
Tiara: A Self-stabilizing Deterministic Skip List

Thomas Clouser1, Mikhail Nesterenko1,�, and Christian Scheideler2

1 Deparment of Computer Science, Kent State University, Kent, OH, USA
2 Institute of Computer Science, Technical University of Munich, Garching, Germany

Abstract. We present Tiara — a self-stabilizing peer-to-peer network
maintenance algorithm. Tiara is truly deterministic which allows it to
achieve exact performance bounds. Tiara allows logarithmic searches and
topology updates. It is based on a novel sparse 0-1 skip list. We rigor-
ously prove the algorithm correct in the shared register model. We then
describe its extension to a ring and incorporation of crash tolerance.

1 Introduction

Due to the rise in popularity of peer-to-peer systems, dynamic overlay networks
have recently received a lot of attention. An overlay network is a logical net-
work formed by its participants across a wired or wireless domain. In open
peer-to-peer systems, participants may frequently enter and leave the overlay
network either voluntarily or due to failure. As peer-to-peer systems can con-
tain millions of users, faults and inconsistencies should be regarded as the norm
rather than an exception. Hence, overlay networks require mechanisms that con-
tinuously counter such disturbances. Simplistic ad hoc approaches that handle
individual fault conditions do not adequately perform in case of unanticipated,
complex or systemic failures. In practice many peer-to-peer systems, such as
KaZaA, Bittorrent, Kademlia, use heuristic methods in order to maintain their
topology. Moreover, solutions presented in research publications focus on con-
structing scalable and well-structured overlay networks in an efficient manner
[1,2,3,4,5,6,7,8,9] while offering only ad hoc solutions to fault tolerance. For the
overlay networks that are based on a sorted list or ring (e.g., [2,3,5,9]), recov-
ery can be achieved as long as this base structure can be maintained. However,
jointly maintaining such list and the complete structure is rather tricky.

One can argue that if nodes are randomly distributed, a sorted list or ring
with a sufficient number of redundant connections will not disintegrate with high
probability. However, it is not clear whether practical systems always satisfy such
randomization assumption. In addition, the problem of generating high-quality
trusted random numbers in a peer-to-peer systems is far from trivial. Moreover,
it is known that an adversary can quickly degrade the randomness of the peer-to-
peer system even if perfectly random numbers are reliably generated [10]. Thus,
some researchers [11,12] argue that overlay network architects need to consider
holistic approaches to fault tolerance and recovery, such as self-stabilization. In
� This research is supported in part by NSF Career award CNS-0347485.

S. Kulkarni and A. Schiper (Eds.): SSS 2008, LNCS 5340, pp. 124–140, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Tiara: A Self-stabilizing Deterministic Skip List 125

this paper we present Tiara. To the best of our knowledge, Tiara is the first self-
stabilizing skip-list based overlay network algorithm that supports logarithmic
searches and updates.

Related literature. Several algorithms presented in the literature focus on sta-
bilizing parts of overlay networks. Onus et al. [12] present several high-atomicity
solutions to linearizing an overlay network. Shaker and Reeves [13] describe
a distributed algorithm for forming a directed ring network topology. Hérault
et al. [14] describe a spanning tree formation algorithm for overlay networks.
Cramer and Fuhrmann [15] show that ISPRP — a ring-based overlay network
is, in certain cases, self-stabilizing. Caron et al. [16] describe a snap-stabilizing
prefix tree for peer-to-peer systems. Bianchi et al. [17] present a stabilizing search
tree for overlay networks optimized for content filters.

Several randomized overlay network algorithms have also been proposed.
Dolev and Kat [18] introduce the HyperTree and use it as a basis for their
self-stabilizing peer-to-peer system. Dolev et al. [19] describe a self-stabilizing
intrusion-tolerant overlay network.

Pugh [20] introduce skip lists as an alternative to balanced tree structures.
Munro et al. [21] describe a deterministic algorithm for skip list construction.
Awerbuch and Scheideler [3], Aspnes and Shah [2], and Harvey et al. [5] extend
the randomized skip list to distributed environments. Harvey and Munro [22]
present a deterministic distributed skip list.

Our contribution. In this paper we present Tiara. It stabilizes a novel 0-1
distributed skip list. Specifically, we demonstrate a self-stabilizing algorithm for
a sorted list and then show how to extend it to a self-stabilizing algorithm for a
skip list. Tiara can construct these structures without any knowledge of global
network parameters such as the number of nodes in the system, each node uti-
lizes only the information available to its immediate neighbors. Moreover, Tiara
preserves network connectivity so long as the initial network is connected. That
is, Tiara reconstructs the connectivity of the base sorted list on the basis of skip
list links. We rigorously prove Tiara correct in an asynchronous communication
register based model.We describe how Tiara can be extended to a ring structure
and how it can incorporate crash resistance.

Organization of the paper. First, we introduce our computational model.
Then, we describe a self-stabilizing algorithm for the sorted list and formally
prove it correct. We then extend it to a self-stabilizing algorithm for Tiara discuss
various extensions and efficiency improvements. We complete the paper with
future research directions and open problems.

2 Model

A peer-to-peer system consists of a set N of processes. Each process has a unique
integer identifier. A process contains a set of variables and actions. An action has
the form 〈name〉 : 〈guard〉 −→ 〈command〉. name is a label, guard is a Boolean
predicate over the variables of the process and command is a sequence assigning

126 T. Clouser, M. Nesterenko, and C. Scheideler

new values to the variables of the process. For each pair of processes a and b, we
define a Boolean variable (a, b) that is shared among them. Two processes a and
b are neighbors if this variable is true. The neighborhood of a process a is defined
as the set of all of its neighbors. Sets of neighbors may be maintained on different
levels. A neighborhood of process a at level i is denoted and denoted a.i.NB .
The right neighborhood of a, denoted a.i.R, is the set of neighbors of a with
identifiers larger than a. That is, a.i.R ≡ {b : b ∈ a.i.NB : b > a}. Similarly, the
left neighborhood of a, denoted a.i.L, are a’s neighbors with smaller identifiers.
That is, a.i.L ≡ {b : b ∈ b.i.NB : b < a}. Naturally, the union of a.i.R and a.i.L
is a.i.NB .

When describing a link we always state the smaller identifier first. That is, a is
less than b in (a, b). Two processes a and b are consequent if there is no process c
whose identifier is between a and b. That is, cnsq(a, b) ≡ (∀c :: (c < a)∨(b < c)).
The length of a link (a, b) is the number of processes c such that a < c < b.
By this definition the length of a link that connects consequent processes is
zero.

A system state is an assignment of a value to the variables of each process. An
action is enabled in some state if its guard is true at this state. A computation is
a maximal fair sequence of states such that for each state si, the next state si+1
is obtained by executing the command of an action that is enabled in si. This
disallows the overlap of action execution. That is, action execution is atomic. The
execution of a single action is a step. Maximality of a computation means that
the computation is infinite or it terminates in a state where none of the actions
are enabled. Such state is a fixpoint. In a computation the action execution is
weakly fair. That is, if an action is enabled in all but finitely many states of an
infinite computation then this action is executed infinitely often. This defines an
asynchronous program execution model.

A state conforms to a predicate if this predicate is true in this state; oth-
erwise the state violates the predicate. By this definition every state conforms
to predicate true and none conforms to false. Let T and U be predicates over
the state of the program. Predicate T is closed with respect to the program
actions if every state of the computation that starts in a state conforming to T
also conforms to T . Predicate T converges to U if T and U are closed and any
computation starting from a state conforming to T contains a state conforming
to U . The program stabilizes to T if true converges to T . Since we will focus
on self-stabilizing algorithms for overlay networks, and self-stabilization is only
possible for overlay networks that are initially connected, we identify with true
any state where the graph is connected.

While most of our program model is fairly conventional, we would like to draw
the reader’s attention to our way of modelling overlay network link management.
If one process updates its neighborhood, the change affects the neighbors of other
processes. For example, if process a adds b to its neighborhood by creating a link
(a, b), this also means that a is atomically added to b’s neighborhood. On the
other hand, if a removes b from its neighborhood, then also a is removed from
b’s neighborhood.

Tiara: A Self-stabilizing Deterministic Skip List 127

3 Core Tiara Description, Correctness Proof and
Complexity Estimate

In its core, Tiara contains two components: the bottom component (b-Tiara)
that maintains the processes at the lowest level in sorted order and the skip-list
component (s-Tiara) that constructs the higher levels of Tiara. These compo-
nents are interdependent. s-Tiara relies on b-Tiara to sort the lowest level, while
s-Tiara may append links to the bottom level to preserve the connectivity of the
system.

We present the components and prove them correct bottom up starting with
b-Tiara. However, the presentation of b-Tiara is divided into two parts: the
growing and trimming. We prove the stabilization of the growing part first as
the stabilization of s-Tiara depends on its correct operation. We prove the sta-
bilization of the trimming part last as it depends on the stabilization of s-Tiara.

3.1 The Bottom Component of Tiara (b-Tiara) and Stabilization of
Grow

Description. The objective of b-Tiara is to transform the system into a linear
graph with the processes sorted according to their identifiers. The algorithm for
b-Tiara is shown in Fig. 1. The only variables that b-Tiara manipulates are the
neighbor sets for each process u — u.0.NB . The right neighborhood of u, denoted
u.0.R is a subset of u.0.NB with the identifiers greater than u. Since u.0.R can
be computed from u.0.NB as necessary, u.0.R is not an independent variable
but a convenient shortcut. The left neighborhood u.0.L is defined similarly.

Each process u has two pairs of actions: grow and trim that operate to the
right and to the left of u. Action grow right is enabled if u discovers that its
right neighbor s has a left neighbor t that is not a neighbor of u. In this case
u adds t to its neighborhood. That is, u adds a link (u, t) to the graph. Even
though u is the left neighbor of s, t may be either to the left or to the right of u.
That is t < u or t > u. Regardless of this relation, u connects to t. Action grow
left operates similarly in the opposite direction.

process u
variables

u.0.NB — set of neighbor processes of u.
shortcuts

u.0.L ≡ {z : z ∈ u.0.NB : z < u}, u.0.R ≡ {z : z ∈ u.0.NB : z > u}
actions
grow right : (s ∈ u.0.R) ∧ (t ∈ s.0.L) ∧ (t �∈ u.0.NB) −→

u.0.NB := u.0.NB ∪ {t}
trim right : (s, t ∈ u.0.R)∧(t ∈ s.0.L)∧(∀z :z ∈ u.0.R :z ≤ s)∧(∀z :z ∈ s.0.L :z ≥ u)−→

u.0.NB := u.0.NB/{s}
grow left and trim left are similar

Fig. 1. The bottom component of Tiara (b-Tiara)

128 T. Clouser, M. Nesterenko, and C. Scheideler

•a •b •c •d •e

(a) grow right is enabled at c
and d. The execution of either
adds (c, d).

•a •b •c •d •e

(b) trim right is enabled at c
and trim left is enabled at e.
They remove (c, e).

•a •b •c •d •e

(c) grow right is enabled at b
and c. It adds (b, c).

•a •b •c •d •e

(d) trim right is enabled at b
and trim left is enabled at d.
They remove (b, d)

•a •b •c •d •e

(e) grow right is enabled at a
and b. It adds (a, b).

•a •b •c •d •e

(f) trim left at a or trim right
at c removes (a, c) and brings
the system to the legitimate
state.

Fig. 2. Example computation of b-Tiara. The processes are listed in increasing order
of their identifiers.

Action trim right eliminates extraneous links from the graph. This action
removes link (u, s) if u has a neighbor s that satisfies the following properties.
The guard for trim right stipulates that there has to be another process t that
is a neighbor of both u and s. Hence, if (u, s) is removed the connectivity of the
graph is preserved. Also, all right neighbors of u must be smaller than or equal to
s and all left neighbors of s are greater than or equal to u. The latter condition
is necessary to break symmetry and prevent continuous growing and trimming
of the same link. Action trim left operates similarly in the reverse direction. We
show an example operation of b-Tiara in Fig. 2.

Correctness proof. Denote B(N) the graph that is induced by the processes
of the system and the links of b-Tiara. We define the following predicate: GI ≡
(∀a, b ∈ N :: cnsq(a, b) ⇒ ∃(a, b)). That is, GI states that two consequent
processes are also neighbors.

Lemma 1. If a computation of b-Tiara starts from a state where B(N) is con-
nected, it is connected in every state of this computation.

Proof: The actions of b-Tiara do not disconnect B(N). Indeed, the actions that
remove links are trim right and trim left. Consider trim right. It removes a link (a, b)
if there exists a node c such that there are links (a, c) and (c, b). Thus, the removal
of (a, b) does not disconnect the graph. The argument for trim left is similar. �

Lemma 2. If a computation of b-Tiara starts from a state where B(N) is con-
nected, b-Tiara stabilizes to GI.

Proof: To prove the lemma we need to show that (i) GI is closed under the
execution of the actions of b-Tiara and (ii) regardless of the initial state, every

Tiara: A Self-stabilizing Deterministic Skip List 129

computation contains a state satisfying GI. Let us consider closure first. The
grow actions may not violate GI as they only add links. The trim action may
affect GI by disconnecting two processes a and b. However, trim right, which
removes link (a, b), is only enabled at process a if there is a process c such that
a < c < b. Therefore, if a and b are consequent, trim right is disabled. The
reasoning is similar for trim left. Hence the closure.

To show convergence, let us assume that there are two consequent processes
a and b that are not neighbors. That is b �∈ a.0.NB . Since the graph itself is
connected, there is a path ρ between a and b. If there are multiple paths, we
shall consider the shortest one. Let the length of ρ be the sum of the lengths of
its constituent links. The execution of a trim action does not change the length
of ρ. The execution of any of the grow actions does not increase the length of
ρ. Path ρ must contain at least one segment d, e, f such that both d and f are
either smaller than e or larger than e. In this case grow right, or respectively,
grow left, is enabled in both d and f . The execution of this action decreases the
length of the path. Hence, throughout the computation, the length of ρ decreases
until it is zero and a and b are neighbors. The lemma follows. �

3.2 The Skip List Component of Tiara (s-Tiara)

Description. The objective of s-Tiara is to establish a skip list on top of the
linearized graph created by b-Tiara. The structure maintained by s-Tiara is a
sparse 0-1 skip list. At each level i, node u maintains a set of neighbors u.i.NB .
Out of this set, the rightmost and leftmost neighbors are defined as right and
left skip links: u.i.rs and u.i.ls. A node may not have a right or left skip link at
some level if it is on either end of the list.

We denote right and left skip list neighbors of u at level i − 1 as v and x
respectively. Nodes w and y are respectively right and left neighbors of v and
x at the same level. We illustrate this notation in Fig. 3 as we will be using it
extensively throughout the correctness proof of the algorithm.

If both nodes u and v exist at level i and u.i.rs = v then this link is 0-skip
link. If u and w exist at level i and u.i.rs = w, then this link is a 1-skip link.
A process that exists at level i − 1 is up if it also exists at level i, it is down
otherwise. If a process that 1-skip link spans is down it is a cage. For example
u, v and w form a cage if u.i.rs links to w and v is down. The middle process is
inside the cage. Refer to Fig. 4 for the illustration of the concept of a cage. The
sparse 0-1 skip list has two rules of organization. First, all links are either 0 or
1 skip links. Second, if a node is on level i and it is not on the end of the list on
level i − 1 then at least one of its links is a 1 skip link.

i

i − 1 •y •x

•u

•u •v •w

Fig. 3. Aliases for neighbors of u in s-Tiara. v ≡ u.(i − 1).rs, w ≡ v.(i − 1).rs, x ≡
u.(i − 1).ls, and y ≡ x.(i − 1).ls, where u.i.rs and u.i.ls are right and left skip-list
neighbors of u at level i, respectively.

130 T. Clouser, M. Nesterenko, and C. Scheideler

i

i − 1

•y

•y •x

•u

•u

(a) u is adja-
cent to the cage
on the left.

i

i − 1

•x

•x •u

•v

•v

(b) u is inside
the cage.

i

i − 1

•u

•u •v

•w

•w

(c) u is adjacent
to the cage on
the right.

Fig. 4. Possible cages with respect to node u

process u
parameter i ≥ 0: integer — level of the skip list
variables

u.i.NB — set of neighbor processes of u at level i
shortcuts

v ≡ u.(i − 1).rs, w ≡ v.(i − 1).rs, x ≡ u.(i − 1).ls, y ≡ x.(i − 1).ls
u.i.R ≡ {z : z ∈ u.i.NB : z > u}, u.i.L ≡ {z : z ∈ u.i.NB : z < u}

u.i.rs ≡
{

(s : s ∈ u.i.R : (∀t : t ∈ u.i.R : t ≥ y)), if u.i.R �= ∅

⊥, otherwise
u.i.ls is defined similarly
exists(z, i) ≡ ((z �= ⊥) ∧ (z.i.NB �= ∅))
valid(u, i) ≡ ((((u.i.ls = y) ∨ (u.i.ls = x) ∨ (u.i.ls = ⊥)) ∧ (u.i.rs = w)) ∨

(((u.i.rs = v) ∨ (u.i.rs = w) ∨ (u.i.rs = ⊥)) ∧ (u.i.ls = y)) ∨
((u.i.ls = ⊥) ∧ (u.i.rs = ⊥)) ∨
¬(exists(x, i) ∧ exists(u, i) ∧ exists(v, i)))

actions for i > 0
upgrade right : valid(u, i) ∧ ¬exists(v, i) ∧ (v �= ⊥) ∧ (w �= ⊥) ∧ (u.i.rs �= w) −→

u.i.NB := u.i.NB ∪ {w}
upgrade left is similar
bridge right : valid(u, i) ∧ exists(u, i) ∧ exists(v, i) ∧ (u.i.rs �= v) −→

u.i.NB := u.i.NB ∪ {v}
bridge left is similar
prune: valid(u, i) ∧ exists(u, i) ∧ (u.i.NB �= {u.i.rs, u.i.ls}) −→

u.0.NB := u.0.NB ∪ u.i.NB/{u.i.rs, u.i.ls},
u.i.NB := {u.i.rs, u.i.ls}

downgrade right : ¬valid(u, i) ∧ ¬((u.i.rs = v) ∨ (u.i.rs = w) ∨ (u.i.rs = ⊥)) −→
u.0.NB := u.0.NB ∪ u.i.R,
u.i.R := ∅

downgrade left is similar
downgrade center : ¬valid(u, i) ∧ exists(x, i) ∧ exists(u, i) ∧ exists(v, i) −→

u.0.NB := u.0.NB ∪ u.i.NB ,
u.i.NB := ∅

Fig. 5. The skip list component of Tiara (s-Tiara)

The the algorithm is shown in Fig. 5. As before, to simplify the presentation
we introduce a few shortcuts. Sets u.i.R and u.i.L are the subsets of u.i.NB
that contain the identifiers of u’s neighbors with respectively higher and lower
identifiers than u. We define u.i.rs to be the neighbor with the link of the smallest
length among u.i.R. To put another way, u.i.rs connects to u’s right neighbor

Tiara: A Self-stabilizing Deterministic Skip List 131

3

2

1

0 •a •b •c •d •e •f •g •h •i

•a •b •f •i

•a •b •e •f

•e •f

(a) Level 1. downgrade right is
enabled at f , downgrade left is
enabled at i and upgrade left
is enabled at e. These actions
remove (f, i) and add (e, c).

3

2

1

0 •a •b •c •d •e •f •g •h •i

•a •b •c •e

•a •b •e •f

•e •f

(b) Level 1. downgrade center
is enabled at b, upgrade right
is enabled f and upgrade left
is enabled at h. These actions
remove (a, b) and add (f, h).

3

2

1

0 •a •b •c •d •e •f •g •h •i

•c •e •f •h

•a •b •e •f

•e •f

(c) Level 1. upgrade right is
enabled at a, upgrade left is
enabled at c, bridge right is
enabled at e and bridge left
is enabled at f . These actions
add (a, c) and (e, f).

3

2

1

0 •a •b •c •d •e •f •g •h •i

•a •c •e •f •h

•a •b •e •f

•e •f

(d) Level 2. downgrade right
is enabled at a and downgrade
left is enabled at b. These ac-
tions remove (a, b).

3

2

1

0 •a •b •c •d •e •f •g •h •i

•a •c •e •f •h

•e •f

•e •f

(e) Level 2. upgrade right is
enabled at a and upgrade left
is enabled at e. These actions
add (a, e).

3

2

1

0 •a •b •c •d •e •f •g •h •i

•a •c •e •f •h

•a •e •f

•e •f

(f) The system has reached a
legitimate state.

Fig. 6. s-Tiara. We list the processes in the increasing order of their identifiers. b-
Tiara has stabilized to GI. In each state we only mention the enabled actions that are
relevant to the discussion. We do not illustrate the operation of prune.

with the smallest identifier. Note that u.i.rs is ⊥ if u.i.R is empty. Shortcut
u.i.ls is defined similarly.

Predicate exists(z, i) is true if node z is present at all and if z.i.NB is not
empty. Node u may read only its immediate neighbor states. Thus, u may only
invoke exists on its neighbors and itself. Observe that exists is defined to return
false if it is invoked on a non-existent node. For example, if u is at the right end
of the list at level i and u invokes exists(u.i.rs, i). In this case exists(u.i.rs, i)
returns false. Predicate valid(u, i) captures the correct state of the system.
Specifically, it states that if u exists at level i then the length of the skip links
should not be more than 1 and either x or v does not exist at level i. The latter
condition guarantees that at least one link of u is a 1 skip link.

The actions of s-Tiara are as follows. Action upgrade right establishes a link
to w at level i if v is not up. That is, this link is a 1 skip link. If u is not up,
upgrade right brings u up to level i. Action upgrade left operates similarly in the

132 T. Clouser, M. Nesterenko, and C. Scheideler

opposite direction. Actions bridge right and left establish 0 skip links if both
nodes being connected are up. Action prune eliminates the links other than
u.i.rs and u.i.ls from u.i.NB. In case the links are not 0 or 1 skip, action down-
grade right completely removes the right neighborhood of u. Action downgrade
left operates similarly. And the last action downgrade center eliminates three
consecutive up nodes. This ensures that there could not be two consecutive 0
skip links. An example computation of s-Tiara is shown in Fig. 6.

Correctness proof. Our proof proceeds as follows. We state five predicates on
the level i of s-Tiara. In the sequence of lemmas we show that if the lower levels of
s-Tiara have stabilized, then level i of s-Tiara stabilizes to these predicates. The
conjunction of these predicates implies the stabilization of level i of s-Tiara. We
then use this fact as an inductive step in the convergence proof of stabilization
of s-Tiara.

Before proceeding with the proof, we introduce notation and terminology we
are going to use. Denote S(N) the graph induced by the processes of the system
as well as the links of b-Tiara and s-Tiara. Throughout the discussion we consider
process u and its neighbors as defined in the description of s-Tiara. A node u
is middle at level i if it has both left and right neighbors as well at least one
two hop neighbor. That is, middle(u, i) ≡ (exists(v, i − 1) ∧ exists(x, i − 1) ∧
(exists(y, i − 1) ∨ exists(w, i − 1))).

Below are the predicates to which s-Tiara stabilizes. Predicate good links.i
states that process u connects to processes at most two hops away. Predicate
one links.i enforces the rules of 0-1 skip list. Specifically, it stipulates that u
should either be inside the cage or should have adjacent cages to the left or
to the right. Predicates zero left links.i and zero left links.i ensure that the
0-links are in place. That is, the processes that are consequent at level i − 1 and
are up, are also connected at level i. Predicate only good links.i states that
the neighborhood of u does not have links other than rs and ls.

good links.i ≡ (∀u :: ¬exists(u.i) ∨
((u.i.rs = v) ∨ (u.i.rs = w) ∨ (u.i.rs = ⊥) ∧
((u.i.ls = y) ∨ (u.i.rs = x) ∨ (u.i.ls = ⊥))

one links.i ≡ (∀u : middle(u, i) :
(¬exists(u, i) ∧ (x.i.rs = v) ∧ (v.i.ls = x)) ∨
(¬exists(v, i) ∧ (¬exists(w, i − 1) ∨ (u.i.rs = w))) ∨
(¬exists(x, i) ∧ (¬exists(y, i − 1) ∨ (u.i.ls = y))))

zero right links.i ≡ (∀u :: ¬exists(u.i) ∨ ¬exists(v.i) ∨ (u.i.rs = v))
zero left links.i ≡ (∀u :: ¬exists(u.i) ∨ ¬exists(x.i) ∨ (u.i.ls = x))
only good links.i ≡ (∀u :: ¬exists(u.i) ∨ (u.i.NB = {u.i.rs, u.i.ls}))

Lemma 3. Assuming that neighbor relations at level i−1 do not change through-
out the computation, s-Tiara stabilizes to good links.i

Proof: In proving this and consequent lemmas we show a stronger property of
closure and convergence of the predicate for a particular process u. This implies
the stabilization of the predicate for all u at the specified level.

Tiara: A Self-stabilizing Deterministic Skip List 133

Let us show closure first. The topology at level i − 1 does not change. Hence
once u.i.rs points to one or two hop neighbors v or w, the neighbor’s relative
positions do not change. Similar argument applies to u.i.ls. Let us consider the
actions and how they affect good links.i. Let us start with the actions of u.
Actions upgrade right and bridge right do not violate the predicate since they
set u.i.rs to respectively w and v. Similar argument applies to upgrade left and
bridge left. Action prune does not affect the predicate since it does not modify
either u.i.rs or u.i.ls. Neither do downgrade right and downgrade left since they
respectively set u.i.rs and u.i.ls to ⊥. Action downgrade center removes u from
level i altogether and hence cannot violate the predicate. The nodes further
than two hops away never connect to u. Hence the actions of other nodes cannot
violate the predicate either.

Let us now address convergence. The predicate can be violated only if u is
up. It is violated if either u.i.rs or u.i.ls points to a node other than u’s one
or two-hop neighbors. In this case either downgrade right or downgrade left are
enabled that bring the links in compliance with the predicate. �

Lemma 4. Assuming that neighbor relations at level i−1 do not change through-
out the computation and good links.i is satisfied, s-Tiara stabilizes to
one links.i

Proof: As a first step, we would like to make the following observation: once
a cage is formed, it is never destroyed. For example, assume that u, v and w
form a cage. The actions of u, and, similarly, w do not affect this link. Also, if v
is down, the only actions it can use to come up is upgrade right or upgrade left.
However, both are disabled since u and v are up. This observation guarantees
the closure of one links.i.

Let us discuss convergence. Assume that u is down. We consider two cases: u
is initially down and u is initially up and never goes down. If u is down, the only
way, u can come up is through execution of upgrade right or upgrade left at u,
w or y. In all cases cages adjacent to u are formed and the predicate is satisfied.
If u is down, then upgrade right is enabled in x and upgrade left in v. Thus if u
does not come up, then x or v execute these upgrade actions. In which case a
cage is formed with u inside. This satisfies the predicate as well.

Assume that u is up. If it ever goes down, the foregoing discussion applies.
The only remaining case is if u stays up for the remainder of the computation.
Throughout a computation of b-Tiara a node can come up only once. Indeed, a
node comes up only if it forms a cage. Since a cage is never destroyed, the node
never goes down. This means that a node can go down only once. Let us consider
the state of the computation where u’s neighbors x and v do not change their
up and down position. Both x and v cannot be simultaneously up in this state,
as it enables downgrade center at u. The execution of this action brings u down.
However, we assumed that u stays up for the remainder of the computation.
Thus, either x or v are down. Assume, without loss of generality, that v is down.
If w does not exist at level i − 1, one links.i is satisfied. Assume that w exists.
If link u.i.rs = w is present, one links.i is also satisfied. However, if it is not

134 T. Clouser, M. Nesterenko, and C. Scheideler

present, then upgrade right is enabled in u. Its execution establishes the link,
forms a cage and satisfies the predicate. �

Lemma 5. Assuming that neighbor relations at level i−1 do not change through-
out the computation and good links.i as well as one links.i are satisfied, s-
Tiara stabilizes to zero left links.i and zero right links.i

Proof: We prove the lemma for zero right links.i only. The proof for the
other predicate is similar. Let us argue closure. If one links.i is satisfied pro-
cesses do not go up or down. Thus, the only actions that can be enabled are bridge
and prune. The execution of either action maintains the validity of
zero left links.i. Hence the closure.

Let us address convergence. The predicate is violated only if the neighbor
processes u and v are both up and they do not have a link at level i. If one links.i
is satisfied, u forms a cage to its left, while v forms a cage to its right. Recall
that the cages are never destroyed. In this case u has bridge right while v has
bridge left enabled. When either action is executed the predicate is satisfied. �

Lemma 6. Assuming that neighbor relation at level i − 1 does not change
throughout the computation and good links.i, one links.i, zero right links.i
as well as zero left links.i are satisfied, s-Tiara stabilizes to only good links.i

Proof: (outline) The satisfaction of good links.i, one links.i,
zero right links.i and zero left links.i leaves only one possible action en-
abled — prune. In this case there are links in u.i.NB besides u.i.rs and u.i.ls
and they are moved to u.0.NB. �

Lemma 7. If a computation of Tiara starts from a state where S(N) is con-
nected, this computation contains a state where B(N) is connected.

Proof: The non-trivial case is where S(N) is connected while B(N) is not.
That is, the overall graph connectivity is achieved through the links at the higher
levels of Tiara. Let X and Y be two graph components of B(N) such that
they are connected in S(N). Let i > 0 be the lowest level where X and Y are
connected. Assume, without loss of generality that there is a pair of processes
a ∈ X and b ∈ Y , such that a.i.rs = b. In this case downgrade right is enabled
at a. The execution of downgrade right connects X And Y in B(N). The lemma
follows. �

Define

SI ≡ (∀i : i > 0 : good links.i ∧ one links.i∧
zero right links.i ∧ zero left links.i ∧ only good links.i)

Lemma 8. Tiara stabilizes to SI.

Proof: According to Lemma 7, every computation contains a state where
B(N) is connected. Due to Lemma 2, if B(N) is connected, b-Tiara stabilizes to

Tiara: A Self-stabilizing Deterministic Skip List 135

GI. The remainder of the proof is by induction on the levels of s-Tiara. If B(N)
is connected and GI is satisfied the topology of the level 0 does not change.
Hence, the requisite five predicates are vacuously satisfied. Assume that these
predicates are satisfied for all levels i−1. Once the predicates are satisfied, none
of the actions for processes at level i−1 are enabled. This means that the topol-
ogy at this level does not change. Applying Lemmas 3, 4 5 and 6 in sequence we
establish that the five predicates are satisfied at level i. Hence the lemma. �

3.3 Stabilization of Trim in b-Tiara

Link (a, b) is independent if there exists no link (c, d) different from (a, b) such
that c ≤ a and b ≤ d. Consider an arrangement where the nodes are positioned
in the increasing order of their identifiers.

Lemma 9. If a computation of b-Tiara that starts in a state where the graph is
connected and contains an independent link of non-zero length, this computation
also contains a suffix of states without this link.

Proof: Let (a, b) be an independent link of non-zero length. None of the grow
actions create independent links. The only action that makes a link independent
is a trim of another independent link. Thus, if an independent link is deleted,
it is never added. Thus, to prove the lemma it is sufficient to show that (a, b) is
eventually deleted.

Link (a, b) is non-zero length. This means that the node c consequent to
a is not the same as b. In other words a < c < b. b-Tiara stabilizes to GI
which ensures that a and c are connected. If c and b are not connected, both
of them have a grow action enabled that connects them. Observe that (a, b) is
independent. This means that all the right neighbors of a are to the left of b
and all the left neighbors of b are to the right of a. Moreover, we just showed
that there exists a node c such that a < c < b and there are links c ∈ a.R and
c ∈ b.L. This means that trim right is enabled at a and trim left is enabled at
b. The execution of either action deletes (a, b). �

We define the following predicate: T I ≡ (∀a, b ∈ N :: ∃(a, b) ⇒ cnsq(a, b))

Lemma 10. If Tiara starts in a state where it satisfies GI and SI, then it
stabilizes to T I

Proof: (outline) The conjunct of GI and T I is closed under the execution of
b-Tiara. Note also that if GI and SI are satisfied, then the actions s-Tiara are
disabled. Hence the closure of T I.

Let us consider convergence. Since the actions of s-Tiara are disabled, they do
not add links to B(N). If T I does not hold, then there is at least one independent
link of non-zero length. If the graph is connected the grow actions never create an
independent link. Consider a computation of b-Tiara that starts in an illegitimate
state. Let l be the length of the longest independent link. Since the state is not
legitimate, l > 0. According to previous discussion, new links of length l do not

136 T. Clouser, M. Nesterenko, and C. Scheideler

appear. Let (a, b) be the independent link of length l. According to Lemma 9,
(a, b) is eventually removed. Thus, all links of length l are eventually removed.
The lemma can be easily proven by induction on l. �

The discussion in this section culminates in the following theorem.

Theorem 1. Tiara stabilizes to the conjunction of GI, SI and T I.

4 Tiara Usage, Implementation and Extensions

Searches. Tiara maintains a skip list [20,21] which is equivalent to a distributed
balanced search tree. Hence the searches in Tiara proceed similar to searches in
such trees. Let b be a right neighbor of a at some level i of Tiara. The right
interval of a, denoted [a, b), is the range of identifiers between a and b. Left
interval is defined similarly. If a does not have a right neighbor, its interval is
not finite. That is, a’s interval contains all process identifiers greater than a.
Similarly, if a lacks left neighbor it’s interval is infinite on the left. Thus in any
level, the collection of intervals contains the complete range of identifiers.

Suppose a, c and b are consequent at level i − 1 of Tiara and a and b are
consequent at level i. That is c is in the cage. Since the identifiers are sorted,
c belongs to the interval [a, b). If a node is down, then one if its neighbors is
up. Thus a client process that has a pointer to a node in Tiara and wishing to
advance up the skip list only needs to examine the node’s neighbors.

Assuming that a client process connects to an arbitrary node in Tiara, the
search proceeds first upward then downward in the skip list. In the upward phase,
the client is moving up the list looking for the node whose interval contains the
identity. Since every level contains the complete id-range, this phase terminates.
Once the range is found, the client advances downward evaluating the cages
it encounters to narrow the search range. This procedure continues until the
desired node x is located or it is established that x belongs to the interval of
the consequent nodes at the bottom level. The latter case means that x is not
present in the system. There are O(log|N |) levels in Tiara. Thus, the upward
and the downward phases take O(log|N |) number of steps.

Joins and leaves. We assume that each process has two read-only Boolean
variables maintained by the environment: join and leave. Since the variables are
read-only, stabilization of their operation is the responsibility of the environment.
Let us consider join operation first. The joining node x connects to an arbitrary
node of the network. The variable join is set to true. We assume that the
environment may only set join to false after the node successfully inserts itself
at the bottom level of Tiara. The joining node executes a search to find the
bottom level interval [a, b) to which it belongs. Then, x makes a and b its right
and left neighbors respectively. After a and b discover the presence of a node
whose join is set to true, they remove link (a, b). Then, the upper levels of Tiara
adjust. The insertion of the node at the bottom level entails at most a constant
number of steps at each level of Tiara. Since the search takes at most O(log|N |)
steps, the total number of steps required for node join is also in O(log|N |).

Tiara: A Self-stabilizing Deterministic Skip List 137

Let us discuss the leave operation. The environment sets leave to true to
indicate that the node x requests disconnect. We assume that leave cannot be
set when join is set and it cannot be set back to false until the node disconnects.
When the right and left neighbors of x notice that the leave of x is set to true, the
neighbors add a link bypassing x at the bottom level. Node x can then disconnect.
The higher levels of Tiara execute the regular Tiara actions to accommodate the
missing node. At most a constant number of adjustment steps is required at each
level. Hence the total number of steps required for the node to leave Tiara is in
O(log|N |).
Crash resistance. Tiara can be separated into disconnected components by
the crash of even a single process. Tiara can be fortified against separation
due to crashes in the following manner. At the bottom, each process maintains
a crash-redundancy link to its right neighbor’s neighbor. That is, the bottom
level list becomes doubly connected. Thus, it can tolerate a single crash. The
crash tolerance can be further improved by adding similar links to more distant
processes. In an asynchronous model there is no reliable way to distinguish a
crashed process from a slow one [23]. Thus, to accomplish this, the processes need
to be equipped with failure detectors [24,25]. A failure detector alerts the process
if its neighbor crashes. Then, Tiara stabilizes to a legitimate state corresponding
to the system without the crashed process.

Extension to ring. Tiara can be extended to a ring structure similar to
Chord [9]. The idea is as follows. For b-Tiara, as well as for each level of s-Tiara,
the lowest id-process needs to add a special wraparound link to the highest-id
process. This wraparound link maintenance is carried out by the process without
left neighbors. After b-Tiara and s-Tiara stabilize, the lowest-id process at each
level is the only such process. The highest-id process at each level is the only
process without right neighbors.

Once the process determines that it has no left neighbors it starts positioning
the wraparound link. Essentially, the process continues to move the link to a right
neighbor of the destination of the link. Note that this movement stops once the
wraparound link reaches the highest-id process at that level. If the maintainer
of the wraparound link determines that it has left neighbors, it destroys its
wraparound link. Refer to a technical report [26] for a detailed description of
this extension.

Other improvements. There is a number of modifications to Tiara that make
it more efficient and applicable. At each level of Tiara, up to two out of three
nodes may be promoted to the next level. Although the number of levels is
logarithmic with respect to the system size, it may still be relatively large. The
number of levels may be decreased by modifying Tiara to promote fewer nodes.
For example, we can allow the nodes at level i to skip up to two or three neighbors
at level i − 1. This would require for each node to maintain data about its
extended neighborhood.

The grow operation of b-Tiara may force a process to acquire up to O(|N |)
neighbors during stabilization. This may require devoting extensive memory

138 T. Clouser, M. Nesterenko, and C. Scheideler

resources of each node to neighborhood maintenance. A simple way to miti-
gate it is to execute trim operations before grow. That is, if a process finds that
it has both trim and grow actions enabled. It executes trim. Care must be taken
to ensure that action execution is still weakly fair.

5 Future Work

We presented Tiara — a first deterministic self-stabilizing peer-to-peer system
with a logarithmic diameter. It provides a blueprint for a realistic system. We en-
vision several directions of extending this work: further efficiency improvements,
such as keeping the runtime and the degree of the self-stabilization process low,
and adding features required by practical systems. One interesting area to ex-
plore designing self-stabilizing algorithms for overlay networks that are guar-
anteed to have both small diameter and high expansion. This task is far from
trivial as the known non-stabilizing algorithms that satisfy these properties (e.g.,
[3,4]) appear to require complicated self-stabilization mechanisms. A desirable
scalability property of peer-to-peer networks is low congestion — the ability to
handle multiple concurrent search requests. Another important property is re-
sistance to churn — continuous leaving and joining of nodes. Thus, lowering
Tiara’s congestion and improving its resistance to churn is a significant avenue
of future research.

References

1. Andersen, D., Balakrishnan, H., Kaashoek, F., Morris, R.: Resilient overlay net-
works. In: SOSP 2001: Proceedings of the eighteenth ACM symposium on Oper-
ating systems principles, pp. 131–145. ACM, New York (2001)

2. Aspnes, J., Shah, G.: Skip graphs. In: SODA 2003: Proceedings of the fourteenth
annual ACM-SIAM symposium on Discrete algorithms, pp. 384–393. Society for
Industrial and Applied Mathematics, Philadelphia (2003)

3. Awerbuch, B., Scheideler, C.: The hyperring: a low-congestion deterministic data
structure for distributed environments. In: SODA 2004: Proceedings of the fifteenth
annual ACM-SIAM symposium on Discrete algorithms, pp. 318–327. Society for
Industrial and Applied Mathematics, Philadelphia (2004)

4. Bhargava, A., Kothapalli, K., Riley, C., Scheideler, C., Thober, M.: Pagoda: a dy-
namic overlay network for routing, data management, and multicasting. In: SPAA
2004: Proceedings of the sixteenth annual ACM symposium on Parallelism in al-
gorithms and architectures, pp. 170–179. ACM, New York (2004)

5. Harvey, N.J.A., Jones, M.B., Saroiu, S., Theimer, M., Wolman, A.: Skipnet: a
scalable overlay network with practical locality properties. In: USITS 2003: Pro-
ceedings of the 4th conference on USENIX Symposium on Internet Technologies
and Systems, p. 9. USENIX Association, Berkeley (2003)

6. Malkhi, D., Naor, M., Ratajczak, D.: Viceroy: a scalable and dynamic emulation of
the butterfly. In: PODC 2002: Proceedings of the twenty-first annual symposium
on Principles of distributed computing, pp. 183–192. ACM, New York (2002)

Tiara: A Self-stabilizing Deterministic Skip List 139

7. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Schenker, S.: A scalable content-
addressable network. In: SIGCOMM 2001: Proceedings of the 2001 conference on
Applications, technologies, architectures, and protocols for computer communica-
tions, pp. 161–172. ACM, New York (2001)

8. Rowstron, A.I.T., Druschel, P.: Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware
2001. LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001)

9. Stoica, I., Morris, R., Liben-Nowell, D., Karger, D.R., Kaashoek, M.F., Dabek,
F., Balakrishnan, H.: Chord: a scalable peer-to-peer lookup protocol for internet
applications. IEEE/ACM Trans. Netw. 11(1), 17–32 (2003)

10. Awerbuch, B., Scheideler, C.: Group spreading: A protocol for provably secure
distributed name service. In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D.
(eds.) ICALP 2004. LNCS, vol. 3142. Springer, Heidelberg (2004)

11. Alima, L.O., Haridi, S., Ghodsi, A., El-Ansary, S., Brand, P.: Position paper: Self-
.properties in distributed k-ary structured overlay networks. In: Babaoğlu, Ö., Je-
lasity, M., Montresor, A., Fetzer, C., Leonardi, S., van Moorsel, A., van Steen, M.
(eds.) SELF-STAR 2004. LNCS, vol. 3460. Springer, Heidelberg (2005)

12. Onus, M., Richa, A.W., Scheideler, C.: Linearization: Locally self-stabilizing sort-
ing in graphs. In: ALENEX 2007: Proceedings of the Workshop on Algorithm
Engineering and Experiments, January 2007. SIAM, Philadelphia (2007)

13. Shaker, A., Reeves, D.S.: Self-stabilizing structured ring topology p2p systems. In:
P2P 2005: Proceedings of the Fifth IEEE International Conference on Peer-to-
Peer Computing, Washington, DC, USA, pp. 39–46. IEEE Computer Society, Los
Alamitos (2005)

14. Hérault, T., Lemarinier, P., Peres, O., Pilard, L., Beauquier, J.: Brief announce-
ment: Self-stabilizing spanning tree algorithm for large scale systems. In: Datta,
A.K., Gradinariu, M. (eds.) SSS 2006. LNCS, vol. 4280, pp. 574–575. Springer,
Heidelberg (2006)

15. Cramer, C., Fuhrmann, T.: Isprp: a message-efficient protocol for initializing struc-
tured p2p networks. In: IPCCC 2005: Proceedings of the 24th IEEE International
Performance Computing and Communications Conference, April 2005, pp. 365–
370. IEEE, Los Alamitos (2005)

16. Caron, E., Desprez, F., Petit, F., Tedeschi, C.: Snap-stabilizing prefix tree for peer-
to-peer systems. In: Masuzawa, T., Tixeuil, S. (eds.) SSS 2007. LNCS, vol. 4838,
pp. 82–96. Springer, Heidelberg (2007)

17. Bianchi, S., Datta, A., Felber, P., Gradinariu, M.: Stabilizing peer-to-peer spa-
tial filters. In: ICDCS 2007: Proceedings of the 27th International Conference on
Distributed Computing Systems, Washington, DC, USA, p. 27. IEEE Computer
Society, Los Alamitos (2007)

18. Dolev, S., Kat, R.I.: Hypertree for self-stabilizing peer-to-peer systems. Distributed
Computing 20(5), 375–388 (2008)

19. Dolev, D., Hoch, E., van Renesse, R.: Self-stabilizing and byzantine-tolerant over-
lay network. In: Tovar, E., Tsigas, P., Fouchal, H. (eds.) OPODIS 2007. LNCS,
vol. 4878, pp. 343–357. Springer, Heidelberg (2007)

20. Pugh, W.: Skip lists: a probabilistic alternative to balanced trees. Commun.
ACM 33(6), 668–676 (1990)

21. Munro, J.I., Papadakis, T., Sedgewick, R.: Deterministic skip lists. In: SODA 1992:
Proceedings of the third annual ACM-SIAM symposium on Discrete algorithms,
pp. 367–375. Society for Industrial and Applied Mathematics, Philadelphia (1992)

140 T. Clouser, M. Nesterenko, and C. Scheideler

22. Harvey, N.J.A., Munro, J.I.: Deterministic skipnet. Inf. Process. Lett. 90(4), 205–
208 (2004)

23. Fischer, M., Lynch, N., Patterson, M.: Impossibility of distributed consensus with
one faulty process. Journal of the ACM 32(2), 374–382 (1985)

24. Chandra, T., Hadzilacos, V., Toueg, S.: The weakest failure detector for solving
consensus. Journal of the ACM 43(4), 685–722 (1996)

25. Chandra, T., Toueg, S.: Unreliable failure detectors for reliable distributed systems.
Communications of the ACM 43(2), 225–267 (1996)

26. Clouser, T., Nesterenko, M., Scheideler, C.: Tiara: A self-stabilizing deterministic
skip list. Technical Report TR-KSU-CS-2008-04, Department of Computer Science,
Kent State University (June 2008)

	Tiara: A Self-stabilizing Deterministic Skip List
	Introduction
	Model
	Core Tiara Description, Correctness Proof and Complexity Estimate
	The Bottom Component of Tiara (b-Tiara) and Stabilization of Grow
	The Skip List Component of Tiara (s-Tiara)
	Stabilization of Trim in b-Tiara

	Tiara Usage, Implementation and Extensions
	Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

