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Abstract. How does knowledge of a domain influence the way in which we in-
spect artefacts from within that domain? Eye fixation scanpaths were recorded 
as trained individuals looked at images from within their own domain or from 
another domain. Sequences of fixations indicated differences in the inspection 
patterns of the two groups, with knowledge reflected in lower reliance of low-
level visual features. Scanpaths were observed during first and second viewings 
of pictures and found to be reliably similar, and this relationship held in a sec-
ond experiment when the second viewing was performed one week later. Eye 
fixation scanpaths indicate the viewer’s knowledge of the domain of study.  
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1   Introduction 

When we are introduced to a domain of knowledge and educated about its aspects, 
our perceptions of the domain are changed, and our enquiries of new artefacts may 
reflect these altered perceptions. One tool that can be used to investigate the percep-
tions of knowledgeable individuals who are inspecting pictures of domain-specific 
artefacts is the recording of the viewer’s eye movements. It is known that the eye 
fixations of trained drivers, for example, are different from those of novices, even 
when watching roadway scenes rather than engaging in the active task of driving it-
self [1, 2].  In normal vision, scanning behaviour consists of saccades: fast, ballistic 
shifts of gaze that bring regions of interest onto the area of the eye with the highest 
resolution (the fovea). The measurement of these movements is now common in 
many diverse areas of cognitive psychology including research into reading [3] the 
perception of pictures and scenes [4], problem solving [5] and complex behaviours 
such as driving [1].  A variety of measures are taken in such experiments, and these 
measures reflect assumptions about the functioning of the visual-cognitive system: 
firstly, that the accuracy with which saccades are targeted is an indication of early 
attentive processing based on peripheral vision (for example, in the analysis of sac-
cade landing positions in reading, or the measurement of saccade lengths as an index 
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of performance in visual search); secondly that the position and duration of a fixation 
are reliable diagnostics of what is being processed and the difficulty of this process-
ing. Thus fixation durations and gaze durations (the sum duration of consecutive fixa-
tions within a region) are commonly explored to indicate cognitive processing of  
different stimuli.  What these measurements have in common is that they generally 
consider each eye movement event independently.  However, the pattern of inspection 
can only be revealed by considering a sequence of successive fixations.  These pat-
terns are sometimes referred to as scanpaths or scan patterns [4]. 

What determines where the eyes will move to next? Early researchers considering 
this question recorded a large variation in the scanpaths made when observers viewed 
complex stimuli such as pictures, but there were patterns [6, 7].  A glimpse at some 
scanpaths (see Figure 2) shows that the places where people fixate, and the move-
ments between them, are not random, and neither are they regularly distributed across 
space, as we might suppose if the visual system were trying to sample the whole 
scene uniformly.  If looking at a picture containing people for example, fixations tend 
to be focused on the faces.  In fact, fixations across many stimuli tend to cluster on 
regions rated informative [8] and some researchers have analysed the low-level statis-
tical properties of these image regions [9], in an attempt to identify the bottom-up 
determinants of attention. 

In addition to being tied to the visual features present in a stimulus, the pattern of 
eye movements made by an observer is known to vary according to the task being 
undertaken.  In his often-cited early work on eye movements, Yarbus [7] highlighted 
the fact that scanpaths exhibited when viewing the same stimulus would be quite dif-
ferent if the viewer was given a different task.  Two commonly studied experimental 
tasks are looking at a scene in order to remember it for later and searching a scene for 
a specific target.  The between-subjects variation in scanpaths has led some to label 
scanpaths as distinctively idiosyncratic, presumably reflecting personal knowledge, 
experience or viewing strategy.  To study these top-down aspects of overt attention it 
is useful to be able to compare scanpaths across viewings, stimuli and individuals.  
Before looking at this technique in more detail, we will consider a specific theory for 
which scanpath comparison is particularly important. It is necessary here to distin-
guish between scanpath theory and the measurement of observed scanpaths. 

Scanpath theory is an ambitious set of ideas that were originally proposed in two 
papers by Noton and Stark [10, 11].  The theory describes scanpaths as controlled by 
internal, cognitive models representing the viewer’s expectations of the scene. These 
models might represent the saccades involved in viewing a picture or scene as a kind 
of structure or syntax that binds together the features processed at fixation. When 
viewing the same scene again, as in the test phase of a recognition experiment, a 
scanpath might be re-invoked or checked against the external stimulus. The main evi-
dence for scanpath theory came from experiments showing that scanpaths recurred 
when stimuli were reviewed in a recognition task.  In Noton and Stark [10] this con-
clusion was reached based on subjective observation of the patterns shown by each 
subject and there was no quantification of the similarity between the scanpaths.  Other 
researchers have examined the presence of repetitive scanpaths when imagining a 
previously seen image [12, 13]. 
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Fig. 1. Calculating the linear distance between two hypothetical scanpaths. Circles show fixa-
tion locations. (A) Each fixation is compared to its closest neighbour in the other scanpath.  
This distance is illustrated for three fixations (bold arrows). (B) This metric is confounded by 
differences in the spatial variability of the two scanpaths. All of the fixations in one scanpath 
(open circles) will be compared to just one in the other set, leading to a low mean distance de-
spite very different patterns. (C) The metric ignores sequence information.  Ordinal position is 
emphasised with numbers. Note that the first fixation is compared to the fifth fixation in the 
other set.  (D) If each fixation is compared with that in the same serial position, small differ-
ences skew later comparisons.  In the case illustrated, despite broadly similar scanpaths, the 
distance between second and subsequent fixations is large. 

Little support has been found for scanpath theory and it has difficulty explaining 
some phenomena.  For example, it is not necessary to move ones eyes to encode or 
recognise a picture, and the apparently large amount of variability within the patterns 
shown by a single person viewing the same stimulus also make a strong version of 
scanpath theory untenable [9].  As a result, some researchers prefer to use the term 
scan patterns rather than scanpaths [4], in order to dissociate the fixation recordings 
from the theory. We do not rely upon any of the assumptions of scanpath theory here.  
Instead, we will restrict ourselves to a discussion of how the relationships between 
scanpaths might be quantified, for purposes of comparing the fixation patterns re-
corded during the viewing of the same picture on two separate occasions.    
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1.1   Methods for Comparing Scanpaths 

In this section, several different basic methods for comparing scanpaths will be re-
viewed.  Figure 1 shows some hypothetical scanpaths and these will be used as exam-
ples here.  Alongside the practicality of using a method on large datasets, the main 
criteria for evaluating these methods will be whether it appropriately captures the de-
gree of similarity between different scanpaths and the ease of testing this statistically. 

1.1.1   Distance-Based Methods 
Scanpaths are inherently spatial.  As a result it would seem most appropriate to meas-
ure the distance between two scanpaths superimposed on the same visual area. A met-
ric developed by Mannan and colleagues [9, 14, 15] computes the similarity between 
scanpaths by measuring the distance between each fixation in one set and its nearest 
neighbour in the other.  Scanpaths that are more similar, in the sense that they dwell 
on locations close to each other, will show a smaller average linear distance. Figure 1 
depicts this measurement for several different comparisons. The average linear-
distance is defined as D, where 

D2 =
n1 d2 j

2 +
j=1

n2

∑ n2 d1i
2

i=1
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∑
2n1n2(a2 + b2)

                                      (1) 

and where n1 and n2 are the number of fixations in each scanpath and a and b are the 
dimensions of the image.  d1i is the distance between the ith fixation in the first set 
and its nearest fixation in the second set, and d2j is the same distance for the jth fixa-
tion in the second set.   

Computation of this measure is straightforward from the fixation coordinates that 
normally make up raw fixation data.  In addition, it is robust to scanpaths with differ-
ent numbers of fixations and is scaled relative to the size of stimulus being viewed 
(due to the term a2 +b2).  In order to produce an estimate of the absolute degree of 
similarity, Mannan et al. [9] compute the similarity index, Is, by comparing the aver-
age linear distance between two scanpaths with that between randomly generated 
scanpaths of the same size (Dr): 

Is = 1 − D
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⎟ 100                                (2)  

This gives a value between 0 (chance similarity) and 100 (identity), with negative 
values indicating scanpaths that are more different than expected by chance.  The dis-
tance between randomly generated scanpaths (Dr) produces the normally distributed 
similarity that would be expected from chance or uniform scanning.  This distribution 
was examined by Mannan et al. [9]. For a constant display size, the average random 
distance gets smaller as more fixations are added to the scanpath (as n1 and n2, which 
do not have to be equal, increase).  

The second problem occurs when the spatial distribution in one set of locations is 
very different from that in the other (see Figure 1b).  This leads to multiple fixations 
being compared to a single location in the other scanpath, potentially producing high 



 Knowledge-Based Patterns of Remembering 129 

similarity from two scanpaths that appear very different.  Similarly, one outlier will 
skew two otherwise very similar scanpaths.  Tatler, Baddeley, & Gilchrist [16] identi-
fied these problems, pointing out that the linear distance method is fundamentally 
confounded by differing amounts of variability in the two scanpaths. Henderson, 
Brockmole, Castelhano, & Mack [17] proposed a “unique assignment” variant of the 
linear distance metric whereby each fixation is paired with just one other.  All possi-
ble pairings are computed, and that chosen which minimises the average distance.  A 
disadvantage of this approach, and of the serial position version, is that they require 
equal numbers of fixations in each set. 

Figure 1 illustrates two specific problems with the linear distance method. Firstly, 
the measurement does not take into account the temporal sequence of the scanpath.  
Fixation locations are compared to whichever fixation is closest, regardless of when it 
occurred. As it ignores the order information, this metric would give extremely high 
similarity to the example in Figure 1b, despite the fact that in one scanpath the ob-
server starts at the bottom left and works upwards whilst in the other they do the  
opposite.  One way to avoid this problem might be to compute a “serial position” ver-
sion, where the distance is computed between each fixation and that fixation which 
occurred in the same serial position in the other scanpath.  However, this would be 
skewed by any small deviations, as illustrated in Figure 1d.   

1.1.2   String Edit-Distance 
In order to capture the temporal order of scanpaths, several researchers have utilised a 
method designed specifically for sequence analysis: the Levenshtein distance [18], or 
simply string edit-distance [12, 19].  This algorithm is an extension of the Hamming 
distance that gives the difference between two strings of symbols in terms of how 
many positions are identical.  The edit-distance is defined as the number of editing 
operations (deletions, insertions and replacements) required to turn one string into 
another, and this distance will decrease as strings become more similar.  A method 
(based on discrete dynamic programming) is available which computes the minimum 
number of operations required, and this distance has been used for comparing a range 
of different strings of items, from DNA sequences to birdsong [20]. Figure 2 illus-
trates how this method can be applied to eye movement sequences. The visual stimu-
lus is divided into regions, each of which is allocated a letter. Each 2-dimensional 
scanpath can now be transformed into a character string, and the edit distance be-
tween the two can be computed.  It is often desirable to compare similarity across 
scanpaths of different lengths, so the distance can be normalised by the number of 
fixations, and an index of similarity, which here we call s calculated from its recipro-
cal distance between two scanpaths is calculated as the minimum number of steps 
required to transform one string into another: 

s = 1 − d

n
                                 (3) 

where d is the edit-distance between two scanpaths and n is the number of fixations 
within the longest scanpath.  This metric is equivalent to Ss, the first of three string-
based similarity measures identified by Privitera [21].  Ss is the sequential similarity, 
whilst Sp (locus similarity) represents the number of characters shared by both 
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String 1: FUXNJ (open circles)      String 2: FHVXJ (filled circles) 
 

Editing cost in transforming String 1 into String 2: 
String item 2:  U  to  H  = one replacement 
String item 3:  V  inserted = one insertion 
String item 4:  N  deleted = one deletion 

 

Total editing “cost” = 3 changes in a string of 5 items 
Normalised difference = 3/5 = 0.6 
String similarity = 1 – 0.6 = 0.4 

Fig. 2. Each circle indicates an eye fixation, and here two sequences of fixations are 
represented. Fixation durations are suggested by variations in the sizes of the circles. A string-
editing procedure is used to evaluate scanpath similarity by calculating the “editing cost”. The 
distance between two scanpaths is calculated as the minimum number of steps required to 
transform one string into another.  This edit cost can be normalised and converted into a 
standardised similarity score, where a score of 1 represents two identical strings.  

strings, giving an index of the positions both scanpaths dwell on, regardless of order.  
The final metric mentioned is St (transition similarity), which consists of Markov ma-
trices of region transitions.    

There are several important decisions to be made if using the edit distance method.  
Firstly, how is the region schema produced?  In some cases there are clear areas of 
interest that can be predefined by the researcher.  These might correspond to areas of 
a display or particular objects in a scene.  However, in other cases it might be desir-
able to look at scanpaths over the whole image and to use regions of a constant size.  
In this situation the image can be divided into a grid, although this raises the question 
of how large these regions should be.  A third possibility is to use the fixation data 
themselves to produce the regions, using statistical clustering techniques, for example 
Privitera & Stark [22]. Thus the region schema could be found which divided the  
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image into the desired number of regions.  It might be useful to perform the analysis 
with several different sets of different regions, perhaps of varying sizes.  Similarity 
that is present at several scales and robust to changes in the region organisation is 
likely to be the most reliable.  Choi et al. [19] argue that the estimates of similarity 
that they give are robust, whether using 10 or 15 regions. Figure 3 illustrates the con-
sequences of varying the grid size, and can be used to suggest an optimal size in 
which increasing the number of grids has no further discernible effect on the Leven-
shtein distance value. 

 

Fig. 3. The normalised Levenshtein string-editing distance between the fixations in two 
randomly generated scanpaths varies with the size and number of regions. Data are based on 
scanpaths over an area divided into a grid of regions with dimensions varying from 1 x 1 (only 
one region where all fixations are evaluated as equal) to 10 x 10 (100 regions).  Note that the 
distance expected by chance increases as a finer grid is used. 

A second decision that is commonly made is to condense consecutive fixations on 
the same region, which would result in repeated symbols in a string, into a single 
character.  Groner, Walder, & Groner [23] make a distinction between local and 
global scanning, with the former consisting of small readjustment saccades, of less 
theoretical interest.  Thus the coarser scale movements between regions may be more 
useful.  Of course, in combination with decisions regarding the size and shape of re-
gions this will have a profound effect on estimates of scanpath similarity. 

How can we calculate the significance of s?  As with distance-based methods this 
problem amounts to comparing experimentally derived similarity with a random or 
chance estimate.  The chance similarity can be easily calculated as the probability that 
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any two characters will be the same.  Thus for a 5 by 5 grid there is a 1/25 chance that 
any two fixations will be in the same place.  The similarity of randomly generated 
scanpaths could be used as the denominator in an estimate of absolute similarity 
analogous to equation (2).  Randomly generated similarity varies with the size and 
number of regions (as demonstrated in Figure 3), so the same grid would need to be 
used as that used with experimentally derived data.  The random model might also 
need to be adjusted to take into account other biases present in the experimental sam-
ple.  For example scanpaths might be constrained to start or finish in a particular 
place, and this would affect similarity estimates. 

Although the editing-distance method successfully captures the temporal sequence 
of scanpath data, it reduces all spatial information to a binary choice where fixations 
are either in the same region or they are not.  This seems intuitively unsatisfactory and 
leads to some comparisons being equivalent despite large differences (see Figure 1b).  
This problem makes the regions used, often a fairly arbitrary decision, critical, as a 
fixation which lies just over the region border will be counted the same as one which 
is on the other side of the image.  In an extreme case, a fixation might be computed as 
more similar to a fixation that lies in the same region than one that is spatially closer 
but outside the region’s bounds.  In one sense, using more regions provides a more 
accurate representation with a higher resolution of the movements made.  However, 
more regions also make the analysis less tolerant of small deviations that might oth-
erwise seem negligible.    

1.2   Other Methods 

We have outlined two main methods for comparing scanpaths, but there are several 
other ways of analysing such patterns.  Some researchers have used Markov matrices 
[1, 24, 25], which show the transition probabilities from one predefined region to an-
other. However, while this may be useful for short scanpath segments, the matrices 
explode exponentially when longer chains are explored, making them impractical.  
They also require the same decisions regarding which regions to use as the edit-
distance.   

Fixation maps such as those shown in Figure 4 are a useful way of displaying eye 
movements, particularly those from large populations [26].  In these maps, fixations 
are represented by a two-dimensional Gaussian centred on the fixation location.  The 
width and height of the Gaussian can be varied, and multiple fixations summed, form-
ing an attentional landscape.  Comparing two fixation maps is then possible, and as 
fixations are essentially distributed this may be an efficient way of computing the 
spatial similarity between two scan patterns which avoids some of the confounds as-
sociated with linear distance.  Two maps could be correlated or a difference map 
could be produced (perhaps after normalising the height of the peaks).  Spatially iden-
tical scanpaths would give a completely flat difference map.  Standard fixation maps 
hold no information regarding sequence, although it might be possible to introduce a 
temporal element, either by combining maps derived from different time periods or 
by varying the height of fixation peaks over time.  The fixation map approach also 
provides a way of identifying the regions of interest from the data (for use in the edit-
distance method, for example).  A threshold or critical value can be chosen, and all 
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Fig. 4. Fixation maps can be used to represent and compare scanpaths. Each fixation is 
represented by a 3D Gaussian. The z-axis or height could represent fixation duration or another 
index. Alternatively, in order to encode sequence, height can represent when the fixation 
occurred. Early fixations produce a high peak, whilst later ones give a progressively lower 
distribution. Multiple fixations on the same area are summed together, producing an attentional 
landscape. A) and B) show two fairly similar scanpaths, with z normalised to range from 0 to 1.  
The absolute difference between the two can be represented in the same way as a “difference” 
map. Identical scanpaths would show a totally flat difference map, whilst peaks indicate areas 
where fixation allocation differed between the two.  A 2D schematic of the two scanpaths is 
also shown (D). 

areas receiving more attention, those whose peaks lie above the threshold, can be se-
lected for use in further analyses.  Alternatively the threshold could be gradually ad-
justed until the required number of discrete regions is selected.  Tatler et al. [16] also 
avoid contaminating their measure of similarity by looking at the full distribution of 
fixations across the image.  In their method fixations are binned into 2˚ by 2˚ squares 
and a spatial probability distribution derived.  The difference between two scanpaths 
is then given by a measure from information theory, the Kullback-Leiber divergence, 
which computes the difference between the corresponding probability distributions.  
The Kullback-Leiber divergence gives the number of additional bits of information 
needed to describe one distribution given another.  Thus a low value indicates similar 
scan patterns.  A disadvantage of this technique is that it requires large amounts of 
data, so it is best used when the fixations from many trials and observers are being 
examined. 
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In summary, distance-based methods are useful for averaging commonalities in 
where people look, though they are confounded by differences in spatial variability 
and do not reflect the temporal order of serial scanpaths.  The edit-distance approach 
captures sequence at the expense of spatial resolution but requires somewhat arbitrary 
decisions such as which region scheme to use. Levenshtein’s [18] string editing 
method is implemented easily and has been used successfully elsewhere, and so will 
be used to compare fixation sequences in the following two experiments. 

2   Experiment 1: Domain Knowledge and Fixation Scanpaths 

Fixation scanpaths are more similar over multiple viewings of a picture than would be 
expected by chance. Independently it has also been found that low-level visual sali-
ency has a large influence on the locations of the first few fixations. However, bot-
tom-up processes such as these may be overridden by top-down cognitive knowledge 
in the form of domain proficiency, suggesting that fixation locations are determined 
by multiple factors. In the present experiment domain specialists were asked to look 
at a set of photographs in preparation for a memory test. They were then given a sec-
ond set of pictures and were asked to identify each one as being from the previous set, 
or new (not seen during the encoding phase). The experiment investigates the stability 
of fixation scanpaths between the first and second viewing of a picture, and the influ-
ence of the viewer’s own knowledge of the domain from which the pictures were  
selected. 

Regular patterns of fixations may result from fixation on the most conspicuous re-
gions. Each time the picture is inspected, perhaps the viewer looks first at the most 
conspicuous region, then at the next most conspicuous region, and so on. The conspi-
cuity or saliency distributions do not change between viewings of course, and so the 
sequence of fixations would not change either. Itti and Koch’s [27] algorithm enables 
the measurement of the visual saliency of an image on the basis of its physical proper-
ties, by the identification of peaks in the distribution of intensity and changes in col-
our and orientation. The algorithm builds an overall “saliency map” of the image to 
determine the ordinal allocation of attention to the regions of the display. The effect 
of salience on eye fixation locations has been supported by Parkhurst, Law, and Nie-
bur [28] who showed participants a range of images, including photographs of home 
interiors, buildings, and natural environments. Saliency strongly predicted fixation 
probability during the first two or three fixations, and the model performed above 
chance throughout each trial. Parkhurst et al. concluded that a purely bottom-up ac-
count of visual attention was sufficient to account for fixation behaviour. Further sup-
port comes from Underwood, Foulsham, van Loon, Humphreys, and Bloyce, [29] 
who found that when viewers inspected the scene in preparation for a memory task, 
objects higher in saliency were more effective in attracting early fixations. 

A bottom-up explanation for similarities in scanpaths at encoding and recognition 
could therefore be that fixation locations are at least partly determined by saliency, as 
this remains constant over viewings. Repeated patterns of fixations may be a product 
of viewers repeatedly looking at the most conspicuous regions of the picture, and so 
similar scanpaths may not result from a memory of the first viewing but from the vis-
ual characteristics of the picture itself.  
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Top-down influences are known to reduce the effects of visual saliency on fixation 
behaviour, and so it is possible that the bottom-up effect of saliency could be moder-
ated by an increase in the viewer’s top-down knowledge of the scene. If an effect of 
domain knowledge on saliency influences eye movements, it would be interesting to 
see if it was consistent over repeated viewings. This has not been specifically investi-
gated in non-search tasks, although there have been studies that have found a cogni-
tive override of saliency in search tasks [29-31].  

The eye movements of experts differ from non-experts; for example, experienced 
football players have been found to have a higher search rate, involving more fixa-
tions of shorter duration than novice players [32]. However, there is little evidence of 
how the eye movements of domain-specialists and non-specialists vary with the sali-
ency map of an image. Furthermore, if eye movements are related to memory, then 
the overriding effect of domain knowledge should be constant over time, producing 
similar scanpaths on multiple viewings of the same stimulus. Specialists are consis-
tently more accurate with the recognition of domain specific targets [33] and they 
consistently produce scanpaths reliably different from non-specialists [34]. We hy-
pothesise that the fixation scanpaths of non-specialists will be influenced by low-level 
visual saliency, but that domain specialists will produce different eye-movements to 
non-specialists on the same picture, and would provide support for the overriding 
effects of domain knowledge. If domain specialists look at images in ways that reflect 
their knowledge, then the possibility arises of recording a student’s eye movements as 
an implicit assessment of their knowledge. 

2.1   Method 

Three groups of students were recruited: 15 Engineers, 15 American Studies students 
and 15 non-specialists (control group). 

Eye position was recorded using an SMI iVIEW X Hi-Speed eye tracker. Ninety 
high-resolution digital photographs were used as stimuli, sourced from a commer-
cially available CD-ROM collection. Thirty of the pictures were engineering-specific, 
30 were Civil War specific, and 30 were of natural scenes such as gardens, parks and 
landscapes. Half of the pictures in each category were shown in both the first viewing 
(encoding) and in the second viewing (recognition) phases, while the other half were 
shown only as part of the recognition test test.  

Itti and Koch’s [27] model was used to generate saliency maps for the first five 
most salient regions for each picture (see Figure 5) – the regions of greatest aggregate 
intensity, colour and orientation variation. The only further criterion for stimuli was 
that all 5 salient regions were non-contiguous; those pictures where the same or over-
lapping regions were re-selected within the first 5 shifts were replaced.  

Following a practice at the task, the first stage of the experiment began, with 45 
pictures shown to all participants (15 engineering pictures, 15 Civil War pictures and 
15 natural scenes), presented in a randomised order. Each picture was preceded by a 
fixation cross, which ensured that fixation at picture onset was in the centre of the 
screen, and each picture was presented for 3 sec. During this time participants freely 
inspected any aspects of the picture they chose. After all 45 stimuli had been pre-
sented, participants were informed that they were going to see a second set of pictures 
and had to decide whether each picture was new or old, using the computer keyboard 
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Fig. 5. Saliency map predictions of the first five fixations on a picture from the neutral category 
(top panel), based on the five most salient regions. The saliency map algorithm identifies the 
most conspicuous regions of an image on the basis of changes in colour, orientation and bright-
ness. The most conspicuous region is first identified (the brightly illuminated draw in the lower 
left quadrant of the top picture, numbered “1” above), and then the next most conspicuous re-
gion, and so on. A process of inhibition of return prevents the same region being selected re-
peatedly. The rank orderings of conspicuous regions form the basis for a prediction of the order 
of the first few fixations on a picture. The top panel, showing the five most salient regions of 
the picture, and their rank orderings serve as the model-predicted order of fixations, for com-
parison with actual scanpaths. The centre panel and the bottom panel are exceptionally similar 
scanpaths from the first and second viewings by one participant. 

to indicate whether each picture had been shown previously. During this phase, 90 
stimuli were presented in a random order; 45 of these were old and 45 new. Each pic-
ture was again shown for 3 sec.  
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2.2   Results and Discussion 

The analyses focused on string analyses, to compare scanpaths during encoding and 
the second viewing, and comparing encoding scanpaths to the sequences predicted by 
the saliency model. String editing was used to analyse the similarity between scan-
paths produced on encoding and second viewing.  A 5 by 5 grid was overlaid onto the 
stimuli (see Figure 2). The resulting 25 regions were labeled with the characters A to 
Y from left to right. Fixations were then labeled automatically by the program, ac-
cording to their spatial coordinates, resulting in a character string representing all the 
fixations made in this trial.  

The scanpaths generated from encoding of a picture were compared with the scan-
paths during recognition, and with those predicted by the saliency model [27]. An 
example of a predicted scanpath is shown in Figure 5 (top panel). Each scanpath was 
given a score depending on the similarity of the eye fixations on first viewing each 
picture with the scanpaths predicted by the saliency model. The two lower panels of 
Figure 5 show examples of observed scanpaths, during encoding (centre panel) and 
recognition (bottom panel). The average similarity scores (maximum value of 1) for 
each group of participants were compared for each type of stimulus using an 
ANOVA.  

There was a reliable between-groups difference in viewing Civil War stimuli 
[F(2,42) = 4.068, MSe = 0.012, p<0.05], with engineers (similarity score of 0.098) 
and control students (score of 0.107) matching the saliency model closer than Ameri-
can Studies undergraduates (score of 0.054). Paired contrasts indicated that both of 
these comparisons were reliable at p<0.05. There was also a between-groups differ-
ence in viewing Engineering stimuli, [F(2,42) = 16.249, MSe = 0.026, p<0.05], with 
American Studies (score of 0.122) and control participants (0.105) showing scanpath 
similarity scores closer to the predictions of the saliency model than those of the en-
gineering students (score of 0.0426). The engineers had lower similarity scores than 
both of the other groups (both comparisons were reliable at p<0.001). There was no 
between-groups difference in viewing neutral stimuli [F(2,42) = 2.739, MSe = 0.015, 
p<0.05]. When students looked at pictures of artefacts from within their domain of 
knowledge they were less likely to look at the visually most salient features, and this 
held for American Studies participants inspecting Civil War photographs and for en-
gineering students inspecting pictures of motors, turbines and industrial production 
facilities. 

The scanpaths generated from encoding of a picture were compared with those on 
second viewing during the recognition test using an ANOVA analysis. Overall, there 
was a string similarity of 0.238 for non-specialists, 0.245 for Engineers and 0.268 for 
American Studies undergraduates. Randomly generated strings would give a value of 
approximately 0.0417, making the string similarities for all three groups of partici-
pants reliably greater than chance (p<0.05). There was no difference between the par-
ticipant groups on the similarity of scanpaths at encoding and recognition [F(2,42) = 
0.522, MSe = 0.004, P = 0.597].  

Does knowledge of a domain interact with the influence of saliency on scanpaths 
when viewers look at images from within their domain? All the fixations made on a 
particular stimulus were compared to the five most salient areas of that picture. In  
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previous research, saliency effects have been found when memory tasks were  
performed. In this experiment, it was found that the specialist groups made fewer 
fixations on the salient areas when the pictures were from their own domain – engi-
neering students made fewer fixations on the visually salient areas of Engineering 
pictures, and American Studies undergraduates made fewer fixations in salient areas 
of Civil War pictures. There was no significant difference between groups when look-
ing at neutral pictures, and non-specialists showed no significant difference across 
stimuli types. This lends some support for the saliency map theory, in that saliency is 
again shown to have a large influence on eye-movements. However, it does partly 
argue against the position that a purely bottom-up account of visual attention is suffi-
cient to account for fixation behaviour. This is not the case, as salient features had 
less of an effect when the picture fell into the student’s specialist domain. Engineers 
make reliably fewer fixations in highly salient regions when viewing engineering pic-
tures and American Studies undergraduates made fewer fixations on the salient re-
gions of Civil War pictures. This apparent cognitive-override of saliency may seem 
intensified because the interesting parts of the stimuli perhaps were of particularly 
low saliency, and thus it is almost like they were actively seeking out low-salient re-
gions, which would not have been of interest to non-specialist. 

The cognitive-override effect that has been found is consistent with previous inves-
tigations of saliency influences [29-32] in a search task, but when an encoding task 
was used, as here, the saliency map did predict fixation locations. This was only 
found for non-domain specialists here. 

Overall, scanpaths produced on encoding of a picture compared to those produced on 
second viewing were more similar than would be expected by chance. This was consis-
tent across all participants, despite group or stimulus type. Scanpath theory [10] suggests 
that visual patterns are represented in memory as a network of features and the attention 
shifts between them. This network is then replayed and compared to the external stimu-
lus when recognising the image later. By this account, the scanpaths at encoding were 
similar to those at recognition because they were stored and recalled top down, to deter-
mine the scanning sequence. Although the similarity seen here is statistically reliable, the 
scanpaths are far from identical, and there is still a large amount of variance unaccounted 
for. Previous demonstrations of scanpath similarity have largely used simple patterns, 
with fewer and larger regions of interest. It is likely that the much more complex photo-
graphs used here resulted in reduced scanpath repetition, possibly due to a greater influ-
ence of knowledge-based inspection strategies. 

In conclusion, saliency does have a strong influence on eye movements, shown by 
the similarity of actual scanpaths to those predicted by the saliency model [27]. How-
ever, domain-specific knowledge can act as an overriding factor, decreasing the influ-
ence of saliency on driving eye movements. This effect has been shown to be stable 
over time.  

3   Experiment 2: Delaying the Interval between Viewings  

In Experiment 1 the scan patterns recorded during a recognition test were more similar to 
the patterns seen during the first inspection of the picture than would be expected by 
chance. The saliency model also had success in predicting fixation locations, but only for 
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viewers who were relatively unfamiliar with the domain from which the pictures were 
selected. Comparing performance during a recognition test against performance during 
encoding may have obscured the analysis, however, because encoding and recognition 
are different tasks with different cognitive processes. Viewers would have been inspect-
ing the pictures for very different purposes during encoding and recognition. A different 
estimate of scanpath similarity might be obtained if a comparison was made of scan pat-
terns on two successive viewings of a picture where the purpose of inspection is held 
constant. In Experiment 2 we again show students pictures from their own domain of 
knowledge and from another, with eye fixations recorded during encoding and recogni-
tion, but also tested recognition a week after the initial viewing, so that scanpaths could 
be compared during two recognition tests. The control participants revealed no interest-
ing patterns of fixations in Experiment 1, and so only domain specialists were compared 
here. 

3.1   Method  

The participants were 15 American Studies and 15 Engineering students from the 
same source as those tested in Experiment 1, the same pictures were used, and eye 
position was again recorded using an SMI iVIEW X Hi-Speed eye tracker.  Saliency 
maps were generated using Itti and Koch’s [27] model with standard parameters. The 
experiment used a two-by-three mixed design, with two specialist groups of partici-
pants and three specific types of stimuli. All participants viewed the same stimuli un-
der the same task conditions. Test pictures were inspected under one of three viewing 
conditions: encoding, immediate recognition, and delayed recognition.  

Participants were not told to look for anything in particular in any of the pictures 
but were asked to look at them in preparation for a memory test. Following a practice 
phase with five pictures not otherwise used in the experiment, the first stage of the 
experiment began. There were 45 stimuli (15 engineering pictures, 15 Civil War  
pictures and 15 natural scenes) presented in a randomised order. Each picture was 
preceded by a fixation cross, which ensured that fixation at picture onset was in the 
centre of the screen. Each picture was presented for 3 seconds, during which time 
participants moved their eyes freely around the screen. This presentation format is the 
same as was used in Experiment 1.  

After all 45 pictures had been presented, participants were informed that they were 
going to see a second set of pictures and had to decide whether each picture was new 
(never seen before) or old (from the previous set of pictures) by making a keyboard 
response. During this phase, 90 pictures were presented in a random order; 45 of these 
were old and 45 new (though the participants were not informed of this fact). In order 
to facilitate an ideal comparison between encoding and test phases, each picture was 
again shown for 3 seconds. One week after the original recognition test, participants 
returned to the laboratory and were shown the 90 test pictures again, with task again 
being to say whether they had seen each picture during the original encoding phase.  

3.2   Results and Discussion 

The scan patterns generated from first viewing of a picture were first compared to 
respective scan patterns predicted by the saliency model [27] again using the string 
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edit-distance method. Observed scan patterns were found to be more similar to those 
predicted by the model when stimuli were not domain-specific. When stimuli were 
domain specific, the similarity score dropped to the estimated chance level. There was 
a reliable between-groups difference in viewing Civil War stimuli [F1,28=52.50, 
MSe=0.099, p<0.001], with a string similarity score of 0.027 for American Studies 
and 0.142 for engineering participants. There was a reliable between-groups differ-
ence in viewing Engineering stimuli [F1,28=48.75, MSe=0.067, p<0.001], with a 
string similarity score of 0.033 for American Studies and 0.128 for engineering par-
ticipants. There was no difference between groups when viewing neutral stimuli 
[F1,28=1.40]. Students were less likely to perform according to the predictions of the 
model when viewing pictures from their domain of interest. 

The scan patterns observed during the encoding phase and during the immediate rec-
ognition test were also quantified by the edit-distance method, and the resultant similarity 
scores compared to the estimated chance level, using a one-sample t-test. All compari-
sons showed the string similarities between encoding and test to be reliably greater than 
chance. Strings of fixation locations were similar for American Studies undergraduates 
inspecting Civil War pictures (observed similarity score between encoding and recogni-
tion of 0.155, t14=9.54, p<0.001), engineering pictures (similarity score of 0.147, 
t14=10.89, p<0.001), and neutral scenes (similarity score of 0.181, t14 = 9.89, p<0.001). 
The two scan patterns were also similar for Engineers looking at Civil War pictures 
(score of 0.196, t14=8.69, p<0.001), at engineering pictures (score of 0.247, t14=13.23, 
p<0.001), and at neutral pictures (score of 0.203, t14=8.11, p<0.001).  

A comparison was also made between scanpaths in the immediate and delayed pic-
ture recognition tests. A mixed-model ANOVA found reliable a main effect of type of 
picture [F2,28=31.84, MSe=0.077, p<0.001], and no effect of participant group: 
[F<1], but there was an interaction between these two factors [F2,56=68.25, 
MSe=0.164, p<0.001]. Pairwise comparisons found that for both American Studies 
undergraduates and Engineers, scan patterns were reliably more similar between en-
coding and delayed test when they inspected pictures that were within their domain of 
interest. That is, American Studies participants had higher string similarity scores for 
their two recognition viewings of Civil War pictures (similarity score of 0.220) than 
they did for engineering pictures (0.112) or for neutral scenes (0.099), with both com-
parisons reliable at p<0.001. Engineering students showed the opposite pattern, with 
greater string similarities for engineering pictures (score of 0.278) than for Civil War 
pictures (0.093) or for neutral pictures (0.091), and both comparisons were again very 
reliable (p<0.001). All six average similarity scores were greater than the value esti-
mated for chance (all contrasts were reliable at p<0.001). 

4   Discussion and Conclusions 

When we look at a picture a second time, do we look at the same features, and in the 
same order? In each experiment a set of images of real-world scenes was shown to 
participants who were familiar with the domain from which they were selected, or 
not. If scanpath similarity depends upon the viewer’s knowledge of the domain of the 
picture then scanpaths could, in principle, be used to assess a viewer’s knowledge. 
The pictures were shown for a few seconds, and then a recognition test performed, 
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with the students deciding whether they had previously seen each picture. Eye fixa-
tions were recorded throughout, and fixation scanpaths were quantified for compari-
son between the two viewings of the picture. In the second experiment there was a 
notable addition to the procedure: the recognition test was repeated after a week so 
that scanpaths could be compared across two viewings that had the same purpose. We 
also asked about the value of visual saliency in attracting fixations and fixation se-
quences: do viewers look at visually conspicuous regions in a scene?  

The delayed recognition test was introduced because encoding and recognition en-
gage different cognitive processes and so a comparison of scan patterns may reflect 
these differences rather than any differences between inspection processes. In both 
experiments, viewers’ scanpaths at encoding were more similar to those made when 
inspecting the same picture at test than would be expected if fixation locations were 
made randomly. Importantly, scanpaths were similar in successive recognition tests. 

The scanpath comparison in the first experiment was between fixation sequences 
made during encoding and during recognition, and because these are different tasks 
engaging different cognitive processes, we introduced an additional test in Experi-
ment 2, a second recognition task. This resulted in a new finding, in which a compari-
son between two recognition tasks, performed a week apart, eliminated the  
differences between cognitive processes that are inherent in these memory tasks. 
When comparing the two recognition tasks, in which the same viewers looked at the 
same pictures on separate occasions, there was a similarity between the scan patterns 
of the first few fixations. The stability of the scan patterns over time and when the 
same task is used is of note here.  

During both encoding and recognition in the experiments, the regions identified as 
being visually conspicuous by the saliency map model were fixated more often than 
other regions, but only for those participants who were not familiar with the content 
of the picture. Support for the saliency map model is qualified by the extent to which 
engineering and American Studies undergraduates looked at pictures taken from their 
own domains of interest and at other pictures. The same pictures were presented to 
both groups of participants, to eliminate the possibility of any results being attribut-
able to differences between pictures. The saliency map model correctly predicted high 
proportions of fixations on salient regions for viewers looking at pictures from other 
domains of interest, but when they looked at pictures from within their domain, there 
was very little correspondence between the locations of their fixations and the loca-
tions of conspicuous items. When an engineer looked at a picture of an engineering 
plant or a turbine the tendency was to inspect the feature of domain interest rather 
than the bright, colourful components – the content dominated inspection and the pic-
ture’s visual characteristics were secondary. Similarly, when American Civil War 
specialists looked at uniforms, weapons and other artefacts they also responded to the 
meaning of the items depicted.  

The two experiments confirm the predictions of the saliency map hypothesis in the 
locations of early fixations on pictures of real-world scenes, at least for viewers un-
familiar with the content. Conspicuous regions are fixated more than other regions 
during the first few seconds of inspection when viewers were encoding the pictures 
on first viewing. It has been previously reported that fixations are guided to these re-
gions during encoding but not in search tasks [29-31], and the present results extend 
these conclusions to take into account the prior knowledge of the viewer.  
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This result is important because it is evidence of individual scan patterns that are 
picture-based rather than being the product of general scanning strategies or of sali-
ency-driven scanning. If scanpaths were the product of a habitual and stereotypical 
saccade-generator routine, or indeed of the low-level visual characteristics of an im-
age, then we would expect invariant similarity scores. Instead, when comparing fixa-
tion sequences for pictures from different domains of interest, the similarity between 
scan patterns varied. There was sensitivity to the content of the picture here, with in-
dividuals varying their fixations behaviour according to what they were looking at. 
The knowledge of the viewer influences the way that they inspect a picture, and this 
raises the possibility of the assessment of their domain knowledge through the obser-
vation of their fixation scanpaths. A knowledgeable student will inspect a picture ac-
cording to its content, whereas an unfamiliar picture will be inspected according to its 
low-level visual characteristics. Perhaps a student’s level of knowledge could be as-
sessed implicitly by observing their eye movements. 

A second potential application of the findings is with the user-centered design of 
computer interfaces. To assess the usability of an interface developers may use rapid 
prototyping with the early involvement of end users who provide feedback that often 
involves providing verbal commentaries or reports [35]. Holzinger has argued that we 
cannot take users’ verbal reports at face value, however, and that their actual non-
verbal behaviour would provide a preferable measure of interface usability [36]. By 
comparing the fixation patterns of end users with the patterns provided by expert us-
ers, an evaluation could be developed that does not rely upon verbal reports or ques-
tionnaires, and that could provide a direct index of a system’s intended usability. 
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