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Preface

AI 2008, the 21st Australasian Joint Conference on Artificial Intelligence, was,
for the first time, held in New Zealand, in Auckland during December 1–5, 2008.
The conference was hosted by Auckland University of Technology.

AI 2008 attracted 143 submissions from 22 countries, of which 42 (29%) were
accepted as full papers and 21 (15%) as short papers. Submissions were subject
to a rigorous review process. Each paper was reviewed by at least three (often
four, and in one case, six) members of the Programme Committee. Authors could
then provide a “rebuttal” to these reviews. The Senior Programme Committee
members coordinated discussion on the papers to provide a recommendation
of acceptance or rejection to the Programme Committee Co-chairs. Both full
papers and short papers were presented at the conference.

We would first like to thank all those who submitted papers to AI 2008.
Special thanks to the Programme Committee members for their detailed reviews
completed in a timely manner, and to the Senior Programme Committee for their
considered judgements and recommendations on the papers. We are sure authors
would like to know that the rebuttal and subsequent discussion phases made a
difference to the outcome in numerous cases. We are confident that this process
has improved the decision making for final paper selection, and that the overall
quality and reputation of the conference is enhanced as a result. Thanks also to
EasyChair for the use of their conference management system to facilitate this
complex process and the preparation of these proceedings.

AI 2008 featured three invited talks, from Tony Cohn (“Steps Towards Cog-
nitive Vision”), Reinhard Klette (“Stereo-Vision-Based Driver Assistance”) and
Zbigniew Michalewicz (“Intelligence, Business Intelligence, and Adaptive Busi-
ness Intelligence”). These talks contributed greatly to the intellectual environ-
ment of the conference, and were highly appreciated by all participants.

Being the first “Australasian” conference continuing the series of Australian
conferences, this year was somewhat of an experiment. We would like to ac-
knowledge the large number of New Zealand researchers who submitted papers
and served on the Programme Committee of AI 2008, helping to make this con-
ference a success. We would like to thank Auckland University of Technology for
organizing the conference, and the Australian Computer Society, the University
of New South Wales and the University of Wollongong for financial support.

December 2008 Wayne Wobcke
Mengjie Zhang
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Stereo-Vision-Support for Intelligent
Vehicles - The Need for Quantified Evidence

Reinhard Klette

The .enpeda.. Project, The University of Auckland
Auckland, New Zealand

Abstract. Vision-based driver assistance in modern cars has to perform
automated real-time understanding or modeling of traffic environments
based on multiple sensor inputs, using ‘normal’ or specialized (such as
night vision) stereo cameras as default input devices. Distance measure-
ment, lane-departure warning, traffic sign recognition, or trajectory cal-
culation are examples of current developments in the field, contributing
to the design of intelligent vehicles.

The considered application scenario is as follows: two or more cameras
are installed in a vehicle (typically a car, but possibly also a boat, a
wheelchair, a forklift, and so forth), and the operation of this vehicle (by
a driver) is supported by analyzing in real-time video sequences recorded
by those cameras. Possibly, further sensor data (e.g., GPS, radar) are also
analyzed in an integrated system.

Performance evaluation is of eminent importance in car production.
Crash tests follow international standards, defining exactly conditions
under which a test has to take place. Camera technology became recently
an integral part of modern cars. In consequence, perfectly specified and
standardized tests (‘camera crash tests’) are needed very soon for the
international car industry to identify parameters of stereo or motion
analysis, or of further vision-based components.

This paper reports about current performance evaluation activities in
the .enpeda.. project at The University of Auckland. Test data are so far
rectified stereo sequences (provided by Daimler A.G., Germany, in 2007),
and stereo sequences recorded with a test vehicle on New Zealand’s roads.

Keywords: intelligent vehicle, vision-based driver support, stereo analy-
sis, motion analysis, performance analysis, camera crash tests.

1 Introduction

Current research in vision-based driver assistance asks for the generation of
‘ground truth’1 for real-world sequences, and its use for performance evaluation
of various algorithms for stereo image sequence analysis.
1 The term ground truth was coined in photogrammetry when comparing analysis

results, derived from aerial imaging, against measured data (‘on the ground’). The
presence of a measurement error means that ground truth is not truth, but expected
to be close to it.

W. Wobcke and M. Zhang (Eds.): AI 2008, LNAI 5360, pp. 1–17, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



2 R. Klette

Fig. 1. Left: page in the 1976 report [21], offering eight color images and one multispec-
tral image. Right: ‘Lena’ and results of various edge detectors. Those 1976 test images
are still in use today when demonstrating research on low-level image processing.

Fig. 2. Rubik cube on a microwave turntable at DEC, the 1971 “Hamburg Taxi”, “SRI
Trees”, and two more “sequences” as used in the 1990s. Lower left: color representation
of calculated optical flow for the taxi scene. These short sequences did not come with
ground truth, and are still used sometimes today (e.g., for student assignments).

Evaluations have a long history in image processing. In a first generation of
test images in the 1970s (e.g., see [21] for images such as Lena, Mandrill, peppers,
tiffany, or zelda; “copies of the IPI data base” were “supplied on magnetic tape,
9 track, 800 BPI, on 2400-ft. reels”; Fig. 1 shows nine of those test images),
there were no stereo images, and no image sequences at all at that time in the
test data base. Very short sequences of images became popular in the 1980s,
such as those shown in Fig. 2, which allowed to compare results for optical
flow. The lower left in Fig. 2 shows a calculated vector field (as obtained in a
student assignment in the 1990s in one of my classes) in common hue-intensity
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Fig. 3. Demonstration of calculated optical flow [23], using the 1984 Yosemite sequence
as discussed on [2]. This sequence is still a popular way for demonstrating optical flow
results.

Fig. 4. Stereo pairs as used in the 1996 textbook [11] for evaluating the performance
of various stereo matching algorithms. An example of a reconstructed face is shown on
the right.

representation. The taxi sequence was actually recorded in 1971 (!) in the group
of H.-H. Nagel [17].

The Yosemite sequence (by L. Quam [19]; see Fig. 3) “has been used exten-
sively for experimentation and quantitative evaluation of optical flow methods,
camera motion estimation, and structure from motion algorithms.” [2] This is a
synthetic sequence of 316×252 images, simulating a flight through a valley, with
ground truth motion data (quantized to 8 bits) for rigid objects in the scene.

Test data for stereo analysis should be in standard binocular stereo geometry;
[11] offered those based on using an optic bench in the lab and careful camera
adjustments; see Fig. 4. There was no ground truth provided, and evaluation
was based on subjective (visual) comparisons.

Automated stereo pair rectification [15] maps today stereo images into stan-
dard binocular stereo geometry [8]. This allows to generate sets of stereo images,
ready for correspondence analysis. Laser-range finders may be used to generate
ground truth for such stereo images by modeling real scenes [9].
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Fig. 5. Illustration of four stereo image sets on the Middlebury vision website: map,
sawtooth, venus, and Tsukuba with depth map, illustrating ground truth as available
for those data sets on this website

Fig. 6. An illustration for seven stereo night vision sequences available since 2007 on
the .enpeda.. website [4] for performance evaluation. Left: one out of close to 2,000
rectified stereo pairs in total. Right: screenshot of an avi showing one original sequence
(lower left) and disparity data.

The Middlebury vision page [16] (of D. Scharstein, R. Szeliski, et al.) provided
in its ‘pre-2008-web-server-crash’ version only a few engineered samples of input
images for stereo and motion analysis; see four stereo sets illustrated in Fig. 5.
This website stimulates current progress in computer vision (and a web-server
crash in August 2008 was followed with eagerness in the computer vision com-
munity worldwide). Currently the website is revised, now also featuring more
data sets for performance evaluation, but still focussing on indoor, engineered,
high contrast imagery.

Driver assistance systems (DAS), see, for example, [5], the monograph [3] of
E.D. Dickmanns, or proceedings [22], have to deal with stereo image sequences
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Fig. 7. Test vehicle HAKA1 with a pair of cameras for stereo image sequence capture,
recording stereo sequences on Auckland’s roads since July 2008

recorded under any possible weather or lighting condition. See Fig. 6 for an il-
lustration of DAS stereo sequences: seven rectified night-vision stereo sequences
are available since 2007 on the .enpeda.. website [4] for motion and stereo
performance evaluation; the sequence data have been provided by Daimler AG
(group of U. Franke) and prepared in 2007 by T. Vaudrey and Z. Liu for online
presentation (with camera calibration and motion data for the ego-vehicle).

DAS sequences may contain unpredictable events and all kinds of variations in
recorded image data, for example due to a partially ‘faulty’ camera, generating
more blurry images in the left camera than in the right camera, or due to different
brightness in left and right camera. More rectified stereo real-world sequences
will be made available on the .enpeda.. website [4] soon, including those recorded
with a test vehicle (HAKA1, ‘High Awareness Kinematic Automobile no. 1’) in
Auckland (see Fig. 7).

Obviously, it is a challenge to provide ground truth (3D environment, poses
of agents) for such sequences. Three approaches appear to be possible options for
satisfying the needs of camera crash tests as indicated in the Abstract of this paper:

(1) Post-modeling of recorded 3D environments: based on recorded stereo se-
quences, apply (possibly manual) 3D modeling software to generate a 3D
dynamic model of the recorded scene.

(2) Accumulated evidence for 3D environments: in extension of the post-modeling
approach, drive repeatedly into the same (static) 3D environment, and at-
tempt to improve the 3D model (shape plus texture) by accumulation, merg-
ing, or unification of obtained 3D data (also using other sensors).

(3) Pre-modeling of recorded 3D environments: use 3D modeling approaches
such as laser-range finders or sensor technology to generate an accurate 3D
model (shape plus texture) of a defined environment and operating agents
(vehicles or persons), and of poses of ego-vehicle and also of agents during
recording.
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Fig. 8. Examples of manually specified rectangular regions for approximated ground
truth: in original sequences of Set 1 on [4] (left) and in Sobel-based BP results (right)

This paper will report in the second section about work towards the first
approach. For the second or third approach, see, for example, [6], where also
a laser-range finder is mounted on a mobile platform, used for modeling city
scenes. Laser-range finders allow very accurate 3D large-scale models, see [9].
For example, a particular area might be 3D modeled, such as a courtyard which
is basically ‘static’, and this area may then serve as a ‘camera crash test site’,
similar to crash test halls at car companies. For combining various sensors for
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3D modeling, see, for example, [12]. Alternatively, large scale modeling may also
utilize technology as developed for the generation of 3D maps [1], also discussed
in [9].

2 Approximate Ground Truth

In a recorded stereo sequence, we may identify simple geometric shapes and
identify their 3D location, using automated or manual measurements; see Fig. 8.
(The figure also shows identified rectangular areas in depth maps calculated
using belief propagation as specified in [7].) As a more general option [14], we
may assume an approximate planar road surface, using known parameters of
ego-vehicle and cameras (as saved for Set 1 on [4] in the camera.dat file and in
the file header of every frame; see [13]).

2.1 Disparities on Road Surface

We assume that test sequences are ego-motion compensated, which means that
the horizon is always parallel with the row direction in the images, and pixels
on the same image row have the same depth value if a projection of the planar
road surface.

A side-view of the camera setting is shown in Figure 9, where θ is the tilt
angle, P is a road surface point which is projected into p = (xp, yp) on the image
plane, H is the height of the camera. It follows that

Z = de(OPc) = de(OP ) cosψ =
H

sin(θ + ψ)
cosψ (1)

According to the stereo projection equations, the disparity d can be written as

d =
b · f
Z

=
b · f

H
sin(θ+ψ) cosψ

(2)

y

P

O

H

f

p

Ad infinitum

Road surface

Image plane

Or

Pc

Fig. 9. Projection of a point P of the road surface



8 R. Klette

Fig. 10. Generation of a disparity mask: input image, generated road mask, depth map
of a planar road, and resulting disparity mask

where angle ψ can be calculated as follows, using focal length f and pixel coor-
dinate yp in the image:

ψ = arctan
( (yp − y0)sy

f

)
(3)

Here, y0 is the y-coordinate of the principal point, and sy is the pixel size in
y-direction. We can also compute the y-coordinate of a line that projects to
infinity

yinf =
y0 − f · tan θ

sy

This is the upper limit of the road surface, and points on it should have zero
disparity (if no objects block the view).

Figure 10 illustrates the process of generating an approximated disparity map
on road surface areas, also using manual input for a conservative outline of the
road area in a given image. In the given camera setting (of the seven sequences),
there is a yaw angle (0.01 radian) which makes the cameras looking a little bit
to the left. This angle can be ignored because it only defines the right camera
to be about 3 mm behind the left camera.

2.2 Recalibration of Tilt Angle

Although a camera tilt angle is already given for these sequences, we noticed
that the angle is not always true when verifying the data. This problem might be
caused by several reasons, for example, the road surface is changing (downhill,
uphill), the car coordinate system is not parallel to the road surface in some
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Table 1. Results of tilt angle estimation for the given seven sequences

Sequence name Tilt angle (radian)
1: 2007-03-06 121807 0.01608
2: 2007-03-07 144703 0.01312
3: 2007-03-15 182043 0.02050
4: 2007-04-20 083101 0.06126
5: 2007-04-27 145842 0.06223
6: 2007-04-27 155554 0.06944
7: 2007-05-08 132636 0.05961

situations (acceleration, braking), drivers of different weight, or driving with flat
tires, or the installation of cameras may change for some reasons. (Actually,
changes are easy to detect by reading the position of the Mercedes star in the
given images.)

The outlined process for obtaining approximate stereo ground truth identified
the importance of the tilt angle for the estimated values. We propose a method
to estimate the average tilt angle for a given sequence of frames. This method
is similar to the road surface stereo approximation, just in a reverse order. We
estimate the tilt angle based on given depth at some feature points (i.e., with
known disparities) which can be measured or identified manually.

See Figure 10 and assume a given pair of corresponding points, with disparity
d. By Equation (2) we have that the tilt angle can be written as follows:

θ = arcsin
(H cosψ · d

b · f
)
− ψ (4)

where ψ is as given in Equation (3).
Altogether, at first, we randomly select five or six frames from a sequence of

frames, then, we calculate or choose pairs of corresponding pixels on the road
surface area, and obtain disparities between those. Each disparity (of one pixel
pair) can be used to calculate a tilt angle using Equation (4), and a mean of those
provides a tilt angle estimation; see Table 1 for results for the seven sequences.

2.3 2D Motion on Road Surface

Speed and direction (yaw rate) of the ego-vehicle are given for all frames of those
seven sequences. The road is, obviously, static, what makes the calculation of rela-
tivemovement of road surface points (with respect to the camera) straight forward.

Given a pixel p on the image plane at time t, which is projected to a road
surface point P . Let P move to a new position P ′ at time t+ δt, where δt is the
time interval between two consecutive frames (called CycleTime in the seven
sequences, either equals 0.04 s or 0.08 s). Then, P ′ is projected back to the
image plane at p′; see Figure 11. The approximation of 2D motion (i.e., local
displacement) at a pixel can then proceed as follows:

First, assume that the vehicle speed equals v at time t, and v′ at time t+ δt;
the average speed during this time interval equals δt is v = v+v′

2 , having δt very
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y

P'

O

H

f

p'

Road surface

Image plane

P

p

Or

Yroad

Zroad

Fig. 11. Approximation of 2D motion in y-direction: P and P ′ is the same road surface
point, just in two consecutive frames. P is projected into p = (x, y) in the image plane,
P ′ is projected into p′ = (x′, y′).

O
X

Z

P

P'

Ego Vehicle

Fig. 12. Change in relative position between road surface point P and ego-vehicle

small in the sequences. Distances (in Zroad coordinates) of moving points are
defined as follows:

dZ(P, P ′) = |v| cos(ϕ+ ϕc)δt =
|v1| + |v2|

2
cos(

ϕ1 + ϕ2

2
+ ϕc)δt

where ϕ1 and ϕ2 are the yaw angles of the ego-vehicle at t and t+ 1, and ϕc is
the yaw angle of the camera installation (see Figure 12). Therefore, the distance
between the point P and the ego-vehicle becomes

ZP ′ = dZ(Or, P
′) = dZ(Or, P ) − dZ(PP ′) =

H

tan(θ + ψ)
− dZ(PP ′)

Then, the angle between the projection ray OP ′ and the optical axis of the
camera may be determined as follows:

ψ′ = arctan
( H

dZ(Or, P ′)
)
− θ = arctan

( H

dZ(Or, P ) − dZ(P, P ′)
)
− θ

where dZ(Or, P ) = H
tan(θ+ψ) .
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P

O

t1

t2

X2

Z2

X1

Z1

Fig. 13. A rotation of the ego-vehicle

Therefore, according to Equation (3), the y-coordinate of 2D motion u at
point P ′ can be written as

v =
(f · tan(ψ′)

sy
+ y0

)
− yp

Thus, we are also able to specify the position of point P in x-direction as follows

XP =
ZP · xp

f

with ZP = H
sin(θ+ψ) cosψ, which is actually already a known value from the

previous stereo ground truth approximation.
The position of P ′ (for the next frame) can then be calculated by using speed

v and time interval δt,

XP ′ = XP − |v| sin(ϕ+ ϕc)δt

Now we have the new relative position between the road surface point and the
vehicle at time t+ δt. - In a next step, we need to rotate the vehicle coordinate
system by an angle according to the yaw rate given in the vehicle movement
parameters; see Figure 13. Therefore, the final (relative) position equals[

Xφ
P ′

Zφ
P ′

]
=
[
cos(φ) − sin(φ)
sin(φ) cos(φ)

] [
XP ′

ZP ′

]
In a final step, point P is projected back to a pixel p′ on the camera’s image

plane. Then, 2D motion is obtained by comparing locations of p and p′, as follows:

ψ′ = arctan
( H
Zφ

P ′

)
− θ
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Fig. 14. Two projections of a moving disk, at times t and t + 1

v = y′p − yp =
(f · tan(ψ′)

sy
+ y0

)
− yp

u = xp′ − xp =
f ·Xφ

P ′

H
sin(θ+ψ′) cos(ψ′)

− xp

2.4 Change in Depth for Image Features

As another option for modeling recorded scenes, we may use a scale-space based
estimation of changes in depth [20]. Consider a disk of radius ρ moving towards
an ideal pinhole-type camera of focal length f . Without loss of generality, let
the radius move parallel to the Y -axis of the XY Z-camera coordinate system
(i.e., r = Yc − Ye, for center Pc and an edge point Pe of the disk). A 3D point
P = (X,Y, Z) in the world (in camera coordinates) projects into a point p =
(x, y, f) in the image plane, with x = f X

Z and y = f Y
Z . Point Pc projects into

pc = (xc, yc, f), and Pe projects into pe = (xe, ye, f). The moving disk is at time
t at distance Zt, and projected into image It as a disk of radius rt (see Fig. 14).
We obtain the following for the area of this projected disk:

At = πr2t = π (yc − ye)2 = f
π

Z2
t

(Yc − Ye)
2 = πf

ρ2

Z2

Radius ρ of the disk is constant over time, thus, the product AtZ
2
t ∼ ρ2 will also

not change over time.
We consider projections of the disk at times t and t+ 1. Because the ratio of

square roots of areas is proportional to the inverse of the ratio of corresponding
Z-coordinates of the disk, we are able to define a z-ratio

µz =
√
At√
At+1

=
Zt+1

Zt
(5)

either by area or Z-values.
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Such a z-ratio can also be defined just for a pair of projected points Pt =
(Xt, Yt, Xt) and Pt+1 = (Xt+1, Yt+1, Zt+1) (just by the ratio of Z-coordinates).
Using the central projection equations for both projected points, we obtain for
their x-ratio and y-ratio the following:

µx =
Xt+1

Xt
=
Zt+1

Zt
· xt+1

xt
= µz

xt+1

xt
(6)

µy =
Yt+1

Yt
=
Zt+1

Zt
· yt+1

yt
= µz

yt+1

yt
(7)

Altogether, this may also be expressed by the following update equation:⎛⎝Xt+1
Yt+1
Zt+1

⎞⎠ =

⎛⎝µx 0 0
0 µy 0
0 0 µz

⎞⎠⎛⎝Xt

Yt

Zt

⎞⎠ (8)

with µx, µy, and µz as in Equations (6), (7), and (5) respectively. In other words,
knowing µz and ratios xt+1

xt
and yt+1

yt
allows to update the position of point Pt

into Pt+1. Assuming that Pt and Pt+1 are positions of one tracked 3D point
P , from time t to time t + 1, we only have to solve two tasks: (1) decide for
a technique to track points from t to t + 1, and (2) estimate µz . If an initial
position P0 of a tracked point P is known then we may identify its 3D position
at subsequent time slots. Without having an initial position, we only have a 3D
direction Pt to Pt+1, but not its 3D position.

For identifying µz, an ‘area of influence’ is assigned to each tracked feature
point, basically taking the role of a tracked disk.

For tracked points, a scale-space-based measure is computed for the ‘exten-
sion of the local image structure’ in a local (or semi-local) neighborhood. Such

Fig. 15. Disks with radii defined by maxima of scale space characteristics
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measures, computed independently for each pair of points, are used to deter-
mine a scale ratio (based on associated intensity profiles of scale characteristics
of those feature points), which is finally used as an estimate of the z-ratio µz .
For details, see [20]. Figure 15 illustrates disks assigned to tracked features.

3 Evaluation

We use quality metrics to measure the quality of calculated stereo correspon-
dences or motion vectors with respect to approximated ground truth.

Fig. 16. Percentages of bad matches for dynamic programming stereo and its variants

Fig. 17. Angular errors and endpoint errors for PyrLK on Sequence 6
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3.1 Stereo

The general approach of stereo evaluation is to compute error statistics based
on given ground truth. We use the same error measurements as on [16], namely
the root mean squared error between the disparity map d(x, y) and the ground
truth map dT (x, y), defined as follows:

ER = (
1
n

∑
|d(x, y) − dT (x, y)|2) 1

2 (9)

where n is the total number of pixels, and the percentage of bad matching pixels,
defined as follows:

EB =
1
n

∑
(|d(x, y) − dT (x, y)| > δd) (10)

where δd is the threshold of disparity tolerance.
Quality metrics for optical flow evaluation have to measure the result in a 2D

space. We use the common angular error defined as the average angle between
estimated optical flow vector u and the true flow vector uT ,

EAE =
1
n

∑
arccos

( u · uT

|u||uT |
)

(11)

where |u| denotes the length (magnitude) of a vector, and the end point error
which measures the absolute distance between the end points of vectors u and
uT ,

EEP =
√

(u − uT )2 + (v − vT )2 (12)

3.2 Examples of Results

The discussed approximate ground truth has been used in [7,14] for evaluating
stereo and motion analysis techniques, such as variants of dynamic program-
ming (including Birchfield-Tomasi), belief propagation, semi-global matching,
or variants of optical flow calculation (using sources in OpenCV [18] where
available, D. Huttenlocher’s belief propagation sources from [10], or our own
implementation).

For example, Fig. 16 shows bad matches for Sequence 1 (of Set 1 on [4]),
comparing a common dynamic programming approach with modifications, also
using spatial or temporal propagation (only one of those, or both combined).
The figure shows values for all the 300 stereo pairs of this sequence. It clearly
indicates that temporal propagation (see DPt in the diagram) is of benefit if
evaluating within the described road mask of estimated disparities.

Figure 17 summarizes angular and end point errors of the pyramid Lucas-
Kanade technique for all 250 frames of the left camera of Sequence 6.

We will not start a comparative discussion here, and point the reader to [7,14].
The two examples of diagrams are given here to illustrate an important property
of these evaluations based on real-world sequences: here we have long sequences,
basically of arbitrary length, and we may use this for improving results (e.g.,
by applying a Kalman filter), but also for deriving statistically more relevant
performance evaluation results.
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4 Conclusions

Vision-based driver assistance systems have moved into modern cars in recent
years, and there will be an ‘exponential growth’ in demands not only with re-
spect to deriving accurate and real-time computer vision solutions, but also in
evaluating these solutions, to ensure that they satisfy international standards
(still to be defined by major car manufacturers).

This will require that testing is based on real-world data, without eliminating
any possible visual effect, and with aiming at ‘robust’ testing. A vision system
may be ‘robust’ if being fairly invariant with respect to changes in brightness
or contrast; obviously, a smoke detection system should not have this type of
‘robustness’. We conclude that ‘robustness’ needs to be defined for the particular
needs of DAS.

Evaluation not only needs to be done also on stereo real-world sequences;
we may expect that the car industry will define the state of the art in stereo
and motion analysis with their (expected) quality standards very soon. Image
analysis will also work on rainy days, even in the night, and so forth.

Acknowledgement. The author acknowledges valuable support of, or collab-
oration with (in alphabetic order) Je Ahn, Ali Al-Sarraf, Eduardo Destefanis,
Shushi Guan, Zhifeng Liu, Jorge Sánchez, and Tobi Vaudrey.
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2 IRIT, Université Paul Sabatier, France
{hans,herzig,lang}@irit.fr

3 CRIL, Université d’Artois, France
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Abstract. We model the forgetting of propositional variables in a modal
logical context where agents become ignorant and are aware of each oth-
ers’ or their own resulting ignorance. The resulting logic is sound and
complete. It can be compared to variable-forgetting as abstraction from
information, wherein agents become unaware of certain variables: by em-
ploying elementary results for bisimulation, it follows that beliefs not
involving the forgotten atom(s) remain true.

Keywords: modal logic, forgetting, abstraction, action logic, belief
change.

1 There Are Different Ways of Forgetting

Becoming unaware. In the movie ‘Men in Black’, Will Smith makes you forget
knowledge of extraterrestrials by flashing you with a light in the face. After that,
you have forgotten the green ooze flowing out of mock-humans and such: you
do not remember that you previously had these experiences. In other words,
even though for some specific forgotten fact p it is now the case that ¬Kp and
¬K¬p, the flash victims have no memory that they previously knew the value
of p. Worse, they forgot that p is an atomic proposition at all. This sort of
forgetting is dual to awareness—in a logical setting this means that parameters
of the language, such as the set of atoms, shrink.

Becoming ignorant. A different sort of forgetting is when you forgot which of
two keys fits your office door, because you have been away from town for a
while. Is it the bigger or the smaller key? This is about forgetting the value
of an atomic proposition p—such as “the bigger key fits the door.” You are
embarrassingly aware of your current ignorance: introspection is involved. We
have K(¬Kp ∧ ¬K¬p). This sort of forgetting is central to our concerns.

Remembering prior knowledge. You also remember that you knew which key it
was. You just forgot. Previously Kp or K¬p, and only now ¬Kp and ¬K¬p.
� Corresponding author.

W. Wobcke and M. Zhang (Eds.): AI 2008, LNAI 5360, pp. 18–29, 2008.
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Forgetting values. Did it ever happen to you that you met a person whose face
you recognize but whose name you no longer remember? Surely! Or that you no
longer know the pincode of your bankcard? Hopefully not. But such a thing is
very conceivable. This sort of forgetting means that you forgot the value of a
proposition, or the assignment of two values from different sets of objects to each
other. An atomic proposition about your office keys is a feature with two values
only, true and false. The (finitely) multiple-valued feature can be modelled as a
number of atomic propositions. Forgetting of such multiple boolean variables is
in our approach similar to forgetting a single boolean variable.

Multi-agent versions of forgetting. Will Smith only had to flash a whole group
once, not each of its members individually. So, in a multi-agent setting some
aspects of collectively ‘becoming unaware’ can be modelled. A different, familiar
phenomenon is that of an individual becoming unaware in a group: “You forgot
my birthday, again!”

A group version for ‘remembering prior knowledge’ would involve common
awareness, and prior common knowledge. This collective introspective character
is not always easy to justify. On the other hand, a version of ‘remembering prior
knowledge’ for individuals in a group is more intuitive, because they can inform
and are observed by others: here you are standing in front of your office door
again, now in company of four freshmen students, “Ohmigod, I forgot again
which is my office key!”

I may have forgotten whether you knew about a specific review result for
our jointly editored journal issue. In other words, previously KmeKyouaccept or
KmeKyou¬accept but currently ¬KmeKyouaccept and ¬KmeKyou¬accept. Some
meaningful propositions that can be forgotten in a multi-modal context are there-
fore themselves modal.

Forgetting events. Say I forgot to pick you up at the airport at 4:30 PM. For-
getting an action (event) is different from forgetting a proposition. ‘Forgetting
of events’ amounts to introducing temporal uncertainty in the model, apart from
epistemic uncertainty. The observation of having forgotten it, is about the re-
covery that takes place after forgetting the event.

2 Motivation

A short history of forgetting in AI. In ‘Forget it!’ [1] Lin and Reiter proposed
a way to abstract from ground atoms (that can be equated to propositional
variables) in a set of first-order beliefs, employing the notion of similarity of
models for a theory except for such a ground atom. They leave it open whether
such forgetting is the result of an agent consciously updating a knowledge base
after having learnt about factual change, or whether this is simple erosion of
her working memory, purely epistemic change. Their work was built upon by
Lang, Liberatore and Marquis with their in-depth study on the computational
costs of transforming theories by variable forgetting[2], or rather the costs of
determining the independence of parts of a theory from specific variables. In [3]
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Baral and Zhang took part of this battleground to involve more explicit operators
for knowledge and belief, where the result of an agent forgetting a variable results
in her (explicit) ignorance of that variable’s value, and in [4], in progress, Zhang
and Zhou make an original and interesting backtrack to the ideas of [1] by
suggesting bisimulation invariance except for the forgotten variable, in order to
model forgetting. Forgetting has been generalized to logic programs in [5,6,7] and
to description logics in [8]. Forgetting of (abstracting from) actions in planning
has been investigated in [9].

Progression of belief sets. Generalizing the results in [2] to forgetting in pos-
itive epistemic formulas (subformulas expressing ignorance are not allowed) is
easy [10], but beyond that it is hard. Consider the binary operation

Fg(Φ, p) ≡def {ϕ(�/p) ∨ ϕ(⊥/p) | ϕ ∈ Φ}

wherein ϕ(ψ/p) is the replacement of all (possibly zero) occurrences of p in ϕ
by ψ. This defines the (syntactic) progression of Φ when forgetting about p.
When applying this recipe to formulas expressing ignorance, we get undesirable
consequences, e.g. that Fg(¬Kp∧¬K¬p, p) is equivalent to the contradiction ⊥.
This is shown as follows:

Fg(¬Kp ∧ ¬K¬p, p)
is by definition
(¬K� ∧ ¬K¬�) ∨ (¬K⊥ ∧ ¬K¬⊥)
iff
(¬� ∧ ¬⊥) ∨ (¬⊥ ∧ ¬�)
iff
⊥

Such problems motivated us to model forgetting as an event in a dynamic epis-
temic logic.

Forgetting as a dynamic modal operator. We model the action of forgetting an
atomic proposition p as an event Fg(p). We do this in a propositional logic ex-
panded with an epistemic modal operator K and a dynamic modal operator
[Fg(p)], with obvious multiple-value and multi-agent versions. Formula [Fg(p)]ϕ
means that after the agent forgets his knowledge about p, ϕ is true. We call
[Fg(p)] a dynamic modal operator because it is interpreted by a state transfor-
mation, more particularly: by changing an information state that is represented
by a pointed Kripke model (M, s) into another information state (M ′, s′). The
relation to the theory transforming operation Fg(Φ, p) is as follows: for all models
(M, s) of Φ, [Fg(p)]ϕ should be true in (M, s) if and only if ϕ ∈ Fg(Φ, p).

A precondition for event Fg(p) seems prior knowledge of the value of p:
Kp∨K¬p. How can you forget something unless you know it in the first place?
To make our approach comparable to variable forgetting in the ‘abstracting-
from-information’-sense, we do not require prior knowledge as a precondition for
forgetting. The obvious postcondition for event Fg(p) is ignorance of the value
of p: ¬Kp ∧ ¬K¬p. It should therefore be valid that



Introspective Forgetting 21

[Fg(p)](¬Kp ∧ ¬K¬p).

Forgetting or no-forgetting? On ontic and epistemic change. Wasn’t dynamic
epistemic logic supposed to satisfy the principle of ‘no forgetting’ (a.k.a. ‘perfect
recall’)? This entails that positive knowledge such as factual knowledge Kp and
K¬p, is preserved after any event. Or, dually: if you are ignorant about p now,
then you must have been ignorant about p before. So how on earth can one model
forgetting in this setting? We can, because we cheat. We solve this dilemma by
the standard everyday solution of forgetful people: blame others. In this case:
blame the world; we simulate forgetting by changing the value of p in the actual
or other states, in a way known to be unobservable by the agent. Thus resulting
in her ignorance about p.1

Having cheated in that way, our logic is equivalent to one without actual
change of facts in the one and only way that counts: it makes no difference for
believed formulas, i.e., for expressions of the form Kϕ.

Remembering prior knowledge. To express that an agent recalls prior knowledge
we have to be able to refer to past events. Let Fg(p)− be the converse of Fg(p)
(e.g. in the sense of [13,14,15]). We can now express prior knowledge of now
forgotten variables as

K(¬Kp ∧ ¬K¬p ∧ 〈Fg(p)−〉(Kp ∨K¬p))

This stands for: “the agent knows that ( she does not know p and she does not
know ¬p and before forgetting about p she either knew p or knew ¬p). We will
outline our progress towards modelling this in the concluding section.

3 A Logic of Propositional Variable Forgetting

We present a single agent and single variable version of the logic only. All results
trivially generalize to multiple agents and multiple values (see page 26).

Language, structures and semantics. Given is a set P of propositional variables.

Definition 1 (Language and structures). Our language L is

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kϕ | [Fg(p)]ϕ

where p ∈ P , and our structures are pointed Kripke models ((S,R, V ), s), with
R ⊆ (S × S), V : P → P(S), and s ∈ S.

1 This is different from how belief revision is modelled in dynamic epistemic (doxastic)
logic. Prior belief in p that is revised with ¬p and results in belief in ¬p is standardly
modelled by considering this a ‘soft’ or defeasible form of belief, i.e., not knowledge,
and implemented by changing a preference relation between states [11,12].
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If P ′ ⊆ P , then L(P ′) is the language restricted to P ′. The diamond ver-
sions of our modal operators are defined as K̂ϕ ≡def ¬K¬ϕ and 〈Fg(p)〉ϕ ≡def

¬[Fg(p)]¬ϕ. The structures are typically S5 to model knowledge and KD45 to
model belief—but this is not a requirement.

The dynamic operator [Fg(p)] is relative to the state transformer Fg(p) that
is an event model. The pointed Kripke models are static structures, encoding
knowledge and belief, and the event models are dynamic structures, encoding
change of knowledge and belief. Formally, multiple-pointed event models (a.k.a.
action models) are structures (M, S′) = ((S,R, pre, post), S′), where S′ ⊆ S, where
pre : S → L assigns to each event s ∈ S a precondition and where post : S →
(P → L) assigns to each event a postcondition (a.k.a. assignment) for each atom
(of a finite subset of all atoms—the remaining atoms do not change value). For
such event models see [16,17]—we follow notational conventions as in [17]. If
post(s)(p) = ψ, then we also write that p := ψ (the valuation of atom p becomes
that of formula ψ) in the event of s. Dynamic operators expressing event model
execution (semantics) can be seen as part of the logical language (syntax), similar
to how this is done for automata-PDL [18].

Forgetting Fg(p) is the event model that expresses that the agent cannot
distinguish between two assignments having taken place: p becomes true, or p
becomes false. It consists of two events, that are both points (this expresses
non-determinism). Both events are always executable: their precondition is �.

Definition 2 (Forgetting). Fg(p) is the event model ((S,R, pre, post), S′) where
S = {0, 1}, R = S × S, pre(0) = � and pre(1) = �, post(0)(p) = ⊥ and
post(1)(p) = � (and post(i)(q) = q for all q = p, i = 0, 1), and S′ = S.

Definition 3 (Semantics). Assume an epistemic model M = (S,R, V ).

M, s |= p iff s ∈ V (p)
M, s |= ¬ϕ iff M, s |= ϕ
M, s |= ϕ ∧ ψ iff M, s |= ϕ and M, s |= ψ
M, s |= Kϕ iff for all t ∈ S : (s, t) ∈ R implies M, t |= ϕ
M, s |= [Fg(p)]ϕ iff M ⊗ Fg(p), (s, 0) |= ϕ and M ⊗ Fg(p), (s, 1) |= ϕ

where M ⊗ Fg(p) = (S′, R′, V ′) such that S′ = S × {0, 1}, ((s, i), (t, j)) ∈ R′ iff
(s, t) ∈ R and i, j ∈ {0, 1}, V ′(p) = {(s, 1) | s ∈ S} and V ′(q) = V (q) × S for
q = p. The set of validities is called FG.

In fact, M ⊗Fg(p) is the restricted modal product of M and event model Fg(p)
according to [19,17], which in this case amounts to taking two copies of the
model M , making p true everywhere in the first, making p false everywhere in
the second, and making corresponding states indistinguishable for the agent.

Example. We visualize S5 models by linking states that are indistinguishable
for an agent. Reflexivity and transitivity are assumed. In these visualizations we
abuse the language by writing valuations instead of states and postconditions
instead of events, and we write � for an event with empty postcondition. The
actual state is underlined.
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Suppose the agent knows p but does not know q (and where in fact q is true),
and where the agent forgets that p. The execution of event model Fg(p) (and
where in fact p becomes false) is pictured as follows. In the resulting Kripke
model, the agent no longer knows p, and remains uncertain about q.
pq p¬q

⊗

p := � p := ⊥ pq p¬q

¬pq ¬p¬q

Deterministic forgetting. The pointed (deterministic) versions of the forgetting
event can be defined as notational abbreviations of the not-pointed primitives
[Fg(p), 1]ϕ ≡def [Fg(p)](p → ϕ) and [Fg(p), 0]ϕ ≡def [Fg(p)](¬p → ϕ). From this
follow the validities 〈Fg(p), 0〉ϕ↔ 〈Fg(p)〉(¬p∧ϕ) and 〈Fg(p), 1〉ϕ↔ 〈Fg(p)〉(p∧
ϕ), and also the axiom for non-determinism

[Fg(p)]ϕ↔ [Fg(p), 0]ϕ ∧ [Fg(p), 1]ϕ.

Axiomatization. To obtain a complete axiomatization FG for the logic FG we
apply the reduction axioms for event models, as specified in [19] and [17]. The
case [Fg(p)]p for the forgotten atom expresses that you cannot guarantee that p
is true after forgetting it by way of varying its value; see Section 4 for a modelling
where actual facts do not change value after forgetting. In the case for negation,
note that [Fg(p)]¬ϕ is not equivalent to ¬[Fg(p)]ϕ, and note the correspondence
with deterministic forgetting by abbreviation. The epistemic operator commutes
with the forgetting operator. Thus the consequences of forgetting are known be-
fore it takes place (‘no miracles’). We emphasize that the negated epistemic
operator (for ‘possible that’) does not commute with forgetting ([Fg(p)]¬Kϕ is
not equivalent to ¬K[Fg(p)]ϕ); therefore, K cannot be eliminated. Further de-
tails are omitted.2 It follows that the axiomatization FG is sound and complete.

Definition 4 (Axiomatization FG). Only axioms involving Fg are shown.

[Fg(p)]p ↔ ⊥
[Fg(p)]q ↔ q for q = p
[Fg(p)]¬ϕ ↔ ¬[Fg(p)](¬p→ ϕ) ∧ ¬[Fg(p)](p→ ϕ)
[Fg(p)](ϕ ∧ ψ) ↔ [Fg(p)]ϕ ∧ [Fg(p)]ψ
[Fg(p)]Kϕ ↔ K[Fg(p)]ϕ

Theorem 1. Axiomatization FG is sound and complete.

Proof. The axiomatization resulted from applying the reduction axioms in [19,17].
This kills two birds (soundness and completeness) in one throw. We show the basic
case for the forgotten atom (the relevant axiom is [M, s]p↔ (pre(s) → post(s)(p))
and non-determinism).
2 The axiomatization FG can be made into a reduction system by having pointed

event models as primitives instead of abbreviations. We then employ the reduction
axiom for non-determinism (above) and [Fg(p), 0]¬ψ ↔ (¬p → [Fg(p), 0]ψ), etc.
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[Fg(p)]p
iff
[Fg(p), 0]p ∧ [Fg(p), 1]p
iff
(pre(0) → post(0)(p)) ∧ (pre(1) → post(1)(p))
iff
(� → ⊥) ∧ (� → �)
iff
⊥

4 Results, and Other Forgetting Operators

Using this simple logic we can now harvest an interesting number of theoretical
results. A number of different perspectives on forgetting propositional variables
(such as release, elimination, bisimulation quantification, symmetric contraction,
and value swapping or switching) all amount to the same: although resulting
in different structures, these cannot be distinguished from each other in the
language, i.e., they all represent the same set of believed formulas. An important
Theorem 2 states that becoming unaware (the original [1]-sense of forgetting as
data abstraction) is the same as becoming ignorant. We also show that our results
generalize to more agents or variables. (As long as R is serial, so that K⊥ ↔ ⊥
and K� ↔ �,) Ignorance is indeed obtained (and, trivially also awareness of
it—[Fg(p)]K(¬Kp ∧ ¬K¬p)):

Proposition 1. [Fg(p)](¬Kp ∧ ¬K¬p) is valid.

Forgetting without changing the real world. An unfortunate side effect of our
modelling of forgetting is that the actual value of p gets lost in the process of
forgetting, such as in the example on page 22. This is undesirable if we only
want to model that the agents forget the value of p but that otherwise nothing
changes: in particular, the actual value of p should not change. We can overcome
that deficiency in the event model for epistemic forgetting.

Definition 5 (Epistemic forgetting). Epistemic forgetting is the pointed event
model (Fg(p), n) where Fg(p) is like Fg(p) except that there is one more event n in
the model, indistinguishable from the other two, with empty postcondition (and with
precondition �).

The point n represents the event that ‘nothing happens’. As it is the point of
the event model, it ensures that the actual value of p does not change. We can
visualize this event as

p := � p := ⊥�

Definition 6 (Axioms for epistemic forgetting). The axioms for (Fg(p), n)
are as for Fg(p) except that

[Fg(p), n]p ↔ p
[Fg(p), n]¬ϕ ↔ ¬[Fg(p), 0]ϕ ∧ ¬[Fg(p), 1]ϕ ∧ ¬[Fg(p), n]ϕ
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Dynamic modal operators for pointed events (Fg(p), 0) and (Fg(p), 1) are again
introduced in the language by abbreviation, now from [Fg(p), n], somewhat dif-
ferent from before. We have the results that (proof omitted)

Proposition 2 (Preservation of factual information).
Schema ψ → [Fg(p), n]ψ is valid for boolean ψ.

Proposition 3 (Epistemic propositions are preserved).
Schema [Fg(p), n]Kψ ↔ [Fg(p)]Kψ is valid (for all ψ in the language).

In other words, from the perspective of the agent, the different modellings of
forgetting are indistinguishable. The different occurrences of ψ in Proposition 3
are actually in different languages (both may contain forgetting operators!), a
trivial translation can make this more precise.

That makes the simpler modelling Fg(p) preferable over the slightly more
complex (Fg(p), n). We are vague in Proposition 3 about ‘the language’, as
the language with [Fg(p), n]ϕ as inductive construct is different from the lan-
guage with [Fg(p)]ϕ as inductive construct. More strictly the result is that
[Fg(p), n]Kψ ↔ [Fg(p)]Ktrs(ψ) is valid, subject to the translation with inductive
clause trs([Fg(p), n]ϕ) = [Fg(p)]trs(ϕ).

Swapping values. Yet another way to model forgetting is by making every state
in the model indistinguishable from one wherein the value of p has been swapped
/ switched: if true, it became false, and if false it became true.

Definition 7 (Forgetting by swapping values). Forgetting by swapping is
the pointed event model that is like Fg(p) except that in one event, the actual
event, nothing happens, whereas in the other event the assignment p := ¬p is
executed.

p := ¬p �
Again we can adjust the axiomatization, we obtain the results that actual facts
do not change value, and that propositions under the scope of the epistemic
operator are preserved.

Scrambling the valuation of the forgotten atom. Instead of making p randomly
(but indistinguishably!) true or false in every state of the Kripke model, the
more proper way of ‘releasing the value of p’ in a modal logical context is to
make p randomly true in a subset of the domain of the model. One can then
make all those results indistinguishable from one another for the agent. Unlike
the former, where two copies of the model M suffice, we now need 2|M| copies.

Consider again the structure pq——p¬q encoding that the agent knows p but
is ignorant about q. In proper Lin and Reiter [1] fashion, the models agreeing
with pq——p¬q on anything except maybe p are the following four:

pq——p¬q pq——¬p¬q ¬pq——p¬q ¬pq——¬p¬q

These four still have ignorance about q in common, but only two of them satisfy
ignorance about p. We have encoded unawareness of p, but not ignorance about
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p. If we make corresponding points in all these models indistinguishable for the
agent, it again follows that the agent is ignorant about p, and the result is bisim-
ilar to that achieved by Fg(p). (Bisimilarity is a notion of structural similarity
that guarantees logical equivalence, i.e., of sets of beliefs, see [20].) Doing so, we
can after all reclaim unawareness of p, using the more abstract perspective of
bisimulation quantification: apart from the four above, pq——p¬q is also similar
except for the value of p to other structures, e.g. to pq——p¬q——¬pq (three
indistinguishable states), which satisfies that K(p∨ q) is true. Because if we ab-
stract from the value of p, q——¬q is bisimilar to q——¬q——q. This prepares
the ground for the next paragraph.

Bisimulation quantification. Becoming unaware of an atom p can be modelled
as universal bisimulation quantification over p [21,22,23] namely as

[Fg∀(p)]ϕ ≡def ∀pϕ

where M, s |= ∀pϕ iff for all (M ′, s′) s.t. (M ′, s′)↔P−p(M, s) : (M ′, s′) |= ϕ.
The notation (M ′, s′)↔P−p(M, s) means that epistemic state (M ′, s′) is bisim-

ilar to epistemic state (M, s) with respect to the set of all atoms except p.3 In
other words the valuation of p may vary ‘at random’. This includes the model
constructed by Fg(p) (and that by (Fg(p), n)) from a givenM so that

M↔P−pM ⊗ Fg(p)

which immediately delivers that:

Theorem 2. If ψ ∈ L(P − p) then ψ → [Fg(p)]ψ is valid.

This fixes progression in the AI sense (which formulas initially believed that
do not involve p are still believed in the new state where p is forgotten), and
therefore creates a strong link with [2].

Of course we do not have that [Fg∀(p)](¬Kp ∧ ¬K¬p) is valid. To adjust
this ‘becoming unaware of p’ towards ‘becoming ignorant of p’, we have to
let all P − p-bisimilar states be indistinguishable by the agent.4 For this al-
ternative ‘becoming ignorant by bisimulation quantification’ operation Fg∀(p)
we again have the desired [Fg∀(p)](¬Kp ∧ ¬K¬p) and we then also have that
[Fg∀(p)]Kϕ ↔ [Fg(p)]Kϕ. The much simpler Fg(p) is preferable for computa-
tional reasons.

Multiple variables. The forgetting of multiple variables can be modelled by
a simple adjustment. For n propositional variables, we get an event model
3 Applied to forgetting, this is the original proposal in [4]. Then, to achieve ignorance

as in [3] they constrain this set of models to those satisfying ¬Kp ∧ ¬K¬p. That is
different from what we do.

4 Given (M, s), let M = {(M ′, s′) | (M, s)↔P−p(M ′, s′)}. Given R : (M, s) ↔P−p

(M ′, s′) and R′ : (M, s)↔P−p(M ′′, s′′), add pairs (s′, s′′) to the relation R on M

whenever there is a s ∈ S such that (s, s′) ∈ R and (s, s′′) ∈ R′. Then M |=
¬Kp ∧ ¬K¬p.
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Fg(p1, . . . , pn) with a domain consisting of 2n events, one for each combina-
tion of assignments of different variables to true and false. All prior results still
follow (including bisimulation quantification for n variables).

Combining learning and forgetting. One might wish to combine forgetting with
other dynamic operations such as learning (by public announcements). We sim-
ply add an inductive construct [ϕ]ψ to the language, which stands for ‘after
announcement of ϕ, ψ holds’ (see [24]). The resulting logic is again equally ex-
pressive as epistemic logic: just add the rewrite rules involving announcements.

Multiple agents. Given a parameter set of agents A, we adjust the language
to ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kaϕ | [FgB(p)]ϕ, where a ∈ A and B ⊆ A, and
we adjust the accessibility relation R ⊆ (S × S) to an accessibility function
R : A → P(S × S)—accessibility relation Ra (for R(a)) interprets operator Ka

(knowledge of agent a). (Further details omitted.) The case FgA(p) where B = A
models forgetting as group ignorance, and the case Fga(p) where B = {a} models
the forgetting of an individual a in the presence of A (see page 19). Both are
most succinctly modelled by a version of ‘swapping values’ forgetting (Definition
7) namely as event models visualized as

p := ¬p �
A

p := ¬p �
a

The visualization on the right means that all agents except a can distinguish be-
tween the two alternatives: access for a is the universal relation on the domain,
and access for all agents in A − a is the identity. Again, all former results gen-
eralize, both versions are axiomatizable very similarly to the previous, etc. The
more obvious multi-agent version of Fg(p) (with assignments to true and to false
only) does not model individual forgetting in a group: this would express that
the other agents learn that p is true or learn that p is false, clearly undesirable.

5 Further Research

Remembering prior knowledge. For the agent to recall prior knowledge we have
to be able to refer to past events. Let Fg(p)− be the converse of Fg(p) (e.g. in the
sense of [13,14,15]). Awareness of present ignorance and prior knowledge about
p can now be formalized as

K(¬Kp ∧ ¬K¬p ∧ 〈Fg(p)−〉(Kp ∨K¬p))

We now need a structure allowing us to interpret such converse events. This is not
possible in pointed Kripke models, but it can be elegantly done employing what
is known as the ‘forest’ produced by the initial Kripke model and all possible
sequences of all Fg(p) events (for all atoms), see [25,26,27,28,14,15]. We now add
assignments to the language, as in the underlying proposal, and additionally add
theories for event models using converse actions [13,26]. Thus we get a complete
axiomatization, though not a reduction result to epistemic formulas (converse
events cannot be eliminated from the logical language by equivalences).
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Regression and progression. By applying equivalences we can reduce a formula of
the form [Fg(p)]ψ to an equivalent expression χ without dynamic operators—ψ
is a final condition and χ is an initial condition that is derived from it by way of
these equivalences. This process is known as regression. Dynamic epistemic logic
is very suitable for this kind of regression, and there are efficient model checkers
for epistemic formulas. Progression is harder in this setting. (See page 20.)

Forgetting modal formulas. How to model the forgetting modal formulas is a
different piece of cake altogether; in this case we have made no progress yet.

Forgetting of events. This amounts to introducing temporal uncertainty in the
model, apart from epistemic uncertainty. This can be done by introducing histo-
ries of events to structures, or moving to a temporal epistemic perspective using
‘forests’, as above, see [26]. It is clear how this has to be done, and the results
should prove interesting.
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Abstract. This paper presents a logic-based bargaining solution based
on Zhang and Zhang’s framework. It is shown that if the demand sets of
players are logically closed, the solution satisfies a fixed-point property,
which says that the outcome of bargaining is the result of mutual belief
revision. The result is interesting not only because it presents a desirable
logical property of bargaining solution but also establishes a link between
bargaining theory and multi-agent belief revision.

1 Introduction

Negotiation or bargaining is a process of dispute resolution to reach mutually
beneficial agreements. The studies of negotiation in game theory, known as bar-
gaining theory, initiated by John Nash’s path-breaking work [1], has reached a
high sophistication with a variety of models and solutions and has been exten-
sively applied to economics, sociology, management science, and politics [2,3,4].

The game-theoretical model of bargaining is purely numerical. Although the
numerical theory of bargaining provides “a ‘clear-cut’ numerical predication for
a wide range of bargaining problems”, it does not help us to understand how
disputes are resolved through a bargaining process ([5] p.81-88).

In recent years, the AI researchers try to rebuild the theory of bargaining
and negotiation in order to model logical reasoning behind a bargaining process.
Kraus et al. introduced a logical model of negotiation based on argumentation
theory [6,7]. Unlike game theory, the model allows explicit representation of ne-
gotiation items, promises, threats and arguments. More importantly, bargaining
process can be embedded into logic-based multi-agent systems so that negotia-
tion becomes a component of agent planning. Similar to Rubinstein’s strategic
model of bargaining, the argumentation-based approach views bargaining as a
non-cooperative game. Zhang et al. introduced a logical model of negotiation
based on belief revision theory [8,9,10]. Different from the argumentation-based
framework, the belief-revision-based approach takes a cooperative view. In order
to reach an agreement, each player tries to persuade the other player to accept
her demands or beliefs. Anyone who is convinced to accept the other player’s
demands will need to conduct a course of belief revision. It was assumed that

W. Wobcke and M. Zhang (Eds.): AI 2008, LNAI 5360, pp. 30–41, 2008.
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any possible outcome of negotiation, (Ψ1, Ψ2), should satisfies the following fixed-
point condition [11], which says that the outcome of negotiation is the common
demands or beliefs after mutual belief revision:

Cn(Ψ1 ∪ Ψ2) = (Cn(X1) ⊗1 Ψ2) ∩ (Cn(X2) ⊗2 Ψ1)

where Xi contains the demands of agent i and ⊗i is the belief revision operator
of agent i. However, there is no justification for the assumption. This paper aims
to build a concrete bargaining solution to satisfy the fixed-point condition. The
construction of the solution is based on the bargaining model proposed by Zhang
and Zhang in [12,13]. The result of the paper not only shows the logical property
of bargaining but also establishes the link between bargaining and belief revision,
which may be helpful for the investigation of multi-agent belief revision.

2 Logical Model of Bargaining

Within this paper, we consider the bargaining situations with two players. We
assume that each party has a set of negotiation items, referred to as demand set,
described by a finite propositional language L. The language is that of classical
propositional logic with an associated consequence operation Cn in the sense
that Cn(X) = {ϕ : X � ϕ}, where X is a set of sentences. A set X of sentences
is logically closed or called a belief set when X = Cn(X). If X and Y are two
sets of sentences, X + Y denotes Cn(X ∪ Y ).

Suppose that X1 and X2 are the demand sets from two bargaining parties re-
spectively. To simplify exploration, we use X−i to represent the other set among
X1 and X2 if Xi is one of them. If D is a vector of two components, D1 and D2
will represent each of the components of D.

2.1 Bargaining Games

We will use the bargaining model introduced by Zhang and Zhang in [12] to
represent a bargaining situation.

Definition 1. [12] A bargaining game is a pair ((X1,�1), (X2,�2)), where Xi

(i = 1, 2) is a logically consistent set of sentences in L and �i is a complete
transitive reflexive order (total preorder or weak order) over Xi which satisfies
the following logical constraints1:

(LC) If ϕ1, · · · , ϕn � ψ, then there is k (1 ≤ k ≤ n) such that ψ �i ϕk.

1 A complete transitive reflexive order, i.e., total preorder or weak order, satisfies the
following properties:
– Completeness or totality: ϕ � ψ or ψ � ϕ.
– Reflexivity: ϕ � ϕ.
– Transitivity: if ϕ � ψ and ψ � χ then ϕ � χ.
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Fig. 1. The hierarchy of a demand set

We call the pair (Xi,�i) the prioritized demand set of player i. For any ϕ, ψ ∈
Xi, ψ � ϕ denotes that ψ �i ϕ and ϕ �i ψ. ψ ≈i ϕ denotes that ψ �i ϕ and
ϕ �i ψ.

Intuitively, a bargaining game is a formal representation of a bargaining situation
whereby each player describes his demands in logical formulae and expresses his
preferences over his demands in total preorder. We assume that each player has
consistent demands. The preference ordering of each player reflects the degree of
entrenchment in which the player defends his demands. The logical constraint
(LC) says that if ϕ1, · · · , ϕn and ψ are all your demands and ϕ1, · · · , ϕn � ψ,
then ψ should not be less entrenched than all the ϕi because if you fail to defend
ψ, at least one of the ϕi has to be dropped (otherwise you would not have lost
ψ). This indicates that the preference orderings are different from players’ payoff
or utility. For instance, suppose that p1 represents the demand of a seller “the
price of the good is no less than $10” and p2 denotes “the price of the good is
no less than $8”. Obviously the seller could get higher payoff from p1 than p2.
However, since p1 implies p2, she will entrench p2 no less than p1, i.e., p2 � p1,
because, if she fails to keep p1, she can still bargain for p2 but the loss of p2
means the loss of both.

Given a prioritized demand set (X,�), we define recursively a hierarchy,
{Xj}+∞

j=1, of X with respect to the ordering � as follows:

1. X1 = {ϕ ∈ X : ¬∃ψ ∈ X(ψ � ϕ)}; T 1 = X\X1.
2. Xj+1 = {ϕ ∈ T j : ¬∃ψ ∈ T j(ψ � ϕ)}; T j+1 = T j\Xj+1.

where ψ � ϕ denotes ψ � ϕ and ϕ � ψ. The intuition behind the construction
is that, at each stage of the construction, we collects all maximal elements from
the current demand set and remove them from the set for the next stage of the

construction. It is easy to see that there exists a number n such that X =
n⋃

j=1
Xj

due to the logical constraint LC2.
It is easy to see that for any ϕ ∈ Xj and ψ ∈ Xk, ϕ � ψ if and only if j < k.

In the sequel, we write X≤k to denote
k⋃

j=1
Xj.

2 Note that X can be an infinite set even though the language is finite.
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Based on the hierarchy of each demand, we can define a belief revision function
for each agent by following Nebel’s idea of prioritized base revision [14]:

For any demand set (X,�) and a set, F , of sentences,

X ⊗ F def
=

⋂
H∈X⇓F

(H + F ),

where X ⇓ F is defined as: H ∈ X ⇓ F if and only if

1. H ⊆ X ,

2. for all k (k = 1, 2, · · ·), H ∩Xk is a maximal subset of Xk such that
k⋃

j=1
(H ∩

Xj) ∪ F is consistent.

In other words, H is a maximal subset of X that is consistent with F and gives
priority to the higher ranked items. The following result will be used in Section 3.

Lemma 1. [14] If X is logically closed, then ⊗ satisfies all AGM postulates.

2.2 Possible Agreements

Similar to [12], we define a possible outcome of negotiation as a concession made
by two players.

Definition 2. Let G = ((X1,�1), (X2,�2)) be a bargaining game. A deal of G
is a pair (D1, D2) satisfying the following conditions: for each i = 1, 2,

1. Di ⊆ Xi;
2. X1 ∩X2 ⊆ Di;
3. for each k (k = 1, 2, · · ·), Di ∩ Xk

i is a maximal subset of Xk
i such that

k⋃
j=1

(Di ∩Xj
i ) ∪D−i is consistent.

where {Xj
i }+∞

k=1 is the hierarchy of Xi. The set of all deals of G is denoted by
Ω(G), called the feasible set of the game.

Intuitively, a possible agreement is a pair of subsets of two players’ original de-
mand sets such that the collection of remaining demands is consistent. Obviously
each player would like to keep as many original demands as possible. Therefore,
if a player has to give up a demand, the player typically gives up the ones with
the lowest priority. Note that we require that no player gives up common de-
mands, which is crucial to the fixed-point property. This is different from Zhang
and Zhang’s definition in [12].

2.3 Bargaining Solution

We have shown how to generates all possible deals from a bargaining game.
However, a game might have multiple deals. Different deals would be in favor of
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Fig. 2. Different deals are in favour of different parties

different parties. The major concern of a bargaining theory is how to measure
and balance the gain of each negotiating party.

Instead of counting the number of demands a deal contains for each party,
we consider the top block demands a player keeps in the deal (the top levels of
demands in each player’s demand hierarchy) and ignore all demands that are
not included in the top blocks except the common demands3.

Given a deal D, we shall use the maximal top levels of each player’s demands
the deal contains as the indicator of the player’s gain from the deal, i.e., max{k :
X≤k

i ⊆ Di}. For instance, in Figure 2, player 1 can successfully remain maximally
top k+ 1 levels of his demands from deal D′ while player 2 gains maximally top
k levels of his demands from the deal.

To compare players’ gains from different deals, we use the gain of the player
with smaller gain from a deal as the index of the deal, i.e., min{max{k : X≤k

1 ⊆
D1},max{k : X≤k

2 ⊆ D2}}, or equivalently, max{k : X≤k
1 ⊆ D1 and X≤k

2 ⊆
D2}. For instance, in Figure 2, the gain index of D′ is k while the gain index of
D′′ is k − 1. By using this index, we can collect all the best deals of a game:

γ(G) = arg max
(D1,D2)∈Ω(G)

{k : X≤k
1 ⊆ D1 and X≤k

2 ⊆ D2}

Based on the intuitive description, we are now ready to construct our bar-
gaining solution.

Definition 3. A bargaining solution is a function F which maps a bargaining
game G = ((X1,�1), (X2,�2)) to a pair of sets of sentences defined as follows:

F (G)
def
= (

⋂
(D1,D2)∈γ(G)

D1,
⋂

(D1,D2)∈γ(G)

D2) (1)

where γ(G) = arg max
(D1,D2)∈Ω(G)

{k : X≤k
1 ⊆ D1 and X≤k

2 ⊆ D2}.

3 Note that common demands of two parties are always included in a deal no matter
how much priorities they have.
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Let
πG

max = max
(D1,D2)∈Ω(G)

{k : X≤k
1 ⊆ D1 and X≤k

2 ⊆ D2} (2)

and
(Φ1, Φ2) = (X≤πG

max
1 , X

≤πG
max

2 ) (3)

We call Φ = (Φ1, Φ2) the core of the game. Intuitively, the core of the game is
the pair of maximal top block demands that are contained in all the best deals.

To help the reader to understand our solution, let us consider the following
example.

Example 1. A couple are making their family budget for the next year. The
husband wants to change his car to a new fancy model and have a domestic
holiday. The wife is going to implement her dream of a romantic trip to Europe
and suggests to redecorate the kitchen. Both of them know that they can’t have
two holidays in one year. They also realize that they cannot afford a new car
and an overseas holiday in the same year without getting a loan from the bank.
However, the wife does not like the idea of borrowing money.

In order to represent the situation in logic, let c denote “buy a new car”, d
stand for “domestic holiday”, o for “overseas holiday”, k for “kitchen redecora-
tion” and l for “loan”. Then ¬(d ∧ o) means that it is impossible to have both
domestic holiday and overseas holiday. The statement (c ∧ o) → l says that if
they want to buy a new car and also have an overseas holiday, they have to get
a loan from the bank.

With the above symbolization, we can express the husband’s demands in the
following set:

X1 = {c, d,¬(d ∧ o), (c ∧ o) → l}
Similarly, the wife’s demands can be represented by:

X2 = {o, k,¬(d ∧ o), (c ∧ o) → l,¬l}

Assume that the husband’s preferences over his demands are:

¬(d ∧ o) ≈1 (c ∧ o) → l �1 c �1 d

and the wife’s preferences are:

¬(d ∧ o) ≈2 (c ∧ o) → l �2 o �2 k �2 ¬l

Let G represent the bargaining game. It is easy to calculate that the game
has the following three possible deals:
D1 = ({¬(d ∧ o), (c ∧ o) → l, c, d}, {¬(d ∧ o), (c ∧ o) → l, k,¬l}).
D2 = ({¬(d ∧ o), (c ∧ o) → l, c}, {¬(d ∧ o), (c ∧ o) → l, o, k}).
D3 = ({¬(d ∧ o), (c ∧ o) → l}, {¬(d ∧ o), (c ∧ o) → l, o, k,¬l}).
The core of the game is then:

({¬(d ∧ o), (c ∧ o) → l, c}, {¬(d ∧ o), (c ∧ o) → l, o})
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γ(G) contains only a single deal, which is D2. The solution is then

F (G) = D2 = ({¬(d ∧ o), (c ∧ o) → l, c}, {¬(d ∧ o), (c ∧ o) → l, o, k})

In words, the couple agree upon the commonsense that they can only have one
holiday and they have to get a loan if they want to buy a new car and to go
overseas for holiday. The husband accepts his wife’s suggestion to have holiday
in Europe and the wife agrees on buying a new car. As a consequence of the
agreement, they agree on getting a loan to buy the car.

3 Fixed Point Property

In [11], it was argued that a procedure of negotiation can be viewed as a course of
mutual belief revision when players’ belief states with respect to the negotiation
are specified by the demand sets of the bargaining game.

Before we show the fixed-point property of the solution we construct, let us
consider two facts on the solution:

Lemma 2. πG
max = max{k : X≤k

1 ∪X≤k
2 ∪ (X1 ∩X2) is consistent}.

Proof. Let π = max{k : X≤k
1 ∪ X≤k

2 ∪ (X1 ∩ X2) is consistent}. It is easy to

show that X≤πG
max

1 ∪ X≤πG
max

2 ∪ (X1 ∩ X2) is consistent because γ(G) is non-
empty. Therefore πG

max ≤ π. On the other hand, since X≤π
1 ∪X≤π

2 ∪ (X1 ∩X2)
is consistent, there exists a deal (D1, D2) ∈ Ω(G) such that X≤π

i ⊆ Di and
X1 ∩X2 ⊆ Di for each i = 1, 2. Thus π ≤ πG

max. We conclude that π = πG
max.

Lemma 3. Given a bargaining game G, for any deal D ∈ Ω(G),

D ∈ γ(G) iff Φ1 ⊆ D1 and Φ2 ⊆ D2.

where (Φ1, Φ2) is the core of G.

Proof. “⇒” Straightforward from the definition of γ(G).
“⇐” For any deal D ∈ Ω(G), if Φ1 ⊆ D1 and Φ2 ⊆ D2, then for each i,

X
≤πG

max
i ⊆ Di. It follows that max{k : X≤k

1 ⊆ D1 and X≤k
2 ⊆ D2} ≥ πG

max.
Therefore max{k : X≤k

1 ⊆ D1 and X≤k
2 ⊆ D2} = πG

max.

The above results show an intuitive procedure to construct a bargaining solution.
First calculate the core by going through both parties’s hierarchies of demands
in parallel top-down to the level at which the collective demands are maximally
consistent with the common demands. Then collect all the deals that contain
the core. Finally, calculate the intersection of the deals that contain the core for
each party.

Assume that X1 and X2 are two belief sets (so logically closed), representing
the belief states of two agents. Mutual belief revision between the agents means
that each agent takes part of the other agent’s beliefs to revise his belief set. For
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instance, if Ψ1 is a subset of X1 and Ψ2 is a subset of X2, then X1 ⊗1 Ψ2 is the
revised belief set of player 1 after he accepts player 2’s beliefs Ψ2 whileX2⊗2Ψ1 is
the resulting belief set of player 2 after accepting Ψ1. Such an interaction of belief
revision can continue until it reaches a fixed point where the beliefs in common,
(X1 ⊗1 Ψ2)∩ (X2 ⊗2 Ψ1), are exactly the beliefs that the agents mutually accept,
Ψ1 + Ψ2. This gives

Ψ1 + Ψ2 = (X1 ⊗1 Ψ2) ∩ (X2 ⊗2 Ψ1) (4)

Suppose that the belief sets, X1 and X2, represent the two agents’ demands,
respectively. Then (X1 ⊗1 Ψ2) ∩ (X2 ⊗2 Ψ1) should represent the common re-
vised demands after negotiation if Ψ1 and Ψ2 are the agreements that are mu-
tually accepted each other. Therefore any bargaining solution should satisfy the
fixed-point condition (4). The following theorem confirms that the solution we
constructed in this paper satisfies the fixed-point condition.

Theorem 1. For any bargaining game G = ((X1,�1), (X2,�2)), if X1 and X2
are logically closed, the bargaining solution F (G) satisfies the following fixed-
point condition:

F1(G) + F2(G) = (X1 ⊗1 F2(G)) ∩ (X2 ⊗2 F1(G)) (5)

where ⊗i is the prioritized revision operator for player i.

To show this theorem, we need a few technical lemmas.

Lemma 4. For any bargaining game G = ((X1,�1), (X2,�2)),

1. F1(G) ⊆ X1 ⊗1 F2(G);
2. F2(G) ⊆ X2 ⊗2 F1(G).

Proof. According to the definition of prioritized base revision, we have X1 ⊗1
F2(G) =

⋂
H∈X1⇓F2(G)

Cn(H ∪ F2(G)). For any H ∈ X1 ⇓ F2(G), there is a deal

(D1, D2) ∈ Ω(G) such that D1 = H . This is because we can extend the pair
(H,F2(G)) to a deal (H,D2) such that F2(G) ⊆ D2. On the other hand, since
Φ1∪F2(G) is consistent, we have Φ1 ⊆ H , where (Φ1, Φ2) is the core of G. Thus,
Φ1 ⊆ D1 and Φ2 ⊆ D2. According to Lemma 3, we have (D1, D2) ∈ γ(G). Since
F1(G) ⊆ D1, we have F1(G) ⊆ H . We conclude that F1(G) ⊆ X1 ⊗1 F2(G). The
proof of the second statement is similar.

By this lemma we have,

1. F1(G) + F2(G) ⊆ X1 ⊗1 F2(G);
2. F1(G) + F2(G) ⊆ X2 ⊗2 F1(G).

Note that the above lemma does not require the demand sets X1 and X2 to be
logically closed. However, the following lemmas do.

Lemma 5. Let (Φ1, Φ2) be the core of game G = ((X1,�1), (X2,�2)). If X1
and X2 are logically closed, then
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1. X1 ⊗1 F2(G) = X1 ⊗1 (Φ2 + (X1 ∩X2));
2. X2 ⊗2 F1(G) = X2 ⊗2 (Φ1 + (X1 ∩X2))

Proof. We only present the proof of the first statement. The second one is sim-
ilar. Firstly, we prove that F2(G) ⊆ Φ1 + Φ2 + (X1 ∩ X2). If X1 ∪ X2 is con-
sistent, the result is obviously true. Therefore we can assume that X1 ∪ X2 is
inconsistent.

Assume that ϕ ∈ F2(G). If ϕ ∈ Φ1 +Φ2 +(X1∩X2), we have {¬ϕ}∪Φ1∪Φ2∪
(X1∩X2) is consistent. According to Lemma 2, we haveX≤πG

max+1
1 ∪X≤πG

max+1
2 ∪

(X1 ∩X2) is inconsistent. Since our language is finite and both X1 and X2 are

logically closed, the setsX1∩X2,X
≤πG

max+1
1 andX≤πG

max+1
2 are all logically closed

(the latter two due to LC). Therefore each set has a finite axiomatization. Let

sentence ψ0 axiomatize X1 ∩ X2, ψ1 axiomatize X≤πG
max+1

1 and ψ2 axiomatize

X
≤πG

max+1
2 . Thus ψ0 ∧ ψ1 ∧ ψ2 is inconsistent. Notice that ψ0 ∧ ψ1 ∈ X1 and

ψ0∧ψ2 ∈ X2. It follows that ¬ϕ∨(ψ0∧ψ1) ∈ X1 and ¬ϕ∨(ψ0∧ψ2) ∈ X2. Since
{¬ϕ}∪Φ1∪Φ2∪(X1∩X2) is consistent, there is a deal (D1, D2) ∈ γ(G) such that
{¬ϕ∨(ψ0∧ψ1)}∪Φ1∪(X1∩X2) ⊆ D1 and {¬ϕ∨(ψ0∧ψ2)}∪Φ2∪(X1∩X2) ⊆ D2.
We know that ϕ ∈ F2(G), so ϕ ∈ D1 +D2. Thus ψ0 ∧ψ1 ∧ψ2 ∈ D1 +D2, which
contradicts the fact that D1 +D2 is consistent. Therefore, we have shown that
F2(G) ⊆ Φ1 + Φ2 + (X1 ∩X2).

Now we prove that X1 ⊗1 F2(G) = X1 ⊗1 (Φ2 + (X1 ∩X2)). By Lemma 4, we
have Φ1+Φ2 ⊆ X1⊗1F2(G). It follows thatX1⊗1F2(G) = (X1⊗1F2(G))+(Φ1+
Φ2). Furthermore, we yield X1⊗1F2(G) = (X1⊗1F2(G))+(Φ1 +Φ2)+(X1∩X2)
because X1 ∩ X2 ⊆ F2(G). Since F2(G) ⊆ Φ1 + Φ2 + (X1 ∩ X2). According
to the AGM postulates, we have (X1 ⊗1 F2(G)) + (Φ1 + Φ2 + (X1 ∩ X2)) =
X1⊗1(Φ1+Φ2+(X1∩X2)). ThereforeX1⊗2F2(G) = X1⊗1(Φ1+Φ2+(X1∩X2)).
In addition, it is easy to prove that Φ1 ⊆ X1 ⊗1 (Φ2 + (X1 ∩X2)). By the AGM
postulates again, we have X1 ⊗1 (Φ2 + (X1 ∩X2)) = (X1 ⊗1 (Φ2 + (X1 ∩X2)) +
Φ1 = X1 ⊗1 (Φ1 + Φ2 + (X1 ∩ X2)). Therefore X1 ⊗1 F2(G) = X1 ⊗1 (Φ2 +
(X1 ∩X2)).

The following lemma will complete the proof of Theorem 1.

Lemma 6. If X1 and X2 are logically closed, then

(X1 ⊗1 F2(G)) ∩ (X2 ⊗2 F1(G)) ⊆ F1(G) + F2(G).

Proof. et
Φ′

1 = X
≤π1

max
1 , where π1

max = max{k : X≤k
1 ∪ Φ2 ∪ (X1 ∩ X2) is consistent}

and
Φ′

2 = X≤π2
max

2 , where π2
max = max{k : Φ1 ∪X≤k

2 ∪ (X1 ∩X2) is consistent},
where (Φ1, Φ2) is the core of G.
Note that in the cases when πi

max does not exist, we simply assume that it
equals to +∞. We claim that X1 ⊗1 F2(G) = Φ′

1 + F2(G) and X2 ⊗2 F1(G) =
Φ′

2 + F1(G). We shall provide the proof of the first statement. The second one
is similar.
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Firstly, according to Lemma 2, Φ1 ⊆ Φ′
1. Secondly, by Lemma 5, we have

X1 ⊗1 F2(G) = X1 ⊗1 (Φ2 + (X1 ∩ X2)). Therefore to show X1 ⊗1 F2(G) =
Φ′

1 + F2(G), we only need to prove that X1 ⊗1 (Φ2 + (X1 ∩X2)) = Φ′
1 + Φ2 +

(X1 ∩X2). This is because Φ2 + (X1 ∩X2) ⊆ F2(G), F2(G) ⊆ Φ1 + Φ2 + (X1 ∩
X2) and Φ1 ⊆ Φ′

1. By the construction of prioritized revision, we can easily
verify that Φ′

1 + Φ2 + (X1 ∩X2) ⊆ X1 ⊗1 (Φ2 + (X1 ∩X2)). Therefore we only
have to show the other direction, i.e., X1 ⊗1 (Φ2 + (X1 ∩ X2)) ⊆ Φ′

1 + Φ2 +
(X1 ∩X2).

If Φ′
1 = X1, then X1 ∪ (Φ2 + (X1 ∩X2)) is consistent. It follows that X1 ⊗1

(Φ2 + (X1 ∩X2)) ⊆ X1 + (Φ2 + (X1 ∩X2)) = Φ′
1 +Φ2 + (X1 ∩X2), as desired. If

Φ′
1 = X1, according to the definition of π1

max, we haveX≤π1
max+1

1 ∪Φ2∪(X1∩X2)

is inconsistent. Therefore there exists ψ ∈ X≤π1
max+1

1 such that ¬ψ ∈ Φ2 +(X1∩
X2). Now we assume that ϕ ∈ X1⊗1 (Φ2+(X1∩X2)). If ϕ ∈ Φ′

1+Φ2+(X1∩X2),
then {¬ϕ}∪Φ′

1∪Φ2∪(X1∩X2) is consistent. So is {¬ϕ∨ψ}∪Φ′
1∪Φ2∪(X1∩X2).

Notice that ¬ϕ ∨ ψ ∈ X≤π1
max+1

1 . There exists H ∈ X1 ⇓ (Φ2 + (X1 ∩X2)) such
that {¬ϕ ∨ ψ} ∪ Φ′

1 ⊆ H . Since ϕ ∈ X1 ⊗1 (Φ2 + (X1 ∩X2)) and H is logically
closed, we have ψ ∈ H , which contradicts the consistency ofH∪(Φ2+(X1∩X2)).
Therefore X1 ⊗1 (Φ2 + (X1 ∩X2)) ⊆ Φ′

1 + Φ2 + (X1 ∩X2).
Finally we prove the claim of the lemma. Let ϕ ∈ (X1 ⊗1 F2(G)) ∩ (X2 ⊗2

F1(G)). We then have ϕ ∈ (Φ′
1 + F2(G)) ∩ (Φ′

1 + F2(G)). For ϕ ∈ Φ′
1 + F2(G),

there exists a sentence ψ2 such that F2(G) � ψ2 and ϕ ∨ ¬ψ2 ∈ Φ′
1. Similarly,

there exists a sentence ψ1 such that F1(G) � ψ1 and ϕ ∨ ¬ψ1 ∈ Φ′
2. It turns

out that ϕ ∨ ¬ψ1 ∨ ¬ψ2 ∈ Φ′
1 ∩ Φ′

2. Thus ϕ ∨ ¬ψ1 ∨ ¬ψ2 ∈ X1 ∩X2. However,
X1 ∩ X2 ⊆ F1(G) + F2(G). It follows that ϕ ∨ ¬ψ1 ∨ ¬ψ2 ∈ F1(G) + F2(G).
Note that ψ1 ∧ ψ2 ∈ F1(G) + F2(G). Therefore we conclude that ϕ ∈ F1(G) +
F2(G).

4 Conclusion and Related Work

We have presented a logic-based bargaining solution based on Zhang and Zhang’s
model [12]. We have shown that the solution satisfies the fixed-point property,
which asserts that the procedure of negotiation can be viewed as a course of
mutual belief revision. The result is interesting not only because the result itself
presents a desirable logical property of bargaining solutions but also establishes
a link between bargaining and multi-agent belief revision. On the one hand,
efforts have been made to the investigation of multi-agent belief revision [15,16],
the research is far from satisfaction. On the other hand, bargaining have been a
research topic in game theory for a few decades with sophisticated theory and
variety of applications. It is easy to see that all the concepts introduced in this
paper for the two-player bargaining game can be easily extended to the n-player
cases. However, the extension of fixed-point property of mutual belief revision
can be extremely hard. Therefore the link between bargaining and belief revision
could give us a better understanding of multi-agent belief revision and could give
us some hints towards the research.
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The fixed-point property for negotiation functions was proposed by Zhang et
al. [11]. However, there was no concrete negotiation function is constructed to
satisfy the property. Meyer et al. gave a construction of negotiation function
based on belief revision and discussed their logical properties [9,10]. Zhang and
Zhang presented another belief-revision-based bargaining solution [12,13], which
is similar to ours. However it is not too hard to verify that none of the above
mentioned solutions satisfies the fixed-point property. Jin et al. [17] presents a
mutual belief revision function that satisfies a fixed-point condition. However,
the construction of the function is defined on belief revision operator and the
fixed-point condition describes totally different property, which says that mutual
belief revision is closed under iteration.
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Institute of Cognitive Science, Osnabrück
{krumnack,hgust,kkuehnbe,aschweri}@uos.de

Abstract. Analogical reasoning plays an important role for cognitively
demanding tasks. A major challenge in computing analogies concerns the
problem of adapting the representation of the domains in a way that the
analogous structures become obvious, i.e. finding and, in certain circum-
stances, generating appropriate representations that allow for comput-
ing an analogical relation. We propose to resolve this re-representation
problem of analogy making in a logical framework based on the anti-
unification of logical theories. The approach is exemplified using exam-
ples from qualitative reasoning (naive physics) and mathematics.

1 Introduction

The ability of analogy making is considered to be an essential part of intelligent
behavior. By mapping knowledge about a well-known domain into a less familiar
target domain, new hypotheses about that domain can be inferred. Moreover, the
discovery of common structures can initiate a generalization process and support
the introduction of abstract concepts, which are not directly observable.

Analogy making is based on a mapping of objects and relations between two
domains. The creation of such an analogical mapping is well examined, pro-
vided the corresponding representations of both domains are already chosen in
a way that the structural compatibility is obvious. Unfortunately, the structural
commonalities characterizing two analogous domains are usually not obvious in
advance, but become visible as a result of the analogy making process. The con-
ceptualization must be adapted to make implicit analogous structures explicit.
It is argued that a crucial part of establishing an analogy is a change of rep-
resentation of one or both domains, the so-called re-representation [1]. In this
paper, we propose a framework to deal with the problem of re-representation in
a logic-based model for analogy making.

A variety of formal models for analogy making have been proposed [2] that
employ very different representation schemes ranging from symbolic through hy-
brid architectures to connectionist systems. Therefore the notion of re-represen-
tation varies between the different approaches: Indurkhya [1] develops a theory
in which the computation of analogies is based on the accommodation of an inter-
nal concept network to an input (resulting in a re-representation of the concept
network), or the projection of a concept network to the input (resulting in a re-
representation of the input), or both. In the Copycat model [3] representations

W. Wobcke and M. Zhang (Eds.): AI 2008, LNAI 5360, pp. 42–48, 2008.
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for the source and target domain are constructed dynamically and in parallel.
Although only little attention was paid to re-representation in the structure-
mapping tradition at the beginning, in [4], a theory of re-representation in the
SME tradition is presented which allows a restructuring based on operations such
as transformation, decomposition, entity splitting etc. In that approach, map-
ping and re-representation are clearly separated processes. The DUAL/AMBR
architecture [5] consists of a memory model in which knowledge is stored in a net-
work of micro-agents. The same situation can evoke, depending on the context,
different activation patterns which can be seen as a kind of re-representation.

2 A Logic-Based Model for Analogy Making

There exist different proposals to use anti-unification as a means to compute
analogies [6,7,8]. The notion of anti-unification is based on the instantiation
ordering of terms: given a first order language L, a term t2 is called an instance
of another term t1 (and vice versa t1 is called an anti-instance of t2), if there
exists a substitution σ such that t1σ = t2. In this case, we write t1

σ−→ t2 or just
t1 → t2. The instantiation relation induces a preorder on the set of all terms.

Given a pair of terms s and t, an anti-unifier of s and t is a term g such
that s ← g → t. An anti-unifier g is called a least general anti-unifier, if g is
an instance of every other anti-unifier. It has been shown that a least general
anti-unifier exists for every pair of terms and that this anti-unifier is unique up
to renaming of variables [9]. A natural idea is to extend the anti-unification of
terms to the anti-unification of formulas [8,10].

The well-known Rutherford analogy is used for exemplification: Table 1 shows
an axiomatization of the two domains for which the analogy shall be established.
The source domain represents the knowledge about the solar system, stating
that the mass of the sun is greater than the mass of a planet, that there is
gravitation between the sun and the planet, and that for every pair of objects
with gravitation between them, the lighter one will revolve around the heavier
one provided a positive distance between the objects is conserved. On the target
side we just know that the lightweight electrons are attracted by the nucleus
due to coulomb force and that, despite of this attraction, atoms do not collapse.
The latter fact, namely that electrons and nucleus have a distance greater than
0 is a formulation of the gold foil experiment due to Rutherford. Now anti-
unification can be used to relate these two situations: for example, anti-unifying
the two axioms α1 and β1 in Table 1 results in a generalized term γ1 and two
substitutions σ and τ such that it holds:

mass(sun) >
mass(planet)

mass(A) >
mass(B)

σ = {A �→ sun,

B �→ planet}��

τ = {A �→ nucleus,

B �→ electron} �� mass(nucleus) >
mass(electron)

By combining the two substitutions, an analogical relation between the do-
mains can be established: sun corresponds to nucleus and planet corresponds to
electron. This mapping is further supported by the fact, that also the axioms α2
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Table 1. A formalization of the Rutherford analogy with obvious analogous structures

Solar System Rutherford Atom
α1 : mass(sun) > mass(planet)
α2 : ∀t : distance(sun, planet, t) > 0
α3 : gravity(sun, planet) > 0
α4 : ∀x∀y : gravity(x, y) > 0

→ attracts(x, y)
α5 : ∀x∀y∀t : attracts(x, y) ∧

distance(x, y, t) > 0 ∧
mass(x) > mass(y)

→ revolves arround(y, x)

β1 : mass(nucleus) > mass(electron)
β2 : ∀t : distance(nucleus, electron, t) > 0
β3 : coulomb(nucleus, electron) > 0
β4 : ∀x∀y : coulomb(x, y) > 0

→ attracts(x, y)

Generalized Theory
γ1 : mass(A) > mass(B)
γ2 : ∀t : distance(A, B, t) > 0
γ3 : F (A, B) > 0
γ4 : ∀x∀y : F (x, y) > 0 → attracts(x, y)

and β2 can be anti-unified using the same substitutions. By slightly extending
the notion of substitution and allowing the introduction of variables for function
and predicate names, also the axioms α3 and β3 can be matched resulting in
a mapping associating gravity and coulomb, which can be further supported by
anti-unifying α4 and β4 with the same substitutions. Using this analogical rela-
tion, one can try to transfer the remaining, unmatched formulas from the source
to the target. By transferring α5 to the target one can infer that the electron
revolves around the nucleus, i.e. the main claim of Rutherford’s atom model.

Table 2 depicts a different axiomatization of the domains. Although all for-
mulas from Table 1 still can be derived from Table 2, the generalized formula γ3
cannot be discovered by anti-unifying the given formulas. Notice further, that
the parameters of β′2 are switched compared to β2, so that anti-unifying α′2 and
β′2 would result in in the unwanted mapping of sun to electron and planet to
nucleus, which contradicts the mapping established by anti-unifying α′1 and β′1.

In this situation, a new representation of the given axiomatization is needed,
that exhibits the common structure of the two domains in a way that anti-
unification leads to an appropriate generalized theory. For example, from the
background knowledge it is known that distance is a symmetric function, i.e.
distance(nucleus, electron, t) > 0 can be derived from {φ1, β

′
2}, which is a good

candidate for anti-unification with α′3. Similarly, gravity(sun, planet) > 0 can
be derived from {φ2, α

′
1, α

′
2, α

′
4} on the source side, which can be anti-unified

with coulomb(nucleus, electron) > 0, which can be inferred from {β′3, β′4, β′5} on
the target side. Hence, the task of re-representation consists of finding pairs of
formulas from the domain theories, that possess a common structure.

While in this example, re-representation is just needed to enhance the sup-
port for the analogy, there are cases, where no analogy can be computed at all,
if the given representation for two domains is not altered. Here the choice of
logic as a representation formalism exhibits its power, since beside the formu-
las explicitly given, there are also implicit formulas that can be inferred from
these axioms. This provides a natural notion of re-representation, where other
approaches for analogy making have to introduce special and sometimes quite
artificial means.
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Table 2. A formalization of the Rutherford analogy where re-representation is required

Background Knowledge
φ1 : ∀x∀y∀t : distance(x, y, t) = distance(y, x, t)
φ2 : ∀x∀y∀z : x > y ∧ y > z → x > z
Solar System Rutherford Atom
α′

1 : mass(sun) > mass(planet)
α′

2 : mass(planet) > 0
α′

3 : ∀t : distance(sun, planet, t) > 0
α′

4 : ∀x∀y : mass(x) > 0 ∧ mass(y) > 0
→ gravity(x, y) > 0

α′
5 : ∀x∀y : gravity(x, y) > 0

→ attracts(x, y)
α′

6 : ∀x∀y∀t : attracts(x, y)∧
distance(x, y, t) > 0∧
mass(x) > mass(y)

→ revolves arround(y, x)

β′
1 : mass(nucleus) > mass(electron)

β′
2 : ∀t : distance(electron, nucleus, t) > 0

β′
3 : charge(nucleus) > 0

β′
4 : charge(electron) < 0

β′
5 : ∀x∀y : charge(x) > 0 ∧ charge(y) < 0

→ coulomb(x, y) > 0
β′
6 : ∀x∀y : coulomb(x, y) > 0

→ attracts(x, y)

3 Formal Treatment

3.1 Anti-unification of Theories

For a set of formulas F , we will denote the theory of F , i.e. the set of all formulas
that can be inferred from F , by Th(F ). We will call a set of formulas F1 an anti-
instance of a set F2, if there exists a substitution σ such that Th(F1σ) ⊆ Th(F2).1

In this case we write F1
σ−→ F2 or just F1 → F2. If Th(F1σ) = Th(F2), F1 is

called a full anti-instance of F2 and we write F1
σ⇒ F2 or just F1 ⇒ F2.

Given two sets of formulas AxS and AxT , we will call a triple 〈G, σ, τ〉, consist-
ing of a finite set of formulas G and substitutions σ and τ , an anti-unifier of AxS

and AxT , iff AxS
σ←− G

τ−→ AxT . An anti-unifier 〈G, σ, τ〉 is at least as specific
as 〈G′, σ′, τ ′〉, if G′ is a full anti-instance of G in a way that is compatible with
the domain substitutions, i.e. if G′ θ⇒ G then σ ◦ θ = σ′ and τ ◦ θ = τ ′. Using
a most specific anti-unifier can help to prevent proliferation of variables as indi-
cated by the following example: consider the sets AxS = {p(a), q(a)} and AxT =
{p(b), q(b)}. Then G′ = {p(X), q(Y )} with substitutions σ′ = {X !→ a, Y !→ a}
and τ ′ = {X !→ b, Y !→ b} is an anti-unifier. Notice, that G′ consists only of
least general anti-unifiers of formulas from AxS and AxT , but as a set of formu-
las it is not least general by itself, since G = {p(X), q(X)} and the substitutions
σ = {X !→ a}, τ = {X !→ b} fulfill G = G′{Y !→ X}, σ′ = σ ◦ {Y !→ X}, τ ′ =
τ ◦ {Y !→ X}. Therefore in the context of analogy making we will only apply
least general anti-unifiers, since any more general anti-unifier only adds complex-
ity without extending the analogical relation.

3.2 Coverage

Obviously, least general anti-unifiers for sets of formulas always exist: the mini-
mal example is the empty set ∅. This is probably not a desirable solution, since
it results in the empty analogical relation. Therefore we introduce the concept

1 We consider only admissible substitution, i.e. substitutions that don’t introduce
variables into the scope of a quantifier.
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Table 3. Addition and multiplication of natural numbers

Addition Multiplication
α1 : ∀x : add(0, x) = x β1 : ∀x : mul(0, x) = 0
α2 : ∀x∀y : add(s(y), x) = add(y, s(x)) β2 : ∀x∀y : mul(s(y), x) = add(mul(y, x), x)

of coverage: given an anti-unifier 〈G, σ, τ〉 for AxS and AxT , the subset Th(Gσ)
of Th(AxS) is said to be covered by G and for AxT analogously.

An anti-unifier 〈G, σ, τ〉 has a greater or equal coverage than 〈G′, σ′, τ ′〉 if there
is a substitution G′ θ−→ G that is compatible with the domain substitutions. In
general, a greater coverage is preferable, since it provides more support for the
analogy. However, there are some caveats. Assume for example the axioms for ad-
dition and multiplication of natural numbers given in Table 3. There is no direct
anti-unifier for the axioms, but since we can derive2 β3 : ∀x : mul(s(0), x) = x
we get an anti-unifier 〈{γ1}, σ, τ〉 with γ1 : ∀x : Op(E, x) = x and substitutions
σ = {Op !→ add,E !→ 0} and τ = {Op !→ mul,E !→ s(0)} which expresses the
intended analogy, i.e. that addition corresponds to multiplication and that there
is a unit element, 0 for addition and s(0) for multiplication. Notice, that only
α1 is covered by this anti-unifier. We can extend the coverage of the anti-unifier
by adding formulas, e.g. an arbitrary number of formulas of the type3

Op(sn(0), sm(0)) = Op(sm(0), sn(0))

This can be done without changing the substitutions, hence every formula added
will enhance the support for the analogy. But still α1 is the only axiom covered.
To address this problem, we need a concept of indirect coverage. We call those
axioms indirectly covered which have been used to provide the formulas that
are added. 〈G, σ, τ〉 is a full anti-unifier, if all domain axioms are (indirectly)
covered by it.

In total, to compute an analogical relation, the (indirect) coverage of the
domains should be maximized while one-to-many mappings should be avoided.

4 Algorithm

Here we sketch a proposal for an algorithm to compute a generalized theory for
given source and target domains. We assume that the axioms are in clause form.

A1 Sort the axioms of the target domain by a heuristic complexity measure, e.g. based
on the number of literals per clause and the arity of the literals.

A2 Select the next least complex and yet uncovered axiom from the target domain.
If no such axioms are left, then, if all axioms are covered, terminate, otherwise
backtrack to step A3.

2 Here we use mul(s(0), x) = add(mul(0, x), x) = add(0, x) = x, i.e. we use the axiom
α1 of the source theory to derive formulas on the target side!

3 Notice that we cannot derive ∀x∀y : Op(x, y) = Op(y, x) in first order logic, and
therefore all of these formulas are independent from each other.
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A3 Find (non-deterministically) the best matching clauses from the source according to
a heuristic distance measure. A simple distance measure uses the relative number
of common functors and constants in corresponding subsets of the clauses. The
current analogical relation should be used to identify unequal functors, for which
the analogical relation already holds. If not possible, backtrack to step A2 (skip
axiom).

A4 Split the clauses into matching literals and residual literals. The anti-unifier of
the matching literals becomes a generalized clause, if the residual literals can be
refuted.4 Else, backtrack to step A3 (selecting a different clause).

A5 Check the cross domain consistency by projecting the residual literals to the other
domain using the current analogical relation and try to prove them there. If this is
possible, reject the match and backtrack to step A3 (selecting a different clause).

A6 Mark the clauses of the target domain, that are used in the refutation process
(step A4) as (indirectly) covered. Repeat from step A2.

Using clause form for source and target axioms ensures that re-representation
of the domains is a guided process. The compared clauses can only become
smaller (by refuting the rest). This means that re-representation does not dra-
matically increase complexity additionally to the complexity of the proofs (which
of course is undecidable as we allow full first-order logic). We demonstrate the
algorithm using our second example of the Rutherford analogy (Table 2):

1. β′
3 ↔ α′

2 select β′
3 from target (A2), find α′

2 as a best source match (A3) and
anti-unify: mass ↔ charge, planet ↔ nucleus

2. β′
4 : skipped no reasonable matching clause

3. β′
2 ↔ α′

3 sun ↔ electron
4. β′

1 : skipped nucleus �= electron, sun �= nucleus
5. β′

6 ↔ α′
5 gravity ↔ coulomb

6. β′
5 ↔ α′

4 refuting the residuals (A4)
¬(charge(y) < 0) with y = electron
¬(mass(y) > 0) with y ∈ {sun, planet}
but the projection to the source of ¬(charge(electron) < 0) namely
¬(mass(sun) < 0) can be proven in the source (A5): backtrack to 1.

7. β′
3 ↔ ψ1 mass ↔ charge, sun ↔ nucleus, where ψi = mass(sun) > 0, wich can be

derived from α′
1, α′

2, φ2
... like 2.-5.

12. β′
5 ↔ α′

4 like 6.: backtrack to 1.
13. β′

3 : skipped no other matching clause
14. β′

4 : skipped no reasonable matching clause
15. β′

2 ↔ α′
3 sun ↔ electron, planet ↔ nucleus

16. β′
1 : skipped nucleus �= electron, sun �= nucleus (avoid many-to-many mapping)

17. β′
6 ↔ α′

5 gravity ↔ coulomb
18. β′

5 ↔ α′
4 refuting the residuals

¬(mass(x) > 0) ∨ ¬(mass(y) > 0)
¬(charge(x) > 0) ∨ ¬(charge(y) < 0)
solution, but β′

1 not covered: backtrack to 15.
19. β′

2 ↔ ψ2 sun ↔ nucleus, planet ↔ electron
with ψ2 = distance(planet, sun, t) > 0 derivable from α′

3, φ1
20. β′

1 ↔ α′
1

21. β′
6 ↔ α′

5 gravity ↔ coulomb
22. β′

5 ↔ α′
4 refuting the residuals

¬(mass(x) > 0) ∨ ¬(mass(y) > 0)
¬(charge(x) > 0) ∨ ¬(charge(y) < 0)
solution, target covered: termination

4 For refutation a classical connection graph-based resolution prover can be used.
During the refutation, variables may be instantiated. Therefore, anti-unification of
the matching parts can only be done after these proofs.
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This example demonstrates that there might exist different analogical mappings
between source and target that employ substitutions with a different degree of
complexity and that cover different parts of the domains. The process of con-
structing a preferred mapping is controlled by the combination of simple heuris-
tics: a similarity measure for clauses is used to find a best matching candidate
(A3) or to skip certain clauses without mapping (steps 2, 13, 14, 15). Logical
inconsistencies can cause the algorithm to reject the first selections (A4 and A5)
and backtrack with alternative candidates (steps 6, 12, 18).

5 Conclusion and Future Work

In this paper, it is shown how logical inference provides a way to tackle the
problem of re-representations in analogical reasoning applications. This is es-
sential for analogy making, as the assumption that the two domains are already
available in a structure suitable for the analogical mapping is unrealistic. In fact,
the analogous structure is a result of the analogy making process. An algorithm
is proposed that computes the best matching clauses according to a heuristic
distance measure. Besides a thorough practical evaluation of the proposed ap-
proach, future work concerns a theoretical assessment of the trade-off between
the maximization of coverage and the minimization of substitution complexities.
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Abstract. General Game Playing (GGP) aims at developing game play-
ing agents that are able to play a variety of games and, in the absence
of pre-programmed game specific knowledge, become proficient players.
Most GGP players have used standard tree-search techniques enhanced
by automatic heuristic learning. The UCT algorithm, a simulation-based
tree search, is a new approach and has been used successfully in GGP.
However, it relies heavily on random simulations to assign values to un-
visited nodes and selecting nodes for descending down a tree. This can
lead to slower convergence times in UCT. In this paper, we discuss the
generation and evolution of domain-independent knowledge using both
state and move patterns. This is then used to guide the simulations in
UCT. In order to test the improvements, we create matches between a
player using standard the UCT algorithm and one using UCT enhanced
with knowledge.

Keywords: General Game Playing, Monte Carlo Methods, Reinforce-
ment Learning, UCT.

1 Introduction

Historically, game playing agents were designed to be good in specific games.
However, even though these players excelled in games that they were designed
for, they could not play any other games. General Game Playing (GGP) fo-
cuses on the creation of agents that are able to accept rules of a game, and use
them to learn how to play it, eventually displaying a high level of competence
in it.

A class of games for which a GGP approach was taken were positional games
(eg. Tic-Tac-Toe, Hex and the Shannon switching games), which were formalised
by [1]. A positional game can be defined by three sets, P, A, B. Set P is a set of
positions; with set A and B are sets of subsets of P. Programs that are capable
of accepting rules of positional games and, with practice, learn how to play
the game have been developed. [1] constructed a program that is able to learn
important board configurations in a 4 x 4 x 4 Tic-Tac-Toe game.

W. Wobcke and M. Zhang (Eds.): AI 2008, LNAI 5360, pp. 49–55, 2008.
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The annual General Game Playing Competition [2] organised by Stanford
University has been instrumental in bringing about renewed interest in GGP.
The rules of the games are written in Game Description Language (GDL) [3].
The tournaments are controlled by the Game Manager (GM) which relays the
game information to each Game Player (GP) and checks for legality of moves and
termination of the game [4]. Communication between players and the GM takes
place in the form of HTTP messages. Successful players have mainly focused on
automatically generating heuristics based on certain generic features identified in
the game. Cluneplayer [5] was the winner of the first GGP competition, followed
by Fluxplayer [6]. Both these players, along with UTexas Larg [7] use automatic
feature extraction. Another approach that has been taken is in [8], where transfer
of knowledge extracted from one game to another is explored by means of a
TD(λ) based reinforcement learner.

The main aim of this paper is to explore the creation and use of domain-
independent knowledge. The knowledge is then applied to UCT search for GGP.
The rest of the paper is organised as follows. In the Section 2 the UCT search
mechanism if discussed briefly along with its application to GGP. In Section
3 we discuss the knowledge representation scheme. Matches are then played
between a standard UCT player and a player using the knowledge and stored
tree for the games large (5 x 5) Tic-Tac-Toe, Connect-4, Breakthrough and
Checkers.

2 UCT and General Game Playing

UCT [9] is an extension of the UCB1 algorithm [10], and stands for Upper Con-
fidence Bounds applied to Trees. The UCB1 Algorithm aims at obtaining a fair
balance between exploration and exploitation in a K-Armed bandit problem, in
which the player is given the option of selecting one of K arms of a slot machine
(i.e. the bandit). The selection of arms is directly proportional to the total num-
ber of plays and inversely proportional to the number of plays of each arm. This
is seen in the selection formula

X̄j + C

√
2 logn
Tj(n)

(1)

The arm maximising (1) is selected. X̄j is the average return of arm j after n
plays, and Tj(n) is the number of times it has been selected. C controls the
balance between exploration and exploitation of the tree. This formula is used
in our player.

UCT extends UCB1 to trees. A single simulation consists of selecting nodes
to descend down the tree using and using (1) and random simulations to assign
values to nodes that are being seen for the first time. CADIA-Player [11] was the
first General Game Player to use a simulation based approach, using UCT to
search for solutions, and was the winner of the last GGP Competition. UCT has
also been used in the game of Go, and the current computer world champion, Mo-
Go [12], uses UCT along with prior game knowledge. [13] also used simulations to
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build a basic knowledge base of move sequence patterns in a multi-agent General
Game Player. Selection of moves was done based on the average returns, and
mutation between move sequence patterns was done to facilitate exploration. An
advantage of a simulation based approach to General Game Playing is that for
any game, generating a number of random game sequences does not consume
a lot of time, since no effort is made in selecting a good move. UCT is able to
guide these random playoffs and start delivering near-optimal moves. However,
even with UCT, lack of game knowledge can be a significant obstacle in more
complex games. This is because in the absence of any knowledge to guide the
playoffs, it takes a large number of runs of the UCT algorithm to converge upon
reasonably good moves.

2.1 Structure of the Game Player

In order to make a move, the current state is set as the root node of a tree which
is used by UCT. To allow for adequate exploration, the algorithm ensures that
each child is visited at least once. To manage memory, every node that is visited
at least once is added to a visited table. Once a node is reached which is not in
the table, a random simulation is carried on from that node till the end of the
game. The reward received is backed up from that node to the root. Algorithm 1
shows the basic method of UCT and the update of values in a 2 player zero-sum
game. A number of such simulations are carried out, each starting from the root
and building the tree asymmetrically.

Algorithm 1. UCTSearch(root)

1: node = root
2: while visitedTable.contains(node) do
3: if node is leaf then
4: return value of node
5: else
6: if node.children.size == 0 then
7: node.createChildren()
8: end if
9: selectedChild = UCTSelect(node)

10: node = selectedChild
11: end if
12: end while
13: visitedTable.add(node)
14: outcome = RandomSimulation(node)
15: while node.parent �= null do
16: node.visits = node.visits + 1
17: node.wins = node.wins + outcome
18: outcome = 1 − outcome
19: node = node.parent
20: end while
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The value of each node is expressed as the ratio of the number of winning
sequences through it to the total number of times it has been selected. In order
to select the final move to be made, the algorithm returns the child of the root
having the best value.

In the next section we discuss how domain-independent knowledge can be
gathered from simulations to guide them towards reasonable solutions.

3 Knowledge Creation and Evolution

Knowledge can be used to guide node selection and random simulations in UCT.
[12] uses domain dependent knowledge in the form of local patterns to make the
simulations more realistic. [11] uses a history heuristic for moves to provide basic
knowledge, associating with each move its average win rate, irrespective of the
state it was made in. [14] use TD(0) learning to learn an evaluation function for
a template of local features in Go. The value function is expressed as a linear
combination of all local shape features, squashed by the sigmoid function to
constrain it to be between [0, 1], thus giving it a natural interpretation as a
probability of winning. Our approach to learning state-space knowledge is very
similar to it, the major difference being that instead of focusing on local features,
we use the entire state description.

3.1 State-Space Knowledge

States in GDL are represented as a set of ordered tuples, each of which specifies
a certain feature of the state. For example, in Tic-Tac-Toe, cell(1, 1, b) specifies
that the cell in row 1 and column 1 is blank. Therefore, a state in Tic-tac-Toe
is represented as a set of 9 such tuples, each specifying whether a cell is blank
or contains an X or an O. In order to extract state-space knowledge from such
tuples, we assign values to each of these tuples. Initially, the values are set to 0,
thereby giving the squashed state value as 0.5 (equal probability of winning and
losing). The value of a state S is calculated as

V (S) = σ

⎛⎝ ∑
t∈match(S)

ψt

⎞⎠ (2)

where the sigmoid function σ(t), a special form of the logistic function, squashes
the value between 0 and 1. ψt is the value of tuple t that is part of the description
of state S.

3.2 Move Knowledge

The manner in which move knowledge is expressed is similar to that used by
[11]. However, instead of simply giving a move its average win rate as a value,
we factor in the depth as well, as given in [15]. Assuming a move m is made at
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position p during a random simulation, and the length of the simulation is l and
the outcome is r, then the value assigned to m after n plays is given as

V (m) =
∑n

i=1 2
li−pi

li × ri
n

(3)

3.3 Learning

Every time a random game is played, knowledge is updated for the role(s) that
used the knowledge (examples of roles are black and white in Chess). The result
of the random game is used to perform the updates. If the outcome of game n
is r, the values for each move played in the sequence, V (m), is updated as

V (m) =
Rn−1 + 2

l−p
l × r

n
(4)

where Rn−1 is the cumulative reward for n− 1 plays (the numerator of (3)).
For each tuples t in each state of the sequence, its value ψt is updated as

ψt = ψt + α
(
r − V (S)
sizeS

)
(5)

The learning rate, α is gradually decreased over time. sizeS is the number of
tuples in the description of S.

3.4 Using the Knowledge

Given the two forms of knowledge, Ψm = V (m) + V (Sm) gives a measure of the
effectiveness of a move, where m is the move which leads to state Sm. Random
simulations use this knowledge by using ε − greedy selection, with a relatively
high value of ε (this is done to prevent the simulations from becoming too de-
terministic).1

In order to select nodes that have not been selected previously (not in the
visitedTable of Algorithm 1), UCT selects all nodes randomly, with equal prob-
ability. However, using the knowledge learnt it is possible to bias this selection
in favour of nodes with higher values. Therefore, we assign these nodes an initial
value based on V (Sm) and V (m).. This is similar to the approach taken in [16].
Node selection is then done using the standard UCT formula of (1), with X̄j

being replaced by Ψm. N.value and N.visits are updated as given in (1).

4 Experiments

In order to test the effectiveness of using knowledge with UCT, we played
matches between a player using standard UCT, UCTS , and a player using knowl-
edge for simulations, UCTK . We implemented a GGP type system on our local
1 [16] presents an interesting discussion on the effect of different types of simulations

in UCT search.
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Table 1. Number of wins for UCTS and UCTK over 100 matches per game

Game Wins for UCTS Wins for UCTK Total Draws
Tic-Tac-Toe (large) 7 15 78

Connect-4 41 59 0
Breakthrough 32 68 0

Checkers 43 57 0

machines. The players and the manager were written in Java. For inferencing,
the game rules were converted to Prolog. YProlog [17], a Prolog-style inference
engine written in Java, was used. The games used for testing were 5 X 5 Tic-
Tac-Toe, Connect-4 and Breakthrough, Checkers. The results for 100 games each
are shown. The knowledge, once generated, was not changed. The roles for the
games were randomly distributed between the UCTS and UCTK . The addition
of knowledge during random simulations results in corresponding player winning
the majority of matches. We will investigate the effect continuous evolution of
knowledge in future experiments. We also hope to reconstruct some of the ex-
isting game players (to the best of our knowledge) and test knowledge enhanced
versions of the UCT player against them, as this will give a broader perspective
as to the strength of the UCT player.

5 Conclusions and Future Work

In this paper we proposed an approach for generating and evolving domain-
independent knowledge for General Game Players. The idea of the history heuris-
tic was taken from [15], and it has been used in [11]. The state knowledge
representation and learning was inspired from [14]. The combined knowledge
is used to guide simulations in UCT. The results of matches between a stan-
dard UCT player and a player enhanced with knowledge clearly indicate the
advantages of including knowledge. Learning can be speeded up by using faster
inference engines (for example, YAP [18] and B-Prolog [19]), using hashing tech-
niques such as [20] to look up tuples, and by parallelising the simulations.

The very nature of General Game Playing makes it difficult to create and
use knowledge. Given the vast variety of games that can be played, building a
general framework for knowledge representation and learning is challenging. In
many games, moves that are successful in certain states may not be successful
in other states. Therefore, the history value of moves only acts as a simple guide
for making future moves. In our representation for state knowledge, we have
assumed that the tuples are independent of each other. However, in most cases it
is the relationship between various state features that matters. An alternative to
using linear function approximation is using non-linear function approximation
techniques such as neural-networks. We are also investigating the use of Ant
Colony Optimisation approaches [21] to generate random sequences and use
them in conjunction with the ideas presented in this paper.



Knowledge Generation for Improving Simulations in UCT for GGP 55

Acknowledgments. This work was funded in part by an NSERC Discovery
grant.

References

1. Koffman, E.: Learning through pattern recognition applied to a class of games.
IEEE Trans. on Systems, Man and Cybernetics SSC-4 (1968)

2. Genesereth, M., Love, N.: General game playing: Overview of the aaai competition.
AI Magazine, Spring 2005 (2005)

3. Genesereth, M., Love, N.: General game playing: Game description language spec-
ification, http://games.standford.edu/competition/misc/aaai.pdf

4. http://games.stanford.edu
5. Clune, J.: Heuristic evaluation functions for general game playing. In: Proceedings

of the Twenty-Second AAAI Conference on Artificial Intelligence (2007)
6. Schiffel, S., Thielscher, M.: Fluxplayer: A successful general game player. In: Pro-

ceedings of the Twenty-Second AAAI Conference on Artificial Intelligence, pp.
1191–1196 (2007)

7. Banerjee, B., Kuhlmann, G., Stone, P.: Value function transfer for general game
playing. In: ICML Workshop on Structural Knowledge Transfer for ML (2006)

8. Banerjee, B., Stone, P.: General game playing using knowledge transfer. In: The
20th International Joint Conference on Artificial Intelligence, pp. 672–777 (2007)

9. Kocsis, L., Szepesvari, C.: Bandit based monte-carlo planning. In: Fürnkranz, J.,
Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp.
282–293. Springer, Heidelberg (2006)

10. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite time analysis of the multi-armed
bandit problem. Machine Learning 47(2/3), 235–256 (2002)

11. Björnsson, Y., Finnsson, H.: Simulation-based approach to general game playing.
In: Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence,
AAAI Press, Menlo Park (2008)

12. Gelly, S., Wang, Y.: Modifications of uct and sequence-like simulations for monte-
carlo go. In: IEEE Symposium on Computational Intelligence and Games, Hon-
olulu, Hawaii (2007)

13. Sharma, S., Kobti, Z.: A multi-agent architecture for general game playing. In:
IEEE Symposium on Computational Intelligence and Games, Honolulu, Hawaii
(2007)

14. Silver, D., Sutton, R., Muller, M.: Reinforcement learning of local shape in the
game of go. In: Proceedings of the 20th International Joint Conference on Artificial
Intelligence, IJCAI 2007 (2007)

15. Schaeffer, J.: The history heuristic and alpha-beta search enhancements in practice.
IEEE Transaction on Pattern Analysis and Machine Intelligence, 1203–1212 (1989)

16. Gelly, S.: A Contribution to Reinforcement Learning; Application to Computer-Go.
PhD thesis, University of Paris South (2007)

17. Winikoff, M.: http://www3.cs.utwente.nl/∼schooten/yprolog
18. http://www.dcc.fc.up.pt/∼vsc/Yap/
19. http://www.probp.com/
20. Zobrist, A.: A new hashing method with application for game playing. Technical

report 99, University of Wisconsin (1970)
21. Sharma, S., Kobti, Z., Goodwin, S.: General game playing with ants. In: The

Seventh International Conference on Simulated Evolution And Learning (SEAL
2008), Melbourne, Australia (in press, 2008)

http://games.standford.edu/competition/misc/aaai.pdf
http://games.stanford.edu
http://www3.cs.utwente.nl/~schooten/yprolog
http://www.dcc.fc.up.pt/~vsc/Yap/
http://www.probp.com/


Propositional Automata and Cell Automata:
Representational Frameworks
for Discrete Dynamic Systems

Eric Schkufza, Nathaniel Love, and Michael Genesereth

Stanford University, CA, USA
eschkufz@cs.stanford.edu, nlove@cs.stanford.edu,

genesereth@cs.stanford.edu

Abstract. This paper describes and compares two simple, powerful models for
formalizing the behavior of discrete dynamic systems: Propositional and Cell Au-
tomata. Propositional Automata encode state in terms of boolean propositions,
and behavior in terms of boolean gates and latches. Cell Automata generalize the
propositional model by encoding state in terms of multi-valued cells, and behav-
ior in terms of comparators and selectors that respond to cell values. While the
models are equally expressive, Cell Automata are computationally more efficient
than Propositional Automata. Additionally, arbitrary Propositional Automata can
be converted to optimal Cell Automata with identical behavioral properties, and
Cell Automata can be encoded as a Propositional Automata with only logarithmic
increase in size.

1 Introduction

Propositional Automata and Cell Automata are two models for formalizing the behavior
of discrete dynamic systems. A Propositional Automaton is a circuit-based formalism—
a network of boolean gates and latches that represent propositions, where inputs and
outputs are represented as distinguished latches—analogous to the circuit-based for-
malisms for such systems described by Russell and Norvig [1]. A Cell Automaton is
a compact, computationally-advantageous generalization of Propositional Automata: a
network of multi-valued latches, comparators and selectors where inputs and outputs
are represented as distinguished latches.

In this paper, we demonstrate how Cell Automata may contain logarithmically fewer
structural elements and may require exponentially fewer operations for state update than
equivalent Propositional Automata, and present an algorithmic transformation to take
advantage of this efficiency gain. In some cases, however, a Propositional Automaton
representation may reveal advantageous structural properties of a dynamic system. Thus
this paper also presents a transformation from Cell to Propositional Automata resulting
only in a logarithmic increase in the size of the representation.

Compared to existing formalisms for discrete dynamic systems, Propositional and
Cell Automata offer several advantages. First, these automata are easy to understand:
Cell Automata selectors resemble if-then structures of programming languages and the
rules of Abstract State Machines (ASMs) [2]; their graphical structure analogizes to the
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serial and flow constructs of the business process language BPEL [3]; and propositions
and multi-valued latches are both similar to Petri Net [4] places: objects held in cells of
a current state determine the transition to the next state. By explicitly modeling inputs to
dynamic systems, however, these automata distinguish themselves from ASMs, which
are designed to model closed rather than open systems. Further, automata modeling
separate systems may be composed by linking inputs and outputs, without modifying
internal structures; this type of privacy-preserving composition cannot be performed
with Petri Nets.

Second, Propositional and Cell Automata each have particular strengths for reason-
ing tasks, and as noted above, transformations between the formalisms are direct and
can prove advantageous. Cell Automata can be evaluated in data-flow fashion in time
linear in the number of latches that they contain. Thus, their compact formalization
represents a computational advantage. Nonetheless, representing a system as a Proposi-
tional Automaton may reveal critical structural properties, including independent sub-
structures, factors, bottlenecks, or symmetries.

Finally, the use of Propositional and Cell Automata as modeling formalisms has wide
applicability—compact, expressive, and declarative representations of discrete dynamic
systems are particularly suitable for environments in which agents must reason and act
in previously unseen domains with previously unseen constraints. In these settings, de-
scriptions of new worlds and goals must be rapidly formulated and efficiently trans-
mitted to agents before they act. The General Game Playing (GGP) domain provides
one such setting in which Cell Automata may be used to model the physics of multi-
player games [5]. The GGP framework, based on the discrete automata defined in this
paper, has been used in four competitions at AAAI (see, for example, [6]), and has pro-
vided a basis for research in transfer learning [7] and game playing [8] [9]. Semantic
Enterprise Management—the study of discrete dynamic systems described by declara-
tive business rules using propositional logic–provides another environment where these
automata may prove particularly useful.

2 Propositional Automata

A Propositional Automaton is a mathematical representation of a circuit-based formal-
ism for discrete dynamic systems. The dynamics of a Propositional Automaton are de-
scribed by a Propositional Net, an example of which is shown in Figure 1. This net
defines the synchronous computation of the function:

L1,1 = (L1,1 ∧ (¬Forward ∨Bump)) ∨ (L1,2 ∧ (FacingDown ∧ Forward)) ∨
(L2,1 ∧ (FacingLeft∧ Forward))

A Propositional Net is a network of boolean gates and latches, along with transitions
that control the flow of information between those components.

Definition 1 (Propositional Net). A propositional net is a 4-tuple, 〈P,G, T, w〉. P is
a finite set of propositions. A proposition, p, is a boolean-valued latch, with domain,
dom(p) = {0,1}. G is a finite set of boolean gates. A boolean gate, g, is a function,
g : {0,1} × {0,1} !→ {0,1}. T is a finite set of transitions. A transition, t, is an
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Fig. 1. A Propositional Net that represents a subset of the physics of the Wumpus World [1]

identity function, t : {0,1} !→ {0,1}. w is a connectivity function:w : {P !→ T ∪G∪
{∅};G !→ P ×P ;T !→ P}. Along with P ,G, and T ,w defines a graph in which cycles
(if they exist) contain at least one transition. Where w returns a pair, the notation w(·)i

is used to index into that pair.

For the sake of clarity, two simplifications have been made to the Propositional Net in
Fig. 1: The definition of w implies that a Propositional Net is a bipartite graph with
two sets of vertices, P and (G ∪ T ), while boolean gates in the figure are connected in
series. The definition of G requires that a boolean gate take exactly two inputs, while
gates in the figure take one and three. These superficial discrepancies can be reconciled
by adding of a constant number of propositions and gates.

Definition 2 (Proposition Partition). The propositions in a Propositional Net can be
partitioned into three disjoint subsets based on the definition of w. PI is the set of input
propositions, p, for which w(p) = ∅. PB is the set of base propositions, p, for which
w(p) ∈ T . PV is the set of view propositions, p, for which w(p) ∈ G.

Definition 3 (Input, Base, and View Marking). Markings are functions that map
propositions to boolean values. An input marking is a total function, mI : PI !→
{0,1}. Base and view markings,mB andmV , are defined similarly.

Definition 4 (View Marking Computation). Given an input marking,mI , and a base
marking,mB , a view marking,mV is computed as follows: LetmV be an empty func-
tionmV : PV !→ {0,1}. Topologically sort the set of view propositions, PV , such that
for each p ∈ PV , with g = w(p), w(g)1 and w(g)2 (if they are view propositions)
appear before p, ensuring that if the value of one view proposition depends on another,
the latter is computed first. For all p ∈ PV , in this sorted order, let g = w(p) and
mV (p) = g(m(w(g)1),m(w(g)2)).

Lemma 1 (View Uniqueness). An input marking,mI , and a base marking,mB , define
a unique view marking,mV .

Proof. Assume m1 and m2 agree on mI and mB , not on mV : for some p ∈ PV

m1(p) = m2(p). Let g = w(p). Then m1 and m2 must disagree on either w(g)1
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or w(g)2; by assumption this disagreement must be on a view proposition. Because PV

is finite and w defines a graph in which any cycles include a transition, the assump-
tion of disagreement on any view proposition requires disagreement on an input or base
proposition, a contradiction.

Definition 5 (Marking). A marking is a function,m, defined as the union of the three
functions,mI ,mB , andmV , that represent the state of a Propositional Net.

The dynamics of a Propositional Net—transitions between states—are defined in terms
of the sets G and T , and the function w.

Definition 6 (Base Marking Update). Given a marking,m, a new base marking,m′
B

is computed as follows: for each base proposition, p ∈ PB , let t = w(p) and insert a
mapping intom′

B , p !→ t(m(w(t))).

Lemma 2 (Update Closure). Every marking m defines a unique valid base marking
update.

Proof. A base marking,mB , is a total function from PB to {0,1}. A marking,m, is a
total function from P to {0,1}. Base marking update is defined as the definition of a
function in which each base proposition, p ∈ PB , is mapped to m(p′), where p′ ∈ P .
Thus, base marking update must produce a total function from PB to {0,1}.

Theorem 1 (Update Complexity). Given a base marking,mB , the complexity of base
marking update is O(n2), where n = |P |.

Proof. Base marking update requires four steps: (1) Creating an input marking mI by
assigning a value to each input proposition requires O(|PI |) = O(n) time. (2) Sorting
the view propositions (following Definition 4) requires O(|PV |2) = O(n2) time. (3)
Performing the view marking computation requires O(|PV |) = O(n) time. (4) Per-
forming the computation of Definition 6 requires O(|PB |) = O(n) time. Executing
these steps in series requiresO(n2) time. If the results of the sort are cached, complex-
ity is reduced to amortized linear time.

A Propositional Automaton defines a physics in the form of a Propositional Net,
an initial state, and a function for computing legal inputs to that net that provides con-
straints on agent inputs beyond the limitations dictated by the net itself.

Definition 7 (Propositional Automaton). A Propositional Automaton is a triple
〈N, l,M0

B〉, where N is a Propositional Net; l is a legality function—a mapping from
base markings to finite sets of input markings: l : mB !→ 2mI ; and M0

B is an initial
base marking.

3 Cell Automata

A Cell Automaton is a mathematical formalism with properties that are closely related
to Propositional Automata. As Propositional Nets describe the dynamics of Proposi-
tional Automata, Cell Nets describe the dynamics of Cell Automata. An example of
a Cell Net is shown in Figure 2. This net defines synchronous login verification: the
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Fig. 2. A Cell Net that implements simple login verification. Simplifications made for clarity.

value of the latch, Success, is set to True if either PasswordIn = Password or
ChallengeIn = Answer, and False, otherwise. The representation of this system as
a Propositional Net would be significantly more convoluted. A Cell Net is a network of
multi-valued latches, comparators and selectors along with transitions that control the
flow of information between those components.

Definition 8 (Cell Net). A cell net is a 6-tuple, 〈O,C,E, S, T, w〉. O is a finite set
of object constants. C is a finite set of cells. A cell, c, is a multi-valued latch, with
domain, dom(c) = O. E is a finite set of comparators. A comparator is a function,
e : O×O !→ {0,1}. A comparator returns 1 if its arguments are identical, 0 otherwise.
S is a finite set of selectors. A selector is a function, s : O × O × {0,1} !→ O. A
selector returns its first argument if its third is 1, its second otherwise. T is a finite set
of transitions. A transition, t, is an identity function, t : O !→ O. w is a connectivity
function: w : {C !→ T ∪ S ∪ {∅};E !→ C × C;S !→ C × C × E;T !→ C}. Along
with O, C, E, S, and T , w defines a graph in which any cycles contain at least one
transition. Where w returns either a pair or a triple, the notation w(·)i is used to index
into that pair.

For the sake of clarity, a simplification has been made to the Cell Net in Fig. 2. The def-
inition of w implies that the inputs to a selector must be cells; the figure shows selectors
connected directly to objects. This discrepancy is superficial and may be reconciled by
the addition of a constant number of selectors, comparators, and transitions.

Definition 9 (Cell Partition). The cells in a Cell Net can be partitioned into three
disjoint subsets based on the definition of w. CI is the set of input cells, c, for which
w(c) = ∅. CB is the set of base cells, p, for which w(c) ∈ T . CV is the set of view
cells, p, for which w(c) ∈ S.

Definition 10 (Input, Base, and View Assignments). Assignments are functions that
map cells to object constants. An input assignment is a total function, aI : CI !→ O.
Base and view assignments, aB and aV , are defined similarly.

Definition 11 (View Assignment Computation). Given an input assignment, aI , and
a base assignment, aB , a view assignment, aV is computed as follows:

Let aV initially be the incomplete function aV : CV !→ O, containing no mappings.
Topologically sort the set of view cells, CV , such that for all c ∈ CV , with w(c) = s
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andw(s)3 = e, w(s)1, w(s)2, w(e)1 andw(e)2 (if they are view cells) appear before c.
This ensures that if the value of one view cell depends on the value of another, the value
of the latter is computed first. For each c, in order, let s = w(c) and insert a mapping
into aV , c !→ s(a(w(s)1), a(w(s)2), w(s)3).

Lemma 3 (View Uniqueness). An input assignment, aI , and a base assignment, aB ,
define a unique view assignment, aV .

Proof. The proof follows that of Lemma 1; disagreements between two assignments
that agree on base and input assignments must be confined to the view assignments, but
the finiteness of CV means such disagreement results in a contradiction.

Definition 12 (Assignment). An assignment is a function, a, defined as the union of the
three functions, aI , aB , and aV . The state of a Cell Net is represented by an assignment.

The dynamics of a Cell Net—transitions between states—are defined in terms of the
sets C, S, and T , and the function w.

Definition 13 (Base Assignment Update). Given an assignment, a, a new base as-
signment, a′B , is computed as follows: For each base cell, c ∈ CB , let t = w(c) and
insert a mapping into a′B , c !→ t(a(w(t))).

Lemma 4 (Update Closure). Every assignment, a, defines a unique valid base assign-
ment update.

Proof. The proof follows that of Lemma 2.

Theorem 2 (Update Complexity). Given a base assignment, aB , the complexity of
base assignment update is O(n2), where n = |C|.

Proof. Base assignment update requires four steps: (1)An input assignment, aI , must be
created by assigning a value to each input cell. Doing so requiresO(|CI |) = O(n) time.
(2) The sort described in Definition 11 must be performed on the set of view cells. Doing
so requires O(|CV |2) = O(n2) time. (3) The computation described in Definition 11
must be performed on the set of view cells. Doing so requires O(|CV |) = O(n) time.
(4) The computation described in Definition 13 must be performed on the set of base
cells. Doing so requires O(|CB |) = O(n) time. The execution of these steps in series
requiresO(n2) time; if the sort is cached, this can be reduced to amortized linear time.

A Cell Automaton defines a physics in the form of a Cell Net, an initial state, and a
function for computing legal inputs to that net.

Definition 14 (Cell Automaton). A Cell Automaton is a triple 〈N, l, a0B〉. N is a Cell
Net. l is a legality function. A legality function is a mapping from base assignments to
finite sets of input assignments: l : aB !→ 2aI . a0

B is an initial base assignment to N .

4 Comparison

Due to their graphical structure, Propositional and Cell Automata have properties closely
related to digital logic circuits. Given the appropriate resources, simulation of Proposi-
tional and Cell Automata could be parallelized. However, the domains in which they
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are used may not admit such an approach. While the design of intelligent agents might
make use of parallelizable hardware, the simulation of dynamic, interactive systems is
often implemented on single-processor machines. Accordingly, the proofs in this section
assume serial, data-flow simulation, where the value of at most one structural element
may be computed at a time, and the aim is to compare the most efficient encodings of
Propositional and Cell Automata with respect to the most intelligent possible sequential
simulation. In sections two and three we gave general complexity bounds for state up-
date. Here we provide tighter bounds which hold only for nets that have been redesigned
to allow for optimal data-flow simulation—only computing the values elements neces-
sary for state update, and ignoring others. Although the process of optimizing a net may
be difficult or computationally expensive, the computer architecture literature already
contains techniques for doing so, and this optimization need only be performed once as
a preprocessing step.

Cell Automata offer numerous advantages over Propositional Automata. Cell Au-
tomata are spatially less complex, containing exponentially fewer structural elements.
Given the assumptions described above, Cell Automata are computationally less com-
plex as well; in general, it is necessary to compute the value of fewer structural elements
to perform state update. Finally, given any Propositional Automaton, there exists an al-
gorithmic transformation to an equivalent, more efficient, Cell Automaton.

Lemma 5 (Expressiveness 1). Cell Nets can represent arbitrary boolean functions.

Proof. The following Cell Net describes the logical nand function. N = 〈O,C,E, S,
T, w〉, where O = {0,1}; C = {x, y, not y, temp, nand}; E = {e1, e2};S = {s1};
T = {t1}; andw : {x !→ ∅; y !→ ∅; temp !→ s1;nand !→ t1; e1 !→ 〈y,0〉; e2 !→ 〈x,0〉;
s1 !→ 〈1, e1, e2〉; t1 !→ temp}. Any boolean function can be represented by some
combination of logical nand functions.

Lemma 6 (Equivalence 1). Any Propositional Automaton can be represented by an
equivalent Cell Automaton.

Proof. Given a Propositional Automaton, 〈Np, lp,m
0
B〉, whereNp = 〈Pp, Gp, Tp,Wp〉,

an equivalent Cell Automaton, 〈Nc, lc, a
0
B〉, where Nc = 〈Oc, Cc, Ec, Sc, Tc, wc〉, is

defined as follows:
Define Oc to be the set {0,1}. For each proposition, p ∈ Pp, insert a cell, cp, with

domain, dom(cp) = {0,1}, into Cc. For each transition, t ∈ Tp, insert a transition, t
into Tc. For each gate, g ∈ Gp, insert an implementation of that gate as suggested by
Lemma 4.1 into Cc, Ec, Sc and wc. Denote that implementation Gg , with inputs Gi1

g ,
Gi2

g and output Go
g . For each mapping wp : p !→ t, insert a mapping into wc : cp !→ t.

For each mapping wp : p !→ g, insert a mapping into wc : cp !→ Go
g . For each mapping

wp : g !→ 〈p1, p2〉, insert two mappings into wc: Gi1
g !→ cp1 and Gi2

g !→ cp2 . For each
mapping wp : t !→ p, insert a mapping into wc : cp. Convert lp andm0

B into lc and a0B
using the following transformation from markings to assignments: For each mapping
m : p !→ v, insert a mapping into a : cp !→ v.

Theorem 3 (Spatial Complexity 1). Encoding a Propositional Automaton as an equiv-
alent Cell Automaton may result in logarithmically fewer structural components.
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Proof. Given a Propositional Automaton, an equivalent Cell Automaton with c = |C|
cells and o = |O| object constants contains a Cell Net that can represent up to oc distinct
states. While certain states might never be reachable given the dynamics of the Cell Net
and the initial assignment to the Cell Automaton, the Propositional Automaton may
have to contain at least log oc = c log o propositions.

Theorem 4 (Computational Complexity 1). Given a Propositional Automaton, the
most efficient encoding of an equivalent Cell Automaton for sequential simulation can
implement comparison in logarithmically fewer computational steps.

Proof. A Cell Automaton checks equality between cells c1 and c2, where |dom(c1)| =
|dom(c2)| = d, in constant time given a comparator, e, and the mapping w : e !→
〈c1, c2〉. In an equivalent Propositional Automaton, the most spatially efficient encoding
of c1 and c2 requires two sets of log d propositions; comparing their values requires
log d comparisons.

Lemma 7 (Expressiveness 2). Propositional Nets can represent comparators and
selectors.

Proof. Using combinations of boolean gates in the set G, Propositional Nets can repre-
sent arbitrary logical functions. A comparator for two sets of propositions, X and Y ,
implements the function ∧i((Xi∧Yi)∨(¬Xi∧¬Yi)). A selector for two sets of propo-
sitions, X and Y , that uses a control bit, c, implements the function ∧i((Xi ∧ ¬c) ∨
(Yi ∧ c)).

Lemma 8 (Equivalence 2). Any Cell Automaton has an equivalent representation as a
Propositional Automaton.

Proof. Given a Cell Automaton 〈Nc, lc, a
0
B〉, where Nc = 〈Oc, Cc, Ec, Sc, Tc, wc〉, an

equivalent Propositional Automaton, 〈Np, lp,m
0
B〉, where Np = 〈Pp, Gp, Tp,Wp〉, is

defined as follows:
For each cell, c ∈ Cc, insert a set of log |Oc| propositions, Pc, into Pp. The set Pc

will be used as a bitwise encoding of the |Oc| objects in the Cell Automaton that may
be held in the cell c . For example, given an assignment, a, where a(c) = O4 (the
fourth of the |Oc| objects, in some fixed order), in the equivalent mapping, m, it will
be the case that m(Pc1) = 1, m(Pc2) = 1, and m(Pci) = 0 for all i ∈ [2, |Oc|]. For
each comparator, e ∈ Ec, insert an implementation of a comparator as suggested by
Lemma 6 designed to compare sets of size log |Oc| into Pp, Gp and wp. Denote that
implementation Ee, with log |Oc| inputs Ei1

e , log |Oc| inputs Ei2
e and output Eo

e . For
each selector, s ∈ Sc, insert an implementation of a selector as suggested by Lemma
6 designed to select between sets of size log |Oc| into Pp, Gp and wp. Denote that
implementation Ss, with log |Oc| inputs Si1

s , log |Oc| inputs Si2
s , control input Sic

s and
log |Oc| outputs So

s . For each transition, t ∈ Tc, insert a set of log |Oc| transitions, Tc,
into Tp. For each mapping wc : c !→ t, for 1 ≤ j ≤ log |Oc| insert a mapping into
wp : Pcj !→ Tcj . For each mapping wc : c !→ s, for 1 ≤ j ≤ log |Oc| insert a mapping
into wp : Pcj !→ So

sj . For each mapping wc : e !→ 〈c1, c2〉, for 1 ≤ j ≤ log |Oc|
insert two mappings into wp: Ei1

ej !→ Pc1j and Ei2
ej !→ Pc2j . For each mapping wc :
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s !→ 〈c1, c2, e〉, for 1 ≤ j ≤ log |Oc| insert two mappings into wp: Si1
sj !→ Pc1j and

Si2
sj !→ Pc2j . Additionally, insert the mappingSic

s !→ Eo
e . For each mappingwc : t !→ c,

for 1 ≤ j ≤ log |Oc| insert a mapping into wp : Tcj !→ Pcj . Convert lc and a0B
into lp and m0

B using the appropriate transformation from assignments to markings,
respecting the bitwise encoding suggested in step 1: For each mapping a : c !→ Oj , for
1 ≤ i ≤ |Oc| if i = j insert a mapping intom : Pci !→ 1, otherwise insert the mapping
Pci !→ 0. For each mapping a : c !→ O1, insert the mapping m : Pc1 !→ 1 and the
mappingsmj : Pcj !→ 0 for 1 ≤ j ≤ log |Oc|. Continue with the appropriate bitwise
encodings for objects 2 through |Oc|.
Corollary 1. Cell Automata are exactly as expressive as Propositional Automata.

Theorem 5 (Spatial Complexity 2). Given a Cell Automaton, there exists an equiv-
alent Propositional Automaton with at most a logarithmic increase in the number of
structural components.

Proof. Suppose a Cell Automaton has c = |C| cells, o = |O| object constants, e = |E|
comparators, s = |S| selectors, t = |T | transitions, and the connectivity functionw con-
tains ω mappings. An equivalent Propositional Automaton, following the construction
in Lemma 7, would contain p propositions, g boolean gates, τ transitions, and a con-
nectivity function with σ mappings. Building comparators and selectors out of boolean
gates for sets of propositions of size log o (following Lemma 7) results in the follow-
ing numbers of components: Propositions: p = c log o + 4(e+ s) log o. The first term
comes from step 1 of Lemma 7. The second term comes from steps 2 and 3 of Lemma 7,
where the construction of each of the e comparators and s selectors following Lemma 6
requires the introduction of 4 log o intermediate propositions for comparing or selecting
between sets of propositions of size log o. Boolean Gates: g = 4(e+ s) log o, follow-
ing the construction of the e comparators and s selectors in Lemma 6. Transitions:
τ = t log o, from Lemma 7. Connectivity: σ = ω log o + 4(e+ s) log o, as each map-
ping in the connectivity function for the Cell Automaton requires log o mappings in the
Propositional Automaton, and each gate introduced in Lemma 7 requires a mapping.
Therefore, for a Cell Automaton with Sc structural components, including o objects,
the equivalent Propositional Automaton following the construction of Lemma 7 has Sp

structural components, where Sp ≤ 8 · Sc log o.

Lemma 9 (Computational Complexity 2). The computation of the value of any cell
in a Cell Net requires, at worst, time linear in the sum of the sizes of the domains of the
cells that that computation depends on.

Proof. The value of a cell c will depend on the values of some set of cells, {c1, . . . , cn}.
That relationship can be encoded as a set of cascaded selectors, view cells, and compara-
tors such that the longest path through the resulting structure traverses

∑n
i=1 |dom(ci)|

selectors and comparators:

1. Let i = 1 and let j = 1.
2. Assign ci the jth value in dom(ci). Create a cell, cij , such that under any assign-

ment, a, a(cij) is always equal to the jth value in dom(ci). Create a comparator,
e, along with the mapping, w : e !→ 〈ci, cij〉. Create a selector, s, along with the
mapping, w : s !→ 〈c1, c2, e〉, where c1 and c2 are created in steps (3) and (4).
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3. If i = n
(a) then create a cell, cret, such that under any assignment, a, a(cret) is always

equal to the value that should correspond to the current assignment of {c1,
c2, . . . , cn}.

(b) otherwise create a view cell, cv, along with a mapping, w : cv !→ s, where s is
the result of letting i = i+ 1, j = 1, and going to step (2).

4. If j = |dom(ci)| − 1
(a) then create a cell identical to c1.
(b) otherwise create a view cell, cv, along with a mapping, w : cv !→ s, where s is

the result of letting j = j + 1 and going to step (2).

Theorem 6 (Computational Complexity 3). Given the most efficient encoding of a
Cell Automaton for sequential simulation, the most efficient encoding of an equivalent
Propositional Automaton performs state update in exponentially more computational
steps.

Proof. In a Cell Net, for any cell, c, whose value depends on the values of some
set of cells, {c1, . . . , cn}, the amount of time required to compute the value of c is
O(
∑

i |dom(ci)|). In an equivalent Propositional Net, the most efficient encoding of
those cells would require p =

∑
i log |dom(ci)| propositions. Together, those proposi-

tions correspond to a logical function containing O(2p) = O(
∏

i |dom(ci)|) disjuncts,
each of which must be evaluated in series before producing a result. This increased
computational cost must be applied across all sets of propositions corresponding to
cells that require update.

Theorem 7 (Transformation). Given a Propositional Automaton, there exists a trans-
formation to an equivalent Cell Automaton that can perform state update in no more
steps, and possibly in exponentially fewer computational steps.

Proof. Given a Propositional Automaton, the value of each proposition, p, depends on
the values of some set of propositions, {p1, p2, . . . , pn} and require O(2n) computa-
tional steps to compute. By transforming into a Cell Automaton, following Lemma 8,
then performing the optimization of Lemma 9, one produces a Cell Automaton that
contains a cell c for every proposition p whose value can be computed in O(n). In
the degenerate case that each proposition depends only on the value of a single other
proposition, the equivalent Cell Automaton provides no savings, but does not require
additional computation.

5 Conclusion

Propositional and Cell Automata are equally expressive, powerful mathematical models
for formalizing the behavior of discrete dynamic systems. In general, Cell Automata are
more efficient than Propositional Automata. Given equivalent automata (each
optimized for efficient sequential simulation), a Cell Automaton may contain loga-
rithmically fewer structural elements and require exponentially fewer operations for
state update. Fortunately, given any Propositional Automaton, there exists an algorith-
mic transformation to an equivalent, possibly more efficient Cell Automaton. When
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space and computation concerns dominate, a Cell Automaton representation may be
preferred. In other cases, transformation to a Propositional Automaton may reveal ad-
vantageous structural properties of a dynamic system—factoring out independent sub-
structures or finding bottlenecks—and this can be performed with only a logarithmic
increase in the size of the representation. Future work includes further development
of techniques and applications for these transformations, as well as formal exploration
of the advantages over existing formalisms for discrete dynamic systems noted in the
introduction.
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Abstract. The need for on-demand discovery of very large, incremental
text corpora for unrestricted range of domains for term recognition in
ontology learning is becoming more and more pressing. In this paper,
we introduce a new 3-phase web partitioning approach for automati-
cally constructing web corpora to support term recognition. An evalua-
tion of the web corpora constructed using our web partitioning approach
demonstrated high precision in the context of term recognition, a result
comparable to the use of manually-created local corpora.

1 Introduction

Major ontology learning tasks such as term recognition and relation discovery
all rely heavily on the availability of large text corpora. Many current research
either uses manually-constructed static local corpora with limited size, or sub-
consciously using the World Wide Web (the Web) as a corpus in an ad-hoc
manner to serve the needs of ontology learning. For clarity, we define a local
corpus as “a semi-static, centralised and organised collection of clean text whose
growth is characterised by infrequent, manual efforts.”. The rarity of large local
corpora across various domains has tremendous influence on the applicability
and adaptability of existing systems to a wider range of applications. In ad-
dition, the mediocre size and coverage of local corpora, and their inability to
incorporate frequent changes in the domain all have impact on the performance
of ontology learning.

Despite issues such as text quality and sampling, the Web remains the key
to our problem of automatic and on-demand construction of very large corpora.
Existing research on corpus construction using the Web is focused primarily on
building domain corpora by downloading and cleaning web documents provided
by search engines. While such collections have often been misconstrued as web
corpora, they are in fact web-based local corpora. A web corpus is “a live, de-
centralised collection of noisy text (e.g. web documents) which is subjected to
continuous, autonomous and haphazard updates”, and collections of documents
downloaded to a central location definitely do not qualify as web corpora. Even
though web-based local corpora are obtained from the Web, their contents are
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no longer distributed and dynamic. As research on ontology learning progresses,
the need for on-demand construction of very large, dynamic web corpora for
unrestricted range of domains becomes more and more pressing. Despite such
urgency and the excitement associated with the Web offering indefinite amount
of data across most genres of information, it is rare to find work that takes a
step back to investigate how we can construct dynamic corpora from the Web.

In this paper, we propose a way of automatically constructing domain cor-
pora on-demand to benefit the various phases of ontology learning, and more
specifically, term recognition. We introduce an automatic topical web partition-
ing approach for generating web domain and contrastive corpora required for
term recognition. The main contributions of this paper are 1) the development
of a new practical approach for automatically constructing web corpora, and 2)
the demonstration of high performance term recognition using web corpora. Sec-
tion 2 summarises existing work on corpus construction, and related techniques
in web technologies for constructing web corpora. In Section 3, we outline our
new web partitioning approach and the associated techniques. In Section 4, we
evaluate the web corpora constructed using our approach in the context of term
recognition. We end this paper with an outlook to future work in Section 5.

2 Related Work

Current work in the literature focuses primarily on constructing web-based local
corpora. One of such systems is BootCat [1]. This system constructs a web-based
local corpus by downloading and cleaning the top n web pages returned by search
engines using a set of seedterms. In addition to relying on seedterms, Agbago
& Barriere [2] proposed a knowledge-richness estimator that takes into account
semantic relations to support the construction of web-based local corpora. Doc-
uments containing both the seedterms and the desired relations are considered
as better candidates to be included in the corpus. The candidate documents
are ranked and manually filtered based on several term and relation richness
measures. Baroni & Bernardini [3] offer a comprehensive compilation of work
on web-based local corpora. To the best of the authors’ knowledge, there is no
literature on constructing actual web corpora without downloading web pages
into local repositories. Therefore, we examine techniques from three related ar-
eas, namely, web page clustering and classification, usage-based URI clustering,
and web page importance ranking to provide basis for our new approach.

In the first research area, web page clustering involves the discovery of natu-
rally occurring groups of related web pages, while web page classification assigns
web pages to predefined classes. Despite their minor functional differences, the
conventional techniques for both clustering and classification of web pages rely
on either the content, structure or both to enable the use of feature-based simi-
larity to determine relatedness. For example, Estruch et al. [4] presented a deci-
sion tree-based algorithm for web page classification. Both web page content and
the connection between web pages through hyperlinks are utilised to construct
feature sets. The symmetric difference between feature sets is employed as the
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distance metric for the partitioning of the decision tree. Crabtree et al. [5] pro-
posed a variant of suffix tree clustering known as the extended suffix tree cluster-
ing for clustering web pages based on their common contents. More importantly,
the authors introduced a new cluster selection algorithm for identifying the most
useful clusters of web pages to be returned to the users. The selection algorithm
is based on the heuristic that useful clusters should have minimal overlap and
maximal coverage. The second related area is the usage-based clustering of Uni-
form Resource Identifiers (URI) for web personalisation and navigation. In this
area, the navigation history of users are employed for clustering URIs. As such,
the resulting clusters are URIs related through user navigational patterns instead
of content similarity or site authority. Mobasher et al. [6] employed association
rule hypergraph partitioning to cluster URIs based solely on their co-occurrence
across different user sessions. As such, no computation of similarity or distance
is required. The authors argued that conventional clustering techniques that re-
quire user sessions for computing feature-based similarity are not feasible since
the size of navigation history is often very large. Lastly, the problem of deter-
mining the importance of web pages has been studied extensively in the area
of link analysis. Several algorithms have been developed for the sole purpose of
ranking web pages based on link structure. Most algorithms, such as the famous
PageRank [7], assign numerical weights to each web page based several factors
such as in-links to determine the page’s relative importance on the Web.

3 Topical Web Partitioning

In general, we can view the construction of web domain corpora as a process of
web partitioning. Given that U is the universal set of all web pages on the surface
Web, web partitioning on set U creates two complementary setsW = {p1, ..., pn}
and W = {p1, ..., pm} where pi is a web page and n+m = |U |. W is the set of
all web pages from U whose content has been objectively determined based on
certain criteria as suitable for characterising the domain of interest D. On the
other hand, W is the set of all remaining web pages from U which are not in
W . In theory, the web pages in W should have poor characterisation ability for
D. Our domain characterisation criteria for web pages are 1) the popularity of a
web page with respect to D, 2) the extent to which the vocabulary supported by
a web page is inclined towards D, and 3) the extent to which the vocabulary of a
web page is specific to D. From the perspective of corpus linguistics, these three
criteria allow us to equate the set W to a web domain corpus since the textual
content, both lexical and semantic, of the web pages in W is biased towards a
single domain D.

The existing techniques in Section 2 are inadequate for constructing web do-
main corpora that satisfy our stringent domain characterisation criteria. The
computational power required for both textual and link analysis in clustering all
web pages on the Web makes such web partitioning approach infeasible. A more
feasible way is through the selection of web pages based on their importance or
relevance. However, the approach of simply querying web search engines using
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seedterms and treating the search results as elements of W does not satisfy our
second and third criteria. We cannot be certain that the top-ranked web pages
obtained from search engines have high vocabulary coverage and contain spe-
cific vocabulary. On that basis, we propose a novel 3-phase web partitioning
approach. The final output of the approach is a virtual, distributed and dy-
namic domain text collection (i.e. web domain corpus) which consists of a set
of web site URIs, M whose content can be accessed as required over the Web.
The detail of the three phases summarised above is presented in the following
subsections.

3.1 Probabilistic URI Filtering

In this first phase, we use the seedterms w to construct a query which is later
submitted to the Google search engine. The set of web page URIs G, returned by
Google is processed to obtain only the base URIs, which is the part starting from
the scheme up to the authority segment. Collectively, the distinct base URIs form
a new set J . Each element ui ∈ J has three pieces of important information,
namely, a popularity rank ri, the number of web pages containing w, nwi, and
the total number of web pages nΩi. We consider the PageRank attached to each
web site by Google as a measure of popularity1. As for the second (i.e. nwi) and
third pieces of information (i.e. nΩi), we need to perform additional queries with
special search operators using Google. We obtain the number of web pages or
pagecount by limiting the search to individual sites ui ∈ J (i.e. site search) using
the operator “site:”. The pagecount of w can be achieved using the query “w
site:ui” while the total pagecount for site ui can be estimated using the query
“g site:ui” where g is a string of function words separated by “OR”.

Next, we introduce three odds to satisfy our three domain characterisation
criteria. These odds are the Odds of Popularity (OP ), the Odds of Vocabulary
Coverage (OC), and the Odds of Vocabulary Specificity (OS). We introduce a
final measure known as the Odds of Domain Characterisation (OD), which is
the sum of all the three odds. The derivation of OD has been excluded due to
space constraint. To obtain OP , we need to define the distribution for computing
the probability that web site ux is popular with respect to w. We can employ
the popularity rank ri associated with each ui ∈ J . It has been demonstrated
that the various indicators of a web site’s popularity such as the number of
in-links, the number of out-links and the frequency of visits, follow the Zipf’s
ranked distribution [8]. As such, the probability that the site ux with pagerank
rx is popular with respect to w can be defined using the probability mass func-
tion P (rx; |J |) = 1

rxH|J|
where H|J| is the |J |-th generalised harmonic number

computed as H|J| =
∑|J|

k
1
k . We can then compute OP as OP = P (rx;|J|)

1−P (rx;|J|) . In
regard to the odds of vocabulary coverage OC , we can estimate the potential
of site ux in covering the vocabulary of the domain in terms of the probability
of encountering a web page from site ux among all other web pages from all
other sites in J that contain w. Intuitively, the more web pages from site ux that
1 Larger numerical value of ri indicates higher rank.
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contains w, the likelier it is that ux has good coverage of the vocabulary of the
domain represented by w. As such, this factor requires a cross-site analysis of
pagecount. In this case, we consider the collection of all web pages from all sites
in J that contain w as the sample space. The size of that space is nw. Hence,
we can compute the probability of encountering web pages from site ux that
contain w as fc(nwx) = nwx

nw
where nwx is the number of web pages from the site

ux containing w. We can then compute OC as OC = fc(nwx)
1−fc(nwx) . The last odds

OS which attempts to capture the vocabulary specificity of web pages on a site,
helps us to identify overly general sites. While a site may have high vocabulary
coverage, this does not immediately qualifies it as one that appropriately char-
acterises the domain represented by w. The vocabulary specificity of a site can
be estimated using the variation in the pagecount of w from the total pagecount
of that site. Within a single site with fixed total pagecount, an increase in the
number of web pages containing w implies a decrease of pagecount not contain-
ing w. In such cases, a larger portion of the site would be dedicated to discussing
w and the domain represented by w (i.e more specific vocabulary). As such, the
examination of the specificity of vocabulary is confined within a single site, and
hence, is defined over the collection of all web pages within that site. Formally,
the function that provides the probability of encountering a web page containing
w from site ux out of all web pages of ux is defined as fs(nwx) = nwx

nΩx
. We can

then compute OS as OS = fs(nwx)
1−fs(nwx) .

In order to filter out sites with poor domain characterisation ability, a thresh-
old for OD, represented as ODT , needs to be derived automatically as a com-
bination of the individual thresholds related to OP , OC and OS . Depending
on the desired output, these individual thresholds can be determined using the
combination of the averages and standard deviations related to OP , OC and OS .
The discussion on the derivation of ODT is beyond the scope of this paper. It
suffices to know that all sites ui ∈ J with their odds OD(ui) more than ODT

are considered as suitable candidates for characterising the domain represented
by w. These suitable sites form a new set K = {ui|(ui ∈ J)∧ (OD(ui) > ODT )}
for subsequent processing.

3.2 URI Clustering

This second phase serves two purposes, namely, to refine the web site URIs in
K, and to discover internal aspectual polarisation of the web site URIs. The
first phase establishes that the sites in K have high odds of popularity, and
vocabulary coverage and specificity with respect to the domain represented by
w. However, within K, the sites can characterise the domain in different aspects.
We refer to this phenomenon as domain aspect characterization. For example,
in the domain represented by “molecular biology”, the sites in K may address
aspects such as “products and services”, “techniques and tools”, “background
references”, “novice reading materials” and “academic and research writings”.
Hence, it is necessary to identify and further filter out overly general web sites
in K that are not suitable for constructing web domain corpus.
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We employ a 2-pass term clustering algorithm known as the Tree-Traversing
Ants (TTA) [9] together with featureless similarity measures to cluster the sites
in K and later remove the overly general web sites. The similarity between any
two elements (e.g. URIs, terms) to be clustered is given by [9]:

sim(x, y) = 1 −NGD(x, y)θ (1)

where θ is a constant for scaling the distance value by NGD [10], the featureless
distance measure. The sheer size of the Web allows NGD to induce adequate
statistical evidence for estimating relatedness without relying on any static re-
sources. The first pass works in a manner similar to divisive clustering to create
a tree structure where each leaf node ri ∈ LN in the tree corresponds to one
cluster Ci. LN is the set of all leaf nodes created by the TTAs. The first pass,
whose algorithm is available in Wong et al. [9] employs NGD for similarity mea-
surement. A second pass, summarised in Algorithm 3 of Wong et al. [11], is
then used to refine the output from the first pass by relocating leaf nodes with
single term (i.e. isolated term). This second pass is functionally similar to ag-
glomerative clustering, and employs two dedicated cluster relatedness measures
based on Equation 1. The conditions which determine the consolidation of two
leaf nodes are (1) high inter-cluster (i.e. inter-node) similarity between rx and
ry, or S(rx, ry), and (2) low intra-cluster (i.e. intra-node) variation of the com-
bined rx and ry, or V (rx, ry). The first condition ensures that the two nodes
rx and ry have high similarity, while the second condition makes sure that the
combination of rx and ry results in a compact node. The inter-cluster similarity
(i.e. the group-average similarity) and the intra-cluster variation are defined in
Equation 6 and Equation 7 of Wong et al. [11], respectively. During the second
pass, the ants utilise the inter-cluster similarity S(rx, ry) and the intra-cluster
variation V (rx, ry) as their measures for neighbourhood density. An ant carries
each leaf node and senses for neighbourhood density with all other leaf nodes in
LN . The merging is performed if the neighbourhood density exceeds a certain
threshold S2T . The neighbourhood density of leaf node rx with every other leaf
nodes ri ∈ LN is defined in Equation 8 of Wong et al. [11]. Intuitively, a high
neighbourhood density is obtained if the pair rx and ri has high inter-cluster
similarity and low intra-cluster variation. Finally, the decision on whether to
combine a leaf node rx with another leaf node ry depends on Equation 10 of
Wong et al. [11].

In this pass, set K is partitioned into clusters where each URI cluster charac-
terises a certain aspect of the domain represented by seedterms w. In order to
minimise human intervention during the process of URI clustering, the thresh-
olds for the first pass, S1T [9] and the second pass, S2T [11] are determined
automatically using the numerical descriptors related to the respective neigh-
bourhood functions. Finally, after the first and second pass of clustering using
the automatically determined thresholds S1T and S2T , we obtain a new set
L = {Ci|Ci = {uj|(uj ∈ K)∧ (uj can only belong to one Ci)}} from the original
set of all URIs K. It is worth noting that the TTA algorithm performs hard
clustering. In other words, each site ui can only belong to one cluster.
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Fig. 1. An example layout of clusters, and their β- and α-scores

3.3 URI Cluster Selection

For this last phase, we employ two types of elementary relatedness score for
identifying and removing URI clusters in L that have poor domain characterisa-
tion quality. The first type is the relatedness between the URI clusters and the
seedterms w, or β-score. The second type is the inter-cluster relatedness between
pairs of URI clusters, or α-score. It is worth pointing out that for this phase to
work, the size of L has to be larger than 2. The degree of relatedness between a
cluster of URIs Cx ∈ L and the seedterms w is defined as βx =

�
ui∈Cx

sim(w,ui)
|Cx|

where sim(w, ui) is as defined in Equation 1. For brevity, we refer to this intra-
cluster with seedterm relatedness for cluster Cx as the β-score of Cx. Next, the
α-score is based on the heuristic that:

Heuristic 1. Among all web pages on the surface Web, the web pages hosted by
the majority of the web sites in set L are the most suitable to characterise the
domain represented by w.

From Heuristic 1, we know that clusters containing the least suitable URIs will
exhibit inconsistencies in terms of their relatedness with other clusters containing
more suitable URIs. To illustrate the notion of relatedness inconsistency, assume
that we have five clusters as shown in Figure 1. Intuitively, if the α-score of C1
is high with respect to all other clusters {C2, C4} except cluster {C3}, then the
possibility of C3 being a poor characteriser of the domain becomes higher. In
other words, C1 is better at characterising the domain represented by w than C3.
To capture such relatedness inconsistency, we define an inter-cluster relatedness
score between (Cx, Ci) using the group-average similarity defined in Equation 6
of Wong et al. [11] as αx(i) = S(Cx, Ci). We refer to this inter-cluster relatedness
between Cx and Ci as the α-score of Cx given Ci.

Next, we derive two new scores based on the two elementary scores (i.e. α-
and β-score). We assign a score for each Ci ∈ L based on the property of
relatedness inconsistency between clusters. This first derived score, defined as
the neighbourhood score or N -score, captures the extent to which a cluster Cx

has strong inter-cluster relatedness with its neighbouring clusters. As we have
pointed out from Heuristic 1 and the associated justifications, the more clusters
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with which Cx has strong relatedness, the better chances it is that Cx contains
URIs that are suitable for characterising the domain. We define the notion of
“strong relatedness” as clusters having above average α-score with Cx. Such clus-
ters form a temporary set Rx associated with cluster Cx. The set Rx is defined
as {Ci|(Cx = Ci) ∧ (αx(i) > E[αx])} where E[αx] is the average α-score of Cx

with all its neighbouring clusters. Next, each cluster Cx is assigned an N -score,
which is a normalised α-score corrected by the β-score of the associated clusters
in Rx. We define the N -score for cluster Cx as:

Nx =
∑

Ci∈Rx

βi(αx(i) − E[αx]) (2)

With N -score, the status of Cx being a suitable domain characteriser is further
strengthened if the clusters which are already highly related to Cx also have
strong associations with the seedterm. In addition to the N -score, a second
derived individual score or I-score is necessary to allow the adjustment of the
amount of contribution of α-score and β-score during cluster selection. I-score
combines β-score and the average inter-cluster relatedness of a cluster, E[αx].
The I-score of cluster Cx is defined as:

Ix = (βx)ε(1−λL)(E[αx])ελL (3)

where ε is a constant scaling factor for λL. λL is the significance adjustment
factor that controls the extent of contribution of β-score and the average α-
score towards the computation of I-score. It is important to note that the values
of βx and E[αx] fall within [0, 1]. λL is defined as λL = SD[β]

|L| . λL is a function
of |L| (i.e. the number of clusters produced in the previous phase using TTA),
and the standard deviation of the β-score, SD[β].

Finally, we combine the N -score and I-score of cluster Cx to obtain its Θ-
score as Θx = NxIx. The Θ-score is a heuristically-derived cluster selection score
that optimises the discriminative property of the two types of relatedness con-
sidered for identifying URI clusters with high domain characterisation ability.
Higher Θ-score implies greater domain characterisation ability. Instead of man-
ually providing thresholds, which vary between different L, for determining the
acceptance or rejection of clusters in L, we employ the average and standard
deviation of the Θ-score to define a cut-off point ΘT . All clusters that demon-
strate Θ-scores higher than the threshold ΘT are accepted as members of a new
set M = {Ci|(Ci ∈ L) ∧ (Θi > ΘT )}.

4 Evaluations and Discussions

The aim of this evaluation is to demonstrate the applicability of the web domain
corpora constructed on-demand using our web partitioning approach in the con-
text of term recognition by contrasting the assessment against the use of local
domain corpora. We prepared two local collections of text, namely, a local con-
trastive corpus of about 6, 700, 000 word count consisting of online news articles
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Fig. 2. The output of automatic URI clustering. There are seven clusters, each rep-
resenting a certain aspect of the “molecular biology” domain. Cluster A represents
the different societies or organisations for life sciences. Cluster B contains the URIs
of biomedical schools, while cluster C represents various life sciences publishers and
archives. Cluster D consists of URIs of scientific periodicals and magazines. Cluster
E contains the URIs of academic publishers. Clusters F and G are groups of URIs of
other resources in the general domain and the life sciences domain, respectively.

which span across many genres, and a local domain corpus for the domain of
“molecular biology” known as the GENIA corpus [12] which consists of about
400, 000 words. In addition, we constructed a web domain corpus and a web
contrastive corpus using our web partitioning approach described in Section 3
based on the seedterm w=“molecular biology”. We will discuss the construction
process in the next paragraph. The term candidates used in this evaluation were
extracted from the GENIA corpus. The GENIA corpus is annotated with both
part-of-speech and semantic categories. A gold standard for the “molecular bi-
ology” domain can be constructed by extracting the terms which have semantic
descriptors enclosed by cons tags. For practicality reasons, we have limited the
set of term candidates to 2, 927. We performed term recognition using a mea-
sure known as the Odds of Termhood (OT) [13]. OT is a probabilistically-derived
measure for scoring and ranking term candidates for term recognition. OT is a
combination of seven evidence based on qualitative term characteristics, founded
on formal models of word distribution. A detail discussion on the OT measure
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Fig. 3. The performance of term recognition with 2, 927 term candidates based on the
measure OT using the local corpora, and the web corpora constructed with our web
partitioning approach. The results using local corpora and web corpora are shown in
the columns OT LC and OT WC, respectively. The result is obtained through the
cumulative binning of the ranked terms in sizes of j × 400 using the GENIA gold stan-
dard. The values of the performance measures in darker shades are the best performing
ones. The columns pre, rec, F0.1, F1 and acc correspond to precision, recall, F0.1-score,
F1-score and accuracy, respectively.

is beyond the scope of this paper. It suffices to know that the measure takes
an input, which is a term candidate a, and produces a score as the output for
ranking.

To construct our web corpora, we utilised the search term w=“molecular
biology” to obtain the top 700 URIs returned by Google search engine. A set
of 665 unique base URIs, J was produced. Using the mean of OC and OS ,
and the minimum of OP to compute the threshold ODT for the probabilistic
URI filter described in Subsection 3.1, we obtained a set of 65 most suitable
web site URIs, denoted as K for representing the “molecular biology” domain.
The choice of the individual thresholds is motivated by placing more emphasis
on vocabulary coverage and specificity than popularity. The size of K can be
increased by lowering the thresholds ofOC andOS . In the second phase described
in Subsection 3.2, we set the first-pass clustering threshold S1T as the average
of the pair-wise similarity sim defined in Equation 1. To compute the threshold
S2T , we utilised the average plus standard deviation of the inter-cluster similarity
S(rx, ry), and the mean of the intra-cluster variation V (rx, ry). Seven clusters
were created from the 65 URIs, and are collectively referred to as set L as shown
in Figure 2. Generally, there is a strong tendency for each of these clusters
to represent a certain aspect of the “molecular biology” domain. This can be
determined by examining the theme of the web sites. The seven clusters undergo
a cluster selection process described in Subsection 3.3 as the last phase of web
partitioning. Using the average Θ-score as the threshold, clusters E and F were
rejected. The final output set M consists of only five clusters with 55 URIs.
These 55 web sites have over 22 million web pages in total and are now part of
the web domain corpus W for “molecular biology”. The remaining web pages on
the surface Web contribute to the web contrastive corpus W .
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Figure 3 shows the performance of term recognition using the 2, 927 term can-
didates. The result using web corpora and local corpora is shown in the column
OT WC and OT LC, respectively. Each row is a bin, of size j× 400, containing
the ranked term candidates which were sorted according to the scores assigned by
OT (i.e. higher score, higher rank). In other words, the first bin BOT LC

1 contains
the top 400 term candidates ranked according to OT LC, while the fourth bin
BOT WC

4 holds the top 1, 600 term candidates ranked by OT WC. The smaller
cells under the columns OT WC and OT LC are performance indicators cal-
culated using the gold-standard that comes with the GENIA corpus. Using the
first bin BX

j=1 (i.e. first 400 ranked terms) as an example, we can observe from
Figure 3 that term recognition using local corpora with the measure OT (i.e.
X = OT LC) achieved a precision of 97%, while the use of web corpora (i.e.
X = OT WC) scored a 92.5% precision. The values of the performance measures
in darker shades are the best performing ones. For instance, the best F0.1 score
achieved through the use of web corpora is 83.27% at bin j = 4, which is just
2% less than the F0.1 at BOT LC

4 . In short, Figure 3 provides empirical evidence
which demonstrates the ability of our web partitioning approach in constructing
web domain corpora which are applicable to real-world applications. The figure
shows that the results of term recognition using local corpora and web corpora
are comparable, with slightly lower performances between 1 − 4% across all in-
dicators. Such performance is in fact promising considering the minimal effort
required to produce the web corpora. Moreover, unlike texts in local corpora
which have been vetted by human experts, the web corpora do not undergo any
form of verification of text quality. This indicates the possibility that lack of text
quality in a web corpus can indeed be compensated by its size, at least in the
context of term recognition.

5 Conclusions

The applicability of many term recognition techniques remains limited due to
the rarity of very large text corpora in the target domain and across contrasting
domains. To address this problem, we introduced a novel 3-phase web partition-
ing approach for constructing web corpora on demand for term recognition. The
advantages of web corpora are 1) the evolutionary nature of web corpora which
automatically reflect changes in the domain, 2) the unbounded volume of web
corpora, 3) the comparable performance of web corpora in the context of term
recognition, and 4) the significant savings in effort during corpus construction.
Overall, we have shown that 1) it is computationally feasible to construct web
corpora for practical applications using our web partitioning approach, and 2)
that our web corpora can be used to achieve favourable term recognition perfor-
mance in comparison with high-quality, manually-crafted local corpora. Several
future works have been planned which include the study on the effect of web
partitioning using different seedterms w, and the research on examining how the
content of web corpora evolve over time and its effect on term recognition. We
are also planning to study the possibility of extending the use of web corpora
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to other applications which requires contrastive analysis, and other tasks in on-
tology learning such as relation discovery.
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Abstract. This paper presents an enhancement to ontology formalization, com-
bining previous work in Conceptual Structure Theory and Order-Sorted Logic. 
In particular, the relation type hierarchy of the former theory is a subset of the 
predicate hierarchy of the latter. Most existing ontology formalisms place 
greater importance on concept types, but this paper focuses more on relation 
types, which are in essence predicates on concept types. New notions are intro-
duced and new properties identified with the aim of completing missing argu-
ments in relation types. The end result is a new ontology, that we call the 
closure of the original ontology, on which automated inference could be more 
easily produced (e.g., a query-answering system for legal knowledge).  

1   Introduction 

In a formalism based on Conceptual Structure Theory [2][8][9], an ontology is in 
essence a mapping of a real world into an abstract conceptual world, consisting of a 
concept type hierarchy, a relation type hierarchy, and formal relationships between 
them. This is similar to what is proposed by the popular Web Ontology Language 
(OWL) in which an ontology is defined as a collection of a set of classes (unary 
predicates), a set of properties (binary predicates), and a set of declarations describing 
how classes and properties are related [10]. Ontologies are usually distinguished from 
databases. An ontology represents shared and commonly-agreed-to knowledge while 
a database contains specific knowledge and is generally built for a particular applica-
tion or domain of discourse [3]. The two structures are complementary in problem 
solving. Ontologies could even be considered to be hard-coded in computer systems 
[4] as they represent factual knowledge not varied across applications. A formaliza-
tion of ontology based on Order-Sorted Logic has also been proposed [1][5], together 
with an application to upper event ontology [6]. In this logic, an ontology is repre-
sented by a “sort hierarchy” and a “predicate hierarchy”. The former is a hierarchy of 
objects in the domain of discourse, built according to a set of partially ordered sorts. 
In addition, those objects could be further described through their n-ary predicates. 
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The relationships between these predicates form another hierarchy, called predicate 
hierarchy, which complements the sort hierarchy in the ontology.  

In this paper, we attempt to enhance the conceptual structure ontology formalism 
by incorporating new ideas from the above approaches, especially with regard to 
concept relations (or concept predicates). Our formal definitions of properties of con-
cept types, concepts, relation types and relations bear some similarities with the onto-
logical conceptual ideas proposed by Dillon et al. [3]. The end result is the production 
of a more complete ontology, that we call the closure of the original ontology, in 
which missing arguments in relation types are supplemented and their properties 
propagated. Our main motivation for this research is in the area of formal reasoning, 
of which one application is the development of systems that can answer queries con-
cerning topics that do not explicitly exist in databases, through automated inference 
based on ontological relationships between database objects and their predicates. For 
example, in the justice administration domain, we may wish to have a system that can 
automatically answer the following question: “Knowing only that John’s father is in 
jail, does John have a Police record and is he being monitored by a welfare agency?” 
We will see at the end of this paper how an ontology built according to our formalism 
could help answer this question. Note that Sections 3 and 4 contain new formaliza-
tions that have not been previously published. 

2   Ontology Formalization in Conceptual Structure Theory 

This Section summarizes previous work on ontology formalization within the Con-
ceptual Structure Theory [2][8][9].  

Definition 1 (Original Ontology). An ontology O is a 5-tuple O = (T, I, <, conf, B) in 
which: 

(1) T is the set of types, i.e., T = TC ∪TR  where TC is the set of concept types and TR , 
the set of relation types.    

(2) I is the set of individuals or instances of concept types in TC .  
(3) “<” is the subsumption relation in T, representing the semantic generalization or 

specialization relationship between two types. “<” is mathematically reflexive.  
(4) conf is the conformity function that links each individual in I to the infimum (or 

greatest lower bound) of all concept types that could represent that individual.  
(5) B is the canonical basis function that defines for each relation type in TR the tuple 

of all concept types that can be used in that relation type. For a relation type r, the 
number of elements in B(r) is called the arity (or valence) of r or of B(r). 

(6) The function B must also satisfy the following association rule: 
B-rule: If a relation type subsumes another relation type, then they must have the 
same arity and their values through B (i.e., the two tuples of concept types) must 
also be related (through the subsumption relation <) in the same order.  

Note: 
• In Def. 1(5), the function B expresses the usage pattern (or canonical basis) of 

each relation type as it identifies all concept types that can be used in that relation 
type, i.e., B: TR → τ(TC) where τ(TC) is the set of all tuples over TC , formally de-
fined as τ(TC) = ∪{n>0} (TC)n . Since B(r) is the most important feature for a  
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relation type r, we usually represent B(r) together with r. For example, if 
r=isDaughterOf, then we often write r=isDaughterOf(Woman, Person), which 
means that we write r(B(r)), and we usually say that Woman and Person are the 
two arguments of the relation type isDaughterOf while in reality they are the two 
arguments of the 2-tuple B(isDaughterOf). An example of the B-rule (Def. 1(6)) 
is “isDaughterOf < isChildOf” with B(isDaughterOf)=(Woman, Person) and 
B(isChildOf)=(Person, Person). In this case, the B-rule imposes that the first con-
cept argument in the first relation is subsumed into the first argument of the sec-
ond relation (i.e., Woman < Person), and likewise for the second arguments (i.e., 
Person < Person).  

3   Proposed New Ontology Formalism 

We first introduce the new mathematical concepts of tuple extension and tuple sub-
sumption, and then use them in our new ontology formalization. 

Definition 2 (Tuple Extension and Tuple Subsumption). 
(1) A component c of a tuple T is written as c∈T (normally this notation is reserved 

to set membership). Note that in a tuple the same component may appear multiple 
times and the order in which the components are written is significant.  

(2) Tuple Extension: Let T1=<c1, …, cn> be an n-tuple and T2=<d1, …, dm> be an m-
tuple, T1 is said to be an extension of T2 (and we write T1=ext(T2)) if and only if 
all components of T2 are also present in T1 and in the same order, i.e. T1=ext(T2)  
⇔ <c1, …, cn>= ext(<d1, …, dm>)  ⇔ (m ≤ n) and (∀k,l 1 ≤ k ≤ l ≤ m ∃i,j with 1 ≤ 
i ≤ j ≤ n and  ci = dk and cj = dl). 

(3) Tuple Subsumption: This is an extension of the definition of the subsumption 
relation “<” in Def. 1(3). Let T1 be an n-tuple and T2 be an m-tuple with m≤n, T1 

is said to subsume T2 (and we write T2 < T1) if there exists an m-tuple T2’ such 
that T1 is an extension of T2’ (i.e., T1=ext(T2’)) and each component of T2 is sub-
sumed into the corresponding component of T2’ (i.e., if T2 = <c1, …, cm> and T2’ = 
< ci’, …, cm’> then ∀i 1 ≤ i ≤ m  ci < ci’). 

Property 1 (Tuple Extension). Tuple extension is a relation that is: 
- reflexive (i.e., ∀T  T=ext(T)), 
- anti-symmetrical (i.e., ∀T1 ,T2  T1=ext(T2) and T2=ext(T1) ⇒ T1=T2), and 
- transitive (i.e., ∀T1 ,T2,T3   T1=ext(T2) and T2=ext(T3) ⇒ T1=ext(T3)) 

Definition 3 (New Ontology with Relation Type Hierarchy). An ontology O is a 5-
tuple O = (T, I, <, conf, B) as per Def. 1 with in addition the following features: 

(1) The set of individuals or instances I is expanded to include all instances of con-
cept types and relation types, i.e., I=IC∪IR with IC being the set of all concepts (or 
instances of concept types) and IR the set of all relations (or instances of relation 
types).  

(2) The function conf is extended to be defined over the combined set of IC and IR , 
i.e., conf: IC∪IR → TC∪TR  

(3) The function B is extended to be defined over the combined set of TR and IR , i.e., 
B: TR∪IR → τ(TC) ∪ τ(IC) 
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(4) The B-rule is broadened as follows: 
New B-rule (Relation Type Extension). If a relation type r subsumes another 
relation type r’ (i.e., r’ < r), then it is possible to build a relation type r^ (called an 
extension of r with respect to r’) such that r’ < r^, B(r^)=ext(B(r)), B(r’)<B(r^) 
and B(r)<B(r^). 

Note: 
• Def. 3(1) introduces the new concept of instance of relation type to Conceptual 

Structure Theory. Def. 3(2) means that the new conf function associates each 
concept (resp. relation) with a concept type (resp. relation type), which is the 
(unique) infimum of all concept types (resp. relation types) in the ontology that 
the concept (resp. relation) could represent. Def. 3(3) means that in addition to 
linking a relation type to a tuple of concept types that can be used with that rela-
tion type, B also links a relation to a tuple of concepts that are currently used in 
that relation. In plain terms, the new B-rule (Def. 3(4)) states that if a relation 
type r subsumes another relation type r’, then it is possible to build a relation type 
r^ that extends the arguments of r such that each argument of r’ is subsumed into 
a corresponding argument of r^. In other words, the arguments of r’ (in fact their 
supertypes) are “merged” into the arguments of r to create the set of arguments 
for r^. For example, if we have: steal(Thief, TheftVictim) and offend(Offender) 
with steal < offend, then we could construct the extended relation type: of-
fend^(Offender, OffenceVictim), by adding a supertype of TheftVictim (which is 
OffenderVictim) to the tuple of arguments of the new type. The new B-rule is the 
first step to supplement missing arguments in relation types, similarly to the ma-
nipulation of predicate arguments in order-sorted logic [5][7]. 

4   Properties of New Ontology Formalism  

The main difference between a relation type and a relation is that the latter may in-
clude specific information that is pertinent to the particular context in which the con-
cerned concepts are linked. For example, isDaughterOf is a relation type, linking two 
concept types: Woman, Person. To express that “Mary is the daughter of John by 
adoption”, we can use the relation type isDaughterOf but with a qualifier byAdoption. 
This means that the two instances of the concept types Woman and Person (which are 
Mary and John) are linked through a particular instance of the relation type isDaugh-
terOf, which contains the additional qualifier: byAdoption (this will be formally de-
fined as a property of the relation). And we write: isDaughterOf(Woman: Mary, 
Person: John, <byAdoption>). In general, a relation contains specific information that 
is not already contained in the concepts that it links. In the example, the qualifier 
byAdoption is not specific to the concept Mary, nor to the concept John, but is spe-
cific to a particular case (i.e., an instance) of the relation type isDaughterOf. If the 
specific information of the relation can be accommodated by other concept types (that 
are already in the concept type hierarchy of the ontology), then that specific informa-
tion should be added to those concept types (rather than as a property of the relation). 
If we have ChildParentRelationship as a concept type in the ontology, then we can 
have a 3-ary relation: isDaughterOf(Woman: Mary, Person: John, ChildParentRela-
tionship: Adoption). The decision to express a piece of information in a relation as a 
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property or as a new concept type usually depends on the domain of discourse and on 
practical constraints on that ontology, as the introduction of any new concept type 
requires a review of existing relations and relation types in the ontology and may lead 
to proliferation of concept types of minor significance in the ontology.  

The propagation of properties between types and instances are governed by the fol-
lowing four axioms: 

Axiom 1 (Type Property Inheritance). For any type, its properties are inherited by 
all of its instances, and by all of its subtypes. 

Axiom 2 (Instance Property Generalization). For any instance of a type and for any 
supertype of that type, one can build another instance of that supertype such that the 
properties of the first instance also hold true for the second instance. 

Axiom 3 (Relation Type Closure). For any relation type r, one can build another 
relation type, called the closure of r and written as r*, satisfying the following  
conditions: 

(1) r* contains all the arguments of r, together with all the properties of r and all the 
properties of the arguments of r, if exist. 
(2) r* contains all the arguments of each supertype of r, with possibly additional 
properties for those arguments (i.e., properties that are specific to the semantics of r).  
(3) For each subtype of r and for each argument of that subtype, r* contains a super-
type of that argument, together with all properties of that argument, if exist. 
(4) r* contains no semantically redundant arguments. 

Axiom 4 (Relation Closure). For any relation i of type r, one can build another rela-
tion, called the closure of i and written as i*, such that i* is an instance of the relation 
type closure r*. In addition, i* contains all the arguments of i, together with all the 
properties of i, and all the properties of the arguments of i, if exist. 

Definition 4 (Ontology Closure). For an ontology O, the ontology O* obtained by 
adding all the relation type closures and relation closures built as per Axioms 3 and 4 
is called the closure of the ontology O. 

Proposition 1 (Soundness of Relation Type Extension and Closure). For any rela-
tion types r and r’ such that r’ < r,  r* is an extension of r with respect to r’ (in the 
sense of the new B-rule).    

Note: 
• Proposition 1 means that the closure of a relation type is the final result obtained 

by recursively “extend that relation type with respect to each of its subtypes”, i.e., 
all the arguments of its subtypes are “merged” into the arguments of the relation 
type to produce its closure. In addition, the closure of a relation type or a relation 
inherits multiple properties from its supertypes, its subtypes, and its arguments. 
Semantically, there is no extra information introduced by the notion of closure 
but the addition of all possible arguments and properties that a relation type or re-
lation could use facilitates inferences and searches on knowledge bases.  

Example 1. Suppose that we have the following information in an ontology: 

- pickPocket(PettyLarcenist, PickpocketVictim, StolenAmount) 
- steal(Thief)  
- offend(Offender, OffenceVictim, OffenceAct, OffenceInstrument) 
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- pickPocket(PettyLarcenist: John, PickpocketVictim: Mary, StolenAmount: $5.00) 
(i.e., “John picked $5.00 from Mary’s pocket.”). 

As per Axioms 3 and 4, we can infer the following relation closures: 

- pickPocket*(PettyLarcenist: John, PickpocketVictim: Mary, OffenceAct: <pick-
Pocket>, OffenceInstrument: <byHands>, StolenAmount: $5.00), i.e., “John picked 
$5.00 from Mary’s pocket.”. 
- steal*(Thief: John, TheftVictim: Mary, OffenceAct: <pickPocket>, OffenceInstru-
ment: <byHand>, StolenObject: $5.00), i.e., “John steals $5.00 from Mary by picking 
with his hand in Mary’s pocket” (this is inferred from the above relation pickPocket* 
and from the subsumption relation pickPocket < steal).  
- offend*(Offender: John, OffenceVictim: Mary, OffenceAct: <pickPocket>, Offen-
ceInstrument: <byHand>, OffenceMotive: $5.00), i.e., “John commits an offence 
against Mary by picking $5.00 with his hand from Mary’s pocket” (this is inferred 
from the above relation steal* and from the subsumption relation steal < offend). 

Proposition 2 (Soundness of Relation Type Closure). Let r be a relation type. We 
have: (1) (r*)* = r* (2) r* < r, and (3) Each argument of r* is the infimum of all the 
semantically-related arguments of all supertypes of r and of an argument of r, if exists. 

Note: 
• Proposition 2 expresses that each relation type closure is a semantic specializa-

tion of the corresponding relation type and the closure of a relation type incorpo-
rates the semantics of the relation type as well as the semantics of the part of the 
ontology in the background that concerns that relation type (i.e., the relevant con-
cept types that the relation type links, and their supertypes). Therefore, we can 
say that in an ontology closure, the semantics of a relation type and its context are 
condensed into the relation type closure. 

Example 2 (Justice System). Let us suppose that we have the following justice-
related information, derived from facts and common findings: 

(1) Any offender would have a record with Police. 
(2) Children in a dysfunctional family are more likely to offend. 
(3) Children in a family whose parents are often absent are monitored by a welfare 

agency (for possible assistance). 

Suppose that we also have in our knowledge database the only piece of information 
concerning an adolescent named John, that is “John’s parents are in jail”. We would 
like to construct a system able to automatically answer the following queries: Is John 
being monitored by a welfare agency? And does John have a Police record? To an-
swer these questions, we first organize the above general information into an ontology 
with the following 3 relation types and 1 concept type: 

- hasParentsInJail(Person) 

- hasAbsentParents(Person, MonitoringWelfareAgency) 

- isInDysfunctionalFamily(Person, Offence: <moreLikely>) 
- Offence: <hasPoliceRecord> 

Semantically, we have the following subsumption relations between the above re-
lation types: hasParentsInJail < hasAbsentParents < isInDysfunctionalFamily. From  
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the information in the knowledge base, we also have the relation: hasParentsIn-
Jail(Person: John). Based on Axioms 1, 3 and 4, we can deduce the closure of that 
relation: hasParentsInJail*(Person: John, MonitoringWelfareAgency, Offence: <mo-
reLikely><hasPoliceRecord>). From that new relation closure, we can extract the 
answer to our questions: “John is being monitored by a welfare agency, more likely to 
offend, and more likely to have a Police record”. This answer is possible through the 
use of the ontology closure in our new formalism. 

5   Conclusion 

This paper presented an extension to the ontology formalization previously proposed 
for the conceptual structure theory, by integrating new ideas from order-sorted logic 
and other logics. The enhanced formalism offers a more rigorous interpretation of the 
semantic relationships between concepts and their predicates. Unlike OWL, our on-
tology formalism contains an additional hierarchy constructed by n-ary relation types. 
The new structure formalizes ontological relationships among any number of concept 
types. Other new notions introduced in this paper help incorporate predicate proper-
ties into the ontology. In particular the new definitions of closures of a relation and of 
a relation type enable completion of their missing arguments. The end result is the 
production of an “ontology closure”, which is both complete and sound for formal 
automated reasoning. Based on such an ontology, we could answer queries concern-
ing topics that are not explicitly present in existing knowledge bases.   
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Abstract. When a user is looking for a product recommendation they usually
lack expert knowledge regarding the items they are looking for. Ontologies on
the other hand are crafted by experts and therefore provide a rich source of infor-
mation for enhancing preferences. In this paper we significantly extend previous
work on exploiting ontological information by allowing the user to specify pref-
erences in a more expressive manner. Rather than allowing for only one preferred
target concept, we allow a ‘chain’ of user preferences. Furthermore, we treat in-
formation from the underlying ontology of the domain as a secondary preference
structure. We then show how to assemble these two preference structures (user
and ontology) into a preference over items.

The ability to model preferences and exploit preferential information to assist users in
searching for items has become an important issue in artificial intelligence. Accurately
eliciting preferences from the user in the form of a query can result in a coarse rec-
ommendation mechanism with numerous results returned. In most cases the user lacks
deeper, expert knowledge of the domain to allow for a discriminating recommendation
to be determined but they know what they like. In the model that we advocate here,
user preferences are supplemented and enhanced by expert knowledge in the form of
ontologies.

In previous work [1], we show how to exploit ontological information to enhance
preferences expressed by a user who is seeking a recommendation for items. In this
paper we significantly extend these ideas by allowing the user to specify preferences
in a more expressive manner rather than just a single target concept. We allow the user
to specify a partial preference over concepts. Moreover, we treat information from the
underlying ontology of the domain as a secondary preference structure (i.e., the ‘expert
knowledge’). We then show how to assemble these two preference structures (user and
ontology) into a total preference ordering—and hence recommendation—over items.

Previous work in supplementing user preferences with ontological information is
limited. An ontology based similarity system has been presented in [2] but provides
for only basic features. [3] is much closer in spirit to this paper, introducing the notion
of ontology filtering. However, they propose a score propagation system within an hi-
erarchical graph, where we focus on the structural properties of the ontology. [4] has
applied similarity to semantic data mapping, ontology mapping and semantic web ser-
vice matchmaking using techniques from linguistic analysis. [5] deals with preference
query relaxation plans over multiple conceptual views.

W. Wobcke and M. Zhang (Eds.): AI 2008, LNAI 5360, pp. 86–92, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Exploiting Ontological Structure for Complex Preference Assembly 87

Thing

MusicGenre

Jazz Rock Electronic

Fusion Big Band Alternative Rock New Wave Prog Rock Dance Breakbeat Ambient Downbeat

Trance House Techno Trip Hop Drum&Bass

Prog Trance Psytrance

Grunge Indie Rock

Fig. 1. Ontological Concept Hierarchy of Music Genres

Motivating Example: The Music Record Shop Ontology Consider an ontology which
describes and stores information about music albums. This may include musical genre,
performing artists, price etc. Let’s also consider a concept hierarchy over genres com-
posed by musical experts given in Figure 1. Note that this information is taken from do-
main experts while we do not assume the user has extensive knowledge of the domain
at all. Still this information can be readily exploited when reasoning with preferences.
Note that in this hierarchical genre system an album can be identified, for example, as
Progressive Rock which is a leaf concept but at the same time an album can be identified
with the concept Rock even though it serves as an abstract concept.

In [1] we discuss ways to exploit this hierarchy in order to perform more accurate
preference querying when the preference is given in the form of a single target concept
(i.e., the user’s most desirable concept classifying the objects over which they seek
recommendations). In this paper we significantly extend these ideas by considering
complex preference construction.

1 Background

One of the most distinctive properties in representing knowledge using ontologies is the
inherent ability to define the terminologies in the ontology in an hierarchical manner.
In analogue to terminologies in database systems, i.e. the database schema, in this work
we consider the terminological component of an ontology to be the part which stores
information created by domain experts. This information holds in all circumstances.
This assumption will then enable us to enhance the user expressed preferences with
information defined by domain experts, assuming limited domain knowledge on behalf
of the user, and thus supply more accurate preference querying. In [1] we introduce an
extension to [6] by allowing the user to express their preferences in terms of either the
hierarchy below the target concept or the similarity to a certain target concept. In [1] we
explore various similarity metrics to assist in preference querying as described above.
We introduce a new Boolean operator Sim(C1, C2) that can be read “is similar to” and
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returns a real number in the interval (0, 1] that specifies the degree of similarity between
concepts C1 and C2:

b1 ≺P (C0) b2 ⇔ Sim(C(b1), C0) < Sim(C(b2), C0) (1)

Where C0 ∈ Concepts is the target concept, b1, b2 ∈ ResultBindings (i.e., the ob-
jects over which we seek recommendation) and C(bi) is the value bound to the relevant
variable in the result binding bi w.r.t C. In [1] we propose a novel similarity method,
based on [7], which has three interesting properties:

1. It considers two concepts more similar if they share more specific information.
2. It respects the IS-A (subsumption) relation.
3. Within a sub-graph, it will consider a concept more similar to a target concept

according to the communicated level of specificity described by this target concept.

Property 2 means that when the user specifies a certain target (most preferred) concept,
the sub-concepts below this target concept will be always considered more similar to
the target concept than any concept which is not subsumed by this target concept.

Property 3 means that those sub-concepts below the target concept will be ordered
according to their distance to the target concept (the ‘closer’ distance, the more similar
they are). The intuition behind this is to respect the user’s communicated level of speci-
ficity (given by the depth of this target concept in the ontology) considering concepts
which are ‘closer’ to this level of specificity to be more similar. This is measured by the
following similarity metric which determines the similarity of concepts C0 and C1.

Sim(C1, C0) =
2 ∗N3

N1 +N2 + 2 ∗N3 +AV G
(2)

Where N1, N2 are the distances from the concepts C0 and C1 to their Most Recent
Common Ancestor (MRCA) respectively and N3 is the distance from this MRCA and
the root of the ontology (assuming the most general concept is the OWL concept Thing).
AV G is the average distance of MAX to the depth of the concepts C0 and C1 and
MAX is the length of the longest path from the root of the ontology to any of its leaf
concepts. Note that for clarity this figure is then being normalized to be between 0 and
1 by dividing it by the similarity of the target concept to itself.

Example 1. Suppose we query music albums preferring albums of genre similar to
Alternative Rock. An album classified as Alternative Rock will be considered the most
similarly matched to our preference with similarity of 1. The genre IndieRock will have
similarity of ∼ 0.94 while the genre Jazz will have the similarity of ∼ 0.35.

While this technique adds some flexibility to preferential reasoning, it provides a path-
way to a much richer way of reasoning about preferences that we explore in this paper.

2 Complex Preference Assembly Using Ontological Structure

In [1], complex preference assembly is done through the Pareto (all equal) and the Cas-
cade (prioritization) operators. In particular, the current semantics of preference prioriti-
zation becomes less effective and somewhat limiting when dealing with similarity-based
preferences. The reason is inherent in the way Cascade performs: given two preference
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constructors over the same attribute, the second preference will only come into con-
sideration for those cases where the two alternatives are considered equally preferred
by the first preference. In similarity-based preference querying we allow the system to
consider alternatives which are ‘close’ to the expressed preference although not neces-
sarily the exact ones expressed by the user. And thus, Cascade will consider a second
alternative only for those result bindings which have the exact same similarity mea-
surement to the first concept. We remedy this problem by introducing a new preference
assembly method: PreferenceOrdering which allows the user to give a partial preorder
of preferences over concepts. The system then completes this order using ontological
information. Our assumption here is that the user is rarely a domain expert. The user
knows what they like and these wishes must be respected. It is more than likely how-
ever that the preferences expressed by the user are not based on any deeper insight about
the domain. We exploit ontological information about the domain in order to provide a
much more discriminating recommendation for items. More formally, the user provides
a preference over items represented as a partial preorder over concept classes:

{C1,1, C1,2, · · · , C1,i} > {C2,1, C2,2, · · · , C2,j} > · · · > {Cn,1, Cn,2, · · · , Cn,k}

Each set {Ci,1, Ci,2, · · · , Ci,n} represents concepts that the user equally prefers. We
only require that preferences be consistent; i.e., transitivity and asymmetry preserved.
Our goal now is to turn this into a total order by “filling out” user preferences with
information from the ontology by utilising notions of similarity. We end up with a total
preorder C1 > · · · > Cm over all concepts in the ontology with those corresponding
to concepts specified in the user preference maintaining the order imposed by the user.
By doing so we provide a much more fine-grained recommendation for the user that is
less likely to overwhelm them with choices. Note that we do allow indifference between
two items as well.

We now present a method for assembling a preference ordering by using the notion
of similarity between concepts measured in terms of the structure of the ontology. We
first give some basic definitions:

Definition 1. Given a sub-graph of an ontology, a User Ordering is a partial preorder
over the concepts of that sub-graph given by the user.

Definition 2. Given a sub-graph of an ontology (a conceptual view) and a preferred
target concept, an Ontology OrderingSim is the total order of concepts in that sub-
graph according to the similarity method Sim.

In order to assemble the two different orders (User and Ontology), we create a total
order over the relevant part of the graph. The position of any of these concepts in the
total order will be determined by looking at their maximal similarity to any of the user
ordered concepts. Concepts which are most similar to a user ordering concept will be
then ordered according to their similarity to it. The intuition behind this is that we
exploit the ordering given to us by the ontology (w.r.t a similarity measurement) without
contradicting the preference ordering explicitly expressed by the user. Suppose the user
specifies their preference using the following informal syntax:

(C1,1...C1,i) THEN (C2,1...C2,j) THEN · · · THEN (Cn,1...Cn,k)
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Given a similarity method Sim(C0, C1) ∈ (0, 1], the semantics of the ordering of pref-
erences (w.r.t a candidate concept C0) is:

b1 ≺P (C1,C2,··· ,Cn) b2 ⇔Sim(C(b1), 〈C1, C2, · · · , Cn〉) <
Sim(C(b2), 〈C1, C2, · · · , Cn〉)

(3)

Where

Sim(C0, 〈C1, · · · , Cn〉) =⎧⎨⎩Sim(C0, Ci) ×
i∏

j=1

Sim(Cj, Ci)|i = argmaxn
k=1Sim(C0, Ck)

⎫⎬⎭ (4)

We allowCi to be a primitive concept or a set of equally preferred concepts. To take care
of the latter {Ci,1, Ci,2, · · · , Ci,m} we look at the maximum similarity between C0 and
any concept in the set. In general, Sim({C1, · · · , Cn} , {C1, · · · , Cm}) is determined
by the maximal similarity between any concept in the first set and any concept in the
second.

In formula 4, the user’s preferences take precedence. Concepts in the underlying
ontology that are not specified in the user’s preferences are used to “fill out” this order-
ing. Intuitively, each such concept is ordered after the concept in the user’s preference
ordering to which it is most similar according to the adopted similarity measure. Fur-
thermore, these concepts are ordered among themselves according to the strength of
this similarity.

Example 2. The user specifles the following partial preorder:

{AlternativeRock, ProgRock} THEN {Electronic}

Given a similarity method with the semantics of (2), the total order created by (4) is:

{AlternativeRock,ProgRock}> {Grunge,IndieRock}> {other rock concepts} >
{Electronic} > {Ambient,Breakbeat,Dance,Downbeat}> {other Electronic

concepts}> {Jazz concepts}

AlternativeRock and ProgRock perfectly match the first preference and appear at the
top of the total order. Concepts are then ordered according to their similarity to these
target concepts until we reach a concept more similar to the second preference: this is
the concept Electronic (which perfectly matches the second preference). Concepts are
then ordered according to their similarity to Electronic to fill in the total order.

3 Analysis

We evaluate our preference ordering assembly method by looking at some intuitive ex-
amples and examining the behaviour of the resulting total orders. We base our analysis
on the concept similarity method defined in (2). Let us have a closer look at this opera-
tor. In order to preserve the properties listed in Section 1, this operator was designed so
it will have different behaviours when comparing a target concept with a descendant to
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(a) Ordering by Dance (b) Ordering by AlternativeRock

(c) Ordering by Jazz (d) Assembled Preference Ordering

Fig. 2. Similiarity-based Preference Ordering Analysis

when comparing a target concept to an ancestor. It can be deduced that if C1 & C0 and
C2 & C1 then

Sim(C1, C0) =
2 ∗N3

N1 +N2 + 2 ∗N3 +AV G

Sim(C2, C0) =
2 ∗N3

N1 +N2 + 2 ∗N3 +AV G+ 1
2∆

Where ∆ is the direct distance between C1 and C2. And in the case where C0 & C1
and C1 & C2:

Sim(C2, C0) =
2 ∗N3 + 2∆

N1 +N2 + 2 ∗N3 +AV G− 1 1
2∆

So, for example, when assigning the target concept to be Dance (Figure 2(a)) we see
that the similarity measurement linearly decreases for descendant concepts w.r.t Dance
while every ‘climb’ up to an ancestor reduces the similarity measurement significantly
(and non-linearly). Intuitively, you can say that the difference in similarity when com-
paring elements ‘in the area of’ Dance is bigger than the difference in similarity between
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elements which are quite ‘far’ from this target concept and thus the ordering according
to it is less relevant. These ‘steps’ actually come in handy when assembling the prefer-
ence ordering:

Example 3. Consider the following query ordering: Dance THEN Alternative Rock
THEN Jazz. Figures 2(a)–2(c) give us the different orderings for each preference level
while Figure 2(d) shows the assembled preference ordering. Being the first preference,
Dance, its descendants (its ‘step’) along with the following step which (according to
this similarity method) is considered similar enough to Dance are ordered according
to it (as in Figure 2(a)). The step of the second preference is ordered according (as in
Figure 2(b)) to it where this sub-order is no longer influenced by the first preference
and like-wise for the third preference.

In other words, the preference ordering assembly identifies which user preference con-
structor is to be ordered upon and does that without contradicting the user preferences.

4 Conclusions

We have presented a novel technique for augmenting a partially specified user prefer-
ence by structural information in a domain specific ontology. In particular we ‘com-
plete’ the user specified preference ordering by using expert knowledge in the form of
structural properties of an ontology to determine how concepts not explicitly ordered by
the user should be assembled and ordered with respect to preferences explicitly supplied
by the user. We present a method for determining this ordering based on a (quantitative)
similarity measure. Furthermore, we have analyzed our approach through a number of
illustrative examples. It is easy to see that this form of preferential reasoning provides
an expressive mechanism for naive and non-expert users to specify preferences that can
be turned into a discriminating recommendation for them by using the structure of the
underlying ontology.

References

1. Chamiel, G., Pagnucco, M.: Exploiting ontological information for reasoning with prefer-
ences. In: Proc. 4th Multidisciplinary Workshop on Advances in Preference Handling (2008)

2. Middleton, S.E., Shadbolt, N.R., De Roure, D.C.: Ontological user profiling in recommender
systems. ACM Trans. Inf. Syst. 22(1), 54–88 (2004)

3. Schickel-Zuber, V., Faltings, B.: Inferring User’s Preferences using Ontologies. In: AAAI
2006, pp. 1413–1418 (2006)

4. Kiefer, C., Bernstein, A., Stocker, M.: The fundamentals of iSPARQL – A virtual triple ap-
proach for similarity-based semantic web tasks. In: Aberer, K., Choi, K.-S., Noy, N., Alle-
mang, D., Lee, K.-I., Nixon, L., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber,
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Abstract. The concept of Interchangeability was developed to deal with
redundancy of values in the same domain. Conventional algorithms for
detecting Neighborhood Interchangeability work by gradually establish-
ing relationships between values from scratch. We propose the opposite
strategy: start by assuming everything is interchangeable and disprove
certain relations as more information arises. Our refutation-based algo-
rithms have much better lower bounds whereas the lower bound and the
upper bound of the traditional algorithms are asymptotically identical.

1 Introduction

Interchangeability was introduced in [1] in order to deal with redundancy of
values in the same variable domain. Removing or grouping interchangeable values
together has proved useful in reducing search space and solving time [2–5].

Neighborhood Interchangeability (NI) can be detected in quadratic time by
the Discrimination Tree algorithm (DT) [1]. DT works by assuming zero knowl-
edge and build up relationships between values. The disadvantage is that deter-
mining whether a value is NI with another one requires all values to be checked.

We propose a different method that is able to detect values that are not NI
early on, without checking all the values. Initially we assume values are identical.
That is, they are NI with each other. For each value in the neighboring variables,
we test its consistency against these values and update our assumption about
their relationships. When enough is known so that a value is certain not to be
NI with any other value, it can be removed from future consideration.

In this paper, we will study algorithms that can efficiently identify neighbor-
hood interchangeability using this approach. The paper is organized as follows.
Section 2 gives the background for CSPs and Interchangeability. Section 3 gives
the overall flow of the algorithms, with concrete algorithms for identifying NI
provided in Section 5. We show that these algorithms have much better lower
bounds than DT, which is explained in Section 4. We conclude in Section 7.

2 Preliminaries

A finite constraint network P is a pair (X , C) where X is a finite set of n variables
and C a finite set of e constraints. Each variable X ∈ X has an associated
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domain containing the set of values allowed for X . The initial domain of X is
denoted by dominit(X); the current one by dom(X). Each constraint C ∈ C
involves an ordered subset of variables of X called scope (denoted by scp(C)),
and an associated relation (denoted by rel(C)). For each k-ary constraint C with
scp(C) = {X1, . . . , Xk}, rel(C) ⊆

∏k
i=1 dom

init(Xi). For any t = (a1, . . . , ak) of
rel(C), called a tuple, t[Xi] denotes ai. A constraint’s relation can be described
by a formula (called intensional form) or by exhaustively listing all the tuples
(called extensional form or positive table constraint). Alternately, a relation may
describe tuples not allowed; if the relation is in extensional form it is also called
negative table constraint. The maximum number of tuples in the network is
denoted by s. We denote the maximum size of a domain by d, the maximum
arity of all constraints by r and the maximum number of constraints involving
a single variable with g.

Let C be a k-ary constraint and scp(C) = {X1, . . . , Xk}, a k-tuple t of
∏k

i=1
dominit(Xi) is said to be: (1) allowed by C if and only if t ∈ rel(C), (2) valid if
and only if ∀Xi ∈ scp(C), t[Xi] ∈ dom(Xi), (3) a support in C if and only if it is
allowed by C and valid, and (4) a conflict if and only if it is not allowed by C and
valid. A tuple t is a support of (Xi, a) in C when t is a support in C and t[Xi] = a.
A constraint check determines if a tuple is allowed. A validity check determines if
a tuple is valid. A solution to a constraint network is an assignment of values to
all the variables such that all the constraints are satisfied. A constraint network
is satisfiable if it has at least one solution. A Constraint Satisfaction Problem
(CSP) involves determining whether a given constraint network is satisfiable.

We assume that values in different domains are different, so that a ∈ dom(X)
and a ∈ dom(Y ) are different values. The domain must be mentioned to distin-
guish which a is referred to, unless it is clear from the context.

Some of the Interchangeability concepts introduced in [1] are reviewed below.

Definition 1 (FI). A value a ∈ dom(X) is fully interchangeable with a value
b ∈ dom(X) if and only if (1) every solution which contains a remains a solution
when a is replaced with b, and (2) every solution which contains b remains a
solution when b is replaced with a.

Since identifying FI values amounts to finding all solutions to a constraint net-
work, the process is intractable because the general CSP itself is NP-complete. A
weaker but sufficient condition for FI is Neighborhood Interchangeability (NI).

Definition 2 (NI). Two values a, b ∈ dom(X) are neighborhood interchange-
able if and only if for every constraint C such that X ∈ scp(C),

{t ∈ D̄ | (a, t) satisfies C} = {t ∈ D̄ | (b, t) satisfies C}

where D̄ =
∏

Y ∈scp(C) \{X}dom(Y ).

3 Overall Process

We give general algorithms for identifying and eliminating neighborhood redun-
dant values, Algorithm 1 and 2. A value is redundant if its removal from the
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satisfiable constraint network does not render it unsatisfiable. Algorithm 1 can
be instantiated appropriately to get the different specific algorithms.

The routine BuildStruct creates a data structure that allows Filter-

Struct to eliminate redundant values efficiently. If FilterStruct has detected
and removed some redundant value, it puts the remaining domain in the data
structure filStruct and propagates the result. BuildDom rebuilds the domain.

CreateTupleList collects the tuples in the neighborhood. In the worst
case, the running time of CreateTupleList as well as the size of tupleList
is O(gdr−1). If constraints are in extensional form, the running time becomes
O(gs), whereas the size of tupleList becomes O(g.min(s, dr−1)). In the rest of
the paper we will use l to denote the size of tupleList.

Algorithm 1. RedundancyCheck(X ,C)

Q ← {X | X ∈ X};1

while Q �= ∅ do2

extract X from Q;3

tupleList ← CreateTupleList(X);4

valStruct ← BuildStruct(X, tupleList);5

if FilterStruct(valStruct, filStruct) then6

dom(X) ← BuildDom(X, filStruct);7

for C ∈ C such that X ∈ scp(C) do8

Q ← Q ∪ scp(C) \ {X};9

Algorithm 2. CreateTupleList(X)

tupleList ← ∅;1

for C ∈ C such that X ∈ scp(C) do2

if rel(C) is in intensional form then3

tupleList ← tupleList ∪
�

Y ∈scp(C)\{X} dom(Y );4

else5

for tuple t ∈ rel(C) do6

t′ ← the resulting tuple after removing t[X] from t;7

tupleList ← tupleList ∪ {t′};8

return tupleList ;9

4 Identifying NI by Discrimination Tree

An efficient algorithm for detecting NI values, called the Discrimination Tree
algorithm, was introduced in [1]. The idea is to focus on a single value v ∈
dom(X) and go through values (or tuples for non-binary constraints) in the
neighborhood in some fixed order and build a tree based on their consistency
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with v. Subsequent checks for other values in dom(X) would begin from the root
of the existing tree and follow the path in the tree having the same consistency
until reaching the node where consistency differs, at which point a new branch
is created. After the algorithm is finished, values that are NI will be grouped
in the same leaf. The Discrimination Tree algorithm is shown in Algorithm 3.
We remark that the algorithm here is different from the ones in [1, 3] but is still
based on a discrimination tree with the same time complexity.

Algorithm 3. BuildStruct<DT>(X , tupleList)
create a root node;1

for a ∈ dom(X) do2

move to the root node;3

for t ∈ tupleList do4

if a is consistent with t then5

if node corresponding with t existed then6

move to that node7

else construct node corresponding with t8

For an example of DT, consider the constraint network in Figure 1(i). The
tree of this network is shown in Figure 2(i). The algorithm requires 24 constraint
checks and reports {c, e} as the only set of NI values.
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Fig. 1. (i) NI example. Positive tables. (ii) C1 and C2 when sorted on (Y, Z) and W .

The worst-case running time of DT is O(dl). We emphasize that the lower
bound of DT is Ω(dl), leaving the algorithm with no room for improvement.

5 Identifying NI by Refutation

We propose an opposite approach to DT in identifying NI values. Instead of
starting with zero knowledge about value interchangeability, we assume in the
beginning that all values are NI and update the assumption as more data be-
comes available. We call this algorithm Refutation Tree (RT). Details are shown
in Algorithm 4.
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Fig. 2. Two approaches to establish NI: (i) Discrimination Tree (ii) Refutation Tree

Algorithm 4. BuildStruct<RT>(X , tupleList)
thisC ← {{v ∈ dom(X)}};1

for t ∈ tupleList do2

nxtC ← ∅;3

for T ∈ thisC do4

lft ← ∅ ;5

rgt ← ∅;6

for a ∈ T do7

if a is consistent with t then8

lft ← lft ∪ {a};9

else rgt ← rgt ∪ {a};10

if |lft| ≥ 2 then nxtC ← nxtC ∪ {lft};11

if |rgt| ≥ 2 then nxtC ← nxtC ∪ {rgt};12

if nxtC = ∅ then return ∅;13

else thisC ← nxtC ;14

return thisC ;15

We describe the algorithm as follows. The set thisC consists of sets of values,
which correspond to the nodes in the refutation tree. The RT algorithm works by
traversing the refutation tree in a breath-first fashion. For each tuple in tupleList,
the algorithm checks whether it is compatible with the values from each set in
thisC (line 4, 7, 8). A set is split into lft set (consistent values) and rgt set
(inconsistent values) for each tuple checked. The result represents the current
state of knowledge about NI. A singleton indicates that the value in this set is
different from the rest of the domain. The value is discarded (line 11 and 12)
since no further data would conflict with what we have learned so far. That is,
once it is known that v is inconsistent with t, we will not find out later that v is
consistent with t.

For example, consider the tree in Figure 2(ii). In the beginning, all values
are assumed to be NI. We then check whether they in fact are consistent with
the first tuple (i, i) according to C1 (a value x ∈ dom(X) is consistent with
(i, i) according to C1 iff (x, i, i) ∈ rel(C1)). Only b, c, and e are consistent so
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Algorithm 5. FilterStruct<RT>(V,F)
revise ← false ;1

result ← ∅;2

for T ∈ V do3

if |T | > 1 then4

revise ← true ;5

pick v ∈ T ;6

result ← result ∪ (T \{v});7

F ← result ;8

return revise ;9

Algorithm 6. BuildDom<RT>(X ,F)
return dom(X) \ F;1

they are split off to form a new set. We repeat the process with the next tuple
until tupleList is exhausted. It takes 20 constraint checks for RT on this example,
compared to 24 for DT.

The worst-case time complexity for RT is the same as that for DT. However,
RT improves upon DT in the lower bound time complexity. Because each set in
the collection thisC is partitioned into at most two sets, the trace of this process
forms a binary tree. The lower bound is achieved when the height of the tree is
the smallest possible — that is, when the tree is a complete binary tree. Hence,
the lower bound is Ω(d.min(l, lg d)).

The efficiency of the RT algorithm depends on the number of NI values and
the variable ordering when refutation trees are created. In contrast, the cost of
DT is fixed regardless of the number of NI values in a domain. RT requires equal
or fewer number of constraint checks than DT in all cases.

5.1 Exploiting Table Constraints

The table constraint, when sorted, is recognized as a simple yet effective way
to reduce the cost of CSP algorithms [6, 7]. We will show how to exploit sorted
table constraints in RT.

Consider the example in Figure 1(i). For tuple (i, i), Algorithm 4 must check
the tuple against each value in {a, b, c, d, e, f} to partition the set. If the con-
straints are sorted as shown in Figure 1(ii), this is a simple matter of traversing
the table from the first row that contains (i, i) to the first row that contains tu-
ple other than (i, i) and collects values in the X columns while traversing. Once
(i, j) is encountered, it is clear that no other values except {b, c, e} are consistent
with (i, i) so there is no need to check the rest of the table.

The running time for RT with sorted table constraints is O(s). Algorithm 4,
however, only provides a high-level concept of the refutation approach but does
not say how to exploit table constraints. Since we do not know in advance which
values would be encountered during the traversal of tables for a given tuple, this



A Refutation Approach to Neighborhood Interchangeability in CSPs 99

requires searching in the collection of sets (thisC) for the right sets that contain
the same values as in the corresponding section of the table. The cost incurred
for the search makes the running time asymptotically higher than O(s).

It is not a trivial task to revise RT so that it is able to exploit sorted table
constraints while maintaining its lower bound. In the next section we will give
a new algorithm that can process values in any arbitrary order.

Note that DT can also exploit sorted table constraints. In fact, Figure 2(i)
can be created just by traversing the tables in Figure 1(i). We will show later
that RT can exploit mixed positive and negative table constraints so that the
running time can be decreased to even less than O(s).

5.2 Implementation

We provide a detailed algorithm (called RTS) in Algorithm 7. It follows the
idea laid out in Algorithm 4 but differs in that it iterates through values in
a domain rather than through sets of values in a collection. This is done to
facilitate arbitrary orders of values in sorted table constraints. We will explain
how sorted table constraints are used in the algorithm later in this section.

We use array bin to partition NI values. Partitions are numbered from 0 to
curSize−1. Initially, all values are assigned to bin[0]. For each tuple in the tupleList
the algorithm checks whether it is consistent with values in valList. If a value is
consistent, it is taken off the current bin and put into a new bin, whose number
is determined by array split. Afterward, the size of the original bin (denoted by
array size) and the size of the new bin is updated. The value of split is obtained
from a linked-list of available bins (nxtOf and next) and is fixed for a given bin
until the next tuple is considered (if-block in line 22).

When all values in the same bin are consistent with the tuple t, they are moved
to the new bin, leaving the original bin empty. To avoid having the number of
bins exceeds the number of values in the domain, we reuse the empty bin and
put it in the linked-list of available bins (if-block in line 26).

If the size of a bin is exactly one, the singleton value will be removed from
the valList. This is done in the if-block in line 16. We reduce the size of val-
List by one and swap the singleton value with the value at the end of val-
List (line 19). We use array label as another abstract layer of values for this
purpose.

We use array rec to keep track of the bin assigned involving a given tuple. It
serves two purposes. First, it prevents incorrect reuse of bin. Because the value
of split[bin[v]] is correct only for a given t (line 8), as soon as a new tuple is
considered, the old value of split[bin[v]] is incorrect, since the bin involving the
previous tuple become a separate and independent bin. We enforce this condition
by comparing the current tuple with the tuple recorded (line 22). Second, we
use rec to prevents premature elimination of a singleton value. To be certain
that a partition with a single value will not increase in size later, the algorithm
must already finish checking all the values against the current tuple. We enforce
this condition by eliminating singleton partitions only after the next tuple is
considered (line 16).
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Algorithm 7. BuildStruct<RTS>(X , tupleList)
for i ← 0 to |dom(X)| − 1 do1

size[i] ← 0 ; bin[i] ← 0;2

rec[i] ← ∅ ; split[i] ← 0;3

label[i] ← i ; nxtOf[i] ← i + 1 ; del[i] ← false ;4

size[0] ← |dom(X)| ;5

curSize ← |dom(X)| ;6

next ← 1;7

while curSize > 0 and tupleList �= ∅ do8

extract t from tupleList ;9

if sortedT then valList ← CreateValList(X, t);10

else valList ← {0, . . . , curSize − 1};11

while valList �= ∅ do12

extract i from valList ;13

if sortedT and del[i] then continue;14

v ← label[i];15

if size[bin[v]]=1 ∧ rec[bin[v]]�=t then16

curSize ← curSize − 1;17

if sortedT then del[v] ← true ;18

else label[i] ↔ label[curSize − 1];19

else20

if sortedT or v is consistent with t then21

if split[bin[v]]= ∅ or rec[bin[v]] �=t then22

split[bin[v]] ← next ;23

next ← nxtOf[next];24

size[bin[v]] ← size[bin[v]] −1;25

if size[bin[v]] = 0 then26

nxtOf[bin[v]] ← next ;27

next ← bin[v];28

rec[bin[v]] ← t;29

bin[v] ← split[bin[v]];30

size[bin[v]] ← size[bin[v]] +1;31

rec[bin[v]] ← t;32

Example. Let us reconsider the example in Figure 1(i) and the tree in Fig-
ure 2(ii). The first tuple is (i, i). After it is checked against values from 0 to 5
(representing {a, b, c, d, e, f}), we have: split[0]=1, bin[1]=1, bin[2]=1, bin[4]=1
(i.e. bin[1] for b, c, e), bin[0]=0 bin[3]=0 bin[5]=0 (i.e. bin[0] for a, d, f). After
(i, j) is checked we have split[0]=2, split[1]=3, bin[0]=2 (for a), bin[1]=3 (for b),
bin[2]=1 and bin[4]=1 (for c and e), bin[3]=0 and bin[5]=0 (for d and f). The
linked list of available bin (indicated by next together with nxtOf) is 4→5→6.
After tuple i is checked, two singletons a and b are removed, and we have cur-
Size=4 and label[0]=5, label[5]=0, label[1]=4, label[4]=1, while the rest of label
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remains unchanged. For values 0 to 3 in valList, bin[label[0]]=bin[5]=0 (for f),
bin[label[1]]=bin[4]=4 (for e), bin[label[2]]=bin[2]=4 (for c), bin[label[3]]=bin[3]=0
(for d). The linked list of available bin is 1→5→6 (bin 1 and 5 were previously
used for a and b, but are available for reuse now that a and b are ignored). �

Sorted table constraints can be exploited by setting flag sortedT to true. We
assume the sorted tables are positive. Negative tables can be accommodated
simply by changing “consistent” in line 21 to “inconsistent”. The algorithm for
sorted table constraints differs from the general algorithm in three places. First,
valList is set by routine CreateValList, which traverses the corresponding
sorted table and collects the relevant values. For instance, using example in
Figure 1, valList for (i, i) is {b, c, e}. Second, we do not perform constraint
check for values gathered in this way from sorted table constraints because we
already know their consistency just from their existence in the table (line 21).
Third, singleton values are skipped in a different way. The same technique for
general constraints cannot be used because valList changes from one tuple to
another. Instead, we use boolean array del to indicate whether a value should
be ignored (line 14 and 18). Notice that this does not decrease the complexity
of the algorithm because all the values in valList must be iterated anyway. The
lower bound of RTS is Ω(s).

It is interesting to note that the algorithm is applicable to mixed constraint of
both consistency types. The lower bound of Ω(s) can be made lower if the shorter
sections in either positive or negative relations are combined. For instance,
suppose we have dom(X)=dom(Y )={1, 2, 3, 4}. rel(C1) = {(1, 1), (1, 2), (2, 2),
(3, 2), (4, 2), (2, 3), (4, 3)} lists compatible tuples for X and Y , rel(C2)={(2, 1),
(3, 1), (4, 1), (1, 3), (3, 3), (1, 4), (2, 4), (3, 4), (4, 4)} lists incompatible tuples for
X and Y . We can gather shorter parts from both constraints to create a mixed
constraint C3, rel(C3)={P (1, 1), N(1, 3), N(3, 3)}, where P and N denotes pos-
itive and negative tuples. The size of the combined constraint can be much
smaller than the size of the original constraints; for this example, |rel(C1)| = 7,
|rel(C2)| = 9, |rel(C3)| = 3. We can use C3 in the algorithm by switching the
consistency in line 21 depending on the tuple. While it is rare to have both
positive and negative tables for the same constraint, the mixed constraint can
be created from only one of them: if the size of the section is less than half the
number of all possible tuples then we retain the tuples. If the size is more than
half, the tuples in the opposite consistency type would be created by inference.

6 Related Work

NI has been shown to improve search in a number of works [2, 3, 5, 8]. Although
DT was introduced only in the context of binary CSPs, it has been extended
to cover non-binary CSPs in [3]. The authors pointed to a case where DT pro-
vides incorrect results for non-binary CSPs. To avoid this problem, they suggest
performing DT on each neighboring constraint and intersecting the results. Our
DT is derived from the binary version in a slightly different way and it does not
cause the incorrect results.
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In [3], it has also been recognized that singleton partitions can be removed.
However, these singletons can be eliminated only after DT is finished for each
constraint. This makes the lower bound higher than that of refutation-based
algorithms, which can ignore singletons much earlier.

7 Conclusion and Future Work

We introduce a refutation method to local interchangeability and study it in
detail for NI. Rather than starting with no prior knowledge, we assume the op-
posite — that everything is interchangeable with one another — and update our
assumption as new information comes along. While the algorithms presented
have the same upper bound on their running time as those of the standard algo-
rithms, the refutation approach allows some values that are not NI with others
to be detected early and removed from further consideration by the algorithms,
thus decreasing their lower bounds. We also show how these algorithms can take
advantage of table constraints while still achieving the lower bound described.

Note that Algorithm 7 is given with more low-level details because it is not clear
how one can take advantage of sorted constraints while maintaining the same lower
bound of the generic RT. Without proper care the lower bound could increase,
defeating the whole purpose. Otherwise, implementing RT is straightforward.

Another form of local interchangeability called Neighborhood Substitutability
[1] also benefits from the refutation approach. NS has more pruning power but
received much less attention than NI due to its higher cost. A direct NS algorithm
was given in [9] but no experimental result was reported.

Our main objective for this paper is to explore theoretical possibilities that
come with this new approach. While the better lower bound does not imply
actual performance, it gives practitioners considerable room to maneuver. The
practicality of this approach will largely depend on how the average running
time can be pushed closer to the lower bound. Since the actual performance
of these algorithms are affected by ordering heuristics for the list of tuples in
the neighborhood, this is an interesting aspect to explore further. On the other
hand, direct algorithms such as DT have the same (worst-case) running time on
every input.

Acknowledgements

We acknowledge the support from grant 252-000-303-112.

References

1. Freuder, E.C.: Eliminating interchangeable values in constraint satisfaction prob-
lems. In: Proceedings of AAAI 1991, Anaheim, California, pp. 227–233 (1991)

2. Beckwith, A.M., Choueiry, B.Y., Zou, H.: How the level of interchangeability em-
bedded in a finite constraint satisfaction problem affects the performance of search.
In: Proceedings of the 14th Australian Joint Conference on AI, pp. 50–61 (2001)



A Refutation Approach to Neighborhood Interchangeability in CSPs 103

3. Lal, A., Choueiry, B.Y., Freuder, E.C.: Neighborhood interchangeability and dy-
namic bundling for non-binary finite csps. In: Proceedings of AAAI 2005, Pittsburgh,
Pennsylvania, pp. 397–404 (2005)

4. Weigel, R., Faltings, B.V.: Compiling constraint satisfaction problems. Artificial
Intelligence 115, 257–287 (1999)
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6. Cheng, K.C.K., Yap, R.H.C.: Maintaining generalized arc consistency on ad hoc
r-ary constraints. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202. Springer, Hei-
delberg (2008)

7. Lecoutre, C., Szymanek, R.: Generalized arc consistency for positive table con-
straints. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 284–298. Springer,
Heidelberg (2006)

8. Choueiry, B.Y., Davis, A.M.: Dynamic bundling: Less effort for more solutions. In:
Koenig, S., Holte, R.C. (eds.) SARA 2002. LNCS (LNAI), vol. 2371, pp. 64–82.
Springer, Heidelberg (2002)

9. Bellicha, A., Capelle, C., Habib, M., Kokeny, T., Vilarem, M.C.: Csp techniques
using partial orders on domains values. In: ECAI 2004 Workshop on constraint
satisfaction issues raised by practical applications, Amsterdam, The Netherlands,
pp. 47–56 (1994)



Infeasibility Driven Evolutionary Algorithm (IDEA) for
Engineering Design Optimization

Hemant K. Singh, Amitay Isaacs, Tapabrata Ray, and Warren Smith

School of Aerospace, Civil and Mechanical Engineering,
University of New South Wales, Australian Defence Force Academy, Canberra, ACT

{h.singh,a.isaacs,t.ray,w.smith}@adfa.edu.au
http://www.unsw.adfa.edu.au

Abstract. Engineering design often requires solutions to constrained optimiza-
tion problems with highly nonlinear objective and constraint functions. The opti-
mal solutions of most design problems lie on the constraint boundary. In this paper,
Infeasibility Driven Evolutionary Algorithm (IDEA) is presented that searches for
optimum solutions near the constraint boundary. IDEA explicitly maintains and
evolves a small proportion of infeasible solutions. This behavior is fundamentally
different from the current state of the art evolutionary algorithms, which rank the
feasible solutions higher than the infeasible solutions and in the process approach
the constraint boundary from the feasible side of the design space. In IDEA, the
original constrained minimization problem with k objectives is reformulated as an
unconstrained minimization problem with k +1 objectives, where the additional
objective is calculated based on the relative amount of constraint violation among
the population members. The presence of infeasible solutions in IDEA leads to an
improved rate of convergence as the solutions approach the constraint boundary
from both feasible and infeasible regions of the search space. As an added benefit,
IDEA provides a set of marginally infeasible solutions for trade-off studies. The
performance of IDEA is compared with Non-dominated Sorting Genetic Algo-
rithm II (NSGA-II) [1] on a set of single and multi-objective mathematical and
engineering optimization problems to highlight the benefits.

1 Introduction

Most real life engineering design problems are constrained optimization problems. The
solutions to these problems often lie along the constraint boundary. It is also known that
the performance of the evolutionary algorithms for constrained optimization is largely
dependent on the mechanism for constraint handling.

A detailed review of various constraint handling techniques used with evolutionary
algorithms is presented in [2]. Penalty function based methods and their variants are the
most commonly adopted form of constraint handling, where the fitness of an infeasible
solution is degraded by a weighted sum of individual constraint violations. However,
penalty function based methods are known to be highly sensitive to the choice of penalty
parameters. Dynamic setting of penalty parameters has been studied in literature, and
most of the implementations rely on certain predefined parameter update rules [3,4] that
may not work for all problems. Runarsson and Yao [5] introduced a stochastic ranking
procedure to strike a balance between objective and penalty functions.

W. Wobcke and M. Zhang (Eds.): AI 2008, LNAI 5360, pp. 104–115, 2008.
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Other conventional approaches for constraint handling include the use of repair al-
gorithms [6,7]. The drawback of repair mechanisms is that they have to be designed
specifically for each problem. Incorporation of heuristic rules such as linear ranking [8]
and binary tournament [9] have been applied successfully, but a complementary mech-
anism has to be used to preserve diversity.

Fundamentally, most evolutionary algorithms such as NSGA-II, prefer a feasible so-
lution over an infeasible solution. However, for many engineering design problems, an
infeasible solution near the constraint boundary is desirable over a feasible solution
away from it. This idea was incorporated in the method proposed by Vieira et al. [10],
who treated constraints as objectives during the search. A similar attempt to maintain
infeasible solutions for trade-off studies from a system design perspective also appears
in the works of Saxena and Deb [11]. Ray, Tai and Seow [12] used the non-dominated
ranks with respect to objectives and constraints (separately and together) to determine
the fitness of the solutions for constrained problems. The main drawback of treating
constraints as objectives is the considerable computational cost for non-dominated sort-
ing with large number of constraints. A comparative study on using multi-objective
techniques to solve constraint optimization problems can be found in [13].

In recent studies, two-market algorithms have been suggested, where each generation
consists of two phases: optimality improvement, which is aimed to improve objective
function values, followed by feasibility improvement, which reduces constrained viola-
tions [14]. Hingston et al. [15] proposed objective first ranking scheme and compared it
with widely used feasibility first scheme. They claimed that their scheme worked better
than the latter as it maintained infeasible solutions for longer duration during the search,
thereby exploring the search space more effectively.

Clearly, the recent studies emphasize that it is advantageous to maintain infeasible
solutions during the search for more efficient exploration of the search space. Con-
sequently, extraction of information from infeasible points for optimization has at-
tracted significant attention of researchers in evolutionary computation. Isaacs, Ray
and Smith [16] introduced a Constraint Handling Evolutionary Algorithm (CHEA) that
obtains the constrained as well as the unconstrained optima simultaneously. The in-
corporation of a search through the infeasible space resulted in an improved rate of
convergence. In this paper, CHEA is extended as Infeasibility Driven Evolutionary Al-
gorithm (IDEA) to deliver (a) a set of non-dominated solutions close to the Pareto op-
timal solutions for multi-objective problems (b) a few marginally infeasible solutions
for trade-off studies, and (c) an improvement in the rate of convergence that is of great
importance computationally expensive design problems. The performance of IDEA is
compared with NSGA-II on a number of single objective and multi-objective test prob-
lems and two engineering design problems (bulk carrier ship design and car side impact
problem).

The rest of the paper is organized as follows. The proposed algorithm IDEA is de-
scribed in Sect. 2. Provided in Sect. 3 are the results of the numerical test problems
and engineering test problems. The trade-off study for test problem g06 is illustrated in
Sect. 4. In Sect. 5, parametric studies are given, followed by a summary and conclusion
in Sect. 6.
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2 Infeasibility Driven Evolutionary Algorithm (IDEA)

A multi-objective optimization problem can be formulated as shown in (1).

Minimize f1(x), . . . , fk(x)
Subject to gi(x) ≥ 0, i = 1, . . . ,m

(1)

where x = (x1, . . . ,xn) is the design variable vector bounded by lower and upper bounds
x∈ S⊂ IRn. A single objective optimization problem follows the same formulation with
k = 1.

To effectively search the search space (including the feasible and the infeasible re-
gions), the original k objective constrained optimization problem is reformulated as
k + 1 objective unconstrained optimization problem as given in (2).

Minimize f ′1(x) = f1(x), . . . , f ′k(x) = fk(x)
f ′k+1(x) = Violation measure

(2)

The additional objective represents a measure of constraint violation, which is referred
to as “violation measure” in this study. It is based on the amount of relative constraint
violation among the population members. Each solution in the population is assigned
m ranks, corresponding to m constraints. The ranks are calculated as follows. To get the
ranks corresponding to ith constraint, all the solutions are sorted based on the constraint
violation value of ith constraint. Solutions that do not violate the constraint are assigned
rank 0. The solution with the least constraint violation value gets rank 1, and the rest
of the solutions are assigned increasing ranks in the ascending order of the constraint
violation value. The process is repeated for all the constraints and as a result each so-
lution in the population gets assigned m ranks. The violation measure is the sum of
these m ranks corresponding to m constraints. The process of assignment of ranks and
calculation of violation measure is illustrated in Table 1.

Table 1. Calculation of constraint violation measure for sample population with 10 solutions

Violation Value Relative ranks Violation
Solution C1 C2 C3 C1 C2 C3 Measure

1 3.50 90.60 8.09 3 7 7 17
2 5.76 7.80 6.70 4 5 5 14
3 − 3.40 7.10 0 3 6 9
4 1.25 − 0.69 1 0 1 2
5 13.75 90.10 5.87 6 6 4 16
6 100.70 2.34 3.20 7 2 2 11
7 − 5.09 4.76 0 4 3 7
8 1.90 − − 2 0 0 2
9 − 110.56 − 0 8 0 8

10 8.90 2.30 9.80 5 1 8 14
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The main steps of IDEA are outlined in Algorithm 1. IDEA uses simulated binary
crossover (SBX) and polynomial mutation operators [1] to generate offspring from a
pair of parents selected using binary tournament as in NSGA-II. Individual solutions
in the population are evaluated using the original problem definition (1) and infeasible
solutions are identified. The solutions in the parent and offspring population are divided
into a feasible set (S f ) and an infeasible set (Sin f ). The solutions in the feasible set
and the infeasible set are both ranked separately using the non-dominated sorting and
crowding distance sorting [1] based on k + 1 objectives as per the modified problem
definition (2). The solutions for the next generation are selected from both the sets
to maintain infeasible solutions in the population. In addition, the infeasible solutions
are ranked higher than the feasible solutions (described below) to provide a selection
pressure to create better infeasible solutions resulting in an active search through the
infeasible search space.

Algorithm 1. Infeasibility Driven Evolutionary Algorithm (IDEA)
Require: N {Population Size}
Require: NG > 1 {Number of Generations}
Require: 0< α < 1 {Proportion of infeasible solutions}
1: Nin f = α ∗N
2: Nf = N −Nin f
3: pop1 = Initialize()
4: Evaluate(pop1)
5: for i = 2 to NG do
6: child popi−1 = Evolve(popi−1)
7: Evaluate(child popi−1)
8: (S f ,Sin f ) = Split(popi−1 +child popi−1)
9: Rank(S f )

10: Rank(Sin f )
11: popi = Sin f (1 : Nin f )+S f (1 : Nf )
12: end for

A user-defined parameter α is used to maintain a set of infeasible solutions as a
fraction of the size of the population. The numbers Nf and Nin f denote the number
of feasible and infeasible solutions as determined by parameter α . If the infeasible set
Sin f has more than Nin f solutions, then first Nin f solutions are selected based on their
rank, else all the solutions from Sin f are selected. The rest of the solutions are selected
from the feasible set S f , provided there are at least Nf number of feasible solutions.
If S f has fewer solutions, all the feasible solutions are selected and the rest are filled
with infeasible solutions from Sin f . The solutions are ranked from 1 to N in the order
they are selected. Hence, the infeasible solutions selected first will be ranked higher
than the feasible solutions selected later. A fixed value of α = 0.2 has been used in
the experiments presented on benchmark problems. Later in the paper, variation in the
performance of IDEA with change in the value of α has been discussed.
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3 Numerical Examples

The performance of proposed algorithm IDEA is studied on a number of benchmark
test functions (g-series and CTP) and two engineering design problems. The results and
comparison with NSGA-II are given in the following subsections.

3.1 G-Series Problems

For studying performance on single objective optimization problems, g-series test func-
tion suite [17] has been chosen. Only the problems without equality constraints have
been considered. A population of size 200 is allowed to evolve over 1750 generations.
To observe the behavior across multiple runs and multiple parameters settings, inde-
pendent runs are performed with two values for following parameters: probability of
crossover (0.8, 0.9), probability of mutation (0.1, 0.2), distribution index of crossover
(15, 20), distribution index of mutation (20, 30). For each parameter combination, two
runs are done with different random seeds, thus resulting in a total of 25 = 32 runs.

For problems g01, g02, g04, g06 – g10, and g12, the best objective values averaged
over 32 runs are listed in Table 2. For a fixed number of function evaluations, IDEA
consistently reports a better objective value as compared to NSGA-II. Shown in Fig. 1
are the progress plots for problems g06 and g10 depicting the best solution averaged
over all the runs across generations. The other problems show a similar trend and are
omitted for sake of brevity. It is clear that the average convergence rate and final results
using IDEA are better than NSGA-II.

Table 2. The results of g-series problems averaged over 32 runs using NSGA-II and IDEA

NSGA-II Results IDEA Results
Best Mean Worst S.D. Best Mean Worst S.D.

g01 -15.0000 -14.5979 -12.4457 0.8755 -15.0000 -14.9997 -14.9988 0.0003
g02 0.8033 0.7943 0.7640 0.0081 0.8032 0.8019 0.7934 0.0022
g04 -30665.30 -30661.21 -30618.70 8.4164 -30665.50 -30665.47 -30665.30 0.0523
g06 -6946.550 -6921.696 -6892.390 14.0538 -6961.790 -6961.473 -6960.690 0.265
g07 24.4532 25.8522 31.9884 1.7400 24.3811 25.0916 27.1796 0.6293
g08 -0.09582 -0.09582 -0.09582 0 -0.09582 -0.09582 -0.09582 0
g09 680.6450 681.1611 682.2540 0.4398 680.6670 680.9331 681.4170 0.1967
g10 7355.190 8284.448 10030.100 0.0118 7113.430 7434.930 7778.320 0.0000
g12 1.000 1.000 1.000 0 1.000 1.000 1.000 0

3.2 CTP Problems

CTP problems [18] are a set of constrained bi-objective optimization problems. Fifteen
independent runs are performed on CTP2 – CTP8 using NSGA-II and IDEA by varying
the random seed. Following parameters are kept fixed: probability of crossover is 0.9,
probability of mutation is 0.1, distribution index for crossover is 15 and distribution
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Fig. 1. Progress of the average of the best objective values (over 32 runs) for problems g06 and
g10 obtained by NSGA-II and IDEA

index for mutation is 20. A population of size 200 is evolved over 200 generations. Two
performance metrics, Displacement [19] and Hypervolume [20] are used to compare
the results obtained by both algorithms. The reference point used for calculating Hy-
pervolume for CTP6 and CTP8 was (2,20), while for the rest of the CTP problems it
was (2,2).

The performance metrics averaged over all the runs using NSGA-II and IDEA for
CTP problems are listed in Table 3 and Table 4. It is seen that the average Displace-
ment metric values obtained by IDEA are significantly lower than NSGA-II for all CTP
problems (Table 3). Similarly, the average Hypervolume values obtained by IDEA are
consistently higher than NSGA-II. The poor performance of NSGA-II is due to the ten-
dency to converge to sub-optimal fronts for CTP problems. The evolution of population
for the problem CTP2 using NSGA-II and IDEA is shown in Fig. 2. For NSGA-II, the
population approaches the Pareto optimal solutions from the feasible search space and
has difficulty in searching close to the constraint boundary. IDEA, on the other hand,
maintains the population in both the feasible and the infeasible space, thus capturing
the entire Pareto optimal set much faster.

3.3 Car Side Impact Problem

Car side impact problem is a single objective problem, where the objective is to mini-
mize the weight of the car subject to constraints on safety performance characteristics
when subjected to side impact. The problem formulation can be found in [11]. Thirty-
two runs of NSGA-II and IDEA are performed for the problem using same parameters
as used for g-series test functions. Population of size 100 is evolved for 200 generations
for both algorithms. The summary of the results obtained by NSGA-II and IDEA are
shown in Table 5. The average performance of IDEA is better than NSGA-II as seen
from the lower mean and standard deviation of the objective value (Table 5). Also, a
faster convergence rate is observed from Fig. 3(a).
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Fig. 2. Evolution of NSGA-II and IDEA population over generations for CTP2 (Population size
is 200)
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Table 3. Averaged Displacement metric for CTP results obtained using NSGA-II and IDEA

NSGA-II Results IDEA Results
Mean S.D. Mean S.D.

CTP2 0.010207 0.010288 0.001255 0.004361
CTP3 0.029705 0.037654 0.007173 0.017421
CTP4 0.074832 0.048535 0.027846 0.016881
CTP5 0.005649 0.005705 0.001363 0.004037
CTP6 0.022218 0.071536 0.000871 0.001302
CTP7 0.010337 0.014110 0.008061 0.017948
CTP8 0.134973 0.150119 0.004300 0.010169

Table 4. Averaged Hypervolume metric for CTP results obtained using NSGA-II and IDEA

NSGA-II Results IDEA Results
Mean S.D. Mean S.D.

CTP2 2.752907 0.303290 3.011504 0.180320
CTP3 2.776672 0.279543 2.957526 0.166232
CTP4 2.314839 0.362156 2.764931 0.137807
CTP5 2.630965 0.311307 2.950680 0.164526
CTP6 35.765456 3.076219 36.768927 0.104876
CTP7 3.147462 0.641003 3.254253 0.813259
CTP8 30.880969 5.700612 35.989817 0.435925

3.4 Bulk Carrier Design Problem

The bulk carrier design problem was originally formulated by Sen and Yang [21]. The
same formulation with corrections for Froude number has been presented in [22]. The
original problem has three objectives: (1) Minimization of transport cost, (2) Minimiza-
tion of light ship mass and (3) Maximization of annual cargo transport capacity. Studies
on two different formulations of the problem are presented in this paper.

1. A single objective design problem, where only the minimization of transport cost
is considered. Along with the original constraints, an additional constraint on the
minimum cargo transported (106 tonnes/year) has been imposed. The summary of
results of 32 independent runs (with the same parameter values as used for g-series
functions) are given in Table 5. It is seen that the best and the average objective
values obtained by IDEA are better than NSGA-II. A faster convergence rate can
be seen in Fig. 3(b).

2. A two objective design problem, where minimization of transport cost and maxi-
mization of annual cargo transport capacity are considered. The performance met-
rics averaged over multiple runs of final solutions obtained using NSGA-II and
IDEA are listed in Table 6. For the Hypervolume metric, the reference point used
is (15, -0.5e6). Lower value of average Displacement metric for IDEA implies that



112 H.K. Singh et al.

Table 5. Results for car side impact problem and bulk carrier design problem (single objective
formulation)

NSGA-II Results IDEA Results
Best Mean Worst S.D. Best Mean Worst S.D.

side impact 23.5857 23.6146 24.0059 0.1008 23.5857 23.5866 23.5942 0.0018
bulk carrier 8.6206 8.7382 8.8992 0.0585 8.6083 8.6424 8.7568 0.038680
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Fig. 3. Average of best feasible function values over 32 runs at each generation, obtained using
NSGA-II and IDEA

Table 6. Performance metrics for Bulk carrier design problem (two objective formulation)

NSGA-II Results IDEA Results
Mean S.D. Mean S.D.

Displacement 1829.044 2356.498 530.115 740.564
Hypervolume 8218824.76 328529.05 8418500.64 99847.06

the non-dominated front obtained by IDEA is closer to the Pareto optimal set as
compared to that obtained using NSGA-II. Similarly, higher average value of Hy-
pervolume metric indicates the non-dominated solutions are distributed closer to
the Pareto optimal set as in the case of IDEA.

4 Trade-Off Studies

In engineering design, one is often interested to know if a significant improvement
in objective function can be achieved by relaxing one (or more) of the constraints
marginally. Since IDEA maintains solutions close to constraint boundaries during the
search, The final population obtained after the run contains solutions that can provide



IDEA for Engineering Design Optimization 113

Table 7. Marginally infeasible solutions obtained using IDEA for g06

Violations
x1 x2 f (x) C1 C2

14.095100 0.840314 -6964.723300 0 0.023632
14.095100 0.841393 -6963.535085 0 0.014656
14.062200 0.772189 -7041.657047 0.002145 0.063455
14.096500 0.792284 -7017.680063 0 0.448186
14.095100 0.803637 -7005.192343 0 0.330106

useful trade-off information. Few of the infeasible solutions in the final population ob-
tained using IDEA for the problem g06 are listed in Table 7. The minimum objective
value for g06 is -6961.83188. The objective can be improved substantially by relaxing
one or both the constraints marginally, as seen from the Table 7.

5 Variation in Performance with Infeasibility Ratio

To see the effect of the infeasibility ratio (α) on the performance of IDEA, fifteen in-
dependent runs each were made with different values of α for the problem g06. The
average convergence plot is shown in Fig. 4. Parameters used were: population size =
200, number of generations = 1750, probability of crossover = 0.9, probability of muta-
tion = 0.1, distribution index of crossover = 15, distribution index of mutation = 20. It is
seen that the performance of IDEA is consistent over a wide range of α . Even by main-
taining small proportion (α = 0.05) of infeasible solutions in the population, significant
improvement can be achieved in the convergence rate. For α = 0, the performance of
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ations, (b) During initial generations
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IDEA be the same as that of NSGA-II. For multi-objective problems, a high value of α
would lead to fewer solutions covering the Pareto-front, and hence is not recommended.

6 Summary and Conclusions

A Infeasibility Driven Evolutionary Algorithm (IDEA) for constrained engineering de-
sign optimization problems is presented. The previous work by Isaacs, Ray and Smith
on Constraint Handling Evolutionary Algorithm (CHEA) [16] is extended by incorpo-
rating a better constraint handling approach. CHEA focused on obtaining the solutions
to the original constrained as well as the unconstrained formulation (by dropping the
constraints) of the problem. IDEA delivers solutions to the constrained optimization
problem and marginally infeasible solutions that are much better suited for the trade-off
studies.

The performance of IDEA is compared with NSGA-II on a set of single and multi-
objective test problems and two engineering design optimization problems. The results
clearly indicate that IDEA has an improved rate of convergence over NSGA-II and the
performance is consistent across all problems studied in this paper. Thus, IDEA is a
well suited algorithm for constrained design optimization problems.
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Abstract. Planning collision-free paths for multiple robots traversing a shared
space is a problem that grows combinatorially with the number of robots. The
naive centralised approach soon becomes intractable for even a moderate number
of robots. Decentralised approaches, such as priority planning, are much faster
but lack completeness.

Previously I have demonstrated that the search can be significantly reduced by
adding a level of abstraction [1]. I first partition the map into subgraphs of par-
ticular known structures, such as cliques, halls and rings, and then build abstract
plans which describe the transitions of robots between the subgraphs. These plans
are constrained by the structural properties of the subgraphs used. When an ab-
stract plan is found, it can easy be resolved into a complete concrete plan without
further search.

In this paper, I show how this method of planning can be implemented as
a constraint satisfaction problem (CSP). Constraint propagation and intelligent
search ordering further reduces the size of the search problem and allows us to
solve large problems significantly more quickly, as I demonstrate this in a real-
istic planning problem based on a map of the Patrick Port Brisbane yard. This
implementation also opens up opportunities for the application of a number of
other search reduction and optimisation techniques, as I will discuss.

1 Introduction

A major aspect of solving any problem in artificial intelligence (AI) is knowledge en-
gineering, that is taking the available background knowledge about a problem and ex-
pressing it in a way that it can be exploited by an AI algorithm. This task is crucial
to solving any realistically large problem, including the one I address in this paper:
multi-agent path planning.

Planning for a single robot, once issues of geometry and localisation have been ad-
dressed, becomes a simple matter of finding a path through the road-map – the graph
G representing the connectivity of free space – between its starting and goal locations.
When planning for multiple robots, however, we also need to take into account the pos-
sibility for collisions en route. A decentralised approach in which each robot simply
planned its own path without reference to the others would not work.

A logical solution is to treat the entire collection of robots as a single entity and
use a centralised planner to co-ordinate them. If we again ignore issues of geometry,
this equates to finding a path through the composite graph Gk = G × G × . . . × G,

W. Wobcke and M. Zhang (Eds.): AI 2008, LNAI 5360, pp. 116–127, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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where k is the number of robots. Each vertex in this graph is a k-tuple of vertices of
G representing the positions of each robot. Each edge represents the movement of one
robot between neighbouring vertices. Vertices which represent collisions are excluded.
A plan is now a path between the vertex representing the robots’ initial locations to the
vertex representing their goals.

It is easy to see that the size of this graph grows combinatorially with the number
of robots. Any algorithm which performs a naive search of the graph will soon require
far too much time and memory to complete. A common solution is prioritised planning
which gives each robot a priority and plan for them in order, with lower priority robots
integrating their plans with those of higher priority. This effectively prunes the search
space by eliminating certain possibilities (in which higher priority robots go out of
their way to allow lower priority robots to pass). Searching this reduced space is much
faster, but the pruning may eliminate the only viable solutions, making the algorithm
incomplete.

In order to efficiently handle large numbers of robots without sacrificing complete-
ness we need some way to incorporate more knowledge about the domain. In my pre-
vious work [1] I have shown how structural information about the road-map can be
exploited to significantly reduce search. The map is decomposed into subgraphs of
particular known structure, cliques, halls and rings, which place constraints on which
robots can enter or leave at a particular time. Planning is done at a level of abstrac-
tion, in terms of the configuration of each subgraph and the robots’ transitions between
them. Once an abstract plan has been constructed the concrete details of robots’ move-
ment within each subgraph can be resolved algorithmically, without the need for further
search. This approach is proven to be sound and complete.

In this work we extend these previous results by showing how the subgraph planning
process can be encoded as a constraint satisfaction problem (CSP). With this formula-
tion, a CSP-solver can make more efficient use of the domain knowledge to prune the
search space to a much greater degree allowing us to solve problems significantly larger
than before. It also opens up the possibility for optimisation of plans and more complex
planning tasks than simple goal achievement.

In the next section I will describe the subgraph planning approach in greater detail.
This will be followed by a brief introduction to constraint programming leading into the
constraint representation of our planning problem. The efficiency of this new approach
will be evaluated on tasks using a map of the Patrick Port Brisbane facility and we will
conclude with discussion of related work and future directions.

2 Subgraph Planning

We can formalise our problem as follows. The road-map is provided in the form of a
graphG = (V,E) representing the connectivity of free space for a single robot moving
around the world (e.g. a vertical cell decomposition or a visibility graph, [2]). We also
have a set of robots R = {r1, . . . , rk} which we shall consider to be homogeneous, so
a single map suffices for them all. All starting locations and goals lie on this road-map.
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vkv3v1 v2

Fig. 1. A hall subgraph

We shall assume that the map is constructed so that collisions only occur when one
robot is entering a vertex v at the same time as another robot is occupying, entering
or leaving this vertex. Robots occupying other vertices in the map or moving on other
edges do not affect this movement. With appropriate levels of underlying control these
assumptions can be satisfied for most real-world problems.

The road-map is partitioned into a collection of induced subgraphsP = {S1, . . . , Sm}
of known structure. In this paper we shall consider only one kind of subgraph: the hall. A
hall is a singly-linked chain of vertices with any number of entrances and exits, as illus-
trated in Figure 1. They are commonly found in maps as narrow corridors or roads which
may contain several robots but which prevent overtaking. Formally this is represented as
H = 〈v1, . . . , vm〉 with: (vi, vj) ∈ E iff |i− j| = 1.

The configuration of a hall can abstract the exact positions of the robots and merely
record their order, which cannot be changed without a robot entering or leaving. When
a robot enters the hall, a number of different configurations are possible, depending on
which edge it uses (at an end or in the middle) and the number of other occupants. When
a robot leaves the hall it can simply be removed from the configuration. In either case
the order of the other robots in the hall remains the same.

Resolving a step of the abstract plan means shuffling the robots in the hall left or
right to either move the departing robot to its exit or to open a space at the appropriate
vertex (and position in the sequence of occupants) and for an incoming robot to enter.

An abstract plan is thus an alternating sequence of hall configurations and subgraph
transitions. In previous work I have restricted this to a single robot transitioning on
each step. The constraint formulation I shall present in this paper allows us to relax this
restriction.

3 Constraint Programming

Constraint programming is a methodology for representing and solving combinatorial
search problems through constraint propagation and intelligent search. Problems are
represented as collections of variables over finite domains (usually subsets of the inte-
gers) and constraints which are relations between the variables that they are required
to satisfy. Constraint solvers are designed to represent a large number of different con-
straints and use them to propagate information from one variable to another so that
their domains are consistent (with some degree of strength) with the constraints be-
tween them.
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Combining constraint propagation with search, we are able to prune the search space
of a problem by alternately assigning values to variables and propagating the change to
restrict the domains of other unassigned variables. Informed choice of the search order
can maximise the benefits of propagation and further reduce the search. For this project
I used Gecode/J – a Java-based constraint solver [3].

4 The Constraint Representation

To convert the planning task into a constraint satisfaction problem we need to describe
it as a finite set of integer variables. As it stands the task is open ended: a plan can be
of any length. To make it finite we need to restrict the plan to a fixed length. If a plan
of a given length cannot be found, then a new CSP representing a longer plan can be
constructed and the process repeated.1

To begin our representation we number each vertex, each robot and each subgraph.
Let V = {1, . . . , n} represent the vertices, R = {1, . . . , k} represent the robots and
S = {1, . . . ,m} represent the subgraphs. Let Vi be the set of vertices for subgraph i. It
is useful, as we will see later, to number the vertices so that each Vi contains consecutive
integers. Let E = {(a, b) | ∃va ∈ Va, vb ∈ Vb, (va, vb) ∈ E} be the relation defining
adjacency between subgraphs. Let L be the length of the abstract plan.

4.1 Abstract Plan Steps

We can now define the variables we need. For each robot r ∈ R and each step of the
plan i ∈ {1 . . .L} we represent the subgraph it occupies at each time step:

Ai[r] ∈ S is the index of the subgraph occupied by r at step i,

It is not enough to simply plan in terms of subgraphs. A time step in the abstract plan
actually represents multiple concrete actions as the robots are rearranged with each
subgraph. We do not need (or wish) to represent all of these concrete steps, but we do
need to know where the robots are an the beginning and each of each step, to know
what transitions are possible, and what new configurations will result. For this reason,
we also create variables representing the first and last vertices in the concrete sub-plan
for each robot at each step:

Fi[r] ∈ V is the index of the first vertex occupied by r at step i,
Ti[r] ∈ V is the index of the last vertex occupied by r at step i.

We constrain these variables as follows:

Robots can only move between neighbouring subgraphs

Ai[r] = Ai+1[r] → (Ai[r], Ai+1[r]) ∈ E (1)

1 Note that this makes the problem only semi-decideable. There is no sure way to know when
no possible plan of any length exists. In practice, this is rarely a problem. Planning stops when
plans get beyond a certain maximum length.
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Fi[r] and Ti[r] must belong to the given subgraph

Ai[r] = a→ Fi[r] ∈ Va (2)

Ai[r] = a→ Ti[r] ∈ Va (3)

Two robots cannot be in the same vertex at the same time

distinct(Fi[1], . . . , Fi[k]) (4)

distinct(Ti[1], . . . , Ti[k]) (5)

Consecutive sub-plans are linked by valid transitions

(Ti[r], Fi+1[r]) ∈ E (6)

Ti[rx] = Fi+1[ry], ∀rx = ry (7)

No-ops only occur at the end of the plan

(∀r ∈ R : Ai−1[r] = Ai[r]) → (∀r ∈ R : Ai[r] = Ai+1[r]) (8)

If a subgraph is full, its occupants cannot move

Ai[r] = a ∧ countρ∈R(Ai[ρ] = a) = |Va| → Fi[r] = Ti[r] (9)

These constraints apply to any abstract plan, regardless of the structure of its sub-
graphs, but they fail to completely specify the problem. In particular, they do not guaran-
tee that the configuration given by (Ti[1], . . . , Ti[k]) is reachable from (Fi[1], . . . , Fi[k]).
To ensure this we must refer to the particular properties of the subgraphs.

4.2 Hall Ordering

In the case of the hall subgraph, we require that the order of robots in the hall does not
change between transitions. If rx is on the left of ry at the beginning of a sub-plan it
must also be so at the end (and vice versa). We can represent this more easily if we
number the vertices in the hall consecutively from one end to the other. Then for two
robots in the hall, we will require Fi[rx] < Fi[ry ] ⇔ Ti[rx] < Ti[ry ].

It will be useful in the search for a plan to be able to explicitly choose an order-
ing between two robots without assigning them to particular vertices. To this end, we
create a new set of variables to represent the ordering of robots in each sub-plan:
Ordi[rx, ry ] ∈ {−1, 0, 1}. Conveniently we can use one set of variables to describe
the configuration of all halls simultaneously, since the value is only important if two ro-
bots are in the same subgraph at the same time. If rx and ry are in different subgraphs,
then Ordi[rx, ry ] is 0. Otherwise it must be either -1 or 1, indicating the two possible
orderings: rx before ry or ry before rx.

Formally we add the following constraints:

Robots are ordered iff they are both in the same hall

Ai[rx] ∈ H ∧ Ai[rx] = Ai[ry ] ⇔ Ordi[rx, ry ] = 0 (10)
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Ordering variables affect concrete positions

Ordi[rx, ry] = −1 → Fi[rx] < Fi[ry] ∧ Ti[rx] < Ti[ry ] (11)

Ordi[rx, ry] = 1 → Fi[rx] > Fi[ry] ∧ Ti[rx] > Ti[ry] (12)

Ordering variables persist across sub-plan transitions

Ai[rx] = Ai+1[rx] ∧Ai[ry] = Ai+1[ry] → Ordi[rx, ry] = Ordi+1[rx, ry] (13)

This completes our description. Any abstract plan which satisfies these constraints
can be resolved into a correct concrete plan without further search.

5 Search

Constraint propagation alone will not solve this problem; the constraints are not pow-
erful enough to eliminate every wrong solution. We must also perform a search, ex-
perimentally assigning values to variables until a complete plan is found that satisfies
all the constraints. By enumerating all the variables at the outset, we are able to assign
values to them in any order we wish, unlike standard path-planning algorithms which
generally operate in forward temporal order only.

Common wisdom in constraint solving is to assign variables so that failures, if they
are going to occur, happen early at shallow levels of the tree so that large amounts of
backtracking are avoided. The standard heuristic is to assign the most constrained vari-
ables first. In this particular problem it makes sense to assign the subgraph variables
Ai[r] first, followed by the order variables Ordi[rx, ry] and finally the transition vari-
ables Fi[r] and Ti[r], since each is strongly constrained by the one that comes before.
In each case we choose the variable with the smallest domain.

When choosing a value for the variable there are two things to consider: 1) choose a
value which is most likely to lead to a solution, 2) choose a value which places the least
constraint on other variables. When choosing subgraph values for theAi[r] variables we
apply the first principle by choosing the subgraph which is closest to the next assigned
subgraph for robot r (based on a precomputed single-robot all-shortest-paths matrix).
If there are two such options, then the subgraph with the fewest occupants is selected,
according to the second principle.

The heuristic for selecting the ordering value for Ordi[rx, ry ] is to consider the con-
crete values that it immediately affects Fi[rx], Ti[rx], Fi[ry] and Ti[ry ]. For each or-
dering we can easily compute the resulting domain sizes for each of these variables
(ignoring the effect of any other constraints). The ordering which leaves the largest
number of alternatives is preferred, by the second principle above.

Finally, values for the concrete steps Fi[rx] and Ti[rx] are chosen to minimise the
distance between the beginning and end of the plan step.

6 Experiment: The Patrick Port

To evaluate this new planning system I have applied it to a realistic planning problem.
Figure 2 shows a map of the Patrick yard at Port Brisbane in Queensland, Australia. This
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Fig. 2. The map of the Patrick yard at Port Brisbane

map is used to plan the movement of straddle-carriers – enormous, automated vehicles
for moving shipping containers around the yard. Efficient, co-ordinated planning for
these vehicles is important for the smooth running of the facility.

6.1 The Problem Domain

The map is an undirected graph of 1808 vertices and 3029 edges. The vertices are
naturally connected in long straight chains representing the roads around the facility.
These roads mean that the vertices can be partitioned into 40 hall subgraphs, with only
2 vertices left over, which must be treated as singletons. The reduced graph has 187
edges connecting neighbouring subgraphs.

This reduced graph was constructed by hand with the aid of a simple interactive tool.
Choosing the partition was not difficult; the roads around the port are obvious in the
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map and provide a natural set of halls. No effort was made to optimise this partition in
any fashion to suit the algorithm.

6.2 Approach

The map was populated with a number of robots which varied from 1 to 40. Each robot
was assigned a random initial and final position. A single-robot shortest paths matrix
was calculated for the reduced graph and used to calculate the minimum length of the
plan as the length of the longest single-robot plan.

A constraint problem was constructed in Gecode/J as described above. The initial
and goal states were constrained to their appropriate values and then a search was con-
ducted. An iterative deepening approach was used. A minimum estimate of the plan
length was computed by taking maximum shortest path distance for each robot individ-
ually. If a plan of this length could not be found, then the length was incremented and
the search repeated, until a solution was found or the planner exceeded a 2 minute time
limit.

The same problems were also solved with a prioritised planner (also encoded as a
CSP in Gecode/J). I compare the results below.

6.3 Results

One hundred different experiments were conducted for each number of robots.2 The
results are plotted in Figures 3(a) and 3(b). The graphs show the median values for total
time to construct the CSP and search for a solution and the total memory usage, with
whiskers showing the first and third quartiles. Experiments were run with a time limit
of 120 seconds and a maximum heap size of 2 gigabytes. Experiments which exceeded
these limits are treated as taking infinite time and memory.

The difference between the two approaches is quite pronounced. The abstract ap-
proach shows a much slower rate of increase in both runtime and memory. Performance
is comparable for up to 4 robots, but after that point the abstract approach is clearly
superior. At 33 robots the graph of the prioritised planner ends because it began to fail
more than 50% of the time. The abstract planner was able to handle up to 40 robots,
taking only slightly more than 10 seconds in the median case.

There is a noticeable change in both the time and memory graphs around the point of
15 or 16 robots. The explanation for this threshold can be found in the sub-plan sizes.
Because of the high connectivity of the graph, two subgraphs randomly chosen can
almost always be connected by at most one intermediate subgraph. The probability that
more than one is required is small, approximately 4%. As more robots are added to the
plan the probability increases that at least one will require a longer plan. The probability
reaches 50% about the 15-16 robot mark. So at this point the majority of experiments
begin with a plan of 4 abstract steps, while a majority of the smaller problems require
only 3. The longer plan requires more variables per robot to represent and thus more
time and memory to complete.

2 Running times were measured on a 3.20GHz Intel(R) Xeon(TM) CPU running Sun JDK 6.0
with 2Gb of heap.
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Fig. 3. A comparison of median run-times and memory usage for abstract planning and prioritised
planning. Error bars show the first and third quartile.

Analysis of median values doesn’t give us the full picture. Table 1 shows the number
of experiments which failed to complete due to time or memory limits. Many more
prioritised experiments failed (23% in total) than abstract experiments (only 1%). In
most cases failure occurred because the experiment exceeded the time limit. As stated
earlier, constraint-based planning is only semi-decidable, so there is no way to definitely
conclude that a problem has no solution, but the data suggests that the incompleteness
of the prioritised algorithm may be the issue.
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Table 1. Number of failed experiments by problem size. Experiments 1 to 6 showed no failures
for either approach.

# Robots % Failures # Robots % Failures # Robots % Failures
Abs. Pri. Abs. Pri. Abs. Pri.

7 0 1 19 0 16 31 4 29
8 0 1 20 2 14 32 4 33
9 0 2 21 0 17 33 4 48

10 0 2 22 0 11 34 2 59
11 0 5 23 0 29 35 1 54
12 0 3 24 1 25 36 7 54
13 0 6 25 0 26 37 3 58
14 0 10 26 2 28 38 9 64
15 0 13 27 0 29 39 7 63
16 0 6 28 0 43 40 6 78
17 1 11 29 2 34
18 1 19 30 3 46

7 Conclusion

I have demonstrated how the multi-robot path planning problem can be effectively
solved for large numbers of robots by making use of appropriate structural knowledge
about the map, in the form of a subgraph decomposition. This knowledge can be en-
coded precisely as a constraint satisfaction problem and solved using a combination of
constraint propagation and heuristic search. This allows us to solve problems of un-
precedented size, using time and memory that is significantly smaller than the standard
approach of prioritisation.

7.1 Related Work

There has been little previous work in the use of abstractions and modern search tech-
niques in multi-robot path planning. The work that bears most similarity to my own
is not explicitly in robot path planning, but in solving the Sokoban puzzle [4,5]. Their
division of a map into rooms and tunnels matches to some degree the subgraph de-
composition I adopt here. The particular structures they represent are different, but the
general ideas of partitioning into independent local subproblems and identifying ab-
stract states from strongly connected components, are the same as those employed in
this work. They have not as yet attempted to translate these structures into a formal
constraint satisfaction problem.

CSPs have however been applied to a different kind of planning, that is AI task-
planning. CPLan [6] directly encodes such planning problems as constraint systems
and uses a general purpose constraint solver to find plans. Another approach is to en-
code the planning graph from an algorithm such as Graphplan [7] and convert it into
a CSP, as done in the work of Do and Kambhampati [8] and Lopez and Bacchus [9].
A related approach is the ’planning-as-satisfiability’ technique used in planners such as
SatPlan [10].
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7.2 Future Work

This constraint-based approach opens the door to a number of new possibilities. More
complex planning problems can be expressed by adding appropriate constraints to the
system. If we extended the representation to include variables for the concrete sub-plans
in their entirety, we could add extra constraints to prevent certain vertices from being
simultaneously occupied, to add a buffer zone between robots. We could specify goals
that involve visiting several locations in sequence. It is already possible to have robots
that have no particular goal but to stay out of the way.

If we add variables representing the lengths of the concrete plans, we can begin to
work on optimisation. As it stands, the algorithm makes no guarantees that concrete
plans will be optimal. Finding perfectly optimal plans is likely to be very time consum-
ing, but a branch-and-bound algorithm could provide a viable alternative, yielding the
best plan found in the available time.

This leads us to consider what other advanced CSP-solving techniques could be
useful. The most immediately obvious is sub-problem independence [11]. Once the
A[[i]][r] variables have been set, the other variables in this problem are partitioned into
a number of subsets which do not affect each other. Solving these sub-problems inde-
pendently could prevent a lot of unnecessary backtracking.

In conclusion, this paper demonstrates the successful combination of domain knowl-
edge and intelligent problem solving tools. It offers not just a fast planning algorithm,
but also a validation of constraint programming as an effective knowledge engineering
methodology, and one which we should continue to improve upon.
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Abstract. This paper presents a formulation of an optimality princi-
ple for a new class of concurrent decision systems formed by products
of deterministic Markov decision processes (MDPs). For a single MDP,
the optimality principle reduces to the usual Bellman’s equation. The
formulation is significant because it provides a basis for the development
of optimisation algorithms for decentralised decision systems including a
recently proposed method based on Petri Net unfoldings.

1 Introduction

Markov decision processes have been widely studied and applied to a large num-
ber of optimisation problems, particularly in planning and scheduling applica-
tions (see eg [1], [2]). Many solution techniques have been developed but all
basically rely on Bellman’s principle of optimality. As we shall see, this principle
is really quite straightforward and intuitive in nature.

We have a considerable interest in optimisation of concurrent systems. These
systems don’t have a global clock, so a class of models such as MDPs which
are based on a global clock, are not appropriate for concurrent systems. In par-
ticular, we are interested in optimisation of automated planning systems which
are inherently concurrent in nature. Much of the work which has been done in
concurrent planning effectively translates the problem into a (huge) MDP by
placing an artificial total ordering on the system. This can lead to excessively
large problems which don’t scale well.

Recently, a solution to optimisation of concurrent systems based on Petri Nets
(PNs) has been proposed [3],[4]. The algorithm, known as ERV-Fly finds globally
optimal solutions via a technique known as directed unfolding, described in [5].
A close analysis of the algorithm shown that it embodies (among other things)
a principle of optimality for concurrent systems that is not unlike Bellman’s
principle for MDPs in nature. The purpose of this paper is to derive this principle
and show that it is a natural extension of the totally ordered (MDP) case. The
result, although appearing simple in hindsight, is significant because it provides
a necessary condition that any optimisation algorithm must meet. Also, the
principle may lead to other optimisation algorithms for concurrent systems, much
in the way that Bellman’s principle has for MDPs. We believe that this is the
first concise statement of such a principle for a class of concurrent systems.

W. Wobcke and M. Zhang (Eds.): AI 2008, LNAI 5360, pp. 128–137, 2008.
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The layout of the paper is as follows. We firstly review Bellman’s principle for
MDPs in a somewhat non-standard fashion, that motivates the generalisation to
concurrent systems in a clear way. We then develop a PN model for MDPs. In
section 3, we describe how to generalise these PN models to a class of concurrent
systems described as products of MDPs (PMDPs). Products of transition systems
(the Markov part of MDP) have been studied in detail in [6], although not from
an decision theoretic point of view. Thus, PMDPs, in some sense, are a new
class of models for concurrent decision systems. In section 4, we introduce PN
unfoldings as a framework for deriving and proving an optimality principle for,
firstly a single MDP, and secondly for a PMDP.

2 Petri Net Models for Markov Decision Processes

A (deterministic) Markov Decision Process (MDP) is a tuple M = (S,A, is, g, π,
σ, φ) where

– S is a finite set of states,
– A is a finite set of actions,
– is ∈ S is the initial state,
– g ∈ S is the goal state,
– π : A→ S giving the unique predecessor state to an action,
– σ : A→ S giving the unique successor state to an action, and
– φ : A→ R+ is the cost function.

The semantics of the MDP are as follows. Suppose the system is in some state
s, then each action in π−1(s) is enabled. Suppose we execute action a ∈ π−1(s),
then the system moves to state s′ = σ(a). We say that s = π(a) is the predecessor
state for a, and s′ = σ(a) is the successor state for a. 1 Every time an action
a is executed, an additive cost function is incremented by an amount φ(a) > 0.
Our objective is to find a sequence of actions {ak} starting at state is and
terminating at state g 2 which minimises the total cost. Such a problem is called
a shortest path problem, and {ak} is called a shortest path. Standard tools (eg
value iteration, policy iteration, linear programming) can be applied to this
problem. Most solution methods are based around solving Bellman’s equation,
an expression of the principle of optimality [1]. A policy is a mapping ψ : S → A
which specifies which action a is executed when the system is in state s. The
solution of Bellman’s equation yields a policy which minimises total cost to
reach the goal. One interpretation of Bellman’s principle is that on any globally
optimal path (sequence of actions) from is to g, each local policy must also be
optimal in the sense of choosing an action which minimises the total cost of it

1 In our model, we only address deterministic outcomes. Thus the successor state
is uniquely defined by the action being executed. In the general case, there is a
probability distribution specified on a set of successor states but we don’t consider
this case here.

2 We can easily generalise to the case there the goal consists of a subset of states.



130 L.B. White and S.L. Hickmott

and all past actions. More precisely, if J∗(s) denotes the optimal cost to arrive
at a state s from is, then

J∗(s) = min
a∈σ−1(s)

(J∗(π(a)) + φ(a)) , (1)

and a minimising action a in (1) specifies the optimal (local) policy to be executed
in state π(a) to arrive in state s. 3

Let A∗ denote the set of all sequences of actions (called words), then for any
v = {ai} ∈ A∗ we define the cost of v by extending φ : A∗ → R+ ∪ {∞} as

φ(v) =
∑

i

φ(ai) .

Observe that φ is additive on concatenation of finite words, ie if v, w ∈ A∗

are finite then we can define a concatenation v ◦w (all the actions in v followed
by the actions in w), and φ(v ◦ w) = φ(v) + φ(w). A word u is called a prefix
of a word w if there is a word v such that w = u ◦ v. Such a prefix is proper if
v contains at least one action. A word a1, a2, . . . , ak is called a computation if
σ(ai) = π(ai+1) for all i = 1, . . . , k − 1. Such a computation is called a history
if π(a1) = is. The final state of a finite history a1, a2, . . . , ak is σ(ak). Such a
history is called feasible if its final state is the goal g. A feasible history is optimal
if its cost is the minimum over all feasible histories.

We can thus deduce from (1) that every prefix of an optimal history is itself
optimal in the following sense. Let w∗ denote an optimal history, and consider
any finite proper prefix u∗ of w∗. Then for any history u with the same final
state as u∗, φ(u∗) ≤ φ(u).

Markov processes have the property that there is a total order on actions.
Concurrent systems are systems where there is no global clock, and thus no total
ordering on actions is generally possible. We can only assume a partial ordering.
Because we are interested in considering the shortest path problem for concurrent
systems, we wish to use a class of models which captures this behaviour. Petri
Nets (PNs) have been shown to be a useful set of models for concurrent systems
(see eg [7], [8]). Our first step in generalising MDPs to concurrent systems will
be to derive a PN model for an MDP.

A Petri Net is a tuple P = (P, T, F,M0) where

– P is a set of places,
– T is a set of transitions,
– F ⊆ {P × T } ∪ {T × P} is a set of (directed) arcs, and
– M0 ⊆ P is the initial marking.

3 The conventional formalism for Bellman’s equation uses the notion of an optimal
cost to go from a state, rather than the optimal cost to arrive in a state. The two
expressions of optimality are equivalent.We adopt the second approach as it is more
appropriate for developing the optimality principle we seek for concurrent systems.
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A place p is said to be marked is there is a token held in p. The system
evolves by moving tokens between places. The initial marking M0 is the set of
places initially holding a token. The semantics of a PN are as follows. Consider a
transition t. Let π(t) = {p ∈ P : ∃ (p, t) ∈ F} denote the set of predecessors to t.
If every place in π(t) is marked, we say that t is enabled. An enabled transition
may fire, in which case, a token is removed from each place in π(t), and a token
is placed in each place in σ(t) = {p ∈ P : ∃ (t, p) ∈ F} (the set of successors to
t). If a transition t fires when the system has marking M , the system marking
becomesM ′ = (M \π(t)) ∪σ(t). We writeM t→M ′. 4 A markingM is reachable
from M0 if there is a sequence of firings t1, t2, . . . , tk such that M0

t1→ · · · tk→M .
The sequence t1, . . . , tk is known as an occurrence sequence.

Now, let’s establish a PN representation for an MDP. We have the following
associations specified by an isomorphism � :

– Each state s ∈ S corresponds to a place �(s) ∈ P ,
– Each action in a ∈ A corresponds to a transition �(a) ∈ T ,
– For each action a ∈ A, there are arcs (�(π(a)), �(a)) and (�(a), �(σ(a))) in F ,
– M0 = �(is).

We also have a unique place �(g) specified by the goal state g. The mappings
π, σ and φ can be used consistently in the PN, observing that for a PN represen-
tation of an MDP, π(t) and σ(t) each have exactly one element for any transition
t ∈ T . It can be easily verified that the goal �(g) is reachable from M0 if and
only if the MDP has a shortest path.

The method we propose for determining the optimal policy using the PN rep-
resentation of the MDP, is based on PN unfoldings [6]. An unfolding is another
PN with specific properties that make it possible to determine all possible se-
quences of transition firings which take the initial marking to the goal marking,
and the associated costs. We shall address unfoldings in section 4.

3 PN Representations for Products of MDPs

In this section, we define a concurrent system model based on the idea of prod-
ucts on MDPs. This approach is motivated by the ideas of [6]. Let Mi =
(Si, Ai, isi, gi, πi, σi, φi), i = 1, . . . , n be MDPs, then we define the product
M = {M1, . . . ,Mn,A}, where A is a set of global actions. The set A is a
subset of

(A1 ∪ ε) × · · · × (An ∪ ε) \ {ε, . . . , ε} ,

where ε is a special action which means “do nothing”. We call Mi, the i-th
component of the product M. Global actions have the effect of synchronising
4 This is considered in the multiset framework where a particular place p appears

once for each token present in p. We will focus on so-called one-safe PNs where the
maximum number of tokens in a place is one, so standard set theory suffices.



132 L.B. White and S.L. Hickmott

MDPs through “shared” actions, ie those global actions with more that one non-
ε component. We say that a component Mi participates in a global action a =
(a1, . . . , an) if ai = ε. We remark that products are inherently partially ordered
systems. For the product M we define the global state space S = S1×· · ·×Sn, and
the global initial state is = (is1, . . . , isn) and the global goal is g = (g1, . . . , gn).

Let a = (a1, . . . , an), then the cost of a is given by

φ(a) =
n∑

i=1

φi (ai) ,

where φi(ε) = 0 for all i = 1, . . . , n. Observe that φ(a) > 0 for all a ∈ A. Let
A∗ denote the set of all sequences of global transitions, then we can extend φ
to A∗ in the same way as described in section 2. The shortest path problem for
M involves finding a sequence of global actions taking the global state from is
to g which results in the minimum cost.

PMDPs could be solved in the conventional way by using the so-called in-
terleaved representation of the product [6]. This involves applying dynamic pro-
gramming to the large MDP constructed by enumerating the global state space
S. However, such a method is intrinsically inefficient (exponential in the number
of components in the product) because it places an unnatural total ordering on
events which includes all interleavings of concurrent events. We shall return to
this issue in section 4.

We can map products of MDPs to a PN in a way that preserves any concur-
rency in the system as follows. Let �i denote the isomorphism which takes compo-
nent MDP Mi to its PN representation Pi. Then define a PN P = (P, T, F,M0)
by

– P = ∪n
i=1{�i(si) : si ∈ Si},

– for each a ∈ A there is a unique t ∈ T which we label �(a),
– Let a ∈ A, then (�i(si), �(a)) ∈ F ⇔ ∃ i ) si = πi(ai) ∧ ai = ε, and

(�(a), �i(si)) ∈ F ⇔ ∃ i ) si = σi(ai) ∧ ai = ε,
– M0 = ∪n

i=1�i(isi).

Here � is defined on global states by �(s) = (�1(s1), �2(s2), . . . , �n(sn)). We
also identify a global goal �(g) = (�1(g1), �2(g2), . . . , �n(gn)). We can show that
�(g) is reachable from M0 if and only if there is a (global) shortest path.

4 PN Unfoldings

In this section, we will introduce the concept of a branching process of the PN
representation of a product of MDPs and thence the unfolding. We’ll then show
how unfoldings can be used to determine shortest paths. For notational clarity, in
the sequel, we shall drop the explicit use of the isomorphism � when the context
is clear.

Let P be a PN representation of a product. A branching process is a spe-
cial type of PN obtained from P which has a tree-like structure. In branching
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processes, places are called conditions and transitions are called events. The set
of branching processes of P is constructed as follows. There is a homomorphism
ψ defined on the set of PNs such that :

(a) The PN consisting of the initially marked placesM0 with ψ(M0) =M0, and
no events is a branching process of P ,

(b) Let N be a branching process of P such that there is some reachable marking
M in N with ψ(M) enabling some transition t in P . Let e be an event labelled
by t = ψ(e) and M1 ⊆M be such that ψ(M1) = π(t). The set of all (e,M1)
is called the set of possible extensions to N . Then the PN formed by adding
the event e and all conditions c with ψ(c) ∈ σ(t), along with the arcs (e, c)
and {(m, e) : m ∈M1} to N is also a branching process of P .

(c) The union of any set of branching processes is also a branching process.

The union of all branching processes is known as the unfolding and any of
its branching processes is a prefix of the unfolding. In general, we seek a finite
prefix of the unfolding which has all information needed to solve the shortest
path problem.

There are two specific technical issues associated with determining an unfold-
ing. Firstly, we need to determine which events should be added to the unfolding
as it is progressively computed according to the above process. Secondly, we need
to determine when we can stop extending the unfolding after the addition of some
new event. We do this by constructing a certain type of ordering on events which
is based on the cost function φ associated with each event.

Firstly, we need to introduce some additional technicalities. We firstly consider
the unfolding U of the PN representation of a single MDP. We shall define the
cost associated with an event e by the cost of its label, ie φ(e) = φ(ψ(e)) (with
obvious abuse of notation). If there is a directed path from an event e to another
event e′ in U , we say e < e′. This is an irreflexive partial order on the events on U
called the dependency ordering. Let e be an event in U , and let e1, . . . , em denote
an occurrence sequence with em = e. The history of an event e is the history
ψ(e1), . . . , ψ(em) and is denoted by H(e). The final state of H(e) written St(e)
is the state reached after execution of e ie σ(e). A history H(e) is called feasible
if St(e) = g, and then e is called a terminal event. A feasible history is optimal if
it has the minimum cost over all such feasible histories. A fundamental property
for the single component case [6] is that H(e) = H(e′) ⇔ e = e′. This is because
every event has a unique predecessor condition.

Let u, v ∈ A∗ be words, then we define a partial order ≺φ by u ≺φ v ⇔
φ(u) < φ(v). Evidently, ≺φ refines the prefix order ie if u is a proper prefix of
v, then u ≺φ v since costs are positive. We can define the reflexive order �φ

by saying u �φ v if either u ≺φ v or u = v. Since two words u = v can have
the same cost, �φ is not total. We can thus define an partial ordering on events
according to the cost of their histories (as words). It is important for this partial
order to refine the prefix order as we want to be able to formulate a principle
of optimality that is essentially “causal”, ie based on the idea of testing possible
extensions for optimality. This is in the spirit of (1).
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The unfolding algorithm ERV-Fly [3],[4] proceeds by retaining a queue of
all possible extensions to the current branching process. Possible extensions in
the queue are ordered according to the cost of their history. Those possible
extensions leading to the same state but at a higher cost are discarded. The
algorithm terminates when we add an event which corresponds to a transition
having the goal state as its successor. Provided the queue ordering ensures that
all events on an optimal history are removed from the queue before a terminating
event of a non-optimal history, then the unfolding algorithm is guaranteed to
find an optimal history. This is proven in more generality in [3],[4] (theorem
4.2.1). This approach embodies a concise characterisation of optimality in the
single component case, as theorem 1 states.

Theorem 1. Let H(e∗) be an optimal history, and let H(e∗0) be any proper
prefix of H(e∗). Then for any history h with the same final state as H(e∗0),
φ(H(e∗0)) ≤ φ(h).

Proof. If there was a history h with φ(h) < φ(H(e∗0)), we could form the feasible
history h◦v∗, where H(e∗) = H(e∗0)◦v∗, and φ(h◦v∗) < φ(H(e∗)) contradicting
optimality of H(e∗).

Comments

1. Theorem 1 is an identical statement to (1) but is in a form that we can
naturally generalise to the multicomponent case.

2. This theorem motivates part of the ERV-Fly algorithm [3],[4]. If we have
two possible extensions with different events e, e′, with the same final state
σ(e) = σ(e′), then we add that event with lowest cost history, and we need
no longer extend the unfolding from the other event.

4.1 Multiple Components

Let’s now address the case of a product of MDPs. In this case, there is no obvious
direct analogy to Bellmans’s principle, and we seek to develop such an analogy.
The main difficulty is that events are not uniquely defined by their histories, so
we can’t define an ordering on the events in the set of possible extensions based
on their histories. However, the notion of the independence of (global) actions is
useful for overcoming this difficulty. Two global actions in the PN representation
of a product M are independent if no component of M participates in both of
them. Two words w,w′ are said to be 1-equivalent if (i) w = w′, or (ii) there
are independent actions a,a′ and two words u,v such that w = uaa′v and
w′ = ua′av. We define an equivalence relation ≡ on A∗ as the transitive closure
of the 1-equivalence relation. It can be easily shown that if h is a history of A,
then so is every word w ≡ h.

Importantly, from the viewpoint of optimisation, equivalent words have iden-
tical cost as theorem 2 shows.

Theorem 2. Let u,v ∈ A∗, then u ≡ v ⇒ φ(u) = φ(v)).
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Proof. If u ≡ v there is a sequence of permutations P of the actions in u, so
that P (u) = v. Since permutations in the order of actions does not effect the
cost of a word, φ(P (u)) = φ(u) = φ(v). *+

Definition 1. A Mazurkiewicz trace (a trace) for a product M is an equivalence
class of words under ≡. We write [w] for a trace, and [A∗] for the set of all traces.

From theorem 2, we can unambiguously define the cost of a trace by extending
φ : [A∗] → R+ ∪ {∞}. This allows us to extend the partial order ≺φ to traces.

The concatenation of two traces [u] and [v], written [u] ◦ [v] is defined to be
the trace [u ◦ v]. We say [u] is a prefix of [w] if there is a trace [v] such that
[w] = [u] ◦ [v]. It is easy to show that the prefix relation is a partial order.

Lemma 1. The partial order ≺φ defined on [A∗]× [A∗] refines the prefix order-
ing on traces.

Proof. Suppose [w] = [u] ◦ [v] = [u ◦ v], then φ([w]) = φ(w) = φ(u) + φ(v) >
φ(u) ⇒ φ(u) < φ(w) ⇔ u ≺φ w ⇔ [u] ≺φ [w]. *+

We now introduce the notion of a configuration of a branching process. Firstly,
any two nodes x, y (condition or event) in a branching process are causally related
if either x ≤ y or y ≤ x where ≤ is the reflexive dependency ordering. Two nodes
are in conflict if there is a condition b so that x and y can be reached from b
by exiting b on different paths. Two nodes are concurrent if they are neither
causally related nor in conflict.

A set of events C of a branching process is a configuration if it is both causally
closed (ie e ∈ C ∧ e′ < e⇒ e′ ∈ C) and conflict-free.

A realisation of a set E of events is an occurrence sequence in which each event
of E appears exactly once, and no other events appear. Every configuration
has at least one realisation. It can be shown that every realisation of a finite
configuration C leads to the same marking (see eg [6], proposition 3.18). We
call this marking the global state St(C). Given a configuration C, suppose there
is configuration C0 ⊂ C, and a set of events E = ∅ disjoint from C0 with
C = C0 ∪ E. We say that C0 is a proper prefix of C and that E is an extension
of C0, and write C = C0 ◦ E.

We can now define the history of a configuration C as a word a1 . . .an such
that e1 . . . en, with ψ(ei) = ai, i = 1, . . . , n, is a realisation of C. We denote the
set of histories of C by H(C). A history H(C) is called feasible if St(C) = g.
The cost of a history is its cost defined as a trace. A feasible history is optimal
if its cost is minimum over all feasible histories. The cost of a configuration is
the cost of its history.

The following results are proven in [6] (proposition 4.28). (a) Let C1 and C2 be
configurations then C1 = C2 ⇔ H(C1) = H(C2). (b) Let C be a configuration,
then H(C) is a trace. These results are important because they allow us to
characterise configurations by their histories and that every history in H(C) has
the same cost, and leads to the same reachable marking. This again leads to an
optimality principle.
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Theorem 3. Let C∗ denote an optimal configuration and suppose that C∗
0 is

a proper prefix of C∗. Then for all configurations C0 with St(C0) = St(C∗
0 ),

φ(C∗
0 ) ≤ φ(C0).

Proof. Write C∗ = C∗
0 ◦ E where E is an extension of C∗

0 . Then H(C∗) =
H(C∗

0 ) ◦ [e] for some e ∈ A∗. Let H(C∗) = [c∗] and H(C∗
0 ) = [c∗0], since histories

of configurations are traces, then φ([c∗]) = φ([c∗0]) + φ([e]). Suppose there was a
configuration C0 with the same final state as C∗

0 and with φ(C0) < φ(C∗
0 ), then

with H(C0) = [c0], we have φ([c0] ◦ [e]) = φ([c0]) + φ([e]) < φ([c∗0]) + φ([e]) =
φ([c∗]) which contradicts the optimality of C∗. *+

Comments

1. It may seem that the expression of optimality in terms of configurations
might be restrictive in the sense that the result doesn’t apply in generality to
all PMDPs. However the specific property that configurations represent the
so-called “true” concurrency semantics of the PMDPs means that theorem
3 is indeed general.

2. Theorem 3 is a necessary condition to be satisfied for any algorithm which
yields an optimal solution and is a part of the ERV-Fly algorithm [3],[4].
It is conjectured that the principle might also lead to other algorithms for
determining optimal configurations in a similar way that Bellman’s principle
does. This is a subject of ongoing work. Of course, not all optimisation
algorithms that exploit concurrency will necessarily be derived from theorem
3, since, in particular, it is based on Petri Nets and unfoldings, however,
in some equivalent sense, any truly concurrent optimisation algorithm for
PMDPs must satisfy something equivalent to theorem 3.

5 Conclusion

This paper has derived a principle for optimality for a new class of concurrent
decision processes called products of Markov Decision Processes (PMDPs). This
class of processes is motivated by the concurrent system models studied in [6].
The principle reduces to the standard Bellman’s principle of optimality applying
to the single MDP case. The principle is embodied in an existing algorithm for
concurrent system optimisation called ERV-Fly [3],[4], although our results show
it is a necessary part of any optimisation algorithm for PMDPs. Due to the fact
that ERV-Fly can be applied to more general Petri Nets (see [3],[4]), we would
also conjecture that a similar principle applies to general Petri Net models.
This is, in part, supported by the properties of so-called adequate orderings on
configurations and generalisations thereof. We also believe that the principle
might lead to the development of new optimisation algorithms for concurrent
systems in a similar way that Bellman’s principle motivated a number of different
optimisation algorithms for MDPs such as value iteration, policy iteration, and
hybrids of these two methods.

In other ongoing work, we are considering the suitability of the above approach
for systems with probabilistic outcomes. These systems are already included in
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MDP models but it can be difficult to extend this approach to concurrent systems
(see eg [8], [9]). However, the restricted nature of PMDPs which still retain a
notion of local state in each component may permit a solution.

Acknowledgements

The authors acknowledge the support of National ICT Australia and the De-
fence Science and Technology Organisation Australia through the Dynamic Plan-
ning, Optimisation and Learning Project. We also thank Sylvie Thiébaux, Patrik
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Partial Order Hierarchical Reinforcement
Learning
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Abstract. In this paper the notion of a partial-order plan is extended
to task-hierarchies. We introduce the concept of a partial-order task-
hierarchy that decomposes a problem using multi-tasking actions. We go
further and show how a problem can be automatically decomposed into a
partial-order task-hierarchy, and solved using hierarchical reinforcement
learning. The problem structure determines the reduction in memory
requirements and learning time.

1 Introduction

Russel and Norvig [1] note that “Fortunately, the real world is a largely benign
place where subgoals tend to be nearly independent”. Polya [2] exploits this
real-world property, suggesting that a good problem solving heuristics is to ask
“Can you decompose the problem and recombine its elements in some new man-
ner?” The decomposition of a problem is usually left to a human designer and a
challenge in machine learning is to automate this divide-and-conquer technique.

On a related theme it has often been stated that the complexity we encounter
in natural environments takes the form of hierarchy and that hierarchy is one
of the central structural schemes that the architecture of complexity uses [3,4].
Hierarchical reinforcement learning (HRL) uses hierarchy to represent and solve
problems more efficiently (see [5] for a survey). One HRL approach, MAXQ [6],
explicitly uses a task-hierarchy.

Several researchers have looked at automating the decomposition of a rein-
forcement learning problem into subtasks and recombining their policies to solve
the original problem [7,8,9,10,11]. HEXQ [11] is a decomposition algorithm that
automatically builds a MAXQ-like task-hierarchy by uncovering structure in
problems from state variables. It decomposes a problem by ordering the state
variables by their frequency-of-change, constructing a task-hierarchy with one
level per variable.

This paper introduces partial-order task-hierarchies using multi-tasking ac-
tions that execute several independent subtasks in arbitrary order. The partial-
order generalisation of task-hierarchies can represent hierarchical reinforcement
problems more succinctly and speed up learning time. We address shortcomings
in HEXQ by examining several state partitions of the problem at the same time
and by building a more compact partial-order task-hierarchy representation.

W. Wobcke and M. Zhang (Eds.): AI 2008, LNAI 5360, pp. 138–149, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Fig. 1. Top: A partial-order task-hierarchy for a breakfast task. Bottom: The optimal
partial-order plan.

We assume the reader is familiar with reinforcement learning [12] and hierar-
chical reinforcement learning [5]. In the rest of this paper we introduce partial-
order task-hierarchies. We describe how a two-level partial-order task-hierarchy
is constructed using a simple one-room problem to motivate the discussion. Fi-
nally, we show a diverse set of results, using several room mazes, and demonstrate
savings in learning time and memory requirements for a larger “breakfast” task.

2 Partial-Order Task-Hierarchies

In a task-hierarchy each action invokes one subtask. In a partial-order task-
hierarchy we allow actions to invoke several independent subtasks. We call these
actions multi-tasking actions, because their objective is to complete multiple
subtasks before terminating. Multi-tasking actions can be interpreted as com-
mitting simultaneously to multiple subgoals, but they are only able to pursue
one subgoal at each time-step.

An algorithm that can represent a problem using multiple actions without spec-
ifying their order of execution is a partial-order planner [1]. Multi-tasking actions
are non-deterministic in this way and can be used to extend the notion of a task-
hierarchy to a partial-order task-hierarchy. We indicate multi-tasking actions in a
partial-order task-hierarchy graph by the symbol

⊕
and coalesce edges from the

parent task to multiple child subtasks, signifying that all the child subtasks need
to complete and terminate before returning control to the parent.
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Figure 1 (top) shows an example of a partial-order task-hierarchy for an agent
that plans to consume cereal, toast and coffee in some arbitrary order for break-
fast. The cereal subtask is further divided into (1) a simple action to eat the
cereal, (2) a multi-tasking abstract action to co-locate a bowl from the cupboard,
milk from the fridge and cereal from the pantry, and (3) another multi-tasking
action to return the milk to the fridge and to take the bowl to the sink.

A partial-order task-hierarchy has the expressive power to represent multiple
partial-order plans. For example, in the breakfast task, the order of the three
actions available to the cereal subtask, and indeed whether they are needed at
all, will be learnt by the hierarchical reinforcement learner. One of the possible
partial-order plans, the optimal one, is shown in the bottom of Figure 1.

2.1 The One-Room Problem

We use reinforcement learning (RL) to represent these type of problems. RL is
formalised as a Markov decision problem MDP < S,A, T,R > where S is a finite
set of states, A a finite set of actions, T : S×A×S → [0, 1] a stochastic transition
function and R : S×A×R → [0, 1] a stochastic reward function. We assume we
are provided with states represented as a tuple of variables (s1, s2, ..., si, ..., sn).
A policy is a function that specifies which action to take in any state. We use
the action-value function Q(s, a) as the expected undiscounted sum of rewards
to termination, starting in state s, taking action a and following a specified
policy thereafter. The reader is referred to [12] for further background on RL. In
hierarchical reinforcement learning (HRL) parent task state actions can invoke
subtasks [5]. Since a subtask can execute for multiple time-steps the parent
problem becomes a semi-MDP.

We will use the simple one-room problem in Figure 2 as a running example.
In this problem an agent starts at random in a 10 x 10 grid-world room. Its aim
is to leave the room by the shortest path. The state is the position of the agent
perceived as coordinates (x, y). Although x and y take integer labels they are
not assumed to have any numeric meaning. In each state the agent can choose
from four stochastic actions - move one step to the North, East, South or West.
Actions move the agent in the intended direction 80% of the time, but 20% of
the time the agent stays where it is. The reward at each step is -1.

Solving this problem in a straightforward manner using reinforcement learning
requires a table of Q values of size |S||A| = 100 ∗ 4 = 400. However, the agent
could learn to move in the x and y directions independently. The only dependence
is at (2, 9) where a move to the North reaches the goal. This results in the
decomposition shown by the partial-order task-hierarchy in Figure 2 (right).
The root subtask consists of 1 abstract state representing the room. The root
multi-tasking action invokes two subtasks, one for navigating North-South, the
other East-West. We terminate the multi-tasking action when the North-South
subtask state is 9 and the East-West subtask state is 2 followed by the action
to move North. The number of Q values required to represent this partial-order
task-hierarchy by a hierarchal reinforcement learner is reduced from 400 to only
81 values as will be shown later.
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Fig. 2. The one-room problem and its decomposition using a partial-order task-
hierarchy with one multi-tasking action

3 Constructing Partial-Order Task-Hierarchies

We will show how our hierarchical reinforcement learner constructs and solves
partial-order task-hierarchies taking a closely related approach to HEXQ [11].
HEXQ does not “fail” on any of the tasks in this paper but it can be inefficient
because each variable in the state description is forced to add another level to
the task-hierarchy. Multi-tasking actions overcome this issue.

Multi-tasking actions implement a similar function to the AND decomposi-
tion in StateCharts [13] that capture the property that the system state must
be simultaneously in each subtask being multi-tasked. The system state is the
orthogonal product of the state variables describing the subtasks. When an ac-
tion in one of the subtasks does not affect other subtasks it represents a kind
of independence which we exploit to decompose MDPs extending the idea of
StateChart AND decomposition to stochastic actions.

To discover partial-order task-hierarchies we process all variables in the state
tuple concurrently to construct the first level in the hierarchy. For each vari-
able we find the regions and region exits as in HEXQ [11]. In this paper we
restrict ourselves to two level hierarchies, but the construction can be extended
to multiple levels.

The root task state is also described by a tuple of variables, but now they
identify the regions the system state is in at the level below. The root task state
is therefore more abstract and factors out detail represented in the child subtask
regions. If the problem does not have any structure, regions will be singleton
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states and there will be no computational gain in this approach. Once regions
and region exits have been identified for all state variables we can set about
constructing a set of multi-tasking actions for the root task.

The original task is solved by solving the top level semi-MDP in the abstract
state-space using the multi-tasking actions. To solve the semi-MDP the HRL
has to commit to a linearization of the multiple tasks. We arbitrarily use the
state-tuple variable order, but one can imagine if this approach is used as an
approximation, the commitment to the order of processing may be governed by
a higher level context. We are afforded the same advantages in the flexibility of
execution as for partial-order plans.

3.1 Regions and Exits

We now look at the construction in more detail. A model (the transition and
reward function) is discovered for each state variable si using a random explo-
ration policy as for HEXQ [11]. For each variable we store the transition function
as a series of transitions from one state to the next for each action. We also tally
the frequency as we experience the transition multiple times and accumulate the
rewards to allow us to estimate the transition distribution and expected reward
functions.

As in HEXQ an exit is a state-action pair used to signify that the transition
or reward function cannot be well defined because, for example, there is state
aliasing in the projected state space. We declare a transition an exit whenever
another variable sl, i = l changes value or the problem terminates. For consis-
tency, problem termination is represented as a boolean goal variable changing
value from false to true. Importantly, and in contrast to HEXQ, we also store
the set of variables sl that change value for each exit.

Our hope is that the variables si show some independence and that we can
discover independent models over at least part of their state-action space. The
state-space for each variable is partitioned into regions (i.e. independent model
subspaces) using the same criteria as for HEXQ . A region is a block of the
partitioned state-space ensuring that all exit-states are reachable from all entry
states.

As an example, the ovals marked X and Y in Figure 2 show the two projected
state-spaces for the variables x and y. In this problem each projected state-space
is just one region. Exits are indicated by short lines emanating from each of the
10 states. For the Y region the exits may change the x values and state y = 9
may additionally exit to the goal. Similarly, the X region has exits from all states
that may change the y variable values.

3.2 Multi-tasking Actions

Multi-tasking actions are automatically generated by examining the exit infor-
mation from all the regions. They are created by considering all possible com-
binations of exits for those regions that comprise each abstract root-task state.
Multi-tasking actions are represented as a tuple (s1, ..., sn, a) indicating the exit
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state si each subtask should reach before executing the exit action a. The pro-
cedure for creating multi-tasking actions is as follows:

– for each abstract state in the root task we identify the unique region associ-
ated with each variable si. This is straightforward because of the root task
abstract state is a tuple of variables indexing these regions (see Section 3)

– we generate all possible combinations of exits, one from each identified re-
gion. Region exits are available from the procedure described in Subsection
3.1

– a multi-tasking action is created whenever all the exits in a combination:
1. have the same exit-action, and
2. change the same variables in the set of changed variables - the sl in

Subsection 3.1

To justify the first criteria above, we note that we require one action to ter-
minate each multi-tasked subtask to return control to the parent task. Only one
action can be performed at a time by the agent and therefore the exit-action
must be common to all exits.

The system is simultaneously in all subtasks invoked by a multi-tasking action.
When the multi-tasking action terminates it simultaneously terminates all sub-
tasks. A valid multi-tasking action must therefore potentially change the same
set of variables, justifying the second criteria. Together these criteria eliminate
a large number of combinations.

As for HEXQ, we need to define and solve the MDP associate with each region
in the multi-tasking action with the goal of reaching the exit-state and executing
the exit-action.

Let’s illustrate the construction using the one-room example. The two regions
X and Y have 21 and 20 exits respectively as shown in Figure 2. Exit combina-
tions include {(x = 4, a = North), (y = 9, a = North)}. This combination does
not qualify for producing a multi-tasking action because the exits fail to change
the same variable sl. The goal variable is changed by (y = 9, a = North), but
not by (x = 4, a = North).

In this problem it turns out that the only exit combination that meets the two
criteria for multi-tasking actions is {(x = 2, a = North), (y = 9, a = North)}
producing only one multi-tasking action (x = 2, y = 9, a = North). Note that in
this case they both have exit-action a = North and they both change the same
variables, i.e. x, y and the goal.

The X region MDP takes the agent to x = 2 and the Y region MDP takes
the agent to y = 9. The multi-tasking action is completed by executing action
North. The number of Q values for the root task is |S||A| = 1 ∗ 1 = 1 and
|S||A| = 10 ∗ 4 = 40 for each of the child subtasks, making a total of only 81
vales required to store the one-room task. In comparison HEXQ requires a total
of 610 Q values.

The total reward for a multi-tasking action is the cumulative reward from
associated subtasks because subtasks are independent and executed serially. As
in HEXQ, policies for problems with deterministic actions are optimal and hi-
erarchically optimal for stochastic actions. Hierarchical optimality stems from
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having single exit subtasks ensuring that the policies are the best possible given
the constraints of the hierarchy [11].

4 Results

We now use several mazes and a larger breakfast task to demonstrate the ver-
satility of automatic partial-order HRL.

4.1 Mazes

The six mazes in Figure 3 are solved using partial-order HRL. In each case we
assume a similar problem formulation to the one-room problem. Mazes (a) to

Fig. 3. Mazes used for Partial-Order HRL
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Table 1. Summary statistics for the partial-order task-hierarchical decomposition for
the various mazes. |S| is the number of abstract states discovered, A/S the average
number of multi-tasking actions per abstract state generated,

�
|S||A| shows the mem-

ory requirements to represent the abstract problem,
�

|S||A|% the size of the abstract
subtask as a % of the original problem size and Tot% is the decomposed problem size
as a % of the original problem.

Maze |S| A/S
�

|S||A|
�

|S||A|% Tot%
(a) 4 10.3 41 10.25 110.3
(b) 9 9.0 81 20.25 92.3
(c) 10 3.7 37 9.250 49.3
(d) 90 3.4 305 76.25 98.3
(e) 4 4.0 16 4.000 110.3
(f) 4 6.8 27 6.750 158.8
Fig 2 1 1.0 1 0.250 20.3

(d) represent the state-space with a coordinate like attribute pair (x, y). Maze
(e) is similar to the others except that X now takes on 25 different values to
represent the position in each of the rooms and Y has 4 values to identify the
room. In maze (f) we mix the two representations from mazes (a) and (e). The
left half of the maze is described by coordinates and the right half, by room and
position-in-room variables.

We are careful to ensure that state values are not aliased as this would result
in a partially observable problem. In each case the order of the variables defining
the state vector is arbitrary and any order will give the same results.

The maze in Figure 3 (a) is a four-room problem. This maze generates two
regions for each of the variables X and Y as shown in Figure 4. Interestingly
the root task that is generated has four abstract states representing the four
rooms in the domain. This demonstrates an ability of the algorithm to represent
the problem at an abstract level to reflect the structure. There are 11 multi-
tasking actions generated for the top-left-room state and 10 for the other three
abstract room states. Most of these multi-tasking actions bump the agent into
the walls and do not lead the agent out of the rooms. These effects are learnt as
the top-level semi-MDP is solved.

Maze (b) decomposes into three regions per variable and hence 9 abstract
root level states. Agents starting in the center region of the maze need to follow
a spiral like path to reach the goal and learn to cut corners in the lower part of
the maze to minimise the distance to the goal.

Maze (c) has one region for the X variable, 10 regions for the Y variable and
an average of 3.7 multi-tasking actions per abstract state.

Maze (d) illustrates a more complex situation where it might appear at
first that abstraction is not possible. The algorithm found the two-state region,
[y = 1, y = 2], and reduced the number of multi-tasking actions for most ab-
stract states due to the constraints in the maze, resulting in a slight reduction
in overall memory requirements and the abstract problem reduced to 76% of the
original.
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Fig. 4. The automatic decomposition of the four-room problem of maze (a) in Figure 3

Mazes (e) and (f) each use different representations for the base-level states
and each still automatically decomposes to an abstract problem with four states
representing the four rooms. While the number of abstract states is the same
and they refer to the same rooms, the subtasks invoked by their multi-tasking
actions vary. In contrast to maze (a), maze (e) in Figure 3 generates 1 region for
the X variable and 4 regions for the Y variable. At the abstract level the Figure
3 (e) agent would explore a possible bottom-left room exit to the west, whereas
the maze (a) agent would not. The latter already represents the impossibility of
a West exit at x = 0, while the former knows it may be able to exit West at
x = 10, but still needs to learn in which rooms.

Table 1 summarises the abstraction results for the room mazes. Memory re-
quirements and problem sizes are measured in terms of the number of table
entries required to store the value function. In each case we can find an ab-
stract representation of the problem that is smaller than the original. Some of
the mazes require more total storage after decomposition when subtasks are in-
cluded, but we must remember that in practice problems will be larger with
the cost of subtask storage amortised over many more contexts. For example, in
maze (e) with four rooms the total partial-order task-hierarchy memory require-
ments exceed that of the original problem. The total memory requirements for
n rooms of size 5 by 5 is 100n for the original problem and only 400 + 8n for
one decomposed with a partial-order task-hierarchy. We start reducing the total
problem size when n > 4 rooms.
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4.2 The Breakfast Task

We demonstrate a decomposition of a breakfast task that uses three variables
and stochastic actions. A robot must learn to co-locate a bowl, milk and cereal
on a table, eat the cereal, replace the milk in the refrigerator and move the bowl
to the sink to be washed up. We represent the kitchen as a 2D 100 location grid-
world in which the refrigerator, cereal cupboard, table and sink have separate
locations. The state-space is defined by a vector giving the location of the bowl
(100 locations), the milk (100 locations) and the cereal (101 locations, one being
in the stomach). There are 12 primitive actions allowing each of the objects to
be moved Up, Down, Left, Right, and one action to eat the cereal. The actions
moving each object are stochastic in the sense that the location of an object at
the next step is 80% as intended and 20% as if moved in another direction with
equal likelihood. The reward per action is -1 and 1000 for successful completion.

Partial-order HRL constructs the task-hierarchy for the cereal subtask in Fig-
ure 1 (top) and finds the abstract policy that is equivalent to the center part
of the partial-order plan, Figure 1 (bottom). There are only two abstract states
with one multi-tasking action each. The reinforcement learning specification for
the original representation of the problem requires a table size of 13,130,000 com-
pared to a partial-order task-hierarchy decomposition of 6,515. Figure 5 shows

Fig. 5. Breakfast task performance: Partial-order HRL outperforms the “flat” RL by
orders of magnitude in learning time and in the level of performance. Two learning
rates of 0.1 and 0.01 were used for the “flat” RL.
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the improvement in performance. The results including the time to explore and
build the subtasks for the partial-order hierarchical reinforcement learner.

5 Future Work and Conclusion

Our contention is that this type of decomposition is common in real world tasks
and that robots need to decompose the environment in this way to effectively
solve everyday chores. For example in assembly operations the order of construc-
tion of components parts themselves may not matter. When writing a paper the
order of preparation of the figures is not important, etc.

Future work envisages automatic decomposition when subtasks are interde-
pendent with conflicting or cooperative goals to achieve near optimal perfor-
mance. The multi-tasking action

⊕
will then need to arbitrate the decision as

to which action to execute within a subtask so as to best compromise between
subtask goals. Related research that implements a run-time choice between (pos-
sibly) conflicting child subtasks includes W-Learning [14], modular Q-Learning
[15], Q-Decomposition [16] and Co-articulation [17]. The challenge is to extend
the automatic discovery of multi-tasking actions to include conflicting subtask
choices and continuing (infinite horizon) problems.

Task-hierarchies can be further extended to include abstract concurrent ac-
tions

⊗
by projecting both state and action vectors and modelling the state-

action spaces si×aj for all i, j. The approach would entail abstracting subsets of
variables and actions and searching for independent regions that can be executed
concurrently. A key difference between a concurrent and a multitasking action
is that the former implies parallel execution of primitive actions and the latter
does not.

The contributions of this paper include the introduction of partial-order task-
hierarchies and their use in automatic problem decomposition and efficient solu-
tion of MDPs using a hierarchical reinforcement learning approach. Given that
in the real world subtasks tend to be nearly independent, this representation is
anticipated to help scale reinforcement learning significantly.
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Abstract. This paper describes a unique and optimal method for real-
time global path planning and collision avoidance for navigation of a
mobile robot in complex time varying environments. Occupancy based
3D grid map and Gaussian distribution model based obstacle prediction
are employed to represent the dynamic environment. Path planning and
obstacle avoidance are performed by applying a cost-evaluation function
on time-space Distance Transforms to uniquely produce the optimal path
at the time of planning. Experimental results are presented verifying the
effectiveness and versatility of the algorithm in both predictable and
imperfectly predictable time varying environments.

1 Introduction

Path planning in an unknown environment or partially unknown environment
with dynamic obstacles has always been a challenging problem and the core of
many research efforts. The motion of a moving entity in such environment is
quite often unpredictable and can not be perfectly modelled.

Many approaches and algorithms have been proposed for such time varying
environments and implemented on various robots. However, only few of these
discuss scenarios with obstacle speed at that of humans or higher, and with
multiple moving entities. The methods based on potential field approach such
as Virtual Force Field (VFF) [1] applies attractive force field towards goal and
repulsive force fields away from obstacles to calculate the path. Other methods
based on curvature velocity method (CVM) [2] and dynamic window approach
[3] take account of the trajectory property of the motion to avoid colliding with
obstacles. These methods only work perfectly in static or very slow time varying
environments. To ensure collision-free movements for the mobile robots in the
presence of other moving objects, one approach is to take obstacle motion esti-
mation as the first step, before an obstacle avoidance algorithm is employed as
suggested by Fiorini in Velocity Obstacle approach [4]. Other methods proposed
were Hidden Markov Model (HMM) [5] and Visual Servoing [6]. However, these
are computationally very expensive and performance cannot be obtained in real-
time and also fail to deliver an optimal path in many situations, especially when
the obstacle velocities are higher than the robot.
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Our method not only ensures real-time performance for time varying environ-
ments, but also finds the shortest route to its destination. Several examples are
presented in complex scenarios for the optimal approach to avoid obstacles while
moving towards the goal. Section 2 presents a brief background study leading
to the development of our approach, which is described in Section 3. A detailed
analysis of the results and the performance of the method based on experiments
in a 3D virtual world is presented in Section 4.

2 Previous Work

2.1 Distance Transform (DT)

Rosenfeld and Pfaltz [7] introduced the DT algorithm for image processing in 2D
binary image array mainly for analysis of shape of a blob. Jarvis [8] extended it
for path planning for a mobile robot in the space of the robot’s environment. The
basic approach of the method is to propagate distance in an incremental manner
out from specified goals, flowing around obstacles, until all of the free space has a
distance from the nearest goal parameter associated with it [9]. Moving down the
steepest descent path from any free-space cell in this distance transformed space
generates the least-cost (in distance terms) path to the nearest goal. The DT
method is quite popular for its simplicity and robustness. It can also be easily
adapted to many situations such as, indoor or outdoor, known or unknown, static
or time-varying obstacle field environments.

2.2 Occupancy Grid (OG)

Autonomous robots must be able to learn and maintain models/maps of their
environments or/and obstacles for successful navigation. A 3D Grid-based map
is used to represent the configuration space of a robot projected into an x-y plane
with evenly spaced grid cells, known as an Occupancy Grid. Occupancy Grids
were originally proposed by Elfes and Moravec [10] and have a value attached to
each grid cell that measures the probabilistic belief that a cell is occupied based
on sensor readings. This is one of the simplest and widely used models which
perfectly fit to our environment model.

2.3 Visibility Based Path Planning

Marzouqi [11] proposed a new visibility-sensitive path planning for covert robotic
navigation. The aim was to minimize the robot’s exposure to hostile sentries.
The approach depends on estimating a cost value at each free-space location
that presents the risk of being seen by any sentry. Based on the DT algorithm
methodology, the minimum visibility-distance cost to a goal is calculated at
each cell in the grid-based environment map. Moving along the steepest descent
trajectory from any starting point generates an optimal covert path to a goal.
Our method minimises a path cost made up of accumulated weighted mixtures
of distance and risk of collision, thus providing efficient and low risk trajectories.
The approach is explained in depth in the following section.
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3 Our Approach

3.1 Environment Model

Time varying environment is represented using a three-dimensional grid based
map, where two of the dimensions are used to represent the 2D physical space,
and time providing an extra dimension as the time/space model. The occupancy
map of the system includes permanent obstacles and places which are inaccessible
to robot, such as, wall, furniture, hole in a ground, etc.

3.2 Obstacle Model and Cost Evaluation

Obstacle Modelling concerns the capturing and integration of volumetric occu-
pancy and visual data from the environment to define just where the robot might
move and possibly also aid in its localisation. Our obstacle model includes all
the dynamic obstacles or initially unknown static obstacles. The model confirms
the occupancy of a cell by exhibiting the probability of it for being occupied by
an obstacle depending on the sensor readings. The probability of each cell in the
occupancy grid (which are within the field-of-view of sensor) being occupied by
an obstacle, Pobs, after a sensor reading s, is updated by applying Equation (1).

Pobs(s) = (1 − α)Pobs(s− 1) + αC(s) (1)

where,α is the confidence constant indicating probability of a cell being an obstacle
given the sensor reading to be positive for obstacle,C(s) = 1 for a cell if sensor reads
positive for obstacle, and C(s) = 0 for a negative sensor reading.

Given two consecutive readings for an obstacle location, the velocity of the ob-
stacle is determined. If the obstacles are perfectly predictable, the velocities can
be used to predict the exact position of the obstacles and robot itself in the future.
For an imperfectly predictable environment, the velocity is used to construct the
probability model for the obstacle in third dimension, using the Gaussian distri-
bution model to determine the position of obstacle in future frames. As time pro-
gresses, the mean position of Gaussian distribution, i.e., Gaussian peak decreases
and drifts, and standard deviation increases. This is expected because of the in-
crease in uncertainty for obstacle location in the future. The amount of the drift
vector is determined from the predicted velocity of the obstacle.

The obstacle cost Θ(c), i.e., the weight of the occupancy can easily be evalu-
ated from the probability calculation multiplied by a tuneable constant, δ.

Θ(c) = δPobs(c) (2)

Safer path can be obtained by choosing higher δ value relative to distance costs,
which is described in the following subsection.

3.3 Distance Cost

A simple and intuitive cost structure ζ(c) is used for distance cost in a 3D grid
based on Manhattan Distance. Standing still for one time interval is assigned a
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(a) Time Frame, t + 9∆t (b) Time Frame, t + 16∆t

(c) Time Frame, t + 31∆t (d) Time Frame, t + 71∆t

Fig. 1. A scenario where longer path is preferred by the algorithm

unit cost. Moving forward, backward or sideways is assigned a cost of two units,
and moving diagonally a three cost units. Using this cost structure, the distance
cost Φ(c)t of cell c for time layer t was calculated as in Equation (3):

Φ(c)t = min9
i=1[Φ(n(i))t−1 + ζ(n(i))t−1] (3)

where, ζ(n(i))t−1 is the cost from the cost structure between time layer t−1 and
t from a neighbour n(i) to the current cell c. The distance cost is calculated from
destination growing outwards. The irreversibility of time property is exploited
in assigning this DT based cost by allowing a single pass raster scanning only
along one direction of time.

3.4 Path Planning Algorithm

An important advantage offered by the DT is its ability to accept additional
cost factors other than the distance. Once the obstacle cost and the distance
cost are calculated, the total cost Ψ(c)t for a cell c can be obtained for path
planning from Equation (4). If no moving obstacles are present in the map, then
the distance cost can also be used as the total cost.

Ψ(c)t = min9
i=1[Ψ(n(i))t−1 + ζ(n(i))t−1 +Θ(c)] (4)
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(a) Time Frame, t + 10∆t (b) Time Frame, t + 23∆t

(c) Time Frame, t + 29∆t (d) Time Frame, t + 42∆t

Fig. 2. A scenario where the moving entity walking in front of the robot suddenly stops
blocking the path

Once again, the algorithm starts from destination growing outward as in dis-
tance cost. It can be seen from Equation (4) that the total cost can directly be
computed from obstacle cost, avoiding an extra step of distance cost calculation.
Finally, path for a robot is obtained by following the steepest descent path from
the robot’s position towards the destination as explained earlier. The generated
path can be tuned to provide a balance between length and risk of the path by
adjusting the tuneable constant δ.

4 Experimental Results

The technique described in the previous section was tested rigorously for a di-
verse range of scenarios. Experiments were conducted in a virtual 3D simulated
world with settings for obstacles of different shapes, sizes, locations and veloci-
ties. Robot position was assumed to be a point, of about the size of a cell in the
map and obstacles were dilated by appropriate amount in order to avoid the col-
lision with the robot. It was assumed that the localisation of the robot position,
obstacles and moving entities were accurately estimated in the experiments.
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(a) Time Frame, t + 10∆t (b) Time Frame, t + 23∆t

(c) Time Frame, t + 27∆t (d) Time Frame, t + 45∆t

Fig. 3. A scenario where the moving entity walking in front of the robot makes a
sudden u-turn towards the robot

Figure 1 represents a collection of key snapshots from the simulator at different
time slices for a complex scenario with variable speed moving obstacle fields.
When the robot encountered the predicted moving obstacles, it waited until the
first obstacle passed and then chose to go across before continuing towards its
destination. As it demonstrates, in some circumstances choosing a longer path
or waiting for a obstacle to pass can be an optimal approach. Our algorithm
automatically deals with such situations. The above circumstance can easily be
assumed in a common office environment, when the flow of traffic through a
corridor is higher.

Figure 2 is a classic case for an unpredictable environment. Imagine a person
walking in front of a robot in a narrow hallway suddenly stops, may to look at a
painting on the wall or other reasons. In such scenario, the robot recalculates its
path from its present location and continues on its newly found optimal path. If
no new path is found, robot waits for the person to move out and then continues.

The scenario in Figure 3 is a slight different case from Figure 2 in that the
moving entity in front of the robot makes a sudden u-turn towards the robot in
a narrow corridor. In such case, the algorithm gives priority to the moving entity
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by pulling itself back and giving way to the entity. Once the obstacle is out of
the way, the robot continues towards the goal.

5 Conclusion

From the results, it is apparent that the algorithm performs very well for optimal
path planning in both predictable and unpredictable time-variable environments.
The algorithm is not only simplistic, but also adaptive and flexible to allow
different conditions for cost evaluations such as collision-risk factor and path
optimality.

The memory usage and computational complexity can be further reduced by
integrating the algorithm with topological mapping system and parallelising the
computational steps. Because of the versatility of the algorithm, it can easily be
extended for many different applications, such as, following or tracking people,
covert path planning for moving sentries, indoor and outdoor navigations, which
are the open areas of future research work.
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Abstract. We describe a probabilistic reference disambiguation mechanism de-
veloped for a spoken dialogue system mounted on an autonomous robotic agent.
Our mechanism performs probabilistic comparisons between features specified in
referring expressions (e.g., size and colour) and features of objects in the domain.
The results of these comparisons are combined using a function weighted on the
basis of the specified features. Our evaluation shows high reference resolution
accuracy across a range of spoken referring expressions.

1 Introduction

This paper describes a reference disambiguation mechanism developed for the language
interpretation module of a robot-mounted spoken dialogue system. This dialogue sys-
tem will eventually interact with people in order to enable the robot to assist them in
household tasks. Hence, we focus on referring expressions which feature household
objects, such as “the small chair” and “the big blue mug”. Our mechanism performs
probabilistic comparisons between the features stated in a referring expression and the
features of candidate objects (e.g., those in the room) in order to determine how well
these objects match the specified features. The system currently handles several fea-
ture types, including lexical item, colour, size, ownership and location, exhibiting high
reference resolution accuracy. The contributions of our mechanism are: (1) probabilis-
tic procedures that perform feature comparisons, and (2) a function that combines the
results of these comparisons. These contributions endow our mechanism with the abil-
ity to handle imprecise or ambiguous referring expressions. For instance, the expression
“the small chair” is ambiguous in the context of a room that contains a big chair, a small
armchair and a divan, as none of these objects matches the given description perfectly.
Our mechanism ranks these objects according to how well they match the lexical item
(‘chair’) and size (‘small’) specifications in the utterance. If an ambiguity remains, this
ranking supports the formulation of a clarification question.

This paper is organized as follows. Section 2 outlines the interpretation process, and
briefly discusses the estimation of the probability of an interpretation. The probabilistic
feature comparison process is described in Section 3. Section 4 presents the evaluation
of the reference resolution mechanism. Related research and concluding remarks are
given in Sections 5 and 6 respectively.
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ICG  −− Instantiated Concept Graph
UCG −− Uninstantiated Concept Graph
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Fig. 1. Stages of the interpretation process
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Fig. 2. UCG and ICG for a sample utterance

2 Interpretation Process

Our language interpretation module, called Scusi?, processes spoken input in three
stages: speech recognition, parsing and semantic interpretation (Figure 1). In the first
stage, it runs the Automatic Speech Recognizer (ASR) Microsoft Speech SDK 5.1 to
generate candidate texts from a speech signal. Each text is assigned a score that reflects
the probability of the words given the speech wave. The second stage applies Char-
niak’s probabilistic parser (ftp://ftp.cs.brown.edu/pub/nlparser/) to gener-
ate parse trees from the texts. The parser generates up to N (= 50) parse trees for each
text, associating each parse tree with a probability. During semantic interpretation, parse
trees are successively mapped into two representations based on Concept Graphs [1]:
first Uninstantiated Concept Graphs (UCGs), and then Instantiated Concept Graphs
(ICGs). UCGs are obtained from parse trees deterministically — one parse tree gener-
ates one UCG. A UCG represents syntactic information, where the concepts correspond
to the words in the parent parse tree, and the relations are derived from syntactic infor-
mation in the parse tree and prepositions. Each UCG can generate many ICGs. This
is done by nominating different instantiated concepts and relations from the system’s
knowledge base as potential realizations for each concept and relation in a UCG.

Figure 2 illustrates a UCG and an ICG for an utterance containing two referring ex-
pressions (“long yellow tray” and “table in the corner”). The intrinsic features of an
object (e.g., colour and size of the tray) are stored in the UCG node for this object,
while composite features that involve several objects (e.g., “the table in the corner”)
are represented as sub-graphs of the UCG (and then the ICG). This is because intrinsic
features can be compared directly to features of objects in the knowledge base, while
features that depend on the relationship between several objects require the identifica-
tion of these objects and the verification of this relationship. In our example, all the
tables and corners in the room need to be considered, and the table/corner combination
that best matches the given specification is eventually selected. In this paper, we focus
on algorithms for selecting objects that match intrinsic specifications (Section 3). The

ftp://ftp.cs.brown.edu/pub/nlparser/
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determination of objects that match composite specifications is done by the procedure
that builds ICGs and estimates their overall probability [2].

Our interpretation algorithm applies a sequence of selection-expansion cycles to
build a search graph, where each level of the graph corresponds to a stage of the in-
terpretation process (Figure 1). In each cycle, our algorithm selects an option for con-
sideration (speech wave, textual ASR output, parse tree or UCG), and then expands this
option to the next level of interpretation. When an option is expanded, a single candidate
is returned for this next level. For example, when we expand a UCG, the ICG-generation
module returns the next most probable ICG for this UCG. The selection-expansion
process is repeated until one of the following happens: all options are fully expanded, a
time limit is reached, or a specific number of iterations is performed. At any point after
completing an expansion, Scusi? can return a list of ranked interpretations (ICGs) with
their parent sub-interpretations (text, parse tree(s) and UCG(s)).

2.1 Estimating the Probability of an ICG

Scusi? ranks candidate ICGs according to their probability of being the intended mean-
ing of a spoken utterance. Given a speech signalW and a context C, the probability of
an ICG I is represented as follows.

Pr(I|W, C) ∝
∑
Λ

Pr(I|U, C) · Pr(U |P ) · Pr(P |T ) · Pr(T |W ) (1)

where U , P and T denote a UCG, parse tree and text respectively. The summation
is taken over all possible paths Λ = {P,U} from a parse tree to the ICG, because a
UCG and an ICG can have more than one parent. The ASR and the parser return an
estimate of Pr(T |W ) and Pr(P |T ) respectively; and Pr(U |P )=1, since the process of
generating a UCG from a parse tree is deterministic.

The estimation of Pr(I|U, C) is described in detail in [2]. Here we present the final
equation obtained for Pr(I|U, C), and outline the ideas involved in its calculation.

Pr(I|U, C)≈
∏
k∈I

Pr(u|k) Pr(k|kp, kgp) Pr(k|C) (2)

where k is an instantiated node in ICG I , u is the corresponding node in UCG U , kp is
the parent node of k, and kgp the grandparent node. For example, Location is the parent
of corner03, and table01 the grandparent of corner03 in the ICG in Figure 2.

– Pr(u|k) is the “match probability” between the features of a node k in ICG I and
the corresponding node u in UCG U , e.g., how similar an object in the room is to
“the long yellow tray” (Section 3).

– Pr(k|kp, kgp) is the structural probability of ICG I , where structural information is
simplified to node trigrams (e.g., whether the Location of table01 is corner03).

– Pr(k|C) is the probability of a concept in light of the context, which at present
includes only domain knowledge, i.e., all instantiated concepts have the same prior.
In the future, we propose to estimate these prior probabilities by combining salience
scores obtained from dialogue history with visual salience.
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3 Probabilistic Feature Comparison

In this section, we describe how Scusi? handles three intrinsic features: lexical item,
colour and size (other intrinsic features, such as shape and texture, will be handled like
colour). For instance, “the big red cup” specifies the features lexical item="cup",
colour="red", and size="big". These features are compared to the features of ob-
jects in the domain in order to propose suitable candidates for “the big red cup” when
an ICG is created from a parent UCG (semantic interpretation, Section 2).

At present, we make the simplifying assumptions that (1) the robot is co-present with
the user and the possible referents of an utterance; and (2) the robot has an unobstructed
view of the objects in the room and up-to-date information about these objects (obtained
through a scene analysis system [3]). These assumptions obviate the need for planning
physical actions, such as moving to get a better view of certain objects or leaving the
room to seek objects that better match the given specifications.

Building a list of candidate concepts. For each node u in a UCG U , the task is to
construct a list of candidate instantiated concepts k ∈ K that are a reasonable match
for u (K is the knowledge base of objects in the domain). This list is built as follows.
1. Estimate Pr(u|k), the probability of the match between the features of u and those

of each candidate instantiated concept k.
2. Rank the candidates in descending order of probability.
3. Filter out the candidates whose probability falls below a certain threshold, and put

them in a reserve list (the threshold is feature dependent and determined empiri-
cally). This list is accessed if the “A-list” candidates are deemed unsuitable when
factor Pr(k|kp, kgp) in Equation 2 is calculated.

For example, consider a request for a blue mug, assuming the knowledge base con-
tains several mugs, some of which are blue. Firstly, for all the concepts in the knowledge
base, we calculate the probability that they could be called ‘mug’ (e.g., mugs, cups, con-
tainers). Next, we estimate the probability that their colour could be considered ‘blue’.
The candidates are then ranked in descending order of probability, and those whose
probability exceeds a threshold are retained in the A-list. In this example, aqua cups
stay in the A-list, while red mugs are placed on reserve (sometimes it may be better to
offer a red mug than no mug at all).

Estimating the probability of a match. The probability of the match between a node u
specified in UCG U and a candidate instantiated concept k ∈ K is estimated as follows.

Pr(u|k) = Pr(uf1 , . . . ,ufp |kf1 , . . . ,kfp) (3)

where (f1, . . . , fp) ∈ F are the features specified with respect to node u, F is the set
of features allowed in the system, ufi is the value of the i-th feature of UCG node u,
and kfi is the value of this feature for the instantiated concept k.

Assuming that the features of a node are independent, the probability that an instan-
tiated concept k matches the specifications in a UCG node u can be rewritten as

Pr(u|k) =
p∏

i=1

Pr(ufi |kfi) (4)
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We use a distance function h : R+ → [0, 1] to map the outcome of a feature match
to the probability space. Specifically,

Pr(uf |kf ) = hf (uf ,kf ) (5)

In the absence of other information, it is reasonable to perform a linear map, and
interpret the resultant values as probabilities. That is, the higher the similarity between
requested and instantiated feature values (the shorter the distance between them), the
higher the probability of a feature match.

In the following sections, we present the calculation of Equation 5 for the intrinsic
features supported by our system (lexical item, colour and size). In agreement with
[4,5], lexical item and colour are considered absolute features, and size (e.g., big, small,
long) is considered a relative feature (relative to the size of other candidates).

3.1 Lexical Item

We employ the Leacock and Chodorow similarity measure [6], denoted LC, to compute
the similarity between the lexical feature of u and that of k (the LC measure yielded the
best results among those in [7]). The LC similarity score, denoted sLC, is obtained from
a word-similarity database constructed with the aid of WordNet. This score is converted
to a probability by applying the following hlex function.

Pr(ulex|klex)=hlex(sLC(ulex,klex))=
sLC(ulex,klex)

smax

where smax is the highest possible LC score.

3.2 Colour

We currently make the simplifying assumptions that lighting conditions are good, and
that colour is independent of object type and of the colour of surrounding objects.
Colour is represented by means of the CIE 1976 (L, a, b) colour model, which has been
experimentally shown to be approximately perceptually uniform [8]. L denotes bright-
ness (L = 0 for black, and L = 100 for white), a represents position between green
(a < 0) and red (a > 0), and b position between blue (b < 0) and yellow (b > 0). The
range of L is [0, 100], and the practical range of a and b is [−200, 200]. The probability
of a colour match between a UCG concept u and an instantiated concept k is

Pr(ucolr|kcolr)=hcolr(ucolr,kcolr)=1 − ED(ucolr,kcolr)
dmax

where ED is the Euclidean distance between the (L, a, b) coordinates of the colour
specified for u and the (L, a, b) coordinates of the colour of k, and dmax is the maximum
Euclidean distance between two colours (=574.5). For instance, the (L, a, b) coordinates
for blue, azure and royal blue are (29.6, 68.3, −112.1), (98.8,−5.1,−1.8) and (46.8,
17.8, −66.7) respectively, yielding ED(blue,royal blue)= 70.05 and ED(blue,azure) =
149.5, with the corresponding probabilities 0.88 and 0.74 (the mapping from colour
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name to RGB was obtained from public web sites, e.g., http://en.wikipedia.
org/wiki/List of colors, and a mapping function is used to convert RGB to
CIE [8]). Thus, given a request for a blue cup, a royal blue cup has a higher colour
match probability than an azure cup. This probability is calculated for the objects that
pass the threshold for lexical item (see Building a list of candidate concepts).

3.3 Size

Unlike lexical item and colour, size is considered a relative feature, i.e., the probability
of a size match between an object k ∈ K and a UCG concept u depends on the sizes
of all suitable candidate objects in K (those that exceed the thresholds for lexical and
colour comparisons). The highest probability for size match is then assigned to the
object that best matches the required size, while the lowest probability is assigned to
the object which has the worst match with this size.

This requirement is achieved by the following hsize function, which like Kelleher’s
pixel-based mapping [9], performs a linear mapping between usize and ksize.

Pr(usize|ksize) = hsize(usize,ksize) =

⎧⎨⎩
αksize

maxi{ki
size}

if usize ∈ {‘large’/‘big’/. . .}
α mini{ki

size}
ksize

if usize ∈ { ‘small’/‘little’/ . . .}
(6)

where α is a normalizing constant, and ki
size is the size of candidate object ki (this

formula is adapted for individual dimensions, e.g., when “a tall mug” is requested).
For example, suppose there are only three cups in the room, cup1, cup2 and cup3,

with volumes 0.5, 0.6 and 0.9 dm3 respectively. The table below shows the probabilities
obtained for each cup for the expression “the large cup” and “the small cup” (the highest
probability is highlighted).

k = cup1 cup2 cup3

Pr(large cup|ksize) 0.5α
0.9 < 0.6α

0.9 < 0.9α
0.9

Pr(small cup|ksize) 0.5α
0.5 > 0.5α

0.6 > 0.5α
0.9

Although this size-comparison scheme has produced satisfactory results (Section 4),
it has the limitation that the size match probability of the instantiated concepts depends
on the number of candidates being considered. In the future, we propose to investigate
a size scheme based on people’s perceptions.

3.4 Combining Feature Scores

People refer to objects by drawing attention to a range of features, e.g., colour, compo-
sition and location, which distinguish the target objects from potential distractors. Dale
and Reiter [4] found that people often present features that are not strictly necessary to
identify an item, and ranked features in the order type � absolute adjectives � relative
adjectives, where colour is an absolute adjective and size is a relative adjective. These
findings prompted us to incorporate a weighting scheme into Equation 4, whereby the

http://en.wikipedia.
org/wiki/List_of_colors
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features are weighted according to their usage in referring expressions. That is, higher
ranking features are assigned a higher weight than lower ranking features.

Since Equation 4 is a product of the match probability for each feature in a referring
expression, simply multiplying this probability by a weight wfi for each feature fi will
not affect the overall probability of the various candidate objects. To overcome this
problem, we used the weight of a feature to adjust the range of values of the match
probability for this feature. Specifically, given a match probability Pr(ufi |kfi) and a
weight wfi (0 < wfi ≤ 1) for feature fi, the adjusted match probability is

Pr′(ufi |kfi) = Pr(ufi |kfi) × wfi + 1
2 (1 − wfi) (7)

The effect of this mapping is that features with high weights have a wider range of
probabilities (centered on 0.5), and hence a stronger influence on match probability,
than features with low weights. For instance, wfi = 0.6 yields 0.2≤Pr′(ufi |kfi )≤0.8,
while wfi = 0.8 yields 0.1≤Pr′(ufi |kfi)≤ 0.9. In the future, we intend to investigate
a weighting scheme based on exponentiation [10].

4 Evaluation

We performed two experiments to evaluate our system. The first experiment focused
on determining the best feature weights, and the second on measuring Scusi?’s overall
interpretation performance. Both experiments have the following aspects in common.
(a) They are based on six “worlds” constructed by us, each comprising 13-26 objects
(World 2 is shown in Figure 3); the knowledge base for each world contained only the
items in this world; the designation, size and colour of these items were chosen so they
had similar features, e.g., a stool may also be called ‘seat’ or ‘chair’, and there were
objects in different shades of the same colour. (b) Utterances were recorded by one of
the authors, as the ASR is speaker dependent, and at present we do not handle features
of spontaneous speech. (c) Scusi? was set to generate at most 300 sub-interpretations
in total (including texts, parse trees, UCGs and ICGs) for each utterance in the test set;
this takes 6 seconds from parse tree to full interpretation.

Experiment 1. We composed a set of 7-15 descriptions for each world (e.g., “the long
yellow tray”), yielding a total of 56 referring expressions (these expressions were con-
sistent with those generated by our trial subjects in Experiment 2). To establish which
objects should be considered the Gold referent, pictures of the six worlds and their ac-
companying descriptions were shown to two human taggers. The taggers independently
identified one or more objects which best corresponded to each description (inter-tagger
agreement was κ = 0.86 [11]). When the taggers disagreed, Gold standards were de-
rived through consensus-based annotation [12], but multiple Gold referents were al-
lowed if several objects in the domain matched a specified object, e.g., “a mug”.

Ideally, a machine learning approach should be used to determine the best weight
assignment for the features (wlex, wcolr, wsize) in Equation 7. However, our corpus and
domain are too small. Hence, we tried different feature combinations, and report here
on the features that yielded the most interesting results.
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Fig. 3. Items in World 2

# Gold refs with prob Not Avg adjust Avg # refs to
in top 1 top 3 found rank (rank) Gold (iters)

Experiment 1
BASELINE 26 47 0 1.33 (1.25) 2.8 (22)
DRW-HIGH 28 51 0 0.91 (0.84) 2.8 (21)
DRW-MED 33 54 0 0.70 (0.63) 2.7 (20)
DRW-LOW 33 50 0 0.82 (0.75) 2.8 (20)
Total 56 56 (300)

Experiment 2
DRW-MED 49 65 1 0.85 (0.82) 0.88 (18)
Total 75 75 (300)

Fig. 4. Scusi?’s performance for Experiment 1 with
different feature weights, and for Experiment 2 with
best weights

– BASELINE (1, 1, 1).
– DRW – three weighting schemes based on the feature ordering proposed by Dale

and Reiter [4] and Wyatt [5]: DRW-HIGH (1, 0.9, 0.8), DRW-MED (1, 0.8, 0.6), and
DRW-LOW (1, 0.67, 0.33).

Figure 4 summarizes our results for both experiments. Column 1 shows the weight-
ing scheme. Columns 2 and 3 show how many of the descriptions had Gold referents
whose probability was the highest (top 1) or among the three highest (top 3), e.g., for
Experiment 1, the baseline scheme yielded 26 referents with the top probability, and
47 referents within the top 3 probabilities. Column 4 indicates the number of cases
where Gold referents were not found. The average adjusted rank and rank of the Gold
referent appear in Column 5. The rank of a referent r is its position in a list sorted
in descending order of probability (starting from position 0), such that all equiprob-
able referents are deemed to have the same position. The adjusted rank of a referent
r is the mean of the actual positions of all the referents that have the same probabil-
ity as r. For example, if we have 3 top-ranked equiprobable referents, each has a rank
of 0, but an adjusted rank of 0+2

2 . Column 6 indicates the average number of refer-
ents created and iterations performed until the Gold referent was found (from a total of
300 iterations).

For this experiment, the ASR had a 20% error rate (the correct text did not have the
top score in 20% of the cases). The three weighted schemes outperformed the base-
line (the difference in performance is statistically significant with p < 0.03 1). All
the schemes found all the Gold referents, but the rank and adjusted rank of the ref-
erents is lower (better) for the weighted schemes, in particular for DRW-MED. In fact,
DRW-MED appears to exhibit the best performance, but this result is statistically sig-
nificant only for DRW-MED versus DRW-HIGH (p < 0.01). These results indicate that
reference disambiguation performance is improved by adjusting the probabilities of
intrinsic features using feature weights which reflect priorities obtained from observa-
tions. However, further experiments are required to determine an optimal weighting
scheme.

1 Sample paired t-tests were used for all statistical tests.
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Experiment 2. We gathered a corpus of referring expressions by conducting an online
survey as follows. We showed pictures of our six worlds, and selected several objects
as target referents for each world (for each target, the rest of the objects in the world
formed the set of distractors). For example, objects A, E, F, H, K, N and P were the
targets for World 2 (Figure 3). Subjects were then asked to identify each target refer-
ent using descriptions comprising a lexical item, and optionally colour and size. We
logged 178 written referring expressions in total from eight trial subjects unrelated to
the project. 80 of these expressions had aspects that are currently not handled by Scusi?,
such as composite nouns (e.g., “coffee cup”), and attributes indicating composition
(e.g., “wooden table”) or shape (e.g., “rectangular platter”); and 17 of the remaining
expressions were duplicates. This left 81 unique expressions, which were recorded by
one of the authors. Six of these utterances were not recognized by the ASR (specifically
the words “ramekin” and “biro”), leaving 75 utterances for the evaluation.

The DRW-MED scheme, which yielded the best performance in Experiment 1, was
used in Experiment 2. Despite a higher ASR error of 26% for this experiment, Scusi?’s
performance — summarized in the bottom part of Figure 4 — was comparable to that
obtained for DRW-MED and DRW-LOW in Experiment 1. Specifically, the Gold referent
was found in the top ranked interpretation in 65% of the cases (compared to 59% in
Experiment 1), and in the top-3 interpretations in 87% of the cases (compared to 96%
for DRW-MED and 89% for DRW-LOW). Only one Gold referent was not found (a ‘pouf’
that was referred to as an ‘armchair’ — these terms have a lexical similarity of 0).

5 Related Research

Much of the research on reference resolution has focused on the construction of expres-
sions that single out a target object from a set of distractors. Dale and Reiter’s seminal
work [4] proposes several schemes for generating both concise and over-specified re-
ferring expressions. They advocate a method for incremental reference resolution that
includes unnecessary modifiers, due to its similarity to human behaviour. Wyatt [5] uses
Markov decision processes to generate descriptions which place the lowest cognitive
load on the addressee; he models the degree of uncertainty about an intended target,
and assigns prior probabilities to objects on the basis of their visual salience. Unlike
Scusi?, Wyatt considers scenes with only a few objects, and does not consider lexi-
cal ambiguity (e.g., a mug cannot be referred to as a ‘cup’ or ‘dish’). Siddharthan and
Copestake [13] address the lexical ambiguity problem by using antonym and synonym
lists from WordNet. However, both of these systems allow only binary comparisons,
which precludes the probabilistic ranking of lexical matches.

Methods for understanding referring expressions in dialogue systems are examined
in [9,14], among others. Kelleher [9] proposes a reference resolution algorithm that
accounts for four attributes: lexical type, colour, size and location, where the score of
an object is estimated by a weighted combination of the visual and linguistic salience
scores of each attribute. Like in Scusi?, the values of the weights are pre-defined and
based on observations. However, Kelleher limits the probabilistic comparison of fea-
tures to size and location, and uses binary comparisons for lexical item and colour.
Pfleger et al. [14] use modality fusion to combine hypotheses from different analyzers
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(linguistic, visual and gesture), choosing as the referent the first object satisfying a
‘differentiation criterion’. As a result, their system does not handle situations where
more than one object satisfies this criterion.

6 Conclusion

We have offered a probabilistic reference disambiguation mechanism that considers in-
trinsic features. Our mechanism performs probabilistic comparisons between features
specified in referring expressions (specifically lexical item, colour and size) and fea-
tures of objects in the domain, and combines the results of these comparisons using a
weighted function of the features. Our mechanism was evaluated in two experiments,
exhibiting good performance, in particular when the features were weighted according
to the ordering suggested in [4,5].

In the future, we intend to investigate an alternative size scheme that does not depend
on the number of candidates (Section 3.3), and to further investigate feature weighting
schemes (Sections 3.4 and 4). In addition, we propose to remove the co-presence and
unobstructed-view assumptions (Section 3), which will demand the integration of our
feature comparison mechanism with planning procedures.
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Abstract. This paper introduces the controlled natural language PENG
Light together with a language processor that is based on a bidirectional
grammar. The language processor has the following interesting proper-
ties: (a) it translates declarative sentences written in PENG Light into a
first-order logic notation (TPTP); (b) it generates declarative sentences
in PENG Light taking syntactically annotated TPTP formulas as input;
and (c) it translates questions written in PENG Light into (conjunctive)
queries in TPTP notation and uses the TPTP representation of the query
as a starting point for generating answers in PENG Light. Moreover, the
controlled natural language processor can be interfaced directly with an
automated reasoner in order to resolve anaphoric references and to an-
swer questions stated in PENG Light.

Keywords: Controlled Natural Languages, Grammar Engineering,
Human-Computer Interfaces, Knowledge Representation, Question
Answering.

1 Introduction

A controlled natural language is an engineered subset of a natural language with
explicit constraints on grammar, lexicon, and style [1]. These constraints usually
have the form of writing rules and help to reduce both ambiguity and complexity
of full natural language. In general, controlled natural languages fall into two
categories: human-oriented and machine-oriented controlled natural languages.
Human-oriented controlled natural languages aim at improving text compre-
hension for human readers while machine-oriented controlled natural languages
focus on improving text processability for machines.

During the last ten years, there has been substantial work in the area of
machine-oriented controlled natural languages. These controlled natural lan-
guages have been designed and used for specification purposes, knowledge
acquisition and knowledge representation, and as interface languages to the
Semantic Web – among them Attempto Controlled English [2,3], Boeing’s
Computer-Processable Language [4,5], Common Logic Controlled English [6,7],
and PENG Processable English [8,9]. Some machine-oriented controlled natural
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languages require the user to learn a small number of construction and interpre-
tation rules [3], while other controlled natural languages provide writing support
that takes most of the burden of learning and remembering the language from
the user [10]. The commercial success of the human-oriented controlled natural
language ASD Simplified Technical English [11] suggests that people can learn
to work with restricted English and that good authoring tools can drastically
reduce the learning curve [12].

In this paper, we will introduce PENG Light and show that this controlled
natural language can be processed by a bidirectional grammar in contrast
to other controlled natural languages. For example, PENG Light’s predecessor
PENG translates declarative sentences and questions via discourse representa-
tion theory [13] into various first-order notations for automated reasoning but
not backwards into controlled natural language [9]. We will demonstrate that in
the case of PENG Light the same grammar can be used to translate sentences
and questions into a first-order notation (that is augmented with syntactic in-
formation) and that this notation can be used as a starting point for generating
answers to questions in controlled natural language.

2 PENG Light

PENG Light distinguishes between simple sentences and complex sentences. The
writing process of these sentences can be supported with the help of a predictive
authoring tool [10] that enforces the restrictions of the controlled language.

2.1 Simple Sentences

Simple PENG Light sentences have the following functional structure:

subject + predicator + [ complements ] + { adjuncts }

The subject has the form of a noun phrase that contains at least a nominal
head in form of a noun (= common noun or proper noun). The predicator is
realised by a verb that functions as the verbal head of a verb phrase. The exis-
tence of complements depends on the verb. An intransitive verb (1) does not take
any complements, a transitive verb (2) takes one complement (a direct object),
a ditransitive verb (3) takes two complements (a direct object and an indirect
object), and a linking verb (4) takes a so-called subject complement:

1. John Miller works.
2. John Miller teaches COMP249.
3. John Miller sends a letter to Mary.
4. John Miller is in the lecture hall.

For example, in sentence (2), the direct object has the form of a noun phrase;
in sentence (3), the direct object has the form of a noun phrase and the indirect
object has the form of a prepositional phrase; and finally in (4), the subject
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complement has the form of a prepositional phrase. In contrast to complements,
adjuncts are always optional and are used in PENG Light to describe the verb
in more detail. They have the form of prepositional phrases (5) or adverbs (6):

5. John Miller teaches COMP249 on Monday.
6. John Miller works exactly.

Not only verbs but also the nominal head of a noun phrase can be described
in more detail in PENG Light: either by adding an adjective (7) or a possessive
noun (8) as a pre-head modifier to the common noun or by adding a variable
(9) or an of-construction (10) as a post-head modifier:

7. The clever professor teaches COMP332 on Monday.
8. Mary’s father teaches a computing unit in E6A.
9. The professor X teaches COMP348 on Monday.

10. The father of Mary teaches a computing unit in E6A.

Note that the translation of the subject noun phrase in (8) and (10) will
result in the same logical representation. Variables are used instead of personal
pronouns in order to establish precise anaphoric references within and between
sentences and to exclude potential ambiguities (see Section 2.3 for more details).

2.2 Complex Sentences

Complex PENG Light sentences are built from simpler sentences through quan-
tification, negation, subordination and coordination. A special form of complex
sentences are conditionals and definitions.

Quantification. PENG Light distinguishes between universal quantification
and existential quantification ((11) and (12)), and qualified cardinality restric-
tion (13):

11. Every professor teaches a unit.
12. A professor teaches every unit.
13. John Miller teaches [ exactly | at least | at most ] two units.

There is no scope ambiguity in PENG Light since the textual occurrence of
a quantifier determines its scope that extends to the end of a sentence. For
example, in sentence (11), the universal quantifier has scope over the existential
quantifier, and in (12), the existential quantifier has scope over the universal
one. Note that qualified cardinality restriction – as illustrated in (13) – can only
occur in complement position in PENG Light but not in subject position.

Negation. PENG Light distinguishes three forms of negation: sentence negation
(14), noun phrase negation (15), and verb phrase negation (16) and (17):

14. If is false that a professor teaches COMP225.
15. No professor teaches COMP225.
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16. Every professor does not teach COMP225.
17. John Miller is not a professor.

Sentence negation is realised via the constructor phrase it is false that; noun
phrase negation is introduced via the universal negative quantifier no; and verb
phrase negation is realised via the negatives does not and is not. Note that (15)
and (16) have the same meaning and will result in the same formal representation
but will carry different syntactic annotations.

Subordination. Using a relative clause is another option to modify a noun in a
noun phrase. In PENG Light, a relative clause is always introduced by a relative
pronoun and modifies the immediately preceding noun. Relative clauses trigger
so-called filler-gap dependencies since they have a structure where a phrase (or
a partial phrase) is missing from its normal position (= gap) and another phrase
(= filler) stands for the missing phrase outside the normal position, for example:

18. [ John Miller ]f iller who [ ]gap teaches a unit supervises Mary.
19. [ Mary ]f iller who John Miller supervises [ ]gap takes COMP249.

In the case of a subject relative clause such as in (18), the entire noun phrase
in subject position is missing, and in the case of a complement relative clause
such as in (19), the entire complement is missing from its normal position. Note
that sentence (18) as well as sentence (19) can be expressed alternatively with
the help of two simple PENG Light sentences as illustrated in (20) and (21):

20. John Miller teaches a unit. John Miller supervises Mary.
21. John Miller supervises Mary. Mary takes COMP249.

Relative clauses can also be used in combination with an existential there-
construction to clarify the scope of the existential quantifier. Instead of (12), we
can write (22):

22. There is a professor who teaches every unit.

Coordination. PENG Light distinguishes three forms of coordination: verb
phrase coordination (23), relative clause coordination (24), and modifier coordi-
nation in adjunct position (25):

23. Marc does not teach COMP249 and does not supervise Mary.
24. John Miller supervises Mary who works in the library and who lives

in Epping.
25. John Miller works on Monday in E6A.

Verb phrase coordination uses the two connectives and and or and coordinates
complete verb phrases. In (23), the negative does not needs to be repeated in or-
der to negate both conjuncts. As (24) shows, relative clause coordination requires
that the relative pronoun (who) is repeated after the connective (and) in order
to exclude potential ambiguity when a verb phrase and a relative clause coor-
dination occur in the same sentence. Modifier coordination can only be realised
with the conjunctive connective and but not with the disjunctive connective or,
therefore the and can also be omitted in (25).
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Conditionals. PENG Light supports conditional sentences for describing hy-
pothetical situations and their consequences. A conditional sentence consists of
a subordinated clause that specifies a condition and a main clause that expresses
the consequence, for example:

26. If John Miller works on Monday then John is in the office.

Note that the subordinated clause and the main clause in (26) have the same
internal structure as other PENG Light sentences if we would drop the condi-
tional connective if-then.

Definitions. PENG Light also supports the specification of definitions: a def-
inition is a relation of equivalence that consists of a term to be defined and an
expression that is used to define that term. The following two sentences use the
key phrase is defined as and can be used alternatively to state a definition:

27. A mother is defined as a woman who has at least one child.
28. Every mother is defined as every woman who has at least one child.

The definition in (27) sounds more natural in English but the indefinite deter-
miner (a) is interpreted as an universal quantifier (every). The language proces-
sor generates a paraphrase that clarifies the interpretation of (27) which looks
similar to (28).

2.3 Anaphora Resolution

In PENG Light, proper nouns, definite noun phrases and variables (but not
personal pronouns) can be used as anaphoric expressions. PENG Light resolves
anaphoric references by replacing the anaphoric expression with the most recent
accessible noun phrase (= noun phrase antecedent) and indicates this replace-
ment in a paraphrase. That means a noun phrase antecedent must be accessible
to be referred to by an anaphoric expression. Proper nouns always denote the
same object and are accessible from everywhere. An indefinite noun phrase is
not accessible from outside, if it occurs under negation (29), if it occurs in a
conditional sentence (30) or in the scope of an universal quantifier (31), or if it
occurs under a disjunction (32):

29. John does not teach a tutorial. *The tutorial ...
30. If John teaches a tutorial then Sue teaches a practical. *The tutorial
31. Every professor teaches a tutorial. *The tutorial ...
32. John teaches a tutorial or teaches a practical. *The tutorial ...

However, a noun phrase antecedent in the if-part of a conditional sentence
such as (33) is accessible from the then-part of the same sentence:

33. If John teaches a tutorial then Sue does not teach the tutorial.

And a noun phrase antecedent under a disjunction – as for example in (34) – is
accessible if the anaphoric expression occurs in one of the subsequent disjuncts:

34. John sends a letter to Mary or brings the letter to Mary.
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An anaphoric expression can be syntactically less specific than its noun phrase
antecedent as the following examples (35-37) illustrate:

35. The clever professor teaches COMP332. The professor ...
36. The professor X teaches COMP348. X works ...
37. The computer scientist works at Macquarie. The scientist ...

If we interface PENG Light with an existing ontology, then we can additionally
resolve anaphoric references that rely on realisation (i.e. computing the most
specific class for an individual) and on classification (i.e. computing the subclass
hierarchy). For example, the ontology (or the background knowledge) might
specify that lecturer in (38) is the most specific class that the individual John
Miller belongs to and that the class academic in (39) subsumes lecturer:

38. John Miller teaches COMP249 on Monday. The lecturer ...
39. John Miller teaches COMP249 on Monday. The academic ...

Note that if a definite noun phrase can not be resolved by the anaphora
resolution algorithm that is built into the grammar of PENG Light, then this
definite noun phrase is interpreted as an indefinite noun phrase and introduces
a new object into the universe of discourse. The presence of a relative clause in
a noun phrase antecedent does not play a role in the determination of a suitable
antecedent.

2.4 Questions

PENG Light distinguishes two types of questions: yes/no-questions and wh-
questions. Yes/no-questions such as (40) investigate whether a specific situation
is true or false. And wh-questions such as (41) interrogate a particular aspect of
a situation:

40. Does John Miller teach a tutorial on Monday?
41. When does John Miller who convenes COMP249 teach a tutorial?

Questions are derived in a systematic way from simple PENG Light sentences:
in the case of yes/no-questions by insertion of a do-operator or by inversion, and
in the case of wh-questions with the help of a suitable query word (who, what,
which, when, where, etc.) and insertion of a do-operator. Note that wh-questions
also exhibit a filler-gap dependency similar to relative clauses and that they can
be processed using the same type of gapping mechanism.

3 Implementation

The grammar of PENG Light is implemented as a definite clause grammar with
feature structures and difference lists that occur as arguments in the grammar
rules [14]. The language processor builds a logical formula in TPTP notation
[15] for a given input sentence or generates an output string for a given TPTP
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formula. In order to achieve true bidirectionality, the TPTP formulas are an-
notated with syntactic information that supports the generation of declarative
sentences in particular for question answering. PENG Light can serve as a high-
level interface language to a first-order reasoner or a description logic reasoner
or both, and we have experimented with all three options. In the following, we
will show how sentences can be translated into TPTP notation and then into
KRSS [16], the input language of the description logic reasoner RacerPro [17,18].
Note that the focus here is not on the reasoning engine but on the bidirectional
translation from PENG Light into TPTP and back into PENG Light.1

3.1 Analysis of PENG Light Sentences

The grammar of PENG Light does not simply interpret the verb of a sentence
as a relation between a subject and a number of complements and adjuncts.
Instead the event or state that is described by the verb is reified and the variable
of the reified relation is linked via a number of thematic relations [19] to the
objects and individuals that participate in a sentence. This allows for an uniform
interpretation of obligatory complements and optional adjuncts (and provides
a convenient way to deal with n-ary relations in description logics [20]). Note
that we use a flat notation for representing objects, individuals, and properties
in order to translate efficiently between different notations. For example, the
complex PENG Light sentence:

42. John Miller who supervises Mary teaches at least two computing units
on Monday.

results in the subsequent TPTP formula where the logical forms derived from
the content words are annotated (#) with syntactic information:

input_formula(university,axiom,
(? [A]: ((named(A,john_miller)#[‘John’,‘Miller’] &
(?[B]: (named(B,mary)#[‘Mary’] &
?[C]: (property(C,has_agent,A) &

event(C,supervise)#[fin,third,sg,pres,no,no] &
property(C,has_theme,B)&contemp(C,u))))#[rc]) &

(? [D]: (timex(D,monday)#[‘Monday’] &
(property(E,has_time,D)#[on] &

(? [F]: ((‘$min_cardinality’(F,2) &
object(F,computing_unit)#[at,least,two]) &

(? [E]: (property(E,has_agent,A) &
(event(E,teach)#[fin,third,sg,pres,no,no] &

(property(E,has_theme,F) &
contemp(E,u))))))))))))).

These syntactic annotations can be used to support the generation process
of sentences. For example, the annotation [on] indicates that the property
1 Only a subset of PENG Light sentences can be handled by the description logic

ALCQHIRR + (D−) that is supported by RacerPro but the TPTP to KRSS trans-
lator will reject PENG Light sentences that are not in this subset.
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has time has been derived from a prepositional phrase with the preposition
on, and the annotation [fin,third,sg,pres,no,no] signals that the event
supervise has been derived from a finite verb in its third person singular. If we
fed the above formula back to the grammar, exactly the input sentence (42) will
be generated, and this is true for arbitrarily complex PENG Light sentences.

The lexicon of PENG Light contains apart from syntactic information partial
logical forms for content words and function words. Here are two (incomplete)
lexical entries for content words: the first one for a common noun and the second
one for a transitive verb:

lex( wf:[computing,unit],... fol:X^object(X,computing_unit) ).
lex( wf:[teaches],... fol:E^X^Y^(property(E,has_agent,X) &

event(E,teach) & property(E,has_theme,Y) & contemp(E,u)) ).

In the first example, the common noun computing unit is a compound noun
that is stored as a list of tokens in the lexicon and its translation will result in
an object in the logical form. The lexical entry for the transitive verb teaches
illustrates that the logical form for this verb consists of a reified event that will
connect the subject and the object of the sentence via thematic relations.

The final semantic representation of a sentence will be crucially influenced by
the function words that establish its logical structure. For example, the subse-
quent lexical entries show that quantifiers are treated as generalised quantifiers
which provide a substantial part of the scaffolding for the formal representation:

lex( wf:[every], ... fol:(X^Res)^(X^Scope)^(! [X]: (Res => Scope)) ).
lex( wf:[a], ... fol:(X^Res)^(X^Scope)^(? [X]: (Res & Scope)) ).
lex( wf:[exactly,two], ... fol:(X^Res)^(X^Scope)^(? [X]:

((‘$min_cardinality’(X,2) & Res) & Scope)) ).

A generalised quantifier is a relation between two sets Res and Scope (where
Res is the restrictor and Scope is the scope). During processing of an input
sentence, the term X^Res collects the logical forms that can be derived from the
noun phrase, and the term X^Scope collects the logical forms that can be derived
from the entire verb phrase of the sentence. The following top-level grammar rule
s combines the logical forms for a noun phrase in n3 with the logical forms for
a verb phrase in v3 and returns the resulting logical form LF in s:

s( mode:M, ... fol:LF, ... ) -->
n3( mode:M, ... fol:(X^Scope)^LF, ... ),
v3( mode:M, ... fol:(X^Scope), ... ).

In the case of an existentially quantified noun phrase in subject position, the
variable LF will eventually be instantiated by a term of the form: (? [X]: (Res
& Scope)). The following grammar rule n3 shows that this term is issued by
the determiner det and that the restrictor X^Res is processed in the subsequent
noun phrase n2 (before the anaphora resolution algorithm is triggered):

n3( mode:M, ... fol:(X^Scope)^LF, ... ) -->
det( ... fol:(X^Res)^(X^Scope)^LF, ... ),
n2( mode:M, ... fol:(X^Res), ... ),
{ anaphora_resolution( ... ) }.
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The scope X^Scope “flows” from the noun phrase n3 into the verb phrase
v3 and then into v2. Note that the following grammar rule v2 is only used for
analysing sentences (mode:ana) but not for generating sentences (we will discuss
this issue in more detail in Section 3.3):

v2( mode:ana, ... fol:X^Scope, ... ) -->
v1( mode:ana, ... fol:E^X^V1, ... ),
p2( mode:ana, ... fol:E^V1^Scope, ... ).

The logical forms for the verb and its complement(s) are processed in v1 and
the result E^V1 (with the event variable E) is pushed together with the scope
Scope into the grammar rules for the prepositional modifier (first into p2 and
then p1) where this information is finally combined with the logical form for the
modifier Mod:

p1( mode:M, ... fol:E^V1^Scope, ... ) -->
prep( ..., fol:E^Y^Mod, ...),
n3( mode:M, ... fol:(Y^(Mod & V1))^Scope, ... ).

To complete the picture, we present below the top-level grammar rule that is
used for processing declarative PENG Light sentences:

s( mode:M, fol:LF, gap:G1-G3, para:P1-P3, ant:A1-A3 ) -->
n3( mode:M, syn:[subj,Per,Num], sort:_, fol:(X^Scope)^LF,

gap:[]-G2, para:P1-P2, ant:A1-A2 ),
v3( mode:M, crd:_, syn:[fin,Per,Num,_,_,_], fol:E^(X^Scope),

gap:G1-G3, para:P2-P3, ant:A2-A3 ).

Apart from the logical form, this grammar rule deals with syntactic constraints
(syn) and uses three additional feature structures that are implemented as dif-
ference lists: the first one (gap) deals with filler-gap dependencies, the second
one (para) builds up a paraphrase during parsing, and the third one (ant) main-
tains the accessible noun phrase antecedents for anaphora resolution. Anaphora
resolution is done during the parsing process: whenever a definite noun phrase
or a proper noun have been processed, the anaphora resolution algorithm is
triggered. This algorithm can query the description logic knowledge base and
check for class membership and subsumption, and it dynamically updates the
paraphrase (para) which clarifies the interpretation of a sentence.

The TPTP representation of a sentence (or an entire paragraph) can be further
translated into KRSS notation; in our case, the translation of (42) results in the
following assertions:

( related supervise_1 john_miller has_agent )
( instance supervise_1 supervise )
( related supervise_1 mary has_theme )
( relatated teach_2 monday has_time )
( instance sk_1 (at-least 2 computing_unit ))
( related teach_2 john_miller has_agent )
( instance teach_2 teach )
( related teach_2 sk_1 has_theme )
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Note that supervise 1 and teach 2 are constants – without reification it
would not be possible to represent the sentence (42) in description logic.

3.2 Analysis of PENG Light Questions

In PENG Light, questions are translated in a similar way as declarative sen-
tences, and their processing uses most of the same grammar rules. Similar to
relative clauses, wh-questions evoke filler gap-dependencies, for example:

43. [ When ]f iller does John Miller teach a computing unit [ ]gap?

This filler-gap dependency is handled in the grammar via a difference list
(gap) that moves the filler term for the query word back into the position where
the gap occurred. There are specific grammar rules that recognise gaps and
remove filler terms from the difference list. The translation of (43) results in the
following conjunctive TPTP query which contains the free variable B and the
property property(C,has time,B) that have both been derived from the query
word when using information from the lexicon:

input_formula(university,conjunctive_query,
((? [A]: (named(A,john_miller)#[‘John’,‘Miller’] &

(free_variable(B) & (property(C,has_time,B) &
(? [D]: (object(D,computing_unit)#[computing,unit] &
(? [C]: (property(C,has_agent,A) &

(event(C,teach)#[inf,third,sg,pres,no,no] &
(property(C,has_theme,D) &
contemp(C,u))))))))))) => answer(B))).

The language processor first stores this TPTP query that will later serve as
a template for generating answers and then translates the TPTP query into an
nRQL query, the query language of the description logic reasoner RacerPro [18]:

(retrieve (?2) (and (?1 ?2 has_time) (and (?3 computing_unit)
(and (?1 john_miller has_agent) (and (?1 teach) (?1 ?3 has_theme))))))

Here (?2) is the head of the nRQL query and the rest is the body of the
query. The head specifies the format of the query result and the body specifies
the retrieval conditions.

3.3 Generation of PENG Light Sentences

Let us assume that the description logic reasoner RacerPro finds the following
answer: (((?2 1400))) for (43). The language processor takes the TPTP for-
mula that has been stored for the question and transforms it into a formula for
a declarative sentence. In our case, it replaces the term for the free variable B by
an existentially quantified expression (? [B]: (timex(B,1400))) and updates
the syntactic annotation of the verbal event since the answer must consist of a
finite verb (fin) and not an infinite one (inf). The transformed TPTP formula
is then sent to the grammar and a complete sentence is generated as an answer.



178 R. Schwitter

Note that the annotated logical form drives this generation process. That means
the logical form needs to be split up at various points into the relevant parts,
in the case of a verbal modifier this splitting requires a specific grammar rule
(mode:gen), otherwise generation would be blind for the obvious:

v2( mode:gen, ..., fol:E^X^(?[Y]: (Res & (Mod & V1))), ... ) -->
v1( mode:gen, ..., fol:E^X^V1, ... ),
p2( mode:gen, E^V1^(?[Y]: (Res & (Mod & V1))), ... ).

Here the variable Res contains the logical form for the temporal expression
2pm, the variable Mod the logical form for the preposition at and the variable V1
the logical form for the verb phrase teaches a computing unit. This will eventually
results in the answer: John Miller teaches a computing unit at 2pm.

4 Conclusions

This paper presented the controlled natural language PENG Light and introduced
a bidirectional grammar that can be used to translate PENG Light sentences and
questions into syntactically annotated TPTP formulas and to generate answers to
questions by transforming TPTP formulas for questions into TPTP formulas for
declarative sentences. The novelty of this approach is that most of the same gram-
mar rules can be used for the following three central tasks: analysing sentences,
processing questions and generating answers to questions. The bidirectional gram-
mar is written in a very modular way and only a small number of the grammar
rules are task-specific. PENG Light can be interfaced directly with a reasoning
engine and can serve as a high-level knowledge specification and query language.
Note that the writing process of PENG Light sentences can be supported by a
predictive text editor. Such a predictive text editor enforces the restrictions of
the controlled natural language and guides the user of the controlled natural lan-
guage via lookahead information. This lookahead information can be harvested
directly from the grammar rules of the controlled natural language while a sen-
tence is written. There are many potential applications that can benefit from a
high-level interface language like PENG Light. We are currently investigating the
usefulness of controlled natural language as an interface language to the Semantic
Web and as a language for writing business rules.
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Abstract. This paper describes Metrical PCFG Model that represents the metri-
cal structure of music by its derivation. Because the basic grammar of Metrical
PCFG model is too simple, we also propose a grammar expansion method that
improves the grammar by duplicating a nonterminal symbol and its rules. At first,
a simple PCFG model which that represent the metrical structure by a derivation
just like parse tree in natural language processing. The grammar expansion oper-
ator duplicates a symbol and its rules in the PCFG model. Then the parameters of
PCFG are estimated by EM algorithm. We conducted two experiments. The first
one shows the expansion method specialized symbols and rules to adapt to the
training data. Rhythmic patterns in a piece were represented by expanded sym-
bols. And in the second experiment, we investigated how the expansion method
improves performance of prediction for new pieces with large corpus.

1 Introduction

In the field of music research, it is widely recognized that music has some structures.
Especially a metrical structure is important to analyze and recognize music pieces. Lis-
tener perceives the metrical structure consciously and subconsciously for almost all
music pieces. In order to analyze and generate music pieces by means of computa-
tional method, a suitable model for music structure is needed. Lerdahl and Jackendoff
have presented a framework consisting of four kinds of hierarchical structure: grouping
structure, metrical structure, time-span reduction and prolongational reduction in their
Generative Theory of Tonal Music [8] (GTTM). The metrical structure consists of sev-
eral levels of beat patterns as pointed out in GTTM. From the viewpoint of its hierarchy,
music and language have similar features. Therefore, musical researches using methods
of natural language processing have a long history.

Most of past works have used Markov Models, Hidden Markov Models, N-gram
Models and so on. From a perspective of theory of generative grammar, there is the
more powerful model called CFG (Context-Free Grammar). In recent times, some stud-
ies using stochastic and linguistic model for music information processing have been
researched. Gilbert and Conklin [3] used a PCFG (Probabilistic CFG) for melodic re-
duction. And Bod [2] analyzed phrasing structure of both music and language in a uni-
fied model. Yamamoto, et al. [13] also used PCFG to detect music rhythm and tempo.
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In this paper, we propose a metrical model to analyze the metrical structure based
on PCFG. Because PCFG does not capture contexts, a basic metrical grammar is too
simple to represent any rhythmic patterns. Thus, we also present a grammar expansion
method for the metrical grammar that expands symbols and rules to adapt for training
data.

We first give a brief description of the metrical structure in Section 2, and then
Section 3 describes our metrical PCFG model. Section 4 describes grammar expansion
method. Section 5 reports on evaluation experiments and results. Finally conclusion
stemming from this investigation is summarized in Section 6.

2 Metrical Structure

Human listener perceives music as the entire rhythmic pattern rather than each individ-
ual musical note. The structure of several levels of beats is called Metrical Structure.
Listener can clap hands at various length of beats which may be quarter length or length
of a musical bar. Fig.1 shows an example by Metrical Grid [12]. There are four levels
of beats in the figure, length of eighth note, quarter note, half note and whole note. A
beat which has many dots indicates beat of “higher” level and includes two or three of
relative “lower” beats in it. Therefore, the metrical structure is represented by hierar-
chical form [8] [12]. The right part of the figure is a tree representation for the same
note sequence.

Fig. 1. Representation of Metrical Structure

Human listener usually can recognize an original (intended by player and composer)
structure. However, there are many possible structures for one note sequence. As we
can see in Fig.2, there are several possible structures for one note sequence. There are
different beat types, 4/4, 3/4, 6/8 . . . . Furthermore, for the same beat type, different
understandings can be considered by starting from the different position.

The goal of this research is to construct computational model that estimates the
same structure as human listener and emulates music knowledge of it. Furthermore,
more large structure like repeats and parallelism are important to understand score in
a broader perspective. The suitable computational model provides us a tool for pre-
processing of the analysis of music pieces deeply. And the metrical structure estima-
tion has many potential applications such as harmony estimation, segmentation genre
classification.
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Fig. 2. Metrical Structures for the same note sequence

3 Metrical Grammar for Model

First of all, we assumed music model as illustrated in Fig. 3. A musical piece is gen-
erated from Music Model G with the conditional probability P (T|G) (Generation
Process). The generated piece contains both the note sequence and the musical struc-
ture (includes the metrical structure). However, we can observe only note sequence or
score that does not contains full structure (Note Observation). The performance data W
by human player is also represented stochastic process with the conditional probability
P (W|S).

Then, we assume Music Model G to be PCFG (Probabilistic Context-Free Gram-
mar). From the view point of the above model, the structure estimation problem is
regarded as an inverse problem that takes a note sequence S and outputs the original
structure T. Analogously, the score estimation problem is a problem that takes perfor-
mance note sequence W and outputs the original score (the structure T and the note
sequence S). By modeling these probabilities P (T|G), P (W|S), we can formulate
these problems mathematically.

According to the above stochastic model, we propose a model named Metrical PCFG
Model and a method for estimation of note sequence and metrical structure using the
model. Our approach is based on the assumption that note sequence and metrical struc-
ture are generated from Metrical PCFG Model with probability PG(T). And only note
sequence S is observed (P (S|T) = 1). Therefore, the problems of metrical structure
estimation is given as the reverse problem that is to maximize conditional probability
from observed music S.

T̂ = argmax
T

P (T|S) = argmax
T

P (S,T)
P (S)

= argmax
T

P (S|T)PG(T) = argmax
T

PG(T)

3.1 PCFG (Probabilistic Context-Free Grammar)

PCFG (Probabilistic Context-Free Grammar) is a model developed from CFG (Context-
Free Grammar) to be a stochastic model by attaching probabilities to production rules.
A PCFG G is defined as follows.



Improving Metrical Grammar with Grammar Expansion 183

Fig. 3. Overview of the method

– G = {VT , VT , P, S}
– VN : a finite set of nonterminal symbols
– VT : a finite set of terminal symbols
– P : a finite set of production rules < A→ α, p >

( A ∈ VN , α ∈ (VN ∪ VT )∗, p : probability )
– S : start symbol ( S ∈ VN )

A process that starts from symbol S and successively applies production rules and then
obtains sequence of terminal symbols is called derivation. And obtained sequence of
terminal symbols is called string. We regard the derivation and the string as the metrical
structure T and the music notes sequence S in this paper. A derivation T of a sequence
T is represented as tree structure and a probability is given by

PG(T) = p(t1) · · · p(tN ) =
N∏

i=1

p(ti)

where ti is the i-th production rule applied in the derivation of T.
Grammar G is called an ambiguous grammar if there are more than one derivation T

for one string S. PCFG allows us to distinguish derivations by comparing probabilities
and determine the maximum likelihood derivation as the most probable one.

3.2 Metrical PCFG Model

We construct a simple PCFG grammar for metrical model as shown in Table 1. The
number of parameters of production rules is 148. This grammar derives a note sequence,
applying production rules. It can generate melodies that starts with auftact (upbeat) and
ends with incomplete measure by applying rules marked by *1 and *2. And the metrical
structure for derived note sequence corresponds to derivation tree just like parse tree in
natural language processing.
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Table 1. Grammar of Metrical PCFG

Nonterminal Symbols Terminal Symbols
ST, Beatx, Ny note:x[p], rest:x

(x ∈ A, y ∈ B) (x ∈ B, p ∈ P)
Production Rules

ST → Nx Beatx (x ∈ A)
ST → Nx Beaty (x ∈ B, y ∈ A, x < y ) ∗1
ST → Nx Nx (x ∈ A)
Beatx → Nx Beatx (x ∈ A )
Beatx → Nx Nx (x ∈ A )
Beatx → Nx Ny (x ∈ A, y ∈ B, y < x ) ∗2
Nx → Ns Nt (x, s, t ∈ B, s + t = x)
Nx → note:x[p] (x ∈ B, p ∈ P )
Nx → rest:x (x ∈ B )
A = {1/1 3/4}, P = {1 . . . 7}
B = {1/1, 1/2, 1/4, 1/8, 1/16, 1/32, 3/4, 3/8, 3/16, 3/32}

The procedure of a derivation is the following.

1. Produces “Nx Beatx” from start symbol ST. The symbol x corresponds to time
signature (e.g. ST → N1/1 Beat1/1 ).

2. Produces “Nx . . . Nx” appling the rule “Beatx → Nx Beatx“ until the rule “Beatx →
Nx Nx”.

3. Divides ”Nx” into smaller length ”Ns” ”Nt” recursively, or becames terminal sym-
bol ”note:x[p]”. (x and p indicate length and pitch.)

4. Ends if all symbols are terminal.

For instance, Fig. 4 shows a part of sample derivation tree. In this case, N1/1 means
one musical measure.

Fig. 4. Sample tree of Metrical PCFG

The grammar of Metrical PCFG Model is ambiguous because it has more than one
derivations for one note sequence. For example, two different derivations are shown
in Fig.5. In hearing the note sequence, listener will likely perceive the first metrical
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Fig. 5. High and Low likelihood Structures

structure rather than the second one. This difference can be explained in terms of prob-
ability. The production rule “N1/2 → N1/4 N1/4“ is considered to be common event. In
contrast, the production rule “N1/2 → N1/8 N3/8“ is not so common event (let us as-
sume this rule is not common). Therefore, the probability of the second one will be low
compared with the first one. Thus, we can choose a probable structure by considering
probability of derivation.

3.3 Maximum Likelihood Estimation and Parameter Estimation

Metrical Structure Estimation. The maximum likelihood derivation T̂ = argmax
TPG(T) is calculated by Viterbi algorithm using CYK algorithm in polynomial time [7].

Score Estimation. This is the problem that estimates the original metrical structure
and quantized note sequence from performed music. It also can calculated by CYK-like
algorithm. See more detail in our previous paper[11].

Grammar Estimation. And Inside-Outside algorithm is known to estimate parameters
efficiently as a variant of the EM (Expectation Maximization) algorithm [6][4]. Accord-
ing to inside-outside algorithm, estimated appearance count of a rule count(A→ α;G)
in sentence S is estimated with a current grammar G. And estimated count of a symbol
A is calculated as count(A) =

∑
α count(A → α;S). The parameter re-estimation

procedure is written as

P̄ (A→ α) =
count(A→ α)∑
β count(A→ β)

An efficient algorithm for partially bracketed data has been proposed [9]. It allow us to
save computational cost because brackets reduce ambiguity of derivations. We use these
algorithms to estimate themaximum likelihoodderivation and parametersof thegrammar.

4 Grammar Improving

The metrical grammar we described in previous section can generate various rhythms
of melodies and distinguish derivations by its probabilities. However, real music have
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some context between musical blocks. It means there are rhythm patterns, idioms. And
a particular pattern have relatively high probability. Our model is very simple and com-
pact to distinguish various patterns of music. Therefore, we describe a grammar expan-
sion approach to capture musical patterns and context. Some different approaches to
refine stochastic grammar from a compact grammar were proposed [5][1].

We perform a symbol expansion approach that duplicates a nonterminal symbol and
related production rules (X to X, X ′ ). After the expansion, EM (Expectation Max-
imization) algorithm is applied to adapt parameters to training data. As a result, two
symbols are expected to represent different music pattern if training data have biased
frequency of rhythms. This algorithm simply increases the likelihood because duplica-
tion does not influence the likelihood and the EM algorithm monotonically increase the
likelihood. The pseudo code of the grammar expansion algorithm is illustrated below.

Algorithm 4.1: GRAMMAR EXPANSION(G,C)

G := grammar
θ := parameters
C := Corpus

# initialization
G← basic grammar
θ ← initial value
for i← 1 to N # expand N times

do

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
for i← 1 toM # parameter estimation by EM algorithm

do θ ← EMStep(G, θ, C)
# grammar expansion
X ← selectSymbol(G, θ)
(G, θ) = expand(G, θ,X)

return (G, θ)

4.1 Expansion Operator

In this section, we describe details of the Expansion operator. The Expansion operator
takes one nonterminal symbol X and duplicates it (X’), then all the production rules
related to X are also duplicated. An example of expansion X is shown below.⎡⎢⎢⎣

A→ B X A→ B X A→ X X
A→ X X =⇒ A→ B X ′ A→ X X ′

X → A B X → A B A→ X ′ X
X ′ → AB A→ X ′ X ′

⎤⎥⎥⎦
The probability of each duplicated rule is assigned as

pnew(A→ α X β) = pnew(A→ α X ′ β) =
pold(A→ α X β)
C(A→ α X β)

pnew(X ′ → α) = pold(X → α) + ε
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where C(A → α X β) is the number of rules after the duplication. And ε is random
noise to alter symmetry of duplicated symbols and distinguish its probabilities.

The selection of a nonterminal symbol to be expanded from all nonterminal symbols
is determined by the following selection procedures.

Random Selection. The selection probabilities of all original nonterminal symbol are
the same value Prandom(X) = 1

N . Duplicated symbols are counted as one be-
cause the more a symbol is expanded, the more it increases selection probability.
Therefore the number of nonterminal symbol N does not change.

Proportionate Selection. The selection probability of a symbol is proportionate to its
estimated appearance count. Pproportion(X) = count(X)�

Y count(Y ) . The duplicated count

count(X) and count(X ′) are also summed up for the same reason.

5 Experimental Result

5.1 Grammar Inducion for a Single Piece

At first, we applied our grammar expansion method to single piece. The target piece
was chosen to an excerpt of Bash’s Menuet BWV1009, classical and simple melody
Fig.6. It should be noted that the piece is constructed a few rhythmic note patterns. By
considering only rhythmic element, there are only three rhythmic patterns [1/4 1/8 1/8
1/8 1/8], [1/4 1/4 1/4] and [3/4]. Therefore the specialization for the three patterns is
hoped to increase the likelihood.

In other words, the information of the piece can be compressed well. From the fea-
ture, expanded symbols are expected to specialize these patterns by the grammar ex-
pansion method.

Seven types of expansion were applied, expansion of [no expansion], [N1/4], [N1/4,
N1/2], [N1/4, N1/2, N3/4], [N1/4, N1/2, N3/4, Beat3/4], [N1/4, N1/2, N3/4, N3/4,
Beat3/4], [N1/4, N1/2, N3/4, N3/4, Beat3/4, Beat3/4]. We expanded symbols at the
10th time of EM repetition. Fig.7 shows the log likelihood curves for each expansion.
From the figure, we can observe the likelihood increases with the number of EM steps.
The [no expansion] converged after a few EM steps. And the expansion [N1/4, N1/2,
N3/4, N3/4, Beat3/4, Beat3/4] archived the best log likelihood value. However, more
complex types of expansion had not improved the likelihood. Fig.6 illustrates a part
of the maximum likelihood derivation on the grammar which expanded [N1/4, N1/2,
N3/4, N3/4, Beat3/4, Beat3/4]. We assigned name ’A’, ’B’ and ’C’ to ’N3/4’, ’N3/4*’
and ’N3/4**’ to be easy to understanding in fig.6. Because each rule of symbol [N3/4,
N3/4*, N3/4**] has different probability and specializes to each rhythmic pattern, ’A’,
’B’ and ’C’ appeared at reasonable places in maximum likelihood derivation. The be-
havior imply that the grammar expansion method makes the grammar to adapt to the
training data if appropriate symbols are selected.

5.2 Grammar Expansion for Large Corpus

An objective measure of performance of our grammar expansion method is how it pre-
dict the metrical structure for new pieces (not appear in training data). Therefore we
tested the effectiveness of our method on large corpus.
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Fig. 6. Assigned symbols for a experpt of Menuet by J.S.Bach
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Fig. 7. The log likelihood graph in 6 types of expansions

Corpus. The Essen Folksong Collection [10] was used for the music corpus in the
experiment. The Essen Folksong Collection contains large amount of monophony folk-
songs. Each song includes a key signature, a beat signature, bar boundaries, phrase
boundaries and other optional text information. To simplify the problem, we removed
songs which have irregular meter and selected songs of 4/4, 3/4, and 6/8 beat. Selected
songs were converted to following format.
Sparenthesis={( 1/4[1] 1/4[2] 1/4[3] 1/8[4] 1/8[5] ) ( 1/2[6] 1/2[5] ) . . . }



Improving Metrical Grammar with Grammar Expansion 189

For each note, the first fractional number indicates note length, and [x] is pitch num-
ber at scale degree. The parenthesis ’(’, ’)’ means bar boundary.

Consequently, we got about 3300 songs, then divided it into 90% and 10% as the
training data and the test data. Each ratio of the beat type of 3/4, 4/4, 6/8 was 30%,
40%, 30% respectively. While the training data contains bar boundaries, we removed
bar boundaries on test data.

Grammar Improving. The basic metrical grammar was expanded and trained by train-
ing data according to algorithm described in Section 4. The expansion times N and the
number of EM step M were 20 and 10 respectively. After each expansion and training,
the metrical structure of test data was obtained from maximum likelihood derivation by
CYK algorithm, and compared with correct bar boundaries in the corpus. After each
expansion and training, the model was tested with the test data. The metrical structure
of test data was estimated from the maximum likelihood derivation by CYK algorithm,
and compared with correct bar boundaries in the corpus.

TP (True Positive), FP (False Positive), FN (False Negative) and TN (True Negative)
between the estimated structure and the corpus were calculated. And F-Score was used
to evaluate how well positions of bar boundaries were recognized. The recall and pre-
cision, and F-score are defined in following.

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F − score =
2 ∗ Precision ∗Recall
Precision+Recall

Result. The results of the experiment are summarized in Fig.8. There are two selection
method ’proportionate selection’ and ’random selection’. The left graph indicates the
log likelihood curves for the training data. The right graph is the F-score for the test
data. We can see that the log likelihood curves monotonically increase as the number of
expansion rises. Then, both curves of the F-score of random selection and proportion
selection show that grammar expansion increases accuracy of prediction for the test
data. If there was no expansion, the parameters of the grammar would not change.
These results imply that expanded grammar found some common rhythmic patterns
which generally exist in the corpus. If expansion symbol adapted only for the training
data, it should not increase. The average increase of proportionate selection and random
selection is about 7% and 6% respectively.

Table 5.2 gives values of TP (true positive), FP (false positive), FN (false negative)
and TN (true positive) for the best model after the 17th expansion (Proportional Selec-
tion). The Cohen’s Kappa statistic was calculated as an another measure of performance
(CK=0.838).

When one compares the proportionate selection and the random selection, one sees
that the proportionate selection is better likelihood and F-score at the end of expansion.
However, there are little differences between two selection methods at least the first
phase of expansion. This may be due to that the random selection does not work well
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Fig. 8. The log likelihood data on the training data (left), and the F-score of maximum likelihood
derivation on the test data vs. the number of expansion

Table 2. Result of the best model

Estimation
Boundary on off

Correct Boundary on 11568 (tp) 1522 (fn)
off 1616 (fp) 35289 (tn)

when there are many duplicated symbols because increase of duplicated symbols may
produce symbol that rarely appears. The proportionate selection increased the likeli-
hood at the end phase of expansions, while the random selection poorly increase at the
end. A possible interpretation of the result is that the proportionate selection selects
promising symbols because of the probability of the estimated appearance count.

In the experiment, we observed that F-score increases at first stage with expansion,
reaches plateau region, and then sometimes decrease. The most likely cause is over-
fitting for the training data. The fact implies the necessity for a measurement of when
expansion should stop like cross-validation method. More detailed work is necessary to
understand the behavior.

6 Conclusion

We proposed the metrical PCFG model and method of grammar expansion to improve
basic PCFG grammar by expansions of nonterminal symbols. The grammar expan-
sion and EM algorithm allow basic grammar to adapt to training data by specializing
probabilities for musical patterns. As a result of adaptation, duplicated symbols are as-
signed to each music pattern from scratch. We observed that our grammar expansion
method increased accuracy of prediction for new music pieces as well as training data.
The basic grammar uses only the dividing rule of rhythm, no other musical knowl-
edge is given. Further developments in the other grammar refinement operations, for
example rule removal and concatenation of symbols, are possible to explore suitable
grammars.
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Abstract. In this paper, we consider two aspects which affect the performance 
of factoid FrameNet-based Question Answering (QA): i) the frame semantic-
based answer processing technique based on frame semantic alignment between 
questions and passages to identify answer candidates and score them, and ii) the 
lexical coverage of FrameNet over the predicates which represent the main ac-
tions in question and passage events. These are studied using a frame semantic-
based QA run over the TREC 2004 and TREC 2006 factoid question sets.  

Keywords: Fact-Seeking Question Answering, FrameNet, Lexical Coverage. 

1   Introduction 

Event-based association information of predicates can be encapsulated in semantic 
frames with slots representing participant roles and frames containing the whole sce-
nario of an event. In a similar way, the FrameNet [1] project has constructed a net-
work of inter-related semantic frames which encapsulates Frame Semantics (FS) [2] 
[3]. The two main entities in FrameNet are frames and Frame Elements (FEs) where a 
frame describes an event or scenario in which different roles or FEs participate. Each 
frame covers a list of predicates that share the same semantic background. Figure 1 
shows an example frame and some of its FEs. 

 
Fig. 1. An example FrameNet frame “Manufacturing” evoked by the predicate “make” 

The various contributions of this linguistic resource to the domain of Question An-
swering (QA) have been partially studied along the three different dimensions shown 
in Figure 2. The first work in [4] and following studies such as [5], [6], [7], [8], [9], 
 

The company makes different types of doors in this plant. 

Manufacturing [Frame] 

manufacturer [FE] product [FE] factory [FE] 
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Fig. 2. The 3-D space of studying the frame semantic-based answer processing 

and [10] have been conducted through measuring if and how the encapsulated FS in 
FrameNet can assist the task of Answer Processing (AP). Another recent study in [11] 
is more specifically committed to this direction by formulating the usage of frame 
semantic role labeling via bipartite graph optimization and matching for AP. One of 
the recent efforts in the second direction can be found in [12] which studies the im-
pact of different levels of FS annotation of texts on fact-seeking (factoid) AP per-
formance. Their work, however, does not consider the other aspects shown in Figure 
2. In this paper, we study two questions to shed more light on the different aspects of 
using FrameNet in factoid AP: 

 How is the effectiveness of a FSB AP module affected by different tech-
niques of frame semantic alignment and what is the most effective semantic 
alignment method in identifying and scoring answer candidates? 

 What is the effect of the lexical coverage of FrameNet over different predi-
cates on the FSB AP task and which part-of-speech (POS) predicate(s) re-
quire more attention through enhancing factoid QA? 

2   Setting of Experiments 

2.1   Experimental QA System 

We have developed an experimental QA system the pipelined architecture of which is 
shown in Figure 3. 

 

Fig. 3. The pipelined architecture of the experimental QA system 

In the Question Processing (QP) module, stop-words are removed, the keywords 
are stemmed using the Porter stemmer, and the TREC target references are resolved 
by adding TREC targets to the query in cases where there is no explicit reference to 
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When was the comet discovered? 

The comet, one of the brightest comets this 
century, was first spotted by Hale and Bopp, 
both astronomers in the United States, on 
July 23, 1995. 

BECOMING_AWARE (TIME): When was BECOMING_AWARE 

(PHENOMENON): the comet discovered? 
Semantic 
Parsing 

on July 23, 1995: Time 
 the comet: Theme 

by Hale and Bopp: Cognizer 

Time: When 
Theme: the comet 
Cognizer: N/A 

Frame Alignment BECOMIONG-AWARE           BECOMING-AWARE 

 FE Alignment 

BECOMING_AWARE (PHENOMENON): The comet, one of the 
brightest comets this century, was first spotted 
BECOMING_AWARE (COGNIZER): by Hale and Bopp, both 
astronomers in the United States, BECOMING_AWARE (TIME): 

on July 23, 1995. 

 

Fig. 4. AP using frame semantic alignment in the FSB model 

the target concept. In the Information Retrieval (IR) module, passage-sized texts are 
retrieved from TREC-reported documents per target using a modified version of the 
MultiText passage retrieval algorithm [13, 14]. The AP module uses a Frame Seman-
tic-Based (FSB) model of AP. In this model, questions and answer-bearing passages 
are annotated with FrameNet frames and FEs (using SHALMANESER [15]). The AP 
task includes frame and FE alignment to instantiate the vacant FE in questions and 
score candidate answers. Figure 4 illustrates an FSB AP example. 

2.2   Data 

Subsets of the TREC 2004 and 2006 factoid question sets are used for evaluations. 
Table 1 summarizes the filtering procedure of the two datasets. The AQUAINT col-
lection is the answer resource for both datasets. The questions and passages in the 
TREC 2004 dataset are automatically annotated with the FrameNet 1.2 dataset and 
manually corrected with FrameNet 1.3 [reference to be given after blind reviewing]. 
In manual correction, frames are still restricted to FrameNet framesets. No manual 
correction is performed on the TREC 2006 dataset (because of time limitations). 

Table 1. Dataset filtering schema – FSB error analysis is based on frame evocation and frame 
structure of questions and passages 

Dataset 
Total #ques-

tions 
No answer @10 

passages 
N/A after FSB 
error analysis 

Remaining 
set 

TREC 04 factoid question set 230 87 68 75 
TREC 06 factoid question set 403 227 not performed 176 

3   FrameNet-Based Answer Processing Techniques 

3.1   Methods 

We have developed five different techniques for AP using FrameNet. The first and 
second methods are believed to have been used in previous works such as [4] and 
[10], while the other techniques are our new approaches to AP using FrameNet. 
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 Frame alignment with complete FE alignment and no frame scoring (CFFE): this 
method finds any matching frame in passages and aligns the FEs in order to instanti-
ate the vacant FE of the question with the value of the corresponding FE of the frame 
in passages. The complete FE alignment refers to the strategy where a frame is a 
match when the instance values of all FEs (except for the vacant FE) are matches 
according to a partial string matching procedure. The answers using this method are 
scored only on the basis of passage scores. 
 Frame alignment with specific FE alignment and no frame scoring (FSFE-NFS): 

in this method, frames are matches only if they have the same name. An answer can-
didate is the instance value of the vacant FE in the passages with no restriction over 
the other FEs of the frame. 
 Frame alignment with specific FE alignment and frames scored (FSFE-FS): as 

there will be a number of match frames in the specific alignment strategy, frame scor-
ing on the basis of any possible pieces of evidence is crucial. Accordingly, this 
method scores match frames according to two aspects: 

- The instance value in the vacant FE – if there is an instance value in the FE 
of the passage frame corresponding to the vacant FE in the question frame, 
then we add 1.0 to the initial score (passage score) and add 0.0 otherwise. 

- Query term frequency – the score of a frame is added up with the raw term 
frequencies of each query term in the frame-bearing sentence. 

 FE alignment with no FE scoring (FE-NFES): this method is a big step towards 
making the AP strategy more shallow as there is no frame matching performed prior 
to FE matching. The FEs are match FEs only if they share the same name. This 
method, with respect to the characteristics of FrameNet where there are FEs with the 
same name in different frames (especially non-core common FEs like the FE “Time”), 
goes beyond the boundaries of FrameNet frames and the semantic information they 
encapsulate. However, it is still bounded to the semantic roles (FEs) assigned to the 
text which keep the method ahead of simple information extraction-based methods. 
The candidate answers (the FE instance values) are assigned passage scores. 
 FE alignment with FEs scored (FE-FES): this is similar to FE-NFES with the 

difference in the scoring scheme. The FEs are scored based on two issues: 
- Score of their parent frame – the parent frames are scored with their passage 

scores and the accumulated query term frequencies. The frame scores are the 
initial scores for the FEs. 

- Instance values – each FE score is added up with 1.0 if its instance value is 
not null or an empty string. 

In all of the scoring and ranking methods, answer redundancy is considered as a 
parameter for boosting the score of the multiple-occurrence answers. The score of all 
answers is multiplied by their probability in answer lists and the lists are re-sorted 
with new scores. The probability of each answer is the ratio of its raw frequency di-
vided by the total number of answers in the list. 

3.2   Conceptual Analysis 

The different FrameNet-based AP methods can be compared with respect to two as-
pects: i) the chance of finding matching passage elements with question elements, and 
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Fig. 5. The level of matching elements and semantic information in the different FrameNet-
based AP methods 

ii) the level of semantics that they take into consideration. Figure 5 illustrates these 
two aspects of the different FrameNet-based AP methods. 

The CFFE method has the lowest chance of finding matching elements (frames and 
FEs) in the presence of different types of textual mismatches between FE instances, 
although it considers the maximum amount of semantic background when aligning 
questions and passages. This is contrary to the FE-based methods (FE-NFES and FE-
FES). A balanced approach is considered in the FSFE-NFS and FSEF-FS methods. 
The actual AP performance of the different methods is reported in the next section. 

3.3   Experimental Results and Discussion 

We have run the so different methods for the FSB model of AP on the experimental 
datasets and tested the statistical significance of their performance differences. Table 
2 summarizes the results obtained with the strict1 TREC evaluation of single answers 
per question. 

According to the results in Table 2, in the 2004 runs, the FSFE-FS is outperform-
ing the other techniques with a Mean Reciprocal Rank (MRR) of 0.627. The first 
observation is the dramatic rise when relaxing frame alignment to the extent that not 
all FEs are required to be partial matches. The change from 0.293 to 0.587 clearly 
makes the point that tight FE matching over all of the FEs with instance values (ex-
cluding the null string FEs) in the frames is not a reasonable requirement for frame 
matching in the presence of different types of textual noise and/or string mismatches. 

Table 2. QA runs with different FSB methods – CFFE is the baseline for significance analysis 

FSB method MRR 

 TREC 2004 TREC 2006 
CFFE 0.293 0.006 
FSFE-NFS 0.587   p<0.001 0.011   p=0.281 
FSFE-FS 0.627   p<0.001 0.011   p=0.281 
FE-NFES 0.400   p=0.085 0.011   p=0.281 
FE-FES 0.413   p=0.062 0.011   p=0.281 

                                                           
1 Answers in the strict evaluation are required to have been extracted from a list of reported 

related documents. 

CFFE 

FSFE-NFS 

FSFE-FS 

FE-NFES 

FE-FES 
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_______ 
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Level of matching ele-
ments and semantic 
information 
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Table 3. QA runs on 75 TREC 20004 factoid questions – combined settings are constructed by 
manual judgments of the two AP models – p-values are calculated with respect to the Best-
TREC system – (method*-first refers to the combination process where the second method is 
activated only if the method* fails in retreiving a correct answer) 

AP system MRR 

Best-TREC 0.867 
Best-FSB (=FSFE-FS) 0.627 
Combined (Best-TREC-first) 0.947   p=0.046 
Combined (Best-FSB-first) 0.920   p=0.145 

 

With more shallow semantic matching techniques in FE-NFES and FE-FES where 
the overall frame scenarios are ignored, the AP performance decreases quite drasti-
cally compared to that of the frame alignment methods. This is because of two issues: 
i) the FE redundancy among the different frames in FrameNet, and ii) the lack of 
semantic normalization2 that is achieved by conducting frame matching prior to FE 
matching. In the absence of such normalization, the FE alignment strategies suffer 
from the shallow semantic role-based dependencies that miss their meta-semantics in 
semantic classes. These results suggest that semantic roles (FEs) and semantic classes 
(frames) are more useful when used in concert as in CFFE, FSFE-NFS, and FSFE-FS 
where frame matching is followed by a FE matching procedure. 

In the 2006 runs, however, the results are very consistent as there is not much 
change in the MRRs with the different FSB techniques. This is mostly due to the 
sparse frame and FE assignment in the absence of any manual annotation over the 
automated annotation by SHALMANESER. In a sparse annotation grid, there is not 
much evidence for comparing the results achieved via the different FSB methods. 

Generally, in our experiments, a frame matching process prior to the FE alignment 
task is shown to be effective and can significantly affect AP performance. However, 
in the presence of different challenges which interfere with a high performance com-
plete FE alignment procedure as in CFFE (such as differently assigned FEs and erro-
neous string matching), a relaxed procedure of FE alignment at this stage is preferred. 
In addition, in an exhaustively annotated corpus with many frames evoked, a frame 
scoring strategy for pinpointing the answer spans and ranking the answer candidates 
is required. Therefore, our FSFE-FS method is selected as the best performing Fra-
meNet-based factoid AP method which outperforms FE-oriented methods and im-
proves previously existing frame and FE-oriented approaches. The FSFE-FS method 
has shown even higher performance than other FSB approaches (not pure frame 
alignment techniques) such as those in [11], [7], [8]. 

To see how this method could impact the best-performing TREC 2004 system, an 
artificial combined processing task is considered. For the time being, there is no 
automated way of deciding when to use FSB in conjunction with other AP methods 
(no robust characterization of questions exists); therefore, we combine the results of 
the best FSB method with those of the best-performing TREC system manually. Re-
sults of the two possible combined settings as well as the best-performing TREC 

                                                           
2 Grouping lexical items which share the same semantic features such as semantic roles. 
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system in the TREC 2004 track are shown in Table 3. These results show that the 
combined Best-TREC-first AP method produces significant improvement (with 
p=0.046) over the AP MRR of the best-performing TREC system. 

4   Lexical Coverage 

The performance of a QA system which uses the FSB model of AP is dependent on 
the lexical coverage of FrameNet. In this section, the effect of lexical coverage on AP 
performance is studied to understand sensitivity of QA systems to different POS 
predicates. 

The FrameNet project is being developed on a frame basis instead of a predicate 
basis which makes the task of covering English predicates slow. The current standing 
of FrameNet in this regard can be characterized by: 

1- Predicate coverage: which indicates if a lexical entry is covered by any of  
FrameNet semantic frames, and 

2- Sense coverage: indicating if a predicate with a known semantic sense3 is 
covered in a FrameNet frame. 

There is not much formal information about FrameNet coverage available; how-
ever, according to [16], the FrameNet 1.2 dataset covers only 64% of the tokens in the 
Penn Treebank and 26% of the token types. We have conducted a naïve coverage 
analysis on parts of the text in the AQUAINT collection from which the answers for 
the TREC 2004 factoid questions are to be extracted. We explore a random list of top 
10 passages retrieved for 10 factoid questions in the TREC 2004 track (100 passages 
in total). This analysis sheds some light on the proportions of coverage of different 
POS predicates in the FrameNet 1.3 dataset. Table 4 summarizes the statistical infor-
mation of this sub-collection. 

Table 4. A subset of the AQUAINT collection for analysing the FrameNet lexical coverage 

Element Number 

Passages from AQUAINT 100 
Sentences 233 
Single words (all) 6006 
Single words (unique) 1611 
Predicates (all) 3567 
Prediates (unique) 1404 

The coverage analysis on this sub-collection measures the number of target predi-
cates which could have been covered as Frame Evoking Elements (FEEs) that could 
evoke FrameNet frames. From a statistical viewpoint, the minimum number of sam-
ples (predicates) required for analyzing the proportions at the confidence level 95% 
and the margin of error 0.03 (desired precision ± 0.03) is 1068. Therefore, even the 
total number of unique occurrences of predicates (1404) suffices for the analysis of 
population proportions. Table 5 depicts the number of the predicates which are not 
covered after the task of manual annotation using the FrameNet 1.3 dataset. 
                                                           
3 For instance, the predicate “make” has different senses such as cooking, and creation. 
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The first column titled “Overall” in Table 5 shows the values acquired when taking 
into account all the sentences at once as a unique set. The “Avg.” column, however, 
includes the values obtained as average values over 10 sets of sentences. These results 
are all showing both the predicate and sense coverage together. A POS-based analysis 
of not-covered predicates has also been conducted to observe more detailed rates of 
lack of coverage over different POS predicates. The result is shown in Figure 6. It is 
observed that the majority of the predicates in our analysis sub-collection which have 
not been covered in FrameNet are nouns. 

Table 5. Target predicates not-covered after manual correction with FrameNet 1.3 

Overall Avg. Element 
all unique all unique 

Not-covered predicates 1014 528 101.4 61.7 
Normalized by sentences 4.351 2.266 4.348 2.711 
Normalized by words 0.168 0.286 0.162 0.234 
Normalized by predicates 0.284 0.376 0.274 0.325 

Before conducting the AP experiments, we have extracted some FrameNet statis-
tics from the two FrameNet 1.2 and 1.3 datasets summarized in Table 6. In general, 
the progress in covering prepositions and verbs is better than the other POS predi-
cates. Noun predicates still need some more effort whilst the coverage of adverbs and 
adjectives seems in a weaker situation that requires more work. 

adverbs 

nouns 

adjectives verbs 

prepositions 

 

Fig. 6. POS-based analysis of all not-covered predicates in FrameNet 1.3 

There are two issues that can affect the results of AP in the sense of FrameNet cov-
erage in each dataset: i) the SHALMANESER classifiers which can be trained with 
the two FrameNet 1.2 and 1.3 datasets, and ii) the manual annotation correction proc-
ess which can be considered with any of these datasets. 

For the TREC 2004 test set, the effect of coverage analysis is performed on the ba-
sis of SHALMANESER trained with the FrameNet 1.2 dataset and corrected with the 
two FrameNet datasets. For the TREC 2006 test set there is no corrected annotation 
data available. Therefore, the effect is measured with the different SHALMANESER 
instances trained with different FrameNet datasets. Table 7 summarizes the results 
using the FSFE-FS method of AP. 

The first observation from the experimental results in Table 7 is that in an effec-
tively annotated environment, there is a higher chance of retrieving more correct fac-
toid answers for the AP module as the coverage ratio of predicates in FrameNet grow. 
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Table 6. Statistical information of the two FrameNet 1.2 and 1.3 datasets 

Figure Predicates Verbs Nouns Adj. Adv. Prep. 
FN 1.2 dataset 8755 3424 3673 1536 39 72 
FN 1.3 dataset 9454 3891 3730 1680 49 91 
Growth ratio 7.984% 13.639% 1.551% 9.375% 25.641% 26.388% 

Table 7. QA runs with different FrameNet datasets for: annotation correction (2004) and 
SHALMANESER training (2006) 

MRR FrameNet dataset 
TREC 2004 TREC 2006 

FN 1.2 0.600 0.011 
FN 1.3 0.627   p=0.369 0.006   p=0.281 

The improvement in the QA performances with different lexical coverage rates in 
FrameNet, however, is not statistically significant at this time which is due to the low 
ratios of progress in coverage in FrameNet 1.3 compared to FrameNet 1.2. 

By focusing on the results on the TREC 2006 dataset, it is inferable that in a 
sparsely annotated text collection, a higher predicate coverage may even damage the 
QA performance. This is because in a sparse and inaccurate annotation environment, 
resulted by an inaccurate automated parser, there is more possibility for extracting 
wrong answers by a larger number of wrongly assigned frames and FEs. 

After our analysis on the coverage of different POS predicates, it is shown that 
noun predicates are covered less than all other POS predicates (R1). Intuitively, it is 
accepted that in finding answers to factoid questions, verb and noun predicates play 
more important roles (A1). Their significance is due to the fact that the main actions 
of question events are more associated to the verbs and nouns in questions. The in-
duced growth ratio in terms of verbs (13.639%) in FrameNet is more promising than 
that of nouns (1.551%) (A2). As a result of ((R1) AND (A1) AND (A2)), the work on 
covering more noun predicates in FrameNet is concluded to be more important at this 
stage to make a good balance in coverage rates in the next releases of FrameNet. This 
signals greater potential for factoid QA systems to extract more correct answers. 

5   Concluding Remarks 

We have studied different methods of Answer Processing (AP) using FrameNet 
frames and Frame Elements (FEs) alignment. After implementing five different meth-
ods of frame semantic alignment for AP, it has been shown that our FSFE-FS method 
based on the relaxed matching of frames and FEs (no necessity for aligning all FEs) 
with the query contexts in answer-bearing passages results in the highest AP perform-
ance and improves existing Frame Semantic-Based (FSB) methods of AP. 

We have performed some analyses on the lexical coverage of FrameNet over Eng-
lish predicates and conducted some experiments which show how the lexical coverage 
issue may affect the overall performance of AP. A low coverage can reduce the num-
ber of questions that can be answered in two ways; i) the main predicate of the ques-
tion is not covered and there will be no way of getting the answer using frame and FE 
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alignment, and ii) the answer sentence and/or its predicate is not covered in the pas-
sages and again the answer cannot be identified. We have shown that, in order to 
improve AP performance in FSB models, the work on covering more noun predicates 
in FrameNet is crucial at this stage, while the coverage rate and outlook of the other 
important part-of-speech predicates – verbs – is more reasonable so far. 
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Abstract. Classifiers are traditionally learned using sets of positive and
negative training examples. However, often a classifier is required, but
for training only an incomplete set of positive examples and a set of un-
labeled examples are available. This is the situation, for example, with
the Transport Classification Database (TCDB, www.tcdb.org), a repos-
itory of information about proteins involved in transmembrane trans-
port. This paper presents and evaluates a method for learning to rank
the likely relevance to TCDB of newly published scientific articles, using
the articles currently referenced in TCDB as positive training examples.
The new method has succeeded in identifying 964 new articles relevant
to TCDB in fewer than six months, which is a major practical success.
From a general data mining perspective, the contributions of this pa-
per are (i) evaluating two novel approaches that solve the positive-only
problem effectively, (ii) applying support vector machines in a state-of-
the-art way for recognizing and ranking relevance, and (iii) deploying a
system to update a widely-used, real-world biomedical database. Sup-
plementary information including all data sets are publicly available at
www.cs.ucsd.edu/users/knoto/pub/ajcai08.

1 Introduction

The transport classification database, or TCDB (www.tcdb.org), is an online
database which contains sequence, structural, and functional information about
proteins that relate to transport across cell membranes in a variety of organ-
isms, categorized into over 550 families of proteins [11]. TCDB is widely used,
averaging over 50 different users per day from research institutions all over the
world. TCDB defines and implements the transport classification system [10] for
categorizing transport proteins, which was adopted by the International Union
of Biochemistry and Molecular Biology as the international standard in 2002.

As of October 15, 2007, the start of the project described in this paper, the
data contained in TCDB were compiled from 3,403 publications in over 200
different journals. Our goal is to help keep TCDB updated with all relevant
new information related to transport proteins. The sources of information that
we consider in this paper are recent articles published in biological journals.
Information that goes into TCDB is verified by a human expert before inclusion.
Accordingly, our goal is not full automation. However, even if we restrict the set

W. Wobcke and M. Zhang (Eds.): AI 2008, LNAI 5360, pp. 202–213, 2008.
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of journals to those already referenced in TCDB, there are several thousand
articles published each month—too many for a human expert to examine. Of
these, only a small percentage are relevant to TCDB. Our goal is to identify
these relevant articles automatically, as soon as possible after their abstracts are
published in Medline.

The procedure for providing the expert with candidate articles is to (i) learn
a model for ranking future articles, (ii) use the model to rank articles from a
candidate set, and (iii) provide the expert with as many articles as the expert
is able to screen (we call this number k—typically a small percentage of the
candidate articles). Therefore, the technical task we consider in this paper is to
learn a classifier for Medline abstracts that maximizes the number of relevant
articles in the set of size k shown to the human expert.

Of course, this task is not unique to TCDB. The Nucleic Acids Research jour-
nal lists over 1,000 specialized databases as of the January, 2008 update [6].
With over 50,000 citations currently added to Medline each month, the need
for methods to screen and select documents automatically is increasing. Similar
tasks have been investigated before [4, 17, 19], but previous approaches assume
the availability of labeled negative examples as well as of labeled positive exam-
ples. Below, we investigate the implications of only having positive and unlabeled
training examples available.

We use a support vector machine (SVM) as our classifier. The available data
for training consist of (i) articles already referenced in TCDB and (ii) recent
articles published in the same journals. In principle, all 18 million Medline doc-
uments could be unlabeled training examples, but in practice we use a sample of
these that is limited to recent articles from journals known to contain relevant
articles. Articles in the first training set are labeled positive, but articles in the
second set are unlabeled. Thus, we face the “positive-only” issue: We wish to
learn a classifier that discriminates positives from negatives, but we have no spe-
cific negative training examples. We do however know that most of the unlabeled
examples are negative.

Our human expert is able to screen only a limited number of documents. Given
a set of unclassified abstracts (i.e. a test set of future articles), our classifier scores
them according to their likelihood of being relevant to the TCDB database. We
then deliver the highest-scoring ones to the human expert for screening. We wish
to minimize the the number of delivered articles that turn out to be irrelevant.
Thus the objective function to maximize is not classification accuracy on the
whole test set, but rather precision on a small high-scoring subset of the test set.

Formally, let x represent the features of an article, and let y = 1 represent the
fact that the article is relevant (in this case, to TCDB). We wish to learn a scoring
function f(x) that, given a set of examples T = {x1, x2, ..., xn}, maximizes

precision(T, f, k) =
1
k

n∑
i=1

I(rank(xi, f) ≤ k ∧ yi = 1) (1)

where the indicator function I(·) returns 1 if its argument is true, 0 otherwise,
and rank gives the position of xi if T is sorted by descending f(x); that is,
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rank(arg maxx f(x), f) = 1. In words, Equation (1) gives the proportion of ex-
amples in the top k according to f that are positive, which is called the precision
at k. This is our objective function and is therefore used throughout this paper
to evaluate our models.

The fact that we are given only positive and unlabeled examples at the out-
set from which to learn f is the main difference between ours and previous ap-
proaches which learn from positive and negative training examples [19,4,17]. Our
approach and previous approaches to similar tasks, which learn näıve Bayes [19],
and SVM models [4,17], as well as nonstandard classifiers [3,4] from positive and
negative training examples.

In Section 2, we describe how to train an SVM to achieve good classification
accuracy. In Section 3, we explain two solutions to the positive-only issue. The
first solution iteratively retrains a classifier, while the second solution relies on
a new mathematical result. In Section 4, we describe how we estimate the recall
of our models without negative examples. In Section 5, we describe how we the
final trained classifier has been deployed successfully to find hundreds of new
relevant articles for TCDB.

2 Data and Training

The data set that we use to develop and evaluate our methods consists of:

– 3,403 articles that appear in Medline and were referenced in TCDB as of
October 15, 2007–these are our positive examples, and

– 16,341 unlabeled articles published recently in those journals referenced in
TCDB.

The abstracts of these articles are obtained using the following procedure: First,
we download the article data using NCBI’s entrez programming utilities.1 The
positive examples are downloaded individually using their PubMed ID number.2

The unlabeled examples are downloaded using the query term “journal [ta] &

mindate= ... & maxdate= ...” for each journal in TCDB, for the date ranges
of October 1 to 31, 2007 (retrieved on December 12, 2007) and November 1 to
December 20, 2007 (retrieved on December 20, 2007). This results in a subset of
the articles in the PubMed ID range 17902656 to 18092361. The subset contains
16,341 articles because it is restricted to the articles that appear in certain
journals and have PubMed dates in the given range associated with them. We
represent each article as a vector of features which are to the log-scaled counts
of word stems that appear in the article’s abstract. We represent each article
as a vector of features corresponding to the words in the article’s abstract. We
apply the Porter stemming algorithm [14] to the abstract text, count the use of
each word in each abstract using MALLET [13], and limit the vectors to words

1 See eutils.ncbi.nlm.nih.gov/entrez/query/static/esearch help.html.
2 All Medline documents have a unique ID number in PubMed, which is NCBI’s public

interface to Medline.

eutils.ncbi.nlm.nih.gov/entrez/query/static/esearch_help.html.
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that appear at least three times in the corpus. This reduces the vocabulary size
in our data set by 47% (17,060 words appear once, 6,534 words appear twice,
and we retain a vocabulary of 26,364 words that appear at least three times).
Finally, we represent each word by the value log(1+ni), where ni is the number
of times word i appears in an abstract, and we normalize the vector for each
article to have unit Euclidean length, i.e. to lie on the unit sphere. We do not
use information associated with the articles (journal names, author names, etc.)
other than the abstract text. We verify that the vocabulary does not contain any
obvious “leaker” words, i.e. terms that discriminate between the training subsets
but are not valid predictors for future articles. In particular, the trained models
do not use article dates, directly or indirectly, to make predictions. Recall the
evaluation metric in Equation (1). For this data set, we choose k = 3000, this
being about the number of articles the human expert is able to screen in the
time available, considering that the positive set is already labeled.

We label training examples that are obtained from TCDB as positive, and we
tentatively label the other examples as negative, even though some of them must
actually be positive. Based on an informal examination of the articles during the
course of this research, we estimate this fraction at about 2.3%.

We use a support vector machine (SVM) as our classification method. Specif-
ically, we use the svm-light implementation of soft-margin SVMs [8].Alternatives
to SVMs include maximum entropy and näıve Bayes models. One reason that we
choose to use SVMs is because they are a discriminative (as opposed to generative)
method. Maximum entropy is also discriminative, but SVMs have two additional
advantages. First, their training objective is to maximize the margin in feature
space between positive and negative examples, which gives them a small but use-
ful boost in accuracy compared to methods like maximum entropy that maximize
variants of log likelihood instead. Second, SVMs facilitate the use of nonlinear
kernels. There are methods for learning SVMs that directly optimize nonlinear
performance measures like Equation (1) [9], but for simplicity we use standard
SVMs. We do not, however, use the SVM’s natural threshold directly. We use the
SVM to generate a ranking of examples, and we deliver the top-ranked k exam-
ples to the human expert. To evaluate trained classifiers fairly, we use ten-fold
cross-validation. For each of the ten test folds, we deliver the highest-scoring 300
articles (for a total of k = 3000) to the human expert for inspection.

We train all SVMs using a quadratic kernel. We choose this kernel because it
allows interactions between words to influence predictions, in addition to individ-
ual words. In preliminary informal experiments, it performs as well as or better
than other standard kernels on our task. There is no known principled way to
select an appropriate value for the SVM soft-margin penalty parameter C (the
tradeoff between margin width and training set accuracy). The optimal value of
C for our task may be different from its optimal value in other tasks, because
some of the unlabeled examples are relevant to TCDB and will be misclassified
when tentatively labeled as negative. Therefore, to select C we use nested cross-
validation (i.e. tuning set cross-validation within testing set cross-validation).
We search for the best value of C by starting at C = 1, and trying both higher
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Fig. 1. The tuning set precision associated with the value of the cost parameter in our
SVM models. Each line corresponds to one of ten folds.

and lower values until the tuning set precision begins to decrease. To evaluate
each value of C, we use four-fold cross-validation and consider powers of 10. Fig-
ure 1 shows the tuning set precision for each of ten testing folds. Our approach
chooses C = 1 in nine of ten folds, and C = 10 once.

3 Learning without Negative Examples

As explained above, a major difficulty of our task is that we do not begin with
any set of examples known to be genuinely negative. This difficulty is not unique
to our task: In many application domains only positive examples are available
naturally for training. Often, negative examples in these domains are ubiquitous,
but it is too time-consuming or costly to label and organize them explicitly.
The issue of learning a classifier from unlabeled and positive training examples,
instead of from negative and positive examples, has been investigated before, e.g.
[15,12,2,16,18]. However, the issue has not yet been investigated in the context
of the task of identifying articles that are relevant to a biomedical database. We
provide a comparison with the aforementioned methods in [5], and we believe
that our recent formalization (explained in detail Section 3.2) demonstrates that
our approaches are well-suited to this task.

3.1 Iterative Relabeling

Our first approach to this issue is to find genuine labels for unlabeled exam-
ples predicted to be positive, following an iterative technique introduced by
Das et al. [1] for the application of identifying relevant database records. That
is, we show the unlabeled portion of the top k predictions to a human expert,
who assigns each article to one of the following categories:
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– Accepted (and added to TCDB)
– Not relevant (the article is not about transport proteins)
– Relevant, but not accepted

The “relevant, but not accepted” category contains articles that are about trans-
port proteins, but that contain information already in TCDB from a different
article, or information of low importance and therefore excluded at the discre-
tion of the human expert. Examples in these three categories are labeled positive,
labeled negative, and discarded, respectively. After relabeling, we learn a new
SVM model and repeat the process.

We perform this procedure until there are no unlabeled predictions in the top
k, or until a fixed number of iterations has been reached. The human expert has
fewer articles to screen each time, because most of the top k are the same articles
each time. Table 1 shows how many examples fall in each category during the
relabeling process. Note that fewer and fewer articles that appear in the top k
are marked as “not relevant” to TCDB. Very few of the remaining unlabeled
articles are likely to be relevant to TCDB. For this reason, we did not ask the
human expert to spend the time to do more than two iterations.

Table 1. The number of unlabeled examples that fall into the top k predictions and
the assignments given to them by the human expert during each iteration of relabeling

Unlabeled Examples Accepted Not Relevant, but
Iteration in Top k into TCDB Relevant not Accepted
1 386 182 126 78
2 49 18 16 15

Although the human expert makes a distinction between accepting an article
to be added into TCDB and classifying it as relevant, but not accepted, we do not
attempt to distinguish between these two article types automatically. The expert
makes this distinction because the task is to find new and important information
for TCDB. However, articles of both types are indeed about transport proteins.
Many relevant but rejected articles are important, and are not accepted only
because they contain information that is already present in TCDB.

3.2 Transforming Predicted Relevance Scores

The previous section explains an iterative process that uses a human expert
to provide the true labels for unlabeled training examples that are tentatively
predicted to be relevant. This process does improve the accuracy of the final
classifier obtained, but only slightly. In this section, we employ a recent math-
ematical result to explain why the improvement is slight [5].

Let x represent an article in the entire Medline universe, and let s be a random
variable such that s = 1 means that the article x is selected as a positive training
example, i.e. x is one of the articles cited currently in TCDB. Let y = 1 mean
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that the article x is truly relevant to TCDB, whether or not x is currently cited
in TCDB. Our goal is to find precisely those x for which y = 1 but s = 1.

Assume that every relevant article in the universe has an equal chance of being
included in TCDB already. Mathematically, this assumption is that P (s = 1|y =
1, x) is a constant. Of course, newly published articles in the universe cannot have
an equal chance of being already in TCDB. However, since our methods do not
use dates in any way, this assumption is reasonable when x refers to only the
utilized characteristics of an article.

The goal is to learn a function f(x) such that f(x) = P (y = 1|x) as closely
as possible. Suppose we provide the labeled data (s = 1) and unlabeled data
(s = 0) as inputs to a standard training algorithm. This algorithm will yield a
function g(x) such that g(x) = P (s = 1|x) approximately. The following lemma
shows that f(x) is a transformed version of g(x).

Lemma 1. Suppose P (s = 1|y = 1, x) is a constant. Then P (y = 1|x) = P (s =
1|x)/P (s = 1|y = 1).
Proof. The assumption that P (s = 1|y = 1, x) is a constant implies that P (s =
1|y = 1, x) = P (s = 1|y = 1) for all articles x. So

P (s = 1|x) = P (y = 1 ∧ s = 1|x) (because s = 1 implies y = 1)
= P (y = 1|x)P (s = 1|y = 1, x) (rewritten)
= P (y = 1|x)P (s = 1|y = 1) (assumption)

The result follows by dividing both sides by P (s = 1|y = 1).

Although the proof above is simple, this result was published only recently [5].
The reason that the result is novel is perhaps that although the scenario of learn-
ing from unlabeled and positive examples has been discussed in many previous
papers, it has not previously been formalized using the s random variable.

The lemma says that P (y = 1|x) is a constant times P (s = 1|x). Hence,
sorting examples x by their predicted value P (s = 1|x) gives the same ranking
as sorting by P (y = 1|x). Suppose we use an SVM to sort examples. Although
the scores given by such a classifier are not correct probabilities P (s = 1|x), the
best estimators of these probabilities are monotonically increasing functions of
the SVM scores. Hence, sorting examples by their SVM scores also in principle
gives the same ranking as sorting examples by P (y = 1|x).

Given the argument above, the top k abstracts identified by an SVM trained
on the unlabeled and positive training examples should be the same as the top k
identified by an SVM trained on negative and positive examples. In other words,
relabeling should have no effect on the outcome of the model.

Table 2 shows how our classifier improves during the relabeling process. The
numbers in this table are computed using knowledge of positive and negative
labels acquired via the relabeling process. Comparing lines in the table shows
that the relabeling process only leads to a small increase in success (indeed,
the results of the second iteration are slightly worse). The lemma above can be
viewed as an explanation of why this increase is small. It implies that if they have
limited resources, future researchers faced with a database curation task similar
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Table 2. Distribution of the top-k predictions for multiple iterations of relabeling

Iteration Relevant Not Relevant
Before Relabeling 2873 127
After 1 Iteration 2898 102
After 2 Iterations 2896 104

to the addressed in this paper will not lose much by not identifying genuine
negative training examples manually.

4 Estimating Recall

Although we can estimate the precision of our approach by examining the labels
that the human expert assigns to the high-scoring articles predicted by our
model, we cannot estimate the recall of our models without knowing which of
the unlabeled test set examples are false negatives.

To estimate the recall of our models, we take advantage of a separate set of
relevant articles that are chosen by the human expert directly from the liter-
ature. We then assume that all of the articles from those same journal issues
which are not selected by the human expert are genuine negative examples. The
set of positive examples consists of 37 articles from a total of 44 issues of three
particular journals, the Journal of Bacteriology, the Journal of Biological Chem-
istry, and Nature, between the dates of September 7 and December 14, 2007. The
set of negative examples consists of 370 articles from the same journal issues.
We train our model on a set of positive articles that are referenced by TCDB,
and a set of unlabeled articles from the same journals referenced by TCDB, all
of which have a PubMed date strictly prior to September 7, 2007.

Results are shown in Figure 2. It is difficult to decide an appropriate value for
the threshold k to use in this figure. We choose k = 39 based on the following
reasoning. The 418 articles from three journals span approximately a period
of time when we delivered 600 articles to our human expert from a total of 102
journals (the three mentioned above, and 99 more). So, we use our learned model
to rank all 15,125 articles from these 102 journals in this time period. We find
that of the top 600 predictions across all journals, k = 39 concern papers in the
three journals of interest. In detail, the 600 predictions break down as follows:

Positive examples Negative examples Unlabeled examples
from three journals from three journals from 99 journals

rank ≤ k 21 18 561
rank > k 16 363 14,146

Based on the threshold k = 39, our model recovers about 57% of the articles
found in the literature. However, a much higher recall, up to 90%, is achievable
with reasonable increase in human effort via a larger k. Moreover, 57% recall
is acceptable because much relevant information is published more than once,
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Fig. 2. An ROC curve showing the performance of our classifier on 418 articles from
three journals, 37 of which were manually identified as relevant to TCDB. The remain-
ing 381 articles are from the same journal issues and are considered negative examples.
The point highlighted on the curve corresponds to a reasonable number of articles to
show to the human expert.

and/or can be found by following citation paths starting at papers that are
detected.

In the course of further research the human expert re-evaluated 25 of the
articles from the 44 issues of the three journals that he dismissed previously.
He then decided that 11 of these are relevant. This inconsistency indicates that
the precision and recall of human procedures are far from perfect. Overall, the
automated procedure has recall comparable to that of a human, and is definitely
helpful in identifying articles that would otherwise be missed simply by browsing
the literature. Indeed, at k = 39 our procedure recovers 8 of the additional 11
articles that the human found upon re-evaluation.

5 Deployment

We measure how effective our approach is in deployment by applying the classi-
fier trained on the relabeled data set to a new data set. To do this, we download
a new set of articles, again restricted to the same journals already referenced in
TCDB, but now appearing in PubMed after the articles in the training set.

During these experiments, we generated five new data sets. These are pro-
duced when the human expert requests them, so they vary in size. For each set,
we show the k = 300 highest-scoring articles to the human expert. After each set
is deployed, the human expert screens and labels the top k. This means that we
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Table 3. The labels given by the human expert to the top 300 articles identified by our
trained classifier on five datasets spanning a period of approximately October 1, 2007
to March 13, 2007. The rightmost column indicates the proportion of the deployment
sets which are true and false positives.

Approximately 4 weeks, October 1 - October 31 2007, 6108 articles
Label Top 100 100-200 200-300 Total (%)
Accepted into TCDB 62 30 17 109 (1.78%)
Labeled relevant, but not accepted 12 12 12 36 (0.59%)
Not relevant 26 58 71 155 (2.53%)

Approximately 7 weeks, November 1 - December 20 2007, 10233 articles
Label Top 100 100-200 200-300 Total (%)
Accepted into TCDB 54 33 9 96 (0.94%)
Labeled relevant, but not accepted 13 3 9 25 (0.24%)
Not relevant 33 64 82 179 (1.75%)

Approximately 3 weeks, December 21 - January 15 2008, 3885 articles
Label Top 100 100-200 200-300 Total (%)
Accepted into TCDB 50 20 9 79 (2.03%)
Labeled relevant, but not accepted 28 21 10 57 (1.47%)
Not relevant 22 59 81 164 (4.22%)

Approximately 5 weeks, January 15 - February 20 2008, 6975 articles
Label Top 100 100-200 200-300 Total (%)
Accepted into TCDB 51 27 8 86 (1.23%)
Labeled relevant, but not accepted 28 39 20 87 (1.25%)
Not relevant 21 34 72 127 (1.82%)

Approximately 3 weeks, February 21 - March 13 2008, 2544 articles
Label Top 100 100-200 200-300 Total (%)
Accepted into TCDB 24 13 6 43 (1.69%)
Labeled relevant, but not accepted 38 19 8 65 (2.56%)
Not relevant 38 68 86 192 (7.55%)

have access to an increasing number of training labels. After each deployment
set is labeled, the classifier is retrained using the new labels.

Table 3 shows the disposition of these top 300 articles, as assigned by the
expert, in each of the five deployment sets. As expected, the precision of our
models decreases with the scoring rank of the article: the top 100 articles are
more likely to be genuinely relevant than the articles ranked 100-200 or 200-
300. The proportion of relevant documents varies from 1.18% (deployment set
2, November and December 2007) to 4.25% (deployment set 5). It is not obvious
what the source of this variability is. The source may be underlying variability in
the content of the journals, and it may be variation in the standards of the human
expert, who is influenced by the overall quality and quantity of the deployment
sets. Note that the proportion of articles accepted into TCDB varies less, ranging
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between 0.94% (deployment set 2) and 2.03% (deployment set 3), indicating that
our approach is able to provide a consistent stream of important documents.

6 Conclusion

We have shown four results that we believe are interesting and of general signifi-
cance. First, SVMs can be used effectively as a method of ranking text documents
according to likely relevance to a specialized biomedical database, and not just as
a method of yes/no classification. Second, our method for iteratively relabeling
examples is an efficient and effective approach to the positive-only issue. Third,
this issue is in fact less important than it appears, because of the equivalence
established in Lemma 1. Fourth, our methods can successfully provide an up-to-
date stream of highly relevant documents to the human maintainers of TCDB,
a widely-used protein database. In total, these methods have so far discovered
964 relevant articles, 626 of which have been added to TCDB. This represents
a 16% increase in the number of references in TCDB over the last six months,
which is much faster than the previous rate of growth of TCDB.3

Now that we have established that our approach is useful for updating real
databases like TCDB, we plan to apply our learned classifiers to papers pub-
lished outside the set of journals already known to contain some relevant articles,
in order to find relevant articles that would otherwise certainly be missed. We
also plan to extend our feature set. In particular, Wang et al. [17] show that
author names, medical subject headings (MeSH) and standardization of biolog-
ical strings (e.g. converting “9-mer” to “x-mer”) can improve performance. Han
et al. [7] hypothesize that a characteristic of biomedical text is that it contains
informative suffixes and show that using substrings as features can outperform
general-purpose stemming algorithms, such as the Porter stemmer, when classi-
fying biomedical text. In addition, we plan to incorporate journal identity, title
words, paper length, paper category (e.g. based on keywords or as curated by
Medline), and paper type (e.g. review) as document features.

Recall that Nucleic Acids Research lists over 1,000 specialized databases. Al-
though our experiments to date focus exclusively on only one of them, our meth-
ods are directly applicable to many more of these databases.
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Abstract. This paper contains the results of evaluation experiments conducted 
to investigate if implementation of a pun generator into a non-task oriented talk-
ing system improves the latter’s performance. We constructed a simple joking 
conversational system and conducted one user evaluation experiment and two 
third person evaluation experiments. The results showed that humor does have a 
positive influence on the dialogue between humans and computers. The impli-
cations of this fact and problems that occurred during the research are dis-
cussed. We also propose how they can be solved in the future. 

Keywords: natural language processing, humor, jokes, Japanese puns, pun gen-
erator, non-task oriented conversational system. 

1   Introduction 

1.1   Computing Humor 

Even in modern AI, humor processing is still a heavily neglected domain. Also in 
NLP (natural language processing), research projects on joke generation and recogni-
tion are often said to be not really relevant to the main tendencies of the field – which, 
in fact, does not seem to be proper, as some experiments proved that humor may have 
a very positive influence on language using machines. For example, experiments 
conducted by John Morkes et al. [1] proved, that humor enhances task-oriented dia-
logues, in CMC (computer-mediated communication) as well as in HCI (human-
computer interaction). Also results described in this paper (see below) show, that we 
do need talking engines that would be able to generate humor. 

Providing that jokes are “products” of humor (a commonsense definition), it can be 
stated, that, considering the NLP methodology, the most “computable” genre of jokes 
is “puns”. They can be found in most existing languages – in some of them, however, 
puns are easier to create and thus their amount is much bigger than in others. One 
such language is Japanese, in which puns (called dajare) are one of main humor gen-
res. This makes Japanese a perfect surrounding for pun processing research. However, 
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although some attempts of constructing pun generating engine have been made, also 
in Japanese, creating a funny joking conversational system still remains an unfulfilled 
challenge for NLP researchers. 

1.2   Talking for Fun 

Nowadays, our interaction partners often are made of silicon and wires – in fact, the 
relations between us and them often become the subject of scientists’ interest. One of 
the theories (backed up with very robust research) says, that people respond to com-
puters using the same social attitudes and behaviors they apply to other people (SRCT 
– Social Responses to Communication Technologies theory) [2]. Assuming this to be 
generally true, if we desire our partners to be able to talk in a free way, also com-
puters should be capable of performing such behaviors. Therefore, construction of 
systems talking in such non-task oriented manner is supposed to be one of the major 
goals of today’s AI. However, this field is still heavily neglected and requires more 
research. 

Using humor to improve chatbot’s performance has already been suggested by 
Binsted [3], and an attempt of combining joking system JAPE [4] with a talking sys-
tem Elmo (which, in fact, is not completely non-task oriented system – see reference 
for details) was made by Loehr [5]. The results were relatively poor, for there was 
barely any relevance between user’s input and system’s humorous output. Thus, con-
struction of a funny, humor-equipped talking system still requires much effort and 
there is very much to be done in this field. 

2   Our Two Systems 

This research is aimed to investigate if humor really does have a positive influence on 
non-task oriented conversational system. To do that, we combined our joke generator 
PUNDA Simple - a simplified version of PUNDA Japanese pun generating system [6] 
- with a conversational system Modalin created by Higuchi [7]. The combined version 
of these two systems was named “Pundalin” and used as a main system in our  
experiment. 

The reason for simplifying the pun generating engine was that we wanted to check 
if humor can improve the human-computer non-task oriented dialogue, in a possibly 
simple way. If the experiment proved that humor has bad influence on the dialogue or 
is irrelevant, construction of a more complex system would be pointless. We also 
wanted to avoid time losses in system’s response generation, for in more sophisticated 
pun generation algorithms, the computation process is very time consuming. Al-
though we agree that this problem has to be solved, in this experiment we assumed 
that waiting for the system’s answer would make user bored, which in turn would 
probably affect his evaluation of the system. 

2.1   Modalin 

The baseline system we used in our research was Modalin non-task oriented keyword-
based conversational system, developed by Higuchi et al. [7]. The system automati-
cally extracts sets of words related to a conversation topic set freely by a user. The 
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extraction is based on keywords spotted in user utterances. Than, Goo [8] (in previous 
version – Google) snippets are used to extract word associations in real time without 
using earlier prepared resources, such as off-line databases. After the extraction process, 
the system generates an utterance by adding modality to the retrieved proposition, and 
verifies the semantic reliability of the proposed sentence. Evaluation experiment showed 
that over 80% of the extracted word associations were correct. For the details, see refer-
ence [7]. Modalin was also used as a “base” for creating a joking system Pundalin – see 
section 2.3 for details. 

2.2   PUNDA Simple 

We developed this simple system as a part of PUNDA research project [6], aimed to 
create a Japanese joking conversational system. PUNDA Simple is based on a simpli-
fied version of the algorithm of the main PUNDA system, which, although still under 
development, at its current state can be used as a pun generating support tool.  

Although PUNDA Simple was created for the need of this research, the main part 
of the algorithm is similar to the one used in the main system. 
 
The algorithm. The PUNDA Simple algorithm consists of two parts: Candidate Se-
lection Algorithm (CaSA) and Sentence Integration Engine (SIE) – see Figure 1. 

 

Fig. 1. Algorithm outline for PUNDA Simple joke generating engine 

CaSA. In this step, the system generates a candidate for a pun. The input is a sentence, 
from which a base word for pun (a word that will be transformed into a pun) is selected. 
The input is analyzed by morphological analyzer MeCab [9], and if any element is 
recognized as an ordinary noun, it becomes the base word for the pun (a preliminary 
experiment proved that most of dajare base words are ordinary nouns). If no ordinary 
noun is found, one medium-sized (with medium amount of characters) sequence of 
characters recognized by MeCab as an independent word is selected randomly. Then, 
for the base word, pun candidates are generated using 4 generation patterns:  
homophony, initial mora addition, internal mora addition and final mora addition. For 
example, for the word katana (a Japanese sword), the process goes as follows: 

base word: {katana} 
candidates: 

1. homophony: {katana} 
2. initial mora addition: {*katana } (akatana, ikatana, ukatana...) 
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3. final mora addition: { katana*} (katanaa, katanai, katanau...) 
4. internal mora addition: {ka*tana}, {kata*na} (kaatana, kaitana, kautana...) 
(with * meaning one single mora). 

The candidates are generated in Kana characters (one character = one syllable). In 
the next step, for each candidate a list of possible Kanji (Japanese ideograms) tran-
scription is extracted using MeCab-skkserv Kana-Kanji Converter [10]. Then, if any 
of converted sequence of characters was recognized by the morphological analyzer as 
an existing word, its hit rate was checked in the Internet. The candidate with highest 
Goo hit rate was extracted as a pun candidate. For example, for the word katana the 
candidate would be takatana (a high shelf). 

SIE. In this step, a sentence including the candidate extracted by CaSA is generated. 
To make system’s response more related to the user’s input, each sentence that in-
cluded joke started with the pattern “[base word] to ieba” (“Speaking of [base 
word]”). The following part of the sentence is extracted from KWIC on WEB online 
Keyword-incontext sentences database [11] - the candidate is used as a query word 
and the list of sentences including this word is extracted. All sentences that contain 
non-Japanese characters (such as Latin letters, brackets, numbers etc.) are deleted, as 
they may be difficult to understand without the context. Then, the shortest sentence 
with exclamation marks is selected (we assumed that most jokes convey some emo-
tions, and exclamation marks are its visible sign). If no such sentence is found, the 
shortest sentence that ended with a period is selected. Finally, the part following  
the candidate is extracted and added as the second part to the system’s response – see 
the example below: 

User:   - Natsu wa atsui desu kedo, Toukyou hodo ja nai desu.(The summer is hot, 
but not as hot as in Tokyo) [base word: natsu (summer), pun candidate: na-
tsukashii (emotionally attached; loved)] 

System:  -Natsu to ieba, natsukashii Nose de, kyuuyuu to waiwai! (Speaking of 
summer, it will be fun to meet some old friends in my beloved Nose!  
<a town near Osaka>) 

 
If no appropriate sentence is found on KWIC, the response ends with “[candidate] 

da yo ne” (“it’s the [candidate], isn’t it”) – see the example below. 
User:   -Ame da kara kaimono iku no wa mendokusai ne. (It’s raining so going 

shopping is a bad idea) [base word: ame (rain), pun candidate: ame  
(a candy)] 

System: -Ame to ieba ame da yo ne. (Rain reminds me of candies.) 
 

When the candidates list is empty, the system selects one random pun from 
Sjöbergh’s pun database [12] – see the example below. 

User: - Sou, atarashii baito ne. (Yeah, it’s my new part-time job) [base word: 
baito (a part-time job), pun candidate: none] 
System’s response (from the pun corpus): -Kureyon wo katte kureyon! (Buy the 
pen, man!). 
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2.3   Pundalin 

The two systems described above were merged to create a joking conversational sys-
tem Pundalin. The rule was very simple – in every third dialogue turn Modalin’s out-
put was replaced by PUNDA Simple’s joke. In other words, every third user’s 
utterance became PUNDA’s input and an appropriate pun for it was generated, using 
the algorithm described in section 2.2. This method, albeit quite simple, allowed us to 
check if the usage of humor improved the system’s overall quality. 

3   Two Evaluation Experiments 

To check if humor can enhance the non-task oriented dialogue, we conducted two 
evaluation experiments, using Modalin as the baseline system and Pundalin as the 
main, humor-equipped system. 

3.1   User’s Evaluation 

In the first experiment, users were asked to perform a 10-turn dialogue with Modalin, 
and then with Pundalin. No topic restrictions were made, so that the talk could be as 
free and human-like as possible. Thus, the utterances variety was quite big – most of 
them, however, resembled normal (human-like) beginning of conversation, for exam-
ple: “What did you do yesterday?”, “May I ask you a question?” or “It’s hot today, 
isn’t it?” 

There were 13 participants of the experiment, 11 males and 2 females; all of them 
were university undergraduate students. After talking with both systems, they were 
asked to fill a questionnaire about each system’s performance. The questions were: A) 
Do you want to continue the dialogue?; B) Was the system’s talk grammatically natu-
ral?; C) Was the system’s talk semantically natural?; D) Was the system’s vocabulary 
rich?; E) Did you get an impression that the system possesses any knowledge?; F) Did 
you get an impression that the system was human-like?; G) Do you think the system 
tried to make the dialogue more funny and interesting? and H) Did you find system’s 
talk interesting and funny?. The answers for questions were given in 5-point scale 
with some explanations added. Option “I don’t know” was also available, however 
none user did chose it. Each user filled two such questionnaires, one for each system. 
The final, summarizing question was: “Which system do you think was better?”. 
Although the question may seem too general, it was added on the basis of common 
sense. Also, thanks to this last question we do not have to rely on detailed questions 
only, which gives us another interesting point of view in the evaluation experiment. 

3.2   Third Person Evaluation 

To verify user’s assessment, a third person evaluation experiment was conducted. For 
each Modalin (non-humorous) dialogue from user’s experiment, first three turns were 
selected, and user’s third utterance was manually used as an input for PUNDA Simple 
to generate a humorous response. The reason for shortening the dialogues was that we 
wanted to check also the “Modalin plus PUNDA” version, for it was much easier to 
compare it with Modalin-only dialogue (the content was the same, apart from the last 



 Humor Prevails! - Implementing a Joke Generator into a Conversational System 219 

system’s response). Therefore, after altering the third system’s response, the rest of  
the dialogue became irrelevant, and for this experiment’s purpose it had to be ended 
after this turn. 

Each participant evaluated 1 set, including 3 short dialogues: Modalin only, Mo-
dalin plus PUNDA (with the third system’s response replaced by PUNDA’s joke) and 
Pundalin. There were 13 sets of dialogues, and each of them was evaluated 5 times. 
For the dialogues were too short to be evaluated in details, in the questionnaire one 
general question was: “Which dialogue do you find most interesting and funny?” 

The evaluators were 65 university students, 37 male and 28 female. They were not 
told of the origin of dialogues and apparently did not know that some of evaluated 
utterances were generated by computer. 

4   Results 

The results of these two experiments clearly show, that humor enhances non-task 
oriented dialogue, as in all categories humor-equipped systems received higher scores 
and were evaluated as better and more interesting than non-humor systems.  

4.1   User’s Evaluation 

11 out of 13 users (84.6%) evaluated Pundalin (humor-equipped system) as better 
than Modalin (non-humor - equipped) – see Figure 2. This shows that implementation 
of humor enhanced the conversational system’s performance. 

15.4%

84.6%

Modalin

Pundalin

 

Fig. 2. User’s evaluation – results for the question “Which system do you think was better?” 

Pundalin received higher scores also in detailed questions (see Table 1). The dif-
ference was especially visible in questions G and H, which we consider to be of high 
relevance in humor research, as they directly address the presence and positive role of 
humor in the dialogues. 

The results of detailed questions evaluation were checked for significance using 
student t-test (paired). Apart from questions A and B (P value > 0.05), all the results 
turned out to be statistically significant on 5% level. However, overall results of both 
systems were relatively lower than they could be. Possible reasons for these are dis-
cussed in section 5. 



220 P. Dybala et al. 

Table 1. User’s evaluation – results for Modalin (non-humor equipped system) and Pundalin 
(humor-equipped system) for detailed questions: A) Do you want to continue the dialogue?; 
B)Was the system’s talk grammatically natural?; C) Was the system’s talk semantically natu-
ral?; D) Was the system’s vocabulary rich?; E) Did you get an impression that the system pos-
sesses any knowledge?; F) Did you get an impression that the system was human-like?; G) Do 
you think the system tried to make the dialogue more funny and interesting? and H) Did you 
find the system’s talk interesting and funny? Answers were given in a 5-point scale. 

Questions A B C D E F G H 
Modalin 2.62 2.15 1.85 2.08 2.15 2.38 1.92 2.46 
Pundalin 3.38 2.92 2.69 3.00 2.85 3.31 4.15 4.08 
difference 0.76 0.77 0.84 0.92 0.70 0.93 2.23 1.62 

4.2   Third Person Evaluation 

Also in the second experiment, humor-equipped system scored higher than the non-
humorous one. The question asked in this evaluation was: “Which dialogue do you 
find most interesting and funny?” Evaluators could choose between 3 options: Dia-
logue 1 (Modalin’s first 3 turns), Dialogue 2 (Modalin’s first 3 turns with system’s 
third response replaced by PUNDA) and Dialogue 3 (Pundalin’s first 3 turns). 

Among 65 evaluators, only 10 (15.4%) responded that Dialogue 1 was most inter-
esting and funny. 20 (30.8%) pointed out Dialogue 2 and 35 – Dialogue 3 (53.8%). 
This means that each of humor containing dialogues received evaluation clearly 
higher than non-humor dialogue (84.6% as a sum of both humorous dialogues) - see 
Figure 3. 

15.4%

30.8%

53.8%

Modalin

Modalin+PUNDA

Pundalin

 

Fig. 3. Third person evaluation - results for the question “Which dialogue do you find most 
interesting and funny?” (short dialogues) 

Although it is clear that both humorous dialogues received much better score, such 
high score for Pundalin was rather surprising. This is discussed in section 5. 

5   Discussion 

Our presumptions turned out to be correct – humor did improve the talking system’s 
performance. In both experiments, Pundalin’s dialogues received higher scores than 
Modalin, in the general evaluation as well as in detailed questionnaire. 

As far as the second one is concerned, the most important and relevant for this re-
search are questions G (Do you think the system tried to make the dialogue more 
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funny and interesting?) and H (Did you find the system’s talk interesting and funny?). 
At these two categories, the differences between the two systems are clearly visible 
(2.23 point and 1.62 point respectively). This means, that not only did the system try 
to amuse the user, but the attempts were generally successful. 

Also the increase in other categories, such as the will of continuing the dialogue 
(question A), the possession of knowledge (question E) or system‘s human-likeness 
(question F), albeit not directly related to humor, were probably affected by its pres-
ence. This also proves that the implementation of joking engine can make talking 
systems more natural and close to humans. 

Remaining categories (questions B, C and D) are all related to system’s language 
abilities. Although it may seem that the presence of humor can distract user’s atten-
tion from grammatical mistakes or semantic irrelevance, the reason for Pundalin’s 
victory in these aspects probably is that it uses human-created sentences, which  
obviously are more correct than these generated by Modalin. 

Another interesting issue in the experiment results was the the fact that Pundalin 
scored 23% higher than Modalin+PUNDA in the third person evaluation. The reason 
for providing the experiment participants also with Modalin+PUNDA dialogue was 
that we thought it should be easier to tell the difference when comparing it to the 
Modalin only dialogue (which, apart from the last response, was exactly the same as 
Modalin+PUNDA). However, the results proved that it does not necessarily have to 
be true, as more users pointed at Pundalin as the funnier and more interesting system. 
One possible explanation is that that Pundalin’s jokes were funny enough to drag the 
evaluators’ attention and convinced at least some of them that this system was better 
than two others. 

6   Additional Experiment 

The results described above encouraged us to convey another experiment, in which 
third person evaluators would assess the whole-length Modalin and Pundalin dia-
logues. For few reasons, we expected the results to be slightly lower than the previous 
ones. First, the joking engine has no context integration algorithm, which is obviously 
more visible in the long dialogues. Also, reading jokes-including conversations 
should be less funny than getting a humorous answer from the partner in a conversa-
tion (comparing to the users’ evaluation). 

6.1   The Method 

The questionnaires for long dialogues were similar to these used in user’s evaluation 
experiment, with few significant differences. First, the word “system” was changed to 
“dialogue” or “speaker”, so that the participants would not know that some utterances 
were computer-generated (in the chat logs speakers were marked as “Speaker A” for 
the user and “Speaker B” for the system). For the same reason, the question F (about 
human-likeness) was deleted. Also, in questions B, C, D, E and G two sub-sections 
were added: 1) “Speaker A” and 2) “Speaker B” – so that the dialogue participants 
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could be evaluated separately. For question H, these two options plus a third one: 
“overall” – were added. In the end, evaluators had to answer the final question, the 
same as in the previous experiment - “Which dialogue do you find most interesting 
and funny?” 

The chat logs were divided into 13 sets, each of which included one Modalin and 
one Pundalin dialogue. Every set was evaluated by 5 participants, what makes a total 
of 65 evaluators. All of them were university students. 

6.2   Results 

As we expected, the results for long dialogues were not that good as in previous ex-
periments. However, the overall question’s results still show that humorous system is 
visibly better than the non-humorous one. 45 out of 65 evaluators (69.2%) pointed at 
Dialogue 2 (Pundalin) as more interesting and funny (see Figure 4). 

For the remaining questions, we only take in consideration results for Speaker B 
(as Speaker A was human, which we do not evaluate here). In all questions, Pundalin 
dialogues received higher scores than Modalin (see Table 2). 

Table 2. Third person evaluation – results for Modalin (non-humor equipped system) and 
Pundalin (humor-equipped system) for detailed questions: A) Do you want to read the con-
tinuation of the dialogue?; B)Was Speaker B’s talk grammatically natural?; C) Was the Speaker 
B’s talk semantically natural?; D) Was the Speaker B’s vocabulary rich?; E) Did you get an 
impression that the Speaker B possesses any knowledge?; F) <deleted – see section 6.1>; G) 
Do you think the Speaker B tried to make the dialogue more funny and interesting?; H-1) Did 
you find the    dialogue interesting and funny in general? and H-2) Did you find Speaker B’s 
talk interesting and funny? Answers were given in a 5-point scale. 

Questions A B C D E F G H-1 H-2 
Modalin 2.60 1.78 1.48 2.03 1.87 X 2.51 2.88 2.73 
Pundalin 2.89 2.09 1.69 2.38 2.13 X 2.91 3.19 3.16 
difference 0.29 0.31 0.21 0.35 0.26 X 0.40 0.31 0.43 

Although all results showed that Pundalin was better, the student t-test (unpaired1) 
showed that – apart from questions D and G – the results are not statistically signifi-
cant on 5% level. This issue is discussed in section 6.3. 

 

Fig. 4. Third person evaluation - results for the question “Which dialogue do you find most 
interesting and funny?” (long dialogues) 
                                                           
1 The reason we decided to conduct unpaired test was that some evaluators choose the “I don’t 

know” answer (also available on the form). Such answers were not taken into consideration when 
counting points, and this caused differences between numbers of valid answers for each question. 
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6.3   Discussion 

Consistently with previous results, also the third person long dialogues evaluation 
experiment showed that humor-equipped system is generally better. As we expected, 
the differences between the two systems were slightly smaller and most of the results 
are considered not statistically significant (P value > 0.05). However, in one of the 
most relevant to our research question G (“Do you think the Speaker B tried to make 
the dialogue more funny and interesting?”), the results were significant (P < 0.05) – 
this clearly shows, that also third person evaluators at least appreciated Speaker B’s 
(system’s) “effort” to make the talk more interesting. 

Although most of the results were not statistically significant, in the overall third 
person evaluation Pundalin still scores much higher than Modalin (69.2% vs. 30.8%). 
This shows that – even when the differences between dialogues are not statistically 
significant – the evaluators preferred the humorous ones. Obviously, Pundalin’s rich 
vocabulary as well as grammatical and semantic correctness also had an influence on 
evaluator’s preferences, however, there is a high possibility, that humor is also a fac-
tor that “makes things better” here. This, however, is hard to confirm empirically. 

We suppose that generally smaller (and less significant) differences in this experi-
ments were caused by the lack of context integration algorithm in pun generator – for a 
third (non-user) person, jokes generated by the system may seem irrelevant to the topic. 
Although users probably get the same impression, the very fact that system responded to 
their utterance with a joke apparently triggered them to evaluate it higher. 

This leads us to another interesting point of view on the subject – does the  
knowledge that the partner (in user’s evaluation) or one of the speakers (in third per-
son evaluation) is a computer system influence the results? In case when evaluators 
know that, do they admire the system for trying to tell jokes, or rather dislike it for 
doing it less swiftly than humans? The results of user’s evaluation (question F) 
showed, that “humanlikeness” of the system increased - however, this issue still re-
quires more investigation. 

In this study, in the third person evaluation experiment, the participants were not 
told of the origin of the dialogues. Therefore, there is a need of conducting a similar 
experiment, in which the participants would know that the dialogues took place be-
tween humans and computer systems. 

7   What Solutions Do We Propose? 

The overall message coming from this experiment is that research on humor process-
ing is a worthwhile enterprise and is definitely worth continuing. However, of course, 
many improvements are still to be made, in talking system itself as well as in pun 
generator. Also, new evaluation methods will have to be considered, as assessing the 
“quality” of humor is difficult even in case of humans. Some ideas on these subjects 
are discussed below. 

7.1   Solution to the Timing Problem 

One of important problems in humor processing is the timing of jokes. Obviously, it 
is not always appropriate to tell a pun – for example, when the user is angry, a badly 
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timed joke may only boost his anger. One solution to the timing problem would be an 
implementation of an emotive analysis system, that would detect the user’s emotional 
states and decide, whether it is proper to tell a pun. At this point of research, we are 
planning to use Ptaszynski’s MLAsk Emotive Analysis System [13] and combine it 
with PUNDA’s algorithm. 

7.2   Evaluation Methods 

Evaluation of joking systems is a serious problem in the field of humor processing. 
Even if we construct a perfect set of most subject-relevant questions, after all, it is 
humor that we assess – and this, by definition, can not be completely objective. How-
ever, some methods may prove useful as far as joking conversational systems are 
concerned. We are considering conducting of humor-oriented Turing Test [14], in 
which evaluators will have no knowledge of who their conversation partner is, and 
afterwards will have to guess, if it was a human or a machine. The experiment would 
include a comparison between humorous and non-humorous systems. This method, 
albeit not perfect, will presumably give credible results for the humanlikeness cate-
gory of system’s evaluation. 

8   Conclusion 

In this paper, we proved that implementation of a joke generator into a non-task  
oriented conversational system enhances its performance. Humor-equipped system 
was evaluated higher than the non-humor one, by the users as well as third person 
evaluators. We discussed the results, pointed out some problems and proposed their 
possible solutions. However, what is more important, the overall results of these ex-
periments show, that combining the field of humor processing with research project 
on freely talking systems is a step in the right direction and under no circumstances 
should not be abandoned in the future. 
 
Acknowledgments. This work was partially supported by the Research Grant from 
Nissan Science Foundation. 
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Abstract. Transductive Support Vector Machine (TSVM) is a method
for semi-supervised learning. In order to further improve the classification
accuracy and robustness of TSVM, in this paper, we make use of self-
training technique to ensemble TSVMs, and classify testing samples by
majority voting. The experiment results on 6 UCI datasets show that
the classification accuracy and robustness of TSVM could be improved
by our approach.

1 Introduction

Currently, semi-supervised learning is a hot research problem. Generally speak-
ing, it is rather expensive to obtain labeled training samples, while unlabeled
data are easy to get. Hence, it is much helpful if we can learn from labeled data
and unlabeled data all together. Transductive Support Vector Machine (TSVM)
is an extension of standard support vector machines with unlabeled data. In a
standard SVM only the labeled data is used, and the goal is to find a maximum
margin linear boundary in the Reproducing Kernel Hilbert Space. In a TSVM
the unlabeled data is also used. The goal is to find a labeling of the unlabeled
data, so that a linear boundary has the maximum margin on both the original
labeled data and the (now labeled) unlabeled data [1]. Vikas Sindhwani et al.
[2]propose a variant of TSVM that involves multiple switching of labels. During
the trial, we found it has very good results in some data sets, but in other data
sets or the data sets which have fewer training dataset perform badly.

Ensemble learning is proved to be very successful in practice by data mining
research community. In order to further improve the classification performance
of TSVM, in this paper, we propose En-TSVM, which ensembles TSVM with
help of self-train technique, and classifies testing samples by majority voting.
The experiment result shows that En-TSVM has better classification accuracy
and robustness than TSVM.
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The paper is organized as follows. Section 2 reviews the related work. The
algorithm of En-TSVM is described in section 3. The detailed experiment setting
and results are shown in section 4, followed by our conclusion and future work
in section 5.

2 Related Work

Currently, there is a rapid improvement on TSVM in the research community
of semi-supervised learning. Ulf Brefeld et al. [3] developed the principle of
maximizing the consensus among multiple independent hypotheses into a semi-
supervised support vector learning algorithm for joint input output spaces and
arbitrary loss functions. Olivier Chapelle et al. propose to use a global optimiza-
tion technique known as continuation to alleviate the main problem that the
optimization problem is non-convex and has many local minima, which often re-
sults in suboptimal performances [4]. Yihong Liu et al. [5] proposed an improved
algorithm for text classification named double transductive inference algorithm
based on TSVM.

Literature [1] is a more comprehensive overview of semi-supervised learning.
It also gives a simple introduction to TSVM and the self-training technique. By
taking advantages of the correlations between the views using canonical compo-
nent analysis, Zhi-Hua Zhou et al. proposes a method working under a two-view
setting, which perform semi-supervised learning with only one labeled training
example [6].

It is concluded in many research that the ensemble approach helps to improve
the effect of learning [7,8]. Dietterich et al. have proved that Multiple Classifiers
System (MCS) can improve classification performance in many applications [7].
Zhenchun Lei et al. propose to ensemble SVMs for text-independent speaker
recognition, and the bagging-like model and boosting-like model are proposed
by adopting the ensemble idea [9]. Hsuan-Tien Lin and Ling Li formulate an
infinite ensemble learning framework based on SVM [10]. Yan-Shi Dong et al.
proposed two types of ensembles on SVM classifiers, the data partitioning en-
sembles and heterogeneous ensembles, and experimentally evaluated them on
three well-accepted datasets [11]. Major conclusions are that disjunct partition-
ing ensembles with stacking could achieve the best performance, and that the
parameter varying ensembles are proven to be effective, meanwhile have the
advantage of being deterministic.

Recently, there is some research on ensemble for semi-supervised learning.
Erdisci et al. used an ensemble of one-class SVM classifiers to harden payload-
based anomaly detection systems [12]. Zhi-Hua Zhou et al. propose tri-training
[13], a new co-training style semi-supervised learning algorithm. Tri-training is
a special self-training, with the final classification result of the ensemble being
determined by majority voting.

In this paper, we make use of self-training technique to train an ensemble of
TSVM, and classify testing samples by majority voting.
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3 Ensemble TSVM

3.1 A Brief Introduction to TSVM

The research on SVM based Transductive learning algorithm is still in its initial
stage, with TSVM being the most important research result. Unlike SVMs, the
formulas of TSVMs lead to a non-convex optimization problem [14]. Here, we
give a simple introduction to TSVM.

Giving a set of labeled training samples, which follow the same data distrib-
ution, and are independent to each other:

(x1, y1), . . . , (xn, yn), (1)

xi ∈ Rm, y ∈ {−1,+1}, and another set of unlabeled training samples, which
follow the same data distribution:

x∗1, x
∗
2, x

∗
3, . . . , x

∗
k, (2)

the following optimization problem is setup for standard TSVM [15]:

Minimize over ( y∗1 , . . . , y
∗
k, w, b, ξ1, . . . , ξn, ξ

∗
1 , . . . , ξ

∗
n)

1
2
‖w‖2 + C

n∑
i=1

ξi + C∗
k∑

j=1

ξ∗j

s.t. : ∀n
i=1 : yi[w · xi + b] ≥ 1 − ξi

∀k
j=1 : yj[w · x∗j + b] ≥ 1 − ξ∗j
∀n

i=1 : ξi ≥ 0
∀k

j=1 : ξ∗j ≥ 0 (3)

Here, parameter C∗ represents the impact factor of unlabeled training samples in
the training process, and C∗ξ∗j represents the impact factor of unlabeled training
sample x∗j int the objective function.

In supervised learning, the discriminant function of SVM is:

f(x) = w0 · x+ b0. (4)

In semi-supervised learning, TSVM constructs the classification hyper-plane by
inductive learning on labeled training samples, and get the discriminant func-
tion value for each unlabeled samples following formula (4). By using current
labeled samples for study summarized, TSVM gets the current split-plane and
the discriminate function as (4), and calculates all current discriminant function
values of the unlabeled samples. Following formula (5) and (6), two unlabeled
samples with largest, and least discriminant function value could be selected out
from the boundary area of current classification hyper-plane, respectively.

max(f(x∗)), s.t.0 < (f(x∗i )) < 1 (5)

min(f(x∗)), s.t.− 1 < (f(x∗i )) < 0 (6)
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3.2 Ensemble TSVM

In this paper, we ensemble a set of TSVM classifiers for semi-supervised learning,
and classify unknown samples by majority voting. Here, the TSVM classifiers
are trained by self-training approach.

(1) Training algorithm
Suppose L = {(x1, y1), (x2, y2), . . . , (x|L|, y|L|)} is the set of labeled training

samples, and U = {x∗1, x∗2, . . . , x∗|U|} is the set of unlabeled samples, then, U ∪L
is the set of training samples. Initially, we assign the weight of labeled samples
and the unlabeled samples to 1

|L| and 1
|U| , respectively. And then, e1 is trained on

U ∪L with help of W . A pseudo-label is set to samples in {x∗|x∗ ∈ U, |e1(x∗)| >
Tr}, and samples with pseudo-label are moved from U to L. Hence, we get a
new set of labeled samples L, and a new set of unlabeled samples U . The same
process is repeated on U ∪ L for T times, and we could get an ensemble of T
classifiers {e1, e2, . . . , e|T |}.

Algorithm 1. Training Algorithm for En-TSVM
Input:

The training samples, L ∪ U ;
The number of loops, T ;
Threshold, Tr.

Output:
The ensemble of TSVM, E.

1: E = φ;
2: for m = 1 To T do
3: for each xi ∈ L do
4: Wxi = 1

|L| ;
5: end for
6: for each xi ∈ U do
7: Wxi = 1

|U| ;
8: end for
9: em = TSV M(L, U, W );

10: E = E ∪ {em};
11: for each xi ∈ U do
12: if em(xi) > Tr then
13: L = L ∪ {(xi, 1)}, U = U − {xi};
14: end if
15: if em(xi) < −Tr then
16: L = L ∪ {(xi, −1)}, U = U − {xi};
17: end if
18: end for
19: end for
20: return E

(2) Classification algorithm
Majority voting is one of the simplest and most intuitive ways for ensem-

bling base classifiers [16]. In this paper, we take majority voting as our strategy
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for classifying testing samples by the classifier ensemble. Let t be the testing
sample, votepos be the number of base classifiers in E which classify t into pos-
itive class, and voteneg be the number of base classifiers in E which classify
t into negative class, the class label predicted by E could be determined by
max(votepos, voteneg). The classification algorithm of En-TSVM is illustrated in
Algorithm 2.

Algorithm 2. Classification Algorithm for En-TSVM
Input:

The ensemble of TSVM, E;
The testing sample, t.

Output:
the class label.

1: votepos = 0; voteneg = 0;
2: for each ei ∈ E do
3: if ei.classify(t) == +1 then
4: votepos + +;
5: end if
6: if ei.classify(t) == −1 then
7: voteneg + +;
8: end if
9: end for

10: if votepos ≥ voteneg then
11: return +1;
12: else
13: return −1;
14: end if

4 Experiments Results

In order to test the classification performance of proposed approach, we made
experiments on 6 UCI datasets1. We implemented our algorithm in C with help
of SVMLIN2 software. Our experiments were made on a PC with Core 2 CPU,
Windows XP, and 1GB memory.

In our experiments, we set T = 7, and Tr = 0.9. We conducted 4 groups of
experiment. For each experiment setting, the averaged classification performance
of 200 experimental trails are reported here as the final result.

4.1 Experiment A

In this group of experiment, we randomly cut the original dataset into dataset
A and dataset B, with |A| ≈ 2|B| or |A| ≈ |B|. We randomly select r percent
of samples from dataset A for training, and test on the dataset B. We compare
1 URL: http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/
2 URL: http://people.cs.uchicago.edu/∼vikass/svmlin.html
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Table 1. The result of the experiment A

Dataset #Att #L #U #T r% En-TSVM TSVM t-Test
Acc% MSD Acc% MSD

adult 123 800 31761 16281
70 82.4 0.039 81.3 0.052 +
80 82.7 0.084 81.7 0.136 +
90 82.9 0.095 81.9 0.103 +

australian credit approval 14 120 320 250
70 82.7 0.091 82.1 0.068 +
80 82.8 0.058 81.9 0.018 +
90 83.2 0.047 82.2 0.039 +

breast cancer wisconsin 10 100 377 206
70 96.6 0.063 96.1 0.071 +
80 98.3 0.044 97.4 0.086 +
90 99.1 0.013 98.6 0.039 +

mushrooms 112 400 5500 2224
70 98 0.006 96.6 0.097 +
80 97.3 0.005 97.1 0.026 +
90 97.4 0.002 96.7 0.018 +

german credit 24 120 380 500
70 69.2 0.045 68.7 0.072 +
80 69.3 0.061 68.7 0.056 +
90 70.4 0.036 69.4 0.043 +

ionosphere 34 80 119 152
70 79.4 0.017 78.8 0.021 +
80 80.1 0.008 79.6 0.016 +
90 82.4 0.077 82 0.069 +

the classification performance of En-TSVM with TSVM, and the classification
performance is measured by accuracy and Mean Square Deviation (MSD). Fur-
thermore, t-Test is checked to examine whether the improvement in classification
accuracy of En-TSVM with respect to TSVM is significant or not. The experi-
ment result is shown in table 1.

In table 1, column 1 lists the name of the datasets used; column 2, column
3, column 4, and column 5 gives the number of the attribute, the number of
labeled sample in A, the number of unlabeled sample in A, and the number of
samples in B, respectively; column 6 gives the percentage r; column 7 and 8
presents the classification performance of En-TSVM and TSVM, respectively;
the last column shows the results of t-Test, with +(-) means the result of t-Test
is significant (not significant).

From Table 1, it is obvious that our En-TSVM has better classification accu-
racy and classification robustness than single TSVM.

4.2 Experiment B

In this group of experiment, we cut the dataset into two parts in the same way as
in experiment A. We randomly select |L| labeled samples, and all the unlabeled
samples from dataset A for training, a testing on dataset B. The experiment
result is shown in Fig. 1.



232 T. Li and Y. Zhang

0.9

0.86

0.82

0.78

0.74

0.7
4002001005025

A
cc

ur
ac

y

|L|

(A) Adult

En-SVM
TSVM

0.9

0.86

0.82

0.78

0.74

0.7
 40  60  80  100  120

A
cc

ur
ac

y

|L|

(B) australian

En-TSVM
TSVM

1

0.99

0.98

0.97

0.96

0.95
100755025

A
cc

ur
ac

y

|L|

(C) breast-cancer

En-TSVM
TSVM

1

0.96

0.92

0.88

0.84

0.8
 100  200  300  400  500

A
cc

ur
ac

y

|L|

(D) mushrooms

En-TSVM
TSVM

0.8

0.76

0.72

0.68

0.64

0.60
 40  60  80  100  120

A
cc

ur
ac

y

|L|

(E) german

En-TSVM
TSVM

0.85

0.81

0.77

0.73

0.69

0.65
 40  50  60  70  80

A
cc

ur
ac

y

|L|

(F) ionosphere 

En-TSVM
TSVM

Fig. 1. The result of the experiment B

In each sub-figure of Fig. 1, the horizontal axis represents |L|, and the vertical
axis represents the classification accuracy. From Figure 1, it is obviously that for
most of the cases the classification accuracy of En-TSVM is better than TSVM.

4.3 Experiment C

In this group test, we make experiment in the hold-out way,with 3/4, 2/3, 1/2, 1/3,
and 1/4 part of the original dataset being used as training dataset, the rest of the
samples being used as testing dataset, respectively. The number of labeled samples
in training dataset is set in the same way as in experiment A. Here, we consider
that whether the ensemble TSVM is a better classifier or not with decreasing size
of training dataset. The experiment result is shown in table 2.

In table 2, column 1 lists the name of the datasets used; column 2 gives the
number of labeled samples in the training dataset; column 3 gives the name of
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Table 2. The result of the experiment C

Dataset #L Classifier
Accuracy%

3/4 2/3 1/2 1/3 1/4

adult 800
En-TSVM 83.23 83.6 83.17 82.95 83.49

TSVM 82.84 82.81 82.68 82.88 82.92

australian credit approval 120 En-TSVM 83.63 83.41 84.59 83.66 83.17
TSVM 82.46 77.73 82.85 82.57 82.4

breast cancer wisconsin 100 En-TSVM 96.61 96.2 94.54 94.01 94.01
TSVM 94.92 94.94 93.7 93.56 93.56

mushrooms 400 En-TSVM 98.28 81.2 85.79 55.77 58.08
TSVM 96.8 80.46 85.43 54.18 55.47

german credit 120 En-TSVM 72.69 69.58 72.95 70.94 67.73
TSVM 70.28 68.98 70.94 68.68 67.13

ionosphere 80 En-TSVM 96.55 94.83 94.29 94.29 83.59
TSVM 94.25 93.1 88.57 88.57 81.68

the classifier; column 4 presents the classification accuracy with different ratio
of training dataset with respect to the original dataset.

It is obvious that En-TSVM outperforms TSVM at various ratios.

4.4 Experiment D

In this group of experiment, we measure time complexity of our algorithm. Here,
we only report our experiment result on mushrooms dataset for lacking of space.
The similar experiment result could be observed on other datasets listed in
table 1.

In experiment D1, we set |U∪L| = 5900, and we change the number of labeled
samples |L| in training sets. In experiment D2, we set |L| = 400, and increase
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Fig. 2. The result of experiment D1
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Fig. 3. The result of experiment D2

the number of training samples |U ∪L|. The result of experiment D1 and D2 are
shown in Fig. 2 and Fig. 3, respectively.

The horizontal axis in Fig. 2 represents the size of labeled training dataset
|L|, and the horizontal axis in Fig. 3 represents the size of training dataset
|U ∪ L|,here,we set |D|=|U ∪ L|. The vertical axis of both Fig. 2 and Fig. 3
represents the time needed for training (in second).

From Fig. 2 and Fig. 3, it could be observed that the running time needed
for training decrease linearly with respect to the increasing of |L|, and increases
linearly with respect to the increasing of |U ∪ L|.

5 Conclusions and Future Work

On the basis of TSVM, in this paper, we propose En-TSVM, which ensembles
TSVM with help of self-train technique, and classifies testing samples by major-
ity voting. Experiment result shows that compared with TSVM, our En-TSVM
has classification accuracy and classification robustness.

In the future, we schedule to study other approaches for combining TSVM to
further improve the classification performance of TSVM.
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Abstract. The MAST (maximum agreement subtrees) problem has
been extensively studied, and the size of the maximum agreement
subtrees between two trees represents their similarity. This similarity
measure, however, only takes advantage of a very small portion of the
agreement subtrees, that is, the maximum agreement subtrees, and agree-
ment subtrees of smaller size are neglected at all. On the other hand, it
is reasonable to consider that the distributions of the sizes of the agree-
ment subtrees may carry useful information with respect to similarity.
Based on the notion of the size-of-index-structure-distribution kernel in-
troduced by Shin and Kuboyama, the present paper introduces posi-
tive semidefinite tree-kernels, which evaluate distributional features of
the sizes of agreement subtrees, and shows efficient dynamic program-
ming algorithms to calculate the kernels. In fact, the algorithms are of
O(|x| · |y|)-time for labeled and ordered trees x and y. In addition, the
algorithms are designed so that the agreement subtrees have roots and
leaves with labels from predetermined sub-domains of an alphabet. This
design will be very useful for important applications such as the XML
documents.

1 Introduction

When some structures are commonly derived from two data objects, the struc-
tures may carry information with regard to similarities between the data objects.
In [1], such structures are referred to as index structures.

The agreement subtree is a good example of the index structure, when data
objects are represented as trees. An agreement subtree between plural input trees
is usually defined as a subtree homeomorphically included in all the input trees
([3] and Definition 4 and 5), and the maximum size of the possible agreement
subtrees can be naturally viewed as a measure of similarity between the input
trees. Thus, the maximum agreement subtrees (MAST) problem is defined as
the problem to determine at least one agreement subtree with the maximum
size among the possible agreement subtrees for the input trees. The maximum
agreement subtree has been used in a wide range of application (e.g. evolutionary
trees [4,3]).

From the algorithm efficiency point of view, the MAST problem is NP-hard
on three rooted trees of unbounded degree [5]. The degree of a tree is defined as

W. Wobcke and M. Zhang (Eds.): AI 2008, LNAI 5360, pp. 236–246, 2008.
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the maximum of the number of the children of a single vertex (node) of the tree.
On the other hand, when the degree is bounded by d, an O(

√
dn log 2n

d )-time
algorithm is known on two rooted n-leaf trees [6]. For unrooted trees, we have
an O(n1.5)-time algorithm [7].

On the other hand, Shin and Kuboyama [1] introduced the notion of the size-
of-index-structure-distribution kernel, which is a class of positive semidefinite
kernels that evaluate the distributions of the sizes of index structures.

In particular, when the agreement subtree is used as the index structure, the
corresponding size-of-index-structure-distribution kernel is defined as follows for
labeled, ordered and rooted trees x and y.

K(x, y) =
∑

t∈AST(x,y)

f(size of(t)) (1)

In Eq.(1), AST(x, y) denotes the set of all the agreement subtrees between x
and y, and f is an arbitrary function f : N → R+ = {y ≥ 0 | y ∈ R}. Shin
and Kuboyama [1] also claimed that there exist polynomial-time algorithms to
evaluateK(x, y) when x and y are of bounded degree and f(x) is either f(x) = αx

or f(x) = x, although they didn’t show the algorithms.
As claimed in [1], the advantage of K(x, y) of Eq.(1) over max{size of(t) | t ∈

AST(x, y)} as a similarity measure between x and y is that K(x, y) takes into
account those agreement subtrees smaller in size than the maximum ones.

Based on the discussion so far, the contribution of the present paper can be
summarized as follows.

First, we present O(|x| · |y|)-time dynamic programming algorithms to calcu-
late K(x, y) of Eq.(1) for the functions of f(x) = x and f(x) = αx. What is to be
remarked here is that we don’t assume that x and y are of bounded degree. Shin
and Kuboyama [1] claimed the existence of polynomial-time algorithms only for
x and y of bounded degree, and also, no polynomial time algorithm for MAST
is known when the input rooted trees x and y are of unbounded degree.

Secondly, we add certain flexibility to the notions of agreement subtrees and
their sizes. In fact, for three alphabets Σstart, Σend and Σcount, which may be dif-
ferent from each other, AST(x, y) is defined as the set of the agreement subtrees
such that their roots and leaves are respectively labeled by elements of Σstart

and Σend, and the size of an agreement subtree t is defined as the number of the
vertices of t whose labels belong to Σcount.

Also, through experiments, we see that our kernels with f(x) = αx for appro-
priate α show better performance than the elastic tree kernel by Kashima and
Koyanagi [2], which corresponds to the case of f(x) ≡ 1.

2 Agreement Subtrees

Kao et al. [6] introduced a generalized setting for agreement subtrees and their
sizes for unrestricted labeled trees: all the vertices of input trees and agreement
subtrees are labeled by elements of an alphabet Σ, and, when an agreement sub-
tree is homeomorphically embedded into an input tree, we impose the constraint
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that the labels of the corresponding vertices of the agreement tree and the input
tree coincide. Furthermore, a subset Σcount � Σ is given, the size of an agreement
subtree is defined as the number of the vertices whose labels belong to Σcount.
This setting covers the conventional setting for evolutionary trees (e.g. [4,3]),
where only leaves are labeled and the size of an agreement subtree is defined as
the number of its leaves: we have only to let Σ = Σcount ∪ {λ} and to label all
the non-leaf vertices with λ.

In the present paper, we modify the setting by Kao et al. by introducing two
more subsets of the alphabet Σ, namely Σstart and Σend, and impose the following
constraints on agreement subtrees, which will be very useful for applications in
the real world.

– The root of an agreement subtree shall be labeled with an element of Σstart.
– Each leaf of an agreement subtree shall be labeled with an element of Σend.

In the remainder of this section, we will give the definitions and notations to
be used in the present paper.

Definition 1 (Tree). A tree means a rooted, ordered and labeled tree.

1. The tree has a root, which is an ancestor of all the other vertices.
2. In addition to the hierarchical (ancestor-descendent) partial order, a left-to-

right (sibling) partial order are given to the set of the vertices of the tree.
3. Each vertex v of the tree is labeled with an element of an alphabet Σ.

When a vertex v is an ancestor of (left to) a vertex y, we denote the relation by
v > w (v ≺ w, resp.). Also, �v ∈ Σ denotes the label associated with v.

Definition 2 (Forest). A forest is a tree without the root, and eventually a
sequence of trees.

Definition 3 (Nearest common ancestor and v � w). Let x be a forest,
and let v and w be vertices of x. The nearest common ancestor v � w of v and
w, if present, is the vertex that satisfies the following conditions.

– v ≤ v � w and w ≤ v � w.
– If v ≤ u and w ≤ u, then v � w ≤ u.

Definition 4 (Homeomorphic embedding). Let x and y be respectively a
tree or a forest, and let ϕ be a one-to-one mapping from the set of the vertices of
x to that of y. The mapping ϕ homeomorphically embeds x into y, if, and only
if, the following conditions are met for arbitrary vertices v and w of x.

1. If v � w exists, ϕ(v � w) = ϕ(v) � ϕ(w) holds.
2. If v ≺ w holds, ϕ(v) ≺ ϕ(w) holds.
3. �v = �ϕ(v) holds.

Also, ϕ is called a homeomorphic embedding.

Proposition 1 immediately follows from Definition 4.
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The figure depicts a homeomorphic embedding
from the tree x into the tree y. The character in
each circle represent the label of the vertex.
Furthermore, this homeomorphic embedding is the
unique homeomorphic embedding from x to y. For
example, by definition of the homeomorphic em-
bedding, the root of x must map to a vertex in y
such that:

– it has the label A and
– it is the nearest common ancestor of two ver-

tices with label C and D.

Such a vertex is uniquely determined as seen in
the figure.

Fig. 1. A homeomorphic embedding

Proposition 1. Let x be a tree or a forest, and x′ be a subset of vertices of x.
Then, the following conditions are equivalent to each other.

1. There exists a tree t and a homeomorphic embedding ϕ : t → x such that
ϕ(t) = x′.

2. x′ is totally closed with respect to the nearest-common-ancestor operator �:
for arbitrary v ∈ x′ and w ∈ x′, v � w exists, and falls into x′

Definition 5 (Agreement subtree and AST(x, y)). Let x and y be respec-
tively a tree or a forest. A tree t is called an agreement subtree between x and
y, if, and only if, the following conditions are met.

– t is homeomorphically embedded into both x and y.
– The root of t is labeled with an element of Σstart.
– The leaves of t are labeled with elements of Σend.

In addition, size of(t) is defined as the number of the vertices of t whose labels
belong to Σcount, and the set of all the agreement subtrees between x and y is
denoted by AST(x, y).

3 Size-of-Agreement-Subtree-Distribution Kernels

For an arbitrary non-negative function f : N → R+, Shin and Kuboyama [1]
proved that the bivariable function K[f ] defined by Eq.(2) is positive semidefinite.

K[f ](x, y) =
∑

t∈AST(x,y)

f(size of(t)) (2)

Not necessarily, the positive semidefinite kernel K[f ] can be evaluated effi-
ciently. In the present paper, we focus on the cases of f(x) = αx and f(x) = x,
and show efficient dynamic programming algorithms for the cases.

K[αx](x, y) =
∑

t∈AST(x,y)

αsize of(t), K[x](x, y) =
∑

t∈AST(x,y)

size of(t)
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The figure depicts an agreement tree pair under
the following setting.

Σ = {A, B, C, D, E, F, G, H}
Σstart = {A}
Σend = {B, C, D}

Σcount = {D, E, F}

Furthermore, we have the following.

size of(t) = 1

Fig. 2. An agreement subtree

4 The Recursive Formulas

In this section, we present recursive formulas to evaluate K[αx](x, y) and
K[x](x, y). Since dynamic programming algorithms are derived from the formu-
las in a straightforward manner, we will not show the algorithms in the present
paper.

Before proceeding, we will introduce a couple of symbols to be used in the
recursive formulas (Fig. 3).

– When f1 and f2 are respectively a tree or a forest, f1 • f2 is the forest
obtained by appending f2 to f1 at the rightmost position. In particular,
if f consists of n trees t1, . . . , tn in the left-to-right direction, we have the
expression f = t1 • t2 • · · · • tn.

– For a vertex v and a forest (tree) f , v ◦ f denotes the tree such that its root
is v and the forest determined by eliminating the root is f .

f1 f2

f1 f2

f

v f

v

Fig. 3. Concatenation and aggregation
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4.1 The Case of f(x) = αx

In order to evaluate K[αx](x, y), we will introduce two more bivariable functions,
namely K[αx]

tree (x, y) and K[αx]
forest(x, y).

– The function K[αx]
tree (x, y) is the same as the K[αx](x, y) except that Σstart = Σ

is assumed for K[αx]
tree (x, y).

– We let ASF(x, y) be the set of the forests f such that:
• f is homeomorphically embedded into x and y by ϕ and ψ, and
• if ϕ(v) � ϕ(w) or ψ(v) � ψ(w) exists for v, w ∈ f , v � w exists as well.

Then, K[αx]
forest(x, y) is defined by Eq.(3).

K[αx]
forest(x, y) =

∑
f∈ASF(x,y)

αsize of(f) (3)

Remark 1. Let ϕ : f → x be a homeomorphic embedding onto x′′. If v � w exists
for v, w ∈ f , ϕ(v) � ϕ(w) necessarily exists, and falls into x′′. In contrast, the
existence of ϕ(v) � ϕ(w) doesn’t necessarily indicates that of v � w. If v � w
doesn’t exist, ϕ(v) � ϕ(w) doesn’t falls into x′′. Thus, x′′ is not necessarily
closed with respect to � (compare with Proposition 1).

Remark 2. The following formula holds for f = t1 •· · ·• tm and f ′ = t′1 •· · ·• t′m′ .

K[αx]
forest(f, f

′) = K[αx]
forest(t1 • · · · • tm, t

′
1 • · · · t′m′)

=
min{m,m′}∑

n=1

⎛⎝ ∑
1≤i1<···<in≤m

⎛⎝ ∑
1≤i′

1<···<i′
n≤m′

n∏
j=1

K[αx]
tree (tij , t

′
i′
j
)

⎞⎠⎞⎠
The recursive formulas should include termination conditions and reduction for-
mulas, and Eq.(4) gives the termination conditions.

K[αx](x, ∅) = K[αx](∅, x) =

K[αx]
tree (x, ∅) = K[αx]

tree (∅, x) = K[αx]
forest(x, ∅) = K[αx]

forest(∅, x) = 0 (4)

The reduction formulas are introduced as follows.
When at least one of x and y is a proper forest, we let x = t1•f1 and y = t2•f2,

where t1 and t2 are the leftmost trees of x and y, respectively. For t ∈ AST(x, y),
which is embedded into x and y by ϕ and ψ, the root of x′ = ϕ(t) (y′ = ψ(t)) is
located in either t1 or f1 (either t2 or f2, resp.). Therefore, the reduction formula
for K[αx](x, y) is given by Eq.(5).

K[αx](t1 • f1, t2 • f2) = K[αx](t1, t2) + K[αx](t1, f2) +
K[αx](f1, t2) + K[αx](f1, f2) (5)

When both of x and y are trees, we let x = v1 ◦ f1 and y = v2 ◦ f2, and we
have the following four cases.
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(a) The roots of x′ and y′ are v1 and v2, respectively.
(b) The root of x′ is v1, and that of y′ is not v2.
(c) The root of x′ is not v1, and that of y′ is v2.
(d) The root of x′ is not v1, and that of y′ is not v2.

Case (a) occurs, only when the labels of v1 and v2 are identical to each other
and belong to Σstart (�v1 = �v2 ∈ Σstart). Further, when we let x′ = v1 ◦ x′′ and
y′ = v1 ◦ y′′, the case (a) is to be subdivided into subcases according to what
are x′′ and y′′. Note that x′′ and y′′ are homeomorphic to each other.

(a.1) x′′ = y′′ = ∅
(a.2) x′′ = ∅ and y′′ = ∅

In Case (a.1), the contribution of (x′, y′) to K[αx](v1 ◦ f1, v2 ◦ f2) is evaluated
as follows.

The contribution =

⎧⎪⎨⎪⎩
1 if �v1 = �v2 ∈ Σstart ∩ Σend \ Σcount,
α if �v1 = �v2 ∈ Σstart ∩ Σend ∩ Σcount,
0 otherwise.

Then, when we define factor(Σcount, α : v1, v2) as follows, the contribution is
evaluated by factor(Σcount, α : v1, v2) · eval[�v1 ∈ Σstart] · eval[�v1 ∈ Σend].

factor(Σcount, α : v1, v2) =

⎧⎪⎨⎪⎩
0, if �v1 = �v2 ,
1, if �v1 = �v2 ∈ Σcount,
α, if �v1 = �v2 ∈ Σcount.

eval[predicate] =

{
1, if predicate is true,
0, if predicate is false.

In Case (a.2), x′′ and y′′ have the following property.

Lemma 1. x′′ and y′′ are closed with respect to the nearest-common-ancestor
operator � in f1 and f2.

Proof. Let v and w be vertices of x′′. By Proposition 1, The vertex v � w ∈ v1◦f1
is in x′. Therefore, v � w is identical to v1 or falls in x′′.

Therefore, the contribution of Case (a.2) to K[αx](v1 ◦ f1, v2 ◦ f2) is evaluated by
factor(Σcount, α : v1, v2) · eval[�v1 ∈ Σstart] · K[αx]

forest(f1, f2).
The contributions of Case (b), (c) and (d) are respectively evaluated by:

(b) K[αx](v1 ◦ f1, f2) − K[αx](f1, f2),
(c) K[αx](f1, v2 ◦ f2) − K[αx](f1, f2) and
(d) K[αx](f1, f2).
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Finally, we have Eq.(6) for the case where x and y are trees.

K[αx](v1 ◦ f1, v2 ◦ f2) = factor(Σcount, α : v1, v2) · eval[�v1 ∈ Σstart]·(
eval[�v1 ∈ Σend] + K[αx]

forest(f1, f2)
)

+

K[αx](v1 ◦ f1, f2) + K[αx](f1, v2 ◦ f2) − K[αx](f1, f2) (6)

For K[αx]
tree (x, y), we can derive Eq.(7) and (8) in the same way as for K[αx](x, y).

K[αx]
tree (t1 • f1, t2 • f2)

= K[αx]
tree (t1, t2) + K[αx]

tree (t1, f2) + K[αx]
tree (f1, t2) + K[αx]

tree (f1, f2) (7)

K[αx]
tree (v1 ◦ f1, v2 ◦ f2) = factor(Σcount, α : v1, v2)

(
eval[�v1 ∈ Σend]+

K[αx]
forest(f1, f2)

)
+ K[αx]

tree (v1 ◦ f1, f2) + K[αx]
tree (f1, v2 ◦ f2) − K[αx]

tree (f1, f2) (8)

To evaluate K[αx]
forest(x, y) for x = t1•f1 and y = t2•f2, we consider the following

cases. For f ∈ ASF(x, y), which is embedded into x and y by ϕ and ψ, we let
x′′ = ϕ(f) and y′′ = ψ(f).
(a) x′′ ∩ t1 = ∅ and y′′ ∩ t2 = ∅
(b) x′′ ∩ t1 = ∅ and y′′ ∩ t2 = ∅
(c) x′′ ∩ t1 = ∅ and y′′ ∩ t2 = ∅
(d) x′′ ∩ t1 = ∅ and y′′ ∩ t2 = ∅

The contributions of Case (a), (b), (c) and (d) to K[αx]
forest(t1 • f1, t2 • f2) are

respectively evaluated as follows.

(a) K[αx]
tree (t1, t2)

(
1 + K[αx]

forest(f1, f2)
)
, since K[αx]

forest(t1, t2) = K[αx]
tree (t1, t2).

(b) K[αx]
forest(f1, t2 • f2) − K[αx]

forest(f1, f2).

(c) K[αx]
forest(t1 • f1, f2) − K[αx]

forest(f1, f2).

(d) K[αx]
forest(f1, f2).

Hence, we have Eq.(9) as the reduction formula for K[αx]
forest(x, y).

K[αx]
forest(t1 • f1, t2 • f2) = K[αx]

tree (t1, t2)
(
1 + K[αx]

forest(f1, f2)
)

+ K[αx]
forest(f1, t2 • f2) + K[αx]

forest(t1 • f1, f2) − K[αx]
forest(f1, f2) (9)

In a straightforward manner, a dynamic programming algorithm is derived
from Eq.(4) to Eq.(9).

Proposition 2. The dynamic program derived from Eq.(4) to Eq.(9) to evaluate
K[αx](x, y) terminates.

Proof. If at least one of x and y is a forest, the reduction formulas Eq.(5), Eq. (7)
and Eq. (9) reduce the width (i.e. the number of tree components) of the forest.

On the other hand, if x and y are both trees, the reduction formulas Eq.(6)
and Eq.(8) reduce the height of the trees.

In particular, when α = 1, K[αx](x, y) = K[1x](x, y) represents the number of the
agreement subtree between x and y (i.e. |AST(x, y)|).
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4.2 The Case of f(x) = x

The termination conditions and the reduction formulas for f(x) = x are derived
in the same way as for f(x) = αx.

K[x](x, ∅) = K[x](∅, x) = K[x]
tree(x, ∅) = K[x]

tree(∅, x) = K[x]
forest(x, ∅) = K[x]

forest(∅, x) = 0

K[x](t1 • f1, t2 • f2) = K[x](t1, t2) + K[x](t1, f2) + K[x](f1, t2) + K[x](f1, f2)

K[x](v1 ◦ f1, v2 ◦ f2) = eval[�v1 = �v2 ] · eval[�v1 ∈ Σstart]·{
eval[�v1 ∈ Σcount]

(
eval[�v1 ∈ Σend] + K[1x]

forest(f1, f2)
)

+ K[x]
forest(f1, f2)

}
+

K[x](v1 ◦ f1, f2) + K[x](f1, v2 ◦ f2) − K[x](f1, f2)

K[x]
tree(t1 • f1, t2 • f2) = K[x]

tree(t1, t2) + K[x]
tree(t1, f2) + K[x]

tree(f1, t2) + K[x]
tree(f1, f2)

K[x]
tree(v1 ◦ f1, v2 ◦ f2) = eval[�v1 = �v2 ]·{
eval[�v1 ∈ Σcount]

(
eval[�v1 ∈ Σend] + K[1x]

forest(f1, f2)
)

+ K[x]
forest(f1, f2)

}
+

K[x]
tree(v1 ◦ f1, f2) + K[x]

tree(f1, v2 ◦ f2) − K[x]
tree(f1, f2)

K[x]
forest(t1 • f1, t2 • f2) = K[x]

tree(t1, t2)
(
1 + K[1x]

forest(f1, f2)
)

+

K[1x]
tree (t1, t2)K

[x]
forest(f1, f2) + K[x]

forest(f1, t2 • f2) + K[x]
forest(t1 • f1, f2) − K[x]

forest(f1, f2)

5 Evaluation of the Efficiency

Proposition 3. The dynamic programs for K[αx](x, y) and K[x](x, y) derived
from the aforementioned formulas run in O(|x| · |y|)-time.

We will enumerate the subforest pairs (x′, y′) that are to be input into K[αx],
K[αx]

tree , K[αx]
forest, K[x], K[x]

tree and K[x]
forest. When we denote the subtree of x consisting

of the vertices that are below or equal to v by x[v], x′ is one of the following.

– For a vertex v in x, x′ is x[v].
– For a vertex v in x, x′ is x[v] • x[v1] • · · · • x[vn], where (v1, . . . , vn) is the

sequence of the sibling vertices (sharing the same parent vertex) of v such
that v ≺ vi.

Apparently, the number of such x′ is O(|x|).
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6 Experimental Results

In this section, we test the size-of-agreement-subtree-distribution kernel with
SVM by empirically comparing its predictive performance in glycan structure
classification problem. Glycans are carbohydrate chains that are considered to
play an important role in various fundamental biological processes such as cell-
cell interaction. The structure of a glycan is abstractly represented as a tree
structure by representing single carbohydrates as nodes and their covalent bond
as edges.

The glycan structures are retrieved from the KEGG/GLYCAN database [10],
and the annotations are from the CarbBank/CCSD database [11]. In these
annotations, we employ two blood components, leukemic cells, and the other
non-leukemic blood components (erythrocyte, serum, and plasma). The glycan
structures of leukemic cells are served as positive training examples. The numbers
of positive and negative data are respectively 192 and 294. The tree structures
obtained from the glycan data include 29 kinds of node labels, while all the edge
labels are omitted for simplicity.

Our kernel was implemented in Ruby and executed on a Linux machine, and
was normalized by K(x, y)/(

√
K(x, x)

√
K(y, y)). We used LIBSVM ([9]) as the

SVM implementation, and used the area under the ROC curve (AUC) as the
performance measure. The ROC curve plots the relationship between the true
positive rate and the false positive rate. The AUC is the prevailing performance
measure for a decision function with a kernel that separates positive examples
from negative ones. The AUC values range from 0.5 to 1.0, where the value 0.5
indicates a random separation and the value 1.0 indicates a perfect separation.
All of the performance measures are calculated with 5-fold cross validation.

Figure 4 shows the predictive performance of our kernel with function f(x) =
αx while varying the parameter α, and with function f(x) = x (indicated by ‘χ’
in Figure 4). Since K[αx](x, y) for α = 1 coincides with the elastic tree kernel [2],
from Figure 4) presents that K[αx](x, y) for α < 1 showed better performance
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than the elastic tree kernel. On the other hand, K[x](x, y) is only compatible
with the elastic tree kernel.

7 Conclusion

We have presented a novel approach to designing kernels for trees, which evaluate
distributional features of the sizes of agreement subtrees between two trees.
Moreover, we have developed quadratic-time algorithms to calculate the kernels.
By applying our kernel to a glycan classification problem, we have shown the
effectiveness of our approach.
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Abstract. Bias variance decomposition for classifiers is a useful tool in
understanding classifier behavior. Unfortunately, the literature does not
provide consistent guidelines on how to apply a bias variance decom-
position. This paper examines the various parameters and variants of
empirical bias variance decompositions through an extensive simulation
study. Based on this study, we recommend to use ten fold cross valida-
tion as sampling method and take 100 samples within each fold with a
test set size of at least 2000. Only if the learning algorithm is stable,
fewer samples, a smaller test set size or lower number of folds may be
justified.

1 Introduction

Is the improved performance of C4.5 with increasing training set sizes due to
decrease in bias, decrease in variance, or both? Figure 1 shows how bias variance
decomposition changes with increasing training set size. The first three plates
are three separate runs of decompositions according to Kohavi [1] (using Weka
[2] with default settings, i.e. 50 samples). Everything was kept the same except
that a different randomization of the data set was used. The first plate suggests
both variance and bias decreases with increasing training set size. The second
plate suggests bias decreases but variance remains the same. The third plate
suggests bias remains unchanged while variance decreases. This raises the fol-
lowing questions: why are these decompositions so different and how to select
the correct decomposition.

The reason for the conclusions of these decompositions to be so radically
different is because the decomposition tends to be sensitive to the particular
randomization of the data set. Clearly, this is not desirable. Furthermore, the
example shown in Figure 1 is not a hand picked example or fluke of the data.
The plates shown are selected from among the first ten runs and the dataset was
generated from a naive Bayes data source (see Section 4). It did not take long
to find such contradicting outcomes.

Clearly, it is important for a bias variance decomposition to show low vari-
ability of the estimates, since it impacts conclusions drawn from them. The
randomization of the dataset is not the only issue that impacts the variability
of the decomposition. In the literature (Section 2.1), various methods for bias
variance decomposition are proposed, but no two papers seem to agree on the
parameters of an empirical method. In this paper, we investigate these issues and

W. Wobcke and M. Zhang (Eds.): AI 2008, LNAI 5360, pp. 247–257, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Fig. 1. Various bias variance decompositions on the same problem (see text for de-
scription). Training set size on x-axis, error (top line) bias (middle line) and variance
(bottom line) on y-axis.

perform an empirical investigation in order to be able to recommend a sound
way to perform bias variance decompositions that minimizes variability of the
bias and variance estimates. Based on our findings, the fourth plate in Figure 1
turns out to be the correct interpretation.

2 Bias Variance Decomposition

Bias variance decomposition described in the literature follows the following
pattern (illustrated in Figure 2). A data source is a provider of training sets.
Data sources can be synthetic where a model of the domain is used to create
new independent training sets every time a new set is requested. In practice,
we are more interested in data sources that take samples of fixed data sets. The
training sets obtained from the data source are used to train a learning algorithm.
The thus leaned models are applied on a test set. The bias and variance are then
estimated for each instance in the test set and for 0-1 loss the bias and variance
are calculated from the number of incorrect learners for the instance. The bias
for an instance is estimated as

∑
i(xi − pi)2 − pi ∗ (1− pi)/(n− 1) where i sums

over the class values, n is the number of learners applied to the instance, xi

an indicator variable (0 or 1) that is indicates whether the instance class value
equals the ith value, and pi the fraction of learners that correctly predicted xi.
The variance for an instance is estimated as 1−

∑
i p

2
i . The final bias and variance

reported are averaged over the instances in the test set.

2.1 Experimental Methodology from the Literature

In the literature, the following methods for bias variance decomposition can be
found.
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Fig. 2. General overview of bias variance decomposition estimation

Kong and Dietterich [3] use a synthetic data source for 200 data sets of 200
instances and a test set of 7670 instances were drawn for direct estimates of bias
and variance.

In Kohavi and Wolpert [1], a sample of size n without replacement from a
data set D is taken to get a training set source. From the remainder, a test set
of size n is sampled without replacement. The training source set is used to draw
a sample of size m < n on which the learning algorithm is trained. There are 50
such training samples drawn. The resulting 50 trained models are then applied
to the test set and the bias and variance of the learner are calculated from the
predictions on the test set.

Domingos [4] splits data sets randomly into training and test sets with a
proportion of 2:1. From the training set 100 bootstrap samples (i.e. samples
with replacement) were taken and the learner trained on the 100 samples and
applied to the test set.

Bauer and Kohavi [5] use the technique of [4] but repeated three times and
the estimates are averaged over the three attempts.

James [6] uses a synthetic model to generate 100 and 1000 data sets of a
(unknown) fixed size and a large (unknown sized) test set in order to obtain bias
and variance estimates. For UCI data sets, 5-fold cross-validation was used and
from the non-test set 50 bootstrap samples were drawn. Bias and variance were
averaged over the folds. One UCI data set comes with a separate test set, and
for this one no cross validation was used but just a single run was done.

Valentini and Dietterich [7] use synthetic data sources to generate 100 training
sets of 200 and 400 instances and a test set of 10.000 instances. Also, real data
was split into data source and test set where 200 data sets of 100 instances are
drawn with replacement from the data source.

Valentini and Dietterich [8] select 200 bootstrap samples (with replacement)
from a data set, trains algorithms on the data set and applies the classifier to
samples not selected for the training set (the so called ’out of bag’ set). For
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each instance, a bias and variance is estimated and the final bias and variance
estimates are obtained by averaging over the instances.

Webb [9] uses 10 times repeated 3 fold cross validation and averages results
over runs and folds. From each train set source, 100 samples are drawn for
training sets.

Webb and Conilione [10] use repeated (10 and 50 times) fold cross validation
where the training set source is sampled from the non-test set. Parameters for
training set size and training set dependency can be provided for the training
sets that are sampled from the training source.

3 Problems Identified

It appears that every researcher uses her own favorite method for doing bias vari-
ance measurement experiments, which makes comparison among various works
hard. Also, it appears that ad-hoc methods are used when the experiments do
not behave well. In particular when estimates turn out to be insufficiently stable
the number of data sets is arbitrary increased till the estimates appear stable.

The following concrete problems can be identified;
Gold standard. Synthetic data sources can be created so that beforehand the
systematic error (noise, Bayesian rate) can be determined. However, it is not
clear how the type of data source impacts on the bias and variance of variance.
For example, the LED data generator [11] which can be interpreted as a naive
Bayes model for generating data sets may result in more stable estimates than
when a decision tree is used as data source. Also, the number of attributes,
amount of noise in the attributes, cardinality of nominal attributes, presence of
numerical attributes and other data source characteristics may influence exper-
imental results.

Empirical standard. No generally accepted protocol exists for measuring bias
and variance for a given data set. The main features in which methods differ are
the following;

– Variants for obtaining data sources are train/test split of data, cross valida-
tion and bootstrap.

– The way data source are used to create data sets using sampling with or
without replacement. Sampling with replacement results in data sets with
possibly different characteristics than the original data set. Also, it impacts
on some learning algorithms, for instance, 1-nearest neighbor.
Another way data source use varies is that some instances can be ignored in
order to control the interdependency between sampled data sets.

– The number of data sets sampled from each data source, which ranges from
50 to 1000 in the literature.

– The number of times the process is repeated to generate more stable esti-
mates, e.g. once or 10 times repeated cross validation.

Desiderata. Most articles do not explicitly list the properties of a bias variance
estimator that are desirable. In this article, we concentrate on the following
criteria;
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– Unbiased estimates. Just as for any estimator.
– Stability/replicability. Repeated measurements on the same data with differ-

ent random splits of this data should result in (almost) equal estimates.
– Efficiency. As little computational effort should be required for estimating

bias and variance.
– Data source control. Most bias variance measurements are applied to a par-

ticular ’real world’ data set of size n but no method allows for sampling data
sets of size n (without duplicating data). The size of the data sets is one
item to control. Another is dependency between data sets.

4 Simulation Study

To examine the parameters mentioned in the previous section, we performed a
number of experiments. We considered a range of data sources.

Bayesian Network Data Sources. For data sources, Bayesian networks with
increasing numbers of complexity were randomly generated. Figure 3 shows the
network structures and marginal distributions. The first has the same topology
as Naive Bayes, the second is a tree augmented naive Bayes (TAN) structure and
the third is a general Bayesian network structure, each structure representing
increasingly complex concepts. The networks have 10 binary variables each and
50%/50% class probabilities.

Agrawal Data Sources. Agrawal et al. [12] defined a set of ten functions for
machine learning benchmarking. These are functions over the attributes salary,
commission, age, education level, car, zipcode, house value, years house owned
and total loan amount. The functions are classification functions splitting the
population into two groups and can be as simple as splitting on age in the
interval 40 to 60 years. Others are more complex functions like testing whether
0.67(salary+commission)−5000·eduction level+0.2·equity−20.000 is positive
where equity is a hidden variable calculated as 0 if the house is owned less than
20 years or 0.1 × house value× (years house owned− 20) otherwise.

Gaussian Radial Base Data Sources. By creating a random set of centers
with randomly assigned weights, a set of random Gaussian radial base functions
can be defined around those centers. By selecting a center at random according
to the weights of the centers and generating attributes randomly offset from
the center and assigning the class attribute associated with the center, new
instances can be generated. This type of data generator is called the random
RBF generator. In the experiments, random RBF data generator from Weka [2]
were used with 10, 20, 50 and 100 centers.

Number of Samples. To eliminate dependence between samples on bias/
variance estimates, initially we used the data sources to produce new independent
samples every time a sample is required. After determining other parameters,
sampling methods (resampling, cross validation and bootstrapping) based on
single data sets are considered.
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Fig. 3. Bayesian networks used as data generators

The first experiment aims at determining the number of samples required
for getting a stable estimate of the bias and variance. Also, it tries to get an
impression on the impact of the data source on the variability of bias/variance
estimates. Up to 2000 samples were drawn from the Bayesian networks and C45
as implemented in Weka [2] was trained and then tested on a set of 10.000
instances. This process was repeated 100 times for the three networks, so 60.000
trees were trained in this experiment. Figure 4 shows the results.

The same experiment as for the naive Bayes, TAN and Bayesian net data
generator was repeated for the ten Agrawal functions (for which a total of
10x100x2000= 200.000 trees were learned) and with the random RBF data gen-
erators (for which a total of 4x100x2000= 80.000 trees were learned). However,
results are not shown due to space limitations.

In general, the experiments show that taking less than 200 samples tends
to have a significant impact on the variability of the bias/variance estimates.
This implies most results published in the literature (as outlined in Section
2.1) can be expected to suffer from unstable estimates. The variability in the
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Fig. 4. Comparing different complexity of concepts on bias/variance for C4.5; naive
Bayes data source in top row, TAN in middle row and full Bayesian net in bottom
row. Error (left), bias (middle) and variance (right) estimates and their 100% and 90%
bounds on the y-axis. Number of datasets sampled on the x-axis (ranging 0 to 2000).
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Fig. 5. Comparing various learning algorithms; left C4.5, middle Naive Bayes, right
nearest neighbor. Variance estimates and their 100% and 90% bounds on the y-axis.
Number of datasets sampled on the x-axis (ranging 0 to 2000).

estimates does not decrease very much when taking more than 1000 samples.
The variability of the estimates for large number of samples differs with every
data source. However, as Figure 4 shows, the variability does not necessarily
increase with increasingly complex data sources. The above observations hold
for the ten Agrawal data sources and random RBF generators as well.
Learning algorithm. To get an impression how sensitive the bias variance de-
composition is to the actual learning algorithm under investigation, we reran the
above experiment with C4.5, naive Bayes and nearest neighbor as learning algo-
rithms. Figure 5 shows a result typical for the outcomes for the naive Bayes data
source (remainder not shown due to limited space). Clearly, different algorithms
have different bias and variance, but also the variability of the estimates differs
with different algorithms. Stable algorithms like naive Bayes appear to result in
less variability than highly unstable ones like C4.5 [13]. Nearest neighbor is a
medium stable algorithm and has variability of estimates in between the other
two algorithms. The same observations hold for the other data sources.

Test Set Size. The test set size can be expected to have an impact on the bias
variance decomposition since small test sets can be expected to result in highly
variable decompositions. Likewise, virtual infinite test set sizes can be expected
to result in more stable decompositions. To get a sense where the desired balance
between stable decompositions and acceptable computational effort lies, we ran
the experiment with different test set sizes and Figure 6 shows the results. Clearly,
test set sizes under 2000 result in highly variable decompositions. Improvement in
the stability of the decomposition vanishes for test sets over 10.000 instances.

Sampling Method. The sampling method was reported to have some ef-
fect on the variability of the bias variance estimates [10], in particular cross
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10000× bootstrapping respectively. Note linear y-scale for error and bias and log scale
for variance.

validation appeared to result in more stable outcomes than sampling with re-
placement. Another approach is bootstrapping with out of bag instance classi-
fication for estimates [8]. Figure 7 shows the mean and 90% interval for error
(left plate), bias (middle) and variance (right) estimates using sampling with re-
placement (first pair of items in plate), cross validation (next pair of items) and
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bootstrapping (last pair). The estimates are for C4.5 on the naive Bayes data
source from Section 4 and the training sets contain 1000 instances. Computa-
tionally, resampling is cheapest, cross validation takes a bit more due to some
extra administration and bootstrapping takes even more due to the administra-
tion that comes with out of bag estimation. The first item in each pair is where
1000 samples are taken from the data source, and the second where 10.000 sam-
ples were taken. For cross validation, ten folds were used and within each fold
100 samples were taken. To get the 10.000 samples the process was repeated
ten times and estimates averaged over the ten runs. Figure 7 shows clearly that
the variability for cross validation is considerably less than that for resampling,
confirming [10]. Furthermore, it appears that bootstrapping results in higher
variability of bias/variance estimates. Furthermore, increasing the number of
samples has little effect on the variability of the estimates, so this variability is
inherent in the samplings method.

5 Discussion/Conclusions

We identified the following issues that have an impact on the stability of bias
variance decompositions

– number of samples drawn from a datasource. Decompositions using less than
200 samples result in highly unstable estimates. This is surprising since pro-
posals found in the literature routinely use 100 or less samples. Consequently,
it is easy to draw erroneous conclusions from such simulations (as illustrated
by Figure 1).

– learning algorithm. Unstable algorithm like C4.5 can result in twice the vari-
ability of a decomposition as stable algorithms like naive Bayes. Increasing
the number of samples can reduce this effect somewhat, but cannot totally
eliminate the variability due to instability of the learning algorithm.

– test set sizes under 2000 result in highly variable decompositions and are not
recommended. Test set sizes of 10.000 and over do not seem to reduce variabil-
ity any more. So, as a rule, the larger the test set size the lower the variability.

– sampling algorithm. Cross validation gives the least variable estimates, boot-
strapping the most and resampling goes in between.

– The data source has a small effect on the variability, but no pattern could
be found to determine when it can be justified to use fewer samples.

Based on these observations, we recommend to use ten fold cross validation as
sampling method and take 100 samples within each fold with a test set size of at
least 2000. Taking fewer samples or using a lower number of folds such that the
number of samples (i.e. the number of folds times number of samples per fold)
is at least 200 may be justified if the learning algorithm under consideration is
very stable.
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Koronacki, J., de Mántaras, R.L., Matwin, S., Mladenic, D., Skowron, A. (eds.)
ECML 2007. LNCS (LNAI), vol. 4701, pp. 128–139. Springer, Heidelberg (2007)

http://www.csse.monash.edu.au/~webb/files/webbconilione06.pdf


Using Gaussian Processes to Optimize
Expensive Functions

Marcus Frean and Phillip Boyle

Victoria University of Wellington, P.O. Box 600,
Wellington, New Zealand
marcus@mcs.vuw.ac.nz

http://www.mcs.vuw.ac.nz/∼ marcus

Abstract. The task of finding the optimum of some function f(x) is
commonly accomplished by generating and testing sample solutions iter-
atively, choosing each new sample x heuristically on the basis of results
to date. We use Gaussian processes to represent predictions and uncer-
tainty about the true function, and describe how to use these predictions
to choose where to take each new sample in an optimal way. By doing this
we were able to solve a difficult optimization problem - finding weights in
a neural network controller to simultaneously balance two vertical poles
- using an order of magnitude fewer samples than reported elsewhere.

1 Introduction

One potentially efficient way to perform optimisation is to use the data collected
so far to build a predictive model, and use that model to select subsequent search
points. In an optimisation context, this model is often referred to as a response
surface. This method is potentially efficient if data collection is expensive relative
to the cost of building and searching a response surface. In many such cases, it
can be beneficial to use relatively cheap computing resources to build and search
a response surface, rather than incur large costs by directly searching in the
problem space. A case in point is the construction of robotic control systems.

In the response surface methodology [1] we construct a response surface and
search that surface for likely candidate points, measured according to some cri-
terion. Jones [2] provides a summary of many such methods and discusses their
relative merits. As a simple example, consider a noiseless optimisation problem
where, given an intial set of samples, we proceed as follows:

1. Fit a basis function model to the data.
2. Find an optimum point of the model and call this point xnew
3. Sample the problem at xnew, and add the result to the current data set.
4. Repeat until satisfied or until is no satisfactory progress is being made.

This is a poor general purpose optimisation algorithm, and for several reasons.
One symptom is that it rapidly becomes stuck in one region of the search space,
wasting further samples there despite already having good information about it
from previous samples.

W. Wobcke and M. Zhang (Eds.): AI 2008, LNAI 5360, pp. 258–267, 2008.
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A more sophisticated search method might attempt to capture regularities
about the nature of the search space (rather than merely fitting the existing
data), and then use that model more sensibly than simply suggesting the high-
est predicted point for the next sample. The tendency to explore unchartered
territory and collect new information about the problem’s structure once local
territory has been mapped should be an emergent property of a good search algo-
rithm, not a heuristic to be wired in as a quick fix for “premature convergence”.
This naturally leads us to consider statistical models, where we have a full predic-
tive distribution rather than a single prediction at each search point. Gaussian
process models [16] are attractive from this standpoint, for 3 reasons: (i) the
predictive distribution is easily obtained, (ii) a Bayesian treatment of hyperpa-
rameters allows the model to learn general properties of the surface (smoothness
etc.) from previous samples, and (iii) a sensible criterion for drawing the next
sample is easily obtained from them.

2 Gaussian Processes

Given training data D consisting of N “input” vectors xi paired with scalar
“outputs” yi for i ∈ {1, 2, ..., N}, Gaussian process regression is a machine learn-
ing technique for infering likely values of y for a novel input x. The study of
Gaussian processes for prediction began in geostatistics with kriging [3], [4] and
O’Hagan’s [5] application to one-dimensional curve fitting. Buntine [6], MacKay
[7], and Neal [8] introduced a Bayesian interpretation that provided a consis-
tent method for handling network complexity (see [9,10] for reviews), followed
by regression in a machine learning context [11,12,13]. See [14,15,16] for good
introductions. Interesting machine learning applications include reinforcement
learning [17], incorporation of derivative observations [18], speeding up the eval-
uation of Bayesian integrals [19,20], and as models of dynamical systems [21].

The key assumption is that the posterior distribution p(y|x,D) is Gaussian.
To compute its mean and variance, one specifies a valid covariance function
cov(x,x′), and defines vector k where ki = cov(x,xi), and matrix C where Cij =
cov(xi,xj). A common choice of covariance function is the squared exponential,
with a length scale rd associated with each axis:

cov(xi,xj) = α exp

[
−1

2

D∑
d=1

(x(d)
i − x(d)

j )2

2r2d

]
+ βδij (1)

Here θ = {α, r1, . . . , rD, β} are hyperparameters, for which Maximum a posteri-
ori (MAP) values can be inferred from the data [16] by maximising the posterior
density p(θ|X,y), which is the product of the likelihood function and a prior
density over hyperparameters. In the experiments here we used the following log
normal priors for p(θ): logα ∼ N (− log 0.5, 0.5), log rd ∼ N (− log 0.5, 0.5), and
log β ∼ N (− log 0.05, 0.5).

At any test point x we then have a predictive distribution that can be shown
to be Gaussian with mean y(x) = kTC−1y, and variance s2(x) = κ− kTC−1k
where κ = cov(x,x) (eg. for the above covariance function κ = α+ β).
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3 Expected Improvement

If the model we build provides a predictive distribution at any test point, we can
use it to ask what improvement, over our current best sample, do we expect to
get from sampling at any test point. Such a measure is known as the expected
improvement (e.g. see [2]). The expected improvement (“EI”) is particularly
straightforward to calculate in the case of a Gaussian process.

For a maximisation problem, the predicted improvement at x is I(x) = ŷ(x)−
fbest, where fbest is the current best score and ŷ(x) is the model’s prediction at
x. The prediction is Gaussian distributed as ŷ(x) ∼ N (y(x), s2(x)), and so is
the improvement: I ∼ N (y(x) − fbest, s

2(x)). The expected improvement at x
for models with Gaussian predictive distributions is therefore

EI(x) = E[max{0, I(x)}] =
∫ I=∞

I=0
Ip(I)dI = s(x) [uΦ(u) + φ(u)]

where u = y(x)−fbest
s(x) . The functions Φ(·) and φ(·) are the normal cumulative

distribution and normal density function respectively:

Φ(u) =
1
2

erf
(
u√
2

)
+

1
2

φ(u) =
1√
2π

exp
(
−u

2

2

)
Figure 1 illustrates the concept of expected improvement for a GP model in

a maximisation context.
To find a new search point that maximises the expected improvement, we can

also make use of gradient information. The gradient of EI with respect to x is:

∂EI(x)
∂x

=
[
uΦ(u) + φ(u)

]
∂s(x)
∂x

+ s(x)Φ(u)
∂u

∂x

(the other two terms cancel) where

∂s(x)
∂x

= −
(
∂kT

∂x
C−1k

)/
s(x), and

∂u

∂x
=

(
∂kT

∂x
C−1y − u∂s(x)

∂x

)/
s(x)

The Jacobian ∂kT

∂x is dependent on the form of the covariance function: it is
D ×N matrix whose (i, j)th element is ∂cov(x,xj)

∂xi
where x = [x1 . . . xD]T.

4 GPO

In this section, the Gaussian Processes for Optimisation (GPO) algorithm is
described. Our goal is find the position xopt of the optimum of a surface f∗(·),
using as few samples as possible, so we update all parameters in the model as
each new data point arrives. GPO begins by assuming a start point x0, which in
general is sampled from some distribution reflecting our prior beliefs about f∗(·).
At each iteration, the algorithm builds a GP model of the current data by finding
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Fig. 1. Expected Improvement for a GP model in a maximisation context. Data points
are shown as black dots. The GP model’s predictive distribution has a mean shown by
the black line that fits the data, and a standard deviation shown by the shaded region
surrounding the mean. The black line at the bottom shows the expected improvement
given this particular GP model. Notice that expected improvement is maximum when
the model’s prediction is better than or close to fbest and the predictive variance is
high. Expected improvement is quite high when when the model prediction is low and
the predictive variance is high. But when the model prediction is low and the predictive
variance is low, the expected improvement is almost zero.

θMAP . If multimodal posterior distributions are considered a problem, then the
GP model can be built by restarting the log posterior density maximisation
multiple times from samples drawn from p(θ).

The resulting GP model is used to select the next xnew to evaluate by finding
a point that maximises the expected improvement. This can be achieved by
using the gradient of the expected improvement as input to (eg.) the conjugate
gradient algorithm [23]. To overcome the problem of suboptimal local maxima,
multiple restarts are made starting from randomly selected points in the current
data set X. The new observation ynew is found from f∗(xnew) and the results are
added to the current data set. Iterations continue until some stopping criterion
is met.

Figure 2 shows the results of running standard GPO on a simple 1D toy
problem. Notice how the search initially focuses on the suboptimal maximum
on the left. However, once the algorithm has sampled here a few times, the
expected improvement of sampling in this suboptimal region diminishes quickly.
At this point, the search expands into new regions. The algorithm will exploit
local knowledge to make improvement, but will also explore when the expected
returns of this exploitation decrease.

Notice that the squared exponential form of the covariance function is “axis-
aligned” in the sense that it assigns a separate length scale to each direction in
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Algorithm 1. GPO
Input: optimisation problem f∗(·), and starting point x0

xbest ← x0, ybest ← f∗(x0);1

y ← [ybest], X ← xbest;2

repeat3

θMAP ←− arg max
θ

p(θ|X,y);4

xnew ←− arg max
x

EI(x|X,y, θMAP );5

ynew ← f∗(xnew);6

if ynew ≥ ybest then7

ybest ← ynew, xbest ← xnew;8

X ← [X |xnew], y ←
�
yT | ynew

�T;9

Vrot ← arg max
v

p(θV
MAP |VX,y) where θV

MAP = arg max
θ

p(θ|VX,y);10

X ← VrotX11

until (stopping criteria satisfied);12

return xbest13

input space. However in optimization problems in more than one dimension this
is a poor assumption, since there will often be interactions between input vari-
ables which induce covariance structure that is “off-axis”. To allow the algorithm
to discover such structure, at each step we test out a number of random rotations
X′ = VrotX of the current input data X using randomly generated orthonormal
matrices Vrot, and choose the rotated data set for which p(θMAP |X′,y) is great-
est. This preprocessing of the data is equivalent to learning a rotated covariance
function and allows GPO deal with off-axis structure in the properties of the
search surface. Further details are given in [20].

Jones [2] first introduced kriging for optimisation using expected improvement
to select the next iterate. Büche, Schraudolph and Koumoutsakos [22] explicitly
used Gaussian processes for optimisation, and demonstrated the algorithm’s ef-
fectiveness on a number of benchmark problems. This work did not make use
of expected improvement, did not place prior distributions over the hyperpa-
rameters, and did not consider the deficiencies of using an axis-aligned covari-
ance function to optimise objective functions with correlated output (dependent)
variables. The algorithm presented here takes all these factors into account. Re-
cently [28] have used similar ideas to those presented here to optimize the gait
of a mobile robot, although they use a different criterion (probability of any
improvement) and don’t deal with correlated variables.

5 Double Pole Balancing with GPO

The double pole balancing task consists of two upright poles (or inverted pendu-
lums), attached by hinges to a cart. The goal is to keep the two poles balanced
by applying a [−10, 10]N force to the cart. Balanced poles are defined as within
±36 ◦ from vertical, and the cart is limited to a track which is 4.8m long. The
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Fig. 2. GPO applied to a 1D function for 9 iterations. The dashed line shows the
underlying function to be optimised. The sample points are shown as black dots, along
with the model’s predictive distribution (the line surrounded by the shaded area shows
the mean and standard deviation). The expected improvement is rescaled and shown
by the solid line at the bottom of each window. Note the hill-climbing behaviour (eg.
iterations 4-5) exploiting regularity of the surface, and exploratory behaviour at other
times (eg. iteration 6).

controller is supplied with inputs from sensors measuring the cart’s position and
velocity x, ẋ and the angle and angular velocity of each pole with respect to the
cart θ1, θ̇1, θ2, θ̇2. The poles have different lengths and masses (pole 1 is 0.1m and
0.01kg; pole 2 is 1.0m and 0.1kg) and the system is noiseless with initial state
vector s = [x ẋ θ1 θ̇1 θ2 θ̇2]T = [0 0 0 0 π

180 0]T, where angles are measured in rad
from vertical, and angular velocities are measured in radians / sec. The centre
of the track is defined as x = 0, and is the position of the cart at the beginning
of the task. Note that this task is Markovian as the full system state vector
s is available to the controller and is the same as the “double pole balancing
with velocity information” problem as presented by Stanley and Miikkulainen
[24,25,26].

If the goal is to keep the poles balanced for as long as possible, one solution
is to wiggle the poles back and forth about a central position. To prevent this,
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Gruau [27] defined a fitness function that penalises such solutions, fgruau =
0.1f1 + 0.9f2, [24,26]. The two components are defined over 1000 time steps (10
seconds simulated time):

f1 = t/1000 (2)

f2 =

{
0 if t < 100,

0.75�t
i=t−100(|xi|+|ẋi|+|θ1|+|θ̇1|) otherwise. (3)

where t is the number of time steps both poles remained balanced during a trial
lasting 10 seconds. fgruau can be maximised by keeping both poles balanced,
and by maintaining the cart steady at the centre of the track during the final
second of the trial. Effectively, to maximise fgruau the controller must balance
the poles without ‘wiggling’. As the denominator of (3) approaches zero f2 ap-
proaches infinity, so fgruau was non-linearly rescaled into the range [0, 1] giving
fgpo = tanh(fgruau/2). Controllers were considered successful solutions when
fgpo ≥ tanh

( 5
2

)
.

5.1 Feedforward Neural Network Controllers

The double pole balancing task described above is a non-linear, unstable control
problem. However, because the poles have different lengths and masses, the
system is controllable. In addition, the task is Markovian. Overall, full knowledge
of the system state is sufficient to balance the poles, and this can be achieved
with a mapping from s to u, our control force. In other words, there exists at
least one mapping s !→ u that is capable of balancing the poles. A successful
controller must functionally approximate such a mapping.

The control force is implemented by a feedforward neural network with a
single hidden layer having H units, and output limited to [−10, 10]N :

u = 10 tanh
(
wT

o tanh
(
WT

i s + b
))

where wo is an H × 1 vector of output weights, b is an H × 1 vector of biases,
Wi is a 6 ×H matrix of input weights, s is the 6 × 1 state vector.

5.2 Optimisation and Incremental Network Growth

We optimized f� = fgruau(wo,W,b). The optimisation started with a single
unit in the network, H = 1. Initially, therefore, there were 8 parameters that
need optimising. GPO, with the axis-aligned covariance function (Eq. 1) and
data rotation prior to training, was used optimise these weights until either
there had been no improvement in the best fitness for 64 consecutive samples,
or 250 samples had been taken. When either of these conditions were met, the
current optimised parameters were frozen, and a new unit with zeroed weights
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Fig. 3. Double Pole Balancing with Gruau fitness, optimised using GPO. The figure
shows 100 separate optimisations (grey) and the average (black).

was added to the network. The cycle repeated until a solution was found, or 5
units and their weights had been optimised. Note that the initial weights for the
first iteration were zero (the algorithm started from the same place every time
it was run), and 8 parameters were being optimised at every stage.

Figure 3 shows 100 runs of GPO on this task. 96 of these runs found a success-
ful controller solution with fgruau ≥ tanh

( 5
2

)
in < 1000 evaluations (samples).

The median number of evaluations required to find a successful controller was
151, and the mean was 194. The majority (78%) of successful controllers used
only 1 unit in their solution (i.e. 6 input weights, 1 bias and 1 output weight).
12 runs used 2 units, while 9 needed from 3 to 5 units.

Stanley and Miikkulainen [24,25,26] introduced “Neuroevolution of Augment-
ing Topologies” (NEAT), and applied it to a number of pole balancing tasks, in-
cluding the double pole balancing problem presented above. The NEAT method
is a genetic algorithm with mutation and crossover operations specially crafted
to enhance the evolution of neural network controllers. The details of NEAT are
not important here, other than that it produced impressive results in solving
the double pole balancing task with velocity information. NEAT required an
average 3578 network evaluations to find a controller solution, which compared
favourably with other results from literature.

GPO produced successful controllers in 96 out of 100 trials, and did so with
a mean of 194 evaluations. This is a significant improvement over NEAT.
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6 Summary

We have presented an optimization algorithm that uses Gaussian process regres-
sion to suggest where to take samples, with the goal of finding a good solution
in a small number of function evaluations. GPO uses data rotation to allow for
interactions between input variables, and learns about the search space as it
proceeds, by finding maximum a posteriori values for hyperparameters at every
step. In this way search is carried out as much as possible on the model instead
of the real world, using the conjugate gradient method to find points having the
highest expected improvement. Sequences of samples taken in this way exhibit
a variety of intuitively sensible yet emergent properties, such as hill-climbing
behaviour, and avoidance of regions the model considers to be well characterised
already. Despite being a deterministic procedure, GPO also shows non-trivial
exploratory behaviour, in testing out regions that seem promising under the
current model.

As a demonstration of this algorithm we applied it to the task of finding
optimal parameters for the double pole-balancing problem, with that result that
it learns successful controllers using about 200 evaluations of possible controllers,
compared to over 3500 reported for other algorithms.
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Abstract. The studies of DNA Microarray technologies have produced high-
dimensional data. In order to alleviate the “curse of dimensionality” and better 
analyze these data, many linear and non-linear dimension reduction methods 
such as PCA and LLE have been widely studied. In this paper, we report our 
work on microarray data classification with three latest proposed discriminant 
analysis methods: Locality Sensitive Discriminant Analysis (LSDA), Spectral 
Regression Discriminant Analysis (SRDA), and Supervised Neighborhood Pre-
serving Embedding (S-NPE). Results of experiments on four data sets show the 
excellent effectiveness and efficiency of SRDA. 

Keywords: Discriminant analysis, Dimensionality reduction, Data mining, Bio-
informatics. 

1   Introduction 

The invention of DNA microarrays has spurred numerous efforts to acquire relative 
mRNA expression information from complex cellular systems [7,8,9]. A typical mi-
croarray data set usually contains expression levels for thousands of genes across 
hundreds of “conditions” [9], and therefore these data have quite high dimensionality. 
On the other hand, the number of available samples is usually very low. This is 
known as the problem of “large p and small n” [10]. Given the fact that there are not 
many observations that are scattered in very high-dimensional space [10], dimension-
ality reduction is necessary, which is also crucial for reducing the complexity and 
improving the performances of machine learning techniques. There have been many 
linear and non-linear dimension reduction techniques applied for microarray data 
analysis: Principal Components Analysis (PCA) [11,12], Locally Linear Embedding 
(LLE) [13], Isometric Mapping (Isomap) [14], linear Multidimensional Scaling 
(MDS) [15], Linear Discriminant Analysis (LDA) [16], etc. 

However, performing purely unsupervised dimension reduction techniques for 
classification with microarray data wastes the information provided by the labels of 
the training data. In this paper, we focus on studying the capabilities of discriminant 
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analysis methods, which taking information contained by labels into account, for 
classification with microarray data. Three latest proposed discriminant analysis meth-
ods: Locality Sensitive Discriminant Analysis (LSDA), Spectral Regression Dis-
criminant Analysis (SRDA), and Supervised Neighborhood Preserving Embedding 
(S-NPE), are firstly introduced to this aim. The remainder of this paper is organized 
as follows. Section 2 briefly reviews the methods used in our work. Results of our 
experiments and their analysis are presented in section 3. We conclude our work in 
section 4. 

2   Methods 

At first, the generic problem of linear dimensionality reduction problem is formally 
described as follows: 

1. Given the original data X = {x1, x2, · · · , xn} in high-dimensional space Rm. 

2. Find a matrix A that transforms the original data points into a new set of data 

points Y = {y1, y2, · · · , yn} in a low-dimensional space Rd (d m), such that yi 

“represents” xi, where yi = ATxi. 

During the transformation, a dimensionality reduction method attempts to retain 
the geometry of X as much as possible. We briefly review LDA below, and then the 
three novel algorithms for discriminant analysis, LSDA and SRDA, and S-NPE. 

2.1   Linear Discriminant Analysis 

Linear Discriminant Analysis (LDA) [4] attempts to maximize the linear separability 
between data points of different classes, and it is a supervised technique. LDA opti-
mizes the ratio between the within-class scatter Sw and the between-class scatter Sb in 
the low-dimensional representation of the data, by finding a linear mapping M that 
maximizes the so-called Fisher criterion, that is 

* ( )
arg max

( )

T
b

T
A w

tr A S A
A

tr A S A
=  , (1) 

where tr() denotes matrix trace, Sb and Sw are 

cov( )c c
w cc

S p X X= −∑  ,  

cov( ) cov( )c
b wc

S X X X S= = − −∑  ,  

where pc is the class prior of class label c, cov( c cX X− ) is the covariance matrix of 
the zero mean data points xi assigned to class c∈C (C is the set of classes), cov( cX ) 
is that of the cluster means and cov( X X− ) is the covariance matrix of the zero mean 
data X [5]. The optimization problem in Eq. 1 equals to solve the following general-
ized eigenvector problem 
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a ab wS Sλ=   

for the d largest eigenvectors ai to form the transformation matrix A associated with 
their eigen-values, where d < |C| since rank(Sb) < |C|. 

2.2   Locality Sensitive Discriminant Analysis 

Locality Sensitive Discriminant Analysis (LSDA) attempts to find a mapping M 
which maximizes the local margin between data points from different classes at each 
local area [2]. 

Similar to other manifold based learning methods, LSDA characterizes the local 
geometry of the data manifold by building nearest neighbor graphs. In LDSA, it 
achieves the targets of discovering both geometrical and discriminant structures of the 
data manifold by building two graphs: within-class graph Gw and between-class 
graph Gb. Let l(xi) be the label of xi, Nw(xi) the set of neighbors sharing the same label 
with xi, and Nb(xi) the set of neighbors with different labels from that of xi. All 
neighbors are defined by using euclidean distance. Note that, the number of nearest 
neighbors is denoted by k, which has the same meaning with the k described in the 
subsection 2.4, and we set the k to be 3 in the experiments of this paper. For the rea-
son why we select 3 instead of other numbers, please refer to subsection 3.1. The 
weighted matrices of Gw and Gb, i.e. Ww and Wb, are defined as [2]: 

,

,

1, if ( ) or ( )

 0, otherwise.

1, if ( ) or ( )

 0, otherwise.

i b j j b i
b ij

i w j j w i
w ij
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The optimization problem of LSDA can be reduced to finding [2]: 

arg max ( (1 ) )

s.t. 1
a

a a

a a

T T
b w

T T
w

X L W X

XD X

α α+ +

=
 (2) 

where α is a regulative parameter and 0 1α≤ ≤ , Dw is a diagonal matrix whose en-

tries are column sum of Ww, i.e. Dw,ii = ,w ijj
W∑ , and Db is defined similarly, Lb = Db 

– Wb is the Laplacian matrix of Gb. To solve Eq. 2 equals to solve the following gen-
eralized eigenvector problem 

( (1 ) ) T T
b w wX L W X XD Xα α λ+ − =a a  .  

Then we can transform X to d-dimensional space by selecting the top d largest ei-
genvectors to form A.  

Since for microarray data rank(X) ≤ n (the number of genes/features), 
both ( (1 ) ) T

b wX L W Xα α+ −  and T
wXD X are singular. We apply Principal Component 

Analysis in our experiments firstly and then remove the obtained components with 
zero eigenvalues [2]. 
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2.3   Spectral Regression Discriminant Analysis 

Spectral Regression Discriminant Analysis (SRDA) casts discriminant analysis into a 
regression framework by using spectral graph analysis [3]. It combines the spectral 
graph analysis and regression and is an efficient and effective discriminant analysis 
method [3]. 

In fact, SRDA is essentially originated from LDA, so for more theoretical details 
please refer subsection 2.1 and [3]. We give the procedure of SRDA which original 
described in [17]. 

Let data points of X belong to c classes, and mk denote the number of points in the 
kth class. The procedure is as follows: 

Step 1: Responses generation. 
Let

1

1 1

[0,...,0 ,1,...,1, 0,...,0] , 1,...,
j c

j
i ii i j

T
k

mm m

y j c
−

= = +

= =
∑ ∑

and 0 [1,1,...,1]Ty = denotes a vec-

tor of all ones. Then we can gain orthogonize {yk} by taking y0 as the first 
vector to perform Gram-Schmidt process. Then c-1 vectors will be ob-
tained, because y0 is in the subspace spanned by {yk}: 1

1 0{ } , 0c T
k k iy y y−

= = ， 
0 ( )T

i jy y i j= ≠ . 

Step 2: Regularized least squares. 
Let xi still denote a new vector constructed by appending a new element 

“1” to each original xi. Then we need to find c – 1 vectors {ak}∈Rn+1 by  

solving the following regularized least squares problem: 

22

1

arg min ( )
a

a a a
n

T k
k j j

j

x y α
=

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
∑  , 

 

where k
jy is the jth element of ky , α ≥ 0 is a parameter to control the 

amounts of shrinkage.  
Step 3: Embedding to c − 1 dimensional subspace. 

We can form the transformation matrix A by using the obtained c − 1 vec-
tors {ak} vectors. However, the procedure of transformation (x→y) is 
slightly different from that of LDA, in which the x must be also appended 

an element “1”: y = AT 

1

x⎡ ⎤
⎢ ⎥
⎣ ⎦

. 

For more details about SRDA, please refer [3]. 

2.4   Neighborhood Preserving Embedding 

Neighborhood Preserving Embedding (NPE) is the linear approximation of Locally 
Linear Embedding (LLE) and the eigenfunctions of the Laplace Beltrami operator [1]. 
NPE minimizes the cost function of a local non-linear dimensionality reduction 
method under the constraint that the mapping from the high-dimensional space to the 
low-dimensional space is linear. 
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In NPE, it firstly builds a nearest neighborhood graph G on X by k nearest 
neighbors or ε neighborhood methods. In this paper, G is obtained by k nearest 
neighbors method: putting a directed edge from node i to j if xj is among the  
k nearest neighbors of xi. Let W denote the weight matrix of the obtained graph. Then 
NPE reconstructs the weight Wi the same as the way of LLE. Now we briefly review 
the reconstruction procedure in [6]. In aforementioned step of calculating the W, we 
find the k nearest neighbors of one point xi. However, in many cases, these data points 
might reside on a nonlinear submanifold. But it might be reasonable for us to assume 
that the local neighborhood of each point is linear. Therefore, we can characterize the 
local geometry of these patches by linear coefficients that reconstruct each point from 
its neighbors [1]. The measure of reconstruction errors can be formally defined as the 
following cost function [6] and “good” reconstructed weights on the edges can be 
computed by minimizing this function: 

2( ) || ||i ij j
i j

W x W xφ = −∑ ∑   

with constraints 1ijj
W =∑ . The details about how to solve this minimization problem 

can be found in [6]. 
Then after the reconstruction, NPE computes the linear projections by solving the 

following minimization problem: 

arg min

s.t. 1

a
a a

a a

T T

T T

XMX

XX =
 (3) 

where M = (I – W)T (I – W), I represents the n × n identity matrix. For Eq. 3, we can 
get the transformation matrix A by solving the following generalized eigenvector 
problem 

a aT TXMX XXλ=  (4) 

for the top d largest eigenvectors to form A. 
We obtain the supervised version of NPE by putting edge to xi’s k neighbors only 

when these k neighbors are with the same label of xi.  

3   Results 

In this section, we investigate the performances of the aforementioned four discrimi-
nant analysis methods for classification. All of our experiments have been performed 
on a P4 1.86GHz Windows XP computer with 2GB memory. 

3.1   Experimental Design 

In our experiments, we chose 4 publicly available datasets, which are Leukemia, 
Brain Tumor, SRBCT and Lung Cancer.1 Table 1 summarizes the details about them. 

                                                           
1 All datasets are available at http://www.gems-system.org/. 



 Discriminant Analysis Methods for Microarray Data Classification 273 

Table 1. Statistics of the four datasets 

dataset size(n) # genes(m) # classes(c) 
Leukemia 72 5327 3 

Brain Tumor 90  5920 5 
SRBCT 83 2308 4 

Lung Cancer 203 12600 5 

These datasets are all unbalanced. In fact, microarray datasets, particularly, cancer 
datasets like these four, are frequently not very balanced. For better comprehension, 
we now demonstrate the relative frequency of the classes in these datasets: 

1. The dataset comprises 47 cases of acute lymphoblastic leukemia (ALL), which 
contains 38 ALL B-cell and 9 ALL T-cell, and 25 cases of acute myeloid leu-
kemia (AML), whose relative frequency can be simplified as 38/9/25. 

2. In the Brain Tumor dataset, there are 60 cases of medulloblastoma, 10 cases of 
malignant glioma, 10 cases of AT/RT, 4 cases of normal cerebellum, and 6 
cases of PNET, whose relative frequency is 60/10/10/4/6. 

3. The SRBCT dataset contains 29 cases of Ewing's sarcoma, 11 cases of 
Burkitt's lymphoma, 18 cases of neuroblastoma and 25 cases of rhabdomyo-
sarcoma, whose relative frequency is 29/11/18/25. 

4. In the Lung Cancer dataset, the 203 speciments include 139 samples of lung 
adenocarcinomas, 21 samples of squamous cell lung carcinomas, 20 samples 
of pulmonary carcinoids, 6 samples of small-cell lung carcinomas and 17 nor-
mal lung samples, whose relative frequency is 139/21/20/6/17. 

From above description, we can find these microarray datasets are all unbalanced, 
which may inevitably distort the impact of the accuracy.  

For each dataset, the process of our experiments is designed as follows: 

Step 1: For each class, randomly select p (=30%, 40%, 50%, 60%, 70%, 80%)  
percentage of all samples for training, and the rest are used for testing; 

Step 2: Apply the four discriminant analysis methods on the training data to ob-
tain the transformation matrix A. Then both the training and test data are 
transformed into a d-dimensional subspace by using A; 

Step 3: A k nearest neighbor (kNN) is performed on the new dataset, where k is 
set to be 3 in this paper. 

We provide a quantitative evaluation of these discriminant analysis methods via 
the accuracy of the kNN classifier. A baseline is also provided for comparison, which 
is obtained by simply performing kNN in the original m-dimensional space. In order 
to compensate for the random split, each result of our experiments is gained by re-
peating the aforementioned process 10 times independently. 

How we determine the exact d of the subspace in our experiments? For LDA and 
SRDA, we simply transform the original data into a (c-1)-dimensional subspace, 
which is already very small. For both S-NPE and LSDA, we firstly transform the 
original data into a large enough subspace, i.e. 50 percent of the original dimensional-
ity. Then remove the eigenvectors with small or zero eigen-values. In our experiments, 
we set that threshold eigen-value to be 10-6. In our experiments, we found many  
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obtained hybrid-genes through dimensionality reduction methods with so small eigen-
values, and the dimensionality of the subspace are usually smaller than 50.  

We select 3 nearest neighbors to build the graph in LSDA and S-NPE. By referring 
to [2,3], the α of LSDA and SRDA are set to be 0.05 and 0.1 respectively. 

Then why we select 3 nearest neighbors instead of other numbers of neighbors? In 
fact, it is still unclear how to define the locality theoretically [1]. That is, it is still unclear 
how to select the parameter k in a principled manner. From our observations and experi-
ence, setting k to be 3 is a good compromise plan to gain promising performances of 
algorithms such as NPE and LSDA on all of the four microarray datasets. 

Table 2. Accuracy (%) (mean reduced dimensionality) and computational time (s) on the four 
datasets 

 Dataset LDA LSDA S-NPE SRDA Baseline 

Leukemia 87.36(2) 68.68(28) 80.60(13) 88.43(2) 78.55 

Brain Tumor 89.01(4) 77.74(35) 87.17(16) 90.14(4) 80.84 

SRBCT 97.23(3) 77.46(33) 79.82(17) 97.95(3) 76.81 

A
cc

ur
ac

y 

Lung Cancer 93.24(4) 83.70(63) 90.50(31) 94.84(4) 89.33 

Leukemia 0.1013 0.2125 0.2300 0.0826 0.4401 

Brain Tumor 0.1813 0.3310 0.3490 0.1378 0.7818 

SRBCT 0.0609 0.1232 0.1203 0.0513 0.2206 T
im

es
 (

s)
 

Lung Cancer 0.9620 1.8716 1.9638 0.6656 8.0469 

3.2   Results and Discussion 

Table 2 summarizes the results of our experiments on the four datasets. Limited to the 
length, we average the accuracy of the six different p percentages of splitting the 
dataset. From Table 2, we find that the performances of SRDA are always the best of 
the four methods and much better than those of baseline, from both the accuracy and 
computational time. The performance of LSDA is the worst, which shows LSDA 
seems not suitable to take the task of dimension reduction for microarray data. 
Though the accuracy of LDA and S-NPE is not that high as that of SRDA, they 
sharply reduce the time-cost of the classifier, which is also very valuable. We visual-
ize the change of the accuracy and computational time under different values of p in 
Figs. 1-2. There are some issues thrown out by these results, and we will discuss them 
respectively and carefully below. 

Why SRDA and LDA are the best ones? Our experimental results show SRDA and 
LDA perform best, and SRDA is more excellent than LDA. The reasons may be:  

1) From the biological view, many diseases are usually determined by a few 
special genes. That is, the hybrid genes extracted by SRDA capture enough 
information for classification, which may be a valuable virtue of SRDA. That 
also means more valuable referenced information can be gained by using 
SRDA with less time cost. 
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Fig. 1. Accuracy curve on Lung Cancer dataset 
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Fig. 2. Computational time curves on Lung Cancer dataset 

2) From the view of machine learning community, the aim of dimensionality re-
duction is to embed high-dimensional data samples in a low-dimensional 
space while most of ‘intrinsic information’ contained in the data is preserved. 
That means, low-dimensional presentation of original data may provide 
enough information for the aim of classification.  
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Why the performance of LSDA is so poor? The possible reason is the noise from those 
unrelated genes. From above discussion, there are always only a few genes are related 
to a special disease. In the procedure of LDSA, two graphs: within-class graph Gw 
and between-class graph Gb, are built through k nearest neighbors method. These 
neighbors are determined by using euclidean distance under the original high-
dimensional space in our experiments. That means, the noise from those unrelated 
genes may result in the ‘poor’ quality of neighbors, i.e., these neighbors are not that 
near if omitting those unrelated genes. 

Why the performance of LSDA is so fair? Since, in this paper, the information from 
labels are taken use of by putting larger weight to the neighbors with the same label of 
xi than those in different class(es),  the valuable information may not be taken full use 
of. Another possible reason is the curse from these poor qualities of neighbors, the 
same with that of LDSA. 

4   Conclusion 

In this paper, we firstly introduced three novel supervised dimension reduction tech-
niques, Locality Sensitive Discriminant Analysis (LSDA), Spectral Regression Dis-
criminant Analysis (SRDA), and Supervised Neighborhood Preserving Embedding 
(S-NPE), for microarray data classification. Results of our experiments showed that 
SRDA is an efficient and effective discriminating technique for microarray data 
analysis. We also analyzed these results detailedly, and gave our reasons for some 
important problems uncovered by these results. In future, we will explore the dis-
criminating power of additional discriminant analysis methods. 
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Abstract. Hidden Markov Models are a widely used generative model
for analysing sequence data. A variant, Profile Hidden Markov Models
are a special case used in Bioinformatics to represent, for example, pro-
tein families. In this paper we introduce a simple propositionalisation
method for Profile Hidden Markov Models. The method allows the use
of PHMMs discriminatively in a classification task. Previously, kernel
approaches have been proposed to generate a discriminative description
for an HMM, but require the explicit definition of a similarity measure
for HMMs. Propositionalisation does not need such a measure and allows
the use of any propositional learner including kernel-based approaches.
We show empirically that using propositionalisation leads to higher ac-
curacies in comparison with PHMMs on benchmark datasets.

1 Introduction

Traditionally, research in machine learning has focussed on fixed length
attribute-value representations of data. Hence classifiers for this kind of data
have undergone an intense optimisation process. In many areas, however, it is
easier to represent data as structured terms. Examples include areas such as rela-
tional data mining or bioinformatics. In the field of classification from structured
data [1], there are three common ways of dealing with this kind of representation:
relational rule learning [2], kernel approaches [3,4] or propositionalisation [5,6,7].

In this paper we use propositionalisation to generate attribute-value repre-
sentations of varying complexity for Multiple Sequence Alignment. The Multi-
ple Sequence Alignment is represented using a Profile Hidden Markov Model
(PHMM) [8,9]. A PHMM is a generative, probabilistic, graphical model. Using
propositionalisation allows the use of complex PHMMs in a simple, discrim-
inative way. Kernel methods have also been successfully applied to obtain a
discriminative description of Hidden Markov Models (HMMs) [3,10]. However,
they require the definition of an explicit similarity measure between different
HMMs. Propositionalisation approaches do not need such a pre-defined similar-
ity measure.

The remainder of this paper is organised in the following way. Section 2 dis-
cusses Hidden Markov Models in general and their use in sequence classification.

W. Wobcke and M. Zhang (Eds.): AI 2008, LNAI 5360, pp. 278–288, 2008.
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Section 3 describes kernel methods for structured classification emphasising ker-
nel methods for biological sequence data, whereas Section 4 explains proposi-
tionalisation approaches. In Section 5 we present our experimental setup and
results. Conclusions and future work are presented in the final section.

2 Hidden Markov Models

Hidden Markov Models (HMM) are widely used for sequence analysis, especially
in natural language processing and Bioinformatics [11,9,12]. In Bioinformatics
HMMs have been successfully applied to gene-finding, phylogenetic analysis and
protein secondary structure prediction. An HMM represents, in general, a prob-
ability distribution over sequences. It is a generative, probabilistic, graphical
model.

Profile HMMs (PHMMs) are a special kind of HMM for representing Multiple
Sequence Alignments. They allow an alignment to be trained from unaligned
sequences. Figure 1 shows three unaligned amino acid sequences which can be
used as input for a PHMM. This is exactly the kind of input data we use in our
experiments.

MMFFADDAAAE
MMFFARRNSSTNNRREDPFMLWE
MMFFAE

Fig. 1. Three short, unaligned (artificially created) amino acid sequences

A Multiple Sequence Alignment consists of three or more either DNA, RNA
or amino acid sequences. In this paper we align amino acid sequences glob-
ally. PHMMs allow the construction and representation of a Multiple Sequence
Alignment and offer the advantage of being a probabilistic model. They were
introduced by Krogh et al. [8] especially for protein modelling, and are widely
used in bioinformatics [9] to represent protein families. Their underlying graph-
ical structure suits the characteristics of an alignment. The structure for our
PHMM closely follows the popular PHMM model of the HMMER software [13],
and differs slightly from the original proposition of Krogh et al [8]. There are no
transitions from an insert to a delete state and vice versa as these transitions
are very unlikely in the biological domain. Each position in a PHMM consists
of a match, insert and delete state, exceptions are the first position and the last
position. In the first position there is only a match and an insert state, and in
the last position there is only a match state. Figure 2 shows a PHMM with four
match states.

As stated previously, a PHMM can represent a Multiple Sequence Alignment.
Figure 3 shows such a Multiple Sequence Alignment for the unaligned sequences
from Figure 1. Following convention in the biological literature, deletions are
marked with a ‘-’. In addition matching parts of the sequence are indicated by



280 S. Mutter, B. Pfahringer, and G. Holmes

Fig. 2. The general structure of a Profile Hidden Markov Model (PHMM) of length 4

MMFFA DDAAA--E
MMFFArrnsstnnrrEDPFMLWE
MMFFA -------E

Fig. 3. A global Multiple Sequence Alignment for our example sequences. This is one
part of the output of a trained PHMM.

upper case letters, whereas insertions are displayed with lower case letters. The
graphical structure of a PHMM easily allows this representation and therefore
to identify conserved regions, so that they can be displayed below one another.
A Multiple Sequence Alignment, like the one presented in Figure 3, is part
of a trained PHMM’s output. However, because it is a probabilistic model, its
representation of an alignment is much richer. We will make use of the alignment
itself, as well as of the probabilistic features of a PHMM.

In this paper, PHMMs are trained from unaligned sequences using the Baum-
Welch algorithm [9]. These trained models can be used directly for classification
by calculating of the probability of a test sequence given the model. We use the
performance of these models as a baseline comparison.

During training, a PHMM for each class is constructed separately. Therefore
each PHMM is only trained on its positive instances. As Jaakkola et al. [3]
point out, discriminative tasks such as classification might benefit from using
the negative examples as well. They extract a kernel description of a HMM and
use this for classification by a support vector machine. We achieve discriminative
modelling by extracting features from the PHMM through propositionalisation
and subsequently training a propositional learner. This approach is not restricted
to kernel-based classifiers.



Propositionalisation of Profile Hidden Markov Models 281

3 Kernel Approaches

Kernel approaches are popular and extensively used in the machine learning
community. Using kernel methods on structured data [4,3,10] has led to accu-
rate classifiers [1]. Nevertheless, defining an appropriate kernel function is still a
difficult problem [1].

For biological sequence analysis there are three different kernel approaches
that are of special interest: general graph kernels used on a problem-specific
graph for proteins [4], kernels defined over an arbitrary HMM [10] and Fisher
kernels defined on an HMM representing a protein family [3].

Borgwardt et al. [4] define a random walk graph kernel over a specially defined
graphical model for proteins. Each graph represents one protein and similarity is
calculated by a graph kernel. Our approach differs in that respect, because we use
a general model, a PHMM, to model the alignment of proteins. We align different
proteins using one graphical model. In the PHMM the similarity is expressed by
a probability. We propositionalise our structured model and therefore do not
need to define a similarity measure.

Recently a probabilistic pair-wise kernel over HMMs has been used for spectral
clustering of time series data [10]. This probability product kernel measures the
distance between two HMMs each representing a time series. The clustering
of the time series data is then based on this similarity measure. This semi-
parametric approach allows the representation of the inherent structure of the
time series data without being excessively strict with assumptions about the
overall distribution. In the same way, we assume an HMM structure for all
instances belonging to the same class, but make no assumption about the overall
distribution. In our approach a PHMM is trained separately for each class.

Jaakkola et al. [3] define the Fisher score over a trained HMM for a protein
family and use it as a kernel function in their support vector machine approach.
They successfully use a trained generative model as an intermediate step to
obtain a discriminative model by explicitly defining a similarity function. The
HMMs used by Jaakkola et al. [3] are PHMMs. However, they allow transitions
from insert to delete states and vice versa and a sequence alignment can begin
and end with a match, insert or delete. In addition they align sequences locally,
whereas we align sequences globally. Their PHMM is described by Karplus et
al. [14]. In our approach we use the generative model directly to extract features
for discriminative modelling. In addition, their approach is restricted to kernel
based classifiers whereas we can use the extracted features as input for any
propositional learner.

A drawback of all kernel approaches is the need to explicitly define a simi-
larity measure with the kernel function. Propositionalisation does not have this
requirement.

4 Propositionalisation

Propositionalisation transforms complex, structured representations of data into
a fixed length representation involving attribute-value pairs [6]. Therefore, it
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de-couples model from feature construction and introduces a new degree of flex-
ibility and a wide range of possible features to be constructed from the more
complex representation. Traditionally machine learning has focused on proposi-
tional learners, thus they are biased to this representation.

In this paper, propositionalisation means to take a probabilistic, graphical
model and transform it into a fixed length attribute-value representation. To
state it clearly, the suggested technique uses PHMMs as input and creates a
fixed number of attributes and corresponding values from them. The major con-
tribution of this paper is the examination of different ways to propositionalise
a PHMM. The complexity of the different propositionalisations is varying. In
addition, most of the propositionalisations can be used with HMMs in general
as well.

By de-coupling model from feature construction we do not need to explicitly
define a similarity measure for graphs like in kernel based methods. The represen-
tation resulting from propositionalisation can be used as input for a wide range
of classifiers including but not limited to kernel-based classifiers. We proposi-
tionalise PHMMs and show extensions to propositionalise general HMMs. This
propositionalisation and the subsequent propositional classification step require
only a small overhead compared to the training of the underlying PHMM. As
training time of the PHMM is a dominant factor, it is favourable to reduce it.
Training a PHMM with smaller sequences and subsequently applying propo-
sitionalisation can achieve this. Using this approach the propositional learner
might be able to cope with less information. We will investigate this potential
later.

The key idea behind our propositionalisation approach is simply to take ad-
vantage of the canonical form of the underlying graph of a PHMM. The aim of
the propositionalisation is to get a fixed length attribute-value representation of
the datatset. This new representation should be as simple as possible in order
not to include too many, potentially irrelevant features. On the other hand, a
representation which is too simple might not capture all the information that is
essential for an accurate classification. Therefore, we use propositionalisations of
different complexities and compare the results.

In order to get a propositional representation for an input sequence, we calcu-
late the most probable path for the sequence through the trained PHMM. This
path is also known as the Viterbi path. On the Viterbi path each match state
is visited except when it is skipped by a delete state. In the case of a match,
it can be followed by a sequence of insertions. This directly tells us how to get
a propositional representation of the Viterbi path by exploiting the fact that a
PHMM allows the representation of the Viterbi path of any sequence in a fixed
length way. The process proceeds as follows:

1. Create a nominal attribute for each match state. The values of the nominal
attributes are the emitted symbols plus an extra symbol representing a dele-
tion. In our PHMM the emission alphabet comprises the symbols defining
amino acids.
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2. Create a numerical attribute for each insert state. Set the value of the at-
tribute according to the number of times this state is visited in the Viterbi
path, i.e. the number of insertions at that point.

Thus every unit of a match, an insert and a delete state is converted into two at-
tributes. Figure 4 shows the propositional representation for the simple example
Multiple Sequence Alignment from Figure 3.

M,0,M,0,F,0,F,0,A, 0,D,0,D,0,A,0,A,0,A,0,-,0,-,0,E
M,0,M,0,F,0,F,0,A,10,E,0,D,0,P,0,F,0,M,0,L,0,W,0,E
M,0,M,0,F,0,F,0,A, 0,-,0,-,0,-,0,-,0,-,0,-,0,-,0,E

Fig. 4. The propositional representation of the example Multiple Sequence Alignment

This representation is highly motivated by the graphical form of a PHMM and
is simple. It can be used by any propositional learner that can handle nominal
and numeric attributes. Hence we use a generative model for feature generation
and convert it into a discriminative one via propositionalisation for the classifi-
cation task.

The classification problems considered in this research are multi-class classi-
fication problems. For each class we train one PHMM using only the sequences
belonging to this class. To generate a propositional representation of a sequence,
we calculate the Viterbi paths through the trained PHMMs of all classes and
combine the resulting propositional representations from each PHMM into one
representation.

Using only the Viterbi path to propositionalise leads to a simple representa-
tion that is limited to PHMMs. In the remainder of this paper we will refer to
this simple form of propositional representation as mode 1. It is preferable to
have a simple way to propositionalise not only PHMMs, but HMMs in general.
In order to achieve this goal, we have to make sure to generate fixed length
descriptions independent of the length of the path. The following modes can all
be applied to HMMs in general and are not limited to PHMMs. Thus, as long as
we do not include the simple mode 1 into the propositional representation, our
approach can be applied to HMMs in general. Mode 2 converts the whole HMM
into a single numerical attribute. It represents the score of the Viterbi path for
each sequence given the HMM. In the same way, we construct another numeric
attribute in mode 3 representing the score of the sequence given the HMM. This
is the sum of the scores of all possible paths, not only the score of the Viterbi
path. These are two very simple ways to propositionalise general HMMs. How-
ever, there is much more information present in the underlying HMM. In mode 4
we create a numeric attribute for each state of the HMM representing the score
of the state given the sequence. This representation has a fixed length for all in-
put sequences. In the same way, the probability of each state given the sequence
is used in mode 5. An advantage of a propositional approach is that we are now
able to put together all different modes in all possible combinations.
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Table 1. The propositional algorithms used in the experiments

Propositional Algorithm Parameters
Naive Bayes
k-Nearest Neighbours uses best k between 1 and 100
Random Forest with 100 trees and various numbers of features
SMO with linear, polynomial and RBF kernel
Bagging using 100 iterations with an unpruned J48
AdaBoost using 100 iterations with a pruned J48

5 Experiments

For our experiments we set up the PHMM in the following way. In general, and
in the absence of prior knowledge, the PHMM has as many match states as the
average number of residues in the training sequences as suggested by Durbin
et al. [9]. If the sequence length is artificially restricted for a training set, the
number of match states equals the cutoff number for the sequence length. The
emission probabilities in the insert and match states are initialised uniformly.
We only train emissions in match states. All transitions are initialised uniformly
as well. This is a very simple initialisation, because we do not assume any prior
knowledge. Our purpose is to demonstrate the extent to which classification can
be improved by adding a subsequent propositionalisation step over classification
purely based on the generative PHMM.

The PHMM is trained from unaligned sequences using the Baum-Welch algo-
rithm, a special case of the EM algorithm. It guarantees convergence to a (local)
optimum. The convergence criterion is a sufficiently small change in the log-
odds score relative to a random model. This score is normalized by the number
of residues in a sequence1. Subsequently the trained PHMM is used for propo-
sitionalisation. In each classification problem, we train one PHMM per class
label.

We test our propositional representations on various propositional learners.
See Table 1 for an overview.

The datasets are taken from the Protein Classification Benchmark Collec-
tion [15]. They belong to the 3PGK Protein Kingdom Phylum set of sequences.
It consists of 10 binary classification problems which map protein sequences into
kingdoms of life based on phyla. The database provides training and test sets and
reports benchmark results for the Area Under the ROC Curve (AUC) for these
problems. We chose the two classification problems Eukaryota/Euglenozoa and
Bacteria/Proteobacteria for our investigations. In the remainder of the paper we
will refer to the former as 3pgk6. The latter will be called 3pgk4. The reported
benchmark results in the data collection suggest that these two binary classifica-
tion tasks are the most challenging ones in the 3PGK Protein Kingdom Phylum
problem domain. For all datasets the best and worst AUC values are reported.
Considering only the best AUC values for all ten classification problems in the
1 The threshold used was proposed by A. Krogh in a personal e-mail communication.
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3PGK Protein Kingdom Phylum data, 3pgk4 best AUC result is 0.93 and the
one for 3pgk6 is 0.92. No other dataset has a lower AUC value for its best per-
forming classification model. In addition, all experimental results for 3pgk4 and
3pgk6 achieve at least an AUC value of 0.56. There is only one dataset with a
lower overall worst AUC value.

The training set of 3pgk6 consists of 82 training instances whereas the test set
has 49 instances. The average sequence length in the training set is 414 and 406
in the test set. The training set and the test set each have 44 positive instances.
In the 3pgk4 training set there are 70 instances, 27 of them are positive. The
test set consists of 61 instances. Of these, 31 instances belong to the positive
class. In the training set the average sequence length is 413, whereas it is 408 in
the test set. For both datasets sequences vary in general between 358 and 505
residues.

These datasets are used twice in the experiments. In a first setting we use the
full sequence information, whereas in the second setting we artificially reduce the
length of the sequence to the first 100 residues. All experiments are performed
using the WEKA machine learning workbench [16].

We also present the result from a pure PHMM approach where the PHMM
is used directly for classification. In this setting a PHMM for each class label is
built as well. The log-odds score of the test sequence given the model is used as
a basis for classification.

In all results we only show the propositional learner and its respective parame-
ters which performed best. First, we present the results for the 3pgk6 dataset. In
the first experiment we use the full sequence information. The results are shown
in Table 2.

Table 2. The accuracies for the 3pgk6 dataset. The sequence length is not restricted.
The propositional learner is a Support Vector Machine with RBF Kernel, γ is set to
1. We fit logistic models to the output. The baseline accuracy of the PHMM without
propositionalisation is included as well.

modes’ combinations SVM accuracy PHMM baseline accuracy
{1}, {1,2}, {1,3},{1,2,3},{4},{5},
{1,4},{1,5},{1,2,3,4},{1,2,3,5} 89.80% 81.63%

All propositional representations outperform the pure PHMM approach. In
all settings a Support Vector Machine with an RBF Kernel works best. All
representations, simple or complex achieve the same accuracy.

In a second experiment we restricted the sequence length artificially to the
first 100 residues. We use the same combinations of modes as in the previous
experiment. Table 3 summarises the results. In this case as well, the different
combinations of modes lead to the same accuracy result. The best performing
propositional learner is again a Support Vector Machine with an RBF Kernel.
Using propositionalisation in a setting were information is restricted does not
lead to a decrease in accuracy, whereas for the pure PHMM approach it does.
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Table 3. The accuracies for the 3pgk6 dataset. The sequence length is restricted to
the first 100 residues. The propositional learner is a Support Vector Machine with RBF
Kernel, γ is set to 1. We fit logistic models to the output. When mode 5 is used on its
own, γ is set to 100.

classifier accuracy
PHMM 79.59%
all propositional learners 89.80%

Table 4. The accuracies for the 3pgk4 dataset. The sequence length is not restricted.
The baseline accuracy of the PHMM is 68.85%.

combination of modes propositional learner accuracy
1 Random Forest with 100 trees, 300 features 93.44%
1,2 Random Forest with 100 trees, 200 features 90.16%
1,3 Random Forest with 100 trees, 200 features 90.16%
1,2,3 Random Forest with 100 trees, 200 features 93.44%
4 k-nearest neighbours 86.69%
5 Random Forest with 100 trees, 4 features 77.05%
1,4 k-nearest neighbours 86.69%
1,5 Random Forest with 100 trees, 15 features 73.77%
1,2,3,4 k-nearest neighbours 86.69%
1,2,3,5 Random Forest with 100 trees 77.05%

Table 4 gives on overview of the results for the 3pgk4 dataset when the full se-
quence information is used. Again all propositional representations outperform
the pure PHMM based approach. For this dataset the simpler propositional-
isations perform considerably better than the baseline classifier. In addition,
they outperform more complex propositional representations. Best accuracy is
achieved when we use the Viterbi path for propositionalisation or when we use
the Viterbi path and include its score and the score of the sequence given the
PHMM. However, when using the path information only, the Random Forest
needs more features to achieve the same accuracy.

In the opposite case, when information is limited, the results shown in Table 5
indicate that additional information is helpful. The pure PHMM approach does
not suffer from a lack of information. It achieves the same accuracy as before
when the full sequence was used. The propositional approaches still outperform
solely PHMM based classification. However, their accuracies are worse. In this
setting the more complex propositionalisations outperform the simpler ones.

However there are cases, when information is limited, where the pure PHMM
classification results in a slightly better accuracy than the classifiers using propo-
sitionalised data as the following experiment on the 3pgk6 dataset shows. In this
case, we restrict the sequence length to the first 150 residues. The baseline ac-
curacy of the PHMM is 91.84%. The most accurate propositional learner is a
Support Vector Machine with RBF Kernel, γ is set to 1. Additionally, it fits
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Table 5. The accuracies for the 3pgk4 dataset. The sequence length is restricted to
100 residues. The baseline accuracy of the PHMM is 68.85%.

combination of modes propositional learner accuracy
1 Bagging 80.33%
1,2 Random Forest with 100 trees, 15 features 80.33%
1,3 k-nearest neighbours 78.69%
1,2,3 k-nearest neighbours 78.69%
4 k-nearest neighbours 81.97%
5 Random Forest with 100 trees, 4 features 81.97%
1,4 Random Forest with 100 trees, 15 features 83.61%
1,5 linear SMO, complexity 0.001 83.61%
1,2,3,4 Random Forest with 100 trees 83.61%
1,2,3,5 linear SMO, complexity 0.001 83.61%

logistic models to the output. We used 4 different experimental setups. First, we
propositionalise the dataset according to mode 1. In the second experiment, a
combination of modes 1 and 2 is used for propositionalisation, whereas the third
experiment employs modes 1 and 3. The last experiment is conducted with modes
1, 2 and 3. All these experiments lead to the same resulting accuracy of 89.80%.
The pure PHMM approach outperforms the propositionalisation in this case.
However, compared to the previous results, the difference in accuracies between
the baseline and the propositional learners is not as large.

6 Conclusions and Future Work

In this paper we introduced a simple way to propositionalise a PHMM and
extended it to ways of propositionalising general HMMs. We compared different
propositional representations with each other and the classification performance
of the PHMM as a baseline.

We showed that a simple propositionalisation of a complex, generative PHMM
leads, most of the time, to better results on two benchmark datasets than a purely
PHMM based classification. In cases where information is limited, more complex
propositional representations perform better or equally as well as their simpler
counterparts. These results indicate that propositionalisation of a PHMM is
able to outperform a solely PHMM based classification approach. However, the
findings on these benchmark datasets need to be verified on other datasets as
well. Consequently, as a next step, we will test our approach on more and larger
datasets.

In addition, we will have a closer look at the idea of reducing training time
for a PHMM without losing overall discriminative power. Instead of limiting the
number of residues to train smaller PHMMs, we anticipate training a PHMM
ahead of full convergence of the Baum-Welch algorithm, and then using propo-
sitionalisation. This leads to a considerable speed-up of the training process.
Propositionalisation might be able to compensate for a decrease in accuracy.
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Abstract. Promoter prediction is a well known, but challenging problem in 
the field of computational biology. Eukaryotic promoter prediction, an im-
portant step in the elucidation of transcriptional control networks and gene 
finding, is frustrated by the complex nature of promoters themselves. Within 
this paper we explore a representational scheme that describes promoters 
based on a variable number of salient binding sites within them. The multi-
ple instance learning paradigm is used to allow these variable length in-
stances to be reasoned about in a supervised learning context. We 
demonstrate that the procedure performs reasonably on its own, and allows 
for a significant increase in predictive accuracy when combined with phys-
ico-chemical promoter prediction.  

1   Introduction and Biological Context 

Deoxyribonucelic acid (DNA) stores the instructions for building complex biological 
organism. Simply speaking, this information is arranged in genes, many of which (but 
not all) code for proteins — the general functional units of biological systems. DNA 
is a long polymeric molecule constructed from monomers (of which there are four). 
Within computational fields, this is commonly represented as a string of letters from 
the alphabet of A, C, T and G (representing the bases Adenine, Guanine, Cytosine and 
Thymine); the length unit is base pairs (or bp) and is analogous to simple string 
length. Although DNA is a double helix in vivo, it is common to give the sequence of 
only one strand as the bases bind complementarily; one strand can be inferred from 
the other. For the purposes of this paper, we will concentrate on the eukaryotic homo 
sapiens genome. Relatively little of the human genome is actually accounted for by 
genes [1], making the localisation of them highly important. Furthermore, the expres-
sion (activity) level of genes is governed by complex regulatory networks involving 
the binding of proteins called transcription factors to the DNA molecule. This regula-
tory network ensures the correct temporal, spatial and contextual expression of each 
gene. A promoter can be thought of as a gene header — a short portion of DNA 
which is not transcribed, but allows the cellular transcriptional machinery to recognise 
and bind at the correct location on the DNA molecule. The point within the promoter 
after which the sequence is transcribed is called the transcription start site (or TSS). 
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Transcription factor binding sites are often clustered around, or within, the promoter 
region [2-5]. Transcription factors (regulatory proteins) bind to these sites, modifying 
the expression level of the gene. A common method for identifying transcription fac-
tor binding sites is via position weight matrices (PWMs). Position weight matrices 
model the likelihood of a given nucleotide appearing at a given location within a 
binding site; one matrix is needed for each transcription factor. Given a putative bind-
ing site, the model gives the quality of match and a threshold can be used to predict 
sites. This paper explores a promoter representational scheme based around the loca-
tion of these transcription factor binding sites.  

Prestridge [3] describes an approach based on representing promoters by the loca-
tion of transcriptional elements. This approach uses a collection of position weight 
matrices to build a profile of the promoter region. For each transcriptional element 
considered, the ratio density of occurrences within promoter sequences, as compared 
to non-promoter sequences, is calculated. A score for a putative promoter is calcu-
lated by summing the density scores from the profile which match the transcriptional 
elements found within the sequence in question. In contrast to the method proposed 
here however, this does not take into account the relative positioning of sites.  

Kondrakhin and colleagues [2] propose a similar technique to that of Prestridge, al-
though using consensus sequences rather than position weight matrices to identify 
binding sites. The salient difference is that they consider the localisation of binding 
sites. They split the promoter into regions and construct a two-dimensional matrix 
representing the occurrence of each binding site within each region. Classification is 
performed from this matrix via a weighted sum using a threshold.  

Other work has also investigated the density of particular oligonucleotides in pro-
moter regions [6, 7]. Within the work of Narang et al. [7] a statistical model is created 
from a dataset of positive instances without the need for a collection of weight matri-
ces (or other models of the motifs sought). Negative examples or a background  
genomic model are also not required. The fact that this method does not require pre-
existing models of the motifs sought is a major advantage, as many transcription fac-
tors either do not have (or have poorly supported) models.  

The efficacy of characterising promoters by the distribution of salient motifs within 
their primary sequence has clearly been established in previous work. The focus here 
is on a formulation which is amenable to solution within the classic supervised ma-
chine learning framework. To this end the next section explores a possible approach 
utilising the common attribute-vector representation. 

 

Fig. 1. The process of transcription showing the binding of transcription factors to the DNA 
molecule within the promoter region (adapted from [8]) 
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2   Promoter Prediction Using Transcription Factor Binding Sites 

A significant number of approaches have previously been presented aimed at solving 
the promoter prediction problem [9-17]. Bajic [15] et al. report that none of the pro-
grams they tested in their review were able to produce a combined sensitivity and 
positive predictive value of more than 65%, with many falling well below this. We 
use the same accuracy measures here as used in [15] and [18]. Here we explore a new 
approach to promoter prediction utilising the existing idea of describing a promoter 
by the location and name of transcription factor binding sites which fall within it. A 
relatively simple mechanism is employed for locating these binding sites; the putative 
promoter region is scanned using position weight matrices (PWMs). This leads to a 
new consideration: the problem of variable length instances. If one scans the promoter 
sequence using a weight matrix this produces a series of matches (i.e. there may be 
zero or more sites that exceed the threshold). Repeating the process searching for 
binding sites for other distinct transcription factors produces a heterogeneous set of 
matches. This set is the collection of attributes used to describe a single promoter, or 
instance, within the dataset. Although it is conceivable that the number of distinct fac-
tors for which binding sites are sought is known a priori, the number of matches for 
each matrix is unknown and indeed variable across promoters. This introduces an is-
sue for most established classifier learning schemes, as variable length instances are 
not supported. It is possible to place an upper bound on the number of matches to a 
given matrix — one more than the difference between the length of the motif and the 
length of the sequence being searched. This introduces a new problem though. Such a 
representation produces instances of extremely high (albeit fixed) dimensionality. 
With this increased dimensionality, a greater amount of training instances are needed 
to facilitate the learning of salient concepts from the data. This is not practical as there 
are a finite and relatively small number of positive instances available. Rather than 
pursuing this thread of at best marginal utility, the problem can be reformulated using 
multiple instance learning.  

3   Multiple Instance Learning 

Within the classic paradigm of supervised machine learning the learner is provided 
with the correct answers to a set of training instances. Within this paper a variation on 
this technique called multiple instance learning [19] is used. The fundamental differ-
ences are the organisation of instances and the availability of class information. 
Rather than a single instance being described by a vector of attribute values and a 
class value, instances are grouped into bags. Instances no longer have classes, but 
rather it is the bag which has a class value attached. It has been suggested that the 
multiple instance representation lies in generality somewhere between the attribute-
vector representation commonly found in supervised learning and the relational  
representation associated with the field of inductive logic programming [20]. The 
multiple-instance problem is really a generalisation of the classic supervised learning 
problem. Alternatively, for ease of expression, classic supervised learning is a special 
case of MIL where each bag contains only a single instance.  
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Several approaches have been devised to construct classifiers for multiple instance 
learning problems [19, 21-24]. Xu and Frank [25], later followed by Ray and Craven 
[26], explored logistic regression methods. They propose two methods for determin-
ing the bag-level class probability – one based on the arithmetic mean of the instance 
level probability estimations, the other on the geometric mean. Their underlying gen-
erative model does not assume that the bag class is determined by only a single in-
stance; a point of interest within this work given more consideration later. Multiple 
instance learning has been successfully applied to several domains including drug ac-
tivity prediction [19, 23] and scene recognition [22, 27, 28] where it deals well with 
ambiguity with respect to which part of the image is of interest [29]. However, to our 
knowledge this is the first time it has been utilised for promoter prediction.  

4   Multiple Instance Learning for Promoter Prediction 

With the above approach, it is possible to modify the promoter representation to avoid 
the problem of variable length instances. Instead of a promoter mapping to an in-
stance, it will instead be represented by a bag. Individual instances will be positive 
matches within the promoter sequence for the PWM of a given transcription factor. 
Note that conceptually an instance (a PWM match) can now be described with a 
small, fixed number of attributes. These are the name of the transcription factor in 
question and the location of the hit within the sequence of the promoter (i.e. an in-
dex). Each instance is assigned to a bag. The bag represents the promoter on which 
the matches occurred. That is, each promoter is represented in the dataset by a single 
bag and each bag contains all the (putative) TFBSs found within that promoter. In 
fact, the variability has not been eliminated from the dataset, it has simply moved to a 
higher level – the number of instances within a bag. Table 1 presents a small sample 
dataset, described in the ARFF format [30]. It has two putative promoters (p1, a nega-
tive exemplar and p2, a positive exemplar). The first (p1) is described by two PWM 
hits and the second (p2) by five PWM hits.  

Table 1. A sample MIL promoter dataset in ARFF format 

@relation MIL_SAMPLE 

@attribute PROMOTER_NAME {p1, p2} 
@attribute TF_MAT_NAME {MA0001, MA0002, MA0003} 
@attribute HIT_LOCATION numeric 
@attribute PROMOTER? {yes, no} 

@data 
p1, MA0001, 36,  no 
p1, MA0003, 124, no 
p2, MA0001, 12,  yes 
p2, MA0001, 34,  yes 
p2, MA0002, 56,  yes 
p2, MA0003, 89,  yes 
p2, MA0003, 156, yes 
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It is common when presenting the application of MIL to a problem domain to also 
present results obtained from applying a non-MIL classifier to the dataset to demon-
strate the improvement apparent from using MIL [19]. This is not meaningful here 
since the instances are simply TFBSs. Individually they do not represent a promoter 
and hence a non-MIL classifier could not be expected to learn promoter-level con-
cepts from them. For this reason, standard classifiers are not considered when discuss-
ing the result possible from a multiple instance learning solution to this problem.  

The above paragraph exposes a caveat about this application of MIL. Strictly 
speaking, Dietterich et al. [19] specify that a bag is positive if any instances within the 
bag are positive, or the bag is negative if none of the instances in the bag are positive. 
However, the problem formulation that was given above does not quite align with 
this. Here, a bag contains positive instances (TFBS hits which make this promoter bag 
a positive) and negatives (TFBS hits which do no impart positivity to the bag). So far 
this matches with the general description of an MIL problem, however here it is not 
simply the case that a single positive TFBS hit in a bag makes the bag positive. 
Rather, a more complicated underlying concept exists: some combination of positive 
instances makes the bag positive. Xu and Frank [25] introduce the idea that the label 
of a bag is determined from an equal and independent contribution of all the instances 
within the bag. However, within this application, it is reasonable to assume that there 
is some dependence between the binding sites discovered.  

5   Materials and Methods 

We explore the application of MIL promoter prediction within two contexts. In the 
first, it is applied independently. A dataset is generated using a segment of chromo-
some 21 from the human genome containing fifty-six known promoters. For each 
promoter, 150bp upstream and downstream of the TSS are extracted (i.e. 300bp in to-
tal). Non-promoter sequences are also extracted from the same region, also of 300bp 
in length each and totalling 560 instances. 

In the second context, MIL is applied as a post-processing step to putative promot-
ers predicted by another promoter prediction methodology — specifically physico-
chemical promoter prediction (PCPP) [18]. Here, the full DNA segment is provided to 
the PCPP layer (note that the PCPP layer is trained on a separate segment of the same 
chromosome). Two scenarios are considered — passing all instances to the MIL layer 
or only passing the positive-classified instances. In both cases, the predicted promoter 
locations (there are 61, 21 correct, 40 incorrect) are taken as TSSs and 300bp win-
dows are extracted around these. When passing all instances, positive instances not 
correctly identified by the PCPP layer (there are 35) are included as false negatives. 
True negative instances are generated in the same fashion as above (there are 560). 
Considering a second level as re-labelling the instances, there are four possible transi-
tions; each type is of interest. The first is a transition from FP to TN (improving accu-
racy), the second a transition from TP to FN (decreasing accuracy), the third a 
transition from FN to TP (improving accuracy) and the last being from TN to FP (de-
creasing accuracy). Table 2 shows the distribution of instances after applying the 
PCPP layer, but before applying MIL.   
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Table 2. Distribution of instances before applying MIL 

  Actual Class 
  Positive Negative 

Positive 21 40 PCPP Prediction 
Negative 35 560 

Each element of the dataset described above (i.e. each 300bp segment of DNA) is 
searched for binding sites using 128 position weight matrices from JASPAR [31] — a 
high-quality, publicly available repository of matrices. The output from this search for 
binding sites is arranged as per the multiple instance learning paradigm described 
above. That is to say, fundamentally, each instance is a matrix hit, described by the 
name of the matrix and an index into the sequence representing where the hit oc-
curred. Instances are assigned to bags representing the promoter from which they 
were drawn. In addition to a class label, when evaluating the MIL layer as a second 
step after PCPP, each bag can also be given the prediction made by the physico-
chemical promoter prediction software. This allows a multiple-classifier approach 
utilising the prediction of the lower PCPP layer within the MIL layer. An example 
dataset (demonstrating the application of just the MIL layer without the PCPP predic-
tion) was presented in Table 2. 

As a source of classifiers, MILK [32], a toolkit of multiple instance learning algo-
rithms written as an extension to WEKA [30], is used. Some of the algorithms in 
MILK are not applicable either due to data incompatibilities or excessive runtime. 
The logistic regression algorithms presented by Xu and Frank [25] are theoretically 
well suited to this application, capable of handling the data representation, and have 
reasonable runtime. Hence, the investigation is concentrated on the use of these. Re-
sults are presented for the classifiers MILRARITH (Multiple Instance Logistic Re-
gression with Arithmetic Mean), MILRGEOM (Multiple Instance Logistic Regression 
with Geometric Mean) and MIRBFNetwork (Multiple Instance Radial Basis Function 
Network). All experiments are performed using stratified ten-fold cross-validation. 

The statistical test employed here is the Wilcoxon signed rank test [33] as de-
scribed by Conover [34]. Observations are the F-measure for each fold before and af-
ter the change in classifier (Note that the split of the dataset into folds is equivalent 
for all such experiments).  Improvements in F-measure, sensitivity or PPV are consid-
ered statistically significant if the p-value is less than 0.05. 

All of the classifier learning schemes mentioned expose the regression ridge pa-
rameter. Empirically it was observed that this parameter influences the quality of clas-
sifiers produced. To select a value for this, a nested tenfold cross-validation approach 
was used. The inner cross validation takes the 90% of the original dataset provided for 
training in each fold of the outer cross-validation and trains the classifier using a 
range of possible values for the ridge parameter. Each training of the classifier is itself 
a complete tenfold cross-validation. The F-measure of each resultant classifier is de-
termined and the parameter value which produces the best F-measure is used to train a 
final classifier for the given fold of the outer cross validation.  
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6   Results and Discussion 

To put the following results in perspective, one must first consider the performance of 
the physico-chemical promoter prediction software without the MIL augmentation. 
Before applying the search for TFBSs and MIL, there are 21 true positives, 35 false 
negatives, 40 false positives and 560 true negatives. This equates to a sensitivity of 
0.38 and a positive predictive value of 0.34. Ideally a balance between sensitivity and 
positive predictive value is desired. To capture this, here we use F-measure (the har-
monic mean of sensitivity and positive predictive value) to represent the quality of the 
classifier produced.  

6.1   PCPP and MIL on Positive-Classified Instances 

We begin by examining the main contribution of this paper. That is, the MIL layer 
utilising only the instances predicted as positive by the PCPP layer. As all the true 
positives and all the false positives are being provided to the MIL layer, the final 
count of these is simply the count of true positives and false positives produced by the 
MIL layer. The final count of true negatives and false negatives is the sum of those 
produced by the PCPP layer (as none are passed to the MIL layer, they cannot be re-
classified) and any new true or false negatives produced by the MIL layer (i.e. false 
positives correctly reclassified or true positives incorrectly reclassified).  

It is not possible for a classifier produced from the positive-predictions-only data-
set to demonstrate an improvement in sensitivity over just the PCPP layer. This is ob-
vious if one considers that sensitivity is calculated by dividing the number of true 
positives by the sum of false negatives and true positives. The denominator of this ex-
pression is invariant here since a true positive reclassified becomes a false negative 
and a false negative reclassified becomes a true positive. The numerator however can 
be decreased but never increased (it is possible to incorrectly change a true positive to 
a false negative but there are no false negatives provided to the classifier which might 
be correctly reclassified to true positives). Hence, the upper bound on sensitivity is 
that which was produced by the PCPP layer, specifically 0.38.   

The results of running the three selected classifier learning schemes using only 
positively classified instances from the PCPP layer are presented in Table 3. The most 
striking feature is the improvement apparent from the MIRBFNetwork classifier when 
propagating only positive-classified instances. The results indicate that the PCPP clas-
sifier and the MIRBFNetwork classifier are complementary. The MIRBFNetwork is 
better at separating true from false positives in the PCPP classifications than the other 
two classifier types, although all show improvement over just the PCPP layer. 

Table 3. Classification performance using PCPP-positive instances. Entries marked in bold 
show a statistically significant improvement over the base-level PCPP classifier. 

 MILRARITH MILRGEOM MIRBFNetwork 
Sensitivity 0.37 0.37 0.37 

Positive Predictive Value 0.42 0.43 0.91 
F-Measure 0.39 0.40 0.52 
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6.2   MIL Promoter Prediction Performance in Isolation  

Having demonstrated that MIL can be utilised to improve the classification perform-
ance of the PCPP approach, it is instructive to consider how well it might function on 
its own. Table 4 shows the performance of the three selected classifier learning meth-
ods operating in isolation.  

The results in Table 4 show that each of the classifier learning methods utilised 
was not capable of matching the PCPP layer performance in isolation. This demon-
strates the efficacy of including the lower layer. The F-measure of about 0.25, al-
though low, is competitive with a lot of existing promoter prediction approaches. It is 
however much less than the PCPP layer was capable of in isolation. 

Table 4. Isolated MIL layer. Only the F-measure is presented. 

 MILRARITH MILRGEOM MIRBFNetwork 
F-Measure 0.25 0.25  0.26  

6.3   PCPP and MIL on all Instances  

Within this section we consider passing all instances from the PCPP layer regardless 
of whether they were classified as positive or negative. Recall however, that each in-
stance is appended with the PCPP level classification result. The results for running 
each of the classifiers using this approach are presented in Table 5. Recall that the 
PCPP layer achieved a sensitivity of 0.34 a PPV of 0.38 and an F-measure of 0.36. 
Bold entries in Table 5 are significantly better than the PCPP layer performance. 

The results are somewhat mixed. Here, MILRGEOM shows a statistically signifi-
cant improvement in PPV and a corresponding improvement in F-measure. The 
MIRBFNetwork classifier scores quite poorly on sensitivity and by extension also  
F-measure due to a large number of negative predictions.  

Table 5. Classification performance using all instances. Bold entries signify a statistically 
significant improvement over the base-level PCPP classifier.  

 MILRARITH MILRGEOM MIRBFNetwork 
Sensitivity 0.37 0.35 0.15 

Positive Predictive Value 0.40 0.44 1.00 
F-Measure 0.38 0.39 0.26 

7   Conclusions and Further Work 

Within this paper a multiple instance formulation of the promoter prediction problem 
was introduced and several algorithms were tested. It has been demonstrated that, 
with an appropriate selection of learning scheme and parameters, promoters can be 
predicted using multiple instance learning and a representation based on the location 
of transcription factor binding sites. Furthermore, the classification performance of 
this and a physico-chemically based promoter prediction procedure can be improved 
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by arranging the two in a combined classifier. By using a database such as JASPAR, 
the performance of such an approach can be expected to improve as more experimen-
tally verified binding sites become available.  

The most expensive operation is searching raw DNA sequences for binding sites. 
In general, the application of this approach in isolation is computationally infeasible. 
However, by considering a multiple classifier system where the MIL layer is only ap-
plied to positive-classified instances from the lower PCPP layer, computational re-
quirements can be sufficiently reduced such that the approach becomes practical. 
Moreover, this multiple classifier system achieves the best performance in terms of  
F-measure (0.52), improving upon the PCPP layer (which in this scenario achieved an 
F-measure of 0.36 and in general is capable of an F-measure of approximately 0.40). 
Putting this in context, the F-measure of 0.52 beats 6 out of the 9 approaches investi-
gated by Bajic et al. [15]. 

There are potential avenues for reducing the runtime requirements of this MIL ap-
proach. Most obviously, one could scan for binding sites using fewer matrices. In line 
with this, the identification of which matrices produce hits that are used by the classi-
fier would allow biological insight into promoter function. Those matrices which are 
not important for classification could then be removed allowing for an improvement 
in runtime performance.  

Further to this, there are additional possibilities for combining classifiers. Here we 
explored only the inclusion of the lower layer prediction as an attribute at the higher 
layer, but there is extensive research into multiple classifier systems including ap-
proaches such as bagging [35], boosting [36] and stacking, which may improve classi-
fication performance. 
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Abstract. Multiple-Instance Learning via Embedded Instance Selection
(MILES) is a recently proposed multiple-instance (MI) classification al-
gorithm that applies a single-instance base learner to a propositional-
ized version of MI data. However, the original authors consider only one
single-instance base learner for the algorithm — the 1-norm SVM. We
present an empirical study investigating the efficacy of alternative base
learners for MILES, and compare MILES to other MI algorithms. Our
results show that boosted decision stumps can in some cases provide
better classification accuracy than the 1-norm SVM as a base learner
for MILES. Although MILES provides competitive performance when
compared to other MI learners, we identify simpler propositionaliza-
tion methods that require shorter training times while retaining MILES’
strong classification performance on the datasets we tested.

1 Introduction

Multiple-instance (MI) learning is an alternative to the traditional supervised
learning model in which learning examples are represented by a bag (i.e. multiset)
of instances instead of a single feature vector. The MI framework was introduced
by Dietterich et al. [7] in the context of a drug-activity prediction problem, where
each molecule is represented by a bag of feature vectors corresponding to the
conformations (shapes) that the molecule can adopt by rotating its internal
bonds. In this problem domain the standard MI assumption applies: if and only
if at least one instance in a bag is positive (i.e. at least one conformation bonds
to the target binding site), then that bag is positive (i.e. the molecule will have
the desired drug effect).

Dietterich et al. presented algorithms that learn MI concepts for the musk
drug activity prediction problem by finding a hyper-rectangle to describe the
positive region of instance space. Since then, many other MI learning algorithms
have been proposed (see, for example, [1], [2], [10], [12], [14], [24], [25], [27], [28],
[29], [30]).

Multiple-instance Learning via Embedded Instance Selection (MILES) is a
recent MI learning approach presented by Chen et al. [6], which transforms MI
data into a propositionalized form, to which a 1-norm support vector machine
(SVM) classifier is applied. Chen et al. do not consider alternatives to the 1-
norm SVM, but they do mention briefly that other single-instance base learners
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are possible. In this paper we view the algorithm as a meta-classifier that can
wrap around an arbitrary single-instance learner. We present an empirical study
of the performance of the MILES algorithm using a variety of single-instance
base learners on a diverse set of benchmark datasets. The goal of the study is to
compare the relative performance of different base learners for MILES, and to
compare MILES to existing MI algorithms, including other propositionalization
methods. The paper is structured as follows. In Section 2, we describe the MILES
algorithm. Section 3 details the experimental setup, the results of the experiment
are given in Section 4, and we conclude in Section 5.

2 MILES

Multiple-Instance Learning via Embedded Instance Selection (MILES) [6] is an
approach to MI learning based on the diverse density framework [14]. In contrast
to standard diverse density algorithms, it embeds bags into a single-instance fea-
ture space. Most earlier diverse density-based methods have used the standard
MI assumption mentioned above and further assume the existence of a single tar-
get point1. Instead, MILES uses a symmetric assumption, where multiple target
points are allowed, each of which may be related to either positive or negative
bags. Under this assumption, and using the most-likely-cause estimator from the
diverse density framework, Chen et al. define a measure specifying the probability
that a point x is a target point given a bag, regardless of the bag’s class label:

Pr(x|Bi) ∝ s(x,Bi) = max
j

exp
(
− ‖xij − x‖2

σ2

)
, (1)

where xij are the instances in bag Bi, and σ is a predefined scaling factor. Note
that s(x,Bi) can be interpreted as a measure of similarity between a bag and
an instance, determined by the instance x and the closest instance in the bag.
MILES uses each instance in the training bags as a candidate for a target point.
The candidates are represented as features in an instance-based feature space
Fc. Each bag in the training set is mapped into Fc via the mapping

m(Bi) = [s(x1, Bi), s(x2, Bi), · · · , s(xn, Bi)]T , (2)

where xi ∈ C is an instance from the set C of all instances in all of the training
bags. When the class labels c ∈ Ω of the bags are appended, the resulting space
(Fc|Ω) is a single-instance feature space. The output of a single-instance classifier
trained on this data is used to provide bag-level class labels for future data. The
pseudocode of the MILES algorithm is provided in Algorithm 1.

Chen et al. used the 1-norm SVM algorithm as the base classifier, due to the
sparsity property of the algorithm — it is known to set most feature weights
to zero, which effectively performs feature selection — and the fact that the
resulting learning problem is usually very high-dimensional. They do not consider
1 This means that, roughly speaking, a bag is assumed to be positive if at least some

of its instances are close to this point.
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Algorithm 1. MILES
D = the set of training bags; C = all instances in the bags in D
L = a single-instance base learner; σ = the scaling factor

train(D)
F = an empty set of instances
for (every bag Bi = {xij : j = 1, · · · , ni} in D) do

t = MILES transform(Bi)
t.setClassLabel(Bi.getClassLabel())
F = F ∪ {t}

L.train(F ) //Can optionally perform feature selection here also

MILES transform(B), B = {xj : j = 1, · · · , n} a bag
m(B) = an empty instance of dimension |C|
for (every instance xk in C) do

d = minj ‖xj − xk‖; the kth element of m(B) is s(xk, B) = e
−d2

σ2

return m(B)

classify(B), B = {xj : j = 1, · · · , n} a test bag
t = MILES transform(B); return L.classify(t)

alternative base learners, however. We investigate the use of alternative base
learners for MILES, and compare the algorithm to other MI approaches.

3 Experiment Design

An extensive set of experiments was performed on a number of multi-instance
datasets, using a wide range of MI algorithms and single-instance base learn-
ers. The experiments were performed using the WEKA workbench [26]. Each
algorithm was evaluated on each dataset by 10 times stratified 10-fold cross-
validation. Performance was measured using classification accuracy. We tested
for significant differences between algorithms using the corrected resampled t-
test [17] with significance level α = 0.05.

WEKA implementations were used for all MI algorithms and single-instance
base learners, with the exception of MILES and the 1-norm SVM, which were im-
plemented specifically for the experiment. Default parameters were used for each
algorithm unless otherwise specified. The MI algorithms were MILES, MISMO
(SVM with the MI polynomial kernel [12]), mi-SVM [1], Citation-KNN [24],
EMDD [29], Adaboost + Optimal Ball [2], MIBoost [27] (with the WEKA REP-
Tree decision tree learner, with no automatic pruning but depth-limited to 3
levels, as the base classifier), MILR [27] (using the noisy-or model to combine
instance-level probabilities), MIWrapper [10], and SimpleMI [8].2

Of particular interest are MIWrapper and SimpleMI, which, similarly to
MILES, are wrapper algorithms that apply a single-instance base learner to
2 Where the algorithm was not explicitly named by the original authors, the name of

the WEKA implementation has been used instead.
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a propositionalized version of the given MI data. MIWrapper performs proposi-
tionalization by applying bag-level class labels to instances, and weighting the
instances so that each bag has the same total weight. A single-instance model
is built on the resulting dataset, and bag-level predictions are made by av-
eraging the predicted probabilities of instances in a bag. SimpleMI performs
propositionalization by averaging the attribute values of the instances in each
bag, and appending the bag’s class label to the resulting feature vector. The
wrapper algorithms were evaluated using the following single-instance base learn-
ers: C4.5 [20], random forests (100 trees) [5], Adaboost [11] + C4.5 (10 it-
erations), Adaboost + decision stumps (1-level decision trees, 100 iterations),
bagging [4] + C4.5 (10 iterations), 2-norm SVMs (SMO) [19] with a linear
kernel and a radial-basis function kernel, the linear 1-norm SVM, and logistic
regression.

The datasets are described very briefly here, with the names of the datasets
(as labeled in the results tables) italicized for convenience. The musk1 and musk2
datasets are the musk data used in [7]. Each bag represents a molecule, and the
task is to predict whether the molecule emits a musky odour. Eastwest is the
train direction prediction problem from the East West Challenge ILP contest
[16]. Westeast is exactly the same problem as eastwest, except that the class
labels are reversed. This is an interesting variation because eastwest is compatible
with the standard MI assumption, while westeast is not [8].

The mutagenicity prediction problem [22] was also used in the experiments.
Three representations proposed by [21] for transforming the mutagenesis ILP
problem into a multi-instance problem were used, which were labeled muta-
atoms, muta-bonds and muta-chains. The suramin dataset [3] is another ILP-
based drug activity prediction problem, where the task is to detect suramin
analogues that can act as anti-cancer agents. The thioredoxin dataset is the
thioredoxin-fold protein identification task proposed by [23].

Two sets of image data for Content-based Image Retrieval (CBIR) tasks were
used, each containing three different image categories. These image databases
provided six different image retrieval problems — one for each image category,
with the task being to identify images belonging to the target category. The first
image database was originally provided by [1], and contains MI bags representing
photographs of elephants, foxes and tigers from the Corel dataset. The second
CBIR dataset was the GRAZ02 [18] dataset, containing images of bikes, cars
and people, with features derived from the Ohta colour space representations of
the image as in [15].

4 Experimental Results and Analysis

This section presents a comparison of base learners for MILES, and compares
the algorithm with other MI learning methods. The reader is referred to the first
author’s MSc thesis for more detailed experimental results [9].

Given the number of algorithms and datasets investigated, parameter tuning
for all of the MI algorithms and base classifiers was infeasible. However, with
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the exception of the SVMs, the classification schemes used in the experiment
had fairly robust parameter values already provided by the default settings
in their WEKA implementations. We set the scaling parameter for MILES to
σ2 = 8 × 105, as used by Chen et al. for musk2. As we found that the value
for the 1-norm SVM regularization parameter selected by Chen et al. for musk2
(λ = 0.45) produced poor results for MILES on many of the datasets, we per-
formed internal cross-validation to select the best λ value for each fold. We eval-
uated six candidate values of λ via two-fold cross-validation on the training data
for each fold of the ten repeats of ten-fold cross-validation, selecting the value
which produced the highest classification accuracy. Finally, a greedy search was
performed by iteratively evaluating adjacent candidates to the currently selected
value via ten-fold cross-validation (again, on the training data of the fold). This
internal cross-validation parameter search was performed using the GridSearch
algorithm in WEKA. The candidate values were powers of ten between 10−1

and 10−6. The same internal cross-validation method was also used to select the
C regularization parameter for the 2-norm SVMs, with candidate values being
powers of ten between 103 and 10−2.

4.1 Comparison of Base Learners for MILES

A major goal of the experiment was to compare different base learners for
MILES, particularly with respect to the 1-norm SVM. The results of this part
of the experiment are displayed in Tables 1 and 2.

Table 1. MILES: Percentage Accuracy for Non-Ensemble Base Learners

Dataset 1-Norm C4.5 Logistic SMO SMO
SVM Regression (LIN) (RBF)

musk1 83.3±11.8 84.1±11.9 84.8±11.3 86.9±10.4 89.1±10.1
musk2 91.6±8.3 82.5±12.1 • 85.8±11.0 88.4±9.7 79.5±12.5 •
eastwest 74.0±25.1 50.0±0.0 • 64.5±29.6 55.5±30.9 55.5±31.7
westeast 74.0±25.1 50.0±0.0 • 68.5±33.1 54.0±30.7 54.5±31.1
muta-atoms 74.8±14.4 80.8±8.1 83.8±7.2 80.8±8.8 83.7±9.2
muta-bonds 72.2±12.7 77.1±9.8 80.2±8.8 79.8±9.5 81.8±8.9 ◦
muta-chains 75.9±9.2 79.3±9.5 73.5±9.4 77.9±8.5 78.6±10.3
suramin 65.0±45.2 65.0±45.2 65.0±45.2 65.0±45.2 65.0±45.2
thioredoxin 88.1±5.1 84.3±7.1 87.1±3.9∗ 69.1±10.3 • 86.3±4.3
elephant 84.1±8.9 77.5±9.2 79.6±9.1 83.9±9.0 83.4±8.9
fox 63.0±9.5 56.8±11.2 63.6±8.9 64.8±9.5 64.2±9.7
tiger 80.7±8.3 69.7±9.3 • 80.0±9.2 81.5±8.4 81.7±8.9
bikes 78.4±4.2 72.5±5.7 • 72.4±4.8 • 80.1±4.9 78.7±4.9
cars 72.2±4.3 62.6±4.7 • 63.9±4.9 • 72.0±4.7 71.9±4.7
people 74.4±5.0 69.8±5.8 • 66.9±5.0 • 74.3±4.8 75.9±4.8

◦, • statistically significant improvement or degradation vs 1-norm SVM
∗ Thioredoxin result obtained using the SimpleLogistic [13] implement-

ation in WEKA, due to memory problems with Logistic.
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Table 2. MILES: Percentage Accuracy for Ensemble Base Learners

Dataset 1-Norm Adaboost Random Adaboost Bagging
SVM + D. Stump Forest + C4.5 + C4.5

musk1 83.3±11.8 88.0±11.6 87.0±11.4 85.8±12.0 86.0±11.5
musk2 91.6±8.3 83.2±11.5 • 81.7±11.2 • 83.2±11.3 • 83.7±11.5 •
eastwest 74.0±25.1 81.0±24.4 80.0±24.6 50.0±0.0 • 50.5±5.0 •
westeast 74.0±25.1 81.0±24.4 80.0±24.6 50.0±0.0 • 50.5±5.0 •
muta-atoms 74.8±14.4 83.9±8.6 82.0±8.2 79.5±8.5 80.5±7.7
muta-bonds 72.2±12.7 86.3±7.4 ◦ 79.7±10.5 80.1±9.9 77.4±8.9
muta-chains 75.9±9.2 86.0±8.0 ◦ 80.4±9.2 80.8±8.1 79.8±9.1
suramin 65.0±45.2 65.0±45.2 65.0±45.2 65.0±45.2 62.0±46.1
thioredoxin 88.1±5.1 89.3±4.0 87.7±2.7 85.6±6.4 88.2±4.6
elephant 84.1±8.9 80.9±7.7 82.3±8.2 81.5±8.9 84.0±8.3
fox 63.0±9.5 61.6±10.9 64.9±10.2 59.4±11.6 61.4±10.3
tiger 80.7±8.3 80.5±8.9 78.6±9.0 75.4±9.3 75.7±8.4
bikes 78.4±4.2 78.0±5.0 79.2±4.4 78.0±4.5 77.7±5.1
cars 72.2±4.3 71.6±4.1 71.7±4.0 69.3±5.0 70.5±4.9
people 74.4±5.0 75.6±4.6 77.5±4.3 75.4±4.8 76.6±4.7

◦, • statistically significant improvement or degradation vs 1-norm SVM

As the results show, the 1-norm SVM was competitive against the other base
learners, with no other base learner consistently performing significantly better
than it. However, Adaboost with decision stumps had two significant wins and
only one significant loss versus the 1-norm SVM (Table 2).

The 2-norm SVMs with the linear and RBF kernels were both very compet-
itive with the 1-norm method. The 2-norm SVM with the RBF kernel had one
significant win and one significant loss versus the 1-norm SVM, while the 2-norm
SVM with the linear kernel was only significantly worse than the 1-norm SVM
on the thieoredoxin dataset (Table 1). These results indicate that the 1-norm
SVM does not have a clear advantage over its 2-norm cousin as a base learner
for MILES. In the observed experimental results, the increased sparsity of the
1-norm SVM did not translate into consistently superior classification accuracy,
despite the high dimensionality of the datasets produced by the MILES trans-
formation. However, the 1-norm SVM did outperform logistic regression, which
produces linear models that do not exhibit any sparsity (Table 1).

The eastwest and westeast datasets were problematic for many MILES base
learners, with half of the schemes performing little or no better than chance on
these problems, although several schemes achieved accuracies of around 80%.
Note that the results were similar or identical for both datasets, regardless of
the base learner. This is as expected, given that MILES is designed to use a
symmetric MI assumption.

MILES’ performance was consistent on the suramin problem. All base learn-
ing schemes achieved an accuracy of 65.0% on this dataset, except for bag-
ging with C4.5, where an accuracy value of 62.0% was observed (Table 2).
The small size of the dataset at least partially explains the consistency between
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schemes — it contains only 11 bags, albeit with many instances in each of those
bags.

Random forests and Adaboost.M1 with decison stumps were the standout en-
semble base learners for MILES (see Table 2). These classifiers only performed
significantly worse than the 1-norm SVM on musk2. Furthermore, boosted deci-
sion stumps had the highest accuracy for any MILES base learner tried in the
experiments on the eastwest / westeast datasets, all three mutagenesis datasets,
thieoredoxin, and also matched the performance of the other base learners on
suramin. Two of these results were significantly superior to the 1-norm SVM.
Boosted decision stumps had slightly lower accuracies than the 1-norm SVM on
five of the six image datasets, but these differences were not statistically signifi-
cant. It should also be noted that parameter tuning with cross-validation was not
necessary to achieve good results using Adaboost with decision stumps, unlike
for the 1-norm SVM.

Although single C4.5 trees perform poorly (see Table 1), the results also show
that boosted and bagged C4.5 trees perform well. However, boosted and bagged
C4.5 performed no better than chance on eastwest and westeast and consequently
suffered signficant losses against the 1-norm SVM on those datasets.

The strong performance of Adaboost.M1 with decision stumps is interesting,
given the relationship between this model and the SVM model recommended
by Chen et al (2006). Like support vector machines, the hypothesis learnt by
Adaboost.M1 is a weighted linear threshold. When decision stumps are used,
each weak learner corresponds to an attribute (i.e. the attribute that the decision
stump splits on), and the weights for the weak learners perform a similar function
to the attribute weights learnt by a linear SVM. As in SVMs, the solution is
sparse because only a subset of the attributes is selected into the ensemble.

4.2 Comparison of MILES to Other Wrapper Algorithms

In this section we compare MILES to the two other wrapper algorithms —
SimpleMI and MIWrapper — with respect to classification accuracy and train-
ing time, using Adaboost with decision stumps (100 stumps) as the base learner.
Table 3 shows the classification accuracy and training time results for the
algorithms.

The results show that in most cases all three propositionalization schemes give
similar classification performance. There were no significant differences between
MILES and SimpleMI for classification accuracy using this base learner. MILES
was superior to MIWrapper on the mutagenesis datasets, but MIWrapper had
significantly higher accuracy on the people dataset.

The results also show that there are substantial differences in training time.
SimpleMI always had the shortest training time of the three methods for all
datasets, almost always followed by MIWrapper, with MILES being the slowest
of the wrapper algorithms on all datasets except musk1. This is unsurprising,
given that the SimpleMI method only generates one instance for each training
bag, without increasing the dimensionality of the feature space. Although MILES
also generates one instance per training bag, the dimensionality of the feature
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Table 3. Comparison of Wrapper Algorithms using Adaboost with Decision Stump
Base Learner (100 Stumps)

Percentage Accuracy Training time (CPU Seconds)
Dataset MILES SimpleMI MIWrapper MILES SimpleMI MIWrapper
musk1 88.0±11.6 83.2±12.3 84.7±10.7 4.3±0.3 3.0±0.1 ◦ 4.7±0.2 •
musk2 83.2±11.5 78.7±11.9 79.7±10.6 284.7±41.5 3.5±0.0 ◦ 151.8±19.0 ◦
eastwest 81.0±24.4 80.0±31.8 69.0±26.4 0.2±0.1 0.0±0.0 ◦ 0.2±0.0
westeast 81.0±24.4 81.5±31.5 69.0±26.4 0.2±0.1 0.0±0.0 ◦ 0.2±0.0
muta-atoms 83.9±8.6 80.3±8.4 66.5±2.3 • 17.9±0.2 0.1±0.0 ◦ 0.7±0.0 ◦
muta-bonds 86.3±7.4 85.8±7.7 73.2±8.4 • 53.5±0.6 0.2±0.0 ◦ 3.1±0.1 ◦
muta-chains 86.0±8.0 81.2±8.8 74.0±7.7 • 88.1±0.8 0.2±0.0 ◦ 10.2±0.2 ◦
suramin 65.0±45.2 53.0±48.1 65.0±45.2 3.7±0.3 0.0±0.0 ◦ 1.7±0.1 ◦
thioredoxin 89.3±4.0 86.2±5.3 87.1±2.4 624.2±6.7 0.1±0.0 ◦ 32.2±0.4 ◦
elephant 80.9±7.7 86.5±8.1 85.5±7.3 36.5±0.4 3.7±0.1 ◦ 15.8±0.2 ◦
fox 61.6±10.9 67.0±10.5 65.7±9.6 34.0±0.4 3.3±0.9 ◦ 14.7±0.1 ◦
tiger 80.5±8.9 82.5±8.7 81.8±8.5 30.4±0.4 1.8±0.3 ◦ 13.7±0.1 ◦
bikes 78.0±5.0 80.3±4.9 79.2±4.6 451.2±1.3 12.3±0.2 ◦ 66.3±0.3 ◦
cars 71.6±4.1 74.4±4.4 71.3±4.8 524.7±0.5 5.2±0.0 ◦ 73.4±0.3 ◦
people 75.6±4.6 79.0±4.8 79.5±4.3 ◦ 385.1±0.4 4.5±0.0 ◦ 58.7±0.2 ◦

◦, • statistically significant improvement or degradation vs MILES

space is almost always much higher, as the number of attributes is equal to the
total number of instances in the training bags. In contrast, MIWrapper generates
one instance for every instance in every bag, leaving the dimensionality of the
feature space unchanged.

4.3 Overall Comparison of Classification Accuracy

The classification accuracy of the best variants of the three wrapper schemes
MILES, MIWrapper, and SimpleMI, as well as the accuracy of the best of the
other MI algorithms listed in Section 3 are shown in Table 4. Interestingly, the
best results for each type of scheme were seldom more than a few percentage
points different from each other. Notable exceptions to this are the eastwest
/ westeast datasets, where the best MILES classifier was around ten percent-
age points ahead of the best MIWrapper classifier and the best non-wrapper
scheme, and SimpleMI was fourteen percentage points ahead of the best MILES
scheme. On the suramin dataset, MIWrapper with the linear SVM base learner
achieved an accuracy of 95%, which was 30-40 percentage points ahead of all
other schemes. However, this result was not statistically superior to the ma-
jority of the other schemes, possibly due to the small size of the dataset (11
bags). There was also a difference of around eight percentage points between the
best MILES classifier and the best SimpleMI and MIWrapper classifiers on the
musk2 dataset. Note that the σ value for MILES used in these experiments was
selected by [6] based on tuning experiments on a subset of the musk2 dataset,
so the results for MILES on that dataset may be optimistic.
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Table 4. The Best Result For Each Type of Scheme

Dataset Best % Best % Best % Best Other %
MILES MIWrapper SimpleMI MI Learners

musk1 SMO 89.1 Random 87.3 SMO 86.2 EMDD 85.2
(RBF) Forest (RBF)

musk2 1-Norm 91.6 SMO 83.0 SMO 83.8 EMDD 84.7
SVM (RBF) (RBF)

eastwest Adaboost 81.0 Adaboost 69.0 C4.5 95.0 Adaboost 71.5
+ D.Stump + D. Stump + Opt.Ball

westeast Adaboost 81.0 Adaboost 69.0 C4.5 95.0 MISMO 70.0
+ D.Stump + D. Stump

muta-atom Adaboost 83.9 Random 81.9 Random 80.9 MIBOOST 77.8
+ D. Stump Forest Forest + REPTree

muta-bond Adaboost 86.3 Random 83.1 Random* 85.8 MIBOOST 84.4
+ D. Stump Forest Forest + REPTree

muta-chains Adaboost 86.0 Bagging 85.3 Random 83.5 MIBOOST 82.3
+ D. Stump + C4.5 Forest + REPTree

suramin 1-Norm* 65.0 SMO 95.0 SMO 74.0 Citation* 65.0
SVM (LIN) (LIN) KNN

thioredoxin Adaboost 89.3 Adaboost 88.0 Logistic 87.6 Adaboost 90.3
+ D. Stump + C4.5 Regression + Opt.Ball

elephant 1-Norm 84.1 Random 87.1 Random 87.3 MIBOOST 82.8
SVM Forest Forest + REPTree

fox Random 64.9 Adaboost* 65.7 Adaboost 67.0 MIBOOST 66.3
Forest + D. Stump +D.Stump + REPTree

tiger SMO 81.7 Random 84.3 Random 82.9 MIBOOST 82.2
(RBF) Forest Forest + REPTree

bikes SMO 80.1 SMO 83.2 1-Norm 84.3 mi-SVM 83.5
(LIN) (RBF) SVM

cars 1-Norm 72.2 Random 74.8 Random 76.5 Adaboost 72.2
SVM Forest Forest + Opt.Ball

people Random 77.5 Random 82.6 Random 81.5 MIBOOST 78.9
Forest Forest Forest + REPTree

∗ Scheme was best-equal with one or more other schemes.

As mentioned previously, Adaboost with decision stumps was the dominant
base learner for MILES, being the best (or best-equal) scheme for six of the
fifteen datasets. MIBoost was the strongest overall method of the other MI al-
gorithms, and the random forests algorithm was the best overall base learner for
MIWrapper and SimpleMI.

5 Conclusions

The goals of the study were to compare base learners for MILES, and to compare
MILES to other state-of-the-art MI algorithms. The results indicate that the 1-
norm SVM is not generally superior to the standard 2-norm SVM as a base learner
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for MILES, despite the sparsity property that was thought to be important for the
high-dimensional feature space created by the MILES transformation [6]. More-
over, although the 1-norm SVM was a competitive base learner for MILES in the
experiment, Adaboost with decision stumps exhibited higher classification accu-
racy for some problem domains and did not require parameter tuning.

The results also show that when appropriate base learners are used, MILES is
competitive in classification performance with any MI algorithm we considered.
However, the simpler MIWrapper and SimpleMI methods almost always perform
just as well as MILES, despite being significantly superior in terms of CPU train-
ing time. To achieve good classification accuracy in a wide variety of cases, random
forests can be recommended as a base learner for MIWrapper and SimpleMI.

Perhaps the most interesting result of the experiments is the effectiveness of
the extremely simple propositionalization methods SimpleMI and MIWrapper
in comparison to MILES. The results also confirm their good performance when
compared to more sophisticated dedicated MI algorithms (see also [8]). It ap-
pears to be an open problem to find MI algorithms that are superior to these
simple propositionalization techniques on benchmark datasets, or to find prob-
lems where dedicated MI algorithms are more effective than propositionalization.

In future work, it would be interesting to compare MILES, SimpleMI and MI-
Wrapper to other multi-instance propositionalization methods such as TLC [25],
and the recent CCE [30] and BARTMIP [28] algorithms. In particular, BART-
MIP is an algorithm that is closely related to MILES, where propositionalization
is performed based on distances from bags, rather than distances from points as
in the latter algorithm, so a thorough comparison of those two algorithms would
be particularly insightful.
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Abstract. Hoeffding Tree Algorithm is known as a method to induce
decision trees from a data stream. Treatment of numeric attribute on
Hoeffding Tree Algorithm has been discussed for stationary input. It has
not yet investigated, however, for non-stationary input where the effect
of concept drift is apparent. This paper identifies three major approaches
to handle numeric values, Exhaustive Method, Gaussian Approximation,
and Discretizaion Method, and through experiment shows the best suited
modeling of numeric attributes for Hoeffding Tree Algorithm. This paper
also experimentaly compares the performance of two known methods for
concept drift detection, Hoeffding Bound Based Method and Accuracy
Based Method.

Keywords: Numeric Data Stream, Concept Drift, Hoeffding Tree.

1 Introduction

Due to the recent development of sensor technologies and spread of the Internet,
knowledge discovery from data stream becomes major concern in many applica-
tions. Data stream has the characteristics such that (1) data arrive continuously,
(2) concept drift may take place in the course of time. It is necessary to develop
a new learning algorithm or method suitable for the above characteristics of data
stream. This paper discusses a decision tree induction from data stream under
concept drift.

Decision tree Based Method is well accepted because of its lightness in com-
putation and easiness in understanding of the result, Hoeffding Tree Algorithm
[1,2,3,4,5] (HTA hereafter) is a method to induce decision trees fast from a data
stream. Some HTAs adopt naive-Bayes Classifiers (NBCs hereafter) in the leaf
nodes of a decision tree. For example, we proposed CVFDTNBC [5]. CVFDTNBC
adopts NBCs in the leaf nodes of a decision tree induced by CVFDT. We pre-
sented that CVFDTNBC can induce higher accuracy classifier than CVFDT does.

To the best of our knowledge, only Pfahringer et al. [6] discusses suitable
modeling of numeric attributes in HTA. In terms of accuracy of decision trees
and memory consumption, they proved that assumption of Gaussian distribution
is suitable for HTA without NBCs in stationary environment.

W. Wobcke and M. Zhang (Eds.): AI 2008, LNAI 5360, pp. 311–317, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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In stationary environment, only fitness of numeric attribute’s model to ac-
tual data affects accuracy. In non-stationary environment, tracking ability to
concept drift, updating numeric attribute’s model, affects accuracy of decision
trees as well as fitness. Suitable modeling of numeric attributes in non-stationary
environment could be different from the one in stationary environment. More-
over, adopting NBCs to HTA could affect suitable modeling of numeric at-
tribute. This paper, using a major HTA of CVFDT and its extended version
of CVFDTNBC, discusses the most suitable modeling of numeric attribute to
CVFDT and CVFDTNBC in terms of accuracy of decision tree, processing time
of decision tree induction, and memory consumption.

As concept drift degrades the accuracy, detecting concept drift is crucial to
keep accurate decision tree. Although various concept drift detection method,
using Hoeffding Bound or using accuracy of classifiers, are proposed. There
is no evaluation between concept drift detection methods. Using various data
streams with different speed of concept drift, this paper compares the conven-
tional method using Hoeffding Bound and the one using Accuracy proposed by
Gama et al.

2 The Features of Major Hoeffding Tree Algorithm

VFDT [1], CVFDT [4], CVFDTNBC [5], and UFFT [3] are HTAs. The features
of each methods is listed in Table 1.

Table 1. The Features of Major Hoeffding Tree Algorithm

Features Classification Method Tree Type Numeric Attributes Drift Detection

VFDT Majority
Single Tree

Discretization (can’t detect)
CVFDT Class Exaustive Method Hoeffding

CVFDTNBC naive Bayes (can’t handle) Bound
UFFT Ensemble Gaussian Approx. Accuracy Change

VFDT, CVFDT, and CVFDTNBC induce a single decision tree. UFFT, how-
ever, induces decision trees and constructs an ensemble of decision trees. VFDT
and CVFDT classify examples based on the majority class of leaf nodes, while
other methods classify examples using NBCs at leaf nodes.

VFDT discretizes numeric attributes and stores joint frequencies of each
discretized interval (Discretization Method). VFDT’s discretization, however,
contains the problem such that the order of examples affects performance of dis-
cretization. CVFDT stores all the numeric attribute values, and splits a leaf node
based on the attribute value that maximizes the information gain (Exhaustive
Method). CVFDTNBC calculates a set of conditional probability by discretizing
numeric attributes to feed them into NBCs, since the current CVFDTNBC is
unable to handle numeric attributes. UFFT, on the other hand, models numeric
attributes by assuming Gaussian distribution (Gaussian Approximation).



Decision Tree Induction from Numeric Data Stream 313

VFDT supposes stationary data stream and do not equip concept drift detec-
tion method. CVFDT and CVFDTNBC periodically check best split attributes
at all nodes of a decision tree by Hoeffding Bound, and detect concept drift (Ho-
effding Bound Based Method). But, UFFT detects concept drift by observing
the accuracy degradation at each node.

3 Criteria for Modeling Numeric Attributes

This paper compares 3 possible modeling of numeric attributes for the decision
tree induction on HTA; ExhaustiveMethod, Gaussian Approximation, Discretiza-
tion Method. Since VFDT’s discretization is unstable depending on the order of
example’s arrival, this paper, by adopting Entropy-Based Discretization [7], dis-
cretizes numeric attributes into binary intervals based on the attribute value that
maximizes information gain. There should be a certain upper limit of examples to
be stored at each leaf node to discretize numeric attribute. Although there should
be a mechanism to decide a suitable number of examples, it is outside the scope of
this paper. This paper simply introduces an user defined number d, for the number
of examples, where d is assumed to be 500 in this paper.

3.1 Fitness to Acutual Data

Fitness of numeric attribute’s model affects accuracy of decision trees induced by
HTA . Exhaustive Method stores all the attribute values at each node to exactly
calculate the threshold for node split. However, it takes huge amount of process-
ing time compared to other methods. Gaussian Approximation updates only the
limited number of parameters of Gaussian distribution each arrival of example.
The fast processing is guaranteed due to the drastic reduction in the amount
of information necessary for calculation. When acutual distribution differs from
Gaussian distribution, Gaussian Approximation would split leaf nodes unappro-
priately. Discretization Method reduces the amount of information stored in a
decision tree, since it is not necessary to store attribute value after discretiza-
tion. Discretization Method is able to split leaf nodes correctly, since it splits
leaf nodes based on acutual examples.

3.2 Tracking Ability to Concept Drift

We have to detect concept drift by feature value that is calculated based on nu-
meric attribute’s model, tracking ability of numeric attribute’s model to concept
drift is important. In this paper, we consider Hoeffding Bound Based Method
and Accuracy Based Method, we discuss effect of numeric attribute’s model to
these two method. Hoeffding Bound Based Method needs calculation of infor-
mation gain. Exhaustive Method could calculate exact information gain. Other
methods, however, are difficult to calculate exact information gain, because other
methods don’t hold attribute values, they are weak to concept drift. Accuracy
Based Method, on the other hand, needs calculation of accuracy of classifiers. If
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concept drift happens, accuracy degrades independent from numeric attribute’s
model, even when numeric attribute’s model differs from appropriate one. Ac-
curacy Based Method is independent from numeric attribute’s model.

3.3 Influences of Each Method to Naive Bayes Classifier

In the case of HTA with NBCs, we have to consider the effect of numeric at-
tribute’s model for running NBCs. To calculate probability that is needed for
NBCs, Exhaustive Method have to store numeric attribute values in special form
as in V FDTC or discretize numeric attributes before running NBCs. Gaussian
Approximation, on the other hand, could easily calculate probability to run
NBCs. Discretization Method discretizes numeric attributes after storing d ex-
amples. Since Discretization Method is unable to run NBCs before storing d
examples, accuracy of classifier would degrade until d examples are stored.

4 Evaluation of Concept Drift Detection Methods

Various concept drift detection methods, using Hoeffding Bound and using ac-
curacy of classifiers, are proposed. The features of each method is shown below.

4.1 Hoeffding Bound Based Method

To detect concept drift, CVFDT and CVFDTNBC periodically check the best split
attributes at all nodes of a decision tree by Hoeffding Bound. If concept drift is de-
tected at a node, CVFDT and CVFDTNBC start to generate an alternative subtree
for an old subtree whose root node is the node. The alternative subtree is replaced
with the old subtree when it becomes more accurate than the old one.

Concept drift degrades the accuracy of classifiers, especially when an abrupt
and big drift takes place. Decision tree should be renewed at every occurrence
of concept drift to keep the accuracy by reflecting the latest statistical nature of
data stream. In the case of abrupt concept drift, it is necessary to generate an
alternative subtree near the root node. Since nodes close to the root node store
many examples, it is difficult to detect concept drift quickly by the influence of
old concept’s examples.

4.2 Accuracy Based Method

In this paper, we introduce to CVFDT and CVFDTNBC the method used in UFFT
[3] (Accuracy Based Method) with a modification to single decision tree learner.

During the induction of a decision tree, each node classifies examples that tra-
versed the node. Monitoring the change of classifier’s accuracy, Accuracy Based
Method detects concept drift. If abrupt concept drift happens, accuracy of classi-
fiers would degrade extremely. Accuracy Based Method can detect concept drift
more quickly than Hoeffding Bound Based Method does. Each arrival of exam-
ple, Accuracy Based Method, however, takes extra time to classify an example
at each node that the example traversed.
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If UFFT detects concept drift at some nodes, UFFT prunes the subtrees whose
root node are those nodes. By constructing an ensemble of decision trees, UFFT
avoids radicalpruningofdecisiontrees.Singledecisiontree learners suchasCVFDT
and CVFDTNBC would suffer from degradation of accuracy caused by radical
pruning of a decision tree. Such a case is safely avoided by waiting for the growth
of alternative subtree until it becomes more accurate than the old one.

5 Experiments

This section clarifies through experiments how the modeling of numeric attribute
and the concept drift detection method affects CVFDT and CVFDTNBC in
terms of accuracy, processing time and memory consumpstion for decision tree
induction. Following suggestions shown in Hulten et al. [4], we generated artificial
numeric data streams, which consist of 3,000,000 of examples, with concept drift
to carry out performance tests. Whenever every 10,000 examples are streamed
in, we evaluate the accuracy of the induced decision tree and processing time for
decision tree induction, by giving 10,000 test examples which represent the latest
concept. Therefore, we will conduct 300 tests, and the accuracy, the processing
time for learning 10,000 examples are given by the average of 300 tests. Concept
drift is generated for every 50,000 examples. The parameters of CVFDT is the
same as Hulten reported.

5.1 Experimental Results

(1) Effects of Numeric Attribute Treatment. Accuracy, processing time,
and memory consumption are measured for CVFDT and CVFDTNBC with dif-
ferent modeling of numeric attribute. The number of attribute is 10 in the gen-
erated data stream, with about 7% of example classes are reversed as concept
drift at every 50,000 examples. Table 2 shows performances of each method. Bold
number shows the statistical difference by 5% of significance level. CVFDTNBC is
measured with only Gaussian Approximation and Discretization Method, since
Exhaustive Method needs extra process of calculating the probability.

Table 2 shows that accuracy of CVFDT is independent of the modeling of
numeric attribute, except that Exhaustive Method shows about 0.15% higher
accuracy. On the other hand, processing time of Exhaustive Method is 9 times
larger than the other two methods, memory consumption is 8 times larger. This
result shows that a proper treatment of numerical attribute affects processing

Table 2. Difference in Modeling of Numeric Attribute

CVFDT CVFDTNBC

Accuracy[%] Processing Memory Accuracy[%] Processing Memory
Time[s] [MByte] Time[s] [MByte]

Exhaustive 70.86 8.88 339.12 ————————
Gaussian 70.72 1.07 40.99 84.56 1.06 40.99

Discretization 70.62 0.98 41.68 78.05 1.12 41.71
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Fig. 1. The Effect of Accuracy Based Concept Drift Detection for Several drift levels

time and memory consumption for decision tree induction and that Exhaustive
Method is not recommended for practical use in terms of processing time and
memory consumption.

In CVFDT, Gaussian Approximation and Discretization Method showed al-
most the same accuracy. In CVFDTNBC, however, Gaussian Approximation
showed at most 6% higher accuracy than Discretization Method with minor
advantages in processing time and memory consumption. Fine division of ex-
ample space lead to accurate NBCs. Gaussian Approximation calculates finer
probability than Discreization Method does, and divides example space finely.
This is why Gaussian Approximation shows high accuracy.

Through the experiments, we demonstrated the suitable modeling of numeric
attribute for CVFDT and CVFDTNBC in terms of accuracy of decision tree,
processing time of decision tree induction, and memory consumption. Suitable
modeling of numeric attribute for CVFDT is Gaussian Approximation and Dis-
cretization method. The one for CVFDTNBC is Gaussian Approximation.

(2) The Effect of Accuracy Based Method. To analyze the effect of Ac-
curacy Based Method in terms of accuracy and processing time with different
drift levels, we implemented the Accuracy Based Method used in UFFT [3] on
CFVDT and CVFDTNBC with Gaussian Approximation.

Figure.1(a) and Fig.1(b) shows each method’s accuracy and processing time
for learning 10,000 examples with various drift level of data stream, where drift
level is the percentage of examples that changes their class after concept drift.
The higher the drift level, the more examples changes their classes after concept
drift. No concept drift takes place when drift level is equal to zero. This paper
uses 7% of drift level as a unit, since 7% of drift level is obtained to generate
concept drift following Hulten et al [4].

Figure.1(a) shows an interesting fact. In the area where that drift level is
between 0% and 7%, Hoeffding Bound Based Method detects concept drift suc-
cessfully, while the Accuracy Based Method slightly improved accuracy less than
0.5%. In the area where drift level is larger than 14%, however, the Accuracy
Based Method overwhelms the Hoeffding Bound Based Method. It is observed in
Fig.1(b) that adoption of Accuracy Based Method caused increase of processing
time for decision tree induction for CVFDT. It is smaller than 10%, while that
in CVFDTNBC is larger than 20% reaching 36% in worst case.
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Accuracy Based Method should not be applied in the area where drift level
is smaller than 7%, because it does not improve the accuracy and degrades the
processing time of CVFDTNBC down to 36% in the worst case. However, in the
area of high drift level, Accuracy Based Method should be applied in spite of
the increase in processing time, because the improvement by Accuracy Based
Method becomes apparent.

6 Conclusion

In this paper, we compared 3 possible modelings of numeric attribute for CVFDT
and CVFDTNBC, that Exhaustive Method, Gaussian Approximation, and Dis-
cretization Mehtod, in terms of accuracy of decision tree, processing time of
decision tree induction, and memory consumption. The most suitable treatment
of numeric attributes for Hoeffding Tree Algorithm was revealed through exper-
iments. Various concept drift detection methods are proposed, but no perfor-
mance comparison between them has been reported. This paper evaluated the
performance of Accuracy Based Method and Hoeffding Bound Based Method
in terms of accuracy and processing time. Through the experiments using arti-
ficially generated data, we obtained following results: (1) Gaussian Approxima-
tion or Discretization Method should be used on CVFDT, (2) Gaussian Method
should be used on HTA with NBC like CVFDTNBC, (3) Accuracy Based Method
should be used under high drift level.
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Abstract. A new iterative procedure for solving regression problems
with the so-called LASSO penalty [1] is proposed by using generative
Bayesian modeling and inference. The algorithm produces the antici-
pated parsimonious or sparse regression models that generalize well on
unseen data. The proposed algorithm is quite robust and there is no
need to specify any model hyperparameters. A comparison with state-
of-the-art methods for constructing sparse regression models such as the
relevance vector machine (RVM) and the local regularization assisted
orthogonal least squares regression (LROLS) is given.

1 Introduction

In the setting of supervised learning we are given a set of examples of input vec-
tors {xi}N

i=1 (features) along with the corresponding targets {ti}N
i=1. We suppose

that input data is of dimension d. Using this data we wish to build a prediction
model or learner which will enable us to predict the outcome for new unseen
inputs. Of those modeling methods, the least absolute selection and shrinkage
operator (LASSO), aiming at providing parsimonious models, has attracted great
attention in the past decade. The LASSO method was first introduced by Tib-
shirani [1]. It has the appealing ability to prune predictors whose effects are
actually zero. The LASSO estimate is defined by

β̂lasso = argmin
β

N∑
i=1

(ti − β0 −
d∑

j=1

βjxij)2, Subject to:
d∑

j=1

|βj | ≤ s. (1)

There are many ways to compute the solution of the LASSO such as the Non-
Negative Squared algorithm [2] and the scaled Gradient Projection for Sparse
Reconstrunction [3]. A recent survey on LASSO is [4]. Cross-validation is a viable
tool for estimating the best value of s, but the least angle regression (LAR)
procedure [5] turns out to be a better approach. However, although the LAR
procedure could identify all the solution paths, we still need to decide the number
of predictors to be used in the model.
� The author to whom all the correspondences should be addressed.
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In recent years, the support vector machine (SVM) [6] and kernel machine
models (KMM) [7,8] have attracted considerable interest. These techniques have
been gaining increasing popularity and are regarded as state-of-the-art tech-
niques. The model used is

t = t(x; β) + ε = β0 +
N∑

i=1

βik(x,xi) + ε (2)

where k(x,xi) is a kernel function and ε is an additive noise. The key feature of
the SVM is to prune all the unnecessary k(x,xi) and results in a sparse model
dependent only on the so-called “support vectors”. However, the SVM technique
is not always able to construct parsimonious models such as in system identi-
fication [9]. This inadequacy motivates researchers to explore new methods for
parsimonious models. Tipping [10] first introduced the relevance vector machine
(RVM). Chen [8] derived a novel method for constructing sparse kernel models
based on the orthogonal least squares (OLS) algorithm [11]. Both are efficient
learning procedures for constructing sparse models. There is a lot of literature
concerning the problem of regressor selection, see for example [12,13,14,15].

In this paper, we propose an approach by applying the L1 LASSO penalty
in (1) to the weights βj in model (2) to gain model sparsity while adopting a
Bayesian learning and inference approach for solving the problem. The rest of
the paper is organized as follows. In Section 2, the concepts of L1 LASSO in
Bayesian formulation are given and the algorithm for finding L1 LASSO solu-
tions is presented. The experiments are carried out in Section 3, followed by our
conclusions in Section 4.

2 Bayesian LASSO Model Formulation

In supervised learning we are given a set of examples of input vectors X =
[x1,x2, ...,xN ] ⊂ Rd, d is the dimension number of input space, along with
corresponding targets t = (t1, t2, ..., tN )T which are independent and identically
distributed (iid). We assume that the model noise random variable ε follows a
Gaussian distribution of mean 0 and variance σ2. Without loss of generality, we
will assume β0 = 0 in our discussion.

Let K be the Gram matrix of the kernel function k defined on the input data
X . Due to the assumption of independence of the data points, the likelihood of
the complete dataset can be written as

p(t|X,β, σ2) =
1

(2πσ2)N/2 exp
{
− 1

2σ2 ‖t− Kβ‖2
}

(3)

For the L1 LASSO penalty on weights β = (β1, β2, ..., βN )T , we impose on β
a prior of joint Laplacian distribution, defined as

p1(β|λ) =
(
√
λ)N

2N
exp

{
−
√
λ(|β1| + |β2| + · · · + |βN |)

}
. (4)
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To develop a generative Bayesian model, we further suppose priors on both
the inverse of the noise variance 1/σ2 and the variance of the Laplacian distri-
bution λ. A suitable prior for the scale parameter τ = 1/σ2 could be a Gamma
distribution:

p(τ |a, b) = Gamma(τ |a, b) =
ba

Γ (a)
τa−1 exp{−bτ}.

In our experiments, we fix its parameters to a = 500 and b = 1.
Given specifications (3) and (4), the joint distribution of the data set (X, t),

the weight variables β and the hyperparameter τ (or σ2) is given by

p(t,β, τ |X) = p(t|X,β, τ)p1(β|λ)p(τ |a, b) (5)

Unfortunately, we cannot compute the posterior of β analytically as the de-
nominator p(t|λ) in Bayesian formula necessitates an intractable integration due
to the existence of Laplacian distribution. However, the Laplacian distribution
p1(β|λ) can be expanded as a superposition of an infinite number of Gaussian
distributions [16]

p1(β|λ) =
∫ ∞

0

√
ηλ

2π
exp

{
−ηλ

2
β2
}
p(η)dη with p(η) =

1
2η2

exp
{
− 1

2η

}
(6)

Instead of directly handling the joint distribution defined in (5) we introduce
a new latent variable ηi for each βi as defined in (6) and consider the following
joint distribution

p(t,β,η, τ |X) =
1

(2πσ2)N/2 exp
{
− 1

2σ2 ‖t− Kβ‖2
}
× ba

Γ (a)
τa−1 exp{−bτ}

×
N∏

i=1

√
ηiλ

2π
exp

{
−ηiλ

2
β2

i

}
1
2
η−2

i exp
{
− 1

2ηi

}
(7)

The new distribution can be handled by using a variational Bayesian ap-
proach [17,18,19]. We can absorb λ into ηi by setting λ = 1. The purpose of the
variational Bayesian approach is to approximate the posterior p(β,η, τ |t, X)
by appropriate independent distributions Q(β)Q(η)Q(τ). Q(β), Q(η) and Q(τ)
can be approximated by an iterative procedure defined as follows, u means the
expectation of u with respect to the approximated posterior Q(u),

1. The best Q(β) is a Gaussian given by N (β|β, Σ) with the mean β =
Σ−1τKT t and covariance Σ = (diag(η) + τKTK)−1.

2. The best Q(η) (or Q(ηi)) is the Generalized Inverse Gaussian (GIG) distri-
bution given by

Q(ηi) = G(ηi|λ, χ, ψi) =
(ψi/χ)

λ
2

2Kλ(
√
χψi)

ηλ−1
i exp

{
−1

2
(χ/ηi + ψiη)

}
where λ = − 1

2 , χ = 1 and ψi = βi and Kλ(·) is the modified Bessel function

of the second kind. Then ηi = 1/
√
β

2
i .
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3. The best Q(τ) is still a Gamma distribution Gamma(τ |a′, b′) where

a′ = a+
N

2
and b′ = b+

1
2
(t−Kβ)T (t −Kβ) +

1
2
tr(KTKΣ)

which gives τ = a′/b′.

An iterative algorithm can be constructed based on the above three steps
which we call the Variational Bayesian Inference Algorithm (VBIA). For those
points (xi, ti) whose ηi is increasing in the iterative process, the corresponding
weight βi would approach 0. Unfortunately the convergence speed is quite slow
and an improved procedure is desired. We note that in the joint distribution (7)
the variable β can be analytically integrated out. We can take this advantage to
propose a new procedure for the optimal latent variables η and τ .

Define L = log p(t,η, τ |X) = log
∫
p(t,β,η, τ |X)dβ. Then we find MAP es-

timate for η and τ by maximising L. It is easy to have the exact same iterative
formula for τ as in step 3. However we propose the following iterative formula
for η

ηnew
i =

1/ηi − 3

β
2
i +Σii

(8)

where Σii is the ith diagonal element of Σ. That is, instead of using the iter-
ative formula for ηi in step 2, we use (8). We call this algorithm the Modified
Variational Bayesian Inference Algorithm (MVBIA) for the LASSO problem.

3 Modeling Examples

In this section, we will test the new MVBIA method for LASSO regression prob-
lems on both a synthetic data set and one real world data set. The experiment
will be used to compare MVBIA to two other related algorithms, Chen’s LROLS
[8] and Tipping’s RVM [10].

Example 1: In this example we use a Gaussian radial basis function (RBF)
network to model the scalar function

sinc(x) = sin(x)/x, −10 ≤ x ≤ 10.

A set of training data {(xi, ti)}100
i=1 is generated for the input xi by drawing from

the uniform distribution over [−10, 10] and target noise within ti was given by a
Gaussian with zero mean and variance 0.1. The target is quite noisy compared
to the maximal target values ±1.

In the experiment, the width of the RBF kernel function is set to 3. The full
RBF model (2) is defined by all the RBF regressors with centers at each input
training data, thus N = 100. The MVBIA method produced a sparser 7-term
model. The iterative procedure was terminated at 34 iterative steps when the
change of the log value of the successive ηi was less than a given threshold of
0.01.
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(a) Model by the MVBIA
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(c) Model by the LROLS

Fig. 1. Dots are the noise training data, the dash-curve is the underlying function
sinc(x), the solid curves are models generated by algorithms and the marker ◦ indicates
the key regressor vectors selected by each algorithm

Table 1. Mean Square Errors (regrs=regressors)

Example 1
Methods LROLS (9 regrs) RVM (6 regrs) MVBIA (7 regrs)
Training MSE 0.00137469 0.00180249 0.00126753
Test MSE 0.00137368 0.0245362 0.00126916
Example 2
Methods LROLS (34 regrs) RVM MVBIA (11 regrs)
Training MSE 0.000435 N/A 0.00045094
Test MSE 0.000487 N/A 0.00047714

Table 1 compares the MSE values over the training and testing sets for the mod-
els constructed by the LROLS [8], the RVM [10], and the MVBIA. The result given
by MVBIA is comparable to the result generated by both RVM and LROLS al-
gorithms. Although it is reported that the LROLS has less computational cost
due to a forward model selection procedure, however in practice we need to run
the LROLS at the full size to let each regularizer settle down on the appropriate
scale. In practice, after several initial iteration most of the non-significant regres-
sors have been pruned out from the model in MVBIA. The graph of the 7-term
model produced by the MVBIA is shown in Figure 1 (a) where the significant vec-
tors (or selected regressors) are marked with©. From Figure 1 (b) we can see poor
performance of the RVM on the left hand side of the curve.

Example 2: In the second example, we are about to construct a model repre-
senting the relationship between the fuel rack position (input) and engine speed
(output) for a Leyland TL11 turbocharged, direct inject diesel engine operated
at low engine speed. A detailed system description and experimental setup can
be found in [20]. The data set consists of 410 samples. We use the first 210
data points as training data in modeling and the last 200 points in model val-
idation. An RBF model of the form (2) is used with the input xi given by
xi = [ti−1, ui−1, ui−2]T where ti−1 is the engine speed and u means the fuel
input at the last time step.
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(b) One-step prediction
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(c) Iterative prediction

Fig. 2. The results of modelling the relationship between the engine speed and the fuel
rack position

The variance of the RBF kernel function was chosen to be 1.69. The total num-
ber of regressors is N = 210 at the initial stage. The MVBIA algorithm produced
a model with 11-term significant regressors. The result is comparable to the one
given by LROLS, see Table 1. In our own experiments, a significant effort was
made to choose an appropriate value for the parameter ξ used as in LROLS [8].
It is worth pointing out that MVBIA is more robust and insensitive to changes of
the initial parameters and is a completely automatic procedure. For example the
initial value of ηi is randomly chosen. The results are presented in Table 1.

For this example, the RVM algorithm failed to build up a reasonable model,
due to numerical instability of the iterative loop for updating regularization
parameters. The constructed RBF model by the MBVIA algorithm was used to
generate the one-step prediction ti of the system output for i ≤ 410. The iterative
model output tdi was produced by xd

i = [tdi−1, ui−1, ui−2]T and tdi = t(xd
i ; β). The

one-step model prediction and iterative model output for this 11-term model
selected by the MBVIA algorithm are shown in Figure 2 in comparison with the
system output.

4 Conclusions

The MBVIA algorithm has been proposed for solving kernel regression mod-
eling problems with the LASSO penalty. Compared to the LROLS and RVM
algorithms the new algorithm is robust with respect to parameter settings. The
computational requirements for this iterative model algorithm are very simple
and its implementation is straightforward. The core idea can be easily extended
to other penalty measures such as robust loss measures and error/loss functions
for classification problems.
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Abstract. Many applications require the ability to identify data that
is anomalous with respect to a target group of observations, in the sense
of belonging to a new, previously unseen ‘attacker’ class. One possible
approach to this kind of verification problem is one-class classification,
learning a description of the target class concerned based solely on data
from this class. However, if known non-target classes are available at
training time, it is also possible to use standard multi-class or two-class
classification, exploiting the negative data to infer a description of the
target class. In this paper we assume that this scenario holds and inves-
tigate under what conditions multi-class and two-class Näıve Bayes clas-
sifiers are preferable to the corresponding one-class model when the aim
is to identify examples from a new ‘attacker’ class. To this end we first
identify a way of performing a fair comparison between the techniques
concerned and present an adaptation of standard cross-validation. This
is one of the main contributions of the paper. Based on the experimental
results obtained, we then show under what conditions which group of
techniques is likely to be preferable. Our main finding is that multi-class
and two-class classification becomes preferable to one-class classification
when a sufficiently large number of non-target classes is available.

1 Introduction

Verification problems in machine learning involve identifying a single class label
as a ‘target’ class during the training process, and at prediction time make a
judgement as to whether or not an instance is a member of the target class.
One-class classifiers seem ideal for this kind of problem; they require nothing
other than the target data during training, and make a judgement of target or
unknown for new instances. However, if non-target data is present in the training
dataset, it may be beneficial to instead use a multi-class classifier that is able
to utilise the negative data in its judgements. A potential disadvantage of this
approach in the context of verification is that we are primarily interested in
identifying occurrences of completely novel classes at prediction time and multi-
class classifiers may not accurately discriminate against these.

In many cases, a one-class classifier is used in preference to a multi-class clas-
sifiers simply because it is inappropriate to collect or use non-target data for
the given situation. Password hardening—a biometric problem that only has

W. Wobcke and M. Zhang (Eds.): AI 2008, LNAI 5360, pp. 325–336, 2008.
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data about one class—is a task where one-class classifiers have been applied
to great success [6], and similar research areas including typist recognition [3]
and authorship verification [2] have also successfully used one-class classification
techniques. One-class classification is often called outlier detection (or novelty
detection) because it attempts to differentiate between data that appears nor-
mal and abnormal with respect to the training data. One-class classifiers have
also been applied to medical problems, such as tumor detection [4], where a
limited quantity of negative data is available during the training process. In
contrast, multi-class classifiers have been applied to a huge range of learning
problems, including some verification problems where one-class classifiers can
also be applied.

With so many techniques available for verification, it is difficult to decide
which one will be most effective for discriminating against new ‘attacker’ classes
because it is not obvious how to perform a fair comparison of one-class and
multi-class classifiers in this context. We show how it is possible to conduct
such a comparison, focusing on a two-class setup as well as a standard multi-
class one. Using our method of comparison in conjunction with Näıve Bayes
and a corresponding one-class model, we are then able to provide guidelines
for choosing a classifier for a given verification problem, where the aim is to
discriminate against previously unseen classes of observations.

The next section explores how a fair comparison of the classifiers can be per-
formed. Following this, in Section 3 we describe our experimental setup for testing
the different classification techniques, and provide empirical results in Section 4;
we also explore situations where one-class classification may be favourable over a
multi-class setup, even when negative data is available during the training process.
Finally, we conclude the paper in Section 5.

2 Comparing Classifiers Fairly

A standard method for evaluating one-class classifiers is to split a multi-class
dataset into a set of smaller one-class datasets, with one dataset per class con-
taining all the instances for the corresponding class. The one-class classifier can
then be trained on each dataset in turn, with a small amount of data heldout
from the training set and all the other datasets used for testing. Depending on
the number of instances available for each class, this generally means that there
is a large amount of negative (or ‘attacker’) data for testing, and a relatively
small amount of positive data for both testing and training. In contrast, multi-
class classifiers are often evaluated using stratified 10-fold cross-validation, where
the data is split into 10 equal-sized subsets, each with the same distribution of
classes. The classifier is trained 10 times, using a different fold for testing and
the other 9 folds combined for training. These two different evaluation methods
are not comparable. In each one the classifier is trained on a different proportion
of data for a given class, and is tested on different quantities of data.

In fact, it is not straightforward to perform a fair comparison of one-class
classifiers and multi-class ones: one-class classifiers are designed to deal with
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Fig. 1. Standard cross-validation for two-class classification (with relabelling), A is the
target class and O is the outlier class

Fig. 2. Standard cross-validation for one-class classification (with relabelling), A is the
target class and O is the outlier class

classes that are unseen at training time, but multi-class classifiers typically han-
dle only classes that they have been trained on. A näıve approach to comparing
a one-class classifier to a multi-class (more specifically, two-class) classifier1 is
to identify a target class, T , relabel all the data that does not belong to that
target class to the label ‘outlier’, O, and then perform cross-validation on the re-
labelled dataset—effectively turning a multi-class problem into a two-class one.
As shown in Figure 1, this approach is biased in favour of the two-class classifier:
a normal cross-validation run will not take into account that O is composed of
several classes—meaning that there is a high chance that the test set will con-
tain a class (albeit relabelled) that also occurs in the training set. For one-class
classification, we can perform the same cross-validation run, but we delete O
from the training set because we only need to train on the target class—as in
Figure 2. In all figures missing data is indicated by a dashed line/box.

The practical applications that we are considering in this paper, namely ver-
ification problems, have the key feature that entirely new classes are what we
want to discriminate against. As we will usually not have training data for these

1 In this paper we generally refer to multi-class classification whenever there is more
than one class involved during the training phase.
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Fig. 3. Cross-validation for unbiased two-class classification (with relabelling), A is the
target class, B is the heldout class and O is the outlier class

Fig. 4. Cross-validation for biased two-class classification (with relabelling), A is the
target class, B is the heldout class and O is the outlier class

new attacker classes, it is inappropriate to use the setup in Figure 1 for eval-
uating the performance of multi-class techniques: the results will generally be
optimistically biased. To remove the bias due to the fact that the multi-class
classifier has seen instances of the outlier class previously, the simple answer
is to place a heldout class—corresponding to the ‘attacker’ class—directly into
the test set. The training set contains the target class, and all other classes but
the heldout class. The test set contains a portion of the target class, and all
of the heldout class. All of the non-target classes, including the heldout class,
are relabelled to O in both the training and test sets. This is demonstrated in
Figure 3. We can use these same datasets for one-class classification, since the
one-class classifier does not care about the outlier data in the training set. A
drawback of this approach is that we cannot compare the results directly to
the biased classifier, since the unbiased classifier is tested with different data.
It would be advantageous to be able to perform such a comparison so that the
potential benefit of obtaining attacker data for training can be measured—even
if this is of mainly academic interest.

Fortunately, there is a way to compare all three types of classification—multi-
class biased, multi-class unbiased and one-class—to each other. Let us con-
sider the biased multi-class case first. A target and heldout ‘attacker’ class are
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Fig. 5. Cross-validation for one-class classification (with relabelling), A is the target
class, B is the heldout class and O is the outlier class

Fig. 6. Cross-validation for unbiased two-class classification (with relabelling), A is the
target class, B is the heldout class and O is the outlier class

identified. Then, we perform a normal stratified cross-validation fold, which
maintains the class distributions. However, before we relabel the non-target
classes, instances from the test set that do not belong to either the target or
heldout class are deleted. Finally all non-target classes are relabelled to O, and
the evaluation can be performed.

Figure 4 shows the resulting datasets used for multi-class classification. Let us
now consider the evaluation of a one-class classifier: it simply ignores all outlier
training data, as shown in Figure 5. Lastly, let us consider unbiased multi-class
classification. In this case, before the final relabelling is performed the heldout
class is removed from the training set, as demonstrated in Figure 6.

The advantage of this approach is that the test set and the target data in
the training set is identical for all of the classification techniques, and it is now
possible to compare results. Furthermore, as an additional benefit, it is also
possible to compare true multi-class classification based on more than two classes
with two-class and one-class classifiers by omitting the relabelling step where the
non-target classes become class O.

Evaluation of a single target class using different classification techniques
(multi-class, two-class and one-class) can be performed by accumulating all pre-
dictions for each possible target-heldout class combination. The area under the
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ROC curve (AUC) is then calculated for each target class. We use the AUC
for comparisons because it is independent of any threshold used by the learning
algorithm. To compare classifier performance on an entire multi-class dataset,
we use the weighted average AUC, where each target class is weighted according
to its prevalence:

AUCweighted =
∑

∀ci∈C

AUC(ci) × p(ci) (1)

Using a weighted average rather than an unweighted one prevents target classes
with smaller instance counts from adversely affecting the results.

3 Evaluation Method

For the experimental comparison, we set up 5 different classification techniques
and tested each on UCI datasets [1] with nominal classes. For each dataset 10-
fold cross-validation is repeated 10 times. The learning techniques we used are:

1. Biased multi-class classification using Näıve Bayes. No relabelling was per-
formed, data from the heldout class was not removed from the training
dataset (as in Figure 4, but without relabelling the non-target classes to
O). The test set contained only the target and heldout class.

2. Unbiased multi-class classification using Näıve Bayes. No relabelling was
performed, but data from the heldout class was removed from the training
dataset (as in Figure 6, but without relabelling the non-target classes to O).
The test set contained only the target and heldout class.

3. Biased two-class classification using Näıve Bayes. All non-target classes were
relabelled to ‘outlier’, and the test set contained only the target and (rela-
belled) heldout class, as in Figure 4.

4. Unbiased two-class classification using Näıve Bayes. All non-target classes
were relabelled to ‘outlier’, the test set contained only the target and (rela-
belled) heldout class, and instances of the heldout class were removed from
the training set, as in Figure 6.

5. One-class classification using a Gaussian density estimate for numeric at-
tributes and a discrete distribution for each nominal one, assuming attribute
independence (i.e. ‘Näıve Bayes’ with only one class). All non-target classes
were relabelled to ‘outlier’ and the test set contained only the target and
(relabelled) heldout class, as in Figure 5.

We used Weka’s [5] implementation of Näıve Bayes with default parameters
for all multi-class and two-class tasks; it is the classifier in Weka that is directly
comparable to the one-class classifier we use. The one-class classifier fits a single
Gaussian to each numeric attribute and a discrete distribution to each nominal
one: a prediction for an instance, X , is made by assuming the attributes are
independent. The same happens in Näıve Bayes, but on a per-class basis. In both
Näıve Bayes and the one-class classifier missing attribute values are ignored.
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4 Results

Using the methodology discussed above, we now present experimental results
for UCI datasets. First, we show results obtained by comparing the 5 different
classification techniques discussed above. Then we examine some of the results
in greater detail, focusing on unbiased two-class classification versus one-class
classification.

4.1 Comparison on UCI Datasets

In Table 2 we provide empirical results for all five different classifiers, compared
using the weighted average AUC described in Section 2. Only UCI datasets with
three or more class labels were used because our evaluation technique requires
at least three classes. Table 1 shows some properties of the datasets used in the
experiments.

Table 1. Properties of the UCI datasets used in the experiments

Number of
Features Percentage of

Datasets Classes Instances Nominal Numeric Missing Values
anneal 6 898 33 6 -
arrhythmia 16 452 74 206 0.32
audiology 24 226 70 0 2.00
autos 7 205 11 15 1.11
balance-scale 3 625 1 4 -
ecoli 8 336 1 7 -
glass 7 214 1 9 -
hypothyroid 4 3772 23 7 5.36
iris 3 150 1 4 -
letter 26 20000 1 16 -
lymph 4 148 16 3 -
mfeat-factors 10 2000 1 216 -
mfeat-fourier 10 2000 1 76 -
mfeat-karhunen 10 2000 1 64 -
mfeat-morph 10 2000 1 6 -
mfeat-pixel 10 2000 241 0 -
mfeat-zernike 10 2000 1 47 -
optdigits 10 5620 1 64 -
pendigits 10 10992 1 16 -
primary-tumor 22 339 18 0 3.69
segment 7 2310 1 19 -
soybean 19 683 36 0 9.50
splice 3 3190 62 0 -
vehicle 4 846 1 18 -
vowel 11 990 4 10 -
waveform-5000 3 5000 1 40 -
zoo 7 101 17 1 -
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Table 2. Weighted AUC results on UCI datasets, for multi-class, two-class and one-
class classifiers. Bold font indicates wins for two-class unbiased classification vs. one-
class classification and vice versa.

Classification Techniques
Number Multi-class Multi-class Two-class Two-class One-class

Datasets of Classes Biased (1) Unbiased (2) Biased (3) Unbiased (4) (5)
anneal 6 0.957 0.575 0.948 0.605 0.788
arrhythmia 16 0.801 0.724 0.775 0.723 0.576
audiology 24 0.960 0.883 0.946 0.897 0.881
autos 7 0.831 0.722 0.807 0.736 0.567
balance-scale 3 0.970 0.851 0.941 0.851 0.806
ecoli 8 0.958 0.855 0.947 0.889 0.927
glass 7 0.760 0.680 0.763 0.605 0.702
hypothyroid 4 0.931 0.576 0.915 0.587 0.648
iris 3 0.994 0.671 0.990 0.671 0.977
letter 26 0.957 0.932 0.941 0.935 0.887
lymphography 4 0.911 0.432 0.914 0.425 0.739
mfeat-factors 10 0.992 0.946 0.975 0.964 0.948
mfeat-fourier 10 0.966 0.917 0.949 0.930 0.909
mfeat-karhunen 10 0.996 0.969 0.983 0.976 0.955
mfeat-morph 10 0.952 0.890 0.948 0.928 0.941
mfeat-pixel 10 0.995 0.961 0.981 0.965 0.954
mfeat-zernike 10 0.960 0.906 0.946 0.912 0.897
optdigits 10 0.986 0.948 0.978 0.969 0.959
pendigits 10 0.980 0.915 0.962 0.942 0.953
primary-tumor 22 0.839 0.778 0.834 0.784 0.732
segment 7 0.971 0.863 0.952 0.863 0.937
soybean 19 0.994 0.966 0.988 0.973 0.961
splice 3 0.993 0.831 0.983 0.831 0.720
vehicle 4 0.767 0.671 0.768 0.696 0.658
vowel 11 0.956 0.907 0.926 0.909 0.865
waveform 3 0.956 0.692 0.927 0.692 0.864
zoo 7 0.999 0.963 0.984 0.963 0.984

Table 2 has some noteworthy results, aside from the expected outcome that
the biased classification techniques (columns 1 and 3) outperform the unbiased
and one-class methods. Of the two biased techniques, one might näıvely expect
the two-class approach to perform better: there are less labels and the out-
lier class contains many of them. However, on all but three of the 27 datasets
(glass, lymphography and vehicle), the multi-class classifier either performs the
same or better than the two-class classifier—and the difference for these three
datasets is not significant. This can be explained by the fact the multi-class
Näıve Bayes classifier is able to form a more complex model, with as many mix-
ture components as there are classes. These results suggest that if one does not
expect any novel class labels at testing time, one should not merge classes to
form a two-class verification problem if Näıve Bayes is used as the classification
method.
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In situations where the attacker class is not present in the training set (i.e.
considering the unbiased classifiers), the picture is different. The multi-class clas-
sifier (column 2) scores three wins, six draws and 18 losses against its two-class
counterpart (column 4). This result is consistent with intuition: when expecting
novel classes during testing, it is safer to compare to a combined outlier class
because the multi-class model may overfit the training data. By combining the
non-target classes into one class we can provide a more general single bound-
ary against the target class, and increase the chance that a novel class will be
classified correctly.

The one-class classifier (column 5) is best compared against the unbiased
two-class classifier (column 4) because the latter has been shown to work best
in situations where novel classes occur at testing time. As described earlier,
one-class classification is intended to deal with novel classes, and learns only
the target class during training. One would expect that the two-class classifier
could potentially have an advantage because it has seen negative data during
training. However, as highlighted in Table 2, the two-class classifier wins on only
16 datasets and the one-class classifier wins on the other 11. On closer inspection,
most of the datasets where the two-class classifier wins have a large number of
class labels; 12 of those winning datasets have 10 or more original class labels.
In contrast, the one-class classifier wins on only two datasets with many class
labels—mfeat-morph and pendigits.

4.2 Defining a Domain for One-Class Classification

In order to clarify in which situations one-class classification should be applied,
it is instructive to investigate the relationship between the number of class la-
bels available at training time and the accuracy of the two candidate classifiers:
the one-class classifier and the unbiased two-class classifier. The number of in-
stances for each class is also relevant; classes with a large number of instances
will generally result in a more accurate classifier. However, our primary concern
is whether a classifier is capable of identifying novel classes, so it is more appro-
priate to investigate the effect on accuracy obtained by reducing the dataset size
by removing all instances for a particular class label rather than by performing
a random selection of instances.

For each of the datasets with 10 or more labels where the unbiased two-class
classifier won against the one-class method, we repeated the experimental pro-
cedure from Section 3, but on each run we removed a different combination of
class labels (and all associated instances) from the training dataset. We gradu-
ally increased the number of labels removed, but for each number of labels we
considered all possible combinations and calculated the weighted AUC from the
accumulated statistics. This was repeated until only two classes remained: the
target class, and one original—but relabelled—class. Since we are also remov-
ing the heldout attacker class before training, reducing the datasets any further
results in no non-target instances present in the training set. The process for pro-
ducing the test set remains the same—ensuring that the dataset used to obtain
the AUC is identical for each method. These results are presented in Table 3;
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Table 3. Weighted AUC results obtained by reducing the number of non-target classes
in the training set

Original Total Two-class One-class Wins
Dataset One-class Two-class Removals Final AUC After x Removals
arrhythmia 0.576 0.723 13 0.606 -
audiology 0.881 0.897 21 0.736 7
letter 0.887 0.935 23 0.876 23
mfeat-factors 0.948 0.975 8 0.736 5
mfeat-fourier 0.909 0.949 8 0.726 5
mfeat-karhunen 0.955 0.983 8 0.836 7
mfeat-pixel 0.954 0.965 8 0.876 5
mfeat-zernike 0.897 0.946 8 0.728 4
optdigits 0.959 0.969 7 0.855 4
primary-tumor 0.732 0.784 19 0.740 -
soybean 0.961 0.973 16 0.954 10
vowel 0.865 0.909 8 0.827 8
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Fig. 7. Number of classes removed versus weighted AUC for the audiology dataset

for brevity we show in the final column the number of classes that were removed
before the one-class classifier became better than the two-class one.

For all but two of the datasets shown in Table 3, there exists a point where it
is better to use the one-class classifier over the two-class one. This is not unex-
pected: as the number of non-target classes is reduced, their coverage diminishes
until it is no longer worthwhile to use them to define a boundary around the
target class. For the two datasets where this is not the case, arrhythmia and
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primary-tumor, the density estimate does not appear to form a good model of
the data for either classifier and the AUC is relatively low in both cases.

Graphing the results for an individual dataset, such as shown for the audi-
ology dataset in Figure 7, we find that the weighted AUC continually decays
as we remove classes from the training data. Of course, the one-class classi-
fier maintains a constant AUC because it does not use non-target data during
training. The shape of decay shown in Figure 7 is typical of the datasets in
Table 3.

From the results in this section we can say that where there are limited non-
target classes available at training time, thus increasing the potential for a novel
class to appear that is dissimilar from any existing non-target class, one-class
classification should be used in preference to two-class classification. Note that in
this situation it may also be beneficial to combine the classifiers in an ensemble—
so available outlier training data can be utilised—but we have not investigated
this option yet.

5 Conclusions

In this paper we have described how multi-class, two-class and one-class classi-
fiers can be compared to each other by setting up identical test sets and employ-
ing the weighted AUC to compare their predictive performance in verification
problems with novel classes. We have provided empirical data for each classifica-
tion technique—Näıve Bayes and the corresponding one-class model—using 27
UCI datasets. Using the results of our experiments, we are able to provide the
following advice for use of each classifier in verification problems:

– If no novel classes are expected after the classifier has been trained one
should use multi-class classification without relabelling.

– If novel classes are expected, then the training data should be relabelled to
‘target’ and ‘outlier’, where the former is the single class we are attempt-
ing to verify, and the latter contains all other classes relabelled to a single
combined class. If there is a limited number of non-target classes, or they
do not sufficiently cover possible novel cases for some other reason, then
one should use one-class classification. Otherwise, one should use two-class
classification.

In situations where it is unclear whether to use one-class or two-class clas-
sification, it may be possible to combine the two classification methods in an
ensemble. However, we have not performed any tests regarding this approach,
and leave it as a possible avenue for future work. Future work could also include
extending empirical results to other learning algorithms. Moreover, we feel it
would be interesting to explore further the relationship between the number of
non-target instances (rather than the number of classes) and the accuracy of the
two-class classifier relative to the one-class classifier.



336 K. Hempstalk and E. Frank

References

1. Asuncion, A., Newman, D.: UCI machine learning repository (2007)
2. Koppel, M., Schler, J.: Authorship verification as a one-class classification problem.

In: Proceedings of the 21st International Conference on Machine Learning, pp. 489–
495. ACM Press, New York (2004)

3. Nisenson, M., Yariv, I., El-Yaniv, R., Meir, R.: Towards behaviometric security sys-
tems: Learning to identify a typist. In: Proceedings of the 7th International Confer-
ence on Principles and Practice of Knowledge Discovery in Databases, pp. 363–374.
Springer, Berlin (2003)

4. Tarassenko, L., Hayton, P., Cerneaz, N., Brady, M.: Novelty detection for the iden-
tification of masses in mammograms. In: Proceedings of the Fourth International
IEEE Conference on Artificial Neural Networks, London, England, pp. 442–447.
IEEE, Los Alamitos (1995)

5. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and tech-
niques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

6. Yu, E., Cho, S.: Novelty Detection Approach for Keystroke Dynamics Identity Ver-
ification. In: Liu, J., Cheung, Y.-m., Yin, H. (eds.) IDEAL 2003. LNCS, vol. 2690,
pp. 1016–1023. Springer, Heidelberg (2003)



Building a Decision Cluster Classification Model
for High Dimensional Data by a Variable

Weighting k-Means Method

Yan Li1, Edward Hung1, Korris Chung1, and Joshua Huang2

1 Department of Computing, The Hong Kong Polytechnic University
Hung Hom, Hong Kong, China

{csyanli,csehung,cskchung}@comp.polyu.edu.hk
2 E-Business Technology Institute, The University of Hong Kong

Pokfulam Road, Hong Kong, China
jhuang@eti.hku.hk

Abstract. In this paper, a new classification method (ADCC) for high
dimensional data is proposed. In this method, a decision cluster classi-
fication model (DCC) consists of a set of disjoint decision clusters, each
labeled with a dominant class that determines the class of new objects
falling in the cluster. A cluster tree is first generated from a training data
set by recursively calling a variable weighting k-means algorithm. Then,
the DCC model is selected from the tree. Anderson-Darling test is used
to determine the stopping condition of the tree growing. A series of ex-
periments on both synthetic and real data sets have shown that the new
classification method (ADCC) performed better in accuracy and scala-
bility than the existing methods of k-NN , decision tree and SVM. It is
particularly suitable for large, high dimensional data with many classes.

Keywords: Clustering, classification, W -k-means, k-NN .

1 Introduction

Classification is a basic task in data mining. As complexity of data increases, the
existing techniques for classification face a lot of challenges, for instance, solving
the Grand Challenge data mining problems proposed in the recent KDD Panel
Report [1]. Therefore, new techniques need to be innovated to deal with large,
high dimensional data with multiple classes. Such data occur in many application
domains such as text mining, multimedia mining and bio-informatics. This paper
proposes an Automatic Decision Cluster Classifier (ADCC) that is designed to
achieve that goal.

Clustering methods have been applied to supervised classification problems
[2,3]. Several clustering-based classification techniques have been explored. An
early example of using the k-means clustering method to build a cluster tree
classification model was given in [4]. In this work, a binary cluster tree was
built by interactively executing the k-means clustering algorithm. At each node,
a further partition was determined by the percentage of the dominant class

W. Wobcke and M. Zhang (Eds.): AI 2008, LNAI 5360, pp. 337–347, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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in the cluster node. However, only small numeric data could be classified and
every time only two sub-clusters are formed. In 2000, Huang et al. proposed
a new interactive approach to build a decision cluster classification model [5].
In this approach, the k-prototypes clustering algorithm was used to partition
the training data, and a visual cluster validation method [6] was adopted to
verify the partitioning result at each cluster node. The above two interactive
methods are not adequate for high dimensional data with noise because the
clustering algorithms used are not able to handle noisy attributes and it is too
time consuming to involve human judgment.

In this paper, we propose to use the variable weighting k-means (W -k-means)
algorithm [7] to build cluster-based classification models automatically. Because
W -k-means is able to reduce the impact of noisy attributes by assigning smaller
weights to them in clustering, it implicitly performs attribute selection in the
clustering process. Meanwhile, the weight information can also be used in clas-
sification. As such, W -k-means is more suitable for high dimensional data with
noisy attributes. Another improvement from the previous methods is that in
the tree growing process we use Anderson-Darling test to determine whether a
node can be further partitioned or not. In this way, distribution of the train-
ing samples at each node is considered together with the percentage of the
dominant class used in the previous methods. Anderson-Darling test replaces
the visual cluster validation method as in [5] so the tree building process is
automated.

A series of experiments on both synthetic and real data sets were conducted to
demonstrate the efficiency and accuracy of the ADCC method. Compared with
other classification methods, including k-NN, J48 (a decision tree algorithm) and
SMO (one of SVM algorithms), our experimental results have shown that the
ADCC method has performed better than other methods in both classification
accuracy and scalability on large high dimensional sparse data sets. Thus the
results demonstrate that the ADCC method is more suitable for large, high
dimensional data with many classes.

The rest of this paper is organized as follows. In Section 2, we introduce the
decision cluster classification model and an algorithm to build such model. In
Section 3, experimental results and comparisons are reported. In Section 4, we
conclude this paper.

2 An Automatic Decision Cluster Classification Method

In this section, we present the DCC model and the ADCC method for building
a cluster tree, selecting a model and using the model for classification.

2.1 Definitions

The following is the proposition of the DCC model. Given a training data set,
objects in the same class tend to be spatially close in the data space. Objects
in the same cluster generated from the training data by a clustering algorithm
have similar behaviors or properties and tend to be in the same class [5].
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Let X = x1, x2, ..., xn be a training data set of n classified objects, each de-
scribed by m attributes and labeled by one of c classes. The following definitions
were modified from [5].

Definition 1. A k-clustering of X is a partition of X into k clusters C1, C2,...,
Ck, which satisfies: Ci = Ø, i = 1, ..., k,

⋃c
i=1 Ci = X , and Ci

⋂
Cj = Ø, i = j ,

i, j = 1, .., k.

Definition 2. The dominant class in a cluster is the class that the majority of
objects are labeled to. A cluster with a dominant class is called a decision cluster.
The percentage of the dominant class in the cluster defines the confidence level
of the decision cluster.

Definition 3. A decision cluster classification (DCC) model consists of (i) a
subset of decision clusters generalized from the whole training data set, and (ii)
a defined distance function.

The distance function is used to compute the distances between an object to
be classified and the centers of decision clusters.

In principle, any subset of decision clusters can form a DCC model. However,
the model performance on classification accuracy depends on the decision clus-
ters generated by the clustering process and selection of the subset. Therefore,
the following two processes are crucial: (1) generation of a set of decision clus-
ters and (2) selection of a subset for the model. Below, we present a method to
generate a set of nested clusters that form a cluster tree for model selection.

2.2 Decision Cluster Tree

For large complex data, a large number of decision clusters need to be generated
from the training data. Considering the varying densities in data distribution,
we propose a recursive process to generate a sequence of nested clusterings to
build a cluster tree for model selection.

Definition 4. A cluster tree is a sequence of clusterings, and for any two levels
p, q with p < q (i.e., level p is higher than level q) and for any cluster Cq−1

j in
level q, there is a cluster Cp−1

i in level p such that Cq−1
j ⊂ Cp−1

i . We say that
the clustering of level q is nested in the clustering of level p.

Figure 1 shows an example of a cluster tree of four levels. Level 0 is the
root T which is the training data set. The root T is partitioned into 3 clusters
C0

1 , C
0
2 , C

0
3 . Here, the superscript indicates the level of the node from which

the clusters are generated and the subscript is the cluster number in this level.
Clusters C0

1 and C0
3 are further partitioned into 2 and 3 sub-clusters respectively,

which form level 2 of the cluster tree. Subsequently, two clusters C1
2 and C1

4 are
further partitioned into three and two sub-clusters respectively, which form level
3 of the cluster tree. This tree can be represented as the following sequence of
nested clusterings

T (C0
1 (C1

1 , C
1
2 (C2

1 , C
2
2 , C

2
3 )), C0

2 , C
0
3 (C1

3 , C
1
4 (C2

4 , C
2
5 ), C1

5 ))
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Fig. 1. Example of a cluster tree

Given a training data T and a clustering algorithm f, a cluster tree can be
generated by recursively calling f to partition the nodes, starting from the root
node. To enable this process automatically, we have to resolve the following
issues: (1) Which clustering algorithm to generate a clustering at each node?
(2) How many clusters to generate at each node? (3) Where to stop at each
path of the tree? In the following, we will discuss the techniques used to solve
these problems and the ADCC algorithm that implements these techniques to
automatically build a cluster tree from a training data set.

The W -k-means [7] algorithm was adopted to build a cluster tree because
it is efficient and able to automatically compute the attribute weights from
the training data to reduce the effect of noisy attributes. The number of sub-
clusters and the initial centers must be specified before executing W -k-means.
The ADCC algorithm uses the function K-Selection(X,α) to return the number
of sub-clusters for current cluster, where X is the current cluster and α is the
threshold (we use 0.1%). K-Selection(X,α) computes the percentage of each
class and returns k as the number of classes with a percentage greater than α.
Then, for each of the k classes, we compute the centers of its samples as its initial
center. This is called supervised selection which, instead of random selection,
is implemented in the ADCC algorithm as function C-Selection(k,X), where k
is the number of sub-clusters generated by K-Selection(X,α).

We use multiple termination conditions: the cluster size, class purity and data
distribution to determine whether a node will be further partitioned or not. We
assume that a good cluster has a normal distribution, so we adopted Anderson-
Darling test [8] to test the data distribution. The algorithm Terminal-Test(X)
for stopping tree growing is given in Table 1.

Table 2 shows the ADCC algorithm to automatically build decision cluster
classification models with the above techniques.

2.3 Model Selection and Classification

After a decision cluster tree is built, any subset of disjoint decision clusters
makes a DCC model. There are many ways to select a classification model from
a decision cluster tree. In this work, we select the leaf nodes of the decision
cluster tree.
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Table 1. Algorithm of Terminal-Test(X)

Input: the node X which contains n objects.

Output: a Boolean value Termi which is either

(i) TRUE which means ”stop” or (ii) FALSE, otherwise.

Remarks:

δ: the threshold of the number of data in X (e.g., 10).

β: the threshold of the frequency of a class in X (e.g., 90%).

λ: the threshold for AD-Test on X.

Begin

1. Termi = FALSE;

2. if (n < δ OR the frequency of the dominant class > β OR AD-Test(X) < λ)

3. Termi = TRUE and label X with the dominant class label;

4. return Termi;

End

The classification model is used to classify new objects as the following: (1)
Define a distance function specific for classification; (2) Compute the distances
between a new object and the centers of the decision clusters in the model; (3)
Identify the decision cluster with the shortest distance to the object. Assign the
label of the decision cluster to the new object as its class.

In this work, we use the weighted Euclidean distance function as follows

d =

√√√√ n∑
i=1

(wi(xi − yi))2 (1)

wherewi is theweight for the i-thattribute.Theweightsarecomputedwhenweclus-
ter the training data by theW -k-means clustering algorithm [7]. Since the weight
distribution is different when we cluster a different node, here we adopt the weight
distribution computed when we cluster the root of the decision cluster tree.

3 Experiments

We implemented the ADCC algorithm in java and conducted a series of exper-
iments on both synthetic and real data sets. We compared the results obtained
by the proposed method with those from other classification methods, including
k-NN , decision tree and SVM. Weka1 implementations of these algorithms were
used in our comparisons. All experiments were conducted on an Intel Core 2
Duo CPU, 2.33 GHz computer with a 2GB memory.
1 http://www.cs.waikato.ac.nz/�ml/weka/



342 Y. Li et al.

Table 2. ADCC Algorithm

Input: A training data set T (with m dimensions and c classes).

Output: A classification model ADCC-model.

1. initialize a decision cluster tree DCT with root {T};;
2. sign the root as internal node;

3. for each internal node X in DCT

4. if (Terminal-Test(X)) sign X as leaf node;

5. k = K-Selection(X, α);

6. CENTER-ARRAY = C-Selection(k, X); //Compute initial centers

7. run W -k-means on X with k and CENTER-ARRAY ;

8. sign k sub-clusters as internal node;

9. add k sub-clusters into DCT ;

10. end for

11. extract all leaf nodes from DCT as classification model and represent each

node by its center;

3.1 Experiments on Synthetic Data

The purpose of our experiments on synthetic data is to demonstrate and com-
pare the classification performance and efficiency of using two different initial
cluster center selection methods and two different clustering algorithms (the
standard k-means and W -k-means). The results show that our method is ef-
ficient and can reduce the impact of noisy attributes. Then we conducted ex-
periments to test the scalability of ADCC. The detailed results are described
below.

The first synthetic data contains 3400 objects in a 3-dimensional space, and is
categorized in 8 classes. The first two dimensions X, Y contain 8 normally distrib-
uted clusters and the points in each cluster were categorized as the same class.
The third dimension Z is a noisy dimension in which all points are uniformly
distributed. Each of four clusters has 500 objects and each of other four clusters
has 200 objects. 600 noisy points are randomly generated. Figure 2 shows the
data set projected in different combinations of two-dimensions. We can observe
the impact of the noisy dimension Z in Figure 2(b) and (c).

In this synthetic data set, we first tested two initial cluster center selection
methods: random selection and supervised selection. Table 3 shows the results
measured with Recall, Precision and F-Measure. We can see that except for the
precision of class C2, all results produced with the supervised selection were
better than the random selection. Secondly, we compared the standard k-means
and W -k-means algorithms on this synthetic data set. The classification model
from the standard k-means algorithm used Euclidean distance to classify new
objects whereas the model from the W -k-means algorithm used the weighted
Euclidean distance. The comparison results are shown in Table 4. We can see
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(a) X,Y (b) X,Z (c) Y ,Z

Fig. 2. Projection of the data set on different subspaces

Table 3. Classification results from random selection and supervised selection of initial
cluster centers (R for random selection, P for supervised selection)

C1 C2 C3 C4 C5 C6 C7 C8

Recall R 0.907 0.71 0.831 0.719 0.714 0.877 0.818 0.883

P 0.941 1 0.926 1 1 1 1 0.982

Precision R 0.77 0.875 0.817 0.908 0.733 0.841 0.875 0.883

P 1 0.786 1 0.941 0.875 1 0.985 1

F-Measure R 0.833 0.784 0.824 0.802 0.724 0.859 0.846 0.883

P 0.97 0.88 0.962 0.97 0.933 1 0.979 0.991

Table 4. Impact of variable weighting on classification accuracy

C1 C2 C3 C4 C5 C6 C7 C8

Recall k-means 0.938 0.53 0.909 0.65 0.744 0.987 0.762 0.823

W -k-means 0.968 0.579 0.968 0.69 0.733 0.989 1 0.957

Precision k-means 0.997 0.469 0.998 0.577 0.512 0.993 0.826 0.923

W -k-means 1 0.527 1 0.663 0.753 1 0.824 1

F-Measure k-means 0.967 0.498 0.952 0.611 0.607 0.99 0.793 0.87

W -k-means 0.984 0.552 0.984 0.667 0.743 0.955 0.903 0.978

that W -k-means with variable weighting performed better in most classes. With
cross validation, the total average accuracy was 85.46% for k-means and 90.82%
for W -k-means.

These results have shown that supervised selection for initial centers and
W -k-means were indeed more effective than random selection and k-means in
producing better classification models.

To test the scalability of ADCC, we generated two groups of synthetic data
sets with different numbers of dimensions and instances (shown in Table 5). Each
data set contains three clusters randomly generated with normal distributions.
In each run, we used 70% of data as training data and the remaining 30% as
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Table 5. Two groups of synthetic data sets (each having three classes)

Data sets Dimensions Instances Data sets Dimensions Instances

A1 5 5,000 B1 4 3,000

A2 20 5,000 B2 4 9,000

A3 50 5,000 B3 4 15,000

A4 100 5,000 B4 4 30,000

A5 200 5,000 B5 4 45,000

A6 300 5,000 B6 4 60,000

A7 400 5,000 B7 4 75,000

A8 500 5,000 B8 4 90,000

(a) Execution time vs data size (b) Execution time vs dimension number

Fig. 3. Scalability comparison between ADCC and k-NN

test data. For each data set, we recorded the total execution time. We also ran
the basic k-NN algorithm on these data sets.

Figure 3(a) shows the execution time against the number of instances and
Figure 3(b) shows the execution time against the number of dimensions. We
can see that the execution time increased linearly for ADCC whereas the execu-
tion time for k-NN increased rapidly when the number of instances approached
75000. Although the execution time for k-NN increased linearly as the number of
dimensions increased, the increase in speed was much faster than ADCC. Mean-
while, the execution time for ADCC and decision tree (J48) are comparable.
Therefore, ADCC is scalable on large data set.

3.2 Experiment on Real Data

We compared ADCC with other well-known classification algorithms on five real
data sets. Waveform, Reuters, Sub1 and Sub2 were taken from the UCI machine
learning data repository 2. For the Reuters data set, the standard document
2 http://archive.ics.uci.edu/ml/datasets.html
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Table 6. Real data sets

Data set name Instances Dimensions Classes Training testing

Waveform 5000 40 3 3500 1500

Reuters 9980 337 10 6986 2994

Leukemia3 327 12558 7 215 112

Sub1 400 7904 4 280 120

Sub2 299 6570 4 209 90

frequency method was used to select relevant attributes from the original feature
space. Sub1 and Sub2 were built from the 20-Newsgroup data, and the words
in each document were weighted by the standard tf · idf . Leukemia3, which is
related to studies of human cancer, was taken from K-TSP Program Download
Page 3. K-TSP Program includes 10 multi-class gene expression data sets. For
our decision cluster tree model to be more effective, the training samples should
not be too few so that there can be more than a few members in each cluster.
Thus, we select Leukemia3 which has more training samples than other data
sets in K-TSP Program. Table 6 lists the characteristics of these real data sets.

In this experiment, we compare the performance of ADCC with three well-
known classification methods: k-NN , decision tree (J48) and SVM (SMO). For
k-NN , the number of neighbors, k, is equals to 1. We use default parameters for
J48 and SMO in Weka. For J48, the minimum number of instances per leaf is set
as 2. The SMOs are trained with a poly kernel where the complexity parameter
C is set as 1.0. For the Waveform, Reuters, Sub1 and Sub2, we used 70% of data
as training data and 30% as test data. We used the ADCC algorithm to build
the DCC models. When we ran ADCC on Waveform and Reuters, we set the
termination test thresholds as follows δ = 10 (the threshold of the number of
data in a node); β = 90% (the threshold of the frequency of a class in a node); λ
= 500 (the threshold for AD-Test). For Sub1 and Sub2, we set δ = 5 ; β = 90%
; λ = 5. These training data sets are smaller than the first two data sets, so we
choose a smaller δ. In the experiment on Leukemia3, we use the training data set
and test data set originally contained in K-TSP Program. We set the termination
test thresholds as follows δ = 2 ; β = 90% ; λ = 5. From our experiments, the
value of parameter λ is not very critical for the results.

The execution time (in seconds) and classification accuracy generated by the
four classification methods from these real data sets are listed in Table 7. We
recorded the total execution time for ADCC and k-NN , and only the train-
ing time for decision tree and SVM were recorded because Weka only provides
the training time. From this table, we can see that for data set Waveform,
the accuracy of ADCC was higher than those of k-NN and J48 (decision tree
method) and lower than SMO (SVM). ADCC was much faster than k-NN but
slower than the other two. Comparatively, this data set was simpler with fewer

3 http://jshare.johnshopkins.edu
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Table 7. Classification results of two real world data sets by four classification methods

Data sets Waveform Reuters Leukemia3 Sub1 Sub2

Metrics Time Acc. Time Acc. Time Acc. Time Acc. Time Acc.

ADCC 2.516 0.838 74.952 0.6897 16.631 0.9196 13.25 0.775 6 0.7111

k-NN 15.688 0.708 485.625 0.5795 21.094 0.7589 20.109 0.4833 11.219 0.3444

Decision tree 1.2 0.7326 35.23 0.6529 9.53 0.7589 17.75 0.575 9.63 0.6777

SMO 1.94 0.85 392.91 0.6586 24.38 0.8392 35.63 0.7 19.61 0.6555

dimensions and instances and a small number of classes. However, for data set
Reuters which was more complex with more instances and classes, and much
higher dimensions, ADCC outperformed all other algorithms in classification
accuracy. It is much faster than k-NN and SVM, but only slightly slower than
the decision tree implementation. For the data set Leukemia3, Sub1 and Sub2
which have very high dimensions, ADCC outperformed other algorithms obvi-
ously. Therefore, ADCC is more suitable for large, high dimensional data with
many classes and can be used in text mining and bioinformatics.

4 Conclusion

In this paper, we have proposed a new classification framework for using a clus-
tering method to build decision cluster classification models. We have presented
an automatic algorithm ADCC which uses the variable weighting k-means al-
gorithm W -k-means to build a cluster tree from a training data set. ADCC is
an enhancement to the interactive approach presented in [5]. In this automatic
approach, we have proposed solutions to solve three important problems: (1) se-
lection of the number of clusters at each node, (2) selection of the initial cluster
centers, and (3) termination of further clustering at a leaf node.

We have presented experimental results on both synthetic and real world
data sets and compared the performance of ADCC with those of other well-
known classification methods. The comparison results have shown that ADCC
has advantages in classifying large, high dimensional data with multiple classes.
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Abstract. In this paper, we propose a novel spectral clustering algo-
rithm called: Locality Spectral Clustering (Lsc) which assumes that each
data point can be linearly reconstructed from its local neighborhoods.
The Lsc algorithm firstly try to learn a smooth enough manifold struc-
ture on the data manifold and then computes the eigenvectors on the
smooth manifold structure, then as former spectral clustering methods,
we use the eigenvectors to help the k-means algorithm to do cluster-
ing. Experiments have been performed on toy data sets and real world
data sets and have shown that our algorithm can effectively discover the
cluster structure and holds much better clustering accuracy than former
methods. It is also worth noting that our algorithm is also much more
stable in parameter than former spectral clustering methods.

1 Introduction

In recent years, clustering methods are becoming more and more important. A
new kind of clustering methods called the spectral clustering methods have been
proposed recently. The spectral clustering methods have one advantage that it
do not require to estimate an explicit model of data distribution [6]. It uses a
spectral analysis of the matrix of the data instances. The spectral methods was
first proposed in [2,3,4,5].

Although the spectral clustering methods have many advantages, they still
have many drawbacks to be addressed. As pointed in [6], one problem in spectral
clustering methods is that it is very difficult to estimate the parameter σ in the
algorithm [6]. In many spectral clustering methods [2,3,4], they all firstly define
a k-nearest neighbor graphW which the edge weight eij (i.e. the edge links data
xi and xj) of W is calculate by the Heat kernel: eij = exp(−‖xi − xj‖2/(2σ2)).
However in the Heat kernel, the bandwidth σ of the Gaussian Function will
affect the clustering results significantly. It is very difficult to estimate a good
parameter σ for clustering tasks when there are no labeled examples.

Many former works have been proposed to deal with the above problem. [4]
proposed a method which tries to choose a exact σ by running the clustering
algorithm for a number of times and select the best parameter which provides
the least distorted clusters of the normalized eigenvectors, however the method
significantly increases the computational time. [6] proposed a simple method
which use a local scale to compute the affinity between each pair of points. All
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these above methods only focus on how to choose a good σ to the spectral
clustering algorithms but in this paper, we present a novel method which does
not need the parameter σ.

In this paper we propose a novel spectral clustering algorithm called Locality
Spectral Clustering (Lsc). The idea of Lsc is that we assume in real worlds
data set, the nearby points are likely to belong to the same class and the data
points on the same data structure (i.e. a cluster or a manifold) may belong to the
same class [8,15]. So that in this paper, we can apply a manifold based approach
to construct the graph for spectral clustering tasks [10,13]. We firstly try to
learn a smooth enough data manifold on the original data and then analyze the
eigenvectors on the smooth manifold structure. Then the eigenvectors can be
used to help the classical k-means algorithm to do clustering. The method used
to learn the smooth graph W in this paper was firstly proposed in [7] which use
the graph to do semi-supervised classification.

The rest of this paper is organized as follows: Section 2 will described our
Locality Spectral Clustering (Lsc) algorithm in detail. The experimental re-
sults and discussion of the toy data sets and real world data sets are shown in
Section 3. Conclusions are made in Section 4.

2 The Proposed Algorithm

The Lsc algorithm can be separated into three steps: (1) Construct a smooth
enough graphW for spectral clustering, (2) solve the eigenvectors from the graph
W , (3) use the eigenvectors to help k-means to clustering. We will first introduce
how to construct the graph W and then describe the rest steps.

2.1 Locality Graph for Spectral Clustering

The graph was firstly proposed in [7] for semi-supervised classification. We first
introduce some notations: Given a set of data samples X = {x1, . . . , xn} in
Rl represents a set of n data objects. c is the number of clusters we want to
cluster. Construct the neighborhood graph G =< V,E >, where each vertex in
the graph denotes a data instance xi and E is the edge set. The edge eij denotes
the relationship between two data instances xi and xj . The eij used in many
former methods [1,2] is always calculated by:

eij = e
−
∥∥xi − xj

∥∥2

2σ2 (1)

However in [15], it indicates that there is no reliable way to choose the para-
meter σ when there are very few or even there are no labeled examples. Also,
as have shown in our experiments, the parameter σ is very unstable and a small
change will greatly affect the clustering result. Thus we apply a more reliable
and stable way to construct the graph W for spectral clustering. We propose
to use the local linear neighborhood information of each point to construct W .
Hence the objective is to minimize:
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J =
∑

i

∥∥∥xi −
∑

j:xj∈N (xi)

wijxj

∥∥∥2
(2)

where N (xi) denotes all the neighborhoods of xi, and wij is the contribution of
xj to xi. In [7] it constrain

∑
j wij = 1, wij ≥ 0 to guarantee the weights are

nonnegative. Thus the wij are used to measure how similar xj to xi. Then it can
be easily inferred that:

Ji =
∥∥∥xi −

∑
j:xj∈N (xi)

wijxj

∥∥∥2
=
∥∥∥ ∑

j:xj∈N (xi)

wij(xi − xj)
∥∥∥2

=
∑

j,k:xj ,xk∈N (xi)

wijwik(xi − xj)T (xi − xj)

=
∑

j,k:xj ,xk∈N (xi)

wijG
i
jkwik (3)

where Gi
jk denotes the (j, k)-th entry of the local Gram matrix of point xi:

(Gi)j,k = (xi − xj)T (xi − xj). Thus weights of the above objective function can
be solved by the following n standard Quadratic Programming (QP) problem:

min
wij

∑
j,k:xj ,xk∈N (xi)

wijG
i
jkwik

s.t.
∑

j

wij = 1, wij ≥ 0 (4)

Then we can construct the graph for spectral clustering as follows: for each data
point, we set the weights of its neighborhoods as: Wij = wij and Wji = wij .
Then if there are any overlaps, the later weight will overlap the former one thus
we can guarantee the symmetric of the matrix. Then the W can be used as the
weight matrix of G.

2.2 The Locality Spectral Clustering (LSC) Algorithm

Then we can use the classical spectral clustering procedure [4] to do clustering
with the graph W constructed in the first step. With the graph W we can
solve the generalized eigenvectors u1, . . . , uc from the generalized eigen-problem
Lu = λDu with the Normalized Laplacian L = D−1/2WD−1/2. Then we re-
normalize the rows of the eigenvectors and each row of the normalize eigenvectors
are used as a data point in Rc. Then we use the k-means method to cluster
the points (xi)i=1,...,n ∈ X into c clusters. The main Lsc procedure have be
summarized in Table 1.

The main advantage of our Lsc algorithm is that by taking the advantage
of the smooth graph W , Lsc can effectively and correctly discover the under-
lying cluster structure. Furthermore the parameter k in the Lsc algorithm is
very stable and the algorithm always holds much better accuracy than former
methods.
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Table 1. The Lsc Algorithm

Input:
Given a set of data points X = {x1, . . . , xn} in Rl

Parameter:
k: The number of nearest neighbors
c: The number of clusters want to cluster

Procedure:
1. Construct the graph W according to Eq. 5 by solving Eq.4.
2. D is defined to be a diagonal matrix Dii =

�n
j=1 Wij and construct

the Normalized Laplacian L = D−1/2WD−1/2.
3. Solve the first c generalized eigenvectors u1, . . . , uc of the eigen-problem:

Lu = λDu and form a matrix U = [u1, . . . , uc] ∈ Rn×c

4. Re-normalize the rows of U that Tij = Uij/(
�

j U2
ij)

1/2 to get the unit
length yielding T .

5. Each row of T is viewed as a data point and cluster the points
(xi)i=1,...,n with the k-means algorithm into c clusters.

3 Experiments

In this section, we will report our results on some toy data sets and the real
worlds image data sets (Corel) and then give some discussion. We first report
the results on the toy data sets and then we will report the results on the Corel

data set. In the experiments we use the Normalized Mutual Information (NMI )
[12] to evaluate the results of clustering.

3.1 Results on Toy Data Set

In this experiment, we tested our algorithm with some typical toy data sets. The
results are summarized in Fig. 1. The odd rows are results by Ng-Jordan-Weiss
(NJW) Algorithm [4] and the even rows are results by our Lsc algorithm. We
increase the parameter σ of the NJW algorithm from 0.1 to 10 respectively and
increase the parameter k of our Lsc algorithm from 5 to 25 respectively. It is
clear in the figures that our Lsc algorithm is by far the better than the NJW
algorithm. Our algorithm is very stable with the parameter k and always holds
very good clustering results but the NJW algorithm is sensible to the parameter
σ and it is very difficult to tune the parameter σ for NJW to achieve a good
result. We can see clearly that Lsc can correctly discover the underlying cluster
structure.

3.2 Results on the Corel Data Set

We use the Corel image data set to evaluate our algorithm. In the experiments,
we combine 64 dimensional color histogram and 64 dimensional Color Texture
Moment (CTM [11]) to represent the images. More information about the data
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NJW s=0.1
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LSCk=20

NJW s=10

LSCk=25

NJW s=0.1

LSCk=5

NJW s=0.2

LSCk=10

NJW s=0.6

LSCk=15
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LSCk=20
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LSCk=25
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LSCk=5
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NJW s=0.6

LSCk=15

NJW s=1

LSCk=20

NJW s=10

LSCk=25

Fig. 1. Results on the toy data sets. The odd rows are results from the NJW algorithm
and the even rows are results from our Lsc algorithm. For the NJW algorithm, we
increase the parameter σ(s) from 0.1 to 10 respectively and for Lsc algorithm, we
increase the parameter k from 5 to 25 respectively. From which we can see that the
NJW algorithm us very sensible with the σ. The results also indicate that our algorithm
is very stable with the parameter k and holds better accuracy.
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Fig. 2. The clustering results on the Corel data set

set can be find in [11]. From which 2 to 10 classes among 79 categories of color
images were selected, where each class consists 100 images. We use the 1-2 class,
1-3 class, 1-4 class, 1-5 class, 1-6 class and 1-10 class to construct six data sets
with different cluster numbers (2, 3, 4, 5, 6, 10) respectively. The results have
been summarized in Fig. 2. The left sub-figure reports the results by the NJW
and the right sub-figure reports the results by the Lsc and Self-Tuning.The
vertical axis of both sub-figures are set to the same for comparison.

In the experiments, he horizontal axis for the Lsc and Self-Tuning algorithm
the horizontal axis represents the parameter k from 2 to 30 1 and for the NJW
algorithm it represents the different parameter σ from 0.1 to 20. The vertical
axis in all figures represents the NMI. In the experiments, it is clear that our
Lsc algorithm is by far the better than other algorithms. Our algorithm is very
stable with the parameter k and always holds very good clustering results, but
the NJW algorithm is very sensible to the parameter σ. It is very difficult to

1 Here the k are start from 2 since the parameter 1 is too small for a connected graph.
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optimize a good σ for NJW. Although Self-Turning is stable with parameter k,
but it is not as good as Lsc in clustering accuracy.

4 Conclusions

In this paper, we propose a novel spectral clustering algorithm called: Locality
Spectral Clustering (Lsc). The Lsc algorithm firstly learn a smooth manifold
structure on the data manifold and then computes the eigenvectors on the man-
ifold, then the Lsc algorithm use the solved eigenvectors to help the k-means
algorithm to do clustering. Experiments have been performed on toy data sets
and real world data sets and have shown that our algorithm is much better than
former methods in accuracy and parameter stability.
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Abstract. Nearest Neighbour Search (NNS) is one of the top ten data
mining algorithms. It is simple and effective but has a time complex-
ity that is the product of the number of instances and the number of
dimensions. When the number of dimensions is greater than two there
are no known solutions that can guarantee a sublinear retrieval time.
This paper describes and evaluates two ways to make NNS efficient for
datasets that are arbitrarily large in the number of instances and dimen-
sions. The methods are best described as heuristic as they are neither
exact nor approximate. Both stem from recent developments in the field
of data stream classification. The first uses Hoeffding Trees, an extension
of decision trees to streams and the second is a direct stream extension
of NNS. The methods are evaluated in terms of their accuracy and the
time taken to find the neighbours. Results show that the methods are
competitive with NNS in terms of accuracy but significantly faster.

1 Introduction

The k-nearest neighbour search (kNN) algorithm is a very simple and effective
algorithm. Unlike other classification algorithms it performs two roles simulta-
neously. First, given a test example it returns a classification or class probability
distribution. Second, it returns the k-nearest neighbours to that example from
its training set. Due to its widespread use in a number of fields, it has been
ranked among the top ten most important algorithms in data mining [4].

The simplest way to find k-nearest neighbours is to memorize the entire train-
ing dataset and then given a test instance, linearly scan through the training
dataset, using a distance function such as Euclidean distance to find a group of
k instances in the training dataset which have the shortest distances to the test
instance. The prediction for the test instance’s class is simply the majority class
of this group of training instances. The total time taken for classification and
retrieval using this simple linear model of NNS is proportional to the product of
the number of instances in both the training and testing sets with the number of
dimensions (d), which causes the classification to become very slow, especially
for large datasets with high dimensionality.
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Appropriate data structures can be used to improve the performance of the ba-
sic algorithm, for example, KD-Trees, Metric-Trees, and Cover-Trees. Their per-
formance for NNS has recently been compared empiricially by Kibriya and Frank
[2]. They found that all these methods suffer from the the curse-of-dimensionality
for d > 16, where their performance becomes worse than the brute force method.

Linear NNS is often referred to as an exact method. A variation of NNS
permits the discovery of ε-approximate NN allowing an extra tolerance in the
matches found. In this paper we adopt yet another variation which could be
termed heuristic, in that we return neither exact nor ε-approximate nearest
neighbours. Our neighbours perform at least as well as their exact counterparts
in terms of accuracy but may be further away, on average, from the test instances.

This paper presents two heuristic methods to scale up NNS for independent
and identically distributed datasets (iid) of large size and large dimensionality.
Both stem from recent developments in the field of data stream classification.
The first uses Hoeffding Trees, an extension of decision trees to streams and the
second is a direct stream extension of NNS. The next section describes these
two methods in detail. Section 3 presents an empirical evaluation against linear
NNS. Section 4 concludes.

2 Speeding Up Nearest Neighbour Search

The demands of data stream processing have led to the development of a series
of algorithms by Domingos and Hutlen based around the use of Hoeffding bounds
[1]. The Hoeffding bound states that with probability 1 − δ, the true mean of
a random variable of range R will not differ from the estimated mean after n
independent observations by more than:

ε =

√
R2 ln(1/δ)

2n
(1)

When building a classification data structure for a stream the bound can be used
to make major decisions because the bound guarantees that the decision made
at some time during data processing will not be significantly different from the
one that would be made at the end, as long as the data is iid.

2.1 Using a Hoeffding Tree for Nearest Neighbour Search
(HT-kNN)

As with other decision trees, Hoeffding Trees (HT) split on the attribute which
has the highest information gain. The only difference is that Hoeffding trees use
the Hoeffding Bound to decide when to split. The range R for the information
gain is the base 2 logarithm of the number of possible class labels, and 1 − δ
is the user-defined confidence associated with the bound. With R and δ fixed,
the only factor for the Hoeffding bound (ε) is the number of observations (n).
Periodically, the information gain for each candidate’s attributes is computed.
If the difference in information gain for the top two attributes is more than ε,
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then the tree is split on the attribute with the highest information gain [3]. This
process continues until all the data has been observed. It is possible to then
retrain the model by passing the training data through the tree again, several
times in fact. This can lead to further structure being added, and consequently
a more accurate tree may be formed.

A Hoeffding tree was built using the training data (data can be passed through
the classifier one or multiple times by a user-defined number of passes, in this
paper we only report results for a single pass). When training is finished, all the
training instance indices were recorded as belonging to a particular leaf of the
tree. Then for each test instance, we find the leaf it belongs to and we use linear
NNS to find the k-nearest neighbours from the training data (we tried k equal
to 20, 50, and 100) at each leaf. Thus, HT is used as a heuristic index structure
to the training data in the same way that KD-Trees are used for exact NNS.

The Hoeffding Tree is being used as a preliminary lightweight data structure
for kNN, reducing both the storage and time complexity of the operation. The
efficacy of this method, rests on the ability of HT to divide similar instances into
the leaves of the tree.

2.2 Using the Hoeffding Bound for Nearest Neighbour Search
(HB-kNN)

Having established that the HT is a good structure for kNN, it seems natural to
directly apply the bound to kNN using the methodology advocated in [1]. It is
not at all obvious how to do this for a nearest neighbour algorithm because, as
previously stated, it performs two roles simultaneously. The algorithm outlined
below focusses on the predictive performance of the classifier not on the goodness
of the nearest neighbours.

The algorithm for computing kNN using a Hoeffding bound is shown in
Table 1. The basic idea is to incrementally compute the average class distri-
bution (ACD) and use this as the basis for stopping the search. This occurs
when the difference in probability for the most likely class and the next most
likely class of the ACD is bigger than the Hoeffding bound. The intuition is that
the difference in these probabilities will not change further irrespective of the
amount of data we continue to process. While the ACD does not have a direct
influence on the nearest neighbours it enables a representative set of training
instances to be considered for inclusion in the nearest neighbour set. If the class
distribution of the nearest neighbours is used to guide the search then it might
exit immediately with the first k training instances, as these could easily contain
a majority class by chance.

As with the Hoeffding tree, we do not need to check the stopping criterion
after each training instance, rather it can be checked periodically using the user
supplied grace period ∆n. Finally, note that we use the probabilities of the
classes rather than their counts. This is because we can then set the range in
the HB calculation to one and this simplifies the computation for ε. Note that
the method returns the k nearest neighbours from which the test instance’s class
value can be estimated by majority vote.
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Table 1. The Hoeffding bound k Nearest Neighbour search algorithm

Given: Tr An iid training set.
Te A test instance
k Number of nearest neighbours
∆n Grace period
ACD Average class distribution

Procedure HBkNNSearch(Tr, Te, k)
Read first k instances from Tr.
Store k instances as the k nearest neighbours (kNN)
Compute class distribution ACD
n = k
For the remainder of instances Xi in Tr

n++.
If Xi ∈ kNN for Te
Update (kNN)

Update (ACD)
Every ∆n

Find p1,p2: prob of the most likely and next most likely classes of ACD
If (p1 − p2) > ε then Break.

Return kNN

Finally, there is a problem with computing the confidence value δ. If we di-
rectly use the formula for ε, we cannot handle 1/ δ after the value for δ is less
than 10−320. If δ is made equal to 10−x then it can be shown that the term
under the square root in Equation 1 is proportional to x, and therefore δ can be
made arbitrarily small by increasing the value of x.

3 Experimental Evaluation

We compared linear kNN, Hoeffding Trees with our implemented HT-kNN, and
HB-kNN on large synthetic multi-dimensional datasets and real-world datasets
from the UCI repository. All the experiments were carried out on machines with
the same settings and memory limit. We used 20 nearest neighbours for all the
experiments (experiments for 50 and 100 were conducted but are not reported,
we comment on these later), and a default Grace period ∆n = 200.

3.1 Datasets for Experiments

The datasets we used are listed in Table 2 below. Each of the datasets has one
million instances. We randomized the datasets and split each of them into train-
ing and testing datasets. Note that it is not feasible to perform cross-validation
evaluation with the linear kNN, hence the use of train-test splits. The split ratios
of the datasets vary because they were calculated so that the running time of
linear kNN for 20 nearest neighbours was about 10 hours (the actual times can
be seen in Table 3, most are close to 600 minutes).
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Table 2. The datasets used for the experiments

Name Generator Attributes Training/test
examples

RTS Simple random tree 10 nominal,10 numeric 909090/
90910

RTC Simple random tree 50 nominal, 50 numeric 978260/
21740

RRBFS Random radial basis Refers to a simple random 800000/
function (RBF) RBF dataset 100 centers 200000

and 10 attributes
RRBFC Random radial basis Refers to a complex random 923076/

function RBF dataset 1000 centers 76924
and 50 attributes

WAVE21 Waveform 21 numeric attributes, all 941176/
include noise 58824

WAVE40 Waveform As above with an additional 19 irrelevant 977777/
attributes 22223

3.2 Comparison of kNN with HT, and HT-kNN

Table 3 below shows the accuracy and time usage for kNN, HT, and HT-kNN
when k is set to 20, and δ = 10−7. The HT classifier does not return k nearest
neighbours, it is used here simply to demonstrate that it can achieve a fast
(the average speed was more than 90 times faster) and accurate (the average
accuracies are similar, 83.2% for linear kNN and 82.9% for HT) division of data.
The algorithm HT-kNN is a good compromise in that it is approximately 33
times faster than linear kNN on average and more accurate (83.2% for linear kNN
against 87.6% for HT-kNN). These results are somewhat biased by the first two
datasets where HT solutions should perform well. These datasets were generated
by a Random Tree Generator, which should favour the decision tree learner.
We can see that except for the first two datasets the nearest neighbour search
always has a higher accuracy than the HT classifier. However, applying nearest
neighbour to the leaves narrows the gap. In fact, the gap can be closed entirely
if cross-validation is used to discover the best number of nearest neighbours to
use at each leaf (rather than a fixed number). This is shown in the final column,
overall using cross-validation increases accuracy (to 88.3% on average) but takes
away much of the time advantages afforded by the tree (HT-cross validated is
only three times quicker than linear kNN). Of course, if we had 100 times more
test instances the speedup could still be a lot more than threefold, this factor is
only true for the specific train/test setup we use here. Although results are not
presented, the pattern is similar for k equal to 50 and 100.

3.3 Comparison of kNN with HB-kNN

HB-kNN can always attain the same accuracy as kNN as long as the δ value is
small enough. As the threshold is adjusted (i.e. the value of x is increased to
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Table 3. Classification rate and time cost for kNN and HT with kNN

Dataset 20 NN HT HT- 20NN HT-cross validation
Accuracy / Accuracy /
Time Time

RTS 81.91 97.64 97.99 98.00
575m54.67s 7m39.96s 23m47.73s 152m14.95s

RTC 53.55 69.22 69.05 69.88
596m6.10s 3m28.24s 6m1.53s 121m30.52s

RRBFS 94.35 85.88 92.23 92.63
593m49.82s 15m27.38s 20m43.85s 109m21.21s

RRBFC 99.99 86.88 97.99 99.50
632m16.72s 5m57.32s 20m28.95s 169m13.00s

WAVE21 85.35 78.94 84.53 85.06
602m50.74s 6m45.10s 24m22.07s 266m56.04s

WAVE40 84.58 78.90 83.60 84.40
565m17.83s 3m59.54s 15m10.17s 446m35.53s

Table 4. Classification rate and time for kNN and HB-kNN

Dataset Accuracy δ value Time for kNN Time for
HB-kNN

RTS 81.91 10−5000 575m54.66s 110m6.91s
RTC 53.55 10−100 596m6.10s 11m44.03s
RRBFS 94.35 10−25000 593m49.82s 94m12.32s
RRBFC 99.99 10−15000 632m16.72s 91m54.96s
WAVE21 85.35 10−100 602m50.74s 3m59.40s
WAVE40 84.58 10−200 565m17.83s 3m22.43s

make δ smaller), the accuracies get closer and closer to the performance of linear
kNN. Of course, this means we need to go through more and more instances in
the training set, and this means more time to classify the data.

Table 4 shows the baseline accuracy for linear kNN, the δ value for HB-
kNN, and time cost for both kNN and HB-kNN. The time cost for HB-kNN to
achieve the same accuracy has a range from 3 to 110 minutes. This cost is clearly
problem dependent. For example, RRBFS and RRBFC generate a fixed number
of random centroids with random positions, standard deviations, class labels and
weights assuming a Gaussian distribution. When a new example is generated, it
randomly selects a centroid, taking weights into account, and the label for this
example will be the same as the centroid. This creates a normally distributed
hypersphere surrounding each central point with varying densities. Therefore,
when we use HB-kNN, we read in 200 (the grace period) iid samples each time
from the training set and find the 20 nearest neighbours. When the first 200
training instances come in, they could belong to any hypersphere. So when the
classification is done it could easily misclassify the test instance. When the next
200 instances come in, it increases the chance of the test instance being classified
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correctly, because the training instances which belong to the same hypersphere
will have shorter distances, so they will be added to the nearest neighbours
to replace the ones which come from another hypersphere. As we know that
the training dataset is iid, there is likely to be a roughly equal probability of
reading training instances from each hypersphere. Thus, we need a very small δ
value, i.e. to see a very large amount of training instances to achieve the baseline
accuracy.

4 Conclusions

This paper introduced HT-kNN, HT-cross validation, and HB-kNN methods to
allow kNN to be applied to datasets with high dimensions. Of these methods,
HT-kNN is the fastest, on average it is 90 times quicker than linear kNN. Using
cross validation to select the number of nearest neighbours to use at each leaf
improves accuracy slightly but is much slower. The accuracy of these methods
depends heavily on the structure of the dataset. Not surprisingly, HT-kNN and
HT-cross validation have better accuracies on datasets that favour decision trees,
for other datasets accuracies can be equivalent but only if cross validation is used.

When the δ value is small enough, the accuracy of HB-kNN can always match
the linear kNN, and the matching δ depends on the structure of the dataset.
As the δ value decreases (the confidence increases) the average neighbourhood
distance for HB-kNN decreases, at the same time as the similarity increases.
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Abstract. Traditional text classification algorithms are based on a basic
assumption: the training and test data should hold the same distribu-
tion. However, this identical distribution assumption is always violated in
real applications. Due to the distribution of test data from target domain
and the distribution of training data from auxiliary domain are different,
we call this classification problem cross-domain classification. Although
most of the training data are drawn from auxiliary domain, we still can
obtain a few training data drawn from target domain. To solve the cross-
domain classification problem in this situation, we propose a two-stage
algorithm which is based on semi-supervised classification. We firstly uti-
lizes labeled data in target domain to filter the support vectors of the
auxiliary domain, then uses filtered data and labeled data from target
domain to construct a classifier for the target domain. The experimen-
tal evaluation on real-world text classification problems demonstrates
encouraging results and validates our approach.

1 Introduction

One common problem in the information era is the vast amount of unorganized
data. Almost everyday, people deal with data classification, especially document
classification, for example, classifying emails, reports, etc. Document classifica-
tion has been a hot research area for a long time and still have many interesting
topics.

Traditional document classification methods are based on the identical as-
sumption: the training and test sets are drawn from the same distribution. How-
ever, this assumption is often violated in real applications, that is, the two sets
are drawn from related but different distributions. Let’s take anti-spam classifier
for example: given sufficient emails labeled spam or non-spam as training set, we
can train an accurate classifier on the training set. At first, the classifier performs
quite well, but the performance may degrade after several months. The reason
why the classifier cannot classify new emails as accurate as before is that the

W. Wobcke and M. Zhang (Eds.): AI 2008, LNAI 5360, pp. 362–371, 2008.
� Springer-Verlag Berlin Heidelberg 2008



Cross-Domain Knowledge Transfer Using Semi-supervised Classification 363

new emails are intrinsically obey another distribution which is quite different
from the training set. Though the training set is less useful, it is not wise to
discard all the old labeled data. If we label a few data in target domain and use
them to select the useful data in the old training set, and then use both of the
data sets as training set, we may get a better classifier than before.

In this paper, we propose a novel support vector based semi-supervised al-
gorithm to solve this problem. First, we get the support vectors of the training
set drawn from the auxiliary domain. Then, we do semi-supervised classification
on a few labeled data in target domain and the support vectors obtained in the
first step. After getting the predicted labels of the support vectors, we pick the
support vectors which are correctly predicted as high-confident data points of
the training set. At last, we use both the few labeled data from target domain
and the high-confident data points from auxiliary domain to train a classifier for
the unlabeled data in the target domain.

The remainder of the paper is organized as follows. We firstly review the
previous works related to cross-domain text classification in Section 2. Section
3 presents our proposed two-stage algorithm, which is based on filtering sup-
port vectors. The experimental results are shown in Section 4. In Section 5, we
conclude the paper and give out some future works.

2 Related Work

2.1 Transfer Learning

Transfer learning is what happens when we use knowledge learned from one
domain to get knowledge from another domain. It happens in many aspects
of our life even since we were infants. For example, told what is the difference
between an apple and a basketball, a little child can easily tell an pear from
an football. Obviously, knowledge can be transferred between related domains
although there are something different. However, the mechanism behind the
transfer process is still unknown.

Recently, transfer learning has been recognized as an important topic in re-
search areas such as machine learning and data mining. Transfer learning was
originated in multi-task learning whose objective is to discover common knowl-
edge in multiple tasks. Some early works can be found in [1][2][3][4][5]. Ben-
David[6] and Ando[7] have theoretically justified transfer learning in multi-task
learning respectively.

So far, there has been no clear definition of transfer learning. However, the
learning process does exist. Many people published papers in this domain but
with different keywords or task names, such as sample selection bias[8], class
imbalance problem[9], concept or target drift[10].

2.2 Semi-supervised Learning

Traditional supervised machine learning methods have a basic assumption that
the labeled data are sufficient. However, in real applications, it is often difficult
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to get labeled data, while unlabeled data may be much easier to obtain. Semi-
supervised learning addresses this problem by using both labeled and unlabeled
data to train a classifier and predict the labels of the unlabeled data. There are
two main assumptions in semi-supervised learning: smoothness assumption and
cluster assumption. Smoothness assumption means if two points in a high-density
region are close, they should belong to the same class. Cluster assumption means
if points are in the same cluster, they are likely to belong to the same class. See
the latest survey [11] for more details.

Here we focus on semi-supervised classification. Many semi-supervised clas-
sification algorithms have been applied on text collections, including transduc-
tive support vector machines[12], graph-based algorithms[13][14], expectation
maximization[15] and co-training[16], etc.

3 Two-Stage Algorithm for Cross-Domain Text
Classification

Cross-domain text classification is an interesting and open problem. We first give
out the formal definition of cross-domain classification.

In traditional text classification problem, we let X be the instance space,
which means the set of all documents and Y = {+1,−1} be the set of labels. A
classifier is a map function from X to Y . Generally, we train a classifier on the
training set, which is represented by T ⊆ {X ×Y } and then apply it on the test
set S = {xi}, where xi ∈ X , to get the labels of S.

However, in the problem of cross-domain text classification, there are two
types of instance spaces, Xt and Xa. Xt is the target instance space, in which the
documents obey the distribution of target domain; Xa is the auxiliary instance
space, in which the document obeys the distribution of auxiliary domain. The
training data is as well partitioned into two parts, which are target training data
Tt ⊂ Xt and auxiliary training data Ta ⊂ Xa. The test data is denoted by
S = {xi}, where xi ∈ Xt. Usually, the size of Tt is much smaller than that of
Ta, which means |Tt| << |Ta|.

Dai et al. proposed co-clustering based algorithm[17], which build word clus-
ters to bridge the gap between the two domains to handle this problem. They
also transfer Naive Bayes Classifier[18] for this purpose. However they assume
the labeled data in test domain are sufficient in the above two methods. They
proposed a Tradaboost algorithm[19], which extended the Adaboost algorithm,
to get an accurate classifier by iteratively updating the weights of data points
when training a SVM classifier.

To transfer knowledge from auxiliary domain to target domain, we need to
clarify which parts of knowledge learned from auxiliary domain are suitable for
target domain. For this purpose, we make use of a few labeled data drawn from
target domain. More specifically, we call these training data target training data.
However, the quantity of target training data is not sufficient to train a good
classifier. The other set of training data ,whose distribution is different from
target domain, is called auxiliary training data. The quantity of auxiliary data
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is adequate, but classifiers trained from these data cannot classify test data well
due to difference between the two distributions.

Actually, our goal is to find the useful data points in Ta, which can help to
classify data in target domain. As the label sets in both domain are the same, it
is natural to select the data points near the decision surface of Ta as the most
important data points. Support vector machine is justified to select data points
which can maximize the margin between two classes. If all the support vectors
are found, other data points are redundant. However, the decision surface of
target domain and auxiliary domain are different, so we should find a method
to select the effective support vectors in both domains. To solve this problem,
we use Tt to select the effective support vectors of Ta, which are more likely to
be support vectors of target domain documents than others. After the selection,
we can construct a new training set with higher quality.

The details of our algorithm is shown in Algorithm 1:

Algorithm 1. Cross-Domain Classification Algorithm(CDC)
Input: the two labeled data set Tt and Ta, the unlabeled data set S.
output: a classifier
Procedure:
step 1 : train a standard SVM classifier on Ta and get set of support vectors SV in Ta.
step 2 : take SV as unlabeled data and use Tt to do semi-supervised classification and
predict the labels of SV .
step 3 : select the support vectors in SV which are correctly predicted in step 2 as
SV ∗.
step 4 : train a SVM classifier on Tt and SV ∗ to get a classifier.

4 Experiments

In this section, the performance of our algorithm on text classification is shown.
Here we focus on the binary classification, but it is easy to extend the binary
classifier to multi-class classifier.

In the experiments, we use rainbow [20] to preprocess the documents in 20
Newsgroups. After stemming and removing stop words, we eliminate the words
appeared in less than 6 documents. We also cut off the headers of documents
because the categories are presented in the headers.

To implement our algorithm, we use the toolkit of SVM light[21] to get the
support vectors in step 1 and the final classifier in step 4. We also use TSVM[12]
as semi-supervised classifier for step 2.

4.1 Data Preparation

We conduct the experiments on 20 Newsgroups1 data set, which is widely used
for data mining and machine learning research. It contains nearly 20,000 news-
group documents which are grouped into 20 low-level groups and 6 high-level
1 http://people.csail.mit.edu/jrennie/20Newsgroups/
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Table 1. Construction of Data Sets for Cross-Domain Text classification

Data Set Dt Da

comp vs sci comp.sys.ibm.pc.hardware comp.graphics
comp.sys.mac.hardware comp.os.ms-windows.misc
comp.windows.x sci.crypt
sci.med sci.electronics
sci.space

comp vs rec comp.os.ms-windows.misc comp.graphics
comp.windows.x comp.sys.ibm.pc.hardware
rec.autos comp.sys.mac.hardware
rec.sport.baseball rec.motorcycles

rec.sport.hockey
comp vs talk comp.os.ms-windows.misc comp.graphics

comp.sys.ibm.pc.hardware comp.sys.mac.hardware
talk.politics.guns comp.windows.x
talk.politics.misc talk.politics.mideast

talk.religion.misc
rec vs sci rec.motorcycles rec.autos

rec.sport.hockey rec.sport.baseball
sci.crypt sci.med
sci.electronics sci.space

rec vs talk rec.sport.baseball rec.motorcycles
rec.sport.hockey rec.autos
talk.politics.mideast talk.politics.guns
talk.religion.misc talk.politics.misc

sci vs talk sci.crypt sci.electronics
sci.space sci.med
talk.politics.guns talk.politics.misc
talk.politics.mideast talk.religion.misc

groups. Here we only use 4 high-level groups, including sci, talk, computer and
rec, to construct cross-domain data sets. Details are provided in the following
subsection.

Cross-domain Data Sets. We construct six different data sets for cross-
domain classification. As we can see from Table 1, the class label of each docu-
ment is determined by the high-level category. So the class labels in both domains
are the same, though the low-level categories are different in different domains.
There are two domains, one is target domain which is represented by Dt, and
the other is auxiliary domain which is represented by Da. Our goal is to classify
the documents in Dt with the knowledge learned from labeled data in the Da.

We get test set S from the target domain and two training sets Tt and Ta

from Dt and Da respectively.

Difference between Domains. We use Kullback-Leibler (K-L) divergence[22]
to measure the difference between distributions of target domain and auxiliary
domain.



Cross-Domain Knowledge Transfer Using Semi-supervised Classification 367

Table 2. Description of Cross-Domain Data

Data Set |S| |Tt| |Ta| K-L( Tt) K-L( Ta)
rec vs talk 1406 2120 2183 0.425 1.386
comp vs sci 1936 2923 2343 0.424 1.370
rec vs sci 1576 2366 2360 0.474 1.185
sci vs talk 1515 2293 2010 0.431 1.015

comp vs rec 1559 2347 2914 0.934 0.980
comp vs talk 1450 2172 2669 0.884 0.967

The K-L divergence between two probability mass functions p(x) and q(x) is
defined by Equation 1.

K-L(p||q) =
∑

x

p(x) log
p(x)
q(x)

(1)

So the K-L divergence between the two text domains (target domain Dt and
auxiliary domain Da)is defined by Equation 2.

K-L(Dt||Da) =
∑
w

Pr(w|Dt) log
Pr(w|Dt)
Pr(w|Da)

(2)

In Equation 2, Pr(w|Dt) and Pr(w|Da) represents the probability of occur-
rence of word w in Dt and Da respectively. Let occ(w,Di)(i = {t, a}) be the
occurrence count of word w in domain Di, Pr(w|Dt) and Pr(w|Da) can be com-
puted by Equation 3 and Equation 4. We use laplace smoothing technique in
Equation 3 and Equation 4, in which |Wi|(i = {t, a}) stands for the vocabulary
size of Di(i = {t, a}).

Pr(w|Dt) =
1 + occ(w,Dt)

|Wp| +
∑

w occ(w,Dt)
(3)

Pr(w|Da) =
1 + occ(w,Da)

|Wa| +
∑

w occ(w,Da)
(4)

Table 2 gives the description of the data sets we used. The columns 2-4 are the
documents count of test set S, training set from target domain Tt and training set
from auxiliary domain Ta. the last two columns are the K-L divergence between
S and Tt, and K-L divergence between S and Ta.

Table 3 shows the comparison of error rate of normal SVM classifiers trained
on target domain and auxiliary domain and tested on target domain. Obviously,
the classifier trained on Ta has much poorer accuracy than the classifier trained
on Tt.

4.2 Experimental Results

To validate the effectiveness of our algorithm, we conducted three groups of
experiments which are presented in details in the following subsections.
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Table 3. Error Rate of Classifier Trained on Target and Auxiliary Domain

Tt Ta

rec vs talk 0.013 0.336
comp vs sci 0.029 0.267
rec vs sci 0.025 0.176
sci vs talk 0.029 0.211

comp vs rec 0.023 0.108
comp vs talk 0.018 0.037

Table 4. Performance of different training sets, |Tt| = 20 |Ta| = 2000

Data Set Tt Ta Tt + Ta Tt + SV Tt + SV ∗ Error Rate Reduction
rec vs talk 0.2910 0.3830 0.3178 0.3171 0.2774 0.1271
comp vs sci 0.4239 0.2657 0.2534 0.2530 0.1933 0.2372
rec vs sci 0.3349 0.1811 0.1634 0.1638 0.1518 0.0710
sci vs talk 0.4401 0.2116 0.1917 0.1905 0.1688 0.1195

comp vs rec 0.2992 0.0769 0.0716 0.0718 0.0663 0.0740
comp vs talk 0.3938 0.0305 0.0296 0.0296 0.0321 -0.0845

Performance on Training Sets. First of all, we compare the error rates of
classifiers trained from different training sets, including training set from tar-
get domain(Tt), training set from auxiliary domain(Ta), training set from both
domains(Tt + Ta), training set from target domain and support vectors of Ta

(Tt + SV ), training set from target domain and filtered support vectors of Ta

(Tt + SV ∗).
In the experiments, we randomly select 20 documents from target domain as Tt

and 2000 documents from auxiliary domain as Ta. We conduct each experiments
10 times and present average values.

As we can see from Table 4, the error rate of SVM classifier trained on Tt+SV ∗

is much lower than that of other training sets. The last column shows the error
rate reduction of Tt + SV ∗ to Tt + Ta. According to the decrease of the value of
K-L divergence, which means the target domain and auxiliary domain are more
and more similar, the reduction is decreasing. Note that the error rate of Tt +Ta

and Tt + SV are almost the same in every data set, which means that support
vectors are really the most important data points to the classification task.

Size Reduction. In this subsection, we compare the size of Ta, SV and SV ∗.
All of the numbers are the averages of 10 experiments. As we can see from Table
5 about 30% support vectors in SV and 70% data points in Ta are discarded by
our algorithm. This result proved that many data points in Ta are useless for the
classification of documents in target domain. We should note that in data sets
”comp vs rec” and ”comp vs talk”, only 15% support vectors are filtered out.
That is because in these two data sets, the target domain and auxiliary domain
are much similar than other cases and semi-supervised classification would do
less help.
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Table 5. Size Reduction of Training Sets

Data Set |Ta| |SV | |SV ∗| 1-|SV ∗|/|SV | 1-|SV ∗|/|Ta|
rec vs talk 2000 1017.3 747.6 0.2651 0.6262
comp vs sci 2000 1096.6 728.1 0.3360 0.6360
rec vs sci 2000 1104.9 714 0.3538 0.6430
sci vs talk 2000 1101.9 713.4 0.3526 0.6433

comp vs rec 2000 961.8 804.1 0.1640 0.5980
comp vs talk 2000 959.2 839 0.1253 0.5805

Table 6. Performance of Classifiers Trained on different size of Tt

|Tt|/|Ta| Tt Tt + Ta Tt + SV Tt + SV ∗ Error Rate Reduction
1% 0.2910 0.3178 0.3171 0.2774 0.1271
2% 0.2526 0.2201 0.2181 0.1698 0.2285
3% 0.1293 0.1704 0.1676 0.1189 0.3022
4% 0.0682 0.1326 0.1294 0.0912 0.3122
5% 0.0816 0.1042 0.1021 0.0781 0.2505
6% 0.0598 0.0890 0.0872 0.0690 0.2247
7% 0.0423 0.0743 0.0735 0.0580 0.2194
8% 0.0418 0.0693 0.0679 0.0544 0.2150
9% 0.0332 0.0622 0.0600 0.0513 0.1752
10% 0.0339 0.0546 0.0541 0.0469 0.1410

Target Training Sets with Different Size. In the last experiment, we com-
pare the error rates of classifiers when the size of Tt varies. We use ”rec vs talk
” for comparison, because this data set has the largest value of K-L divergence.
There are 2000 documents in Ta, and the size of Tt varies from 20 to 200. The
average values of 10 experiments are shown in Table 6.

The last column shows the reduction of error rates between Tt+SV ∗ and Tt +
Ta. We can see that the error rate reduction first increases and then decreases.
Because when the size of Tt is too small to train a classifier, it is not suitable
to filter SV , get SV ∗ from auxiliary domain and then get enough data to train
a classifier. However, when the size of Tt is so large that it is enough to train a
classifier, SV ∗ from auxiliary domain may helps little. So our algorithm can be
applied in situations with rather few labeled data in target domain.

5 Conclusions

In this paper, we proposed a two-stage cross-domain classification algorithm
which is based on filtering support vectors through semi-supervised classifica-
tion. The basic idea of our algorithm is to select useful data points in auxiliary
domain to construct an additional training set. As we can see from the experi-
mental results, our algorithm showed much lower error rate than directly using
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training data in the auxiliary domain. So in this way, knowledge learned from
the auxiliary domain can be transferred to the target domain. Due to its sim-
plicity and effectiveness, our algorithm can be applied easily and handle large
problems.

Note that in Step 2 of our algorithm, we use Transductive Support Vector
Machines (TSVM) to do semi-supervised classification. TSVM is only one kind
of the popular semi-supervised learning methods and based on low density sep-
aration. In future, we will try other methods such as graph-based algorithms for
semi-supervised classification to see if they can get better performance.
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Abstract. Multiobjective reinforcement learning (MORL) extends RL to prob-
lems with multiple conflicting objectives. This paper argues for designing 
MORL systems to produce a set of solutions approximating the Pareto front, 
and shows that the common MORL technique of scalarisation has fundamental 
limitations when used to find Pareto-optimal policies. The work is supported by 
the presentation of three new MORL benchmarks with known Pareto fronts. 
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1   Introduction 

Most reinforcement learning (RL) algorithms aim to maximise performance on a 
single objective. Many problems naturally fit this model, but there has been growing 
recognition in the optimisation community that many real-world problems exhibit 
multiple objectives [1], and that specialised multiobjective optimisation (MOO) tech-
niques are required for these problems. Recently there has been interest in developing 
RL methods to handle multiobjective tasks. This paper argues that so far most mul-
tiobjective reinforcement learning (MORL) research has failed to capitalise on the 
knowledge in the MOO literature. Specifically this paper discusses the role of Pareto 
dominance within MORL, and examines the limitations of scalarised MORL. 

2   Reviewing Existing Approaches to MORL 

The easiest way to apply RL algorithms to multiobjective problems is to convert the 
problems themselves into single-objective tasks. In single-objective RL the reward is 
scalar, whereas in MORL it is a vector with an element for each objective. So a mul-
tiobjective task can be reduced to a single objective via scalarisation, which applies a 
function to the reward vector to produce a scalar reward. Commonly this is a linear 
weighted sum of the individual rewards [3, 4]. The weights allow the user some con-
trol over the nature of the solution, by placing greater or lesser emphasis on each 
objective. Less frequently a non-linear function tuned to the problem domain may be 
used [2]. In the simplest implementation, rewards are scalarised prior to reaching the 
agent, allowing the learning algorithm to remain unaltered. Alternatively the algo-
rithm may be modified to learn the expected values for each objective, which may 
facilitate re-use of earlier learning when multiple policies are being found [3]. 
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A small number of alternatives to scalarisation have also been proposed. [5]  
assumes a known partial ordering of the objectives, and threshold values which must 
be achieved for objectives (e.g. a robot maintaining a non-zero energy level whilst 
accomplishing some task). This approach has been applied in the specific context of 
risk-sensitive learning [6, 7]. [8, 9] describe MORL algorithms to achieve long-term 
average rewards lying within an externally defined ‘target’ region in objective space. 
These produce non-stationary policies where actions are influenced by the current 
state and by the position of the current average reward relative to the target region. 

These existing MORL systems find single solutions, whereas most MOO systems 
aim to produce a set of solutions which form a range of good compromises between 
the objectives. A ‘good’ compromise is often defined in terms of Pareto dominance. A 
solution dominates another if it is superior on at least one objective, and at least equal 
on all others. They are incomparable if each is superior on at least one objective (see 
Fig 1, which assumes the aim is to maximise each objective’s value). A dominated 
solution is of little value, as the dominating solution is preferable. If all dominated 
solutions are eliminated from the set of all possible solutions, the resulting set is the 
globally optimal set of compromise solutions, known as the Pareto optimal front (see 
Fig 2). Of course finding the true front for any substantial problem is impractical, and 
so the goal is to produce a set of solutions which approximates the true front. 
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Fig. 1. Solutions A and B dominate C; 
solutions A and B are incomparable 
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Fig. 2. Black points form the Pareto front; all grey 
points are dominated by at least one black point 

There are several advantages to producing a set of solutions rather than a single so-
lution. Methods producing a single solution require a priori input from the user about 
the desired nature of that solution (e.g. defining the partial-ordering and thresholds, or 
specifying objective weights). This requires domain knowledge on the part of the 
user, and minor variations may result in significant changes in the solution achieved 
(e.g. a slightly higher threshold for one objective may prevent discovery of a solution 
which provides a significant improvement on all other objectives). Systems which 
produce sets of solutions support a posteriori decisions about the accepted solution, 
which are better informed as they are based on knowledge of the trade-offs available 
as encapsulated by the front. Also the presentation of the front to the user may  
provide better insight into the relationships between the objectives. The primary dis-
advantage of generating multiple solutions is the increased computational cost and, 
for on-line learning, the increased time spent interacting with the environment.  

As noted earlier, most existing MORL systems produce single solutions, but some 
authors have investigated generating multiple solutions. [10] describes a policy-gradient 
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MORL algorithm. A policy derived by applying RL independently to each objective, is 
improved using hill-climbing to follow gradients in the policy space which are non-
negative with regards to all objectives. An approximate front is constructed by perform-
ing repeated searches with different weightings of the gradients. Whilst this approach is 
quite sophisticated, most other work on multiple-solution MORL has relied on the sim-
pler combination of scalarisation and TD methods. [4] used a combination of scalarisa-
tion and Q-learning to approximate the Pareto front for a lake regulation system with 
twin objectives of ensuring water supply and providing flood protection. The front is 
found by repeated runs of the algorithm with varying objective weights. [3] applied 
scalarised RL to tasks where an external source of the objective weights was assumed, 
with periodic changes in these weights. The task of the system was to rapidly adapt to 
the novel weights. The key finding was that performance could be substantially im-
proved by storing and re-using learning from earlier policies. Whilst this work did not 
directly consider approximating the Pareto front, it could be used for that purpose by 
replacing the external weight source with a loop which steps through the scalarisation 
weight space. 

Unfortunately, whilst scalarised MORL is simple, it suffers from a fundamental 
flaw. Any system based on a linear combination of the objectives is incapable of find-
ing solutions which lie in a concave region of the Pareto front [11]. No weights exist 
which allow a point in a concavity to produce a weighted sum higher than that 
achieved by the solutions at either edge of the concavity. As many multiobjective 
problems exhibit non-convex regions, this limitation has significantly reduced interest 
in scalarisation-based methods in the MOO literature [12]. The following sections of 
this paper will examine the significance of this limitation in the context of MORL. 

3   MORL Benchmarks and Scalarisation Performance 

Given the known limitations of scalarisation, why does scalarised MORL continue to 
be used? We argue this arises from the lack of any means for assessing the perform-
ance of a MORL system. MORL research is in its infancy, and no study has yet exam-
ined the performance of different algorithms – in fact no standard benchmarks have 
been established to act as a basis for such a study. In addition, the Pareto fronts were 
not known for the problems to which scalarised MORL has been applied. Known 
fronts can provide a measure of the absolute performance of an MORL system by 
comparing the approximate front produced against the true front. In the absence of 
such known fronts, it is difficult to judge the quality of the solutions produced by a 
learning system. Here we address these issues by presenting three benchmark tasks, 
along with their Pareto fronts. To our knowledge these are the first MORL tasks with 
known fronts. The first problem was designed specifically for this research. The sec-
ond and third problems have been drawn from the single-objective RL literature and 
adapted to create multiobjective tasks. To facilitate future use, full details of the tasks 
and the data-points describing the fronts are available for download from http:// 
uob-community.ballarat.edu.au/~pvamplew/MORL.html. 
 
Deep Sea Treasure. This task consists of a grid of 10 rows and 11 columns (see  
Fig 3). The agent controls a submarine searching for treasure. There are multiple  
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Fig. 3. Deep Sea Treasure: Black cells are the 
sea-floor; grey cells are treasure locations 
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Fig. 4. The Pareto front for the Deep Sea 
Treasure problem 

treasures with varying values. There are two objectives – to minimise the time taken 
to reach treasure, and to maximise the value of the treasure retrieved. This is an epi-
sodic task – each episode starts with the vessel in the top row of the first column, and 
ends when a treasure is reached or after 1000 actions. At each time-step, four actions 
are available to the agent – moving one square to the left, right, up or down. Any 
action which would result in the agent leaving the grid will leave its position un-
changed. The reward received by the agent on each turn is a 2-element vector. The 
first element is a time penalty, which equals -1 on all turns. The second element is 0 
on all turns except when the agent moves into a treasure location, when it is the value 
shown in Fig 3. There are ten non-dominated policies, each of which leads to one of 
the ten treasure locations. The Pareto front of these policies is shown in Fig 4. The 
front is globally concave, with local concavities at the second, fourth and sixth points 
from the left. 

MO-Puddleworld. This is a 2-D environment. The agent starts each episode at a 
random state and must reach the goal in the top-right corner, whilst avoiding puddles. 
It receives its current coordinates as input, and at each step selects an action (left, 
right, up or down). The agent’s position is bounded by the limits of the world. The 
reward structure for the original single-objective Puddleworld task [13] is effectively 
a form of scalarisation with fixed weights for the two objectives of reaching the goal 
quickly and avoiding the puddles. On each step on which the goal is not reached, the 
agent receives a penalty of -1. An additional penalty applies if the agent is within a 
puddle, equal to 400 multiplied by the distance to the puddle’s edge. To convert this 
problem to a multiobjective task, we present the two penalties as separate elements of 
a reward vector (omitting the multiplication by 400, as it is no longer relevant). To 
facilitate the evaluation of the Pareto front, it was necessary to make several altera-
tions to the original problem specification. The noise added to the movement of the 
agent was omitted. The policies were based on a 20x20 discretisation of the state-
space (although the actual position of the agent in the environment was still modeled 
as a continuous value). The goal was enlarged from its original triangular shape to fill 
the entire 0.05 unit square in the top-right corner of the world. With these alterations 
in place, and through the application of several manually identified constraints, it was 
possible to identify all non-dominated policies to construct the Pareto front shown in 
Fig 5. The overall shape of the front is convex, but a closer inspection of the front 
reveals a number of subtle local concavities and linearities, as shown in Fig 6. 
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Fig. 5. The Pareto front for the MO-Puddle-
world problem 
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Fig. 6. A close-up view of Fig 5 (solutions in 
concave regions are shown in grey) 
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Figs. 7-9. 2-dimensional projections of the Pareto front for the Mountain-Car task, relative to 
each pair of objectives. The arrows indicate some of the discontinuities in this front. 

MO-Mountain-Car. A car must escape from a 1-dimensional valley. The engine is 
less powerful than gravity, and so the car must reverse up the left side of the valley to 
build enough momentum to escape from the right side. The inputs are the current 
position and velocity, and there are 3 actions – accelerate, reverse, and zero throttle. 
In the single-objective case a penalty of -1 is received on all steps on which the goal-
state is not reached [14]. To test the generality of MORL systems, some benchmarks 
should involve more than two objectives so two further objectives were added – 
minimising both the number of reversing and the number of acceleration actions. A 
penalty of -1 is received in the corresponding reward vector element when one of 
these actions is executed. Interestingly in the single-objective case the zero throttle 
action is redundant, whereas in the multiobjective task, the choice of when to choose 
zero throttle is a key difference between policies. As with MO-Puddleworld, it was 
necessary to restrict the policies to a discretised state space in order to evaluate the 
front – in this case a 6x6 discretisation was used. The resulting front is shown in  
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Fig. 10. The Pareto front of the MO-Puddle-
world task (in grey) with the policies found 
by scalarisation superimposed (in black) 
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Fig. 11. The Pareto front of the MO-Mountain-
Car task (in grey) relative to the acceleration 
and time objectives, with the policies found by 
scalarisation superimposed (in black) 

Figs 7-9 – as it is difficult to interpret a 3-dimensional view, 2-dimensional projec-
tions have been provided. It should be noted that this front only considers policies 
which actually escape from the valley – this would need to be handled as a constraint 
by any MORL system, as it does not directly arise from the reward structure. 

The performance of scalarisation on the benchmarks was assessed by applying sca-
larising weights to each known solution, and determining which returned the highest 
scalarised value. This was repeated for a variety of weights, and the resulting sets of 
solutions compared to the actual Pareto front. As noted earlier Deep Sea Treasure has 
a globally concave Pareto front. Whatever weight combinations are applied to this 
task, only the two extremal points will ever return the maximal scalarised value - the 
intermediate solutions will be overlooked by any system based on scalarisation. The 
limitations of scalarisation on MO-Puddleworld are more subtle, but nonetheless 
substantial. Searching the weight space in steps of 0.01 results in 101 weight sets 
being applied to the solutions, yet finds only 11 of the 141 unique policies present in 
the original Pareto front. Fig 10 compares these policies to the true front. It can be 
seen that the sparse set of policies found by scalarisation is a poor representation of 
the near continuous true front. A similar result is observed for MO-Mountain-Car. 
The need to assign weights for all 3 objectives increases the size of the weight-space 
to be searched, so using a step-size of 0.1 results in 66 weight combinations yet only 
detects 28 of the 470 unique solutions in the actual front. A step-size of 0.05 tests a 
231 weight combinations, and locates only 41 policies. Fig 11 compares these 41 
policies against the actual Pareto front. Once again, the approximate front produced 
by scalarisation is a poor match for the actual front. In particular the distribution is 
quite different from that of the actual front. 

4   Conclusions and Future Work 

This paper has argued for following the lead of MOO research, by developing MORL 
systems which approximate the Pareto front of policies, rather than producing just a 
single solution. Presenting the user with a range of solutions provides more information 
about the trade-offs between objectives, and allows an informed decision without the 
need to impose a priori biases on the nature of the solution. We have examined the use 
of scalarisation within Pareto-based MORL showing that it may be unable to produce a 
good approximation of the Pareto front for many problems, due to its inability to locate 
policies in non-convex regions of the front. Whilst the limitations of scalarisation are 
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well known amongst MOO researchers, they have been overlooked by many MORL 
practitioners. Hence we believe that there is a pressing need for MORL algorithms de-
signed expressly to address the issue of deriving an approximation to the Pareto front. 
[11] has provided pioneering work in this area. It may also prove fruitful to extend exist-
ing methods such as [5], by performing multiple iterations of the algorithm using differ-
ent values for the thresholds. 

This paper also presented 3 test problems which are the first MORL tasks with 
identified Pareto fronts, making them valuable benchmarks for future research. To 
support such further use, it is important that this set of benchmarks be extended as the 
problems presented share a number of features such as their limited state-space di-
mensionality, non-stochasticity and episodic nature. Whilst these features aided in 
finding the Pareto fronts, they also simplify the task facing a learning agent. Therefore 
these benchmarks need to be augmented with a more diverse range of problems to 
better represent the challenges posed to MORL systems in real-world tasks. 
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Abstract. Many researchers and developers of knowledge based systems (KBS) 
have been incorporating the notion of context. However, they generally treat 
context as a static entity, neglecting many connectionists’ work in learning hid-
den and dynamic contexts, which aids generalization. This paper presents a 
method that models hidden context within a symbolic domain achieving a level 
of generalisation. Results indicate that the method can learn the information that 
experts have difficulty providing by generalising the captured knowledge. 

Keywords. hidden context, knowledge based systems, knowledge representa-
tion, ripple-down rules, situation cognition. 

1   Introduction 

The situation cognition (SC) view of knowledge revolves around the premise that 
knowledge is generated at the time of its use. This implies that the existence of 
knowledge is based on the context of a given situation [1, 2]. Methodologies, such as 
Formal Concept Analysis (FCA) [3], Repertory Grids [4] and Ripple-Down Rules 
(RDR) [5], have adopted a weak SC position by including contextual information. 
These approaches either incorporated the context directly in the knowledge or in the 
representation structure. However, they assume that the context is a priori, and there-
fore, deductive. This assumption leads to static representations, however, context in 
certain situations could be considered a posteriori, and therefore, inductive [6]. 

This paper presents a method that moves away from these contextually static repre-
sentations and instead is designed to handle an Intermediate SC [7] view by including 
hidden and dynamic contexts. The results in this paper illustrate the method’s ability 
to learn quickly while maintaining the ability to generalise. This notion of a generalis-
ing symbolic based system capable of finding hidden contextual information, led to 
the notion of combining a Knowledge Based System (KBS) with an Artificial Neural 
Network (ANN). The KBS selected was Multiple Classification RDR (MCRDR), as 
this is the most capable of modelling multiple contexts [8].  

2   Multiple Classification Ripple-Down Rules (MCRDR) 

Ripple-Down Rules is a maintenance centred methodology for a KBS based approach 
using the concept of fault patching [9] and was first proposed by [5]. It utilises a binary 
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tree as a simple exception structure aimed at partially capturing the context that knowl-
edge is obtained from an expert. The context is the sequence of rules that had evaluated 
to provide the given conclusion [5, 10-14]. Therefore, if the expert disagrees with a 
conclusion made by the system they can change it by adding a new rule. The new rule 
will only fire if the same path of rules is evaluated [12]. 

Ripple-Down Rules has been shown to be a highly effective tool for knowledge 
acquisition (KA) and knowledge maintenance (KM). However, it lacks the ability to 
handle tasks with multiple possible conclusions. Multiple Classification Ripple-Down 
Rules (MCRDR) aim was to redevelop the RDR methodology to provide a general 
method of building and maintaining a knowledge base (KB) for multiple classification 
domains. The methodology developed by [15] is based on the proposed solution by 
[11, 12]. The primary shift was to switch from the binary tree to an n-ary tree repre-
sentation. Knowledge is acquired by inserting new rules into the MCRDR tree when a 
misclassification has occurred. The new rule must allow for the incorrectly classified 
case, identified by the expert, to be distinguished from the existing stored cases that 
could reach the new rule [16]. This is accomplished by the user identifying key differ-
ences between the current case and each of the rules’ cornerstone cases.  

3   Rated MCRDR 

The hybrid methodology used in this paper, referred to as Rated MCRDR (RM), 
combines MCRDR with an artificial neural network (ANN). This function fitting 
algorithm learns patterns of fired rules found during the inferencing process. Firstly, a 
case is presented to the MCRDR tree, which classifies the case. Then for each rule in 
the inference, an associated input neuron will fire. The network then produces a vec-
tor of output values, v , for the case presented. The system, therefore, provides two 
separate outputs; the case’s classifications and an associated set of values. 

Learning in RM is achieved in two ways. Firstly, the value for each corresponding 
value for v  receives feedback from the environment concerning its accuracy. The 
network learns by either using the standard backpropagation approach using a sig-
moid thresholding function, and the MCRDR component still acquires knowledge in 
the usual way. The only exception is when the expert adds a new rule to MCRDR. As 
the input space grows, new input nodes need to be added to the network in such a way 
that does not damage already learned information. Therefore, the network structure 
needed to be altered by adding shortcut connections from any newly created input 
nodes directly to each output node and using these connections to carry a weight ad-
justment. When a new input node is added, additional hidden nodes are added.  

The single-step-∆-initialisation-rule, Equation 1, directly calculates the required 
weight for the network to step to the correct solution immediately. This is accom-
plished by reversing the feedforward process back through the inverse of the symmet-
ric sigmoid. It is possible for the expert to add multiple new rules for the one case. In 
these situations the calculated weight is divided by the number of new features, m. 
Finally, the equation is multiplied by the step-distance modifier, Zeta (ζ). Zeta (ζ) 
should always be set in the range 10 ≤≤ ζ . It allows adjustments to how large a step 

should be taken for the new features.  
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4   Experiments and Results 

The following results illustrate how RM compares against the two underlying meth-
odologies: MCRDR and a backpropagation neural network. The output from RM’s 
ANN consists of a vector, v , of outputs. Each output will relate to one possible classi-
fication. There is an output for each of the class types in the dataset being tested. If 
the output is positive then it will be regarded as providing that classification. The 
same output method is used for the backpropagation method being compared against. 
The results presented in this paper use 10 different randomisations of the relevant 
dataset. The test investigates how the methods can correctly classify cases. In this test 
each dataset is divided into ten equal sized epochs. Results are presented where 9/10ths 
of the dataset are used for training and 1/10th for testing. The size of the training set is 
then reduced incrementally in steps of 1/10th, down to 1/10th.  

4.1   Simulated Expertise and Datasets 

Three Simulated experts were used in this study. The first simulated expert uses a 
C4.5 [17] decision tree to select symbols If the KB being constructed, incorrectly 
classifies a case then the simulated expert’s decision tree is used to find attributes 
within rules that led to the correct classification. The problem with this simulated 
expert is that it requires an induction system, which is limited to single classification. 
However, the system in this paper is primarily targeting multiple classification do-
mains. Thus, a second simulated expert was created that calculates its classifications 
based on each case’s attributes. It uses a randomly generated table of values repre-
senting the level each attribute contributes to each class. 

A third simulated expert was designed to provide a non-linearity therefore the clas-
sification needs to vary according to combinations of attributes. This was achieved by 
randomly pairing attributes together for each class. Once paired, they were given an 
increasing absolute value with an alternate sign. When a case is presented to the ex-
pert it is tested to see which class it belongs to by adding all the associated values and 
attribute pairs in each class. The expert will then classify the case according to which 
classes provided a positive, > 0, total.  

RM and the underlying methods were compared across six datasets: chess, tic-tac-
toe (TTT), nursery, audiology, car evaluation and a generated multi-class dataset. The 
first five, from [18], were tested using the C4.5 simulated expert. The sixth was used 
twice, tested the methods, using the two multi-class simulated experts. 

4.2   Results 

The ability of the RM and the two base methods to generalise is measured by how 
well they can classify cases previously never seen. The performance of each method  
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a) Multi-Class Dataset using the Linear Simulated Expert. 
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b) Multi-Class Dataset using the Non-Linear Simulated Expert. 
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c) Chess Dataset using the C4.5 Simulated Expert. 
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d) Tic-Tac-Toe Dataset using the C4.5 Simulated Expert. 
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Fig. 1. (a-g) show two charts comparing the performance of RM, an ANN and MCRDR on 6 
datasets. i) after one viewing of the training set. ii) after training was completed.  
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e) Nursery Dataset using the C4.5 Simulated Expert. 
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f) Audiology Dataset using the C4.5 Simulated Expert. 
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g) Car Evaluation Dataset using the C4.5 Simulated Expert. 
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Fig. 1. (continued) 

These results show that the RM hybrid system has done exceptionally well both 
initially as well as after training is complete. In both of the multi-class experiments 
RM significantly outperformed the neural network after the first training round. How-
ever, while it performed well, it was not able to match the performance of MCRDR. 
Also, after training was completed RM significantly generalised better than MCRDR 
but could not match the neural network. Although, it should be noted, that this was 
rarely a statistical significant difference in performance. 

RM’s performance on the chess, TTT, Audiology and Car Evaluation datasets (and 
to a lesser extent the Nursery dataset) was considerably better than in the multi-class 
environments. For instance, it was able to match MCRDR in the first iteration on a 
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number of the datasets. Additionally, it was able to learn a much improved generalisa-
tion function over both the neural network and to a lesser extent MCRDR after training.  

While RM was not always able to perform quite as well as hoped, some points 
should be noted. For instance, when it did not reach its full potential it did come close. 
Secondly, in the multi-class datasets, it was also found that after the second training 
iteration RM had outperformed MCRDR across most of the seven tests. It should also 
be noted that the results for the neural network had required significantly more train-
ing to get its marginally better results. 

5   Conclusion 

This paper presented an algorithm that detects and models hidden contexts within a 
symbolic domain. The method developed builds on the already established Multiple 
Classification Ripple-Down Rules (MCRDR) approach and was referred to as Rated 
MCRDR (RM). RM retains a symbolic core that acts as a contextually static memory, 
while using a connection based approach to learn a deeper understanding of the 
knowledge captured.  

A number of results were presented, which have shown how RM is able to acquire 
knowledge and learning. RM’s ability to perform well can be put down to two  
features of the system. First, is that the flattening out of the dimensionality of the 
problem domain by the MCRDR component allows the system to learn a problem that 
is mostly linear even if the original problem domain was non-linear. This allows the 
network component to learn significantly faster. Second, the network gets an addi-
tional boost through the single-step-∆-initialisation rule, allowing the network to start 
closer to the correct solution when knowledge is added. 
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Abstract. Pattern recognition involving large-scale associative mem-
ory applications, generally constitutes tightly coupled algorithms and
requires substantial computational resources. Thus these schemes do
not work well on large coarse grained systems such as computational
grids and are invariably unsuited for fine grained environments such as
wireless sensor networks (WSN). Distributed Hierarchical Graph Neuron
(DHGN) is a single-cycle pattern recognising algorithm, which can be im-
plemented from coarse to fine grained computational networks. In this
paper we describe a two-level enhancement to DHGN, which enables it to
act as a standard binary image recogniser. This paper demonstrates that
our single-cycle learning approach can be successfully applied to denser
patterns, such as black and white images. Additionally we are able to
load-balance the pattern recognition processes, irrespective of the gran-
ularity of the underlying computational network.

Keywords: Associative Memory, Pattern Recognition, Distributed Hi-
erarchical graph Neuron (DHGN), Complexity Estimation.

1 Introduction

The computational complexity of contemporary associative memory (AM) based
pattern recognition algorithms is considerably high and difficult to be deployed
in resource-constraint environment, such as mobile ad hoc networks (MANETs)
and wireless sensor networks (WSNs). The AM approaches such as Morpho-
logical Associative Memory (MAM) [1] and Fuzzy Associative Memory (FAM)
[2] generally tend to be computationally intensive and iterative. In this paper,
we present key enhancements to our single-cycle learning auto-associative mem-
ory scheme known as Distributed Hierarchical Graph Neuron (DHGN) [3,4].
These enhancements allow the scheme to be used for dense patterns, such as
black and white bitmap images. DHGN is a single-cycle pattern recognition al-
gorithm, which is based on Graph Neuron (GN) concept introduced by Khan
[5] for single-cycle pattern recognition. DHGN comprises sets of replicated light-
weight GN processes. These sets, termed as DHGN compositions [3], can be
readily distributed from relatively coarse systems such as computational grids

W. Wobcke and M. Zhang (Eds.): AI 2008, LNAI 5360, pp. 386–392, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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to finely distributed resource-constraint networks for a variety of applications.
With regards to the distorted/noisy patterns, DHGN offers comparable accu-
racy to conventional algorithms due to the work done by Nasution and Khan on
Hierarchical Graph Neuron (HGN) [6]. DHGN algorithm could be efficiently de-
ployable from coarse grained to fine grained networks. Our single-cycle learning
approach, though being highly scalable with respect to network granularity and
able to store a very large number of patterns in single-cycles, has not so far been
tested for dense patterns. The analyses in this paper will show that our single-
cycle learning scheme works well with binary images containing noise/distortions
and missing information.

The paper is divided into 6 sections. Section 2 provides a brief overview of
DHGN algorithm. Section 3 estimates the complexity of the recognition process
within DHGN algorithm in terms of its bias array storage capacity. Section
4 describes the voting mechanism adopted as an enhancement to the original
DHGN algorithm for the overall pattern-level recognition. Section 5 explains the
results of the binary image pattern recognition tests. Section 6 concludes the
paper.

2 DHGN Algorithm Overview

DHGN algorithm applies the adjacency comparison in its recognition approach.
In this regard the input patterns are automatically synthesised into subpatterns
by the GN processes. The sets of GN processes concurrently compare their sub-
patterns with the historical information, which is locally available within each
GN. Finally these processes produce their independent recall/memorise outputs.
These outputs are integrated by the network to effect an overall recall/store op-
eration. Details of the DHGN implementation can be found in [3,4,7].

DHGN network is composed of a number of DHGN subnets and a Stimula-
tor/Interpreter Module (SI Module) node. Fig. 1 shows the decomposition of
binary image pattern ’K’ into subpatterns and each of the subpatterns being fed
into the DHGN network. The SI input activates the GN nodes corresponding
to the bits of the input pattern. In doing so each subpattern is automatically
decomposed and mapped to relevant GNs in the subnets. Each subnet integrates
its responses and sends the results to the SI Module to form an overall response.

Each DHGN subnet is composed of a number of processing nodes, depending
on the size of the subpatterns spsize and the number of possible input values
within the pattern, pinput. Equation (1) shows the number of processing (GN)
nodes nGN within a single DHGN subnet.

nGN = pinput

(
spsize + 1

2

)2

. (1)

The adjacency information within a single processing node is kept in a data
structure known as bias array. Each new message received from adjacent nodes
is treated as a bias entry with its own bias index. The recognition processes
within DHGN heavily rely on this structure, where the status of the adjacent
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Fig. 1. Pattern recognition processes using DHGN algorithm where a 7x5 bitmap of
letter K is mapped as subpatterns over 7 hierarchically formed GN sub-networks

preceding and succeeding columns’ nodes is checked and compared for every new
input using a match-compare approach. The bias array complexity estimate is
included in the following section.

3 DHGN Bias Array Complexity

In this DHGN implementation we have adopted a two-level approach. The first
level involves the recognition process at subpattern level and the second level is
the recognition at the overall pattern level. This section will discuss the recog-
nition at subpattern level, while the next section will outline the recognition at
pattern level.

In a DHGN implementation, the recognition at subpattern level deals with the
recognition process occurring within individual DHGN subnet. In this context,
the complexity of the algorithm could be measured in terms of the size of the bias
array as an indicator of the scalability of the algorithm. The size of the bias array
determines the number of input subpatterns that can be stored within a single
DHGN subnet. From the scalability point of view, this storage requirement must
not significantly increase with an increase in the number of stored patterns [6].

The following equations show the bias array size estimation for DHGN imple-
mentation. These equations have been derived based on binary pattern recogni-
tion implementation. In this work, we have considered a one-dimensional
implementation of DHGN algorithm, where a two dimensional pattern is input
as a long bit string.
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Base Level. For each non-edge processing node the maximum number of bias
array entries is equivalent to the square values of the number of rows within each
layer, nr:

bsnl0 = n2
r . (2)

For each processing node at the edge:

bsel0 = nr . (3)

Therefore, the cumulative maximum size of bias array at the base level in
each DHGN subnet could be derived as shown in (4).

bsmax
l0 = n2

r (spsize − 2) + 2bsel0 . (4)

It may be noted from these equations that the size of the bias array at the base
level is not affected by the number of subpatterns stored. This is due to the fact
that the pattern storage occurs on the basis of adjacency information received
from preceding and succeeding nodes within the subnet. Thus the maximum
possible size for the bias arrays solely depends on the range of possible input
values and size of the input subpatterns.

Middle Levels. The maximum size of the bias array at any middle level li is
correlated with the maximum size of the bias array at the level below it. For
non-edge processing node at middle level li, the maximum size of its bias array
could be derived as follows:

bsnli = bsnli−1 ∗ n2
r . (5)

For each processing node at the edge, the following equation shows the max-
imum size of its bias array:

bseli = bsnli−1 ∗ nr . (6)

Therefore, the cumulative maximum size of bias array at the middle level
within a DHGN subnet could be estimated with the following equation:

bsmax
li = bsnli (spsize − (2i+ 2)) + 2bseli . (7)

Top Level. At the top level processing node, the maximum size of the bias array
could be derived from the previous level non-edge processing node’s maximum
bias array size.

From these equations, the total maximum size of all the bias arrays within a
single DHGN subnet could be deduced as shown in (8):

bsmax
total = bsmax

l0 +
ltop−1∑
li=1

bsmax
li + bsnltop−1 . (8)

The DHGN bias array has been specifically designed to store the adjacency
information, as compared to the actual pattern data. Fig. 2 shows the storage
mechanism employed by DHGN algorithm for two different patterns.
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Fig. 2. Pattern adjacency storage mechanism employed by DHGN. Two different pat-
terns were stored in this DHGN subnet, increasing the total number of bias array
entries within the subnet from 9 to 14.

From the figure it may be noted that the second pattern input only contribute
about 35% increment in the number of bias array entries stored. This increment
is far less than the estimated increment of storage requirement if both actual
patterns are stored without their adjacency information.

4 Pattern-Level Recognition

Recognition at pattern level in DHGN implementation involves the voting mech-
anism, adopted from the work by Cruz et al [8]. Some modifications have been
carried out to suit the mechanism for our DHGN approach.

Within this scheme, it is a requirement for SI module to be able to store
both the list of indices and the voting vectors. In addition, SI module should be
capable of handling multiple simultaneous inputs from different DHGN subnets.
Otherwise, the implementation would become a bottleneck at this stage.

Given P1, P2, and P3 as binary patterns representing character A, E, and O
respectively, and P d

1 represents the distorted pattern of P1:

P1 =

⎛⎜⎜⎜⎜⎝
0 1 0
1 0 1
1 0 1
1 1 1
1 0 1

⎞⎟⎟⎟⎟⎠ P2 =

⎛⎜⎜⎜⎜⎝
1 1 1
1 0 0
1 1 0
1 0 0
1 1 1

⎞⎟⎟⎟⎟⎠ P3 =

⎛⎜⎜⎜⎜⎝
1 1 1
1 0 1
1 0 1
1 0 1
1 1 1

⎞⎟⎟⎟⎟⎠ P d
1 =

⎛⎜⎜⎜⎜⎝
0 1 1
1 0 1
1 0 1
1 1 1
1 0 1

⎞⎟⎟⎟⎟⎠ .

These patterns are decomposed into 5 subpatterns, where each subpattern
represents a row of the overall character pattern. Hence, the S vector containing
the indices retrieved from the DHGN subnets (for these non-distorted patterns)
would have the following entries:

S =

⎛⎝1 1 1 1 1
2 2 2 2 2
2 1 1 3 2

⎞⎠ .
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Note that the index of S12 is similar to S32, due to the fact that it is a
recalled subpattern of pattern P1 at subpattern 2. With the introduction of the
distorted pattern into the network, the indices retrieved from DHGN subnet will
be recorded as a vector R:

R =
(
4 1 1 1 1

)
.

This simply shows that at subpattern 1, a new subpattern has been intro-
duced and the rest of the subpatterns are recalled as subpatterns from either
subpatterns of P1 or P3. Therefore, the vector W would have the following en-
tries:

W =
(
4 0 0

)
.

This shows that there are 4 occurrences of subpatterns P1 and 0 occurrences
of either subpattern P2 or P3. The maximum entry is at W1 which corresponds
to pattern P1. Therefore pattern P1 will be recalled.

5 Results and Discussion

For the purpose of ensuring the accuracy of our proposed two-level DHGN al-
gorithm for pattern recognition, we have conducted a series of tests involving
binary patterns. These binary patterns are grey-scale images which have been
dimensionally reduced to binary values. We have considered a Gaussian noise
distortion and block distortion tests. In doing this, we have used 20 heteroge-
neous binary images with the size of 128 x 128 bits.

The results of the recognition tests have shown that DHGN algorithm exerts
high recall accuracy for patterns with Gaussian noise and block-distortion. Fur-
thermore, its recall accuracy does not get affected with an increase in the number
of patterns being stored. However, it should be noted that the images that have
been used in these tests are heterogeneous images, i.e. non-similar images. Fig. 3
shows the results of these tests.

Fig. 3. The recognition of image Lena from Gaussian-distorted images and block-
distorted images. DHGN produces perfect recall for each of the distorted images
presented.
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6 Conclusions

The proposed two-Level DHGN algorithm, for binary pattern, works at the sub-
pattern level and later at the pattern level. This enhanced DHGN provides high
recall accuracy for binary images with distortions whilst retaining the single-
cycle characteristic of the GN approach. The results of the analysis also prove
that the bias array complexity in DHGN algorithm is not heavily affected by the
increase in the number of stored patterns. This is due to the fact that DHGN
only retains the adjacency information for each pattern through its bias array
storage scheme. In addition, the proposed two-level DHGN approach for pat-
tern recognition has been designed to suit both large coarse-grained network
environment, as well as fine-grained network environment.

References

1. Ritter, G.X., Sussner, P., Diaz-de-Leon, J.L.: Morphological Associative Memories.
IEEE Transactions on Neural Networks 9, 281–293 (1998)

2. Kosko, B.: Neural Networks and Fuzzy Systems: A Dynamical Systems Approach
to Machine Intelligence. Prentice-Hall, Englewood Cliffs (1992)

3. Khan, A.I., Muhamad Amin, A.H.: One Shot Associative Memory Method for Dis-
torted Pattern Recognition. In: Orgun, M.A., Thornton, J. (eds.) AI 2007. LNCS
(LNAI), vol. 4830, pp. 705–709. Springer, Heidelberg (2007)

4. Muhamad Amin, A.H., Khan, A.I.: Commodity-Grid Based Distributed Pattern
Recognition Framework. In: Sixth Australasian Symposium on Grid Computing
and e-Research (AusGrid 2008), Wollongong, NSW, Australia (2008)

5. Khan, A.I.: A Peer-to-Peer Associative Memory Network for Intelligent Informa-
tion Systems. In: The Proceedings of The Thirteenth Australasian Conference on
Information Systems, Melbourne, Australia (2002)

6. Nasution, B.B., Khan, A.I.: A Hierarchical Graph Neuron Scheme for Real-Time
Pattern Recognition. IEEE Transactions on Neural Networks 19, 212–229 (2008)

7. Muhamad Amin, A.H., Mahmood, R.A.R., Khan, A.I.: Analysis of Pattern Recog-
nition Algorithms using Associative Memory Approach: A Comparative Study be-
tween the Hopfield Network and Distributed Hierarchical Graph Neuron (DHGN).
In: IEEE 8th International Conference on Computer and Information Technology
(CIT 2008), Sydney, NSW, Australia (2008)

8. Cruz, B., Sossa, H., Barron, R.: A New Two-Level Associative Memory for Efficient
Pattern Restoration. Neural Processing Letters (2006)



Combined Pattern Mining: From Learned Rules
to Actionable Knowledge�

Yanchang Zhao1, Huaifeng Zhang1, Longbing Cao1,
Chengqi Zhang1, and Hans Bohlscheid2

1 Data Sciences & Knowledge Discovery Research Lab
Centre for Quantum Computation and Intelligent Systems

Faculty of Engineering & IT, University of Technology, Sydney, Australia
{yczhao,hfzhang,lbcao,chengqi}@it.uts.edu.au

2 Projects Section, Business Integrity Programs Branch,
Centrelink, Australia

hans.bohlscheid@centrelink.gov.au

Abstract. Association mining often produces large collections of asso-
ciation rules that are difficult to understand and put into action. In this
paper, we have designed a novel notion of combined patterns to extract
useful and actionable knowledge from a large amount of learned rules.
We also present definitions of combined patterns, design novel metrics to
measure their interestingness and analyze the redundancy in combined
patterns. Experimental results on real-life social security data demon-
strate the effectiveness and potential of the proposed approach in ex-
tracting actionable knowledge from complex data.

1 Introduction

The notion of association rules [1] was proposed 15 years ago and is widely
used today. However, as large numbers of association rules are often produced
by association mining, it can sometimes be very difficult for users to not only
understand such rules, but also find them a useful source of knowledge to apply
to their business processes. Therefore, to present associations in an interesting
and effective way, and in order to find actionable knowledge from resultant asso-
ciation rules, a novel idea of combined patterns is proposed. Combined patterns
comprise combined association rules, combined rule pairs and combined rule clus-
ters. A combined association rule is composed of multiple heterogeneous itemsets
from different datasets, while combined rule pairs and combined rule clusters are
built from combined association rules. The proposed combined patterns provide
more interesting knowledge and more actionable results than traditional asso-
ciation rules. The contributions of this paper are: 1) a definition of combined
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patterns, including combined rules, combined rule pairs and combined rule clus-
ters; 2) interestingness measures designed for combined patterns; 3) two kinds of
redundancy (i.e., rule redundancy and rule pair redundancy) identified for com-
bined patterns; and 4) an experimental evaluation of the proposed technique on
real-life data.

2 Related Work

There are often too many association rules discovered from a dataset and it is
necessary to conduct post-processing before a user is able to study the rules and
identify interesting ones from them. There are many techniques proposed to sum-
marize and/or post-analyze the learned association rules [3,6]. Hilderman et al.
proposed to characterize itemsets with information from external databases, e.g.,
customer or lifestyle data [2]. Their technique works by firstly mining frequent
itemsets from transactional data and then partitioning each frequent itemset
according to the corresponding characteristic tuple. This method likely results
in a large number of rules when many characteristics are involved, with every
characteristic having multiple value. Liu and Hsu proposed to rank learned rules
by matching against expected patterns provided by user [4]. Rule Similarity and
Rule Difference are defined to compare the difference between two rules based
on their conditions and consequents, and Set Similarity and Set Difference are
defined to measure the similarity between two sets of rules. The learned rules
are ranked by the above similarity/difference and then it is up to the user to
identify interesting patterns. In another work, Liu et al. proposed to mine for
class association rules and build a classifier based on the rules [5]. With their
rule generator, the rule with the highest confidence is chosen from all the rules
having the same conditions but different consequents. Liu et al. also proposed
direction setting rules to prune and summarize association rules [6]. Chi-square
(χ2) test is used to measure the significance of rules and insignificant ones are
pruned. The test is then used again to remove the rules with “expected direc-
tions”, that is, the rules which are combinations of direction setting rules. Zäıane
and Antonie studied strategies for pruning classification rules to build associa-
tive classifiers [7]. Their idea selects rules with high accuracy based on the plot
of correct/incorrect classification for each rule on the training set. Lent et al.
proposed to reduce the number of learned association rules by clustering [3].
Using two-dimensional clustering, rules are clustered by merging numeric items
to generate more general rules.

3 The Problem

The example that follows illustrates the target problem. Suppose that there
are two datasets, transactional dataset and customer demographic dataset (see
Tables 1 and 2), where “Churn” is the behaviour of a customer’s switching
from a company to another. In the following analysis, campaigns “d” and “e”
are ignored to make the result easy to read. The traditional association rules
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Table 1. Transactional Data

Customer ID Campaign/Policy Churn
1 a,b Y
1 a Y
2 a,c N
2 b,c Y
2 b,c,d N
3 a,c,d Y
3 a,b,e Y
4 a,b N
4 c N
4 b,d N

Table 2. Customer Demographic Data

Customer ID Gender . . .

1 F
2 F
3 M
4 M

Table 3. Traditional Association Rules

Rules Supp Conf Lift
F → Y 3/10 3/5 1.2
F → N 2/10 2/5 0.8
M → Y 2/10 2/5 0.8
M → N 3/10 3/5 1.2
a → Y 4/10 4/6 1.3
a → N 2/10 2/6 0.7
b → Y 3/10 3/6 1
b → N 3/10 3/6 1
c → Y 2/10 2/5 0.8
c → N 3/10 3/5 1.2

Table 4. Combined Association Rules

Rules Supp Conf Lift Lift1 Lift2 Irule

F ∧ a → Y 2/10 2/3 1.3 1 1.1 0.8
F ∧ b → Y 2/10 2/3 1.3 1.3 1.1 1.1
F ∧ c → N 2/10 2/3 1.3 1.1 1.7 1.4
M ∧ a → Y 2/10 2/3 1.3 1 1.7 1.3
M ∧ b → N 2/10 2/3 1.3 1.3 1.1 1.1

Table 5. Combined Rule Pairs

Pairs Combined Rules Ipair

P1 M ∧ a → Y 1.4
M ∧ b → N

P2 F ∧ b → Y 1.2
M ∧ b → N

discovered are shown in Table 3, and the four rules with lift greater than one
are F → Y , M → N , a → Y and c → N . If partitioning the whole population
into two groups, male and female, based on the demographic data in Table 2,
and then mining the two groups separately, some rules are shown in Table 4,
where Lift1 and Lift2 denote respectively the lift of the first/second part of the
left side, and Irule is the interestingness of the combined rule. The definitions of
the three measures will be given in Section 4.2. We can see from Table 4 that
more rules with high confidence and lift can be found by combining the rules
from two separate datasets.

Although all the rules in Table 4 are of the same confidence and lift, their
interestingness are not the same, which is shown by the last column Irule. For
example, for the first rule in Table 4, F ∧ a → Y , its interestingness Irule is
0.8, which indicates that the rule is not interesting at all. The explanation is
that its lift is the same as the lift of a → Y (see Table 3), which means that
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F contributes nothing in the rule. Therefore, our new measures are more useful
than the traditional confidence and lift.

It is more interesting to organize the rules into contrasting pairs shown in
Table 5, where Ipair is the interestingness of the rule pair. P1 is a rule pair
for male group, and it shows that a is associated with churn but b with stay.
P1 is actionable in that it suggests b is a preferred action/policy to keep male
customers from churning. Moreover, male customers should be excluded when
initiating campaign a. P2 is a rule pair with the same campaign but different
demographics. With the same action b, male customers tend to stay, but female
tend to churn. It suggests that b is a preferable action for male customers but
an undesirable action for female customers.

From the previous example, we can see that rule pairs like P1 and P2 provide
more information and are more useful and actionable than traditional simple
rules shown in Table 3 and in this paper, they are referred to as combined
patterns. A straightforward way to find the rules in Table 4 is to join Tables
1 and 2 in a pre-processing stage and then apply traditional association rule
mining to the derived table. Unfortunately, it is often infeasible to do so in
many applications where a dataset contains hundreds of thousands of records or
more. Moreover, the rule clusters which organize related rules together are more
useful and actionable than individual rules. To find the above useful knowledge
like P1 and P2, a novel idea of combined patterns will be proposed in the next
section.

4 Combined Pattern Mining

In this section we provide definitions of combined association rules and combined
rule pairs/clusters, and then presents their interestingness and redundancy.

4.1 Definitions of Combined Patterns

Combined patterns take forms of combined association rules, combined rule pairs
and combined rule clusters, which are defined as follows.

Definition 1 (Combined Association Rule). Assume that there are k
datasets Di (i = 1..k). Assume Ii to be the set of all items in datasets Di and
∀i = j, Ii ∩ Ij = ∅. A combined association rule R is in the form of

A1 ∧A2 ∧ ... ∧Ak → T, (1)

where Ai ⊆ Ii (i = 1...k) is an itemset in dataset Di, T = ∅ is a target item or
class and ∃i, j, i = j, Ai = ∅, Aj = ∅.

For example, A1 can be a demographic itemset, A2 can be a transactional itemset
on marketing campaign, A3 can be an itemset from a third-party dataset, and
T can be the loyalty level of a customer. The combined association rules are
then further organized into rule pairs by putting similar but contrasting rules
together as follows.
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Definition 2 (Combined Rule Pair). Assume that R1 and R2 are two com-
bined rules and that their left sides can be split into two parts, U and V , where
U and V are respectively itemsets from IU and IV (I = {Ii}, IU ⊂ I, IV ⊂
I, IU = ∅, IV = ∅ and IU ∩ IV = ∅). If R1 and R2 share a same U but
have different V and different right sides, then they build a combined rule pair
P as

P :
{
R1 : U ∧ V1 → T1
R2 : U ∧ V2 → T2

, (2)

where U = ∅, V1 = ∅, V2 = ∅, T1 = ∅, T2 = ∅, U∩V1 = ∅, U∩V2 = ∅, V1∩V2 = ∅
and T1 ∩ T2 = ∅.

A combined rule pair is composed of two contrasting rules, which suggests that
for customers with same characteristics U , different policies/campaigns, V1 and
V2, can result in different outcomes, T1 and T2. Based on a combined rule pair,
related combined rules can be organized into a cluster to supplement more in-
formation to the rule pair.

Definition 3 (Combined Rule Cluster). A combined rule cluster C is a set
of combined association rules based on a combined rule pair P, where the rules
in C share a same U but have different V in the left side.

C :

⎧⎪⎪⎨⎪⎪⎩
U ∧ V1 → T1
U ∧ V2 → T2
· · ·
U ∧ Vn → Tn

, (3)

where U = ∅; ∀i, Vi = ∅, Ti = ∅, U ∩ Vi = ∅; and ∀i = j, Vi ∩ Vj = ∅.

The rules in cluster C have the same U but different V , which makes them
associated with various results T . Note that two rules in a cluster may have a
same T . For example, assume that there is a rule pair P and a rule cluster C is
built based on P by simply adding a third rule as follows.

P :
{
U ∧ V1 → stay
U ∧ V2 → churn

, C :

⎧⎨⎩
U ∧ V1 → stay
U ∧ V2 → churn
U ∧ V3 → stay

. (4)

From P , we can see that V1 is a preferable policy for customers with charac-
teristics U . However, if for some reason, policy V1 is inapplicable to the specific
customer group, P is no longer actionable in that it provides little knowledge on
how to prevent the customers from switching to another company. Fortunately,
rule cluster C suggests that another policy V3 can be employed to retain those
customers.
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4.2 Interestingness Measures for Combined Patterns

Interestingness of Combined Association Rules. Traditional interesting-
ness measures contribute little to selecting actionable combined patterns,
because they are limited to the traditional simple association rules. Based on
traditional supports, confidences and lifts, two new lifts are designed as follows
for measuring the interestingness of combined association rules.

LiftU (U ∧ V → T ) =
Conf (U ∧ V → T )

Conf (V → T )
=

Lift(U ∧ V → T )
Lift(V → T )

(5)

LiftV (U ∧ V → T ) =
Conf (U ∧ V → T )

Conf (U → T )
=

Lift(U ∧ V → T )
Lift(U → T )

(6)

LiftU (U ∧ V → T ) is the lift of U with V as a precondition, which shows how
much U contributes to the rule. Similarly, LiftV (U ∧ V → T ) gives the contri-
bution of V in the rule. Based on the above two new lifts, the interestingness of
combined association rules is defined as

Irule(U ∧ V → T ) =
LiftU (U ∧ V → T )

Lift(U → T )
. (7)

It’s easy to get

Irule(U ∧ V → T ) =
Lift(U ∧ V → T )

Lift(U → T ) Lift(V → T )
(8)

=
LiftV (U ∧ V → T )

Lift(V → T )
. (9)

Irule indicates whether the contribution of U (or V ) to the occurrence of T
increases with V (or U) as a precondition. Therefore, “Irule < 1” suggests that
U ∧ V → T is less interesting than U → T and V → T . The value of Irule falls
in [0,+∞). When Irule > 1, the higher Irule is, the more interesting the rule is.
Irule works similarly as direction setting (DS) rules proposed by Liu et al. [6].

The difference is that their method gives an qualitative judgement on a rule
whether it is a DS rule or not, while Irule is a quantitative measure of the
interestingness of a rule. Irule measures how much is the unexpectedness of a
combined rule against traditional simple association rules.

Interestingness of Combined Rule Pairs and Clusters. Suppose that P is
a combined rule pair composed of R1 and R2 (See Formula 2), the interestingness
of the rule pair P is defined as

Ipair(P) = LiftV (R1) LiftV (R2) dist(T1, T2), (10)

where dist(·) denotes the dissimilarity between two descendants. It is sometimes
written as Ipair(R1, R2) in this paper. For class with nominal values, such as
“Pass” and “Fail”, the dissimilarity can be defined as zero for two same de-
scendants and as 1 for two different descendants. For ordinal class levels, such as
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“Outstanding, Excellent, Good, Satisfactory, Fail”, the similarity between “Out-
standing” and “Fail” can be set to 1 and that between “Excellent” and “Good”
can be set to 0.25. Ipair measures the contribution of the two different parts in
antecedents to the occurrence of different classes in a group of customers with
the same demographics or the same transaction patterns. Such knowledge can
help to design business campaigns and improve business process. The value of
Ipair falls in [0,+∞). The larger Ipair is, the more interesting a rule pair is.

For a rule cluster C composed of n combined association rules R1, R2, . . . , Rn,
its interestingness is defined as

Icluster(C) = max
i�=j,Ri,Rj∈C,Ti �=Tj

Ipair(Ri, Rj). (11)

The definition of Icluster that we have provided indicates that interesting clusters
are the rule clusters with interesting rule pairs, and the other rules in the cluster
provide additional information. Same as Ipair, the value of Icluster also falls in
[0,+∞).

The interestingness of combined rule pair and cluster is decided by both the
interestingness of rules and the most contrasting rules within the pair/cluster. A
cluster made of contrasting confident rules is interesting, because it explains why
different results occur and what to do to produce an expected result or avoid an
undesirable consequence.

Selecting Combined Patterns. With the above interestingness measures,
actionable combined patterns will be selected. First, the interesting combined
rules are selected from the learned rules with support, confidence, lift, LiftU ,
LiftV and Irule. Second, the rules with high support and confidence are organized
into pairs and then the pairs are ranked with Ipair to find contrasting rule pairs.
Finally, related rules are added to selected rule pairs to build rule clusters.

Combined patterns are “actionable” in that: 1) for a single rule, Liftv mea-
sures the contribution of V to the result, which may suggest that V can be used
to produce an expected outcome; and 2) the difference in the left hand of con-
trasting rules within a cluster explains why different results occur and how to
get an expected result or avoid an undesirable consequence.

4.3 Redundancy in Combined Patterns

There are two kinds of redundancy in combined patterns: 1) the redundancy of
combined rules within a rule cluster, and 2) the redundancy of combined rule
pairs, which are defined as follows.

Definition 4 (Redundant Combined Association Rule). Let C be a com-
bined association rule cluster, and R : U ∧ V → T and R′ : U ∧ V ′ → T ′

be two combined rules in C, R ∈ C, R′ ∈ C. R is redundant if V ′ ⊆ V ,
T ′ = T , Lift(R′) ≥ Lift(R), LiftU (R′) ≥ LiftU (R), LiftV (R′) ≥ LiftV (R) and
Irule(R′) ≥ Irule(R).

Definition 5 (Redundant Combined Rule Pair). A combined rule pair P
is redundant if: 1) there exists a rule pair P ′ with Ipair(P ′) ≥ Ipair(P); and 2)
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for each R : U ∧ V → T ∈ P, there exists a rule R′ : U ′ ∧ V ′ → T ′ ∈ P ′

with U ′ ⊆ U , V ′ ⊆ V , T ′ = T , Lift(R′) ≥ Lift(R), LiftU (R′) ≥ LiftU (R),
LiftV (R′) ≥ LiftV (R) and Irule(R′) ≥ Irule(R).

Our method for removing the two kinds of redundancy of combined patterns is
composed of the following two steps.

1. Removing redundant rules in each rule cluster. This step is similar to the
traditional way of removing redundant association rules, but only the redun-
dancy within each rule cluster is removed here. Within each rule cluster C
with the same U , each rule R ∈ C is checked to see whether there exist a rule
R′ in the same cluster with the same T and greater confidence, Lift, LiftU ,
LiftV and Irule and V ′ ⊆ V . If yes, then R is removed from C as a redundant
rule.

2. Pruning redundant rule pairs. This step reduces the number of rule pairs.
For two rule pairs P and P ′, if, for each rule R ∈ P , there exists a rule
R′ ∈ P ′ with the same T and greater confidence, Lift, LiftU , LiftV and Irule,
where U ′ and V ′ in R′ is are respectively subsets of U and V in R, then all
the rules in P are redundant with respect to P ′, and P is a redundant rule
pair in terms of P ′. So P will be removed to reduce the number of rule pairs.

5 A Case Study

The technique we propose was tested with real-life data in Centrelink, a Com-
monwealth Government agency delivering a range of services to the Australian
community. The data used was customer debts raised in calendar year 2006
and corresponding customer circumstances data and transactional arrangement
/ repayment data in the same year. The cleaned sample data contained 355,800
customers and their demographic attributes, as well as individual debt repay-
ment arrangements. The aim was to find the association between demographics,
arrangement/repayment methods and the class of customers, which could be
used to recover debts as early as possible.

We discovered combined patterns in four steps. Firstly, the transactional data
(with arrangements and repayments) was mined for frequent patterns. Secondly,
the whole population was partitioned into groups by frequent transactional pat-
terns. Thirdly, the demographic data of each customer group was mined for
association rules. And lastly, combined patterns were generated by combining
the above results. The minimum support was set to 20 (in the count of customers
instead of percentage) and the minimum confidence was set to 60%. To discover
interesting combined rules, we set Lift > 1, LiftU > 1, LiftV > 1, Ipair > 1 and
Irule > 1, and to discover interesting combined rule clusters, the selected rules
were organized into clusters, with the rule clusters then ranked by Icluster.

Generally speaking, to prune redundancy in association rules, when two rules
have the same confidence and one rule is more general than the other, preference
was given to the shorter one. Nevertheless, when analyzing the rules discovered
in this exercise, we found that because some rules were on almost the same
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Table 6. Traditional Association Rules

V T Conf (%) Count Lift
Arrangement Repayment Class

irregular cash or post office A 82.4 4088 1.8
withholding cash or post office A 87.6 13354 1.9

withholding & irregular cash or post office A 72.4 894 1.6
withholding & irregular cash or post office & withholding B 60.4 1422 1.7

Table 7. Selected Combined Rules

Rules U V T Cnt Conf Ir Lift LU LV Lift of Lift of
Demographics Arrangement Repayment Class (%) U→T V→T

r1 age:65+ withholding withholding C 50 63.3 2.91 3.40 2.47 4.01 0.85 1.38
& irregular

r2 income:0 withholding cash or post B 20 69.0 1.47 1.95 1.34 2.15 0.91 1.46
& remote:Y & withholding

& marrital:sep
& gender:F

r3 income:0 withholding cash or post A 1123 62.3 1.38 1.35 1.72 1.09 1.24 0.79
& age:65+ & withholding

r4 income:0 withholding cash or post A 469 93.8 1.36 2.04 1.07 2.59 0.79 1.90
& gender:F
& benefit:P

group of customers, business experts tended to prefer longer rules which provided
more detailed information concerning the overall characteristics of the group.
Therefore, in this case study, those rules with confidence less than 1.05 times
that of more specific rules were removed as redundant rules, and the same was
done to remove redundant rule clusters.

There were 7,711 association rules before removing redundancy of combined
rules. After removing redundancy of combined rules, 2,601 rules were left, which
built up 734 combined rule clusters. After removing redundancy of combined rule
clusters, 98 rule clusters with 235 rules remained, which was within the capability
of human beings to read. The traditional association rules we discovered from
transactional data are given in Table 6. Some selected combined patterns are
shown respectively in Tables 7 and 8. In the two tables, columns LU and LV

stand for LiftU and LiftV , respectively.
In Table 7, r1: “Age:65+, arrangement=withholding and irregular, repay-

ment=withholding → C” has a high Irule of 2.91. “Lift of U → C” indicate
that the lifts of “Age:65+ → C” is 0.85, which suggests that “Age:65+” is nega-
tively associated with “C”. However, LiftU = 2.47 suggests that, under “arrange-
ment=withholding and irregular, repayment=withholding”, “Age:65+” becomes
positively associated with “C”. Moreover, LiftV is greater than “Lift of V → C”,
which suggests that the contribution of the specific arrangement and repayment
to the occurrence of “C” also increases in customer group “Age:65+”. What’s
more, Lift = 3.40 also suggests that the combination of “Age:65+” and “arrange-
ment=withholding and irregular, repayment=withholding” more than triples the
probability of the occurrence of “C”. Therefore, r1 is a very interesting rule,
which explains why it has a high value of Irule. In contrast, r5 in Table 8 has an
Irule of 0.86 (shown as Ir), which indicates that it is not interesting as a single
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Table 8. Selected Combined Rule Clusters

Clu- Ru- U V T Cnt Conf Ir Ic Lift LU LV Lift of Lift of
sters les demographic arrangement repayment (%) U→T V→T
R1 r5 age:65+ withhold cash or post A 1980 93.3 0.86 6.5 2.02 1.06 1.63 1.24 1.90

r6 irregular cash or post A 462 88.7 0.87 1.92 1.08 1.55 1.24 1.79
r7 withhold & cash or post A 132 85.7 0.96 1.86 1.18 1.50 1.24 1.57

irregular
r8 withhold & withhold C 50 63.3 2.91 3.40 2.47 4.01 0.85 1.38

irregular
R2 r9 marital:sin irregular cash or post A 400 83.0 1.12 6.3 1.80 1.01 2.00 0.90 1.79

r10 &gender:F withhold cash or post A 520 78.4 1.00 1.70 0.89 1.89 0.90 1.90
r11 &benefit:N withhold & cash or post B 119 80.4 1.21 2.28 1.33 2.06 1.10 1.71

irregular & withhold
r12 withhold cash or post B 643 61.2 1.07 1.73 1.19 1.57 1.10 1.46

& withhold
r13 withhold & withhold & B 237 60.6 0.97 1.72 1.07 1.55 1.10 1.60

vol. deduct direct debit
r14 cash agent C 33 60.0 1.12 3.23 1.18 3.07 1.05 2.74

R3 r15 income:0 irregular cash or post A 191 76.7 1.03 5.1 1.66 0.93 1.85 0.90 1.79
r16 &age:22-25 cash cash or post C 440 62.1 1.08 3.34 1.31 2.76 1.21 2.56

R4 r17 benefit:Y irregular cash or post A 218 79.6 1.15 4.1 1.73 0.97 2.06 0.84 1.79
r18 &age:22-25 cash cash or post C 483 65.6 0.78 3.53 1.38 1.99 1.78 2.56

rule. Although r5 has a high lift of 2.02, its LiftU and LiftV are respectively less
than “Lift of U → C” and “Lift of V → C”, which suggests that the contribu-
tion of U and V to the occurrence of C becomes less when they are combined
together. That is, for r5, U ∧ V → C is actually less interesting or useful than
U → C and V → C. Nevertheless, it does not necessarily mean that r5 is not
interesting as a part of a rule cluster, since Irule measures the interestingness of
a single rule, not that of a rule cluster.

Some selected rule clusters are shown in Table 8. The clusters are ordered
descendingly by Icluster (shown as Ic). Within each cluster, the rules are or-
dered first ascendingly by class and then descendingly by LiftV (shown as LV ).
For customers with “maritle:single, gender:F, benefit:N ” (see R2), “Arrange-
ment=irregular or withholding, Repayment=cash or post office” is associated
with class A (see r9 and r10), while “Arrangement=cash, Repayment=agent re-
covery” is associated with class C (see r14). Here, Class A is preferable than
Class B, and Class B is preferable than Class C. Therefore, for a single fe-
male customer with a new debt, if her benefit type is N, she may be encour-
aged to repay under “Arrangement=irregular or withholding, Repayment=cash
or post office”, and be persuaded not to repay under “Arrangement=cash, Re-
payment=agent recovery”. In such a way, her debt will probably be repaid more
quickly. For the above customer group of single female on benefit N, the priority
of arrangement-repayment methods is given by the rules from r9 to r14. Such
kind of knowledge is actionable in that it can help to improve policy or design
campaigns to recover debts as soon as possible.

6 Conclusions

This paper presents a new idea of combined patterns. The concepts of combined
association rules, combined rule pairs and combined rule clusters are defined; the
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interestingness of each is designed; and two kinds of redundancy are analyzed.
The proposed combined patterns are more useful and actionable than traditional
simple association rules. And our technique, which has been tested with real-
world data, has provided some interesting and helpful results.
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Abstract. Mining weighted interesting patterns (WIP) [5] is an impor-
tant research issue in data mining and knowledge discovery with broad
applications. WIP can detect correlated patterns with a strong weight
and/or support affinity. However, it still requires two database scans
which are not applicable for efficient processing of the real-time data like
data streams. In this paper, we propose a novel tree structure, called
SPWIP-tree (Single-pass Weighted Interesting Pattern tree), that cap-
tures database information using a single-pass of database and provides
efficient mining performance using a pattern growth mining approach.
Extensive experimental results show that our approach outperforms the
existing WIP algorithm. Moreover, it is very efficient and scalable for
weighted interesting pattern mining with a single database scan.

Keywords: Data mining, knowledge discovery, weighted interesting pat-
tern mining, data stream, correlated patterns.

1 Introduction

Data mining discovers hidden and potentially useful information from databases.
Frequent pattern mining [1], [2], [9], [11],[23] plays an important role in data min-
ing and knowledge discovery techniques such as association rule mining, classi-
fication, clustering, time-series mining, graph mining, web mining etc. However,
frequent pattern mining does not consider different weights for different items.
Weighted frequent pattern mining approaches [3], [4], [5], [6],[7],[8],[22] have been
proposed to overcome this problem.

Extensive growth of data gives the motivation to find meaningful weighted
frequent patterns among the huge data. Yun [5] proposed weighted interesting
patterns (WIP) by using a new measure, called weight-confidence, to mine corre-
lated weighted frequent patterns with strong weight affinity. Weight-confidence
prevents the generation of patterns with substantially different weight levels. In
that research work [5], a weight range is used to decide weight boundaries and
an h-confidence [20] is used to identify strong support affinity patterns. WIP not
only gives a balance between the two measures of weight and support, but also
considers weight affinity and/or support affinity between items within patterns
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so more correlated patterns can be detected [5]. For example, in a retail market,
it prunes the patterns like {bronze ring, gold necklace}, {jeans pant, pen} etc.
But it generates interesting patterns like {gold ring, gold necklace}, {trouser,
T-shirt}, {pen, pencil, eraser} etc. Therefore, WIP algorithm is useful for gen-
erating weighted interesting patterns very quickly compared to the traditional
weighted frequent pattern mining algorithms [3], [6], [7], [8] by pruning the non-
correlated patterns at the early stage in the mining process. However, it still
needs two database scans and therefore not suitable for efficiently processing of
the real-time data like data streams.

A data stream, where data flows in the form of continuous stream, is a con-
tinuous, unbounded and ordered sequence of items that arrive in order of time.
To find weighted interesting patterns from data streams, we no longer have the
luxury of performing multiple data scans. Once the streams flow through, we lose
them. In recent years, many applications generate data streams in real time, such
as sensor data generated from sensor networks, transaction flows in retail chains,
web record and click streams in web applications, performance measurement in
network monitoring and traffic management, call records in telecommunications,
and so on.

Motivated from these real world scenarios, we develop a single-pass approach
to mine weighted interesting patterns. In this paper, we propose a novel tree
structure SPWIP-tree (Single-pass Weighted Interesting Pattern tree), that cap-
tures database information using a single-pass of database without any restruc-
turing operation. It exploits the pattern growth mining approach [9] to avoid
the level-wise candidate generation-and-test [1], [2] problem. Our comprehensive
experimental results on both real-life and IBM synthetic datasets show that our
SPWIP-tree outperforms the WIP algorithm.

The remainder of this paper is organized as follows. In Section 2, we describe
background and related work. In Section 3, we develop our proposed tree struc-
ture SPWIP-tree for weighted interesting pattern mining. Here, we also show
the mining process of the SPWIP-tree. In Section 4, our experimental results
are presented and analyzed. Finally, in Section 5, conclusions are drawn.

2 Background and Related Work

2.1 Preliminaries

We have adopted similar definitions presented in the previous works [3], [4], [5].

Definition 1 (Weight of a pattern). A weight of an item is a non-negative
real number which is assigned to reflect the importance of each item in the
transaction database. For a set of items I = {i1, i2, ......in}, weight of a pattern
P{x1, x2, .......xm} is given as follows:

Weight(P) =

∑length(P )
q=1 Weight(xq)

length(P )
(1)
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Table 1. An example of transaction database with weight table

Definition 2 (Weighed support of a pattern). A weighted support of a
pattern is defined as the resultant value of multiplying the pattern’s support
with the weight of the pattern. So the weighted support of a pattern P is given
as follows:

Wsupport(P) = Weight(P) × Support(P) (2)

Definition 3 (Weighed frequent pattern). A pattern is called a weighted
frequent pattern if the weighted support of the pattern is greater than or equal
to the minimum threshold.

Example 1. Consider the example database in Table 1(a) and the weight for
each item in Table 1(b). Pattern “ab” has support 4, as it occurred in T1, T2, T3
and T5. According to the equation 1 and 2, Weight(ab) = (0.6 + 0.5)/2 = 0.55
and Wsupport(ab) = 0.55 × 4 = 2.2 respectively. If the minimum Wsupport
(min Wsup) is 1.6, pattern “ab” is a weighted frequent pattern according to
definition 3.

Definition 4 (Weight confidence of a pattern). The weight confidence of
a pattern P{x1, x2, .......xm}, is denoted as Wconf(P), is a measure that reflects
the overall weight affinity among items within the pattern. This measure is
defined as

Wconf(P) =
Min1≤j≤m(Weight{xj})
Max1≤k≤m(Weight{xk})

(3)

Definition 5 (Hyperclique confidence of a pattern). The hyperclique
confidence of a pattern P{x1, x2, .......xm}, is denoted as Hconf(P), is a mea-
sure to calculate support affinity among items within a pattern. This measure is
defined as

Hconf(P) =
Support{x1, x2, .....xm}
Max1≤k≤m(Support{xk})

(4)
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Definition 6 (Weighted interesting pattern). A pattern is defined as a
weighted interesting pattern if

1. The Wsupport of the pattern is no less than a min Wsup
2. The Wconf of the pattern is no less than a min Wconf
3. The Hconf of the pattern is no less than a min Hconf

Example 2. Consider the example database in Table 1(a), the weight for each
item in Table 1(b), min Wsup = 1.6, min Wconf = 0.6 and min Hconf = 0.7.
According to definition 4 and 5, pattern “ab” has Wconf = 0.5/0.6 = 0.833, and
Hconf = 4/4 = 1 respectively. We have already calculated Wsupport(ab) = 2.2
in example 1. As a result, according to definition 6, it is a weighted interesting
pattern. On the other hand, pattern “ad” has Wsupport = {(0.6+0.3)/2}×4 =
0.45× 4 = 1.8, Wconf = 0.3/0.6 = 0.5 and Hconf = 4/5 = 0.8. Therefore, it is a
weighted frequent pattern but not a weighted interesting pattern (as its Wconf
≤ min Wconf ).

2.2 The Main Challenging Problem

The main challenging problem of weighted frequent pattern mining and weighted
interesting pattern mining is, weighted frequency of an itemset (or a pattern)
does not have the downward closure property [1], [2]. This property tells that if a
pattern is infrequent then all of its super patterns must be infrequent Consider
the example database in Table 1(a), the weight for each item in Table 1(b),
min Wsup = 1.8, min Wconf = 0.6 and min Hconf = 0.7. Pattern “d” is not
a weighted interesting pattern, as Wsupport(d) = 0.3 × 5 = 1.5 ≤ 1.8. But
its super pattern “bd” is a weighted interesting pattern as it has Wsupport =
(0.5+0.3)/2×4 = 0.4×4 = 1.6, Wconf = 0.3 / 0.5 = 0.6 and Hconf = 4/5 =
0.8.

The downward closure property can be maintained by multiplying each pat-
tern’s frequency by the global maximum weight. In the above example, item “a”
has the maximum weight of 0.6, and by multiplying it with the frequency of item
“d”, 3.0 can be obtained. So, pattern “d” is not pruned at the early stage and
pattern “bd” is not missed. At the final stage, this overestimated pattern “d” is
pruned finally by using its actual weighted frequency.

2.3 Related Work

The Apriori [1], [2] algorithm is the initial solution for the frequent pattern
mining problem, but it suffers from the level-wise candidate generation-and-test
problem and requires several database scans. FP-growth [9] solved this problem
by using a FP-tree based solution without any candidate generation and using
only two database scans. Some other research [10], [11], [16], [20], [21], [23] has
been done for frequent pattern mining. The traditional frequent pattern mining
considers an equal profit/weight for all items.



408 C.F. Ahmed et al.

In the very beginning, some weighted frequent pattern mining algorithms
MINWAL [6], WARM [7] and WAR [8] have been developed based on the Apriori
[1], [2] algorithm using level-wise candidate generation-and-test mechanism. Ob-
viously, these algorithms used multiple database scans and very slow in running
time. WFIM [3] is the first FP-tree based weighted frequent pattern algorithm
using two database scans and a static database. They have used a minimum
weight and a weight range. Items are given fixed weights randomly from the
weight range. They have arranged the FP-tree in the weight ascending order
and they maintained the downward closure property on that tree. WLPMINER
[4] algorithm finds weighted frequent patterns using length decreasing support
constraints. WCloset [22] is proposed to calculate the closed weighted frequent
patterns.

To find out not all the weighted frequent patterns but few weighted interest-
ing patterns, a new measure weight-confidence is proposed to measure strong
weight affinity patterns. This algorithm is known as weighted interesting pat-
tern mining WIP [5] algorithm. They have used another measure hyperclique-
confidence [20] to measure strong support affinity patterns. So, they have used
actually three pruning conditions to find out these types of interesting patterns,
(1) the weighted minimum threshold (which is used by WFIM), (2) the weight-
confidence and (3) the hyperclique-confidence. However, WIP uses two database
scans which are not suitable for stream data processing.

Some other mining algorithms [12], [13], [14], [15], [23] have been developed to
find out frequent patterns over a data stream in real time. They used single-pass
mining operation and showed that their approaches are quite efficient for frequent
pattern mining using the recently available gigabyte range of memory. However,
these solutions are not applicable for weighted interesting pattern mining. In
this paper, we propose a single-pass approach for mining weighted interesting
patterns.

3 Our Proposed Tree Structure

3.1 Construction

In this section, we describe the construction process of our proposed tree struc-
ture SPWIP-tree (Single-pass Weighted Interesting Pattern tree) using a single-
pass of database. Header table is maintained in our tree structure to keep an item
order. Each entry in a header table explicitly maintains item-id, frequency and
weight information for each item. However, each node in a tree only maintains
item-id and frequency information. To facilitate the tree traversals adjacent links
are also maintained (not shown in the figures for simplicity) in our tree structure.

Consider the example database of Table 1. At first we create the header table
and keep all the items in weight ascending order. After that we scan the trans-
actions one by one, sort the items in a transaction according to the header table
sort order and then insert into the tree. The first transaction T1 has the items
“a”, “b”, “c”, “d”, and “g”. After sorting, the new order will be “c”, “d”, “g”,
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Fig. 1. SPWIP-tree construction

“b” and “a”. Fig. 1(a) shows the SPWIP-tree after inserting T1. Fig. 1(b) shows
the SPWIP-tree after inserting T2. In the same way all the transactions up to T6
are inserted into the tree. Fig. 1(c) shows the final SPWIP-tree after inserting
T6. The following properties are true for the SPWIP-tree.

Property 1. The total count of frequency value of any node in the SPWIP-tree
is greater than or equal to the sum of total counts of frequency values of its
children.

Property 2. The SPWIP-tree can be constructed in a single-pass of database.

3.2 Mining Process

In this section, at first we describe the mining process of our proposed SPWIP-
tree using a pattern growth approach. As discussed in Section 2.2, the main
challenging problem in this area is, the weighted frequency of an itemset does
not have the downward closure property and to utilize this property we have
to use the global maximum weight. The global maximum weight, denoted by
GMAXW, is the maximum weight of all the items in the whole database. For
example, in Table 1(b), the item “a” has the global maximum weight of 0.6.
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Fig. 2. Mining process

Too many candidate patterns are generated if we use GMAXW throughout
the mining process. By using the local maximum weight, denoted by LMAXW,
we can reduce huge number of candidate patterns and also it is capable of main-
taining the downward closure property. As SPWIP-tree is sorted in weight as-
cending order, LMAXW is reducing from bottom to top and the probability
of a pattern to be a candidate is also reduced. This is one big advantage we
can achieve in the bottom-up mining operation by using LMAXW. For exam-
ple, after mining the weighted interesting patterns prefixing the item “a”, when
we go for the mining operation prefixing the item “b”, then the item “a” will
never come in any prefix/conditional trees. As a result, now we can easily as-
sume that the item “b” has the maximum weight. This type of maximum weight
in mining process is known as LMAXW. In Table 1, LMAXW for the bottom-
most item “a” is 0.6 (which is also GMAXW ). After that, LMAXW of the item
“b” is 0.5 and in the same way we can calculate the LMAXW for the other
items.

Consider the example database in Table 1(a), the weight for each item in Table
1(b), the SPWIP-tree constructed for that database in Fig. 1, min Wsup = 2.0,
min Wconf = 0.6 and min Hconf = 0.8. Here the GMAXW = 0.6, and after
multiplying the frequency of each item with GMAXW, the weighted frequency
list is <f :1.8, c:2.4, d :3.0, h:1.2, g:1.8, b:2.4, a:2.4>. As a result, the candidate
items are “c”, “d”, “b” and “a”. Now we construct the prefix and conditional
trees for these items in a bottom-up fashion and mine the weighted interesting
patterns.

At first the prefix tree of the bottom-most item “a” (shown in Fig. 2(a)) is
created by taking all the branches prefixing the item “a”. We can eliminate the
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Table 2. Candidate pruning in the first round

No. Candidate Wsupport Wconf Hconf Result
patterns (maximum)

1 ac 0.6 × 3 = 1.8 0.3/0.6 = 0.5 3/4 = 0.75 Pruned
2 ad 0.6 × 4 = 2.4 0.3/0.6 = 0.5 4/5 = 0.8 Pruned
3 ab 0.6 × 4 = 2.4 0.5/0.6 = 0.83 4/4 = 1 Pass
4 bc 0.5 × 3 = 1.5 0.3/0.5 = 0.6 3/4 = 0.75 Pruned
5 bd 0.5 × 4 = 2.0 0.3/0.5 = 0.6 4/5 = 0.8 Pass
6 cd 0.3 × 3 = 0.9 0.3/0.3 = 1 4/5 = 0.8 Pruned

Table 3. Candidate pruning in the final round

No.
Candidate Wsupport

Resultpatterns (actual)
1 ab ({0.6+0.5}/2 × 4) = 2.2 Pass
2 a 0.6 × 4 = 2.4 Pass
3 bd ({0.5+0.3}/2 × 4) = 1.6 Pruned
4 b 0.5 × 4 = 2.0 Pass
5 c 0.3 × 4 = 1.2 Pruned
6 d 0.3 × 5 = 1.5 Pruned

global non-candidate items “f ”, “h” and “g” without any calculation. For item
“a”, LMAXW = 0.6 and we can get the weighted frequency list for the item
“a” by multiplying the other item’s frequency with LMAXW. Obviously this
weighted frequency is the maximum possible weighted frequency of an itemset
prefixing the item “a”. So, we have to take all the patterns as a candidate
having maximum weighted frequency greater than or equal to min Wsup. Table
2 shows the candidate pruning in the first round. For the candidate patterns
prefixing item “a”, only the pattern “ab” can pass all the three tests. Therefore,
conditional tree of the item “a” is created from its prefix tree by deleting all the
nodes except the nodes containing the item “b”. Four nodes of its prefix tree
containing the item “b” are merged finally to form its conditional tree (shown
in Fig. 2(b)). Candidate pattern “ab” is promoted here for the final step.

For the item “b” the LMAXW = 0.5 as the item “a” will not come out here.
The prefix and conditional trees of the item “b” have been generated in the
same way and shown in Fig. 2(c) and Fig. 2(d) respectively. Table 2 shows the
candidate pattern “bd” is promoted for the final step. For item “bd” the LMAXW
= 0.3 and its prefix tree is shown in Fig. 2(e). Table 2 shows that it does not
have any candidate pattern to form its conditional tree. We have to test all
the candidate patterns with their actual weights and the weighted frequency in
the final round and mine the actual weighted interesting patterns. Table 3 shows
the pruning process of the final round including the single-element patterns.
Finally, the actual weighted interesting patterns are “a”,“b” and “ab”.
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Fig. 3. Performance on the mushroom dataset

4 Experimental Results

To evaluate the performance of our proposed tree structure, we have performed
several experiments on IBM synthetic dataset T10I4D100K, real-life mushroom
and kosarak datasets [18], [19]. These datasets do not provide the weight values
of each item. As like the performance evaluation of the previous weight based fre-
quent pattern mining [3], [4], [5], [7], [8], [22] we have generated random numbers
for the weight values of the items, ranging from 0.1 to 0.9. Our programs were
written in Microsoft Visual C++ 6.0 and run with the Windows XP operating
system on a Pentium dual core 2.13 GHz CPU with 1GB main memory.

The dataset mushroom contains 8,124 transactions and 119 distinct items. Its
mean transaction size is 23, and it is a dense dataset. Fig. 3 shows the evaluation
results for the mushroom dataset. We have given the performance differences by
applying variable minimum weighted thresholds and minimum weight confidence
thresholds. In Fig. 3(a), we have presented the performance result of our SPWIP-
tree in comparison with the WIP algorithm using different minimum weighted
thresholds. Minimum weight confidence and hyperclique confidence thresholds
are 60% and 70% respectively. Similarly, Fig. 3(b) shows the performance com-
parison using different minimum weight confidences by using fixed minimum
weighted threshold (20%)and hyperclique confidence threshold (70%). In all the
cases, our SPWIP-tree outperforms the WIP algorithm by means of using a
single database scan. However, the runtime difference is increasing when the
minimum threshold is decreasing.

The T10I4D100K dataset contains 100,000 transactions and 870 distinct
items. Its mean transaction size is 10.1, and it is a sparse dataset. Fig. 4(a) and
4(b) show the experimental results using variable minimum weighted threshold
and minimum weight confidence threshold respectively. Like mushroom dataset,
SPWIP-tree outperforms the WIP algorithm in all the cases.

We have tested the effectiveness of the SPWIP-Tree in stream data mining
on the kosarak dataset. The dataset kosarak was provided by Ferenc Bodon
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and contains click-stream data of a Hungarian on-line news portal [18], [19]. It
contains 990,002 transactions and 41,270 distinct items. Its mean transaction size
is 8.1, and it is a large sparse dataset. At first, we created the SPWIP-Tree for
0.2 million transactions of this dataset, and then performed a mining operation
with min Wsup = 5%, min Wconf = 50%, and min Hconf = 60%. Another
0.2 million transactions were added in the tree and the mining operations were
performed again with the same minimum thresholds. In the same manner, all of
the transactions in the kosarak dataset were added and the mining operation was
performed in the SPWIP-Tree for each stage with the same minimum thresholds
as shown in Fig. 5.

The existing WIP algorithm can not take any advantage from its tree structure
when the dataset is increasing for stream data. For example, when the dataset
size is 0.2 million transactions, tree structure of the WIP algorithm contains only
the candidate patterns for the user given minimum thresholds. After that, when
the dataset size is increased to 0.4 million transactions, it has to build its tree
structure again from the very beginning using two database scans. Therefore,
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the WIP algorithm is not efficient for stream data mining. Fig. 5 shows that
SPWIP-Tree outperforms the WIP algorithm in stream data mining.

It is also shown in Fig. 5 that SPWIP-Tree has efficiently handled the 41,270
distinct items and around 1 million transactions in the real-life kosarak dataset.
Therefore, this experimental result demonstrates the scalability of SPWIP-Tree
to handle a large number of distinct items and transactions.

Many prefix tree based single-pass frequent mining research works [15], [16],
[17], [21], [23] showed that the memory requirement for the prefix trees is low
enough to use the gigabyte range memory now available. We have also handled
our SPWIP-tree very efficiently within this memory range. Memory requirement
of the SPWIP-tree constructed for the full mushroom, T10I4D100K and kosarak
datasets are 0.692 MB, 14.285 MB and 148.762 MB respectively. Therefore,
SPWIP-tree structure is efficient for the weighted interesting pattern mining
using the recently available gigabyte range memory.

5 Conclusions

Weighted interesting pattern mining discovers very useful patterns with a strong
weight and/or support affinity. However, the existing method WIP requires two
database scans and therefore not applicable for efficient stream data mining.
The main contribution of this paper is to provide a novel tree structure SPWIP-
tree for single-pass weighted interesting pattern mining. It can handle the whole
database information using a single scan of database and therefore applicable
for stream data mining. It exploits a pattern growth mining approach to avoid
the level-wise candidate generation-and-test problem. It is easy to construct
and handle as it does not need any restructuring operation. Our comprehen-
sive experimental results on both real-life and IBM synthetic datasets show that
SPWIP-tree outperforms the existing WIP algorithm. Moreover, it is very effi-
cient and scalable for single-pass weighted interesting pattern mining.
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Abstract. This paper examines a new approach to information filtering
by using data mining method. This new model consists of two compo-
nents, namely, topic filtering and pattern taxonomy mining. The aim of
using topic filtering is to quickly filter out irrelevant information based
on the user profiles. The aim of applying pattern taxonomy mining tech-
niques is to rationalize the data relevance on the reduced data set. Our
experiments on Reuters RCV1(Reuters Corpus Volume 1) data collec-
tion show that more effective and efficient information access has been
achieved by combining the strength of information filtering and data
mining method.

1 Introduction

A personalized information access system fulfils the personalization information
delivery by filtering out irrelevant information and/or identifying additional in-
formation of likely interest for the user based on the tailored user profiles. Most
popular profiles are term-base profiles, such as probabilistic models [1], rough set
models [2], BM25 [3] filtering models. The advantage of term-based profiles is ef-
ficient computational performance as well as mature theories for term weighting,
which have emerged over the last couple of decades from the IR and machine
learning communities. However, term-based profiles suffer from the problems
of polysemy and synonymy. In addition, the threshold for accepting or rejecting
documents is usually determined empirically. As IF systems are sensitive to data
sets, it is a challenge to set the optimal threshold.

Many data mining techniques have been developed in order to underpin the IF
system. However, the existing data mining techniques return numerous discov-
ered patterns (knowledge) from a training set. Among these patterns, there are
many meaningless patterns and many redundant patterns [4]. Pattern taxonomy
model (PTM) [5] is a new approach of information gathering. Many up-to-date
data mining techniques (e.g., sequential association rules, closed-pattern based
non-redundant association rules) have been intergraded into this method. The
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PTM-based method used the pattern taxonomy rather than single word to rep-
resent user profiles and documents. However, pattern taxonomy mining is very
sensitive to the noisy data (i.e. irrelevant documents).

To address the limitations of pattern taxonomy based approaches, a novel IF
model which integrates topic filtering and pattern taxonomy mining strategies
to provide more precise document filtering has been developed. The idea of
integrating topic filtering into pattern taxonomy mining for information filtering
has evolved from these two well established, but largely disparate fields. This
proposed method intends to exploit the advantages of term-based approaches
(IR) and pattern-based approaches (data mining) within the one system.

The remainder of the paper is organized as follows. Section 2 briefly intro-
duces some related research works. Pattern taxonomy mining framework is then
illustrated in Section 3. The empirical results will be reported in Section 4. The
concluding remarks are given in Section 5.

2 Related Work

An Information Filtering (IF) [6] system monitors an incoming document stream
to find the documents that match information needs of users. As the quality of
the profiles directly influences the quality of information filtering, the issue of
how to built accurate, reliable profiles is a crucial concern [7].

Traditional IF uses single-vector or multi-vector models which produce one
term-weight [8] or more than one term-weight vectors [7] to represent the rele-
vant information of the topic of likely interest for a user. There is a term “inde-
pendence” assumption in those models. In contrast, discovering the association
between a set of terms and a category (e.g., a term or a set of terms) is an
important task in data mining. The current association discovery approaches
include maximal patterns [9], sequential patterns [10], and closed patterns [11].
The main problem in most pattern discovery algorithms is that the system gen-
erates too many patterns while only a few of them are useful. Moreover, how to
use the discovered patterns efficiently for decision making is another challenge.

3 Pattern Taxonomy Mining Framework

3.1 Basic Definitions

Let D be a training set of documents, which consists of a set of positive doc-
uments, D+; and a set of negative documents, D−. Let T = {t1, t2, . . . , tm} be
a set of terms (or keywords) which are extracted from the set of positive docu-
ments, D+. A set of terms is referred to as a termset. Given a positive document
di and a term t, tf(di, t) is defined as the number of occurrences of t in di.

A set of term frequency pairs

pdi = {(t, f)|t ∈ T, f = tf(t, di) > 0}

is referred to as an initial r-pattern (rough pattern) in this paper.
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Let termset(p) = {t|(t, f) ∈ p} be the termset of p. In this paper, r-pattern
p1 equals to r-pattern p2 if and only if termset(p1) = termset(p2). A r-pattern
is uniquely determined by its termset. Two initial r-patterns can be composed if
they have the same termset. In this paper, the composition operation, ⊕, that
defined in [12] is used to compose r-patterns.

Based on the above definitions, a set of composed r-patterns in D+, can be
obtained: RP = {p1, p2, . . . , pr}, where r ≤ n, and n = |D+| is the number of
positive documents in D. The support of a r-pattern pi is the fraction of the
initial r-patterns that are composed to form pi.

Formally the relationship between r-patterns and terms can be described as
the following association mapping if term frequencies are considered:

β : RP → 2T×[0,1] − {∅}, such that (1)

β(pi) = {(t1, w1), (t2, w2), . . . , (tk, wk)},

where pi = {(t1, f1), (t2, f2), . . . , (tk, fk)} ∈ RP and wi = fi�k
j=1 fj

, and β(pi) is

called the normal form of r-pattern pi in this paper. The association mapping β
can derive a probability function for the term weight distribution on T in order
to show the importance of terms in the positive documents, which satisfies:

prβ(t) =
∑

pi∈RP,(t,w)∈β(pi)

support(pi) × w, for all t ∈ T (2)

Now, a positive document di can be described as an event that represents
what users want with the probability value: pr(di) =

∑
t∈d∩T prβ(t).

3.2 Topic Filtering Stage

Pattern taxonomy mining (PTM [5])is sensitive to the noisy data. This is because
of that patterns have low frequency of occurrence, a small min sup has to be
used in order to find interesting patterns. The consequence is that some noise
terms and their combinations (patterns) are also retained and that make some
negative documents obtain large weights in pattern mining model.

In response to this, a topic filtering model was developed. Based on the rough
set theory [13], the decision rules for the partitioning of the incoming document
stream into the positive, boundary, and negative regions have been developed for
an IF model in [2]. The theory has been further developed for setting thresholds
to determine relevant information in [14]and [12].

Let di ∈ D+ be a positive document and d be an incoming document. The
basic assumption for the rough-set based approach is that d is possibly relevant
if di ⊇ d. The set of all document d such that di ⊆ d is called the covering set
of di.

The union of all covering sets of all di ∈ D+ is called the positive region
(POS ) of incoming documents. The set of all documents d such that ∃di ∈
D+ ⇒ di ∩ d = ∅ is called the boundary region (BND). Also, the set of all
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documents d such that ∀di ∈ D+ ⇒ di ∩ d = ∅ is called the negative region
(NEG).

Given a document d, the decision rules can be determined ideally as follows:

∃di ∈ D+ ⇒ di ⊆ d
d ∈ POS , and

∃di ∈ D+ ⇒ di ∩ d = ∅
d ∈ BND , and

∀di ∈ D+ ⇒ di ∩ d = ∅
d ∈ NEG .

The theory also recommended a method to theoretically determine thresholds
for finding relevant documents if there is a probability function pr for terms in
T . For example, in [14], this function was defined as

pr(t) =
1
n

∑
di∈D+,t∈di

1
|di ∩ T |

, for terms t ∈ T

In the topic filtering stage, the positive documents in the training set have
been represented as r-patterns and discovered r-patterns are employed to filter
out most irrelevant documents rather than to identify relevant documents. The
basic assumption is that document d is irrelevant if it is not closed to the common
feature of the positive documents in the training set. Therefore, the threshold
can determined as follows:

threshold = m+ γ(σ + skew) (3)

where,m is the mean of the probabilities of positive documents in D+, m =
1
n

∑
di∈D+ pr(di); γ is an experimental coefficient; σ is the standard deviation of

the probabilities of positive documents

σ =
√

1
n

∑
di∈D+

(pr(di) −m);

and skew is the skewness of the probabilities

skew =
√
n
∑

di∈D+ (pr(di) −m)3

(
∑

di∈D+ (pr(di) −m)2)
3
2
.

3.3 Pattern Mining Stage

The concept of frequent and closed pattern [5] is also suitable for sequential
patterns. A sequential pattern s =< t1, . . . , tr > (ti ⊆ T ) is an ordered list of
terms. A sequence s1 =< x1, . . . , xi > is a sub-sequence of another sequence
s2 =< y1, . . . , yj >, denoted by s1 ⊆ s2, iff ∃j1, . . . , jy such that 1 ≤ j1 <
j2 . . . < jy ≤ j and x1 = yj1 , x2 = yj2 , . . . , xi = yjy . Patterns can be organized
into a taxonomy by using the is a (or “subset”) relation. We use the method
developed by Wu and his colleagues to build a pattern taxonomy. For detail
information about this method please refer to [5].

For calculating a specificity value for each pattern a term’s support is needed
to evaluated first. The evaluation of term supports (weights) is different to the
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normal term-based approaches. In the term based approaches, a component of a
given term’s weighting is based on its appearance in documents. In the following,
terms are weighted according to their appearance in discovered patterns.

Formally, for all positive document di ∈ D+, its closed patterns are deployed
onto a common set of terms T in order to obtain the following r-patterns:

−→
di =< (ti1 , ni1), (ti2 , ni2), . . . , (tim , nim) > (4)

where tij in pair (tij , nij ) denotes a single term and nij is its support in di which
is the number of closed patterns that contain tij .

These r-patterns are composed by using an association mapping (see Eq. 2),
and then the supports of the terms in D+ are calculated.

To improve the efficiency of the mining of the pattern taxonomy, an algorithm,
SPMining, was proposed in [5] to find all closed sequential patterns, which used
the well known Apriori property in order to reduce the searching space.

Algorithm PTM2 describes the training process of pattern taxonomy mining.
For every positive document, the SPMining algorithm is first called in step (2)
giving rise to a set of closed sequential patterns SP . Additionally, all discovered
patterns in a positive document are composed into an r-pattern giving rise to a
set of r-patterns RP in step (2). Thereafter in step (3), the support is calculated
for all terms that appear in the r-patterns. Finally, in step (4), the normal forms
β(p) for all r-pattern p ∈ RP is used.

Algorithm PTM2 (D+, min sup)
Input: D+; minimum support, min sup.
Output: a set of r-patterns RP , and supports of terms.
Method:
(1) RP = ∅;
(2) for (document d ∈ D+) {

let DP be the set of paragraphes in d;
//sequential pattern mining in a set of paragraphes
SP = SPMining(DP, min sup);
−→
d = ∅;
for (pattern pi ∈ SP ) {

p = {(t, 1)|t ∈ pi};−→
d = −→

d ⊕ p }
RP = RP ∪ {−→

d } }
(3) T = {t|(t, w) ∈ p, p ∈ RP};

for (term t ∈ T ) support(t) = 0;
(4) for (r-pattern p ∈ RP )

for ((t, w) ∈ β(p))
support(t) = support(t) + w;

After the support of terms have been computed from the training set, a given
pattern’s specificity to the given topic can be defined as follows:

spe(p) =
∑
t∈p

support(t).
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It is also easy to verify spe(p1) ≤ spe(p2) if p1 is a sub-pattern of pattern p2.
This property shows that a document should be assigned a large weight if it
contains large patterns. Based on this observation, the following weight will be
assigned to a document d for ranking documents in pattern taxonomy model:

weight(d) =
∑
t∈T

support(t)τ(t, d).

4 Experimental Evaluation

Reuters Corpus Volume 1 (RCV1) was used to test the effectiveness of the pro-
posed model. TREC (2002) has developed and provided 100 topics for the fil-
tering track aiming at building a robust filtering system. All 100 topics have
been used to represent the users’s interested topics. The documents are treated
as plain text documents by preprocessing the documents. The tasks of removing
stop-words according to a given stop-words list and stemming term by applying
the Porter Stemming algorithm are conducted. For each topic, 150 terms in the
positive documents were chosen based on if*idf values for all term based models.

Table 1. Results of SVM, PTM and TSTM on 100 topics, where % means the per-
centage change in performance

SVM PTM TSTM %chg
b/p 0.450 0.454 0.552 +21.6

MAP 0.467 0.475 0.574 +20.8
Fβ=1 0.452 0.453 0.514 +13.5

The new model is called Two-Stage Text Mining model (TSTM). Information
filtering can also be regarded as a special instance of text classification [8]. SVM
is a statistical method that can be used to find a hyperplane that best separates
two classes. SVM achieved the best performance on the Reuters-21578 data
collection for document classification [15]. SVM and the original PTM model [5]
are our baseline models.

The standard measure such as F-beta (Fβ = 1) measure, Mean Average Pre-
cision (MAP), the break-even point (b/p) measure were used to evaluate the
results. The results for the IR/IF standard measure methods are shown in the
table 1. As shown in Table 1, the performance of TSTM model is better than
SVM and PTM model. Therefore, we conclude that the topic filtering stage is
very useful for removing the “noises” in the incoming documents.

5 Conclusions

This paper illustrates a new model which integrates topic filtering and pat-
tern taxonomy mining together to alleviate information overload and mismatch
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problems. The proposed method has been evaluated using the standard TREC
routing framework with encouraging results.

Compared with SVM and PTM based methods, the results of experiments on
RCV1 collection demonstrate that the performance of information filtering can
be significantly improved by the proposed new model. The substantial improve-
ment is mainly due to the threshold applied to the topic filtering first stage and
the “semantic” nature of patterns in the second stage. This research provides a
promising methodology for using patterns in information filtering.
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Abstract. Although Artificial Intelligent (AI) techniques have been
used in various applications, their use in maintaining security in Sta-
tistical DataBases (SDBs) has not been reported. This paper presents
results, that to the best of our knowledge is pioneering, by which con-
cepts from causal networks are used to secure SDBs. We consider the
Micro-Aggregation Problem (MAP ) in secure SDBs which involves par-
titioning a set of individual records in a micro-data file into a number of
mutually exclusive and exhaustive groups. This problem, which seeks for
the best partition of the micro-data file, is known to be NP-hard, and
has been tackled using many heuristic solutions. In this paper, we would
like to demonstrate that in the process of developing Micro-Aggregation
Techniques (MATs), it is expedient to incorporate AI-based causal in-
formation about the dependence between the random variables in the
micro-data file. This can be achieved by pre-processing the micro-data
before invoking any MAT , in order to extract the useful dependence in-
formation from the joint probability distribution of the variables in the
micro-data file, and then accomplishing the micro-aggregation on the
“maximally independent” variables. Our results, on artificial life data
sets, show that including such information will enhance the process of
determining how many variables are to be used, and which of them should
be used in the micro-aggregation process.

1 Introduction

The traditional methods used to ensure and preserve security and privacy in Sta-
tistical DataBases (SDBs) involves methods akin to the field of probability and
statistical analysis. As far as we know the use of AI techniques to resolve these
problems are unreported. In this paper, we present some pioneering AI-based
causal methods to preserve privacy in SDBs. From a birds-eye perspective, this
strategy works as follows: The relationship between the variables of the SDBs
are considered as nodes in a causal network. From this perspective we hypoth-
esize that the inter variable dependence is crucial in determining the way to
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micro-aggregate the variables in the MAT. To achieve this, we involve an AI-
based causal analysis to obtain the best dependence tree relating them. Once this
information is gleaned, it is used to micro-aggregate the data, so that when the
user requests information s/he is given as much information as absolutely crucial,
but, is simultaneously, prevented from inferring the identity of the records asso-
ciated with the data. The results what we have obtained on testing the method
on artificial databases clearly demonstrate the power of our strategy.

A lot of attention has recently been dedicated to the problem of maintaining
the confidentiality of statistical databases through the application of statistical
tools, so as to limit the identification of information on individuals and enter-
prises. Statistical Disclosure Control (SDC) seeks a balance between the con-
fidentiality and the data utility criteria. Therefore, optimizing the Information
Loss (IL) and the Disclosure Risk (DR) so as to reach an equilibrium point
between them is not an easy task [1].

Micro-aggregation is one of the most recent techniques that has been used
to mask micro-data files with the intention of protecting them against re-
identification in secure statistical databases [3].

The Micro-Aggregation Problem (MAP ), as formulated in [3,6], can be stated
as follows: A micro-data set U = {U1, U2, . . . , Un} is specified in terms of the n
“micro-records”, namely the U ′

is, each representing a data vector whose com-
ponents are d continuous variables. Each data vector can be viewed as Ui =
[ui1, ui2, . . . , uid]T , where uij specifies the value of the jth variable in the ith

data vector. Micro-aggregation involves partitioning the n data vectors into,
say m, mutually exclusive and exhaustive groups so as to obtain a k-partition
Pk = {Gi | 1 ≤ i ≤ m}, such that each group, Gi, of size, ni, contains either
k data vectors or between k and 2k − 1 data vectors.

The optimal k-partition, P
∗

k, is defined to be the one that maximizes the
within-group similarity, which is defined as the Sum of Squares Error, SSE =∑m

i=1
∑ni

j=1(Xij −X̄i)T (Xij −X̄i). This quantity is computed on the basis of the
Euclidean distance of each data vector Xij to the centroid X̄i of the group to
which it belongs. The Information Loss is measured as IL = SSE

SST , where SST is
the squared error that would result if all records were included in a single group,
and is given as SST =

∑m
i=1

∑ni

j=1(Xij − X̄)T (Xij − X̄), where X̄ = 1
n

∑n
i=1Xi.

As mentioned in the literature, this problem in its multi-variate setting is
known to be NP -hard [8], and has been tackled using different approaches such
as hierarchical clustering [3], genetic algorithms [3,13], graph theory [6,7], fuzzy
clustering [14], machine learning [5], and neural network [9]. All the heuristic
Micro-aggregation Techniques (MATs), seek to minimize the value of the IL.
However, minimizing the loss in the data utility is an important issue, which is
difficult to enforce, primarily because this strategy was intended to enhance the
security in an SDC technique.

Understanding the presence and structure of dependency between a set of ran-
dom variables is a fundamental problem in the design and analysis of many types of
systems including filtering, pattern recognition etc. As far as we know its applica-
tion in SDC has been minimal. Utilizing this information is the goal of this paper.
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In general, the result of the multi-variateMATs depends on the number of vari-
ables used in the micro-aggregation process. In other words, deciding on the num-
ber of variables to be taken into account, and on the identity of the variables to be
micro-aggregated, is far from trivial, although some initial results and conjectures
are given in [4,11]. The unanswered question is that of inferring which variables
should be used in this process. We believe that a solution to this puzzle lies in the
inter-variable “dependence” information. Our aim is to seek a systematic process
by which we can choose the desired variables automatically and micro-aggregate
the file. We propose a scheme by which we can determine the “maximally inde-
pendent” variables in the subsequent multi-variate micro-aggregation.

The structure of this paper is as follows: In Section 2 the enhanced micro-
aggregation dependence is presented informally. Then, in Section 3, we present
the results of experiments we have carried out for artificial data sets. The paper
finishes in Section 4 with some conclusions.

2 Enhancing Micro-aggregation with Dependence

It is well-known that the result of the multi-variate MATs depends on the
number and the identity of the variables used in the micro-aggregation process.
Since multi-variate micro-aggregation using two or three variables at a time
offers the best trade-off between the IL and the DR [4], we hope to minimize
the time needed to evaluate the distance between a single micro-data record and
the mean of the group it belongs to. This computation involves evaluating

D(X,Y ) =

√√√√ d∑
i=1

(xi − yi)2. (1)

where X and Y are two multi-variate data vectors with their components being
{xi} and {yi} respectively, and d represents the dimension of the space. Searching
over all possible subsets of variables is combinatorially hard.

As argued in the unbridged version of the paper, the key idea in choosing a
sub-set of the variables by avoiding the combinatorial solution, should be based
on the dependence model of the micro-data file. This will, in turn, reduce the
dimensionality1 of the space to d′ < d. The new distance that will thus be
computed will be:

D′(X,Y ) =

√√√√ d′∑
i=1

(xi − yi)2 where d′ < d. (2)

The reduction in the dimensionality is achieved formally by maximally using
the information in the almost independent variables, and we plan to do this by
finding the best dependence tree [15,16].
1 The reader should observe that our goal is quite distinct from the reported meth-

ods of projecting the multi-dimensional space onto a single axis using a particular
variable, the sum z-scores scheme, or a principle component analysis.
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We formalize these concepts. The joint probability distribution of the random
vector V = [V1, V2, . . . , Vd]T in terms of conditional probabilities is given as

P (V) = P (V1)P (V2|V1)P (V3|V1, V2) . . . P (Vd|V1, V2, . . . , Vd−1). (3)

where each Vi is a random variable.
In (3) each variable is conditioned on an increasing number of other variables.

Therefore, estimating the kth term of this equation requires maintaining the
estimates of all the kth order marginals which is infeasible. We simplify the
dependency model by restricting ourselves to second-order marginals as [15]:

Pa(V) =
d∏

i=1

Pr(Vi|Vj(i)). (4)

where Pa(V) is the approximated form of P (V), and Vi is conditioned on Vj(i)
for 0 ≤ j(i) < i.

The dependence of the variables can be represented as a graph G = (V,E,W)
where V = {V1, V2, . . . , Vd} is a finite set of vertices, which represents the set
of random variables in the micro-data file with d dimensions, E is a finite set
of edges {〈Vi, Vj〉}, where 〈Vi, Vj〉 represents an edge between the vertices Vi

and Vj . Finally, W = {wi,j} is a finite set of weights, where wi,j is the weight
assigned to the edge 〈Vi, Vj〉 in the graph. The values of these weights can be
calculated based on a number of measures, as will be explained presently.

In G, the edge between any two nodes represents the fact that these variables
are statistically dependent [2]. In such a case, the weight, wi,j , can be assigned to
the edge as being equal to I∗(Vi, V j), the Expected Mutual Information Measure
(EMIM), metric between them, which is:

I∗(Vi, Vj) =
∑
vi,vj

Pr(vi, vj) log
Pr(vi, vj)
Pr(vi)Pr(vj)

. (5)

Any edge, say 〈Vi, Vj〉 with the edge weight I∗(Vi, Vj) represents the fact that
Vi is stochastically dependent on Vj , or that Vj is stochastically dependent on
Vi. Although, in the worst case, any variable pair could be dependent, the model
expressed by Eq.(4) imposes a tree-like dependence. It is easy to see that this
graph includes a large number of trees (actually, an ©(d(d−2)) of such spanning
trees). Each of these trees represents a unique approximated form for the density
function P (V). Chow and Liu proved that searching for the best “dependence
tree” is exactly equivalent to searching for the Maximum Spanning Tree (MST )
of the graph [2]. Further, since the probabilities that are required for computing
the edge weights are not known a priori, Valiveti and Oommen showed that
this could be achieved by estimating them in a maximum likelihood manner
[15,16]. They showed that the maximum likelihood estimate (ML) for the best
dependence tree, can be obtained by computing the MST of the graph, where
the edge weights are computed using the EMIM of the estimated probabilities.

Since these dependent variables are maximally-correlated to the variable that
they depend on, we propose to use the vertices that have the maximum num-
ber of In/Out edges in the graph to micro-aggregate the micro-file. We believe
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(a) (b) (c)

Fig. 1. (a) The fully-connected undirected graph represents the dependence between
six random variables. (b) An example of a dependence tree used to micro-aggregate
the data file containing 6 variables.

that the nodes which possess this property are the best candidates to reflect the
characteristics of the entire multi-variate data set because they connect to the
maximum number of nodes that statistically depend on it, as argued in Conjec-
ture 1. The rationale for Conjecture is omitted here in the interest of brevity.

Conjecture 1. Micro-aggregating the micro-data file can be best achieved if the
nodes which possess the maximum number of In/Out edges in the tree obtained
as the MST of the underlying graph G, are used as an input to solve the MAT .

For example, consider the set of variables in Fig. 1, where we intend to micro-
aggregate it using the Maximum Distance Average Vector (MDAV) method2.
Fig. 1.a shows the fully connected graph, G, after computing the EMIM -based
edge weights for all pairs of nodes. By using the strategy alluded to above, we
obtain a tree as in Fig. 1.b, which shows the case when the MST leads to the
ML condition, and Fig. 1.c shows that the selected sub-set of the variables.

3 Experimental Results

3.1 Data Sets

In order to verify the validity of our methodology in projecting the multi-variate
data set into a subset of random variables to be used in the micro-aggregation
process, three simulated data sets were used in the testing phase: (i) Sim 1 of
8 dimensions and 5000 records, (ii) Sim 2 of 16 dimensions and 10,000 records,
(iii) Sim 3 of 22 dimensions and 22,000 records.

The simulated data were generated or tested for various dimensions of random
vectors, as follows: First of all, the number of random variables was determined.
2 The MDAV is the first algorithm to accomplish micro-aggregation without projecting

the multi-variate data onto a single axis. It micro-aggregates the multi-variate micro-
data file based on the concept of the centroid of the data set as explained in [3,12].
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Thereafter, the “true” structure of the defined dependence tree which imposed
the dependence relationships between the variables was selected subjectively, as
shown in Fig. 2. Then the second-order marginal distributions were randomly
generated. The procedure by which these were generated was as follows: If we
define the entire space of each variable to be between 1 and 1000, this space is
sub-divided into a number of subspaces with equal width, say 100. That means
that we limit ourselves to be dealing with 10 events where each event repre-
sents a sub-interval of width equal to 100 from the entire domain as follows:
{I1 = [1, 100], I2 = [101, 200], . . . , I10 = [901, 1000]}, thus, effectively simulat-
ing a multinomial distribution. In the latter, each outcome is a random number
belonging to exactly one of the 10 sub-intervals, Ij , with probability, Pj , where
j = 1, 2, . . . , 10. If nj represents the number of occurrences of values belonging
to Ij and n represents the number of independent records, we have

10∑
i=1

ni = n,
10∑

i=1

Pi = 1, (6)

where the probability mass function of the multinomial distribution is

f(n1, n2, . . . , n10) =
n!

n!
1 n

!
2 . . . n

!
10

10∏
i=1

Pni

i . (7)

Prior to assigning the second order marginal distributions for the rest of the
tree, we had to also randomly generate 10 different probabilities for the most
independent variables (i.e. to be the root variable).

To randomly populate the file, we can now randomly assign values to the
conditional probability from the joint and marginal distributions as follows: If,
as per the assumed tree-based dependence, variable Vm, depends on variable Vn,
this means we have to define a set of probabilities, {Pnm}, when the value of Vn,
say vin, belongs to any defined sub-interval Ij given that the value of variable
Vm, say vim belongs to any sub-interval Il. Thus, Pmn = Pr(vin ∈ Ij | vim ∈ Il),
where i represents the index of the record in the micro-data file and assumes
values in {1, 2, . . . , n}. The indices j and l represent the indices of the sub-interval
where the random variable falls, and which are the result of dividing the entire
domain into 10 sub-intervals. Finally, the indices n and m represent the specific
dimensions in the micro-data file, and are in the range {1, . . . , d}, n = m.

The above procedure was implemented for all pairwise combinations of ran-
dom variables associated with the micro-data file.

3.2 Results

The experiments conducted were of three categories: In the first set of experi-
ments the intention was primarily focused on testing whether the best depen-
dence tree can be learned from the continuous micro-data file, and if it sufficiently
reflected the dependence model. In the second set of experiments, the goal was
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Fig. 2. The true structures for the simulated data sets

primarily to validate our strategy for determining the subset of variables to
micro-aggregate the micro-data file, and to study its effect on the value of the
IL. The last set of experiments considers the case when we work with continuous
vectors in which we impose the assumption of Normality to calculate the edge
weights.

Experiment Sets 1
The first set of experiments was done on simulated data sets with a known
structure of the best dependence tree which is to be inferred by the learning
algorithm3. To do this, we first scanned the micro-data file to specify the domain
space of each variable in the file, and then divided it into a number of sub-
intervals sharing the same width. After that, we achieved a categorization phase
by replacing the values belonging to a certain sub-interval in each variable by the
corresponding category/code. For example, in the case of the simulated data sets,
all the variables shared the same domain space between 1 and 1000, which was
divided into 10 subintervals, as explained earlier. Consequently, all values belong
to the [1, 100] interval were replaced by 1, all values belong to the [101, 200]
interval were replaced by 2 and so on. The above procedure was repeated for all
the variables so as to generate the categorical micro-data file.

Our results clearly show that the “width” parameter plays a predominant role
in controlling the degree of smoothing and estimating the best dependence tree.
Our experiments indicated that assigning a suitable value to the width parameter
guaranteed the convergence of the MST to the true underlying structure of the
best dependence tree. Generally speaking, the value of the width parameter
should be large enough to generate a sufficient number of sub-intervals from the
defined domain space to guarantee a satisfactory level of smoothing. The actual
value used is specified in the respective experimental results.

Consider the tree structure given by Sim 1, Sim 2, and Sim 3 as given in Fig.
2. Approximating the dependence information of the simulated data sets based
on the structure of the MST obtained using the EMIM metric succeeded in
locating the real structure when the width parameter was set to the values 50,

3 The peculiarities of the learning and estimation problems are explained in the
unabridged version of this paper [10].
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100, and 150 for Sim 1, 70, 100, and 120 for Sim 2, and 90, 100 and 110 for
Sim 3.

Experiment Sets 2
The second set of experiments verified our conjecture that it was expedient to
use the sub-set of the variables obtained (from the best dependence tree) by
projecting the micro-data file into 3, 4 or 5 variables before invoking the multi-
variate micro-aggregation process.

Since an MAT seeks to reduce the loss in the data utility, it must be pointed
out here that the value of the IL depends on the sub-set of variables used to
micro-aggregate the multi-variate data file. As mentioned earlier, to infer the
best sub-set of variables to be used in the micro-aggregation, we have to go
through all the different projection possibilities. The results (Table 1) show that
the estimation of the percentage value of the IL for various data sets obtained by
projecting the entire data set into specified number of variables prior to invoking
the MDAV method. The value of the IL was bounded between the minimum
value (in the fourth column) that was obtained by using the variable indices
addressed in the third column, and the maximum value (in the sixth column)
that was obtained by using the indices addressed in the fifth column. The last
column in Table 1 represents the average value of the IL over all the different
combinations of projected variables in the micro-data file.

Practically, due to the exponential number of combinations, we could not cover
the entire solution space so as to reach to the best sub-set of the variables to be
used in the micro-aggregation4. As opposed to this, by involving only the vertices
that have the maximum number of I/O edges in the connected undirected graph
to micro-aggregate the micro-data file, we were able to obtain an acceptable value
of the IL close to its lower bound, and which is always (in all the cases) superior
to the average value. Thus, such an automated strategy for projecting the multi-
variate data sets will reduce the solution space to be searched which, in turn,
reduces the computation time required to test the candidate variables, and to
choose the best sub-set from them.

Table 2 shows the percentage value of the IL obtained by using our strategy
in projecting the micro-data file into sub-sets of sizes 3 and 4, respectively, prior
to invoking the MDAV method. When the simulated sets were projected onto
three variables prior to the micro-aggregation, the minimum values of the IL
were equal 38.11% for Sim1, 51.95% for Sim2 and 55.82% for Sim3. These
values were quite close to the lower bound of the IL which were equal to 37.64%
for Sim1, 51.65% for Sim2 and 55.52% for Sim3, respectively.

Experiment Sets 3
The distribution of the average of a set of random variables tends to be Nor-
mal, even when the distribution of the individual random variables is decid-
edly non-Normal. This is a consequence of the Central Limit Theorem, which is
the foundation for many statistical procedures, because the distribution of the
4 On our processor, it took up to a few hours or even days depending on the dimen-

sionality and cardinality of the data set, to exhaustively search the entire space.
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Table 1. The value of the IL obtained by using the MDAV multi-variate MAT after
projecting various data sets into the specific number of variables

Indices of the Indices of the
No. of No. of variables used to The min. variables used to The max. The average

Data Set projected possible obtain the min. value of IL obtain the max. value of IL value of IL
variables combinations value of IL value of IL

1 8 2 56.6216 3 59.8342 58.6944
2 28 1,8 46.8576 3,5 51.3179 49.4823

Sim 1 3 56 2,4,7 37.6486 4,6,7 42.2961 39.7095
4 70 2,4,7,8 37.6486 4,6,7,8 42.2961 39.5901
5 56 1,3,5,6,7 37.6522 3,4,6,7,8 42.1577 39.7102
1 16 2 61.6118 11 63.0976 62.7308
2 120 1,16 56.6698 9,13 59.0037 58.2026

Sim 2 3 560 1,8,11 51.6551 6,8,9 54.3367 53.3249
4 1820 1,8,11,12 51.6551 6,8,9,10 54.3367 53.18
1 22 2 62.5849 7 64.0993 63.7251

Sim 3 2 231 2,22 59.0211 8,11 60.9375 60.4842
3 1540 2,7,13 55.5274 4,6,14 57.7998 56.9827

Table 2. The value of the IL obtained by using the MDAV multi-variate MAT after
projecting various data sets using 3 or 4 variables by using the EMIM metric to
calculate the edge weights in the connected undirected graph

Data set k value Width value No. of possibilities Variable indices IL

1,3,4 51.9684
Sim 1 3 100 2 1,3,6 52.1126

1,3,4 51.9684
Sim 2 3 100 2 1,3,6 52.1126

1,3,5 56.1318
Sim 3 3 100 2 1,3,18 55.8246
Sim 1 4 100 1 1,3,4,6 38.1105
Sim 2 4 100 1 1,3,4,6 51.9684
Sim 3 4 100 1 1,3,5,18 56.1318

phenomenon under study does not necessarily have to be Normal. Therefore, the
last set of experiments assumes the Normality of the micro-data file to quickly
compute the first and second order marginals, and to thus lead to the MST
for computing the best dependence tree. Subsequently, we applied our strategy
to choose the subset of random variables to project the file before invoking the
MDAV method.

Under the assumption of normality, the edge weight, wij , between two vari-
ables Vi and Vj in the connected undirected graph can be calculated by [16]:

wij = −1
2
log(1 − ρ2ij) (8)

where ρ2ij represents the correlation coefficient between the two variables Vi and
Vj in the graph.

The beauty of estimating the dependence model assuming normality is that it
does not depend on any parametric value. Therefore, it leads to a unique MST
if the edges weight are unique. Figure 3 shows the best dependence tree for the
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Table 3. The value of the IL obtained by using the MDAV multi-variate MAT after
projecting various data sets into 3 variables assuming normality

Data set No. of possibilities Variable indices IL

7,2,3 37.8147
7,1,3 37.8676
7,1,6 38.1610

Sim 1 6 7,2,6 38.1704
7,3,6 41.4843
7,1,2 42.0634
4,1,3 51.9684

Sim 2 3 4,1,12 52.0159
4,3,12 53.9267
20,1,5 55.6419
20,2,13 55.6631
20,2,5 55.8020
20,2,3 55.8722
20,1,3 55.9010

Sim 3 10 20,1,13 55.9474
20,5,13 57.1943
20,3,5 57.3903
20,3,13 57.4192
20,1,2 57.4770
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Fig. 3. The best dependence tree for the simulated data sets assuming normality

simulated data sets. It is worth mentioning that using the correlation between
two random variables in calculating the edges weights of the graph does not lead
to convergence to the “true” underlying dependence model in the case of the
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simulated data sets. However, generally the overall process yielded a value of
IL close to the minimum value of the IL after projecting the entire data set
into 3 variables although the search space was greater than the search space
that resulted from using the EMIM metrics. The minimum value of the IL was
equal to 37.8% for Sim1, 51.96% for Sim2, and 55.64% for Sim3.

4 Conclusions

In this paper, we have shown how the information about the structure of the
dependence between the variables in the micro-data file can be used as a funda-
mental indicator before invoking any MAT . By using this information, we have
proposed a new automated scheme as a pre-processing phase to determine the
number and the identity of the variables that are to be used to micro-aggregate
the micro-data file for minimizing the IL in secure statistical databases. This
is achieved by constructing a connected undirected graph whose nodes repre-
sent the random variables in the micro-data file, edges represent the statistically
dependencies, and the edges weights are computed either by using the EMIM
metric or the correlation values when a normality constraint is assumed. The ex-
perimental results show that such a methodology involving projecting the multi-
variate data sets reduces the solution space, which further directly reduces the
computation time required to search the entire space combinatorially. In spite
of this, this methodology leads to a solution whose IL values are close to the
minimum value of the IL that can be obtained by exhaustively searching over
the entire search space. Thus, in conclusion, our work has demonstrated the in-
tractability of the MAP and presented a promising tool for enhancing the data
utility.
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Abstract. The much-publicized Netflix competition has put the spot-
light on the application domain of collaborative filtering and has sparked
interest in machine learning algorithms that can be applied to this sort
of problem. The demanding nature of the Netflix data has lead to some
interesting and ingenious modifications to standard learning methods in
the name of efficiency and speed. There are three basic methods that
have been applied in most approaches to the Netflix problem so far:
stand-alone neighborhood-based methods, latent factor models based on
singular-value decomposition, and ensembles consisting of variations of
these techniques. In this paper we investigate the application of forward
stage-wise additive modeling to the Netflix problem, using two regression
schemes as base learners: ensembles of weighted simple linear regressors
and k-means clustering—the latter being interpreted as a tool for multi-
variate regression in this context. Experimental results show that our
methods produce competitive results.

1 Introduction

Collaborative filtering is a challenging application domain for machine learning
algorithms, which has gained prominence due to popular web-based recommen-
dation services. The Netflix competition represents a particularly interesting
instance of a collaborative filtering problem, in the form of a large movie recom-
mendation dataset that consists of actual movie ratings generated in production
use by real users.

The Netflix data is a very demanding problem for prediction methods, due
to its size and sparsity. It consists of movie ratings for 17,770 movies, with
100,480,507 ratings in total. The ratings have been provided by 480,189 users.
There are approximately 209 ratings for each user on average, so the data is
very sparse. It can be viewed as a very large, sparse matrix with 17,770 columns
and 480,189 rows. The task is to predict missing entries in this matrix, which
correspond to unknown ratings. These predictions can then be used to provide
recommendations to users.

One way of tackling this matrix completion problem is to view it as a regres-
sion task where the known ratings for a user are used to predict the missing
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ratings based on a regression model. This is the approach we investigate in this
paper. Although the data can be held in memory in less than 1GB if it is stored
in sparse form based on index-value pairs—using the data type short for the
indices and the data types float or byte for the actual data values (all movie
ratings are in the set 1, 2, 3, 4, 5)—it is a challenging task to build regression
models for it. In this paper we present two regression schemes, both based on
forward stage-wise additive modeling (FSAM) [6], that are efficient enough to
be applicable to this data. The first method uses FSAM in conjunction with an
ensemble of simple linear regression models. In the second method, FSAM is
used in conjunction with the k-means clustering method.

The paper is structured as follows. In the next section we describe two variants
of the FSAM method, one for uni-variate prediction, and one for multi-variate
prediction. In Section 3 we present our ensemble of simple linear regression
functions, a heuristic base learner for the uni-variate FSAM scheme, and give
some results obtained on the Netflix data. In Section 4 we describe how we
applied k-means clustering in conjunction with the multi-variate FSAM scheme
and present results. Section 5 briefly describes some related work. Section 6 has
some conclusions.

2 Regression Using Forward Stage-Wise Additive
Modeling

Forward stage-wise additive modeling (FSAM) [6] is a simple technique for fitting
an additive model to a given prediction problem. In the case of classification, it
is closely related to the well-known boosting methodology. Here we consider the
regression version (see Equations 6 and 7 in [6]).

The output of the FSAM scheme is a collection of prediction models, i.e. an
ensemble. In the following we call these individual models “base models”. The
base models are regression models that predict a numeric target based on a given
set of independent variables. In this section we assume that we have suitable
algorithms for fitting base models to the data. The corresponding algorithms we
used for the Netflix problem are discussed in the next two sections.

The FSAM algorithm for additive regression is a greedy algorithm for fitting
an ensemble of base models to a given regression problem. Base models are
fit in a stage-wise manner, where each model in the sequence is trained on a
transformed target consisting of the residual errors that remain from the models
built so far. It is assumed that there is an implicit 0th model in the sequence that
simply predicts the mean target value observed in the training data. Figure 1
shows the FSAM process based on hypothetical target data and hypothetical
predictions obtained from the base models. Once an ensemble of base models has
been generated based on a certain number of iterations, ensemble predictions are
formed by simply adding the predictions of the base models in the sequence.

Assuming the algorithm used for building the base models minimizes the
squared error of the respective residual-based predictions problems, the FSAM
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Target values (ratings for a movie) 3.0 2.0 4.0 3.0

Predictions of Model 0 (mean) 3.0 3.0 3.0 3.0

Residuals 0.0 -1.0 1.0 0.0 SSE = 2.0

Hypothetical predictions of Model 1 0.1 -0.6 0.4 -0.1

Residuals -0.1 -0.4 0.6 0.1 SSE = 0.54

Hypothetical predictions of Model 2 -0.05 -0.1 0.2 0.2

Residuals -0.05 -0.3 0.4 -0.1 SSE = 0.2625

Fig. 1. Illustration of the uni-variate FSAM process with hypothetical target values
and hypothetical predictions from base models; the sum of squared errors is also given.
Note that the values in the first row would correspond to a column in the data matrix.

algorithm for regression greedily minimizes the squared prediction error of the
ensemble as a whole.

The algorithm described so far predicts a single target based on some inde-
pendent variables. It can be applied to the Netflix data on a per-movie basis,
treating each movie individually as a target. However, the Netflix problem is es-
sentially a matrix completion problem, where we would like to predict all missing
entries for a user based on the existing entries, and we would like to predict them
simultaneously because this would be computationally much more efficient. For-
tunately it is straightforward to adapt the FSAM method to model multiple
targets simultaneously, assuming the base learner is able to also do so: rather
than working based on residuals of a single target variable only, we consider the
residuals of all variables simultaneously. In each iteration of the FSAM method,
a (sparse) matrix consisting of residual errors is passed to the base learner, which
then builds a base model that approximates this matrix. The resulting predicted
residuals are then used to compute residuals for the next iteration, and so on.
Figure 2 shows the multi-variate FSAM process based on a hypothetical sparse
data matrix and hypothetical predictions obtained from the base models. At
prediction time, the predictions of the base models are again simply added to-
gether. In Section 4 we show how the k-means clustering algorithm can be used
as the base learner in this multi-variate scheme.

As with many other learning algorithms, the FSAM method can suffer from
overfitting. In practice, on the Netflix data, it is generally the case that the er-
ror of the FSAM ensemble decreases at first as more iterations are performed
(i.e. more ensemble members are used), but it starts to increase after a certain
point. A standard trick to delay the point of overfitting, thus making it possible
to perform more iterations and potentially build a more accurate ensemble, is
to apply shrinkage to the predicted residuals [6]. In this case, the predictions
are multiplied by a shrinkage parameter with a value in (0, 1] (see Equation 7 in
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Target values (4 movies, 3 users) 3.0 2.0 5.0
3.0 1.0 1.0

5.0 3.0 3.0

Predictions of Model 0 (mean) 4.0 2.0 3.0
3.0 2.0 3.0

4.0 3.0 2.0

Residuals -1.0 0.0 2.0 SSE = 12.0
0.0 -1.0 -2.0

1.0 0.0 1.0

Hypothetical predictions of Model 1 -0.7 0.1 1.9
-0.1 -0.8 -1.8

0.5 -0.2 0.9

Residuals -0.3 -0.1 0.1 SSE = 0.5
0.1 -0.2 -0.2

0.5 0.2 0.1

Hypothetical predictions of Model 2 -0.2 0.1 0.1
0.1 -0.1 0.1

0.6 0.2 -0.1

Residuals -0.1 -0.2 0.0 SSE = 0.2
0.0 -0.1 -0.3

-0.1 0.0 0.2

Fig. 2. Illustration of the multi-variate FSAM process with a sparse matrix consist-
ing of hypothetical target values for three users and four movies, and hypothetical
predictions from base models; the sum of squared errors is also given

discussion section of [6]) before being used to compute new residuals for the base
learner to approximate. We will investigate the effect of the shrinkage parameter
in our experiments with k-means in Section 4.

3 Ensembles of Weighted Simple Linear Regressors

The Netflix data is very high-dimensional: there are 17,770 possible movie rat-
ings. This means it is desirable to apply a base learning algorithm in the FSAM
method that is computationally efficient in the number of attributes. Another
feature of this data is the large number of missing values: on average, the 480,189
users in this data have rated only about 209 movies. This means it is essential
to exploit data redundancy at prediction time, making use of “redundant” at-
tributes (i.e. columns in the matrix that correspond to different movies). This
section presents a very simple and fast heuristic base learner that we have used
successfully to apply the uni-variate FSAM method to the Netflix data.
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Fig. 3. Function used to compute weight of one simple linear regression model

The basic idea is to to build a single simple linear regression model for each of
the movies in the data, excluding the movie for which we want to predict ratings,
to form an ensemble of (17,770 - 1) predictors. The simple linear regression
models can be built very quickly: computing the sufficient statistics for a simple
linear regression model requires a single pass through the (sparse) data.

Based on this ensemble of simple linear predictors it is then necessary to form
an overall prediction for a new test case—a target movie rating for a particular
user. Obviously only those linear regression models can be used to generate this
prediction for which ratings for the user concerned are available in the training
data. The most straightforward strategy is to simply average the predictions
of the corresponding linear regression models. However, a straight unweighted
average does not perform very well. Instead, we found that a simple weighting
strategy produced much better results: each linear regression model’s prediction
is weighted based on the coefficient of determination of the linear model (i.e.
the square of the correlation coefficient). It can be computed based on the same
sufficient statistics as the linear regression model.

Assuming a value R2 for the coefficient of determination, we compute the
weight of a particular model as as R2/(1−R2). This means that more predictive
linear regression functions get a higher weight in the ensemble. The weight as a
function of R2 is shown in Figure 3. Using just R2 as the weight did not appear
to give a sufficiently high weight to the most accurate models among the different
movie predictors. Hence we adopted this non-linear transformation function.

We also found that it is beneficial to discard simple linear regression models
from the ensemble for which we have less than a certain number of movie ratings
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in the training data (i.e. models that do not have sufficient support in the training
data). For the results in this paper we discarded all models that were based on
less than 50 training instances.

Moreover, significantly improved performance was obtained by a simple data
normalization step that is fairly standard for the Netflix data, namely by “cen-
tering” the input data for each user in the following way: for each user, a
smoothed mean of the movie ratings for that user was subtracted from each
rating for that user, and the maximum rating possible (the value 5) was added
to the result. Assuming the user mean was µu, and nu movie ratings were given
for that user in the training data, the smoothed user mean was computed as:
(1− 1/(nu− 1))×µu +(1/(nu − 1))× 3. At prediction time, the smoothed mean
for the corresponding user was added to the prediction obtained from the model
and the value 5 subtracted from this. Resulting values outside the [1,5] interval
were clipped. All the results that are stated in this section are based on data
normalized in this fashion.

The resulting ensemble of uni-variate predictors gives reasonable performance.
It produces a root mean squared error (RMSE) of 0.955 on the Netflix probe
set when the probe set is eliminated from the full training set so that an un-
biased performance estimate can be obtained.1 However, we can plug it into
the uni-variate FSAM method from the previous section to obtain improved
performance. In this case, the ensemble of simple linear regression models is
not applied to model the values of the target movie directly; instead, it is used
to model the residual errors in the target predictions computed in the forward
stage-wise additive modeling strategy. Applying this method to predicting the
probe data, by building a model for each of the 17,700 possible target movies
using 5 iterations of additive modeling, results in an RMSE of 0.924 on the probe
data. This is in the same ball park as results obtained using variants of singular
value decomposition on this data (see Section 5 for references).

Figure 4 shows the RMSE on the probe set as the number of FSAM iterations
is increased. These results were obtained without any shrinkage applied to the
residuals in the FSAM method. We can see that after a certain number of iter-
ations performance starts to deteriorate, indicating that overfitting occurs. It is
possible to delay the point at which the error starts to increase by performing
shrinkage, leading to further small reductions in error. We investigate the effect
of shrinkage in more detail for the multi-variate case in the next section.

4 Modeling Multiple Targets Simultaneously with
k-Means

A major drawback of the modeling strategy described in the previous section is
that it requires building a separate additive model for each of the possible tar-
get movies. Given the large number of possible targets this is a time-consuming
1 The probe set specifies a validation set for models built for the Netflix problem and

consists of 1,408,395 ratings from the full dataset, leaving 99,072,112 ratings for
training.
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Fig. 4. Root mean squared error on probe set for uni-variate additive regression applied
to ensembles of weighted simple linear regression models

process. A much more efficient approach is to model all targets simultaneously by
building a multi-variate model, a model that can be used to predict an arbitrary
element in the data matrix. In the context of forward stage-wise additive mod-
eling this only requires us to adopt an appropriate multi-variate base learner: as
described in Section 2, it is trivial to modify the stage-wise modeling process to
work with multiple residuals.

It turns out that there is a well-known modeling technique that slots nicely
into this multi-variate version of the FSAM method, namely k-means clustering.
It is well-known that k-means clustering finds cluster centers that represent a
local minimum of the sum of squared differences to the cluster centers over all
training examples. This is exactly what is required from the base learner in
the FSAM method: we can simply cluster users (i.e. rows in the data matrix)
according to the residual errors in the movie ratings obtained in the FSAM
method (i.e. k-means clustering is applied to the matrix of residuals remaining in
a particular FSAM iteration). To compute new residuals, a user is assigned to its
nearest cluster centroid based on the residuals that remain from the predictions
of the previous ensemble members, and the values stored in that centroid are
used as predictions. Figure 5 demonstrates this process using an artificial dataset
with 143 instances and two continuous-valued attributes.2 At prediction time,
missing residuals for a user are filled in based on the values stored in the centroid
that it is assigned to.

2 The process is the same if the attributes are discrete-valued movie ratings.
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Fig. 5. Multi-variate additive regression with k-means (k=2) based on an artificial
dataset: (a) original data; (b)-(d) residuals remaining after iterations 0, 1, 2 respec-
tively, and k-means models obtained from those residuals. (Note: Model 0 predicts the
mean of the two attributes.).

The Netflix data is sparse, with many missing values, and the basic method
needs to be adapted to deal with this. Fortunately, this is simple: missing values
are simply skipped in the distance calculation and in the process of computing
the mean residuals stored in the cluster centroids. This also makes the process
very efficient due to the sparse representation of the data that is used.

We found that basic k-means produced good results when used in this fashion.
However, small improvements can be obtained by applying a global smoothing
strategy when computing the cluster centroids: instead of using the per-cluster
mean of residuals as the corresponding value for the cluster centroid, we smooth
it with the global mean of residuals for the corresponding movie, obtained from
all the values for the corresponding movie stored in the matrix of residuals. For
the experimental results given below, we used a weight of 1/(1 + nm) for the
global mean, where nm is the number of observed movie ratings for movie m,
and one minus this weight for the local mean, when computing the smoothed
cluster centroid.

Note that the idea of applying k-means to the Netflix data is not new (see,
e.g, [10,9]). However, what we propose here is to use k-means as the base learner
in the FSAM method. The k-means clustering algorithm is used to find centroids
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Fig. 6. Root mean squared error on probe set for multi-variate additive regression
without shrinkage applied to k-means

of the residuals produced in the FSAM modeling process, and these centroids
are also used at prediction time. On the probe set, stand-alone k-means gets an
RMSE of 0.962 with k = 16 and 0.959 with k = 32. We will see that better
results can be obtained by using it in conjunction with additive regression.

There are several parameters in the multi-variate FSAM method with k-
means: the number of FSAM iterations, the shrinkage value used in the FSAM
method, and the number of cluster centers. Another parameter is the number
of iterations of the k-means algorithm, but our experiments indicate that this
parameter is less important. We fixed it at 40 iterations for the results discussed
in the following.

Before presenting the actual RMSE values on the probe set we obtained, let
us summarize our findings. We found that it is possible to get good results for
different values of k when using k-means in conjunction with the FSAM method.
Generally speaking, the larger the value of k, the fewer additive modeling itera-
tions where required to achieve a certain level of performance. However, it was
also necessary to adjust the shrinkage value of the additive modeling strategy
appropriately. Lower shrinkage values were required for more iterations/cluster
centers, to avoid overfitting.

Figure 6 shows the effect of increasing the number of FSAM iterations, for
different numbers of clusters (i.e. values of k), keeping the shrinkage parameter
fixed at 1 (i.e. no shrinkage). Figure 7 shows the same for a shrinkage value
of 0.5, and Figure 8 the results for a shrinkage value of 0.25. The results are
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consistent with our above summary. It is beneficial to use more iterations of the
FSAM method and/or more cluster centers, provided the value of the shrinkage
parameter is adjusted appropriately.
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In our experiments we obtained an RMSE value of 0.901 on the probe set by
using 4096 iterations of k-means, with k=2, and a shrinkage value of 0.05. Fur-
ther improvements can be obtained by building multiple additive models using
different random number seeds and/or values of k for k-means and averaging
their predictions. In this fashion, it is possible to obtain RMSE values below
0.9 on the probe data as well as the actual Netflix test data, which is used in
the Netflix competition to evaluate submissions. This appears to be competitive
with the best single-paradigm learning schemes that have been evaluated on this
data. The best results on the Netflix data so far appear to have been obtained
based on large heterogeneous ensembles of diverse learning schemes [1,10,9]. Our
schemes could be used as part of such ensembles.

We also experimented with a variant of bisection k-means, an efficient method
of applying k-means in a recursive fashion to obtain multiple clusters. In this
method, k-means is applied recursively with k=2 to build a tree of clusters in
a divide-and-conquer fashion. We investigated this method because it makes
it possible to apply a more fine-grained smoothing procedure, where a cluster
center is smoothed by blending it with the cluster centers occurring in the path
from the root node to its corresponding node in the tree. However, when we
used this method in conjunction with additive regression, we did not observe
significant increases in performance.

5 Related Work

As mentioned before, k-means has previously been applied to the Netflix data.
However, there is also some work on using versions of the FSAM method for
this data. Dembczyński et al. [3] investigate ensembles of decision rules for or-
dinal classification constructed using FSAM. They present two approaches, one
based on AdaBoost [4], and the other based on Friedman’s gradient boosting
machine [5]. The effectiveness of the methods is evaluated on the Netflix data,
but only on a small subset of the total number of movies. This makes it difficult
to judge how the performance of these methods compares with others on the full
Netflix probe set.

Paterek [9] discusses using a linear regression model constructed for each
movie. His method differs from the base learner we propose for our first method
in three ways: firstly, a multiple linear regression is built for each movie based
on binary vectors, that, for each user, indicate the movies that they have rated.
Secondly, the prediction for a given rating is adjusted based on a weight propor-
tional to the number of movies the user in question has rated. Finally, the model
parameters are learned using gradient descent, which means that the method is
relatively slow.

Nearest neighbor methods for collaborative filtering are discussed in [2]. For
discussion of mainly SVD-based latent factor models, as applied to the Netflix
problem, the reader is referred to [7,8,9,10,11]. Homogeneous and heterogeneous
ensembles of neighborhood-based methods and latent factor models are discussed
in [9,10,11].
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6 Conclusions

This paper has discussed the use of forward stage-wise additive modeling (FSAM)
in conjunction with regression schemes for uni-variate and multi-variate predic-
tion on a large-scale collaborative filtering problem, namely the Netflix movie
ratings data. Both regression schemes we investigated, ensembles of simple linear
regressors for uni-variate prediction and k-means for multi-variate prediction, are
fast enough to make FSAM tractable for this application. Results on the Netflix
probe set show that both methods achieve good performance. Additive regres-
sion with k-means is a particularly attractive scheme because it makes it possible
to build a single multi-variate prediction model for the data—effectively a single
model that approximates the target matrix and can be used to fill in missing en-
tries in this matrix.
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Abstract. In this paper, we propose a Topical PageRank based algo-
rithm for recommender systems, which ranks products by analyzing
previous user-item relationships, and recommends top-rank items to po-
tentially interested users. In order to rank all the items for each particular
user, we attempt to establish a correlation graph among items, and im-
plement ranking process with our algorithm. We evaluate our algorithm
on MovieLens dataset and empirical experiments demonstrate that it out-
performs other state-of-the-art recommending algorithms.

1 Introduction

Recommender systems are automatic tools making personalized suggestions to
users by analyzing previous interaction information. Generally, they attempt
to construct structural models to profile user preference by huge computation,
and then recommend the products to potentially interested users. Solutions
of recommender systems are mainly classified into three categories: content-
based approaches[5], collaborative filtering[7], and hybrid approaches[6]. Re-
cently, some graph based recommending algorithms have been proposed and
achieved outstanding prediction performance. As to these methods, some of them
rely on the graphs with user-nodes and item-nodes, such as L+, Katz, Dijkstra
[1]; others base on the graphs just containing item-nodes, e.g., ItemRank.

ItemRank, proposed by M.Gori and A.Pucci[3], is a random-walk based scor-
ing algorithm. ItemRank refers to Original PageRank, brings the method of
item ranking into recommender systems and reports outstanding performance.
However, ItemRank still needs some improvements because it fails to take into
account item genre and user interest profile, which are important features worth
consideration.

In this paper, we propose a Topical PageRank based recommending algorithm,
which can be used to rank items for each user and recommend top-ranked items
to users, with consideration of item genre and user interest profile. To test the
performance, we run a set of experiments on MovieLens dataset, and results
show the superiority of our algorithm over existing state-of-the-arts methods.

W. Wobcke and M. Zhang (Eds.): AI 2008, LNAI 5360, pp. 447–453, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



448 L. Zhang and C. Li

2 Algorithm

Generally speaking, the input of a recommender system can be treated as a
user-item matrix consisting of tuples, each denoted as tk,i = (uk,mi, rki), where
uk is one of users, mi is one of items, and rki is an evaluation score, generally an
integer ranging from 1 to 5. (Figure 1 is a simple example of a user-item matrix,
where ”-” means the item was not evaluated by the corresponding user.) Besides
that, some information concerning users and items will be provided, e.g., user
personal information, item genre information and etc. Our goal is to compute
rank score for each item by analyzing the given evaluation scores with respect
to each user, and then suggest the top-rank items to users.

m1 m2 m3 m4 m5

u1 3 5 4 - -
u2 4 - - - 3
u3 - 3 - - 4
u4 2 - - 2 -
u5 4 4 - - -
u6 3 2 5 - -
u7 - - 4 5 -
u8 4 2 - 4 -
u9 - 3 - - -
u10 - 5 - 2 -

Fig. 1. A simple example of user-item
matrix

Fig. 2. Example for Correlation Graph

2.1 Data Model: Correlation Graph

A key point for a recommending algorithm is exploiting the item correlations. As
an initial step, we first establish a correlation graph among items. Experiences
reveal that correlation between items can be indicated by user preference lists,
for example, bread and milk are highly associated with each other because plenty
of users tend to buy them at the same time. Consequently, we can reasonably
assume that item mi and item mj are highly related, if they tend to co-occur
in preference lists of different users. We define µi,j as the set of users uk who
choose both item mi and item mj in the training set of user-item tuples Tr (In
order to justify the performance of our algorithm, we divide the whole data set
into training set Tr and test set Te), that is:

µi,j =
{
uk : (tk,i ∈ Tr) ∧ (tk,j ∈ Tr) if i = j
∅ if i = j

Next, we define a |M | ∗ |M | (|M | is the total number of items) matrix M̃,
with each element M̃i,j representing the number of users choosing both item mi
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and item mj. Alternatively, each M̃i,j is denoted as |µi,j |, where | | denotes the
cardinality of a set. Furthermore, we normalize matrix M̃ to obtain a stochastic
matrix-correlation matrix M, with each element Mi,j = M̃i,j/ωj , where ωj is
the sum of entries in jth column of M̃. Thus, we obtain a correlation graph G

on basis of the correlation matrix M, in which an edge between item mi and mj

is established if and only if Mi,j > 0.
Taken the data in Figure 1 as an example, the resulting matrix M̃ is,

M̃ =

⎛⎜⎜⎜⎜⎝
0 4 2 2 1
4 0 2 2 1
2 2 0 1 0
2 2 1 0 0
1 1 0 0 0

⎞⎟⎟⎟⎟⎠
Normalizing matrix M̃, we get the corresponding correlation matrix M. Ac-

cording to matrix M, we could establish the correlation graph G, shown in
Figure 2.

2.2 Topical PageRank Based Algorithm

The above item correlation graph in Figure 2 bears two properties: propaga-
tion and attenuation, which are two key features for PageRank algorithm. With
this observation, we attempt to leverage Topical PageRank algorithm to recom-
mender systems by exploiting genres of items. Specifically, we rank items for
different users with Topical PageRank given the same item correlation graph,
and recommend top-rank items to potentially interested users.

Firstly, Take a look at Topical PageRank [2], an algorithm for web link-based
ranking, which calculates a score vector for each page to distinguish the contri-
bution from different topics. This algorithm is proposed to address the problem
of topic drift — a resource that is highly popular for one topic may dominate the
results of another topic in which it is less authoritative. Experiments indicate
that Topical PageRank outperforms original PageRank.

One of key contributions of Topical PageRank is the introduce of a definition
Az(p), the PageRank score of Page p on topic z, which can be described as
follows.

Az(p) = dα
∑

q:q→p

Az(q)
O(q)

+ d(1 − α)
∑

q:q→p

Cz(q)A(q)
O(q)

+
1 − d
N

Cz(p) (1)

where q denotes any page linked to page p, O(q) represents the degree of page q.
Cz(p) is the probability with which page p belongs to topic z, N is the number
of pages, d and α are link related and topic related parameters respectively.

Then, we deduce the equivalent matrix form of Equation(1) for different page-
topic pairs, defined as follows.

A = dαG •A+ d(1 − α)G • FCA + (1 − d)C
N

(2)
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where G is the normalized connectivity matrix for the corresponding page graph.
A and C are page-topic matrix, each element associated with Az(p) and Cz(q)
respectively. FCA is an assistant matrix, • means matrix product.

With the similar idea, we define item rank score matrix for different item-genre
pairs as

R = dαM•R+ d(1 − α)M• F + (1 − d)I (3)

where the |M | ∗n matrix R (M is the total number of items, and n is number of
item genres) contains Rig indicating predicted rank score for item mi on genre
g as to a given user. M is the item correlation matrix obtained above, F is a
|M | ∗ n assistant matrix, and I is a |M | ∗ n matrix associated with the original
user-item evaluation score. Note that we choose d=0.15, α=0.1 in the following
experiments empirically. The iterative formula for calculating Ruk for different
users uk is given by:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Ruk
ig (0) =

1
|M | ∗ n(1 ≤ i ≤ |M |, 1 ≤ g ≤ n)

Fig(t) = (
n∑

g=1

Ruk
ig (t− 1)) ∗ Pig

Ruk(t) = dαM•Ruk(t− 1) + d(1 − α)M• F (t) + (1 − d)Iuk

(4)

In formula(4), the first equation initializes Ruk and the second one computes
assistant matrix F , where Pig refers the probability with which item mi belongs
to genre g, and usually Pig can be calculated directly by the given item-genre
information in data set.

Each element of Iuk in the third equation is defined as Iig = Ĩig�n
g=1 Ĩig

, with

Ĩig = ruk

i ∗ Pig for user uk on item mi, ruk

i is the initial score that user uk gave
to item mi. Given totally κ users, we can get κ different Iuk , and thus obtain κ
corresponding matrix Ruk by iteratively computing formula(4).

After getting matrix Ruk for each user uk, we introduce a κ ∗ |M | matrix TR,
where TRuk

i denotes the estimated item rank score for user uk to item mi. TRuk

is defined as

TRuk = Ruk • Profuk (5)

where Profuk refers to user profile for uk, denoted as Profuk = ruk •P . Further-
more, the vector Profuk shows the interest of user uk on different item genre.
By formula (5), we could compute the final result TRuk , an expected ranking
score for all items with regard to user uk.

The higher TRuk

i is, the more user uk prefers item mi to other lower score
items. We finally recommend top-rank items in vector TRuk to user uk.

2.3 A Simple Example

In order to clarify the above process, we take the user-item matrix in Figure
1 for example, to calculate the vector TRu1 for user u1, given the item-genre
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matrix P as follows. P could be obtained by the item-genre information, usually
provided by the original data set, where Pig denotes the probability with which
item mi belongs to genre g.

P =

⎛⎜⎜⎜⎜⎝
0.8 0 0.2 0
0.5 0 0 0.5
0.3 0 0.7 0
0 0 0.5 0.5
0 0.9 0 0.1

⎞⎟⎟⎟⎟⎠
Consequently, according to Figure 1, we get the initial rating array for user

u1, that is ru1 = (3 5 4 0 0). Then we can calculate matrix Iu1 by analyzing
ru1 and P , where Iu1

ig refers to the initial rank score of item mi on genre g, with
regard to the given user u1. Next, with the two matrix Iu1 , P , and formula (4),
we get matrix Ru1 with each Ru1

ig indicating predicted rank score for item mi on
genre g as to the given user u1.

Ru1 =

⎛⎜⎜⎜⎜⎝
18.8781 0.0665 5.6275 1.3977
19.6503 0.0665 1.7153 17.8190
9.8453 4.4458e− 04 20.0578 0.6965
1.6179 4.4458e− 04 0.8188 0.6549
0.6702 2.2162e− 04 0.0901 0.3264

⎞⎟⎟⎟⎟⎠
After obtaining Ru1 , the final result TRu1 can be computed by formula (5),

with each TRu1
i denoting the expected rank score of u1 to item mi.

TRu1 = (11.4820, 14.1872, 10.8329, 1.1909, 0.4342)
Analyzing the final result matrix TRu1 , we could find that the movie priority

order for u1 is m2, m1, m3, m4, m5. As a result, except the movies watched by
u1, we would recommend movie m4 to user u1.

3 Experiments

To evaluated our algorithm, we run a set of experiments on MovieLens dataset
which is constructed from the popular MovieLens Site for recommending movies.
MovieLens site has more than 50,000 users who have express opinions on over
3,000 movies. The MovieLens dataset is a standard benchmark for recommender
system techniques, containing 100,000 ratings for 1,682 movies by 943 users. The
dataset comes with 5 predefined splits, each with 80% of ratings as training set
Tr and 20% as testing set Te.

3.1 Evaluation

In order to compare our algorithm with other promising graph based approaches,
we choose the degree of agreement (DOA) as the performance measure. We first
introduceDOA for a specific user. As to a particular user uk, the whole movie set
can be divided into 3 subsets, i.e., movies in training set Truk

, testing set Teuk

and unwatched set Nwuk
. Intuitively, movies watched by the user should rank
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higher than movies unwatched. That is to say, movies in training set Truk
and

testing set Teuk
should rank higher than movies in unwatched set Nwuk

. Thus,
we define a Boolean function fuk

to represent the comparison result between a
pair of movies from different subsets. If the score TRuk

i (mi ∈ Teuk
) is higher

than TRuk
j (mj ∈ Nwuk

), fuk
is set 1, otherwise, fuk

is 0.

fuk
=
{

1 if TRuk

i ≥ TRuk

j

0 if TRuk

i < TRuk

j

Then we could calculate individual DOA for each user uk,

DOAuk
=

∑
(mi∈Teuk

,mj∈Nwuk
) fuk

(mi,mj)

|Teuk
| • |Nwuk

|
which represents the percentage of correct orders with regard to total order pairs
for a given user. Computing the average of DOAuk

for all users, we could obtain
the final performance index DOA.

3.2 Experiment Results

In this experiment, firstly we study how the 2 parameters d and α affect the
performance. Figure 3 shows the variance of performance result DOA with dif-
ferent parameter settings on 10000 ratings randomly chosen from the training
set of split5. It is demonstrated by Figure 3 that we get better performance when
choosing d = 0.15 and α = 0.1.
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Fig. 3. Variance of Performance with dif-
ferent parameter settings

Split1 Split2 Split3 Split4 Split5 Mean
PR 87.69 87.71 87.65 87.51 88.14 87.74
TR 89.05 89.12 89.26 88.97 89.01 89.08

Fig. 4. DOA comparison of our algorithm
(TR) with PaperRank (PR) on the 5 splits

Figure 4 demonstrates that the proposed Topical PageRank based algorithm
(TR) outperforms ItemRank in all the 5 splits. What improves our experimental
results is the process of predicting rank score for each item in each genre and then
calculating total rank score for each item. This indicates that the consideration
of item genre and user interest profile is important.

Figure 5 shows the superiority of our algorithm (TR), compared with other
graph-based algorithms mentioned in[1]. This also proves the advantage of rank-
ing algorithm in recommender systems.
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L+ PR Katz Dijkstra TR
DOA 87.18 87.74 85.26 49.65 89.08

Fig. 5. Overall DOA comparisons of our algorithm (TR) with other scoring algorithms

4 Conclusions

In this paper, we present a Topical PageRank based algorithm for recommender
systems. In this model, we establish an item correlation graph by investigating
user-item relationship, rank all the items for each user and recommend the top-
ranked item to the corresponding customer. Experiments on MovieLens Dataset
show our algorithm outperforms other state-of-the-art graph based algorithms.
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Abstract. Examining concepts that change over time has been an active area of 
research within data mining. This paper presents a new method that functions in 
contexts where concept drift is present, while also allowing for modification of 
the instances themselves as they change over time. This method is well suited to 
domains where subjects of interest are sampled multiple times, and where they 
may migrate from one resultant concept to another due to Object Drift. The 
method presented here is an extensive modification to the conceptual clustering 
algorithm COBWEB, and is titled DynamicWEB. 

Keywords: Data Mining, Contextual Clustering, Concept Drift. 

1   Introduction 

Everything changes with time. Ideas change, humans change, concepts change. This 
is evident in many areas and data mining is no different. The field of concept drift 
aims to notice changes within a given dataset, and then adapt to these changes. Learn-
ing algorithms that allow for concept drift are able to be more robust over time. 
Within online learning applications being able to adjust a class definition as a result of 
changes within a domain allows a learning method to produce a model which is accu-
rate up to the current moment. 

Concept drift, as examined within the context of data mining, has been studied 
since the 1980s. Various techniques for detecting and reacting to change within the 
class descriptions in a dataset have been developed [1, 2]. However, this paper dis-
cusses a new method that is closely related to concept drift methods, but is focused 
upon the changes of individual objects which are examined multiple times over a 
given time period, where they might drift from one resultant class into that of another. 
We refer to this as Object Drift. As these objects change with time, drift within the 
concepts which they form can also take place. These two different forms of drift are 
accounted for by the algorithm described in this paper, whereas traditional concept 
methods only account for concept drift. 

This paper will first examine previous work within the area of concept drift and 
conceptual clustering algorithms before presenting the algorithm completed by the 
authors known as DynamicWEB. Some preliminary results will then be discussed. 
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2   Conceptual Clustering 

Conceptual Clustering as first outlined by Michalski [3] aims to produce concept 
descriptions for each class. This then allows for clusters to have a simple conceptual 
interpretation based upon these descriptions. Data clustering methods, while often 
useful for classification are not as simple to interpret or fully understand from the 
human perspective. The goal of conceptual clustering extends beyond that of data 
clustering to not only discover the relationships within the data, but also to discover 
human interpretable clusters. 

This paper presents a method, entitled DynamicWEB, which at its core is a sub-
stantial modification to the COBWEB unsupervised incremental conceptual clustering 
algorithm. This is not the first time that the COBWEB algorithm has been modified to 
adapt to concept drift, and an existing method will also be briefly examined in this 
paper. 

The COBWEB algorithm was published by Fisher [4] and builds upon the work 
completed by Michalski [3], and the UNIMEM [5] and CYRUS [6] systems by other 
authors. While COBWEB draws from these methods, the most significant related 
work which is also incorporated into COBWEB is that of the Category Utility by 
Gluck and Corter [7, 8]. The COBWEB algorithm utilises a hierarchical tree to group 
the observed instances into concepts where traits are shared across the resident in-
stances. The measure COBWEB uses to group the instances together is the category 
utility. 

Gluck and Corter were able to show, using the category utility, similar basic level 
categorisation to that found within human psychological testing. Basic level categori-
sation, as used by Gluck and Corter, was first described by Mervis and Rosch [9]. A 
basic level category is defined as one which is preferred to a more generalised or 
specific category. Fisher showed that by using the category utility upon the attribute 
value pairs present within standard data mining datasets a probabilistic conceptual 
clustering algorithm could be produced. The category utility functioning within 
COBWEB is sufficiently resilient to produce a useful measure of likeness. Our re-
search does not modify this calculation; for an in-depth explanation of its operation 
and derivation refer to Gluck and Corter [7, 8] or Fisher [4]. COBWEB’s control 
structure (Table 1) remains as presented by Fisher and Gennari [10], with the modifi-
cations we have made being detailed in Section 4. 

Table 1. The COBWEB insert mechanism 

1. Search children for the best match to the current instance (start at root for new instance) 
2. Create a new class; calculate category utility 
3. Incorporate into the best matching existing child at this node; calculate category utility 

4. Merge the two best matching children and incorporate forming a new class; calculate 
category utility. 

5. Split the best matching child; calculate category utility 
6. Select the option from above with the greatest category utility and then continue at 1. 

If the category utility is below the cut-off then move to 7. 
7. Move on to the next instance at step 1, continuing till the end of the dataset. 
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Since the publication of COBWEB there have been several other authors who 
have modified the method to further the research. COBBIT, by Kilander and Jannsson 
[11], is a variation of COBWEB that allows it to adapt to concept drift through the use 
of a time window. A time window is an approach that has been used by other authors 
in approaching the problem of concept drift [2] where a set number of instances 
smaller than the total is used within the tree at any given moment. As time progresses 
only the most recent instances in that window are utilised. COBBIT is able to adapt to 
concept drift, but not object drift. 

3   DynamicWEB 

DynamicWEB was created to allow objects to be tracked over time as they change 
within their domain of knowledge. Example domains include a person’s behaviour 
being tracked within a security system, the weather at a given location as it changes or 
a person’s health over a time period. It is common within data mining for methods to 
be able to examine latitudinal datasets, where many objects are sampled once. Pat-
terns are extracted, and knowledge is gained. But there are few methods for longitudi-
nal studies where the same person, or object, is sampled many times requiring models 
to be updated with the new information. It is this problem space which DynamicWEB 
is investigating. 

Concept drift is a related area to this but instead of just the concept changing with 
time, DynamicWEB looks at objects that change with time as well. As DynamicWEB 
aims to follow the individual objects as they change, the overarching concepts are 
also able to drift. As such, DynamicWEB allows for both concept and object drift. As 
a given object changes with time the instance within the DynamicWEB tree is lo-
cated, updated and re-clustered with respect to its neighbours reflecting the new in-
formation gained from its most recent change. To fully explain how this was 
undertaken made the modifications to COBWEB will now be discussed. 

COBWEB in its original form was not intended to have updates occur to the in-
stances that were present within the tree structure. The tree is sorted based on the 
likeness of the objects resident within it and to locate a given instance each instance 
would have to be examined in turn, resulting in a O(n) search time. Further, there was 
no provision for removing, or modifying, an instance within the tree once it was 
placed there. A modification of an instance within the tree itself would change the 
category utility of the node containing it, and any parent nodes, thus destroying integ-
rity of the tree. Therefore deletion and modification methods are needed along with a 
faster way of searching the tree to enable these operations to occur in a more efficient 
manner. 

An index for the tree was implemented (Figure 1) using an AVL tree. For each in-
stance that was added to the tree the identifier for the object was also stored within the 
AVL tree along with a pointer to its location within the clustering tree. The AVL tree 
could now be searched to locate the instances which have been clustered in a search 
time of O(log n).  When considering the update mechanism (Table 2), and the various 
scenarios in which an item might require to be updated it was decided that the  
most appropriate action would be to remove the item from the tree, adjust the sur-
rounding nodes, and then re-add the item. While there are scenarios where simply 
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Fig. 1. This represents the way that the AVL tree acts as an index for the clustering tree. The 
AVL tree is sorted by an identifier, while the clustering tree is sorted by attribute similarity. 

Table 2. The DynamicWEB update mechanism 

1. Search AVL tree for the instance to be updated, returning the node it is located at. 
2. Remove the instance from the node in the tree 
3. Update the relational statistics at that node 

4. Consider carrying out an operation on that node 
I. Is the node empty and needs to be removed 

II. Should the node be split? 
III. Should the node be merged? 

For options II and III calculate the category utility, comparing to the current value. 
5. If the update option produced a category utility that is better than the current, and 

greater than the cut-off, then perform operation. For all instances affected by an 
operation update their nodes within the AVL tree.  

6. If the current node is the root, or the cut off is greater than the suggested category 
utilities move onto step 7. Else move to the parent and perform step 2 onwards. 

7. Update the instance with the new information that has arrived. This may include 
I. Calculating derived attributes 

II. Replacing values 
8. Insert updated instance back into the clustering tree, updating the AVL tree location. 

 
updating the instance in place and then flowing those effects through would be ac-
ceptable, and indeed in these cases it would be more efficient, this is not true of all 
cases. In some cases where attributes are replaced and the variation could cause the 
instance to move to a new location a significant distance away, the migration process 
would be cumbersome. To avoid this, the update mechanism removes the instance of 
interest, updating the tree recursively back to the root, and then re-adds the updated 
instance to the tree. The instance may contain attributes derived from multiple differ-
ent observations of the object, thus creating a profile across the multiple observations. 
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As the instance changes across multiple observations it may migrate from one classi-
fication to another or may migrate to a better position in the tree. 

4   Experiments 

DynamicWEB is quite a different method to those discussed previously. Its main 
strength is being able to update and keep track of individual objects over time as they 
change. Concept drift algorithms have previously focused on keeping track of a class 
definition, or measuring the effectiveness of algorithms at recovering a class defini-
tion that has been changed drastically. Figure 2 shows a comparison between Dy-
namicWEB and COBBIT [11] using the STAGGER concept dataset [1]. The dataset 
is a series in which two sudden drifts occur within the resulting classes of the in-
stances. The learning methods are then required to re-learn the resulting class defini-
tions. Both STAGGER and FLORA used this dataset as a method of measuring how 
quickly a class could be relearned after a sudden drift [1, 2]. COBBIT is using a win-
dow size one quarter the size of each concept group (10 instances). COBBIT starts to 
recover from the sudden drift faster than DynamicWEB, but is overtaken by the mid-
point of each concept group. 

DynamicWEB can be of use in traditional concept drift problems. However its 
primary goal is to track when individual objects change over time and drift from one 
class to another, independent of whether the classes are drifting or not. Figure 3 illus-
trates a small dataset that the authors created to show the way DynamicWEB func-
tions on larger datasets. The dataset is based upon Quinlan’s [12] weather dataset, but 
is expanded to include 3 measurements of 12 locations. The class values given to the 
instances were assigned by using Quinlan’s C4.5 [13]. Over these three measurements 
each location’s temperature, humidity, rain and wind profiles are updated. Some loca-
tions start off within the positive class, and then migrate to the negative; some remain 
where they are; others migrate in the opposite direction. 

To illustrate that DynamicWEB can scale to a much larger dataset a third test was 
completed on the Physiological Data Modeling Contest dataset [14]. DynamicWEB 
 

 

Fig. 2. A comparison of DynamicWEB vs COBBIT with the STAGGER concepts dataset 
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Fig. 3. The progression of the DynamicWEB tree across three updates to a modified weather 
dataset. Each item within the tree is updated twice resulting in the modifed trees presented. 

performed well monitoring the 35 objects, each of which was updated fifteen thou-
sand times within the dataset. 

5   Further Work 

DynamicWEB is currently being run on more datasets of various sizes, from several 
domains to illustrate its generality and usefulness across multiple knowledge domains.  

DynamicWEB was also designed to operate using multiple clustering trees in par-
allel. Other authors [1, 2] have discussed the negative impact of noise upon concept 
drift, and the authors of this paper believe that it may be possible to reduce this impact 
by parallelising some of the clustering. Within datasets containing many attributes, 
some of the attributes operate independently of each other, and can act as noise to 
each other. This effect could be worsened by inherent noise within these attributes. By 
parallelising the clustering across multiple trees it may be possible to reduce this im-
pact. This feature is currently being tested upon other datasets not shown here, and 
has previously been discussed elsewhere [15]. 

6   Conclusion 

This paper discussed and presented a new method for adapting to concept drift as well 
as adapting to object drift that is occurring within objects which are being observed 
multiple times. 
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The examination and monitoring of individual objects across multiple observations 
is a natural and useful extension to the investigation of concept drift. DynamicWEB is 
presented as a novel approach to this problem space, while still being grounded within 
proven data mining theory by extending the respected method COBWEB [4]. The 
method is currently being tested upon different datasets from many domains in an 
effort to prove both its generality and usefulness in data mining universally. 

A comparison between DynamicWEB and COBBIT using the STAGGER concept 
dataset was presented. Also shown was a diagram illustrating the changes that oc-
curred after each objects’ profile within the tree was updated twice. 

In further work DynamicWEB will be enabled to perform conceptual clustering in 
parallel across multiple linked classification trees in an effort to reduce the impact of 
unwanted interactions between independent variables. 
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Abstract. Data anonymization techniques based on enhanced privacy
principles have been the focus of intense research in the last few years.
All existing methods achieving privacy principles assume implicitly that
the data objects to be anonymized are given once and fixed, which makes
it unsuitable for time evolving data. However, in many applications, the
real world data sources are dynamic. In such dynamic environments, the
current techniques may suffer from poor data quality and/or vulnera-
bility to inference. In this paper, we investigate the problem of updat-
ing large time-evolving microdata based on the sophisticated l-diversity
model, in which it requires that every group of indistinguishable records
contains at least l distinct sensitive attribute values; thereby the risk of
attribute disclosure is kept under 1/l. We analyze how to maintain the l-
diversity against time evolving updating. The experimental results show
that the updating technique is very efficient in terms of effectiveness and
data quality.

1 Introduction

Many organizations are increasingly publishing microdata (tables that contain
unaggregated information about individuals). These tables can include medical,
voter registration, census, and customer data. Some of these microdata need to
be released, for various purposes, to other parties in a modified form (without the
direct identifying information such as SSN, Name, etc.). But even altered this
way, these datasets could still present vulnerabilities that can be exploited by in-
truders, i.e. persons whose goals are to identify specific individuals and to use the
confidential information they discover for malicious purposes. The high volume
and availability of released datasets together with ever increasing computational
power made the protection against those vulnerabilities an increasingly difficult
task. To avoid linking attacks, Samarati and Sweeney [11,15] proposed a defini-
tion of privacy called k-anonymity. A table satisfies k-anonymity if every record
in the table is indistinguishable from at least k − 1 other records with respect
to every set of quasi-identifier attributes; such a table is called a k-anonymous
table.

W. Wobcke and M. Zhang (Eds.): AI 2008, LNAI 5360, pp. 461–469, 2008.
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Due to its conceptual simplicity, numerous algorithms have been proposed
for implementing k-anonymity via generalization and suppression. Samarati [11]
presents an algorithm that exploits a binary search on the domain generalization
hierarchy to find minimal k-anonymous table. Sun et al. [12] recently improve
his algorithm by integrating the hash-based technique. Bayardo and Agrawal [3]
presents an optimal algorithm that starts from a fully generalized table and spe-
cializes the dataset in a minimal k-anonymous table, exploiting ad hoc pruning
techniques. LeFevre et al. [6] describes an algorithm that uses a bottom-up tech-
nique and a priori computation. Fung et al. [5] present a top-down heuristic to
make a table to be released k-anonymous. As to the theoretical results, Meyer-
son and Williams [9] and Aggarwal et al. [1,2] proved the optimal k-anonymity
is NP-hard (based on the number of cells and number of attributes that are
generalized and suppressed) and describe approximation algorithms for optimal
k-anonymity. Sun et al. [13] proved that k-anonymity problem is also NP-hard
even in the restricted cases, which could imply the results in [1,2,9] as well.

Recent studies shows that although k-anonymity protects against identity
disclosure, it is insufficient to prevent attribute disclosure. To address this lim-
itation of k-anonymity, several models such as p-sensitive k-anonymity [16],
(p+, α)-sensitive k-anonymity [14], l-diversity [8], (α, k)-anonymity [19] and t-
closeness [7] were proposed in the literature in order to deal with the problem
of k-anonymity. The work presented in this paper is based on l-diversity model,
introduce by [8]. The main contribution of [8] is to introduce the l-diversity prop-
erty, which provides privacy even when the data publisher does not know what
kind of knowledge is possessed by the adversary. Most of the existing solutions
are limited only to static data release. That is, in such solutions it is assumed
that the entire dataset is available at the time of release. Nevertheless, large
microdata sets containing private information are time-evolving, meaning that
new data are collected and added, and old data are purged.

One possible method is to publish anonymizations of current microdata, that
is, when the new anonymous versions of such a dataset are prepared for release,
the current solution is to reprocess the entire dataset, without relying on pre-
vious releases of the dataset. However, processing a large dataset in this way
to achieve the privacy requirement is time-consuming. Another approach is to
anonymize and publish new records periodically. Then researchers can either
study each released dataset independently or merge multiple datasets together
for more comprehensive analysis. Although straightforward, this approach may
suffer from severely low data quality.

The incremental updates are not well addressed in the previous studies. [17]
studies the incremental update issue for k-anonymity model. In this paper, we dis-
cuss about the updating technique for large time-evolving microdata on l-diversity
model which extend the results in [17]. we propose an updating technique for the
maintenance of l-diverse large evolving datasets. Essentially, the proposed tech-
nique produces a l-diverse dataset starting from a previous l-diverse release so-
lution for the dataset, which is updated to include the new data in the incre-
ment dataset and to delete the obsolete dataset. The anonymous process tries to
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Table 1. Microdata

MCN Gender Age Zip Diseases
∗ Male 25 4350 Hypertension
∗ Male 23 4351 Hypertension
∗ Male 22 4352 Depression
∗ Female 28 4353 Chest Pain
∗ Female 34 4352 Obesity
∗ Female 31 4350 Flu

Table 2. 3-anonymous Microdata

MCN Gender Age Zip Diseases
∗ Male 22-25 435∗ Hypertension
∗ Male 22-25 435∗ Hypertension
∗ Male 22-25 435∗ Depression
∗ Female 28-34 435∗ Chest Pain
∗ Female 28-34 435∗ Obesity
∗ Female 28-34 435∗ Flu

minimize information loss. As our experimental results show, this updating tech-
nique is far more efficient than to re-process the whole updated microdata.

2 Preliminaries

Let T be the initial microdata table and T ′ be the released microdata table. T ′

consists of a set of tuples over an attribute set. The attributes characterizing
microdata are classified into the following three categories.

• Identifier attributes that can be used to identify a record such as Name and
Medicare card.

• Quasi-identifier (QI) attributes that may be known by an intruder, such as
Zip code and Age. QI attributes are presented in the released microdata
table T ′ as well as in the initial microdata table T .

• Sensitive attributes that are assumed to be unknown to an intruder and
need to be protected, such as Disease or ICD9Code. Sensitive attributes are
presented both in T and T ′.

In what follows we assume that the identifier attributes have been removed
and the quasi-identifier and sensitive attributes are usually kept in the released
and initial microdata table. Another assumption is that the value for the sen-
sitive attributes are not available from any external source. This assumption
guarantees that an intruder can not use the sensitive attributes to increase the
chances of disclosure. Unfortunately, an intruder may use record linkage tech-
niques [18] between quasi-identifier attributes and external available information
to glean the identity of individuals from the modified microdata. To avoid this
possibility of privacy disclosure, one frequently used solution is to modify the
initial microdata, more specifically the quasi-identifier attributes values, in order
to enforce the k-anonymity property.

Definition 1 (Quasi-identifier). A quasi-identifier (QI) is a minimal set Q
of attributes in microdata table T that can be joined with external information
to re-identify individual records (with sufficiently high probability.

Definition 2 (k-anonymity). The modified microdata table T ′ is said to sat-
isfy k-anonymity if and only if each combination of quasi-identifier attributes in
T ′ occurs at least k times.
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A QI-group in the modified microdata T ′ is the set of all records in the table
containing identical values for the QI attributes. There is no consensus in the
literature over the term used to denote a QI-group. This term was not defined
when k-anonymity was introduced [11,15]. More recent papers use different ter-
minologies such as equivalence class [19,8,7] and QI-cluster [16,14].

For example, let the set {Gender, Age, Zip Code} be the quasi-identifier of
Table 1. Table 2 is one 3-anonymous view of Table 1 since there are two QI-
groups and the size of each QI-group is at least 3. So k-anonymity can ensure
that even though an intruder knows a particular individual is in the k-anonymous
microdata table T , s/he can not infer which record in T corresponds to the
individual with a probability greater than 1/k.

The k-anonymity property ensures protection against identity disclosure, i.e.
the identification of an entity (person, institution). However, it does not protect
the data against attribute disclosure. To deal with this problem in privacy breach,
the l-diversity model was introduced in [8].

Definition 3 (l-diversity principle). A QI-group is said to have l-diversity
if there are at least l “well-represented” values for the sensitive attribute. A
modified table is said to have l-diversity if every QI-group of the table has
l-diversity.

Machanavajjhala et al. [8] gave a number of interpretations of the term “well-
represented” in this principle:

1. Distinct l-diversity: The simplest understanding of “well represented”
would be to ensure there are at least l distinct values for the sensitive attribute
in each QI-group. Distinct l-diversity does not prevent probabilistic inference at-
tacks. A QI-group may have one value appear much more frequently than other
values, enabling an adversary to conclude that an entity in the equivalence class
is very likely to have that value. This motivated the development of the following
two stronger notions of l-diversity.

2. Entropy l-diversity: The entropy of a QI-group G is defined to be:

Entropy(G) = −
∑
s∈S

p(G, s)logp(G, s)

in which S is the set of the sensitive attribute, and p(G, s) is the fraction of
records in G that have sensitive value s. A table is said to have entropy l-
diversity if for every QI-group G, Entropy(G) ≥ log(l). Entropy l- diversity is
strong than distinct l-diversity. As pointed out in [8], in order to have entropy
l-diversity for each QI-group, the entropy of the entire table must be at least
log(l). Sometimes this may too restrictive, as the entropy of the entire table
may be low if a few values are very common. This leads to the following less
conservative notion of l-diversity.

3. Recursive (c, l)-diversity: Recursive (c, l)-diversity makes sure that the
most frequent value does not appear too frequently, and the less frequent values
do not appear too rarely. Let m be the number of values in a QI-group, and ri,
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1 ≤ i ≤ m be the number of times that the ith most frequent sensitive value
appears in a QI-group G. Then G is said to have recursive (c, l)-diversity if
r1 < c(rl + rl+1 + ...+ rm). A table is said to have recursive (c, l)-diversity if all
of its QI-groups have recursive (c, l)-diversity.

In this paper, we adopt the first interpretation of l-diversity, that is, we say a
microdata satisfies l-diversity principle, if there are at least l distinct values in
each QI-group. We applied the cluster technique reported in [4]. To ensure that
l-diversity is correctly enforced, two constraints are required when the clustering
process is performed. First, each resulted cluster must have at least l distinct
values for the sensitive attribute. If it does, the subsequent generalization of the
cluster elements to a common tuple ensures the l-diversity requirement. Second,
the clustering method must act towards minimizing the information loss. The
clusters should be formed such that the information lost by generalizing each
group of tuples to a common value will be as low as possible.

Definition 4. [4] [Information Loss] Let cl ∈ P be a cluster, gen(cl) its gener-
alization information and A = {N1, · · ·Ns, C1, · · ·Ct} the set of quasi identifier
attributes. The information loss caused by generalizing cl tuples to gen(cl) is:

IL(cl) = |cl|(
s∑

j=1

|gen(cl)[Nj]|
|[minr∈T r[Nj ],maxr∈T r[Nj ]]|

) +
t∑

j=1

h(∧(gen(cl)[Cj ]))
h(HCj )

where |cl| denotes the cardinality of cluster cl; |[i1, i2]| is the size of the interval
[i1, i2] (the value i2 − i1); ∧(w), w ∈ HCj is the sub-hierarchy of HCj rooted at
w; h(HCj ) denotes the height of the tree hierarchy HCj .

Definition 5. Total information loss for a solution P = {cl1, · · · , clv} of the l-
diversity by clustering problem, denoted by IL(P), is the sum of the information
loss measure for all the clusters in P.

The information loss measure penalizes each tuple with a cost proportional with
how “far” the tuple is from the cluster generalization information. Intuitively,
the smaller the clusters are in a solution and the more similar the tuples in
those groups will be, then less information will be lost. So, the desideratum is
to group together the most similar objects (i.e. that cause the least possible
generalization) in clusters with respect to the l-diversity requir.

3 Dynamic Updating Time-Evolving Microdata

Let P = {cl1, · · · clv} be a solution for the l-diversity problem for the microdata
T . There are three problems arisen in the updating process. The first is that when
there is a new segment of data that needs to be added to the original microdata,
and how to process the update to make it preserve the l-diversity. The second is
when parts of the original data needs to be deleted, how to maintain l-diversity.
The third one is a hybrid version of adding and deleting. We can solve the third
one by independently solve the first and second problem. The first and second
problems are described as follows:



466 X. Sun, H. Wang, and J. Li

Problem 1. The dataset 1+T is added to T . How to efficiently update P to
P ′ = {cl′1, · · · cl′v} that ensures l-diversity for T ∪1+T ?

Problem 2. The dataset 1+T is deleted from T . How to efficiently update P to
P ′ = {cl′1, · · · cl′v} that ensures l-diversity for T −1−T ?

The solution to the first problem is as follows. Each tuple r in 1+T is added to
that cluster in P that, increased with r, will produce the minimum increase of
total information loss. Due to multiple insertions, when a cluster grows bigger
than 2k elements and it has at least 2l distinct sensitive values, we can split
that cluster into two sub-cluster in a greedy manner that tries to minimize total
information loss.

The solution to the second problem proceeds as follows. Each tuple r in 1−T
is deleted from the cluster currently containing it. The clusters that remain with
less than k elements or less than l distinct sensitive values are dispersed into
the other cluster, in order to maintain l-diversity for T −1−T . Each element r
of cl′j is relocated to another cluster will produce the minimum increase of the
total information loss. If a cluster grows bigger then 2k elements and with more
than 2l distinct sensitive values, that cluster will be split into two, which is the
same process as the first problem.

Theorem 1. Let T be a set of records and l be the specified anonymity re-
quirement. Every cluster that the algorithm finds has at least l distinct sensitive
values, but no more than 2l − 1.

Proof. As the algorithm finds a cluster with the number of sensitive attribute
values of the records is equal to or greater than l, every cluster contains at least
l distinct sensitive values. If there is one cluster with less than l distinct sensitive
values, each record in this cluster could be relocated to other cluster. That is,
in the worst case, the records with l − 1 distinct sensitive values are added to
another single cluster which already has records with l distinct sensitive values.
Therefore, the maximum number of distinct sensitive values in a cluster is 2l−1.

4 Experimental Results

In our experiment, we adopted the publicly available data set, Adult Database, at
the UC Irvine Machine Learning Repository [10], which has become the bench-
mark of this field and was adopted by [6,8,5]. In this section we compare, in
terms of efficiency, scalability, and results quality, the static algorithm from [16]
with our incremental algorithms. The algorithms have been implemented and
executed on P4 machine with 2.4 GHz each and 1 GB of RAM.

Table 3 provides a brief description of the data including the attributes we
used, the type of each attribute data, the number of distinct values for each
attribute, and the height of the generalization hierarchy for each attribute. In
all the experiments, we considered Age as the set of numerical quasi-identifier
attributes, and Work-class, Marital-status, Occupation, Race, Sex, and Native-
country as the set of categorical quasi-identifier attributes. l-diversity property
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Table 3. Features of Quasi-identifier

Attribute Type Distinct values Height
Age Numeric 74 5

Workclass Categorical 8 3
Education Categorical 16 4
Country Categorical 41 3

Marital Status Categorical 7 3
Race Categorical 5 3

Gender Categorical 2 2

Fig. 1. Information Loss vs Running Time (I)

Fig. 2. Information Loss vs Running Time (II)

was enforced in respect to the quasi-identifier consisting of all these seven at-
tributes. We removed all tuples that contained the unknown value for one or
more of the quasi-identifier attributes from the data.

The experiment contains three steps. First, the static algorithm from [16] was
applied on a dataset, which is a subset extracted from the entire adult dataset.
Second, we applied the dynamic algorithm to update the clusters produced by
the static algorithm and considering several different choices of inserting/deleting
dataset. Third, the static algorithm was applied on the entire new updated
dataset datasets. When doing inserting, T has 10000 objects, and the inserting
dataset had different sizes, varying between 0.5% and 50% of the entire adult
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dataset. When doing deleting, the deleting parts had different sizes, varying
between 50 and 5000 tuples. The values considered for l were 2, 4.

In Fig. 1(a) and 2(a), we compare: a) the information loss for each set of clus-
ters obtained by applying the static l-diversity algorithm, followed by updating
algorithms on the corresponding updated dataset; b) the information loss for the
set of clusters obtained by applying the static algorithm on the updated dataset.
We can expect that the information loss obtained by the updating algorithm de-
teriorates when the increment/ decrement dataset grows in size w.r.t. the initial
dataset size. Nevertheless, as is usually the case in the real world databases evo-
lution, for small modification amounts, the information loss remains at about
the same level as if we would use the static algorithm. From these experiments,
we draw the conclusion that the updating algorithm can be used for maintaining
l-diverse microdata when the changing portions of the datasets are small.

Fig. 1(b) and Fig. 2(b) illustrate the running time for the updating algorithms
compared with the static algorithm. The time for incrementally processing the
datasets grows with the size of the datasets, however, it is still significantly lower
than the time required to process the datasets with the static algorithm. Whether
to use updating algorithm or a static one is to be decided by the requirement of
data quality and execution time. The advantages of dynamic updating algorithms
can maintain acceptable data quality while the running time is tolerated.

5 Conclusion and Future Work

In this paper,we identified and investigate the problemofmaintaining l-diversity in
time evolving microdata, and proposed a simple yet effective solution. Maintaining
l-diversity against various types of dynamic updates is an important and practical
problem. As we show in experiments, the running time of the dynamic updating
algorithms is significantly lower than that of the static algorithm. From the data
quality perspective, the information loss is also comparable with the information
loss obtained by applying the non-incremental algorithm to the final dataset. As
future work, we will make more comprehensive experimental studies to compare
the dynamic method with others and extend to other privacy paradigms.
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Abstract. Owing to the spread of worms and botnets, cyber attacks
have significantly increased in volume, coordination and sophistication.
Cheap rentable botnet services, e.g., have resulted in sophisticated bot-
nets becoming an effective and popular tool for committing online crime
these days. Honeypots, as information system traps, are monitoring or
deflecting malicious attacks on the Internet. To understand the attack
patterns generated by botnets by virtue of the analysis of the data col-
lected by honeypots, we propose an approach that integrates a cluster-
ing structure visualisation technique with outlier detection techniques.
These techniques complement each other and provide end users both a
big-picture view and actionable knowledge of high-dimensional data. We
introduce KNOF (K-nearest Neighbours Outlier Factor) as the outlier
definition technique to reach a trade-off between global and local outlier
definitions, i.e., Kth-Nearest Neighbour (KNN) and Local Outlier Factor
(LOF) respectively. We propose an algorithm to discover the most signifi-
cant KNOF outliers. We implement these techniques in our hpdAnalyzer
tool. The tool is successfully used to comprehend honeypot data. A series
of experiments show that our proposed KNOF technique substantially
outperforms LOF and, to a lesser degree, KNN for real-world honeypot
data.

Keywords: Knowledge discovery, outlier detection, density-based clus-
ter visualisation, botnet, honeypot data, Internet security.

1 Introduction

The Internet has evolved into a platform for a large number of security-sensitive
services and applications. Online banking and payment, e.g., are now ubiqui-
tous [1]. Cyber attacks have significantly increased in volume, coordination and
sophistication with the increase in online attacks from a variety of attack vec-
tors such as worms and botnets. A botnet is a set of compromised computers
subject to a common Command-and-Control mechanism, often used for nefari-
ous purposes. Each compromised computer, i.e., a bot, behaves like a complex
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of worms, rootkits and Trojan horses [1]. The bot can automatically exploit,
propagate and initiate a remote control channel to its master. A flourishing in-
dustry of botmasters sell or rent stealthy botnet services, which is compromising
Internet security.

A ‘honeypot’ is a computer or network trap dedicated to attracting and
monitoring malicious computer attacks, more recently botnet attacks. Various
honeypots have successfully been used in cyber attack surveillance, analysis or
defense [1,2,3]. They have collected large amount of Internet traffic [4] and secu-
rity experts have made great efforts to comprehend honeypot data manually [5,1]
or via simple tools [4,6].

Automatic knowledge discovery from honeypot data is still in its infancy, es-
pecially for proactive security purposes such as detecting zero-day attacks or
discovering new bots as they are deployed. In this paper, we report our ef-
forts on developing techniques and tools to analyse honeypot data for proactive
security. By integrating clustering structure visualisation together with outlier
detection, our hpdAnalyzer tool can not only provide a big picture of honeypot
data patterns, but also identify some abnormal activities which security ex-
perts can choose for further action. We also combine a global outlier definition,
K-Nearest Neighbour (KNN), with a local outlier definition, Local Outlier Fac-
tor (LOF), which we call KNOF, as the outlier definition in honeypot data. The
tool has been tested on real-world honeypot data.

The remaining paper is organised as follows. We outline the relevant data min-
ing techniques in Section 2. We describe the KNOF algorithm and the hpdAn-
alyzer tool in Sections 3 and 4 respectively. Experimental results are presented
in Section 5 and these are followed by concluding comments in Section 6.

2 Related Data Mining Techniques

To analyse honeypot data, we propose to use two kinds of data mining tech-
niques. First, we conduct an exploratory data analysis to obtain an overall un-
derstanding of the data set. This is useful for gaining a high-level understanding
of the way the data are structured, e.g., inherent clusters. Furthermore, we detect
outliers to highlight abnormalities within the data, like suspicious behaviours or
attacks. Such outliers can then be selected to undertake further analysis. Visual-
ising outliers properly in the first phase can help us verify/choose suitable outlier
detection techniques. Moreover, outliers may help us clarify clustering structure
easily.

We first outline a density-based cluster visualisation technique, OPTICS (Or-
dering Points To Identify the Clustering Structure) [7]. Density-based clusters
are regarded as regions where objects are dense and which are separated by
sparse regions (which may contain outliers). They may have arbitrary shape.
OPTICS does not produce a clustering of a data set D explicitly, but instead
creates an augmented ordering of the data set representing its density-based
clustering structure. The cluster-ordering could be used to visualise the inherent
clustering structure of a high-dimensional data set.
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OPTICS has two parameters, ε and k. The generating distance ε indicates
the maximum radius of the neighbourhood. OPTICS ignores neighbours that
are located further away than ε. The ε-neighbours of an object p is defined as
Sε(p) = {q ∈ D |dis(p, q) ≤ ε} where dis(p, q) is the distance between objects p
and q. The second parameter k is a natural number and indicates the minimal
number of neighbours within its ε-neighbours for an object to become a core
object in clustering. That is, p is a core object if and only if |Sε(p)| ≥ k.
For a given data set, its core objects constitute the core part of clusters. The
core-distance is the smallest distance ε(≤ ε) between p and an object in its
ε-neighbourhood such that p would be a core object, i.e.,

∣∣Score-dis(p)
∣∣ ≥ k. The

core-distance of a non-core object q is UNDEFINED. Then, the reachable-
distance of p w.r.t. another object o is formalised as

rε,k(p, o) =
{

UNDEFINED, if |Sε(o)| < k;
max{core-dis(o), dis(o, p)}, otherwise. (1)

OPTICS [7] creates a clustering-ordering, additionally storing the core-
distance and a suitable reachable-distance for each object as follows. It starts
with any object p. It retrieves the ε-neighbours, i.e., Sε(p). If p is a core object,
the core distance of p is calculated w.r.t. k. Object p is assigned an order which
starts from a value equal to one. The object’s reachable-distance is also stored.
All the ε-neighbours are put into a priority queue with undefined reachable-
distance. OPTICS then calculates and updates the reachable-distance of objects
in the priority queue w.r.t. this core object p. The objects in the queue will
be sorted in the ascending order of their current reachable-distance. OPTICS
will select the object at the head of the queue to process. If p is not a core ob-
ject, p is assigned an order and its reachable-distance is stored. However, neither
its ε-neighbours are processed, nor the reachable-distance of objects within the
queue is updated. The consecutive object in the queue is then chosen as the
next object. When the priority queue is empty and the data set has unprocessed
objects, a new random unprocessed object will be selected. Thus, the OPTICS
algorithm generates an ordering of the objects o : {1..n} → D and corresponding
reachable-distances r : {1..n} → R≥0. This information is sufficient to extract all
density-based clusterings w.r.t. any distance ε ≤ ε. For clustering structure vi-
sualisation, we employ the reachability plot where the reachable-distance values
r are plotted for each object in the cluster-ordering o. According to OPTICS,
clusters correspond to valleys in the reachability plot as exemplified in the top
window in Fig. 1(a)

There are various definitions of outliers and associated outlier detection tech-
niques, including statistical distribution-based, depth-based, clustering-based,
distance-based and density-based techniques [8,9]. For high-dimensional data,
we use the distance-based Kth-Nearest Neighbour (KNN) [10] technique and
the density-based outlier detection technique, LOF [11].

A KNN outlier [10] does not require any apriori knowledge of data distri-
butions. It relies on the distance of the kth nearest neighbour of an object p,
denoted as Dk(p), also known as the k-distance [11]. Intuitively, objects with
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larger values of Dk(p) have more sparse neighbourhoods and are thus typically
stronger outliers than objects belonging to dense clusters which will tend to have
lower values of Dk(p). Given two parameters k and n, an object p is an outlier
if no more than n − 1 other objects in the data set have a higher value for Dk

than p. In other words, the top n objects with the maximal Dk are regarded as
outliers. We simply refer these top-n KNN outliers, hereafter as “KNN outliers”,
when this is clear from the context. Because the definition takes a global view
of a data set, these outliers can be viewed as ‘global outliers’ [11].

Density-based outliers are objects that are outlying relative to their local
neighbourhoods, particularly w.r.t. the densities of the neighbourhoods. These
outliers are regarded as ‘local’ outliers, such as defined by the Local Outlier
Factor (LOF) [11]. LOF needs a parameter k. To simplify our discussion, we
assume that less than k objects are identical in a data set. The k-distance neigh-
bourhood of an object p, Nk(p), comprises the objects whose distance from
p is not greater than Dk(p). The reachability distance of p w.r.t. another ob-
ject o, reach distk(p, o), is the maximum of Dk(o) and the distance between
p and o, dis(p, o). The local reachability density of an object p is the in-
verse of the average reachability distance based on the k nearest neighbours
of p, i.e.,

lrdk(p) =
1

Σo∈Nk(p)reach distk(p,o)
|Nk(p)|

. (2)

The Local Outlier Factor (LOF) of an object p is the ratio of the average
local reachability density of p’s k-nearest neighbours to the local reachability
desnity of p. Intuitively, the lower an object p’s local reachability density is, and
the higher those of p’s k-nearest neighbours are, the higher is p’s LOF value.
Formally,

LOFk(p) =
Σo∈Nk(p)

lrdk(o)
lrdk(p)

|Nk(p)| . (3)

3 K-Nearest Neighbours Outlier Factor

In this paper we will concentrate on using the top n outliers as an outlier defi-
nition. There are several considerations. (1) Firstly, it is easy to set the unique
parameter n. (2) Secondly, it is usually computationally cheap. (3) Finally, it
greatly facilitates our experiments as there are no labeling information for out-
liers in most, especially unseen, real-world data sets.

As discussed above, distance-based outlier definitions like KNN prefer ‘global’
outliers which lie away from other objects. LOF prefers ‘local’ outliers whose
neighbours have much higher density. Our preliminary experiments substantiate
that both LOF and KNN perform reasonably well. However, the intersection
of the top n KNN and the top n LOF outliers is only a small proportion of
n. Only a few outliers highlighted by LOF (or KNN) are of great interest for
the honeypot data from proactive security viewpoint. Some examples will be
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given in Section 5. To make better use of these two “outlierness” definitions,
especially for highlighting the top n outliers of practical interest, we propose a
new “outlierness” measure. It combines these two measures in order to reach
a good balance between ‘global’ and ‘local’ outlierness. A large number of the
top n outliers under this definition is found in the top n KNN outliers. It also
corresponds to a number of the top n LOF outliers. This definition could be used
for specific applications as shown in Section 5. We refer to the new measure as
the k-nearest Neighbours Outlier Factor (KNOF).

Definition 1. For a given integer k, the KNOF of an object p is the product
of its LOF value and the average distance from p to each of the objects in the
k-nearest neighbourhood.

KNOFk(p) = LOFk(p) × dNk
(p) � LOFk(p) ×

Σo∈Nk(p)dis(p, o)
|Nk(p)| . (4)

There are several reasons for us to define KNOF as the product of the LOF
and the average distance dNk

(p) (roughly KNN) values. Firstly, the KNN and
the LOF values have quite different value ranges. As illustrated in Fig. 1, KNN
could be as large as 20. The maximum of KNN could be three or more times
larger than that of LOF. A simple sum or average of KNN and LOF would be
predominated by KNN, especially for top n outliers. Such measures can’t reach a
good balance between KNN and LOF. Secondly, as we concentrate on the top n
outliers, this definition of KNOF has the same performance as a lot of other mea-
sures such as normalisation(KNN)*normalisation(LOF), sqrt(KNN)*sqrt(LOF)
or ln(KNN)+ln(LOF), but KNOF defined by Eq.(4) is relatively simple. Thirdly,
based on our preliminary experiments, other measures like sqrt(KNN)*LOF or
KNN*sqrt(LOF) could not empirically perform as well as the KNOF defined
above.

The algorithm that obtains the top n KNOFk outliers for all the N objects
in a given data set D is outlined in Algorithm 1. In Step 1, a key component is
to retrieve the κ-nearest neighbours for every object p. To reduce the number
of retrieval operations, we only store a set of objects q such that dis(q, p) �
Dk(p) as its k-distance neighbourhood. That is, we restrict the cardinality of
Nk(p) to κ (≥ k) which is 2k by default. To retrieve the κ-nearest neighbours,
without any index support, a sequential scan through the whole data set has to
be performed. In this worst case, the run-time of this step is O(N2). If a tree-
based spatial index such as R∗-tree is used [7,11], the run-time is reduced to
O(N logN).

Steps 2 and 3 are straightforward and calculate LOF and KNOF values ac-
cording to Eqs. 3 and 4 respectively. As the k-distance neighbourhood is mate-
rialised, these steps are linear with N . Step 4 sorts the N objects according to
their KNOF values. Its computation complexity could be O(N logN). Thus, the
overall computation complexity of Algorithm 1 is O(N logN) with appropriate
index support. The worst case is O(N2).
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Algorithm 1. Top-n KNOF(Top-n K-nearest Neighbours Outlier Factor)
Input: A given data set D, natural numbers n, k and κ(≥ k). κ is by default 2k.

1. For each object p in D, retrieve p’s κ-nearest neighbours, compute p’s k-distance
Dk(p), store the objects whose distance from p is not greater than Dk(p) as its
k-distance neighbourhood Nk(p), and compute dNk(p);

2. Calculate the local reachability density for each object p and then calculate the
LOF value according to Eq. 3;

3. Compute the KNOF value for each object p, KNOF(p) = LOF(p)×dNk(p).
4. Sort the objects according to their KNOF values;
5. Output: the first n objects with the highest KNOF values.

4 The Honeypot Data Analyser: hpdAnalyzer

We have implemented the four techniques described above, namely, OPTICS,
LOF, KNN and KNOF in our honeypot data analyser, called hpdAnalyzer.

Besides normal data sets, the hpdAnalyzer tool can also handle network files.
We use the winPcap or libPcap packages to capture and transmit network pack-
ets. To facilitate feature generation, a connection is considered ‘closed’ if (1)
either side of the connection has sent an RST packet, or (2) either side has sent
the last ACK packet while the other side has moved to the TIME WAIT state.
A connection is ‘active’ if it is not closed. A ‘new’ connection is established if
none of existing ‘active’ connections has the same socket. The hpdAnalyzer tool
generates three categories of features for each connection [12] namely, (a) 15 fea-
tures are content-based and extracted directly from tcpdump. For example,
num SYNs src represents the number of SYN packets flowing from source to des-
tination and num bytes src is the number of data bytes flowing from source to
destination. (b) Four time-based features attempt to capture previous connec-
tions with similar characteristics [13]. They only consider the connections in the
past user-defined t window, such as the number of connections made by the same
source as the current connection in the last t seconds. The parameter t is user-
defined. (c) Four connection-based features capture similar characteristics of
the last c connections from the same source, such as the number of connections
made by the same source as the current record in the last c connections. The
parameter c is user-defined.

In real-world data sets, some features may have much larger values than other
features.Thus,without scaling, the outlierswouldprobablybedeterminedby those
features. To avoid this, hpdAnalyzer normalises all of the features to one range
[0, 1]. We implement two different methods for normalisation: linear and nonlin-
ear. Nonlinear normalisation is a piecewise linear mapping with one turning point.
The turning point is mapped onto 0.5.We choose the turning point such that, when
greater than this particular value, increasing the value does not make any signif-
icant change with respect to outlierness. For example, by examining the sample
data, we find that any connection having the metric num bytes src greater than
100,000 is considered fairly suspicious for honeypot data. There is little difference
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in term of suspiciousness for a connection with num bytes src equal to 100,000 or
200,000. Thus, the turning-point for this feature would be 100,000.

End users can interact with the hpdAnalyzer tool via both a Command Line
Interface (CLI) and a Graphic User Interface (GUI). The CLI provides several
useful commands to work with data such as setting parameters, loading data,
normalising data, listing the top n outliers, and saving intermediate results. It
provides an optional data window for 2-D visualisation, e.g., Fig. 1(b) illustrates
the DB4 data set from [7]. The GUI provides data visualisation and interac-
tion capabilities. For example, the main window, as exemplified in Fig. 1(a),
shows all values of the reachable-distance, LOF, KNN and KNOF outlierness
in the cluster-ordering generated by OPTICS. Some details of these plots can
be shown in one or more display windows. For example, Fig. 1(c)-1(f) illustrate
the shadowed parts in Fig. 1(a). In these display windows, we can interactively
choose a specific object. If we choose the object as indicated by the long vertical
line in Fig. 1(c), the other three display windows will also indicate this object
simultaneously, as illustrated in Fig. 1(d)-1(f). At the same time, the details
for that object are listed in the CLI. In the optional data window, that object
is highlighted by expanding white circles, as shown in Fig. 1(b). It is easy to
see that the reachability plot illustrates the intrinsic cluster structure of DB4,
and the three outlierness values show the details within clusters and between
two clusters. In the first cluster indicated by the first valley in Fig 1(c), objects
(bottom-left in Fig 1(b)) are scattered with similar local density as observable in
Fig. 1(d), but some have higher KNN values as shown in Fig. 1(e). As illustrated
in Fig. 1(f), the KNOF plot is smoother than the KNN plot for this cluster.

5 Experimental Results on Real-World Honeypot Data

We have tested our hpdAnalyzer tool, especially the three outlier detection tech-
niques, on several data sets collected by honeypots. We report the results on the
SotM 28 data collected by the Mexico Honeynet project on the honeypot with
IP 192.168.100.28. The data contain two binary network files and records a
successful IRC-based bot attack. The Day1 data (day1.log) has 18,843 packets
and records the procedure of a break-in. The Day3 data (Day3.log) has 123,123
packets and captures unique activities following the compromise.

For the honeypot data, we don’t have labeling information about the suspi-
ciousness or outlierness of any network connection. Thus, we could not use de-
tection accuracy or precision as evaluation metrics. We simply examine the top
n outliers to compare the performance of the three outlier detection techniques.
Once they generate results, we ask a network expert to manually assign suspi-
ciousness values to these network connections in the context of IRC-based bot
attacks [1], without disclosing the algorithms. The suspiciousness value ranges
from 0 to 1. The sum of the suspiciousness of the top n connections serves as an
indicator for outlier detection performance for these real-world data.

We first discuss some results of hpdAnalyzer for the Day1 data. Fig. 2 illus-
trates typical results for Day1 from hdpAnalyzer with k = 18, c = 10 and t = 500
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(a) Main window for DB4 (b) 2-D visualisation of original DB4.

(c) Reachability plot for partial DB4 data. (d) LOF plot for a part of DB4 data.

(e) KNN plot for a part of DB4 data. (f) KNOF plot for a part of DB4 data.

Fig. 1. Results of hpdAnalyzer on a synthetic 2-D DB4 data set from [7]

seconds. In these four subfigures, the Y-axis indicates the value of reachable-
distance or outlierness. The ordering of network connections along the X-axis is
generated by OPTICS. Combining Figs. 2(a) and 2(b), we can observe two clus-
ters, one with high local density and the other with relatively low local density.
All of the three outlier detection techniques indicate that there are some outliers
at the end of cluster-ordering. However, LOF (Fig. 2(b)) indicates most outliers
are located between the two clusters, KNN (Fig.2(c)) indicates most outliers in
the second cluster, while KNOF (Fig. 2(d)) indicates there are some outliers in
the second cluster and some between the two clusters.

Table 1 lists the top 10 connections highlighted by KNOF for the Day1 data.
The three outlier techniques have the same top 2 suspicious connections. KNOF
only shares the first five connections with KNN, and seven connections with LOF.
Clearly, KNOF reaches a trade-off between the LOF and KNOF techniques.
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(a) Reachability plot for the Day1 data. (b) LOF plot for the Day1 data.

(c) KNN plot for the Day1 data. (d) KNOF plot for the Day1 data.

Fig. 2. Experimental results for the Day1 data (t = 500s, c = 10 and k = 18)

Table 1. The top 10 connections highlighted by KNOF for the Day1 data

With the exception of connection number 7, the suspiciousness value for the
other nine connections are 1. E.g., Number 1 connection is an IRC conversation
that can be used by a botnet for Command & Control. Number 3 connection is
for downloading a rootkit (sol.tar.gz) via the http protocol from 62.211.66.53. For
this relatively small data set, the sum of suspiciousness of the top 10 connections
for KNOF, KNN and LOF are 9.5, 8.4 and 7.1 respectively. KNOF performs
somewhat better than the other two.

We now describe three sets of comparison results for honeypot data to ex-
amine the influence of different neighbourhood size k, time window size t and
connection numbers c on the three techniques. The performance of the tech-
niques for the Day1 data is summarised in Fig. 3(a). The Y axis indicates the
sum of suspiciousness of the top 10 outliers highlighted by each outlier detection
technique. For all the five different k values, KNOF outperforms KNN and LOF,
though the difference becomes small when k is very large. On average, the sum
of suspiciousness of the top 10 outliers generated by KNOF, KNN and LOF is
9.16, 8.76 and 7.56 respectively. One-tailed paired T-tests indicates there are
statistically significant differences among the three techniques at the 0.05 level.
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(a) For different neighbourhood size k

(b) For different time window size t

(c) For different connection numbers c

Fig. 3. Performance comparison among the three outlier detection techniques
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Fig. 3(b) illustrates the sum of suspiciousness of the top 20 outliers highlighted
for the Day3 data with five different time window size t. For all the five different
time window sizes, KNOF and KNN perform consistently well. KNOF and KNN
clearly outperform LOF. Except for the case t = 5, where KNN is favourable,
KNOF has the best performance among these three techniques. Averaged over
the five settings, the sum of suspiciousness of the top 20 outliers highlighted by
KNOF, KNN and LOF is 14.68, 14.22 and 11.00 respectively. Fig. 3(c) shows
the performance comparison using difference connection numbers c during the
feature generation. Again we consider the sum of suspiciousness of the top 20
outliers. For all the six different settings, KNOF and KNN perform consistently
well and outperform LOF. For four of the six settings, KNOF is more favourable.
Averaged over the six settings, the sum of suspiciousness of the top 20 outliers
highlighted by KNOF, KNN and LOF is 14.55, 14.30 and 10.63, respectively.
One-tailed paired t-tests indicate KNOF performs significantly better than LOF
at the 0.05 level while better than KNN at the 0.10 level.

6 Conclusion and Discussion

In this work, we have integrated the cluster structure visualisation technique
OPTICS with, global and local, outlier detection techniques (KNN and LOF)
in our honeypot data analyser tool, hpdAnalyzer. We have proposed and imple-
mented a new outlier detection technique namely, KNOF (K-nearest Neighbour
Outlier Factor) which attempts to reach a trade-off between the global and the
local outlierness. Experimental results have indicated that the visualisation can
complement the outlier detection techniques to highlight outliers and under-
stand the relation between outliers and inherent clusters in data sets. A series
of experiments on real-world honeypot data have illustrated that the new pro-
posed outlier detection technique, KNOF, outperforms KNN slightly and LOF
substantially.

According to previous work, say [12], LOF performs better on normal net-
work traffic data, especially in comparison with KNN. However, KNN clearly
outperforms LOF for honeypot data. Hopefully, experiments on more real-world
data sets will provide a better understanding of this. Besides the connection level
features, we are looking to use application-level features, e.g., texts/commands
generated by software bots that have different characteristics from those used
by humans.
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Abstract. Prudence analysis (PA) is a relatively new, practical and highly inno-
vative approach to solving the problem of brittleness in knowledge based sys-
tems (KBS). PA is essentially an online validation approach, where as each 
situation or case is presented to the KBS for inferencing the result is simultane-
ously validated. This paper introduces a new approach to PA that analyses the 
structure of knowledge rather than the comparing cases with archived situa-
tions. This new approach is positively compared against earlier systems for PA, 
strongly indicating the viability of the approach.  

Keywords: knowledge based systems, knowledge representation, prudence 
analysis, ripple-down rules, verification and Validation. 

1   Introduction 

Brittleness in Knowledge Based Systems (KBS) research has been investigated from 
many possible angles. For instance: Knowledge Acquisition and Design Structuring 
(KADS) [1] for extracting deeper knowledge; and, Cyc [2] for capturing general 
knowledge. A third area of investigation, Verification and Validation (V&V) [3], 
moved away from finding better methods of acquiring knowledge and instead devel-
oped a means of checking whether a KB was complete. V&V, however, is performed 
with known cases, where the inferenced results can be verified by an expert. Once the 
system goes online, not all cases can be checked by the expert and any errors by  
the system go mostly unnoticed. Prudence analysis (PA) extends this by allowing the 
KBS to detect when an inferenced solution to a case may be wrong. This paper intro-
duces a new approach to PA. The following section will briefly discuss PA, which is 
followed by a discussion of the approach used in this study. Section 4 will detail the 
PA experiments and will compare with previous work.  

2   Prudence Analysis (PA) 

V&V attempts to identify whether all the possible cases are covered by a KBS. PA, 
however, only uses actual cases as they are presented. Currently, PA has only been 
studied by a minority of researchers, all of whom have centred their studies on a  
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single family of KBSs, referred to as Ripple-Down Rules (RDR) [4]. The primary 
reason for this is that RDR is an incremental knowledge acquisition (KA) and mainte-
nance methodology. It is the flexible and maintainable structure of RDR that makes it 
ideal for PA. Early work on PA, including WISE [5, 6], Feature Recognition Pru-
dence (FRP) and Feature Exception Prudence (FEP) [6-8], were based on comparing 
the inference case with other paths through the tree or through investigating if any 
features of the case had not been used for its classification.  

[9] took a new approach of comparing cases with previously seen cases within con-
text, and provided warnings if they differed in some unusual way. The method com-
pared individual value-attribute pairs and warned if they exceeded what had been 
previously seen. At the time of the results in this paper were gathered this was the 
most recently published study. Therefore, [9] published results are used for compari-
son with this papers system. The most recent work, however conducted at the same 
time as this study, was a PhD thesis by [10]. However, a direct comparison with [9]’s 
published results and this paper work is difficult as a different version of the 
GARVAN dataset was used. Additionally, cases were removed when the simulation 
expert could not classify them and missing values were artificially added. 

3   Methodology 

One problem with the above approaches is the reliance on attributes existence or ab-
sence in a case for the generation of warnings. This limit’s the methods ability to be 
applied primarily in domains with a controlled number of only relevant attributes. 
Domains with large amounts of irrelevant attributes such as free text classification 
will tend to produce large amounts of false positives. The work in this paper has taken 
a significantly different approach. Instead of looking at attributes, it analysis the struc-
ture of the rule base and the paths followed by the inferencing process. Therefore, the 
method described in this paper is knowledge driven, rather than the previous ap-
proaches which were data driven.  

3.1   Multiple Classification Ripple-Down Rules 

Ripple-Down Rules is a maintenance centred methodology for a KBS based approach 
using the concept of fault patching [11] and was first proposed by [4]. It utilises a 
binary tree as a simple exception structure aimed at partially capturing the context that 
knowledge is obtained from an expert. The context is the sequence of rules that had 
evaluated to provide the given conclusion [4, 12-16]. Therefore, if the expert dis-
agrees with a conclusion made by the system they can change it by adding a new rule. 
The new rule will only fire if the same path of rules is evaluated [14]. 

Ripple-Down Rules has been shown to be a highly effective tool for knowledge 
acquisition (KA) and knowledge maintenance (KM). However, it lacks the ability to 
handle tasks with multiple possible conclusions. Multiple Classification Ripple-Down 
Rules (MCRDR) aim was to redevelop the RDR methodology to provide a general 
method of building and maintaining a knowledge base (KB) for multiple classification 
domains. The methodology developed by [5] is based on the proposed solution by 
[13, 14]. The primary shift was to switch from the binary tree to an n-ary tree repre-
sentation. Knowledge is acquired by inserting new rules into the MCRDR tree when a 
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misclassification has occurred. The new rule must allow for the incorrectly classified 
case, identified by the expert, to be distinguished from the existing stored cases that 
could reach the new rule [17]. This is accomplished by the user identifying key differ-
ences between the current case and each of the rules’ cornerstone cases.  

3.2   Rated MCRDR 

The hybrid methodology used in this paper, referred to as Rated MCRDR (RM), 
combines MCRDR with an artificial neural network (ANN). This function fitting 
algorithm learns patterns of fired rules found during the inferencing process. Firstly, a 
case is presented to the MCRDR tree, which classifies the case. Then for each rule in 
the inference, an associated input neuron will fire. The network then produces a vec-
tor of output values, v , for the case presented. The system, therefore, provides two 
separate outputs; the case’s classifications and an associated set of values. 

Learning in RM is achieved in two ways. Firstly, the value for each corresponding 
value for v  receives feedback from the environment concerning its accuracy. The 
network learns by either using the standard backpropagation approach using a sig-
moid thresholding function, and the MCRDR component still acquires knowledge in 
the usual way. The only exception is when the expert adds a new rule to MCRDR. As 
the input space grows, new input nodes need to be added to the network in such a way 
that does not damage already learned information. Therefore, the network structure 
needed to be altered by adding shortcut connections from any newly created input 
nodes directly to each output node and using these connections to carry a weight ad-
justment. When a new input node is added, additional hidden nodes are added.  

The single-step-Δ-initialisation-rule, Equation 1, directly calculates the required 
weight for the network to step to the correct solution immediately. This is accom-
plished by reversing the feedforward process back through the inverse of the symmet-
ric sigmoid. It is possible for the expert to add multiple new rules for the one case. In 
these situations the calculated weight is divided by the number of new features, m. 
Finally, the equation is multiplied by the step-distance modifier, Zeta (ζ). Zeta (ζ) 
should always be set in the range 10 ≤≤ ζ . It allows adjustments to how large a step 

should be taken for the new features.  
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3.3   RM Applied to Prudence Analysis 

The basic idea behind applying RM to PA is to allow MCRDR to develop classifica-
tions in the general way, while the network passively watches rules being added to the 
MCRDR tree. As it watches it also attempts to identify the correct classifications. 
Through classification testing it was found that the classifications between the 
MCRDR component and the network often differed when MCRDR misclassified 
[18]. Therefore, the prudence system developed identifies these differences and warns 
the user that the classification by MCRDR could be wrong.  

Training is a simple process of identifying the correct classification that the expert 
has agreed to when accepting a case. Obviously, however, this can only be done when 
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a warning has actually been generated. When no warning is generated the system is 
unable to train because the system cannot be certain whether the expert would have 
wanted to alter the classification. When a warning is given and the expert confirms a 
classification the reward is a positive value at the output where it should have been 
classified as a particular case and a negative value otherwise. 

Thresholding is performed on a per class basis. Basically, if the MCRDR and ANN 
classes were the same, then a warning was not generated. However, if the network’s 
absolute rating for a particular class was below a certain threshold then it was inter-
preted as the network being unsure of its rating, and therefore, a warning would be 
generated. This second method of warning only occurred when the network had the 
same result as the MCRDR inference engine. This simple tool was found to be highly 
effective at improving prediction. The thresholding value was also made dynamically 
adjustable. Therefore, when a warning was warranted, the threshold was increased 
and when the warning was not needed, the threshold was reduced.  

4   Experimental Method 

The experiment performed tested the method 10 times with each of the three datasets 
randomly reordered. The following results are an average of these experiments. This 
test gathered statistics on how accurate its predictions were. The simulated expert 
used in this study is similar to those used in other RDR research such as the one used 
by [9]. C4.5 [19] is used to generate the simulated expert’s knowledge base. The re-
sulting tree then classifies each case presented, just like our KB under development. If 
the KB being constructed, incorrectly classifies a case then the simulated expert’s 
decision tree is used to find attributes within rules that led to the correct classification. 

The three dataset used, listed below, are from the University of California Irvine 
Data Repository [20]. These datasets were used as they are the same as those used by 
[9]’s study and thereby can be compared.  

• CHESS – Using the Chess end game of King+Rook (black) vs King+Pawn 
(white). This dataset has 36 attributes with a binary classification and 3196 cases. 

• TIC-TAC-TOE (TTT) – The complete Tic-Tac-Toe terminating board positions. 
This dataset has 9 attributes with a binary classification and 958 cases. 

• GARVAN – This is a subset of the full dataset that provided medical diagnoses 
for thyroid problems. Has 29 attributes with 60 classification and 21822 cases. 

Table 1. Comparison of the averages between this papers PA system and [9] system 

Datasets Algorithms 
False

Neg % 
True

Pos % 
False
Pos % 

True
Neg % 

Accuracy 
% 

RM 0.1 1.7 15 83 92.9 
GARVAN 

Compton 0.2 2.4 15 83 91.7 

RM 0.2 0.8 8 91 80.0 
Chess 

Compton 0.3 1.3 7 91 81.3 

RM 2.9 8.8 12 76 75.2 
TTT 

Compton 1.5 3.8 14 81 71.7 
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4.3   Results 

The ability of RM to predict which cases are outside its knowledge base can be meas-
ured through a combination of accuracy and the number of warnings. For a prudence 
system to be viable it requires a high degree of accuracy, while keeping the amount of 
warnings to a minimum. The level of accuracy can be calculated by dividing the 
amount of cases that were warned about and for which the expert created rules, by the 
total amount of cases that needed to have new rules added. 

Table 1, shows results averaged over ten randomised runs compared to [9]’s re-
sults. It can be seen in these results that RM has outperformed [9] results in two data-
sets but not in the chess dataset where it performed slightly less. One interesting result 
was its success on the harder datasets. This indicates that the more complex applica-
tions have a greater degree of relationship information available during training. 
These results indicate that the more real world datasets may still be able to achieve 
good accuracy even though the little fake domains cause problems.  

4.4   Versatility of RM 

These results provide an improvement over previous prudence analysis results, indi-
cating the value of RM as a potential predictor of the boundary of knowledge in a KB. 
While this separation between RM and [9] results is only small, there was one very 
significant advantage found in the RM approach. The threshold adjusting rate can 
have a significant and worthwhile affect on the system’s results. This parameter can 
be set to adjust the threshold quickly or slowly. If it adjusts quickly the system is less 
accurate but produces fewer warnings. If it adjusts slowly then this improves the ac-
curacy at the cost of producing more warnings. Effectively, this allows an expert 
direct and simple control over the warning and accuracy of the prudence system.  

This versatility was noticed during early testing and so a number of tests were per-
formed to verify its occurrence. These tests involved 10 experiments with a different 
threshold factor and each run with ten different randomisations. Fig 1 shows the re-
sults for the GARVAN dataset, where the triangles representing the different per-
formances of the RM approach. The unfilled triangle identifies the result that was 
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Fig. 1. Compares the results using different threshold adjustment values. The y-axis represents 
the level of accuracy. The x-axis shows the percentage of cases where a warning was not given. 
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given in Table 1. The error bars indicate the 95% confidence range for the accuracy 
and percentage of cases not warned. This chart includes an empty circle which repre-
sents the location that [9]’s system achieved. 

It can be seen in these results that RM was able to achieve virtually 100% accuracy 
if warnings are provided on just over 50% of cases. This is clearly a lot of warnings 
but is a vast improvement on the current use of RDR methodologies where the expert 
must check every case. What is important is that you can achieve a result very close to 
perfect with much fewer warnings. The other aspect of these results is that the number 
of warnings can be reduced to around 84%, in the GARVAN dataset, of cases if the 
expert can tolerate an accuracy of just fewer than 90%, which is still very high.  

5   Conclusion 

Prudence analysis represents a method for predicting when a case requires knowledge 
beyond the system’s current KB. It is one way of attempting to resolve the issue of 
brittleness in current knowledge based systems. In theory, prudence analysis would be 
a very powerful tool when performing knowledge acquisition and maintenance. Pre-
vious work in this area, however, has yielded results that are not sufficiently accurate, 
or that produce too many warnings, to make such a system viable.  

RM studies the internal structure of the KB as it is being developed. The method 
developed used the classification ability of both hybridised components and compared 
the results. If they disagreed a warning was produced. The results presented in this 
paper show that RM is able to predict errors more accurately than previous work 
without increasing the number of warnings. The most interesting results were those 
detailing RM’s versatility. It could be seen that, through a simple process, the expert 
could control precisely what level of accuracy was required for the task at hand.  
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Abstract. Learning Classifier System (LCS) is an effective tool to solve
classification problems. Clustering with XCS (accuracy-based LCS) is a
novel approach proposed recently. In this paper, we revise the framework
of XCS, and present a complete framework of clustering with XCS. XCS
consists of two major modules: reinforcement learning and genetic algo-
rithm. After the learning process, the learnt rules are always redundant
and the large ruleset is incomprehensive. We adopt the revised compact
rule algorithm to compress the ruleset, and propose a new rule merg-
ing algorithm to merge rules for generating genuine clustering results
without knowing of the number of clusters. The experiment results on
several complex structure datasets show that out approach performs well
on challenging synthetic datasets.

Keywords: XCS, clustering, genetic algorithm, reinforcement learning.

1 Introduction

Learning Classifier System (LCS) has a good performance on supervised learning
tasks, especially on classification tasks. Since Wilson proposed XCS and extended
it to XCSR to deal with the real-value attributes, LCS methods have become
more useful and popular in solving complex real-world data mining problems [1].
Most recent LCS research works are based on XCS or XCSR (for convenience,
we always use XCS to denote XCS and XCSR in the following text), such as
Gao’s LCSE [2][3].

The LCS family can achieve good performance in most situations. But on the
other hand, there is a lack of the use of LCS in unsupervised learning tasks.
Clustering is one of the most important applications in unsupervised learning
technique. A set of data are grouped into clusters without priori knowledge,
and the data are similar in the same cluster while dissimilar in different clus-
ters. So far, there have been a variety of clustering algorithms, but no one can
works well on all the datasets. These methods can be classified into two cate-
gories: (1) according to the clustering criteria, construct a reasonable function
and find the extremum, such as K-means; (2) heuristic methods based on the
similarity function. The evolution strategies can be treated as heuristic methods.

W. Wobcke and M. Zhang (Eds.): AI 2008, LNAI 5360, pp. 489–499, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Among the evolution strategies, Tseng proposed a genetic approach to automat-
ically clustering [4]. Safaris proposed the NOCEA (Non-Overlapping Clustering
with an Evolutionary Algorithm) algorithm, which performed well on challeng-
ing datasets [5]. Considering the common strategy of evolution, it is suitable to
apply XCS to clustering tasks.

Tamee’s approach which attempted to cluster with an accuracy-based LCS
was effective and achieved better results compared with k-means [6]. Going
through the approach, we find that the way of rule representation is not suitable
for clustering results. In simple structure datasets, the distances between data
in the same cluster are always smaller than those in different clusters. However,
things are different in complex structure datasets. So we using a union set of
rules to represent clustering results and apply it on complex structure datasets.
Besides, Tamee mainly discussed how to realize the module of reinforcement
learning and genetic algorithm in XCS for clustering tasks. He didn’t explain
the complete architecture in detail. In this paper, we try to give a full and clear
presentation of the approach of clustering with XCS. The experiments will show
satisfying results on several complex structure datasets in the end.

The paper is organized as follows. In Section 2, we introduce the framework of
XCS. In Section 3, we firstly present a revised XCS framework to solve clustering
problems, and then state the complete approach in detail. A new rule merging
algorithm is also presented to generate genuine clustering results. In Section 4,
we conduct some test experiments on the synthetic complex datasets and analyze
the results. Finally, we draw some conclusions and future works in Section 5.

2 Introduction to XCS

LCS mainly consists of two important components: (1) reinforcement learning
module, for receiving rewards feed back from the environment and updating
the parameters of classifier rules; (2) genetic algorithm module, for generating
new classifier rules and evolving the rule population. The original LCS has been
applied in many fields successfully. However, LCS has many known problems in
achieving the near optimal performance, and the framework is very complex and
flawed in several aspects, which strongly restrict its application [7].

Thus Wilson proposed a modified version of LCS, which is called XCS. The
most important difference between XCS and LCS was the redefinition of fitness.
In classical LCS, the fitness of rules was also prediction/strength. By contrast,
XCS introduces a new parameter called “accuracy”, based on which fitness was
calculated [1]. Thus, the original functions of prediction are separated. Prediction
now indicates the reward from the environment, and helps to choose actions. The
newly introduced fitness denotes the strength of one rule compared to others in
population, and is used in genetic algorithm. Another main difference is that the
genetic algorithm do not act on the whole population any more, but is executed
in niches such as action set or match set.

Fig. 1 shows the framework of XCS. XCS includes two interface modules,
a sensor and an effector. The sensor receives an input from the environment
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Fig. 1. The framework of XCS

without a class label, and the effector outputs a classification on the input.
There are three main data structures in XCS: (1) a population set of rules; (2)
a match set and (3) an action set. The population contains all learnt rules. The
rules whose conditions match the input data form the match set. In the match
set, each rule has an action (or class label). Then a method is used to choose an
action. All rules which have the same action form the action set [2].

3 Clustering with XCS

The prediction problem in LCS tasks can be divided into two steps: first we
partition the problem space and then get the prediction from the evolutionary
partitions. Such definition actually already includes the clustering problem [8].

3.1 Framework for Clustering

Although the framework for clustering is similar to XCS, there are several compo-
nents needed to be revised to fit clustering problems. (1) For lacking of feedback
mechanism, the module of action set is no longer needed. Accordingly, reward is
not returned by the environment, but is calculated as reciprocal of the Euclidean
distance between the centre of a rule and the input data from the sensor; (2)
Rule compaction and merging module are added to generate genuine cluster-
ing results. The following Fig. 2 shows the framework. In Table 1, we state the
algorithm further.

Clustering based on XCS mainly consists of two steps. First is the learning
process, after which we get a ruleset P. This ruleset covers the whole dataset S,
and |P| < |S|. Then we compact the ruleset and merge the rules to get a simple
and comprehensible one called C. Still it covers S, and |C| < |P|. Now C can
be treated as the clustering results. More details will be given in the following
subsections.
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Table 1. The algorithm of clustering with XCS

1. Create the population of size N in XCS and initialize it.
2. while not reach the maximum learning step T {

2.1 Get an input from the environment, and scan the whole popu-
lation to form the match set.

2.2 If there’s no rule match the input, using “Covering” to generate
a new rule and insert into the population.

2.3 Calculate the reward of each rule in the match set, and update
parameters using the rewards.

2.4 If needed, execute genetic algorithm on the match set.}
3. Apply the revised ruleset compact algorithm on the evolved popu-
lation P.
4. Merge the rules in the compressed ruleset to get clustering results
C.

3.2 Population Initialization

We adopt the way of rule representation used in XCSR to process continuous
values. In XCSR, Wilson changed the original rule representation structure and
used the interval representation [9]. A continuous-valued attribute is represented
as an interval in the form of:

intervali = (ci, si) ci, si ∈ R; i = 1, 2, ...d (1)

ci is the interval centre and si is the spread from ci and d is the number of
dimensions or attributes. Then each interval is calculated as [ci-si, ci+si].

The maximum size of the population is fixed as N. There’re a variety of ways
to initialize it. Here we simply choose the random way to generate N0 rules. N0 is
less than N with the purpose of supplying some elasticity for generic algorithm
use. The centres of intervals is randomly distributed all over the sample space.
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The spread of each rule in dimension i is randomly generated in (0, s0), where
s0 is the maximum spread predefined in the learning process.

Once the sensor gets an input from the environment, each rule is examined
and tagged as a member of match set if it is contained in [ci-si, ci+si] for each
dimension i. If no rule matches the input, “covering” is activated to generate a
rule and add the rule into the population. The rule’s centre is the input, and
spread is calculated in the same way mentioned above.

3.3 Adjust Rule Parameter

In XCS, fitness is calculated based on accuracy. Although this method was ex-
plored for classification, it is also suitable for clustering problems because of
its generalization capabilities. We will introduce the method used in XCS here.
Each rule is associated with prediction (p), prediction error (ε), and fitness (f )
parameters. Reinforcement learning is applied to update these parameters [1].

The standard Widrow-Hoff delta rule is used here to calculate p, ε and f. First,
accuracy κj is defined as a function of ε:

κj =

{
exp ln(α)(εj−ε0)

ε0
ifεj > ε0,

1 ifεj ≤ ε0.
(2)

Then calculate the relative accuracy κ′j = κj/Σκj. Thus fitness can be adjusted
as:

fj ← fj + β(κj − fj) (3)

As mentioned in section 3.1, the reward is no longer the feedback from the
environment. Here, we define it as reciprocal of the Euclidean distance between
the center of a rule and the input data from the sensor:

R =
(
∑d

i=1(xi − cij)2)1/2 + 2 × ρ
(
∑d

i=1(xi − cij)2)1/2 + ρ
(4)

ρ is to prevent dividing by 0. We set it to 1 in our experiments. So, the prediction
error is adjusted toward the absolute difference |R - pj |:

εj ← εj + β(|R − pj| − εj) (5)

Finally, prediction can be adjusted as:

pj ← pj + β(R − pj) (6)

α, ε0, β are predefined parameters. Moreover, the MAM technique is used [1].
That means the parameters are set to the average value before 1/β learning
times. The benefit is making the system less sensitive to the randomly initialized
population and adjusting the parameter values more quickly.
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3.4 Evolve Population

Genetic Algorithm acts on the match set to evolve rules in population. There is
an approach to control the GA running times to improve the performance [1].
Each rule maintains a time stamp, which is the last time GA effected on the
rule. GA is applied in this match set only when the average number of time
steps since the last GA is greater than θGA.

GA is executed as follows: First, two parents are chosen according to their
fitness and prediction; Second, two offspring are produced through crossing and
mutation; At last the two offspring are inserted into the population. If the pop-
ulation is full, we must select one to remove. The smallest prediction or the
smallest fitness or the longest last used rule can be chosen to delete.

The two offspring cross in the way that any spread in dimension i has the
probability χ to change with each other. Mutation is used to adjust the spread
size. We realize it by randomly picking a value from [-0.01, 0.01], and adding it
to the original spread. The mutation probability in each dimension is µ.

3.5 Compact Ruleset

When the learning process is finished, the ruleset is redundant. Wilson proposed
the CRA (Compact Rule Algorithm) to reduce the size of evolved population
without loss of performance [10]. The main idea is to select accurate and gen-
eralized rules from the mutual population. Here we realize rule compaction in
clustering problems based on Gao’s aCRA (amendatory Compact Ruleset Algo-
rithm) [2]. It is shown in Table 2, f0 and p0 are predefined values.

Table 2. Compact ruleset algorithm for clustering

1. Remove the ith rule from the population set which meet fi < f0
and pi < p0.
2. Order the remaining rules based on the product of prediction and
fitness.
3. Determine whether or not to add the rule in the top into final
compacted ruleset{

3.1. Computer the number n of inputs matched with respect to the
train data set.

3.2. Add the rule into final compacted ruleset if n is greater than
threshold.

3.3. Remove the matched instances from the train data set.}
4. Terminate if the train data set is empty, else go to step 3.

3.6 Rule Merging

After compacting ruleset, there are still lots of rules in population. These learnt
rules overlap and don’t form a division of the problem space. So it is important
to merge the learnt rules to get genuine clustering results. We will introduce a
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AA BSimilar Points

Fig. 3. The well separated complex structure dataset of three-circle

Table 3. Rule merging algorithm for clustering

1. Order the rules based on the product of prediction and fitness.
2. Pick out the top rule and generate a union set Ui containing the
rule, then remove it from the population.
3. Scan all the remaining rules, if the rule overlap any one in Ui

and satisfy the condition that the overlapped area match at least one
sample data, add it into Ui and remove it from the population.
4. If no rule be added into Ui in step 3, go to step 5; else go back to
step 3.
5. Go to step 2 if the remaining population is not empty.
6. Check the union sets, if the size of Ui is smaller than threshold,
merge it into the nearest union set according to Euclidean distance.

rule merging algorithm for clustering. At first, we should notice that the original
way of rule representation doesn’t suit for clustering results. Such representation
performs well on simple datasets in which similarity function is based on Euclid-
ean distance. But in complex structure datasets, similar data points always far
from each other scaled by Euclidean distance. The dataset is shown in Fig. 3, the
“distance” between point A and B is long, but they belong to the same cluster.

Here we simply use a set of original rules to represent a cluster. That is, a
sample data belongs to a cluster if and only if it matches any one of the rules in
the union set. Therefore, we give the merging algorithm in Table 3:

4 Experimental Results

In this section, we present experiment results of clustering with XCS on several
datasets. In Table 4, the values of parameters used in these experiments are
listed. S0,ε0,f0 and p0 are based on the experimental results. The other parame-
ters are same as the parameters used in XCS [1]. Details of these experiments
are discussed below.

We first carry out experiments on the challenging dataset mentioned in Fig. 3.
The synthetic dataset has 3 randomly generated circles in d = 2 dimension, each
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Table 4. Parameter Settings

Parameter Description Value
N Size of population 1000
N0 Size of initial population 800
T Total learning steps 2000-20000
S0 Parameter of creating random

spread of a rule
0.04

α Parameter of computing accuracy
of a rule

0.1

ε0 Threshold of computing error of a
rule

0.03

β Learning rate of reinforcement
learning

0.2

θGA The number steps when activating
GA process

12

χ Probability of cross operator 0.8
µ Probability of mutation operator 0.04
f0 Initial value and threshold of fit-

ness of a rule
0.05

p0 Initial value and threshold of pre-
diction of a rule

1

circle has 400 data points. There’s a parameter w used to control the width of
each cluster. Here w = 0.15.

After the learning process and compacting ruleset, the remaining rules are
shown in Fig. 4(a). As can be seen, rules overlap much in the same cluster, but
are separated among different clusters. Then we apply the rule merging algorithm
on it, the final clustering result is shown in Fig. 4(b). From the result, we can find
that the testing dataset are divided into 3 clusters quite clearly. Although the
rules in the final results still overlap somewhere, the merging algorithm ensures
that no sample data exists in this overlapped area. So the clustering results is
clear all the same.

To test the performance of our system further, we increase the complexity by
changing the parameter of width w to 0.3. It is shown in Fig. 5(a). The data
points become more separated and there are several points between clusters,
which increase the difficulty of clustering. Another synthetic dataset with w =
0.4 is given in Fig. 5(b). There are 3 spiral arms in this dataset, each has 800
data points. Experiments on this dataset are harder because of the more complex
spiral structure. Fig. 6 shows the final results. We note that a few data points
are not included in any rules. In this case, we only need to find out the nearest
rule and join it into the corresponding cluster.

From the results, we find that the rules cover almost every data points after
the XCS learning process and rule compaction. Further more, most of the rules
in the same cluster are overlapped while in different clusters are separated. Then
all the rules are correctly merged into 3 clusters according to the rule merging
algorithm. By contrast, many traditional algorithms of clustering failed on these
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(a) (b)

Fig. 4. After XCS learning process and compacting rules, the clustering results before
rule merging (a) and after rule merging (b) on the well separated three-circle dataset

(a) (b)

Fig. 5. Two more complex datasets which are less separated: (a) three-circle and (b)
spiral

(a) (b)

Fig. 6. The final clustering results for three-circle (a) and spiral (b) dataset
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complex structure datasets, including the well known K-means [11]. On the other
hand, our approach is not suitable for this issue that different clusters are fuzzy
where the fuzzy data points are near each other. In this case, the rule merging
condition which is based on density can be well suited, and it has the ability to
solve cases with lots of outliers or noise [5]. Nevertheless, the datasets must be
very large to ensure the performance.

5 Conclusions and Future Work

In this paper, we present a complete clustering system using XCS. First, the
randomly initialized population are evolved after the revised XCS for clustering.
These learnt rules are well generalized after the learning process. Second, the
compact rule algorithm is used to reduce the total population size without loss
of performance. At last, all the remaining rules are merged according to the newly
proposed rule merging algorithm. The merged rules form the genuine clustering
results without prior knowledge of the number of clusters. The experiments on
several synthetic complex structure datasets show satisfactory clustering results
and reliable performance. The learning process of XCS is hard to comprehend. In
the future, we will try to make the learnt results more interpretative. The learnt
rules are unstable. We are also working on how to make it have less effect on
the rule merging process. The parameter settings are still needed to be explored
to achieve better performance. Besides, we will apply the system to real world
datasets.
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Abstract. We propose a new genetic programming approach to extrac-
tion of multiple tree structured patterns from tree-structured data using
clustering. As a combined pattern we use a set of tree structured patterns,
called tag tree patterns. A structured variable in a tag tree pattern can
be substituted by an arbitrary tree. A set of tag tree patterns matches a
tree, if at least one of the set of patterns matches the tree. By clustering
positive data and running GP subprocesses on each cluster with negative
data, we make a combined pattern which consists of best individuals in
GP subprocesses. The experiments on some glycan data show that our
proposed method has a higher support of about 0.8 while the previous
method for evolving single patterns has a lower support of about 0.5.

1 Introduction

Genetic Programming (GP) is Evolutionary Computation [3,11] and widely used
as a search method for evolving solutions from structured data. GP is shown to
be useful for evolving highly structured knowledge [7,10].

In this paper, we propose a new genetic programming approach to extraction
of multiple tree structured patterns from tree-structured data using clustering,
in order to solve a problem which the previous method [10] for evolving single
patterns faced. Our method in this work is applicable to the domains in which
data are modeled as trees, e.g., glycan data analysis [6,8] and learning from
semistructured data such as HTML/XML files and parse trees [7].

Glycans are said to be the third major class of biomolecules next to DNA
and proteins. As the glycan data g in Fig. 1 shows, the structure of a glycan
is abstractly represented as a tree by representing single sugars as vertices and
covalent bonds between sugars as edges. A vertex label and an edge label denote
the name of a sugar and the name of a bond, respectively. Therefore, genetic
programming approach is very suited for learning of the structural features of
glycan data with respect to a specific phenomenon in Bioinformatics.

In glycan structure analysis, extraction of common characteristic structures is
important [6,8]. They use subtree structures as representations of glycan motifs

W. Wobcke and M. Zhang (Eds.): AI 2008, LNAI 5360, pp. 500–511, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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and kernel methods for learning. To represent a common characteristic structure,
the previous work [10] uses be a tag tree pattern (Fig. 3), which is a rooted tree
pattern with ordered children and structured variables. A variable in a tag tree
pattern can be substituted by an arbitrary tree. A tag tree pattern is a whole tree
structured pattern which matches a whole structure of an example tree structure,
and has rich expressiveness of a structured variable representing any subtree struc-
ture. Since the formulation of tag tree patterns and genetic operations on them is
based on edge labels, we regard each vertex label as the prefix of the label assigned
to the edge adjacent to the vertex. The tree T in Fig. 1 shows the tree structure
corresponding to the glycan data g.

By the support of a tag tree pattern we mean the ratio of examples explained
by the pattern over all examples. The experimental results on glycan data of
the paper [10] report that their method for evolving single patterns has a high
support of about 0.8 on Leukemia but a low support of about 0.5 on Erythro-
cyte. It seems that using single patterns is inappropriate for representing data
about complex phenomena such as Erythrocyte (Fig. 4). In fact we have found
that positive data of Leukemia have a similar tree structure but positive data
of Erythrocyte have a large variety of tree structures, during our preliminary
experiments in this work.

In this paper, in order to solve this problem, we use a set of tag tree patterns
as a combined pattern to represent data about complex phenomena such as
Erythrocyte. A set of tag tree patterns matches a tree, if at least one of the
set of patterns matches the tree. By clustering positive data in terms of tree
edit distance [12] of each pair of positive data, and running GP subprocesses on
each cluster with negative data, our method makes a combined pattern which
consists of best individuals in GP subprocesses. The experiments on Erythrocyte
show that our proposed method has a higher support of about 0.8 while the
previous method for evolving single patterns has a lower support of about 0.5
(Fig. 6). Under the settings with the best number of clustering, our method’s
overall consumed time of the total process, including clustering, does not so
much increase (Table 2).

We discuss related works. The method of the previous work [10] uses a single
GP process and evolves as a best individual a single characteristic tag tree pat-
tern from positive and negative tree structured data. By clustering positive data
and running GP subprocesses on each cluster with negative data, our method in
this work makes a combined pattern which consists of best individuals in GP sub-
processes. Learning of a finite set, called a union, of tree patterns is a focal issue
of computational learning theory. But our work is different from the representa-
tive paper [1] in that our method uses an evolutionary algorithm, and positive and
negative data. Our method is considered to be a method using combined hypothe-
ses and parallel GP processes [4]. But the representation of combined hypotheses
and learning algorithm of our method is different from the previous work.

This paper is organized as follows. In Section 2, we introduce tag tree pattern
sets as combined tree structured patterns. In Section 3, we define our data mining
problem of extraction of characteristic tag tree pattern sets, and present our
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Fig. 1. Glycan data and corresponding tree structured data

method using Genetic Programming subprocesses and clustering for solving the
problem. In Section 4, we report experimental results on glycan data.

2 Combined Tree Structured Patterns

In this section, we briefly review tag tree patterns [9] and sets of tag tree patterns
which are used as combined tree structured patterns.

Let T = (VT , ET ) be a rooted tree with ordered children (or simply a tree)
which has a set VT of vertices and a set ET of edges. Let Eg and Hg be a
partition of ET , i.e., Eg ∪ Hg = ET and Eg ∩ Hg = ∅. And let Vg = VT . A
triplet g = (Vg, Eg, Hg) is called a term tree, and elements in Vg, Eg and Hg

are called a vertex, an edge and a variable, respectively. A variable in a term
tree can be substituted by an arbitrary tree. We assume that every edge and
variable of a term tree is labeled with some words from specified languages. Λ
and X denote a set of edge labels and a set of variable labels, respectively, where
Λ∩X = ∅. By regarding a variable as a special type of an edge, we can introduce
the parent-child and the sibling relations in the vertices of a term tree. We use
a notation [v, v′] to represent a variable {v, v′} ∈ Hg such that v is the parent
of v′. We assume that all variables in Hg have mutually distinct variable labels
in X . A term tree with no variable is considered to be a tree.

A substitution θ on a term tree t is an operation which identifies the vertices of
a variable xi with the vertices of a substituted tree gi, and replaces the variables
xi with the trees gi, simultaneously. We assume that the parent of a variable
is identified with the root of a substituted tree, and the child of a variable is
identified with a leaf of a substituted tree. By tθ we denote the term tree which
is obtained by applying a substitution θ to a term tree t.

Example 1. Fig. 2 shows a term tree t and trees t1, t2. In figures, a variable is
represented by a box with lines to its parent and child vertices. The label inside
a box is the variable label of a variable. The term tree t is defined as follows:

Vt = {u1, u2, u3, u4, u5, u6, u7},
Et = {{u1, u2}, {u3, u4}, {u4, u5}, {u5, u6}},
Ht = {h1, h2} with variables h1 = [u2, u3], h2 = [u3, u7],
Λ = {GlcNac, Man#a6, GlcNac#b2, Gal#b4},
X = {x, y}.
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Consider the substitution θ which identifies the vertices u2, u3 with the ver-
tices v1, v2 and identifies the vertices u3, u7 with the vertices v3, v4 and then
replaces the variables h1 and h2 with the trees t1 and t2 respectively. The term
tree tθ is obtained by applying the substitution θ to the term tree t. �

A tag tree pattern is a term tree such that each edge label on it is a keyword or
a special symbol “?”, which is a wildcard for any edge label. A tag tree pattern
with no variable is called a ground tag tree pattern. Consider an edge e with an
edge label L of a tag tree pattern and an edge e′ with an edge label L′ of a
tree. We say that the edge e matches the edge e′ if (1) L and L′ are the same
keyword, or (2) L is “?” and L′ is any keyword. A ground tag tree pattern π
matches a tree T if π and T have the same tree structure and every edge of π
matches its corresponding edge of T . A tag tree pattern π matches a tree T if
there exists a substitution θ such that πθ is a ground tag tree pattern and πθ
matches T . For example, in Fig. 3, the tag tree pattern π matches the tree t1
but does not match the trees t2 and t3. The language L(π) of a tag tree pattern
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Fig. 4. Clustering positive data and the language of a tag tree pattern set

π, which denotes the expressive power of π, is defined to be the set of all trees
which the tag tree pattern π matches.

In order to represent sets of tree structured data more precisely, we consider
a set of tag tree patterns to be a combined pattern. A set of tag tree pattern
Π = {π1, π2, . . . , πn} matches a tree T if πi matches T for some i(1 ≤ i ≤ n).
The language L(Π) of a set of tag tree patterns Π = {π1, π2, . . . , πn}, which
denotes the expressive power of Π , is defined to be the set of all trees which Π
matches. That is, L(Π) is defined to be L(π1) ∪ L(π2) ∪ · · · ∪ L(πn).

3 A Genetic Programming Approach to Extraction of
Multiple Tree Structured Patterns

3.1 Our Data Mining Problem and Proposed Method

In this paper, we consider the following data mining problem.

Problem of Extraction of Motif Tag Tree Pattern Sets:
Inputs: A finite set D of positive and negative glycan data (or trees) with
respect to a specific phenomenon.
Problem: Find a set Π of tag tree patterns which represents a glycan motif of
the specific phenomenon. Such a tag tree pattern set Π is called a motif tag tree
pattern set and has a specific structural feature w.r.t. the specific phenomenon.

We give the following GP-based method by using a tag tree pattern set as
a combined pattern. Fig. 4 illustrates the following process (2) of clustering
positive data and shows that a tag tree pattern set, e.g. {π1, π2, π3}, can explain
the input data more precisely than a single tag tree pattern, e.g. π.

(0) Choose the number k of clusters, and the population size s of GP sub-
processes. Let P be the set of all positive data in D and N the set of all
negative data in D.

(1) Calculate the tree edit distance [12] of each pair of positive data in P .
(2) Partition P into k clusters, P1, P2, . . . , Pk by using the k-means clustering

algorithm and the distance of two positive tree data calculated in (1).
(3) Consider the set Dj which consists of the j-th cluster of positive data and

the set of all negative dataN . That is, letDj = Pj∪N for each j(1 ≤ j ≤ k).
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(4) Determine a finite set KWj of keywords, which are used as edge labels
of tag tree patterns in the j-th GP subprocess, based on the set Dj, for
each j(1 ≤ j ≤ k). Note that the keyword set KWj , corresponding to the
function and terminal sets in usual GP, is automatically determined based
on the input data set Dj.

(5) Generate the initial population of size s of tag tree patterns in the j-th GP
subprocess in a random way from KWj , for each j(1 ≤ j ≤ k). Set n← 1.

(6) At the n-th generation, for each j(1 ≤ j ≤ k), perform the following
(6a),(6b) and (6c) in the j-th GP subprocess of population size s.

(6a) Evaluate the partial fitness fitness(π,Dj), defined in Section 3.2, of each
tag tree pattern π in the population of the j-th GP subprocess. Let πn

j be
the tag tree pattern with best partial fitness in the population of the j-th
GP subprocess at the n-th generation.

(6b) Select individuals with probability in proportion to the partial fitness fitness
(π,Dj) in the j-th GP subprocess.

(6c) Perform genetic operations such as crossover, mutation and reproduction
on selected individuals, and generate individuals of the next generation in
the j-th GP subprocess.

(7) Let Πn = {πn
1 , π

n
2 , . . . , π

n
k }. The tag tree pattern set Πn is the individual

at the n-th generation of the total process.
(8) If the termination criterion is fulfilled, then terminate the whole process.

Otherwise, set n← n+ 1 and return to (6).

3.2 Partial Support, Partial Fitness and Total Support

First, we give the definitions of the partial support and the partial fitness of a
single tag tree pattern, according to [10].

Let π be a tag tree pattern. Let Dj be a finite set of positive and negative tree
structured data given in (3) of our GP-based method. That is, Dj = Pj ∪ N ,
Dj is the j-th cluster of positive data, and N is the set of all negative data with
respect to a specific phenomenon. numPj denotes the total number of positive
examples inDj , and numN denotes the total number of negative examples in Dj .
matchP (π,Dj) denotes the total number of positive examples which π matches
in Dj , and no matchN (π,Dj) denotes the total number of negative examples
which π does not match in Dj . The partial support supp(π,Dj), which is the
ratio of explained examples by the tag tree pattern π over all examples in Dj ,
is defined as

supp(π,Dj) =
1
2
× (

matchP (π,Dj)
numPj

+
no matchN (π,Dj)

numN
).

The degree of edges, edge deg(π), of π is defined as the sum of the assigned
values of each edge or variable. The assigned value of an edge with a keyword
is 1.0, the assigned value of an edge with “?” (a wildcard for edge labels) is 0.5,
and the assigned value of a variable is 0.2. size(π) denotes the total number of
edges or variables in π. The ratio of specific edges, edge ratio(π), of a tag tree
pattern π is defined as edge ratio(π) = edge deg(π)/size(π).
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The specificness of π, denoted by spec(π), and the partial fitness of π w.r.t.
Dj , denoted by fitness(π,Dj), are defined as follows. Background knowledge on
structures of glycan data and preliminary experiments suggest that tag tree
patterns with size 10 are appropriate for representing characteristic structure of
glycan data, which is reflected by the definition of size adjust(π).

size adjust(π) =
{

size(π)/10 (0 < size(π) < 10)
max{2 − size(π)/10, 0} (10 ≤ size(π))

spec(π) =
eedge ratio(π) − 1

e− 1
× size adjust(π)

add prob(π,Dj) denotes loge((e− 1) × supp(π,Dj ) + 1).
We add spec(π), at a probability of add prob(π,Dj), to supp(π,Dj), then we
have partial fitness fitness(π,Dj).

Example 2. Consider the tag tree pattern π and the set of trees D1 = {t1, t2, t3}
in Fig. 3. In a setting in which t1 and t2 are positive examples, and t3 is a
negative example, we have supp(π,D1) = 0.75. Also we have

edge deg(π) = 3.9, size(π) = 6, edge ratio(π) = 0.65,
size adjust(π) = 0.6, spec(π) = 0.32, add prob(π,D1) = 0.83.

If we add spec(π) to supp(π,D1), then we have fitness(π,D1) = 1.07, otherwise
we have fitness(π,D1) = 0.75. �

Second, we give the total support of a tag tree pattern set. Let Π be a tag tree
pattern set and D a finite set of positive and negative tree structure data w.r.t.
a specific phenomenon. numP denotes the total number of positive examples in
D, and numN denotes the total number of negative examples in D. matchP (Π)
denotes the total number of positive examples which Π matches in D, and
no matchN (Π) denotes the total number of negative examples which Π does
not match in D. The total support supp(Π), which is the ratio of explained
examples by the tag tree pattern set Π over all examples in D, is defined as

supp(Π) =
1
2
× (

matchP (Π)
numP

+
no matchN (Π)

numN
).

If the number k of clusters of positive tree structured data is 1, then D1 = D,
Π = {π1} and the partial support supp(π1, D1) coincides with the total support
supp(Π).

3.3 Generation of Tag Tree Patterns in GP Subprocesses

In the GP subprocesses in (6c) of our method, we probabilistically apply the
following 5 genetic operators according to [10]. Since glycan data have a relatively
small number of children per vertex, we do not use an inversion operator. In order
to improve local search, we use 4 mutation operators (2)–(5).

(1) crossover: choose two individuals as parents, select a subtree in each parent,
and change the selected subtrees between the two parents.
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Fig. 5. A genetic operator crossover on tag tree patterns

(2) change-subtree: replace a subtree with a newly generated subtree in an
individual.

(3) add-subtree: add a newly generated subtree at a node in an individual.
(4) del-subtree: delete a subtree at a node in an individual.
(5) change-label: replace a specific edge label or “?” or a variable label to

another arbitrary label.

If we regard a variable as a special type of an edge, the operators (1)–(4) are con-
sidered usual tree-based GP operators. Fig. 5 illustrates the crossover operator.

4 Experiments

4.1 Experimental Setting

We have implemented our GP-based method for extracting glycan motifs using
tag tree pattern sets. The implementation is done by Java on a PC with a 3.0GHz
clock on Windows XP.

In the experiments, we used glycan structure data comparable to the previous
works [6,8,10].Weretrievedglycanstructuredata fromtheKEGG/GLYCANdata-
base [5] and their annotations from CarbBank/CCSD database [2]. We used the
data of 4 blood components, leukemic cells, erythrocyte, serum and plasma. In
the experiments, we regarded the data related to erythrocyte as positive data and
thedatanot related to erythrocyte asnegativedata.Thenwehave164positivedata
and 316 negative data. This experimental setting is same as the previous works.

4.2 Experimental Results

We report 2 experimental results. In Experiment 1, the population size in each
GP subprocess is set to be 50/k, where k is the cluster number of positive tree
structured data. For example, if k = 3, the population size is 17. In Experiment 2,
the population size in each GP subprocess is fixed to 50. We have 3 runs for each
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Fig. 6. Total support and the number of clusters

experiment. Table 1 shows the parameters of the GP subprocesses in our GP-
based method.

The graph in Fig. 6 shows development of the total support and the cluster
number of positive data. The legend symbol shows the average of the total
support where the cluster number of positive data is 1, that is, the support
of the previous method for evolving single patterns without clustering positive
data. As with the symbol , the symbols �, �, 1, ◦ show the average of the total
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Table 1. Parameters of GP Subprocesses

Parameters Values

population size (Experiment 1) 50/k†

population size (Experiment 2) 50
probability of reproduction 0.1
probability of crossover 0.5
probability of mutation 0.4
selection elite tournament with size 3
termination criterion none
maximum number of generations 50
† k: number of clusters

Table 2. The total support and the number of clusters

Experiment 1 Experiment 2

number of clusters 1 3 4 5 10 1 3 4 5 10
total support 0.503 0.789 0.814 0.789 0.731 0.503 0.715 0.814 0.672 0.754
consumed time (sec) 4385 2129 1636 1987 1122 4385 2669 5672 14431 16255

an obtained tag tree pattern π of experiment with the cluster number 4

the whole tree structure corresponding to π

Fig. 7. An obtained tag tree pattern

support where the cluster number of positive data is 3,4,5,10, respectively. Both
Experiments 1 and 2 show that our proposed method using clustering positive
data has a higher support than the previous method without clustering positive
data.

Table 2 shows the average of the total support in the final generation and
overall consumed time (sec) of the total process including clustering. In Exper-
iment 1, where the population size in each GP subprocess is 50/k and k is the
cluster number of positive data, the consumed time is relatively small. In both
Experiment 1 and 2, the settings with cluster number 4 show best total support
of about 0.8.
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The tag tree pattern π in Fig. 7 shows the best individual obtained at a
GP subprocess in the experiments. In the figures a special symbol “?” means a
wildcard for any edge or vertex label. The whole tree structure corresponding to π
includes a substructure similar to a glycan motif obtained by the previous works
[6,8]. So the obtained tag tree pattern and the corresponding tree structured
patterns are considered a glycan motif.

5 Conclusions

In this paper, we have proposed a new genetic programming approach to ex-
traction of multiple tree structured patterns from tree-structured data using
clustering. The experiments on some glycan data have shown that our proposed
method has a considerably higher support than the previous method for evolv-
ing single patterns. Since our method uses no background knowledge except the
appropriate size of single tag tree patterns, it is applicable to tree-structured
data on other fields.

This work is partly supported by Grant-in-Aid for Scientific Research (C)
Nos.19500129 and 20500126 from Japan Society for the Promotion of Science,
and Grant for Special Academic Research No.7116 from Hiroshima City
University.
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Application of a Memetic Algorithm to the
Portfolio Optimization Problem

Claus Aranha and Hitoshi Iba

The University of Tokyo

Abstract. We use local search to improve the performance of Genetic
Algorithms applied the problem of Financial Portfolio Selection and Op-
timization. Our work describes the Tree based Genetic Algorithm for
Portfolio Optimization. To improve this evolutionary system, we intro-
duce a new guided crossover operator, which we call the BWS, and add
a local optimization step. The performance of the system increases no-
ticeably on simulated experiments with historical data.

1 Introduction

The Portfolio Optimization problem consists of dividing an amount of capital
between multiple assets in order to maximize the return and minimize the risk
of the investment.

Investment Portfolios are used by financial institutions in the management
of long term investments, like savings accounts, retirement funds, etc. However,
when real life large data sets and constraints are added, this becomes a tough
problem that cannot be solved by mathematical programming methods.

Because of this, the use of computational heuristics like neural networks and
evolutionary algorithms has been an active topic of research. Genetic Algorithms,
in particular, are one of the most popular approaches recently. This popularity
is partly because it is very easy to represent a Portfolio as a real valued array,
and use that array as the genome in the Genetic Algorithm.

However, this array representation has a limitation. It does not include infor-
mation about the relationship between different assets in a portfolio. To address
this issue, a Tree-based Genetic Algorithm was developed (TGA) [1]. It imple-
ments a binary tree representation of the portfolio, where the leaf nodes are the
assets and the trunk nodes represent the relationship between these assets (See
Figure 1). Early results showed that by using this representation, it was possible
to reduce a portfolio produced by GA to its core components, thereby reducing
its associated trading costs.

In this work we extend this Tree-based Genetic Algorithm by adding a local
search step. We call this new hybrid heuristic the Memetic Tree-based Genetic
Algorithm (MTGA). Memetic Algorithms can improve over Evolutionary Algo-
rithms on search problems involving fine tuning of variables [2], like Portfolio
Optimization.

In the MTGA, the Evolutionary step generates the tree structure, which will
select the assets for the portfolio, and determine the hierarchical relationship

W. Wobcke and M. Zhang (Eds.): AI 2008, LNAI 5360, pp. 512–521, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Application of a Memetic Algorithm 513

0.3

a1

0.2

a2

0.5

0.7

a2a4
a5

a1 a2 a3 a4 a5

Weight

Name AMZN GOOG INTL MSFT YHOO

0.22 0.3500.03 0.4

Fig. 1. A tree genome and its corresponding portfolio. The values in the intermediate
nodes indicate the weight of the left sub tree. The complement of that value is the
weight of the right sub tree. The final weight of each asset (ax) is given by the sum of
the weights of all occurrences of that asset in the tree.

between them. The local search optimizes the weights at each node recursively,
starting from the nodes closest to the terminals towards the root. Also, we add
to this algorithm a new crossover operator, the Best-Worst Sub tree crossover
(BWS). The BWS uses fitness information of the sub trees of an individual to
decide the cutting points for the crossover.

By using simulations with historical data from real-world markets, we observe
that MTGA finds portfolios with higher risk-return values higher and when
compared to the TGA.

2 The Portfolio Optimization Problem

The Portfolio Optimization problem consists of choosing the optimal combina-
tion of financial assets, in order to maximize the return and minimizing the risk
of the investment portfolio. The idea is that if you invest in two counter cor-
related assets, their risks cancel each other out, resulting in a Portfolio with a
smaller amount of total risk for the same return.

The model for the Portfolio Optimization problem was formally proposed by
Markowitz [3]. Markowitz’s Portfolio Model could be solved by mathematical
programming methods, like Quadratic Programming [4].
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Fig. 2. Risk-return projection of candidate portfolios. The search space is bounded by
the Efficient Frontier. Sharpe ratio is the angle of the line between a portfolio and the
risk-free rate.

However, when adding real world constraints to the problem (for example,
large number of assets, restrictions to the values of weights, trading costs, etc),
the search space becomes too large and non-continuous. This is what motivates
the use of Search heuristics like Evolutionary Computation to solve Portfolio
Optimization problems in real world conditions.

2.1 The Markowitz Model

A portfolio P as a set of N real valued weights (w0, w1, ...wN ) which correspond
to the N available assets in the market. These weights must obey two basic
restrictions [4]: The total sum of the weights must be equal to one; and all
weights must be positive.

The utility of a portfolio is measured by its Estimated Return and its Risk.
The Estimated Return is calculated as:

RP =
N∑

i=0

Riwi (1)

Where N is the total number of assets, Ri is the given estimated return of each
asset, and wi is the weight of each asset in the portfolio.

The risk of an asset is given as the variance of its return over time (variability).
The risk of the portfolio is defined as:

σp =
N∑

i=0

N∑
j=0

σijwiwj (2)

Where σij , i = j is the covariance between i and j. If i = j, σii is the variance
of i.

These two utility measures can be used separately to determine the optimal
portfolio, or they can be combined. The Sharpe Ratio measures the trade off
ratio between risk and return for a portfolio, and is defined as follows:
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Sr =
RP −Rriskless

σp
(3)

Where Rriskless is the risk-free rate, an asset which has zero risk and a low
return rate (for example, government bonds). The relationship between these
three utility measures is illustrated in Figure 2.

3 Related Research

Two important questions in the Portfolio Optimization problem are how to select
the assets and the weights. The simplest answer is to use a single array with one
real value for the weight of each asset [5,6].

A more elaborated strategy to select the assets which will participate in the
portfolio is to use two arrays: a binary array, which indicates whether an asset
is part of the portfolio or not, and the real valued array to calculate the weights
of the assets [7,8].

A somewhat different way to assemble the portfolio is to use GP to evaluate
each asset. The GP can be used to calculate the suggested weight of each asset
from technical indicators [9], or to generate a ranking of assets, which will be
used to select the assets to add to the portfolio [10].

4 Memetic Tree-Based Genetic Algorithm

The basic idea of the MTGA is to establish a hierarchical set of relationships
between the assets that belong to the portfolio, and use those relationships to
improve the exploitation abilities of the Genetic Algorithm.

The tree structure leads to this exploitation by dividing-and-conquering the
portfolio in two different ways: It allows the evaluation of the fitness of individual
trees, which leads to the crossover based on these fitness values. It also allow
the local search step to optimize many 2-variable nodes, instead of one giant
portfolio with hundreds of variables at once.

Some of the ideas here, like the local optimization and guided crossover, are
inspired by Inductive Genetic Programming [11], a Genetic Programming algo-
rithm used for system identification.

However, unlike iGP, the MTGA is still a GA and not a GP. The main differ-
ence here is that while the GP walks the trees from the inputs in the terminals
and perform various operations in them to obtain an output in the root node,
the tree-based GA goes the inverse way, starting with all the resource in the root
node, and dividing it as it progresses down through the tree. The output is the
list of weights obtained from the terminal nodes together.

4.1 Tree Representation

Each solution in the Genetic Algorithm is represented as a binary tree. Each
non-terminal node holds the weight between its two sub trees. This weight is a
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real value, w, between 0 and 1, which indicate the weight of its left sub tree (the
choice of left over right is arbitrary). The right sub tree of has weight 1 − w.
Each terminal node holds the index of an asset in the market. It is possible to
have more than one terminal pointing to the same asset in the same tree. Figure
1 shows this representation.

To extract the portfolio from this representation, we calculate the weight of each
terminal nodebymultiplying theweights of all nodes thatneed tobevisited to reach
that terminal, starting from the root of the tree.After all terminal nodes are visited,
the weights of those terminals that point to the same asset are added together. The
assets which are not mentioned in the tree are assigned a weight of 0.

There are some characteristics of this structure which are important to con-
sider when implementing an Evolutionary Algorithm based on it:

First. Every sub tree in an individual can be treated as if it were a normal
tree. This is because the root node’s structure is identical to that of any
intermediate node. This allows each sub tree to have its own individual
fitness, calculated in the same way as the fitness of the main tree. This is
used in the specialized genetic operators.

Second. A portfolio extracted from this representation is always normalized.
This is because the weight on each node is limited to the 0..1 interval, and
the weight of each terminal is the multiplication of the node weights. Because
of the first characteristic, this also applies to sub trees.

Third. The maximum number of assets in a portfolio represented by a tree is
limited by the depth of the tree. As each terminal corresponds to one asset,
a tree with depth d may hold at most 2d−1 assets. Because of incomplete
trees and terminals with repeated assets, usually the actual number of assets
in a tree is much smaller than this.

4.2 Evolutionary Operators

The tree representation for an individual’s genetic material in the MTGA re-
quires the redesign of the basic evolutionary operators (crossover and muta-
tion), but it also allow the development of new operators that use the unique
characteristics of the tree representation.

The mutation operator works by cutting off the tree at a point, and replacing
the cut-off sub tree with a randomly generated sub tree. In this work, the cut-
off point is selected by first randomly choosing the target depth (with a linear
probability), then following a random path from the root node until the desired
depth is achieved (see Figure 3).

The crossover operator works by exchanging sub trees between two individ-
uals. One crossover point is chosen for each tree, and the sub trees that start
from that point on are swapped between the two trees.

If the crossover point is chosen at random, the operator is called Simple
Crossover. Like in the mutation operator, in the simple crossover a depth is
chosen with linear probability, and a path is randomly followed from the tree
until the target depth.
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Fig. 3. Crossover (BWS) and Mutation operators for the tree representation

A second crossover operator used in this work is the Best-Worst Sub tree
crossover (BWS). In this operator, the sub tree with the highest fitness from
the first parent is exchanged with the sub tree with worst fitness in the second
parent. This operator usually improves the fitness of the individual receiving the
better sub tree [1]. This means that the BWS can be used to emphasize a policy
of exploitation in the search (See Figure 3).

4.3 Local Search

The local search operator executes a simple hill climbing optimization on each
node of an individual. The goal of this operator is to optimize the local weight
of each node in the tree representation. It starts on the deepest non-terminal
nodes, and then works its way back towards the root.

For each visited node, the return and risk value for the left and right children are
obtained, and used to calculate the utility function as if the node was a two-asset
portfolio. The pseudo-code for the hill climbing function can be seen in Figure 4.

In the pseudocode the parameter meme speed is the value by which the
weight changes every iteration, meme accel must be < 1.0, and is the value
by which meme speed changes every time the weight cross the optimal point.
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while (meme_speed > meme_tresh AND 0 < weight < 1)
do

old_fitness = fitness;
weight = weight + meme_speed;

if (weight > 1)
weight = 1;

if (weight < 0)
weight = 0;

calculate_fitness(weight);

if (fitness < old_fitness)
meme_speed = meme_speed * meme_accel * -1;

done

Fig. 4. Algorithm for local search

And meme tresh is the minimum value of meme speed which signalizes the end
of the search. The search also ends if the weight reaches 1.0 or 0.0 (when the
optimal point is not in the weight range 1..0).

4.4 Computational Cost

Using the BWS Crossover and Local Search (Memetic Step) improves the ex-
ploitation capabilities of the Genetic Search in exchange for an increased com-
putational cost.

Guided Crossover requires that each node in the tree has its own fitness
value. This increases the computational cost by one order of magnitude. The
local search is also applied to each node, and its total computational cost is
O(ns loga

t
s), where s, a and t are the memespeed, memeaccel and memetresh pa-

rameters, respectively. In practice, the cost of the memetic step is much smaller
than the evaluation step.

However, this computational burden can be greatly reduced by an appropri-
ate implementation of the tree structure. Since the fitness evaluation and the
memetic step occur in a bottom-up fashion, the number of nodes which need to
have their fitness calculated is actually small.

During tree generation all nodes have to be evaluated. During mutation, the
new nodes, and the parent nodes of the new tree only need to be re-evaluated.
In the worst case, this means n/2 nodes for a depth 2 mutation, but this value
decreases sharply for deeper mutations. For crossover, only the parent nodes of
the cut-off points need to be re-evaluated.

5 Experiments

To test the validity of our system, we ran 24 simulations based on historical data.
For each simulation, we compared the results of the MTGA, the MTGA without
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guided crossover, the TGA, the TGA without guided crossover, and three array
based systems - a binary array GA, a real array GA and a mixed array GA.

All results displayed in this section, unless otherwise noted, are the average
results of 10 experiment runs with different random seeds.

5.1 Data Set

The experiments described here were performed on the NASDAQ100 data set,
composed of 100 securities from technology related companies. We selected 12
one month periods as scenarios, for this data set and, for each period, used the
moving average of the returns of the previous year as a measure of Expected
return.

Besides the NASDAQ data set, we have performed experiments with the
S&P500 data set and the NIKKEI200 data set, with similar results. The re-
sults for these data sets were not included due to space constraints.

5.2 Parameters

We used 300 generations and 200 individuals per generation. The crossover rate
was 0.8, and the mutation rate 0.03. The tree depth was 8 (128 terminals in a
full tree). The riskless asset’s return was set as 0.003.

For the MTGA system, we used a 0.6 chance of executing the local search
step for each individual. The chance of executing the guided crossover was 0.6
per crossover. The sensitivity of the system for these parameters is not explored
in this work.

The parameter for the local optimization step are: 0.1 for meme speed, 0.333
for meme accel, and 0.003 for meme tresh. Other than meme tresh, which changes
the precision of the search, changing these values does not seem to affect the qual-
ity of the local search.

5.3 Fitness Evaluation Results

The results are presented on Table 1. The value of the expected return seems
to be high, independently of the method. This is because optimizing the return
only requires the selection of the asset with the highest return in the period.

However, to achieve a high Sharpe ratio, a variety of assets must be selected,
and we can observe how the MTGA is able to achieve a higher Sharpe ratio than
any of the previous methods.

By observing the fitness behavior of each system, we can understand why
the MTGA has a higher performance than previous system. Figure 5 shows the
fitness improvement of the MTGA, the TGA, the mixed array based GA, and
the real valued array based GA.

It can be seen that the MTGA has large jumps in its fitness during the process.
These jumps represent mutations which are successfully optimized by the local
search step. Usually such mutations would more often than not result in a lower
fitness, but the use of local search after each crossover increases the number of
possibly useful mutations, improving the search.
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Table 1. Fitness Evaluation Results

01/2006 04/2006 07/2006 10/2006
System Return Sharpe Return Sharpe Return Sharpe Return Sharpe
MTGA 0.0210 1141.1462 0.0212 3455.6691 0.0193 3596.0163 0.0165 3215.5809

Guided Tree 0.0237 911.6547 0.0272 2102.0846 0.0109 2304.7839 0.0123 2841.1883
Simple Tree 0.0218 875.9712 0.0308 1012.7830 0.0152 2234.6500 0.0166 1936.6126
Mixed Array 0.0296 205.9883 0.0290 588.5863 0.0232 803.2149 0.0158 208.0087
Real Array 0.0169 9.4539 0.0250 20.2493 0.0183 16.7285 0.0131 7.6266

Index 0.0078 2.7457 0.0189 10.3174 0.0109 5.9217 0.0049 1.1830

Fig. 5. Fitness progression for different systems

In the experiments we noticed that some times the MTGA would produce
super positive outliers. As an example, while the average fitness for the NASDAQ
data set was between 3000 and 5000, outliers with fitness up to 50.000 were
observed. Observing the fitness progress of the outliers and normal runs of the
MTGA we see that the cause of this difference are mutation jumps like those
shown in figure 5, but of a higher magnitude.

This result indicates that the problem’s fitness surface of the portfolio problem
is much more bumpy than was perceived, and may require a more aggressive
exploration policy for search systems. For instance, higher mutation settings
might improve the general performance of MTGA.

6 Discussion

We have expanded the tree-based Genetic Algorithm by adding a local search
step, which maximizes the relative weights of each intermediate nodes.
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Simulation experiments show that the MTGA has higher performance than
previous methods, by increasing the number of positive mutations. It was also
observed that the method produces many outliers, which indicates that the prob-
lem has a very bumpy fitness landscape.

Current and future investigations include the use of the local search step to
reduce trading cost between scenarios, the investigation of “introns” generated
by the MTGA, and the sensitivity of the method to mutation parameters.
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Abstract. The aim of this paper is to develop new neural network al-
gorithms to predict trading signals: buy, hold and sell, of stock market
indices. Most commonly used classification techniques are not suitable
to predict trading signals when the distribution of the actual trading
signals, among theses three classes, is imbalanced. In this paper, new
algorithms were developed based on the structure of feedforward neural
networks and a modified Ordinary Least Squares (OLS) error function.
An adjustment relating to the contribution from the historical data used
for training the networks, and the penalization of incorrectly classified
trading signals were accounted for when modifying the OLS function.
A global optimization algorithm was employed to train these networks.
The algorithms developed in this study were employed to predict the
trading signals of day (t+1) of the Australian All Ordinary Index. The
algorithms with the modified error functions introduced by this study
produced better predictions.

Keywords: Neural networks, Classification, Stock market predictions,
Global optimization.

1 Introduction

Past studies have suggested that trading strategies guided by forecasts on the
direction of price change may be more effective than on value of price indices and
may lead to higher profits [16]. Furthermore, it was found that the classification
models based on the direction of stock returns outperformed the models based
on the level of stock return in terms of both predictability and profitability [4].

One of the most commonly used techniques to predict the trading signals of
stock market indices is Feedforward neural networks (FNN) [8], [9], [17]. The
FNN outputs the value of the stock market index (or a derivative) and subse-
quently this value is classified into classes (trading signals).

Almost all of the past studies, aimed at forecasting trading signals, considered
only two classes: the upward and the downward trend of the stock market move-
ment, which are corresponding to buy and sell signals [9], [17]. It was noticed
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that the time series data used for these studies are approximately symmetrically
distributed among these two classes.

In practice, the traders do not participate in trading (either buy or sell shares)
if there is no substantial change in the price level. Instead of buying/selling, they
will hold the money/shares in the hand. In such a case it is important to consider
the additional class which represents a hold signal. For instance, the following
criterion can be applied to identify three trading signals: buy, hold and sell [14]:
Criterion A

buy if Y (t+ 1) ≥0.005
hold if -0.005< Y (t+ 1) <0.005
sell if Y (t+ 1) ≤-0.005

where Y (t + 1) is the relative return of the day (t+1) of the Close price of
the stock market index of interest. However, in this case, one cannot expect a
symmetric distribution of data among the three classes, because more data falls
into the hold class while less data falls into other two classes.

Due to the imbalance of data, the most classification techniques produce
inaccurate results [1], [14]. FNN can be identified as a suitable alternative tech-
nique for classification when the data to be studied has an imbalanced distri-
bution. However, a standard FNN itself shows some disadvantages: (1) usage
of local optimization methods which do not guarantee a ’deeper’ local optimal
solution; (2) because (1), FNN needs to be trained many times with different
initial weights and biases (multiple training results in more than one solution
and having many solutions for network parameters prevent getting a clear pic-
ture about the influence of input variables); and (3) use of the ordinary least
squares (OLS) as an error function to be minimised may not be suitable for
classification.

To overcome the problem of being stuck in a local minima, finding a global
solution to the error minimisation function is required. Several past studies at-
tempted to find global solutions for the parameters of the FNNs by developing
new algorithms [3], [7], [19].

This study aims at developing new neural network algorithms to predict the
trading signals: buy, hold and sell, of a given stock market index. When develop-
ing new algorithms two matters were concerned: (1) using a global optimization
algorithm for network training and (2) modifying the ordinary least squares er-
ror function. By using a global optimization algorithm for network training, this
study expected to find better solutions to the error function. Also this study at-
tempted to modify the OLS error function in a way suitable for the classification
problem of interest.

The organisation of the paper is as follows: the next section explains the
development of new algorithms. The third section describes the network train-
ing and the measures of evaluating the performance of the algorithms. Section
four presents the results obtained from training the proposed algorithms to-
gether with their interpretations. The last section presents the conclusions of the
study.
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2 Development of New Algorithms

We designed new neural network algorithms for forecasting the trading signals
of stock market indices. These new algorithms are based on the FNN.

FNN adopts backpropagation learning for weight modification. Backpropa-
gation learning is an error minimising procedure and the network weights are
changed according to an error function which compares the network output with
the training targets ([18]). The most commonly used error function is the Ordi-
nary Least Squares function (OLS):

EOLS =
1

2N

N∑
i=1

(ai − oi)2 (1)

where N is the total number of observations in the training set while ai and
oi are the target and the output corresponding to the ith observation in the
training set.

2.1 Alternative Error Functions

Minimisation of the absolute errors between the target and the output may not
produce the desired accuracy of directional predictions [18]. Having this idea
in mind, some past studies aimed to modify the error function associated with
the FNNs [2], [10], [18]. These studies incorporated factors which represent the
direction of the prediction [2], [18] and recency of the data that used as inputs
[10], [18].

Functions proposed in [2] and [18] penalised the incorrectly predicted direc-
tions more heavily, than the correct predictions. In other words, higher penalty
was applied if the predicted value (oi) is negative when the target (ai) is positive
or vice-versa.

Yao & Tan [18] argued that a higher penalty should be imposed if a wrong
direction is predicted for a larger change while it should be less if a wrong
direction is predicted for a smaller change and so on. Based on this argument,
they proposed the Directional Profit adjustment factor:

fDP (i) =

⎧⎪⎪⎨⎪⎪⎩
c1 if (∆ai ×∆oi) > 0 and ∆ai ≤ σ,
c2 if (∆ai ×∆oi) > 0 and ∆ai > σ,
c3 if (∆ai ×∆oi) < 0 and ∆ai ≤ σ,
c4 if (∆ai ×∆oi) < 0 and ∆ai > σ.

(2)

where ∆ai=ai − ai−1, ∆oi=oi − oi−1 and σ is the standard deviation of the
training data (including validation set). For the experiments authors used c1 =
0.5, c2 = 0.8, c3 = 1.2 and c4 = 1.5 [18].

Based on this Directional Profit adjustment factor (2), they proposed Direc-
tional Profit (DP) model [18]:

EDP =
1

2N

N∑
i=1

fDP (i)(ai − oi)2. (3)
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Refenes et al. [10] proposed Discounted Least Squares (LDS) function by
taking the recency of the observations into account.

EDLS =
1

2N

N∑
i=1

wb(i)(ai − oi)2 (4)

where wb(i) is an adjustment relating to the contribution of the ith observation
and is described by the following equation:

wb(i) =
1

1 + exp(b − 2bi
N )
. (5)

Discount rate b, decides the recency of the observation. Authors suggested b =
6 ([10]).

Yao & Tan [18] proposed another error function, Time Dependent Directional
Profit (TDP) model, by incorporating the approach suggested by [10] to their
Directional Profit Model (3):

ETDP =
1

2N

N∑
i=1

fTDP (i)(ai − oi)2 (6)

where fTDP (i)=fDP (i) × wb(i). fDP (i) and wb(i) are described by (2) and (5),
respectively.

2.2 Modified Error Functions

We are interested in classifying trading signals into three classes: buy, hold and
sell. The hold class includes both positive and negative values (refer Criterion
A in Section 1). Therefore, the least squares functions in which the cases with
incorrectly predicted directions (positive or negative) are penalised (for example
(3) and (6)), will not give the desired prediction accuracy. Instead of the weigh-
ing schemes suggested by previous studies, we proposed a different scheme of
weighing.

This scheme is based on the correctness of the classification of trading signals.
Let the codes for buy, hold, and sell signals be 1, 2, and 3 respectively. Also let
d = |ai − oi| where ai and oi are the targeted value and the output of the ith
observation of the training set. Therefore:

d=0 implies that the predicted trading signal is correct
d=1 implies that either a buy or sell signal is misclassified as a hold signal or a

hold signal is misclassified as a buy or sell signal. In the former case a trader
loses only the opportunity of making profits, but not money while in the
later case a monetary loss is incurred; however, this loss is not a ’big loss’.
Therefore, d=1 indicates a less serious mistake.

d=2 implies that either a buy signal is misclassified as a sell signal or vice-versa.
In this case, the impact of the misclassification is very high as there is a high
tendency for a major monetary loss.
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Considering these issues, this study proposes the following weighing scheme:

wd(i) =
{
δ if d = 0,
1 otherwise. (7)

where δ is a very small value. The value of δ needs to be decided according to
the distribution of data.

Proposed Error Function 1: The weighing scheme, fDP (i), incorporated in
the Directional Profit (DP) error function (3) considers only two classes, upward
and downward trend (direction) which are corresponding to buy and sell signals.
In order to deal with three classes, buy, hold and sell, we modified this error
function by replacing fDP (i) with the new weighing scheme, wd(i) (see (7)).
Hence, the new error function (ECC) is defined as:

ECC =
1

2N

N∑
i=1

wd(i)(ai − oi)2 (8)

When training backpropagation neural networks using (8) as the error min-
imisation function, the error is forced to take a smaller value, if the predicted
trading signal is correct. On the other hand, the actual size of the error is con-
sidered in the cases of misclassifications.

Proposed Error Function 2: Recency of the data also plays an important
role in the prediction accuracy of financial time series. Therefore, Yao & Tan
[18] went further, by combining DP error function (3) with LDS error function
(4) and proposed Time Dependent Directional Profit (TDP) error function (6).

Following Yao & Tan [18], this study also proposed a similar error function,
ETCC , by combining first new error function (ECC) described by (8) with the
DLS error function (EDLS). Hence the second proposed error function is:

ETCC =
1

2N

N∑
i=1

wb(i) × wd(i)(ai − oi)2 (9)

where wb(i) is defined by (5) while (7) defines wd(i).
The difference between the TDP error function (6) and this second new error

function (9) is that fDP (i) is replaced by wd(i), in order to deal with three
classes, buy, hold and sell.

2.3 New Neural Network Algorithms

New neural network algorithms were developed by: (1) using OLS error function
as well as modified least squares error functions; and, (2) employing a global
optimization algorithm to train the networks.

The importance of using global optimization algorithms for FNN training was
discussed in the Introduction (Section 1). In this paper, we applied the global
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optimization algorithm, AGOP (introduced in [5], [6]), for training the proposed
network algorithms.

As the error function to be minimised, we considered EOLS (see (1)) and
EDLS (see (4)), together with the two modified error functions ECC (see (8)) and
ETCC (see (9)). Based on these four error functions, we proposed the following
algorithms:

NNOLS - Neural network algorithm based on Ordinary Least Squares error
function, EOLS (see (1))

NNDLS - Neural network algorithm based on Discounted Least Squares error
function, EDLS (see (4))

NNCC - Neural network algorithm based on the newly proposed error function
1, ECC (see (8))

NNTCC Neural network algorithm based on the newly proposed error function
2, ETCC (see (9))

These networks consist of three layers and out of these three one is a hidden
layer. The layers are connected in the same structure as the FNN (Section 2). A
tan-sigmoid function was used as the transfer function between the input layer
and the hidden layer while the linear transformation function was employed
between the hidden and the output layers.

3 Network Training and Evaluation

The Australian All Ordinary Index (aord) was selected as the stock market
index whose trading signals are to be predicted. Previously Tilakaratne et al.
[12], [15] showed that Close prices of day t of the us s&p 500 Index (gspc), the
uk ftse 100 Index (ftse), French cac 40 Index (fchi), German dax Index
(gadxi) have an impact on the Close price of day (t+1) of the aord.

If there is a set of influential markets to a given dependent market, it is not
straightforward to separate the influence from individual influential markets.
The influence from one market on a dependent market may include the influence
from one or more stock markets on the former. Therefore, in order to estimate
the direct influence from one market to another, intermarket influence1 needs
to be quantified. Furthermore, Tilakaratne et al. [13] revealed the effectiveness
of using quantified intermarket influences from the above mentioned markets
for forecasting. Therefore, this study considered the quantified relative returns
of day t of the Close prices of those markets as the input features for neural
network.

Quantification of intermarket influences on the aord was carried out by find-
ing the coefficients, ξi, i=1, 2, . . . , which maximise the median rank correlation
between the relative return of day (t+1) the Close of the aord market and the
sum of ξi multiplied by the relative returns of day t of the Close prices of a
1 Relationship between the current price (or a derivative of price) of a dependent market

with lagged price (or a derivative thereof) of one or more influential markets [12].
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combination of influential markets over a number of small non-overlapping win-
dows of a fixed size. The combination of markets, which is mentioned above, was
considered. ξi measures the contribution from the ith influential market to the
combined influence which equals to the optimal correlation.

Daily relative returns of the Close prices of the selected stock market indices
from 2nd July 1997 to 30th December 2005 were used for this study. If no trading
took place on a particular day, the rate of change of price should be zero. Therefore,
before calculating the relative returns, the missing values of the Close price were
replaced by the corresponding Close price of the last trading day.

The minimum and the maximum values of the data (relative returns) used
for network training are -0.137 and 0.057, respectively. Therefore we selected the
value of δ (Section 2.2) as 0.01. This value is small enough to set the value of
the proposed error functions (8 and 9) approximately zero, if the trading signals
are correctly predicted.

Since, influential patterns between markets are likely to vary with time [11],
the whole study period was divided into a number of moving windows of a fixed
length. Overlapping windows of length three trading years were considered. A
period of three trading years consists of enough data (768 daily relative returns)
for neural network experiments. Also the chance that outdated data (which is
not relevant for studying current behaviour of the market) being included in the
training set is very low.

The most recent 10% of data (the last 76 trading days) in each window was
accounted for out of sample predictions while the remaining 90% of data was
allocated for network training. Different number of neurons for the hidden layer
was tested when training the networks with each input set.

As described in Section 2.1, the error function, EDLS (see (4)), consists of
a parameter b (discount rate) which decides the recency of the observations in
the time series. Refenes et al. [10] fixed b=6 for their experiments. However, the
discount rate may vary from one stock market index to another. Therefore, this
study tested different values for b when training network NNDLS. Observing the
results, the best value for b was selected and this best value was used as b when
training network NNTCC .

3.1 Evaluation Measures

The networks proposed in Section 2.3 output the relative returns day (t+1) of the
Close price of the AORD. Subsequently, the output was classified into trading
signals according to Criterion A (Section 1).

The performance of the networks was evaluated by the overall classification
rate (rCA) as well as by the overall misclassification rates (rE1 and rE2), which
are defined as follows:

rCA = (N0/NT ) × 100 (10)

where N0 and NT are the number of test cases with d=0 (Section 2.2) and the
total number of cases in the test sample, respectively;

rE1 = (N1/NT ) × 100 (11)
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rE2 = (N2/NT ) × 100 (12)

where N1 and N2 are the number of test cases with d=1 and d=2 (Section 2.2),
respectively. Because of the seriousness of the mistake (Section 2.2), rE2 plays a
more important role in performance evaluation.

4 Evaluating the Performance of the New Algorithms

As mentioned in Section 3, different values for the discount rate, b, was tested.
b=1, 2, ..., 12 was considered when training NNDLS. The prediction results
improved with the value of b up to b=5. For b ≥ 5 the prediction results re-
mained unchanged. Therefore, the value of b was fixed at 5. As previously
mentioned (Section 3), b=5 was used as the discount rate also in NNTCC

algorithm.
The best four prediction results corresponding to the four networks were ob-

tained when the number of hidden neurons equals two. Therefore, only the results
relevant to networks with two hidden neurons are presented. Table 1 presents
the results obtained from training four neural network algorithms.

Table 1. Results obtained from training four neural network algorithms

NN Algorithm Average rCA Average rE2 Average rE1

NNOLS 64.6930 0.0 35.3070
NNDLS 64.4737 0.2193 35.3070
NNCC 63.8158 0.0 36.1842
NNTCC 66.2281 0.0 33.7719

Table 1 shows that the performance of NNDLS and NNCC are poorer than
that of the algorithm based on the OLS error function (NNOLS). However,
NNTCC produced better classification results than NNOLS. It prevented from
producing series misclassifications and gave the highest overall classification
accuracy.

The classification results obtained by four algorithms broke down into clas-
sification and misclassification rates. These rates indicate the patterns of clas-
sification/misclassification of data belonging to a class. The classification rate
indicates the proportion of correctly classified signals to a particular class out
of the total number of actual signals in that class whereas, misclassification
rate indicates the proportion of incorrectly classified signals from a particular
class to another class, out of the total number of actual signals in the former
class.

Table 2 shows the average (over the six windows) classification rate /misclas-
sification rate corresponding to the results obtained from the four algorithms.
These results also confirm that NNTCC produces the best results among the
four algorithms considered.
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Table 2. Average (over the six windows) classification rate /misclassification rate
corresponding to the results obtained from the four algorithms (The best prediction
results are shown in bold colour)

Average classification/misclassification rates
NNOLS NNDLS

Actual class Predicted class Predicted class
Buy Hold Sell Buy Hold Sell

Buy 23.46% 76.54% 0.00% 23.54% 76.46% 0.00%
Hold 5.00% 88.74% 6.27% 4.97% 89.26% 5.77%
Sell 0.00% 79.79% 20.21% 1.39% 80.62% 17.99%

NNCC NNTCC

Actual class Predicted class Predicted class
Buy Hold Sell Buy Hold Sell

Buy 21.68% 78.32% 0.00% 27.00% 73.00% 0.00%
Hold 4.58% 87.90% 7.52% 4.56% 89.22% 6.22%
Sell 0.00% 79.72% 20.28% 0.00% 75.49% 24.51%

5 Conclusions

The algorithm which is based on the error function which takes the recency of
data and the correctness of the predicted class into account (see (9)) showed the
best performance of classifying trading signals. This algorithm produced the best
predictions when the network consisted of one hidden layer with two neurons.
The quantified relative returns of the Close prices of the us s&p 500 Index,
the uk ftse 100 Index, French cac 40 Index, German dax Index were used
as the input features. This network prevented serious misclassifications such as
misclassification of buy signals to sell signals and vice-versa and also predicted
trading signals with a higher degree of accuracy.

The algorithms proposed in this paper can be used to predict the trading
signals, buy, hold and sell, of any given stock market index or a sector of a stock
market index.
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Abstract. Garment new product development (NPD) evaluation re-
quires considering multiple criteria under a hierarchical structure. The
evaluation process often involves uncertainty and fuzziness in both the
relationships between criteria and the judgments of evaluators. This
study first presents a garment NPD evaluation model under a well-being
concept. It then proposes a fuzzy multi-criteria group decision-making
(FMCGDM) method to evaluate garment NPD. The advantages of the
FMCGDM method include handling criteria in a hierarchical structure,
dealing with three kinds of uncertainties simultaneously, and using
suitable types of fuzzy numbers to describe linguistic terms. A fuzzy
multi-criteria group decision support system (FMCGDSS) is developed
to implement the proposed method. Finally a garment NPD evaluation
case study demonstrates the proposed method and software system.

Keywords: fuzzy sets, evaluation model, decision support systems,
multi-criteria decision making, garment.

1 Introduction

Literature and practice all indicate that new product development (NPD) eval-
uation incorporates complex decisions and many factors need to be consid-
ered [5, 10]. The first is the determination of criteria, their relationships and
degrees of importance. Garment products have seldom evaluated with a single,
simple criterion. The garment NPD evaluation model is often very complex. It
is thus necessary to analyze each criterion, its relationships with others and the
concept of products. For this study, the concept generated for NPD is “well-
being”, that is, an assessment of which garment products better more match the
concept of well-being design, and the feeling of well-being in wearing. To achieve
this goal, we not only consider criteria related to garment function properties, but
also criteria related to fashion styles. Multi-criteria decision making (MCDM)
refers to making decision for alternatives in the presence of multiple and conflict-
ing criteria. A main contribution area of MCDM is making preference decisions
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(e.g., evaluation, prioritization, selection) over the available alternatives that are
characterized by multiple attributes, also called multi-attribute decision making
(MADM) [11]. Normal MCDM has all criteria on the same level. As garment
NPD involves fashion styles and function properties, and each of them has a set
of criteria and even sub-criteria, the garment NPD evaluation needs an extended
MCDM method to handle its hierarchical criteria system. In addition, some cri-
teria may be more important than others, or a criterion may be more related to
the well-being concept than others. Thus, the weights of criteria on all levels of
an evaluation models need to be determined.

The second factor concerns an evaluation group and the weights of its group
members. Garment NPD evaluation requires multiple perspectives of different
people, as one evaluator may have not enough knowledge to competently assess
a product alone. Therefore, garment NPD evaluations are often made in groups.
The group decision-making process may give rise to a set of uncertain factors,
which includes an individual’s role (weight) in ranking products, an individual’s
preference and understanding for products evaluated and criteria [7]. Group
members thus have different ‘weights’ in garment NPD evaluation.

The third factor is a means to give an evaluation score to new product proto-
types to be evaluated under each criterion. Group members may have a different
understanding of the same information, different experiences in the area of well-
being products, and different preferences for different products. These different
preferences among group members may have impact directly on product eval-
uation results. Therefore, the final ranking of new product prototypes will be
obtained from suitable fusion and integration of these individuals’ viewpoints.

The above-mentioned three factors may result in a crucial requirement for
linguistic information processing. In garments NPD evaluation practice, any cri-
teria and judgments for the level of the achievement of possible new products
are often expressed in linguistic terms. For example, to express the weight of
a criterion, the terms ‘important’, ‘very important’ can be used; for an evalu-
ator’s weight, ‘normal’, ‘important’ and ‘more important’ can be used; and for
a product’s score, a linguistic term such as ‘low’ or ‘high’ could be used. The
concept of linguistic variables is useful in dealing with situations that are too
complex or ill-defined to be reasonably described in conventional quantitative
expressions [4, 8]. However, precise mathematical approaches are not enough to
tackle such uncertain variables and derive a satisfactory solution. Since these
linguistic terms reflect the uncertainty and fuzziness of human evaluation, fuzzy
sets and fuzzy numbers are suitable techniques to directly apply to deal with
them.

This paper first reviews related concepts of fuzzy sets and decision-making
in Section 2. Section 3 describes a fuzzy multi-criteria group decision-making
(FMCGDM) method and its implementation in FMCGDSS for garment NPD
evaluation. An application of well-being concept based garment NPD evalua-
tion, using the proposed method and the FMCGDSS, is illustrated in Section 4.
Conclusions are in Section 5.
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2 Preliminaries of Fuzzy Sets and Decision-Making

The main feature of the MCDM method in evaluation is that there is usually a
limited number of pre-determined alternatives to be evaluated, which are asso-
ciated with a level of achievement of the criteria. Based on the criteria, the final
decision, e.g., the evaluation result (ranking order or selecting the best one), is
to be made [7]. Zadeh’s fuzzy set theory [9] has been widely applied in decision-
making models. In particular, fuzzy sets have been well used to describe linguistic
terms in decision-making problems. Several fuzzy MCDM (FMCDM) methods
have been developed. For example, Chang and Chen [2] developed a FMCDM
method for technology transfer strategy selection in biotechnology. Furthermore,
Herrera and Verdegay [3] reported their research results on MCDM under lin-
guistic preferences. Carlsson and Fuller [1] widely reviewed the developments
in FMCDM methods and identified some important applications. Fuzzy group
decision-making has also been studied by many researchers [7, 9, 12].

To describe the proposed fuzzy multi-criteria group decision method, we first
introduce some basic notions of fuzzy sets, fuzzy numbers, positive and negative
fuzzy numbers, linguistic variables and then give related theorems as follows [7].

Definition 1. A fuzzy set Ã in a universe of discourse X is characterized by
a membership function µÃ(x) which associates with each element x in X a real
number in the interval [0, 1]. The function value µÃ(x) is termed the grade of
membership of x in Ã.

Definition 2. The λ-cut of fuzzy number ãis defined

aλ = {x;µã(x) ≥ λ, x ∈ R} (1)

aλ is a non-empty bounded closed interval contained in X and it can be denoted by
aλ = [aL

λ , a
R
λ ], aL

λ and aR
λ are the lower and upper bounds of the closed interval,

respectively.

Definition 3. A triangular fuzzy number ã can be defined by a triplet (aL
0 , a, a

R
0 )

and the membership function µã(x) is defined as:

µã(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 x < aL

0
x−aL

0
a−aL

0
aL
0 ≤ x ≤ a

aR
0 −x

aR
0 −a

a ≤ x ≤ aR
0

0 aR
0 < x

(2)

where a = aL
1 = aR

1 .

Definition 4. If ã is a fuzzy number and aL
λ > 0 for any λ ∈ [0, 1], then ã is

called a positive fuzzy number. Let F ∗
+(R) be the set of all finite positive fuzzy

numbers on R.
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Theorem 1. For any ã, b̃ ∈ F ∗
+(R) and 0 < α ∈ R,

ã+ b̃ =
⋃

λ∈(0,1]

λ[aL
λ + bLλ , a

R
λ + bRλ ],

αã =
⋃

λ∈(0,1]

λ[αaL
λ , αa

R
λ ],

ã× b̃ =
⋃

λ∈(0,1]

λ[aL
λ × bLλ , aR

λ × bRλ ],

Theorem 2. For any ã ∈ F ∗
+(R) and 0 < α ∈ Q+ ( Q+ is a set of all positive

rational numbers),
ãα =

⋃
λ∈(0,1]

λ[(aL
λ )α, (aR

λ )α], (3)

Definition 5. Let ã and b̃ be two fuzzy numbers. Then ã = b̃ if ãL
λ = b̃Lλ and

ãR
λ = b̃Rλ for any λ ∈ (0, 1].

Definition 6. If ã is a fuzzy number and 0 < ãL
λ ≤ ãR

λ ≤ 1 for any λ ∈ (0, 1],
then ã is called a normalized positive fuzzy number. If a triangular fuzzy number
ã is normalized positive fuzzy number, then ã is called a normalized positive
triangular fuzzy number [11]. Let F ∗

T (R) be the set of all normalized positive
triangular fuzzy numbers on R.

Definition 7. A linguistic variable is a variable whose values are linguistic
terms.

Definition 8. Let ã, b̃ ∈ F ∗(R), then the quasi-distance function of ã and b̃ is
defined as

d(ã, b̃) =
(∫ 1

0

1
2
[(aL

λ − bLλ )2 + (aR
λ − bRλ )2]dλ

) 1
2

. (4)

Definition 9. Let ã, b̃ ∈ F ∗(R), then fuzzy number ã is closer to fuzzy number
b̃ as d(ã, b̃) approaches 0.

Proposition 1. If both ã and b̃ are real numbers, then the quasi-distance mea-
surement d(ã, b̃) is identical to the Euclidean distance.

Proposition 2. Let ã, b̃ ∈ F ∗(R). 1) If they are identical, then d(ã, b̃) = 0. 2)
If ã is a real number or b̃ is a real number and d(ã, b̃) = 0, then ã = b̃.

Proposition 3. Let ã, b̃, c̃ ∈ F ∗(R), then b̃ is closer to ã than c̃ if and only if
d(b̃, ã) < d(c̃, ã).

Proposition 4. Let ã, b̃ ∈ F ∗(R). If d(ã, 0) < d(b̃, 0), then ã is closer to 0 than b̃

These definitions and propositions will be used in the development of FMCGDM.
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3 A FMCGDM Method for Garment NPD Evaluation

We first build a garment NPD evaluation model under the concept of well-being.
This model has three levels: 1) aspects; 2) criteria; 3) indicators. Each aspect has
a set of criteria, each criterion is described by a set of indicators. The aspects
include fashion style and functional properties. In the fashion style aspect, there
are four assessment criteria: protection, dynamism, warmth and coolness. protec-
tion has health and four other indicators. Detailed criteria are shown in Fig 1.
Different people will have different feelings of well-being and different preferences
regarding features. Also, evaluators may give different weights to these aspects,
criteria, and indicators. We now describe the FMCGDM method as follows:

Let P = {P1, P2, . . . , Pn}, n ≥ 2, be a given finite set of decision makers
(evaluators) to rank a set of new products.

Level one: Determine products, evaluation aspects, criteria, and indicators, and
individual weights

Step 1: Set up an evaluation group with n evaluators P ={Pk, k=1, 2,. . . , n}.
A set of products S = {S1, S2, . . . , Sm}, m ≥ 2 is determined as alternatives
for evaluation by this group. Also, three levels of evaluation model within a tree
structure: C = {C1, C2, . . . , Ct} (level 1, called aspects), Ci = {Ci1, Ci2, . . .,
Ciji},i = 1, 2, . . . , t, (level 2, called criteria) and their sub-criteria Cij = {Cij1,
Cij2, . . ., Cijkij }, j = 1, 2, . . . , ji (level 3, called indicators) for assessing these
products are determined in the group.

Step 2: The group members play different roles in the company and therefore
have different degrees of influence for the evaluation of products. This means that
the relative importance of each decision maker may not be equal in a decision
group. Some members are more important than others for a specific product
evaluation problem. Therefore, in the method, each member is assigned a weight
that is described by a linguistic term ṽk, k = 1, 2, . . . , n, shown in Table 1.

Step 3: Set up weights for all criteria within the three levels.
Let WC = (WC1,WC2, . . . ,WCt) be the weights of aspect, where WCi ∈

{Absolutely unimportant, Unimportant, Less important, Important, More impor-
tant, Strongly important, Absolutely important}. Those weights are described by
fuzzy numbers ã1, ã2, . . . , ãn, in Table 2.

For Ci, let WCi = {WCi1,WCi2, . . . ,WCiji},i = 1, 2, · · · , t, be the weights
for the set of criteria on level 2, and for a sub-criteria Cij , let WCij = {WCij1,
WCij2, . . ., WCijkij }, j = 1, 2, . . . , ji, be the weights for the set of criteria on

Table 1. Linguistic terms for describing weights of decision makers

Linguistic terms Fuzzy numbers
Normal C̃1

Important C̃2

More important C̃3

Most important C̃4
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Table 2. Linguistic terms and related fuzzy numbers for describing the weights of
aspects and criteria

The importance degrees Membership functions
Absolutely unimportant ã1

Unimportant ã2

Less important ã3

Important ã4

More important ã5

Strongly important ã6

Absolutely important ã7

Table 3. Linguistic terms for preference of alternatives

Linguistic terms Fuzzy numbers
Very low (VL) b̃1

Low (L) b̃2

Medium low (ML) b̃3

Medium (M) b̃4

Medium high (MH) b̃5

High (H) b̃6

Very High (VH) b̃7

level 3, where WCij will be signed a value from the same linguistic term list as
WCi above, which are described by fuzzy numbers c̃1, c̃2, . . . , c̃t.

Level two: Individual Preference Generation

Step 4: Set up the relevance degrees of each product on each criterion
Let SCyk

ij = {SCyk
ij1, SC

yk
ij1, . . . , SC

yk
ijkij

} be the relevance degree of product

Sk on criterion Cij ,i = 1, 2, . . . , t, j = 1, 2, . . . , ji, k = 1, 2, . . . ,m, where SCyk
ijz ∈

{Lowest, Very low, Low, Medium, High, Very high, Highest}, as shown in Table
3, which are described by fuzzy numbers b̃1, b̃2, . . ., b̃k.

Step 5: Calculate the relevance degrees
The relevance degree CSyk

i of the aspect Ci on the products Sk, i = 1, 2, . . . , t,
k = 1, 2, . . . ,m, are calculated by using CSyk

i = WCi × SCyk
i =

∑jt

j=1WCij ×
SCyk

ij , where SCyk
ij =

∑kij

z=1WCijz × SCyk
ijz , i = 1, 2, . . . , t, k = 1, 2, . . . ,m.

Step 6: Calculate the aspect relevance degrees
The relevance degree Sy

k of the criteria Cy on the alternatives Sk, k = 1, 2,
. . . ,m, is calculated by using Sy

k = CSyk × WC =
∑t

i=1 CS
yk
i × WCi, k =

1, 2, . . . ,m. Here, Sy
k is still a fuzzy number.

Step 7: Normalise the relevance degrees
The relevance degrees Sk, k = 1, 2, . . . ,m
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S̄y
k =

Sy
k∑m

i=1(S
y
k )R

0
.

Level three: Group Aggregation

Step 8: Each member Py has been assigned with a weight already that is de-
scribed by a linguistic term ṽy, y = 1, 2, . . . , n, as shown in Table 3. A weight
vector is obtained:

V = {ṽy, y = 1, 2, . . . , n}. (5)

The normalized weight of a decision maker Py (y = 1, 2, ..., n) is denoted as

ṽ∗y =
ṽy∑n

i=1(vi)
R
0
.

Step 9: Considering the normalized weights of all group members, we can con-
struct a weighted normalized fuzzy decision vector

(r̃1, r̃2, . . . , r̃m) = (ṽ∗1 , ṽ
∗
2 , . . . , ṽ

∗
n)

⎛⎜⎜⎜⎝
S̄1

1 S̄
1
2 · · · S̄1

m

S̄2
1 S̄

2
2 · · · S̄2

m
...

...
. . .

...
S̄n

1 S̄
n
2 · · · S̄n

m

⎞⎟⎟⎟⎠ (6)

where r̃j =
∑n

k=1 ṽ
∗
kS̄

k
j .

Step 10: In the weighted normalized fuzzy decision vector the elements r̃j ,
j = 1, 2, . . . ,m, are normalized as positive fuzzy numbers and their ranges belong
to the closed interval [0, 1]. We can then define a fuzzy positive-ideal solution
(FPIS, r∗) and a fuzzy negative-ideal solution (FNIS, r−) as: r∗ = 1 and r− = 0.

The positive and negative solution distances between each r̃j and r∗, r̃j and
r− can be calculated [2] as:

d∗j = d(r̃j , r∗) and d−j = d(r̃j , r−), j = 1, 2, . . . ,m, (7)

where d(·, ·) is the distance measurement between two fuzzy numbers.

Step 11: A closeness coefficient is defined to determine the ranking order of
all products once the d∗j and d−j of each Sj (j = 1, 2, . . . ,m) are obtained. The
closeness coefficient of each product is calculated:

CCj =
1
2
(d−j + (1 − d∗j ))

The product Sj that corresponds to Max CCj , j = 1, 2, . . . ,m is the best new
garment product under the well-being concept, and the top N new products that
correspond to the top N higher ranking CCj are considered as better meeting
the concept of well-being design.
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This proposed FMCGDM method has been implemented in a fuzzy multi-
criteria group decision support system (FMCGDSS), which will be used in the
following case.

4 A Garment New Product Development Case Study

A garment company has 10 new products to be evaluated by 5 evaluators under
the well-being garment NPD evaluation model shown in Fig 1.

The 10 products to be evaluated can be seen as alternatives. Evaluators are
asked to give their scores such as Disagree (Low), Agree (High), Highly agree
(Very High) and so on to each question (criterion) in the questionnaires.

Based on the hierarchy of criteria from Fig. 2 and the evaluator survey results,
the group is able to evaluate these new garment products. To measure the degree
of importance of each aspect, and each criterion with respect to the aspect, a set
of linguistic terms have been obtained from a customer survey and can be used by
the evaluators. These linguistic terms are then represented by fuzzy numbers,
as shown in Tables 1 and 2, to achieve a final result. After having weighted
ascribed degree of importance to these aspects and their criteria, and obtained
all scores for all new products (from all group members, using the evaluators’
survey forms), the group can use the FMCGDSS we developed to conduct the
performance evaluation results and ranking of the new products evaluated.

Step 1: Create a new file for the evaluation issue in FMCGDSS.

Step 2: Input the product evaluation model with all levels of criteria, criteria
weights, and related descriptions. Fig. 1 shows the structure of the evaluation
model entered. The right-hand side shows a detailed description of each criterion,
including its weight and description. Fig. 2 shows the data input process of a
criterion.

Fig. 1. Well-being NPD evaluation model with three levels of criteria
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Fig. 2. Data entry process of a criterion

Fig. 3. All evaluators of the evaluation group

Fig. 4. All products to be evaluated
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Fig. 5. An evaluator’s input for all alternatives under all criteria by linguistic terms

Fig. 6. Final ranking result for new garment products under the well-being concept

Step 3: Input evaluators and their weights by linguistic terms (Fig. 3)

Step 4: Input products to be evaluated (Fig. 4)

Step 5: Fill the belief level matrix (scores) by all evaluators.
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Fig. 7. Flowchart of the proposed FMCGDM method and the FCGDSS

Based on the aspects, criteria, indicators and alternatives, every evaluator
fills a belief level matrix to express the possibility of selecting an option under a
criterion (Fig.5).

Step 6: Generate the final result of the problem
Finally, the product 3 is chosen by these experts as it received the highest

closeness coefficient value. Fig. 6 shows the group’s result. A flowchart of the
working process of FMCGDSS is given in Fig. 7.

5 Conclusions

New product evaluation is a preference-based decision in which some qualita-
tive criteria are within a hierarchy, multiple members have difference opinions,
and the judgments from evaluators are often expressed in vague values. It is
more suitable to express preferences in criteria and judgments for new prod-
uct preferences in linguistic terms described by fuzzy numbers. An FMCGDM
method has been presented in this paper and applied to evaluate garment prod-
ucts under the concept of well-being. Based on this method, an FMCGDSS
is developed to solve hierarchical criteria NPD evaluation problems with lin-
guistic terms. This software is being further developed to solve more complex
garment NPD evaluation issues in which both objective and subjective data is
considered.
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Abstract. Feature set dimensionality reduction via Discriminant Analy-
sis (DA) is one of the most sought after approaches in many applications.
In this paper, a novel nonlinear DA technique is presented based on a hy-
brid of Artificial Neural Networks (ANN) and the Uncorrelated Linear
Discriminant Analysis (ULDA). Although dimensionality reduction via
ULDA can present a set of statistically uncorrelated features, but similar
to the existing DA’s it assumes that the original data set is linearly sep-
arable, which is not the case with most real world problems. In order to
overcome this problem, a one layer feed-forward ANN trained with a Dif-
ferential Evolution (DE) optimization technique is combined with ULDA
to implement a nonlinear feature projection technique. This combination
acts as nonlinear discriminant analysis. The proposed approach is vali-
dated on a Brain Computer Interface (BCI) problem and compared with
other techniques.

Keywords: Feature projection, Nonlinear Discriminant Analysis.

1 Introduction

Techniques that can introduce low-dimensional feature representation with en-
hanced discriminatory power are of paramount importance, because of the curse
of dimensionality. Many methods have been proposed for dimensionality reduc-
tion and feature extraction, such as Principal Component Analysis (PCA), Inde-
pendent Component Analysis (ICA), and Linear Discriminant Analysis (LDA)[1].
LDA, unlike other methods, is particularly suitable for solving classification prob-
lems. It aims to maximize the ratio of the determinant of the between-class scat-
ter matrix of the projected samples to the determinant of the within-class scatter
matrix of the projected samples. However, there are many problems with the clas-
sical LDA [2]. Classical LDA requires the scatter matrices to be non-singular and
fails when the scatter matrices are singular. Another limitation is that it pays no
attention to the decorrelation of the data.

Uncorrelated features, are desirable in many applications, because they con-
tain minimum redundancy. Recently, Jin et al [3] proposed the uncorrelated
Linear Discriminant Analysis (ULDA), that can extract feature vectors having
statistically uncorrelated attributes. Although being successful and enhanced
version of the classical LDA, ULDA lacks the capacity to capture a nonlinearly

W. Wobcke and M. Zhang (Eds.): AI 2008, LNAI 5360, pp. 544–550, 2008.
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clustered structure in the data because of its linear nature. Motivated by ex-
tracting nonlinear uncorrelated features, there were many attempts to solve this
problem by employing kernel based approaches [4–6]. Due to the computational
complexity associated with the kernel based approaches, especially for very large
datasets, then it is a tempting task to search for alternative methods to perform
the nonlinear mapping task.

In this paper, a two layer projection technique is presented. In the first layer
a feed forward neural network layer is utilized as a nonlinear mapping stage
for which the parameters are optimized with Differential Evolution (DE) [7].
The aim of using this layer is to nonlinearly map the input space to a high-
dimensional feature space where different classes of objects are supposed to be
linearly separable. This will prepare the scene for the second stage for further
reducing the dimensionality by utilizing the ULDA, thus performing the linear
mapping into a set of uncorrelated features.

This paper is organized a follows: Section 2 introduces the proposed projection
technique and the DE optimization. The experiments and practical results are
given in section 3. Finally a conclusion is given in Section 4.

2 Nonlinear Discriminant Analysis Based Feature
Projection

An artificial neural network (ANN) model is an information processing paradigm
consisting of many nonlinear computational elements operating in parallel and
arranged in patterns reminiscent of biological neural nets [8]. Several studies
were made to illustrate that ANN can perform well for pattern classification
[9, 10]. These studies proved that within Multi-Layer Perceptrons (MLP), each
layer of weights can be thought of as performing projections that try to separate
as best as possible the different classes, so they can be linearly separable by
the cells in the last layer. All of these studies suggest that the MLP actually
consist of two projections: A Non-linear projection from input-to-hidden and
from each hidden-to-hidden layer and a second projection being linear from the
final hidden-to-output layer.

Studies in this field can be decomposed into two parts. The first focused on
studies to enhance the functionality of multilayer feed-forward neural networks
performing the nonlinear discriminant analysis [11, 12]. The second trend focused
on Fisher’s Discriminant Analysis itself as a statistical technique mixed with
kernel functions to perform the nonlinear mapping [4–6]. Although many of
these studies does actually perform well as a nonlinear discriminant analysis
tool, but up to the authors knowledge there were no studies that combined
neural networks with the statistical discriminant analysis for the specific purpose
of feature projection. Thus the main focus of this paper is to combine these two
techniques and compare the performance of the proposed nonlinear method with
the existing techniques.

The basic structure proposed in this paper is shown in Fig.1 sharing similar
architecture with the MLPs. However, we replaced the final linear layer of MLP
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Nonlinear Discriminant Analysis

Input

Nonlinear Projection Linear Projection
Using Single Layer

Feed-Forward
Neural Network

Using Uncorrelated
Linear Discriminant

Analysis (ULDA)

Output

Fig. 1. Block Diagram of the proposed projection technique

with a ULDA implementation, and hence a linear discriminant analysis layer is
incorporated. In addition, a Differential Evolution (DE) optimization technqiue
is used to evolve the weights between the input and hidden layer. Thus, rather
than optimizing the weights of many hidden layers, only the weights of the first
hidden layer are optimized. Then ULDA acts upon the output of this hidden
layer to perform the rest of the projection task.

2.1 Differential Evolution Based Weight Optimization

Differential Evolution (DE) is simple, parallel, direct search optimization method
having good convergence, and fast implementation properties[7]. The crucial idea
behind DE is based on generating trial parameter vectors by adding the weighted
difference of randomly chosen two population members (Xr1,g and Xr2,g) to a
third member (Xr0,g) to create a mutant vector, Vi,g from the current generation
g, as shown in Eq.1 below:

Vi,g = Xr0,g + F × (Xr1,g −Xr2,g) (1)

where F ∈ (0, 1) is a scale factor that controls the rate at which the population
evolves.

In addition, DE employs uniform crossover, also known as discrete recombi-
nation, in order to build trial vectors out of parameter values that have been
copied from two different vectors. In particular, DE crosses each vector with a
mutant vector, as given in Eq. (2):

Uj,i,g =
{
Vj,i,g if rand(0,1) ≤ Cr or
Xj,i,g Otherwise (2)

where Uj,i,g is the jth trial vector along ith dimension from the current population
g. The crossover probability Cr ∈ [0, 1] is a user defined value that controls
the fraction of parameter values that are copied from the mutant. If the newly
generated vector results in a lower objective function value (better fitness) than
the predetermined population member, then the resulting vector replaces the
vector with which it was compared.

Each member of the population acts as one possible representation for the
weights attached to each connection in the network. A population of 100 mem-
bers was initially randomly generated. In order to bound the search space, the
weight values were limited to a range between -1 and +1. This constraint also
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Fig. 2. DE based weight optimization technique

helps reduce the chance that the evolutionary process will produce a forced
model with extreme weight values. The evolution process starts after initializa-
tion according to DE equations mentioned above as shown in Fig.2 (A modified
version of the one published by [7]). The output of each node will be computed
according to the following equation:

µj(0) = ft

(
n−1∑
i=0

wijxi − θj

)
(3)

where, µj(t) is the output of node j at time t, xi is the element i of the input,
and ft is the nonlinear transfer function chosen as the sigmoid function in this
paper. θj is the threshold value associated with each neuron, that can also be
included in the genome linear representation.

Since the weights of the proposed neural network are evolved using DE opti-
mization technique, then there is a need for a fitness function in order for the
DE technqiue to function. The classification accuracy was used as a fitness func-
tion of the DE. An LDA classifier was used for this purpose. The advantage of
this classifier is that it does not require iterative training, avoiding the potential
for under- or over-training. Finally, due to space limitiation we omit the ULDA
details and refer the reader to [1, 3] for more details about ULDA.
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Fig. 3. Different classes of hand movements that the user imagined

3 Experiments and Practical Results

A brain Computer Interface (BCI) probelm is considered in this paper to prove
the effecteviness of the proposed technqiue. This problem was chosen due to
the fact that the classification of the multichannel Electroencephalogram (EEG)
signal proved to be quite challenging. The EEG dataset was recorded using two
EEG channels and processed by the ProComp2 encoder from Thought Technol-
ogy Ltd. Five subjects participated in the experiments. Electrodes were placed
on the C3 and C4 locations that are known to show the most prominent changes
for motor imagery data. Each user was instructed to imagine three different
classes of the arm movement, these are: Elbow Flexion, Pen Grip, and Hand
Open as shown in Fig. 3. The user was asked to perform around 12 trials of
imagining each of these classes. Within each trial, a total of 30 seconds of data
were recorded at 256 Hz sampling rate.

Different window lengths (128, 256, and 384 samples) were adopted to test the
effectiveness of the proposed technique under various situations. These windows
were incremented by 64 samples each time. The extracted feature set included
a combination of autoregressive (AR) features with additional time domain fea-
tures like skewness (SKEW), mean average value (MAV), waveform length (WL),
and root mean square (RMS). The reason for selecting such a combination of
features is that it does not need large computational power [13], while at the
same time being an effective feature set. The total number of extracted features
were 10 from each channel, thus 20 features were extracted from the two channels
(10 features/channel = 6 AR + SKEW + MAV + WL + RMS).

In the dimensionality reduction stage, different techniques were employed to
present a fair comparison. These included: LDA, ULDA, and the Kernel Dis-
criminant Analysis (KDA)[4]. Also included was the MLP trained with back
propagation algorithm, referred to as BPNN. The BPNN was added as it em-
ploys a nonlinear mapping internally within its hidden layers. All of these meth-
ods were compared with the one proposed in this paper, referred to as NDA.
The testing scheme employed included a three way data split in which the to-
tal data was divided into training (≈ 2500 sample), validation(≈ 1000 sample),
and testing(≈ 1000 sample). The objective function was to minimize both the
training and validation errors. Then the network was tested with the completely
unseen testing set to measure the generalization capability of the system. An
important note to mention here is the number of neurons utilized within the
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Fig. 4. Classification accuracies averaged across 5 subjects with different dimensional-
ity reduction techniques (a) Window Length =128 and (b) Window Length =256 and
(c) Window Length =384

hidden layer, which was roughly set to three times the number of features, as
this proved to present a resonable coice for this problem.

The results of the comparison are shown in Fig. 4. These results indicate
that the performance of both LDA and ULDA is the same. This is expected as
both perform the same task but the latter also considers the redundancy and
singularity within the scatter matrices, if such a problem exists. Also shown is
that the performance of BPNN was the worst in all the cases. This is justified
by the fact the back propagation algorithm cannot escape a local minima. When
comparing the results achieved by KDA and NDA, it is clear that NDA almost
always achieved better results than KDA. One important note here is that the
NDA was more powerful than KDA when dealing with smaller window size,
while for larger window size, the performance of both methods was very close.
Initial results were very encouraging, achieving a maximum of 81.88% with a 1
second window lentgh that was incremented by 0.25 second each time.

4 Conclusion

In this paper, a new nonlinear discriminant analysis based feature projection
technique was proposed. It included a hybrid of neural networks and Fisher’s
discriminant analysis. The theory and justification behind this technique was ex-
plained. The algorithm was compared with other statistical techniques and mul-
tilayer perceptron, in a BCI problem with three classes of imagination, achieving
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better results than all other methods even the kernel based discriminant analysis
(81.88% for NDA and 80.74% for KDA). The results indicate that the proposed
technique is a powerful combination for feature projection purposes. More ex-
periments will be conducted in the future as we are currently extending this
technqiue to have a self tuning capability.
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Abstract. This paper explores the use of alternating sequential patterns of local
features and saccading actions to learn robust and compact object representa-
tions. The temporal encoding represents the spatial relations between local fea-
tures. We view the problem of object recognition as a sequential prediction task.
Our method uses a Discriminative Variable Memory Markov (DVMM) model
that precisely captures underlying characteristics of multiple statistical sources
that generate sequential patterns in a stochastic manner. By pruning out long
sequential patterns when there is no further information gain over shorter and
discriminative ones, the DVMM model is able to represent multiple objects suc-
cinctly. Experimental results show that the DVMM model performs significantly
better compared to various other supervised learning algorithms that use a bag-
of-features approach.

1 Introduction

Learning object representations using machine learning plays a central role in detecting
and recognizing objects reliably and accurately. This paper discusses the use of sequential
patterns of local features to learn object representations. We define a sequential pattern
to be a stream of local features correlated by some spatial relations, e.g. distance and
direction. Sequential patterns are analogous to human’s selective sequential attention for
object and scene recognition, also known as saccades. Evidence suggests that we humans
attend to only a few relevant features in a scene for representation and recognition [1].
Our work is based on a technique proposed by Paletta et al. [2] on sequential attention
where reinforcement learning is applied to learn an optimal policy for saccading from one
informative local feature to another within an image efficiently. While learning efficient
scan paths of local features is not considered in this paper, we have focused on learning
a robust and compact object representation from sequential patterns with Discriminative
Variable Memory Markov (DVMM) model proposed by Slonim [3].

The key contribution of our work is in an application of DVMM [3] to a set of
sequential patterns extracted from training images to derive subsequences of these pat-
terns which are highly discriminative. These derived subsequences are then used to clas-
sify an object. Our representation is robust, as DVMM is designed to model distinctive
characteristics for multiple statistical sources where sequences are assumed to be gener-
ated stochastically. Based on conditional mutual information, DVMM prefers to retain
shorter subsequences of sequential patterns over longer ones allowing the representation
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to scale. From the representation point of view, our work extends the sequential atten-
tion work of Paletta et al. [2] by generalizing and compacting object representations in
a principled way.

This paper is organised as follows. In Section 2, we review some of the important
related work and motivate our contribution. The technique of learning DVMM rep-
resentation is presented in Section 3. Inference based on the learned representation to
recognize objects is discussed in the same section. Section 4 shows experimental results
on two well known datasets for object recognition, namely Columbia Object Image Li-
brary (COIL) [4] and ETH-80 [5]. We conclude with future directions of our work in
Section 5.

2 Related Work

Due to its simplicity and effectiveness, a bag-of-features method is a widely used object
representation technique based on detected local features. It constructs a histogram over
all features by collecting statistics from an image, but its orderless representation fails
to capture spatial information inherent in objects and scenes. Spatial pyramid [6] is one
extension of the bag-of-features method which partitions an image into a set of sub-
regions to establish a histogram for each region to consider loose spatial information.

Sequential attention is another method of encoding spatial relations between local
features, but in a temporal sequence. Paletta et al. [2] have shown that using reinforce-
ment learning to acquire an optimal set of scan paths can speed up recognition of ob-
jects over the bag-of-features method, because the number of local features to analyze is
much less and spatial relations between these features capture a lot of distinctive char-
acteristics of objects. However, computing and storing entropy for all visited sequences
either partial or complete to be used as rewards for reinforcement learning can signifi-
cantly affect the complexity of time and space required as the number of objects to be
learned increases. In addition, their work does not address on how a set of training se-
quential patterns can be generalized to handle patterns which have not been experienced
previously.

Variable Memory Markov (VMM) model [7] is a principled technique of learning
distinctive sequential patterns of variable length in a suffix tree model. It attempts to
precisely capture characteristics of a single statistical source from discrete sequences
over a finite set of alphabet. A variant of VMM, Discriminative VMM (DVMM) pro-
posed by Slonim [3] can simultaneously handle multiple statistical sources - preserving
discriminative sequential patterns to discern the identity of one source from another
based on the measure of conditional mutual information. It is shown to work well for
text categorization and protein sequence prediction tasks. While VMM has been ap-
plied to some areas in computer vision to capture characteristics of a single target, e.g.
task based visual control [8] and behavior modeling and tracking [9], DVMM has not
yet been exploited in areas like object detection and recognition tasks for learning dis-
criminative characteristics for multiple objects. In our work, each object of interest is
viewed as a stochastic sequential process that generates sequential patterns of detected
local salient features. The next section presents our approach in learning representations
from a set of such sequential patterns with DVMM.
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3 Learning Representations

This section discusses steps involved in both learning and recognizing objects with
DVMM which are depicted in Fig. 1. Preprocessing steps, including detection and ex-
traction of relevant features from an image which are referred to as foci-of-interest
(FOI), codebook vector assignment for each FOI and generation of sequential patterns
based on those extracted FOIs, are inspired by the work of Paletta et al. [2]. During the
learning phase, sequential patterns are generated for all training images and applied to
DVMM - resulting in a discriminative suffix tree model.

In short, our key innovation is in the combined approach of sequential attention by
Paletta et al. [2] and DVMM by Slonim et al. [3]. It respects the use of spatial infor-
mation in a temporal sequence from the former work to learn compact and generalized
object representations with the technique proposed in the latter.

Fig. 1. Overall steps involved in our approach

3.1 Extracting Foci-of-Interest

To generate a sequential pattern from a given image, a set of local salient features must
be extracted first. In principle, any local feature detection method can be used as long
as it can infer some measure of saliency, e.g. entropy measure, edge strength or corner
response. This induces a saliency map showing which local regions in the image are
of interest. With the ‘Winner-takes-it-all’ principle [10], the first N maximum feature
points are chosen as foci-of-interest (FOI). Every time a feature with the maximum
saliency is selected, its local region consisting of the feature itself and its neighborhood
is masked out from the saliency map to encourage other salient local regions to be
chosen as FOIs. In psychology, ‘inhibition of return’ is a term used to describe this
masking process. This process repeats until we extract N FOIs or until no more local
regions can be masked out from the saliency map. The choice of N is arbitrary. It is a
tradeoff between expressiveness of sequential patterns we generate and complexity of
storage and time that is required to derive discriminative patterns with DVMM. Fig. 2
shows one example of how FOIs are extracted.

After FOIs are extracted from all training images, codebook vectors are constructed
using k-means clustering to generalize and discover a set of feature prototypes of size
K . As also claimed in [2], it is the spatial relations between these FOIs that give the
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(a) (b) (c)

Fig. 2. (a) The original image (b) The saliency map obtained from Harris corner detector (c) The
FOIs extracted from the saliency map

distinctive characteristics of objects. Thus, each FOI does not need to be represented in
the finest detail and this makes the whole local feature description process tolerant to
noise. The clustering process also reduces the learning complexity of DVMM, since the
size of a symbol set (i.e. the feature prototype set) from which sequences are generated
is small. Each FOI fi is assigned to one of the derived codebook vectors Γ ∗ to which
it has the nearest Euclidean distance in a feature space. This is obtained by Γ ∗ =
argminj ‖ fi − Γj ‖.

3.2 Generating Sequential Patterns

Given a set of FOIs, F = f1, · · · , fN of size N , extracted from an image I , a complete
graph of each node being a FOI is constructed to generate an arbitrary Hamiltonian path,
i.e. a path starting from a randomly chosen node and visiting every other node in the
graph only once in a random order. To generate such path, any greedy algorithm that
randomly selects one node at a time will suffice, since any node in a complete graph
is reachable to every other node. Figure 3 demonstrates one random sequential pattern
being generated from an image. Starting from the left image, one FOI is chosen one after
another and connected sequentially with a directional relationship to form a scan path.

Fig. 3. An example of one sequential pattern being generated

Each edge in the path defines a directional relationship between two FOIs in an image
space. Given the coordinates of the two FOIs, the direction from an outgoing FOI to an
incoming FOI is computed and associated to one of the 8 discritized directions, ai ∈
{0, 45, 90, · · · , 315}. As described in [2], each path is encoded as codebook descriptors
Γj and directional relationships ai, i.e. s = (Γ0, a1, Γ1, · · · , ΓN−1, aN , ΓN ). We refer
to this encoded path as a sequential pattern. A set of these patterns SI = s1, · · · , sM of
sizeM is generated randomly from an image I by repeating the same process explained
aboveM times and this is done for both learning and recognition stages. In the learning
stage, this step of generating sequential patterns is applied to all images in a training set
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X , yielding a set of sequence setsD = SI1 , · · · , SI|X| . This training setD is applied to
DVMM. If we denote V as the set of codebook vectors and A as the set of directional
relationships, then each symbol σ in a sequence s (i.e. s ∈ Σ∗) is formally expressed
as σ ∈ Σ = V ∪A. In the next section, we will review DVMM and discuss how it can
learn object representations based on these sequential patterns.

3.3 Learning with Discriminative VMM

In order to build a discriminative model for objects C = c1, · · · , c|C| from a set of se-
quential patternsD, DVMM [3] firstly estimates P (sl|ci) for all possible subsequences
of length l starting from 1 up to L. Then, it retains all subsequences that satisfy a con-
dition, P (sl|ci) ≥ ε1 for some object ci where ε1 is a defined threshold. To prune any
sequence that adds either no or very little information in the presence of other highly
discriminative sequences, DVMM computes conditional mutual information given by
Eq. (1) to measure how discriminative each subsequence is.

Is ≡ I(Σ;C|s) =
∑
c∈C

P (c|s)
∑
σ∈Σ

P (σ|c, s) log
P (σ|c, s)
P (σ|s) (1)

Given a subsequence s, we are computing conditional mutual information between
each object c ∈ C and the next symbol σ ∈ Σ in the sequence which corresponds
to either a local feature described by a codebook vector Γi or directional relationship
between two features ai. Since P (c|s) = P (s|c)P (c)/P (s), we can estimate P (s) and
P (s|c) from the training set D, assuming each sequential pattern has an object label c
associated with it. P (c) is assumed to be an uniform distribution. To approximateP (s),
we count the number of occurrences of a subsequence s in the training sequence set
and divide this quantity by the total length of all training sequences. As for P (s|c), the
same procedure is followed except we only collect statistics from sequential patterns
which have an object label c assigned. Similarly, other probability distributions in Eq.
(1) are estimated by collecting statistics from the same training set. The exact detail on
how probabilities are estimated is discussed in [11].

If the maximum mutual information among a subsequence s and its descendants in
the suffix tree is less than the mutual information for the suffix of s by some threshold
ε2, then the sequence s and its descendants are pruned out. To clarify the meaning of
the suffix for some sequence s, if we let s = σ1σ2 · · ·σ|s|, then its suffix is expressed
as suffix(s) = σ2 · · ·σ|s|. To state the above pruning criterion more formally, firstly
we let Ts be a set of sequences that includes s and its descendants in the suffix tree.
For any sequence s, we prune Ts out if I∗s − Isuffix(s) ≤ ε2 where I∗s = maxs′∈TsIs′ .
This criterion naturally prunes out longer sequences that are redundant in the presence
of the shorter ones with higher discriminating power, hence keeping the final model as
compact as possible.

The time complexity in learning DVMM is O(L2n). L is the maximum length of
a sequence considered. n is the total length of the training sequences. The training
sequences are scanned L times to extract sequences of length l starting from 1 to L.
At each iteration, it takes O(Ln) to process the sequences of length l, hence we have
the above time complexity. In practice, the whole learning process is quite efficient
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as the suffix tree will not keep growing its paths (i.e. sequential patterns) unless their
probabilities of occurrence are higher than a defined threshold. As a result, the learning
could terminate well before the length of a training sequence l reaches to L. The space
complexity of DVMM isO(|C|(|Σ|L)) where |C| is the number of objects to be learned
and |Σ| is the number of alphabets used to describe a sequence. While the theoretical
analysis shows an exponential growth in L, the actual space required to learn DVMM is
much less, because sequential patterns learned are in variable length and further pruning
based on conditional mutual information removes redundant long patterns that are not
very discriminative in the presence of other short ones.

3.4 Recognizing Objects

To recognize an object presented in an image I , we first generate sequential patterns SI

from a set of extracted FOIs as explained in Sections 3.1 and 3.2. We infer the identity
of an object c∗ given its generated sequential pattern s ∈ SI with Eq. (2).

c∗ = argmaxc∈CP (c|s) ∝ argmaxc∈CP (s|c)P (c) (2)

In the case of our experiments in Section 4, the prior probability P (c) is assumed to
be uniform over all objects. To estimate the conditional probability P (s|c), we use the
following equation,

P (s|c) =
|s|∏
i=1

P (σi|σ1σ2 · · ·σi−1, c) =
|s|∏
i=1

P (σi|si, c) (3)

where s = σ1σ2 · · ·σ|s| and si = σ1σ2 · · ·σi−1. We approximate P (σi|si, c) by as-
signing P (σi|suffix(si), c) where suffix(si) is defined to be the longest suffix sequence
of si preserved in the learned suffix tree model. The probability P (σi|suffix(si), c) is
already estimated upon computing conditional mutual information in Section 3.3. We
apply Eq. (2) to allM sequential patterns in SI to sample the inferred object and take a
majority vote on those samples to resolve to the most probable object.

The time complexity in predicting an object from one sequential pattern is O(L|s|).
L is, as stated above, the maximum length of a sequential pattern considered in learning
DVMM. |s| is the length of a sequential pattern s.

4 Experimental Results

4.1 Results on COIL-100

COIL-100 [4] consists of 7200 images, comprising 100 different objects. Each object
has 72 different image views taken at pose intervals of 5 ◦. All images have the size of
128 pixels in both width and height. No cluttered backgrounds or occlusions are pre-
sented in the images, unless stated otherwise. Fig. 4 shows a few examples of different
objects in this dataset.

Firstly, to show that using sequential patterns improves recognition accuracy over
a bag-of-features method, we have compared our approach (DVMM here onwards)
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Fig. 4. Examples from COIL-100 dataset

Table 1. All methods listed here are trained and tested with 18 and 54 views per object re-
spectively. N indicates the number of FOIs extracted from an image, while K is the number of
codebook vectors generated by k-means clustering.

Parameters N=20, K=60 N=40, K=120 N=40, K=200

DVMM 97.0 97.2 97.3
SVM 80.6 91.5 93.3
KNN 81.1 87.2 83.5
Naive Bayes 80.3 88.8 91.3

against classifiers including linear SVM, KNN (k=1) and Naive Bayes. We apply a
simple Harris corner detector and extract out N FOIs from a saliency map induced
from the corner response values. To describe each FOI, an approach described in [12]
is used. A patch of size 10 × 10 pixels centered on each FOI is extracted and divided
into 4 equally sized patches. We construct 4 bin histograms for edge orientations and
edge strength over each of the subpatches and also 8 bin color histogram over the whole
patch. Thus, the FOIs are described by a 40 dimensional vector. These FOIs are later
assigned to one of the K codebook vectors generated by k-means clustering. An in-
hibition mask of size of 10 × 10 is used to suppress the neighboring responses of an
extracted FOI in the saliency map. For the bag-of-features method, we construct a his-
togram over all codebook vectors from the extracted FOIs for each image and trained
with each of the abovementioned classifiers. For DVMM, we generate a set of sequen-
tial patterns of sizeM = 40 as a training set. Two thresholds for DVMM, ε1 and ε2 are
set to 0.0005 and 0.001 respectively. The maximum lengthL of sequential patterns con-
sidered in learning DVMM is 2N − 1. However, DVMM tends to retain subsequences
that are much shorter than L, because of the pruning based on mutual information
measure.

It is clear from Table 1 that recognition accuracy improves significantly with the
use of sequential patterns. With 200 codebook vectors and 40 FOIs, the bag-of-features
method is still unable to beat DVMM with 60 codebook vectors and 20 FOIs which
are much less. This indicates that spatial relations between features encode a lot of
distinctive information. Further, we believe that our method is particularly powerful in
a situation where only a few stable and repeatable FOIs are detected in images. We have
used MacBook Pro 2.2 GHz Core Duo with 2 GB RAM to carry out the experiment
and the code is written in C++. DVMM with any set of parameters listed in Table 1
can be learned in less than 10 minutes. While the generation of the codebook vectors
using clustering can take long time, this is a common procedure across all approaches
compared in our experiment.
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Fig. 5. Examples of discriminative sequential patterns learned by DVMM. (best viewed in color).

(a) (b) (c)

Fig. 6. Examples of objects being occluded (a) Left half (b) Right half (c) Bottom half

Fig. 5 shows some of the discriminative sequential patterns that have high probability
associated to the objects present in the images. The cup, for example, has sequential
patterns concentrated around its handle, rim and bottom corners, while the duck has the
patterns focused around its eye, beak and tail. Different sequential patterns in an image
are indicated by different colors. It is also clear from the figure that DVMM prefers to
retain shorter patterns with high discriminating power over the longer ones.

Next, we artificially introduce occlusions to the test images to evaluate the robustness
of DVMM. All techniques are first trained using 18 unoccluded images for each object
and the rest of 54 images per object are used for testing. Fig. 6 shows a few examples
of objects being occluded. We can see from Table 2 that DVMM is robust to occlusion.
DVMM infers the identity of an object based on only discriminative sequential patterns
that are visible in an occluded image. In contrast, the bag-of-features method constructs
a completely different histogram to the ones with which are trained, because the absence
of local features in the occluded image affects an overall representation of the object.

We have also introduced noise into the test data. A codebook vector assigned to each
FOI is altered randomly by some noise rate. As similar to the occlusion experiment,
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Table 2. L, R and B indicate left half, right half and bottom half occlusions respectively

Parameters N=20, K=60 N=40, K=120
Occlusion L R B L R B

DVMM 85.0 56.3 82.7 89.4 69.1 88.1
SVM 54.0 29.1 59.8 60.0 25.5 63.5
KNN 49.6 23.6 56.0 44.5 18.1 47.7
Naive Bayes 65.1 37.2 65.3 80.0 50.0 76.3

Table 3. All methods listed here are trained and tested with 18 and 54 views per object respectively

Parameters N=20, K=60 N=40, K=120
Noise Rate 0.1 0.2 0.5 0.1 0.2 0.5

DVMM 95.2 92.4 64.4 94.3 92.4 64.1
SVM 74.4 66.4 29.7 82.3 81.6 40.3
KNN 72.7 63.0 25.7 81.2 68.5 23.3
Naive Bayes 75.5 69.1 33.9 86.9 82.3 50.2
Difference 19.7 23.3 30.5 8.9 10.1 13.8

we have taken 18 images per object for training and the rest for testing. Table 3 shows
the results for different noise rates. We can observe from the table that performance
difference between DVMM and other methods widens as we increase the noise rate.
This suggests that DVMM is more tolerant to noise.

Finally, to conclude this section, we have compared DVMM with some of the exist-
ing methods that have been applied on this dataset. The results with different numbers
of training images are shown in Table 4. As the table shows DVMM achieves either
comparable or better performance against all the listed methods except LAF [13] for
experiments with 18 and 8 training images. DVMM drops its performance significantly
as the number of training images decreases, particularly for 4 training images. While
DVMM is not intended to handle local affine transformation, a technique like LAF was
specifically designed to deal with severe view changes. However, with the simple local
feature detector and descriptor employed in DVMM for this experiment, it is still re-
markable that we can obtain comparable results. The benefit of using sequential patterns
is apparent and can be further exploited with other sophisticated local feature detector
and descriptor methods like Harris-Laplace, Difference of Gaussian and SIFT [14].

4.2 Results on ETH-80

In this section, we demonstrate the performance of DVMM in object categorization
using ETH-80 [5] dataset. This dataset comprises 80 objects from 8 different categories
where each object has 41 different image views of size 256 × 256 pixels. The 8 different
categories are as shown in Fig. 7, apple, car, cow, cup, dog, horse, pear and tomato.

The same local feature detection and descriptor methods outlined in the previous sec-
tion are used for this experiment. We hold out one object from each category for testing
purpose and train with the rest of 70 objects, i.e. leave-8-objects-out cross validation,
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Table 4. Results on recognition accuracy compared against existing methods. Different numbers
of images are used to train DVMM.

Training Images 18 8 4

DVMM 97.0 89.8 79.0
LAF [13] 99.9 99.4 94.7
Spin-Glass MRF [15] 96.8 88.2 69.4
SNoW [16] 94.1 89.2 88.3

Fig. 7. Examples from ETH-80 dataset

Table 5. N indicates the number of FOIs extracted from an image, while K is the number of
codebook vectors generated by k-means clustering

Parameters N=20, K=60 N=40, K=120

DVMM 64.3 65.2
Quadratic SVM 57.6 59.9
Linear SVM 54.0 59.6
KNN 47.4 49.9
Naive Bayes 48.0 53.4

and we have repeated this 10 times. The results in Table 5 shows that DVMM per-
forms better than the bag-of-features method. This suggests that DVMM is capable of
generalizing representations for object classes as well. We could potentially use other
feature detection and description methods to achieve comparable performance to the
state-of-the-art methods.

5 Conclusion

In this paper, our novel approach of learning object representations from sequential
patterns using DVMM is presented. Based on the measure of conditional mutual infor-
mation, DVMM learns shorter yet distinctive sequential patterns which define discrim-
inative characteristics of each object, hence compacting the final object representation.
Our work on DVMM can further be experimented using different combinations of local
feature detection and descriptor methods, particularly in the presence of background
clutter which has not yet been explored.

Recently, compositional hierarchical methods are becoming one of the popular repre-
sentation techniques - offering a scalable representation [12]. In general, a flat approach
like our method will not scale for large applications. Learning one level of sequential
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patterns also limits in acquiring high level patterns that could potentially be useful in
learning classes of objects. We envisage a compositional hierarchical method driven by
DVMM or its variant at each level of the hierarchy.
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Abstract. In recent years, there has been a cross-fertilization of ideas
between computational neuroscience models of the operation of the neo-
cortex and artificial intelligence models of machine learning. Much of
this work has focussed on the mammalian visual cortex, treating it as a
hierarchically-structured pattern recognition machine that exploits sta-
tistical regularities in retinal input. It has further been proposed that the
neocortex represents sensory information probabilistically, using some
form of Bayesian inference to disambiguate noisy data.

In the current paper, we focus on a particular model of the neocortex
developed by Hawkins, known as hierarchical temporal memory (HTM).
Our aim is to evaluate an important and recently implemented aspect of
this model, namely its ability to represent temporal sequences of input
within a hierarchically structured vector quantization algorithm. We test
this temporal pooling feature of HTM on a benchmark of cursive hand-
writing recognition problems and compare it to a current state-of-the-art
support vector machine implementation. We also examine whether two
pre-processing techniques can enhance the temporal pooling algorithm’s
performance. Our results show that a relatively simple temporal pool-
ing approach can produce recognition rates that approach the current
state-of-the-art without the need for extensive tuning of parameters. We
also show that temporal pooling performance is surprisingly unaffected
by the use of preprocessing techniques.

1 Introduction

It has become commonplace to compare the remarkable robustness, reliability
and adaptability of natural systems with the relatively narrow and fixed capa-
bilities of computer software. Natural processes transform environmental infor-
mation into reliable survival behaviours in ways that remain unexplained by
modern science. Neuroscience has shown that the most sophisticated aspects of
this transformational activity occur in the neocortex of the mammalian brain.
This naturally suggests that an understanding of the computational principles
underlying the neocortex will also provide a key to building similarly powerful
software systems.

Viewed at the right level of abstraction, the architecture of the neocortex
appears to be relatively simple: it can be divided into six histologically distinct
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horizontal layers as well as into vertical minicolumns consisting of between 80-
100 neurons each (with some exceptions) [1]. In turn, these minicolumns can be
grouped into cortical columns that share common input and are linked via short-
range horizontal connections. Current theories suggest that cortical columns act
as feature detectors with a probabilistic output determined by the match to the
feature to which the column is sensitive [2].

In a global context, it is widely accepted that different areas of the neocor-
tex are connected together to form hierarchical structures [3]. This has been
verified by detailed studies of the visual cortex, where, in the ventral pathway,
information passing from the retina via the lateral geniculate nucleus (LGN)
enters the lowest level (V1) of the visual cortex and then passes up in sequence
to the V2, V4 and inferotemporal cortex (IT) areas. As information moves up
the hierarchy, each area appears to be detecting increasingly more general and
invariant features of the visual scene, confirming that some form of hierarchical
composition is occurring [4].

The discovery that the neocortex has a fairly uniform structure of cortical
columns and that these columns are connected in hierarchical structures has led
to the development of several feedforward computational models aimed both at
explaining how the neocortex functions and at developing software that exploits
this functionality. One class of model, growing out of Hubel and Weisel’s pioneer-
ing work on the simple-to-complex cell hierarchy in the visual cortex [18], uses a
feedforward hierarchy to effect object recognition [4]. This approach decomposes
an image into multiple receptive fields, each connected to an S (simple cell) unit
that is tuned to respond to particular features (e.g. oriented bars and edges).
The outputs of related S units (sharing the same preferred orientation but dif-
fering in size and position) are then connected to C (complex cell) units that
detect orientation while remaining insensitive to scale and orientation. These C
units are in turn connected to the next layer of the hierarchy, that repeats the
S and C unit structure, but integrates an increasingly larger area of the original
image. This structure continues until a supervised top layer is used to classify
the entire image.

Another stream of research is based on the idea that the neocortex stores sen-
sory information probabilistically, and is therefore best modelled using Bayesian
probability theory. This “Bayesian coding hypothesis” has received some sup-
port from psychophysical studies although the neuroscientific evidence is still
inconclusive [5]. The powerful aspect of the Bayesian model is that it allows for
feedback within the neocortical hierarchy while providing some means to contain
the potential combinatorial explosion of possible interpretations. This feedback
provides contextual information that in turn can resolve the ambiguities that
typically appear in feedforward models when given noisy, realistic input. Lee
and Mumford [6] proposed a model of hierarchical Bayesian inference in the
visual cortex that was further elaborated by Dean [7] to produce a pyramidal
Bayesian network. This work showed that the task of performing Bayesian in-
ference for pattern recognition in large brain-like structures is now becoming
tractable (given the availability of modern parallel computing resources).
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George and Hawkins [8] have also used a hierarchical Bayesian network to
perform pattern recognition on line drawings. This work was a partial realiza-
tion of a more ambitious project based on Hawkins’ model of the neocortex
proposed in [9] (now known as hierarchical temporal memory or HTM). HTM
extends Lee and Mumford’s work by explicitly handling temporal sequences of
input within a hierarchical Bayesian framework [10]. In fact, Hawkins sees the
fundamental task of neocortical processing as prediction and so places temporal
change at the centre of his model. This emphasis on time was only partly realized
in George and Hawkins original work [8] where movies of the line drawings were
displayed and the system was “primed” to expect the repetition of the previous
image. More recently, a new implementation of HTM has been developed that
explicitly includes a temporal pooling component within a vector quantization
framework [11]. Temporal pooling refers to the grouping of spatial patterns that
appear most frequently in sequential temporal order. Such temporal pooling has
a neurophysiological basis. The classic paper of Miyashita [12] demonstrated
that neurons in inferior temporal cortex became responsive to stimuli that were
presented in close temporal order even though their shapes were quite different.

The aim of the current research is to evaluate the efficacy of temporal pooling
as a method for pattern recognition and more generally to evaluate the current
HTM architecture. This will be done by testing our own HTM implementation on
a large database of cursive handwriting images. In addition, we will be looking at
the effect of preprocessing the images using (i) skeletonization and (ii) directional
filtering. In the next section we describe how temporal pooling functions within
the current HTM framework, and provide some justification for its use. We
then provide a background to the cursive handwriting recognition problem and
describe the various preprocessing techniques used in the experimental study.
In Section 4 we present our results and finally we discuss their significance for
future research in the area.

2 Temporal Pooling

The distinguishing feature of Hawkins’ HTM model is its emphasis on time and the
role of the neocortex in encoding “sequences of sequences” of patterns to fulfil the
overarching task of prediction [9]. Until the recent release of the NuPIC software
platform,1 it was not clear how such temporal information would be incorporated
into a hierarchical pattern recognition architecture. The new software achieves
this by situating a temporal pooling algorithm within each node of the hierarchy.
This algorithm groups together spatial patterns into temporal groups according
to how frequently one pattern is succeeded by another during training.

2.1 Forming Temporal Groups

To understand temporal pooling in more detail, consider traversing a 3 × 3
binary pixel sensor across two 5 × 5 binary pixel images, one containing a
1 See http://www.numenta.com/

http://www.numenta.com/
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vertical line through the middle column and the other containing a horizon-
tal line through the middle row. For each image, we start the sensor at the
bottom left corner, sweeping one pixel at a time from left to right, moving up
one pixel at the end of the row, sweeping again, and so on, until the image is
entirely covered. Then we start again in the bottom left corner, moving upwards
through each column and then across one pixel at a time. As the sweep pro-
gresses, we assign an index k to each uniquely appearing 3 × 3 pixel pattern and
count how frequently one pattern follows another. This information is stored in
a time adjacency matrix, such that for each pattern j that follows pattern i, we
increment the count at matrix position i, j by one.2

c 1 c 3 c 5 c 6c 2 c 4

c 2

c 4

c 5

c 6

c 3

c 1

c 2

c 1G 1 c 3 c 5

G 2 c 6c 4

04 30 0 0

4

4

4

4

4

0 3 30 0

0

0

3

0

0

3

0

3

3

3

0 0

0

0

0 0

0 0

0 0

,= {

= { , , }

},

Fig. 1. An example time adjacency matrix

Figure 1 shows the time adjacency matrix produced from the above sweeping
process, with the addition of reflecting the counts through the diagonal (this fills
in the counts that would have occurred had we also traversed from right to left
and from top to bottom). To form temporal groups, we first select the pattern
that was involved in the greatest number of transitions by summing the values in
each row and taking the maximum. In this case both c2 and c5 have a maximum
summed count of 10. Taking c5 first, we delete it from the set of patterns that
can be allocated to a temporal group, and use it to create a new temporal group
G1. We continue by adding the two most probable neighbours of c5 to G1, i.e.
c1 and c3 as these are the patterns with the largest counts in the c5 row. c1 and
c3 are now deleted from the set of patterns that can be allocated to a temporal
group and we continue recursively to add the two most probable neighbours of
c1 and c3 to G1. In the present case there are no further candidates, as all c1
2 Note, when the sensor backtracks from the end of one row or column to the beginning

of the next, the corresponding patterns are not considered to follow each other.
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and c3’s neighbours are either already in G1 or have a zero count. Consequently,
G1 is now closed and all members of G1 and their associated counts are deleted
from the time adjacency matrix. The process is then repeated until all remaining
patterns have been allocated to a temporal group. In the current example, c2
forms the “seed” for the next group G2 and the grouping process completes once
c2’s remaining neighbours (c4 and c6) are added to G2.

In the general case, the kind of input used to define the patterns remains open
and we can further adjust the number of neighbours that can be added at each
recursion, and place a limit on the number of patterns that can be added to a
group. Otherwise the above description accurately reflects the process of forming
temporal groups used in the HTM software platform (see [11] for details).

The idea behind temporal pooling is to collect together patterns representing
events that occur consecutively in time and to treat the entire group as repre-
senting an underlying cause. For instance, in the above example, we were able
to reduce six spatial patterns into two temporal groups representing that either
a horizontal or a vertical line was the underlying cause of any particular obser-
vation. Clearly, in the real-world of pattern recognition we are confronted with
thousands of images, few of which reflect the clear cut division of our exam-
ple. Nevertheless, the relative simplicity of this temporal pooling approach has
proved surprisingly robust, as our experiments will show.

2.2 Temporal Pooling within Hierarchical Vector Quantization

If we remove temporal pooling from the current HTM platform, the underlying
algorithm uses a form of hierarchical vector quantization (HVQ) [13]. This can
be illustrated by considering a 32 × 32 pixel image and a hierarchy with 64 level
one nodes, each connected to a non-overlapping 4 × 4 pixel area of the original
image. Level two consists of 16 nodes, each corresponding to an 8 × 8 pixel area
of the image (via their connection to four spatially adjacent level one nodes).
Similarly, level three has 4 nodes, each connected to four level two nodes, and
covering a 16 × 16 pixel area. Finally, a single level four node unifies the image
via its connection to the four level three nodes.

Training. In order to train this hierarchy, each node receives input from the
layer below, with level one nodes receiving the 4 × 4 raw pixel image as it is
moved one pixel at a time across the node’s receptive field. Starting at level
one and moving in order to level three, each node executes the following vector
quantization procedure (also known as spatial pooling): for each input pattern, if
it is within a distanceD of an existing quantization point then discard, otherwise
store the pattern as new quantization point. With the addition of temporal
pooling, these quantization points become the c1, . . . , cn inputs to the temporal
adjacency matrix, where they are combined into temporal groups. Once the
temporal groups for the layer i nodes have been learnt, they can then act as
combined input for the layer i+ 1 nodes, where they are again quantized using
the spatial pooler and grouped using the temporal pooler, and so on up to level
four. Within level four, the temporal pooler is replaced by supervised learning,
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i.e. the input from level three is quantized and then directly classified according
an existing set of image labels.3

Recognition. During the recognition phase, the probability that a level one
node’s input matches a quantization point is estimated as: e−d2

i /σ where di is
the distance of the input from quantization point ci and σ is a parameter ad-
justed according to our expectation of Gaussian noise, i.e. the noisier the input,
the greater the setting of σ. As each quantization point is associated with ex-
actly one temporal group, we estimate the probability that a particular temporal
group is active to be the maximum value associated with the set of its associ-
ated quantization points. A node then sends up its probabilistic estimates that
each temporal group is active to the next layer. After level one, a quantization
point represents the combination of four temporal groups, each associated with
a different lower level node. Up to level three, we estimate the probability that
a particular quantization point is active by adding the probability estimates for
each of its lower level temporal groups.4 Finally, at level four, the level three tem-
poral group probability estimates are combined multiplicatively (again following
the HTM default), and the object classification associated with the largest such
product is output from the hierarchy.

Recognition also entails sweeping an image across the level one nodes from left
to right and from top to bottom, one pixel at a time with an initial 4 pixel offset.
In this way, the system will classify a 32 × 32 pixel image 16 times, producing
the most probable classification as its final output.

3 The Cursive Handwriting Recognition Problem

We decided to evaluate our own Java implementation of the HTM platform on
the domain of offline cursive handwriting recognition. This was partly to extend
earlier work that showed HTMs performed well on handwritten digit recognition
[14] and partly because handwritten character recognition is such a well-studied
area. This means there is no shortage of benchmark problems, or well-engineered
specialized algorithms. After reviewing the area, we decided to focus on the work
of Camastra, whose support vector machine (SVM)-based recognizer is one of
the best performing of the current state-of-the-art techniques.

3 Note that the method of traversing the entire image (as if playing a movie) means
that during training each node eventually receives the same input as all other nodes
on the same level. Consequently we only need train one node per level and then clone
the quantization points and temporal groups to the remaining nodes when training
is complete.

4 Lower level probability estimates were summed (rather than multiplied) to replicate
the Numenta implementation. One justification for this is to make the system more
tolerant of lower level misclassification, e.g. if a level one’s temporal group has a near
zero probability, this will have less effect if we are adding probabilistic estimates at
level two.



568 J. Thornton et al.

In his recent empirical study [15], Camastra created the C-Cube database of
57,293 cursive handwritten characters taken from the well-known CEDAR data-
base and from the United States Postal Service database (C-Cube is available
from ccc.idiap.ch). Here each character was extracted from digitized handwritten
postal addresses using standard deslanting, desloping and segmentation tech-
niques [16]. We decided to use this dataset (after scaling down each character
to a 32 × 32 binary pixel image to fit with the HTM implementation described
above) and to reproduce Camastra’s strategy by testing on 19,133 instances
(using the remainder for training).

It is standard practice in the cursive handwriting recognition community to
perform preprocessing before recognition, so we experimented with two further
techniques: (i) skeletonization, and (ii) directional filtering.

3.1 Skeletonization

The process of skeletonization reduces multi-pixel thick character lines to a single
pixel thick line, removing differences in line thickness between characters and
emphasizing the underlying shape. To produce character skeletons we used a
process of iterative thinning followed by pruning.

Thinning Firstly, as thinning can overemphasize any holes in an original shape,
we used a region filling algorithm to fill all holes of nine pixels or less (see
Figure 3). For thinning, we then used the hit-or-miss transform and the sequence
of structuring elements taken from [17] and shown in Figure 2a. This transform
applies all eight structuring elements to each neighbourhood of 3 × 3 pixels. If an
element matches the neighbourhood then the central pixel is set to the background
colour, otherwise it is left unchanged. This process is repeated until no more pixels
have changed.

= Ignore

= Background= Foreground

a)

b)

c)

Fig. 2. Structuring elements for thinning
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Original
39x46

Scaled Fill Holes Thinned Prune one pixel Prune length 3 Remove Corners

Thinned

Fig. 3. An example of the skeletonization process. The dotted arrow indicates the result
if only scaling and thinning are performed, whereas the horizontal path illustrates the
full set of transforms used in the experimental study.

Pruning. After this, the thinned characters can still contain spurs that we
removed using a three-step process: Firstly, we performed morphological pruning
using the hit-or-miss transform and the eight structuring elements shown in
Figure 2b (only one pass is applied here since further iterations may prune
non-spur artefacts). Secondly, spurs of length three or smaller were detected and
removed. Here spurs are defined as pixels which have only one neighbouring pixel
(i.e. the end of the spur). The line is followed as long as the next pixel has exactly
two neighbours and the length of the line is three or smaller. When a pixel is
encountered with more than two neighbours then the line segment is confirmed
as a spur and the line is removed along with this last pixel. If the line ends with
a pixel with only one neighbour then the line is not pruned (i.e. it is an isolated
short line). Finally, corners were removed using the hit-or-miss transform and
the structuring elements shown in Figure 2c. The entire skeletonization process
is illustrated in the example of Figure 3, where an original image of a character
“A” is successively scaled, filled, thinned and pruned.

3.2 Directional Filters

We had three motivations for using directional filters. The first, mentioned above,
was to reduce the effects of noise in the original images. The second was the
similarity of directional filters to the oriented simple cells of the human vision
system [18] and the third was the ability of directional filters to separate out
structural components of the characters.

We designed 24 filters (see Figure 4) that exhibit the simplicity of masks
whilst also detecting 8 different orientations [19]. Each filter was applied to a
non-overlapping 4 × 4 pixel window from the 32 × 32 scaled image. A 24 element
feature vector was then constructed for each window, containing the results of
convolving each filter with the window. The feature vector was then converted to
a binary string of 24 bits by finding the maximum convolution result and setting
elements which have the same result to one and clearing all other elements. The
resulting 24-bit string was fed into level one of the HTM. The rest of the HTM
remained unaffected except for the distance measure D which is now calculated
over 24 dimensions instead of the previous 16.
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= −1= 0= 1

Fig. 4. Directional filters

4 Experimental Results

For the experimental study we first set up our HTM software to use the defaults
of the NuPIC platform. This involved setting the maximum temporal pooling
group size to 32 at each level and setting the number of temporal pooling neigh-
bours in the grouping algorithm to three at level one and two at all other levels
(see Section 2). We used the Hamming distance to calculate D and during train-
ing we set D = 0, i.e. we recorded every spatial training pattern observed at
level one as a quantization point. This meant that temporal pooling was the
only method for grouping the input during training. The Hamming distance was
again used to measureD during recognition. The other settings for the algorithm
were the same as those described in the example of Section 2.2.

We also experimented with various settings for the maximum temporal group
size at each level, as this proved important for our preprocessing techniques. The
overall results are shown in Table 1, which also reproduces the results on the
same data set for the algorithms in Camastra’s study [15].

Table 1. Recognition rates in percent on the C-Cube dataset. The support vector ma-
chine (SVM), learning vector quantization (LVQ) and multi-layer perceptron (MLP)
results are taken directly from [15]. The preprocess row defines the preprocessing tech-
nique and the group size row defines the HTM maximum temporal group size for levels
one, two and three respectively. Note, the HTM, SVM and MLP results classify upper
and lower case letters together, i.e. into 26 classes. Higher recognition rates are possible
when dissimilar upper and lower case letters are separated into different classes, as is
the case for the LVQ results, which Camastra only reported for the 39 class case.

Method HTM SVM LVQ MLP
Preprocess none skeleton directional n/a n/a n/a
Group size 32,32,32 16,16,16 32,32,32 6,16,32 6,16,32 1,10,20 n/a n/a n/a
Rec. rate 84.72 85.58 83.53 85.22 73.31 84.32 89.61 84.52 71.42

5 Discussion and Conclusions

The results show that HTM has its best recognition rate (85.58%) on the raw
image with temporal group sizes of 16 at each level (although the default setting
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of 32 is only slightly worse). Interestingly, the two preprocessing techniques make
little difference to the HTM’s performance, although directional filters do not
work well unless the level one group size is set to one (causing the directional
filters to replace the level one temporal pooling). This reflects the fact that
the directional filters are already collapsing the level one data into a maximum
of 24 quantization points from which further temporal pooling will result in
a significant loss of detail. Otherwise, varying the temporal group sizes only
had a small effect on performance. Combining this together shows that HTM
performance remained remarkably robust to significant changes both in the form
of its input and to the settings of the temporal grouping parameter.

Comparing the HTM’s performance with Camastra’s results shows that the
HTM was better than both the LVQ5 and MLP implementations reported in
[15] but did not reach the 89.61% recognition rate of the SVM. However, when
analysing these results we must bear in mind that the SVM algorithm could only
reach such high recognition rates after an extensive period of tuning classifiers
for each letter (estimated by Camastra at between three to four months of work).
In contrast, the HTM can achieve 85% recognition using default settings. We
should also consider that this is a partial and simplistic implementation of the
HTM platform. There are more sophisticated vector quantization algorithms
that could be applied before temporal pooling is invoked, and the temporal
pooling algorithm itself is quite näıve. For instance, it is unable to represent
sequences that share a common quantization point. The hierarchical approach
of HTM also has the potential to reuse a letter recognition hierarchy within a
larger word recognition hierarchy, without the need to retrain and re-engineer
the existing system. Finally, HTM has the potential to predict future input
via the information stored in the temporal adjacency matrix (this “time-based
inference” has already been implemented in the latest release of the NuPIC
software).

In conclusion, we have shown that a fairly simple temporal pooling algorithm,
embedded within a hierarchical vector quantization algorithm, can come within
4% of one of the best algorithms available, on a data set for which the competitor
algorithm was specifically tuned. This shows there is significant potential for
pattern recognition algorithms that can exploit temporal connections between
moving patterns, even when the patterns are not obviously part of a dynamic
environment (i.e. as in offline character recognition). We have also shown that
temporal pooling is surprisingly robust, both to the form of its input and to the
settings of its internal parameter.

In future work it would be worthwhile to experiment with different temporal
and spatial pooling algorithms and to exploit the temporal adjacency matrix for
prediction. A further important step is to implement temporal pooling within a
full hierarchical Bayesian network, enabling disambiguating feedback from higher
to lower levels.

5 While the best HTM result is only 1% better than for LVQ, it should be noted that
the LVQ result reports the optimal case of 39 classes. We would expect the HTM
result to improve further if difficult letters were separated into different classes.
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Abstract. Graph-based representations have been used with consider-
able success in computer vision in the abstraction and recognition of
object shape and scene structure. Despite this, the methodology avail-
able for learning structural representations from sets of training exam-
ples is relatively limited. This paper addresses the problem of learning
archetypal structural models from examples. To this end we define a gen-
erative model for graphs where the distribution of observed nodes and
edges is governed by a set of independent Bernoulli trials with parame-
ters to be estimated from data in a situation where the correspondences
between the nodes in the data graphs and the nodes in the model are
not known ab initio and must be estimated from local structure. This
results in an EM-like approach where we alternate the estimation of
the node correspondences with the estimation of the model parameters.
The former estimation is cast as an instance of graph matching, while
the latter estimation, together with model order selection, is addressed
within a Minimum Message Length (MML) framework. Experiments on
a shape recognition task show the effectiveness of the proposed learning
approach.

1 Introduction

Graph-based representations have been used with considerable success in com-
puter vision in the abstraction and recognition of object shape and scene structure.
Specific examples include the use of shock graphs to represent shape-skeletons
[13], the use of trees to represent articulated objects [12,22] and the use of aspect
graphs for 3D object representation [7]. The attractive feature of structural rep-
resentations is that they concisely capture the relational arrangement of object
primitives, in a manner which can be invariant to changes in object viewpoint.
Despite the many advantages of graph representations, the methodology available
for learning structural representations from sets of training examples is relatively
limited, and the process of capturing the modes of structural variation for sets of
graphs has proved to be elusive. For this reason feature-based geometric represen-
tations have been preferred when analyzing variable sets of shapes. There are two
reasons why pattern spaces are more easily constructed for feature-based repre-
sentations than for graphs. First, there is no canonical ordering for the nodes or
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edges of a graph. Hence, before a vector-space can be constructed, the correspon-
dences between nodes must be established. Second, structural variations in graphs
manifest themselves as differences in the numbers of nodes and edges. As a result,
even if a vector mapping can be established then the vectors will be of variable
length.

There has been considerable interest in learning structural representations
from samples of training data in the context of Bayesian networks [8], gener-
alized Bayesian networks [3,4], or general relational models [9,19,5]. However,
these models rely on the availability of correspondence information. In many
situations, however, the identity of the nodes and their correspondences across
samples of training data are not known but must be recovered from the struc-
ture typically using graph matching techniques during the learning process. This
leads to a chicken and egg problem in structural learning: the correspondences
must be available to learn the model and yet the model itself must be known to
locate correspondences.

Recently, there has been some effort aimed at learning structural archetypes
and clustering data abstracted in terms of graphs even when the correspondences
are not known ab initio. Hagenbuchner et al. [11] use Recursive Neural Networks
to perform unsupervised learning of graph structures. While this approach pre-
serves the structural information present, it does not provide a means of char-
acterizing the modes of structural variation encountered. Bonev et al. [1] and
Bunke et al. [2] summarize the data by creating super-graph representation from
the available samples, while White and Wilson [21] use a probabilistic model over
the spectral decomposition of the graphs to produce a generative model of their
structure. These techniques provide a structural model of the samples - however,
the way in which the supergraph is learned or estimated is largely heuristic in
nature and is not rooted in a statistical learning framework. Torsello and Han-
cock [16] proposed an approach to learn trees by defining a superstructure called
tree-union that captures the relations and observation probabilities of all nodes
of all the trees in the training set. The structure is obtained by merging the
corresponding nodes of the structures and is critically dependent on both the
extracted correspondence and the order in which trees are merged. Todorovic
and Ahuja [14] applied the approach to object recognition based on a hierarchi-
cal segmentation of image patches and lifted the order dependence by repeating
the merger procedure several times and picking the best model according to an
entropic measure. While these approaches do capture the structural variation
present in the data in a way solidly rooted in statistical learning, there are two
major problems in the way the model is constructed. First, the model structure
and model parameters are tightly coupled, which forces the learning process to
be approximated as a series of model merges. Second, all the observed nodes
must have a counterpart in the model, which must then account for both the
underlying structure as well as the random structural noise observed.

The aim in this paper is to develop an information-theoretic framework for
learning of generative models of graph-structures from sets of examples. The
major characteristics of the model are the fact that the model structure and
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Fig. 1. A core structural model and the generated graphs. When the correspondence
information is lost, the second and third graph become indistinguishable.

parameters are decoupled, and that we have two components to the model: one
which describes the core part, or the proper set of structural variations, and one
which defines an isotropic random structural noise.

2 Generative Graph Model

Consider the set of undirected graphs S = (g1, . . . , gl). Our goal is to learn
a generative graph model G that can be used to describe the distribution of
structural data and characterize the structural variations present in the set. To
develop this probabilistic model, we make an important simplifying assumption:
We assume that the observation of each node and each edge is independent of the
others. Hence, the proposed structural model is a complete graph G = (V,E,Θ),
where V = {1, . . . , n} is the set of nodes, E ⊆ V × V is the set of edges and
Θ is a set of observation probabilities. In an observation, or sample, from this
model, node i ∈ V is present with probability θi, i.e., the existence of each node
in a sample graph is modelled as a Bernoulli trial of parameter θi. Further, edge
(i, j) is present with probability τij , conditioned on the fact that both nodes i
and j are present.

After the graph has been generated from the model, we lose track of the
correspondences between the observation’s nodes and the model’s nodes that
generated them. We can model this by saying that an unknown random per-
mutation is applied to the nodes of the sample. For this reason, the observation
probability of a sample graph depends on the unknown correspondences between
sample and model nodes. Figure 1 shows a graph model and the graphs that can
be generated from it with the corresponding probabilities. Here the numbers
next to the nodes and edges of the model represent the values of θi and τij . Note
that, when the correspondence information (letters in Figure 1) is dropped, we
cannot distinguish between the second and third graphs anymore, yielding the
final distribution.

This definition applies to unweighted graphs, but it can be generalized to
graphs with node or edge attributes by adding a generative model for node- and
edge-attributes. Let us assume we have a set of node attributes A and a set of
edge attributes B, an attributed graph is a tuple (g, α, β) where g is a graph,
α is a function from the nodes of g to the set of node-attributes A, and β is a
function from the set of edges of g to B. A generative model for attributed graphs
will then be characterized by the node and edge observation probabilities θi and
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τij as well as the node attribute densities fAi and the edge attribute density fBij ,
so that the probability of observing node i with attribute αi is θifAi (αi) and
the probability of observing edge (i, j) with attribute βij , conditioned on the
observation of i and j, is τijfBi (βij).

With this generative model, since every node in the generated graphs must
originate from a node in the model, the only structural operation we can perform
to generate a new graph is the removal of nodes and edges. This implies that the
model must describe every possible structural variation encountered in the data,
be it central to the distribution, or simply structural noise that is encountered
with very low probability. To avoid this we allow for nodes to be added to the
model by saying that, with a certain probability, the model generates nodes that
do not correspond to any one represented by the structural part of the model,
and that have identical probability τ̄ of being connected to any other node, where
we force this probability to be equal to the average density of the core part of
the structural model, i.e.,

τ̄ =

∑n
i=1

∑n
j=i+1 θiθjτij∑n

i=1
∑n

j=i+1 θiθj
.

Hence, external nodes model isotropic (or spherical) noise. In general, a gener-
ative model will generate a graph with k external nodes according to a geometric
distribution Pk = (1 − θ̄)θ̄k

∏k
i=1 f

A(αi), where θ̄ ∈ [0, 1] is a model parameter
that quantifies the tendency of the model to generate external nodes and fA(αi)
is the density of the observed attributes of the external nodes.

Let us assume that we have a model G with n nodes and that we want to
compute the probability that graph g with m nodes was sampled from it.

Let g be a graph and σ : (1, . . . , n) → (1, . . . ,m+1) be a set of correspondences
from the model nodes to the nodes in g where σ(i) = m+ 1 if model node i has
no corresponding node in g, that is, if model node i is not observed in graph g.
Further, let π : (1, . . . ,m) → (1, . . . , n+1) be the inverse set of correspondences,
where π(h) = n+1 if h is an external node, otherwise σ(π(h)) = h, and π(σ(i)) =
i if σ(i) = m+1. With this notation, the probability that a graph g was sampled
from a model G given the correspondences σ and π is

P (g|G, σ) = (1 − θ̄)
n∏

i=1

n∏
j=i

Θ
σ(i)σ(j)
ij

m∏
h=1

m∏
k=h

Θ
hk

π(h)π(k) , (1)

where Θhk
ij is the probability that model edge (i, j) generated graph edge (h, k),

Θ
hk

ij with i = n+ 1 or j = n+ 1 is the probability that edge (h, k) is external to
the model. Here pairs with the same index represent a node instead of an edge.
Letting G = (ghk) be the adjacency matrix of graph g, we define Θhk

ij and Θ
hk

ij

as follows:
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Θhk
ij =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if i = j ∧ h �= k or i �= j ∧ h = k

θif
A
i (αh) if i = j ∧ h = k ∧ Ghh = 1

1 − θi if i = j ∧ h = k ∧ Ghh = 0
τijfB

ij(βhk) if i �= j ∧ h �= k ∧ Ghk = 1
1 − τij if i �= j ∧ h �= k ∧ Ghh = 1∧

Gkk = 1 ∧ Ghk = 0 ,

1 otherwise.

Θ
hk

ij =

⎧⎪⎪⎨⎪⎪⎩
0 if i = j ∧ h �= k or i �= j ∧ h = k

θ̄fA(αh) if h = k ∧ i = j = n + 1
τ̄ fB(βhk) if (i = n + 1 ∨ j = n + 1) ∧ Ghk = 1
1 − τ̄ if (i = n + 1 ∨ j = n + 1) ∧ Ghk = 0
1 otherwise.

3 Model Estimation

Key to the estimation of the structural model is the realization that, conditioned
on a given set of correspondences between every node of every graph in S and the
nodes of the model G, the node observation processes are independent from one
another. Hence, since the structural component of the model is always a complete
graph and node/edge observation is dictated by the model parameters, knowing
the set of correspondences would effectively decouple parameters and structure.

Here we make the simplifying assumption that the likelihood of the set of
correspondences σg between graph g and model G is strongly peaked, i.e., we
have P (g|G) ≈ maxσg P (g|G, σg). With this assumption the estimation of the
structural model can be achieved with an EM-like process by alternating the
estimation of the correspondences σg of every graph g ∈ S with a fixed set of
model parameters Θ, and the estimation of Θ given the correspondences.

While this EM-like approach solves the problem of estimating the structural
model of a given size, the problem of model order selection remains open. We
have chosen to use Minimum Message Length (MML) criterion [18,17], which
allows us to address parameter estimation and model order selection within a
single framework, solidly basing it on information-theoretic principles.

3.1 Correspondence Estimation

The estimation of the set of correspondences σ is an instance of a graph matching
problem, where, for each graph g, we are looking for the set of correspondences
that maximizes P (g|G, σ). To do this we relax the space of partial correspon-
dences, where a relaxed state is represented by a matrix P = (pih ∈ [0, 1]) where
i = 1 . . . n + 1 iterates over the model nodes, with i = n + 1 representing ex-
ternal nodes, and h = 1 . . .m + 1 iterates over the nodes of g, with j = m + 1
representing non-observed nodes. The matrix P satisfies the constraints

xih ≥ 0 for all i = 1 . . . n and h = 1 . . .m∑m+1
h=1 pih = 1 for all i = 1 . . . n∑n+1
i=1 pih = 1 for all h = 1 . . .m .
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Note that, with the exception than the last row and column that are not nor-
malized, the matrix P is almost doubly stochastic, i.e., the sum of the elements
in each row and in each column is equal to one. The probability P (g,G, σ) can
be extended to the relaxed assignment space as the function

E(g,G, P ) = (1 − θ̄)
( n∏

i=1

n∏
j=i

m+1∑
h=1

m+1∑
k=h

pihΘ
hk
ij pjk

)( m∏
h=1

m∏
k=i

n+1∑
i=1

n+1∑
j=i

pihΘ̄
hk
ij pjk

)
.

In an approach similar to Graduated Assignment [10], we maximize the energy
function E by iterating the recurrence P t+1 = µ

(
DEt

)
, where DEt = (deih) is

the differential of E with respect to P t and satisfies

deih
E(g,G, P t)

=

⎛⎝ n∑
j=1

∑m+1
k=1 Θ

hk
ij pjk∑m+1

l=1
∑m+1

k=1 pilΘlk
ij pjk

⎞⎠⎛⎝ m∑
k=1

∑n+1
j=1 Θ

hk

ij pjk∑n+1
l=1

∑n+1
j=1 plhΘ

hk

lj pjk

⎞⎠ ,
and µ is a function projecting DEt to the relaxed assignment space. The projec-
tion of a matrix P is obtained by searching for the relaxed partial assignments
that minimizes the Frobenius distance ||P − P ∗||F . The minimization can be
performed by iteratively projecting P to the set Ω satisfying the equality con-
straints ∑m+1

h=1 pih = 1 for all i = 1 . . . n∑n+1
i=1 pih = 1 for all h = 1 . . .m

and then projecting it on to the conic subspace pih ≥ 0.
The projection to the conic subspace is done by setting to 0 all negative entries

of P , while the projection to Ω will be of the form P ∗ = P −αeT

m−enβ
T

, where
ek is the (k + 1)-dimensional vector with the first k entries equal to 1 and the
last equal to 0, and α and β are defined as follows:

αi = (Pem)i + (pim+1 − 1) −
e

T

nPem + (m+ 1)
(
Pn+1em −m

)
−m

(
e

T

nP
m+1 − n

)
m+ 1

,

βh = (e
T

nP )i + (pn+1,h − 1) −
e

T

nPem + (n+ 1)
(
e

T

nP
m+1 − n

)
−m

(
Pn+1em −m

)
)

n+ 1
,

where Pi and P j refer to the ith row and jth column respectively.
Finally, once we have found the maximizer P∞ = argmaxP E(g,G, P ), we

map it to the closest 0-1 matrix by solving a bipartite matching problem.

3.2 Parameter Estimation

The parameter estimation and model selection problem are tightly coupled. For
this reason we have chosen to use Minimum Message Length (MML) [17], which
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has the ability to deal comfortably with hybrid discrete and continuous models,
including model order selection. MML is a Bayesian method of point estimation
based on an information-theoretic formalization of Occam’s razor. Here, simplic-
ity of an explanation is formalized as the joint cost of describing a probabilistic
model for the data and describing the data given the model. Hence, to estimate
a model class and the model parameters, MML constructs a two-part message.
The first encodes the model class/order and the parameters, while the second
assumes a Shannon-optimal encoding of the data given the model. According to
the MML criterion, we choose the model class/order and the parameter estimate
that correspond to the shortest two-part message. MML is closely related to the
Kolmogorov complexity [19,17], is invariant under 1-to-1 parameter transforma-
tions [20,17], and has general statistical consistency properties [6,5].

The cost of describing a fully specified model (in the first part of the message)
with a parameter vector θG is approximately

− log

⎡⎣ h(θG)√
kD

DF (θG)

⎤⎦ = − log

[
h(θG)√
F (θG)

]
+
D

2
log kD,

where D is the number of parameters of the model, kD are the lattice constants
specifying how tightly unit spheres can be packed in a D-dimensional space, h(θ)
is the prior of the parameters θ, F (θ) is the Fisher information matrix and the

term 1/(
√
kD

DF (θG)) is the optimal round-off in the parameter estimates. It is
this round-off which gives rise to the additional term of D/2 in the second part
of the message below.

According to Shannon’s theorem, the cost of encoding the data (in the sec-
ond part of the message) has a tight lower bound in the negative log-likelihood
function, to which - as immediately above - we add D/2.⎛⎝−

∑
g∈S

log
(
P (g|G, σg)

)⎞⎠+
D

2
.

If D is sufficiently large the logarithm of the lattice constants can be approx-
imated as log(kD) = log(πD)−2

D − log(2π) − 1 [17].
In this work we have opted for a standard non-informative Jeffreys’s prior

for the model parameters which will push the parameters towards the edges
of their range forcing each node/edge to be observed either very frequently or
very rarely. A consequence of this choice is that the MML point estimates of the
parameters are the same as the maximum likelihood estimates, leaving the MML
criterion only for model-order selection. (A more general but more CPU-intensive
alternative would be to generalise the Jeffreys prior by having a hyper-parametric
prior of the form in [5, sec. 0.2.6].) In fact, the use of Jeffreys’s prior implies
h(θ) =

√
F1(θ), where F1(θ) is the single datum Fisher information matrix and

F (θ) = |S|DF1(θ). Hence, the final message (or code) length, considering the
approximation for log(kD), is
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I1 =
D

2
log

(
|S|
2π

)
+

1
2

log(πD) − 1 −
∑
g∈S

log
(
P (g|G, σg)

)
, (2)

where |S| is the number of samples and the number of parameters for a n-node
structural model is D =

(
n
2

)
+ n+ 1.

Further, we have θi = ai

|S| , and τij = |{g∈S|(σg(i),σg(j))∈Eg}|
aij

, where ai is the
number of graphs that observe model node i, aij is the number of graphs that
observe both nodes i and j, and θ̄ = u

u+|S| , where u is the set of external nodes
that do not map to any node in the model. Similarly, all other per-node and per-
edge parameters specifying the attribute models are estimated using maximum
likelihood estimations.

Concluding, given a set of observation graphs S and a model dimension n, we
jointly estimate node correspondences and model parameters by alternating the
two estimation processes in an EM-like approach, and then we chose the model
order that minimizes the message length, I1.

4 Experimental Evaluation

We tested our structural learning approach on shock-graphs [13], a skeletal-based
representation of the differential structure of the boundary of a 2D shape. We
have used a database consisting of 72 shapes from the MPEG7 database, divided
into 6 classes of 12 shapes each. The shape classes where composed of bottles,
children, elephants, glasses, and tools. Figure 2 shows the shapes in the database
(left) and their distance matrix computed using Graduated Assignment. The size
of the resulting shock-graphs varies from 4 to 20 nodes. We have learned a model
for each shape class, first using structural information only, and then adding
attributes to the edges measuring the proportion of boundary linked to the
skeletal branch [15]. In the latter case we assumed a Gaussian distribution for the
edge attributes, and learned the attributes’ means µij and variances σ2

ij together
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Fig. 2. The shape classes in the database
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Fig. 3. Assignment probability of the graphs to the learned models. The colors of the
classes are as follows: Bottle (red), Child (orange), Hand (light green), Glass (dark
green), Horse (light bue), and Tool (dark blue).

with the observation probabilities τij . For comparison, we also computed the
structural similarities using Graduated Assignment [10].

In order to assess the ability of the approach to characterize the samples it was
trained on, we computed the probability P (g|G) for every shock-graph and every
estimated model and assigned each graph to the model with maximum proba-
bility of generating it. Figure 3 shows the model-assignment probability for each
graph, i.e., a stacked histogram of the model probabilities normalized over the
sum of all model probabilities associated with each graph. Here the colour of
the bars represent the classes, while their length is proportional to P (g|Gi)�

j P (g|Gj) ,
the assignment probability of graph g to model Gi. Figure 3a shows the assign-
ment of graphs to classes according to the proposed approach, while Figure 3b
plots the assignments obtained using the nearest neighbour (NN) rule based on
the distances obtained with Graduated Assignment. Here we can see that in
most cases shock-graphs are predominantly assigned to the correct class,while
NN has a slightly higher rate of misclassifications of 17% versus the 10% mis-
classification we obtained with our approach. Furthermore, it should be noted
that NN classification is computationally more demanding than the classification
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using our structural models, as the computation of the similarity between two
graphs using Graduated Assignment and the computation of maxσ

(
P (g,G, σ)

)
have the same computational complexity, but NN requires computing the sim-
ilarity against each training graph, while our approach requires computing the
probabilities only against the learned models. Clearly our approach requires the
models to be learned ahead of time, but that can be performed offline.

Further, to assess the generalization capabilities of the approach we have
repeated the experiment using only 6 shapes to learn the models. Figures 3c and
3d plot the model assignments obtained using our approach and the NN rule
respectively. We can clearly see that the approach generalizes fairly well in both
cases, with the probabilities approximately distributed in the same way as those
obtained from the full training set, resulting in a 15% misclassification for our
approach and 18% for NN classification.

Figures 3e, 3f, 3g, and 3h plot the assignments obtained using edge-weighted
models learned on the full and reduced training set respectively. Here we see that
the additional information allows for a much improved recognition performance,
with both approaches improving the recognition rate and with the proposed
approach maintaining the marginal advantage over the NN classification. The
misclassification rates were 7% for our approach on the full database versus 14%
obtained using the NN rule. With the reduced training set we obtained 13%
misclassification rate versus 14% for the NN rule.

5 Conclusions

In this paper we have proposed an approach to the problem of learning a gen-
erative model of structural representations from examples in a situation where
the correspondences must be estimated from local structure. To this end, we
defined a structural model where the distribution of observed nodes and edges is
governed by a set of independent Bernoulli trials. The model is learned using an
EM-like approach where we alternate the estimation of the node correspondences
using a graph matching approach, with the estimation of the model parameters
which, together with model order selection, is addressed within a Minimum Mes-
sage Length (MML) framework. Experiments on a shape recognition task show
that the approach is effective in characterizing the modes of structural variation
present in a set of graphs.

Given the merits of log-loss probabilistic scoring over right/wrong accuracy
[5, footnote 175], it is our hope to later re-visit our experimental results from
sec. 4 using log-loss probabilistic scoring.
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Abstract. Agent modelling is a critical aspect of many artificial intelligence 
systems. Many different techniques are used to learn the tendencies of another 
agent, though most suffer from a slow learning time. The research proposed in 
this paper examines stereotyping as a method to improve the learning time of 
poker playing agents. Poker is a difficult domain for opponent modelling due to 
its hidden information, stochastic elements and complex strategies. However, 
the literature suggests there are clusters of similar poker strategies, making it an 
ideal environment to test the effectiveness of stereotyping. This paper presents a 
method for using stereotyping in a poker bot, and shows that stereotyping im-
proves performance in early-match play in many scenarios. 

Keywords: opponent modelling, agent modelling, stereotypes, poker, games. 

1   Introduction 

Agent modelling is a critical part of artificial intelligence (AI) systems that interact 
with external agents. Being able to confidently predict the future actions of an exter-
nal agent allows an AI system to plan future moves. In a controlled environment, an 
AI system may have all of the information required to allow future events and oppo-
nent actions to be predicted with a high degree of accuracy. One such environment is 
chess, a game where AI systems have become very powerful. However, in a real 
world system, not all required information is available, and the available information 
is not always reliable, so future events can not always be predicted so confidently. 
Therefore, recent work has aimed to extend opponent modelling to environments 
featuring incomplete information and stochastic elements. 

Poker has proven a useful environment for such research, as it exhibits these prop-
erties and can easily be simulated. Players are dealt cards, with some hidden from the 
other players (the ‘hole’ cards), and then place bets (this paper deals with no-limit 
poker in which the bets can be any size, up to the total number of chips held by the 
player). At the end of the hand, all cards are revealed and the player with the best 
hand is awarded the total amount wagered (the pot). If a player makes a wager, all 
other players must meet that amount to stay in contention for winning the pot - a 
player who thinks they will not win can fold, losing their previously wagered amount 
but not losing any more. Players have complex strategies which are based on informa-
tion that other players do not know, most notably their hole cards. Players try to 
maximise the wagered amounts when they have a strong chance of winning, and bet 
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lower amounts when the chances are small. A player needs to also vary their bettings 
pattern so as to hide the strength of their hand. A player can also ‘buy the pot’ - rais-
ing to force the other players to fold their hands, thereby winning the pot without 
necessarily having a strong hand. This ‘bluffing’ gives poker its strategic depth and is 
critical to any successful strategy. 

Due to its hidden information, stochasticity and complex strategies, poker is a chal-
lenging problem, and hence has been used as a test-bed for AI research. Computerised 
poker strategies fall into two main categories. The first are near-optimal bots, based 
on the Nash Equilibrium theory. As poker is a zero-sum game, there exists a strategy 
such that a minimum value is guaranteed against any opponent, as no opponent can do 
better by unilaterally changing their strategy. The computing power needed to calcu-
late the equilibrium strategy for poker is prohibitive, so an optimal strategy is found 
for an abstraction of the game, and then used as a ‘near-optimal’ strategy in the full 
form of the game [1]. The second major category are exploitative approaches that aim 
to use weaknesses in the opponent’s strategy to make a higher profit [2]. As any ex-
ploitative strategy is not optimal, it can be exploited, so it carries a risk of losing in its 
attempt to profit highly. This type of strategy is one that aims to win by as much as 
possible, rather than guaranteeing a minimum outcome. 

Opponent modelling is key to any exploitative bot, as without knowing the oppo-
nent’s strategy, a counter-strategy cannot be found. Due to the hidden cards, and the 
stochasticity of the cards dealt, accurate modelling is very difficult. Poker playing 
bots such as those designed by [3] have overcome many of the challenges faced in 
modelling poker strategies. However these systems often suffer from poor early-
match play, while the bots develop their model. This phase has typically been handled 
by using default values for the opponent model that are slowly phased out. This 
method has a disadvantage in that it treats all opponents the same, even if they have 
been shown in early hands to have certain tendencies that could be exploited. A bot 
that uses default values is also more open to be exploited than an adapting bot. 

One possible means to overcome this early weakness is the use of opponent stereo-
types. Stereotypes have provided a clear benefit in areas such as recommendation 
systems (e.g [4]) but have not been tried in poker bots, despite poker literature sug-
gesting that human players often use stereotypes to model their opponents [5]. While 
the default values of an opponent modeller can be regarded as 'a stereotype of all 
poker players', using a set of varying stereotypes could allow a bot to exploit an op-
ponent's likely strategic mistakes before they have been observed. 

2   Basic Opponent Modelling 

One successful example of poker opponent modelling is Vexbot [2], which records its 
opponent’s actions and infers that in similar situations, the opponent will make a 
similar move. Similarly the strength of hands shown by the opponent in showdowns 
are used to infer that in future similar situations they will be likely to hold similar 
strength hands. To decide on a move, Vexbot generates an abstracted game-tree of all 
possible future scenarios, weighted by the opponent’s observed tendencies. A Mixi-
max or Miximix [2] search is then performed on the tree to determine the action 
which is most profitable (Miximax), or the most profitable while lowering the risk of 
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being predicted (Miximix). Vexbot uses multiple different abstraction levels and 
merges these using a function that assigns more weight to more precise relations. 

For this research an opponent modelling bot (VexCloneBot) was created using 
Vexbot’s approach, but simplified to use a single abstraction layer. The opponent’s 
moves are categorised into 5 possible buckets: a fold, a call, a small raise (less than 
half the pot size), a medium raise (between 0.5 and 1.5 times the pot) and a large raise 
(more than 1.5 times the pot). Figure 1 demonstrates this process. This abstracted 
game state is used as a key into a dictionary. The opponent’s action is then classified 
into one of 5 possible buckets, that bucket’s value is incremented and saved as shown 
in Fig 2. When an opponent’s hand is revealed, it is assigned to one of 5 categories 
based on the percentile of its strength in the given situation (e.g. if the hand is better 
then 85% of possible hands, it is in the top bucket (those hands between 80 and 
100%). This works as in Figure 2, but a separate dictionary is used for this storage. 

 

Fig. 1. Abstracting a game state 

 

Fig. 2. Saving an opponent's move 

When it is the bot’s turn to act, it abstracts the current situation and generates a 
game tree, weighted based on the observed tendencies of the opponent (if an opponent 
has not been seen in a situation, then it uses default values, i.e. all actions are equally 
probable and the opponent's hand strength is assumed to be 50%). Each round in the 
tree is limited to 4 raises, as this is rarely exceeded in actual play [6]. Once this limit 
is reached, the only possible actions are a call or fold. The game tree indicates the 
expected likelihood of all possible paths from the current situation to the end of the 
hand. The non-leaf nodes are opponent or bot decision nodes, depending on which 
player would act in that game state. The leaf nodes correspond to a player folding, or 
the hand reaching a showdown. The game tree is searched using the Miximax algo-
rithm. For bot decision nodes, the expected value (EV) of each possible action is 
calculated, and the node returns the action with the maximum EV. For opponent deci-
sion nodes the EV of each action is calculated, multiplied by the probability that deci-
sion will be made (based on the opponent model) and summed to find the EV of the 
node. The expected value of a fold leaf node is the expected pot size if the opponent 
folded and the negative of that value if the player folded. 

To compute the EV of a showdown leaf node, the hand-strength buckets are re-
trieved for that node’s game state. These 5 values indicate the expected likelihood of 
the opponent having a hand at each strength level. The bot’s hand strength is ab-
stracted in the same way, to establish its bucket strength level. For all buckets of a 
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lower strength, the bot is awarded a tentative win and the EV is the approximated pot 
size multiplied by the probability of the opponent holding a hand in this bucket For all 
buckets of a higher strength, the bot has lost and the EV is the negative of the ap-
proximated pot size multiplied by the probability of the opponent’s hand lying in this 
bucket. The bucket containing the bot’s hand has an EV of 0 as these are considered 
draws. The sum over all buckets is the EV of the showdown leaf node. 

3   Stereotyping for Poker Bots 

A stereotype can be defined as a model of a class of objects (e.g. a model of how a set 
of poker players act). For this research a set of stereotypes were built by analysing the 
play of various bots using the game abstraction described in Section 2. The key dif-
ference between this process and opponent modelling is that the latter is carried out 
whilst playing against that opponent, whilst the stereotypes are based on are based on 
previously run matches, which the stereotyping bot is not required to have partici-
pated in. To apply the stereotypes, data is gathered on the current opponent's actions 
and the closest matching stereotype is found. This stereotype contains information 
about how the opponent may act in future situations that have not yet been observed, 
and is used in place of an opponent model when evaluating a game tree. For this re-
search, a sterotyping bot based on this approach (StereoBot) was built using the 
game-tree functions implemented for VexCloneBot.  

 

Fig. 3. High Level view of StereoBot processes 

Checking the full detail of each stereotype frequently would be too slow to allow 
StereoBot to make decisions quickly enough for a real match. Therefore, StereoBot 
uses a façade (a highly abstracted model) for initial comparisons. Hence each stereo-
type has two parts - the highly abstracted façade that is used for comparison and the 
‘detail’, which contains more information about the play expected from this stereo-
type. To decide which stereotype to use, the current game state is abstracted and com-
pared to the stereotype façades and the closest match is selected. The matching 
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stereotype's detail is then used to generate the game tree. The speed gains from using 
façades allow for comparisons between the opponent and the stored stereotypes to be 
done after each opponent’s move. This ensures that if the opponent switches strategy 
or if the initial stereotype selection was incorrect, then this problem can be quickly 
recognised and rectified. The functioning of StereoBot is summarised in Figure 3.  

3.1   Façades 

The façade uses a less detailed game abstraction to reduce the overhead of compari-
sons. In Texas Hold'em, each hand has 4 rounds - the Preflop, Flop, Turn and River. 
In the Preflop, hand strength is based purely on the hole cards, and play generally 
reflects that. On the River, play is based on the final hand strength, as there can be no 
change in the hand strength. During the Flop and Turn, play is based on speculative 
hand strength, i.e. what the hand strength at the River could be. The façade for the 
stereotypes separates actions based on the round they occurred, but groups the Flop or 
Turn together, due to the similarities between these rounds. 

In Heads-Up play, there are 3 situations in which a player may need to act in a 
round. The first is when they are the first to act in that round. The second is when the 
opposing player was first, and they checked (did not raise). The third situation occurs 
when the opposing player has raised, either immediately or as a re-raise. 

The above abstractions reduce a game state into 9 possible scenarios, based on the 
round and situation. This abstraction omits many relevant details, but allows the fa-
çade to be compared in real-time. In combination with the move abstraction used in 
VexCloneBot (5 actions: fold, call, small/medium/large raise), there are 45 buckets 
for recording an opponent’s action (e.g if the player calls a bet in the final round, the 
action is recorded as being on the River, in a raised situation and is a calling action). 
To generate a façade for a stereotype, every action in every hand played by a particu-
lar player is recorded in this 45 bucket façade abstraction. 

A similar process is used to maintain a façade for the current opponent during an 
actual game. This is compared against the stereotype façades to find the best match. 
The opponent and stereotype façades are normalised for each stage and situation. (e.g. 
if the observed actions for a game state are [0, 2, 8, 8, 4] these would normalise to  
[0, 0.1, 0.4, 0.4, 0.2]) and the root mean squared error is calculated. The stereotype 
façade with the lowest error is taken to be the best fit. In order to remain relevant 
during a long match, and so that learning is not overly effected by rare occurrences, 
the opponent façade is decayed after each move, using a decay factor of 0.96. 

3.2   Stereotype Detail 

The detail of a stereotype is based on the same data used to create the façade, but uses 
the more detailed VexCloneBot abstraction. This can be thought of as a ‘saved oppo-
nent model’, except that once loaded, the stereotype does not change. This lack of 
adaptation is a shortcoming of the current system, but was included to emphasise the 
effects of the stereotyping, as opposed to trying to create a highly skilled poker bot. 
Using the detail of a stereotype is exactly the same as using the opponent modelling 
earlier discussed, except for the previously noted lack of adaptation. The current game 
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state is abstracted and a game tree is built and searched, using the detail of the cur-
rently selected stereotype in place of the opponent model values. 

4   Experimental Methodology 

The experiments consisted of playing the opponent modelling bot, VexCloneBot, and 
the stereotyping bot, StereoBot against a set of opponent bots. The form of poker used 
was heads-up Doyle’s game, a variant in which every hand begins with both players 
having a fixed-size stack of chips. To account for poker’s stochastic aspects, perform-
ance is usually evaluated using matches consisting of thousands to hundreds of thou-
sands of hands [7, 8]. As the focus of this research is on early-match play, testing was 
broken up into multiple shorter matches rather than one long match against each op-
ponent. Each testing bot played fifty 100-hand matches against both VexCloneBot 
and StereoBot, with the memory of all bots reset at the end of each match. The bots 
were tested on a modified version of the 2007 AAAI Computer Poker Championship 
(CPC) server code. A set of testing bots encompassing a wide variety of strategies 
were created for this research, as described below: 

• CallBot: This bot always calls. This is a very simple strategy that can be beaten 
by folding lower strength hands and raising high strength hands. 

• RaiseBot: This bot ignores the strength of its hand and raises a random amount, 
biased so that most raises are smaller raises as opposed to larger raises. 

• PotBot: This bot calculates its odds of winning the hand based purely on the 
cards that it holds. It calculates the pot odds, or the risk versus reward based on 
the size of the pot and wagered amounts, to decide on an action. 

• JamBot: Like CallBot except if it calculates its odds of winning (based purely on 
its hand) to be more than 80%, then it raises the maximum (called a ‘jam’). 

• JamBluffBot: This bot plays like JamBot, except on the River. If a jam has not 
already happened, it generates a random number between 0 and 1. If this is less 
than half of its odds of winning (based purely on its hand), then it jams. This is a 
bluff, so in order to beat this bot, a player must call at least some of the jams. 

• VCABot: This bot is a solution to a Very Crude Abstraction of poker, which 
ignores raise-size and limits the game tree to 3 raises per round. The optimal bet 
size is calculated based on the Kelly Criterion [9], and its odds of winning (based 
purely on its hand), to maximise profit while minimising loss. Random noise is 
added to this amount to reduce the bot’s predictablity. Whilst its playing skill is 
limited due to the crudeness of its abstraction, like other near-optimal bots it is 
still a difficult bot to obtain a significant profit against. 

• SwitchBot:. SwitchBot alternates between the strategies of the other testing bots, 
changing with a 10% chance after each move. 

• BluffBot2.0: Winner of the 2007 CPC, BluffBot2.0 was kindly made available by 
its creator Teppo Salonen. Its precomputed strategy focuses on not being exploit-
able, while still having a wide variety of betting patterns that can cause problems 
for non-optimal bots.  

With the exception of BluffBot2.0, the testing bots are not highly skilled, and can be 
beaten by human players of average skill. The bots can be grouped into four skill 
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levels. The first are the trivial bots, RaiseBot and CallBot, which would be expected 
to lose against even novice players. The second are the easy bots, JamBot and Jam-
BluffBot, which would be expected to lose most matches, but can beat a beginning 
player. The third are the medium bots, VCABot and PotBot, which will beat a begin-
ning player in most matches, but would be expected to lose against a player of aver-
age skill. The fourth set of bots is the world class bots, of which BluffBot2.0 is the 
only representative. 

5   Results and Analysis 

Due to the high variance in poker, the average profits over each series of matches 
(refer to Table 1) were used for analysis rather than individual results. For all experi-
ments, one-tailed t-tests were performed to test whether StereoBot outperformed 
VexCloneBot against bot-x, P-values less than 0.05 indicate that the average profit of 
StereoBot is significantly greater than the average profit of VexCloneBot. 

Table 1. Average results across experimental hands against testing bots. AverageProfit and 
Standard Error (SE) are given in number of chips. 

  StereoBot   VexCloneBot   
Testing bot Average Profit SE Average Profit SE p 
CallBot 5270.5 332 2731.9 250 0.0 
RaiseBot -4133.4 728 -5044.8 753 0.2 
JamBot -794.8 398 -3684.4 497 0.0 
JamBluffBot 457.2 480 -2611.1 582 0.0 
PotBot -4384.0 420 -6188.9 717 0.02 
VCABot -5405.6 541 -5454.1 529 0.47 
SwitchBot 4.4 498 -648.4 533 0.19 
BluffBot -18.8 142 -245.1 130 0.05 

Most testing bots defeated both StereoBot and VexCloneBot, and all bots except 
for CallBot were able to defeat VexCloneBot, showing a lack of overall skill level in 
the two main bots, suggesting they are at or below the skill level of a novice player. 
This is due to the simple abstraction method used, as five move buckets and one layer 
of abstraction is probably too simple an abstraction to play well. However the aim of 
this research was to establish if stereotyping would improve the performance of an 
opponent-modelling systems, and these results clearly show StereoBot outperformed 
VexCloneBot, though the series against RaiseBot, SwitchBot and especially VCABot 
are not significant under any normal confidence level (90%+).  

To examine further what happens over these 100 hands per match, figures 4.1 to 
4.8 show the cumulative profit (or loss) that was obtained at each hand in these short 
matches. In every series, except against CallBot, VexCloneBot is the leading bot at 
the start of the match, generally starting to be in the lead around hand number 5 and 
losing its lead between hands 50 to 75. VexCloneBot's benefit in the earlier stages is 
due to its passive play, which in turn, is due to its assumption of middle of the road 
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Fig. 4.1-4.8. Average cumulative profit of VexCloneBot (grey) and StereoBot (black) versus 
each testing bot. Horizontal axis is the number of hands, vertical axis is the cumulative profit. 

values for its opponent. StereoBot's early assumptions about its opponent can cause an 
initial period of heavy loss, if its stereotype selection is not correct or close. However 
once a small subset of data is available, StereoBot starts performing better than Vex-
CloneBot, as the average accuracy of the stereotype decision is increased.  

The match logs show that StereoBot often identified either the correct sterotype or 
a stereotype with a similar style to the actual opponent. For example against VCABot, 
the right stereotype was used for 88.8% of the series. Against JamBot, StereoBot used 
the CallBot stereotype for 97.2% of actions which is reasonable, as both CallBot and 
JamBot call more often than any other action. For the remaining 2.8%, either the 
JamBot or JamBluffBot stereotype was used. This highlights the difficulty in picking 
between similar stereotypes, though the series results of indicate that as long as a 
sufficiently similar stereotype is selected, the stereotype should still be beneficial. 

In the case of VCABot, despite using the correct sterotype StereoBot still lost al-
most as badly as VexCloneBot. Longer matches between VexCloneBot and VCABot 
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were run, but the abstractions used by the opponent modeller module of VexCloneBot 
are not able to find a counter-strategy to VCABot. This indicates that these losses can 
be attributed to the abstractions used – no matter how informed the opponent model 
or stereotype, the abstraction was not accurate enough to counter VCABot’s near-
optimal strategy. 

In the match against BluffBot2.0, StereoBot used the correct stereotype just 0.3% 
of the time, the JamBluffBot stereotype 60.5% and VCABot 28.5%. This intuitively 
makes sense, as BluffBot2.0, like JamBluffBot, is known to prefer raising and folding 
to calling, and it is also a pseudo-optimal strategy, like VCABot. This use of a mix-
ture of stereotypes meant that even if the BluffBot stereotype was not available, the 
bot would have performed almost equally as well – a useful property if facing a pre-
viously unseen opponent. StereoBot lost at a rate of 2.45 chips per hand to BluffBot, 
which was less than 3 of 9 other bots at the 2007 CPC. 

Overall the results are quite encouraging for future use of stereotyping. StereoBot 
consistently outperformed a bot using the same basic opponent modelling technique, 
strongly suggesting that the difference in outcome is due to the stereotyping method 
used. The ability of StereoBot to identify either the correct or a similar stereotype 
very quickly was also encouraging, especially due to the limited number of compari-
son points in the façade. An interesting result from the experiments is that, in general, 
the variance is smaller for StereoBot than it is for VexCloneBot. This indicates that 
stereotyping may be more robust than adaptive opponent modelling, which is more 
susceptible to noise in the data it can collect during a match. 

6   Conclusions and Future Work 

This paper presented and evaluated a method for using stereotypes to improve the 
early match play of exploitative poker bots. By using façades as the means of com-
parison, stereotypes were able to be compared quickly and effectively. After a stereo-
type is chosen as the best fit for the opponent, a full opponent model can then be 
loaded into memory, giving the bot access to a relevant and complete opponent model 
after relatively little data has been gathered. This technique was shown to improve the 
early match play of an exploitative bot over the more traditional opponent modelling 
technique of using only data gathered in the current match. While the overall play of 
both bots was poor due to their crude abstraction of the game state and actions, the 
comparative results heavily favoured StereoBot. 

Stereotyping was very effective in improving performance against a variety of 
strategies and the only strategy it did not perform noticeably better than was against 
VCABot, a strategy that VexCloneBot was not able to properly model. Overcoming 
the difficult data in the domain of poker is a critical aspect to playing well. Stereotyp-
ing offers a means to take unreliable, incomplete and sparse data, and return a usable 
opponent model. This in turn allows a poker bot to generate a suitable counter-
strategy earlier in the match than would otherwise be possible. While more research 
needs to be done into this area to fully realise its potential, using stereotypes has been 
proven to be able to improve the early-match play of exploitative poker bots in the 
situations covered in this research. The most obvious avenue for future research is to 
examine the impact of stereotyping when combined with a more effective underlying 
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abstraction and opponent-modelling system. This approach should also be tested 
against a higher-quality of opponent than were available for this research. 

One limitation of the approach described in this paper is that the stereotypes used 
were complete in that they aimed to model the entire opponent's strategy, and that 
only one stereotype was used at any given time. An alternative approach would be to 
merge several incomplete stereotypes using triggers, anti-triggers and stereotype tests. 
Triggers are features of the opponent that the bot looks for to assign a particular in-
complete stereotype. For example, if an opponent is seen to bluff many times during a 
match, then they could be given a ‘bluffer’ stereotype. Anti-triggers work in the oppo-
site way. If the opponent is seen to have a particular set of features, then a stereotype 
could be marked as not applying to them. Stereotype testing would involve the bot 
executing exploratory actions to see if the opponent fits a particular stereotype. This 
could involve forcing the opponent into a unique game state and observing their ac-
tion. In addition the stereotypes used in this research were fixed rather than adaptive. 
Future versions of StereoBot could extend this process, adapting and creating new 
stereotypes on the basis of further games, either those played by StereoBot or other 
games being observed by StereoBot. This would create a bot that learns by practising, 
much like a human would learn to play a game such as poker. 
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Abstract. This paper investigates the use of the case-based reasoning method-
ology applied to the game of Texas hold’em poker. The development of a CASe-
based Poker playER (CASPER) is described. CASPER uses knowledge of previous 
poker scenarios to inform its betting decisions. CASPER improves upon previous 
case-based reasoning approaches to poker and is able to play evenly against the 
University of Alberta’s Pokibots and Simbots, from which it acquired its case-
bases and updates previously published research by showing that CASPER  plays 
profitably against human online competitors for play money. However,  against 
online players for real money CASPER is not profitable. The reasons for this are 
briefly discussed. 

Keywords: Case-Based Reasoning, Game AI, Poker. 

1   Introduction 

The game of poker provides an interesting environment to investigate how to handle 
uncertain knowledge and issues of chance and deception in hostile environments. 
Games in general offer a well suited domain for investigation and experimentation 
due to the fact that a game is usually composed of several well defined rules that 
players must adhere to. Most games have precise goals and objectives that players 
must met to succeed. For a large majority of games the rules imposed are quite sim-
ple, yet the game play itself involves a large number of very complex strategies. Suc-
cess can easily be measured by factors such as the amount of games won, the ability 
to beat certain opponents or, as in the game of poker, the amount of money won. 

Up until recently AI research has mainly focused on games such as chess, checkers 
and backgammon. These are examples of games that contain perfect information. The 
entire state of the game is accessible by both players at any point in the game, e.g. 
both players can look down upon the board and see all the information they need to 
make their playing decisions. These types of games have achieved their success 
through the use of fast hardware processing speeds, selective search and effective 
evaluation functions [1]. Games such as poker on the other hand are classified as sto-
chastic, imperfect information games. The game involves elements of chance (the 
actual cards that are dealt) and hidden information in the form of other player’s hole 
cards (cards that only they can see). This ensures that players now need to make deci-
sions with uncertain information. 

The focus of this paper is to investigate the application of Case-Based Reasoning 
(CBR) to the game of poker. We have developed a poker-bot, called CASPER  
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(CASe-based Poker playER), that uses knowledge of past poker experiences to make 
betting decisions. CASPER plays the variation of the game known as “limit Texas 
Hold’em” and has been tested against other poker bots and real players. 

2   Related Research 

Recently there has been a dramatic increase in the popularity of the game of Texas 
hold’em. This popularity has also sparked an interest in the AI community with in-
creased attempts to construct poker robots (or bots). Recent approaches to poker re-
search can be classified into three broad categories:  

1. Heuristic rule-based systems: that use knowledge such as the cards a player 
holds and the amount of money being wagered, to inform a betting strategy.  

2. Simulation/Enumeration-based approaches: that consist of playing out 
many scenarios from a certain point in the hand and obtaining the expected 
value of different decisions. 

3. Game-theoretic solutions: that attempt to produce optimal strategies by 
constructing a game tree. 

The University of Alberta Poker Research Group currently lead the way having in-
vestigated all of the above approaches. The best known outcome of their efforts are 
the poker bots nicknamed Loki/Poki [2] & [3]. Loki originally used expert defined 
rules to inform a betting decision. While expert defined rule-based systems can pro-
duce poker programs of reasonable quality [3], various limitations are also present. As 
with any knowledge-based system a domain expert is required to provide the rules for 
the system. In a strategically complex game such as Texas hold’em it becomes impos-
sible to write rules for all the scenarios that can occur. Moreover, given the dynamic, 
nondeterministic structure of the game any rigid rule-based system is unable to ex-
ploit weak opposition and is likely to be exploited by any opposition with a reason-
able degree of strength. Finally, any additions to a rule-based system of moderate size 
become difficult to implement and test [4]. 

Loki was redeveloped as Poki [5]; a simulation-based betting strategy was devel-
oped that consisted of playing out many scenarios from a certain point in the hand and 
obtaining the expected value of different decisions. A simulation-based betting strat-
egy is analogous to selective search in perfect information games. Both rule-based 
and simulation-based versions of Poki have been tested by playing real opponents on 
an IRC poker server. Poki played in both low limit and higher limit games. Poki per-
formed well in the lower and higher limit games [3]. More recently The University of 
Alberta Computer Poker Research Group have attempted to apply game-theoretic 
analysis to full-scale, two-player poker. The result is a poker bot known as PsOpti that 
is “able to defeat strong human players and be competitive against world-class oppo-
nents” [6]. 

There have been several other contributions to poker research outside of Alberta: 
Sklansky and Malmuth have detailed various heuristics for different stages of play in 
the game of Texas hold‘em [7] & [8]. The purpose of these rules, however, has been 
to guide human players who are looking to improve their game rather than the con-
struction of a computerised expert system. Korb  produced a Bayesian Poker Program 
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to play five-card stud [9], whilst Dahl investigated the use of reinforcement learning 
for neural net-based agents playing a simplified version of Texas hold’em [10].  

We have encountered few attempts to apply the principles and techniques of CBR 
to the game of poker. Sandven & Tessem constructed a case-based learner for Texas 
hold’em called Casey [11]. Casey began with no poker knowledge and builds up a 
case-base for all hands that it plays. They report that Casey plays on a par with a sim-
ple rule-based system against three opponents, but loses when it faces more oppo-
nents. Salim & Rohwer have attempted to apply CBR to the area of opponent 
modeling [12], i.e., trying to predict the hand strength of an opponent given how that 
opponent has been observed playing in the past. 

3   Texas Hold’em 

Texas hold’em is the variation used to determine the annual World Champion at the 
World Series of Poker. This version of the game is the most strategically complex and 
provides a better skill-to-luck ratio than other versions of the game [8]. Each hand is 
played in four stages: the preflop, flop, turn and the river. During each round all ac-
tive players need to make a betting decision to fold, call or raise. The complete rules 
of Texas Hold’em can be found online at: http://en.wikipedia.org/wiki/ 
Texas_hold_’em 

4   System Overview 

CASPER uses CBR to make a betting decision. This means that when it is CASPER’s 
turn to act it evaluates the current state of the game and constructs a target case to 
represent this information. A target case is composed of several features recording 
important game information such as: CASPER’s hand strength, how many opponents 
are in the pot, how many opponents still need to act and how much money is in the 
pot. Once a target case has been constructed CASPER then consults its case-base to try 
and find similar scenarios from the past. CASPER’s case-base is made up of a collec-
tion of cases composed of their own feature values and the action that was taken, i.e. 
fold, check/call or bet/raise. CASPER uses the k-nearest neighbour algorithm to search 
the case-base and find the most relevant cases, these are then used to decide what ac-
tion should be taken. 

CASPER was implemented using Poker Academy Pro 2.5 and the Meerkat API. The 
University of Alberta Poker Research Group provides various poker bots with the 
software including instantiations of Pokibot and the simulation based Simbot. These 
poker bots were used to generate poker cases  for CASPER. Note that our intention was 
not to simulate Pokibot or Simbot. We used these bots merely to generate poker cases, 
since unlike chess or bridge there are no libraries of poker games available. In particu-
lar we wanted to see if it was possible to build a competitive poker bot with little or 
no knowledge engineering. Initially 7,000 hands were played between the poker bots 
and each betting decision witnessed was recorded as a single case in CASPER’s case-
base. Alberta’s bots have proven to be profitable against human competition in the 
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past [5], so we hypothesise that the cases we obtained are of sufficient quality to en-
able CASPER to play a competitive game of poker against people.  

4.1   Case Representation and Retrieval 

CASPER searches a separate case-base for each seprate stage of a poker hand (i.e. pre-
flop, flop, turn and river). The features that make up a case and describe the state of 
the game are described in more detail in [13]. Each case has a single outcome that is 
the betting decision that was made.  Once a target case has been constructed CASPER 
retrieve the most similar cases it has from its case-base. The k-nearest neighbour algo-
rithm is used to compute a similarity value for all cases in the case-base. Two separate 
similarity metrics are used depending on the type of feature [13].  

After computing a similarity value for each case in the case-base a descending 
quick sort of all cases is performed. The actions of all cases that exceed a similarity 
threshold of 97% are recorded. Each action is summed and then divided by the total 
number of similar cases that results in the construction of a probability triple (f, c, r) 
that gives the probability of folding, calling or raising in the current situation. If no 
cases exceed the similarity threshold then the top 20 similar cases are used. As an 
example, assume CASPER looks at its hole cards and sees A♥ and A♠. After a search of 
its preflop case-base the following probability triple is generated: (0.0, 0.1, 0.9). This 
indicates that given the current situation CASPER should never fold this hand, he 
should just call the small bet 10% of the time and he should raise 90% of the time. A 
betting decision is then probabilistically made using the triple that was generated (i.e., 
raise). 

5   Results 

CASPER was initially evaluated at two separate poker tables. The first table consisted 
of strong, adaptive poker bots that model their opponents and try to exploit weak-
nesses. As CASPER has no adaptive qualities of its own it was also tested against non-
adaptive, but loose/aggressive opponents. The results from these experiments are  
reported in detail in [13]. To summarise, the best paramaterised version of CASPER 
made a profit of +0.03 small bets per hand, or $0.30 for each hand played.  

5.1   Real Opponents - Play Money 

CASPER was then tested against real opponents by playing on the ‘play money’ tables 
of internet poker websites. Here players can participate in a game of poker using a 
bankroll of play money beginning with a starting bankroll of $1000. All games played 
at the ‘play money’ table were $10/$20 limit games. At each table a minimum of two 
players and a maximum of nine players could participate in a game of poker. CASPER 
was tested by playing anywhere between one opponent all the way up to eight oppo-
nents. Figure 1 displays the results for CASPER (using hand picked feature weights) 
and CASPERGeneral using feature weights derived by an evolutionary algorithm (to be 
described in a future paper), as well as a random opponent that makes random deci-
sions (used as a baseline comparison). 
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The results suggest that the use of CASPER with hand picked weights outperforms 
CASPERGeneral. CASPER earns a profit of $2.90 for every hand played, followed by 
CASPERGeneral with a profit of $2.20 for each hand. Random decisions resulted in 
exhausting the initial $1000 bankroll in only 30 hands, losing approximately -$30.80 
for each hand played. 

Both Pokibot and Simbot have also been tested against real opponents by playing 
online. Results reported by [5] indicate that Pokibot achieves a profit of +0.22 sb/h, 
i.e. a profit of $2.20 per hand, and Simbot achieves a profit of +0.19 sb/h or $1.90 
profit per hand. These results are very similar to those obtained by CASPER. 

 

Fig. 1. CASPER vs. Real Opponents at the Online Play Money Tables 

While we need to take caution in analysing the above results, it is safe to say that 
CASPER is consistently profitable at the ‘play money’ tables. 

5.2   Real Opponents - Real Money 

Because there is normally a substantial difference in the type of play at the ‘play 
money’ tables compared to the ‘real money’ tables it was decided to attempt to get an 
idea of how CASPER would perform using real money against real opponents.  

CASPER02 (with an increased case-base of 14,000 cases) with hand-picked feature 
weights that had achieved the best performance at the ‘play money’ tables was used to 
play at the  ‘real money’ tables. The betting limit used was a small bet of $0.25 and a 
big bet of $0.50. CASPER started out with a bank roll of $100. The results are given in 
Figure 2.  

CASPER achieves a small bet per hand value of -0.07. Therefore, CASPER now loses 
on average $0.02 per hand. The results indicate that while CASPER loses money very 
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Fig. 2. CASPER vs. Real Online Opponents at the Real Money Tables 

slowly it is now, nonetheless, unprofitable against these opponents. Due to the fact 
that real money was being used, fewer hands were able to be played and the experi-
ment was stopped after CASPER had lost approx. $50. No results are published for 
Pokibot or Simbot challenging real opponents using real money. 

6   Conclusion 

In conclusion, CASPER, a case-based poker player has been developed that plays 
evenly against strong, adaptive poker-bots, plays profitably against non-adaptive 
poker-bots and against real opponents for play money. Two separate versions of 
CASPER were tested and the addition of extra cases to the case-base was shown to re-
sult in improvements in overall performance. It is interesting to note that CASPER was 
initially unprofitable against the non-adaptive, aggressive poker-bots. One possible 
reason for this is that as CASPER was trained using data from players at the adaptive 
table it perhaps makes sense that they would play evenly, whereas players at the non-
adaptive table tend to play much more loosely and aggressively. This means that 
while CASPER has extensive knowledge about the type of scenarios that often occur at 
the advanced table, this knowledge is weaker at the non-adaptive table as CASPER runs 
into unfamiliar situations. 

Why then was CASPER not profitable on the real money tables. Two hypotheses 
could explain this. First, that people play poker very differently for real money than 
for play money. Since CASPER’s case-base is derived from poker-bots that are playing 
for play money these cases are not representative of real money games. The average 
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similarity of cases retrieved when playing against the bots is approx 90%, The aver-
age similarity of cases retrieved against real money players is approx. 50%. This is 
confirmation that CASPER is struggling to find good cases (i.e., similar ones)  to re-
trieve, therefore it’s poor performance is not a surprise. 
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Abstract. Citation matching is the problem of extracting bibliographic
records from citation lists in technical papers, and merging records that
represent the same publication. Generally, there are three types of data-
sets in citation matching, i.e., sparse, dense and hybrid types. Typical
approaches for citation matching are Joint Segmentation (Jnt-Seg) and
Joint Segmentation Entity Resolution (Jnt-Seg-ER). Jnt-Seg method is
effective at processing sparse type datasets, but often produces many
errors when applied to dense type datasets. On the contrary, Jnt-Seg-
ER method is good at dealing with dense type datasets, but insuffi-
cient when sparse type datasets are presented. In this paper we propose
an alternative joint inference approach–Generalized Joint Segmentation
(Generalized-Jnt-Seg). It can effectively deal with the situation when
the dataset type is unknown. Especially, in hybrid type datasets analy-
sis there is often no a priori information for choosing Jnt-Seg method
or Jnt-Seg-ER method to process segmentation and entity resolution.
Both methods may produce many errors. Fortunately, our method can
effectively avoid error of segmentation and produce well field boundaries.
Experimental results on both types of citation datasets show that our
method outperforms many alternative approaches for citation matching.

1 Introduction

Citation matching is the problem of extracting bibliographic records from ci-
tation lists in technical papers, and merging records that represent the same
publication [3]. It is the problem currently handled by systems such as CiteSeer
[1]. Such systems process a large number of scientific publications and extract
their citation lists. By grouping together all coreferring citations, the system
constructs a database of “paper” entities linked by their relations. A key aspect
of this problem is to determine when two observations describe the same object.
Citation matching has been a major focus of information extraction field.

Citation matching approach usually consists of non-joint inference and joint
inference. Non-joint inference refers to the process that information extraction
and coreference resolution are performed as two independent steps; while joint
inference means that information extraction and coreference resolution are per-
formed together in a single integrated inference process.

W. Wobcke and M. Zhang (Eds.): AI 2008, LNAI 5360, pp. 601–607, 2008.
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Traditional method is non-joint inference. With the progress of probabilistic
inference and machine learning, joint inference has been taken up and applied to
practice. Currently, research focus is joint inference. For example, Pasula et al.[2]
developed a “collective” model in which the segmentation was performed in the
pre-processing stage. Wellner et al. [10] extended the pipeline model by passing
uncertainty from the segmentation step to the entity resolution step, but did
not “close the loop” by repeatedly propagating information in both directions.
Poon and Domingos [3] recently developed a full joint inference model which
consist of two components: Segmentation step and Entity Resolution step. In
segmentation step, they introduced two methods: Joint Segmentation (Jnt-Seg)
and Joint Segmentation Entity Resolution (Jnt-Seg-ER). Essentially, citation
datasets can be classified as sparse type (in citations the similar title-like strings
do not occur both at boundaries and inside fields), dense type (for citations the
similar title-like strings occur both at boundaries and inside fields) and hybrid
type. Generally, Jnt-Seg method is effective at processing sparse type datasets,
but often produces many errors when applied to dense type datasets. On the
contrary, Jnt-Seg-ER method is good at processing dense type datasets, but
insufficient when sparse type datasets are presented. However, when the hybrid
data type is presented both methods may produce unsatisfactory results.

With such observations in mind, we extended Jnt-Seg approach to a more
generalized joint segmentation approach, namely Generalized-Jnt-Seg. The ad-
vantage of this approach is that regardless which type of the input dataset is, it
can perform full joint inference effectively, and improve the segmentation accu-
racy. In addition, the computational expenses are lower compared with Jnt-Seg.

The rest of the paper is organized as follows: Jnt-Seg and Jnt-Seg-ER models
proposed by Poon and Domingos are described in Section 2. Section 3 presents
our proposed Generalized-Jnt-Seg model. Section 4 presents the experimental
results and Section 5 concludes the paper.

2 Poon-Domingos Models

In citation matching, two widely used approaches are Jnt-Seg model and Jnt-
Seg-ER model introduced by Poon and Domingos [3]. In order to present our
method, we firstly introduce the basic ideas of these two models. As nested
Markov logic networks are used in citation matching, a brief introduction to
Nested Markov Logic network is provided.

Nested Markov logic network (nMLNs) [4] is usually used to address the prob-
lems such as the asymmetry treatment between conjunctions and disjunctions,
and between universal and existential quantifiers caused by standard Markov
logic networks (MLNs). Such problems are common in citation matching. Markov
logic is a probabilistic extension of finite first-order logic [5]. It combines first-
order logic with Markov networks. While MLNs soften conjunctions and uni-
versals, disjunctions and existential quantifiers remain deterministic. This can
be overcome by allowing the features of MLNs to be nMLNs. This representation
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can also be called recursive random fields (RRFs) [4]. It enables RRFs to better
capture features through weight learning.

Themain evidence predicates in theMLNs areToken(t, i, c) andHasPunc(c, i).
The query predicates are InF ield(i, f, c) and SameCitation(c, c′). After given all
predicates, MLNs for entity resolution (ER) can be constructed [7]. To reduce the
excessive segmentationnoise, twopredicates aredefinedandused to solve this prob-
lem, namelySimilarT itle(c, i, j, c′, i′, j′) andSimilarV enue(c, c′).Hence the sim-
ple rule is formed as follow:

SimilarTitle(c, i, j, c′, i′, j′)∧SimilarVenue(c, c′) ⇒ SameCitation(c, c′) (ER)

This simple MLNs can effectively carry out entity resolution in citation matching.
Followed by MLNs constructing for ER, the joint segmentation model can

be formed. In citation matching, since segmenting a citation can help segment
similar ones, this information can be incorporated by defining one predicate
called JntInfCan(c, i, c′) After adding this predicate, the joint segmentation
model is represented by both rules of the form:

InField(i,+f, c) ∧ ¬HasPunc(c, i) ∧ (¬∃c′JntInfCan(c, i, c′))
⇒ InField(i+ 1,+f, c)

(Jnt-Seg)

InField(i,+f, c) ∧ ¬HasPunc(c, i) ∧ (¬∃c′JntInfCan
(c, i, c′) ∧ SameCitation(c, c′)) ⇒ InField(i+ 1,+f, c)

(Jnt-Seg-ER)

Here the first rule is called Jnt-Seg method and the second rule called Jnt-Seg-ER
method.

In practice, we commonly use Jnt-Seg method to deal with sparse type data
and take Jnt-Seg-ER method to handle dense type data. However, it seems to
be very difficult to choose suitable method to process the hybrid type data. Here
we illustrate such situations with following examples. As can be seen, citations
in example (i) and example (ii) are probably referring to the same paper, despite
many superficial differences.

(i) - Minton, S(1993 b). Integrating heuristics for constraint satisfac-
tion problems: A case study.In: Proceedings AAAI.

- S. Minton Integrating heuristics for constraint satisfaction prob-
lems: A case study. In AAAI Proceedings,1993.

(ii) - Robert E. Schapire. 5(2) The strength of weak learn ability. Ma-
chine Learning, 1989 197-227.

- R. Schapire. On the strength of weak learn ability. Proceedings
of the 30th I.E.E.E. Symposium on the Foundations of Computer
Science, 1989, pp. 28-33.

In (i), the citations are sparse type; and citations represent dense type in (ii).
For the first citation of (i) and (ii), author and title are clearly separated by a
date and period, and extracting then is fairly straightforward. But there is no
clear author-title boundary in the second citation of (i) and (ii), and correctly
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segmenting them seems very difficult. In such situations, Jnt-Seg method can be
applied to correctly segment the second citation of (i), but for second citation
of (ii), the Jnt-Seg method will produce erroneous boundary. The reason is that
Jnt-Seg method will erroneous segment the substring of title “On the strength
of” into two substrings “On” and “the strength of”. To overcome this problem,
Jnt-Seg-ER method was proposed. It can correctly handle the second citation
of (ii), but it can not correctly segment the second citation of (i). Because the
predicate SameCitation() in the Jnt-Seg-ER rule will erroneous segment the
name of the author “S. Minton” into “S” and “Minton” and treat the second
substring as a part of title.

3 The Generalized-Jnt-Seg Model

In consideration of the shortcomings of Jnt-Seg and Jnt-Seg-ER methods, we
want to find an alternative to effectively solve this problem. Our method is to
add the predicates JntInfCan(c, i+ j, c′), j = 0, 1, 2, · · · ,m to the Jnt-Seg rule.
By adding such predicates, we extend the Jnt-Seg rule to handle dense type
citations. Thus, the extended rule can process sparse type, dense type as well as
hybrid type.

Considering such situations, in some cases the substring of title in the first
citation may start to match the substring of title in the second similar title-like
citation from the second word. We can add a predicate JntInfCan(c, i+1, c′) in
Jnt-Seg rules to shift the matching and avoid erroneous segmentation. Thereby
we form following rules:

InField(i,+f, c) ∧ ¬HasPunc(c, i) ∧ (¬∃c′JntInfCan(c, i, c′)∨
JntInfCan(c, i+ 1, c′)) ⇒ InField(i+ 1,+f, c)

(Ged-Jnt-Seg(j=1))

Likewise, when the successive two words of the substring of title in the first
citation can not match with the substring of title in the second citation, but begin
to match from the third words, we can add the predicate JntInfCan(c, i+2, c′),
and joint it to form such rules as follow:

InField(i, +f, c) ∧ ¬HasPunc(c, i) ∧ (¬∃c′JntInfCan(c, i, c′) ∨ Jnt-

InfCan(c, i + 1, c′) ∨ JntInfCan(c, i + 2, c′)) ⇒ InField(i + 1, +f, c)
(Ged-Jnt-Seg(j=2))

In general, we can introduce the predicate JntInfCan(c, i + j, c′) and joint
it. Here j is a positive integer and can be set to 1, 2, 3 and so on. As a result,
we can generalize above rules and get more general rules as follows:

InField(i,+f, c) ∧ ¬HasPunc(c, i) ∧ (¬∃c′JntInfCan(c, i, c′)∨
JntInfCan(c, i+ 1, c′) ∨ · · · ∨ JntInfCan(c, i+ j, c′)) ⇒
InField(i+ 1,+f, c) (m = Z, j = 1, 2, 3, · · · ,m.)

(Ged-Jnt-Seg(j=m))

whether a bigger value of j gives a better performance will be answered in
Section 5.
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One problem of our Generalized-Jnt-Seg method is that it includes many
disjunctions and existential quantifiers. However, the MLNs can not handle dis-
junctions and existential quantifiers effectively. Often, considerable time and
computational expenses are needed. We attempt to address this drawback by
converting MLNs to RRFs which can easily soften disjunctions and existential
quantifiers. Every MLNs can be converted into a relational RRF by translating
each clause into an equivalent parfeature.

4 Experimental Results

The standard CiteSeer and Cora datasets are employed to conduct the exper-
iments. The CiteSeer dataset[1] is of sparse type and the Cora dataset[10] is
of dense type. In CiteSeer, we randomly split citations into four subsets for
four-fold cross-validation; and for Cora, we split them into three subsets for
three-fold cross-validation. Firstly, we divided the citation into author field,
title field and venue field. Then we carried out standard normalization, sim-
ple stemming, and hyphen removal for preprocess. Secondly, we implemented
weight learning and inference. For MLNs we used the open source Alchemy (
http://alchemy.cs.washington.edu). We first implemented the inference in
MLNs using a “slice sampling” Markov Chain Monte Carlo algorithm (MC-SAT)
[8], and weights learning using voted perceptron [6,9]. Then, we performed in-
ference in RRFs using Markov Chain Monte Carlo (MCMC) and Iterated Con-
ditional Modes (ICM), and weight learning using a novel variant of the back
propagation (BP) algorithm [4]. For segmentation, we measured F1 for InField,
which was the harmonic mean of recall and precision. For entity resolution in
CiteSeer, we measured cluster recall;in Cora we measured both cluster recall and
pairwise recall/precision.

The result from Table 1 indicates that MLNs can not effectively handle the
disjunctions and existential quantifiers. The memory and time for MLNs grow
rapidly with the number of objects. Especially, when the value of j is larger
than 3, the memory runs out in the analysis of Citeseer and Cora datasets. On
the contrary, RRFs are more efficient in handling the disjunctions and existential
quantifiers. Since RRFs and MLNs produce the same results and RRFs are more
effective for handling the disjunctions and existential quantifiers, we just report
the results obtained by using RRFs in Table 2.

Table 2 compares Poon-Domingos methods with our method in joint seg-
mentation. The “Total” column shows results on all InF ield atoms, and the
remaining columns show results for each field type. The “All” section denotes
the results of all citations, “Nontrivial” denotes non-singleton citations, and
“Potential” denotes citations with poor author-title boundary. The results for
Generalized-Jnt-Seg method are reported by using the values of j from 1 to 4.
Since larger value of j requires more computational resources and time, j = 4 is
used as the optimal trade-off between segmentation accuracy and computational
expenses. For Citerseer, our methods clearly outperform the Jnt-Seg method. For
Cora, our methods also slightly outperform the Jnt-Seg-ER method.

http://alchemy.cs.washington.edu
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Table 1. MLNs vs. RRFs on memory and time

Ged-Jnt-Seg Memory/bytes Time/seconds
MLNs j = 1 2.7 ∗ 106 1.47 ∗ 105

j = 2 3.5 ∗ 106 2.23 ∗ 105

RRFs j = 1 1.2 ∗ 106 0.58 ∗ 105

j = 2 1.7 ∗ 106 0.79 ∗ 105

Table 2. Joint segmentation using different methods with CiteSeer and Cora datasets

CiteSeer segmentation Cora segmentation
F1 on each section F1 on each section

All Total Author Title Venue Total Author Title Venue
Jnt-Seg-ER 94.50 94.80 93.00 95.30 98.40 99.50 97.60 98.30

Jnt-Seg 94.50 94.90 93.00 95.30 98.40 99.50 97.50 98.30
Ged-Jnt-Seg (j = 1) 94.52 94.91 93.02 95.31 98.42 99.52 97.55 98.31
Ged-Jnt-Seg (j = 2) 94.52 94.92 93.03 95.31 98.43 99.53 97.58 98.31
Ged-Jnt-Seg (j = 3) 94.53 94.92 93.03 95.31 98.43 99.53 97.59 98.31
Ged-Jnt-Seg (j = 4) 94.53 94.92 93.03 95.31 98.44 99.53 97.60 98.31

Nontrivial Total Author Title Venue Total Author Title Venue
Jnt-Seg-ER 94.80 95.10 93.30 95.60 98.50 99.50 97.70 98.30

Jnt-Seg 94.90 95.20 93.60 95.70 98.50 99.50 97.70 98.30
Ged-Jnt-Seg (j = 1) 94.91 95.21 93.61 95.70 98.51 99.51 97.71 98.30
Ged-Jnt-Seg (j = 2) 94.91 95.22 93.61 95.70 98.51 99.51 97.71 98.30
Ged-Jnt-Seg (j = 3) 94.92 95.22 93.61 95.70 98.51 99.51 97.71 98.30
Ged-Jnt-Seg (j = 4) 94.92 95.22 93.61 95.70 98.51 99.51 97.71 98.30

Potential Total Author Title Venue Total Author Title Venue
Jnt-Seg-ER 93.90 94.40 92.00 94.90 98.90 99.30 97.90 99.00

Jnt-Seg 94.30 94.50 92.40 95.30 98.30 99.30 97.90 99.00
Ged-Jnt-Seg (j = 1) 94.31 94.51 92.42 95.30 98.31 99.32 97.93 99.00
Ged-Jnt-Seg (j = 2) 94.32 94.51 92.43 95.31 98.32 99.33 97.95 99.00
Ged-Jnt-Seg (j = 3) 94.32 94.51 92.43 95.31 98.32 99.33 97.96 99.00
Ged-Jnt-Seg (j = 4) 94.42 94.51 92.43 95.31 98.42 99.33 97.96 99.00

Table 3. Entity resolution using different methods with CiteSeer and Cora datasets

CiteSeer entity resolution: Cora entity resolution: pairwise
cluster recall on each section recall/precision and cluster recall

Approach Constraint Face Reason Reinforce Pairwise Rec./Prec Cluster Recall
Fellegi-Sunter [11] 84.3 81.4 71.3 50.6 78.0/97.7 62.7

Lawrence [1] 89 94 86 79
Pasula [2] 93 97 96 94

Wellner [10] 95.1 96.9 93.7 94.7
Poon-Domingos [3] 96.0 97.1 95.1 96.7 94.3/97.0 78.1
Ged-Jnt-Seg(j = 4) 96.7 97.6 95.4 97.2 94.5/96.9 78.5
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Table 3 shows that our approach outperforms many alternatives in entity
resolution using CiteSeer and Cora datasets. The results for Fellegi-Sunter [11],
Lawrence [1], Pasula [2], Wellner [10], and Poon-Domingos [3] are taken from the
corresponding papers. For CiteSeer, the result reaches to 96.7 on Constraint, 97.6
on Face, 95.4 on Reason and 97.2 on Reinforce. The result of Cora, in pairwise
recall/precision and cluster recall is 94.5/96.9 and 78.5, respectively.

5 Conclusion

In this paper, we proposed a generalized joint inference method, which is the
extension of joint segmentation method. Our approach can effectively process
any datasets - sparse, dense, or hydrid, and avoid error of segmentation which in
turn improves the accuracy in citation matching. Moreover, by extending MLNs
to RRFs, joint inference can be accomplished more efficient. Experimental results
on two benchmark datasets show that our approach can effectively avoid error
of segmentation and achieve higher accuracy than many alternative approaches.
We will conduct more experiments in the future to evaluate the impact of the
value j in Generalized-Jnt-Seg (j = m) model on the segmentation accuracy and
the computational expenses to find an optimal trade-off between accuracy and
efficiency.
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Skowron, A. (eds.) PKDD 2007. LNCS (LNAI), vol. 4702, pp. 200–211. Springer,
Heidelberg (2007)

10. Wellner, B., McCallum, A., Peng, F., Hay, M.: An integrated, conditional model of
information extraction and coreference with application to citation matching. In:
Proc. UAI 2004, pp. 593–601 (2004)

11. Fellegi, I., Sunter, A.: A theory for record linkage. J. American Statistical Associ-
ation 64, 1183–1210 (1969)



W. Wobcke and M. Zhang (Eds.): AI 2008, LNAI 5360, pp. 608 – 614, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Agent-Based Collaborative System and Case-Based 
Conflict Resolution Process in Preliminary Ship Design  

Kyung Ho Lee1, Jae Joon Lee2, Young Soo Han2, Jung Min Lee2,  
and Byung Hak Lee2 

1 Department of Naval Architect & Ocean Engineering, INHA University, Incheon, Korea 
kyungho@inha.ac.kr 

2 INHA University, Graduate School 

Abstract. Recently, the shipbuilding companies are assigning design and pro-
duction environments around the world in different areas. Therefore, the con-
cept of simultaneous engineering and concurrent design becomes very 
significant. In this paper, a basic architecture of an agent system is proposed to 
support the exchange and sharing of design information by means of ACL 
(Agent Communication Language) in preliminary ship design. Above all, the 
conflicts that occur in the middle of knowledge sharing in the system must be 
resolved.  One approach is to adopt a case-based conflict resolution strategy 
formulated to resolve current conflict on the basis of previous resolved similar 
cases in agent-based collaborative design system environments. In addition, 
conflict resolution handler located in the facilitator which is an agent to control 
other sub-agents, is developed to treat conflict problems effectively. 

1   Introduction 

The importance of the design methodology based on the concurrent engineering in 
distributed environment is increasing from day to day. Many attempts have been 
made to resolve the limitations of communication between distributed and heteroge-
neous systems and the sharing of the design information with each other. The adop-
tion of agent technology is one of the solutions to solve these problems [1,2]. Many 
attempts have been made to construct collaborative systems in order to support coop-
eration in distributed ship design environments [3,4]. As ship designing is a very 
complicated process and manipulates much data, it is necessary to construct the col-
laborative system based on the agent technology. In this paper, the implemented 
agent-based system for preliminary ship design is presented. In addition, this paper 
focuses on the methodology of conflict resolution based on Case-Based Reasoning 
(CBR) to resolve the conflicts occurred in the agent-based ship design system. 

2   Ship Design and Multi-agent System 

In Korean shipyards, each field of design utilizes different CAD systems such as 
TRIBON system for the preliminary design, SIKOB in the hydrostatic calculation, 
CADRA or AutoCAD in sketch designing, AUTODEF, TRIBON, or the Intergraph 
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VDS in the hull design, and CADDS in outfitting design. Each of the different fields 
of design uses distinct hardware environment and utilizes various tools for the spe-
cific design process. In addition, these systems are processed independently under 
distributed environment. Considering the problems above, the concept of early design 
is important as the early design uses concurrent design to unify different information 
and knowledge among different systems to generate related design information at a 
preliminary stage. Fig.1 shows the process of preliminary design of ships. 
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A d j u s t  L ,  B ,  C b
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Fig. 1. The process of preliminary ship design 

Many researches have been tried to solve the problem. Currently, among the dif-
ferent researches performed, the knowledge sharing approach which introduces the 
concept of agent is receiving very much of the spotlight. 

In this paper, multi agent system is implemented which exchanges and shares in-
formation of the preliminary ship design process using ACL. KQML [5] is used as the 
outer language, Prolog is used as the inner language and CORBA, referred to as  
the standard distributed object environment, is used as the technique of exchanging 
the information in the distributed environment. 

The agent-based preliminary ship design system is developed with the distributed ob-
ject structure that is capable of communicating efficiently between agents using CORBA. 
To do this, the Caffeine function of VisiBroker is used. And the design flow control is 
freely achieved using the inference function of Prolog. The conversation module is added 
in order to use efficiently KQML message and to exchange meaningful messages. Fig.2 
shows the components of the agent-based preliminary ship design system. The system 
implemented in this study infers using Prolog as the inner language, and implemented 
using the conversation module, KQML handler and CORBA. 

Fig.3 shows the whole structure of the implemented multi agent system in this pa-
per. In this system, the communication between the facilitator and each sub-agent is 
achieved using CORBA. Here, the facilitator trades the communication between the 
agents and manages the work progress. In addition, it has the inferring function and it 
can be referred to as a type of super agent. 
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Fig. 2. Components of the implemented agent-based preliminary ship design system 
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Fig. 3. System configuration of the agent-based preliminary ship design system 

In this figure, the CommC and CommS provide the method for communication 
as a CORBA object. The ShipInfoAccess provides the method which reads and 
stores the real data of the ship from the database as CORBA object, as well. The 
connection with the database is efficiently implemented using JDBC. More efficient 
communication and the standard distributed environment are constructed by adopt-
ing CORBA. 

3   Case-Based Conflict Resolution in Agent-Based Preliminary 
Ship Design System 

Conflict resolution is most important in multi-agent system, and many attempts have 
been made. Since inefficient resolution of conflicts in decision-making can lead to 
high cost and low quality [6,7]. Case-Based Reasoning (CBR) approach is one of the 
strategies to solve the conflict problem. If there were some cases for solving similar 
problems previously, we can solve current conflict problems based on the previous 
cases without inference. 
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Fig. 4. A Conflict Case in Preliminary Ship Design 

3.1   Typical Conflicts in Preliminary Ship Design 

Owing to the different design goals of the ship design agents, conflicts can occur in 
the middle of cooperation of the distributed systems. In this section, the design con-
flicts and their resolution cases occurring in an agent-based ship design system are 
extracted. Although a lot of conflicts are occurring in the ship design process, only 
some typical conflicts are treated in this paper. Fig.4 depicts conflict problems in ship 
design process caused by different design notions of the related agents. That is, pre-
liminary design agent wants to shorten the length of ship in an economic point of 
view. On the contrary, the hullform design agent prefers to lengthen the ship based on 
a performance viewpoint, such as low wave resistance, high speed, and so on. In the 
same manner, the machinery arrangement (MA) design agent has to arrange a great 
deal of machinery in the narrow space of ship engine room (E/R) located in the stern 
part of a ship. Hence the broader the engine room space, the better the viewpoint of 
layout. But the goal of the hullform design agent is a slender stern part of a ship in the 
viewpoint of performance. In addition, structural design agent is willing to arrange a 
bigger web frame in the viewpoint of strength. This makes an engine room space 
narrower.  So many conflicts are occurring in the middle of the ship designing process 
caused by these different notions. In this paper, conflict resolution handler is devel-
oped so as to treat a series of the conflict process effectively [8]. 

3.2   Implementing Case Base and Conflict Resolution 

A case is composed of three parts such as situation, solution, and the outcoming. 
Here, to represent the conflicts between pre-described design agents, the case is sub-
divided into four sets as follows. 
 

(1) Title 
As a symbolic meaning, a title classifies the cases according to the kinds of conflicts. 
The followings are described titles of implemented cases. 

- Conflict between MA design agent and Preliminary Design agent 
- Conflict between MA design agent and Hullform Design agent 
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- Conflict between MA design agent and Midship Design agent 
- Conflict between MA design agent 

(2) Description 
A description is a primary factor in deciding the characteristic of case in which items 
for classifying the similar cases are described.  

- Ship type : bulk carrier, tanker, container, etc. 
- Conflict type : hull clearance, passage way, etc. 
- Related agent name : Preliminary Design,  MA design, etc. 

(3) Question/Answer 
After the related cases are selected from the indexing procedure based on the descrip-
tions, question/answer is used to present the closest case through the similarity as-
sessment for characteristic values. A weight can be given for each item. 

- E/R compartment can lengthen?  (Yes / No) 
- Can it be possible to change hullform of stern part as full? (Yes / No) 
- Can the Web frame be reduced? (Yes / No) 

(4) Action 
Action part corresponds to the solution of a given problem.  

- Make E/R longer (Move FWD BHD) 
            ☞ Execute redesign process of preliminary design 
            ☞ Redesign machinery arrangement process 

- Change the hullform of stern part 
☞ Execute evaluation process of speed/power 
☞ Redesign machinery arrangement process (Check hull clearance) 

- Reduce web frame size 
 ☞ Execute evaluation process of structural strength 

 
The conflicts occurred in the middle of designing process are resolved by the de-

veloped case-based conflict resolution handler [8]. This handler located in the facilita-
tor perceives whether a conflict has occurred or not, based on the received 
information from agents. When a conflict has occurred, it is resolved promptly and 
the reply is transferred to related agents [4]. 

One of conflict cases and resolution by CBR approach are described as follows 
briefly. If a conflict is occurred in machinery design agent such like “Insufficiency of 
clearance between machinery and hull of ship”, the KQML message as following is 
generated and sent to facilitator. 

 
(tell  :sender MA_design_agent 
  :receiver facilitator 
  :language KIF 
  :reply-with MA0 
  :content (and (conflict CF1)  
        (conflict.type CF1 hullClearance) 
        (conflict.shipId CF1 h30)  
        (conflict.position CF1 (hullform.frame h30 13)) 
        (conflict.source CF1 MA_design_agent)) ) 
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      Fig. 5. Message Handling in Design Agent            Fig. 6. Outcome of CR and its Action 

 

Fig. 7. Conflict Resolution Process in Agent-Based Preliminary Ship Design System 

The above message is only routed from the facilitator to the handler for resolving 
the conflict. Problem is described for searching similar cases based on contents and 
agent name transferred from facilitator. This information is transferred to case-base 
system by using API(Application Programming Interface) functions as follows.  
   CallSetDescription("hull clearance in MA design agent"); 

In order to evaluate the similarity score of the cases, case-based system communi-
cate with related agent by question/answer. After a while 'ask-if' message is shown at 
replying window as in Fig.5 in preliminary design agent, if designer answers the ques-
tion, the reply is transferred to the 'tell' KQML message, and sent to handler via facili-
tator. Through these communication processes, case-based system decides the 
lengthening of engine room compartment as 1 frame. The message is transferred to 
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preliminary design agent in which re-design process is carried out as in Fig.6. Fig.7 
illustrates the concept of conflict resolution in machinery design of ship and collabo-
ration in agent-based ship design system. 

4   Conclusions 

In this paper, two topics are discussed in a preliminary ship design environment. One 
is the construction of agent-based ship design system to implement collaborative ship 
design environment, the second is the resolution of the conflicts that occur in the 
middle of cooperative ship design works. A framework of agent-based preliminary 
ship design system to cooperate and share the information with each other under the 
distributed and heterogeneous system environments is developed. And also conflict 
resolution strategy based on case-based reasoning technique is implemented. Case-
based approach to resolve a current conflict problem based on previous similar cases 
is very reasonable for multi-disciplinary ship design stage. 
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