as
follows:

1. Start: The challenger runs the Setup procedure for a given value of the security
parameter k and provides the common public parameters mpk to the adversary,
keeping the secret msk for itself.

2. Phase 1: The adversary is allowed to make adaptive queries of the same types as
in the confidentiality game of Sect. 10.3.1, i.e., signcryption queries, decryption
queries, and private key extraction queries.

3. Selection: At some point, the adversary returns a message m, two sender identi-
ties IDS0 and IDS1 , and two recipient identities IDR0 and IDR1 , on which it wishes
to be challenged. The adversary must have made no private key extraction query
on either IDR0 or IDR1 .

4. Challenge: The challenger flips two random coins b′, b′′ R← {0, 1}, com-

putes sk
R← Extract(IDSb′ ), (s, r)

R← Sign(IDSb′ , sk,m), C
R← Encrypt

(IDRb′′ , skS,m, s, r), and gives the ciphertext C to the adversary.
5. Phase 2: The adversary adaptively issues a number of additional signcryption,

decryption, and extraction queries, under the additional constraint that it not ask
for the private key of either IDR0 or IDR1 or the decryption of C under IDR0 or
IDR1 .

6. Response: The adversary returns two guesses b̂′, b̂′′ ∈ {0, 1} and wins the game
if (b̂′, b̂′′) = (b′, b′′).

This game is the same as for confidentiality, except that the adversary is challenged
on the identities instead of the message; it is an insider attack. We call it an ANON-
IBSC-CCA attack.
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Definition 10.6 An IBSC scheme is said to be ciphertext-anonymous against adap-
tive chosen-ciphertext insider attacks, or ANON-IBSC-CCA secure, if no random-
ized polynomial-time adversary has a non-negligible advantage in the above game.
In other words, the advantage AdvA(k) = |Pr[b̂ = b] − 1

4 | of every randomized
polynomial-time ANON-IBSC-CCA adversary A is a negligible function of the
security parameter k, where b = (b′, b′′) and b̂ = (b̂

′
, b̂
′′
).

We emphasize that anonymity only pertains to the ciphertext, against non-
recipients and is thus consistent with both non-repudiation (Sect. 10.3.2) and
authentication (Sect. 10.3.4). To illustrate the difference between unlinkability and
anonymity, we note that the authenticated IBE scheme of Lynn [127] is unlinkable,
since any ciphertext can be created by its recipient rather than its sender, but not
anonymous, since the sender identity must be known prior to decryption in order to
decrypt.

An analogous notion of ciphertext anonymity exists for traditional public key
cryptography (see the discussion in Chap. 5).

10.4 A Concrete IBSC Scheme

In this section we construct two efficient identity-based signcryption schemes; both
are based on the two-layer detachable design and satisfy the full complement of
security properties presented in Sect. 10.3. Both constructions make use of the
Boneh–Franklin setup, which we recall next.

10.4.1 The Boneh–Franklin Framework

We give a brief summary of the Boneh–Franklin system for identity-based cryp-
tography based on bilinear pairings on elliptic curves. Its setup and private key
generation algorithms will be used in the IBSC construction.

We recall the notion of a bilinear map group from Sect. 5.2. In this chapter, we
treat the bilinear pairing and the algebraic group over which it is defined as abstract
mathematical objects satisfying the properties summarized in a few definitions to
follow.

Let G1 and GT be two cyclic groups of prime order p written in multiplicative
notation (and using 1 to denote their respective neutral elements).

Definition 10.7 A bilinear pairing is an efficiently computable, non-degenerate
map e : G1 × G1 → GT such that, for all x, y ∈ G1 and all a, b ∈ Z, we have
e(xa, yb) = e(x, y)a b. The group G1 is called a bilinear map group; the group GT

is the target group.

Definition 10.8 The (computational) bilinear Diffie–Hellman (BDH) problem in a
bilinear map group as above is described as follows: given g, ga, gb, gc ∈ G1, where

g is a generator and a, b, c
R← Zp are chosen at random, compute e(g, g)a b c. The
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advantage of an algorithm B at solving the BDH problem is defined as AdvB(k) =
Pr[B(g, ga, gb, gc) = e(g, g)a b c].
Definition 10.9 Let G be a polynomial-time randomized function that, on input 1k ,
returns the description of a bilinear pairing e : G1×G1 → GT between two groups
G1 and GT of prime order p. A BDH parameter generator G satisfies the bilinear
Diffie–Hellman assumption if there is no probabilistic, polynomial-time algorithm
B that solves the BDH problem in time at most polynomial in k and with advan-
tage at least inverse polynomial in k. The probability space is that of the randomly
generated parameters (G1,GT , p, e), the BDH instances (g, ga, gb, gc), and the
randomized executions of B.

Using a BDH parameter generator, the Boneh–Franklin IBE scheme defines four
operations: two operations used by the PKG (for setup and key extraction) and two
used by the individual users (for encryption and decryption). We will make use of
the two PKG algorithms (as defined below):

bfSetup: On input a security parameter k ∈ N: obtain (G1,GT , p, e)
R← G(1k)

from the BDH parameter generator; pick a random generator g
R← G1 and

a random exponent msk
R← Zp, set gmsk ∈ G1; and specify a hash func-

tion H0 : {0, 1}∗ → G1. Output the common public parameters mpk =
(G1,GT , p, e, g, gmsk, H0) and the master secret msk.

bfExtract: On input ID ∈ {0, 1}∗: hash the given identity into a public ele-
ment iID ← H0(ID) ∈ G1 and output dID ← (iID)

msk ∈ G1 as the private
key skID.

10.4.2 Fully Secure IBSC Construction

Table 10.1 details the algorithms of the scheme.
Although Sign and Encrypt are described separately, the latter can only be

run on the output of the former; together they constitute the atomic identity-based
Signcrypt operation.

Recall also that Decrypt and Verify together define the Unsigncrypt opera-
tion, but those can be used separately.

10.4.2.1 Principle of Operation

The Setup and Extract functions are based on the original Boneh–Franklin IBE
system [45, 46]. Sign and Verify implement the IBS of Cha and Cheon [57].
Encrypt and Decrypt are specially crafted to interface with the IBS layer and
reuse its randomness.

In brief, Sign implements a randomized IBS whose signatures comprise a com-
mitment j to some random r chosen by the sender and a closing v that depends
on r and the message m. Encrypt superimposes two layers of (expansionless)
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Table 10.1 The identity-based signcryption (IBSC) scheme introduced by Boyen [51]

Setup
Input: security parameter k ∈ N

Method:
Create Boneh–Franklin parameters G1,GT , p, e, g, gmsk and secret msk as in bfSetup
Specify five independent cryptographic hash functions (H0 as in bfSetup):
H0 : {0, 1}∗ → G1
H1 : G1 × {0, 1}∗ → Zp

H2 : GT → {0, 1}&log p'
H3 : GT → Zp
H4 : G1 → {0, 1}k

Output: the public system parameters (G1,GT , p, e, g, gmsk, k, H0, H1, H2, H3, H4) and
corresponding master secret msk ∈ Zp

Extract
Input: master secret msk and identity string ID ∈ {0, 1}∗
Output: private key dID ← H0(ID)msk ∈ G1, as in bfExtract

Signcrypt = Sign + Encrypt

Sign
Input: private key dS of some IDS ,

plaintext message m
Method:

iS ← H0(IDS) (so dS = (iS)
msk)

Randomly sample r
R← Zp

j ← (iS)
r ∈ G1

h ← H1( j,m) ∈ Zp
v← (dS)

r+h ∈ G1
Output: signature ( j, v) and auxiliary data
(m, r, IDS, iS, dS)

Encrypt
Input: recipient IDR , signature data
(IDS, iS, dS, j, v,m, r) as above

Method:
iR ← H0(IDR)

u ← e(dS, iR) ∈ GT
k ← H3(u) ∈ Zp
x ← j k ∈ G1
w← uk r ∈ GT
y ← H2(w)⊕ v
z ← EncH4(v)((IDS,m))

Output: ciphertext (x, y, z)

Unsigncrypt = Decrypt + Verify

Decrypt
Input: pvt. key dR of recipient IDR , anony-

mous ciphertext (x̂, ŷ, ẑ)
Method:

iR ← H0(IDR)

ŵ← e(x̂, dR)

v̂← H2(ŵ)⊕ ŷ
( ˆIDS, m̂)← DecH4(v̂)(ẑ)

îS ← H0( ˆIDS)

û ← e(îS, dR)

k̂ ← H3(û)

ĵ ← x̂ k̂−1

Output: purported plaintext m̂, signature
( ĵ, v̂), and sender ˆIDS

Verify
Input: message m̂, signature ( ĵ, v̂), and

sender ˆIDS to verify
Method:

îS ← H0( ˆIDS)

ĥ ← H1( ĵ, m̂)

Test e(g, v̂)
?= e(gmsk, (îS)

ĥ ĵ)
Output: � if equality holds; else ⊥

Here, Enckey(data) and Deckey(data) are the encryption and decryption functions of a deterministic
symmetric cipher assumed semantically secure under passive attacks (for one-time keys), e.g., the
“XOR” operation with the key used as a one-time pad. All hash functions are modeled as random
oracles
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deterministic encryption. The inner layer encrypts j into x using a minimalist
authenticated IBE built from an implicit identity-based key agreement. The outer
layer concurrently determines the value w that encrypts to the same x under a kind
of anonymous IBE, derandomized to rely on the entropy already present in x . Bulk
encryption uses a deterministic symmetric cipher with a one-time key.

It is helpful to observe that the exponentiations �r and �k used in Sign for com-
mitment and in Encrypt for authenticated encryption, as well as the key extraction
�msk, and the bilinear pairing e(�, iR) that intervenes in the determination of w, all
commute. The legitimate recipient derives its ability to decrypt x from the capacity
to perform all of the above operations (either explicitly or implicitly), in a specific
order, which is different from the order in which the sender performed the corre-
sponding operations, but gives the same result.

10.4.2.2 Consistency and Security

The next theorem establishes that the scheme behaves as expected when operated
by honest parties.

Theorem 10.1 The IBSC scheme of Table 10.1 is consistent.

Proof First, we show that the decryption of a honest ciphertext is correct. Observe
that if (x̂, ŷ, ẑ) = (x, y, z), it follows that ŵ = e(iS

r k, iR
msk) = e(iS

msk, iR)
r k = w

(in GT ), and thus v̂ = v and ( ˆIDS, m̂) = (IDS,m); we also have û = e(îS, iR)
msk =

u (in GT ), hence k̂ = k (in Zp), and thus ĵ = ( j k)k̂
−1 = j (in G1).

Next, we show that the decrypted message/signature pair will pass the ver-
ification test. Indeed, if (m̂, ˆIDS, ĵ, v̂) = (m, IDS, j, v), we have e(g, v̂) =
e(g, iS)

msk (r+h) = e(gmsk, (îS)
h (îS)

r ) = e(gmsk, (îS)
h ĵ) (in GT ), as required.

We now state without proof the security theorems corresponding to the five secu-
rity properties given in Sect. 10.3. We refer the reader to the full version of [51] for
the proofs.

Theorem 10.2 Let A be a polynomial-time IND-IBSC-CCA attacker that has
advantage at least ε and makes at most qi queries to the random oracles Hi ,
i = 0, 1, 2, 3, 4. Then, there exists a polynomial-time algorithm B that solves the
bilinear Diffie–Hellman problem with advantage at least ε/(q0 q2).

Theorem 10.3 Let A be an sUF-IBSC-CMA attacker that makes at most qi queries
to the random oracles Hi , i = 0, 1, 2, 3, 4, and at most qsc queries to the sign-
cryption oracle. Assume that, within a time span at most t , A produces a success-
ful forgery with probability at least ε = 10 (qsc + 1) (qsc + q1)/2k , for a security
parameter k. Then, there exists an algorithm B that solves the bilinear Diffie–
Hellman problem in expected time at most 120686 q0 q1 t/ε.

Theorem 10.4 There exists a deterministic polynomial-time EncryptToSelf algo-
rithm that, given an identifier IDS, a signed plaintext (m, j, v) issued by IDS, and
a private key dR for an identity IDR, creates a ciphertext (x, y, z) identical to the
ciphertext that Encrypt would produce from (m, j, v) for identity IDR. In particu-
lar, (x, y, z) decrypts to (m, j, v) under dR with probability 1.
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Theorem 10.5 Let A be a polynomial-time AUTH-IBSC-CMA attacker with advan-
tage at least ε that makes at most qi queries to the random oracles Hi , i =
0, 1, 2, 3, 4. Then, there exists a polynomial-time algorithm B that solves the BDH
problem with advantage at least 2 ε/(q0 (q0 − 1) (q1 q2 + q3)).

Theorem 10.6 Let A be a polynomial-time ANON-IBSC-CCA attacker that has
advantage at least ε and makes at most qi queries to the random ora-
cles Hi , i = 0, 1, 2, 3, 4. Then, there exists a polynomial-time algorithm
B that solves the bilinear Diffie–Hellman problem with advantage at least
3 ε/(q0 (q0 − 1) (q1 q2 + 2 q2 + q3)).

10.4.3 A Performance/Security Trade-Off

It is possible to optimize the previous scheme in various ways if one accepts to relax
certain of its security properties.

For example, Chen and Malone-Lee [60] show how to achieve a 30% speed-up by
removing some of the blinding and unblinding from the encryption and decryption
functions, at the cost of dropping the unlinkability requirement.

We briefly describe the changes as follows:

• Sign is unchanged.
• Encrypt is simplified by dropping the computation of x = j k and outputting j

instead, and using a hash of ur instead of ukr to blind (v, IDS,m) in the output.
• Decrypt is likewise simplified by computing ûk = e( ĵ, dR) instead of ŵ and

using it to unblind (v̂, ˆIDS, m̂). The second pairing previously used to recover ĵ
is no longer necessary since ĵ is now given in the ciphertext.

• Verify is unchanged. It takes the decrypted quadruple (m̂, ĵ, v̂, ˆI DS) as input.

With this modification, the resulting scheme is no longer unlinkable because the
“decrypted” signature component ĵ , required by Verify, can be matched with the
“encrypted” ciphertext component j , exposed by Encrypt.

10.4.4 Signcrypting for Multiple Recipients

It is often desirable to sign and encrypt the same message for multiple recipients. In
this case, and especially if the message is a large data file, it is natural to ask whether
the bulk of the signcryption can be performed once, with each recipient receiving
identical ciphertexts except for some small recipient-specific header file.

In the scheme (as well as in the relaxed version), signcrypting the same message
m for a set of n recipients IDR1, . . . , IDRn is easily achieved by carrying out the
Sign operation once (which establishes the randomization parameter r ), followed
by an application of the Encrypt operation for each recipient identity, based on the
same intermediate values.
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Since the message m and the randomization parameter r are invariant for all the
Encrypt instances, it is easy to see that the z component of the ciphertext also
remains the same. Thus, the multi-recipient composite ciphertext is easily assem-
bled from one instance of (xi , yi ) ∈ G1 × G1 for each recipient Ri , plus a single
instance of z ∈ {0, 1}∗ to be shared by all. Thus, a multi-recipient ciphertext is
compactly encoded in the form C ← ((x1, y1), . . . , (xn, yn), z). Since z is the only
ciphertext component whose length depends on the message, this encoding results
in a substantial economy of space.



Chapter 11
Key Establishment Using Signcryption
Techniques

Alexander W. Dent

11.1 Introduction

Possibly the most useful branch of public key cryptography is key establishment.
After all, it is the problem of symmetric key distribution that prompted Diffie and
Hellman to propose the notion of public key cryptography in the first place [74]. The
basic idea behind a key establishment protocol is that two (or more) parties should
exchange cryptographic messages in such a way that, at the end of the protocol,
they both know a shared key—typically a bitstring of a fixed length that can be
used with a symmetric cryptosystem. It is imperative that no party other than those
actively participating in the key establishment protocol (and perhaps one or more
trusted third parties) can obtain any information about this shared secret key. We
also usually require that, at the end of a successful protocol execution, each party
is convinced of the identity of the other party. Hence, the basic security notions
we require from a key establishment protocol are those of confidentiality and entity
authentication.

Key establishment can generally be broken down into two categories: key trans-
port protocols and key agreement protocols. A key transport protocol is a protocol
in which one party randomly generates a shared key and securely transports that key
to another party. This can be very simple and efficient, but in some applications the
fact that only one of the two parties contribute to the key generation process may be
seen as a drawback. This is particularly true if the two parties do not trust each other!
However, in other applications, this can be an advantage; for example, if one party
is a low power device that cannot reliably contribute to the key generation process.
The other category is that of key agreement protocols. These are protocols in which
both parties contribute equally to the choice of key that is finally established, and
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no one party has the ability to choose the key value. Key agreement protocols are
typically more complicated than key transport protocols.

As we have mentioned, a key establishment protocol typically requires confiden-
tiality protection and entity authentication. The entity authentication requirement
bears further examination. A good key establishment protocol assures each party
of the identities of all the other parties currently engaging in a protocol execution.
This requires two assurances: that the messages that they are receiving come from a
named individual (origin authentication) and that the messages that they are receiv-
ing have been recently generated (freshness). It is easy to see that a signcryption
scheme can provide confidentiality protection and origin authentication, but does
not contain an implicit assurance of freshness.

The basic requirements of confidentiality protection and entity authentication
can prevent most attacks against a key establishment protocol. For example, the
confidentiality protection requirement should prevent an attacker from discovering
any information about the key that the protocol establishes (sometimes known as
the session key). The freshness requirement should prevent an attacker from being
able to replay old messages and force a party to re-use an old (and therefore poten-
tially compromised) session key. The origin authentication requirement should pre-
vent an attacker from being able to establish a key with a party on the mistaken
assumption that the attacker is someone else. Thus our set of basic requirements
prevent most reasonable types of attack; however, there are a few specific attacks
that are worth further consideration. Most notably, we need to consider forward
secrecy.

Attacks against forward secrecy involve an attacker trying to compromise an old
session between two parties. The basic requirement is that an attacker should be
unable to determine the session key that was established in a previous execution
of the key establishment protocol, even if the attacker manages to get hold of the
long-term private keys of both parties. Hence, the key remains secret against attacks
that are made in the future—this is why the security property is known as forward
secrecy even though it refers to attacks made against past sessions. This is a useful
property for a key establishment protocol to have, but again it is not necessary for
all applications and may be computationally more expensive than other protocols.

Although signcryption seems like an excellent candidate to provide the basic
security notions of confidentiality and authentication required by a key establish-
ment protocol, there are comparatively few such protocols. Signcryption-based key
establishment protocols have been proposed by Zheng and Imai [205, 208], Dent
[73], Kim and Youm [116], Bjørstad and Dent [37], and Gorantla et al. [92]. Only
Gorantla et al. present a security proof for their key establishment scheme. We dis-
cuss these proposals (plus a simple key transport protocol) and try to establish a
security proof for the Bjørstad and Dent scheme.

Key establishment protocols are difficult and subtle cryptographic operations.
Unfortunately, we will not have space in this chapter to survey the whole field.
A good introduction to the design and analysis of entity authentication and key
establishment protocols is given by Boyd and Mathuria [50].
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11.2 Formal Security Models for Key Establishment

11.2.1 Motivation

Several attempts have been made to provide formal security models for key estab-
lishment. The first model was proposed by Dolev and Yao [79] and was designed for
the automated checking of key establishment protocols. It treated any cryptographic
operation as a perfect “black-box” operation and can therefore not guarantee secu-
rity. Another model, termed the CK model, was developed by Bellare et al. [23] and
Canetti and Krawczyk [55]. This approach is modular and allows for easier design of
new protocols; however, it tends to produce less efficient protocols and is not really
suitable for analyzing existing protocols. A third model is known as the universal
composability model and was developed by Canetti [54] and Canetti and Krawczyk
[56]. Here, security is proven by showing that the protocol is indistinguishable from
an ideally functioning protocol. This provides a strong guarantee of security, but
tends to involve complex proofs. A good analysis of these different approaches is
given by Boyd [49].

We choose to use the approach initially put forward by Bellare and Rogaway [28]
and subsequently revised by Bellare et al. [27] and Choo et al. [63]. There are several
reasons for choosing this model. First, it is particularly suitable for examining exist-
ing protocols rather than for the construction of new protocols (unlike the modular
CK model). Second, it provides reasonable security guarantees. It does not provide
the strong guarantees of the universal composability model of Canetti, which shows
that the protocol is secure under all conditions, but it does show that the protocol
is secure against any reasonable attacker when used in any reasonable environment.
Lastly, the proof techniques used with the Bellare–Rogaway approach are similar
to the techniques used elsewhere in this book (unlike the Canetti or Dolev–Yao
approaches).

The idea behind the Bellare–Rogaway security model is to give the attacker com-
plete control over the network by which a series of legitimate parties communicate.
The attacker can examine any message as it is sent across the network, alter mes-
sages, delete messages, delay messages, inject entirely new messages, or replay old
messages. In order that the attacker has some network traffic to view, he can also
force any party in the network begin a key establishment protocol with any other
party in the network and all parties must respond correctly to any message that they
receive. The attacker also has the ability to reveal the session key that was computed
in a successfully completed execution of the protocol and corrupt parties to learn
their long-term private keys. This models the case where the attacker is a legitimate
member of the network and/or can obtain a party’s long-term private key through
bribery, intimidation, or theft. We believe that this models the abilities of an attacker
in any reasonable system.

So, we have now modeled the attacker’s ability to interact with the network, but
we have not considered what it means for a protocol to be secure. In order to model
security, the attacker at some point chooses a successfully completed execution of
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the protocol which has resulted in the establishment of a shared secret key about
which the attacker should have no information. The attacker is then given either
that shared secret key (with probability 1/2) or a completely random key (with
probability 1/2). It is the attacker’s job to guess whether the key that they have
been given is real or random. The idea is that if no reasonable attacker can tell the
difference between a real key and a random key, then, as far as the attacker can tell,
any cryptographic operations computed using the shared secret key might as well
have been computed using a random key that is unrelated to any of the messages
that the attacker saw during the key establishment protocol.

11.2.2 Sessions

The formal security model is going to talk about the security of a session belonging
to an entity. The notion of a session is very important, as we wish to deal with situ-
ations where one entity can be communicating with another entity in multiple ways
or for multiple purposes. Each of these communications is a session and knowledge
of the session key for one session should not help an attacker determine the session
key for another session. In other words, we wish to model a situation where (for
example) a user is communicating with a server through both a HTTPS protocol
and an SFTP protocol. These are separate sessions despite the fact that they are
both passing data between the same entities. Knowledge of the session key used
to encrypt data in the HTTPS session should not help an attacker break the SFTP
session.

More precisely, we will talk about entity A having a session with entity B under
the session identity (SID) sid. This is the session belonging to entity A for the
purposes of sending and receiving messages from entity B and identified from the
complete list of open sessions that these two entities share by the use of unique
session identity sid. Therefore, a full communication consists of two sessions: the
session entity A has with entity B under session identity sid and the session entity
B has with entity A under the same session identity sid. However, since we are
going to give an attacker the ability to send messages to A that purport to come
from entity B, the fact that entity A has an open session with entity B under session
identity sid does not mean that entity B has to hold a corresponding session with
entity A.

Furthermore, even if the A holds an open session with B under session identity
sid and B holds an open session with A under session identity sid, this does not
mean that the messages that A has sent have necessarily been delivered to B unal-
tered or vice versa. We introduce the idea of a matching conversation to describe a
situation where messages are passed faithfully between A and B. Two sessions are
a matching conversation if they both agree on the identities of the participants, they
both agree on the session identity, and the only messages that are passed between
them are the messages output by their partner (and these are passed in the correct
order).
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Note that a session is uniquely identified by three things: (1) the identity of the
owner of the session (entity A), (2) the identity of the corresponding party (entity
B), and (3) the session identity (sid).

11.2.3 The Formal Security Model

Let A be any probabilistic, polynomial-time attacker. We suppose that the protocol
involves entities with identities defined in some namespace S. Hence, we refer to
actions taken by an entity A with an identity I DA ∈ S. We assume that the identity
I DA uniquely identifies A from the set of all possible entities. A has access to the
network via the following series of oracles:

• Query(I DA): This oracle allows the attacker to obtain the legitimate public infor-
mation about the entity A, including their public key values.

• Send(I DA, I DB, sid,m): This mimics the effects of entity A sending the mes-
sage m to entity B using the session with session identity sid. Hence, the oracle
will return the response of entity B to this message.

There are a couple of subtleties in the use of this oracle. First, the
attacker may choose to send a special message symbol λ. This query
Send(I DA, I DB, sid, λ) forces entity A to initiate the key establishment pro-
tocol with entity B. If the protocol allows the session identity to be chosen
by an outside agent, then this is supplied as sid; otherwise, sid should be the
empty string.

Second, if the attacker chooses to send a message Send(I DA, I DB, sid,m) for
which entity B does not have an existing session with entity A under ses-
sion identity sid, then the oracle responds as entity B would respond as if it
received the first message in a fresh session of the key establishment protocol.

Third, if Send(I DA, I DB, sid,m) causes entity B to terminate its involvement
in a protocol (either because the protocol has been violated or because the
protocol has been successfully completed) then the oracle will not only pro-
vide the correct response but also inform the attacker that the protocol has
terminated and whether the protocol execution was successful or unsuccessful.
After a protocol has terminated for a party, further Send(I DA, I DB, sid,m)
queries do not elicit a response.

Lastly, it is worth noting that session identities do not have to remain fixed during
protocol execution. As each party sends a message, it is possible for the session
identity to change providing that both parties can always recognize to which
session an identity refers. Indeed, many protocols define the session identity to
be the concatenation of all messages that have been sent so far in a particular
protocol execution (along with the identities of the participants).

• Expire(I DA, I DB, sid): This allows a session identity to be re-used by indi-
cating that the original session with that identity has now expired. If an attacker
calls the oracle Expire(I DA, I DB, sid) then entity B assumes that the protocol
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execution with entity A using session identity sid has been terminated. Thus, any
subsequent Send(I DA, I DB, sid,m) queries will be handled as if this were the
beginning of a new protocol execution.

• Reveal(I DA, I DB, sid): This allows the attacker to determine the secret shared
key that entity B has computed in the session sid with entity A. It can only be
used if entity B has successfully terminated a protocol execution with session
identity sid and if entity B believes that the protocol execution was undertaken
with entity A. It returns the session key for that session.

• Corrupt(I DB): This allows an attacker to corrupt a legitimate party. It is meant
to model insider attacks and attacks in which the attacker can coerce parties
into revealing their private information. There is some debate about whether this
should involve the attacker learning all of the secret information held by a party
(including internal state variables) or just the party’s long-term private keys. We
will only consider the simpler case where the oracle returns the long-term private
key of entity B. This models attacks in which the attacker can corrupt a regis-
tration authority to learn private keys, or the private key distribution service, but
cannot corrupt the key establishment device itself to learn internal state variables.
Thus, security proofs in this model only guarantee security in situations where the
attacker cannot learn the value of these variables.

• Test(I DA, I DB, sid): This oracle may only be queried once and can only be
used if entity B has successfully terminated the session with session identity sid
and if it believes that the session is established with entity A. The oracle randomly

chooses a bit b
R← {0, 1}. If b = 0 then the oracle responds with the session key

for that session. If b = 1 then the oracle responds with a randomly generated key
of the same length as the session key.
Note that the attacker is only attempting to determine the key held by entity B
(in the session with identity sid that it believes that it has completed with entity
A). We do not require that entity A has successfully terminated the protocol or
that entity A has even undertaken a protocol execution with entity B under the
session identity sid.

The attacker’s aim is to guess the value of b used in the Test query. Of course,
there are trivial ways in which an attacker can succeed in this task; for example,
the attacker could use a Reveal query to obtain the correct value of the session
key or use a Corrupt query to learn the long-term secret of one the parties and
then impersonate that party in the protocol execution that is to be tested. We wish
to exclude these trivial attacks and, by doing so, we introduce a formal notion of
freshness:

Definition 11.1 (Freshness) A protocol execution that entity B believes it has
undertaken with entity A and using session identity sid is fresh if

1. entity B has successfully terminated the protocol execution,
2. the attacker has not queried the Reveal oracle on the input (I DA, I DB, sid)

unless the attacker has called the Expire(I DA, I DB, sid) oracle,
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3. the attacker has not queried the Reveal oracle on the input (I DB, I DA, sid)
unless the attacker has called the Expire(I DB, I DA, sid) oracle,

4. the attacker has not queried the Corrupt oracle on either I DA or I DB .

Again, we stress that this definition is about the state of the key held by entity B.
We do not require that A has successfully terminated the protocol or that A has even
undertaken a protocol execution with B under the session identity sid. (Although
we do require that if A has undertaken the protocol, then the attacker may not make
a Reveal query to A to learn the key value.)

Definition 11.2 (Security of a key establishment protocol) A key establishment
protocol is said to be secure if every probabilistic, polynomial-time attacker A has
negligible advantage in winning the following game:

1. The challenger generates the system parameters param for the protocol at a given
security level k.

2. The attacker executes A on the input (1k, param). The attacker may query any
of the oracles described above. The attacker terminates by outputting a guess b′
for b.

The attacker is said to win the game if b = b′ and the test session remains fresh (i.e.,
the attacker does not make a Corrupt query on either of the participants of the test
session or a Reveal query on the test session before making an Expire query). The
attacker’s advantage is defined to be

AdvA(k) = |Pr[A wins] − 1/2| (11.1)

11.2.4 Entity Authentication

As we discussed in the introduction to this chapter, most key establishment pro-
tocols are supposed to reassure a party of the identity of all the other parties with
which they have established a shared key. At first glance, the security model we
have introduced does not appear to model attacks against the entity authentication
requirements for a key establishment protocol. After all, the model appears to be
only concerned with whether an attacker can distinguish a real key from a random
key, a test traditionally associated with assessing confidentiality protection. How-
ever, many different types of entity authentication attack are included in this model
by virtue of the way in which the model defines freshness.

Consider, for example, an attack against the origin authentication property of a
protocol. In such an attack, entity B is typically convinced that they have established
a key with entity A under a session identity sid, when in fact they have established
a key with entity A′ under the session identity sid ′. Suppose the attacker makes
the query Test(I DA, I DB, sid) and receives back either the key that B has estab-
lished or a random key. The attacker can easily determine whether it has been given
the real key or not by making a Reveal(I DB, I DA′ , sid ′) query. This query does
not contradict the definition of freshness, which forbids Reveal(I DA, I DB, sid)
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and Reveal(I DB, I DA, sid) queries, and is therefore perfectly legal. Hence, the
existence of an attack against origin authentication implies that the protocol is not
secure in the given security model.

We may use a similar trick to demonstrate that the attacker may not replay old
messages. Suppose B successfully concludes the key establishment protocol with
A with the session identity sid. If a replay attack is possible, then the attacker can
make the query Test(I DA, I DB, sid) and then force the session to expire using
the Expire(I DA, I DB, sid) query. The attacker can then replay the messages to
set up a new session with the same session key. This session can be the subject of
a Reveal(I DA, I DB, sid) query and so the attacker can learn the correct value of
the key for the test session.

11.2.5 Forward Secrecy

Forward secrecy is the idea that a session key should remain secure even if a party’s
long-term private key is later compromised. These attacks can easily be modeled
using the Bellare–Rogaway model by allowing the attacker to query the Corrupt
oracle after making the Test query; however, our model explicitly excludes these
types of attack by demanding that the test session remains fresh throughout the
attack game. This is purposefully done. While forward secrecy is a useful property
of a key establishment scheme, it is not required by many applications and can
degrade efficiency. None of the signcryption-based key establishment protocols that
we will examine have forward secrecy.

11.2.6 Key Compromise Impersonation Attacks

Another interesting type of attack against the entity authentication properties of a
key establishment protocol is a key compromise impersonation attack. In this sce-
nario, the attacker corrupts an entity and then tries to impersonate a different entity
to the corrupted entity. We may define resistance to key impersonation attacks by
saying that a (possibly corrupt) party will only ever terminate successfully in a
session with an uncorrupted party if there exists a matching conversation for that
session. Most key establishment protocols based on signcryption techniques auto-
matically resist key compromise attacks if the signcryption scheme is secure against
unforgeability attacks made by an insider.

11.2.7 Notation

We will use the following notation in this chapter. Let A and B be two parties who
wish to establish a shared key, let IDA and IDB be digital representations of their
identities in some commonly agreed format, and let (skA, pkA) and (skB, pkB) be
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their public/private key pairs. We assume that A and B wish to establish the common
key K AB of length �k and that all nonces are of length �n . A nonce produced by an
entity A will typically be denoted NA.

11.3 Key Transport

A key transport protocol is a protocol in which one party generates a key and
securely forwards this key to one or more recipient parties. It is simple to con-
struct a secure key establishment protocol that combines a public key encryption
scheme and a digital signature scheme, and several such protocols are contained
within the ISO/IEC standard for key establishment [100]. As an example, consider
Key Transport Mechanism 4 from ISO/IEC 11770-3:

1. B generates a random number (nonce) NB and send this to B.
2. A generates a random key K AB and (optionally) a nonce NA. B sends

IDB, NA, NB , Encrypt(pkB, IDA‖K AB),

Sign(skA, IDB‖NA‖NB‖Encrypt(pkB, IDA‖K AB))

to B where EncryptB denotes public key encryption under the public key of B
and SignA denotes a digital signature created using the private key of A.

3. B checks whether the message contains the nonce NB , the correct identity IDB

and checks that the signature verifies (using the public key of A). If so, B
decrypts the ciphertext and checks that the identity IDA is correctly included.
If so, B accepts the key K AB . Otherwise, if any of the checks fail, then B rejects
the key and terminates.

The message flows for this protocol are summarized in Table 11.1. The use of the
nonce NA is optional and is included to maintain consistency with other protocols.
It is also worth noting that the sending of I DB and NB in the second message is
redundant and can be omitted.

It is immediately clear that the Encrypt-then-Sign approach of the key transport
mechanisms of ISO/IEC 11770-3 can be replaced with a signcryption algorithm.
The resulting protocol is given in Table 11.2. The protocol not only is more efficient
that the original protocol (which requires separate signing and encryption opera-
tions) but also arguably has better security properties. These better security prop-
erties arise from the fact that the signature in the original protocol only guarantees
that A knows the ciphertext EncryptB(IDB, K AB) whereas the signcryptext attests
to the fact that A knows the underlying key K AB . This is conceptually stronger.

Table 11.1 ISO/IEC 11770-3 Key Transport Mechanism 4

1. B → A : NB
2. A→ B : IDB , NA, NB , Encrypt(pkB , IDA‖K AB),

Sign(skA, IDB‖NA‖NB‖Encrypt(pkB , IDA‖K AB))



226 A.W. Dent

Table 11.2 ISO/IEC 11770-3 Key Transport Mechanism 4 using signcryption

1. B → A : NB
2. A→ B : IDB , NA, NB , Signcrypt(skA, pkB , IDA‖IDB‖NA‖NB‖K AB))

However, these protocols are vulnerable to very simple impersonation attacks.
An attacker can impersonate another entity B simply by sending A a message NB

that purports to be from B. In this situation, A will generate a fresh key K AB and
messages that allow B to recover the key, and then terminate successfully. The
attacker will then destroy these messages, leaving A under the impression that it
now shares a key with B, while B is completely unaware of any protocol interac-
tion. These attacks are trivial examples of key compromise impersonation attacks
that do not even require the compromise of A’s key. They can easily be avoided if
B is required to prove knowledge of the key K AB to A before A will successfully
terminate. This requires an extra message to be sent from A to B. It is worth noting,
however, that these attacks are unidirectional—it is not possible to impersonate the
entity A to B even if A’s long-term private key is compromised. This is because of
the unforgeability properties of the signcryption scheme.

The ISO/IEC 11770-3 standard contains six key transport mechanisms. Four
of these mechanisms use a Sign-then-Encrypt or Encrypt-then-Sign approach to
provide authenticated encryption (see Chap. 2). We believe that all of these Sign-
then-Encrypt and Encrypt-then-Sign operations could be replaced with signcryption
operations with no loss of security and considerable efficiency gains.

11.4 Key Establishment Based on Zheng’s Signcryption Scheme

Zheng and Imai [205, 208] have extended these basic key transport protocols in the
specific case where the underlying signcryption scheme is the original Zheng sign-
cryption scheme (see Sects. 3.3 and 4.3). These protocols make efficiency savings by
observing two things: first, that there is no need to include identifiers in the message
field if the protocol automatically identifies the participants and, second, there is no
need to include the nonce in the message field if the generated key depends upon the
nonce. Both of these improvements reduce the length of the message that needs to
be encrypted and, thus, save computation time. This led to the development of the
two protocols shown in Tables 11.3 and 11.4.

Note that in the DKTUN protocol, A has complete control over the key value;
while in the IKTUN protocol, A only has a limited form of key control (assuming
that the hash function is one-way). In the IKTUN protocol, A may not choose the
value of the shared key K AB directly, but may repeatedly choose values for k until
K AB is of a useful form. On average, one would expect A to have to choose 2s

different values of k in order to fix s bits of information in K AB . This is a common
trade-off in key agreement protocols and was first noted by Mitchell et al. [142].
Again, both of these protocols are susceptible to impersonation attacks in which an
attacker masquerades as B in the protocol by sending a nonce value to A. It does
not seem possible for an attacker to impersonate A.
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Table 11.3 Zheng’s DKTUN (Direct Key Transport Using a Nonce) protocol

A B

K AB
R← {0, 1}�k

NB←− NB
R← {0, 1}�n

k
R← Zq

(k1, k2)← hash1(pkk
B)

c← Enck1 (K AB)

r ← hash2(k2, K AB , NB)

s ← k/(r + skA) mod q
c,r,s−→ (k1, k2)← hash1((pkA · gr )s·skB )

K AB ← Deck1 (c)
Accept K AB if hash2(k2, K AB , NB) = r

Table 11.4 Zheng’s IKTUN (Indirect Key Transport Using a Nonce) protocol

A B

k
R← Zq

NB←− NB
R← {0, 1}�n

(K AB , k2)← hash1(pkk
B)

r ← hash2(k2, K AB , NB)

s ← k/(r + skA) mod q
r,s−→ (K AB , k2)← hash1((pkA · gr )s·skB )

Accept K AB if hash2(k2, K AB , NB) = r

Zheng and Imai [205, 208] also propose a key agreement protocol based on two
(almost) independent executions of the DKTUN protocol. The protocol is given in
Table 11.5. It should be noted that the DKEUN protocol, as it stands, is not a key
agreement protocol. Since B has complete knowledge of K A when choosing K B ,
B can arrange the shared key value K AB to be any value of his choice by setting
K B = K AB ⊕ K A. This can be avoided by setting the shared key to be K AB =
hash′(K A, K B), where hash′ is an independent hash function, although even this
protocol would be subject to the Mitchell et al. [142] attack previously mentioned.
This protocol does not appear to be vulnerable to the impersonation attacks to which
the simpler protocols are vulnerable, nor does it appear to be vulnerable to key
compromise impersonation attacks.

Kim and Youm [116] propose a similar, yet simplified protocol. The protocol is
given in Table 11.6. Unlike the Zheng DKEUN protocol, this protocol is subject to
an impersonation attack. The attack requires the attacker to observe the first message
(c, r, s) from a legitimate protocol execution and then replay it. This causes B to
successfully terminate without a partner. It is also slightly worrying, from a concep-
tual point of view, that the secret value k1 is used for two separate purposes: it is used
as a random seed for the blinding factor hash2(I DA, I DB, k1) and it is also used to
“select” a hash function when computing the checksum value δ← hash4(k1, σ ).

11.5 Key Agreement Based on Signcryption KEMs

The idea of formalizing public key encryption to an asymmetric key encapsulation
mechanism (KEM) and a symmetric data encapsulation mechanism (DEM) was
first put forward by Cramer and Shoup [68]. Since the KEM allows one user to
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Table 11.5 Zheng’s DKEUN (Direct Key Exchange Using a Nonce) protocol

A B

K A
R← {0, 1}�k

NB←− NB
R← {0, 1}�n

k
R← Zq

(k1, k2)← hash1(pkk
B)

c← Enck1 (K A)

r ← hash2(k2, K A, NB)

s ← k/(r + skA) mod q
c,r,s−→ (k1, k2)← hash1((pkA · gr )s·skB )

K A ← Deck1 (c)
Accept K A if hash2(k2, K A, NB) = r

K B
R← {0, 1}�k

k′ R← Zq

(k′1, k′2)← hash1(pkk′
A )

c′ ← Enck′1 (K B)

r ′ ← hash2(k′2, K B , K A)

s′ ← k′/(r ′ + skB) mod q

(k′1, k′2)← hash1((pkB ·gr ′ )s
′ ·skA )

c′,r ′,s′←− K AB ← K A ⊕ K B
K B ← Deck′1 (c

′)
Accept K B if

hash2(k′2, K B , K A) = r ′
K AB ← K A ⊕ K B

Table 11.6 Kim and Youm’s SAKE protocol

A B

k
R← Zq

(k1, k2)← hash1(pkk
B)

c← hash2(I DA, I DB , k1) · gk

r ← hash3(k2, c)

s ← k/(r + skA) mod q
c,r,s−→ (k1, k2)← hash1((pkA · gr )s·skB )

Accept c if hash3(k2, c) = r

k′ R← Zq

μ← gk′

σ ← (c/hash2(I DA, I DB , k1))
k′

δ← hash3(k1, σ )

σ ← μk μ,δ←− K AB ← hash4(σ )

Accept σ if hash3(k1, σ ) = δ
K AB ← hash4(σ )

securely generate and transport a symmetric key to another user, it is tempting to
think that KEMs provide a good basis for building key establishment protocols;
however, while KEMs and key establishment protocols are often based on the same
techniques, a KEM is only required to transport a key in a confidential manner. The
KEM does not provide any entity authentication or freshness guarantees.
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11.5.1 Key Agreement Based on Signcryption KEMs

Dent [73] has suggested that signcryption KEMs are a more appropriate choice for
constructing a key establishment protocol. A signcryption KEM (with outsider secu-
rity—see Chap. 7) can provide both confidentiality protection and origin authenti-
cation. Dent [73] proposed a simple protocol to add freshness guarantees via the
use of a MAC value computed on a nonce (see Sect. 1.3.5). The protocol is given
in Table 11.7. We note that the Dent protocol is subject to the same simple imper-
sonation against A that many of the other protocols in this chapter have also been
vulnerable. In this attack, A is given an adversarially generated nonce NB and termi-
nates successfully after outputting (C, tag) despite the fact that B has no matching
conversation. More interestingly, as Dent’s proposed protocol only required the use
of an outsider-secure signcryption KEM, the protocol does not guarantee security
against key compromise impersonation attacks that allow us to impersonate an entity
A to B (see Sect. 11.2.6). This attack takes advantage of the fact that an outsider-
secure signcryption KEM may allow an attacker to forge a valid encapsulation given
the recipient’s private key. We use this to launch attack against the party B in the
protocol by forging the signcryptext C and the MAC value tag.

Note that this protocol allows the session identity sid to be chosen by the outside
application that is using the key establishment protocol: the protocol does not choose
or alter the given session identity in any way. This will be true for almost all of the
key establishment protocols described in this Chapter—the only exception being the
Gorantla et al. protocol discussed below.

Gorantla et al. [92] prove a series of interesting results about one-pass key agree-
ment protocols (i.e., protocols which consist of a single message passed from A to
B). First, they prove that any secure one-pass key agreement protocol provides an
outsider-secure signcryption KEM (see Sect. 7.3) and use this result to give a new
outsider-secure signcryption KEM based on the HMQV protocol [118]. Second,
they show that any outsider-secure signcryption KEM can be used as a one-pass key
agreement protocol. The construction is given in Table 11.8.

Table 11.7 Key establishment using a signcryption KEM

A B

(K AB ,C)
R← Encap(skA, pkB)

NB←− NB
R← {0, 1}�n

τ = (NB , sid)

tag← MACK AB (NB)
C,tag−→ K AB ← Decap(pkA, skB ,C)

Accept K AB if MACK AB (NB) = tag

Table 11.8 Key establishment using a signcryption KEM

A B

(K AB ,C)
R← Encap(skA, pkB)

C−→ K AB ← Decap(pkA, skB ,C)
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Theorem 11.1 If a signcryption KEM is outsider secure (see Sect. 7.3.2) then the
Gorantla et al. key establishment protocol is secure in a security model in which the
attacker makes no Expire queries and in which the session identity is defined to be
the ciphertext C.

More formally, if there exists an attacker A against the key establishment pro-
tocol with advantage AdvK E P

A (k) that makes at most qquery queries to the Query
oracle and at most qsend queries to the Send oracle, then there exists an attacker B
against the LoR security of the signcryption KEM with advantage AdvLoR

B (k) and an
attacker B′ against the outsider FEO/FUO-IND-CCA2 security of the signcryption
KEM with advantage AdvI N D

B′ (k) such that

AdvK E P
A ≤ 1

q2
query

AdvLoR
B (k)+ 1

q2
queryqsend

AdvI N D
B′ (k) (11.2)

Initially, it may appear as if the Gorantla et al. protocol is insecure as it does not
provide freshness guarantees. It is certainly possible to replay ciphertexts from A to
B. The proof of security is made possible by a technical detail in the security model:
the definition of C as the session identity and the inability of the attacker to expire
sessions. These combine to mean that the attacker cannot re-submit a ciphertext C to
entity B as this would involve sending a new message to a completed session (with
session identity C). Hence, replay attacks are forbidden. This “trick” of avoiding
replays by defining the session identity to be the concatenation of all messages sent
in the protocol is widely used in the cryptographic literature. In practice, however,
this translates to a requirement that entity B remembers all valid ciphertexts C that
have been submitted to it as part of the key establishment protocol and rejects any
attempt to re-use an old ciphertext. This may require large amounts of memory
storage and may significantly increase the processing time for the protocol. Hence,
it is unlikely to be useful for general security applications.

Lastly, we note that the results of Gorantla et al. are slightly more stronger than
is proven in Theorem 11.1. The authors actually prove the theorem using a weaker
notion of unforgeability than left-or-right security (see the discussions on the subject
of unforgeability in Sect. 7.3.2) in which the attacker wins if it can produce a valid
encapsulation C from A to B which has not been produced by A. This notion of
security is implied by left-or-right security but is strictly weaker than it.

11.5.2 Key Agreement Based on Signcryption Tag-KEMs

Bjørstad and Dent [37] extended the idea of using signcryption KEMs to build key
establishment protocols to give a generic protocol in which the nonce value was
directly involved in the computation of the shared key via a signcryption tag-KEM
(see Chap. 7). The protocol that Bjørstad and Dent propose runs as follows:

1. B generates a nonce NB
R← {0, 1}�n of an agreed length and sends NB to A.

2. A computes (K AB, ω)
R← Sym(skA, pkB) and C

R← Encap(ω, τ) where τ is
the unique tag given by τ = (NB, sid). A accepts K AB as the shared key and
sends C to B.
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Table 11.9 Key establishment using a signcryption tag-KEM

A B

(K AB , ω)
R← Sym(skA, pkB)

NB←− NB
R← {0, 1}�n

τ = (NB , sid)

C
R← Encap(ω, τ)

C−→ τ = (NB , sid)
K AB ← Decap(pkA, skB ,C, τ )

3. B computes the key K AB ← Decap(pkA, skB,C, τ ) using the tag τ =
(NB, sid) and accepts this as the shared key if K AB =⊥.

This protocol is summarized in Table 11.9. Since a signcryption tag-KEM is a
simpler mechanism than a signcryption scheme, it is hoped that this protocol will
provide a simple and flexible method to provide key establishment. It is of partic-
ular use in situations where signcryption tag-KEMs are also being used to provide
authenticated encryption directly.

We note that this protocol is still vulnerable to the simple impersonation attack
discussed in which an attacker masquerades as entity B to A. It does not appear
to be vulnerable to simple impersonation or key compromise impersonation attacks
in which the attacker masquerades as A to B. Furthermore, this protocol is prov-
ably secure in the security model of Sect. 11.2.3. The formal proof is given in
Sect. 11.5.3, but the proof basically works in three steps:

1. We show that it is practically impossible for an attacker to find two legitimate
sessions that have the same nonce or guess the value of a nonce used in a par-
ticular session in advance. Both of these situations lead to trivial attacks against
the scheme and both can be prevented by insisting that �n be sufficiently large so
that the number of possible nonces far exceeds the number of possible sessions.

2. We show that if an entity B successfully terminates a session, then there must
be a matching conversation from the entity A with the same session identity.
Since entity B only terminates after receiving a valid encapsulation for the tag
τ = (NB, sid) and every nonce that B generates must be different, any encap-
sulation that causes B to successfully terminate must either be from a matching
conversation or must be a forgery. Since it is practically impossible to forge an
encapsulation, we deduce that the encapsulation must have come from a match-
ing conversation.

3. We show that an attacker that distinguishes between a real or random key in
the Test session is actually deciding whether that key is random or the key
one would obtain if one decapsulated C . Since the signcryption tag-KEM is
IND-CCA2 secure, this is not possible. Hence, the key establishment protocol
is secure.

It is interesting to note that if one instantiates the key establishment protocol given
by Bjørstad and Dent [37] with the Zheng-based signcryption tag-KEM given in the
same paper, then the resulting protocol (shown in Table 11.10) is strikingly similar to
the IKTUN protocol given by Zheng and Imai [205, 208] and discussed in Sect. 11.4.
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Table 11.10 Key establishment using Zheng’s signcryption tag-KEM

A B

k
R← Zq

NB←− NB
R← {0, 1}�n

k1 ← pkk
B

r ← hash1(NB‖sid‖pkA‖pkB‖k1)

s ← k/(r + skA)

K AB ← hash2(k1)
r,s−→ k1 ← (pkA · gr )s·skB

Accept k1 if
hash1(NB‖sid‖pkA

‖pkB‖k1) = r
K AB ← hash2(k1)

11.5.3 Security Proof for the Bjørstad–Dent Protocol

In this section we present the formal security proof for the Bjørstad–Dent key estab-
lishment protocol. The proof is somewhat complex and may be omitted on a first
reading of this chapter.

Theorem 11.2 Let (Setup, K eyGenS, K eyGenR, Sym, Encap, Decap) be a sign-
cryption tag-KEM scheme and let A be an attacker against the key establishment
protocol using this signcryption tag-KEM that makes at most qquery queries to the
Query oracle, qsend queries to the Send oracle, and has advantage AdvKEPA (k).

Then there exists an attacker B against the unforgeability of the signcryption
tag-KEM with advantage AdvforgeB (k) and an attacker B′ against the IND-CCA2
property of the signcryption tag-KEM in the multi-user model with an advantage
AdvSCTKB′ (k) such that

AdvSCTKB′ (k)+ 1

qsend
AdvforgeB (k) ≥ 1

qsendq2
query

{

AdvKEPA (k)− q2
send

2�n−1

}

(11.3)

Proof Let A be any polynomial-time attacker against the key establishment proto-
col. By definition, A has advantage AdvKEPA (k) in breaking the key establishment
protocol in the model given in Sect. 11.2.3. Our proof works in two stages. First,
we alter the model in which A runs in a series of successive steps and at each step
deduce a lower bound for the advantage that A has in this new security model. Sec-
ond, we show that the advantage that A has in this altered security model is directly
related to the advantage that another attacker B′ has in breaking the IND-CCA2
security of the signcryption tag-KEM. Thus, we will be able to conclude that the
key establishment protocol is secure whenever the signcryption tag-KEM is secure.

We will prove this result using some basic techniques of game hopping [34, 180].
We will propose a sequence of security models (games) in which A will be run. Let
Wi be the probability that A wins the Game i and let Advi be A’s advantage in
Game i .

Game 1: This is the normal security for a key establishment protocol (as
described in Sect. 11.2.3). Hence, Adv1 = AdvKEPA (k).



11 Key Establishment Using Signcryption Techniques 233

Game 2: In this game we change very slightly the way that we determine whether
A wins the game or not. We change the game so that if A causes an entity B to
start two sessions (with Send(I DA, I DB, sid, λ) commands) that output the same
nonce, then the attacker is automatically deemed to have lost the game. In particular,
this means that the test session must use a nonce value that is different from those
used in any other session.1

Let E be the event that this occurs and note that Pr [E] ≤ q2
send/2

�n . Note also
that Game 1 and Game 2 are identical unless E occurs. The following is a well-
established lemma in game hopping theory:

Lemma 11.1 Let A, B, and E be events in the same probability space for which
A ∧ ¬E = B ∧ ¬E. Then |Pr [A] − Pr [B]| ≤ Pr [E].

Hence, we have that |Pr[W1] − Pr[W2]| ≤ Pr[E] and so that

Adv2 ≥ Adv1 − q2
send/2

�n (11.4)

Game 3 We have now prevented the possibility of the attacker being able to
break the scheme because B outputs the same nonce twice. We must also show that
it is not possible for the attacker to guess a nonce in advance, as this also leads to
an attack.2 We therefore declare an attacker to have immediately lost the game if it
begins a session with entity B (with a Send(I DA, I DB, sid, λ) query) that outputs
a nonce that has previously been input to the start of a session with an entity A (with
a Send(I DB, I DA, sid, N ) query). Let E be the event that this occurs and note that
Pr[E] ≤ q2

send/2
�n . Hence, by Lemma 11.1, we have that

Adv3 ≥ Adv2 − q2
send/2

�n

1 We note that if an attacker can arrange for two sessions to have the same nonce, then this attacker
can break the scheme. The attacker starts a series of new sessions between A and B using a single
session identity sid. If the nonce that B outputs is fresh (i.e., different from all previous nonces)
then the attacker passes this nonce to B, who outputs an encapsulation. The attacker then reveals
the session key for this session; records the nonce, encapsulation, and key; expires both A and Bs
sessions; and repeats the process. If the nonce that is output is not fresh, then the attacker finds the
corresponding encapsulation with the same nonce from his records and submits this to B as A’s
response. The attacker makes this the test session; however, the attacker already knows this session
key from the earlier reveal query.
2 In this attack, A generates qsend/2 distinct nonces, queries an entity A with each nonce using
the Send oracle, stores the associated encapsulation C , obtains the session key for each session
using the Reveal oracle, and then expires the session. Each key is stored with the appropriate
encapsulation and nonce. A then starts qsend/2 distinct sessions with an entity B. If the entity
outputs a nonce different to any of those generated in the first phase, then the attacker expires the
session. If B outputs a nonce which is the same as one that the attacker generated in the first phase,
then the attacker responds using the appropriate encapsulation and declares this to be the Test
session. Since the attacker already knows the key associated with the encapsulation, the attacker
can trivially win the game.
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Game 4: We now attempt to guess the identity of the identities who will act as A
and B in the test session. Since we assume that the namespace S is too large for us to
guess the names of these entities directly, we instead guess which query to the Query
oracle will be about these entities. (Note that we are making the assumption that A
will always query the Query oracle on the identities that it intends to use in the test
session.) If we guess incorrectly, then game immediately halts and the attacker is
declared to have won with probability exactly 1/2 (i.e., with no advantage).

To guess the identity of A and B, the game randomly chooses values i A, iB ∈
{1, 2, . . . , qquery} where qquery is maximum number of queries that A may make to
the Query oracle. We define A∗ to be the entity about which the i A-th query is made
and B∗ to be the entity about which the iB-th query is made. If the attacker does
not choose A∗ to act as A and B∗ to act as B in the test session, then the game

immediately halts and A is assumed to have output a random value b′ R← {0, 1} as
its guess for b. Hence, in this case, A will win with probability 1/2.

Note that the probability that the game correctly guesses A∗ and B∗ is 1/q2
query

and that the event that this happens is independent of any of A’s actions (including
whether A wins Game 3 or not). Let E be this event. We have that

Adv4 = |Pr[W4] − 1/2| (11.5)

= |Pr[W4|E]Pr[E] + Pr[W4|¬E]Pr[¬E] − 1/2| (11.6)

= |Pr[W4|E]Pr[E] + Pr[¬E]/2− 1/2| (11.7)

= |Pr[W4|E]Pr[E] − Pr[E]/2| (11.8)

= |Pr[W3|E]Pr[E] − Pr[E]/2| (11.9)

= |Pr[W3]Pr[E] − Pr[E]/2| (11.10)

= Pr[E] · |Pr[W3] − 1/2| (11.11)

= Pr[E] · Adv3 (11.12)

= Adv3/q
2
query (11.13)

Equation (11.9) derives from the fact that Game 3 and Game 4 are identical if
E occurs. Equation (11.10) derives from the fact that W3 and E are independent.
Hence, Adv4 = Adv3/q2

query.
Game 5: We now consider the test session. Since the owner of the test session

must successfully terminate, there are two possibilities:

• A∗ is the owner of the test session—i.e., the attacker defines the test session using
the query Test(I DB∗ , I DA∗ , sid∗). In this case, A∗ will have received a nonce
N∗, output an encapsulation C∗ and terminated successfully. In this situation, we
cannot be sure that the nonce that A∗ received is the same nonce as B∗ sent nor
even that B∗ output a nonce for use in this session at all.

• B∗ is the owner of the test session—i.e., the attacker defines the test session using
the query Test(I DA∗ , I DB∗ , sid∗). In this case, B∗ will have initially output a
random nonce N∗B∗ (different from any other nonce used in the game), received
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an encapsulation C∗, successfully recovered a key from C∗, and successfully
terminated.

It is this second case with which we are concerned now. We claim that if the encap-
sulation C∗ was not produced by entity A∗ using the nonce N∗B∗ and the session
identity sid∗, then it is highly unlikely for B∗ to have terminated successfully. In
other words, B∗ is unlikely to successfully terminate the test session unless A∗ holds
a matching conversation. This is because, if these circumstances do not hold, then
C∗ is a forged encapsulation and we know that forgeries are practically impossible
due to the security properties of the signcryption tag-KEM (see Chap. 7).

Let E be the event that B∗ successfully terminates in the test session but that A∗
does not have a session with a matching conversation. If E occurs, then the game
aborts and assumes that A has lost. If E does not occur, then the game continues as
normal; hence, W5 ∧ ¬E = W4 ∧ ¬E . By Lemma 11.1, we have

|Pr[W5] − Pr[W4]| ≤ Pr[E]

and so we can conclude that Adv5 ≥ Adv4 − Pr [E].
It therefore remains to bound Pr [E]. We do this by noting several things. First,

we must have that the nonce used in the test session must not have been output
by B∗ prior to the test session (due to the restriction given in Game 1) and cannot
have been input to A∗ before it was output by B∗ (due to the restriction given in
Game 2). Thus, since there exists no matching conversation, A∗ cannot have output
the encapsulation C∗ computed using the tag τ ∗ = (N∗B∗ , sid∗) at any point before
the Test query is made.

We are now in a position to describe the attacker B against the unforgeability of
the signcryption tag-KEM. Recall that in a signcryption tag-KEM there, an entity
has two key pairs. A complete set of key pairs for an entity A compromises of a

pair of sender keys (skS
A, pkS

A)
R← KeyGenS(param) that are used when A wishes to

send messages and a pair of receiver keys (skR
A, pkR

A)
R← KeyGenR(param) that are

used when A wishes to receive messages. Recall further that in the security model
for unforgeability, B takes as input the global parameters param and a sender public
key pkS∗ .

B runs as follows. First, it generates random integers i A, iB
R← {1, 2, . . . , qquery}.

We will arrange that pkS∗ to be the sender public key for A∗. B runs the attacker A
on the input (param, 1k). During its execution, A has access to the following oracles
(which are simulated for A by B):

• Query(I DA): If this is not the i A-th query to this oracle, then the oracle

generates key pairs (skS
A, pkS

A)
R← K eyGenS(param) and (sk R

A , pk R
A )

R←
K eyGenR(param) and returns the public keys (pkS

A, pk R
A ). The private keys are

stored for later use.
If this is the i A-th query to the oracle, then the oracle sets pkS

A ← pkS∗ (the chal-

lenge public key), computes the receiver keys (sk R
A , pk R

A )
R← K eyGenR(param),
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and returns the public keys (pkS
A, pk R

A ). The receiver private key is stored for later
use.

• Send(I DA, I DB, sid,m): If this query does not have B = A∗ (i.e., if B is not
required to simulate A∗’s output) then B can answer any query using its knowl-
edge of the private keys.

If B = A∗ and the query relates to either the first or the third message in the
protocol (i.e., the queries in which A∗ will be acting as B in the protocol
execution), then B can answer any query using knowledge of A∗’s private
receiver key.

If B = A∗ and the query relates to the second message in the protocol (i.e.,
the query is one in which A∗ will be acting as A in the protocol execution),
then B can compute A∗’s response using the flexible encapsulation oracle.

Note that in all of these cases, if a session terminates successfully, then we are
able to compute the session key for that session. These keys are stored for later
use.

• Expire(I DA, I DB, sid): This oracle forces a session to expire. B simply makes
a note of the session expiration and responds to further Send queries as if they
were part of a new session.

• Reveal(I DA, I DB, sid): The oracle returns the key of the successfully termi-
nated session (apart from the test session). This is easily done as we will have
calculated the session key each party computes in any session that has success-
fully concluded; hence, we simply return this session key value.

• Corrupt(I DA): If A = A∗ then B can return the private key values for A that
were generated during the Query query. If A = A∗ then B must have guessed the
identity of A∗ incorrectly (i.e., A∗ will not be acting as A in the test session) and
so B aborts the simulation and outputs ⊥.

• Test(I DA, I DB, sid): If A queries this oracle for any session which does not
have A∗ acting as A and B∗ acting as B, then B aborts the simulation and
outputs ⊥.

If the test session is against A∗, then B aborts and outputs ⊥.
If the test session is against B∗ and the encapsulation C∗ that B∗ receives

does not come from a matching conversation with A∗, then B aborts the
simulation and outputs C∗ as a forgery.

Otherwise B aborts and outputs ⊥.

If A terminates and outputs a bit b, then B outputs ⊥.
Note that B successfully simulates all the oracles available to A in Game 4 and

Game 5 (up until the point that A makes a Test query). Note further that if E occurs
(i.e., the test session is against B∗ and involves an encapsulation C∗ which has not
been output by A∗ in a matching conversation), then B outputs C∗ as a forgery.
Since A∗ cannot have output an encapsulation C∗ computed using the tag τ ∗, we
know that the encapsulation C∗ cannot have been returned by the signcryption tag-
KEM’s encapsulation oracle. Hence, if E occurs, then C∗ is a valid forgery, which
implies that
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Pr[E] ≤ AdvforgeB (k)

and so that Adv5 ≥ Adv4 − AdvforgeB (k).
Game 6: We are now in a very strong position. We know that the game has

guessed the identities of A∗ and B∗ in the test session. Furthermore, we know that
the encapsulation C∗ used in the test session is the encapsulation output by A∗
regardless of whether the test session targets A∗ or B∗. In this game, we attempt to
guess which of A∗’s sessions will correspond to the test session, i.e.,

• if the test session is against A∗, then we attempt to guess the test session,
• if the test session is against B∗, then we attempt to guess the matching conversa-

tion that A∗ has for the test session.

We do this by selecting a random value j
R← {1, 2, . . . , qsend}. This value will

correctly identify the test session with probability 1/qsend and the event that the
correct session is identified is independent of any of A’s actions. Hence, by the
same arguments as in Game 4, we have that

Adv6 = Adv5/qsend

The reduction: We are now in a position to relate the advantage of the attacker A in
Game 6 to that of an attacker B′ (which we will construct) against the IND-CCA2
properties of the signcryption tag-KEM (see Chap. 7). The assumption that the sign-
cryption tag-KEM is secure in the IND-CCA2 model will then allow us to conclude
that the key establishment protocol is secure. The proof is similar to that given in
Game 5.

Recall that in the IND-CCA2 security model for a multi-user signcryption tag-
KEM, the game chooses a public key pk R∗ which is to be used when computing
the challenge encapsulation. The attacker B′ takes as input the global parameter
information param and the receiver’s public key pk R∗ as input.

The algorithm B′ takes as input the receiver public key pkR∗ and the global infor-

mation param for the system. B′ picks random values i A, iB
R← {1, 2, . . . , qquery}

and j
R← {1, 2, . . . , qsend} and runs the attacker A on the input param. B′ answers

A’s oracle query as follows:

• Query(I DB): If this is not the iB-th query to this oracle, then the oracle

generates key pairs (skS
B, pkS

B)
R← K eyGenS(param) and (sk R

B , pk R
B )

R←
K eyGenR(param) and returns the public keys (pkS

B, pk R
B ). The private keys are

stored for later use.
If this is the iB-th query to this oracle, then B′ sets pk R

B∗ = pk R∗ (the chal-

lenge key), generates a sender key pair (skS
B∗ , pkS

B∗)
R← K eyGenS(param), and

returns the public keys (pkS
B∗ , pkR

B∗).• Send(I DA, I DB, sid,m): If this query does not relate to the j-th session and
the entity B∗ is not acting as B in the session, then the response of this oracle can
easily be computed using knowledge of the private keys for A and B.
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If this query does not relate to the j-th session and the entity B∗ is acting as B
in the session, then the response for a message Send(I DA, I DB∗ , sid,m) can be
computed using the flexible decapsulation oracle. Note that due to the restrictions
we have placed on the nonces output by B∗ in Game 1 mean that B′ will never
make an illegal decapsulation oracle query on (C∗, τ ∗).
Furthermore, note that for any session that terminates successfully, except for the
test session, the above response will result in B′ computing the correct shared
secret key K AB . This is stored for later use.
The situation is more complicated when dealing with the j-th session. If the
j-th session is not a session owned by A∗ and in communication with B∗,
then B′ aborts the simulation and outputs a random bit b′ R← {0, 1}. Other-
wise, B′ arranges for the response to be the challenge encapsulation. B′ does
this by requesting a key K ∗ from the IND-CCA2 game, then outputting the
tag τ ∗ = (N∗B∗ , sid∗) to the IND-CCA2 game and receiving back a challenge
encapsulation C∗ for that tag. B′ returns C∗ to A.

• Expire(I DA, I DB, sid): This oracle forces a session to expire. B simply
makes a note of the expiry of the session and responds to further
Send(I DA, I DB, sid,m) queries as if they were part of a new session.

• Reveal(I DA, I DB, sid): This oracle returns the key of a successfully termi-
nated session (apart from the test session). Note that, except in the case of the test
session, this key will have been successfully computed and stored as the result
of an earlier Send query. Hence, B′ returns this stored key value. If A makes a
Reveal query on the test session, then we must have incorrectly guessed the test

session and so B′ aborts the simulation and outputs a random bit b′ R← {0, 1}.
• Corrupt(I DB): If B = B∗ then B′ can return the correct private key values
(skS

B, skR
B) from the list of key values it generated earlier. If B = B∗ then we

must have incorrectly guessed the identity B∗ and so B′ aborts the simulation

and outputs a random bit b′ R← {0, 1}.
• Test(I DA, I DB, sid): If this query refers to any session other than the session

corresponding to the j-th session (i.e., if the test query targets A∗ then the session
should be the j-th session; if the test query targets B∗ then the session should be
the matching conversation to the j-th session) then we have incorrectly guessed

the test session and B′ terminates by outputting a random guess b′ R← {0, 1} for b.
Otherwise, B′ returns K ∗ (the challenge key obtained from the j th session) to A.

A eventually terminates and outputs a guess b′ for b. At this point, B′ also outputs
the bit b′ and terminates.

B′ accurately simulates the oracles available to A in Game 6. Furthermore, if
A successfully wins Game 6, then B′ wins the IND-CCA2 signcryption tag-KEM
game. Hence,

AdvSCTKB′ (k) ≥ Adv6

and so
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AdvSCTKB′ (k)+ 1

qsend
AdvforgeB (k) ≥ 1

qsendq2
query

{

AdvKEPA (k)− q2
send

2�n−1

}

Hence, the theorem holds. ��
It is worth pointing out that it is likely that the efficiency of this reduction can be

improved by a more advanced proof. In particular, we believe that the reduction can
be improved to

AdvSCTKB′ (k) ≥ 1

qsendqquery

{

AdvKEPA (k)− q2
send

2�n

}

− 1

qsend
AdvforgeB (k)

11.6 Key Establishment Based on Timestamps

This chapter has concentrated on key establishment protocols that assure freshness
using nonces; however, freshness can be guaranteed in other ways. One other com-
mon method for assuring freshness is the use of timestamps. A timestamp is simply
a piece of data recording the time and date that a message was created. Any entity
that receives such a message can then verify that it is fresh by checking the time
and date attached to that message. Obviously, it transmitted in an integrity protected
form or it can be altered by an attacker (which leads to a variety of dangers including
replay attacks).

The are a number of practical problems that need to be solved before timestamps
can be used effectively to provide freshness guarantees. One major problem is that
both the sender and the receiver must have securely synchronized clocks. Further-
more, even if two entities have precisely synchronized clocks, due to the time taken
to forward a message from one entity to another, any message sent between these
entities will contain a slightly delayed timestamp. Thus, parties have to agree a
window within which they accept that a timestamp is fresh and a mechanism to
prevent replays within that window. (Typically, this mechanism is simply to record
all messages that are received within the window, but this may require significant
memory resources.)

However, timestamp-based key establishment protocols do have one major
advantage: they typically require less messages to be sent in the protocol exchange.
This is because parties do not have to exchange nonces before commencing the
main part of the protocol execution. We can adapt all of the protocols in this
chapter to the use of timestamps. We use TSA to be the timestamp produced by
entity A. Tables 11.11 and 11.12 present the timestamp versions of Zheng and
Imai’s key establishment protocols described in Sect. 11.4. It is unclear if these
protocols are optimal: for example, the requirement that TSA is encrypted in the
IKTUTS (Table 11.12) is unnecessary as this may be easily guessable by an attacker.
Table 11.13 presents the timestamp version of the Bjørstad and Dent key establish-
ment protocol described in Sect. 11.5.
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Table 11.11 Zheng’s DKTUTS (Direct Key Transport Using a Timestamp) protocol

A B

K AB
R← {0, 1}�k

k
R← Zq

(k1, k2)← hash1(pkk
B)

c← Enck1 (K AB ,TSA)

r ← hash2(k2, K AB ,TSA)

s ← k/(r + skA) mod q
c,r,s−→ (k1, k2)← hash1((pkA · gr )s·skB )

(K AB ,TSA)← Deck1 (c)
Accept K AB if TSA is fresh

hash2(k2, K AB , NB) = r

Table 11.12 Zheng’s IKTUTS (Indirect Key Transport Using a Timestamp) protocol

A B

k
R← Zq

(k1, k2)← hash1(pkk
B)

c← Enck1 (TSA)

r ← hash2(k2,TSA)

s ← k/(r + skA) mod q

K AB ← hash3(k1, k2,TSA)
c,r,s−→ (k1, k2)← hash1((pkA · gr )s·skB )

TSA ← Deck1 (c)
K AB ← hash3(k1, k2,TSA)

Accept K AB if TSA is fresh
hash2(k2,TSA) = r

Table 11.13 Key establishment using a signcryption tag-KEM and timestamps

A B

(K AB , ω)
R← Sym(skA, pkB)

τ = (TSA, sid)

C
R← Encap(ω, τ)

TSA,C−→ τ = (TSA, sid)
K AB ← Decap(pkA, skB , τ )

Accept K AB if TSA is fresh



Chapter 12
Applications of Signcryption

Yang Cui and Goichiro Hanaoka

Signcryption can provide improvements on efficiency for public-key cryptographic
protocols over more traditional cryptographic mechanisms that offer security func-
tions separately. Notably, applying signcryption in protocols where message confi-
dentiality, integrity, and authenticity are all required is expected to result in protocols
with better performance than when traditional public-key encryption and signatures
are used. While a broad range of applications of signcryption can be found in the
literature, it has become clear that signcryption is particularly effective when

• a sender and a receiver rely on public-key encryption and digital signature for
communication security, and

• the verification of the sender’s identity is only required by the receiver.

In the following sections, we investigate the effectiveness of signcryption in prac-
tical applications.

12.1 Application Fields of Signcryption

From a cryptographic point of view, signcryption provides a general method for ini-
tializing a confidential and authenticated channel in an efficient way, as was already
discussed in Chap. 11. In the underlying channel, signcryption is used not only to
establish a secure, shared session key among two communication parties but also
to assure the sender’s identity in a way that is more efficient than a straightforward
composition of public-key encryption and digital signature.

The shared secret key between the parties makes possible an unlimited number
of applications. Among these applications, one can first think of the following three:

• secure and authenticated key establishment,
• secure multicasting, and
• authenticated key recovery.
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Furthermore, one can think of a diverse array of network environments ranging from
mobile ad hoc networks to asynchronous transfer mode (ATM) networks, where
computational resources and communication bandwidth are scarce and as a result
signcryption may offer desirable solutions. Consider ATM networks, which serve
as a data transport mechanism for high-speed networks including conventional wide
area networks (WAN). A characteristic of ATM is that data is transported in a cell
or packet of fixed size, of 53 bytes (a 48-byte payload together with a 5-byte cell
header). With such a relatively small cell size, it is impossible to use conventional
public-key cryptographic techniques to embed key agreement materials in a single
cell. The signcryption methodology enjoys the merit of a compact size ciphertext
and can be employed to solve this problem. Similarly, for a mobile ad hoc net-
work, as mobile terminals typically have very limited energy supply and computa-
tional powers, if computationally expensive public-key encryption and signature are
employed separately, then these mobile terminals will run out of power very quickly.
Signcryption provides a power-saving security solution for mobile ad hoc networks.

A number of signcryption-based security protocols have been proposed for afore-
mentioned networks and similar environments. These include

• secure ATM networks,
• secure routing in mobile ad hoc networks,
• secure voice over IP (VoIP) solutions,
• encrypted email authentication by firewalls,
• secure message transmission by proxy, and
• mobile grid web services.

In addition to the above applications, signcryption has various applications in elec-
tronic commerce, where its security properties are most useful. Looking from an
application-oriented point of view, a great amount of electronic commerce can take
advantage of signcryption to provide efficient security solutions for

• electronic payment,
• electronic toll collection system,
• secure and authenticated transactions using smart cards, etc.

As we consider these applications, we will pay particular attention to improvements
in operation speed and message overhead that can be obtained by using the sign-
cryption methodology in place of applying conventional confidentiality and integrity
protection mechanisms.

12.2 Example Applications of Signcryption

In this section, we will select some concrete schemes and proposals from the
aforementioned list of applications and provide more details of performance ben-
efits from using signcryption. Specifically, we investigate the following applica-
tions of signcryption: secure multicasting over the Internet [134], authenticated
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key recovery [151], secure ATM networks [208], secure routing in mobile ad hoc
networks [154], encrypted e-mail authentication by firewalls [86], and improved
secure electronic transaction (SET) [95]. A brief investigation of the uses of sign-
cryption with voice over IP network systems (VoIP) will also be included. This
inevitably leaves out many other interesting applications, including secure network-
ing and routing [87, 115], secure message transmission [85], mobile grid web ser-
vices [155], and Electronic Fund Transfer (EFT) [175]. The reader is directed to the
relevant references for further technical details on these applications.

12.2.1 Secure Multicasting Over the Internet

Multicast is an important network addressing method, which sends information to
a group of destinations at once. Different from broadcast which, delivers informa-
tion to all the members in a network, multicast transmits information to a set of
chosen destinations only. In an open network such as the Internet, multicast security
services often start with session key distribution for users of the chosen destinations.

In [134], Matsuura et al. proposed a multicast key distribution protocol using
signcryption. The goal of the proposed protocol is to obtain a secure and authenti-
cated key delivery service which is scalable and compact.

Traditionally the Internet Group Management Protocol (IGMP) [105] is used to
multicast packets for the final delivery between a local router (which forwards and
routes packets) and a member belonging to its sub-network. On the other hand,
for a sparsely distributed network, the most scalable techniques use a shared-tree
approach, such as the protocol-independent multicast-sparse mode (PIM-SM) [106]
and the core-based tree (CBT) routing protocol [104]. The latter is more scalable
and has fewer entries in routing tables.

Matsuura et al. made use of the core-based tree (CBT) [104] routing protocol and
multiple key distribution centers (KDCs), which are more practical and flexible than
a single trusted key distribution center, to achieve a scalable routing scheme. They
took advantage of signcryption to significantly reduce the communication cost and
computation time delay of the CBT protocol.

A (trusted) key distribution center (KDC) aims to issue a key to valid users in the
network. However, security in the network cannot, and should not, rely wholly on
a single KDC. Instead, a group key distribution center (GKDC) has been proposed
as a practical solution for key distribution over the Internet. This requires a KDC
in each local group which has its own public and private signing key pair. CBT can
be viewed as a routing protocol that employs GKDCs. Valid users, when looking to
access services across groups, need to join the new group and receive a distributed
key before accessing the services.

In a conventional CBT routing protocol, public-key encryption and signature are
used in succession to guarantee the secrecy of transferred packets and the identity
of the sender, respectively. More precisely, in the join request step, a host employs
a public-key encryption scheme to compute a ciphertext with the public key of
the next GKDC and then receives a signature from the GKDC to which the host
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currently belongs. There may be some intermediate GKDCs (routers) between the
destination GKDC and the sender host, thus the join request should be sent to its
neighbor GKDC and relayed to next hop, and so on. Conversely, in the join acknowl-
edgment step, the destination GKDC verifies the identity of the host. It then signs
key materials and encrypts them with its neighbor’s public key. Next, the neighbor
decrypts the ciphertext and verifies the signature, then re-encrypts and re-signs the
keying materials with the public key of the next hop before finally returning it to
the host. During this repeated encryption, decryption, and signing process, sign-
cryption can be applied in place of separate encryption and signing, whereby saving
both communication bandwidth and computational time, as we will show in the
following.

12.2.1.1 Performance Comparison

Since the most popular public-key signature and encryption algorithms are RSA
and ElGamal, whose security relies on the factoring and discrete log assumptions,
respectively, the comparison of signcryption and the underlying cryptographic algo-
rithms is provided among these popular schemes.

We use four notations in our comparison: RSA, ElGamal, SC_E, and SC_R which
are defined as follows:

• RSA: This scheme is composed of a RSA signature [91] and a standard RSA
encryption. (For simplicity, only the textbook RSA encryption is considered;
performance for more advanced RSA-based schemes can only be worse than that
of the textbook RSA.)

• ElGamal: This scheme is composed of a shortened ElGamal signature
(DSS) [149] and a textbook ElGamal encryption.

• SC_R: This scheme is composed of a RSA signature in addition to Zheng’s orig-
inal signcryption scheme [203].

• SC_E: This scheme is composed of a shortened ElGamal signature (DSS) in
addition to Zheng’s signcryption scheme.

All the above techniques can be used in modified CBT-based protocols. Note that
in the modified CBT routing protocol proposed in [134], the processes of join
request and join acknowledgment typically need Encrypt-then-Sign. (For a dis-
cussion on differences between Encrypt-then-Sign and Sign-then-Encrypt, please
refer to Chap. 3.) An independent signature scheme is used in the routing proto-
col, which is the reason why all the above techniques have a separate signature
scheme.

12.2.1.2 Computational Cost

Computational cost for the RSA and ElGamal algorithms is mostly concentrated on
modular exponentiations and modular multiplications. For the RSA cryptosystem
with a public composite n, let |n| be the binary length of n. The main cost occurring
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in the decryption and signing processes includes two regular modular exponentia-
tions:

• One for decryption, together with an encryption with a very small public expo-
nent (requiring relatively small computational overhead).

• One for signature generation, together with signature verification with a very
small public exponent (requiring relatively small computational overhead).

These operations usually take 1.5|n|modular multiplications using the “square-and-
multiply” method. With the help of the Chinese Remainder Theorem (CRT), which
achieves the fastest known implementation of RSA, the aforementioned cost could
be reduced to 1.5|n|/4 = 0.375|n| modular multiplications [66, 203]. It is consid-
ered to be the primary cost for computation for the RSA-based protocol.

With ElGamal, it requires

• one modular exponentiation for signature generation,
• two modular exponentiations for signature verification,
• two modular exponentiations for encryption, and
• one modular exponentiation for decryption.

The corresponding cost of ElGamal for exponentiation calculation can be repre-
sented by the following numbers of modular multiplications: 1.5|q|, 1.75|q|, 3|q|,
and 1.5|q| [134], where q is the order of the subgroup used in the ElGamal algo-
rithm.

On the other hand, the cost of signcryption-based schemes can be estimated as
follows:

• one modular exponentiation for signcryption,
• two modular exponentiations for unsigncryption,

which lead to 1.5|q| and 1.75|q| modular multiplications, respectively.
To achieve a similar security level, n and q are set to 1,536 and 176. (We refer

to [121] for a more precise analysis on the key sizes of RSA and elliptic curve
cryptography.) It is shown by experimental results [134] that, assuming that there are
two hops between the host and the destination, when the cost of the key distribution
protocol using ElGamal is set to 1, then the protocol using SC_E takes 0.87, RSA
takes 0.80, and SC_R takes 0.745. Clearly, the protocol implemented with SC_R is
the most efficient from a computational point of view.

12.2.1.3 Communication Overhead

As for communication bandwidth overhead, from Table 12.1, it is easy to see
that protocols using signcryption have a significant saving, especially in the join-
acknowledgment process of a CBT-based routing protocol. It is interesting to note
that the SC_E protocol affords the smallest communication overhead.
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Table 12.1 Communication overhead of SC_E by the ratios to RSA, ElGamal, and SC_R [134]

Join request process (%) Join acknowledgment process (%)

vs. RSA 17.2 15.0
vs. ElGamal 100.0 39.7
vs. SC_R 17.2 22.5

12.2.2 Authenticated Key Recovery

A key recovery system is a scheme in which a third party, called the “data recovery
agency (DRA),” is able to recover a plaintext from a ciphertext without the help of a
sender or a recipient. Various key recovery systems have been discussed in [70, 195].

In a typical key recovery system, as shown in Fig. 12.1, a sender transfers an
encrypted message with a data recovery field (DRF) attached to it. Within the DRF,
a session key that is used to encrypt the message is stored after being encrypted
with the public key of the key recovery agent (KRA). Typically the KRA can only
decrypt the session key, with no access to the ciphertext. The DRA can ask the KRA
to help decrypt the encrypted session key that will in turn allow the DRA to recover
the encrypted message. Note that the KRA only returns the session key in DRF
after successfully verifying the identity of and request from the DRA, and the DRA
cannot recover the message directly by himself. This provides a way to recover
the encrypted message from the ciphertext without the help of the sender or the
receiver.

A necessary condition for successful recovery is the assurance of correctness of
DRF, that is, if the sender prepares a bogus DRF, then the key recovery system must
fail. With a typical key recovery system, this condition is not met, as the DRF is
not authenticated. As a result a bogus DRF could be forged by a malicious entity.
To address this issue, an authenticated DRF can be used to ensure the integrity and
authenticity of the data and can serve as undeniable evidence that the sender has
indeed sent the corresponding DRF. Signcryption can be used to construct the DRF
with authenticity and confidentiality together while requiring a smaller overhead
compared to conventional schemes. Unfortunately, this does not completely solve
the problem as the sender could still send a bogus DRF. However, if the signcryption

Sender Receiver

DRA

KRA

DRF session key

Fig. 12.1 Key recovery system
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scheme has public verifiability, then all parties will be able to check that a DRF
corresponding to correct sender has been included and then the malicious sender
can be pursued by KRA for failing to adhere to the key recovery protocols.

12.2.2.1 Computational Cost

Table 12.2 shows the computational cost of various implementations of a key recov-
ery system. It can be seen that, among the schemes with both confidentiality and
authenticity, signcryption does represent the most efficient implementation.

More precisely, Zheng’s signcryption scheme SCS1 [203, 204] saves one modu-
lar exponentiation relative to RSA Sign-then-Encrypt and two modular exponentia-
tions relative to “Schnorr signature+ ElGamal encryption” (see Sects. 3.3 and 4.3).
This immediately leads to a big saving of computation, since modular exponentia-
tions are a dominant issue in computational cost. In the following, let us consider
a 1,024-bit RSA modulus n, a large prime p and a large q, such that q|p − 1. A
generator of the subgroup with order q modulo p is chosen. A typical setting is
|p| = 1024 and |q| = 160.

In Table 12.2, EXP denotes the number of exponentiations, MUL that of multi-
plication, DIV that of division, and HASH that of hash computation. For the purpose
of comparison with both RSA-based and ElGamal-based schemes, we also include
in the table the costs of RSA and ElGamal encryption schemes. Due to differences
in sizes of exponents, a direct comparison of computational costs of RSA and ElGa-
mal by merely counting the number of exponentiations can be misleading. A more
accurate approach is to evaluate the number of multiplications required. Similar to
the analysis in Sect. 12.2.1, one RSA modular exponentiation can be completed in
0.375|n| multiplications and one ElGamal modular exponentiation is 1.5|q|. There-
fore, the signcryption-based scheme requires the least computational cost and saves
the computational cost by

(0.375|n| − 1.5|q|)/0.375|n| = 37.5%

where typically |n| = 1, 024 and |q| = 160. On the other hand, compared to
“Schnorr signature + ElGamal encryption,” two less exponentiations are required
which leads to a 66.7% saving in computational cost.

Table 12.2 Comparison of computational cost for a key recovery system [151]

Type Computational cost
EXP+MUL+DIV+HASH

RSA enc. Encryption 1+0+0+0
ElGamal enc. Encryption 2+0+0+0
RSA sig. then enc. Signature+Encryption 2+0+0+1
Schnorr sig.+ElGamal enc. Signature+Encryption 3+1+0+1
SCS1 [203, 204] Signcryption 1+0+1+2
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12.2.2.2 Communication Overhead

In Table 12.3, we compare the computational overhead of the different implemen-
tations using typical security parameters. We set |n| = |p| = 1, 024, |q| = 160, the
length of keyed hash function’s output to be |K ey Hash(·)| = 128 and the length of
session key to be |ksession| = 128.

Using the signcryption scheme SCS1 by Zheng [203, 204] results in a very
small message overhead. More precisely, compared to an RSA encryption-based
key recovery system, signcryption saves the bandwidth by

|n| − (|K ey Hash(·)+ |q| + |ksession|)
|n| = 59.4%

12.2.3 Secure ATM Networks

The asynchronous transfer mode (ATM) protocol is a packet switching protocol in
which data traffic is encoded into a fixed-size cell, with 384 bits of payload data and
40 bits of header information. The ATM protocol works in the data link layer, which
is layer 2 in the open systems interconnection basic reference model (OSI) [212].
The data link layer receives services from the fundamental physical layer (layer 1)
and provides services to upper layers. ATM differs from other technologies like
Internet protocol (IP) principally in that it has a fixed-size cell. It is used in wide
area networks (WANs) and asymmetric digital subscriber lines (ADSLs).

ATM is designed as a protocol with high transportation speed and low latency,
to transfer real-time video and audio, etc. The small and fixed size cell is helpful
in reducing the latency of transportation. This specific requirement of ATM cell’s
size poses interesting challenges in terms of data confidentiality and authenticity,
especially using conventional public-key cryptography. We note that some encryp-
tion schemes such as ElGamal can be built with a compact overhead of 161 bits,
on an elliptic curve over a finite field G F(2160). However, it does not work well
in ATM networks. It is because that the remaining 384 − 161 = 223 bits are not
adequate to transmit a key with a digital signature. Furthermore, if we consider
the higher IND-CCA2 level of security (discussed in Sect. 1.3.3), then even more
ciphertext overhead is required. As a result, elliptic curve cryptography technology
alone cannot provide an appropriate solution for confidentiality and authenticity in
ATM networks.

Table 12.3 Comparison of communication cost for a key recovery system [151]

Type Communication overhead

RSA enc. Encryption |n|
ElGamal enc. Encryption |p| + |ksession|
RSA sig. then enc. Signature+Encryption |n| + |n|
Schnorr sig.+ElGamal enc. Signature+Encryption |hash(·)| + |q| + |p| + |ksession|
SCS1 [203, 204] Signcryption |K ey Hash(·)| + |q| + |ksession|
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While it is possible to encrypt and sign key materials and then transport the resul-
tant ciphertext in several cells, due to buffering it may lead to a longer latency that
is not acceptable in certain high-speed applications.

Signcryption techniques can be used to provide key establishment in short pack-
ets suitable for use in ATM protocols. Consider the key establishment protocols
with timestamps proposed by Zheng and Imai [205, 208] described in Sect. 11.4. If
we assume that r and s are 80- and 160-bit long, respectively, and the timestamp is
32-bit long, then the direct construction of Table 11.3 can be used to encrypt a 64-bit
key, as the ciphertext size is 336-bit long. However, a 128-bit session key leads to
a 400-bit ciphertext, which is beyond the limit of the ATM cell size. The indirect
construction of Table 11.4 can be used to encrypt a 128-bit session key and results
in a ciphertext of 368 bits in length, which can be comfortably placed in an ATM
cell that has 384 bits for payload.

12.2.4 Secure Routing for Mobile Ad Hoc Networks

A mobile ad hoc network (MANET), widely employed in military and emergency
communication systems, is a network of devices that interact but do not have a fixed
network topology. Typically, it is a collection of small portable devices that com-
municate wirelessly. It is common to assume that these devices are only equipped
with restricted power and limited computational resources. These restrictions are
part of the reason why there are currently few secure routing protocols that can
be efficiently employed in large-scale MANETs. A protocol for secure routing has
to be compact to satisfy the restricted bandwidth requirements and be sufficiently
fast to tolerate the dynamically changing topology of MANET. The constrained
computation power and low energy of mobile terminals also prohibit the direct use
of expensive cryptographic tools, such as multiparty computations.

To cope with the underlying problems, efficiency of cryptographic solutions
is crucial and highly desired. Among the proposed secure routing protocols for
MANETs, an ID-based signcryption routing protocol called ISMANET [154] is
shown to achieve fairly good performance, compared to those based on conventional
(separate) signature and encryption algorithms.

ID-based cryptography was first proposed by Shamir [177] in 1984. ID-based
signcryption was developed by Malone-Lee et al. [129, 122, 51] and is extensively
discussed in Chap. 10. It has a significant advantage in that, unlike conventional
signcryption schemes, it does not require certificates for public keys. A further
advantage is that recipients can request their private keys after receiving the data
from the sender. These properties are useful in a dynamic MANET environment.

Figure 12.2 shows the flow of ISMANET protocol, which takes advantage of ID-
based techniques and signcryption mechanisms. The former avoids the requirement
of certification of public keys and the latter reduces the computational and commu-
nication cost. The proposed protocol is based on the AODV routing protocol [158].

The basic AODV routing process consists of two steps, route request (RREQ)
and route reply (RREP), to determine unicast routes to destinations within the
MANET. In [154], a slightly modified protocol using ID-based signcryption has
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been described, where a sender first broadcasts RREQ packets with its identity I DS ,
and key material T to all its neighbors. These intermediate nodes verify the packets,
if the packets are valid then transfer them to the destination. As the destination node
receives the packets, it will return RREP packets to determine the unicast routes,
if the packets from I DS have been verified. The RREQ packets contain the fields
including routing information, such as source address, broadcast ID, destination
address, etc. Similarly, RREP packets contain the destination address, the source
address and hop counters which define the unicast routes.

As in Fig. 12.2, a signcrypted part will provide authenticity to the packets. The
protocol makes use of the ID-based signcryption scheme proposed by Libert and
Quisquater [122]. SCS[·] and SCD[·] are the identity-based signcryption schemes
employed by source and destination, respectively. The user’s public key is com-
puted from its ID by using a publicly known hash function. Therefore, it is con-
venient to compute the public key from its corresponding ID without the help of a
trusted authority, which is especially useful since the trusted authority is difficult
to maintain in MANET. While on the other hand, the private key can be retrieved
beforehand or at a later stage.

T is generated as the signcryption text as in [122], in addition to a distributed
key generation process in [154], which works in a threshold manner to prevent key
compromise.

When the signcrypted packets are verified by intermediate node X (Intermediate
in Fig. 12.2), a temporary TX is computed similarly and added to the packets.
In reverse, the destination returns its reply if it successfully verifies T , TX , and
SCS[H(R RE Q||I DS||T )]. A small change is that the destination unicasts its
packet in the reverse way, including authentication information for intermediate
nodes.

12.2.4.1 Performance of ID-Based Signcryption Routing Protocol

Compared to two conventional secure routing protocols for MANETs, ARAN [172]
and SRP [153], this ID-based signcryption scheme (ISMANET) is advantageous in

Fig. 12.2 Routing request and reply protocol
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both computational cost and communication overhead. ARAN and SRP are secure
routing protocols for ad hoc networks based on RSA and elliptic curve cryptography
(ECC), respectively. Table 12.4 shows that ISMANET has the best performance in
terms of computational cost among three protocols. Performance details by simula-
tions are given by Park and Lee [154].

12.2.5 Encrypted and Authenticated E-mail by Firewalls

Firewalls are widely used in networks to filter network traffic according to specified
rules and criteria, and are especially useful for blocking malicious intrusion from
external networks. Firewalls can work well at several layers in an OSI seven layer
network [212], including the data link layer (layer 2), network layer (layer 3), and
the application layer (layer 7). In the data link layer (layer 2), firewalls are able
to filter data traffic according to frame contents. In the network layer (layer 3), fire-
walls can be run according to more complicated rules, such as packet addresses, port
addresses, and packet header. In the application layer (layer 7), filtering is defined
by the rules specified by an end user.

Signcryption can be used to send a message (from a sender to a receiver) with
confidentiality and integrity protection. One notices that when a signcrypted mes-
sage passes through a firewall between the sender and the receiver, it may present a
problem. This is because the firewall cannot examine the contents of the signcrypted
message, nor can it determine the authenticity of the message (as origin authentica-
tion is only guaranteed for the receiver). To address this problem, a signcryption
scheme that offers public verifiability (see Sect. 4.3.3) can be used, whereby a
firewall can check the authenticity of the message without having to decrypt the
message first.

Note that it is very important to verify the authenticity of the network traffic
without the help of the receiver, as firewalls are only intermediaries on the com-
munication routes. Gamage et al. [86] proposed a variant of signcryption enjoying
public verifiability (see Sect. 4.3.3). A scheme by Bao and Deng [15] also has public
verifiability although it does not offer confidentiality (see Sect. 4.3.2).

Table 12.4 Comparison of ISMANET, ARAN, and SRP [154]

Scheme ISMANET ARAN SRP

Key distribution Public key Public key Public key
(ID-based signcryption) (RSA) (ECC)

Key management Distributed Centralized Centralized
Intermediate node Yes No No

authentication
Certification No need Need Need∗
Communication Low High Low

overhead
Computational cost Low High High
Cost in computation ≈ Cost(signcrypt) Cost(signature)+ ≈Cost(encryption)

and communication Cost(encryption)
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12.2.5.1 Cost Advantages Due to Signcryption

From a computational point of view, Gamage et al.’s signcryption scheme (see
Sect. 4.3.3) requires four modular exponentiations, while Zheng’s original signcryp-
tion scheme (see Sect. 4.3.1) requires three modular exponentiations, although the
latter cannot be used to authenticate encrypted message by firewalls. Table 12.5
shows that Gamage et al.’s signcryption scheme can achieve a 39% saving in com-
putation compared to the combination of DSA signature and ElGamal encryption,
which typically requires six modular exponentiations in total. Note that the number
in parentheses takes into account a technique that can be used to compute the prod-
uct of two modular exponentiations in time roughly equal to 1.17 regular modular
exponentiations [139, p. 618].

Hence, we can see that Gamage et al.’s signcryption scheme requires the
same amount of communication overhead as that of Zheng’s original signcryption
scheme, which is, as we have seen previously in the Chapter, considered advanta-
geous over a conventional Sign-then-Encrypt method.

12.2.6 Signcryption in Secure VoIP

A voice over IP (VoIP) system is a system for transmitting voice data and real-
time images over packet-switched IP networks. These systems have recently been
highlighted for their attractive cost-saving features. Using voice transmission over
IP networks, instead of public switched telephone networks (PSTN), makes long-
distance phone calls cheaper and provides a more flexible structure for a variety of
services. Examples of VoIP services include Microsoft’s Windows NetMeeting and
Apple Macintosh iChat.

Along with these desirable properties, however, VoIP also introduces a range
of new security issues and these issues apparently contributed to a lag in sales in
the US market, according to a recent investigation by a market research firm called
In-Stat [99]. These security issues include

• legal issues,
• the narrow margin left for security in the system architecture, which is latency

sensitive and has a low tolerance for packet loss,
• the more complicated network architecture of Internet relative to conventional

PSTN, requiring new technologies to protect VoIP systems.

Unlike a conventional PSTN, where intercepting conversations implies physical
access to telephones lines, VoIP has more vulnerable points that could be penetrated

Table 12.5 Computational cost saving on firewalls for modified signcryption over DSA [86]

Operation mode Cost savings

Signcryption with message recovery 5/6 (4.17/5.17) 17% (19%)
Signcryption with verification only 4/6 (3.17/5.17) 33% (39%)
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by an intruder. In addition, VoIP is also more sensitive to the delay of transmission,
which makes security countermeasures more difficult. Typically, an upper bound of
150 ms delay is appropriate for acceptable voice quality at the receiver end. Note that
voice encoding typically takes 1–30 ms and it takes about 100 ms to transmit data
across the North American continent. As a result there are only about 20–50 ms
left for all security-related operations [150, p. 19]. Meanwhile, it is important to
remember that a typical payload in a VoIP system is 10–50 bytes, which is quite
small. Security techniques such as TLS and IPsec cannot be readily adapted to
protect VoIP. As a result, in the strict performance environment required by VoIP,
current technology does not provide physical wire security comparable to PSTN
networks.

From the above discussions, we can see that the complicated security issues
involved in implementing a VoIP system require an elaborate but efficient security
solution. As VoIP is implemented over IP networks, security answers should adapt to
a variety of Internet mechanisms, such as multicasting, firewalls, and perhaps even
wireless networks. We have already shown that in these situations signcryption can
be used to improve performance.

For authenticated key distribution in VoIP systems, public-key encryption or
Diffie–Hellman key agreement has been advocated for use in the secure real-
time protocol (SRTP) [150, p. 17]. We argue that signcryption should instead be
employed, providing protection for confidentiality and authenticity with a smaller
computational and communication overhead.

H323 is a family of widely adopted standards [103, 150] for audio and video
communication over packetized networks by the International Telecommunication
Union (ITU). H323 includes a series of protocols supporting a suite of media control
policies. Among them, H235v2 provides a security solution for the H323 suite. In
H235v2, a hybrid security profile is used to establish an authenticated key between
two entities during their initial handshake [150, p. 32]. The authenticated key estab-
lishment process makes use of a Diffie–Hellman key agreement and an RSA signa-
ture; the efficiency and bandwidth of this system can clearly be improved by making
use of a signcryption-based key establishment protocol (see Chap. 11).

Finally, in bandwidth-restricted VoIP networks, which typically have a payload
of 10–50 bytes, it is cumbersome to use both public-key encryption and digital sig-
nature in short packets. As we have analyzed in Sect. 12.2.3, signcryption can work
well in ATM networks which have a 384-bit (48-byte) fixed-size payload. Further-
more, as has been extensively discussed in the previous sections, communication
cost would be greatly reduced by using a signcryption scheme.

12.2.7 Applications to Electronic Payment

Signcryption finds a natural application in electronic payment protocols in which
both confidentiality and non-repudiation are essential. We focus our attention
on improving the Secure Electronic Transaction (SET) [132, 133] protocol with
signcryption [95].
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12.2.7.1 An Overview of SET

The payment model on which SET is based consists of three participants: a card-
holder, a merchant, and a payment gateway. The card holder (C) initiates a pay-
ment with the merchant (M). The merchant then has to authorize the payment;
the payment gateway acts as the front end to the existing financial network, and
through this the card issuer can be contacted to explicitly authorize each and every
transaction that takes place. In the SET protocol, there are a total of 32 different
types of messages [132, 133]. Among the messages, the most important ones, and
the messages transmitted at the highest frequency, are the following six: PInitReq,
PInitRes, PReq, PRes, AuthReq, and AuthRes. Other messages are used mainly for
administrative purposes, such as creating certificates, canceling messages registra-
tion, error handling, etc. Hence these messages are transmitted with significantly
less frequency than the six messages mentioned above, which in turn implies that
any attempt to improve the efficiency of SET must focus on the six main messages.
The flow of the six main messages is shown in Fig. 12.3.

Payment GatewayCardholder Merchant

PInitReq

PInitRes

PReq

AuthReq

AuthRes

PRes

Fig. 12.3 Flows of the main SET messages

Next we discuss in detail the functions of the six dominant messages. A few
frequently used notations are summarized in Table 12.6. To simplify our discussion,
addition information such as request and response will be denoted by a nonce with
a specified format.

The SET protocol starts with purchase initialization (PInitReq and PInitRes).
Purchase request (PReq) is then executed conforming to the structure described in
Table 12.7. In PReq, PI and OI are destined for different entities but sent in the same
cryptographic envelope. They share a signature, called a dual signature [132, 133],

Table 12.6 Notations
Encrypt(m, pk) Encrypt m using a public encryption key pk
EncK (m) Encrypt m by using the symmetric encryption key K
Sign(m, sk) Sign m using a signing key sk
H(t) Hash of t
sksig

C Cardholder’s private signing key
pkenc

P Payment gateway’s public encryption key
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Table 12.7 Structure of PReq

Message Message factor

PReq {PI, OI}
PI {Encrypt((K , PANData, nonce), pkenc

P ),
EncK (PI-OILink, H (PANData,nonce)),
Dual signature}

OI {OIData, H (PIData)}
PANData Primary account number data
PIData Purchase instruction data
OIData Order information data
PI-OILink {PIData(except PANData), H (OIData)}
Dual signature Sign(H (H (PIData), H (OIData)), sksig

C )

which can be verified by either entity. The structure of the dual signature used in
SET is illustrated in Table 12.7.

After receiving PReq, the merchant verifies it (especially, the dual signature). If
it is valid, he produces an authentication request (AuthReq) message and sends it to
the payment gateway (P). Upon receiving AuthReq, the payment gateway verifies
it. If successful, the payment gateway sends authentication response (AuthRes) back
to the merchant. Finally, the protocol is finished with purchase response (PRes)
produced by the merchant.

12.2.7.2 Some Remarks for Applying Signcryption

As is well known, signcryption executes two different procedures simultaneously,
and there are often problems in the implementations of dual security systems. In
SET, the problem of straightforwardly applying signcryption is as follows: sign-
cryption does not provide efficient message linking though this functionality is very
often required in SET. For example, in PReq the relationship between the informa-
tion for the payment and that for the order must be guaranteed. Namely, PIData and
OIData are linked with each other in the message. In the conventional SET, this
requirement is fulfilled by the dual signature. However, it is difficult to provide the
functionality of the dual signature using signcryption for the above reason, although
a dual signature can be verified by both the merchant and the payment gateway,
a signcrypted message cannot (assuming usual computational costs). Therefore,
straightforward applications of signcryption is not be appropriate for SET. Hence,
we need to slightly modify signcryption to provide the functionality of message
linking. This signcryption-based SET is called LITESET.1

12.2.7.3 Conventional Set vs. Signcryption-Based Set

Under the Gap Diffie–Hellman assumption and a gap version of the discrete
logarithm assumption [152], Zheng’s signcryption scheme [203, 204] has been
proven secure against chosen ciphertext and chosen message attacks [12, 13] (see

1 Though SET is no longer supported by VISA and Mastercard, this performance-enhanced proto-
col LITESET provides a proof of concept and a possible choice for future electronic payments.
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Table 12.8 Computational cost for message generation of main messages [95]

Message SET LITESET [95] Saving (%)

PInitReq – – –
PInitRes 384 240 37.5
PReq 401 480 −19.7
AuthReq 401 240 40.1
AuthRes 802 480 40.1
PRes 384 240 37.5
Total 2, 372 1680 29.2

Sect. 4.3.1). This scheme is used in the LITESET protocol, ensuring that the secu-
rity level of LITESET is the same as the conventional SET with RSA-OAEP [30]
and RSA-PSS [31]. We focus our comparison on RSA-based SET and LITESET
(which is built on discrete-logarithm-based signcryption). The analysis can be easily
extended to elliptic curve versions of SET and LITESET.

As explained in Sect. 12.2.1, the computational cost depends mainly on modulo
exponentiations in encryption or signature generation. Hence, the number of mod-
ulo multiplications in modulo exponentiation can be used to benchmark computa-
tional cost. We estimate the number of modulo multiplications by using “square-
and-multiply” and “simultaneous multiple exponentiation.” Namely, the number of
modulo multiplications for one yr is 1.5 · |q| and for (y0 · y1

r0)r1 it is equal to
7
4 · |q|, where y, y0, and y1 are elements of a group with order q over the finite field
G F(p), and r, r0, and r1 are elements of Zq . In the conventional SET, 1,024-bit
RSA composite is used. To achieve the same security level, |q| = 160 bits and
|p| = 1024 bits should be chosen for LITESET [203, 204]. Table 12.8 shows the
costs of message generation for the six main messages, where the unit of cost is
modulo multiplication. We notice that the computational costs are saved by approx-
imately 30%. Although difficult to quantify, a further advantage of LITESET lies in
the fact that it requires less certificate verifications thanks to a reduced number of
public-key certificates required for signcryption.

12.2.7.4 Message Overhead

Expanded bits by signature and encryption are considered as message overhead.
Table 12.9 shows the message overhead of the six main messages. We can see that
message overhead is saved by over 60% for each message.

Table 12.9 Message overhead of main messages [95]

Message Conventional This scheme Saving (%)
scheme [95]

PInitReq – – –
PInitRes 1,024 bit 320 bit 68.7
PReq 2,008 bit 720 bit 64.1
AuthReq 4,056 bit 640 bit 84.2
AuthRes 4,256 bit 480 bit 88.7
PRes 1,024 bit 320 bit 68.7
Total 12,368 bit 2,480 bit 79.9
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