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Preface

The 14th International Conference on the Theory and Applications of Cryp-
tology and Information Security—ASIACRYPT 2008—was held in Melbourne
during December 7–11, 2008. The conference was sponsored by the International
Association for Cryptologic Research (IACR) in cooperation with the Center for
Advanced Computing – Cryptography and Algorithms (ACAC), Macquarie Uni-
versity, Deakin University, the Research Network for a Secure Australia (RNSA)
and SECIA. ASIACRYPT 2008 was chaired by Lynn Batten and I had the honor
of serving as the Program Chair.

There were 208 submissions from which 12 papers were withdrawn. Each
paper got assigned to at least three referees. Papers submitted by the members
of the Program Committee got assigned to five referees. In the first stage of the
review process, the submitted papers were read and evaluated by the Program
Committee members and then in the second stage, the papers were scrutinized
during an extensive discussion. Finally, the Program Committee chose 33 papers
to be included in the conference program. The authors of the accepted papers
had three weeks for revision and preparation of final versions. The revised papers
were not subject to editorial review and the authors bear full responsibility for
their contents.

The Program Committee selected three best papers. They were: “Speeding
up Pollard Rho Method on Prime Fields” by Jung Hee Cheon, Jin Hong, and
Minkyu Kim, “A Modular Security Analysis of the TLS Handshake Protocol”
by Paul Morrissey, Nigel P. Smart and Bogdan Warinschi and “Breaking the
F-FCSR-H Stream Cipher in Real Time” by Martin Hell and Thomas Johansson.
The authors of the three papers were invited to submit the full versions of their
papers to the Journal of Cryptology. The authors of the first paper, Jung Hee
Cheon, Jin Hong and Minkyu Kim, were recipients of the Best Paper Award.

The conference program included two invited lectures by Andrew Chi-Chih
Yao and John Cannon. Andrew Chi-Chih Yao spoke about “Some Perspectives
on Complexity-Based Cryptography” and an abstract has been included in the
proceedings.

There are many people who contributed to the success of ASIACRYPT 2008.
First I would like to thank the authors of all papers (both accepted and rejected)
for submitting their papers to the conference. A special thanks go to the mem-
bers of the Program Committee and the external referees who gave their time,
expertise and enthusiasm in order to ensure that each paper received a thor-
ough and fair review. I am grateful to Andy Clark, Helena Handschuh, Arjen
Lenstra and Bart Preneel for their support and advice; I thank Vijayakrishnan
Pasupathinathan for taking care of the iChair server and Michelle Kang and
Judy Chow for maintenance of the conference website. Shai Halevi deserves our
thanks for the registration site. Judy Chow, the conference secretary is warmly



VI Preface

thanked for her enormous contribution responding to participant queries and
on site at the conference registration. I would like to thank Matthieu Finiasz
and Thomas Baignères from EPFL, LASEC, Switzerland for letting us use their
iChair software that was used not only as the submission server but also fa-
cilitated the review and discussion process. Finally, I would like to thank Ed
Dawson for organizing a traditional Rump Session.

December 2008 Josef Pieprzyk
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MPC vs. SFE :
Unconditional and Computational Security�

Martin Hirt, Ueli Maurer, and Vassilis Zikas

Department of Computer Science, ETH Zurich, 8092 Zurich, Switzerland
{hirt,maurer,vzikas}@inf.ethz.ch

Abstract. In secure computation among a set P of players one considers an
adversary who can corrupt certain players. The three usually considered types
of corruption are active, passive, and fail corruption. The adversary’s corruption
power is characterized by a so-called adversary structure which enumerates the
adversary’s corruption options, each option being a triple (A,E, F ) of subsets of
P , where the adversary can actively corrupt the players in A, passively corrupt
the players in E, and fail-corrupt the players in F .

This paper is concerned with characterizing for which adversary structures
general secure function evaluation (SFE) and secure (reactive) multi-party com-
putation (MPC) is possible, in various models. This has been achieved so far only
for the very special model of perfect security, where, interestingly, the conditions
for SFE and MPC are distinct. Such a separation was first observed by Ishai et al.
in the context of computational security. We give the exact conditions for general
SFE and MPC to be possible for information-theoretic security (with negligible
error probability) and for computational security, assuming a broadcast channel,
with and without setup. In all these settings we confirm the strict separation be-
tween SFE and MPC. As a simple consequence of our results we solve an open
problem for computationally secure MPC in a threshold model with all three cor-
ruption types.

1 Introduction

Secure Function Evaluation and Secure Multi-Party Computation. Secure function
evaluation (SFE) allows a set P = {p1, . . . , pn} of n players to compute an arbitrary
agreed function f of their inputs x1, . . . , xn in a secure way. (Reactive) secure multi-
party computation (MPC) is a generalization of SFE where the function to be computed
is “reactive”: players can give inputs and get outputs several times during the computa-
tion. If one models SFE and MPC as ideal functionalities, then the main difference is
that in MPC (but not in SFE) the functionality must be able to keep state.

The potential dishonesty of players is modeled by a central adversary corrupting
players, where players can be actively corrupted (the adversary takes full control over
them), passively corrupted (the adversary can read their internal state), or fail-corrupted

� This research was partially supported by the Swiss National Science Foundation (SNF),
project no. 200020-113700/1 and by the Zurich Information Security Center (ZISC).
The full version of this paper is available at http://www.crypto.ethz.ch/pubs/HiMaZi08.

J. Pieprzyk (Ed.): ASIACRYPT 2008, LNCS 5350, pp. 1–18, 2008.
c© International Association for Cryptologic Research 2008



2 M. Hirt, U. Maurer, and V. Zikas

(the adversary can make them crash at any suitable time). A crashed player stops send-
ing any messages, but the adversary cannot read the internal state of the player (unless
he is actively or passively corrupted at the same time).

Summary of Known Results. SFE (and MPC) was introduced by Yao [Yao82]. The
first general solutions were given by Goldreich, Micali, and Wigderson [GMW87];
these protocols are secure under some intractability assumptions. Later solu-
tions [BGW88, CCD88] provide information-theoretic security. In particular, it is
remarkable that if a (physical) broadcast channel is assumed, strictly more powerful
adversaries can be tolerated [RB89, Bea91].

In the seminal papers solving the general SFE and MPC problems, the adversary
is specified by a single corruption type (active or passive) and a threshold t on the
tolerated number of corrupted players. Goldreich, Micali, and Wigderson [GMW87]
proved that, based on cryptographic intractability assumptions, general secure MPC
is possible if and only if t < n/2 players are actively corrupted, or, alternatively, if
and only if t < n players are passively corrupted. In the information-theoretic model,
Ben-Or, Goldwasser, and Wigderson [BGW88] and independently Chaum, Crépeau,
and Damgård [CCD88] proved that unconditional security is possible if and only
if t < n/3 for active corruption and t < n/2 for passive corruption. Finally, in
[GMW87, GL02, Gol04] it was shown that, based on cryptographic intractability as-
sumptions, any number of active cheaters (t < n) can be tolerated for SFE, but only if
we sacrifice fairness and guaranteed delivery of the output [Cle86]. Some of the above
results were unified, and extended to include fail-corruption, in [FHM98]: perfectly se-
cure MPC (and SFE) is achievable if and only if 3ta+2tp+tf < n, and unconditionally
secure MPC (SFE) (without a trusted setup or a broadcast channel) is achievable if and
only if 2ta + 2tp + tf < n and 3ta + tf < n, where ta, tp, and tf denote the upper
bounds on the number of actively, passively, and fail-corrupted players, respectively.
These results consider an adversary who can perform all three corruption types simul-
taneously. For the computational-security case, Ishai et al. [IKLP06] gave a protocol
for SFE which tolerates an adversary who can either corrupt ta < n/2 players actively,
or, alternatively, tp < n players passively. They also showed that such an adversary
cannot be tolerated for MPC.

Generalizing threshold models, the adversary’s corruption power can be character-
ized by a so-called adversary structure which enumerates the adversary’s corruption
options, each option being a triple (A,E, F ) of subsets of P , where the adversary can
actively corrupt the players in A, passively corrupt the players in E, and fail-corrupt
the players in F . Of course, the adversary’s choice of the option is secret and a protocol
must tolerate any choice by the adversary.

General adversary structures were first considered in [HM97, HM00] for active-only
and passive-only corruption. General mixed-corruption (active and passive) adversary
structures were considered in [FHM99]. The full generality, including fail-corruption,
was first considered in [BFH+08], where only the perfect-security case could be solved,
both for SFE and MPC. An interesting aspect of those results is the separation between
SFE and MPC: the condition for SFE is strictly weaker than the condition for MPC.
This can also be seen as a justification for the most general mixed corruption models.
Such a separation was previously observed for the perfect-security case [Alt99] and, as
already mentioned, for the computational-security case [IKLP06].
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Contributions of this Paper. We prove the exact conditions for general SFE and MPC
to be possible, in the most general mixed adversary model, with synchronous com-
munication, and where a broadcast channel is assumed. We consider the most natural
and desirable security notion, where full security (including fairness and guaranteed
output delivery) is required. We solve the two cases of general interest: unconditional
(information-theoretic with negligible error probability) security and computational se-
curity, both with and without setup. We show a strict separation between SFE and MPC.

Our results imply that for the threshold model with all three corruption types simul-
taneously, and for computational security, SFE and MPC are possible if and only if
2ta + tp + tf < n. As in [FHM98] there is no separation in this model.

Outline of this paper. In Section 2 we describe the model. In Sections 3,4,5 and 6 we
handle the unconditional-security case; in particular, in Sections 3 and 4 we describe
techniques and sub-protocols that are used for the construction of MPC and SFE pro-
tocols described in Sections 5 and 6, respectively. Finally, in Section 7 we handle the
computational-security case.

2 The Model

We consider a set P = {p1, . . . , pn} of players. Some of these players can be cor-
rupted by the adversary. We consider active corruption (the adversary takes full con-
trol), passive corruption (the adversary can read the internal state), and fail-corruption
(the adversary can make the player crash). We use the following characterizations for
players: a player that is not corrupted is called uncorrupted, a player that (so far)
has followed the protocol instructions is called correct, and a player that has devi-
ated from the protocol (e.g., has crashed or has sent wrong messages) is called incor-
rect. The adversary’s corruption capability is characterized by an adversary structure
Z = {(A1, E1, F1), . . ., (Am, Em, Fm)} (for some m) which is a monotone set of
triples of player sets. At the beginning of the protocol, the adversary chooses a triple
Z� = (A�, E�, F �) ∈ Z and actively corrupts the players in A�, passively corrupts
the players in E� (eavesdropping), and fail-corrupts the players in F �;1 this triple is
called the actual adversary class or simply the actual adversary. Note that Z� is not
known to the honest players and appears only in the security analysis. A protocol is
called Z-secure if it is secure against an adversary with corruption power character-
ized by Z . For notational simplicity we assume that A ⊆ E and A ⊆ F for any
(A,E, F ) ∈ Z , since an actively corrupted player can behave as being passively or
fail-corrupted. Furthermore, as many constructions only need to consider the maximal
classes of a structure, we define the maximal structure Z as the smallest subset of Z
such that ∀(A,E, F ) ∈ Z ∃(Ā, Ē, F̄ ) ∈ Z : A ⊆ Ā, E ⊆ Ē, F ⊆ F̄ .

Communication takes place over a complete network of secure channels. Further-
more, we assume authenticated broadcast channels, which allow every pi ∈ P to
consistently send an authenticated message to all players in P . All communication is
synchronous, i.e., the delays in the network are upper-bounded by a known constant.

1 We focus on static security, although our results could be generalized to adaptive corruption.
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In the computational model (Section 7), the secrecy of the bilateral channels can be
implemented by using encryption, where the public keys are distributed using the au-
thenticated broadcast channels. We mention that in a model with simultaneous active
and passive corruption, the authenticity cannot easily be implemented using setup, as
the adversary can forge signatures of passively corrupted players. Also implementing the
authenticated broadcast channels by point-to-point communication seems non-trivial, as
it must be guaranteed that fail-corrupted players send either the right value or no value
(but not a wrong value), and that passively corrupted players always send the right value.

To simplify the description, we adopt the following convention: Whenever a player
does not receive an expected message (over a bilateral or a broadcast channel), or re-
ceives a message outside of the expected range, then the special symbol ⊥�∈ F is taken
for this message. Note that after a player has crashed, he only sends ⊥.

The function to be computed is described as an arithmetic circuit over some finite
field F, consisting of addition (or linear) gates and multiplication gates. Our protocols
take as input the player’s inputs and additionally the maximal adversary structure. The
running time of the suggested protocols is polynomial in the size of their input,2 and
the error probability is negligible.

3 Information Checking

An actively corrupted player might send a value to another player and then deny that the
value was sent by him. To deal with such behavior, we need a mechanism which binds a
player to the messages he sends. In [RB89, CDD+99, BHR07] the Information Check-
ing (IC) method was developed for this purpose, and used to design unconditionally
secure protocols tolerating up to t < n/2 active cheaters. In this section, we extend the
IC method to the setting of general adversaries with active, passive, and fail-corruption.

The IC-authentication scheme involves three players, a sender ps, a recipient pr, and
a verifier pv, and consists of three protocols, called IC-Setup, IC-Distr, and IC-Reveal.
Protocol IC-Distr allows ps to send a value v to pr in an authenticated way, so that pr

can, by invoking IC-Reveal, open v to pv and prove that v was received from ps. Both
IC-Distr and IC-Reveal assume a secret key α known exclusively to ps and pv (but not
to pr). This key is generated and distributed in IC-Setup. Note that the same key can be
used to authenticate multiple messages.

Informally, the three protocols can be described as follows: In IC-Setup, ps generates
a uniformly random key α and sends it to pv over the bilaterally secure channel. In
IC-Distr, α is used to generate an authentication tag y and a verification tag z for the
sent value v. The values (v, y) and z are given to pr and pv , respectively. In IC-Reveal,
pr sends (v, y) to pv, who verifies that (y, z) is a valid authentication/verification-tag
pair for v with key α.

Ideally, an IC-authentication scheme should have the following properties: (1) Any
value sent with IC-Distr is accepted in IC-Reveal, (2) in IC-Distr, pv gets no information
on v, and (3) only values sent with IC-Distr are accepted in IC-Reveal. However, these

2 As the adversary structure might be exponentially large, our protocols’ worst case running
time can be exponential in the size of the player set. However, this is the best complexity one
can hope to achieve for a protocol that tolerates any adversary structure [HM00].



MPC vs. SFE : Unconditional and Computational Security 5

properties cannot be (simultaneously) perfectly satisfied. In fact, Property 3 can only be
achieved with negligible error probability, as the adversary might guess an authentica-
tion tag y′ for a v′ �= v. Moreover, it can only be achieved when neither ps nor pv is
passively corrupted, since otherwise the adversary knows α and z.

In our IC-authentication scheme the key α is chosen uniformly at random from F and
the value v is also from F. The authentication and verification tags, y and z, respectively,
are such that for some degree-one polynomial w(·) over F, w(0) = v, w(1) = y, and
w(α) = z. In other words, (y, z) is a valid IC-pair if z = (y − v)α + v. Defining
validity this way gives the IC-authentication scheme an additional linearity property.
In particular, if (y, z) and (y′, z′) are valid IC-pairs for v and v′, respectively, (for the
same α) then (y + y′, z + z′) is a valid IC-pair for v + v′. This implies that when
some values have been sent with IC-Distr, then pr and pv can, without any interaction,
compute valid authentication data for any linear combination of those values.

Due to space restrictions, the detailed description of the protocols IC-Setup, IC-Distr,
and IC-Reveal, as well as the proof of the following lemma are deleted from this ex-
tended abstract.

Theorem 1. Our IC-authentication scheme has the following properties. Correctness:
When IC-Distr succeeds pr learns a value v′, where v′ = v unless ps is actively cor-
rupted. IC-Distr might abort only when ps is incorrect. Completeness: If IC-Distr suc-
ceeds and pr is correct then in IC-Reveal pv accepts v′. Privacy: IC-Distr leaks no
information on v to any player other than pr. Unforgeability: When neither ps nor pv

is passively corrupted, and the protocols IC-Distr and IC-Reveal have been invoked at
most polynomially many times, then the probability that an adversary actively corrupt-
ing pr makes pv accept some v′ which was not sent with IC-Distr is negligible.

General IC-signatures. An IC-authentication scheme allows a sender pi ∈ P to send
a value v to a recipient pj ∈ P , so that pj can later prove authenticity of v, but only
towards a dedicated verifier pk ∈ P . In our protocols we want to use IC-authentication
as a mechanism to bind the sender pi to the messages he sends to pj , so that pj can prove
to every pk ∈ P that these messages originate from pi. In [CDD+99], the IC-signatures
where introduced for this purpose. These can be seen as semi “digital signatures” with
information theoretic security. They do not achieve all properties of digital signatures,
but enough to guarantee the security of our protocols.

The protocols used for generation and verification of IC-signatures are called
ICS-Sign and ICS-Open, respectively. ICS-Sign allows a player pi ∈ P to send a value v
to pj ∈ P signed with an IC-signature. The idea is the following: for each pk ∈ P , pi in-
vokes IC-Distr to send v to pj with pk being the verifier, where pj checks that he receives
the same v in all invocations. As syntactic sugar, we denote the resulting IC-signature by
σi,j(v). The idea in ICS-Open is the following: pj announces v and invokes IC-Reveal
once for each pk ∈ P being the verifier. Depending on the outcomes of IC-Reveal the
players decide to accept or reject v. As we want every pi ∈ P to be able to send mes-
sages with ICS-Sign, we need a secret-key setup, where every pi, pk ∈ P hold a secret
key αi,k. Such a setup can be easily established by appropriate invocations of IC-Setup.

The decision to accept or reject in ICS-Open has to be taken in a way which ensures
that valid signatures are accepted (completeness), and forged signatures are rejected
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with overwhelming probability (unforgeability). To guarantee completeness, a signature
must not be rejected when only actively corrupted players rejected in IC-Reveal. Hence,
the players cannot reject the signature when there exists a class (Aj , Ej , Fj) ∈ Z such
that all rejecting players are in Aj . Along the same lines, to guarantee unforgeability,
the players cannot accept the signature when there exists a class (Ai, Ei, Fi) ∈ Z such
that all accepting players are in Ei. To make sure that the above two cases cannot simul-
taneously occur, we require Z to satisfy the following property, denoted as CIC(P ,Z):

CIC(P ,Z) ⇐⇒ ∀(Ai, Ei, Fi), (Aj , Ej , Fj) ∈ Z : Ei ∪Aj ∪ (Fi ∩ Fj) �= P

We refer to the full version of this paper for a detailed description of the protocols
ICS-Sign and ICS-Open and for a proof of the following lemma.

Lemma 1. Assuming that CIC(P ,Z) holds, our IC-signatures scheme has the follow-
ing properties. Correctness: When ICS-Sign succeeds, then pr learns a value v′, where
v′ = v unless ps is actively corrupted. ICS-Sign might abort only when ps is incorrect.
Completeness: If ICS-Sign succeeds and pr is correct then in ICS-Open all players
accept v′. Privacy: ICS-Sign leaks no information on v to any player other than pr.
Unforgeability: When ps is not passively corrupted, and the protocols ICS-Sign and
ICS-Open have been invoked at most polynomially many times, then the probability
that an adversary actively corrupting pj can make the players accept some v′ which
was not sent with ICS-Sign is negligible.

Linearity of IC-signatures. The linearity property of the IC-authentication scheme is
propagated to the IC-signatures. In particular, when some values have be sent by pi to
pj with ICS-Sign (using the same secret keys), then the players can locally, i.e., without
any interaction, compute pi’s signature for any linear combination of those values, by
applying the appropriate linear combination on the respective signatures. This process
yields a signature which, when pj is correct, will be accepted in ICS-Open.

4 Tools - Subprotocols

In this section we describe sub-protocols that are used as building blocks for MPC and
SFE protocols. Some of the sub-protocols are non-robust, i.e., they might abort. When
they abort then all (correct) players agree on a non-empty set B ⊆ P of incorrect play-
ers. The sub-protocols use IC-signatures to authenticate the sent values, therefore their
security relies on the security of the IC-signatures. In particular, the security of the sub-
protocols is guaranteed only when no signature is forged.3 The secret-key setup, which
is required for the IC-signatures, is established in a setup phase, before any of the sub-
protocols is invoked. Due to space restrictions the security proofs and even the detailed
descriptions of some of the sub-protocols are deleted from this extended abstract.

4.1 Share and Reconstruct

A secret-sharing scheme allows a player (called the dealer) to distribute a secret so that
only qualified sets of players can reconstruct it. As secret-sharing scheme we employ a

3 We use the term “forge” only for signatures corresponding to non-passively corrupted signers.
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sum-sharing, i.e., the secret is split into summands that add up to the secret, where each
summand might be given to several players. Additionally, for each summand all the
players who hold it bilaterally exchange signatures on it. The sharing is characterized
by a vector S = (S1, . . . , Sm) of subsets of P , called the sharing specification. A
value s is shared according to S if there exist summands s1, . . . , sm ∈ F such that∑m

k=1 sk = s, and for each k = 1, . . . ,m every pj ∈ Sk holds sk along with IC-
signatures on it from every pi ∈ Sk. As syntactic sugar, we denote by σS(s) the set of
all IC-signatures on the summands s1, . . . , sm held by the players. For each pj ∈ P the
vector 〈s〉j = (sj1 , . . . , sj�

) is considered to be pj’s share of s, where sj1 , . . . , sj�
are

the summands held by pj . The vector of all shares and the attached signatures, denoted
as 〈s〉 =

(
〈s〉1, . . . , 〈s〉n, σS(s)

)
, is a sharing of s. The vector of summands in 〈s〉 is

denoted as [s] = (s1, . . . , sm). We say that 〈s〉 is a consistent sharing of s according
to S if for each k = 1, . . . ,m all (correct) players in Sk have the same view on the
summands sk and hold signatures on it from all other players in Sk, and

∑m
k=1 sk = s.

For an adversary structure Z , we say that a sharing specification S is Z-private if
for any sharing 〈s〉 according to S and for any adversary in Z , there exists a sum-
mand sk which this adversary does not know. Formally, S is Z-private if ∀(A,E, F) ∈
Z ∃S ∈ S : S ∩ E = ∅.4 For an adversary structure Z with maximal classes
Z =

{
(·, E1, ·), . . . , (·, Em, ·)

}
, we denote the natural Z-private sharing specification

by SZ =
(
P\E1, . . . ,P\Em

)
.

Protocol Share (see below) allows a dealer p to share a value s among the players in
P according to a sharing specification S. The protocol is non-robust and might abort
with a set B ⊆ P of incorrect players.

Protocol Share(P, Z, S, p, s)
1. Dealer p chooses summands s2, . . . , s|S| randomly and sets s1 := s−

∑|S|
k=2 sk.

2. For k = 1, . . . , |S| the following steps are executed:
(a) p sends sk to each pj ∈ Sk.
(b) For each pi, pj ∈ Sk : ICS-Sign(P ,Z, pi, pj , sk) is invoked to have pi send

sk to pj and attach an IC-signature on it. If ICS-Sign aborts, then Share aborts
with B := {pi}.

(c) Each pj ∈ Sk broadcasts a complaint bit b, where b = 1 if pj received a ⊥
instead of sk in Step 2a, or if he received some s′k �= sk from some pi in
Step 2b, and b = 0 otherwise.

(d) If a complaint was reported p broadcasts sk and the players in Sk create
default signatures on it. If p broadcasts ⊥ then Share aborts with set B :=
{p}.

Lemma 2. If S is a Z-private sharing specification, then protocol Share(P ,Z,S, p, s)
has the following properties. Correctness: It either outputs a consistent sharing of s′

according to S, where s′ = s unless the dealer p is actively corrupted, or it aborts with

4 Recall that for all (A, E, F ) ∈ Z : A ⊆ E.
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a non-empty set B ⊆ P of incorrect players. Privacy: No information about s leaks to
the adversary.

Reconstructing a shared value s is straightforward: The summands are announced one
by one, and s is computed as the sum of the announced summands. To announce a
summand sk, each pi ∈ Sk broadcasts sk and opens all the signatures on sk which
he holds (i.e., the signatures on sk from all players in Sk). If all the signatures an-
nounced by pi are accepted, then the value he announced is taken for sk. If no pi ∈ Sk

correctly announces all the signatures the announcing aborts with B := Sk. Protocols
PubAnnounce and PubReconstruct invoked to publicly announce a summand and to
publicly reconstruct a shared value are given in details in the full version of this paper.
In the following two lemmas (also proved in the full version) we state their security.

Lemma 3. Assume that CIC(P ,Z) holds, the condition ∀(A,E, F) ∈ Z : Sk �⊆ E
holds, and no signature is forged. Then protocol PubAnnounce either publicly an-
nounces the correct summand sk, or it aborts with a non-empty set B of incorrect
players. It might abort only if Sk ⊆ F �.

Lemma 4. Assume that CIC(P ,Z) holds, the condition ∀S ∈ S ,
∀(A,E, F) ∈ Z : S �⊆ E holds, 〈s〉 is a consistent sharing according to S, and
no signature is forged. Then protocol PubReconstruct either publicly reconstructs s,
or it aborts with a non-empty set B ⊆ P of incorrect players.

Protocol PubReconstruct allows for public reconstruction of a shared value. However,
in some of our protocols we need to reconstruct a shared value s privately, i.e., only
towards some dedicated output player p. Such a private reconstruction protocol can be
built using standard techniques (p shares a one-time pad used for perfectly blinding the
output). We refer to the protocol for private reconstruction as Reconstruct, and point
to the full version of this paper for a detailed description as well as for a proof of the
following lemma.

Lemma 5. Assume that CIC(P ,Z) holds, S is a Z-private sharing specification, the
condition ∀S ∈ S, ∀(·, E, ·) ∈ Z : S �⊆ E holds, 〈s〉 is a consistent sharing according
to S, and no signature is forged. Then protocol Reconstruct(P ,Z,S, p, 〈s〉) has the
following properties. Correctness: Either it reconstructs s towards p, or it aborts with
a non-empty set B ⊆ P of incorrect players. Privacy: No information about 〈s〉 leaks
to the adversary.

Addition. Due to the linearity of our secret sharing scheme, the players can locally
compute a sharing of the sum of two shared values s and t as follows: each player adds
his shares of s and t, and the corresponding signatures are also (locally) added. We refer
to this sub-protocol as Add.

4.2 Multiplication

The goal of this section is to design a protocol for securely computing a sharing of
the product of two shared values. Our approach combines techniques from [GRR98,
Mau02, Mau06, BFH+08].
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At a high level, the multiplication protocol for two shared values s and t works
as follows: As s and t are already shared, we can use the summands s1, . . . , sm and
t1, . . . , tm to compute the product as st =

∑m
k,�=1 skt�. For each term xk,� = skt�, we

have a player p(k,�) ∈ (Sk ∩ S�) share xk,� and prove that he shared the correct value.
The sharing of st is computed as the sum of the sharings of the terms xk,�.

For p(k,�) ∈ (Sk ∩ S�) to share skt� and prove that he did so properly the idea is
the following: First, p(k,�) shares skt� by invoking Share. Denote by x′

k,� the shared

value.5 Next, p(k,�) shares the summands sk and t� by a protocol, called SumShare,
which guarantees that he shares the correct summands. Finally, p(k,�) uses the sharings
of sk, t�, and x′

k,� in a protocol, called MultProof, which allows him to prove that
x′

k,� = skt�. In the following we discuss the sub-protocols SumShare and MultProof,
and then give a detailed description of the multiplication protocol.

Protocol SumShare (see full version) allows a player p ∈ Sk to share a summand sk

of a sharing 〈s〉 according to S, where Sk ∈ S. The sharing specification of the output
sharing can be some S′ �= S. In contrast to Share, protocol SumShare guarantees that pi

shares the correct value sk. The idea is to have p share sk, by Share, and then reconstruct
the sharing (privately) towards each pj ∈ Sk who publicly approves or disapproves it.
We refer to the full version of this paper for a proof of the following lemma.

Lemma 6. Assume that CIC(P ,Z) holds, S′ is a Z-private sharing specification, the
conditions ∀(·, E, ·) ∈ Z : Sk �⊆ E and ∀S′ ∈ S′ ∀(·, E, ·) ∈ Z : S′ �⊆ E
hold, and no signature is forged. Then SumShare(P ,Z,S′, Sk, p, sk) has the following
properties. Correctness: Either it outputs a consistent sharing of sk (p also outputs the
vector [sk] of summands) according to S′, or it aborts with a non-empty set B ⊆ P of
incorrect players. Privacy: No information about sk leaks to the adversary.

Protocol MultProof (see full version) allows a player p, called the prover, who has
shared three values a, b, and c (and knows the corresponding vectors [a], [b], and [c] of
summands) to prove that c = ab. The protocol can be seen as a distributed challenge-
response protocol with prover p and verifier being all the players in P . On a high level, it
can be described as follows: First p shares some appropriately chosen values. Then the
players jointly generate a uniformly random challenge r and expose it, and p answers
the challenge. If p’s answer is consistent with the sharings of a, b, and c and the sharings
which he created in the first step, then the proof is accepted otherwise it is rejected.
MultProof is non-robust and might abort with a set B ⊆ P of incorrect players. The
proof of the following lemma is deleted from this extended abstract.

Lemma 7. Assume that CIC(P ,Z) holds, S is a Z-private sharing specification, the
condition ∀S ∈ S, ∀(·, E, ·) ∈ Z : S �⊆ E holds, 〈a〉, 〈b〉, and 〈c〉 are consistent
sharings according to S, and no signature is forged. Then the protocol MultProof has
the following properties. Correctness: If c = ab, then either the proof is accepted or
MultProof aborts with a non-empty set B ⊆ P of incorrect players. Otherwise (i.e,
if c �= ab), with overwhelming probability, either the proof is rejected or MultProof
aborts with a non-empty set B ⊆ P of incorrect players. Privacy: No information
about 〈a〉, 〈b〉, and 〈c〉 leaks to the adversary.

5 Note that Share does not guarantee that x′
k,� = skt�.
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For completeness, we describe the multiplication protocol Mult (see below), which
allows to compute a sharing of the product of two shared values. Mult is non-robust
and might abort with a non-empty set B ⊆ P of incorrect players. When it succeeds,
then with overwhelming probability it outputs a consistent sharing of the product.

Protocol Mult(P, Z, S, 〈s〉, 〈t〉)
1. For every (Sk, S�) ∈ S×S, the following steps are executed, where p(k,�) denotes

the player in Sk ∩ S� with the smallest index:
(a) p(k,�) computes xk,� := skt� and shares it, by Share. Denote by 〈xk,�〉 the

resulting sharing.a

(b) SumShare(P ,Z,S, Sk, p
(k,�), sk) and SumShare(P ,Z,S, S�, p

(k,�), t�) are
invoked. Denote by 〈sk〉 and 〈t�〉 the resulting sharings.

(c) MultProof(P ,Z,S, p(k,�), 〈sk〉, 〈t�〉, 〈xk,�〉) is invoked. If the proof is re-
jected then Mult aborts with set B = {p(k,�)}.

2. A sharing of the product st is computed as the sum of the sharings 〈xk,�〉 by
repeatedly invoking Add.

3. If any of the invoked sub-protocols aborts with B, then also Mult aborts with B.

a In addition to his share of 〈xk,�〉, p(k,�) also outputs the vector of summands [xk,�].

Lemma 8. Assume that CIC(P ,Z) holds, S is a Z-private sharing specification, the
conditions ∀S ∈ S, ∀(·, E, ·) ∈ Z : S �⊆ E and ∀Sk, S� ∈ S : Sk ∩ S� �= ∅
hold, 〈s〉 and 〈t〉 are consistent sharings according to S, and no signature is forged.
Then protocol Mult(P ,Z,S, 〈s〉, 〈t〉) has the following properties except with negligi-
ble probability. Correctness: It either outputs a consistent sharing of st according to S
or it aborts with a non-empty set B ⊆ P of incorrect players. Privacy: No information
about 〈s〉 and 〈t〉 leaks to the adversary.

4.3 Resharing

In the context of MPC, we will need to reshare shared values according to a differ-
ent sharing specification. To do that, each summand is shared by SumShare (see Sec-
tion 4.2) according to the new sharing specification, and the players distributively add
the sharings of the summands, resulting in a new sharing of the original value. A de-
tailed description of the protocol Reshare as well as a proof of the following lemma can
be found in the full version of this paper.

Lemma 9. Assume that CIC(P ,Z) holds, S′ is a Z-private sharing specification, the
conditions∀S ∈ S∀(·, E, ·) ∈ Z : S �⊆ E, and ∀S′ ∈ S′∀(·, E, ·) ∈ Z : S′ �⊆ E hold,
and no signature is forged. Then Reshare(P ,Z,S,S′, 〈s〉) has the following properties.
Correctness: Either it outputs a consistent sharing of s according to S′, or it aborts with
a non-empty set B ⊆ P of incorrect players. Privacy: No information about 〈s〉 leaks
to the adversary.
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5 (Reactive) Multi-party Computation

In this section we prove the necessary and sufficient condition on the adversary structure
Z for the existence of unconditionally (i.e., i.t. with negligible error probability) Z-
secure multi-party computation protocols, namely, we prove the following theorem:

Theorem 2. A set P of players can unconditionallyZ-securely compute any (reactive)
computation, if and only if C(2)(P ,Z) and C(1)(P ,Z) hold, where

C(2)(P ,Z) ⇐⇒ ∀(Ai, Ei, Fi), (Aj , Ej , Fj) : Ei ∪ Ej ∪ (Fi ∩ Fj) �= P
C(1)(P ,Z) ⇐⇒ ∀(Ai, Ei, Fi), (Aj , Ej , Fj) : Ei ∪ Fj �= P

The sufficiency of the above condition is proved by constructing an MPC protocol for
any given circuit C consisting of input, addition, multiplication, and output gates.6 The
reactiveness of the computation is modeled by assigning to each gate a point in time
when it should be evaluated.

The circuit is evaluated in a gate-by-gate fashion, where for input, addition, mul-
tiplication, and output gates, the corresponding sub-protocol Share, Add, Mult, and
Reconstruct, respectively, is invoked.

The computation starts off with the initial player set P and adversary structure Z ,
and with the sharing specification being S := SZ . Each time a sub-protocol aborts
with set B of incorrect players, the players in B are deleted from the player set and
from every set in the sharing specification, and the corresponding gate is repeated. Any
future invocation of a sub-protocol is done in the updated player set P ′ and sharing
specification S′, and with the updated adversary structure Z ′, which contains only the
classes in Z compatible with the players in P \ P ′ being incorrect. Note that, as the
players in P \ P ′ are incorrect, any sharing according to (P ,S) can be transformed,
without any interaction, to a sharing according to (P ′,S′) by having the players delete
all signatures of signers from P \ P ′.

The delicate task is the multiplication of two shared values s and t. The idea is
the following: First, we invoke Reshare to have both s and t shared according to the
sharing specification SZ′ , i.e., the specification associated with the structure Z ′. Then
we invoke Mult to compute a sharing of the product st according to SZ′ , and at the end
we invoke Reshare once again to have the product shared back to the initial setting (i.e,
according to (P ′,S′)).

The security of the computation is guaranteed as long as no signature is forged.
We argue that the forging probability is negligible. Observe that the total number of
signatures in each sub-protocol invocation is polynomial in the input size; also, the
total number of sub-protocol invocations is polynomial in the size of the circuit (since
each time a sub-protocol aborts a new set B of incorrect players is identified, the total
number of abortions is bounded by n). Hence, the total number of signatures in the
computation is polynomial and, by the unforgeability property, the probability that a
signature is forged is negligible.

We use the following operators on adversary structures, which were introduced in
[BFH+08]: For a set B ⊆ P , we denote by Z|B⊆F the sub-structure of Z that contains

6 This does not exclude probabilistic circuits, as a random gate can be simulated by having each
player input a random value and take the sum of those values as the input.
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only adversaries who can fail-corrupt all the players in B, i.e., Z|B⊆F = {(A,E, F ) ∈
Z : B ⊆ F}. Furthermore, for a set P ′ ⊆ P , we denote byZ|P′ the adversary structure
with all classes in Z restricted to the player set P ′, i.e., Z|P′ = {(A∩P ′, E ∩P ′, F ∩
P ′) : (A,E, F ) ∈ Z}. We also use the same operator on sharing specifications with
similar semantics, i.e., for S = (S1, . . . , Sm) we denoteS|P′ = (S1∩P ′, . . . , Sm∩P ′).
As syntactic sugar, we write Z|B⊆F

P′ for (Z|B⊆F ) |P′ .
It follows from the above definitions that when the players in P \ P ′ have been

detected to be incorrect, then the actual adversary Z� is in Z|P\P′⊆F . Furthermore,
as the updated player set is P ′, the corresponding sharing specification and adversary
structure are S′ = S|P′ and Z ′ = Z|P\P′⊆F

P′ , respectively. One can easily verify that
the conditions C(2) and C(1) hold in (P ′,Z ′) when they hold in (P ,Z). This results in
protocol MPC (see below).

Protocol MPC(P, Z, C)
0. Initialize P ′ := P , Z ′ := Z , and S′ := SZ .
1. For every gate to be evaluated, do the following:

– Input gate for p: If p ∈ P ′ invoke Share to have p share his input according
to (P ′,S′). Otherwise, a default sharing of some pre-agreed default value is
taken as the sharing of p’s input.

– Addition gate: Invoke Add to compute a sharing of the sum according to S′.
– Multiplication gate: Denote the sharings of the factors as 〈s〉 and 〈t〉, re-

spectively, and the sharing specification corresponding to Z ′ as SZ′ . In-
voke Reshare(P ′,Z ′,S′,SZ′ , 〈s〉) and Reshare(P ′,Z ′,S′,SZ′ , 〈t〉) to ob-
tain the sharings 〈s〉′ and 〈t〉′ according to (P ′,SZ′), respectively. Invoke
Mult(P ′,Z ′,SZ′ , 〈s〉′, 〈t〉′) to obtain a sharing 〈st〉′ of the product, accord-
ing to (P ′,SZ′). Invoke Reshare(P ′,Z ′,SZ′ ,S′, 〈st〉′) to reshare this prod-
uct according to (P ′,S′).

– Output gate for p: If p ∈ P ′ invoke Reconstruct to have the output recon-
structed towards p.

2. If any of the sub-protocols aborts with set B, then update P ′ := P ′ \ B, set
S′ := S′|P′ and Z ′ := Z|P\P′⊆F

P′ and repeat the corresponding gate.

Lemma 10. The protocol MPC is unconditionally Z-secure if C(2)(P ,Z) and
C(1)(P ,Z) hold.

To complete this section, we give two lemmas that imply that unconditionally secure
(reactive) MPC is not possible for some circuits when C(2)(P ,Z) or C(1)(P ,Z) is
violated. The proofs of the lemmas are deleted from this extended abstract.

Lemma 11. If C(2)(P ,Z) is violated then there exist (even non-reactive) circuits which
cannot be evaluated unconditionally Z-securely.

Lemma 12. If C(1)(P ,Z) is violated, then the players cannot hold a secret joint state
with unconditional security.
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6 Secure Function Evaluation

In this section we prove the necessary and sufficient condition on the adversary structure
Z for the existence of unconditionallyZ-secure function evaluation protocols. Note that
the condition for SFE is weaker than the condition for MPC.

Theorem 3. A set P of players can unconditionally Z-securely compute any function
if and only if C(2)(P ,Z) and C(1)

ORD(P ,Z) hold, where

C(2)(P ,Z) ⇐⇒ ∀(Ai, Ei, Fi), (Aj , Ej , Fj) ∈ Z : Ei ∪ Ej ∪ (Fi ∩ Fj) �= P

C(1)
ORD(P ,Z) ⇐⇒

{
∃ an ordering

(
(A1, E1, F1), . . . , (Am, Em, Fm)) of Z s.t.7

∀i, j ∈ {1, . . . ,m}, i ≤ j : Ej ∪ Fi �= P

The sufficiency of the condition is proved by constructing an SFE protocol. Our ap-
proach is similar to the approach from [BFH+08]: First all players share their inputs,
then the circuit is evaluated gate-by-gate, and then the output is publicly reconstructed.
However, our conditions do not guarantee robust reconstructibility. In fact, the adver-
sary can break down the computation and cause all the sharings to be lost. As the circuit
is non-reactive, we handle such an abortion by repeating the whole protocol, including
the input gates. In each repetition, the adversary might choose new inputs for the ac-
tively corrupted players. By ensuring that the adversary gets no information on any
secrets unless the full protocol succeeds (including the evaluation of output gates), we
make sure that she chooses these inputs independently of the other players’ inputs.

Termination is guaranteed, by the fact that whenever the protocol aborts, a new set B
of incorrect players is identified, and the next iteration proceeds without them. Hence,
the number of iterations is bounded by n. This implies also that the total number of
signatures in the computation is polynomial, hence the forging probability is negligible.

Special care needs to be taken in the design of the output protocol. For simplicity,
we describe the protocol for a single public output. Using standard techniques one can
extend it to allow several outputs and, furthermore, private outputs.

The idea of the output protocol is the following: First observe that the privacy of our
sharing scheme is protected by a particular summand which is not given to the adver-
sary. In fact, such a summand sk is guaranteed to exist for each (Ak, Ek, Fk) ∈ Z by the
Z-privacy of the sharing specification SZ . As long as this summand is not published, an
adversary of class (Ak, Ek, Fk) gets no information about the output (from the adver-
sary’s point of view, sk is a perfect blinding of the output, and all other summands si are
either known to the adversary or are distributed uniformly). Second, observe that when-
ever the publishing of some summand sk fails (i.e., PubAnnounce aborts), the players
get information about the actual adversary (A�, E�, F �), namely that Sk ⊆ F �. The
trick is to announce the summands in such an order, that if the announcing of a sum-
mand sk aborts, then from the information that Sk ⊆ F � the players can deduce that
the summand associated with the actual adversary class has not been yet announced. In
particular, if an adversary class Zi = (Ai, Ei, Fi) could potentially abort the announc-
ing of the summand sk (i.e., if Sk ⊆ Fi), then the summand sk should be announced
strictly before si, i.e., the summand associated with Zi, is announced.

7 Remember that Z denotes the maximum classes in Z. One can verify that such an ordering
exists for Z exactly if it exists for Z.
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Let ((A1, E1, F1), . . . , (Am, Em, Fm)) denote an ordering of the maximal struc-
ture Z satisfying: ∀1 ≤ i ≤ j ≤ m : Ej ∪ Fi �= P , and let S denote the induced
sharing specification S = (S1, . . . , Sm) with Sk = P \ Ek. Then the protocol
OutputGeneration (see below) either publicly reconstructs a sharing 〈s〉 according to S
or it aborts with a non-empty set B ⊆ P of incorrect players. Privacy is guaranteed un-
der the assumption that the summands of 〈s〉 not known to the adversary are uniformly
distributed. As long as no signature is forged, this holds for all sharings in our protocols.

Protocol OutputGeneration(P, Z, S = (S1, . . . , Sm), 〈s〉)
1. For k = 1, . . . ,m, the following steps are executed sequentially:

(a) PubAnnounce(P ,Z, Sk, sk, σSk
(sk)) is invoked to have the summand sk

published.
(b) If PubAnnounce aborts with B, then OutputGeneration immediately aborts

with B.
2. Every pj ∈ P (locally) computes s :=

∑m
k=1 sk and outputs s.

Lemma 13. Assume that CIC(P ,Z) holds, S is a Z-private sharing specification con-
structed as explained, the condition ∀Sk ∈ S, (·, E, ·) ∈ Z : Sk �⊆ E holds, 〈s〉 is
a consistent sharing according to S with the property that those summands that are
unknown to the adversary are randomly chosen, and no signature is forged. Then the
protocol OutputGeneration either publicly reconstructs s, or it aborts with a non-empty
set B ⊆ P of incorrect players. If OutputGeneration aborts, then the protocol does not
leak any information on s to the adversary.

For completeness, we also include a detailed description of the SFE protocol (see be-
low) and state its security in the following lemma.

Protocol SFE(P, Z, C)
0. Let S = (P \ E1, . . . ,P \ Em) for the assumed ordering(

(A1, E1, F1), . . . , (Am, Em, Fm)
)

of Z .
1. Input stage: For every input gate in C, Share is invoked to have the input player

pi share his input xi according to S.a

2. Computation stage: The gates in C are evaluated as follows:
– Addition gate: Invoke Add to compute a sharing of the sum according to S.
– Multiplication gate: Invoke Mult to compute a sharing of the product accord-

ing to S.
3. Output stage: Invoke OutputGeneration(P ,Z,S, 〈s〉) for the sharing 〈s〉 of the

public output.
4. If any of the sub-protocols aborts with B, then set P := P \ B, and set Z to

the adversary structure which is compatible with B being incorrect, i.e., Z :=
Z|B⊆F

P , and go to Step 1.

a If in a later iteration a player pi /∈ P should give input, then the players in P pick the default
sharing of a default value.
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Lemma 14. The protocol SFE is unconditionally Z-secure if C(2)(P ,Z) and
C(1)

ORD(P ,Z) hold.

To complete the proof of Theorem 3 we need to show that unconditionally Z-secure
SFE is not possible for some circuits when C(2)(P ,Z) or C(1)

ORD(P ,Z) is violated. The
necessity of C(2)(P ,Z) follows immediately from Lemma 11. The following lemma
states the necessity of C(1)

ORD(P ,Z). The idea of the proof is that when C(1)
ORD(P ,Z) is

violated then in any protocol evaluating the identity function, the adversary can break
down the computation at a point where she has gained noticeable (i.e., not negligible)
information about the output, although the correct players have only negligible infor-
mation. For a more detailed proof the reader is referred to the full version of this paper.

Lemma 15. If C(1)
ORD(P ,Z) is violated, then there are functions that cannot be uncon-

ditionally Z-securely evaluated.

7 Computational Security

In this section we show that conditions C(1)(P ,Z) and C(1)
ORD(P ,Z) from Theorems 2

and 3 are sufficient and necessary for the existence of computationally Z-secure MPC
and SFE, respectively.

Theorem 4. Assuming that enhanced trapdoor permutations exist, a set P of play-
ers can computationally Z-securely compute any (reactive) computation (MPC) if
and only if C(1)(P ,Z) holds, and any non-reactive function (SFE) if and only if
C(1)

ORD(P ,Z) holds.

Theproofofnecessity isvery similar to theproofsofLemmas12and 15and, therefore, it is
omitted. The sufficiency is proved by describing protocols that realize the corresponding
primitive. Our approach is different than the one used in the previous sections. In partic-
ular, first, we design a protocol for SFE and then use it to design a protocol for MPC.

Note that the above bounds directly imply corresponding bounds for a threshold ad-
versary who actively corrupts ta players, passively corrupts tp players, and fail-corrupts
tf players, simultaneously. Using the notation from [FHM98], we say that a protocol is
(ta, tp, tf)-secure if it tolerates such a threshold adversary.

Corollary 1. Assuming that enhanced trapdoor permutations exist, a set P of players
can computationally (ta, tp, tf )-securely compute any computation (reactive or not) if
and only if 2ta + tp + tf < |P|.

7.1 The SFE Protocol

Our approach to SFE uses ideas from [IKLP06]. The evaluation of the given circuit
C proceeds in two stages, called the computation stage and the output stage. In the
computation stage a uniformly random sharing of the output of C on inputs provided
by the players is computed.8 For this purpose we use the (non-robust) SFE protocol

8 Without loss of generality (as in Section 6) we assume that the circuit C to be computed has
one public output.
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from [Gol04] for dishonest majority which achieves partial fairness and unanimous
abort [GL02]. In the output stage the sharing of the output is publicly reconstructed,
along the lines of the reconstruction protocol from Section 6. Both stages are non-robust
and they might abort with a non-empty set B ⊆ P of incorrect players, but without
violating privacy of the inputs. When this happens the whole evaluation is repeated
among the players in P \B, where the inputs of the players in B are fixed to a default
pre-agreed value, and the adversary structure Z is reduced to the structure Z|B⊆F

P\B , i.e.,
the structure which is compatible with the players in B being incorrect.

The secret-sharing scheme used here is similar to the one we use in the
unconditional-security case. More precisely, the secret is split into uniformly random
summands s1, . . . , sm ∈ F that add up to the secret, where each player might hold sev-
eral of those summands, according to some sharing specification S = (S1, . . . , Sm).
The difference is that the players do not hold signatures on their summands, but they
are committed to them (towards all players) by a perfectly hiding commitment scheme.9

In particular, for each summand sk, all players hold a commitment to sk such that each
pi ∈ Sk holds the corresponding decommitment information to open it.

The computation stage. In the computation stage, instead of C we evaluate the cir-
cuit C′ which computes a uniformly random sharing 〈y〉 of the output y of C ac-
cording to SZ , i.e., the sharing specification associated with Z . The circuit C′ can be
easily constructed from C [IKLP06]. To evaluate C′ the players invoke the protocol for
SFE from [Gol04] for the model where authenticated broadcast channels (but no bilat-
eral point-to-point channels) are given, which tolerates any number of t < n actively
corrupted players. As proved in [Gol04], with this protocol we achieve the following
properties: There is a p ∈ P (specified by the protocol), such that when p is uncor-
rupted the circuit C′ is securely evaluated, otherwise the adversary can decide either to
make all players abort the protocol or to allow C′ to be securely evaluated. Note that
the adversary can decide whether or not the protocol aborts even after having received
the outputs of the passively corrupted players. Furthermore, by inspecting the protocol
in [Gol04], one can verify that it actually satisfies some additional properties, which are
relevant when all three corruption types are considered, namely (1) if p is correct then
the protocol does not abort,10 (2) a correct player always gives his (correct) input to the
evaluation of C′, and (3) a non-actively corrupted player does not give a wrong input
(but might give no input if he crashes). By the above properties it is clear that the proto-
col can abort only if p is incorrect (i.e., B = {p}). Moreover, when it aborts privacy of
the inputs is not violated as the outputs of passively corrupted players are their shares
of 〈y〉 plus perfectly hiding commitments to all the summands of 〈y〉.

The output stage. The output stage is similar to the output stage of protocol SFE
described in Section 6. The summands of 〈y〉 are announced sequentially in the order
implied by C(1)

ORD(P ,Z). This guarantees (as in protocol OutputGeneration) that when
the announcing of a summand aborts, then the output stage can abort without violating

9 Such commitment schemes are known to exist if (enhanced) trapdoor permutations ex-
ist [GMW86].

10 Note that a correct player is not necessary uncorrupted.



MPC vs. SFE : Unconditional and Computational Security 17

privacy (the summand of 〈y〉 associated with the actual adversary has not been an-
nounced yet). To announce a summand, protocol CompPubAnnounce is invoked which
is a trivially modified version of PubAnnounce to use openings of commitments instead
of signatures. We refer to the abovely described SFE protocol as CompSFE.

Lemma 16. Assuming that enhanced trapdoor permutations exist, the protocol
CompSFE is computationally Z-secure if C(1)

ORD(P ,Z) holds.

7.2 The MPC Protocol

A protocol for MPC can be built based on a (robust) general SFE protocol and a robustly
reconstructible secret-sharing scheme, in a straightforward way: the SFE protocol is
used to securely evaluate the circuit gate-by-gate, where each intermediary result is
shared among the players. In fact, the secret-sharing scheme described is Section 7.1,
for sharing specification SZ , is robustly reconstructible if C(1)(P ,Z) holds. Indeed,
condition C(1)(P ,Z) ensures that for any shared value each summand is known to at
least one player who is not actively or fail-corrupted and will not change or delete it.
Hence, the shared value is uniquely determined by the views of the players. Therefore,
we can use protocol CompSFE to evaluate any (reactive) circuit as follows: For each
input gate, invoke CompSFE to evaluate the circuit Cinput which computes a sharing
(according to SZ ) of the input value. For the addition and multiplication gate, invoke
CompSFE to evaluate the circuits Cadd and Cmult which on input the sharings of two
values s and t output a sharing of the sum s + t and of the product st, respectively. For
output gates, invoke CompSFE to evaluate the circuit Coutput which on input the sharing
of some value s outputs s towards the corresponding player. We refer to the resulting
MPC protocol as CompMPC.

Lemma 17. Protocol CompMPC is computationally Z-secure if C(1)(P ,Z) holds.

8 Conclusions

We considered MPC and SFE in the presence of a general adversary who can actively,
passively, and fail corrupt players, simultaneously. For both primitives we gave exact
characterizations of the tolerable adversary structures for achieving unconditional (aka
statistical) and computational security, when a broadcast channel is given. As in the case
of threshold adversaries, the achieved bounds are strictly better than those required for
perfect security, where no error probability is allowed. Our results confirm that in all
three security models (perfect, unconditional, and computational) there are adversary
structures that can be tolerated for SFE but not for MPC.
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Abstract. Strongly multiplicative linear secret sharing schemes (LSSS)
have been a powerful tool for constructing secure multi-party computa-
tion protocols. However, it remains open whether or not there exist effi-
cient constructions of strongly multiplicative LSSS from general LSSS. In
this paper, we propose the new concept of 3-multiplicative LSSS, and es-
tablish its relationship with strongly multiplicative LSSS. More precisely,
we show that any 3-multiplicative LSSS is a strongly multiplicative LSSS,
but the converse is not true; and that any strongly multiplicative LSSS
can be efficiently converted into a 3-multiplicative LSSS. Furthermore,
we apply 3-multiplicative LSSS to the computation of unbounded fan-in
multiplication, which reduces its round complexity to four (from five of
the previous protocol based on multiplicative LSSS). We also give two
constructions of 3-multiplicative LSSS from Reed-Muller codes and alge-
braic geometric codes. We believe that the construction and verification
of 3-multiplicative LSSS are easier than those of strongly multiplicative
LSSS. This presents a step forward in settling the open problem of effi-
cient constructions of strongly multiplicative LSSS from general LSSS.

Keywords: monotone span program, secure multi-party computation,
strongly multiplicative linear secret sharing scheme.

1 Introduction

Secure multi-party computation (MPC) [16,9] is a cryptographic primitive that
enables n players to jointly compute an agreed function of their private inputs
in a secure way, guaranteeing the correctness of the outputs as well as the pri-
vacy of the players’ inputs, even when some players are malicious. It has become
a fundamental tool in cryptography and distributed computation. Linear se-
cret sharing schemes (LSSS) play an important role in building MPC protocols.
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Cramer et al. [6] developed a generic method of constructing MPC protocols from
LSSS. Assuming that the function to be computed is represented as an arith-
metic circuit over a finite field, their protocol ensures that each player share his
private input through an LSSS, and then evaluates the circuit gate by gate. The
main idea of their protocol is to keep the intermediate results secretly shared
among the players with the underlying LSSS. Due to the nature of linearity,
secure additions (and linear operations) can be easily achieved. For instance,
if player Pi holds the share x1i for input x1 and x2i for input x2, he can lo-
cally compute x1i + x2i which is actually Pi’s share for x1 + x2. Unfortunately,
the above homomorphic property does not hold for multiplication. In order to
securely compute multiplications, Cramer et al. [6] introduced the concept of
multiplicative LSSS, where the product x1x2 can be computed as a linear com-
bination of the local products of shares, that is, x1x2 =

∑n
i=1 aix1ix2i for some

constants ai, 1 ≤ i ≤ n. Since x1ix2i can be locally computed by Pi, the product
can then be securely computed through a linear combination. Furthermore, in
order to resist against an active adversary, they defined strongly multiplicative
LSSS, where x1x2 can be computed as a linear combination of the local products
of shares by all players excluding any corrupted subset. Therefore, multiplicativ-
ity becomes an important property in constructing secure MPC protocols. For
example, using strongly multiplicative LSSS, we can construct an error-free MPC
protocol secure against an active adversary in the information-theoretic model
[6]. Cramer et al. [7] also gave an efficient reconstruction algorithm for strongly
multiplicative LSSS that recovers the secret even when the shares submitted by
the corrupted players contain errors. This implicit “built-in” verifiability makes
strongly multiplicative LSSS an attractive building block for MPC protocols.

Due to their important role as the building blocks in MPC protocols, efficient
constructions of multiplicative LSSS and strongly multiplicative LSSS have been
studied by several authors in recent years. Cramer et al. [6] developed a generic
method of constructing a multiplicative LSSS from any given LSSS with a double
expansion of the shares. Nikov et al. [14] studied how to securely compute multi-
plications in a dual LSSS, without blowing up the shares. For some specific access
structures there exist very efficient multiplicative LSSS. Shamir’s threshold se-
cret sharing scheme is a well-known example of an ideal (strongly) multiplicative
LSSS. Besides, self-dual codes give rise to ideal multiplicative LSSS [7], and Liu
et al. [12] provided a further class of ideal multiplicative LSSS for some kind of
graph access structure. We note that for strongly multiplicative LSSS, the known
general construction is of exponential complexity. Käsper et al. [11] gave some
efficient constructions for specific access structures (hierarchical threshold struc-
tures). It remains open whether there exists an efficient transformation from a
general LSSS to a strongly multiplicative one.

On the other hand, although in a multiplicative LSSS, multiplication can be
converted into a linear combination of inputs from the players, each player has to
reshare the product of his shares, that is, for 1 ≤ i ≤ n, Pi needs to reshare the
product x1ix2i to securely compute the linear combination

∑n
i=1 aix1ix2i. This

resharing process involves costly interactions among the players. For example, if
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the players are to securely compute multiple multiplications,
∏l

i=1 xi, the simple
sequential multiplication requires interaction of round complexity proportional
to l. Using the technique developed by Bar-Ilan and Beaver [1], Cramer et al.
[4] recently showed that the round complexity can be significantly reduced to a
constant of five for unbounded fan-in multiplications. However, the method does
not seem efficient when l is small. For example, considering x1x2 and x1x2x3,
extra rounds of interactions seem unavoidable for computing x1x2x3 even though
we apply the method of Cramer et al. [4].

1.1 Our Contribution

In this paper, we propose the concept of 3-multiplicative LSSS. Roughly speak-
ing, a 3-multiplicative LSSS is a generalization of multiplicative LSSS, where
the product x1x2x3 is a linear combination of the local products of shares. As
one would expect, a 3-multiplicative LSSS achieves better round complexity for
the computation of

∏l
i=1 xi compared to a multiplicative LSSS, if l ≥ 3. Indeed,

it is easy to see that computing the product
∏9

i=1 xi requires two rounds of in-
teraction for a 3-multiplicative LSSS but four rounds for a multiplicative LSSS.
We also extend the concept of a 3-multiplicative LSSS to the more general λ-
multiplicative LSSS, for all integers λ ≥ 3, and show that λ-multiplicative LSSS
reduce the round complexity by a factor of 1

log λ from multiplicative LSSS. In
particular, 3-multiplicative LSSS reduce the constant round complexity of com-
puting the unbounded fan-in multiplication from five to four, thus improving a
result of Cramer et al. [4].

More importantly, we show that 3-multiplicative LSSS are closely related to
strongly multiplicative LSSS. The latter is known to be a powerful tool for
constructing secure MPC protocols against active adversaries. More precisely,
we show the following:

(i) 3-multiplicative LSSS are also strongly multiplicative;
(ii) there exists an efficient algorithm that transforms a strongly multiplicative

LSSS into a 3-multiplicative LSSS;
(iii) an example of a strongly multiplicative LSSS that is not 3-multiplicative.

Our results contribute to the study of MPC in the following three aspects:

– The 3-multiplicative LSSS outperform strongly multiplicative LSSS with re-
spect to round complexity in the construction of secure MPC protocols.

– The 3-multiplicative LSSS are easier to construct than strongly multiplica-
tive LSSS. First, the existence of an efficient transformation from a strongly
multiplicative LSSS to a 3-multiplicative LSSS implies that efficiently
constructing 3-multiplicative LSSS is not a harder problem. Second, veri-
fication of a strongly multiplicative LSSS requires checking the linear com-
binations for all possibilities of adversary sets, while the verification of a
3-multiplicative LSSS requires only one checking. We give two constructions
of LSSS based on Reed-Muller codes and algebraic geometric codes that can
be easily verified for 3-multiplicativity, but it does not seem easy to give
direct proofs of their strong multiplicativity.
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– This work provides two possible directions toward solving the open problem
of determining the existence of efficient constructions for strongly multiplica-
tive LSSS. On the negative side, if we can prove that in the information-
theoretic model and with polynomial size message exchanged, computing
x1x2x3 inevitably needs more rounds of interactions than computing x1x2,
then we can give a negative answer to this open problem. On the positive
side, if we can find an efficient construction for 3-multiplicative LSSS, which
also results in strongly multiplicative LSSS, then we will have an affirmative
answer to this open problem.

1.2 Organization

Section 2 gives notations, definition of multiplicative LSSS, and general construc-
tions for strongly multiplicative LSSS. Section 3 defines 3-multiplicative LSSS.
Section 4 shows the relationship between 3-multiplicative LSSS and strongly mul-
tiplicative LSSS. Section 5 gives two constructions of 3-multiplicative LSSS from
error-correcting codes, and Section 6 discusses the implications of 3-multiplicative
LSSS in MPC. Section 7 concludes the paper.

2 Preliminaries

Throughout this paper, let P = {P1, . . . , Pn} denote the set of n players and
let K be a finite field. In a secret sharing scheme, the collection of all subsets
of players that are authorized to recover the secret is called its access structure,
and is denoted by AS. An access structure possesses the monotone ascending
property: if A′ ∈ AS, then for all A ⊆ P with A ⊇ A′, we also have A ∈ AS.
Similarly, the collection of subsets of players that are possibly corrupted is called
the adversary structure, and is denoted as A. An adversary structure possesses
the monotone descending property: if A′ ∈ A, then for all A ⊆ P with A ⊆ A′,
we also have A ∈ A. Owing to these monotone properties, it is often sufficient
to consider the minimum access structure ASmin and the maximum adversary
structure Amax defined as follows:

ASmin = {A ∈ AS | ∀B ⊆ P, we have B � A ⇒ B �∈ AS},
Amax = {A ∈ A | ∀B ⊆ P, we have B � A ⇒ B �∈ A}.

In this paper, we consider the complete situation, that is, A = 2P−AS. Moreover,
an adversary structure A is called Q2 (respectively, Q3) if any two (respectively,
three) sets in A cannot cover the entire player set P . For simplicity, when an
adversary structure A is Q2 (respectively, Q3) we also say the corresponding
access structure AS = 2P −A is Q2 (respectively, Q3).

2.1 Linear Secret Sharing Schemes and Monotone Span Programs

Suppose S is the secret-domain, R is the set of random inputs, and Si is the
share-domain of Pi, where 1 ≤ i ≤ n. Let S and R denote random variables
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taking values in S and R, respectively. Then Π : S×R → S1 × · · ·×Sn is called
a secret sharing scheme (SSS) with respect to the access structure AS, if the
following two conditions are satisfied:

1. for all A ∈ AS, H(S | Π(S,R)|A) = 0;
2. for all B �∈ AS, H(S | Π(S,R)|B) = H(S),

where H(·) is the entropy function. Furthermore, the secret sharing scheme Π is
called linear if we have S = K, R = Kl−1, and Si = Kdi for some positive integers
l and di, 1 ≤ i ≤ n, and the reconstruction of the secret can be performed by
taking a linear combination of shares from the authorized players. The quantity
d =

∑n
i=1 di is called the size of the LSSS.

Karchmer and Wigderson [10] introduced monotone span programs (MSP)
as a linear model for computing monotone Boolean functions. We denote an
MSP by M(K,M, ψ,v), where M is a d × l matrix over K, ψ : {1, . . . , d} →
{P1, . . . , Pn} is a surjective labeling map, and v ∈ Kl is a nonzero vector. We
call d the size of the MSP and v the target vector. A monotone Boolean function
f : {0, 1}n → {0, 1} satisfies f(δ′) ≥ f(δ) for any δ′ ≥ δ, where δ = (δ1, . . . , δn),
δ′ = (δ′1, . . . , δ

′
n) ∈ {0, 1}n, and δ′ ≥ δ means δ′i ≥ δi for 1 ≤ i ≤ n. We

say that an MSP M(K,M, ψ,v) computes the monotone Boolean function f if
v ∈ span{MA} if and only if f(δA) = 1, where A is a set of players, MA denotes
the matrix constricted to the rows labeled by players in A, span{MA} denotes
the linear space spanned by the row vectors of MA, and δA is the characteristic
vector of A.

Theorem 1 (Beimel [2]). Suppose AS is an access structure over P and fAS

is the characteristic function of AS, that is, fAS(δ) = 1 if and only if δ = δA

for some A ∈ AS. Then there exists an LSSS of size d that realizes AS if and
only if there exists an MSP of size d that computes fAS.

Since an MSP computes the same Boolean function under linear transformations,
we can always assume that the target vector is e1 = (1, 0, . . . , 0). From an MSP
M(K,M, ψ, e1) that computes fAS , we can derive an LSSS realizing AS as
follows: to share a secret s ∈ K, the dealer randomly selects ρ ∈ Kl−1, computes
M(s,ρ)τ and sends MPi(s,ρ)τ to Pi as his share, where 1 ≤ i ≤ n and τ
denotes the transpose. The following property of MSP is useful in the proofs of
our results.

Proposition 1 (Karchmer and Wigderson [10]). Let M(K,M, ψ, e1) be
an MSP that computes a monotone Boolean function f . Then for all A ⊆ P ,
e1 �∈ span{MA} if and only if there exists ρ ∈ Kl−1 such that MA(1,ρ)τ = 0τ .

2.2 Multiplicative Linear Secret Sharing Schemes

From Theorem 1, an LSSS can be identified with its corresponding MSP in the
following way. Let M(K,M, ψ, e1) be an LSSS realizing the access structure AS.
Given two vectors x = (x1, . . . , xd), y = (y1, . . . , yd) ∈ Kd, we define x � y to
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be the vector containing all entries of the form xi · yj with ψ(i) = ψ(j). More
precisely, let

x = (x11, . . . , x1d1 , . . . , xn1, . . . , xndn),
y = (y11, . . . , y1d1 , . . . , yn1, . . . , yndn),

where
∑n

i=1 di = d, and (xi1, . . . , xidi), (yi1, . . . , yidi) are the entries distributed
to Pi according to ψ. Then x � y is the vector composed of the

∑n
i=1 d

2
i entries

xijyik, where 1 ≤ j, k ≤ di, 1 ≤ i ≤ n. For consistency, we write the entries of
x � y in some fixed order. We also define (x � y)τ = xτ � yτ .

Definition 1 (Multiplicativity). Let M(K,M, ψ, e1) be an LSSS realizing
the access structure AS over P . Then M is called multiplicative if there exists a
recombination vector z ∈ K

∑n
i=1 d2

i , such that for all s, s′ ∈ K and ρ,ρ′ ∈ Kl−1,
we have

ss′ = z(M(s,ρ)τ �M(s′,ρ′)τ ).

Moreover, M is strongly multiplicative if for all A ∈ A = 2P − AS, MA is
multiplicative, where MA denotes the MSP M constricted to the subset A =
P −A.

Proposition 2 (Cramer et al. [6]). Let AS be an access structure over P .
Then there exists a multiplicative (respectively, strongly multiplicative) LSSS re-
alizing AS if and only if AS is Q2 (respectively, Q3).

2.3 General Constructions of Strongly Multiplicative LSSS

For all Q2 access structure AS, Cramer et al. [6] gave an efficient construction
to build a multiplicative LSSS from a general LSSS realizing the same AS. It
remains open if we can efficiently construct a strongly multiplicative LSSS from
an LSSS. However, there are general constructions with exponential complexity,
as described below.

Since Shamir’s threshold secret sharing scheme is strongly multiplicative for
all Q3 threshold access structure, a proper composition of Shamir’s threshold
secret sharing schemes results in a general construction for strongly multiplica-
tive LSSS [6]. Here, we give another general construction based on multiplicative
LSSS.

Let AS be any Q3 access structure and M(K,M, ψ, e1) be an LSSS realizing
AS. For all A ∈ A = 2P − AS, it is easy to see that MA realizes the restricted
access structure ASA = {B ⊆ A | B ∈ AS}. The access structure ASA is
Q2 over A because AS is Q3 over A ∪ A. Thus, we can transform MA into a
multiplicative LSSS following the general construction of Cramer et al. [6] to
obtain a strongly multiplicative LSSS realizing AS. The example in Section 4.3
gives an illustration of this method.

We note that both constructions above give LSSS of exponential sizes, and
hence are not efficient in general.
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3 3-Multiplicative and λ-Multiplicative LSSS

In this section, we give an equivalent definition for (strongly) multiplicative
LSSS. We then define 3-multiplicative LSSS and give a necessary and sufficient
condition for its existence. The notion of 3-multiplicativity is also extended to λ-
multiplicativity for all integer λ > 1. Finally, we present a generic (but inefficient)
construction of λ-multiplicative LSSS.

Under the same notations used in Section 2.2, it is straightforward to see that
we have an induced labeling map ψ′ : {1, . . . ,

∑n
i=1 d

2
i } → {P1, . . . , Pn} on the

entries of x � y, distributing the entry xijyik to Pi, since both xij and yik are
labeled by Pi under ψ. For an MSP M(K,M, ψ, e1), denote M = (M1, . . . ,Ml),
where Mi ∈ Kd is the i-th column vector of M , 1 ≤ i ≤ l. We construct a new
matrix M� as follows:

M� = (M1 �M1, . . . ,M1 �Ml,M2 �M1, . . . ,M2 �Ml, . . . ,Ml �M1, . . . ,Ml �Ml).

For consistency, we also denote M� as M �M . Obviously, M� is a matrix over
K with

∑n
i=1 d

2
i rows and l2 columns. For any two vectors u,v ∈ Kl, it is easy

to verify that
(Muτ ) � (Mvτ ) = M�(u ⊗ v)τ ,

where u⊗v denotes the tensor product with its entries written in a proper order.
Define the induced labeling map ψ′ on the rows of M�. We have the following
proposition.

Proposition 3. Let M(K,M, ψ, e1) be an LSSS realizing the access structure
AS, and let M� be with the labeling map ψ′. Then M is multiplicative if and
only if e1 ∈ span{M�}, where e1 = (1, 0, . . . , 0). Moreover, M is strongly mul-
tiplicative if and only if e1 ∈ span{(M�)A} for all A ∈ A = 2P −AS.

Proof. By Definition 1, M is multiplicative if and only if ss′ = z(M(s,ρ)τ �
M(s′,ρ′)τ ) for all s, s′ ∈ K and ρ,ρ′ ∈ Kl−1. Obviously,

M(s,ρ)τ �M(s′,ρ′)τ = M�((s,ρ) ⊗ (s′,ρ′))τ = M�(ss′,ρ′′)τ , (1)

where (ss′,ρ′′) = (s,ρ) ⊗ (s′,ρ′). On the other hand, ss′ = e1(ss′,ρ′′)τ . Thus
M is multiplicative if and only if

(e1 − zM�)(ss′,ρ′′)τ = 0. (2)

Because of the arbitrariness of s, s′,ρ and ρ′, equality (2) holds if and only if
e1 − zM� = 0. Thus e1 ∈ span{M�}. The latter part of the proposition can be
proved similarly. ��

Now we are ready to give the definition of 3-multiplicative LSSS. We extend the
diamond product “�” and define x � y � z to be the vector containing all entries
of the form xiyjzk with ψ(i) = ψ(j) = ψ(k), where the entries of x � y � z are
written in some fixed order.
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Definition 2 (3-Multiplicativity). Let M(K,M, ψ, e1) be an LSSS realiz-
ing the access structure AS. Then M is called 3-multiplicative if there ex-
ists a recombination vector z ∈ K

∑n
i=1 d3

i such that for all s1, s2, s3 ∈ K and
ρ1,ρ2,ρ3 ∈ Kl−1, we have

s1s2s3 = z(M(s1,ρ1)τ �M(s2,ρ2)τ �M(s3,ρ3)τ ).

We can derive an equivalent definition for 3-multiplicative LSSS, similar to
Proposition 3: M is 3-multiplicative if and only if e1 ∈ span{(M �M �M)}. The
following proposition gives a necessary and sufficient condition for the existence
of 3-multiplicative LSSS.

Proposition 4. For all access structures AS, there exists a 3-multiplicative
LSSS realizing AS if and only if AS is Q3.

Proof. Suppose M(K,M, ψ, e1) is a 3-multiplicative LSSS realizing AS, and
suppose to the contrary, that AS is not Q3, so there exist A1, A2, A3 ∈ A =
2P −AS such that A1 ∪A2 ∪A3 = P . By Proposition 1, there exists ρi ∈ Kl−1

such that MAi(1,ρi)τ = 0τ for 1 ≤ i ≤ 3. Since A1 ∪ A2 ∪ A3 = P , we have
M(1,ρ1)τ �M(1,ρ2)τ �M(1,ρ3)τ = 0τ , which contradicts Definition 2.

On the other hand, a general construction for building a 3-multiplicative LSSS
from a strongly multiplicative LSSS is given in the next section, thus sufficiency
is guaranteed by Proposition 2. ��

A trivial example of 3-multiplicative LSSS is Shamir’s threshold secret sharing
scheme that realizes any Q3 threshold access structure. Using an identical argu-
ment for the case of strongly multiplicative LSSS, we have a general construction
for 3-multiplicative LSSS based on Shamir’s threshold secret sharing schemes,
with exponential complexity.

For any λ vectors xi = (xi1, . . . , xid) ∈ Kd, 1 ≤ i ≤ λ, we define �λ
i=1xi to

be the
∑n

i=1 d
λ
i -dimensional vector which contains entries of the form

∏λ
i=1 xiji

with ψ(j1) = · · · = ψ(jλ).

Definition 3 (λ-Multiplicativity). Let M(K,M, ψ, e1) be an LSSS realizing
the access structure AS, and let λ > 1 be an integer. Then M is λ-multiplicative
if there exists a recombination vector z such that for all s1, . . . , sλ ∈ K and
ρ1, . . . ,ρλ ∈ Kl−1, we have

λ∏
i=1

si = z(�λ
i=1M(si,ρi)τ ).

Moreover, M is strongly λ-multiplicative if for all A �∈ AS, the constricted LSSS
MA is λ-multiplicative.

Again, we can define a new matrix by taking the diamond product of λ copies
of M . This gives an equivalence to (strongly) λ-multiplicative LSSS. Also, since
Shamir’s threshold secret sharing scheme is trivially λ-multiplicative and
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strongly λ-multiplicative, a proper composition of Shamir’s threshold secret shar-
ing schemes results in a general construction for both λ-multiplicative LSSS and
strongly λ-multiplicative LSSS. Let Qλ be a straightforward extension of Q2 and
Q3, that is, an access structure AS is Qλ if the player set P cannot be covered
by λ sets in A = 2P −AS. The following corollary is easy to prove.

Corollary 1. Let AS be an access structure over P . Then there exists a λ-
multiplicative (respectively, strongly λ-multiplicative) LSSS realizing AS if and
only if AS is Qλ (respectively, Qλ+1).

Since a λ-multiplicative LSSS transforms the products of λ entries into a linear
combination of the local products of shares, it can be used to simplify the secure
computation of sequential multiplications. In particular, when compared to using
only the multiplicative property (which corresponds to the case when λ = 2), a
λ-multiplicative LSSS can lead to reduced round complexity by a factor of 1

log λ
in certain cases.

We also point out that Qλ is not a necessary condition for secure computation.
Instead, the necessary condition is Q2 for the passive adversary model, or Q3 for
the active adversary model [6]. The condition Qλ is just a necessary condition
for the existence of λ-multiplicative LSSS which can be used to simplify compu-
tation. In practice, many threshold adversary structures satisfy the Qλ condition
for some appropriate integer λ, and the widely used Shamir’s threshold secret
sharing scheme is already λ-multiplicative. By using this λ-multiplicativity, we
can get more efficient MPC protocols. However, since the special case λ = 3
shows a close relationship with strongly multiplicative LSSS, a fundamental tool
in MPC, this paper focuses on 3-multiplicative LSSS.

4 Strong Multiplicativity and 3-Multiplicativity

In this section, we show that strong multiplicativity and 3-multiplicativity are
closely related. On the one hand, given a strongly multiplicative LSSS, there is an
efficient transformation that converts it to a 3-multiplicative LSSS. On the other
hand, we show that any 3-multiplicative LSSS is a strongly multiplicative LSSS,
but the converse is not true. It should be noted that strong multiplicativity,
as defined, has a combinatorial nature. The definition of 3-multiplicativity is
essentially algebraic, which is typically easier to verify.

4.1 From Strong Multiplicativity to 3-Multiplicativity

We show a general method to efficiently build a 3-multiplicative LSSS from a
strongly multiplicative LSSS, for all Q3 access structures. As an extension, the
proposed method can also be used to efficiently build a (λ + 1)-multiplicative
LSSS from a strongly λ-multiplicative LSSS.

Theorem 2. Let AS be a Q3 access structure and M(K,M, ψ, e1) be a strongly
multiplicative LSSS realizing AS. Suppose that M has size d and |ψ−1(Pi)| = di,
for 1 ≤ i ≤ n. Then there exists a 3-multiplicative LSSS for AS of size O(d2).



28 Z. Zhang et al.

Proof. We give a constructive proof. Let M� be the matrix defined in Section 3,
and ψ′ be the induced labeling map on the rows of M�. Then we have an LSSS
M�(K,M�, ψ′, e1) that realizes an access structure AS�. Because M is strongly
multiplicative, by Proposition 3 we have e1 ∈ span{(M�)A} for all A �∈ AS.
Therefore A ∈ AS� and it follows that AS∗ ⊆ AS�, where AS∗ denotes the dual
access structure of AS, defined by AS∗ = {A ⊆ P | P −A �∈ AS}.

The equality (1) in the proof of Proposition 3 shows that the diamond product
of two share vectors equals sharing the product of the two secrets by the MSP
M�(K,M�, ψ′, e1), that is,

(M(s1,ρ
′
1)

τ ) � (M(s2,ρ
′
2)

τ ) = M�(s1s2,ρ)τ , for some ρ′
1,ρ

′
2,ρ ∈ Kl−1.

Thus, using a method similar to Nikov et al. [14], we can get the product (s1s2)·s3
by sharing s3 through the dual MSP of M�, denoted by (M�)∗. Furthermore,
since (M�)∗ realizes the dual access structure (AS�)∗ and (AS�)∗ ⊆ (AS∗)∗ =
AS, we can build a 3-multiplicative LSSS by the union of M and (M�)∗, which
realizes the access structure AS∪(AS�)∗ = AS. Now following the same method
of Cramer et al. and Fehr [6,8], we prove the required result via the construction
below.

Compute the column vector v0 as a solution to the equation (M�)τv = e1
τ

for v, and compute v1, . . . ,vk as a basis of the solution space to (M�)τv = 0τ .
Note that (M�)τv = e1

τ is solvable because e1 ∈ span{(M�)A} for all A �∈ AS,
while (M�)τv = 0τ may only have the trivial solution v = 0 and k = 0. Let

M ′ =

⎛⎜⎜⎜⎝
m11 · · · m1l

...
. . .

...
md1 · · · mdl

v0 v1 · · · vk

⎞⎟⎟⎟⎠ ,

where

⎛⎜⎝m11 · · · m1l

...
. . .

...
md1 · · · mdl

⎞⎟⎠ = M and the blanks in M ′ denote zeros. Define a labeling

map ψ′′ on the rows of M ′ which labels the first d rows of M ′ according to ψ
and the other

∑n
i=1 d

2
i rows according to ψ′.

As mentioned above, M′(K,M ′, ψ′′, e1) obviously realizes the access structure
AS. We now verify its 3-multiplicativity.

Let N = (v0,v1, . . . ,vk), a matrix over K with
∑n

i=1 d
2
i rows and k + 1

columns. For si ∈ K and ρi = (ρ′
i,ρ

′′
i ) ∈ Kl−1 × Kk, 1 ≤ i ≤ 3, denote

M ′(si,ρi)τ = (ui,wi)τ , where u τ
i = M(si,ρ

′
i)

τ and w τ
i = N(si,ρ

′′
i )τ . We

have

u τ
1 � u τ

2 = (M(s1,ρ
′
1)

τ ) � (M(s2,ρ
′
2)

τ ) = M�(s1s2,ρ)τ ,

where (s1s2,ρ) = (s1,ρ
′
1) ⊗ (s2,ρ

′
2). Then,
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(u1 � u2) · w τ
3 = (s1s2,ρ)(M�)τ ·N

⎛⎝ s3

ρ′′
3

τ

⎞⎠

= (s1s2,ρ)

⎛⎜⎜⎜⎝
1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

⎞⎟⎟⎟⎠
⎛⎝ s3

ρ′′
3

τ

⎞⎠
= s1s2s3.

It is easy to see that (u1 �u2) ·w τ
3 is a linear combination of the entries from

(u1 � u2) � w3, and so is a linear combination of the entries from M ′(s1,ρ1)τ �
M ′(s2,ρ2)τ �M ′(s3,ρ3)τ .

Hence M′ is a 3-multiplicative LSSS for AS. Obviously, the size of M′ is
O(d2), since d +

∑n
i=1 d

2
i < d2 + d. ��

If we replace the matrix M� above by the diamond product of λ copies of M ,
using an identical argument, the construction from Theorem 2 gives rise to a
(λ + 1)-multiplicative LSSS from a strongly λ-multiplicative LSSS.

Corollary 2. Let AS be a Qλ+1 access structure and M(K,M, ψ, e1) be a
strongly λ-multiplicative LSSS realizing AS. Suppose the size of M is d and
|ψ−1(Pi)| = di, for 1 ≤ i ≤ n. Then there exists a (λ + 1)-multiplicative LSSS
for AS of size O(dλ).

4.2 From 3-Multiplicativity to Strong Multiplicativity

Theorem 3. Any 3-multiplicative LSSS is strongly multiplicative.

Proof. Let M(K,M, ψ, e1) be a 3-multiplicative LSSS realizing the access struc-
ture AS over P . For all A ∈ A = 2P − AS, by Proposition 1, we can choose a
fixed vector ρ′′ ∈ Kl−1 such that MA(1,ρ′′)τ = 0τ . There exists a recombination
vector z ∈ K

∑n
i=1 d3

i such that for all s, s′ ∈ K and ρ,ρ′ ∈ Kl−1, we have

ss′ = z(M(s,ρ)τ �M(s′,ρ′)τ �M(1,ρ′′)τ ).

Since MA(1,ρ′′)τ = 0τ , and MA(1,ρ′′)τ is a constant vector for fixed ρ′′, the
vector z′ ∈ K

∑
Pi �∈A d2

i that satisfies

z(M(s,ρ)τ �M(s′,ρ′)τ �M(1,ρ′′)τ ) = z′(MA(s,ρ)τ �MA(s′,ρ′)τ )

can be easily determined. Thus ss′ = z′(MA(s,ρ)τ �MA(s′,ρ′)τ ). Hence, M is
strongly multiplicative. ��

Although 3-multiplicative LSSS is a subclass of strongly multiplicative LSSS, one
of the advantages of 3-multiplicativity is that its verification admits a simpler pro-
cess. For 3-multiplicativity, we need only to check that e1 ∈ span{(M �M �M)},
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while strong multiplicativity requires the verification of e1 ∈ span{(M � M)A}
for all A �∈ AS.

Using a similar argument, the following results for (λ+1)-multiplicativity can
be proved:

(i) A (λ + 1)-multiplicative LSSS is a strongly λ-multiplicative LSSS.
(ii) A λ-multiplicative LSSS is a λ′-multiplicative LSSS, where 1 < λ′ < λ.

4.3 An Example of a Strongly Multiplicative LSSS That Is Not
3-Multiplicative

We give an example of a strongly multiplicative LSSS that is not 3-multiplicative.
It follows that 3-multiplicative LSSS are strictly contained in the class of strongly
multiplicative LSSS. The construction process is as follows. Start with an LSSS
that realizes a Q3 access structure but is not strongly multiplicative. We then
apply the general construction given in Section 2.3 to convert it into a strongly
multiplicative LSSS. The resulting LSSS is however not 3-multiplicative.

Let P = {P1, P2, P3, P4, P5, P6} be the set of players. Consider the access
structure AS over P defined by

ASmin = {(1, 2), (3, 4), (5, 6), (1, 5), (1, 6), (2, 6), (2, 5), (3, 6), (4, 5)},

where we use subscript to denote the corresponding player. For example, (1, 2)
denotes the subset {P1, P2}. It is easy to verify that the corresponding adversary
structure is

Amax = {(1, 3), (1, 4), (2, 3), (2, 4), (3, 5), (4, 6)},

and that AS is a Q3 access structure.
Let K = F2. Define the matrix M over F2 with the labeling map ψ such that

MP1 =

⎛⎝1 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞⎠ , MP2 =

⎛⎝0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞⎠ , MP3 =
(

1 1 0 0 0
0 0 0 0 1

)
,

MP4 =
(

0 1 0 0 0
0 0 0 1 0

)
, MP5 =

(
1 1 1 0 0
1 0 0 1 0

)
, MP6 =

(
0 1 1 0 0
1 0 0 0 1

)
.

It can be verified that the LSSS M(F2,M, ψ, e1) realizes the access structure
AS. Moreover, for all A ∈ A − {(1, 3), (1, 4)}, the constricted LSSS MA is
multiplicative. Thus in order to get a strongly multiplicative LSSS, we just need
to expand M with multiplicativity when constricted to both {P2, P4, P5, P6} and
{P2, P3, P5, P6}.

Firstly, consider the LSSS M constricted to P ′ = {P2, P4, P5, P6}. Obviously,
MP ′ realizes the access structure AS′

min = {(5, 6), (2, 6), (2, 5), (4, 5)}, which is
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Q2 over P ′. By the method of Cramer et al. [6], we can transform MP ′ into the
multiplicative LSSS M′

P ′(F2,M
′, ψ′, e1) defined as follows:

M ′
P2

=

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

0 1 1 1
1 1 0 0
0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ , M ′
P4

=

⎛⎜⎜⎝
0 1 0 0 0
0 0 0 1 0

0 1 1 1
1 0 0 0

⎞⎟⎟⎠ ,

M ′
P5

=

⎛⎜⎜⎝
1 1 1 0 0
1 0 0 1 0
1 0 1 0 1
0 0 1 0 0

⎞⎟⎟⎠ , M ′
P6

=

⎛⎜⎜⎝
0 1 1 0 0
1 0 0 0 1
1 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎠ ,

where the blanks in the matrices denote zeros.
For consistency, we define

M ′
P1

= (MP1 O3×4),
M ′

P3
= (MP3 O2×4),

where Om×n denotes the m×n matrix of all zeros. It can be verified that for the
subset P ′′ = {P2, P3, P5, P6}, the constricted LSSS M′

P ′′ is indeed multiplicative.
Therefore, M′(F2,M

′, ψ′, e1) is a strongly multiplicative LSSS realizing the ac-
cess structure AS. Furthermore, it can be verified that M′ is not 3-multiplicative
(the verification involves checking a 443× 729 matrix using Matlab).

The scheme M(F2,M, ψ,v1) given above is the first example of an LSSS which
realizes a Q3 access structure but is not strongly multiplicative.

5 Constructions for 3-Multiplicative LSSS

It is tempting to find efficient constructions for 3-multiplicative LSSS. In general,
it is a hard problem to construct LSSS with polynomial size for any specified ac-
cess structure, and it seems to be an even harder problem to construct polynomial
size 3-multiplicative LSSS with generalQ3 access structures. We mention two con-
structions for 3-multiplicative LSSS. These constructions are generally inefficient,
which can result in schemes with exponential sizes. The two constructions are:

1. The Cramer-Damg̊ard-Maurer construction based on Shamir’s threshold se-
cret sharing scheme [6].

2. The construction given in Subsection 4.1 based on strongly multiplicative
LSSS.

There exist, however, some efficient LSSS with specific access structures that
are multiplicative or 3-multiplicative. For instance, Shamir’s t out of n threshold
secret sharing schemes are multiplicative if n ≥ 2t + 1, and 3-multiplicative if
n ≥ 3t + 1.
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On the other hand, secret sharing schemes from error-correcting codes give
good multiplicative properties. It is well known that a secret sharing scheme
from a linear error-correcting code is an LSSS. We know that such an LSSS is
multiplicative provided the underlying code is a self dual code [7]. The LSSS from
a Reed-Solomon code is λ-multiplicative if the corresponding access structure is
Qλ. In this section, we show the multiplicativity of two other classes of secret
sharing schemes from error-correcting codes:

(i) schemes from Reed-Muller codes are λ-multiplicative LSSS; and
(ii) schemes from algebraic geometric codes are λ-multiplicative ramp LSSS.

5.1 A Construction from Reed-Muller Codes

Let v0,v1, . . . ,v2m−1 be all the points in the space F m
2 . The binary Reed-Muller

code R(r,m) is defined as follows:

R(r,m) = {(f(v0), f(v1), . . . , f(v2m−1)) | f ∈ F2[x1, . . . , xm], deg f ≤ r}.

Take f(v0) as the secret, and f(vi) as the share distributed to player Pi,
1 ≤ i ≤ 2m − 1. Then R(r,m) gives rise to an LSSS for the set of players
{P1, . . . , Pn}, with the secret-domain being F2, where n = 2m − 1. For any three
codewords

ci = (si, si1, . . . , sin) = (fi(v0), fi(v1), . . . , fi(vn)) ∈ R(r,m), 1 ≤ i ≤ 3,

it is easy to see that

c1 � c2 � c3 = (s1s2s3, s11s21s31, . . . , s1ns2ns3n)
= (g(v0), g(v1), . . . , g(vn)) ∈ R(3r,m),

where g = f1f2f3 ∈ F2[x1, . . . , xm] and deg g ≤ 3r. From basic results on Reed-
Muller codes [15], we know that R(3r,m) has dual code R(m− 3r− 1,m) when
m > 3r, and the dual code R(m − 3r − 1,m) trivially contains the codeword
(1, 1, . . . , 1). It follows that s1s2s3 =

∑n
j=1 s1js2js3j , which shows that the LSSS

from R(r,m) is 3-multiplicative when m > 3r. Certainly, this LSSS is strongly
multiplicative. In general, we have the following result:

Theorem 4. The LSSS constructed above from R(r,m) is λ-multiplicative, pro-
vided m > λr.

5.2 A Construction from Algebraic Geometric Codes

Chen and Cramer [3] constructed secret sharing schemes from algebraic geo-
metric (AG) codes. These schemes are quasi-threshold (or ramp) schemes, which
means that any t out of n players can recover the secret, and any fewer than
t′ players have no information about the secret, where t′ ≤ t ≤ n. In this sec-
tion, we show that ramp schemes from some algebraic geometric codes [3] are
λ-multiplicative.
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Let χ be an absolutely irreducible, projective, and nonsingular curve defined
over Fq with genus g, and let D = {v0, v1, . . . , vn} be the set of Fq-rational points
on χ. Let G be an Fq-rational divisor with degree m satisfying supp(G)∩D = ∅
and 2g − 2 < m < n + 1. Let Fq denote the algebraic closure of Fq, let Fq(χ)
denote the function field of the curve χ, and let Ω(χ) denote all the differentials
on χ. Define the linear spaces:

L(G) = {f ∈ Fq(χ) | (f) + G ≥ 0},
Ω(G) = {ω ∈ Ω(χ) | (ω) ≥ G}.

Then the functional AG code CL(D,G) and residual AG code CΩ(D,G) are
respectively defined as follows:

CL(D,G) = {(f(v0), f(v1), . . . , f(vn)) | f ∈ L(G)} ⊆ F n+1
q ,

CΩ(D,G) = {(Resv0(η), Resv1(η), . . . , Resvn(η)) | η ∈ Ω(G −D)} ⊆ F n+1
q ,

where Resvi(η) denotes the residue of η at vi.
As above, CΩ(D,G) induces an LSSS for the set of players {P1, . . . , Pn}, where

for every codeword (f(v0), f(v1), . . . , f(vn)) ∈ CΩ(D,G) = CL(D,D−G+ (η)),
f(v0) is the secret and f(vi) is Pi’s share, 1 ≤ i ≤ n. For any λ codewords

ci = (si, si1, . . . , sin)
= (fi(v0), fi(v1), . . . , fi(vn)) ∈ CL(D,D −G + (η)), 1 ≤ i ≤ λ,

it is easy to see that

�λ
i=1ci =

(
λ∏

i=1

si,

λ∏
i=1

si1, . . . ,

λ∏
i=1

sin

)
∈ CL(D,λ(D −G + (η))).

If 2g − 2 < deg(λ(D − G + (η))) < n, then CL(D,λ(D − G + (η))) has
the dual code CΩ(D,λ(D − G + (η))) = CL(D,λG − (λ − 1)(D + (η))). When
deg(λG − (λ − 1)(D + (η))) ≥ 2g, CΩ(D,λ(D − G + (η))) has a codeword
with a nonzero first coordinate, implying

∏λ
i=1 si =

∑n
j=1 aj

∏λ
i=1 sij for some

constants aj ∈ Fq. Thus, the LSSS induced by the AG code CΩ(D,G) is λ-
multiplicative. It is easy to see that if degG = m ≥ (λ−1)(n−1)

λ + 2g then we
have 2g − 2 < deg(λ(D −G + (η))) < n and deg(λG − (λ − 1)(D + (η))) ≥ 2g.
Therefore, we have the following theorem.

Theorem 5. Let χ be an absolutely irreducible, projective, and nonsingular
curve defined over Fq with genus g, let D = {v0, v1, . . . , vn} be the set of Fq-
rational points on χ. Let G be an Fq-rational divisor with degree m satisfying
supp(G) ∩ D = ∅ and 2g − 2 < m < n + 1. Then the LSSS induced by the AG
code CΩ(D,G) is λ-multiplicative, provided m ≥ (λ−1)(n−1)

λ + 2g.

6 Implications of the Multiplicativity of LSSS

The property of 3-multiplicativity implies strong multiplicativity, and so is suf-
ficient for building MPC protocols against active adversaries. The conditions for
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3-multiplicativity are easy to verify, while verification for strong multiplicativ-
ity involves checking an exponential number of equations (each subset in the
adversary structure corresponds to an equation).

With 3-multiplicative LSSS, or more generally λ-multiplicative LSSS, we can
simplify local computation for each player and reduce the round complexity in
MPC protocols. For example, using the technique of Bar-Ilan and Beaver [1],
we can compute

∏l
i=1 xi, xi ∈ Fq, in a constant number of rounds, independent

of l. For simplicity, we consider passive adversaries in the information-theoretic
model. Suppose for 1 ≤ i ≤ l, the shares of xi, denoted by [xi], have already
been distributed among the players. To compute

∏l
i=1 xi, xi ∈ Fq, we follow the

process of Cramer et al. [4]:

(1) Generate [b0 ∈R F ∗
q ], [b1 ∈R F ∗

q ], . . . , [bl ∈R F ∗
q ] and [b−1

0 ], [b−1
1 ], . . . , [b−1

l ],
where bi ∈R F ∗

q means that bi is a random element in F ∗
q .

(2) For 1 ≤ i ≤ l, each player computes [bi−1xib
−1
i ] from [bi−1], [b−1

i ] and [xi].
(3) Recover di = bi−1xib

−1
i from [bi−1xib

−1
i ] for 1 ≤ i ≤ l, and compute d =∏l

i=1 di.
(4) Compute [db−1

0 bl] from [b−1
0 ], [bl] and d.

It is easy to see that db−1
0 bl =

∏l
i=1 xi. Using a multiplicative LSSS, the

above process takes five rounds of interactions as two rounds are required in Step
(2). However, if we use a 3-multiplicative LSSS instead, then only one round is
needed for Step (2). Thus, 3-multiplicative LSSS reduce the round complexity
of computing unbounded fan-in multiplication from five to four. This in turn
simplifies the computation of many problems, such as polynomial evaluation
and solving linear systems of equations.

In general, the relationship between λ-multiplicative LSSS and strongly λ-
multiplicative LSSS can be described as follows:

· · · ⊆ SMLSSSλ+1 � MLSSSλ+1 ⊆ SMLSSSλ � MLSSSλ ⊆ · · · ,

where MLSSSλ (respectively, SMLSSSλ) denotes the class of λ-multiplicative
(respectively, strongly λ-multiplicative) LSSS. It is easy to see that SMLSSSλ �
MLSSSλ because they exist under the conditions Qλ+1 and Qλ, respectively.
Since SMLSSSλ and MLSSSλ+1 both exist under the same necessary and
sufficient condition of Qλ+1, it is not straightforward to see whether MLSSSλ+1
is strictly contained in SMLSSSλ. For λ = 2, we already know that MLSSS3 �
SMLSSS2 (Section 4.3). It would be interesting to find out if this is also true
for λ > 2. We have also given an efficient transformation from SMLSSSλ to
MLSSSλ+1. It remains open whether an efficient transformation from MLSSSλ

to SMLSSSλ exists when the access structure is Qλ+1. When λ = 2, this is a
well-known open problem [6].

7 Conclusions

In this paper, we propose the new concept of 3-multiplicative LSSS, which form a
subclass of strongly multiplicative LSSS. The 3-multiplicative LSSS are easier to
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construct compared to strongly multiplicative LSSS. They can also simplify the
computation and reduce the round complexity in secure multiparty computation
protocols. We believe that 3-multiplicative LSSS are a more appropriate primi-
tive as building blocks for secure multiparty computations, and deserve further
investigation. We stress that finding efficient constructions of 3-multiplicative
LSSS for general access structures remains an important open problem.
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Abstract. Recently, Desmedt et al. studied the problem of achieving secure n-
party computation over non-Abelian groups. They considered the passive ad-
versary model and they assumed that the parties were only allowed to perform
black-box operations over the finite group G. They showed three results for the
n-product function fG(x1, . . . , xn) := x1 ·x2 · . . . ·xn, where the input of party
Pi is xi ∈ G for i ∈ {1, . . . , n}. First, if t ≥ �n

2 � then it is impossible to have
a t-private protocol computing fG. Second, they demonstrated that one could t-
privately compute fG for any t ≤ �n

2 � − 1 in exponential communication cost.
Third, they constructed a randomized algorithm with O(n t2) communication
complexity for any t < n

2.948 .
In this paper, we extend these results in two directions. First, we use perco-

lation theory to show that for any fixed ε > 0, one can design a randomized
algorithm for any t ≤ n

2+ε
using O(n3) communication complexity, thus nearly

matching the known upper bound �n
2 � − 1. This is the first time that percola-

tion theory is used for multiparty computation. Second, we exhibit a determin-
istic construction having polynomial communication cost for any t = O(n1−ε)
(again for any fixed ε > 0). Our results extend to the more general function
f̃G(x1, . . . , xm) := x1 · x2 · . . . · xm where m ≥ n and each of the n parties
holds one or more input values.

Keywords: Multiparty Computation, Passive Adversary, Non-Abelian Groups,
Graph Coloring, Percolation Theory.

1 Introduction

In multiparty computation, a set of n parties {P1, . . . , Pn} want to compute a function
of some secret inputs held locally by these participants. Since its introduction by Yao
[19], multiparty computation has been extensively studied. Most multiparty computa-
tion protocols rely on algebraic structures which are at least Abelian groups [14] as in

J. Pieprzyk (Ed.): ASIACRYPT 2008, LNCS 5350, pp. 37–53, 2008.
c© International Association for Cryptologic Research 2008
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[1, 3, 4, 8, 10, 11, 12] for instance. The usefulness of Abelian groups in cryptography
is not restricted to multiparty computation as numerous cryptographic primitives are
developed over such groups [6, 7, 17]. However, the construction of efficient quantum
algorithms to solve the discrete logarithm problem as well as the factoring problem pre-
vent the use of many of these primitives over those machines [18]. Since quantum algo-
rithms seem to be less efficient over non-Abelian groups, there is increasingly a need for
developing cryptographic constructions over such mathematical structures. The reader
may be aware of the existence of public key cryptosystems for such groups [15, 16].

Recently, Desmedt et al. studied the problem of designing secure n-party protocol
over non commutative finite groups for the passive (or semi-honest) adversary model
[5]. Their goal is to guarantee unconditional security simply using a black-box represen-
tation of the finite non-Abelian group (G, ·). This assumption means that the n parties
can only perform three operations in (G, ·): the group operation ((x, y) �→ x · y), the
group inversion (x �→ x−1) and the uniformly distributed group sampling (x ∈R G).

Desmedt et al. focused on the existence and the design of t-private protocols for the n
product function fG(x1, . . . , xn) := x1 · . . . · xn where the input of party Pi is xi ∈ G
for i ∈ {1, . . . , n}. In such a protocol, no colluding sets C of at most t participants
learn anything about the data hold by any of the remaining members {P1, . . . , Pn} \ C.
Desmedt et al. obtained three important results. First, if t ≥ �n

2 � (dishonest majority)
then it is impossible to construct a t-private protocol to compute fG. Second, if t < �n

2 �
then one can always design a deterministic t-private protocol computing fG with an

exponential communication complexity of O(n
(2 t+1

t

)2
) group elements. Third, they

built a probabilistic t-private protocol computing fG with a polynomial communication
complexity of O(n t2) group elements when t < n

2.948 .
That work leads to two important questions. First, we would like to know if it is pos-

sible to construct a t-private protocol for values of t ∈
[

n
2.948 , �

n
2 � − 1

]
with polyno-

mial communication complexity. Second, Desmedt et al.’s construction shows that one
can t-privately compute fG with polynomial communication cost for any t = O(log n).
A natural issue is to determine the existence and to construct a deterministic t-private
protocol with polynomial communication complexity for other values t (ideally, up to
the threshold �n

2 � − 1).
In this article, we give a positive answer to these two questions. First, we demonstrate

that the random coloring approach and the graph construction by Desmedt et al. can be
used to guarantee t-privacy for any t < n

2+ε (for any fixed ε > 0). The communication
complexity of our construction is O(n3) group elements. This result is obtained using
percolation theory. To the best of our knowledge, this is the first use of this theory in
the context of multiparty computation. Second, we provide a deterministic construction
for any t = O(n1−ε). This scheme has polynomial communication complexity as well.

This paper is organized as follows. In the next section, we will recall the different
reductions performed in [5] to solve the t-privacy issue over non-Abelian groups. In
Sect. 3, we present our randomized construction achieving t-privacy for any value t ≤

n
2+ε which is closed to the theoretical bound �n

2 � − 1. In Sect. 4, we show how to
construct deterministic t-private protocols having polynomial communication cost for
any t = O(n1−ε). In the last section, we conclude our paper with some remaining open
problems for multiparty computation over non-Abelian black-box groups.
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2 Achieving Secure Computation over Non-Abelian Groups

In this section, we present some of the results and constructions developed by Desmedt
et al. which are necessary to understand our improvements from Sect. 3 and Sect. 4.
First, we recall the definition of secure multiparty computation in the passive, computa-
tionally unbounded attack model, restricted to deterministic symmetric functionalities
and perfect emulation as in [5].

We denote [n] the set of integers {1, . . . , n}, {0, 1}∗ the set of all finite binary strings
and |A| the cardinality of the set A.

Definition 1. We denote f : ({0, 1}∗)n �→ {0, 1}∗ an n-input and single-output func-
tion. Let

∏
be a n-party protocol for computing f . We denote the n-party input se-

quence by x = (x1, . . . , xn), the joint protocol view of parties in subset I ⊂ [n] by

VIEW
∏
I (x), and the protocol output by OUT

∏
(x). For 0 < t < n, we say that

∏
is a t-private protocol for computing f if there exists a probabilistic polynomial-time
algorithm S, such that, for every I ⊂ [n] with |I| ≤ t and every x ∈ ({0, 1}∗)n

, the
random variables

〈S(I, xI , f(x)), f(x)〉 and 〈VIEW
∏
I (x),OUT

∏
(x)〉

are identically distributed, where xI denotes the projection of the n-ary sequence x on
the coordinates in I .

In the remaining of this paper, we assume that party Pi has a personal input xi ∈ G
(for i ∈ [n]) and the function to be computed is the n-party product fG(x1, . . . , xn) :=
x1 · . . . · xn.

Desmedt et al. first reduced the problem of constructing a t-private n-party protocol
for fG to the problem of constructing a symmetric (strong) t-private protocol

∏′ (see
[5] for a detailed definition of symmetric privacy) to compute the shared 2-product
function f ′

G(x, y) := x · y where the inputs x and y are shared amongst the n parties.
They demonstrated that iterating (n − 1) times the protocol

∏′ would give a t-private
protocol to compute fG.

The second reduction occurring in [5] consists of constructing a t-private n-party
shared 2-product protocol

∏′ from a suitable coloring over particular directed graphs.
We will detail the important steps of this reduction as they will serve the understanding
of our own constructions.

Definition 2 ([5]). We call graph G an admissible Planar Directed Acyclic Graph
(PDAG) with share parameter � and size parameter m(≥ �) if it has the following
properties:

– The nodes of G are drawn on a square m × m grid of points (each node of G is
located at a grid point but some grid points may not be occupied by nodes). The
rows of the grid are indexed from top to bottom and the columns from left to right
by the integers 1, 2, . . . ,m. A node of G at row i and column j is said to have index
(i, j). G has 2 � input nodes on the top row, and � output nodes on the bottom row.

– The incoming edges of a node on row i only come from nodes on row i − 1, and
outgoing edges of a node on row i only go to nodes on row i + 1.
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– For each row i and column j, let η(i,j)
1 < · · · < η

(i,j)
q(i,j) denote the ordered column

indices of the q(i, j) > 0 nodes on level i+1 which are connected to node (i, j) by
an edge. Then, for each j ∈ [m− 1], we have:

η
(i,j)
q(i,j) ≤ η

(i,j+1)
1

which means that the rightmost node on level i + 1 connected to node (i, j) is to
the left of (or equal to) the leftmost node on level i+1 connected to node (i, j+1).

An admissible PDAG has 2� input nodes. The first � ones (i.e. (1, 1), . . . , (1, �)) rep-
resent the x-input nodes while the remaining ones represent the y-input nodes. Let
C : [m] × [m] �→ [n] be a n-coloring function that associates to each node (i, j) of G a
color C(i, j) chosen from a set of n possible colors. The following notion will be used
to express the property we expect the graph coloring to have in order to build

∏′ .

Definition 3 ([5]). We say that C : [m] × [m] �→ [n] is a t-reliable n-coloring for the
admissible PDAG G (with share parameter � and size parameter m) if for each t-color
subset I ⊂ [n], there exist j∗ ∈ [�] and j∗y ∈ [�] such that:

– There exists a path PATHx in G from the j∗th x-input node to the j∗th output node,
such that none of the path node colors are in subset I (it is called an I-avoiding
path), and

– There exists an I-avoiding path PATHy in G from the j∗y th y-input node to the j∗th
output node.

If j∗y = j∗ for all I , we say that C is a symmetric t-reliable n-coloring.

Important Remark: Even if the graph G is directed, it is regarded as non-directed
when building the I-avoiding paths in Definition 3.

Desmedt et al. built a protocol
∏′(G, C) taking as input a graph G and a n coloring

C. We do not detail this protocol in our paper as its internal design does not have
any influence in our work. The reader can find it in [5]. However, in order to ease the
understanding of our work, we recall the relation between multiparty protocols over a
non-Abelian group G and coloring of admissible PDAGs as it appear in [5].

The n participants {P1, . . . , Pn} are identified by the n colors of the admissible
PDAG G. The input/output nodes of the graph G are labeled by the input/output ele-
ments of the group G. Each edge represents a group element sent from one participant
to another one. Each internal node contains an intermediate value of the protocol. Those
values are computed, at each node N of G, as the group operation between the elements
along all the incoming edges of N from the leftmost one to the rightmost one. This
intermediate value is then redistributed along all the outgoing edges of N using the fol-
lowing ON -of-ON secret sharing where ON represents the number of outgoing edges
of node N .

Proposition 1 ([5]). Let g be an element of the non-Abelian group G. Denote λ and
µ two integers where µ ∈ [λ]. We create a λ-of-λ sharing (sg(1), . . . , sg(λ)) of g by
picking the λ−1 shares {sg(ξ)}ξ∈[λ]\{µ} uniformly and independently at random from
G, and computing sg(µ) to be the unique element of G such that:

g = sg(1) · sg(2) · . . . · sg(λ)
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Then, the distribution of the shares (sg(1), . . . , sg(λ)) is independent of µ.

We recall the following important result:

Theorem 1 ([5]). If G is an admissible PDAG and C is a symmetric t-reliable n-
coloring for G then

∏′(G, C) achieves symmetric strong t-privacy.

The last reduction is related to the admissible PDAG. Desmedt et al. only consider
admissible PDAGs as defined below and represented in Fig. 1.
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Fig. 1. The admissible PDAG Gtri(�′, �)

Definition 4 ([5]). The admissible PDAG Gtri(�′, �) is a �′ × � directed grid such that:

– [horizontal edges] for i ∈ [�′] and for j ∈ [� − 1], there is a directed edge from
node (i, j + 1) to (i, j),

– [vertical edges] for i ∈ [�′ − 1] and for j ∈ [�], there is a directed edge from node
(i, j) to node (i + 1, j),

– [diagonal edges] for i ∈ [�′ − 1] and for j ∈ {2, . . . , �}, there is a directed edge
from node (i, j) to node (i + 1, j − 1).

According to Definition 2, an admissible PDAG has 2 � input nodes and no horizontal
edges. Desmedt et al. indicated that the y-input nodes could be arranged along a column
on Gtri(�′, �) instead of being along the same row as the x-input nodes. They also ex-
plained that Gtri(�′, �) could also be drawn according the requirements of Definition 2.
By rotating Gtri(�′, �) by 45 degrees anticlockwise, the x-input nodes and y-input nodes
of Gtri(�′, �) are now on the same row and the horizontal edges of Gtri(�′, �) have be-
come diagonal edges which satisfies Definition 2.

A priori, Gtri(�′, �) is a rectangular grid. In [5], Desmedt et al. considered square
grids Gtri(�, �) for which they introduced the following notion.

Definition 5 ([5]). We say that C : [�]× [�] �→ [n] is a weakly t-reliable n-coloring for
Gtri(�, �) if for each t-color subset I ⊂ [n]:
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– There exists an I-avoiding path Px in Gtri(�, �) from a node on the top row to a
node on the bottom row. Such a path is called an I-avoiding top-bottom path.

– There exists an I-avoiding path Py in Gtri(�, �) from a node on the rightmost col-
umn to a node on the leftmost column. Such a path is called an I-avoiding right-left
path.

As said in [5], the admissible PDAG requirements (Definition 2) are still satisfied if we
remove from Gtri some ’positive slope’ diagonal edges and add some ’negative slope’
diagonal edges (connecting a node (i, j) to node (i + 1, j + 1), for some i ∈ [�′ − 1]
and j ∈ [�− 1]). Such a generalized admissible PDAG is denoted Ggtri.

Lemma 1 ([5]). Let C : [�] × [�] �→ [n] be a weakly t-reliable n-coloring for square
admissible PDAG Gtri(�, �). Then, we can construct a t-reliable n-coloring for a rect-
angular admissible PDAG Ggtri(2�− 1, �).

Thus, Desmedt et al. have demonstrated that it was sufficient to get a weakly t-reliable
n coloring for some Gtri(�, �) in order to construct a t-private protocol for computing
the n-product fG. The cost communication cost of this protocol is (n − 1) times the
number of edges of Ggtri(2�− 1, �). Since that grid is obtained from Gtri(�, �) using a
mirror, the communication cost of the whole protocol is O(n �2) group elements. The
constructions that we propose in this paper are colorings of some grids Gtri(�, �).

3 A Randomized Construction Achieving Maximal Privacy

In this section, we present a randomized construction ensuring the t-privacy of the com-
putation of fG up to n

2+ε . Our scheme has a linear share parameter � = O(n).
We use the same random coloring Crand for the grid Gtri(�, �) as in [5]. However,

our analysis is based on percolation theory while Desmedt et al. used a counting-based
argument. We first introduce the following definition which is illustrated in Fig. 2.

Algorithm 1. Coloring Crand

Input: A grid Gtri(�, �).
1. For each (i, j) ∈ [�] × [�], choose the color C(i, j) of node (i, j) independently and uni-
formly at random from [n].

Output: A n-coloring of the grid.

Definition 6. The triangular lattice of depth � denoted T (�) is a directed graph drawn
over a �× (3 �− 2) grid such that:

– [horizontal edges] for i ∈ [�] and for j ∈ [�−1], there is a directed edge from node
(i, i + 2 j) to (i, i + 2 (j − 1)),

– [right downwards edges] for i ∈ [� − 1] and for j ∈ {0, . . . , � − 1}, there is a
directed edge from node (i, i + 2 j) to node (i + 1, i + 2 j + 1),

– [left downwards edges] for i ∈ [�− 1] and for j ∈ [�− 1], there is a directed edge
from node (i, i + 2 j) to node (i + 1, i + 2 j − 1).
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Fig. 2. The triangle T (5)

Proposition 2. For any positive integer �, we have a graph isomorphism between
Gtri(�, �) and T (�).

Proof. Consider the mapping:

Gtri(�, �) −→ T (�)
(i, j) �−→ (i, i + 2 (j − 1))

It is easy to see that the nodes of the two graphs are in bijective correspondence while
the direction of each edge is maintained. ��
Theorem 2. For any ε > 0, there exists a constant cε such that if t ≤ n

2+ε and � ≥ cεn,
then there exists a weakly t-reliable n-coloring for Gtri(�, �).

Proof. We prove that the coloring Crand will work with high probability. Let tε =⌊
n

2+ε

⌋
where �·� denotes the floor function. Instead of considering the probability that

Crand is a weakly tε-reliable n-coloring for Gtri(�, �), we study the complementary
event. A suitable value for � will be given at the end of this demonstration.
The coloring Crand is called bad if there exists a color set I ⊂ [n] with |I| = tε, such
that either there are no I-avoiding top-bottom paths or there are no I-avoiding right-left
paths. By the union bound, we obtain the following upper bound on Pr(Crand is bad):

2 Pr(∃I ⊂ [n], |I| = tε, there are no I-avoiding top-bottom paths in Gtri(�, �))

≤ 2
∑

I⊂[n],|I|=tε

Pr(there are no I-avoiding top-bottom paths in Gtri(�, �)). (1)

The factor 2 in (1) comes from the fact the top-bottom probability is equal to the right-
left probability due to the symmetry of the grid Gtri(�, �) and the coloring Crand.

Next, we demonstrate that for a fixed color set I ⊂ [n] with |I| = tε, the probability
that there are no I-avoiding top-bottom paths in Crand is exponentially small. Let us
fix the color set I . We call a vertex closed if its color belongs to I . Otherwise, the
vertex is called open. The random coloring Crand of each vertex is equivalent to open it
independently and randomly with probability p := 1− tε

n . An I-avoiding path is simply
an open path. Therefore, we get:

Pr(there are no I-avoiding top-bottom paths in Gtri(�, �))
= Prp(there are no open top-bottom paths in Gtri(�, �))
= 1 − Prp(there is an open top-bottom path in Gtri(�, �)) (2)
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We have the following result.

Lemma 2 ([2]). The triangular lattice T (�) has the following property:

Prp(there is an open top-bottom path in T (�))
+

Prp(there is a closed right-left path in T (�))
= 1

When we combine Lemma 2, Proposition 2 and (2), we obtain the following:

Pr(there is no I-avoiding top-bottom path in Gtri(�, �))
=

Prp(there is a closed right-left path in T (�))
=

Pr1−p(there is an open right-left path in T (�)) (3)

In (3), Pr1−p(·) means that we open each vertex with probability 1 − p. We have the
following result from percolation theory.

Lemma 3 ([13]). Let T be the triangular lattice in the plane. Then, the critical proba-
bility of site percolation ps

c(T ) is equal to 1
2 .

When the open probability is less than the critical probability, the percolation has the
following properties (see for example Chapter 4, Theorem 9 in [2]).

Lemma 4 ([9]). If p < ps
c(T ), then there is a constant c = c(p),

Prp(0
n−→) < e−c n.

where {x n−→} is the event that there is an open path from x to a point in Sn(x) with
Sn(x) := {y : d(x, y) = n} and d(x, y) denotes the distance between x and y.

Remark: The value 0 from Lemma 4 represent the zero element of Z × Z when the
graph is represented as a lattice over that set. In the case of the triangular lattice depicted
as Fig. 2, the value 0 can be identified to the node (1, 1).

In our case, we have: 1 − p = tε

n ≤ 1
2+ε < ps

c(T ). Using Lemma 4, we get:

Pr1−p(there is an open right-left path in T (�)) ≤ � Pr1−p(0
�−1−→) ≤ � e−c (�−1) (4)

The first inequality is due to the fact that any right-left path has length at least (� − 1)
in T (�). Combining (1)-(4), we obtain:

Pr(Crand is bad) ≤ 2
(
n

tε

)
� e−c (�−1)

Thus, if we choose � := cε n for some large enough constant cε, we have:

Pr(Crand is bad) ≤ 1
2n

which guarantees the fact that Crand is a weakly tε-reliable n-coloring for Gtri(�, �)
with overwhelming probability in n. ��
Corollary 1. There exists a black box tε-private protocol for fG with communication
complexity O(n3) group elements where tε = � n

2+ε�. Moreover, for any δ > 0, we
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can construct a probabilistic algorithm, with run-time polynomial in n and log(δ−1),
which outputs a protocol

∏
for fG such that the communication complexity of

∏
is

O(n3 log2(δ−1)) group elements and the probability that
∏

is not tε-private is
at most δ.

Proof. The existence of the protocol is a direct consequence of Theorem 2 as well as
the different reductions exposed in Sect. 2. As our construction requires � = O(n),
we deduce that the communication cost of the protocol computing fG is O(n3). The
justification of the running time of the algorithm and the probability of failure δ is
identical to what is done in [5]. ��

We showed that it was possible to build a randomized algorithm to achieve
⌊

n
2+ε

⌋
-

private computation of fG using O(n3) group elements. Even if the probability of fail-
ure of our previous construction is small, we would like to remove the randomized
restriction so that we can get a (deterministic) protocol which is always guaranteed to
succeed. In [5], Desmedt et al. only provided deterministic protocols to compute fG in
polynomial communication cost when t = O(log n). In the next section, we present a
deterministic construction for any t = O(n1−ε) where ε is any positive constant. Our
construction requires polynomial communication complexity as well.

4 A Deterministic Construction for Secure Computation

In this section, we show how to build a deterministic t-private protocol to compute fG

with polynomial complexity cost for any t = O(n1−ε). First, we will focus on particular
pairs (t, n). Second, we generalize our result to any (t, n) with t = O(n1−ε).

We recursively construct our admissible PDAG Grec and its coloring Crec. Let d ∈
N \ {0, 1} be a constant. Denote Bd the binomial coefficient

(2d−1
d−1

)
.

Theorem 3. For any positive integer k, there is a weakly tk-reliable nk-coloring
Crec(�k) for the square admissible PDAG Grec(�k), where the parameters are:
tk := dk − 1, nk := (2d− 1)k and �k = Bk

d (Bd + 1)k−1.

Proof. We prove the theorem by induction on k.

k = 1: We have t1 = d−1, n1 = 2 d−1 and �1 = Bd. We set Grec(�1) := Gtri(�1, �1).
We define Crec(�1) as being the combinatorial coloring Ccomb designed in [5] and re-
called as Algorithm 2.

Algorithm 2. Coloring Ccomb

Input: A L × L grid where L =
(

N
T

)
.

1. Let I1, . . . , IL denote the sequence of all T -color subsets of [N ] (in some ordering).
2. For each (i, j) ∈ [L] × [L], define the color C(i, j) of node (i, j) in the grid to be any color
in the set Si,j := [N ] \ (Ii ∪ Ij).

Output: A N -coloring of the grid.
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Desmedt et al. noticed that, even if we removed the diagonal edges from Gtri(�1, �1),
we still had the existence of I-avoiding top-bottom and right-left paths. Thus, we as-
sume that Grec(�1) has no such edges so that Grec(�1) is a square grid the side length of
which is �1 nodes. Grec(�1) is an admissible PDAG.

k ≥ 1: Suppose we already have the construction and coloring for k, we recursively
construct Grec(�k+1) from Grec(�k).

We first build the block grid B by copying (Bd + 1) × (Bd + 1) times Grec(�1).
The connections between two copies of Grec(�1) are as follows. Horizontally, we draw
a directed edge from node (i, 1) in the right-hand side copy to node (i, �1) in the left-
hand side copy for i ∈ [�1] (i.e. we horizontally connect nodes at the same level).
Vertically, we draw a directed edge from node (�1, j) in the top side copy to node (1, j)
in the bottom side copy for j ∈ [�1] (i.e. we vertically connect nodes at the same level).

The block B is a (Bd (Bd + 1)) × (Bd (Bd + 1)) grid. It has the following property
the proof of which can be found in Appendix A.

Proposition 3. The block grid B admits a (2 d− 1)-coloring (just use the same Ccomb

for each copy of Grec(�1)), such that for any (d − 1)-color subset I ⊂ [2 d− 1], there
are Bd + 1 horizontal (vertical) I-avoiding straight lines in B.

Now, we construct Grec(�k+1) and its coloring Crec(�k+1) as follows. We replace each
node in Grec(�k) by a copy of B. If the node of Grec(�k) was colored by the color
c ∈ [nk], then we color B with the set of colors {(2d−1)(c−1)+1, (2d−1)(c−1)+
2, . . . , (2 d− 1) c}, using Ccomb. All the edges within each copy of B remain identical
in Grec(�k+1).

Now, we show how to connect two copies of B. We first focus on vertical connec-
tions. Consider an edge in Grec(�k) from a node in the i-th row to another node in the
(i + 1)-th row. Since these two nodes have been replaced by two copies of B, we de-
note the nodes on the top copy (i.e. those corresponding to the nodes of the i-th row
in Grec(�k)) as v1,1, . . . , v1,Bd

, v2,1, . . . , vBd+1,Bd
and the nodes on the bottom copy as

w1,1, . . . , w1,Bd
, w2,1, . . . , wBd+1,Bd

.
For each (i, j) ∈ [Bd]× [Bd], we add a directed edge (vi,j , wi,j+i−1) in Grec(�k+1).

If the index (j+ i−1) is greater than Bd, wi,j+i−1 is the node wi+1,j+i−1−Bd
. Figure 3

gives the example for d = 2. The connection process works similarly for two consec-
utive columns where we replace each horizontal edge from Grec(�k) by B2

d different
edges in Grec(�k+1).
It is clear that the number of nodes on each side of the square Grec(�k+1) is:

�k+1 = Bd (Bd + 1) · �k = Bk+1
d (Bd + 1)k

and the number of colors used in Crec(�k+1) is nk+1 = (2 d− 1) · nk = (2 d− 1)k+1.
The grid Grec(�k+1) obtained by this recursive process is also an admissible PDAG due
to the horizontal/vertical connection processes between two copies of B (as well as two
copies of Grec(�1) inside B).

The last point to prove is that for any tk+1-color subset I ⊂ [nk+1], there is an
I-avoiding top-bottom (and right-left) path in Grec(�k+1). We only prove the existence
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Fig. 3. How to vertically connect two copies of B when d = 2

of a top-bottom path in this paper as the demonstration of the existence for a right-left
path is similar. For each j ∈ [nk], we define the set Ij as:

Ij := I ∩ {(2d− 1)(j − 1) + 1, (2d− 1)(j − 1) + 2, . . . , (2 d− 1) j}

Since
|I1| + · · · + |Ink

| = |I| = tk+1 = dk+1 − 1 (5)

and each |Ij | ≤ 2d − 1, there are at least (nk − tk) subsets having at most (d − 1)
elements. Indeed, in the opposite case, we would have:

|I1| + · · · + |Ink
| ≥ d (nk − (nk − tk − 1)) = d · dk = dk+1,

which would contradict (5). Assume that S ⊆ [nk] is the set of these indices (i.e. for
each j ∈ S, |Ij | ≤ d− 1). We have: |[nk] \ S| ≤ tk. By the induction hypothesis, there
is a ([nk] \ S)-avoiding top-bottom path in Grec(�k), i.e., the colors used on this path
all belong to S. Let v1, . . . , vm be the vertices of the path and denote the color of node
vj as cj ∈ S (j ∈ [m]).

Now, we show there is an I-avoiding top-bottom path in Grec(�k+1). In
Grec(�k+1), each node vj has been replaced by a copy Bvj with colors in {(2d−1)(cj−
1)+1, (2d−1)(cj−1)+2, . . . , (2 d−1) cj}. Since the color set Icj satisfies |Icj | ≤ d−1,
by Proposition 3 we deduce that there are Bd horizontal and Bd vertical Icj -avoiding
paths in Bvj .

One can show that this property involves the existence of an I-avoiding top-bottom
path in Grec(�k+1). This top-bottom path is the connection of an Ic1 -avoiding path
(fromBv1), an Ic2-avoiding path (fromBv2),. . ., an Icm -avoiding path (fromBvm). The
reader can find more details about this process in Appendix B. A similar demonstration
leads to the existence of an I-avoiding right-left path in Grec(�k+1) which achieves the
demonstration of our theorem. ��

The communication complexity of the protocol to tk-privately compute the function
fG(x1, . . . , xnk

) using the previous admissible PDAG isO(nk �
2
k) group elements where
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�k ≤ Bk
d(Bd + 1)k−1 ≤ 2(2d−1)k × 2(2d−1)(k−1) ≤ 22k(2d−1) ≤ n

2(2d−1)
log2 (2d−1)

k

Note that the last inequality comes from 2k = n
1

log2 (2d−1)

k .
Now, we generalize our result to any (t, n) where t = O(n1−ε) for any fixed positive

ε. The class O(n1−ε) is the set of all functions f such that: ∃τf > 0 ∃n0 > 0 : ∀n ≥
n0 f(n) ≤ τf n1−ε. In our case, the function f is the privacy level t. Our main result is
stated as follows.

Theorem 4. For any fixed ε > 0, for any fixed τ > 0, there exists a constant nε,τ ∈ N,
such that for any n ≥ nε,τ , if t ≤ τ n1−ε, then there exists a black-box t-private
protocol to compute fG with communication complexity polynomial in n. Moreover,
there is a deterministic polynomial time algorithm to construct the protocol.

Proof. We fix ε > 0 and τ > 0. We set d = 2�
2
ε �−1 and k = �log(2d−1) n�. We have

d ≥ 2. If n ≥ 2 d − 1 then k ≥ 1. In such a condition, we can apply Theorem 3 for
the pair (k, d). There exists a tk-private protocol to compute the value fG(x1, . . . , xnk

)
using O(nk �

2
k) group elements where tk, nk, �k are defined as in Theorem 3. It is clear

that the construction also t′-privately computes fG(x1, . . . , xn′) for any (t′, n′) such
that t′ ≤ tk and n′ ≥ nk. So, we only need to show τ n1−ε ≤ tk, n ≥ nk and
�k = poly(n). Due to our choice of d and k, we have:

nk ≤ (2d− 1)	log(2d−1) n
 ≤ (2d− 1)log(2d−1) n ≤ n

And:

tk ≥ d	log(2d−1) n
 − 1 ≥ dlog(2d−1) n−1 − 1 ≥ n
log2 d

log2(2d−1)

d
− 1 ≥ n

log2 d
log2 2d

d
− 1

Since d = 2�
2
ε �−1, we get:

tk ≥ n

� 2
ε

�−1

� 2
ε

�

2�
2
ε �−1

− 1 ≥ n1− ε
2

2�
2
ε �−1

− 1 ≥ n
ε
2

2�
2
ε �−1

n1−ε − 1

Since ε is a fixed positive constant, the mapping n �→ n
ε
2

2� 2
ε

�−1
has an infinite limit.

Therefore: ∃ñε,τ > 0 : ∀n ≥ ñε,τ
n

ε
2

2� 2
ε

�−1
≥ τ + 1

n1−ε .

Remember that we early required n ≥ 2 d − 1 in order to use Theorem 3. If we set
nε,τ := max(2 d− 1, ñε,τ) then:

∀n ≥ nε,τ

{
nk ≤ n
tk ≥ τ n1−ε ≥ t

It remains to argue about �k. Since nk ≤ n, we have: �k ≤ n
2 (2 d−1)

log2 (2 d−1) . Since d is
independent from n, �k is upper bounded by a polynomial in n. ��
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The previous theorem claims that for any fixed ε, if n is chosen large enough then we
can t-privately compute fG for any t = O(n1−ε). Such an asymptotic survey is also
performed in [5]. However, in practical applications, the number of participants is not
asymptotically large. The deterministic construction by Desmedt et al. has polynomial
cost when t = O(log n). We now present a result valid for any group size n which
guarantees privacy for larger t’s than in [5] using polynomial communication as well.

Theorem 5. For any positive integer n no smaller than 3, there exists a black-box pro-
tocol for fG which is (�nlog3 2

2 � − 1)-private. It requires the n participants to exchange
O(n6) group elements. Moreover, there is a deterministic polynomial time algorithm to
construct the protocol.

Proof. We set d = 2 and k := �log3(n)�. The protocol obtained using Theorem 3 has
parameter tk ≥ nlog3 2

2 − 1 and nk ≤ n. We have: B2 = 3. Therefore: �k ≤ n1+2 log3 2

4 .
Thus, we obtain: nk�

2
k = O(n6). ��

5 Conclusion and Open Problems

In this paper, we first demonstrated that we could construct a probabilistic t-private
protocol computing the n-product function over any non-Abelian group for any t up to

n
2+ε (for any fixed positive ε), thus nearly matching the known upper bound �n

2 � − 1.
As the communication complexity of our construction is O(n3) group elements, this
result answers one of the questions asked by Desmedt et al. concerning the largest col-
lision resistance achievable with an admissible PDAG of size polynomial in n. Note that
Desmedt et al. indicated the discovery of a construction for (n, t) = (24, 11) improving
locally their own theoretical bound n

2.948 since 11 ≈ 24
2.182 . Our result demonstrates the

existence of such a construction for any fixed positive ε (in [5], we have the particular
case ε = 0.182). Since the scheme developed in [5] (exclusively valid for t < n

2.948 )
only requires O(n t2) elements to be exchanged, a direction to further investigate is the
existence of a (randomized) t-private protocol for any t ≤ �n

2 � − 1 having at most the
cost of Desmedt et al.’s scheme.

Second, we showed that it was possible to construct a deterministic t-private n-party
protocol to compute fG having a polynomial communication cost for any t = O(n1−ε).
For practical purpose, one may want to optimize the choice of parameters in our con-
struction. For example, we have proved that one could t-privately compute fG for any

(t, n) satisfying t ≤
⌈

nlog3 2

2

⌉
− 1.

Desmedt et al. argued that the reduction from a protocol computing the n-product
to a subroutine computing the shared 2-product extended to the more general function
f̃G(x1, . . . , xm) := x1 · x2 · . . . · xm where m ≥ n and each of the n parties holds one
or more input values. This ensured the validity of their protocol to securely compute f̃G

as well. Since the constructions that we presented are particular admissible PDAGs, our
results are also valid to compute f̃G.

Our work leads to the following two questions. First, is it possible to reduce the
communication cost when t = O(n1−ε)? Second, can we generalize this approach to



50 X. Sun, A.C.-C. Yao, and C. Tartary

design a deterministic polynomial communication cost algorithm for any t up to the
threshold �n

2 � − 1?
Apart from the previous points which constitute directions to improve the security

for the passive adversary model, a problem which requires attention is the possibility
of achieving secure computation of fG against malicious parties. Indeed, even if mul-
tiparty computation can be used with small groups (as in the case of the Millionaires’
problem [19]), the general purpose is to enable large communication groups to perform
common computations and the larger the number of parties is, the more likely (at least)
one of them will deviate from the given protocol.
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A Proof of Proposition 3

Let I be a (d − 1)-color subset of [2 d − 1]. In [5], Desmedt et al. demonstrated that
there were a I-avoiding top-bottom path and a I-avoiding right-left path in Gtri(�1, �1).
They also showed that those two paths were straight lines. Thus, one can remove the
diagonal edges of Gtri(�1, �1) while preserving those paths. This means that there exist
a I-avoiding top-bottom path and a I-avoiding right-left path in Grec(�1) which are
straight lines.

Since B is a-(Bd +1)× (Bd +1)-copy of Grec(�1) and, due to the vertical/horizontal
connections of these copies, we deduce that there are (Bd + 1) I-avoiding top-bottom
paths and (Bd + 1) I-avoiding right-left paths in B. Moreover, each of these paths is a
straight line.

B Connection of Color Avoiding Paths

It was shown in the proof of Theorem 3 that each block Bci had Bd horizontal and Bd

vertical Ici-avoiding paths. In this appendix, we show how to construct a I-avoiding
top-bottom path in Grec(�k+1). Our path will start at the top of Bv1 and ends at the
bottom of Bvm .

Every grid from the family (Grec(�λ))λ≥1 is a square grid. Thus, the sequence of
blocks Bv1 , . . . , Bvm in Grec(�k+1) is determined by the position of Bv1 as well as the
m-tuple of letters from {L,R,T,B} (Left, Right, Top, Bottom) indicating the output
side of the block Bvi for i ∈ [m]. Note that the last letter of the tuple is always B since
the I-avoiding top-bottom path ends at the bottom of Bvm .

This tuple has the property the two consecutive letters cannot be opposite to each
other (i.e, one cannot have (L,R), (R,L), (T,B) or (B,T)). This means that you leave



52 X. Sun, A.C.-C. Yao, and C. Tartary

a block on a different side that you entered it. The reader can check the correctness of
this claim by a simple recursive process on the parameter k. This property is trivially
true for k = 1 since Grec(�1) = Gtri(�1). The recursion follows from the path construc-
tion that we will design below.

Proposition 4. Let i be any element of [m]. Assume that N is any node on a side of
Bvi belonging to a Ici-avoiding straight line path. For each other side Si of Bvi , we
can construct a Ici-avoiding path from N to any of the (Bd +1) nodes on Si belonging
to a Ici -avoiding straight line path.

Proof. We only provide a proof when N is on the top side of Bvi (the three other
cases are similar). The three possible output sides are B,L and R. The block Bvi is
a-(Bd + 1)× (Bd + 1)-copy of the original grid Grec(�1). Thus, Bvi can be treated as a
(Bd + 1)× (Bd + 1) array of grids Grec(�1). Based on this observation, we will use the
terminology grid-row (respectively grid-column) to denote a set of Bd + 1 horizontal
(respectively vertical) grids Grec(�1) in Bvi .

1. Si = B. The vertical Ici -avoiding path starting at node N intersects the hori-
zontal Ici-avoiding path located within the bottom grid-row of Bvi at node I. That
horizontal path intersects each of the Bd + 1 vertical Ici-avoiding paths (one within
each grid-column) at I1, . . . , IBd+1. Note that I = Iµ for some µ ∈ [Bd +1]. Once we
are at one of the Ij’s, we simply go vertically downwards to the node N ′

j located at the
bottom side of the block Bvi .

Thus, we can construct a path from N to each of the Bd + 1 output nodes on
the bottom side of Bvj belonging to the vertical Ici -avoiding paths. Those paths are
(N , I, Ij ,N ′

j) for j ∈ [Bd + 1].
2. Si = R. The vertical Ici -avoiding path starting at node N intersects the horizon-

tal Ici -avoiding path located within the top grid-row of Bvi at node I. That horizontal
path intersects the vertical Ici-avoiding path located within the rightmost grid-column
of Bvi at node Ĩ . This vertical path intersects each of the Bd+1 horizontal Ici -avoiding
paths (one within each grid-row) at Ĩ1, . . . , ĨBd+1. As before, we get: Ĩ = Ĩµ for some
µ ∈ [Bd +1]. Once we are at one of the Ĩj’s, we horizontally go rightwards to the node
N ′

j located on the right hand side of the block Bvi .
Thus, we can construct a path from N to each of the Bd + 1 output nodes on the

right hand side of Bvj belonging to the horizontal Ici -avoiding paths. Those paths are

(N , I, Ĩ, Ĩj ,N ′
j) for j ∈ [Bd + 1].

3. Si = L. This is analogous to the previous case. ��

We can finally construct a I-avoiding top-bottom path in Grec(�k+1). We denote the
m-tuple of output sides as (S1, . . . ,Sm). As previously said, we have: Sm = B.

We start at any node N1 located on the top side of Bv1 and on a vertical Ic1 -avoiding
path. Using Proposition 4, we can connect N1 to any of the Bd + 1 nodes on side S1
of Bv1 using a Ic1 -avoiding path. An important remark is that each block of the whole
grid Grec(�k+1) is a set of (Bd + 1) × (Bd + 1) identical copies of Grec(�1) (including
the coloring). As a consequence, these Bd + 1 nodes have the same location in their
respective copies of Grec(�1). Given the connection process between any pair of blocks
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within Grec(�k+1), one of these Bd + 1 nodes must be connected to a node N2 from
block Bv2 belonging to a Ic2 -avoiding straight line path. Similarly, N2 is connected via
a Ic2 -avoiding path in Bv2 to a node N3 from Bv3 belonging to a Ic3 -avoiding straight
line path. If we repeat this process for each of the remaining blocks, we obtain a set of
m − 1 nodes N1, . . . , Nm−1. The last node Nm−1 can be connected to a node Nm on
the bottom side of Bvm using a Icm -avoiding path. Thus, N1 (top side of Grec(�k+1)) is
connected to Nm (bottom side of Grec(�k+1)) using a I-avoiding path which achieves
the demonstration of our theorem.

Remark: As claimed above, this construction involves that the two consecutive side
letters of the m-tuple cannot be opposite to each other.
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Abstract. In the 1940’s, Shannon applied his information theory to
build a mathematical foundation for classical cryptography which stud-
ies how information can be securely encrypted and communicated. In
the internet age, Turing’s theory of computation has been summoned
to augment Shannon’s model and create new frameworks, under which
numerous cryptographic applications have blossomed. Fundamental con-
cepts, such as “information” and “knowledge transfer”, often need to be
re-examined and reformulated. The amalgamation process is still on-
going in view of the many unsolved security issues. In this talk we give
a brief overview of the background, and discuss some of the recent de-
velopments in complexity-based cryptography. We also raise some open
questions and explore directions for future work.
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Abstract. We study the security of the widely deployed Secure Ses-
sion Layer/Transport Layer Security (TLS) key agreement protocol. Our
analysis identifies, justifies, and exploits the modularity present in the
design of the protocol: the application keys offered to higher level appli-
cations are obtained from a master key, which in turn is derived, through
interaction, from a pre-master key.

Our first contribution consists of formal models that clarify the se-
curity level enjoyed by each of these types of keys. The models that we
provide fall under well established paradigms in defining execution, and
security notions. We capture the realistic setting where only one of the
two parties involved in the execution of the protocol (namely the server)
has a certified public key, and where the same master key is used to
generate multiple application keys.

The main contribution of the paper is a modular and generic proof
of security for the application keys established through the TLS proto-
col. We show that the transformation used by TLS to derive master
keys essentially transforms an arbitrary secure pre-master key agree-
ment protocol into a secure master-key agreement protocol. Similarly,
the transformation used to derive application keys works when applied
to an arbitrary secure master-key agreement protocol. These results are
in the random oracle model. The security of the overall protocol then
follows from proofs of security for the basic pre-master key generation
protocols employed by TLS.

1 Introduction

The SSL key agreement protocol, developed by Netscape, was made publicly
available in 1994 [22] and after various improvements [20] has formed the bases
for the TLS protocol [18, 19] which is nowadays ubiquitously present in secure
communications over the internet. Surprisingly, despite its practical importance,
this protocol had never been analyzed using the rigorous methods of modern
cryptography. In this paper we offer one such analysis. Before describing our
results and discussing their implications we recall the structure of the TLS pro-
tocol (Figure 1). The protocol proceeds in six phases. Through phases (1) and
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(2) parties confirm their willingness to engage in the protocol, exchange, and
verify the validity of their identities and public keys (it is assumed that at least
one party (the server) possess a long term public/private key pair (PKB, SKB),
as well as a certificate sigCA(PKB) issued by some certification authority CA).
The next four phases, which are the focus of this paper, are as follows.

(3) A pre-master secret s ∈ SPMS is obtained using one of a number of proto-
cols that include RSA based key transport and signed Diffie–Hellman key
exchange (which we describe and analyze later in the paper).

(4) The pre-master secret key s is used to derive a master secret m ∈ SMS,
with m = G(s, rA, rB). Here rA, rB are random nonces that the two parties
exchange and G is a key derivation function. The obtained master secret
key is confirmed by using it to compute two MACs of the transcript of the
conversation which are then exchanged.

(5) In the next phase the master key m is used to obtain one or more appli-
cation keys: for each application key, the parties exchange random nonces
nA and nB and compute the shared application key via k = k′ || k′′ ←
H(m,nA, nB). Here, H is a key derivation function. Notice, that each ap-
plication key is actually two keys: one for securing communication from the
client to the server, and one from the server to the client. This is important
to prevent reflection attacks.

(6) Finally the application keys are used in an application (and we exhibit one
possible use for encrypting some arbitrary messages). We emphasise that
many applications can use the same master key by repeated application of
Steps 5 and 6.

The proper use of keys in this last stage had been the object of previous studies [4,
25] and is not part of our analysis.

An interesting aspect of TLS is that the protocols used to obtain the pre-
master secret in Step (3) are very simplistic and on their own insecure in the
terms of modern cryptography. It is the combination of step (3) with those in
(4) and (5) which leads (as we show in this paper) to secure key agreement
protocol in the standard sense. Broadly speaking, our goal is to derive sufficient
security conditions on the pre-master key agreement protocol which would ensure
that the above combination indeed yields a secure key-agreement protocol in a
standard cryptographic sense.

We caution that in our analysis we disregard steps (1) and (2), and therefore
assume an existing PKI which authenticates all public keys in use in the system.
In particular we do not take into account any so-called PKI attacks.

Models. Much of the previous work on key agreement protocols in the provable
security community has focused on defining security models and then creating
protocols which meet the security goals of the models. In some sense, we are taking
the opposite approach: we focus on a particular existing protocol, namely TLS,
and develop security models that capture the security levels that the various keys
derived in one execution of the protocol enjoy. The path we take is also motivated
by the lack of models that capture precisely the security of these keys.
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client (Alice) server (Bob)
1. Client Hello Hello �
2. Certificate Transfer IDB, PKB�

sigCA(PKB)�
3. Pre-master Secret � �

Creation s s . . . s

�
4. Generate and Confirm rA←{0, 1}t rA �

Master Secret m rB� rB←{0, 1}t

m←G(s, rA, rB) m←G(s, rA, rB)

σA←MACm(0 || τ) where σB←MACm(1 || τ)

τ is the transcript of all

previous messages.
σA �
σB�

if σB = MACm(1 || τ) if σA = MACm(0 || τ)

then abort then abort

5. Generate Application nA←{0, 1}t nA �
Keys k′ || k′′ nB� nB←{0, 1}t

k = k′ || k′′←H(m, nA, nB) k = k′ || k′′←H(m, nA, nB)

6. Application Key y′ = Ek′ (m′) y
′ � m′ = Dk′ (y′)

Usage m′′ = Dk′′ (y′′) y
′′� y′′ = Ek′′ (m′′)

Fig. 1. A general TLS like protocol

A second important aspect of our approach is that unlike in prior work on key-
agreement protocols, we do not regard the protocol as a monolithic structure. In-
stead, we identify the structure described above and give security models for each
of the keys that are derived in the protocol. A benefit that follows from this mod-
ular approach is that we split the analysis of the overall protocol to the analysis
of its components, thus making the task of proving security more manageable.

We first provide a model for pre-master key agreement protocols. The model is
a weakened version of the Blake–Wilson, Johnson and Menezes (BJM) model [9].
In particular we only require that pre-master key agreement protocols are secure
in a one-way sense (the adversary cannot recover the entire established key), and
that the protocol is secure against man-in-the-middle attacks. In addition, unlike
in prior work, we model the realistic setting where only one of the parties involved
in the protocol is required to possess a certified public key.

Next, we give a security model for master-key agreement protocols which
strengthens the one described above. We still only require secrecy for keys in
the one-wayness sense, but now we ask for the protocol to also be secure against
unknown-key-share attacks. In addition, we introduce key-confirmation as a re-
quirement for master keys.

Finally, via a further extension, we obtain a model for the security of key
agreement protocols. Our model for application key security is rather standard,
and resembles the BJM model: we require for the established key to be indis-
tinguishable from a randomly chosen one, and we give the adversary complete
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control over the network, and various corruption capabilities. Our model explic-
itly takes into consideration the possibility that the same master key is used to
derive multiple application keys.

Security analysis of the TLS handshake protocol. Based on the models
that we developed, we give a security proof for the TLS handshake protocol. In
particular, we analyze a version where the MAC sent in step 4 is passed in the clear
(and not encrypted under the application keys as in full TLS.) It is intuitively clear
that the security of the full TLS protocol follows from our analysis. While a direct
analysis of the latter may be desirable we choose to trade immediate applicability
of our results to full TLS for the modularity afforded by our abstraction.

Our proof is modular and generic. Specifically, we show that the protocol
(Π ; MKDSSL(Mac, G)) obtained by appending to an arbitrary pre-master key
agreement protocol Π the flows in phase (4) of TLS is a secure master-key
agreement protocol in the sense that we define in this paper. The result holds
provided that the message authentication code used in the transformation is
secure and the hash function in the construction is modeled as a random oracle.
Similarly, we show that starting from an arbitrary secure master-key agreement
protocol Π , the protocol (Π ; AKSSL(H)) obtained by appending the flows in
phase (5) of TLS is a secure application-key agreement protocol (provided that
H is modeled as a random oracle).

An important benefit of the modular approach that we employ surfaces at
this stage: to conclude the security of the overall protocol it is sufficient to show
that the individual pre-master key agreement protocols of TLS are indeed secure
(in the weak sense that we put forth in this paper). The analysis is thus more
manageable, and avoids duplicating and rehashing proof ideas, which would be
the case if one was to analyze TLS in its entirety for each distinct method for
establishing pre-master keys.

Impact on practice. An implication of practical consequence of our analysis
concerns the use of encryption for implementing the pre-master key agreement
protocol of TLS. Currently, the RSA key transport mode of TLS uses a ran-
domized padding mechanism to avoid known problems with vanilla RSA. The
original choice was the encryption scheme from PKCS-v1.0. The exact choice
is historic, but in modern terms was made to attempt to create an IND-CCA
encryption scheme. It turns out that the encryption scheme from PKCS-v1.0 is
not in fact IND-CCA secure. This was exploited in the famous reaction attack
by Bleichenbacher [11] on SSL, where invalid ciphertext messages were used to
obtain pre-master secret keys. Our analysis implies that no randomized padding
mechanism is actually needed, as deterministic encryption suffices to guarantee
the security of the whole protocol.

Importantly, our models do capture security against reaction attacks as long
as the full behaviour of the protocol is specified and analyzed. The key aspect is
that the analysis should include the behaviour of the parties when the messages
that they receive do not follow the protocol (e.g. are malformed). Our analysis
of the premaster key agreement based on encryption schemes (e.g. that based on
RSA) considers and thus justifies the validity of the patch proposed to cope with
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reaction attacks, i.e. by ensuring that the execution when malformed packages
are received is indistinguishable from honest executions.

Our models can be used to explicitly capture one-way and mutual authentica-
tion via public-key certificate information. We do not model variants of the stan-
dard TLS protocol which can include password-based authentication or shared
key-based techniques. We leave these extensions for future work.

It is important to observe that our model does not require that the application
keys satisfy a notion of key-confirmation (as we require for the master-keys).
Indeed, the TLS protocol does not ensure this property. However, one may obtain
implicit key confirmation through the use of such keys in further applications. In
some sense, this loss is a by-product of the way we have broken up the protocol.
One of our goals was to show what security properties each of the stages provides,
and therefore we modeled and analyzed the security of the application keys.
However, if one considers Stages 1-4 as the key agreement protocol, and stages
5-6 as the application where the keys are used, then one does obtain an explicit
notion of key confirmation. Hence, the loss of explicit key confirmation in Stage
5 should not be considered a design flaw in TLS.

On the use of the random oracle model. In our proofs we assume that
the key derivation function is a random oracle, i.e. an idealized randomness ex-
tractor. As such, the typical disclaimer associated to proofs in the random oracle
model certainly applies, and we caution against over optimism in their interpre-
tation. A natural and important question is whether a standard model analysis
is possible, ideally, assuming that the key derivation function is pseudorandom
(as is the function based on HMAC used in the current specification of TLS).
Unfortunately, indirect evidence indicates that such a result is extremely hard to
obtain. As observed by Jonsson and Kaliski in their analysis of the use of RSA in
TLS [23], the use of the key derivation function in TLS is akin to the use of such
functions in deriving DEM keys under the KEM/DEM paradigm [16]. It is thus
likely that a proof as above would immediately imply an efficient RSA-based
encryption scheme secure in the standard model, thus solving a long-standing
open question in cryptography.

Related Work. The work which is closest with ours is the analysis of the
use of RSA in TLS by Jonsson and Kaliski [23]. They consider a very simplified
security model for the master secret key, for the particular case when the protocol
for premaster key is based on encryption. We share the modeling of the key
derivation function as a random oracle, and the observation that deterministic
encryption may suffice for a secure premaster key had also been made there.
However, the present work uses a far more general and modular model for key-
exchange, analyzes several pre-master key agreement protocols, including one
based on DDH which is offered by TLS.

Other analyses of the TLS protocol used Dolev-Yao models, where ideal secu-
rity of the underlying primitives is postulated, and thus no guarantees are offered
for the more concrete world. Such analyses include the one carried out by Mitchel,
Shmatikov, and Stern [28] using a model checker, and the one of Paulson who used
the inductive method [30]. Wagner and Schneier analyze various security aspects
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of SSL 3.0 [32], but their treatment is informal. Finally, Bellare and Namprem-
pre [4], and Krawczyk [25] study how to correctly use the application keys derived
via TLS. Their treatment is focused exclusively on the use of keys, and is not con-
cerned with the security of the entire key agreement protocol.

The first complexity theoretic model for key agreement was the Bellare-
Rogaway (BR) model [6, 7]. The main driving forces of this model were the works
of [8, 17]. Since the initial work of Bellare and Rogaway there have been a number
of other models proposed for key-exchange in various applications and environ-
ments [1, 3, 5, 9, 10, 12, 13, 14, 27, 31]. These models can be loosely categorised
into two main groups: those that use simulation based techniques [3, 14, 31], and
those closer to the original BR model that use an indistinguishability based ap-
proach [9, 10, 13, 27]. As explained before, our analysis uses a model that falls in
the latter category which, as argued elsewhere [13], has certain drawbacks but also
several important benefits over the simulation based approach. Certainly, our gen-
eral understanding of TLS would benefit from an analysis in a simulation based
model, especially one that guarantees compositionality [14]. However, in such set-
tings care must be taken on the use of the UC session identifiers which must be
unique and predetermined. Furthermore, multiple sessions of TLS use the same
long term secret keys which is a setting inherently difficult to handle in the UC
framework. The joint state UC theorem [15] a technical tool sometimes useful in
such situations does not apply to encryption (as used by encryption based pre-
master key derivation). Furthermore, applying the JUC theorem to protocols that
use signatures it requires signing messages/session identifier pairs, thus obtaining
an analysis of a related but different protocol.

Some aspects of other indistinguishability-based models relevant to our work
are the following. In [6] entity authentication and authenticated key distribution
are considered in the two-party symmetric key case where users are modeled as
message driven oracles. The adversary in this case acts as the communications
channel between users. To define security, the notions of an “error-free history”
of [8] and of “matching protocol runs” from [17] are made formal in [6] using the
notion of a matching conversation. We use this notion in our definitions.

Various security attributes are then included in the definition of security by
allowing the adversary to make corresponding queries such as Reveal queries. In
[7] this was developed to model the three party symmetric key case for entity
authentication and key distribution. The models most relevant to our work are
the Blake–Wilson, Johnson and Menezes (BJM) based models [9, 10, 27]. The
BJM model of [9] extended the BR model, to authenticated key agreement (AK)
and authenticated key agreement with key confirmation (AKC) in the public key
case. The work of [9] uses the notion of a No-Matching condition [6], to define a
clearer separation between AK and AKC protocols and deals with Diffie–Hellman
(DH) like protocols. Our execution models are inspired by the BJM model (while
our security definitions are different.)

Following on from this [10] deals with the case of key transport using public
key encryption (PKE) and key agreement using DH key agreement with digital
signatures (DSS). In [27] a modular proof technique was used in a modified BJM
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model to prove security of key agreement protocols relative to a gap assumption.
Indeed, the idea of transforming a one-way security definition into an indistin-
guishability definition occurs also in the generic transform proposed by Kudla
and Paterson [26, 27] and our techniques are very similar to theirs.

Finally, an important security model that is related to ours is that of Canetti
and Krawczyk (CK) [13]. In addition to the corruption capabilities that we
consider, the CK model allows the adversary to obtain the entire internal state
of a session and in particular the ephemeral secrets used in sessions. As pointed
out by Choo et al. this type of query is the only essential difference between
the adversarial capabilities in the model of Bellare and Rogaway and that of
Canetti and Krawczyk (see Table 2 of [24]). Clearly, our analysis does not offer
guarantees in the face of such extremely powerful types of adversaries and in
fact it can be easily seen that under such attacks the TLS version that uses the
DDH-based premaster secret key agreement is insecure. It may be possible that
one can demonstrate security of TLS under such stronger attacks by assuming
secure erasures as done for similar protocols [13, 14].

By adopting the style of the BR models over the style of the CK model we
also avoid some of the idiosyncrasies of the latter related to the use of session
identifiers (which need to be unique, and somehow agreed upon in advance by
participating parties) [13, 24]. For a further discussion on the use of identifiers
in the CK model versus the BR model see [24].

One other aspect of [13] which is somewhat related to our work is a modular
framework for designing protocols. In the model of [13] one can first develop
a secure protocol under the powerful assumption that all communication is au-
thenticated. Then, a secure protocol in the more realistic setting with no authen-
ticated communication is obtained by applying a generic transformation using
an authenticator. Obviously, the modular structure of TLS that we observe and
exploit is of a different nature. In particular it does not seem possible to regard
TLS as the result of applying an authenticator to some other protocol.

2 A Generic Execution Model for Two-Party Protocols

The security models that we use in this paper are based on the earlier work
of Bellare et al. [3, 5, 6, 7], as refined by BJM [9]. In this section we give a
general description of the common features of these models, and recall some of
the intuition behind them. Later, we specialise the general model for the different
tasks that we consider in the paper.

Registered and unregistered users. We model a setting with two kinds of
users: registered users (with identities in some setU) and non-registered user (with
identities in some set U ′). Each user U ∈ U has a long-term public key PKU and a
corresponding long term private key SKU . The set U is intended to model the set of
servers in the standard one-way authentication mode of TLS, the set of identities
U ′ models users that do not have a long term public/private key pair.

Models for interactive protocols execution. We are concerned with
two-party protocols: interactive programs in which an initiator and a responder
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communicate via some communication channel. Each of the two parties runs
some reactive program: each program expects to receive a message from the
communication channel, computes a response, and sends this back to the chan-
nel. We refer to one execution of the program for the initiator (respectively,
responder) as an initiator session (respectively, a responder session). Each party
may engage in multiple, concurrent, initiator and responder sessions.

As standard, we assume an adversary in absolute control of the communication
network: the adversary intercepts all messages sent by parties, and may respond
with whatever message it wants. This situation is captured by considering an ad-
versary (an arbitrary probabilistic, polynomial-time algorithm) who has access to
oracles that correspond to some (initiator or responder) sessions of the protocol
which the oracle maintains internally. In particular, each oracle maintains an in-
ternal state which consists of the variables of the session to which it corresponds,
and additional meta-variables used later to define security notions. In our descrip-
tions we typically ignore the details of the local variables of the sessions, and we
omit a precise specification of how these sessions are executed. Both notions are
standard. The typical meta-variables of an oracleO include the following. Variable
τO ∈ {0, 1}∗∪{⊥} that maintains the transcript of all messages sent and received
by the oracle, and occasionally, other data pertaining to the execution. Variable
roleO ∈ {initiator , responder ,⊥} records the type of session to which the oracle
corresponds. Variable pidO ∈ U keeps track of the identity of the intended partner
of the session maintained by O. Variable δO indicates whether the session had fin-
ished successfully, or unsuccessfully. We specify the values that this variable takes
later in the paper. Finally, variable γO ∈ {⊥, corrupted} records whether or not
the session had been corrupted by the adversary.

After an initialisation phase, in which long term keys for the parties are gener-
ated the adversary takes control of the execution which he drives forward using
several types of queries. The adversary can create a new session of user U play-
ing the role of the initiator/responder by issuing a query NewSession(U, role),
with role ∈ {initiator, responder}. User U can be either registered or unregis-
tered. We write Πi

U for the i’th session of user U . To any oracle O the adversary
can send a message msg using the query Send(O,msg). In return the adversary
receives an answer computed according to the session maintained by O. The
adversary may also corrupt oracles. Later in the paper when we specialise the
general model, we also clarify the different versions of corruptions that can oc-
cur and how are they handled by the oracles. The execution halts whenever the
adversary decides to do so.

To identify sessions that interact with each other we use the notion of matching
conversations introducedbyBellare andRogaway (which essentially states that the
inputs to one sessionare outputs of the other sessions, and theotherwayaround) [6].

3 Pre-master Key Agreement Protocols

In this section we specialise the general model described above for the case of
pre-master key agreement protocols, and analyze the security of the pre-master
key agreement protocols used in TLS.
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As discussed in the introduction, the design of our models is guided by the
security properties that the various subprotocols of TLS satisfy. In particular,
we require extremely weak security properties for the pre-master secret key.
Specifically, we demand that an adversary is not able to fully recover the key
shared between two honest parties. In its attack the adversary is allowed to
adaptively corrupt parties and obtain their long term secret key, and is allowed
to check if a certain string s equals the pre-master secret key held by some honest
session. The latter capability models an extremely limited form of reveal queries:
our adversary is not allowed to obtain the pre-master secret key of any of the
sessions, but can only guess (and then check) their values.

The formal model of security for pre-master key agreement protocols extends
the general model in Section 2 and makes only mild assumptions regarding the
syntax of such protocols. Specifically, we assume that the pre-master key be-
longs to some space SPMS. This space is often the support set of some mathe-
matical structure such as a group. We require that if t is the security parameter
then #SPMS ≥ 2t. Furthermore, we assume that the initiator and responder
programs use a variable s ∈ SPMS ∪ {⊥} that stores the shared pre-master
key. The corresponding variable stored by some oracle O is sO. For pre-master
secret key agreement protocols the internal variable δO stores one of the fol-
lowing values: ⊥ (the session had not finished its execution), accepted-pmk (the
session had finished its execution successfully (which in particular means that
sO holds some pre-master session key in SPMS) or rejected (the session had
finished its execution unsuccessfully). Unless δO = accepted-pmk we assume
sO =⊥.

The corruption capabilities of the adversary discussed above are modeled
using queries Corrupt and Check formally defined as follows. When the adversary
issues a query Corrupt(U) the following actions take place. If U ∈ U then SKU
is returned to the adversary, and we say that party U had been corrupted. In
all sessions O = Πi

U for some i ∈ N the value of γO is set to corrupted and
no further interaction between these oracles and the adversary may take place.
Additionally, no further queries NewSession(U, role) are permitted.

When the adversary issues the query Check(O, s), for O = Πi
U , i ∈ N, U some

uncorrupted party, and s ∈ SPMS, then the answer returned to the adversary
is true, if δO = accepted-pmk and sO = s, and false otherwise. When a given
oracle is initialized all values for the internal states are set to ⊥. At the end of
a protocol, the role, partner ID, and oracle state (but not the pre-master key)
are recorded in the transcript.

The following definition captures the class of oracles which are valid targets
for the attacker using the notion of “fresh oracles”. These are uncorrupted ora-
cles who have successfully finished their execution, and have a known intended
partner who is also not corrupted.

Definition 1 (Fresh Pre-Master Secret Key Oracle). A pre-master secret
oracle O is said to be fresh if all of the following conditions are satisfied:

(1) γO =⊥, (2) δO = accepted-pmk, and (3) ∃ V ∈ U such that V is
uncorrupted and pidO = V .
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Security game for pre-master key agreement protocols. We define
the security of a pre-master key agreement protocol Π via the following game
ExecOW-PMS

A,Π (t) between an adversary A and a challenger C:

(1) The challenger, C, generates public/secret key pairs for each user U ∈ U (by
running the appropriate key-generation algorithm on the security parameter
t), and returns the public keys to A.

(2) Adversary A, is allowed to make as many NewSession, Send, Check, and
Corrupt queries as it likes.

(3) At some point A outputs a pair (O∗, s∗), where O∗ is some pre-master
secret oracle, and s∗ ∈ SPMS.

We say the adversary A wins if its output (O∗, s∗) is such that O∗ is fresh, and
s∗ = sO∗ . In this case the output of ExecOW-PMS

Π,A (t) is set to 1. Otherwise the
output of the experiment is set to 0. We write

AdvOW-PMS
A,Π (t) = Pr[ExecOW-PMS

A,Π (t) = 1],

for the advantage of A in winning the ExecOW-PMS
A,Π (t) game. The probability is

taken over all the random coins used in the game. We deem a pre-master secret
key protocol secure if the adversary is not able to fully compute the key held by
fresh oracles.

Definition 2 (Pre-Master Key Agreement Security). A pre-master key
agreement protocol is secure if it satisfies the following requirements:

• Correctness: If at the end of the execution of a benign adversary, who cor-
rectly relays messages, any two oracles which have had a matching conversa-
tion hold the same pre-master key, and the key should be distributed uniformly
on the pre-master key space SPMS.

• Key Secrecy: A pre-master key agreement protocol Π satisfies OW-PMS
key secrecy if for any p.p.t. adversary A its advantage AdvOW-PMS

A,Π (t) is a
negligible function.

Before proceeding, we discuss the strength of our model for the security of pre-
master secret keys, and several authentication issues.

Remark 1. Our security requirements for pre-master secret key agreement are
significantly weaker than the standard requirements for key exchange [6, 7]. In
particular, we only require secrecy in the sense of one-wayness (not in the sense
of indistinguishability from a random key). Furthermore, the corruption abilities
of the adversary are severely limited: the adversary cannot obtain (or “reveal”)
pre-master secrets established by honest parties (even if these parties are not
those under the attack).

Remark 2. As a consequence of our security requirements our model may
deem protocols that succumb to unknown-key-share attacks [17] secure. In such
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attacks, two sessions belonging to honest users U and V locally establish the
same pre-master secret key, without intentional interaction with each other.

Remark 3. Security under our notion guarantees security against man-in-the-
middle attacks: a situation where honest parties U and V believe they interact
with each other but their pre-master key(s) is in fact shared with the adversary
is a security break in our model.

Remark 4. Although the resulting security notion is very weak, it turns out
that it suffices to obtain good master-key agreement protocols by appropriately
designed protocols to derive such keys (e.g. the protocol in Step 4 of the TLS
protocol – Figure 1.) More importantly, the weak notion also allows for many
simple protocols to be proved secure. For example, in the next section we prove
that deterministic encryption is sufficient to construct such protocols.

Remark 5. Our model is not concerned with secure establishment of pre-master
secret keys between two unauthenticated parties (the oracle that is under attack
always has pidO �= ⊥). While treating this case is possible using the concept of
matching conversations to pair sessions, the resulting definition would be heavier
and not particularly illuminating. Instead, we concentrate on the situation more
relevant to practice where at least one of the parties that take part in the protocol
(the server) has a certified public key.
Remark 6. As usual, our security model can be easily adapted to the random
oracle model by providing the adversary with access to the random oracle (when-
ever some hash function is modeled as a RO). The same holds true for the rest
of the models that we develop in this paper.

We now discuss the security of the pre-master secret key agreement protocols
used in TLS.

Protocols based on public-key encryption. A natural, intuitively ap-
pealing, construction for pre-master key agreement protocols is based on the
following use of an arbitrary public-key encryption scheme Enc. A user selects
a pre-master secret key s from an appropriate space, and sends to the server
the encryption of s under the server’s public-key. The server then obtains s as
the decryption of the ciphertext that it receives. We write PMK(Enc) for the
resulting protocol.

Theorem 1. If Enc is a OW-CPA secure deterministic encryption or a OW-CCA
secure randomized encryption scheme, then the pre-master secret key agreement
protocol Π = PMK(Enc) is a secure pre-master key transport protocol.

The result of this theorem, like all theorems in this paper will be proved in the
full version.

The weak security properties that we define for pre-master key agreement
protocols enable us to show security of PMK(Enc) based on weak security re-
quirements for Enc. Indeed, the one-wayness type secrecy for pre-master keys
translates to the one-wayness of the encryption function of Enc. This result
of our analysis implies, perhaps surprisingly, that one can avoid the use of
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full-fledged IND-CCA encryption schemes in favor of the much simpler determin-
istic OW-CPA schemes (e.g. textbook RSA). Of course, probabilistic encryption
can also be used, but in this case we show security of the associated pre-master
secret key protocol based on OW-CCA security. More generally our results holds
under the assumption that the encryption scheme is secure against an attacker
with access to a plaintext checking oracle. It is therefore not paradoxical that a
deterministic scheme suffices but an IND-CPA scheme does not.

Finally, since IND-CCA implies OW-CCA, our security analysis does apply to
the (correct) use of an IND-CCA secure public key encryption scheme within the
TLS protocol. In particular, when Enc is RSA-OAEP, the pre-master secret key
protocol PMK(Enc) is secure.

Signed Diffie-Hellman pre-master key agreement. The pre-master se-
cret key in TLS can also be produced by exchanging a Diffie-Hellman key gxy,
for x and y randomly chosen by the two participants, who also sign the relevant
message flow (either gx or gy) with their long term signing keys. It is known that
this protocol, which we denote by PMK(Sig,G), does not meet the requirements
of an authenticated key agreement protocol, for example see [17] for a discussion
of this protocol and various attacks on it. However, one can show.

Theorem 2. Let G be cyclic group for which the gap-Diffie-Hellman assumption
holds and let Sig be a secure digital signature scheme. Then Π = PMK(Sig,G)
is a secure pre-master key agreement protocol.

4 Master Key Agreement Protocols

In this section we introduce a security model for master-key agreement protocols.
We then show that master key agreement protocols obtained from secure pre-
master key agreement protocols via the transformation used in TLS satisfy our
notion of security.

Our security model for master key agreement protocols is similar to that
for pre-master key agreement protocols. We again ask for the adversary not
to be able to fully recover the master secret key of the session under attack.
Moreover, we ask for a key confirmation guarantee: if a session of some user U
accepts a certain master-key then there exists a unique session of its intended
partner that had accepted the same key. In addition to the queries previously
defined for the adversary, we also let the adversary obtain the master keys agreed
in different sessions of the protocol, without corrupting the user to which this
session belongs, i.e. we allow so-called Reveal queries.

In the formal model that we give below we make the following assumptions
about the syntax of a master-key agreement protocol. We assume that the master
key belongs to some space SMS for which we require that #SMS ≥ 2t, and assume
that the programs that specify a master key agreement protocol use a variable
m to store the agreed master key. For such protocols the variable δO now takes
values in {⊥, accepted -mk , reject} with the obvious meaning. Furthermore, the
variable γO can also take the value revealed to indicate that the stored master
key has been given to the adversary (see below).
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In addition to the queries allowed in the experiment for pre-master key secu-
rity, the adversary is also allowed to issue queries of the form Reveal(O). This
query is handled as follows: if δO =accepted-mk then mO is returned to A and
γO is set to revealed, while if δO �=accepted-mk then the query acts as a no-op.
As before, when a given oracle is initialized all values for the internal states are
set to ⊥. At the end of a protocol the role, partner ID and oracle state (but
not the master key) are recorded in the transcript. Unless δO =accepted-mk we
assume mi

U =⊥.
The definition of freshness needs to be adapted to take into account the new

adversarial capabilities. We call an oracle O fresh if it is uncorrupted, has suc-
cessfully finished its execution, its intended partner V is uncorrupted, and none
of the revealed oracles belonging to V has had a matching conversation with O.
The latter condition essentially says that the adversary can issue Reveal(Q) for
any Q (including those that belong to the intended partner of O), as long as Q
is not the session with which O actually interacts.

Definition 3 (Fresh Master Secret Oracle). A master secret oracle O is
said to be fresh if all of the following conditions hold:

(1) γO =⊥, (2) δO = accepted-mk, (3) ∃ V ∈ U such that V is
uncorrupted and pidO = V , and

(4) No revealed oracle Πi
V has had a matching conversation with O.

Security game for master-key agreement protocols. The game, de-
noted by ExecOW-MS

A,Π (t), for defining the security of master-key agreement proto-
col Π in the presence of adversary A is similar to that for pre-master key, with
the modification that A is also allowed to make any number of Reveal queries,
in addition to the NewSession, Send, Corrupt, Reveal, and Check queries. Here,
check queries are with respect to the master secret keys only. When the adver-
sary stops, it outputs a pair (O∗,m∗), where O∗ identifies one of its oracles, and
m∗ is some element of SMS. We say that A wins if its output (O∗,m∗) is such
that O∗ is fresh and m∗ = mO∗ . In this case the output of ExecOW-MS

A,Π (t) is set
to 1. Otherwise the output of the experiment is set to 0. We write

AdvOW-MS
A,Π (t) = Pr[ExecOW-MS

A,Π (t) = 1]

for the advantage of A in winning the ExecOW-MS
A,Π (t) game. The probability is

taken over all random coins used in the execution.
The following definition describes a situation where some party U had engaged

in a session which terminated successfully with some party V , but no session of
V has a matching conversation with U .

Definition 4 (No-Matching). Let No-MatchingA,Π(t) be the event that at some
point during the execution of ExecOW-MS

A,Π (t) for two uncorrupted parties U ∈ U∪U ′

and V ∈ U there exists an oracle O = Πi
U with pidO = V ∈ U , δO = accepted,

and yet no oracle Πi
V has had a matching conversation with O.

The following definition says that a protocol is a secure master-key agreement
protocol if the key established in an honest session is secret (in the one-wayness
sense) and no honest party can be coaxed into incorrectly accepting.
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Definition 5 (Master Key Agreement Security). A master key agreement
protocol is secure if it satisfies the following requirements:

• Correctness: If at the end of the execution of a benign adversary, who cor-
rectly relays messages, any two oracles which have had a matching conversa-
tion hold the same master key, which is distributed uniformly over the master
key space SMS.

• Key Secrecy: A master key agreement protocol Π satisfies OW-MS key se-
crecy if for any p.p.t. adversary A, its advantage AdvOW-MS

A,Π (t) is a negligible
function.

• No Matching: For any p.p.t. adversary A, the probability of the event
No-MatchingA,Π(t) is a negligible function.

Remark 1. Our security requirements for master secret keys are still signif-
icantly weaker than the more standard requirements for key exchange [6, 7].
Although the adversarial powers are similar to those in existing models (e.g.[9]),
we still require the adversary to recover the entire key. The weaker requirement
is motivated by our use of TLS as guide in designing the security model. In this
protocol, the master secret key is not indistinguishable from a random one since
it is used to compute MACs that are sent over the network.

Remark 2. The No Matching property we require is essentially the one based
on matching conversations introduced by Bellare and Rogaway [6], adapted to
our setting where only one of the parties involved in the execution is required to
hold a certified key (and thus have a verifiable identity). One could potentially
replace matching conversations with weaker versions of partnering, but only at
the expense of making the definitions and results less clear. Bellare and Rog-
away also show that if the No Matching property is satisfied, then agreement is
injective. In our terms, with overwhelming probability it holds that if O = Πi

U

had accepted and has pidO = V ∈ U , then there exist precisely one session of V
with which O has a matching conversation.

Remark 3. Notice that, together, the first and third conditions in the above
definitions imply a key confirmation guarantee: if one session has accepted a
certain key, then there exists a unique session of the intended partner who has
accepted the same key.

Remark 4. The addition of Reveal queries implies security against “unknown-
key-share” attacks: if parties U and V share a master-key without being aware
that they interact with each other the adversary can obtain the key of U by
performing a Reveal query on the appropriate session of V , thus breaking security
in the sense defined above.

Remark 5. Notice that an adversary against the master-secret key does not
have any query that allows it to obtain information about the pre-master secret
key. This is consistent with the SSL specification which states that the pre-
master secret should be converted to the master secret immediately and that
the pre-master secret should be securely erased from memory. In particular this
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means that the pre-master secret does not form part of the state of the master
key agreement oracle, and so it does not get written on a transcript.

In this section we show that the master-key agreement protocol obtained from
a secure pre-master key agreement protocol by using the transformation used
in TLS is secure. Let Π be an arbitrary pre-master key agreement protocol,
G a hash function, and Mac = (K,MAC, ver) a message authentication code.
We write (Π ; MKDSSL(Mac, G)) the master-key agreement protocol obtained by
extending Π with the master-key derivation phase of TLS, i.e. by appending to
the message flows of Π those in Step 4 of Figure 1. Starting from a secure pre-
master key agreement protocol, the above transformation yields a secure master
key agreement protocol.

Theorem 3. Let Π be a secure pre-master agreement protocol, Mac a secure mes-
sage authentication code, and G a random oracle. Then (Π ; MKDSSL(Mac, G)) is
a secure master-key agreement protocol.

5 Application Key Agreement

In this section we extend the model developed so far to deal with application keys
obtained from master-secret keys, and the analyze the security of the application
keys obtained through the TLS protocol.

As discussed in the introduction we focus on protocols with a particular struc-
ture: first, a master-key is agreed by the parties via some master-key agreement
protocol Π , and then this key is used as input to an application key derivation
protocol, Σ. The same master-key can be used in multiple executions of the
application key protocol which can take place in parallel and concurrently.

We capture this setting by modifying the model for master-key agreement
protocols as follows. We consider two types of oracles: MK-oracles which corre-
spond to sessions where the master secret key is derived (i.e. sessions of protocol
Π), and AK-oracles, which correspond to sessions of the application key deriva-
tion protocol (i.e. sessions of Σ). The AK-oracles are spawned by MK-oracles
that have established a master-secret key; spawning is done at the request of the
adversary. The internal structure and behavior of MK-oracles are as defined in
the previous section. To describe AK-oracles, we again impose some syntactic
restrictions on the protocols (and thus on the oracles). We require that AK-
oracle Q maintain variables τQ,mQ, roleQ, pidQ with the same roles as before.
In addition, a new variable kQ ∈ SA holds the application key obtained in the
session. (Here #SA ≥ 2t, where t is the security parameter). The state variable
δQ now assumes values in {⊥, accepted-ak, rejected}, with the obvious seman-
tics. Finally, the corruption variable δQ is either ⊥ or compromised (we explain
below when the latter value is set).

In addition to the powers previously granted to the adversary, now the adver-
sary can also create new AK-oracles by issuing queries of the form Spawn(O),
with O an MK-oracle that had successfully finished its execution. As a result,
a new oracle Q = Σj

O is created (where j indicates that Q is the j’th oracle
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spawned by O.) Oracle Q inherits the variables τQ, mQ, roleQ, and pidQ from
O in the obvious way. The adversary may also compromise AK-oracles: when a
query Compromise(Q) is issued, if Q has accepted, then kQ is returned to the
adversary and δQ is set to compromised. Notice that the Compromise queries are
the analogue of Reveal queries for AK-oracles. We chose to have different names
for clarity.

The security of keys is captured via a Test query. When Test(Q) is issued, a
bit b ∈ {0, 1} is chosen at random. Then if b = 0 then kQ∗ is returned to the
adversary, otherwise a randomly selected element from SA is returned to the
adversary (who then has to guess b; see the game defined below).

An AK-oracle Q is a valid target for the adversary if the parent oracle of Q
is fresh, Q has finished successfully its execution, its intended partner, say V , is
not corrupt, and any session of V with which Q has a matching conversation is
not compromised.

Definition 6 (Fresh Application Key Oracle). Let O be a master key agree-
ment oracle and Q denote one of its children. The oracle Q is said to be fresh if
the following conditions hold:

(1) O is a fresh master key agreement oracle, (2) γQ =⊥, (3) δO =
accepted-ak , (4) ∃ V ∈ U such that pidQ = V , and (5) No compromised
session ΣQ′ that belongs to V has had a matching conversation with Q.

Note that here, we are implicitly assuming that knowing a master key automat-
ically gives the adversary all derived application keys. Whilst this will not be
true of all protocols which one can think of, it is true for all application key
derivation protocols that we consider here and in particular in Stage 5 of the
protocol of Figure 1.

Security game for application-key agreement protocols. We define
the security of an application-key protocol Π ;Σ via a game ExecIND-AK

A,Π;Σ (t) be-
tween an adversary A and a challenger C.

(1) C generates public-secret key pairs for each user U ∈ U , and returns the
public keys to A.

(2) A is allowed to make as many NewSession, Send, Spawn, Compromise, Reveal,
Check, and Corrupt queries as it likes throughout the game.

(3) At any point during the game adversary A makes a single Test(Q∗) query.
(4) The adversary outputs a bit b′.

We say that A wins if Q∗ is fresh at the end of the game and its output bit b
is such that b = b′ (where b is the bit internally selected during the Test query).
In this case the result of ExecIND-AK

A,Π;Σ (t) is set to 1. Otherwise the output of the
experiment is set to 0. We write

AdvIND-AK
A,(Π;Σ)(t) =

∣∣∣∣Pr[ExecIND-AK
A,Π;Σ (t) = 1] − 1

2

∣∣∣∣
for the advantage of A in winning the ExecIND-AK

A,Π;Σ (t) game. Using this security
game we can now define the security of a application key agreement protocol.
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Definition 7 (Application Key Agreement Security). An application key
agreement protocol is secure if it satisfies the following conditions:
• Correctness: In the presence of an adversary which faithfully relays mes-

sages, two oracles running the protocol accept holding the same application
key and session ID, and the application key is distributed uniformly at ran-
dom on the application key space.

• Key secrecy: An application key agreement protocol Π ;Σ satisfies IND-AK
key secrecy if for any p.p.t. adversary A, its advantage AdvIND-AK

A,Π;Σ (t) is neg-
ligible in t.

Remark 1. The model that we develop ensures strong security guarantees for
the application keys, in the standard sense of indistinguishability against at-
tackers with powerful corruption capabilities. In this sense our model is close to
existing ones, but has the added feature that we explicitly consider the setting
where more than one application-key can be derived from the same master key.

Remark 2. Notice that at the application key layer we do not require key
confirmation anymore. Indeed, a trivial attack on the standard notion of key
confirmation can be mounted against application keys derived using the TLS
protocol. However, implicit key confirmation for application keys may still be
achieved, depending how the application key is actually used. (In the full ver-
sion of the paper we discuss the composition of our application key agreement
protocol with specific applications, especially confidentiality applications.)

The loss of this property is in some sense a result of how we chose to break
down the protocol for analysis, since one of our goals was to identify what security
properties each of the stages provides. However, if one considers Stages 1-4 as
the key agreement protocol, and stages 5-6 as the application then one does
obtain an explicit notion of key confirmation. Hence, the loss of explicit key
confirmation in Stage 5 should not be considered a design flaw in TLS.

In this section we show that the application-key agreement protocol obtained
from any secure master-key derivation protocol, and the application-key deriva-
tion protocol of TLS (Stage 5 of Figure 1) is secure.

For any master-key agreement protocol Π , and hash function H , we write
(Π ; AKSSL(H)) for the application-key agreement protocol obtained by extend-
ing Π with the application-key derivation protocol of TLS. Informally, this means
that we derive an application key agreement protocol from a master key agree-
ment protocol using Stage 5 of Figure 1. We make no assumption as to whether
the master key agreement protocol itself is derived from a pre-master key agree-
ment protocol as in Figure 1. The following theorem says that starting with a
master-key agreement protocol secure in the sense of Definition 5, the above
transformation yields a secure application key protocol.

Theorem 4. Let Π be a secure master-key agreement protocol and H a random
oracle. Then (Π ; AKSSL(H)) is a secure application-key agreement protocol.

The security of TLS follows from Theorems 1, 2, 3 and 4. For full details the
reader should consult the full version of this paper.
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Abstract. Optimistic fair exchange (OFE) is a protocol for solving the
problem of exchanging items or services in a fair manner between two
parties, a signer and a verifier, with the help of an arbitrator which
is called in only when a dispute happens between the two parties. In
almost all the previous work on OFE, after obtaining a partial signature
from the signer, the verifier can present it to others and show that the
signer has indeed committed itself to something corresponding to the
partial signature even prior to the completion of the transaction. In some
scenarios, this capability given to the verifier may be harmful to the
signer. In this paper, we propose the notion of ambiguous optimistic fair
exchange (A-OFE), which is an OFE but also requires that the verifier
cannot convince anybody about the authorship of a partial signature
generated by the signer. We present a formal security model for A-OFE in
the multi-user setting and chosen-key model. We also propose an efficient
construction with security proven without relying on the random oracle
assumption.

1 Introduction

Optimistic Fair Exchange (OFE) allows two parties to fairly exchange information
in such a way that at the end of a protocol run, either both parties have obtained
the complete information from one another or none of them has obtained anything
from the counter party. In an OFE, there is a third party, called Arbitrator, which
only gets involved when a dispute occurred between the two parties. OFE is a
useful tool in practice, for example, it can be used for performing contract signing,
fair negotiation and similar applications on the Internet. Since its introduction [1],
there have been many OFE schemes proposed [2, 3, 4, 12, 13, 14, 18, 21, 23, 24]. For
all recently proposed schemes, an OFE protocol for signature typically consists of
three message flows. The initiator of OFE, Alice, first sends a message σP , called
partial signature, to the responder, Bob. The partial signature σP acts as Alice’s
partial commitment to her full signature which is to be sent to Bob. But Bob needs
to send his full signature to Alice first in the second message flow. After receiving
Bob’s full signature, Alice sends her full signature to Bob in the third message
flow. If in the second message flow that Bob refuses to send his full signature back
to Alice, Alice’s partial signature σP should have no use to Bob, so that Alice has
no concern about giving away σP . However, after Bob has sent his full signature to
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c© International Association for Cryptologic Research 2008
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Alice while Alice refuses to send her full signature in the third message flow, then
Bob can ask the Arbitrator to retrieve Alice’s full signature from σP after sending
both σP and Bob’s full signature to the Arbitrator. To the best of our knowledge,
among almost all the known OFE schemes, there is one common property about
Alice’s partial signature σP which has neither been captured in any of the security
models for OFE nor been considered as a requirement for OFE. The property is
that once σP is given out, at least one of the following statements is true.

1. Everyone can verify that σP must be generated by Alice because σP , sim-
ilar to a standard digital signature, has the non-repudiation property with
respect to Alice’s public key;

2. Bob can show to anybody that Alice is the signer of σP .

For example, in the schemes proposed in [12, 18], the partial signature of Alice
is a standard signature, which can only be generated by Alice. In many OFE
schemes in the literature, Alice’s signature is encrypted under the arbitrator’s
public key, and then a non-interactive proof is generated to show that the cipher-
text indeed contains a signature of Alice. This is known as verifiably encrypted
signature. However, this raises the question of whether a non-interactive proof
that a signature is encrypted is really any different from a signature itself, since
it alone is sufficient to prove to any third party that the signer has committed
to the message [10].

This property may cause no concern in some applications, for example, in
those where only the full signature is deemed to have some actual value to
the receiving party. However, it may be undesirable in some other applications.
Since σP is publicly verifiable and non-repudiative, in practice, σP may not be
completely useless to Bob. Instead, σP has evidently shown Alice’s commitment
to the corresponding message. This may incur some unfair situation, to the
advantage of Bob, if Bob does not send out his full signature. In contract signing
applications, this could be undesirable because σP can already be considered as
Alice’s undeniable commitment to a contract in court while there is no evidence
showing that Bob has committed to anything.

In another application, fair negotiation, the property above may also be un-
desirable. Suppose after obtaining σP from Alice on her offer, Bob may show
it to Charlie, who is Alice’s competitor, and ask Charlie for making a better
offer. If Charlie’s offer is better, then Bob may stop the OFE protocol run with
Alice indicating that Bob is unwilling to conclude the negotiation with Alice,
and instead carrying out a new OFE protocol run with Charlie. Bob can play
the same game iteratively until that no one can give an even better offer. Then
Bob can resolve the negotiation by sending his service (i.e. his full signature as
the commitment to his service) to the highest bidder.

For making OFE be applicable to more applications and practical scenarios,
in this paper, we propose to enhance the security requirements of OFE and
construct a new OFE scheme which does not have the problems mentioned above.
One may also think of this as an effort to make OFE more admissible as a viable
fair exchange tool for real applications. We will build an OFE scheme which not
only satisfies all the existing security requirements of OFE (with respect to the
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strongest security model available [18]), but in addition to that, will also have
σP be not self-authenticating and unable for Bob to demonstrate to others that
Alice has committed herself to something. We call this enhanced notion of OFE
as Ambiguous Optimistic Fair Exchange (A-OFE). It inherits all the formalized
properties of OFE [12, 18] and has a new property introduced: signer ambiguity.
It requires that a partial signature σP generated by Alice or Bob should look
alike and be indistinguishable even to Alice and Bob.

(Related Work): There have been many OFE schemes proposed in the past
[2, 3, 4, 12, 13, 18, 21, 23, 24]. In the following, we review some recent ones
by starting from 2003 when Park, Chong and Siegel [24] proposed an OFE
based on sequential two-party multi-signature. It was later broken and repaired
by Dodis and Reyzin [13]. The scheme is setup-driven [25, 26], which requires
all users to register their keys with the arbitrator prior to any transaction. In
[23], Micali proposed another scheme based on a CCA2 secure public key en-
cryption with the property of recoverable randomness (i.e., both plaintext and
randomness used for generating the ciphertext can be retrieved during decryp-
tion). Later, Bao et al. [4] showed that the scheme is not fair, where a dishon-
est party, Bob, can obtain the full commitment of another party, Alice, with-
out letting Alice get his obligation. They also proposed a fix to defend against
the attack.

In PKC 2007, Dodis, Lee and Yum [12] considered OFE in a multi-user set-
ting. Prior to their work, almost all previous results considered the single-user
setting only which consists of a single signer and a single verifier (along with
an arbitrator). The more practical multi-user setting considers a system to have
multiple signers and verifiers (along with the arbitrator), so that a dishonest
party can collude with other parties in an attempt of cheating. Dodis et al. [12]
showed that security of OFE in the single-user setting does not necessarily imply
the security in the multi-user setting. They also proposed a formal definition of
OFE in the multi-user setting, and proposed a generic construction, which is
setup-free (i.e. no key registration is required between users and the arbitrator)
and can be built in the random oracle model [5] if there exist one-way functions,
or in the standard model if there exist trapdoor one-way permutations.

In CT-RSA 2008, Huang, Yang, Wong and Susilo [18] considered OFE in
the multi-user setting and chosen-key model, in which the adversary is allowed
to choose public keys arbitrarily without showing its knowledge of the corre-
sponding private keys. Prior to their work, the security of all previous OFE
schemes (including the one in [12]) are proven in a more restricted model, called
certified-key (or registered-key) model, which requires the adversary to prove its
knowledge of the corresponding private key before using a public key. In [18],
Huang et al. gave a formal security model for OFE in the multi-user setting
and chosen-key model, and proposed an efficient OFE scheme based on ring sig-
nature. In their scheme, a partial signature is a conventional signature and a
full signature is a two-member ring signature in additional to the conventional
signature. The security of their scheme was proven without random oracles.
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Liskov and Micali [22] proposed an online-untransferable signature scheme,
which in essence is an enhanced version of designated confirmer signature, with
the extra property that a dishonest recipient, who is interacting with a signer,
cannot convince a third party that the signature is generated by the signer.
Their scheme is fairly complex and the signing process requires several rounds
of interaction with the recipient. Besides, their scheme works in the certified-key
model, and is not setup-free, i.e. there is a setup stage between each signer and
the confirmer, and the confirmer needs to store a public/secret key pair for each
signer, thus a large storage is required for the confirmer.

In [14], Garay, Jakobsson and MacKenzie introduced a similar notion for op-
timistic contract signing, named abuse-freeness. It requires that no party can
ever prove to a third party that he is capable of choosing whether to validate
or invalidate a contract. They also proposed a construction of abuse-free opti-
mistic contract signing protocol. The security of their scheme is based on DDH
assumption under the random oracle model. Besides they did not consider the
multi-user setting for their contract signing protocol.

(Our Contributions): In this paper we make the following contributions.

1. We propose the notion of Ambiguous Optimistic Fair Exchange (Ambiguous
OFE or A-OFE in short) which allows a signer Alice to generate a partial
signature in such a way that a verifier Bob cannot convince anybody about
the authorship of this partial signature, and thus cannot prove to anybody
that Alice committed herself to anything prematurely. Realizing the notion
needs to make the partial signature ambiguous with respect to Alice and
Bob. We will see that this requires us to include both Alice and Bob’s public
keys into the signing and verification algorithms of A-OFE.

2. For formalizing A-OFE, we propose a strong security model in the multi-
user setting and chosen-key model. Besides the existing security require-
ments for OFE, that is, resolution ambiguity1, security against signers,
security against verifiers and security against the arbitrator, A-OFE has
an additional requirement: signer ambiguity. It requires that the verifier can
generate partial signatures whose distribution is (computationally) indistin-
guishable from that of partial signatures generated by the signer. We also
evaluate the relations among the security requirements and show that if a
scheme has security against the arbitrator and (a weaker variant of) signer
ambiguity, then it already has (a weaker variant of) security against veri-
fiers.

3. We propose the first efficient A-OFE scheme and prove its security in the
multi-user setting and chosen-key model without random oracle. It is based
on Groth and Sahai’s idea of constructing a fully anonymous group signature
scheme [15, 16] and the security relies on the decision linear assumption and
strong Diffie-Hellman assumption.

(Paper Organization): In the next section, we define A-OFE and propose a
security model for it. We also show some relation among the formalized security
1 Resolution ambiguity is just another name for the ambiguity considered in [12, 18].
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requirements of A-OFE. In Sec. 3, we introduce some preliminaries which are
used in our construction, which is described in Sec. 4. In Sec. 5, we prove the
security of our scheme in the standard model, and compare our scheme with
other two related work.

2 Ambiguous Optimistic Fair Exchange

In an A-OFE scheme, we require that after receiving a partial signature σP

from Alice (the signer), Bob (the verifier) cannot convince others but himself
that Alice has committed herself to σP . This property is closely related to the
non-transferability of designated verifier signature [19] and the ambiguity of
concurrent signature [11]. Similarly, we require that the verification algorithm in
A-OFE should also take as the public keys of both signer and (designated) verifier
as inputs, in contrast to that in the traditional definition of OFE [1, 2, 12, 18].

Definition 1 (Ambiguous Optimistic Fair Exchange). An ambiguous op-
timistic fair exchange (A-OFE in short) scheme involves two users (a signer
and a verifier) and an arbitrator, and consists of the following (probabilistic)
polynomial-time algorithms:

– PMGen: On input 1k where k is a security parameter, it outputs a system
parameter PM.

– SetupTTP: On input PM, the algorithm generates a public arbitration key
APK and a secret arbitration key ASK.

– SetupUser: On input PM and (optionally) APK, the algorithm outputs a pub-
lic/secret key pair (PK,SK). For user Ui, we use (PKi, SKi) to denote its
key pair.

– Sig and Ver: Sig(M,SKi, PKi, PKj, APK) outputs a (full) signature σF on
M of user Ui with the designated verifier Uj, where message M is chosen by
user Ui from the message space M defined under PKi, while Ver(M,σF , PKi,
PKj, APK) outputs accept or reject, indicating σF is Ui’s valid full signature
on M with designated verifier Uj or not.

– PSig and PVer: They are partial signing and verification algorithms respec-
tively. PSig(M,SKi, PKi, PKj , APK) outputs a partial signature σP , while
PVer(M,σP ,PK, APK) outputs accept or reject, where PK = {PKi, PKj}.

– Res: This is the resolution algorithm. Res(M,σP , ASK,PK), where PK =
{PKi, PKj}, outputs a full signature σF , or ⊥ indicating the failure of re-
solving a partial signature.

Note that we implicitly require that there is an efficient algorithm which given
a a pair of (SK,PK), verifies if SK matches PK, i.e. (SK,PK) is an output
of algorithm SetupUser. As in [12], PSig together with Res should be functionally
equivalent to Sig.

For the correctness, we require that for any k ∈ N, PM ← PMGen(1k),
(APK,ASK) ← SetupTTP (PM), (PKi, SKi) ← SetupUser(PM, APK),
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(PKj, SKj) ← SetupUser(PM, APK), and M ∈ M(PKi), let PK={PKi, PKj},
we have the following

PVer(M, PSig(M, SKi, PKi, PKj , APK),PK, APK) = accept,

Ver(M, Sig(M, SKi, PKi, PKj , APK), PKi, PKj , APK) = accept, and

Ver(M, Res(M, PSig(M, SKi, PKi, PKj , APK), ASK,PK), PKi, PKj , APK)=accept.

2.1 Security Properties

(Resolution Ambiguity): The resolution ambiguity property requires that any
‘resolved signature’Res(M,PSig(M ,SKi,PKi,PKj ,APK),ASK, {PKi, PKj})
is computationally indistinguishable from an ‘actual signature’ generated by the
signer, Sig(M,SKi, PKi, PKj, APK). It is identical to ‘ambiguity’ defined in
[12, 18]. Here we just use another name, in order to avoid any confusion, as we
will define another kind of ambiguity next.

(Signer Ambiguity): Informally, signer ambiguity means that given a partial
signature σP from a signer A, a verifier B should not be able to convince others
that σP was indeed generated by A. To capture this property, we use the idea of
defining ambiguity in concurrent signature [11]. We require that B can generate
partial signatures that look indistinguishable from those generated by A. This is
also the reason why a verifier should also have a public/secret key pair, and the
verifier’s public key should be included in the inputs of PSig and Sig. Formally, we
define an experiment in which D is a probabilistic polynomial-time distinguisher.

PM ← PMGen(1k)

(APK,ASK) ← SetupTTP(PM)

(M, (PK0, SK0), (PK1, SK1), δ) ← DORes(APK)

b ← {0, 1}
σP ← PSig(M, SKb, PKb, PK1−b, APK)

b′ ← DORes(δ, σP )

success of D := [b′ = b ∧ (M, σP , {PK0, PK1}) �∈ Query(D, ORes)]

where δ is D’s state information, oracle ORes takes as input a valid2 partial sig-
nature σP of user Ui on message M with respect to verifier Uj , i.e. (M,σP , {PKi,
PKj}), and outputs a full signature σF on M under PKi, PKj , and Query
(D,ORes) is the set of valid queries D issued to the resolution oracle ORes. In this
oracle query, D can arbitrarily choose a public key PK without knowing the cor-
responding private key. However, we do require that there exists a PPT algorithm
to check the validity of the two key pairs output by D, i.e. if SKb matches PKb

for b = 0, 1, or if (PKb, SKb) is a possible output of SetupUser. The advantage of
D, AdvSA

D (k), is defined to be the gap between its success probability in the exper-
iment above and 1/2, i.e. AdvSA

D (k) = |Pr[b′ = b] − 1/2|.
2 By ‘valid’, we mean that σP is a valid partial signature on M under public keys

PKi, PKj , alternatively, the input (M, σP , PKi, PKj) of ORes satisfies the condition
that PVer(M, σP , {PKi, PKj}, APK) = accept.
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Definition 2 (Signer Ambiguity). An OFE scheme is said to be signer am-
biguous if for any probabilistic polynomial-time algorithm D, AdvSA

D (k) is negli-
gible in k.

Remark 1. We note that a similar notion was introduced in [14, 22]. It’s required
that the signer’s partial signature can be simulated in an indistinguishable way.
However, the ‘indistinguishability’ in [14, 22] is defined in CPA fashion, giving
the adversary no oracle that resolves a partial signature to a full one, while
our definition of signer ambiguity is done in the CCA fashion, allowing the
adversary to ask for resolving any partial signature except the challenge one to a
full signature, which is comparable to the CCA security of public key encryption
schemes.

(Security Against Signers): We require that no PPT adversary A should be
able to produce a partial signature with non-negligible probability, which looks
good to a verifier but cannot be resolved to a full signature by the honest arbitra-
tor. This ensures the fairness for verifiers, that is, if the signer has committed to
a message with respect to an (honest) verifier, the verifier should always be able
to obtain the full commitment of the signer. Formally, we consider the following
experiment:

PM ← PMGen(1k)

(APK,ASK) ← SetupTTP(PM)

(PKB, SKB) ← SetupUser(PM, APK)

(M, σP , PKA) ← AOB
PSig,ORes(APK, PKB)

σF ← Res(M, σP , ASK, {PKA, PKB})
success of A := [PVer(M, σP , {PKA, PKB}, APK) = accept

∧ Ver(M, σF , PKA, PKB , APK) = reject

∧ (M, PKA) �∈ Query(A,OB
PSig)]

where oracle ORes is described in the previous experiment, OB
PSig takes as input

(M,PKi) and outputs a partial signature on M under PKi, PKB generated
using SKB, and Query(A,OB

PSig) is the set of queries made by A to oracle OB
PSig.

In this experiment, the adversary can arbitrarily choose a public key PKi, and it
may not know the corresponding private key of PKi. Note that the adversary is
not allowed to corrupt PKB, otherwise it can easily succeed in the experiment by
simply using SKB to produce a partial signature under public keys PKA, PKB

and outputting it. The advantage of A in the experiment AdvSAS
A (k) is defined

to be A’s success probability.

Definition 3 (Security Against Signers). An OFE scheme is said to be
secure against signers if there is no PPT adversary A such that AdvSAS

A (k) is
non-negligible in k.

(Security Against Verifiers): This security notion requires that any PPT
verifier B should not be able to transform a partial signature into a full sig-
nature with non-negligible probability if no help has been obtained from the
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signer or the arbitrator. This requirement has some similarity to the notion of
opacity for verifiably encrypted signature [9]. Formally, we consider the following
experiment:

PM ← PMGen(1k)

(APK, ASK) ← SetupTTP(PM)

(PKA, SKA) ← SetupUser(PM, APK)

(M, PKB , σF ) ← BOPSig,ORes(PKA, APK)

success of B := [Ver(M, σF , PKA, PKB , APK) = accept ∧
(M, ·, {PKA, PKB}) �∈ Query(B,ORes)]

where oracle ORes is described in the experiment of signer ambiguity, Query(B,
ORes) is the set of valid queries B issued to the resolution oracle ORes, and
oracle OPSig takes as input a message M and a public key PKj and returns a
valid partial signature σF on M under PKA, PKj generated using SKA. In the
experiment, B can ask the arbitrator for resolving any partial signature with
respect to any pair of public keys (adaptively chosen by B, probably without
the knowledge of the corresponding private keys), with the limitation described
in the experiment. The advantage of B in the experiment AdvSAV

B (k) is defined
to be B’s success probability in the experiment above.

Definition 4 (Security Against Verifiers). An OFE scheme is said to be
secure against verifiers if there is no PPT adversary B such that AdvSAV

B (k) is
non-negligible in k.

(Security Against the Arbitrator): Intuitively, an OFE is secure against
the arbitrator if no PPT adversary C including the arbitrator, should be able
to generate with non-negligible probability a full signature without explicitly
asking the signer for generating one. This ensures the fairness for signers, that
is, no one can frame the actual signer on a message with a forgery. Formally, we
consider the following experiment:

PM ← PMGen(1k)

(APK, ASK∗) ← C(PM)

(PKA, SKA) ← SetupUser(PM, APK)

(M, PKB, σF ) ← COPSig(ASK∗, APK, PKA)

success of C := [Ver(M, σF , PKA, PKB , APK) = accept ∧
(M, PKB) �∈ Query(C,OPSig)]

where the oracle OPSig is described in the previous experiment, ASK∗ is C’s state
information, which might not be the corresponding private key of APK, and
Query(C,OPSig) is the set of queries C issued to the oracle OPSig. The advantage
of C in this experiment AdvSAA

C (k) is defined to be C’s success probability.

Definition 5 (Security Against the Arbitrator). An OFE scheme is said
to be secure against the arbitrator if there is no PPT adversary C such that
AdvSAA

C (k) is non-negligible in k.
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Remark 2. In A-OFE, both signer UA and verifier UB are equipped with pub-
lic/secret key pairs (of the same structure), and UA and UB can generate in-
distinguishable partial signatures on the same message. If the security against
the arbitrator holds for UA (as described in the experiment above), it should
also hold for UB. That is, even when colluding with UA (and other signers), the
arbitrator should not be able to frame UB for a full signature on a message, if
it has not obtained a partial signature on the message generated by UB.

Definition 6 (Secure Ambiguous Optimistic Fair Exchange). An A-OFE
scheme is said to be secure in the multi-user setting and chosen-key model if it is
resolution ambiguous, signer ambiguous, secure against signers, secure against
verifiers and secure against the arbitrator.

2.2 Weaker Variants of the Model

In this section, we evaluate the relation between the signer ambiguity and se-
curity against verifiers. Intuitively, if an A-OFE scheme is not secure against
verifiers, the scheme cannot be signer ambiguous because a malicious verifier
can convert with non-negligible probability a signer’s partial signature to a full
one which allows the verifier to win the signer ambiguity game. For technical
reasons, we first describe some weakened models before giving the proof for a
theorem regarding the relation.

In our definition of signer ambiguity (Def. 2), the two public/secret key pairs
are selected by the adversary D. In a weaker form, the key pairs can be selected
by the challenger, and D is allowed to corrupt these two keys. This is compa-
rable to the ambiguity definition for concurrent signature [11], or the strongest
definition of anonymity of ring signature considered in [6], namely anonymity
against full key exposure. We can also define an even weaker version of signer
ambiguity, in which D is given two public keys, PKA, PKB, the oracle access of
OPSig which returns UA’s partial signatures, and is allowed to corrupt PKB. We
call this form of signer ambiguity as weak signer ambiguity.

In the definition of security against verifiers (Def. 4), the verifier’s public key
PKB is adaptively selected by the adversary B. In a weaker model, PKB can
be generated by the challenger and the corresponding user secret key can be
corrupted by B. The rest of the model remains unchanged. We call this as weak
security against verifiers. Below we show that if an OFE scheme is weakly signer
ambiguous and secure against the arbitrator, then it is also weakly secure against
verifiers.

Theorem 1. In A-OFE, weak signer ambiguity and security against the arbi-
trator (Def. 5) together imply weak security against verifiers.

Proof. Suppose that an A-OFE scheme is not weakly secure against verifiers. Let
B be the PPT adversary that has non-negligible advantage ε in the experiment of
weak security against verifiers and B make at most q queries of the form (·, PKB)



Ambiguous Optimistic Fair Exchange 83

to oracle OPSig. Due to the security against the arbitrator, B must have queried
OPSig in the form (·, PKB). Hence the value of q is at least one. Denote the
experiment of weak security against verifiers by Ex(0). Note that in Ex(0) all
queries to OPSig are answered with partial signatures generated using SKA. We
now define a series of experiments, Ex(1), · · · ,Ex(q), so that Ex(i) (i ≥ 1) is the
same as Ex(i−1) except that starting from the (q+ 1− i)-th query to OPSig up to
the q-th query of the form (·, PKB), they are answered with partial signatures
generated using SKB. Let B’s success probability in experiment Ex(i) be εi. Note
that ε0 = ε, and in experiment Ex(q) all queries of the form (·, PKB) to OPSig are
answered with partial signatures generated using SKB. Since B also knows SKB

(through corruption), it can use SKB to generate partial signatures using SKB

on any message. Therefore, making queries of the form (·, PKB) to OPSig does
not help B on winning the experiment if answers are generated using SKB. It is
equivalent to the case that B does not issue any query (·, PKB) to OPSig. Hence
guaranteed by the security against the arbitrator, we have that B’s advantage
in Ex(q) is negligible as B has to output a full signature without getting any
corresponding partial signature.

Since the gap, |ε0 − εq|, between B’s advantage in Ex(0) and that in Ex(q) is
non-negligible, there must exist an 1 ≤ i ≤ q such that |εi−1 − εi| is at least
|ε0 − εq|/q, which is non-negligible as well. Let i∗ be such an i. We show how
to make use of the difference of B’s advantage in Ex(i∗−1) and Ex(i∗) to build a
PPT algorithm D to break the weak signer ambiguity.

Given APK and PKA, PKB, D first asks its challenger for SKB, and then
invokes B on (APK,PKA, PKB). D randomly selects an i∗ from {1, · · · , q},
and simulates the oracles for B as follows. If B asks for SKB, D simply gives
it to B. The oracle ORes is simulated by D using its own resolution oracle.
If B makes a query (M,PKj) to OPSig where PKj �= PKB, D forwards this
query to its own partial signing oracle, and returns the obtained answer back
to B. Now consider the �-th query of the form (M,PKB) made by B to OPSig.
If � < q + 1 − i∗, D forwards it to its own oracle, and returns the obtained
answer. If � = q + 1 − i∗, D requests its challenger for the challenge partial
signature σ∗

P on M and returns it to B. If � > q + 1 − i∗, D simply uses SKB

to produce a partial signature on M . At the end of the simluation, when B
outputs (M∗, σ∗

F ), if B succeeds in the experiment, D outputs 0; otherwise, D
outputs 1.

It’s easy to see that D guesses the correct i∗ with probability at least 1/q.
Now suppose that D’s guess of i∗ is correct. If σ∗

P was generated by D’s chal-
lenger using SKA, i.e. b = 0, the view of B is identical to that in Ex(i∗−1).
On the other side, if σ∗

P was generated using SKB, i.e. b = 1, the view of B

is identical to that in Ex(i∗). Let b′ be the bit output by D. Since D outputs
0 only if B succeeds in the experiment, we have Pr[b′ = 0|b = 0] = εi∗−1 and
Pr[b′ = 0|b = 1] = εi∗ . Therefore, the advantage of D in attacking the weak
signer ambiguity over random guess is
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∣∣∣∣Pr[b′ = b] − 1
2

∣∣∣∣ =
∣∣∣∣Pr[b′ = 0 ∧ b = 0] + Pr[b′ = 1 ∧ b = 1] − 1

2

∣∣∣∣
=
∣∣∣∣Pr[b′ = 0 ∧ b = 0] +

(
Pr[b = 1] − Pr[b′ = 0 ∧ b = 1]

)
− 1

2

∣∣∣∣
=

1
2

∣∣Pr[b′ = 0|b = 0] − Pr[b′ = 0|b = 1]
∣∣

≥ 1
2q

|εi∗−1 − εi∗ | ≥ 1
2q2 |ε0 − εq|

which is also non-negligible. This contradicts the weak signer ambiguity
assumption. ��

Corollary 1. In A-OFE, signer ambiguity (Def. 2) and security against the
arbitrator (Def. 5) together imply weak security against verifiers.

Letting an adversary select the two challenge public keys gives the adversary
more power in attacking signer ambiguity. Therefore, signer ambiguity defined
in Sec. 2.1 is at least as strong as the weak signer ambiguity. Hence this corollary
follows directly the theorem above.

3 Preliminaries

(Admissible Pairings): Let G1 and GT be two cyclic groups of large prime
order p. ê is an admissible pairing if ê : G1×G1 → GT is a map with the following
properties: (1) Bilinear : ∀R,S ∈ G1 and ∀a, b ∈ Z, ê(Ra, Sb) = ê(R,S)ab; (2)
Non-degenerate: ∃R,S ∈ G1 such that ê(R,S) �= 1; and (3) Computable: there
exists an efficient algorithm for computing ê(R,S) for any R,S ∈ G1.

(Decision Linear Assumption (DLN)[8]:) Let G1 be a cyclic group of large
prime order p. The Decision Linear Assumption for G1 holds if for any PPT
adversary A, the following probability is negligibly close to 1/2.

Pr[F, H,W←G1; r, s←Zp; Z0←W r+s; Z1← G1; d← {0, 1} : A(F, H,W, F r, Hs, Zd)=d]

(q-Strong Diffie-Hellman Assumption (q-SDH)[7]): The q-SDH problem
in G1 is defined as follows: given a (q + 1)-tuple (g, gx, gx2

, · · · , gxq

), output a
pair (g1/(x+c), c) where c ∈ Z∗

p. The q-SDH assumption holds if for any PPT
adversary A, the following probability is negligible.

Pr
[
x ← Z∗

p : A(g, gx, · · · , gxq

) = (g
1

x+c , c)
]

4 Ambiguous OFE without Random Oracles

In this section, we propose an A-OFE scheme, which is based on Groth and
Sahai’s idea of constructing a fully anonymous group signature scheme [15, 16].
Before describing the scheme, we first describe our construction in a high level.
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4.1 High Level Description of Our Construction

As mentioned in the introduction part, many OFE schemes in the literature
follows a generic framework: Alice encrypts her signature under the arbitrator’s
public key, and then provides a proof showing that the ciphertext indeed contains
her signature on the message. To extend this framework to ambiguous optimistic
fair exchange, we let Alice encrypt her signature under the arbitrator’s public key
and provide a proof showing that the ciphertext contains either her signature on
the message or Bob’s signature on it. Therefore, given Alice’s partial signature,
Bob cannot convince others that Alice was committed herself to something, as
he can also generate this signature.

Our concrete construction below follows the aforementioned framework, which
is based on the idea of Groth in constructing a fully anonymous group signa-
ture scheme [15]. In more details, Alice’s signature consists of a weakly secure
BB-signature [7] and a strong one-time signature. Since only the BB-signature is
related to Alice’s identity, we encrypt it under the arbitrator’s public key using
Kiltz’ tag-based encryption scheme [20], with the one-time verification key as
the tag. The non-interactive proof is based on a newly developed technique by
Groth and Sahai [16], which is efficient and doesn’t require any complex NP-
reduction. The proof consists of two parts. The first part includes a commitment
to Alice’s BB-signature along with a non-interactive witness indistinguishable
(NIWI) proof showing that either Alice’s BB-signature or Bob’s BB-signature
on the one-time verification key is in the commitment. The second part is non-
interactive zero-knowledge (NIZK) proof (of knowledge) showing that the com-
mitment and the ciphertext contains the same thing. These two parts together
imply that the ciphertext contains a BB-signature on the message generated
by either Alice or Bob. Both the ciphertext and the proof are authenticated
using the one-time signing key. Guaranteed by the strong unforgeability of the
one-time signature, no efficient adversary can modify the ciphertext or the proof.

The NIWI proof system consists of four (PPT) algorithms, KNI , PWI , VWI

and Xxk, where KNI is the key generation algorithm which outputs a common
reference string crs and an extraction key xk; PWI takes as input crs, the
statement to be proved x, and a corresponding witness w, and outputs a proof
π; VWI is the corresponding verification algorithm; and Xxk takes as input crs
and a valid proof π, outputs a witness w′. The NIZK proof shares the same
common reference string with the NIWI proof. PZK and VZK are the proving
and verification algorithms of the NIZK proof system respectively. Due to the
page limit, we refer readers to [16] for detained information about the non-
interactive proofs and to [15] for an introduction to the building tools needed
for our construction.

4.2 The Scheme

Now we propose our A-OFE scheme. It works as follows:

– PMGen takes 1k and outputs PM = (1k, p,G1,GT , ê, g) so that G1 and GT are
cyclic groups of prime order p; g is a random generator of G1; ê : G1×G1 →
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GT is an admissible bilinear pairing; and group operations on G1 and GT

can be efficiently performed.
– SetupTTP: The arbitrator runs the key generation algorithm of the non-

interactive proof system to generate a common reference string crs and an
extraction key xk, i.e. (crs, xk) ← KNI(1k), where crs = (F,H,U, V,W,U ′,
V ′,W ′). It also randomly selects K,L ← G1, and sets (APK,ASK) =
((crs,K, L), xk), where F,H,K,L together form the public key of the tag-
based encryption scheme [20], and xk is the extraction key of the NIWI proof
system [15, 16], which is also the decryption key of the tag-based encryption
scheme.

– SetupUser: Each user Ui randomly selects xi ← Zp, and sets (PKi, SKi)
= (gxi , xi).

– PSig: To partially sign a message m with verifier Uj, user Ui does the fol-
lowing:
1. call the key generation algorithm of S to generate a one-time key pair

(otvk, otsk);
2. use SKi to compute a BB-signature σ on H(otvk), i.e. σ ← g

1
xi+H(otvk) ;

3. compute an NIWI proof π1 showing that σ is a valid signature under ei-
ther PKi or PKj, i.e. π1 ← PWI(crs, (ê(g, g), PKi, PKj, H(otvk)), (σ)),
which shows that the following holds:

ê(σ, PKi · gH(otvk)) = ê(g, g) ∨ ê(σ, PKj · gH(otvk)) = ê(g, g)

4. compute a tag-based encryption ([20]) y of σ, i.e. y = (y1, y2, y3, y4,
y5) ← E .Epk(σ, tag), where pk = (F,H,K,L) and tag = H(otvk);

5. compute an NIZK proof π2 showing that y and the commitment C to σ
in π1 contain the same σ, i.e. π2 ← PZK(crs, (y, π1), (r, s, t));

6. use otsk to sign the whole transcript and the message M , i.e. σot ←
S.Sotsk(M,π1, y, π2).

The partial signature σP of Ui on message M then consists of (otvk, σot,
π1, y, π2).

– PVer: After obtaining Ui’s partial signature σP = (otvk, σot, π1, y, π2), the
verifier Uj checks the following. If any one fails, Uj rejects; otherwise, it
accepts.
1. if σot is a valid one-time signature on (M,π1, y, π2) under otvk;
2. if π1 is a valid NIWI proof, i.e. VWI(crs, (ê(g, g), PKi, PKj, H(otvk)),

π1)
?= accept;

3. if π2 is a valid NIZK proof, i.e. VZK(crs, (y, π1), π2)
?= accept;

– Sig: To sign a message M with verifier Uj , user Ui generates a partial signa-
ture σP as in PSig, and set the full signature σF as σF = (σP , σ).

– Ver: After receiving σF on M from Ui, user Uj checks if PVer(M,σP ,

{PKi, PKj}, APK) ?= accept, and if ê(σ, PKi · gH(otvk)) ?= ê(g, g). If any
of the checks fails, Uj rejects; otherwise, it accepts.

– Res: After receiving Ui’s partial signature σP on message M from user Uj ,
the arbitrator firstly checks the validity of σP . If invalid, it returns ⊥ to Uj .
Otherwise, it extracts σ from π1 by calling σ ← Xxk(crs, π1). The arbitrator
returns σ to Uj .
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5 Security Analysis

Theorem 2. The proposed A-OFE scheme is secure in the multi-user setting
and chosen-key model (without random oracle) provided that DLN assumption
and q-SDH assumption hold.

Intuitively, the resolution ambiguity is guaranteed by the extractability and
soundness of the NIWI proof of knowledge system. The signer ambiguity and
security against verifiers are due to the CCA security of the encryption scheme.
Security against signers and security against the arbitrator are guaranteed by
the (weak) unforgeability of BB-signature scheme. Due to the page limit, we
leave the detailed proof in the full version of this paper.

Remark 3. In our construction, the signer uses its secret key to generate a BB-
signature on a fresh one-time verification key, while the message is signed using
the corresponding one-time signing key. As shown by Huang et al. in [17], this
combination leads to a strongly unforgeable signature scheme. It’s not hard to
see that our proposed A-OFE scheme actually achieves a stronger version of
security against the verifier. That is, even if the adversary sees the signer UA’s
full signature σF on a message M with verifier UB, it cannot generate another
σ′

F on M such that Ver(M,σ′
F , PKA, PKB, APK) = accept. The claim can be

shown using the proof given in this paper without much modification.

(Comparison): We note that schemes proposed in [14, 22] have similar properties
as our ambiguous OFE, i.e. (online, offline) non-transferability. Here we make
a brief comparison with these two schemes. First of all, our A-OFE scheme is
better than them in terms of the level of non-transferability. In [14, 22], the
non-transferability is defined only in the CPA fashion. The adversary is not
given an oracle for converting a partial signature to a full one. While in our
definition of A-OFE, we define the ambiguity in the CCA fashion, allowing the
adversary to ask for resolving a partial signature to a full one. Second, in terms
of efficiency, our scheme outperforms the scheme proposed in [22], and is slightly
slower than [14]. The generation of a partial signature of their scheme requires
linear (in security parameter k) number of encryptions, and the size of a partial
signature is also linear in k. While in our scheme both the computation cost
and size of a partial signature are constant. The partial signature of ousr scheme
includes about 41 group elements plus a one-time verification key and a one-time
signature. Third, both our scheme and the scheme in [14] only require one move
in generating a partial signature, while the scheme in [22] requires four moves.
Fourth, in [22], there is a setup phase between each signer and the confirmer, in
which the confirmer generates an encryption key pair for each signer. Therefore,
the confirmer has to store a key pair for each signer, leading to a large storage.
While our scheme and [14] don’t need such a phase. Fifth, in terms of security,
our scheme and [22] are provably secure without random oracles. But the scheme
in [14] is only provably secure in the random oracle model.
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Abstract. In a proof-of-retrievability system, a data storage center con-
vinces a verifier that he is actually storing all of a client’s data. The
central challenge is to build systems that are both efficient and provably
secure – that is, it should be possible to extract the client’s data from
any prover that passes a verification check. In this paper, we give the first
proof-of-retrievability schemes with full proofs of security against arbi-
trary adversaries in the strongest model, that of Juels and Kaliski. Our
first scheme, built from BLS signatures and secure in the random oracle
model, has the shortest query and response of any proof-of-retrievability
with public verifiability. Our second scheme, which builds elegantly on
pseudorandom functions (PRFs) and is secure in the standard model, has
the shortest response of any proof-of-retrievability scheme with private
verifiability (but a longer query). Both schemes rely on homomorphic
properties to aggregate a proof into one small authenticator value.

1 Introduction

In this paper, we give the first proof-of-retrievability schemes with full proofs of
security against arbitrary adversaries in the Juels-Kaliski model. Our first scheme
has the shortest query and response of any proof-of-retrievability with public
verifiability and is secure in the random oracle model. Our second scheme has the
shortest response of any proof-of-retrievability scheme with private verifiability
(but a longer query), and is secure in the standard model.

Proofs of storage. Recent visions of “cloud computing” and “software as a ser-
vice” call for data, both personal and business, to be stored by third parties, but
deployment has lagged. Users of outsourced storage are at the mercy of their
storage providers for the continued availability of their data. Even Amazon’s S3,
the best-known storage service, has recently experienced significant downtime.1

In an attempt to aid the deployment of outsourced storage, cryptographers
have designed systems that would allow users to verify that their data is still
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partment of Homeland Security under Grant Award Number 2006-CS-001-000001.

1 See, e.g., http://blogs.zdnet.com/projectfailures/?p=602

J. Pieprzyk (Ed.): ASIACRYPT 2008, LNCS 5350, pp. 90–107, 2008.
c© International Association for Cryptologic Research 2008

hovav@cs.ucsd.edu
bwaters@csl.sri.com
http://blogs.zdnet.com/projectfailures/?p=602


Compact Proofs of Retrievability 91

available and ready for retrieval if needed: Deswarte, Quisquater, and Säıdane [8],
Filho and Barreto [9], and Schwarz and Miller [15]. In these systems, the client
and server engage in a protocol; the client seeks to be convinced by the protocol
interaction that his file is being stored. Such a capability can be important to
storage providers as well. Users may be reluctant to entrust their data to an
unknown startup; an auditing mechanism can reassure them that their data is
indeed still available.

Evaluation: formal security models. Such proof-of-storage systems should be
evaluated by both “systems” and “crypto” criteria. Systems criteria include: (1)
the system should be as efficient as possible in terms of both computational
complexity and communication complexity of the proof-of-storage protocol, and
the storage overhead on the server should be as small as possible; (2) the system
should allow unbounded use rather than imposing a priori bound on the number
of audit-protocol interactions2; (3) verifiers should be stateless, and not need to
maintain and update state between audits, since such state is difficult to maintain
if the verifier’s machine crashes or if the verifier’s role is delegated to third parties
or distributed among multiple machine.3 Statelessness and unbounded use are
required for proof-of-storage systems with public verifiability, in which anyone
can undertake the role of verifier in the proof-of-storage protocol, not just the
user who originally stored the file.4

The most important crypto criterion is this: Whether the protocol actually
establishes that any server that passes a verification check for a file – even a
malicious server that exhibits arbitrary, Byzantine behavior – is actually stor-
ing the file. The early cryptographic papers lacked a formal security model,
let alone proofs. But provable security matters. Even reasonable-looking pro-
tocols could in fact be insecure; see Appendix C of the full paper [16] for an
example.

The first papers to consider formal models for proofs of storage were by
Naor and Rothblum, for “authenticators” [14], and by Juels and Kaliski, for
“proofs of retrievability” [12]. Though the details of the two models are differ-
ent, the insight behind both is the same: in a secure system if a server can pass
an audit then a special extractor algorithm, interacting with the server, must be
able (w.h.p.) to extract the file.5

2 We believe that systems allowing a bounded number of interactions can be useful,
but only as stepping stones towards fully secure systems. Some examples are bounded
identity-based encryption [11] and bounded CCA-secure encryption [7]; in these
systems, security is maintained only as long as the adversary makes at most t private
key extraction or decryption queries.

3 We note that the sentinel-based scheme of Juels and Kaliski [12], the scheme of
Ateniese, Di Pietro, Mancini, and Tsudik [3], and the scheme of Shah, Swaminathan
and Baker [17] lack both unbounded use and statelessness. We do not consider these
schemes further in this paper.

4 Ateniese et al. [1] were the first to consider public verifiability for proof-of-storage
schemes.

5 This is, of course, similar to the intuition behind proofs of knowledge.
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A simple MAC-based construction. In addition, the Naor-Rothblum and Juels-
Kaliski papers describe similar proof-of-retrievability protocols. The insight be-
hind both is that checking that most of a file is stored is easier than checking
that all is. If the file to be stored is first encoded redundantly, and each block of
the encoded file is authenticated using a MAC, then it is sufficient for the client
to retrieve retrieves a few blocks together with their MACs and check, using his
secret key, that these blocks are correct. Naor and Rothblum prove their scheme
secure in their model.6 The simple protocol obtained here uses techniques sim-
ilar to those proposed by Lillibridge et al. [13]. Signatures can be used instead
of MACs to obtain public verifiability.

The downside to this simple solution is that the server’s response consists of
λ block-authenticator pairs, where λ is the security parameter. If each authen-
ticator is λ bits long, as required in the Juels-Kaliski model, then the response
is λ2 · (s + 1) bits, where the ratio of file block to authenticator length is s : 1.7

Homomorphic authenticators. The proof-of-storage scheme described by Ate-
niese et al. [1] improves on the response length of the simple MAC-based scheme
using homomorphic authenticators. In their scheme, the authenticators σi on
each file block mi are constructed in such a way that a verifier can be convinced
that a linear combination of blocks

∑
i νimi (with arbitrary weights {νi}) was

correctly generated using an authenticator computed from {σi}.8
When using homomorphic authenticators, the server can combine the blocks

and λ authenticators in its response into a single aggregate block and authen-
ticator, reducing the response length by a factor of λ. As an additional benefit,
the Ateniese et al. scheme is the first with public verifiability. The homomorphic
authenticators of Ateniese et al. are based on RSA and are thus relatively long.

Unfortunately, Ateniese et al. do not give a rigorous proof of security for
their scheme. In particular, they do not show that one can extract a file (or
even a significant fraction of one) from a prover that is able to answer auditing
queries convincingly. The need for rigor in extraction arguments applies equally
to both the proof-of-retrievability model we consider and the weaker proof of
data possession model considered by Ateniese et al.9

Our contributions. In this paper, we make two contributions.

1. We describe two new short, efficient homomorphic authenticators. The first,
based on PRFs, gives a proof-of-retrievability scheme secure in the

6 Juels and Kaliski do not give a proof of security against arbitrary adversaries, but
this proof is trivial using the techniques we develop in this paper; for completeness,
we give the proof in Appendix D of the full paper [16].

7 Naor and Rothblum show that one-bit MACs suffice for proving security in their less
stringent model, for an overall response length of λ ·(s+1) bits. The Naor-Rothblum
scheme is not secure in the Juels-Kaliski model.

8 In the Ateniese et al. construction the aggregate authenticator is
∏

i σνi
i mod N .

9 For completeness, we give a correct and fully proven Ateniese-et-al.–inspired, RSA-
based scheme, together with a full proof of security, in Appendix E of the full pa-
per [16].
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standard model. The second, based on BLS signatures [5], gives a proof-
of-retrievability scheme with public verifiability secure in the random oracle
model.

2. We prove both of the resulting schemes secure in a variant of the Juels-Kaliski
model. Our schemes are the first with a security proof against arbitrary
adversaries in this model.

The scheme with public retrievability has the shortest query and response of any
proof-of-retrievability scheme: 20 bytes and 40 bytes, respectively, at the 80-bit
security level. The scheme with private retrievability has the shortest response
of any proof-of-retrievability scheme (20 bytes), matching the response length
of the Naor-Rothblum scheme in a more stringent security model, albeit at the
cost of a longer query. We believe that derandomizing the query in this scheme
is the major remaining open problem for proofs of retrievability.

1.1 Our Schemes

In our schemes, as in the Juels-Kaliski scheme, the user breaks an erasure en-
coded file into n blocks m1, . . . ,mn ∈ Zp for some large prime p. The erasure
code should allow decoding in the presence of adversarial erasure. Erasure codes
derived from Reed-Solomon codes have this property, but decoding and encoding
are slow for large files. In Appendix B of the full paper [16] we discuss how to
make use of more efficient codes secure only against random erasures.

The user authenticates each block as follows. She chooses a random α ∈ Zp

and PRF key k for function f . These values serve as her secret key. She calculates
an authentication value for each block i as

σi = fk(i) + αmi ∈ Zp .

The blocks {mi} and authenticators {σi} are stored on the server. The proof
of retrievability protocol is as follows. The verifier chooses a random challenge
set I of l indices along with l random coefficients in Zp.10 Let Q be the set
{(i, νi)} of challenge index–coefficient pairs. The verifier sends Q to the prover.
The prover then calculates the response, a pair (σ, µ), as

σ ←
∑

(i,νi)∈Q

νi · σi and µ ←
∑

(i,νi)∈Q

νi ·mi .

Now verifier can check that the response was correctly formed by checking that

σ
?= α · µ +

∑
(i,νi)∈Q

νi · fk(i) .

It is clear that our techniques admit short responses. But it is not clear that
our new system admits a simulator that can extract files. Proving that it does is
quite challenging, as we discuss below. In fact, unlike similar, seemingly correct
schemes (see Appendix C of the full paper [16]), our scheme is provably secure
in the standard model.
10 Or, more generally, from a subset B of Zp of appropriate size; see Section 1.1.
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A scheme with public verifiability. Our second scheme is publicly verifiable. It
follows the same framework as the first, but instead uses BLS signatures [5]
for authentication values that can be publicly verified. The structure of these
signatures allows for them to be aggregated into linear combinations as above.
We prove the security of this scheme under the Computational Diffie-Hellman
assumption over bilinear groups in the random oracle model.

Let e : G × G → GT be a computable bilinear map with group G’s support
being Zp. A user’s private key is x ∈ Zp, and her public key is v = gx ∈ G along
with another generator u ∈ G. The signature on block i is σi =

[
H(i)umi

]x.
On receiving query Q = {(i, νi)}, the prover computes and sends back σ ←∏

(i,νi)∈Q σνi

i and µ ←
∑

(i,νi)∈Q νi ·mi. The verification equation is:

e(σ, g) ?= e
( ∏
(i,νi)∈Q

H(i)νi · uµ, v
)
.

This scheme has public verifiability: the private key x is required for generating
the authenticators {σi} but the public key v is sufficient for the verifier in the
proof-of-retrievability protocol.

Parameter selection. Let λ be the security parameter; typically, λ = 80. For the
scheme with private verification, p should be a λ bit prime. For the scheme with
public verification, p should be a 2λ-bit prime, and the curve should be chosen so
that discrete logarithm is 2λ-secure. For values of λ up to 128, Barreto-Naehrig
curves [4] are the right choice; see the survey by Freeman, Scott, and Teske [10].

Let n be the number of blocks in the file. We assume that n � λ. Suppose
we use a rate-ρ erasure code, i.e., one in which any ρ-fraction of the blocks
suffices for decoding. (Encoding will cause the file length to grow approximately
(1/ρ)×.) Let l be the number of indices in the query Q, and B ⊆ Zp be the set
from which the challenge weights νi are drawn.

Our proofs – see Section 4.2 for the details – guarantee that extraction will
succeed from any adversary that convincingly answers an ε-fraction of queries,
provided that ε − ρl − 1/#B is non-negligible in λ. It is this requirement that
guides the choice of parameters.

A conservative choice is ρ = 1/2, l = λ, and B = {0, 1}λ; this guarantees
extraction against any adversary.11 For applications that can tolerate a larger
error rate these parameters can be reduced. For example, if a 1-in-1,000,000
error is acceptable, we can take B to be the set of 22-bit strings and l to be 22;
alternatively, the coding expansion 1/ρ can be reduced.

A tradeoff between storage and communication. As we described our schemes
above, each file block is accompanied by an authenticator of equal length. This
gives a 2× overhead beyond that imposed by the erasure code, and the server’s
11 The careful analysis in our proofs allows us to show that, for 80-bit security, the

challenge coefficients νi can be 80 bits long, not 160 as proposed in [2, p. 17]. The
smaller these coefficients, the more efficient the multiplications or exponentiations
that involve them.
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response in the proof-of-retrievability protocol is 2× the length of an authenti-
cator. In the full schemes of Section 3, we introduce a parameter s that gives
a tradeoff between storage overhead and response length. Each block consists
of s elements of Zp that we call sectors. There is one authenticator per block,
reducing the overhead to (1 + 1/s)×. The server’s response is one aggregated
block and authenticator, and is (1+ s)× as long as an authenticator. The choice
s = 1 corresponds to our schemes as we described them above and to the scheme
given by Ateniese et al. [1].12

Compressing the request. A request, as we have seen, consists of an l element
subset of [1, n] together with l elements of the coefficient set B, chosen uniformly
and independently at random. In the conservative parametrization above, a re-
quest is thus λ·

(
�lgn�+λ

)
bits long. One can reduce the randomness required to

generate the request using standard techniques,13 but this will not shorten the
request itself. In the random oracle model, the verifier can send a short (2λ bit)
seed for the random oracle from which the prover will generate the full query.
Using this technique we can make the queries as well as responses compact in our
publicly verifiable scheme, which already relies on random oracles.14 Obtaining
short queries in the standard model is the major remaining open problem in
proofs of retrievability.

We note that, by techniques similar to those discussed above, a PRF can be
used to generate the per-file secret values {αj} for our privately verifiable scheme
and a random oracle seed can be used to generate the per-file public generators
{uj} in our publicly verifiable scheme. This allows file tags for both schemes to
be short: O(λ), asymptotically.

We also note that subsequent to our work Bowers, Juels, and Oprea [6] pro-
vided a framework, based on “inner and outer” error correcting codes, by which
they describe parameterizations of our approach that trade off the cost of a sin-
gle audit and the computational efficiency of extracting a file a series of audit
requests. In our work we have chosen to put emphasis on reducing single au-
dit costs. We envision an audit as a mechanism to ensure that a file is indeed
available and that a file under most circumstances will be retrieved as a sim-
ple bytestream. In a further difference, the error-correcting codes employed by
Bowers, Juels, and Oprea are optimized for the case where ε > 1/2, i.e., for
when the server answers correctly more than half the time. By contrast, our

12 It would be possible to shorten the response further using knowledge-of-exponent
assumptions, as Ateniese et al. do, but such assumptions are strong and nonstandard;
more importantly, their use means that the extractor can never be implemented in
the real world.

13 For example, choose keys k′ and k′′ for PRFs with respective ranges [1, n] and B.
The query indices are the first l distinct values amongst f ′

k′(1), f ′
k′(2), . . .; the query

coefficients are f ′′
k′′(1), . . . , f ′′

k′′(l).
14 Ateniese et al. propose to eliminate random oracles here by having the prover gen-

erate the full query using PRF keys sent by the verifier [2, p. 11], but it is not clear
how to prove such a scheme secure, since the PRF security definition assumes that
keys are kept secret.
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techniques scale to any small (but nonnegligible) ε. We believe that this frees
systems implementers from having to worry about whether a substantial error
rate (for example, due to an intermitent connection between auditor and server)
invalidates the assumptions of the underlying cryptography.

1.2 Our Proofs

We provide a modular proof framework for the security of our schemes. Our
framework allows us to argue about the systems unforgeability, extractability,
and retrievability with these three parts based respectively on cryptographic,
combinatorial, and coding-theoretical techniques. Only the first part differs be-
tween the three schemes we propose. The combinatorial techniques we develop
are nontrivial and we believe they will be of independent interest.

It is interesting to compare both our security model and our proof methodol-
ogy to those in related work.

The proof of retrievability model has two major distinctions from that used
by Naor and Rothblum [14] (in addition to the public-key setting). First, the
NR model assumes a checker can request and receive specific memory locations
from the prover. In the proof of retrievability model, the prover can consist of an
arbitrary program as opposed to a simple memory layout and this program may
answer these questions in an arbitrary manner. We believe that this realistically
represents an adversary in the type of setting we are considering. In the NR
setting the extractor needs to retrieve the file given the server’s memory; in the
POR setting the analogy is that the extractor receives the adversary’s program.

Second, in the proof of retrievability model we allow the attacker to execute
a polynomial number of proof attempts before committing to how it will store
memory. In the NR model the adversary does not get to execute the protocol
before committing its memory. This weaker model is precisely what allows for
the use of 1-bit MACs with error correcting codes in one NR variant. One might
argue that in many situations this is sufficient. If a storage server responds
incorrectly to an audit request we might assume that it is declared to be cheating
and there is no need to go further. However, this limited view overlooks several
scenarios. In particular, we want to be able to handle setups where there are
several verifiers that do not communicate or if there might be several storage
servers handling the same encoded file that are audited independently. Only our
stronger model can correctly reflect these situations. In general, we believe that
the strongest security model allows for a system to be secure in the most contexts
including those not previously considered.15

One of the distinctive and challenging parts of our work is to argue extrac-
tion from homomorphically accumulated blocks. While Ateniese et al. [1] pro-
posed using homomorphic RSA signatures and proved what is equivalent to our
unforgeability requirement, they did not provide an argument that one could
extract individual blocks from a prover. The only place where extractability is

15 We liken this argument to that for the strong definition currently accepted for chosen-
ciphertext secure encryption.
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addressed in their work is a short paragraph in Appendix A, where they provide
some intuitive arguments. Here is one concrete example: Their constructions
make multiple uses of pseudorandom functions (PRFs), yet the security prop-
erties of a PRF are never applied in a security reduction. This gives compelling
evidence that a rigorous security proof was not provided. Again, we emphasize
that extraction is needed in even the weaker proof of data possession model
claimed by the authors.

Extractability issues arise in several natural constructions. Proving extraction
from aggregated authenticator values can be challenging; in Appendix C of the
full paper [16] we show an attack on a natural but incorrect system that is
very similar to the “E-PDP” efficient alternative scheme given by Ateniese et al.
(which they use in their performance measurements). For this scheme, Ateniese
et al. claim only that the protocol establishes that a cheating prover has the
sum

∑
i∈I mi of the blocks. We show that indeed this is all it can provide.

Ateniese et al. calculate that a malicious server attacking the E-PDP scheme
et al. that a malicious server attacking the E-PDP scheme would need to store
10140 blocks in order to cheat with probability 100%. By contrast, our attack,
which allows the server to cheat with somewhat lower probability (almost 9% for
standard parameters) requires no more storage than were the server faithfully
storing the file.

Finally, we argue that the POR is the “right” model for considering practical
data storage problems, since provides a successful audit guarantees that all the
data can be extracted. Other work has advocated that a weaker Proof of Data
Possession [1] model might be acceptable. In this model, one only wants to
guarantee that a certain percentage (e.g., 90%) of data blocks are available. By
offering this weaker guarantee one might hope to avoid the overhead of applying
erasure codes. However, this weaker condition is unsatisfactory for most practical
application demands. One might consider how happy a user would be were 10% of
a file containing accounting data lost. Or if, for a compressed file, the compression
tables were lost – and with them all useful data. Instead of hoping that there
is enough redundancy left to reconstruct important data in an ad-hoc way, it is
much more desirable to have a model that inherently provides this. We also note
that Ateniese et al. [1] make an even weaker guarantee for their “E-PDP” system
that they implement and use as the basis for their measurements. According to
[1] their E-PDP system “only guarantees possession of the sum of the blocks.”
While this might be technically correct, it is even more difficult to discern what
direct use could come from retrieving a sum of a subset of data blocks.

One might still hope to make use of systems proved secure under these models.
For example, we might attempt to make a PDP system usable by adding on
an erasure encoding step. In addition, if a system proved that one could be
guaranteed sums of blocks for a particular audit, then it might be the case that
by using multiple audit one could guarantee that individual file blocks could
be extracted. However, one must prove that this is the case and account for
the additional computational and communication overhead of multiple passes.
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When systems use definitions that don’t model full retrievability it becomes very
difficult to make any useful security or performance comparisons.

2 Security Model

We recall the security definition of Juels and Kaliski [12]. Our version differs
from the original definition in several details:

– we rule out any state (“α”) in key generation and in verification, because
(as explained in Section 1) we believe that verifiers in proof-of-retrievability
schemes should be stateless;

– we allow the proof protocol to be arbitrary, rather than two-move, challenge-
response; and

– our key generation emits a public key as well as a private key, to allow us to
capture the notion of public verifiability.

Note that any stateless scheme secure in the original Juels-Kaliski model will be
secure in our variant, and any scheme secure in our variant whose proof protocol
can be cast as two-move, challenge-response protocol will be secure in the Juels-
Kaliski definition. In particular, our scheme with private verifiability is secure in
the original Juels-Kaliski model.16

A proof of retrievability scheme defines four algorithms, Kg, St, V , and P ,
which behave thus:

Kg(). This randomized algorithm generates a public-private keypair (pk, sk).
St(sk,M). This randomized file-storing algorithm takes a secret key sk and a

file M ∈ {0, 1}∗ to store. It processes M to produce and output M∗, which
will be stored on the server, and a tag t. The tag contains information that
names the file being stored; it could also contain additional secret information
encrypted under the secret key sk.

P, V. The randomized proving and verifying algorithms define a protocol for
proving file retrievability. During protocol execution, both algorithms take as
input the public key pk and the file tag t output by St. The prover algorithm
also takes as input the processed file description M∗ that is output by St,
and the verifier algorithm takes as input the secret key. At the end of the
protocol run, V outputs 0 or 1, where 1 means that the file is being stored on
the server. We can denote a run of two machines executing the algorithms
as: {0, 1} R←

(
V(pk, sk, t) � P(pk, t,M∗)

)
.

16 In an additional minor difference, we do not specify the extraction algorithm as part
of a scheme, because we do not expect that the extract algorithm will be deployed
in outsourced storage applications. Nevertheless, the extract algorithm used in our
proofs (cf. Section 4.2) is quite simple: undertake many random V interactions with
the cheating prover; keep track of those queries for which V accepts the cheating
prover’s reply as valid; and continue until enough information has been gathered to
recover file blocks by means of linear algebra. The adversary A could implement this
algorithm by means of its proof-of-retrievability protocol access.
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We would like a proof-of-retrievability protocol to be correct and sound. Correct-
ness requires that, for all keypairs (pk, sk) output by Kg, for all files M ∈ {0, 1}∗,
and for all (M∗, t) output by St(sk,M), the verification algorithm accepts when
interacting with the valid prover:(

V(pk, sk, t) � P(pk, t,M∗)
)

= 1 .

A proof-of-retrievability protocol is sound if any cheating prover that con-
vinces the verification algorithm that it is storing a file M is actually storing
that file, which we define in saying that it yields up the file M to an extrac-
tor algorithm that interacts with it using the proof-of-retrievability protocol.
We formalize the notion of an extractor and then give a precise definition for
soundness.

An extractor algorithm Extr(pk, sk, t,P ′) takes the public and private keys,
the file tag t, and the description of a machine implementing the prover’s role
in the proof-of-retrievability protocol: for example, the description of an interac-
tive Turing machine, or of a circuit in an appropriately augmented model. The
algorithm’s output is the file M ∈ {0, 1}∗. Note that Extr is given non–black-box
access to P ′ and can, in particular, rewind it.

Consider the following setup game between an adversary A and an environ-
ment:

1. The environment generates a keypair (pk, sk) by running Kg, and provides
pk to A.

2. The adversary can now interact with the environment. It can make queries
to a store oracle, providing, for each query, some file M . The environment
computes (M∗, t) R← St(sk,M) and returns both M∗ and t to the adversary.

3. For any M on which it previously made a store query, the adversary can un-
dertake executions of the proof-of-retrievability protocol, by specifying the
corresponding tag t. In these protocol executions, the environment plays
the part of the verifier and the adversary plays the part of the prover:
V(pk, sk, t) � A. When a protocol execution completes, the adversary is
provided with the output of V . These protocol executions can be arbitrarily
interleaved with each other and with the store queries described above.

4. Finally, the adversary outputs a challenge tag t returned from some store
query, and the description of a prover P ′.

The cheating prover P ′ is ε-admissible if it convincingly answers an ε fraction of
verification challenges, i.e., if Pr

[(
V(pk, sk, t) � P ′) = 1

]
≥ ε. Here the probabil-

ity is over the coins of the verifier and the prover. Let M be the message input to
the store query that returned the challenge tag t (along with a processed version
M∗ of M).

Definition 1. We say a proof-of-retrievability scheme is ε-sound if there exists
an extraction algorithm Extr such that, for every adversary A, whenever A,
playing the setup game, outputs an ε-admissible cheating prover P ′ for a file M ,
the extraction algorithm recovers M from P ′ – i.e., Extr(pk, sk, t,P ′) = M –
except possibly with negligible probability.
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Note that it is okay for A to have engaged in the proof-of-retrievability protocol
for M in its interaction with the environment. Note also that each run of the
proof-of-retrievability protocol is independent: the verifier implemented by the
environment is stateless.

Finally, note that we require that extraction succeed (with all but negligible
probability) from an adversary that causes V to accept with any nonnegligible
probability ε. An adversary that passes the verification even a very small but
nonnegligible fraction of the time – say, once in a million interactions – is fair
game. Intuitively, recovering enough blocks to reconstruct the original file from
such an adversary should take O(n/ε) interactions; our proofs achieve essentially
this bound.

Concrete or asymptotic formalization. A proof-of-retrievability scheme is secure
if no efficient algorithm wins the game above except rarely, where the precise
meaning of “efficient” and “rarely” depends on whether we employ a concrete
of asymptotic formalization.

It is possible to formalize the notation above either concretely or asymptot-
ically. In a concrete formalization, we require that each algorithm defining the
proof-of-retrievability scheme run in at most some number of steps, and that for
any algorithm A that runs in time t steps, that makes at most qS store queries,
and that undertakes at most qP proof-of-retrievability protocol executions, ex-
traction from an ε-admissible prover succeeds except with some small proba-
bility δ. In an asymptotic formalization, every algorithm is provided with an
additional parameter 1λ for security parameter λ, we require each algorithm
to run in time polynomial in λ, and we require that extraction fail from an
ε-admissible prover with only negligible probability in λ, provided ε is nonneg-
ligible.

Public or private verification, public or private extraction. In the model above,
the verifier and extractor are provided with a secret that is not known to the
prover or other parties. This is a secret-verification, secret-extraction model
model. If the verification algorithm does not use the secret key, any third party
can check that a file is being stored, giving public verification. Similarly, if the
extract algorithm does not use the secret key, any third party can extract the
file from a server, giving public extraction.

3 Constructions

In this section we give formal descriptions for both our private and public ver-
ification systems. The systems here follow the constructions outlined in the in-
troduction with a few added generalizations. First, we allow blocks to contain
s ≥ 1 elements of Zp. This allows for a tradeoff between storage overhead and
communication overhead. Roughly the communication complexity grows as s+1
elements of Zp and the ratio of authentication overhead to data stored (post en-
coding) is 1 : s. Second, we describe our systems where the set of coefficients
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sampled from B can be smaller than all of Zp. This enables us to take advantage
make more efficient systems in certain situations.

3.1 Common Notation

We will work in the group Zp. When we work in the bilinear setting, the group
Zp is the support of the bilinear group G, i.e., #G = p. In queries, coefficients
will come from a set B ⊆ Zp. For example, B could equal Zp, in which case
query coefficients will be randomly chosen out of all of Zp.

After a file undergoes preliminary processing, the processed file is split into
blocks, and each block is split into sectors. Each sector is one element of Zp,
and there are s sectors per block. If the processed file is b bits long, then there
are n = �b/s lg p� blocks. We will refer to individual file sectors as {mij}, with
1 ≤ i ≤ n and 1 ≤ j ≤ s.

Queries. A query is an l-element set Q = {(i, νi)}. Each entry (i, νi) ∈ Q is such
that i is a block index in the range [1, n], and νi is a multiplier in B. The size l
of Q is a system parameter, as is the choice of the set B.

The verifier chooses a random query as follows. First, she chooses, uniformly at
random, an l-element subset I of [1, n]. Then, for each element i ∈ I she chooses,
uniformly at random, an element νi

R← B. We observe that this procedure im-
plies selection of l elements from [1, n] without replacement but a selection of
l elements from B with replacement.

Although the set notation Q = {(i, νi)} is space-efficient and convenient for
implementation, we will also make use of a vector notation in the analysis. A
query Q over indices I ⊂ [1, n] is represented by a vector q ∈ (Zp)n where
qi = νi for i ∈ I and qi = 0 for all i /∈ I. Equivalently, letting u1, . . . ,un be the
usual basis for (Zp)n, we have q =

∑
(i,νi)∈Q νiui.17

If the set B does not contain 0 then a random query (according to the se-
lection procedure defined above) is a random weight-l vector in (Zp)n with co-
efficients in B. If B does contain 0, then a similar argument can be made,
but care must be taken to distinguish the case “i ∈ I and νi = 0” from the
case “i /∈ I.”

Aggregation. For its response, the server responds to a query Q by computing,
for each j, 1 ≤ j ≤ s, the value

µj ←
∑

(i,νi)∈Q

νimij .

That is, by combining sectorwise the blocks named in Q, each with its multi-
plier νi. Addition, of course, is modulo p. The response is (µ1, . . . , µs) ∈

(
Zp

)s.
Suppose we view the message blocks on the server as an n× s element matrix

M = (mij), then, using the vector notation for queries given above, the server’s
response is given by qM .
17 We are using subscripts to denote vector elements (for q) and to choose a particular

vector from a set (for u); but no confusion should arise.
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3.2 Construction for Private Verification

Let f : {0, 1}∗ × Kprf → Zp be a PRF.18 The construction of the private verifi-
cation scheme Priv is:

Priv.Kg(). Choose a random symmetric encryption key kenc
R← Kenc and a ran-

dom MAC key kmac
R← Kmac. The secret key is sk = (kenc, kmac); there is no

public key.
Priv.St(sk,M). Given the file M , first apply the erasure code to obtain M ′; then

split M ′ into n blocks (for some n), each s sectors long: {mij}1≤i≤n
1≤j≤s

. Now

choose a PRF key kprf
R← Kprf and s random numbers α1, . . . , αs

R← Zp. Let
t0 be n‖Enckenc(kprf‖α1‖ · · · ‖αs); the file tag is t = t0‖MACkmac(t0). Now,
for each i, 1 ≤ i ≤ n, compute

σi ← fkprf(i) +
s∑

j=1

αjmij .

The processed file M∗ is {mij}, 1 ≤ i ≤ n, 1 ≤ j ≤ s together with {σi},
1 ≤ i ≤ n.

Priv.V(pk, sk, t). Parse sk as (kenc, kmac). Use kmac to verify the MAC on t; if the
MAC is invalid, reject by emitting 0 and halting. Otherwise, parse t and use
kenc to decrypt the encrypted portions, recovering n, kprf, and α1, . . . , αs.
Now pick a random l-element subset I of the set [1, n], and, for each i ∈ I,
a random element νi

R← B. Let Q be the set {(i, νi)}. Send Q to the prover.
Parse the prover’s response to obtain µ1, . . . , µs and σ, all in Zp. If parsing
fails, fail by emitting 0 and halting. Otherwise, check whether

σ
?=

∑
(i,νi)∈Q

νifkprf(i) +
s∑

j=1

αjµj ;

if so, output 1; otherwise, output 0.
Priv.P(pk, t,M∗). Parse the processed file M∗ as {mij}, 1 ≤ i ≤ n, 1 ≤ j ≤ s,

along with {σi}, 1 ≤ i ≤ n. Parse the message sent by the verifier as Q, an
l-element set {(i, νi)}, with the i’s distinct, each i ∈ [1, n], and each νi ∈ B.
Compute

µj ←
∑

(i,νi)∈Q

νimij for 1 ≤ j ≤ s, and σ ←
∑

(i,νi)∈Q

νiσi .

Send to the prover in response the values µ1, . . . , µs and σ.

18 In fact, the domain need only be �lg N�-bit strings, where N is a bound on the
number of blocks in a file.
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3.3 Construction for Public Verification

Let e : G × G → GT be a bilinear map, let g be a generator of G, and let
H : {0, 1}∗ → G be the BLS hash, treated as a random oracle.19 The construction
of the public verification scheme Pub is:

Pub.Kg(). Generate a random signing keypair (spk, ssk) R← SKg. Choose a ran-
dom α

R← Zp and compute v ← gα. The secret key is sk = (α, ssk); the public
key is pk = (v, spk).

Pub.St(sk,M). Given the file M , first apply the erasure code to obtain M ′; then
split M ′ into n blocks (for some n), each s sectors long: {mij}1≤i≤n

1≤j≤s
. Now

parse sk as (α, ssk). Choose a random file name name from some sufficiently
large domain (e.g., Zp). Choose s random elements u1, . . . , us

R← G. Let
t0 be “name‖n‖u1‖ · · · ‖us”; the file tag t is t0 together with a signature
on t0 under private key ssk: t ← t0‖SSigssk(t0). For each i, 1 ≤ i ≤ n,
compute

σi ←
(
H(name‖i) ·

s∏
j=1

u
mij

j

)α

.

The processed file M∗ is {mij}, 1 ≤ i ≤ n, 1 ≤ j ≤ s together with {σi},
1 ≤ i ≤ n.

Pub.V(pk, sk, t). Parse pk as (v, spk). Use spk to verify the signature on on t; if
the signature is invalid, reject by emitting 0 and halting. Otherwise, parse t,
recovering name, n, and u1, . . . , us. Now pick a random l-element subset I

of the set [1, n], and, for each i ∈ I, a random element νi
R← B. Let Q be the

set {(i, νi)}. Send Q to the prover.
Parse the prover’s response to obtain (µ1, . . . , µs) ∈ (Zp)s and σ ∈ G. If
parsing fails, fail by emitting 0 and halting. Otherwise, check whether

e(σ, g) ?= e
( ∏
(i,νi)∈Q

H(name‖i)νi ·
s∏

j=1

u
µj

j , v
)

;

if so, output 1; otherwise, output 0.
Pub.P(pk, t,M∗). Parse the processed file M∗ as {mij}, 1 ≤ i ≤ n, 1 ≤ j ≤ s,

along with {σi}, 1 ≤ i ≤ n. Parse the message sent by the verifier as Q, an
l-element set {(i, νi)}, with the i’s distinct, each i ∈ [1, n], and each νi ∈ B.
Compute

µj ←
∑

(i,νi)∈Q

νimij ∈ Zp for 1 ≤ j ≤ s, and σ ←
∏

(i,νi)∈Q

σνi

i ∈ G .

Send to the prover in response the values µ1, . . . , µs and σ.
19 For notational simplicity, we present our scheme using a symmetric bilinear map, but

efficient implementations will use an asymmetric map e : G1×G2 → GT . Translating
our scheme to this setting is simple. User public keys v will live in G2; file generators
uj will live in G1, as will the output of H ; and security will be reduced to co-CDH [5].
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4 Security Proofs

In this section we prove that both of our systems are secure under the model we
provided. Intutively, we break our proof into three parts. The first part shows
that the attacker can never give a forged response back to the a verifier. The
second part of the proof shows that from any adversary that passes the check a
non-negligible amount of the time we will be able to extract a constant fraction
of the encoded blocks. The second step uses the fact that (w.h.p.) all verified
responses must be legitimate. Finally, we show that if this constant fraction of
blocks is recovered we can use the erasure code to reconstruct the original file.

In this section we provide an outline of our proofs and state our main theorems
and lemmas. We defer the proofs of these to the full paper [16]. The proof, for
both schemes, is in three parts:

1. Prove that the verification algorithm will reject except when the prover’s
{µj} are correctly computed, i.e., are such that µj =

∑
(i,νi)∈Q νimij . This

part of the proof uses cryptographic techniques.
2. Prove that the extraction procedure can efficiently reconstruct a ρ fraction

of the file blocks when interacting with a prover that provides correctly-
computed {µj} responses for a nonnegligible fraction of the query space.
This part of the proof uses combinatorial techniques.

3. Prove that a ρ fraction of the blocks of the erasure-coded file suffice for
reconstructing the original file. This part of the proof uses coding theory
techniques.

Crucially, only the part-one proof is different for our two schemes; the other
parts are identical.

4.1 Part-One Proofs

Scheme with Private Verifiability

Theorem 1. If the MAC is unforgeable, the symmetric encryption scheme is
semantically secure, and the PRF is secure, then (except with negligible probabil-
ity) no adversary against the soundness of our private-verification scheme ever
causes V to accept in a proof-of-retrievability protocol instance, except by re-
sponding with values {µj} and σ that are computed correctly, i.e., as they would
be by Priv.P.

We prove the theorem in Appendix A.1 of the full paper [16].

Scheme with Public Verifiability

Theorem 2. If the signature scheme used for file tags is existentially unforge-
able and the computational Diffie-Hellman problem is hard in bilinear groups,
then, in the random oracle model, except with negligible probability no adversary
against the soundness of our public-verification scheme ever ever causes V to
accept in a proof-of-retrievability protocol instance, except by responding with
values {µj} and σ that are computed correctly, i.e., as they would be by Pub.P.

We prove the theorem in Appendix A.2 of the full paper [16].
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4.2 Part-Two Proof

We say that a cheating prover P ′ is well-behaved if it never causes V to accept
in a proof-of-retrievability protocol instance except by responding with values
{µj} and σ that are computed correctly, i.e., as they would be by Pub.P . The
part-one proofs above guarantee that all adversaries that win the soundness game
with nonnegligible probability output cheating provers that are well-behaved,
provided that the cryptographic primitives we employ are secure. The part-two
theorem shows that extraction always succeeds against a well-behaved cheating
prover:

Theorem 3. Suppose a cheating prover P ′ on an n-block file M is well-behaved
in the sense above, and that it is ε-admissible: i.e., convincingly answers and
ε fraction of verification queries. Let ω = 1/#B+(ρn)l/(n−l+1)l. Then, provided
that ε − ω is positive and nonnegligible, it is possible to recover a ρ fraction of
the encoded file blocks in O

(
n
/

(ε − ω)
)

interactions with P ′ and in O
(
n2s +

(1 + εn2)(n)
/

(ε− ω)
)

time overall.

We first make the following definition.

Definition 2. Consider an adversary B, implemented as a probabilistic poly-
nomial-time Turing machine, that, given a query Q on its input tape, outputs
either the correct response (qM in vector notation) or a special symbol ⊥ to its
output tape. Suppose B responds with probability ε, i.e., on an ε fraction of the
query-and-randomness-tape space. We say that such an adversary is ε-polite.

The proof of our theorem depends upon the following lemma that is proved in
Appendix A.3 of the full paper [16].

Lemma 1. Suppose that B is an ε-polite adversary as defined above. Let ω equal
1/#B + (ρn)l/(n− l + 1)l. If ε > ω then it is possible to recover a ρ fraction of
the encoded file blocks in O

(
n
/

(ε−ω)
)

interactions with B and in O
(
n2s+(1+

εn2)(n)
/

(ε− ω)
)

time overall.

To apply Lemma 1, we need only show that a well-behaved ε-admissible cheating
prover P ′, as output by a setup-game adversary A, can be turned into an ε-
polite adversary B. But this is quite simple. Here is how B is implemented.
We will use the P ′ to construct the ε-adversary B. Given a query Q, interact
with P ′ according to

(
V(pk, sk, t, sk) � P ′), playing the part of the verifier. If the

output of the interaction is 1, write (µ1, . . . , µs) to the output tape; otherwise,
write ⊥. Each time B runs P ′, it provides it with a clean scratch tape and a new
randomness tape, effectively rewinding it. Since P ′ is well-behaved, a successful
response will compute (µ1, . . . , µs) as prescribed for an honest prover. Since
P ′ is ε-admissible, on an ε fraction of interactions it answers correctly. Thus
algorithm B that we have constructed is an ε-polite advesrary.

All that remains to to guarantee that ω = 1/#B + (ρn)l/(n− l + 1)l is such
that ε − ω is positive – indeed, nonnegligible. But this simply requires that
each of 1/#B and (ρn)l/(n− l + 1)l be negligible in the security parameter; see
Section 1.1.
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4.3 Part-Three Proof

Theorem 4. Given a ρ fraction of the n blocks of an encoded file M∗, it is
possible to recover the entire original file M with all but negligible probability.

Proof. For rate-ρ Reed-Solomon codes this is trivially true, since any ρ fraction
of encoded file blocks suffices for decoding; see Appendix B of the full paper [16].
For rate-ρ linear-time codes the additional measures described there guarantee
that the ρ fraction of blocks retrieved will allow decoding with overwhelming
probability.
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Abstract. At EuroCrypt ’08, Gilbert, Robshaw and Seurin proposed
HB# to improve on HB+ in terms of transmission cost and security
against man-in-the-middle attacks. Although the security of HB# is for-
mally proven against a certain class of man-in-the-middle adversaries, it
is only conjectured for the general case. In this paper, we present a gen-
eral man-in-the-middle attack against HB# and Random-HB#, which
can also be applied to all anterior HB-like protocols, that recovers the
shared secret in 225 or 220 authentication rounds for HB# and 234 or 228

for Random-HB#, depending on the parameter set. We further show
that the asymptotic complexity of our attack is polynomial under some
conditions on the parameter set which are met on one of those proposed
in [8].

Keywords: HB, authentication protocols, RFID.

1 Introduction

Designing secure cryptographic protocols using lightweight components is one
of the main challenges of cryptography. Indeed, the emergence of new technol-
ogy such as radio-frequency identification (RFIDs) with low computation and
memory capabilities has stressed the need of such protocols.

These devices require protection from many threats. For example, for a com-
pany using RFIDs in inventories and supply-chain management, a RFID tag
should be protected from cloning. Biometric passports also have a tight relation
with RFIDs since they use contactless chips to communicate and authenticate
the passport holder to some authorized authority. Using RFID tags as a replace-
ment of barcodes by many merchant have also raised the issue of traceability
and privacy protection. Thus, the need of authentication protocols providing ef-
ficiency, security and privacy protection has become a key factor for the future
development of this technology. One of the most popular attempts to fulfill this
need are the HB family of authentication protocol.
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The HB Family. Originally introduced by Hopper and Blum [11], the HB
protocol aims at authenticating RFID tags to a reader using very lightweight
operations while reducing its security to a well-known NP-hard problem: the
learning parity with noise (LPN) problem [1]. In fact, this protocol only requires
a matrix multiplication and some basic XOR operations. But Juels and Weis [12]
showed later that HB is insecure against adversaries able to interact with tags
by impersonating readers and then proposed a new variant immune against this
type of attacks: HB+. As these two protocols were initially studied in a scenario
of a sequential executions, Katz and Shin [13] extended both security proofs of
HB and HB+ to a more general concurrent and parallel setting. However, as
Gilbert, Robshaw and Sibert noted in [6], the security of HB+ is compromised
if the adversary is given the ability to modify messages going from the reader to
the tag. This model was later known as the GRS security model.

Since then, many HB-like protocols aiming security in the GRS model were
proposed. Most notably, we mention the works of Bringer, Chabanne and Dottax
on HB++ [3], Munilla and Peinado on HB-MP [15] and Duc and Kim on HB� [4].
But all these protocols were proven to be insecure in the GRS model, as all of
them were successfully cryptanalyzed by Gilbert, Robshaw and Seurin in [7].

Tag (secret X, Y ) Reader (secret X, Y )

Choose b ∈R {0, 1}ky b−−−−−−−→
a←−−−−−−− Choose a ∈R {0, 1}kx

Choose ν ∈R {0, 1}m s.t. Pr[vi = 1] = η

Compute z = aX ⊕ bY ⊕ ν
z−−−−−−−→ Accept iff:

wt(aX ⊕ bY ⊕ z) ≤ t

Fig. 1. The Random-HB# and HB# protocols. In Random-HB#, X ∈ Fkx×m
2 and

Y ∈ Fky×m
2 are random matrices, in HB# they are Toeplitz matrices. wt denotes the

Hamming weight.

At EuroCrypt ’08, Gilbert, Robshaw and Seurin [8,9], proposed a new variant
of HB+ named Random-HB# and its optimized version HB#. In these proto-
cols, the tag and the reader share some secret matrices X and Y . During an
authentication instance, both issue challenges of ky-bit and kx-bit length respec-
tively and the final response of the tag is a m-bit message disturbed by a noise
vector in which every bit has a probability η of being 1.

The details of the Random-HB# and HB# protocols are outlined in Figure 1
and the proposed parameters (inspired from the results of [14]) in Table 1. The
difference between these two versions lies in the structure of the secret matrices
X and Y : while in Random-HB# these two are completely random, thus needing
(kx + ky)m bits of storage, HB# reduces this amount to kx + ky + 2m − 2 by
using Toeplitz matrices for X and Y .

Besides generating two random vectors ν and b, the operations performed by
the tag to authenticate itself are very cheap: it only needs two matrix
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Table 1. HB# Parameter sets proposed in [8,9]. PFR and PFA denote the false rejection
and false acceptance rates respectively. In the set III, the Hamming weight of the error
vector ν generated by the tag is smaller than t.

Parameter set kx ky m η t PFR PFA

I 80 512 1164 0.25 405 2−45 2−83

II 80 512 441 0.125 113 2−45 2−83

III 80 512 256 0.125 48 0 2−81

multiplications to compute aX and bY which can be implemented using ba-
sic AND and XOR operations along with two bitwise XOR operations between
two m-bit vectors. In some variant, the tag generates a random error vector ν
until it has weight no larger than t requiring the tag to be able to compute a
Hamming weight wt.

Random-HB# is also accompanied with a proof of security in the GRS se-
curity model if the parameters satisfy the condition mη ≤ t ≤ m/2. Under
the conjecture that the Toeplitz-MHB puzzle is hard, HB# is also secure in the
same model. However, both protocols only provide “strong arguments” in favor
of their resistance against man-in-the middle adversaries and formally proving
their security in such a model was left as an open problem.

Our Contribution. In this paper, we present an attack against Random-HB#

and HB# in a general man-in-the-middle attack where the adversary is given the
ability to modify all messages. The idea of our attack is to modify the messages of
a session according to values obtained from a passive attack where the adversary
eavesdrops on a protocol session between a reader and the tag.

Through this paper, we will denote b and z (resp. a) the values sent by the tag
(resp. the reader) and b̂ and ẑ (resp. â) the value received by the reader (resp. the
tag) after corruption by the adversary. Thus the tag computes z = âX ⊕ bY ⊕ ν

while the reader checks that wt(aX ⊕ b̂Y ⊕ ẑ) ≤ t.

Outline. Our paper is organized as follows. First, we show how it is possible to
mount a man-in-the-middle attack against HB# by proposing an algorithm able
to compute the Hamming weight of the errors introduced by the tag in a session
(ā, b̄, z̄). Then, we provide a complexity analysis of this initial attack needed
by the man-in-the-middle to fully recover the secret matrices of Random-HB#

and HB#. Afterwards, we present our optimized attack in Section 4 and give the
complexity results applied to parameter sets I and II of HB# of Table 1. After
that, we investigate some open proposals to limit the Hamming weight of the
error vector in HB-like protocols and present an attack against the parameter
set III of HB# shown in Table 1. At last, we show the lower bounds on the
parameters for which our attack does not work.
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2 Basic Attack

In this section, we show that, contrarily to what was conjectured in [8,9], both
Random-HB# and HB# are vulnerable against man-in-the-middle attacks by
presenting a (non-optimized) attack.

2.1 Principle

The core of our attack is Algorithm 1 in which Φ denotes the cumulative distri-
bution function of the normal distribution. It shows how an adversary able to
modify messages going in both directions can compute the Hamming weight of
the error vector ν̄ = āX ⊕ b̄Y ⊕ z̄ denoted w̄ = wt(ν̄) introduced in a triplet
(ā, b̄, z̄). The crucial observation is that since z = âX⊕bY ⊕ν, at in each for-loop
of Algorithm 1, the reader computes the Hamming weight wt(ν ⊕ ν̄) of

aX⊕ b̂Y ⊕ ẑ = aX⊕ (b̄⊕ b)Y ⊕ (z̄⊕z) = (âX⊕ bY ⊕z)⊕ (āX⊕ b̄Y ⊕ z̄) = ν⊕ ν̄

and accepts iff wt(ν ⊕ ν̄) ≤ t.

Algorithm 1. Approximating w̄

Input: ā, b̄, z̄, n
Output: P −1 ( c

n

)
, an approximation of w̄ = wt(āX ⊕ b̄Y ⊕ z̄)

where P (w̄) = Pr[wt(ν ⊕ ν̄) ≤ t] = Φ( t−(m−w̄)η−w̄(1−η)√
mη(1−η)

)

Processing:
1: Initialize c ← 0
2: for i = 1 . . . n do
3: During a protocol, set â ← a ⊕ ā, b̂ ← b ⊕ b̄ and ẑ ← z ⊕ z̄
4: if reader accepts then
5: c ← c + 1
6: end if
7: end for

Correctness. We show, that the output of Algorithm 1 is indeed an estimation
of wt(ν ⊕ ν̄). The probability p that a bit of (ν ⊕ ν̄) is 1 is given by:

p = Pr[(ν ⊕ ν̄)i = 1] =
{
η if ν̄i = 0
1 − η if ν̄i = 1.

Hence, m−w̄ bits of (ν⊕ν̄) follow a Bernoulli distribution of parameter η and the
other w̄ bits follow a Bernoulli distribution of parameter 1 − η, thus wt(ν ⊕ ν̄)
follows a binomial distribution. Because of the independence of all bits, the
expected value and variance of wt(ν ⊕ ν̄) are given by µ = (m− w̄)η + w̄(1− η)
and σ2 = mη(1 − η) respectively.

We now define the function P as P (w̄) = Pr[wt(ν ⊕ ν̄) ≤ t]. By the definition
of the standard normal cumulative distribution function Φ and the central limit
theorem, we have that
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P (w̄) ≈ Φ(u), with u =
t− µ

σ
. (1)

The random variable c
n thus follows a normal distribution with expected value

P (w̄) and variance 1
nP (w̄)(1 − P (w̄)). To decide whether wt(ν̄) = w̄ or not, the

estimate c
n for P (wt(ν̄)) has to be good enough. The difference of the probabil-

ities is at least P (w̄ + 1) − P (w̄) ≈ P ′(w̄) which we can compute as

P ′(w̄) ≈ − 1 − 2η√
mη(1 − η)

Φ′(u) = − 1 − 2η√
mη(1 − η)

× 1√
2π

e−
u2
2 .

By taking

n =
θ2

r2R(w̄) with R(w̄) = 2
P (w̄)(1 − P (w̄))

(P ′(w̄))2
, (2)

the probability that | c
n − P (w̄)| > r|P ′(w̄)| is 2Φ(−θ

√
2) = erfc(θ). With θ high

enough, c
n yields a estimate of P (w̄) with precision ±rP ′(w̄). Thus, Algorithm

1 is correct if n is chosen large enough.

Choice of Input. To determine a reasonable choice for the input n, we have to
fix values for r and θ. If we can assume that w̄ = wt(ν̄) is an integer close to some
value w0, we can call Algorithm 1 and r = 1

2 to infer w̄ = �P−1( c
n )� with error

probability erfc(θ) (here, �·� refers to normal rounding). On the other hand, if
we know that w̄ ∈ {w0−1, w0 +1}, we can choose r = 1 to infer w̄ by the closest
value to P−1( c

n ). The error probability is 1
2erfc(θ). In both cases, Algorithm 1

is an oracle of complexity n = θ2

r2R(w0) that can be used to compute w̄ given
ā, b̄, z̄ and succeeding with an probability of error smaller than erfc(θ).

Since we have to recover � secret bits by Algorithm 1, erfc(θ) should be less
than the inverse of the number of secret bits �. Using the approximation Φ(−x) ≈
ϕ(x)/x when x is large (so Φ(−x) is small) we obtain

θ =
√

ln � =⇒ erfc(θ) = 2Φ(−θ
√

2) ≈ 2
ϕ(θ

√
2)

θ
√

2
=

e−θ2

θ
√
π
<

1
�
,

and thereby a reasonable choice for θ.

Recovering the whole secret key. Algorithm 2 shows how to recover the secret
key by building a system of linear equations with the help of Algorithm 1.

Clearly the complexity of Algorithm 2 is θ2(4R(w̄) +mR(w̄)) and we have to
call it �/m times on independent (ā, b̄) pairs to fully recover X and Y , where �
is the length of the secret key (Note that � = (kx + ky)m in Random-HB# and
� = kx + ky + 2m− 2 in HB#). The expected number of errors in the equation
system defining X and Y is � ·erfc(θ). The probability that a passive attack gives
an (ā, b̄) linearly dependent from the i previous ones is 2i−1

2kx+ky
. The number of
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Algorithm 2. Getting linear equations for X and Y

Input: ā, b̄, z̄ and w̄est the expected weight of ν̄ = āX ⊕ b̄Y ⊕ z̄
Output: A linear equation āX ⊕ b̄Y = c̄
Processing:
1: Initialize m-bit vector c̄ ← z̄
2: Call Algorithm 1 on input (ā, b̄, z̄, n = 4θ2R(w̄est)) to get w̄
3: for i = 1 . . . m do
4: Flip bit i of z̄ to get z̄′

5: Call Algorithm 1 on input (ā, b̄, z̄′, n = θ2R(w̄)) to get w̄′

6: if w̄′ = w̄ − 1 then
7: c̄i ← c̄i ⊕ 1
8: end if
9: end for

passive attacks to get the inputs for Algorithm 2 is thus and can be neglected
in comparison to the �/m calls of Algorithm 2.

C =
��/m�∑
i=1

1
1 − 2i−1

2kx+ky

< 2 +
�

m
(3)

Computational complexity. The computational complexity of the given at-
tack is quite low in comparison to the number of authentications needed: For
each call of Algorithm 1 we have at most n incrementation of a counter and
one evaluation of P−1. For Random-HB#, after running Algorithm 2 we have
m linear binary equation systems in kx + ky variables (one for each row of the
matrix [X�|Y �]), which can thus be solved in O(m(kx + ky)3) operations. This
number is negligible in comparison to the number of authentications needed to
perform Algorithm 2 and is even lower for HB#. Throughout the paper we thus
measure the complexity of our attack in terms of (intercepted) authentications
between the tag and the reader.

2.2 Asymptotic Complexity Analysis

The complexity of the attack is related to the complexity of Algorithm 2 which is
in its turn related to the complexity of Algorithm 1. Thus, the main component
of the attack affecting the overall complexity is the input n in Algorithm 1.
Equation (2) yields that n = O((θ2e

u2
2 )/(1 − 2η)2) so the complexity of our

attack is exponential in u2 as we can use a θ logarithmic in �.

Parameters with optimal complexity. The minimal value of n is reached
when u = 0 which happens when the estimated value w̄est of wt(ν̄) is

w̄est = w̄opt =
t−mη

1 − 2η
.
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In this case we obtain

P (w̄opt) =
1
2
,

P ′(w̄opt) = − 1 − 2η√
2πmη(1 − η)

,

R(w̄opt) =
πm

4

(
1

(1 − 2η)2
− 1

)
.

Obviously, our attack has optimal complexity if we can call Algorithm 2 on
input of valid triplets (ā, b̄, z̄) with wt(ν̄) = w̄opt, only. As clearly, for most
parameter sets the latter is not true for random triplets obtained by passive
attacks, we would like to manipulate errors in z̄ to reach an expected value of
w̄opt. Unfortunately, due to the hardness of the LPN problem, we cannot remove
errors from z̄ if w̄ > w̄opt. However, if w̄ ≤ w̄opt then we can inject errors in z̄ so
that the resulting vector has an expected weight of w̄opt and the attack remains
polynomial. This case happens when:

mη ≤ t−mη

1 − 2η
⇐⇒ t ≥ 2mη(1 − η) ,

using the approximation w̄est ≈ mη when a valid triplet (ā, b̄, z̄) is obtained by
a passive attack and the false rejection rate of the HB# protocol is negligible.
Thus in this case, our attack remains optimal.

Categorization of parameter sets. We have seen, that for u = 0, our attack
has subquadratic running time. However, even if u = O(

√
ln �)), we obtain a

polynomial time attack. Thus, from Formula (2) we distinguish three cases:

1. Subquadratic complexity: If t ≥ 2mη(1 − η) the attack has a complexity of
O( � ln �

(1−2η)2 ) since Algorithm 1 is called O(�) times.
2. Polynomial complexity: t = 2mη(1 − η) − c

√
mη(1 − η), c = O(

√
ln �)): the

above complexity is multiplied by an ec2
factor. Thus, Algorithm 1 is still

polynomial.
3. Exponential complexity: All other cases.

Depending on the category of the parameter set, there are different strategies
to find the triplets (ā, b̄, z̄) which serve as input for Algorithm 2 (and thus Algo-
rithm 1). We present those strategies in the following and give numbers for the
according parameter sets.

2.3 Strategy for the Case t ≥ 2mη(1 − η)

Thanks to the hypothesis t ≥ 2mη(1 − η), we have that w̄opt ≥ w̄ = mη. Thus,
the best strategy is to optimize the complexity of Algorithm 1 by having a triplet
(ā, b̄, z̄) with an error vector of expected Hamming weight w̄opt. Using a triplet
(ā, b̄, z̄) obtained from a passive attack, we can flip the last (w̄opt −mη)/(1− 2η)
bits of z̄ to get ν̄ of expected Hamming weight w̄opt and then use the attack
described previously.
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Application to parameter vector II. As these parameters are in the case
t ≥ 2mη(1−η), we can use Algorithm 2 in its optimum complexity to attack both
Random-HB# and HB#. After computing w̄opt = 77.167, P ′(w̄opt) = 0.0431,
R(w̄opt) = 269.39 and the expected value of w̄ = mη = 55, we have to flip f = 29
bits to get an expected value close to w̄opt. For Random-HB# the number of
bits to retrieve is � = (kx + ky)m = 261 072 for which we can use θ = 3.164. The
total complexity is �θ2R(w̄opt) = 229.4. In the case of HB# the number of secret
bits is � = kx + ky + 2m− 2 = 1 472 for which we use θ = 2.265 and end up with
complexity of �θ2R(w̄opt) = 221.

2.4 Strategy for t Close to 2mη(1 − η)

The case t < 2mη(1 − η) is trickier to address since the expected value of w̄
becomes greater than wopt. To achieve the same complexity as the previous
case we would have to reduce the Hamming weight of ν̄ which is infeasible in
polynomial time due to the hardness of the LPN problem.

However, if t is a only a little less than 2mη(1− η) then the expected value of
w̄ is not far from wopt. So, we can use Algorithm 2 without flipping any bit of z̄
and the complexity is still polynomial. To further speed up the attack, we can
remove errors from z̄ in step 9 of Algorithm 2 until we reach w̄ = wopt which we

can expect to happen at iteration i =
⌈

w̄est−w̄opt

w̄est

⌉
.

Application to parameter set I. For parameter set I we have t < 2mη(1−η).
We first compute w̄est = mη = 291, w̄opt = 228, P ′(w̄opt) = 0.0135, R(w̄est) =
15 532 and R(w̄opt) = 2742.6. For Random-HB#, the number of key bits is � =
(kx+ky)m = 689 088 and θ = 3.308 is enough to guarantee that erfc(θ) ≤ 1

689 088 .
We obtain a total complexity of �θ2( w̄0−w̄opt

w̄est
R(w̄est) + w̄opt

w̄est
R(w̄opt)) = 235.4. For

HB#, we have � = kx + ky +2m− 2 = 2 918 secret bits to retrieve, so θ2 = 2.401
is enough and we get a total complexity of �θ2( w̄0−w̄opt

w̄est
R(w̄est) + w̄opt

w̄est
R(w̄opt)) =

226.6.

2.5 Strategy for Lower t

The case of lower t, the false acceptance rate will be very low but the false re-
jection rate of HB# becomes high (e.g. 0.5 for t = mη; Please remember that
for t < mη, HB# is no longer provable secure in the GRS security model.)
so that it would require more than one authentication in average for the tag
to authenticate itself. The main advantage of this approach is that the com-
plexity of Algorithm 1 becomes exponential. Here, we present a better strategy
than calling Algorithm 2 with an triplet (ā, b̄, z̄) obtained by a simple passive
attack.

Our goal is to call Algorithm 2 with a w̄est as low as possible. During the pro-
tocol, we can set (â, b̂, ẑ) to (a, b, z⊕ν̄) with ν̄ of weight w̄ until the reader accepts
ẑ. Then, we launch our attack with (ā, b̄, z̄) = (a, b, z). A detailed description is
shown in Algorithm 3.
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Algorithm 3. Getting (a, b, z) with low Hamming weight
Input: w̄
Output: (a, b, z) such that (aX ⊕ bY ⊕ z) has low weight.
Processing:
1: Pick random vector ν̄ of Hamming weight w̄
2: repeat
3: During a protocol with messages (a, b, z), set ẑ = z ⊕ ν̄
4: until reader accepts

The probability that ẑ gets accepted by the verifier is P (w̄) which can be
written in an equivalent way to Equation (1) as:

P (w̄) =
t∑

j=0

((
m− w̄

j

)
ηj(1 − η)m−w̄−j ·

t−j∑
i=0

(
w̄

i

)
ηw̄−i(1 − η)i

)
(4)

For an accepted ẑ, the m − w̄ positions not in the support of ν̄ are erroneous
with probability

ηw̄ =

∑t
j=0

(
j
(
m−w̄

j

)
ηj(1 − η)m−w̄−j

∑t−j
i=0

(
w̄
i

)
ηw̄−i(1 − η)i

)
(m− w̄)P (w̄)

. (5)

On the other hand, the other positions of ẑ in the support of ν̄ are non-zero with
probability

η◦w̄ =

∑t
j=0

((
m−w̄

j

)
ηj(1 − η)m−w̄−j ·

∑t−j
i=0 i

(
w̄
i

)
ηw̄−i(1 − η)i

)
w̄P (w̄)

. (6)

Thus, because of the high false rejection rate, if ẑ gets accepted in our MIM-
Attack with (ā, b̄, z̄) = (0, 0, ν̄), we can expect that the error vector ν, introduced
in (a, b, z) the output of Algorithm 3, has weight w̄est = (m− w̄)ηw̄ + w̄(1− η◦̄w).

Application to parameter set II with t = 55. Assume that for the param-
eter set II we set t = mη ≈ 55. Then, an accepted vector obtained by a passive
attack will most likely have weight w̄est = (m − w̄)η0 + w̄(1 − η◦0) ≈ 50 and it
will take 4θ2R(w̄est) = 230 operations to determine its correct weight. Calling
Algorithm 3, e.g., with w̄ = 41, we get (a, b, z) with error vector ν of weight
w̄est = (m − w̄)η41 + w̄(1 − η◦41) ≈ 33 in 1

P (w̄) = 220 authentications and can
recover the weight of ν in another 4θ2R(33) = 220 operations with Algorithm 1.
We determined the optimal input w̄ by exhaustive search minimizing the sum of
the complexity of the consecutive execution of Algorithms 3 and Algorithm 1.

The following table we consider parameter sets I and II with modified t. It
shows the costs to learn one bit about the secret key, i.e. calling Algorithm 1 with
a random vector obtained by a passive attack in comparison to calling Algorithm
3 first and then Algorithm 1 with its output. Note, that recovering successive
bits is always cheaper.
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Table 2. Attack cost for the initial bit of the shared key for HB# applied to t = �ηm�

Parameter set Algorithm 1 Algorithms 3 + 1

I 278 258.5

II 230 221

3 Optimizing the Attack

In this Section, we present our best attack on Random-HB# and HB#. First, we
optimize Algorithm 2. Using an adaptive solution to the weighing problem [5] we
show how to efficiently recover the error vector. Then, we present our full attack.

3.1 Optimizing Algorithm 2

The problem we are solving in Algorithm 2 can be formulated as follows: given a
m-bit vector ν of Hamming weight w and an oracle measuring the sum of some
selected bits (Algorithm 1), what is the minimal number of measurements to
fully recover ν?

The näıve solution to this problem employed in Algorithm 2 takes m measure-
ments. A more sophisticated solution to to fully recover a vector ν of arbitary
weight was already given by Erdős and Rényi in [5]. They show that the mini-
mal number of measurements required is upper-bounded by (m log2 9)/ log2 m.
To recover ν in the given complexity, they define a fixed series of measurements
for each m. However, in our case, the vector ν is known to be of small weight
(≤ mη), which allows us to improve on the solution by Erdős and Rényi. Our
proposal, Algorithm 4, does not use a fixed series of measurements but takes
into account the partial information obtained by all previous measurements.

To determine the error positions in a k-bit window by measuring the weight,
Algorithm 4 uses a divide-and-conquer strategy: it splits the vector into two
windows of the same length then measures each of them. For those parts which
do not have full or zero weight it then applies this strategy recursively leading
to a lower number of measurements comparing to measuring a k-bit window bit
by bit as Algorithm 2 does.

The number of invocations of Algorithm 1, Cw(k), to fully recover a k-bit
window with known Hamming weight w by Algorithm 4 is

Cw(k) =

⎧⎨⎩0 if w = 0 or w = k

1 +
∑k/2

i=0
(�k/2	

i )(�k/2�
w−i )

(k
w) (Ci(�k/2�) + Cw−i(�k/2�)) otherwise

Let C(k) be the average number of invocations of Algorithm 1 to first determine
the number of errors in a k-bit window and then recover their positions using
Algorithm 4:

C(k) = 1 +
k∑

w=0

Cw(k)
(
k

w

)
ηw(1 − η)k−w
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Algorithm 4. Finding errors in |J |-bit windows
Input: ā, b̄, z̄, w̄ = wt(āX ⊕ b̄Y ⊕ z̄), a set J ⊆ {0, 1, · · · m} and wJ the number of

non-zero (āX ⊕ b̄Y ⊕ z̄)j , j ∈ J
Output: I ⊆ J containing the j with non-zero (āX ⊕ b̄Y ⊕ z̄)j , j ∈ J .
Processing:
1: if wJ = 0 then
2: I ← ∅
3: else if wJ = |J | then
4: I ← J
5: else
6: Choose J1 ⊆ J such that |J1| = �|J |/2�.
7: Set ν′ the m-vector with ν′

j = 1 iff j ∈ J1

8: Call Algorithm 1 on input (ā, b̄, z̄ ⊕ ν′, n = 4θ2R(w̄)) to get w′.
9: Call Algorithm 4 with (ā, b̄, z̄, w̄, J1, wJ1 = (w̄ + |J1| − w′)/2) to get I1

10: Call Algorithm 4 with (ā, b̄, z̄, w̄, J \ J1, wJ − wJ1) to get I2

11: I ← I1 ∪ I2

12: end if

Table 3. Complexity of measuring a 16-bit window for parameter set II

Parameter Set I Parameter Set II

k C(k) 16
k

Cost measurement C(k) 16
k

Cost measurement

2 11 215.95 9.75 212.43

4 9.72 215.96 7.404 212.49

8 9.51 215.99 6.71 212.75

16 9.51 216.11 6.69 213.90

We note that C(k)/k is minimal when k is a power of 2. Although, it is clear
from Table 3 that the number of measurements decreases when k increases, the
cost of measuring the weight of a k-bit window also increases faster with k, so a
good tradeoff is to use k = 8.

Now that we have an efficient algorithm to find error positions in fixed size
windows, we introduce Algorithm 5 which takes benefit from Algorithm 4 to
optimize the number of measurements needed to localize the introduced errors
and output m linear equations. Algorithm 5 splits the error vector introduced in
a triplet (ā, b̄, z̄) to m/k k-bit windows, each one of these is then recovered using
Algorithm 4. Additionally, using the learned bits, it adjusts z̄ so that the next
measurements cost less. The number of calls to Algorithm 4 we need before we
reach w̄ = w̄opt, is then

i =

{
w̄opt−w̄est

k(m−w̄est)
m if w̄opt ≥ w̄est

w̄est−w̄opt

k·w̄est
m if w̄opt ≤ w̄est
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Algorithm 5. Optimizing Algorithm 2
Input: ā, b̄, z̄ and w̄est the expected value of ν̄ = āX ⊕ b̄Y ⊕ z̄, k
Output: A linear equation āX ⊕ b̄Y = c̄
Processing:
1: Initialize m-bit vector c̄ ← z̄
2: Initialize M ← ∅
3: Call Algorithm 1 on input (ā, b̄, z̄, n = 4θ2R(w̄est)) to get w̄
4: Define a set S of Ji = {ik + 1, . . . , min((i + 1)k, m)}, i = 1 . . . �m

k
�

5: repeat
6: Choose J ∈ S
7: Call Algorithm 1 on input (ā, b̄, z̄ ⊕ J, n = θ2R(w̄)) to get w̄′ = wt(ν̄ AND J)
8: Call Algorithm 4 with (ā, b̄, z̄, w̄, J, wJ = (w̄ + |J | − w̄′)/2) to get I
9: Set c̄i ← c̄i ⊕ 1 for all i ∈ I

10: M ← M ∪ I
11: Remove J from S
12: if w̄ > w̄opt then
13: Flip min(|I |, w̄ − w̄opt) bits z̄i for which i ∈ I
14: w̄ ← w̄ − min(|I |, w̄ − w̄opt)
15: else if w̄ < w̄opt then
16: Flip min(|J \ I |, w̄opt − w̄) bits z̄i for which i ∈ J \ I
17: w̄ ← w̄ + min(|J \ I |, w̄opt − w̄)
18: end if
19: until S∅

So the full complexity of Algorithm 5 is given by

N = θ2
(
iR(w̄est) +

⌈m
k

− i
⌉
R(w̄opt)

)
C(k) .

3.2 Final Algorithm

The final attack is described in Algorithm 6. The idea is to get a vector with
low expected weight using Algorithm 3 and then find all the erroneous posi-
tions inserted by the tag to obtain m linear equations and iterate this until we
get enough equations to solve and find the secrets X and Y . To get the lower
complexity, we can flip the last bits of z̄ so that we end up with an expected
weight of w̄opt. We note that introducing errors in a full segment as defined by
Step 4 of Algorithm 5 does not increase the needed number of measurements as
Cw(k) = Ck−w(k). Using Formula (3), we deduce the full complexity in terms
of intercepted authentications as⌈

�

m

⌉
θ2
(
iR(w̄est) +

⌈m
k

− i
⌉
R(w̄opt)

)
C(k) + (2 +

�

m
)

1
P (w)

. (7)

Application to parameter set I. With input k = 8 and w = 300 we
obtain P (w) = 2−7, w̄est = 273 and w̄opt = 228, i = 24, R(w̄opt) = 2742.6,
R(w̄est) = 7 026.4. So the full complexity of the attack is then given by Equation
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Algorithm 6. Final attack on Random-HB# and HB#

Input: k, w
Output: X, Y the secrets of the tag
Processing:
1: Initialize S ← ∅
2: for i = 1 . . . 2 +

⌈
�
m

⌉
do

3: Call algorithm 3 on input w to get ā, b̄, z̄ with an error vector of expected weight
w̄est = (m − w)ηw + w(1 − η◦

w)
4: if w̄opt > w̄est then
5: Flip the last (w̄opt − mη)/(1 − 2η) bits of z̄
6: Set w̄est ← w̄opt

7: end if
8: Call Algorithm 5 on input (ā, b̄, z̄, w̄est, k) to get m linear equations
9: Insert linear equations in S

10: end for
11: Solve S

(7) with θ and � as in Section 2.4. This is 225 sessions for HB# and 233.8 for
Random-HB#.

Application to parameter set II. In this case, we have k = 8, w = 0 and
w̄est = 55. We flip 29 bits to obtain an error vector of expected weight w̄opt = 77,
which yields R(w̄opt) = 269.39 and i = 0. The complexity is 219.7 sessions for
HB# and 228.1 for Random-HB#.

4 Attacking Parameter Vectors without False Rejections

To thwart the previous attacks without taking parameter sets with huge m
or high false rejection rate, we could change the protocol so that the prover
generates a vector ν of constant or bounded Hamming weight like it was proposed
for parameter set III. In this section we will show that this leads to different
attacks.

Assume that the prover accepts (a, b, z) iff w = wt(aX ⊕ bY ⊕ z) = t, then
from this triplet the attacker learns

m⊕
i=1

(aX ⊕ bY )i =
m⊕

i=1

zi ⊕
{

1 if t odd
0 if t even

It is possible to recover the matrices X and Y by sending z ⊕ ν̄ instead of the
Tag’s response z to the Reader, where ν̄ is a m-bit vector of Hamming weight
2. Doing so, the attacker learns

(aX ⊕ bY )ν̄� = zν̄� ⊕
{

1 if ẑ accepted
0 if ẑ rejected
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since the verifier accepts ẑ on challenges a, b if there was exactly one error in the
flipped positions, which is the case with probability

(
m−w

1

) (
w
1

)
/
(
m
2

)
.

The above approach may be generalized to the case where the Hamming
weight of ν is bounded in the original protocol, i.e. if the verifier accepts if w ≤ t
and the prover discards error vectors which are going to be rejected. This was
suggested for the parameter vector III. Again, the attacker can replace the Tag’s
answer z by z⊕ ν̄ where ν̄ is of weight 2. Now, the attackers response z⊕ ν̄ gets
rejected iff w ∈ {t− 1, t} and the attacker flipped two non-erroneous positions.
Thus, in the case of a rejection, the attacker learns

(aX ⊕ bY )i = zi, ν̄i �= 0

which happens with probability

q =

∑1
i=0

(
m

t−i

)
ηt−i(1 − η)m−t+i (m−t+i

2 )
(m

2 )∑t
i=0

(
m
i

)
ηi(1 − η)m−i

Application to parameter set III. For the parameter vector III, the attacker
learns two bits about the secret key every 1/q = 29.02 ≈ 512 iterations. This is
16 times faster than an attack by Algorithm 1 and needs only � · 2/q = 226

authentications to recover a Random-HB# secret key (219 for HB#).

5 Lower Bounds on Secure Parameters

In this section, we investigate the lower bounds on the parameter sets for which
our attack is not effective. We say that HB# is secure if recovering one bit of
information about the secret key requires an attack with complexity (in terms of
protocol sessions) within an order of magnitude of at least 2s and time complexity
“reasonably comparable”.

Let us assume that Algorithm 3 succeeds with a total error weight of t =
wt(ν ⊕ ν̄) when the added error vector has weight w̄. To obtain this vector, the
attacker limited to 280 operations can choose the input w̄ in any way, such that
1/P (w̄) = 1/Φ( t−µ

σ ) ≤ 280. Since Φ(−10.2) ≈ 2−80 we can be sure, that the w̄
chosen by the attacker satisfies that

t−µ
σ = t−(m−w̄)η−w̄(1−η)√

mη(1−η)
≥ −10.2

⇔ (m− w̄)η + w̄(1 − η) ≤ 10.2
√
mη(1 − η) + t

⇔ −w̄η + w̄(1 − η) ≤ 10.2
√
mη(1 − η) + t−mη

⇔ w̄(1 − 2η) ≤ −mη + t + 10.2
√
mη(1 − η)

⇔ w̄ ≤ 1
1−2η (10.2

√
mη(1 − η) + t−mη) .

(8)

Fixing t = �mη� for which our attack has the maximal complexity, we get the

lowest value for a secure m, thus w̄ = 10.2
√

mη(1−η)
1−2η .

We can now calculate the value w̄est by using equations (4), (5) and (6) and
then by using Formula (2) with r = 1/2 and θ = 1/2 (which leads to erfc(θ) =
0.4795) we can estimate the total cost of the attack. By using an exhaustive
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Fig. 2. Security level in logarithmic scale in comparison to m when t = mη

search on m we obtain that m = 1 697 for η = 1/4 and m = 2 903 for η = 1/8 is
the lowest choice achieving 280-security and 50% of false rejection rate. The full
results with the intermediates values are summarized in Table 4.

Table 4. Lowest values of m and t = �mη� for which our attack is not effective

η m t w̄ w̄est ηw̄ η◦
w̄ 1/P (w̄) n

0.25 1697 424 364 340 2−2.73 2−0.7 280 280

0.125 2903 363 242 229 2−3.93 2−0.36 280 280

Following this method we obtain the graphs of Fig. 2 showing how the secu-
rity scales with growing m. To reach this security with a more acceptable false
rejection rate (ideally negligible), it requires m to be higher.

6 Conclusion

In this article, we proved that the conjecture about the security of Random-
HB# and HB# is wrong. We presented a basic attack against these protocols
that allows to retrieve the shared secret between a reader and a tag. We showed
a lower bound on the parameter set for which our attack is not effective but such
parameters are unpractical to use in RFID tags.

Although it may not be the most effective for all versions, our attack is valid
against all anterior protocols of the HB family.
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Table 5. Summary of the complexity of our attacks

Parameter Set kX kY m η t Random-HB# HB#

I 80 512 1164 0.25 405 234 225

II 80 512 441 0.125 113 228 220

III(w bounded) 80 512 256 0.125 48 226 219

There are still new versions in the HB family. PUF-HB, proposed by Ham-
mouri and Sunar [10] uses a physical unclonable function but does not carry any
proof of security against man-in-the-middle attacks within. Indeed, a closer look
reveals several possible points of attack for a man in the middle like flipping the
last bit in the challenge vector a. On the other side, Trusted-HB, proposed by
Bringer and Chabanne [2], is proved secure against general man-in-the-middle
attacks. However, this comes at the cost of adding a check on the integrity of the
error vector using a secure cryptographic hash function which on its own would
be sufficient to allow authentication by shared secrets.
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5. Erdős, P., Rényi, A.: On two problems of information theory. Publ. Math. Inst.
Hung. Acad. Sci. 8(21), 229–243 (1963)

6. Gilbert, H., Robshaw, M., Sibert, H.: Active attack against HB+: a provably secure
lightweight authentication protocol. IEEE Electronics Letters 41(21), 1169–1170
(2005)

7. Gilbert, H., Robshaw, M.J.B., Seurin, Y.: Good variants of HB+ are hard to find.
In: Tsudik, G. (ed.) FC 2008. LNCS, vol. 5143, pp. 156–170. Springer, Heidelberg
(2008)



124 K. Ouafi, R. Overbeck, and S. Vaudenay

8. Gilbert, H., Robshaw, M.J.B., Seurin, Y.: HB#: Increasing the security and effi-
ciency of HB+. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp.
361–378. Springer, Heidelberg (2008)

9. Gilbert, H., Robshaw, M.J.B., Seurin, Y.: HB#: Increasing the security and effi-
ciency of HB+, full version. Cryptology ePrint Archive, Report 2008/028 (2008)

10. Hammouri, G., Sunar, B.: PUF-HB: A tamper-resilient HB based authentication
protocol. In: Bellovin, S.M., Gennaro, R., Keromytis, A.D., Yung, M. (eds.) ACNS
2008. LNCS, vol. 5037, pp. 346–365. Springer, Heidelberg (2008)

11. Hopper, N.J., Blum, M.: Secure human identification protocols. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 52–66. Springer, Heidelberg (2001)

12. Juels, A., Weis, S.A.: Authenticating pervasive devices with human protocols. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 293–308. Springer, Heidelberg
(2005)

13. Katz, J., Shin, J.S.: Parallel and concurrent security of the HB and HB+ protocols.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 73–87. Springer,
Heidelberg (2006)
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Abstract. We present a general way to get a provably collision-resistant
hash function from any (suitable) Σ-protocol. This enables us to both
get new designs and to unify and improve previous work. In the first
category, we obtain, via a modified version of the Fiat-Shamir proto-
col, the fastest known hash function that is provably collision-resistant
based on the standard factoring assumption. In the second category, we
provide a modified version VSH* of VSH which is faster when hash-
ing short messages. (Most Internet packets are short.) We also show
that Σ-hash functions are chameleon, thereby obtaining several new and
efficient chameleon hash functions with applications to on-line/off-line
signing, chameleon signatures and designated-verifier signatures.

1 Introduction

The failure of popular hash functions MD5 and SHA-1 [42, 43] lends an impetus
to the search for new ones. The contention of our paper is that there will be a
“niche” market for proven-secure even if not-so-fast hash functions. Towards this
we provide a general paradigm that yields hash functions provably secure under
number-theoretic assumptions, and also unifies, clarifies and improves previous
constructs. Our hash functions have extra features such as being chameleon [25].
Let us now look at all this in more detail.

The need for proven-secure hashing. Suppose an important document
has been signed with a typical hash-then-sign scheme much as PKCS#1 [24]. If
collisions are found in the underlying hash function the public key needs to be
revoked and the signature can no longer be accepted. Yet there are instances
in which we want a public key and signatures under it to survive for twenty
or more years. This might be the case for a central and highly disseminated
certificate or an important contract. Revocation of a widely disseminated public
key is simply too costly and error-prone. In such a case, we want to be able to
trust that collisions in our hash function will not be found even twenty years
down the line.

Given the failure of MD5 and SHA-1, it would be understandable, from this
twenty-year perspective, to feel uncertain about any hash function designed by
“similar” methods. On the other hand, we may be very willing to pay a (reason-
able!) computational price for security because documents or certificates of the
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ultra-importance we are considering may not need to be signed often. In this case,
hash functions with proven security are interesting, and the faster they are the bet-
ter. Our contribution is a general transform that yields a plurality of such hash
functions, not only providing new ones but “explaining” or improving old ones.

From Σ to hash. We show how to construct a collision-resistant hash function
from any (suitable) Σ-protocol. Recall that Σ-protocols are a class of popular
3-move identification schemes. Canonical examples are the Schnorr [37], Fiat-
Shamir [17] and GQ [20] protocols, but there are many others as well [8, 21,
29, 31, 32, 33, 36]. Briefly, our hash function is defined using the simulator
underlying a strong form of the usual honest-verifier zero-knowledge property of
Σ-protocols. (We stress that the computation of the hash is deterministic even
though the simulator is randomized!) The collision-resistance stems from strong
special soundness [7], a well-studied property of Σ-protocols. The advantage of
our approach is that there is a rich history in constructing proven-secure Σ-
protocols and we can now leverage this to get collision-resistant hash functions.
For future reference let us refer to a hash function derived from our approach as
a Σ-hash function.

Damgard [16] and Cramer, Damgard and Mckenzie [13] have previously shown
that it is possible to design commitment schemes based on Σ-protocols, but prior
to our work it has not been observed that one can design collision-resistant hash
functions from Σ-protocols. Note that secure commitment is not known to imply
collision-resistant hashing and in fact is unlikely to do so because the former can
be based on one-way functions [30] and the latter probably not [39]. Perhaps as
a consequence, our construction requires slightly stronger properties from the
Σ-protocols than do the constructions of [13, 16].

Specific designs. The Schnorr [37] and GQ [20] schemes are easily shown to
meet our conditions, yielding collision resistant Σ-hash functions H -Sch and
H -GQ based, respectively, on discrete log and RSA. More interesting is the
Fiat-Shamir protocol FS [17]. It doesn’t satisfy strong special soundness but we
modify it to a protocol SFS (strong FS ) that we prove does under the factor-
ing assumption, thereby obtaining a Σ-hash function H -SFS . From a modified
version of the Micali-Shamir protocol [29] we obtain a Σ-hash function H -SMS
with security based on the SRPP (Square Roots of Prime Products) assumption
of [29]. We also obtain a Σ-hash H -Oka from Okamoto’s protocol [32] and a
pairing-based Σ-hash H -HS from an identification protocol of [3] derived from
the identity-based signature scheme of Hess [21].

How fast? One question we consider interesting is, how fast can one hash
while maintaining a proof of security under the standard factoring assumption?
Figure 1 compares H -SFS to the fastest known factoring-based functions and
shows that the former emerges as the winner. (VSH is faster than all these,
but is based on a non-standard assumption related to the difficulty of extract-
ing modular square roots of products of small primes. We will discuss VSH,
and our improvement to it, in a bit.) In Figure 1, H -Da is the most efficient
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Pre H -Da H -ST H -SFS
0 1 0.22 2

2048 1 0.33 4
16384 1 2 8

Fig. 1. Performance of factoring-based hash functions. The modulus and output size
are 1024 bits and the block size is 512 bits. “Pre” is the amount of pre-computation,
in number of group elements stored. The table entry is the rate, defined as the average
number of bits of data hashed per modular multiplication.

factoring-based instantiation known of Damg̊ard’s claw free permutation-based
hash function [14, 19, 25]. H -ST is the hash function of Shamir and Tauman
[38]. The table entries are the rate, defined as the average number of bits of
data hashed per modular multiplication in MD mode with a block size of 512
bits and a modulus and output size of 1024 bits. The figure shows that without
pre-computation, H -SFS is twice as fast as H -Da and 9 times as fast as H -ST .
But H -SFS is amenable to pre-computation based speedup and H -Da is not,
so the gap in their rates increases swiftly with storage. H -ST is also amenable
to pre-computation based speedup but H -SFS remains a factor 4 faster for any
given amount of storage. We also remark that additionally H -SFS is amenable
to parallelization, unlike the other functions. We remark that H -SMS is faster
than H -SFS but based on a stronger assumption. In Section 4 we recall H -Da
and H -ST and justify the numbers in Figure 1. We also discuss implementation
results.

Features of Σ-hash functions. Krawczyk and Rabin [25] introduced
chameleon hashing. The functions they show have this property are that of [10]
—H -Sch in our taxonomy— and H -Da. Shamir and Tauman [38] add one more
example, namely H -ST . We add five more examples, namely H -GQ ,H -SFS ,
H -SMS ,H -Oka, and H -HS . We obtain this as a consequence of a general result
(Theorem 2) showing that any Σ-hash is chameleon.

Chameleon hashing has numerous applications. One of these is Shamir and
Tauman’s [38] chameleon hash based method for on-line, off-line signing. This
means that when one uses a Σ-hash one can completely eliminate the on-line cost
of signing. (This cost is shifted entirely to the off-line phase.) This compensates
to some extent for the reduced efficiency of Σ-hash functions compared to con-
ventional ones. (MD5 and SHA-1 are not chameleon and do not allow one to use
the Shamir-Tauman construction.) Another application is chameleon signatures
[25], which provides a recipient with a non-repudiable signature of a message
without allowing it to prove to a third party that the signer signed this message.
As explained in [25] this is an important tool for privacy-respecting authenticity
in the signing of contracts and agreements. Finally, chameleon hash functions
are used in designated-verifier signatures to achieve privacy [23, 40]. By adding
new and more efficient chameleon hash functions to the pool of existing ones we
enable new and more efficient ways to implement all these applications.
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Another attribute of Σ-hash functions is that they are keyed. While one can,
of course, simply hardwire into the code a particular key to get an unkeyed
function in the style of MD5 or SHA-1, it is advantageous, as explained in [5],
to allow each user to choose their own key. The reason is that damage from a
collision is now limited to the user whose key is involved, and the attacker must
re-invest resources to attack another key. This slows down the rate of attacks
and gives users time to get patches in place or revoke keys.

Finally, the reductions underlying the security proofs of Σ-hash functions are
tight, so that the proven security guarantees hold with normal values of the
security parameters.

A reverse connection. As indicated above, Theorem 2 shows that Σ-hash
functions are chameleon. Theorem 1 shows that the converse is true as well.
Namely, all chameleon-hash functions are Σ-hash functions. We prove this by
associating to any chameleon hash function H a Σ-protocol SP such that apply-
ing our Σ2H (Σ-to-hash) transform to SP returns H . We thereby have a charac-
terization of chameleon hash functions as Σ-hash functions, which we consider
theoretically interesting. We also obtain numerous new Σ-protocols, and thus
identification protocols and, via [13, 16], commitment schemes, from existing
chameleon hash functions such as H -Da [14] and H -ST [38]. However, we are
not aware of any practical benefit of these constructs over known ones.

Unifying previous work. H -Sch turns out to be exactly the classical hash
function of Chaum, Van Heijst and Pfitzmann [10], and H -Oka an extension
thereof [10]. (Our other hash functions H -GQ ,H -SFS , H -SMS and H -HS are
new.) The re-derivation of these two hash functions as Σ-hashes sheds new light
on the designs and shows how the Σ paradigm explains and unifies previous
constructs.

But the most interesting connection in this regard is one we make between
VSH [11] and H -SMS , the Σ-hash function emanating from the protocol of Mi-
cali and Shamir [29]. The latter is a more efficient version of the Fiat-Shamir
protocol in which the public key, rather than consisting of random quadratic
residues, consists of small primes. Interestingly H -SMS turns out to be the VSH
compression function [11] modulo some details. We suggest that this provides
some intuition for the VSH design. It turns out that we can exploit this connec-
tion to get some improvements to VSH.

VSH∗
. In number-theoretic hashing there is (as elsewhere) a trade-off between

speed and assumptions. We saw above that H -SFS is the fastest known hash
function under the standard factoring assumption. We now turn to non-standard
factoring-related assumptions. Here the record-holder is VSH [11] with a proof
based on the VSSR assumption of [11]. Our contribution is a modification VSH∗

of VSH that is faster for short messages. (Our implementations show that VSH∗

is up to 5 times faster than VSH on short messages. On long messages they
have the same performance.) This is important because short messages are an
important case in practice. (For example, most Internet packets are short.) VSH∗

remains provably collision-resistant under the same VSSR assumption as VSH.
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We provide analogous improvements for the Fast-VSH variant of VSH provided
by [11]. Again we can provide Fast-VSH∗ whose underlying compression func-
tion (unlike that of Fast-VSH) is proven collision-resistant, leading to speedups
in hashing short messages. However, the speed gains are smaller than in the
previous case.

Overall we believe that, even putting performance aside, having a collision
resistant compression function underlying a hash function is a plus since it can
be used directly and makes the hash function more misuse-resistant.

What Σ-hash functions aren’t. Some recent work [1, 4, 12] suggests that
general-purpose hash functions should have extra properties like pseudorandom-
ness. Σ-hash functions are merely collision-resistant and chameleon; they do not
offer these extra attributes. But as indicated above, Σ-hash functions are not in-
tended to be general purpose. The envisaged applications are chameleon hashing
and proven-secure, reasonable cost (purely) collision-resistant hashing.

Related work. Damg̊ard [14] presents a construction of collision-resistant hash
functions from claw-free permutation pairs [19]. As noted above, his factoring-
based instantiation, based on [19] and also considered in [25, 38], is slower than
our H -SFS .

Ishai, Kushilevitz and Ostrovsky [22] show how to transform homomorphic en-
cryption (or commitment) schemes into collision-resistant hash functions. This is
an interesting theoretical connection between the primitives. As far as we can tell,
however, the approach is not yet practical. Specifically, their quadratic-residuosity
(QR) based instantiation has a rate of 1/40 (that is, 40 modular multiplications
per bit) with a 1024 bit modulus. (Their matrix needs 80 rows to get the 80-bit se-
curity corresponding to a 1024-bit modulus.) Hence their function is much slower
than the constructs of Figure 1 in addition to being based on a stronger assump-
tion (QR as opposed to factoring). Additionally it has a 80 · 1024 bit output so in
a practical sense is not really hashing. Other instantiations of their construction
that we know (El Gamal under DDH, Paillier [34] under DCRA) are also both
slower than known ones and based on stronger assumptions.

Charles, Goren and Lauter [9] present a construct based on the assumed hard-
ness of some problems related to elliptic curves. Their constructs are slower than
ours and additionally are based on assumptions that are non-standard and should
be treated with care [41]. Lyubashevsky, Micciancio, Peikert and Rosen [27]
present a fast hash function SWIFFT with an asymptotic security proof based on
assumptions about the hardness of lattice problems [26, 35], but the proof would
not seem to yield guarantees for the parameter sizes proposed in [27]. In contrast,
our reductions are tight and the proofs provide guaranties for standard values of
the security parameters. Bellare and Micciancio’s construction [2] (whose goal was
to achieve incrementality) uses random oracles, but these can be eliminated by
using a small block size, such as one bit. In this case their MuHASH is provably
collision-resistant based only on the discrete-log assumption, and runs at 0.33 bits
per group operation in MD mode. In comparison, H -Sch (also discrete log based)
is faster, at 0.57 bits per group operation in MD mode.
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2 Definitions

Notation and conventions. We denote by a1‖ · · · ‖an a string encoding of
a1, . . . , an from which the constituent objects are uniquely recoverable. We de-
note the empty string by ε. Unless otherwise indicated, an algorithm may be
randomized. If A is a randomized algorithm then y ←$ A(x1, . . .) denotes the
operation of running A with fresh coins on inputs x1, . . . and letting y denote the
output. We denote by [A(x1, . . .)] the set of all y that have positive probability of
being output by A on input x1, . . .. If S is a (finite) set then s←$ S denotes the
operation of picking s uniformly at random from S. If X = x1‖x2‖ . . . ‖xn, then
x1‖x2‖ . . . xn ← X denotes the operation of parsing X into its constituents. Sim-
ilarly, if X = (x1, x2, . . . , xn) is an n-tuple, then (x1, x2, . . . , xn) ← X denotes
the operation of parsing X into its elements. We denote the security parameter
by k, and by 1k its unary encoding. Vectors are denoted in boldface, for example
u. If u is a vector then |u| is the number of its components and u[i] is its i-th
component. “PT” stands for polynomial time.

Σ-protocols. A Σ-protocol is a three-move interactive protocol conducted by a
prover and a verifier. Formally, it is a tuple SP = (K,P,V,CmSet, ChSet,RpSet),
where K,P are PT algorithms and V is a deterministic boolean algorithm. The
key-generation algorithm K takes input 1k and returns a pair (pk, sk) consisting
of a public and secret key for the prover. The latter is initialized with pk, sk while
the verifier is initialized with pk. The parties interact as depicted in Figure 2.
The prover begins by applying P to pk, sk to yield his first move Y ∈ CmSet(pk),
called the commitment, together with state information y, called the ephemeral
secret key. The commitment is sent to the verifier, who responds with a chal-
lenge c drawn at random from ChSet(pk). The prover computes its response z by
applying P to pk, sk, the challenge and the ephemeral secret key y. (This compu-
tation may use fresh coins although in the bulk of protocols it is deterministic.)
Upon receiving c the verifier applies V to the public key and transcript Y‖c‖z
of the conversation to decide whether to accept or reject. We require complete-
ness, which means that an interaction between the honest prover and verifier is
always accepting. Formally, for all k ∈ N we have d = 1 with probability 1 in
the experiment

(pk, sk) ←$ K(1k); (Y, y) ←$ P(pk, sk); c ←$ ChSet(pk);

z ←$ P(pk, sk,c, y); d ← V(pk,Y‖c‖z).

The verifier given pk,Y‖c‖z should always check that Y ∈ CmSet(Y) and
c ∈ ChSet(pk) and z ∈ RpSet(pk) and reject otherwise. We implicitly assume
this is done throughout.

Security notions. We provide formal definitions of strong special soundness
(sss) and strong honest verifier zero-knowledge (StHVZK). Strong special sound-
ness of Σ-protocol SP = (K,P,V,CmSet,ChSet,RpSet) [7] asks that it be com-
putationally infeasible, given only the public key, to produce a pair of accepting
transcripts that are commitment-agreeing but challenge-response-disagreeing.
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Prover
Input: pk, sk
(Y, y) ←$ P(pk, sk)

z←$ P(pk, sk, y,c)

Y �
c�
z �

Verifier
Input: pk

c ←$ ChSet(pk)

d ← V(pk,Y‖c‖z)

Fig. 2. Σ-protocol. Keys pk and sk are produced using key-generation algorithm K.

Formally an sss-adversary, on input pk, returns a tuple (Y,c1, z1,c2, z2) such
that Y ∈ CmSet(pk);c1,c2 ∈ ChSet(pk); z1, z2 ∈ RpSet(pk) and (c1, z1) �=
(c2, z2). The advantage Advsss

SP ,A(k) of such an adversary is defined for all k ∈ N
as the probability that V(pk,Y‖c1‖z1) = 1 and V(pk,Y‖c2‖z2) = 1 in the
experiment where K(1k) is first executed to get (pk, sk) and then A(pk) is ex-
ecuted to get (Y,c1, z1,c2, z2). We say that SP has strong special soundness
if Advsss

SP ,A(·) is negligible for all PT sss-adversaries A. To define StHVZK, let
Tr SP be the algorithm that on input pk, sk executes P and V as per Figure 2
and returns the transcript Y‖c‖z. Recall that a PT algorithm Sim is a HVZK
simulator for SP if the outputs of the processes

(pk, sk) ←$ K(1k); Return (pk, Sim(pk))

and

(pk, sk) ←$ K(1k); Return (pk,Tr SP (pk, sk))

are identically distributed. We say that a PT algorithm StSim is a strong HVZK
(StHVZK) simulator for SP if StSim is deterministic and the algorithm Sim
defined on input pk by

c ←$ ChSet(pk); z ←$ RpSet(pk); Y ← StSim(pk,c, z); Return Y||c||z
is a HVZK simulator for SP . We say that SP is StHVZK if it has a PT StHVZK
simulator. We denote by Σ(sss) the set of all Σ-protocols that satisfy strong
special soundness and by Σ(StHVZK) the set of all Σ-protocols that are strong
HVZK.

Discussion. While the basic format of Σ-protocols as 3-move protocols of the
type above is agreed upon, when it comes to security properties, there are differ-
ent choices and variations in the literature. Our formalization of strong special
soundness is from [7]. Strong HVZK seems to be new, but is natural since we
will find many protocols that posses it.

Collision-resistant hash functions. A family of n-input hash functions
(where n ≥ 1 is a constant) is a tuple H = (KG,H,D1, . . . ,Dn,R). The key-
generation algorithm KG takes input 1k and returns a key K describing a partic-
ular function HK : D1(K)× . . .Dn(K) → R(K). As this indicates, D1, . . . ,Dn,R
are functions that given K return sets. A cr-adversary, on input K returns
distinct tuples (x1, . . . , xn), (y1, . . . , yn) such that xi, yi ∈ Di(K) for all 1 ≤
i ≤ n. The advantage Advcr

H ,B(k) of such an adversary B is defined for all
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k ∈ N as the probability that H(K,x1, . . . , xn) = H(K, y1, . . . , yn) in the ex-
periment where KG(1k) is first executed to get K and then B(K) is executed
to get ((x1, . . . , xn), (y1, . . . , yn)). We say that H is collision resistant if the cr-
advantage of any PT adversary B is negligible.

3 Σ-Hash Theory

This section covers the theory of Σ-hash functions. We present and justify the
Σ2H transform that turns a Σ-protocol SP ∈ Σ(sss)∩Σ(StHVZK) into a collision-
resistant hash function H -SP . Then we find Σ-protocols which we can prove
have the required properties and derive specific Σ-hash functions. Finally we
relate Σ and chameleon hash functions. In Section 4 we discuss the practical
and performance aspects of our Σ-hash functions.

The transform. We show how to build a collision-resistant hash function from
any Σ-protocol SP = (K,P,V,CmSet,ChSet,RpSet) ∈ Σ(sss) ∩ Σ(StHVZK)
that satisfies strong special soundness and strong HVZK. Let StSim be a strong
HVZK simulator for SP . We define the 2-input family of hash functions H =
(KG,H,ChSet,CmSet,RpSet) by KG = K(1) and Hpk(c, z) = StSim(pk,c, z),
where K(1) is the algorithm that on input 1k lets (pk, sk) ←$ K(1k) and returns
pk. In other words, the key is the prover’s public key. (The secret key is dis-
carded.) The inputs to the hash function are regarded as the challenge and
response in the Σ-protocol. The output is the corresponding commitment. The
existence of a StHVZK simulator is exploited to deterministically compute this
output. We refer to a family of functions defined in this way as a Σ-hash. We write
H = Σ2H(SP ) to indicate that H has been derived as above from Σ-protocol
SP . The following theorem says that a Σ-hash family is collision-resistant.

Theorem 1. Let SP = (K,P,V,CmSet, ChSet,RpSet) ∈ Σ(sss) ∩ Σ(StHVZK)
be a Σ-protocol. Let H = (KG,H,ChSet,RpSet,CmSet) = Σ2H(SP ) be the
family of hash functions associated to SP as above. For every cr adversary B
against H there exists an sss-adversary A against SP such that for all k we have
Advcr

H,B(k) ≤ Advsss-na
SP ,A (k), and the running time of B is that of A.

The proof of this theorem, given in [6], is simple, but we note some subtleties,
which is the way it relies on the (strong) HVZK and completeness of the
Σ-protocol in addition to the strong special soundness. To construct Σ-hash func-
tions we now seek Σ-protocols which we can show are in Σ(sss) ∩ Σ(StHVZK).

Overview of constructions. We begin, as illustrative examples, with the
Schnorr [37] and GQ [20] Σ-protocols, which we can easily show to have the
desired properties. The discrete log based Σ-hash H -Sch obtained in the first
case is that of [10] and its re-derivation as a Σ-hash sheds new light on its design
and also shows how the Σ-hash paradigm unifies and explains existing work. The
RSA based Σ-hash H -GQ obtained in the second case is new. More interesting
is the Fiat-Shamir [17] Σ-protocol. It doesn’t satisfy strong special soundness,
but we modify it to a Σ-protocol SFS that we prove is in Σ(sss) ∩ Σ(StHVZK)
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Algorithm K(1k)
(〈G〉, p, g) ←$ G(1k)
x ←$ Zp

X ← g−x; sk ← x
pk ← (〈G〉, p, g,X)
Return (pk, sk)

Prover Verifier
y ←$ Zp; Y ← gy Y�

c� c ←$ Zp

z ← y + x · c mod p z� d ← (Xcgz = Y)

Hpk : Zp×Zp → G

Hpk(c, z) = Xcgz

Fig. 3. Sch Σ-protocol and the derived Σ-hash family, where G is a prime-order group
generator

under the standard factoring assumption. With non-standard factoring-related
assumptions (that it is hard to extract modular square roots of products of small
primes) we get a faster Σ-hash H -SMS from a modification of the Micali-Shamir
Σ-protocol [29]. In [6] we show how to get another discrete-log based Σ-hash from
Okamoto’s protocol [32] and a pairing based one from the HS protocol [3, 21].
We proceed to the details.

Sch . We fix a prime-order group generator, by which we mean a PT algorithm
G that on input 1k returns the description 〈G〉 of a group G of prime order
p ∈ {2k−1, . . . , 2k−1} together with p and a generator g of G. The key-generation
process and protocol underlying the Sch Σ-protocol of [37] are then as shown
in Figure 3. The algorithm that on input pk = (〈G〉, p, g,X) picks c, z ←$ Zp

and returns Xcgz‖c‖z is a HVZK simulator for Sch , so Sch ∈ Σ(StHVZK)
and the derived Σ-hash H -Sch is as shown in Figure 3. The key observation
for strong special soundness is that if Xc1gz1 = Xc2gz2 and (c1, z1) �= (c2, z2)
then it must be that c1 �= c2. To sss-adversary A, this leads us to associate
the discrete log finder D that on input 〈G〉, p, g,X runs A on the same in-
put to get (Y,c1, z1,c2, z2) and returns (z2 − z1)(c1 − c2)−1 mod p. Then for
all k we have Advsss

Sch,A(k) ≤ Advdl
G,D(k), where the latter is defined as the

probability that x′ = x in the experiment where we let (〈G〉, p, g) ←$ G(1k)
and x←$ Zp and then let x′ ←$ D(〈G〉, p, g, gx) . This shows that Sch has strong
special soundness as long as the discrete log problem is hard relative to G . By
Theorem 1 H -Sch is collision-resistant under the same assumption.

GQ . We fix a prime-exponent RSA generator with associated challenge length
L(·), by which we mean a PT algorithm Grsa that on input 1k returns an RSA
modulus N ∈ {2k−1, . . . , 2k−1} and an RSA encryption exponent e > 2L(k) that
is a prime. The key-generation process and protocol underlying Σ-protocol GQ of
[20] are then as shown in Figure 4. The algorithm that on input pk = (N, e, l,X)
picks c ←$ {0, 1}l; z ←$ Z∗

N and returns Y‖c‖z, where Y = z
c
z
2 mod N , is

a HVZK simulator for GQ , so GQ ∈ Σ(StHVZK) and the derived Σ-hash
H -GQ is as shown in Figure 4. Again observe that if Xc1

z
e
1 = Xc2

z
e
2 and

(c1, z1) �= (c2, z2) then c1 �= c2. To adversary A attacking the strong spe-
cial soundness, this leads us to associate the inverter I that on input N, e,X
runs A on input N, e, l,X where l = L(�log2(N)� + 1) to get (Y,c1, z1,c2, z2)
and returns (z2z

−1
1 )bXa mod N where a, b satisfy ae + b(c1 − c2) = 1 and are
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Algorithm K(1k)
(N, e) ←$ Grsa(1k)
x ←$ Z∗

N

X ← x−e mod N
l ← L(k); sk ← x
pk ← (N, e, l, X)
Return (sk, pk)

Prover Verifier
y ←$ Z∗

N ;
Y ← ye mod N Y�

c� c ←$ {0, . . . , 2l − 1}
z ← xc · y mod N z� d ← (Y = Xc · ze mod N)

Hpk : {0, . . . , 2l − 1} × Z∗
N → Z∗

N

Hpk(c, z) = Xc
z

e mod N

Fig. 4. GQ Σ-protocol and the derived Σ-hash family, where Grsa is a prime exponent
RSA generator with associated challenge length L

found via the extended gcd algorithm. (This is where we use the fact that
e is prime.) Then for all k we have Advsss

GQ ,A(k) ≤ Advrsa
Grsa,I (k), where the

latter is defined as the probability that x′ = x in the experiment where we
let (N, e) ←$ Grsa(1k) and x←$ Z∗

N and then let x′ ←$ I (N, e, xe mod N) . This
shows that GQ has strong special soundness if RSA is one-way relative to Grsa.
By Theorem 1, H -GQ is collision-resistant under the same assumption.

FS and SFS . We fix a modulus generator, namely a PT algorithm Gmod that
on input 1k returns a modulus N ∈ {2k−1, . . . , 2k − 1} and distinct primes p, q
such that N = pq. We also fix a challenge length L(·). If c is a l-bit string and
u ∈ (Z∗

N )l then we let uc =
∏

u[i]c[i] where the product is over 1 ≤ i ≤ l and c[i]
denotes the i-th bit of c. The key-generation algorithm and protocol underlying
the FS Σ-protocol are then as shown in Figure 5. However this protocol does
not satisfy strong special soundness because if Y‖c‖z is an accepting transcript
relative to pk = (N, l,u) then so is Y‖c‖z′ where z

′ = N − z. We now show
how to modify FS so that it has strong special soundness. First, some notation.
For w ∈ ZN we let [w]N equal w if w ≤ N/2 and N − w otherwise. Let Z+

N =
Z∗

N ∩{1, . . . , N/2}. The modified protocol SFS (Strong FS ) is shown in Figure 5.
Here CmSet,ChSet are as in FS but RpSet((N, l,u)) is now equal to Z+

N rather
than Z∗

N as before. In [6] we show how to associate to any PT sss-adversary
A a PT factoring adversary B such that for all k ∈ N we have Advsss

SFS ,A ≤
2 · Advfac

Gmod,B(k), where the latter is defined as the probability that r ∈ {p, q}
in the experiment where we let (N, p, q) ←$ Gmod(1k) and r ←$ B(N). (Briefly,
if Y‖c1‖z1 and Y‖c2‖z2 are accepting transcripts then if c1 �= c2 we obtain the
square root of some component of the public key and if c1 = c2 but z1 �= z2
then z1, z2 are non-trivial square roots of the same square and we can factor N .)
This shows that SFS has strong special soundness under the standard hardness
of factoring assumption. Now, the algorithm that on input pk = (N, l,u) lets
c←$ {0, 1}l; z ←$ Z+

N ; Y ← uc · z
2 mod N and returns Y‖c‖z is a HVZK

simulator for SFS . Accordingly SFS ∈ Σ(StHVZK) and we derive from SFS
the Σ-hash family H -SFS shown in Figure 5. Theorem 1 implies that H -SFS is
collision resistant under the standard factoring assumption.

MS and SMS . The Micali-Shamir protocol [29] is a variant of FS in which
verification time is reduced by choosing the coordinates of u to be small primes.
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Algorithm K(1k)
(N, p, q) ←$ Gmod(1k);
l ← L(k);

For i = 1, . . . , l do
s[i] ←$ Z∗

N ; u[i] ← s[i]−2

sk ← s; pk ← (N, l,u)
Return pk, sk

Prover Verifier
y ←$ Z∗

N ;
Y ← y2 Y�

c� c ←$ {0, 1}l

z ← y · sc z� d ← (Y = uc · z2)

Algorithm K(1k)
l ← L(k)
(N, p, q,u) ←$ GSP (1k)
For i = 1, . . . , l do

s[i] ←$ SQR(u[i]−1, p, q)
pk ← (N, l, u); sk ← s
Return pk, sk

Prover Verifier
y ←$ Z∗

N ;
Y ← y2 Y�

c� c ←$ {0, 1}l

z ← [y · sc]N z� d ← (Y = uc · z2)

Hpk : {0, 1}l × Z+
N → Z∗

N

Hpk(c, z) = uc · z2

Fig. 5. FS , SFS , MS and SMS protocols and the Σ-hash derived from SFS , SMS .
The upper left key-generation algorithm is that of FS and SFS , while the lower left
one is that of MS and SMS . The upper protocol is that of FS and MS while the lower
protocol is that of SFS and SMS . Here Gmod is a modulus generator and GSP is a small
prime modulus generator. The computations are in Z∗

N , meaning modulo N .

As with FS it does not satisfy sss, but we can modify it to do so and thereby
obtain a collision-resistant hash function H -SMS that is faster than H -SFS at
the cost of a stronger assumption for security. To detail all this, let GSP be a small
prime modulus generator with challenge length L(·), by which we mean a PT
algorithm that on input 1k returns a modulus N ∈ {2k−1, . . . , 2k − 1}, distinct
primes p, q such that N = pq, and an L(k)-vector u each of whose coordinates
is a prime in QR(N) = {x2 mod N : x ∈ Z∗

N}. For efficiency we would choose
these primes to be as small as possible. (For example u[i] is the i-th prime in
QR(N).) An spr-adversary B against GSP, L takes input N and u ∈ (Z∗

N )L(k)

and returns (x, S) where x ∈ Z∗
N and S is a non-empty subset of {0, 1}l. Its

spr-advantage is defined for all k by

Advspr
GSP,L,B(k) = Pr

[
x2 ≡

∏
i∈S u[i] (mod N) : (N, p, q,u) ←$ GSP(1k) ;

(x, S) ←$ B(N,u)

]
.

The SRPP (Square Root of Prime Products) assumption [29] says that the spr-
advantage of any PT B is negligible. Now, Figure 5 shows our modified version
SMS of the Micali-Shamir protocol. It is in Σ2H(StHVZK) for the same reason
as SFS and hence the derived hash function is again as shown, where SQR(·, p, q)
takes input w ∈ QR(N) and returns at random one of the four square roots of
w modulo N = pq, computed using the primes p, q. Strong special soundness of
SMS is proven in [6] under the SRPP assumption. Theorem 1 now implies that
H -SMS is collision-resistant under the SRPP assumption.
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Σ = chameleon. We move from examples of Σ-hash functions to a general
property of the class, namely that any Σ-hash function is chameleon. This is
captured by the following.

Theorem 2. Let SP = (K,P,V,CmSet, ChSet,RpSet) ∈ Σ(StHVZK)∩Σ(sss)∩
Σ(sc) be a Σ-protocol. Then the Σ-hash family H -SP = Σ2H(SP ) = (KG,H,
ChSet,CmSet,RpSet) is chameleon.

Refer to [6] for the proof of the above and the relevant definitions. As a conse-
quence, we obtain the following new chameleon hash functions: H -GQ ,H -SFS ,
H -SMS ,H -Oka,H -HS . (H -Sch was already known to be chameleon [25].) This
yields numerous new and more efficient instantiations of on-line/off-line signa-
tures [38], chameleon signatures [25] and designated-verifier signatures [23, 40].

Even more interestingly, we prove the converse. The following theorem says
that any chameleon hash family is a Σ-hash family, meaning the result of apply-
ing our Σ2H transform to some Σ-protocol.

Theorem 3. Let H = (KG,H,ChSet,CmSet,RpSet) be a family of chameleon
hash functions. Then there is a Σ-protocol SP = (K,P,V,CmSet,ChSet,RpSet)
∈ Σ(StHVZK) ∩ Σ(sss) ∩ Σ(sc) such that H = Σ2H(SP ) is the Σ-hash family
corresponding to SP .

The proof is in [6]. Applying this to known chameleon-hash functions like H -Da
[14, 25] and H -ST [38] yields new Σ-protocols and hence new identification
schemes and, via [13, 16], new commitment schemes.

4 Σ-Hash Practice and Performance

In this section we cover practical issues related to Σ-hash functions, including
performance, performance comparison with existing constructions and imple-
mentation results.

Extending the domain. A Σ-hash family H as defined above is actually a
(keyed) compression function since the domain is relatively small. In practice
however we need to hash messages of long and variable length. This would not
at first appear to be much of a problem since we should be able to do MD
iteration [15, 28]. In fact this is essentially true but one has to be careful about
a few things. What one would naturally like to do is use the second argument to
Hpk as the chaining variable. But this requires that outputs of the compression
function can be regarded as chaining values, meaning CmSet(pk) be a subset
of RpSet(pk). Sometimes this is true, as for H -GQ , which in this way lends
itself easily and naturally to MD iteration. But in the case of SFS and SMS
we have CmSet((N, l,u)) = Z∗

N � Z+
N = RpSet((N, l,u)). In [6] we show how

to resolve these problems by appropriate “embeddings” that effectively allow
the second input of the compression function to be used as a chaining variable
at the cost of 1 bit in throughput and in particular allows us to run any of
our Σ-hash functions in MD mode. We won’t detail the general transform here,
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Σ-hash w KB/s space

H -SFS 0 30.85 n/a
H -SFS 4 67.41 2048
H -SFS 8 118.1 16384
H -SMS 0 914.3 n/a

Table 1. Implementation results. Here w is the “width” parameter determining pre-
computation and the space is the number of group elements that need to be stored.

but it is instructive to describe the modified compression function. The public
key has the form (N, l,u, v) where N, l,u are as before and v ∈ QR(N), and
Hpk : {0, 1}l × Z∗

N → Z∗
N is defined by

Hpk(c, z) = uc · z2 · vfN (z) mod N, (1)

where fN (z) = 0 if z ∈ Z+
N and 1 otherwise. It can be shown that this modified

function is also a Σ-hash, meaning the result of applying Σ2H to a suitably mod-
ified version of the original Σ-protocol that retains the sss, StHVZK and sc prop-
erties of the original. But now CmSet((N, l,u, v)) = Z∗

N = RpSet((N, l,u, v)) so
MD-iteration is possible.

Metrics. We measure performance of a hash function in terms of rate, which we
define as the average number of bits hashed per group operations. (By “average”
we mean when the data is random.) In this measure, an exponentiation a �→ Aa

costs 1.5n group operations and a two-fold multi-exponentiation a, b �→ AaBb

costs 1.75n group operations where n is the length of a and also of b. We will use
these estimates extensively below. We can consider two modes of operation of a
given Σ-hash function H -SP , namely compression and MD. In the first case the
data to be hashed by Hpk is the full input c, z, while in the second case it is only c.
(The second input is the chaining variable which is not part of the data.) The rate
in MD mode is lower than in compression mode for most hash functions. (SFS is an
interesting exception.) Compression mode is relevant when the function is being
used as a chameleon hash, since the data can then be compressed with a stan-
dard (merely collision-resistant) hash function such as SHA-1 before applying the
Σ-hash [25, Lemma 1]. MD mode is relevant when one wants to avoid conventional
hash functions and get the full provable guarantees of the Σ-hash by using it alone.
Our performance evaluations will consider MD mode.

Performance of Σ-hash functions. H -Sch and H -GQ can be computed
with one two-fold multi-exponentiation so that they use 1.75 group operations
per bit of data (in MD mode). We now turn to H -SFS . Since we are considering
MD mode performance we refer to the MD-compatible version of the function
from Equation (1). (But in fact performance is hardly affected by the modifica-
tion.) On the average about half the bits of c are 1 so H -SFS comes in at about
0.5 modular multiplications per bit. This explains the claim of Figure 1 in re-
gard to H -SFS without pre-computation. Now we look at how pre-computation
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speeds it up, using a block size of l = 512 (the same as MD5 and SHA-1) for
illustration. The method is obvious. Pick a “width” w that divides l and let
t = l/w. Letting pk = (N, l,u, v) denote the public key, pre-compute and store
the table T with entries

T [i, x] =
∏w

j=1u[(i− 1)w + j]x mod N (1 ≤ i ≤ t, x ∈ {0, . . .2w − 1})
The size of the table is t2w = l2w/w group elements. Now computing H -SFS
takes t + 2 = 2 + l/w multiplications since

Hpk(c, z) =
(∏t

i=1T [i, xi]
)
· z2 · vfN (z) mod N,

where xi is the integer with binary representation c[(i−1)w+1] . . . c[iw] (1 ≤ i ≤
t). The number of group operations per bit is thus [2 + l/w]/l ≈ 1/w, meaning
the rate is w. Figure 1 showed the storage and this rate for w = 4 and w = 8.

Analytical assessment of the performance of H -SMS is difficult, but we have
implemented both it and (for comparison) H -SFS . The implementation used a
1024 bit modulus and (for MD mode) a 512 bit block size. Table 1 shows that
H -SMS is about 30 times faster than the basic (no pre-computation) version
of H -SFS . The gap drops to a factor of 15 and 7.5 when compared with the
w = 4 and w = 8 pre-computation levels of H -SFS , respectively. Note that
H -SMS here is without pre-computation. (The latter does not seem to help
it much.) These implementation results are on a Dual Pentium IV, 3.2GHz
machine, running Linux 2.6 kernel and using the gmp library [18].

Comparisons. We now assess performance of previous schemes, justifying
claims in Section 1. Damg̊ard [14] shows how to construct collision-resistant
hash functions from claw-free permutations [19]. Of various factoring-based in-
stantiations of his construction, the one of [19, 25], which we denote H -Da,
seems to be the most efficient. The key is a modulus N product of two primes,
one congruent to 3 mod 8 and the other to 7 mod 8, and the hash function
HN : {0, 1}l × Z∗

N → Z∗
N is defined by HN (m, r) = 4m · rs mod N where s = 2l.

Since multiplying by 4 is cheap, we view it as free and the cost is then one mul-
tiplication per bit, meaning H -SFS is twice as fast. But pre-computation does
not help H -Da since r is not fixed, and the gap in rates increases as we allow
pre-computation for H -SFS as shown in Figure 1.

The key of Shamir and Tauman’s [38] hash function is a modulus N and an
a ∈ Z∗

N . With a 1024 bit modulus the chaining variable needs to be 1024 bits as
well, so that with a 512 bit block size the function would take a 512 + 1024 bit
input, regard it as an integer s, and return as mod N . The computation takes 1.5
multiplications per bit of the full input, which is 1.5 · (1024+512)/512 = 4.5 per
bit of data, meaning the rate is 1/4.5 ≈ 0.22 as claimed in Figure 1. Since a is
fixed, one can use the standard pre-computation methods for exponentiation. For
any v dividing 1024+512 = 1536, the computation takes 1536/v multiplications
with a table of 2v · 1536/v group elements. Note that per data bit the rate is
512/(1536/v) = v/3. To compare to H -SFS we need to choose parameters so
that the storage for the two is about the same, meaning 2w(512/w) ≈ 2v(1536/v).
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This yields v = 1 for w = 4 and v = 6 for w = 8. This explains the rates shown
in Figure 1.

5 Improvements to VSH

The performance of a hash function on short inputs is important in practice. (For
example, a significant fraction of Internet traffic consists of short packets.) We
present a variant VSH∗ of VSH that is up to 5 times faster in this context while
remaining proven-secure under the same assumption as VSH. The improvement
stems from VSH∗, unlike VSH, having a collision-resistant compression function.

Background. The key of Contini, Lenstra and Steinfeld’s VSH function [11]
is a modulus N product of two primes. The VSH compression function vshN :
{0, 1}l × Z∗

N → Z∗
N is defined by

vshN (c, z) = z
2 ·

∏l
i=1p

c[i]
i mod N,

where pi is the i-th prime and c[i] is the i-th bit of c. The hash function VSH is
obtained by MD-iteration of vsh with initial vector 1. A curious feature of VSH
is that the compression function is not collision-resistant. Indeed, vshN (c, z) =
vshN (c,N − z) for any c ∈ {0, 1}l and z ∈ Z∗

N . Nonetheless, it is shown in [11]
that the hash function VSH is collision-resistant based on the VSSR assumption.
The latter states that given N, l it is hard to find x ∈ Z∗

N and integers e1, . . . , el,
not all even, such that x2 ≡ pe1

1 · . . . · pel

l (mod N). The proof makes crucial use
of the fact that the initial vector is set to 1.

VSH∗
. We alter the compression function of VSH so that it becomes (provably)

collision-resistant and then define VSH∗ by MD iteration with the initial vector
being part of the data to be hashed. The first application of the compression
function thus consumes much more (1024 bits more for a 1024 bit modulus, for
example) of the input, resulting in significantly improved rate for the important
practical case of hashing short messages. For example, the implementation results
of Table 2 show speed increases of a factor of 5 over VSH when hashing 1024 bit
messages. Performance for long messages is the same as for VSH. VSH∗ and its
compression function vsh∗ are provably collision-resistant under the same VSSR
assumption as VSH.

The inspiration comes from H -SMS which we notice is very similar to vsh
but, unlike the latter, is collision-resistant. The difference is that in H -SMS the
primes u[1], . . . ,u[l], v —referring to the MD-compatible version of the function
from Equation (1)— are quadratic residues. But this turns out to be important
for the completeness of the Σ-protocol rather than for collision-resistance. This
leads to the compression function vsh∗N : {0, 1}l × Z∗

N → Z∗
N defined by

vsh∗N (c, z) =
(∏l

i=1 p
c[i]
i

)
· pfN (z)

l+1 · z2 mod N,

where pi is the i-th prime and c[i] is the i-th bit of c. As a check notice that
vsh∗N (c, z) is unlikely to equal vsh∗N (c, N−z) because fN (z) �= fN (N−z), mean-
ing the attack showing vsh is not collision-resistant does not apply. Of course
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Table 2. The size of the modulus used here is 1024. The block and the input size are
given in bits.

Hash Function block size input size Iterations Avg. time

VSH 128 8 × 128 9 140µs

VSH∗ 128 8 × 128 1 25µs

this is not the only possible attack, but the proof of strong special soundness
of SMS [6] can be adapted to show that vsh∗ is collision-resistant under the
VSSR assumption. Finally VSH∗ is obtained by MD iteration of vsh∗ but with
the initial vector being the first k − 1 bits of the input. For MD-strengthening,
the standard padding method of SHA-1 is used.

The implementation results given in Table 2 were again obtained on a Dual
Pentium IV, 3.2GHz machine running Linux kernel 2.6 and using the gmp library
[18]. We set the block size to 128 for both functions and considered hashing a
1024 bit input. In this case (even taking into account the increase in length
due to MD strengthening) VSH∗ needs 1 application of its compression function.
On the other hand VSH (with their own form of strengthening) needs 9. The
implementation shows that VSH∗ is 5.6 times faster. We need to add that our
implementations (unlike those of [11]) are not optimized, but our goal was more
to assess the comparative than the absolute performance of these hash functions,
and this is achieved because both are tested on the same platform.
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Abstract. This paper studies the application of slide attacks to hash
functions. Slide attacks have mostly been used for block cipher crypt-
analysis. But, as shown in the current paper, they also form a potential
threat for hash functions, namely for sponge-function like structures. As
it turns out, certain constructions for hash-function-based MACs can be
vulnerable to forgery and even to key recovery attacks. In other cases,
we can at least distinguish a given hash function from a random oracle.

To illustrate our results, we describe attacks against the Grindahl-
256 and Grindahl-512 hash functions. To the best of our knowledge,
this is the first cryptanalytic result on Grindahl-512. Furthermore, we
point out a slide-based distinguisher attack on a slightly modified version
of RadioGatún. We finally discuss simple countermeasures as a defense
against slide attacks.

Keywords: slide attacks, hash function, Grindahl, RadioGatún,
MAC, sponge function.

1 Introduction

A hash function H : {0, 1}∗ → {0, 1}n is used to compute an n-bit fingerprint
from an arbitrarily-sized input. Established security requirements for crypto-
graphic hash functions are collision resistance, preimage and 2nd preimage re-
sistance – but ideally, cryptographers expect a good hash function to somehow
behave like a random oracle.

Current practical hash functions, such as SHA-1 or SHA-2 [25, 26], are iter-
ated hash functions, using a compression function with a fixed-length input, say
h : {0, 1}n+l → {0, 1}n, and the Merkle-Damg̊ard (MD) transformation [14, 24]
for the full hash function H with arbitrary input sizes. The core idea is to split
the message M into l-bit blocks M1, . . . ,Mm ∈ {0, 1}l (with some padding, to
ensure all the blocks are of size l-bit), to define an initial value X0, and to apply
the recurrence Xi = h(Xi−1,Mi). The final chaining variable Xi is used as the
hash output. The main benefit of the MD transformation is that it preserves
collision resistance: if the compression function is collision resistant, then so is
the hash function. Recent results, however, highlight some intrinsic limitations of
the MD approach. This includes being vulnerable to multicollision attacks [16],
long second-preimages attacks [19], and herding [18]. Even though the practical
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relevance of these attacks is unclear, they highlight some security issues, which
designers of new hash functions should avoid.

In general, and due to certain structural weaknesses, MD-based hash functions
do not behave like a random oracles. Consider, e.g., a secret key K, a message
M and define a Message Authentication Code MAC(K,M) = H(K||M). If we
model H as a random oracle, this construction meets the expected security
requirements for a MAC. But for an MD-based hash function H , one can easily
forge authentication codes: given MAC(K,M) = H(K||M), compute a valid
MAC(K,M ||Y ) = H(K||M ||Y ) without knowing the secret key K. Coron et
al. [11] recently discussed a formal model to prove hash functions being free
from such structural weaknesses (but still weak against multicollision attacks).

Our contribution. Newly proposed hash function designs should not suf-
fer from length extension. So for a new and well-designed hash function, the
MAC(K,M) = H(K||M) should be a secure MAC. We will show that this is
not the case for some recently proposed hash functions. In contrast to the case
of MD-based hash functions, where one can forge messages but cannot recover
K, our attacks allow, in general, the adversary to find K (much faster than by
exhaustively searching for it).

Our attacks are an application of slide attacks. These are a classical tool for
block ciphers cryptanalysis, but have so far not been used for hash function
cryptanalysis.

The Targets for Our Attacks. A natural idea for thwarting the MD limi-
tations is to increase the size of the internal chaining variables in the iterated
process, see, e.g., [23]. Using a similar patch, sponge functions [3] followed the
idea to employ a huge internal state (to hold a huge chaining variable) and to
claim a capacity c, typically c � n. This defends against attackers even if these
can perform � 2n/2 operations (but are still restricted to % 2c/2 units of work).
Here n is considered a typical hash function output size (sponge functions may
also provide for arbitrary output sizes, rather than for a fixed n).

Several recent hash functions follow this approach, including Grindahl [22]
and RadioGatún [2]. As far as we know, there are no cryptanalytic attack on
either RadioGatún or the 512-bit version of Grindahl while some collision
attacks for the 256-bit version of Grindahl have already been published [20, 27].

In the current paper, we study the applicability of slide attacks for sponge
functions. Our results indicate that slide attacks can be a serious threat for hash
functions fitting into the sponge framework. On the other hand, if the hash func-
tion designer is aware of slide attacks, we believe it is easy to defend against such
attacks. We give concrete examples by providing attacks against Grindahl [22]
and two slightly tweaked versions of RadioGatún [2]. Our attack applies for
both published flavours of Grindahl, the 256-bit version and the 512-bit version.
As far as we know, this is the first cryptanalytic result for the 512-bit version.

Outline: in Section 2 we recall the slide attacks basics, study the case of hash
functions and focus on the case of sponge functions. Then, in Section 3 we give an
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example by applying our results to the Grindahl hash function and discuss the
vulnerability of RadioGatún to slide attacks in Section 4. Finally, we describe
cheap and simple defenses against slide attacks and conclude in Section 5.

2 Slide Attacks

Block ciphers are often designed as a keyed permutation which is applied many
rounds. It is a common belief that increasing the number of rounds makes the
cipher stronger, but this is just true for statistical attacks such as differential or
linear cryptanalysis. Some attacks can be applied even for block cipher variants
with an arbitrary number of rounds. This is true for certain related key attacks,
and for slide attacks. The usual defense is to strengthen the key schedule and the
keyed permutation itself. Related key attacks have been introduced by Biham [5]
and independently by Knudsen [21]. Slide attacks [8] utilize the self-similarity of
the cipher, typically caused by a periodic key schedule. An r round block cipher
with the same keyed permutation F i in each round can be attacked by slide
attacks if F i is a weak permutation, i.e. the key used in F i can be found with a
slid plaintext-ciphertext pair.

2.1 Slide Attacks on Block Ciphers

Slide attacks on block ciphers have been applied to some ciphers with a weak
key schedule (see [6, 8, 9, 12, 15, 17, 28, 29]). The original slide attack [8] works
as follows. An n-bit block cipher E with r rounds is split into b identical rounds
of the same keyed permutation F i for i = {1, . . . , b}. In the simplest case we
have b = r where the key schedule produces the same key in each round1. Thus
we write the cipher as E = F 1 ◦ F 2 ◦ · · · ◦ F b = F ◦ F ◦ · · · ◦ F . A plaintext Pj

is then encrypted as

Pj
F→ X(1) F→ X(2) F→ · · · F→ Cj

where X(i) represents the intermediate encryption value after application of F i

and X(b) = Cj is the corresponding ciphertext. To mount a slide attack one has
to find a slid pair of plaintexts (Pj , Pk), such that

Pk = F (Pj) and Ck = F (Cj) (1)

hold, see also Figure 1.
Slide attacks can only be applied to a small class of ciphers with weak permu-

tations periodic key schedules. A permutation is weak if, given the two equations
in (1), it is easy to extract a non negligible part of the secret key. With 2n/2

known plaintext/ciphertext pairs (Pi, Ci) we expect at least one pair satisfying
Pk = F i(Pj) among these texts by the birthday paradox. This gives us a slid

1 Note that F i might include more than one rounds of the cipher. If the key schedule
produces identical keys with period p then F i includes p rounds of the original cipher.
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Pj
F→ X(1) F→ X(2) F→ X(3) F→ · · · F→ Cj

Pk
F→ X(1) F→ X(2) F→ · · · F→ X(b−1) F→ Ck

Fig. 1. A slide attack on block ciphers

pair. Thus, the classical slide attack allows to recover the unknown key of an
n-bit block cipher using O(2n/2) known plaintexts.

Advanced sliding techniques like complementation slide and sliding with a
twist were introduced by Biryukov and Wagner [9]. These techniques allow to
attack ciphers with a more complex key schedule. The basic concept of comple-
mentation slide is to slide two encryptions against each other where the inputs
to the rounds may have a difference which is canceled out by a difference in the
keys, while an encryption is slid against a decryption using a sliding with a twist
technique. The realigning slide attack [28] allows to slide encryptions with unslid
rounds in the middle of the slide. Biham et al. [6] improved the slide attack to
detect a large amount of slid pairs very efficiently by using the relation between
the cycle structure of the entire cipher and that of the keyed permutation.

2.2 Slide Attacks on Hash Functions

Slide attacks in a hash function setting have attracted very few consideration
in the literature. To our knowledge, the only paper considers an attack on the
internal block cipher from SHA-1 [31]. However, yet no direct way to transform
it into a practical attack on the hash function has been found.

Slide attacks for block ciphers are different in some aspects from those applied
on hash functions. By definition, block cipher computations depend on a secret
key, and slide attacks are typically employed to distinguish a block cipher from
a random permutation – and often for a key recovery attack to follow.

In the hash function case, there is no secret key to recover, just the message to
be hashed, and the adversary is allowed to know this message – or even to choose
it. Typical attacks on hash functions are about finding collisions or preimages –
and it is hard to see how slide attacks could be employed in that context. But even
for hash functions, a slide property that (or which) can be detected with some
significant probability will allow us to differentiate the scheme from a random
oracle. Indeed, with such a property, one can show a non random behavior of the
hash function. This is already an issue, since hash functions are often utilized
to simulate a random oracle as they are considered to be the closest practical
primitive to this theoretical object. Going further, when secret data is used as a
part of the input of the hash function, one can try to recover some information
from it. The natural primitive where hash functions handle secret data are of
course the Message Authentication Codes (MAC), that permit to authenticate a
message M with a symmetric secret key K. For example, constructions such as
HMAC [1] are implemented in a lot of different applications and make only two
calls to a hash function. HMAC has the advantage to only require the internal
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function to be weakly collision resistant and also to provide secure MACs with
MD-based hash functions. Note that a HMAC-based patch is one of the new
domain extension algorithm proposed by Coron et al. [11] to thwart the simple
MD-based MACs attacks. Those attacks are no more than a slide attack on the
MD domain extension algorithm.

Generally, a good hash function H should provide a good MAC with the fol-
lowing computations: MAC(K,M) = H(K||M) or MAC(K,M) = H(K||M ||K).
Just like for block ciphers, if the hash function considered is not protected, one
may be able to recover some non negligible part of the secret key K with a slide
property that can be detected with a good probability. One has to note a work
from Sasaki et al. [32] that attacks prefix, suffix and hybrid approaches for MAC
constructions by using inner collisions for MD4, and a work from Preneel and Van
Oorschot [30] that studies the envelope approache instantiated with MD5.

2.3 Slide Attacks on “Extended” Sponge Constructions

We analyze in this section how one can apply slide attacks to sponge-based hash
functions, a newly introduced framework for building hash functions [2, 3]. More
precisely, we use the “extended” sponge functions, a more general framework.

The “extended” sponge framework. Assume that H is an iterative hash
function with an internal state of c words of p-bit each and a final output size
of n bits. Let M = M1||M2|| · · · ||M l be the m × p-bit blocks of the message
to hash with M l �= 0m×p (the message is padded before split into blocks). Let
M i be the message block hashed at each round i and X i the internal state after
proceeding M i, with X0 = IV . We then have X i = F (S(X i−1,M i)), where
F is the round function and S defines how the message is incorporated in the
internal state. Once all the l message blocks have been processed, r blank rounds
(rounds with no message input) are applied X i = F (X i−1) and A := X l+r is the
final internal state. Finally, we derivate n output bits by using the final output
function T (X l+r). Such a hash function can be written as

H(M) = X0 F (S(X0,M1))−→ · · · F (S(Xl−1,Ml))−→ X l

r times︷ ︸︸ ︷
F (Xl)−→ · · · F (Xl+r−1)−→

A︷ ︸︸ ︷
X l+r

i

T (A)−→ TA,

where TA represents the hash output. One has to note that for efficiency reasons
and since the internal state will be big in practice, F is usually a quite light and
fast round permutation.

This framework is really general and especially more general than the origi-
nal sponge function one. More precisely, in the original model, S introduces the
message blocks by XORing them to particular positions of the internal state.
However, in our situation, we can also consider a function S that replaces some
bits of the internal state by the message bits. We call the former XOR sponge
and the latter overwrite sponge. Moreover, in the original model, the final out-
put function T continues to apply some blank rounds and extract some bits
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from the internal state at the end of each application, until n bits have been
received. In our framework we can also consider the case where the output
bits come from a direct truncation of the final internal state A, and we call it
truncated sponge.

There are two security issues, related to the general design of sponge functions.
One issue is invertibility: one can run the function F into both directions. The
second issue is self-similarity: all the blank rounds behave identically, and even
a normal round can behave as a blank round if we have X i−1 = S(X i−1,M i)
(the effect of adding the message block is void). In the case of a XOR sponge we
need M i = 0 and in the case of an overwrite sponge we require that Mi is equal
to the overwritten part of the internal state.

We will exploit self-similarity for our slide attacks. The idea is that if one mes-
sage M1 = M1|| . . . ||M l is the prefix of message M2 = M1|| . . . ||M l||M l+1, the
extended state after processing the first l blocks is the same. Now, if X l+1 =
S(X l,M l+1), processing the next message block M l+1 for the longer message is
the same as the first blank round when hashing the shorter message – the extended
states remain identical. We call these two messages a slid pair : the two final in-
ternal states are just one permutation away B := X l+r+1

j = F (X l+r
i ). The slide

attack is shown in Table 1. Once we were able to generate a slid pair, we need
to detect it. This fully depends on the output function T . When T is defined
as in the original sponge framework, it is very easy to detect a slid pair : most
of the output bits will be equal, just shifted by one round. If T is a truncation,
we need to do a case by case analysis depending on the strength of the round
function F and the number of bits thrown away. Yet finding and detecting a slid
pair already allows us to differentiate the hash function from a random oracle.

We can try to go further, by attacking a MAC with prefix key, i.e. MAC(K,M).
Note that such a construction makes sense as using HMAC based on a sponge hash
function will turn out to be very inefficient. This is due to the fact that hashing
very short messages (required in HMAC by the second hash function call) is quite

Table 1. A slide attack on hash functions

X0
i X0

j

F (S(X0
i , M0)) ↓ ← M0 → ↓ F (S((X0

j , M0))
...

...
F (S(Xl−1

i , M l)) ↓ ← M l → ↓ F (S((Xl−1
j , M l))

Xl
i Xl

j

F (Xl
i) ↓ M l+1 → ↓ F (S((Xl

j , M
l+1))

... Xl+1
j

F (Xl+r−1
i ) ↓ ↓ F (Xl+1

j )

Xl+r
i = A

...
T (A) ↓ ↓ F (Xl+r

j )
TA Xl+r+1

j = B

↓ T (B)
TB
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slow because of the blank rounds. Therefore, Bertoni et al. [4] proposed to use
prefix-MAC instead of HMAC.

Consider a secret key K. For simplicity and without loss of generality, we
assume some K to be a uniformly distributed (k × m × p)-bit random value
(i.e. k message words long), for some public integer constant k. We will write
K = (K1, . . . ,Km) ∈ ({0, 1}m×p)k. The adversary is allowed to choose message
challenges Ci, while the oracle replies MAC(K,Ci) = H(K||Ci). Ideally, finding
K in such a scenario would require the adversary to exhaustively search over
the set of all possible K ∈ {0, 1}k×m×p, thus taking 2k×m×p−1 units of time
on average. Forging a valid MAC depends on the size of the hash output and
the size of the key, with a generic attack it requires min{2k×m×p−1, 2n} units of
time. A pair of challenges (Ci, Cj), with Ci = C1

i ||C2
i || · · · ||Cl

i and Cj = Ci||Cl
j

is called a slid pair for K if their final internal state are slid by one application
of the blank round function as:

Xk+l+r+1
j = F (Xk+l+r

i )

Provided that one can generate slid pairs and detect them, one can also try
to retrieve the internal state Xk+l+r

i thanks to this information. Again, a case
by case analysis is required here. When Xk+l+r

i is known, one can invert all the
blank rounds and get Xk+l

i . Note that with this information, an attacker can
directly forge valid MACs for any message that contains M as prefix (exactly like
the extension attacks against MD-based hash functions). If the round function
with the message is also invertible, we can continue to invert all the challenge
rounds and get Xk

i . This will allow us to recover some non trivial information
on the secret key K.

A general outline of the attack is as follows:

1. Find and detect slid pairs of messages
2. Recover the internal state
3. Uncover some part of the secret key or forge valid MACs

The padding is very important here : for the XOR sponge functions, an
appropriate padding can avoid slide attacks. Indeed, in that case, we require
M l = 0m×p to get a slid pair. This gives an explanation why the condition
M l �= 0m×p is needed for the indifferentiability proofs of XOR sponge functions.
However, for the truncated sponge function, a padding is ineffective to avoid
slide attacks.

3 Applications

3.1 The Grindahl Design

Grindahl is a new hash function introduced by Knudsen et al. in [22], that
fits our extended sponge framework. More precisely, it is an overwrite sponge
function. There are two concrete instantiations of the Grindahl hash function
family: a 256-bit and a 512-bit hash function proposed in the original Grindahl
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paper [22]. The parameters of these instantiations in our framework are defined
as follows:

Grindahl-256 [22]. Grindahl-256 is a 256-bit hash function with Nr = 4 and
Nc = 12. The rotation amounts are (ρ0, . . . , ρ3) = (1, 2, 4, 10).

Grindahl-512 [22]. Grindahl-512 is a 512-bit hash function with Nr = 8 and
Nc = 12. The rotation amounts are (ρ0, . . . , ρ7) = (1, 2, . . . , 8).

Note that the internal state of Grindahl can also be viewed as a matrix.
Therefore, we define Nr and Nc to be the number of rows and columns of p-bit
word respectively: we have Nr × Nc = c. For each instance of Grindahl we
have p = 8. The message chunk entering at each round can then be viewed as
one column, thus m = Nr.

For Grindahl the padding consists of 10- and length-padding:

1. 10-padding appends a “1”-bit to the message, followed by as many “0”-bits
as needed to complete the last message block.

2. Length-padding then appends the number of message blocks (not bits!) for
the entire padded message as a 64-bit value.

One effect of the 10-padding is that the last message block before the Length-
padding can be any value, except for the all-zero block. (Or equivalently, any
nonzero block B can be split up into an incomplete block R plus 10-padding:
B = R + P “10′′

. Note that R is 0 bit long if B = 1000 . . .0.)
A message M = M1|| . . . ||M l of 32-bit blocks M i in the case of Grindahl-

256, and an incomplete block M l, will be padded to Pad(M) = M1|| . . . ||M l +
P “10′′

1 ||M l+1||M l+2, where P “10′′

1 is the 10-padding. This padded message has
the following properties:

1. The last-but-two message block is not zero: M l + P “10′′

1 �= 032.
2. The final two message blocks contain the 64-bit integer l: (M l+1||M l+2) =

l. (From the Grindahl sample implementation, we conclude that the 32
least significant bits of the 64-bit value are stored in M l+2, while the high-
significant bits go into M l+1.)

Similarly for Grindahl-512, a message M = M1|| . . . ||M l of 64-bit blocks
M i, where M l is also incomplete, is padded to Pad(M) = M1|| . . . ||M l +
P “10′′

1 ||M l+1 has the following properties after padding:

1. The last-but-one message block is not zero: M l + P “10′′

1 �= 064.
2. The last message block contains the 64-bit integer l: M l+1 = l.

Most hash functions for variably-sized inputs iterate an underlying compression
function for fixed-size inputs. Grindahl is no exception. At the end, the output
will be the first n/(p×Nr) columns of of the final internal state. I.e., Grindahl

is a truncated sponge. Internally, Grindahl uses a state of (Nr × Nc) words
of p bit each. The compression function takes one m-word message block and
an (Nr × Nc)-word internal state as its input and generates new internal state
(again of the size (Nr ×Nc) words, of course), as its output.
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Regarding this compression function, Grindahl follows a general three-step
design strategy. Assume a m-word message block, which we write as M i and
a (Nr × Nc)-word internal state, which we write as a Nc tuple of Nr-words:
(X1, . . . , XNc) ∈ ({0, 1}p×Nr)Nc . The incorporation step which concatenates a
message block to the internal state is straightforward:

S : {0, 1}p×Nr × {0, 1}p×Nr×Nc → {0, 1}p×Nr+p×Nr×Nc ,

S(M i, (X1, . . . , XNc) = (M i, X1, . . . , XNc).

The (p × Nr + p × Nr × Nc)-bit output of the incorporating S is the extended
state (X0, . . . , XNc). The second step is a permutation over the extended state:

F : {0, 1}p×Nr+p×Nr×Nc → {0, 1}p×Nr+p×Nr×Nc ,

F (X0, . . . , XNc) = (Y 0, . . . , Y Nc).

F is a permutation based on Rijndael [13] primitives:

F(X0, . . . , XNc)
= MixColumns ◦ ShiftRows ◦ SubBytes ◦ AddConstant(X0, . . . , XNc).

MixColumns. Is a linear matrix multiplication of each state matrix column
with a constant vector. This transformation is defined as in the Rijndael spec-
ifications for the 256-bit version of Grindahl.

ShiftRows. This transformation cyclically shifts bytes a number of positions
along each row. Thus, the i-th row is rotated by ρi positions to the right.

SubBytes. The only non-linear part of the permutation, exactly defined as the
SubBytes function of Rijndael.

AddConstant. This function is a simple XORing of the state matrix with a
constant matrix M of the same size, where all bytes are zero except for one.

See [22] for a detailed description of Grindahl. The third operation is as
straightforward as the first one – the first p×Nr-bits of the (p×Nr+p×Nr×Nc)-
bit extended state are truncated away, to get a new p × Nr × Nc-bit internal
state (Y 1, . . . , Y Nc):

R: {0, 1}p×Nr+p×Nr×Nc → {0, 1}p×Nr×Nc , R(Y 0, . . . , Y Nc) = (Y 1, . . . , Y Nc).

See Figure 2 for a visual illustration of this design strategy. Note that the final
truncation in one iteration and the initial concatenation of the b-bit message
block in the next iteration together are tantamount to simply overwriting the
corresponding column of the extended internal state. The final truncation is
specified as

T: {0, 1}p×Nr+p×Nr×Nc → {0, 1}n, T(Y 0, . . . , Y Nc) = (Y 1, . . . , Y n/(p×Nr)).

Let α be the internal state matrix with Nc columns and Nr rows, while α̂
represents the extended internal state with Nc + 1 columns and Nr rows. For
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Fig. 2. The general design of the Grindahl compression function

a padded message M = M1|| . . . ||Md the Grindahl hash function does for
0 < i < d:

α ← R(P (S(M i, α)))

For the last message input Md
Grindahl performs α̂ ← P (S(Md, α)). The

truncation R is omitted after the last message input and finally 8 blank rounds
with no message input are performed. These rounds only consists of the P op-
eration on α̂. The final output remains after performing the output truncation
T , which leaves the n-bit output.

3.2 Slide Attacks on Grindahl-512

Find slid pairs of messages. Building the challenge that generates a slid pair
works as follows. We choose a message M1 = M0

1 ||M1
1 || . . . ||M l−1

1 ||M l
1, where

M l
1 is a non complete block which will be padded. The MAC therefore processes

Pad(K||M1) = K||M0
1 ||M1

1 || . . . ||M l−1
1 ||M l

1 + P “10”
1 ||PL

1

where P “10”
1 is the 10-padding to M l

1 and PL
1 is the one-block of the message

length. The value of PL
1 can be chosen by the attacker while modifying the mes-

sage length. For each M1 we build the message M2 = M0
1 ||M1

1 || . . . ||M l−1
1 ||M l

1 +
P “10”

1 ||R, where R is a random incomplete block. The MAC proceeds

Pad(K||M2) = K||M0
1 ||M1

1 || . . . ||M l−1
1 ||M l

1 + P “10”
1 ||R + P “10”

2 ||PL
2

and in some cases we have

Pad(K||M2) = K||M0
1 ||M1

1 || . . . ||M l−1
1 ||M l

1 + P “10”
1 ||PL

1 ||PL
2 .

The messages M1 and M2 only differ in one additional block at the end. A pair
(M1,M2) will be a slid pair with probability 2−64. Detecting a slid pair is quite
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Fig. 3. Detecting a slid pair of messages for Grindahl-512. Cells in dark gray mark
known bytes while cells in light gray mark unknown bytes. The inverse MixColumns
(MC−1) and the inverse ShiftRows (SR−1) are the only two operations which are
important for our analysis: AddConstant and SubBytes functions leave a known (re-
spectively unknown) bytes known respectively unknown). Therefore we prevent the
other operations.

simple. Let TA = A0, . . . , A7 and TB = B0, . . . , B7 be the query output (the
truncated final internal states A and B). Then the condition B = P (A) holds
for a slid pair only. We could not directly apply another blank round to A since
we only know TA and not A. However, TA and TB leave enough information
for detecting a slid pair. We can invert TB one blank round and compare the
resulting bytes with the bytes known from TA. Thus, we can compare 34 bytes
of TA with the known bytes obtained from inverting TB. In this way we can
detect a slide pair since one occurs among 264 pairs. Using the computation de-
scribed above we can filter 28·34 = 2272 false pairs. Figure 3 shows the backward
computation of one blank round.

Recover the internal state. A challenge (M1,M2) which produces a slid
pair (TA, TB) can be used to recover the final internal state A (corresponding
to the computation of M1) just before the final truncation. Since the columns
A8 to A12 are unknown, we have to recover 40 bytes. As shown in Figure 3,
we can directly recover 30 bytes from A by computing TB one blank round
backward, exactly as when we tried to detect slid pairs: we can fully invert the
MixColumns transformation for the eight first columns (where all the bytes are
known), then it is also very easy to invert ShiftRows, SubBytes and AddConstant
transformations. So, when looking at Figure 3, it is clear that the attacker can
directly get 30 unknown bytes from A. The remaining 10 unknown bytes can
be recovered in a different way. For each possibility among those bytes (28·10 =
280 possibilities), we invert all the blank rounds and check if the last added
word (the first encountered when computing backward) is PL

1 . Indeed, when
inverting the real internal state A, we surely come to the insertion of PL

1 and
this can be easily detected since we know this message block and since the
message insertion overwrite the first column of the internal state. Now we are
dealing with 280−64 = 216 possibilities only and we have to be careful, since
some bytes become undetermined, if we continue the backward computation. The
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undetermined bytes are those which are replaced by the inserted message word
during the message input step (due to the overwriting). However, we don’t need
them to discriminate among the 216 lasting possibilities and we can compute one
more round backward to check if we finally obtain the message word M l

1 +P “10”
1

inserted. This leaves us the complete internal state A.

Uncover some parts of the secret key or forge valid MACs. By knowing
the whole internal state A it is straightforward to invert the blank rounds. With
this information, we can directly generate new valid MACs for messages which
contain M1 as prefix: we just have to continue the computation of the hash
function by ourselves.

We can also try to invert the rounds where known message words are inserted.
Some parts of the internal state are undetermined because of the truncation when
adding message words as mentioned in the previous section. We can guess those
undetermined columns by only keeping those which lead to the good inserted
message words in the first column. This is equal to what we did above to recover
the final internal state. By trying all the possible values of the truncated column,
we can continue going backward and check which one leads to the known correct
values of the message blocks inserted a few rounds before. Some trials will lead
to wrong message blocks inserted and can be discarded. The one leading to the
good values have a good chance to be the real erased bytes. Thus, we can go
backward for all the known message words and recover the erased columns until
we have to stop this procedure when we reach the unknown secret key word.
The last unknown column which can be recovered is the column before inserting
M2

1 . Now, with all those informations we can recover 4 bytes from 8 of the
last unknown message block we encounter (the first when computing backward),
which is part of the secret key. The rest of the secret can be then computed
exhaustively (at a lower cost than brute force without slide attacks) or we can
use a trick2. Indeed, we know that the initial internal state is equal to zero
and one can accelerate the secret recovery with a meet-in-the-middle attack: we
compute forward from the known initial internal state and we compute backward
as we described before.

3.3 Slide Attacks on Grindahl-256

Applying the slide attack on Grindahl-256 is a little bit more difficult than on
the 512 bit version, since the message block size is of 32 bit an the padding adds
two additional blocks to the message. This makes it harder to control the message
words and to find a slid pair. We describe the slide attack on Grindahl-256 in
Appendix A.

4 Slide Attacks on Modified Versions of RadioGatún

We are able to use the presented technique to attack slightly modified versions
of RadioGatún [2]. There are two possible modifications. Either we change the
2 If the size of the key is not too big, we don’t even require to do any exhausive search.
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padding rule such that the last message block can also be an all zero input block.
Or we change the message input step such that the input block enters the state
via a replacement of the current state column. I.e., we turn RadioGatún from
an XOR sponge into an overwrite sponge. This modification is inspired by the
message input step of Grindahl.

Consider the first case. The padding rule requires the final message block
always to be non-zero, e.g., by applying the usual 10-padding. For an application
where the message length always happens to be a multiple of the block size,
this padding may appear to be moot. So consider an implementation without
padding. Now the final message block might be all-zero. This gives an easy
way to generate slid pairs (Mi,Mj) of messages – just take any Mi and set
Mj := (Mi||0) (Mi, concatenated by an all-zero message block). In this case,
slide attacks are straightforward. Given for example a MAC such as

H(K||Mi) = Z1
i , Z

2
i , Z

3
i , . . . , Zk

i and
H(K||Mi||M zero||M zero) = Z3

i , . . . , Zk
i , Z

k+1
i , Zk+2

i ,

where Zr
i represents the r-th output stream, one can easily forge the MAC

Z2
i , . . . , Z

k+1
i , for the message Mi||M zero.

For the second case (turning RadioGatún into an overwrite sponge), consider
a pair of messages Mi = M1

i || . . . ||Md
i and Mj = Mi||Md+1

j , with Mi being a
prefix of Mj and Mj being one block longer. Both final blocks Md

i and Md+1
j

being non-zero are slid with a probability of 2−p×m. It is easy to detect slid pairs
by comparing k − 1 of the output blocks. If the pair (Mi,Mj) is slid, then we
obtain:

H(K||Mi) = Z1
i , Z

2
i , Z3

i , . . . , Z
k
i and

H(K||Mi||Md+1
j ) = Z2

i , Z3
i , . . . , Z

k
i , Z

k+1
i

This shows that our slide attack can be used to distinguish some hash functions,
e.g. sponge-based one, from a random oracle if the designer do not take care to
avoid sliding properties of their hash functions.

Slide-like distinguishing attacks are also applicable for other schemes, i.e. a
modified version of PANAMA even leaves more non-trivial information of the
internal state than our attack on modified RadioGatún.

5 Possible Countermeasures and Conclusion

It only takes a negligible effort to defend hash functions from against slide at-
tacks. Hash function designers, like block cipher designers, must be aware of
possible slide attacks and be on guard for too much self-similarity in their con-
structions. For sponge-based hash functions, a simple patch would be to just
add a nonzero constant just before running the blank rounds and extracting the
hash value. Another option would be to marginally change the blank rounds.
E.g., Grindahl could be changed such that the blank rounds use different ro-
tation amounts (while maintaining the old rotation amounts for all the other
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rounds). Well-chosen padding rules also help. In the case of xor sponges, a good
padding even seems to suffice as a defense against slide attacks.

We have studied the applicability of slide attacks for sponge functions. These
are a classical tool for block cipher cryptanalysis, but have not been used for
hash function cryptanalysis so far. Our results indicate that slide attacks can be
a serious threat for sponge-based hash functions. If the hash function designer is
aware of slide attacks, we believe that it is easy to defend against slide attacks.
In our slide attacks on Grindahl and modified version of RadioGatún we
demonstrated the power of these attacks. Our attacks apply for both published
flavours of Grindahl, the 256-bit version and the 512-bit version. As far as we
know, this is the first cryptanalytic result for the 512-bit version.
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A A Slide Attack on Grindahl-256

A.1 Find Slid Pairs of Messages

Building the challenge that generates a slid pair works as follows. We choose a mes-
sage M1 = M0

1 ||M1
1 || . . . ||M l−1

1 ||M l
1, where M l

1 is a non complete block which will be
padded. The MAC therefore processes the hash input

Pad(K||M1) = K||M0
1 ||M1

1 || . . . ||M l−1
1 ||M l

1 + P “10”
1 ||P L1

1 ||P L2
1 ,

where P “10”
1 is the 10-padding to M l

1 and P L1
1 ||P L2

1 is the two-block of the message
length. Before building the second message, we want the condition

0n �= P L1
1 = P L2

1

to always hold for M1. Then, for each M1 we build the message M2 = M0
1 ||M1

1 ||
M2

i || . . . ||M l−1
1 ||M l

1+P “10”
1 ||R, where R is an incomplete block which, after 10-padding,

is the same as P L1
1 . As P L1

1 is nonzero, such an R exists. In this case, the hash input is

Pad(K||M2) = K||M0
1 ||M1

1 || . . . ||M l−1
1 ||M l

1 + P “10”
1 || R + P “10”

2 ||P L1
2 ||P L2

2

= K||M0
1 ||M1

1 || . . . ||M l−1
1 ||M l

1 + P “10”
1 || P L1

1 ||P L2
1 ||P L2

2

This holds because of the conditions fulfilled by P L1
1 and P L2

1 . In other words, M1

and M2 only differ in an additional block at the end. Such a pair (M1, M2) is slid with
a probability of 2−32. Detecting a slid pair is as simple as in the case of Grindahl-
512. Here also the condition B = P (A) holds for a slid pair only. TA leaves enough
information to compute column B4 by performing one blank round on TA. In this
way the output (TA, TB) of a challenge (M1, M2) can be checked for a value of B4

what we will expect for a slid pair. We can further check by using other columns than
B4, even if for them only a subspace of the potential solutions are determined by TA.
On the average, we need 231 pairs until we find a slid one. Thus, we need to make
about 232 function calls to obtain and detect a slid pair. Figure 4 shows the backward
computation of one blank round.

A.2 Recover the Internal State

A challenge (M1, M2) which produces a slid pair (TA, TB) can be used to recover the
final internal state A (corresponding to the computation of M1) just before the final
truncation. Since the columns A8 to A12 are unknown we have to recover 20 bytes.
We can directly recover 10 bytes from A by computing TB one blank round backward,
exactly as when we tried to detect slid pairs: we can fully invert the MixColumns
transformation for the eight first columns (where all the bytes are known), then it is
also very easy to invert ShiftRows, SubBytes and AddConstant transformations. So,
when looking at Figure 4, it is clear than the attacker can directly get 10 unknown
bytes from A. The remaining 10 unknown bytes can be recovered in a different way.
For each possibility among those bytes (28·10 = 280 possibilities), we invert all the
blank rounds and check if the last added word (the first encountered when computing
backward) is P L2

1 . Indeed, when inverting the real internal state A, we surely come
to the insertion of the block P L2

1 and this can be easily detected since we know this
message block and since the message insertion overwrite the first column of the internal
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Fig. 4. Detecting a slide pair of messages for Grindahl-256. Cells in dark gray mark
known bytes while cells in light gray mark unknown bytes. The inverse MixColumns
(MC−1) and the inverse ShiftRows (SR−1) are the only two operations which are
important for our analysis: AddConstant and SubBytes functions leave a known (re-
spectively unknown) bytes known respectively unknown). Therefore we prevent the
other operations.

state. We can continue to compute backward with the word P L1
1 even if some parts

of the internal state at this point becomes undetermined due to the truncation when
inserting the message words and thus we only have 248−32 = 216 possibilities. Finally,
we can continue to the message word M l

1 + P “10”
1 which leads to a recovery of the full

internal state A.

A.3 Using Only Short Messages

Note that the above attack required 0n �= P L1
1 = P L2

1 , i.e., the most significant and the
least significant word of the length field of (K||M1) must the same – and nonzero. Thus,
the smallest possible choice for P L1

1 = P L2
1 is P L1

1 = P L2
1 = 1, implying a message

length (for (K||M), i.e., including the key) of 1 + 232 blocks. If dealing with such long
messages is an issue, we can modify the attack so use short messages. The modified
attack goes as follows.

We choose a message M1 = M0
1 ||M1

1 || . . . ||M l−1
1 ||M l

1 + P “10”
1 , where the final block

M l
1 is incomplete. The MAC processes the hash input

Pad(K||M1) = K||M0
1 ||M1

1 || . . . ||M l−1
1 ||M l

1||P L1
1 ||P L2

1 ,

with a length-field P L1
1 ||P L2

1 . Note that P L2
1 holds the 32 least significant bits, while

P L1
1 holds the 32 most significant bits. We assume short messages, thus P L1

1 = 0n.
This time, we want the MAC to process the hash input

Pad(K||M2)

= K||M0
1 ||M1

1 || . . . ||M l−1
1 ||M l

1 + P “10′′
1 ||P L1

1 ||S + P “10′′
2 ||P L1

2 ||P L2
2

= K||M0
1 ||M1

1 || . . . ||M l−1
1 ||M l

1 + P “10′′
1 ||P L1

1 ||P L2
1 ||P L1

2 ||P L2
2 ,

Thus, M1 and M2 only differ in two additional blocks at the end. Accordingly, we
choose

M2 = M0
1 ||M1

1 || . . . ||M l−1
1 ||M l

1 + P “10′′
1 ||P L1

1 ||S.
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As P L2
1 is nonzero, an incomplete block S with S + P “10′′

2 = P L2
1 does exist.

Now we define M1 and M2 as a slid-by-two pair, if, when processing the shorter
message M1, the first two empty rounds behave exactly the last two nonempty rounds
when processing M2. This happens with a probability of (2−32)2, and on the average,
we need 263 pairs to find slid-by-two pair.

A pair of messages is slid-by-two, if and only if the two corresponding states A and
B satisfy B = P (P (A)). Detecting slid-by-two pairs from T (A) and T (B) and then
recovering the internal state A is slightly more complicated, compared to “ordinarily”
slid-by-one pairs, but still feasible.

A.4 Uncover Some Parts of the Secret Key or Forge Valid MACs

By knowing the whole internal state A it is straightforward to invert the blank rounds.
With this information, we can directly generate new valid MACs for messages which
contain M1 as prefix: we just have to continue the computation of the hash function
by ourselves.

We can also try to invert the rounds where known message words are inserted. Some
parts of the internal state are undetermined because of the truncation when adding
message words. We do not known what was in the first column before erasing it with
a message word, except for the first undetermined column which is equal to P L2

1 as
described above. But we can guess those undetermined columns by only keeping those
which lead to the good inserted message words in the first column. This is equal to
what we did above to recover the final internal state. By trying all the possibles values
the truncated column, we can continue going backward and check which one leads to
the known correct values of the message blocks inserted a few rounds before. Some
tries will lead to wrong message blocks inserted and can be discarded. The one leading
to the good values have a good chance to be the real erased bytes. Thus, we can go
backward for all the known message words and recover the erased columns until we
have to stop this procedure when we reach the unknown secret key word. The last
unknown column which can be recovered is the column before inserting M3

1 . Now, with
all those informations we can recover 1 bytes from 4 of the last unknown message
block we encounter (the first when computing backward), which is part of the secret
key. The rest of the secret can be then computed exhaustively (at a lower cost than
brute force without slide attacks) or we can use a trick3. Indeed, we know that the
initial internal state is equal to zero and one can accelerate the secret recovery with a
meet-in-the-middle attack: we compute forward from the known initial internal state
and we compute backward as we described before.

3 If the size of the key is not too big, we don’t even require to do any exhausive search.
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Abstract. Although it is well known that all basic private-key cryp-
tographic primitives can be built from one-way functions, finding weak
assumptions from which practical implementations of such primitives ex-
ist remains a challenging task. Towards this goal, this paper introduces
the notion of a constant-query weak PRF, a function with a secret key
which is computationally indistinguishable from a truly random function
when evaluated at a constant number s of known random inputs, where
s can be as small as two.

We provide iterated constructions of (arbitrary-input-length) PRFs
from constant-query weak PRFs that even improve the efficiency of pre-
vious constructions based on the stronger assumption of a weak PRF
(where polynomially many evaluations are allowed).

One of our constructions directly provides a new mode of operation
using a constant-query weak PRF for IND-CPA symmetric encryption
which is essentially as efficient as conventional PRF-based counter-mode
encryption. Furthermore, our constructions yield efficient modes of op-
eration for keying hash functions (such as MD5 and SHA-1) to obtain
iterated PRFs (and hence MACs) which rely solely on the assumption
that the underlying compression function is a constant-query weak PRF,
which is the weakest assumption ever considered in this context.

1 Introduction

1.1 Minimizing Assumptions: Constant-Query Weak PRFs

Most cryptographic security proofs are reductions: Under the assumption that a
primitive P exists, the existence of a second primitive P ′ is shown by means of a
concrete construction that uses an implementation of P (usually in a black-box
manner) to implement P ′. For example, P ′ could be a pseudorandom function
(PRF), i.e. a function with a secret key which is computationally indistinguish-
able from a truly random function under arbitrary (adaptive) access. These
functions are central primitives as they provide a direct solution to the problems
of provably secure symmetric encryption and message authentication.
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Ideally, one would like the underlying primitive P to be as weak as possible, as
in practice it is more likely that an efficient and secure candidate is successfully
designed. Also, it is a safe practice to assume that already existing cryptographic
functions (such as block ciphers or compression functions of hash functions) only
fulfill weaker properties than what they have been originally designed for. Some-
times, however, reductions to weak assumptions turn out to be inefficient and
involve large security losses (cf. [14] for a typical example), and hence design-
ers of cryptographic systems are frequently confronted with a trade-off between
the strength of the underlying assumption and the complexity of the resulting
construction.

With the aim of proposing new weak assumptions for the purpose of
building symmetric-key primitives, this paper introduces the notion of constant-
query weak pseudorandom functions: Informally, for some constant s, a func-
tion F : {0, 1}κ × {0, 1}m → {0, 1}n with κ < s · n is an s-query weak PRF
(s-WPRF) if F (K, ·) (under a secret key K) is indistinguishable from a ran-
dom function when evaluated at s independent known random inputs.1 This no-
tion weakens significantly the regular concept of a weak pseudorandom function
(WPRF) [19], where indistinguishability for polynomially many random inputs
is required. We point out that a WPRF is by itself already much weaker than
a PRF, as it possibly exhibits several non-random properties (such as having
weak inputs or being commutative, i.e. F (k, F (k′, x)) = F (k′, F (k, x))). On top
of this, an s-WPRF allows for even more structure: For instance, any s + 1 dis-
tinct inputs x1, . . . , xs+1 and the corresponding outputs F (k, x1), . . . , F (k, xs+1)
under a secret key k may satisfy an easily verifiable relation with no impact on
the pseudorandomness of the function.

In this work, we address the problem of using s-WPRFs to construct PRFs.
Since s-WPRFs imply the existence of one-way functions, a straightforward con-
struction can be obtained using the results of [13, 14]. However, the inefficiency
and the security loss of the resulting reduction make this approach unsuitable
for any practical use, even if the underlying s-WPRF is both highly efficient and
secure. For this reason, this paper deals with the question of finding efficient
constructions of PRFs from s-WPRFs: Surprisingly, we are able to provide con-
structions which are more efficient than existing reductions of PRFs to WPRFs,
while only requiring the underlying function to be an s-WPRF, for s as low as
two. Furthermore, our constructions are iterated and can process inputs of ar-
bitrary input length. This structure makes them well suited to be derived from
properly keyed hash functions with very weak compression functions.

The next two sections are devoted to discussing previous work in the contexts
of building PRFs from WPRFs and of iterated PRFs and MACs, respectively,
and to relating it to our results.

1 The assumption that s-WPRFs exist implies the existence of one-way functions, since
the mapping (k, r) �→ F (k, r) is easily verified to be one-way as long as κ < s · n.
For κ ≥ s · n, such functions can be constructed unconditionally, e.g. using s-wise
independent functions. (However, optimal unconditional constructions with κ = s ·n
are not known for all parameters m).
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1.2 Construction of PRFs from Weak PRFs

The first construction of a PRF from a WPRF is due to Naor and Reingold [19],
and a further construction was later proposed by Maurer and Sjödin [17]. Both
assume2 a length-preserving underlying function F : {0, 1}n × {0, 1}n → {0, 1}n

(which can be obtained e.g. from a block cipher) and realize a keyed function
mapping �-bit strings to n-bit strings (for a fixed input length �).

The Naor-Reingold Construction [19]. The construction NR� takes an �-
bit input (with � being a power of two) and its secret key consists of 2� n-
bit strings k1,0, k1,1, . . . , k�,0, k�,1. The computation on input x = (x1, . . . , x�)
proceeds as follows: First, we define y

(log �+1)
i := ki,xi for all i = 1, . . . , �. Then,

for all j = log �, . . . , 1 we compute y
(j)
i := F (y(j+1)

2i−1 , y
(j+1)
2i ) for all i = 1, . . . , 2j−1

and finally output y(1)
1 . In other words, the elements of the key corresponding to

the individual input bits are chosen as the values of the � leaves of a complete
binary tree which is evaluated in a bottom-up fashion by computing the value of
each inner vertex as F (yl, yr), where yl and yr are the values of its children, and
finally outputting the value of the root. Hence, one evaluation of the construction
needs �

2 + �
4 + · · ·+ �

� = �−1 calls to the underlying function F . A more involved
construction (which we call NRs,�) by the same authors uses a key consisting
of s n-bit values and improves the total number of calls to roughly �/ log s per
evaluation, but only accepts � and log s to have the form 2j + 2 for some j ≥ 0.
(For both constructions, other input lengths can be achieved through appropriate
paddings.)

The IC-Construction [17]. The construction IC� takes a (κ + 2n)-bit key
consisting of three values k1 ∈ {0, 1}κ and r, r′ ∈ {0, 1}n. (The value r′ can even
be made public.) It first precomputes the values ki := F (ki−1, r

′) for all i =
2, . . . , �. Furthermore, on an �-bit input x = (x1, . . . , x�), it sets y0 := r, and
for all j = 1, . . . , �, computes yj := F (kj , yj−1) if xj = 1, and yj := yj−1
else. Finally, it outputs y�. The construction IC� requires w(x) calls to F when
evaluated on input x, where w(x) ≤ � is the hamming weight of x. If memory
restrictions do not allow storage of the keys k2, . . . , k�, their values have to be
computed at each evaluation and thus the construction requires (�− 1) + w(x)
calls to F per evaluation, which can be as high as 2�− 1.

A central remark is that in order for all the aforementioned constructions to
be secure PRFs for adversaries issuing q queries, the underlying WPRF must
also be secure when evaluated at q random inputs. (The concrete security bounds
for these constructions are discussed in the full version.) Moreover, in this paper
we will focus on iterated constructions of PRFs and MACs where candidates for
WPRFs may arise from (keyed) compression functions of hash functions, which
have the form F : {0, 1}κ × {0, 1}n → {0, 1}κ (where e.g. κ = 160 and n = 512
for SHA-1). The above constructions can all be extended in a straightforward

2 In fact, the construction of [19] relies on an intermediate primitive, called a synthe-
sizer, but a WPRF F : {0, 1}n × {0, 1}n → {0, 1}n is in fact a synthesizer.
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way3 to handle such functions as well, but for the same input length � the
number of calls would increase considerably if n > κ (roughly, by a factor of �n

κ �
with respect to the case n = κ, which is e.g. 4 for SHA-1). This holds even
if we just want κ-bit outputs. Hence, this calls for a construction for which
the condition n > κ does not have a negative impact on the efficiency of the
construction.

1.3 Assumptions in Iterated MACs and PRFs

Bellare et al. [2] proposed two efficient message authentication codes called
HMAC and NMAC, obtained by appropriately keying an iterated4 hash func-
tions H : {0, 1}κ × {0, 1}∗ → {0, 1}κ (where the first input is the initialization
value) as HMAC(k1‖k2, x) := H(IV, k2‖H(IV, k1‖x)) (for a fixed known IV
and |k1|, |k2| both equal to the block length of H) and as NMAC(k1‖k2, x) :=
H(k2, H(k1, x)), respectively.5 (Note that HMAC only requires black-box usage
of H .) Even though alternative designs of MACs exist (such as CBC-MAC [5] and
UMAC [8] to name a few), these constructions have enjoyed widespread usage
due to the large availability of hash function implementations (both in hardware
and in software). From the theoretical standpoint, security of HMAC/NMAC has
been first proved [2] under the assumption that the compression function ofH is a
PRF (when keyed through the chaining value), and that H is weakly collision re-
sistant, i.e. it is hard to find two distinct messages x, x′ with H(K,x) = H(K,x′)
for a secret key K (given oracle access to H(K, ·)). Bellare [1] subsequently
proved HMAC/NMAC to be an arbitrary-input-length PRF under the sole as-
sumption of the compression function being a PRF. We point out that the cas-
cade construction by Bellare et al. [3] can also be seen as a way to key a hash
function with a single key to obtain a PRF under the same assumption, at the
expense of using a prefix-free encoding of the inputs. More recently, Fischlin [12]
presented security proofs for HMAC/NMAC (when used as a MAC rather than
as a PRF) relying on non-malleability properties of the underlying compression
function. A further recent line of research [15, 22] has been concerned with in-
creasing the efficiency of the HMAC/NMAC constructions by imposing slightly
stronger requirements on the underlying compression function (i.e. pseudoran-
domness under mild types of related-key attacks).

The bottom line is that in order to deploy one of these constructions in prac-
tice, it is relevant to assess the level of confidence one is willing to put in the given
compression function, but in view of continuous cryptanalytic achievements this
is far from being a simple task. This issue motivates us to take steps in the

3 One can simply base the above constructions on the function F ′ : (k1‖ . . . ‖kc, r) �→
F (k1, r)‖ . . . ‖F (kc, r) (possibly chopping some bits) where c = �n/κ� (the function
F ′ can be shown to be a WPRF). Note that more involved range-extension techniques
(such as those from [11, 17, 20]) do not work here, as they require a length-preserving
function beforehand.

4 i.e. based on the Merkle-Damg̊ard construction [10, 18], cf. also Section 2.
5 Practical implementations usually consider single-keyed versions which, for simplic-

ity, are not discussed here.
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opposite direction: We raise the question of constructing iterated MACs (and
PRFs) with very low requirements on the given compression function, while
guaranteeing limited impact on the performance when compared with construc-
tions with stronger underlying security assumptions. In particular, we consider
constructions which only require the underlying compression function to be an s-
WPRF (for s as small as two).

1.4 Contributions and Outline of This Paper

This paper initiates the study of constant-query WPRFs, and in particular in-
vestigates the problem of constructing efficient PRFs from these primitives.

– In Section 3, we present our first construction (called the RC-construction)
of an arbitrary-input-length PRF from any s-WPRF F : {0, 1}κ×{0, 1}n →
{0, 1}κ (for some constant s ≥ 2). As a special case of our construction, one
obtains a fixed-input-length PRF which, for input length �, requires ≈ �

log s
calls to F per evaluation, hence improving on earlier constructions despite
the weaker underlying assumption of an s-WPRF.

– Careful instantiation of the RC-construction yields efficient counter-mode
symmetric encryption relying on the sole assumption of an s-WPRF (for
some s ≥ 2), while requiring (on average) only 1 + 1

s−1 calls to F per κ-bit
block of encrypted data and minimal storage overhead. Furthermore, the RC-
construction directly yields constructions of efficient PRGs from s-WPRFs.

– Section 4 presents a further construction, called the nested RC-construction,
which improves the throughput of the RC-construction for long messages
making a novel use of pairwise independence, while still solely relying on the
underlying function being an s-WPRF.

– Finally, Section 5 addresses the problem of deriving our constructions by
keying iterated hash functions (such as SHA-1 or MD5) whose compression
function is an s-WPRF: If minimal (and natural) regularity properties are
additionally guaranteed by the compression function, the keying can be done
in an entirely black-box way. Furthermore, this is the weakest assumption
on the compression function for which modes of operations leading to secure
PRFs and MACs have ever been considered.

The basic tools needed in the rest of the paper are reviewed in Section 2.

2 Preliminaries

2.1 Notational Conventions

Throughout this paper, for a set U , we denote as Un, U∗, and U+ the sets of
sequences s = (u1, u2, . . . , u|s|) of elements of U of length |s| = n, of arbitrary
length with the empty sequence ε, and of arbitrary length |s| without the empty
sequence ε, respectively. (For the case U = {0, 1} we usually talk of strings.) The
notation s‖s′ stands for the concatenation of sequences s and s′, and ur is the
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sequence (u, u, . . . , u) consisting of r repetitions of the symbol u ∈ U . Given a
two-argument function F : U × V → Y we denote by F (u, ·) the function V →
Y obtained by fixing the first input to u. Finally, AO(r) denotes the (oracle)
algorithm A which runs on input r with access to the oracle O. Algorithms are
in general randomized, and throughout this paper we fix some RAM model of
computation for these algorithms. In particular, an algorithm A is said to have
running time t if the sum of its description length and the worst-case number of
steps it takes (counting oracle queries as single steps), taken over all randomness
values, all inputs, and all compatible oracles, is at most t.

2.2 Cryptographic Functions

Pseudorandom Functions (PRFs). For some set X (generally X = {0, 1}� or
X = {0, 1}∗) we consider keyed functions of the form F : {0, 1}κ×{0, 1}ρ×X →
{0, 1}n, where the first and the second parameters are called the public and the
private part of the key,6 respectively. The third parameter is the input of F . We
define the PRF advantage of D in distinguishing F from random as the quantity

AdvPRF
F (D) :=

∣∣∣P[DF (K,R,·)(R) = 1
]
− P

[
DRX,n(R) = 1

]∣∣∣,
where K and R are independent and uniformly chosen from {0, 1}κ and {0, 1}ρ,
respectively, whereas RX ,n is a random function mapping elements of X to n-bit
strings, i.e. an oracle which associates with each x ∈ X a uniformly-distributed
independent n-bit string. (Whenever X is finite, this is equivalent to a ran-
domly chosen function X → {0, 1}n.) For notational convenience we introduce
the shorthand AdvPRF

F (t, q) to indicate the best advantage taken over all dis-
tinguishers with running time t and making at most q queries. Informally, F is
a PRF if AdvPRF

F (t, q) is “negligible” for all t and q polynomial in some (un-
derstood) security parameter.7 We often consider the case X = {0, 1}∗: Such a
PRF is called an arbitrary-input-length PRF (AIL-PRF), and for this case we
define AdvPRF

F (t, q, �) as the maximal advantage taken over all distinguishers
with running time t making at most q queries each of length at most �.

Message Authentication Codes (MACs). A keyed function F : {0, 1}κ ×
{0, 1}ρ × {0, 1}∗ → {0, 1}n is a MAC if it is “unpredictable” under a secret key.
Formally, for an adversary A, we define its MAC advantage as

AdvMAC
F (A) := P[AF (K,R,·)(R) = (x, y) ∧ F (K,R, x) = y ∧ x new],

where K and R are random independent κ- and ρ-bit strings, respectively,
and “x new” means that x was not queried by A to the given oracle. We de-
fine AdvMAC

F (t, q, �) to be the best advantage of an adversary with running time t
6 We take this unconventional point of view as the constructions of this paper will

allow part of the key to be publicly revealed with no harm to their security, and
there are settings where this is a useful feature.

7 If one considers both parts of the key as a single secret key, this implies that F is a
PRF according to the usual definition considered in the literature.
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issuing at most q − 1 queries to F (K,R, ·), each of length at most � (and the
message x output has also length at most �). It is a well-known fact that a secure
AIL-PRF is also a good MAC, namely AdvMAC

F (t, q, �) ≤ AdvPRF
F (t′, q, �) + 1

2n ,
where t ≈ t′.

Weak Pseudorandom Functions (WPRFs). This notion weakens a PRF
to only withstand attacks where the function is queried on independent random
known inputs. (Sometimes, this is called a known-plaintext attack (KPA) in the
literature.) Formally, for some function g, we let Sg be the oracle that returns
an ordered pair (r, g(r)) for a fresh random r each time it is invoked. Then, for
a keyed function F : {0, 1}κ×{0, 1}m → {0, 1}n we define the WPRF advantage
of the distinguisher D in distinguishing F from random as

AdvWPRF
F (D) :=

∣∣∣P[DSF (K,·)
= 1] − P[DSRm,n

= 1]
∣∣∣ ,

where Rm,n is a random function mapping m-bit strings to n-bit strings and K

is a random κ-bit secret key.8 Additionally AdvWPRF
F (t, q) stands for the best

advantage taken over all distinguishers with running time t making at most q
queries. For a constant s, we call a function F : {0, 1}κ × {0, 1}m → {0, 1}n

with κ < s · n an s-weak pseudorandom function (s-WPRF) if AdvWPRF
F (t, s) is

negligible for all polynomial running times t, and we simply call it a weak pseu-
dorandom function (WPRF) if AdvWPRF

F (t, q) is negligible for all polynomially
bounded t and q.

Cascade and Iterated Hash Functions. For F : {0, 1}κ × {0, 1}n →
{0, 1}κ, it is convenient to define its cascade F ∗ : {0, 1}κ × ({0, 1}n)+ → {0, 1}κ

as the function which, on input k ∈ {0, 1}κ and (x1, . . . , xλ) ∈ ({0, 1}n)+

(with x1, . . . , xλ ∈ {0, 1}n) first computes y0 := k and yi = F (yi−1,mi) for
all i = 1, . . . , λ, and subsequently outputs yλ. In this work we also consider
iterated hash functions [10, 18] H : {0, 1}∗ → {0, 1}κ with underlying compres-
sion function F : {0, 1}κ × {0, 1}n → {0, 1}κ (n is generally called the block
length) and initialization value IV ∈ {0, 1}κ which are defined such that ev-
ery input x ∈ {0, 1}∗ is first padded as (x1, . . . , xλ) ∈ ({0, 1}n)+ and subse-
quently the value F ∗(IV, (x1, . . . , xλ)) is output. In general, the last block xλ

contains some padding bits as well as the length of the message (the so-called
MD-strengthening) to preserve collision resistance of the compression function.
Examples of such functions are those from the MD and the SHA families.

Universal Hashing. Let H : {0, 1}κ × {0, 1}∗ → {0, 1}n, and let δ : N → R+.
We say that H is δ-almost universal (δ-AU) if

pCOLL
H (x, x′) := P[H(K,x) = H(K,x′)] ≤ δ(max{|x|, |x′|})

for all distinct x, x′ ∈ {0, 1}∗, where K is a randomly chosen κ-bit key. We stress
that we extend the standard notion [9, 21] to deal with arbitrary input lengths
8 In contrast to the definitions of PRFs and MACs, here we only consider a fully-secret

key.
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by letting δ be a function of the message length. The following lemma extends
to the arbitrary-input-length case the well-known fact that δ-AU hash functions
can be used to extend the domain of PRFs. (We omit its proof which follows the
lines of the fixed-input-length case.)

Lemma 1. Let H : {0, 1}κ × {0, 1}∗ → {0, 1}m be δ-AU, and let F : {0, 1}κ ×
{0, 1}ρ×{0, 1}m → {0, 1}n be a keyed function. Define HF : {0, 1}κ+κ′×{0, 1}ρ×
{0, 1}∗ → {0, 1}n such that HF (k‖k′, r, x) := F (k′, r,H(k, x)). Then we have

AdvPRF
HF (t, q, �) ≤ AdvPRF

F (t′, q) + 1
2 · q2 · δ(�),

where t′ = t+ q · tH(�), with tH(�) being the time needed to evaluate H on inputs
of length at most �.

3 The Randomized Cascade Construction

3.1 Description and Security of the Construction

In this section, we present the first iterated construction of this paper. It is
reminiscent of the cascade construction of Bellare et al. [3], but only requires the
underlying function F : {0, 1}κ×{0, 1}n → {0, 1}κ to be an s-WPRF with s ≥ 2
being a parameter of the construction. As in [3], the construction relies on the
concept of a prefix-free encoding, which we briefly introduce.

Prefix-free Encodings. For a set X , the efficiently computable function
ENC : X → {1, . . . , s}+ (i.e. outputting a non-empty sequence of elements of
{1, . . . , s}) is a prefix-free encoding scheme if for all distinct x, x′ ∈ X the se-
quence ENC(x) is not a prefix of the sequence ENC(x′). (In particular, ENC must
be injective.) If X = {0, 1}∗, a prefix-free encoding scheme is e.g. obtained by
encoding canonically the input as a sequence in {1, . . . , s − 1}∗, and then ap-
pending the symbol s to the sequence. Other variants exist, but it is generally
desirable that ENC operates on-line, i.e. the encoding is progressively output
while the input bits are provided, without the need to know the entire input
before starting the encoding process. If X = {0, 1}� for some fixed �, then prefix-
freeness is achieved “for free” by encoding all inputs as sequences in {1, . . . , s}∗
of equal length � �

log2 s�.

Construction. The randomized cascade construction with parameter s and
input set X (where usually either X = {0, 1}∗ or X = {0, 1}� for a fixed �)
for the function F and prefix-free encoding scheme ENC, denoted RCF

s,X ,ENC,
is a mapping {0, 1}κ × {0, 1}sn × X → {0, 1}κ: It takes a key consisting of a
κ-bit private part k and an sn-bit long public part, which is interpreted as the
concatenation of s n-bit strings r1, . . . , rs. On input x ∈ X , the κ-bit output is
computed through the following two steps:

1. Compute ENC(x) = (m1, . . . ,mλ) ∈ {1, . . . , s}+;
2. Output F ∗(k, (rm1 , . . . , rmλ

)).
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Fig. 1. The construction RCF
2,ENC

As an example, the construction is depicted in Figure 1 for the special case s = 2.
For notational convenience, we use the shorthands RCF

s,ENC for X = {0, 1}∗ (and
omit the prefix-free encoding when it is generally understood from the context),
as well as RCF

s,� for X = {0, 1}� (where the canonical encoding described above
is used). We also generically refer to the construction as the RC-construction.

Efficiency Comparisons. A fair comparison between the RC-construction
and previous results can be undertaken for the fixed-input-length construc-
tion RCs,� only. In the length-preserving case (κ = n), the construction RC�,s is
comparable to (for the case s = 2) the NR- and the IC-constructions in terms
of calls to F , and outperforms them for s > 2. Furthermore, we obtain the
same space-time trade-off of the NRs,�-construction, but we allow for all possible
values of s. Our construction also limits the effects of possibly very long input
paddings in the NR- and NR-constructions. The efficiency improvement of our
construction is however more evident in the case where n > κ, as even if s = 2,
the number of calls to F of (the extended versions of) all other constructions is
larger at least by a factor �n

κ � (the factor is e.g. 4 when instantiating F with
the compression function of SHA-1). Finally, because of the iterated structure,
efficient sequential evaluation of RCs,� requires (beside sufficient storage for the
key material) κ bits only to store the “chaining value”.

Security. In order to give precise security bounds for the RC-construction, it is
convenient to think of the prefix-free encoding ENC in terms of a
(possibly infinite) directed tree T = (V , E) with vertex set V consisting of all
sequences (m1, . . . ,mj) which are a prefix of ENC(x) for some input x (in particu-
lar, including the encodings themselves and the empty sequence ε). Furthermore,
for each (m1, . . . ,mj) ∈ V there exists a directed edge to (m1, . . . ,mj,mj+1) for
all mj+1 ∈ {1, . . . , s} such that (m1, . . . ,mj+1) ∈ V . Hence, it is easy to see
that ε is the root of the directed tree and its leaves are exactly the encodings of
the inputs. We provide two examples of such trees in Figure 2.

Every sequence of queries to the RC-construction defines a subtree of T con-
sisting of the paths from the root to the encodings of the queries: For notational
convenience, we define the shorthand L(x1, . . . , xq), for q inputs x1, . . . , xq, to be
the amount of inner vertices (i.e. vertices which are not leaves) of the sub-tree
induced by the evaluations of x1, . . . , xq. It is easy to verify that for RCs,� we
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have L(x1, . . . , xq) ≤ 1 + q(� �
log s� − 1). Also, for the case where the inputs are

strings with arbitrary length, we define (always with respect to the understood
encoding) L(q, �) := maxx1,...,xq :|xi|≤� L(x1, . . . , xq).

Consequently, one can see an interaction with the RC-construction as a process
where the tree T = (V , E) defined by ENC is traversed and κ-bit values are
assigned to all visited vertices: While the root ε is assigned a random κ-bit
value, the value of each visited vertex (m1, . . . ,mj) is set to F (z, rmj ), with z
being the value of the parent vertex (m1, . . . ,mj−1). A query with input x is
answered with the value at the corresponding leaf ENC(x). By the definition
of an s-WPRF, it is easy to see that evaluating F under some given (pseudo-
)random secret key at s independent random inputs produces s pseudorandom
outputs,9 and hence intuitively the above process sets the values of all visited
vertices to pseudorandom values (and in particular this holds for the leaves).
However, to formalize this intuition, we have to show that it is indeed possible
to recycle the same values r1, . . . , rs for each invocation of F .

The following theorem formally captures the main security statement for
the RC-construction (for a general input set X ).

Theorem 1. Let s ≥ 2, let X be a set, and let ENC : X → {1, . . . , s}+ be a
prefix-free encoding scheme. Furthermore, let F : {0, 1}κ×{0, 1}n → {0, 1}κ. For
all L and all distinguishers D with running time t and with L(x1, x2, . . .) ≤ L
for all possible query sequences x1, x2, . . . ∈ X , there exists a distinguisher D′ =
D′(D) such that

AdvPRF
RCF

s,X,ENC
(D) ≤ L ·

[
AdvWPRF

F (D′) + s2 · 2−(n+1)
]
,

where D′ makes exactly s queries and has running time t′ = t + O(L · tF ), with
tF being the time needed to evaluate F .

In Appendix A we provide a precise description of the distinguisher D′, and refer
the reader to the full version of this paper for the complete proof.

We remark that the term s22−(n+1) is negligible, as s is assumed to be con-
stant. Combined with the above observations on L, the theorem directly yields
the following security bounds for the specialized variants of the RC-construction:

AdvPRF
RCF

s
(t, q, �) ≤ L(q, �) ·

[
AdvWPRF

F (t′, s) + s2 · 2−(n+1)
]
,

AdvPRF
RCF

s,�
(t, q) ≤

[
1 + q

(⌈
�

log s

⌉
− 1

)]
·
[
AdvWPRF

F (t′′, s) + s2 · 2−(n+1)
]
,

with t′ = t + O(L(q, �) · tF ) and t′′ = t + O((1 + q (��/ log s� − 1)) · tF ).
The most important observation is that all variants of the RC-construction

require F to be only an s-WPRF. A minor positive aspect of the randomized
cascade construction (if compared with other constructions) is the absence of
any q-dependent birthday-like term in the above inequalities. Furthermore, if
9 Except in the case where two of the random inputs r1, . . . , rs collide, which happens

with small probability only.
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Fig. 2. Example trees associated with prefix-free encodings. Left: Encoding mapping
inputs a, b, c, d, and e to sequences (1, 1), (1, 2), (2, 1), (2, 2, 1), and (2, 2, 2), respec-
tively. Right: Encoding CTRENC used for efficient counter-mode evaluation.

we assume that F is indeed secure against q queries, the security of the RCs,�-
construction is comparable to the one of the IC�-construction if we assume (in
fact, very optimistically) that the best WPRF-distinguishing advantage grows
linearly in the number of queries, i.e. AdvWPRF

F (t, q) = Θ(q · AdvWPRF
F (t, s)).

Larger Output Sizes. It is easy to increase the output size of the RC-
construction (if needed) with the addition of a minor number of invocations
of F per evaluation, which is independent of the input length: To obtain a con-
struction RC

F
: {0, 1}κ × {0, 1}ns × X → {0, 1}φκ with output size φ · κ, we

fix φ distinct strings a1, . . . , aφ ∈ X such that L(a1, . . . , aφ) is minimal. Then,
given key with private part k and public part r1, . . . , rs, on input x ∈ X , to com-
pute RC

F
(k, r1‖ . . . ‖rs, x) we first compute k′ := RCF (k, r1‖ . . . ‖rs, x) and fi-

nally output RCF (k′, r1‖ . . . ‖rs, a1)‖ . . . ‖RCF (k′, r1‖ . . . ‖rs, aφ). Security of this
construction can be inferred by the fact that evaluating it at input x accounts to
evaluating at inputs (x, a1), . . . , (x, aφ) a variant of the RC-construction with in-
put set X ×{a1, . . . , aφ} and prefix-free encoding ENC′(x, a) := ENC(x)‖ENC(a).

3.2 Efficient Encryption and PRGs from the RC-Construction

This section addresses two important applications of the RC-construction. For
lack of space, we omit the proofs of the technical claims (which are mostly
corollaries of Theorem 1 or are based on standard techniques).

Symmetric Encryption from the RC-Construction. Given a PRF F :
{0, 1}κ × {0, 1}m → {0, 1}n (in practice usually realized by a block cipher) one
obtains an efficient stateful IND-CPA10 encryption scheme for arbitrary-length
messages by using F in so-called counter-mode, i.e. given a secret key k, we keep
a counter ctr (initially 0), and the plaintext x (padded such that |x| is a multiple
of n) is encrypted as [ctr, x⊕ (F (k, ctr)‖F (k, ctr + 1)‖ . . . ‖F (k, ctr + |x|/n− 1))]

10 Informally, a (stateful or randomized) encryption scheme (E,D) is IND-CPA se-
cure [4, 16] if for a secret key K no polynomial-time adversary can distinguish the
encryptions E(K, x0) and E(K, x1) for any two equally long messages x0, x1 of its
choice even if it can obtain adaptively chosen encryptions E(K, x) for arbitrary x’s.
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(and ctr is increased by |x|/n), where integers are canonically mapped to m-
bit strings. Note in particular that we need one call to F for each n-bit block
of encrypted data. Variants of randomized stateless counter-mode encryption
(where one chooses a fresh random counter at every encryption instead of keeping
a state) based on any WPRF F : {0, 1}n × {0, 1}n → {0, 1}n were presented
in [11, 17]. As with a full PRF, these schemes only require one call per n-bit
block of encrypted data, but the underlying WPRF must be secure against as
many queries as the amount of encrypted message blocks.

One can substantially weaken the assumption to an s-WPRF by using the RC-
construction in stateful counter mode (with any encoding scheme). However, a
dramatic increase of efficiency is achieved using a prefix-free encoding scheme
CTRENC : N → {1, . . . , s}+ tailored at this mode of operation, defined as

CTRENC(i) := 1i div s−1‖(2 + (imod s− 1)).

The tree arising from this encoding scheme is illustrated in Figure 2: In particu-
lar, it is clear that the sequence of values RCF

s,CTRENC(0),RCF
s,CTRENC(1), . . . can

be computed very efficiently in an iterated way using only κ+sn bits of memory
and needing approximately 1+ 1

s−1 calls to F per κ-bit block of encrypted data.
Furthermore, the values r1, . . . , rs can be chosen publicly by one communicating
party (provided an authenticated channel is available), hence reducing the cost
of key establishment to the generation of the κ-bit private part of the key. Se-
curity against (adaptive) chosen-ciphertext attacks based on any s-WPRF can
be then obtained by standard techniques appending a MAC of the ciphertext [7]
(e.g. using any of the PRF constructions presented in this paper).

Pseudorandom Generators from s-WPRFs. Recall that a pseudorandom
generator (PRG) is a length-expanding function G : {0, 1}κ → {0, 1}m such that
G(K) is computationally indistinguishable from a random m-bit string under
a random K. Surprisingly, constructing a good PRG from a WPRF (or an s-
WPRF) turns out not to be a straightforward task: In contrast to PRFs, a
WPRF F does not generally allow to find few “good” inputs x1, . . . , xt such
that the mapping k �→ F (k, x1)‖ . . . ‖F (k, xt) is a PRG. However, one can use
this approach employing the RC-construction as the underlying PRF: For any t
fixed inputs x1, . . . , xt (t > 2) the mapping GF : {0, 1}sn+κ → {0, 1}sn+tκ such
that GF (r1, . . . , rs, k) equals

r1‖ · · · ‖rs‖RCF
s (k, r1‖ . . . ‖rs, x1)‖ · · · ‖RCF

s (k, r1‖ . . . ‖rs, xt)

is a PRG if F is an s-WPRF. (The order of the strings in the concatenation is
irrelevant.) Note that an important advantage is that the strings r1, . . . , rs can
be output as well. For example, given a 2-WPRF F : {0, 1}n×{0, 1}n → {0, 1}n,
the mapping G

F
: {0, 1}3n → {0, 1}6n such that G

F
(k, r0, r1) is set to

r0‖F (F (k, r0), r0)‖F (F (k, r0), r1)‖F (F (k, r1), r0)‖F (F (k, r1), r1)‖r1 (1)

is a length-doubling PRG which requires 6 calls to F . In particular, 3 calls are
necessary in order to input only one both halves of the output. This improves a
construction given in [17], which needed 3 and 4 calls, respectively.
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An alternative approach to building a PRF from an s-WPRF F would consist
of first constructing a length-doubling PRG G from F , and subsequently using
the well-known GGM-construction [13] to build a PRF with a κ-bit key and �-bit
inputs by outputting, on input x = (x1, . . . , x�−1, x�) ∈ {0, 1}� and key k, the
κ-bit value Gx�

(Gx�−1(· · ·Gx1(k) · · · )), where Gi(k) for i = 0, 1 gives the first
and the second half of the output of G, respectively. However, it is not hard to
see that all constructions following this approach turn out to be less efficient
than using the RC-construction directly (e.g. using the PRG of Equation 1 one
needs 3 calls of F per input bit).

4 The Nested Randomized Cascade Construction

Even though the RC-construction can be practically efficient in special instan-
tiation scenarios discussed earlier, its throughput is a major bottleneck in the
case where the construction is used as a PRF (or a MAC) which is invoked at
arbitrary inputs with variable lengths. Furthermore, the prefix-free encoding can
be a limiting factor in the arbitrary-input-length case. This section presents a
construction with better efficiency for long messages (i.e. longer than κ bits) and
with no prefix-freeness requirements. Its core ingredient is a novel use of pairwise
independence.

Pairwise-Independent Mappings. Recall that a mapping11 M : {0, 1}κ ×
{0, 1}m → {0, 1}n is pairwise independent if the values M(K,x) and M(K,x′)
are independent and uniformly distributed for all distinct x, x′ ∈ {0, 1}m under a
random κ-bit key K. Most pairwise-independent mappings satisfy the following
property, which will be central in our construction.

Definition 1. A pairwise-independent mapping M : {0, 1}κ×{0, 1}m → {0, 1}n

is key programmable if there exists a (possibly randomized) algorithm SAMPLE
which on input (x, x′, y, y′) (where possibly x = x′, y = y′) returns a uniformly
chosen element from the set {k |M(k, x) = y,M(k, x′) = y′}.

If M is key programmable, the following two random experiments are equivalent
to sampling a random κ-bit key K: (i) For some m-bit string x, sample Y as a
uniform random n-bit string and K := SAMPLE(x, x, Y, Y ); and (ii) For n-bit
strings x �= x′, sample Y, Y ′ as independent random n-bit strings and K :=
SAMPLE(x, x′, Y, Y ′). Both the last two sampling strategies are used to ensure
that M(K,x) = Y (and possibly M(K,x′) = Y ′) for values Y, Y ′ ∈ {0, 1}n

which, although uniform and independent, are provided externally.
We provide two examples of key-programmable pairwise-independent map-

pings.

Example 1. Let M be such that given k1, k2 ∈ {0, 1}n and the input x ∈ {0, 1}n,
the output M(k1‖k2, x) equals k1⊕(k2(x), where ⊕ and ( are addition and mul-
tiplication of n-bit strings interpreted as elements of the extension field GF (2n).
11 We use the word mapping, rather than hash function, to stress the fact that m = n

may also hold.
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The unique k1‖k2 such that M(k1‖k2, x) = y and M(k1‖k2, x
′) = y′ (with x �=

x′) can efficiently be found solving the corresponding system of two equalities.
Is only a single constraint M(k1‖k2, x) = y given, one chooses a random n-bit
string k2 and sets k1 := (k2 ( x) ⊕ y.

Example 2. An alternative is the mapping M ′ whose (nm + n)-bit key consists
of an (m× n)-binary matrix A and of a n-dimensional binary column vector b,
and on input x the output is Ax+b, where x is interpreted as an m-dimensional
column vector, and addition and multiplications are modulo 2. The function M ′

needs a larger key than M described above, but avoids finite-field multiplications.

Construction. The main idea of the nested RC-construction (called NRC, for
short) is to combine an iterated phase where blocks are processed at a higher rate
(but which satisfies a property weaker than pseudorandomness) with a second
phase where the RCs,κ-construction (for fixed input length κ and a parameter s)
is invoked on the output of the first phase (with independent key material).

More precisely, let M : {0, 1}κ′ × {0, 1}m → {0, 1}n be a key-programmable
pairwise-independent mapping and let F : {0, 1}κ × {0, 1}n → {0, 1}κ be the
given compression function. The construction PIFM : {0, 1}κ+κ′ × {0, 1}∗ →
{0, 1}κ takes a key k‖k′, where k ∈ {0, 1}κ and k′ ∈ {0, 1}κ′

. On input x ∈
{0, 1}∗, it pads12 x as (x1, . . . , xλ), where x1, . . . , xλ ∈ {0, 1}m, and outputs
F ∗(k, (M(k′, x1), . . . ,M(k′, xλ))).

Moreover, given the additional parameter s, we define the nested construc-
tion NRCF

M,s : {0, 1}2κ+κ′ × {0, 1}sn × {0, 1}∗ → {0, 1}κ such that

NRCF
M,s(k1‖k2‖k′, r1‖ . . . ‖rs, x) := RCF

s,κ(k1, r1‖ . . . ‖rs,PIFM (k2‖k′, x)).

It is easy to verify that in order to process a message x, the construction needs
totally

⌈
|x|+1

m

⌉
+ � κ

log s� calls to the underlying function F .
It is tempting to increase the throughput of the construction by choosing a

mapping M with m much larger than n. However, all known constructions of
pairwise-independent hash functions (in particular key-programmable ones) re-
quire keys twice as long as the input (rather than the output), and hence such an
approach would entail a much longer key. In fact, we believe the length-preserving
mapping M presented above to be a viable practically efficient solution: This
special case of the construction is depicted in Figure 3.

Security. The following theorem precisely quantifies the security of the NRC-
construction. We give only a compact statement, as well as an overview of the
proof. The complete proof and the concrete reduction arising from it are given
in the full version.

12 According to the canonical padding which pads a string x to have length being a
multiple of m by appending a 1 and sufficiently many 0’s: The resulting padded
string consists hence of

⌈
|x|+1

m

⌉
m-bit blocks.
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x1 x2 xλ

r1, . . . ,rs

rm�κ/ logs�rm1

m�κ/ log s�m1ka

x

kb

k2 k1

F F F F F

Fig. 3. The construction NRCF
M,s for the special case M(ka‖kb, x) = (ka � x) ⊕ kb

Theorem 2. Let M : {0, 1}κ′ × {0, 1}m → {0, 1}n be a key-programmable
pairwise-independent mapping, and F : {0, 1}κ×{0, 1}n → {0, 1}κ. For all s ≥ 2
and for all t, q, and � we have

AdvPRF
NRCF

M,s
(t, q, �) ≤

(
1 + q

(
� κ

log s� − 1
))

·
(
AdvWPRF

F (t′, s) + s2 · 2−(n+1)
)

+
⌈

�+1
m

⌉
· q2 ·

(
AdvWPRF

F (t′′, 2) + 2−n
)

+ q2 · 2−(κ+1),

where t′ = t + O(q( �
m + κ

log s) · tF ) and t′′ = O
( 2�

m · tF
)
, with tF being the time

needed for an evaluation of F .

The core of the proof consists of showing that whenever F is a WPRF for two-
query adversaries, the PI-construction is δ-AU for a suitable function δ to be
computed below. In the following, given two inputs x, x′ with corresponding
padded strings (x1, . . . , xλ) and (x′

1, . . . , x
′
λ′ ) (where without loss of generality

λ < λ′), let λ∗ be maximal with the property that x1 = x′
1, . . . , xλ∗ = x′

λ∗ (in
particular, λ∗ := 0 if x1 �= x′

1), and define the quantity Λ(x, x′) as λ+λ′−λ∗−1 if
(x1, . . . , xλ) is not a prefix of (x′

1, . . . , x
′
λ′), and as λ+1 otherwise. In particular,

note that Λ(x, x′) ≤ λ + λ′ ≤ 2 max{λ, λ′} ≤ 2� �+1
m � if |x|, |x′| ≤ �.

The following lemma provides a precise upper bound on the collision proba-
bility of the PI-construction in terms of the WPRF distinguishing advantage of
a distinguisher Dx,x′ (which in particular only depends on x and x′) for F . We
refer the reader to the full version of this paper for its proof.

Lemma 2. For all distinct inputs x, x′ ∈ {0, 1}∗, there exists a two-query dis-
tinguisher Dx,x′ such that

pCOLL
PIFM

(x, x′) ≤ Λ(x, x′) ·
(
AdvWPRF

F (Dx,x′) + 2−n
)

+ 2−κ,

where Dx,x′ has running time O (Λ(x, x′) · tF ).

In particular, given some �, let t′′ = O
( 2�

m · tF
)

be the maximal running time of
the distinguisher Dx,x′ taken over all x, x′ with |x|, |x′| ≤ �. We define δ(�) :=
2
⌈

�+1
m

⌉
· (AdvWPRF

F (t′′, 2) + 2−n) + 2−κ. The function PIFM is δ-universal by
Lemma 2, and this implies Theorem 2 using Lemma 1 and Theorem 1.
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5 Black-Box Keying of Iterated Hash Functions

The iterated structure of the RC- and the NRC-constructions makes compression
functions ideal candidates for instantiating the underlying s-WPRF. In general,
however, we may be constrained to only have black-box access to an implemen-
tation of an iterated hash function H : {0, 1}∗ → {0, 1}κ (cf. Section 2) with
direct access neither to the initialization value IV nor to the underlying com-
pression function F : {0, 1}κ × {0, 1}n → {0, 1}κ. To overcome this obstacle,
we encode (as in HMAC) an n-bit key as the first block of the input to the
hash function H . More precisely, given the prefix-free encoding scheme ENC :
{0, 1}∗ → {1, . . . , s}+, we consider the construction HRCF

s,ENC which takes a key
with private part k ∈ {0, 1}n and public part r1, . . . , rs ∈ {0, 1}n, and on input x
with ENC(x) = (m1, . . . ,mλ) outputs the value

HRCH
s,ENC(k, r1‖ . . . ‖rs, x) := H(k‖rm1‖ . . . ‖rmλ

),

and analogously we define HRCs,� for inputs of fixed-length � (using the canonical
encoding to the base s). Furthermore, with M : {0, 1}κ′×{0, 1}m → {0, 1}n being
a key-programmable pairwise-independent mapping, we consider the construc-
tion HNRCH

M,s which takes a key with private part k1, k2 ∈ {0, 1}n, k′ ∈ {0, 1}κ′

and public parts r1, . . . , rs. On input input x (padded as (x1, . . . , xλ)) it outputs

HNRCH
M,s(k1‖k2‖k′, r1‖ . . . ‖rs, x) :=

HRCH
s,κ(k1, r1‖ . . . ‖rs, H(k2‖M(k′, x1)‖ . . . ‖M(k′, xλ))).

In order to lift the security statements of the RC- and the NRC-constructions to
both the HRC- and HNRC-constructions, the assumption that F is an s-WPRF
is not sufficient: First, it is necessary that the κ-bit output F (IV,K) is computa-
tionally indistinguishable from a uniformly-distributed random string of length κ
(under a secret random K); This guarantees that the chaining value obtained
after the first evaluation of F is pseudorandom and can be used as the “key”
for the RC- or the PI-construction. A further problem is due to the fact that
we generally cannot enforce the last n-bit block processed by F to be random
because of the padding introduced by H , and this issue should not destroy the
pseudorandomness of the outputs. To our rescue, however, comes the fact that
each such block is processed keying F with a fresh pseudorandom value: It is
hence enough to additionally guarantee that for an arbitrary fixed n-bit string x
and a random secret κ-bit string K, the string F (K,x) is computationally in-
distinguishable from a random κ-bit string.

We stress that both these extra properties are very weak requirements: In
fact, a good compression function should satisfy them even unconditionally. It
is sufficient, for example, that F (IV, ·) and F (·, x) (for all x ∈ {0, 1}n) are
all (nearly-)regular functions. (We refer the reader to [6] for a discussion on
regularity-properties of hash functions.). With these two additional assumptions
on the compression function F of H , the security bounds of the RC and the NRC-
construction can be lifted to their black-box counterparts. For lack of space, we
omit the proofs, which are very similar to the ones of the original constructions.
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6 Conclusions and Open Problems

We have shown that efficient arbitrary-input-length PRFs (and consequently
MACs and encryption schemes) can be constructed under very weak assump-
tions, i.e. weak PRFs where security holds only for a limited number of queries.
Our results provide new insights into the property of weak pseudorandomness.

A natural open question is whether there exist constructions of PRFs from
WPRFs which take explicit advantage of more secure WPRFs (i.e. tolerating
many queries) to achieve more efficient constructions than what we propose
and what was considered in the literature (e.g. processing linearly-many bits
per invocation even for short inputs). We conjecture, however, that this is not
possible. A further direction arising from our work consists of finding further
examples of cryptographic primitives where restricting adversaries in terms of
queries leads to interesting phenomena such as those observed in this paper for
weak pseudorandomness.
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A Description of D′ in the Proof of Theorem 1

We define L + 1 hybrid experiments H0, H1, . . . , HL where D is given random in-
puts r1, . . . , rs and interacts which a (randomized) oracle X → {0, 1}κ that keeps track
of all vertices of the subtree of T induced by the queries of D. In particular, it assigns
to all internal vertices v of this subtree increasing integer values l(v) according to the
order in which they are visited for the first time, with l(ε) := 0. Furthermore, it asso-
ciates κ-bit values z(v) with all visited vertices: Initially only z(ε) is defined and set
to a random value. In Hi an oracle query x ∈ X (with ENC(x) = (m1, . . . , mλ))
by D is answered by looking for the highest λ∗ such that z(m1, . . . , mλ∗) is de-
fined and for all j = λ∗ + 1, . . . , λ assigning to z(m1, . . . , mj) a fresh random value
if l(m1, . . . , mj−1) < i and F (z(m1, . . . , mj−1), rmj ) otherwise. Finally, z(m1, . . . , mλ)
is returned to D as the oracle’s output. Clearly, H0 behaves as the experiment where
D interacts with the RC-construction, whereas HL answers all queries of D randomly.

For all i = 0, . . . , L− 1 one then constructs a distinguisher Di for SF (k,·) and SRn,κ

which first issues s queries to the given oracle, obtaining s pairs (r1, y1), . . . , (rs, ys)
and subsequently simulates the interaction of D with Hi, except that z(m1, . . . , mj) is
set to ymj whenever l(m1, . . . , mj−1) = i. Finally, the distinguisher D′(D) chooses a
random i ∈ {0, . . . , L − 1} and runs Di.

We refer the reader to the full version for the concrete analysis of the distinguishing
advantage of D′.
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Abstract. In an oblivious transfer (OT) protocol, a Sender with mes-
sages M1, . . . , MN and a Receiver with indices σ1, . . . , σk ∈ [1, N ] interact
in such a way that at the end the Receiver obtains Mσ1 , . . . , Mσk with-
out learning anything about the other messages and the Sender does not
learn anything about σ1, . . . , σk. In an adaptive protocol, the Receiver
may obtain Mσi−1 before deciding on σi. Efficient adaptive OT protocols
are interesting as a building block for secure multiparty computation and
for enabling oblivious searches on medical and patent databases.

Historically, adaptive OT protocols were analyzed with respect to a
“half-simulation” definition which Naor and Pinkas showed to be flawed.
In 2007, Camenisch, Neven, and shelat, and subsequent other works,
demonstrated efficient adaptive protocols in the full-simulation model.
These protocols, however, all use standard rewinding techniques in their
proofs of security and thus are not universally composable. Recently,
Peikert, Vaikuntanathan and Waters presented universally composable
(UC) non-adaptive OT protocols for the 1-out-of-2 variant, in the static
corruption model using certain trusted setup assumptions. However, it is
not clear how to preserve UC security while extending these protocols to
the adaptive k-out-of-N setting. Further, any such attempt would seem
to require O(N) computation per transfer for a database of size N . In
this work, we present an efficient and UC-secure adaptive k-out-of-N
OT protocol in the same model as Peikert et al., where after an initial
commitment to the database, the cost of each transfer is constant. Our
construction is secure under bilinear assumptions in the standard model.

1 Introduction

Oblivious transfer (OT) was introduced by Rabin [31] and generalized by Even,
Goldreich and Lempel [19] and Brassard, Crépeau and Robert [8]. It is a two-
party protocol, where a Sender with messages M1, . . . ,MN and a Receiver with
indices σ1, . . . , σk ∈ [1, N ] interact in such a way that at the end the Receiver
obtains Mσ1 , . . . ,Mσk

without learning anything about the other messages and
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the Sender does not learn anything about σ1, . . . , σk. Naor and Pinkas were the
first to consider an adaptive setting, OTN

k×1, where the Receiver may obtain
Mσi−1 before deciding on σi [28]. Efficient OT schemes are very important. OT4

1

is a key building block for secure multi-party computation [21, 25, 34]. OTN
k×1

is a useful and interesting tool in its own right, enabling oblivious databases for
applications such as medical record storage and patent searches [29].

Developing efficient adaptive protocols appears to be a more difficult and in-
volved process than the non-adaptive protocols. Indeed, even finding the right
security definition has proven challenging. Historically, many OT constructions
were analyzed under a “half-simulation” definition, where the Sender and Re-
ceiver’s security are described by a combination of simulation and game-based
definitions. Naor and Pinkas [28] showed that schemes analyzed under this def-
inition may admit practical attacks on the Receiver’s privacy. To address this,
Camenisch, Neven and shelat [10] and subsequently Green and Hohenberger [22]
proposed efficient and fully-simulatable OTN

k×1 protocols under bilinear assump-
tions. Each of these protocols achieve the optimal total communication cost of
O(N +k) with reasonable constants. Unfortunately, their security proofs use ad-
versarial rewinding, and thus do not imply security under concurrent execution.

Recently, Lindell [26] showed how to achieve efficient and fully-simulatable
non-adaptive OT2

1 under the DDH, Nth residuosity and quadratic residuosity
assumptions, as well as the assumption that homomorphic encryption exists.
Simultaneously, Peikert, Vaikuntanathan and Waters [30] proposed several non-
adaptive, but universally composable OT2

1 protocols based on DDH, quadratic
residuosity and lattice assumptions. While both of these works add to our col-
lective knowledge for non-adaptive OT, they do not shed much light on how to
achieve efficient adaptive protocols. Indeed, Lindell points out that the adaptive
case is considerably harder [26].

The general framework used in [26, 30] (where the Receiver chooses the en-
cryption keys) seems inherently at odds with allowing efficient adaptive schemes.
Each transfer requires O(N) work for the Sender, whereas this can be constant
in our protocols. Even more alarming, it isn’t clear how (without killing the effi-
ciency and perhaps the UC security of [30]) a Sender could convince the Receiver
that he is not changing the database values with each request. This problem of
ensuring a consistent database gets even worse when multiple Receivers are con-
sidered, as we do in Section 5.

Our Results. In this work, we take a different approach to constructing OT
protocols, which allows them to be simultaneously efficient, adaptive, universally
composable and globally consistent. We summarize what is known about OTN

k×1
protocols in Figure 1. Let us describe some highlights.

1. Universal Composability: The Universal Composability framework [13] al-
lows for the design of concurrent and composable cryptographic protocols,
which are important properties in any practical deployment of an oblivious
database. Canetti and Fischlin showed that OT cannot be UC-realized with-
out trusted setup assumptions such as the existence of a Common Reference
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Protocol Rounds Communication Assumption
Half Simulation:

NP99 [28] �k log N + 1/2 – Sum Consistent Synthesizers + �-round OT2
1

CT05 [18] O(k) + 1/2 O(N) Decisional DH (in ROM)
Full Simulation:

CNS07 [10] 4k + 1/2 O(N) y-Power Decisional DH + q-Strong DH
CNS07 [10] O(k) + 1/2 O(N) Unique blind signature (in ROM)
GH07 [22] k + 1/2 O(N) Decisional Bilinear DH (in ROM)

UC (FCRS-hybrid):
This work (§4) k + 1/2 O(N) SXDH + DLIN + q-Hidden LRSW

Fig. 1. Survey of efficient, adaptive k-out-of-N Oblivious Transfer protocols

String (CRS) [15]. This is formally referred to as the FCRS-hybrid model,
and is assumed by the constructions of Peikert et al. [30] as well as those in
this work. As in [30], we work in a static corruption model.

2. Efficiency: Our protocol is practical. For a database of N objects, the initial-
ization phase requires O(N) communication cost, and each transfer phase
requires only constant cost, for reasonable constants. In contrast, simply
repeating a OTN

1 scheme (such as [30]) k times would require O(N) com-
munication cost for each transfer plus the additional work required for the
Sender to convince the Receiver that he isn’t changing the database values
dynamically. Moreover, the message space of our protocol is a group element
(so at least 160 bits), whereas the quadratic residuosity and lattice-based
schemes of [30] have one-bit message spaces. We note, however, that the
DDH-based scheme of [30] allows for multiple bit messages.

3. Model and Assumptions: We focus on protocols secure in the standard model.
Our construction can be implemented assuming SXDH [2, 5, 24, 32], Decision
Linear [5], and q-Hidden LRSW (a non-interactive variant of the LRSW
assumption [27], for which we give a generic group proof in the full version of
this work [23].) We note that our decisional assumptions, SXDH and Decision
Linear, are much more simple than the q-Power Decisional Diffie-Hellman
assumption used in the (non-UC) adaptive OT of Camenisch et al. [10].
In the full version, we also provide a second construction that is secure in
symmetric groups (i.e., where SXDH does not hold) under an alternative set
of hardness assumptions. See Figure 1 for more.

Intuition behind the Construction. Oblivious Transfer protocols can be
roughly divided into two categories. Let’s restrict our attention to non-adaptive
OTN

1 for the moment. In approach (1), which is used by [19, 26, 30, 31], the
Receiver transmits a collection of specially-formed encryption keys to the Sender,
who encrypts each message and returns the N ciphertexts to the Receiver. The
protocol is secure provided that the encryption keys are formed such that a
Receiver is able to decrypt at most one of the resulting ciphertexts. In approach
(2), which is used by [10, 18, 22] and this work, the Sender encrypts the message
collection under keys of her own choosing, and— in some interactive protocol
with the Receiver— helps to decrypt one ciphertext.

While both approaches can be used to implement adaptive OT in theory, the
first approach requires that the Sender generate a new set of ciphertexts at each
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transfer stage (for each receiver), requiring at least O(N · k) cost. Even worse,
the Sender might be able to maliciously change the database between transfers
and present different versions of the database to different receivers.

The latter approach is much better suited for the adaptive case. A single
database can be committed to and then each decryption can be performed in
constant computational and communication cost, for a total O(N + k) cost.
This approach is taken by the fully-simulatable protocols of [10], which both use
rewinding in their simulations to (1) simulate proofs and (2) extract knowledge.1

An appealing naive approach to realizing UC-secure adaptive OT would be
to modify the efficient standard-model protocol of Camenisch et al. [10] by sim-
ply replacing rewinding-based proofs with the non-interactive proof techniques
of Groth and Sahai [24]. Unfortunately, this is non-trivial for two reasons. First,
the Groth-Sahai techniques provide broad support for non-interactive, witness in-
distinguishable proofs of algebraic assertions in bilinear groups, but only provide
non-interactive, zero-knowledge proofs for a restricted class of algebraic assertions.
Unfortunately, the proof statements required by [10] fall outside of this class, and
it does not seem easy to rectify this problem. Secondly, the protocol of [10] requires
some form of extraction (e.g., extracting the chosen index from the adversarial
Receiver or extracting the secret encryption keys from the adversarial Sender) for
proofs containing elements of Zp; unfortunately, Groth-Sahai proofs of knowledge
are f -extractable (but not fully extractable), where only some one-way function of
the witness, f(w), can be extracted (e.g., gw) and not the witness w itself. Dealing
with this limitation would necessitate substantial changes to the CNS protocol.

Instead, our construction starts from scratch. While we follow the “assisted
decryption” framework of the CNS protocol, we are able to do so without the
need for strong q-based decisional assumptions. We instead base the security of
the ciphertexts in our scheme on the Decision Linear assumption [5]. Finally,
since the Groth-Sahai proofs have not yet been shown to be either simulation-
sound or UC in general, we develop techniques that permit UC simulation (even
in the advanced case where multiple receivers interact with a single sender).

2 Definitions

Notation. By OTN
k (resp., OTN

k×1), we denote a non-adaptive (resp., adaptive)
k-out-of-N oblivious transfer protocol. Let

c≈ denote computational indistin-
guishability, as defined in [13].

Adaptive k-out-of-N Oblivious Transfer. OTN
k×1 protocols consist of two

phases: Initialization and Transfer. In the Initialization phase, the Sender com-
mits to the input database M1, . . . ,MN . Subsequently, the Sender and Receiver
1 Along the same lines, the half-simulation protocols of [20, 28] use a form of oblivious

pseudorandom function evaluation (OPRF) to encrypt and obliviously decrypt the
message database. Unfortunately, the evaluation protocols described in those works
appear vulnerable to selective-failure attacks, and the modifications necessary to
achieve UC security (or full simulation) seem substantial.
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engage in up to k Transfers. During the ith Transfer, the Receiver adaptively
selects a message index σi ∈ [1, N ] and engages in a protocol such that it obtains
Mσi (or ⊥ if the protocol fails) and nothing else, while the Sender learns nothing
about σi. The simulation-based nature of the security definition we use ensures
that protocol failures must occur independently of the message index σi chosen
by the Receiver (capturing the strong selective-failure blindness property [10].)

Universally Composable Security. As in [30], we work in the standard UC
framework with static corruptions, where all parties are modeled as p.p.t. inter-
active Turing machines. Security of protocols is defined by comparing the proto-
col execution to an ideal process for carrying out the desired task. More formally,
there is an environment Z whose task is to distinguish between two worlds: ideal
and real. In the ideal world, “dummy parties” (some of whom may be corrupted
by the ideal adversary S) interact with an ideal functionality F . In the real world,
parties (some of whom may be corrupted by the real world adversary A) interact
with each other according to some protocol π. We refer to Canetti [13, 14] for a
fuller description, as well as a definition of the ideal world ensemble IDEALF ,S,Z
and the real world ensemble EXECπ,A,Z . We use the established notion of a
protocol π securely realizing an ideal functionality F as:

Definition 1. Let F be a functionality. A protocol π UC-realizes F if for any
adversary A, there exists a simulator S such that for all environments Z,

IDEALF ,S,Z
c≈ EXECπ,A,Z .

Canetti and Fischlin showed that OT cannot be UC-realized without a trusted
setup assumption [15]. Thus, as in [16, 30], we assume the existence of an honestly-
generated Common Reference String (crs), and work in the so-calledFCRS-hybrid
model. The functionality is parameterized by a distribution D and a set P of re-
cipients. For our purposes, P will include the OT Sender and Receiver only. Here
the environment learns about the reference string from the adversary, and thus
the simulator can set up a string with “trapdoor information”, etc.

Figure 2 describes the FCRS functionality and Figure 3 describes the FN×1
OT

functionality.
We briefly mention that there are techniques for designing and analyzing

multiple OT protocols which use a single reference string; i.e., a multi-session
extension. One might worry that if multiple protocols now share some joint
state, then they can no longer be analyzed separately and then composed later.
Fortunately, this is addressed by universal composition with joint state (JUC) [17]
and could be done in our case. A second issue with sharing the reference string
is that we make no guarantee about the security of protocols which use the
same reference string in ways other than those specified by the OT protocol,
and here we explicitly assume that the crs is only available to certain parties.
This is at odds with the notion that the crs is a “global” entity, however, there
are strong impossibility results for UC-realizing OT in a setting where the crs is
available to everyone (including the environment) and can no longer be crafted
by the simulator. There are models, such as the augmented CRS functionality
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Functionality FD,P
CRS

Upon receiving input (sid, crs) from party P , first verify that p ∈ P ;
else ignore the input. If there is no value r recorded, then choose and
record r ← D. Finally send output (sid, crs, r) to P .

Fig. 2. Ideal functionality for the common reference string [14]

Functionality FN×1
OT

FN×1
OT proceeds as follows, parameterized with integers N, � and running

with an oblivious transfer Sender S, a receiver R and an adversary S .
– Upon receiving a message (sid, sender, m1, . . . , mN ) from S, where

each mi ∈ {0, 1}�, store (m1, . . . , mN).
– Upon receiving a message (sid, receiver, σ) from R, check if a

(sid, sender, . . . ) message was previously received. If no such mes-
sage was received, send nothing to R. Otherwise, send (sid, request)
to S and receive the tuple (sid, b ∈ {0, 1}) in response. Pass (sid, b)
to the adversary, and: If b = 0, send (sid, ⊥) to R. If b = 1, send
(sid, mσ) to R.

Fig. 3. Functionality for adaptive Oblivious Transfer, based on the OT2
1 definition

from [16]

FACRS [12], which overcome these impossibility results, but we do not explore
these advanced UC issues with respect to our OT construction in this work.

3 Preliminaries

Bilinear Groups. Let BMsetup be an algorithm that, on input 1κ, outputs the
parameters for a bilinear mapping as γ = (p,G1,G2,GT , e, g ∈ G1, g̃ ∈ G2),
where g generates G1 and g̃ generates G2, the groups G1,G2,GT each have
prime order p, and e : G1 × G2 → GT .
Symmetric External Diffie-Hellman Assumption (SXDH) [2, 5, 24, 32]:
Let BMsetup(1κ) → γ = (p,G1,G2,GT , e, g, g̃). The SXDH assumption states
that the Decisional Diffie-Hellman problem is hard within both G1 and G2.

Groups where SXDH holds is one of the three settings for Groth-Sahai proofs [24].

Decision Linear Assumption (DLIN) [5]: Let BMsetup(1κ) → (p, G1, G2,
GT , e, g, g̃). For all p.p.t. adversaries Adv, the following probability is strictly
less than 1/2 + 1/poly(κ):

Pr[a, b, c, d $← Zp; f ← gc; f̃ ← g̃c;h ← gd; h̃ ← g̃d;

z0 ← ha+b; z1
$← G1; d ← {0, 1} : Adv(γ, g, g̃, f, f̃ , h, h̃, ga, f b, zd) = d].
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Note that this is a weaker asymmetric version of the original DLIN assumption
of Boneh, Boyen and Shacham [5], which was set in symmetric groups.

q-Hidden LRSW Assumption: Let BMsetup(1κ) → γ = (p, G1, G2, GT , e,
g, g̃). For all p.p.t. adversaries Adv, the following probability is strictly less than
1/poly(κ):

Pr[s, t $← Zp; S̃ ← g̃s, T̃ ← g̃t; ∀i ∈ [1 . . . q], xi, yi
$← Zp, bi ← gyi , b̃i ← g̃yi ;

A ← Adv(γ, S̃, T̃ , {b1, b
s+x1st
1 , bx1

1 , bx1t
1 , gx1 , b̃1}, . . . , {bq, b

s+xqst
q , b

xq
q , b

xqt
q , gxq , b̃q}) :

A = (a1, a2, a3, a4, a5, a6) ∧ x /∈ {x1, . . . , xq} ∧ x ∈ Z∗
p ∧ a1 ∈ G1∧

a2 = as+xst
1 ∧ a3 = ax

1 ∧ a4 = axt
1 ∧ a5 = gx ∧ e(a1, g̃) = e(g, a6)].

Related formulations of the above assumption in an oracle-setting, where the
xi values are chosen dynamically by Adv, are the LRSW assumption which was
introduced by Lysyanskaya et al. [27] and the Strong LRSW assumption of Ate-
niese et al. [1]. We eliminate the oracle and instead give q random tuples, which
are also slightly changed. In the full version of this work [23], we show that the
above assumption admits a proof in Shoup’s generic group model [33].

3.1 Groth-Sahai Proofs

The Groth-Sahai proof system [24] permits a variety of efficient non-interactive
proofs of the satisfiability of one or more pairing product equations. For variables
{X}1...m ∈ G1, {Y}1...n ∈ G2 and constants {A}1...n ∈ G1, {B}1...m ∈ G2, ai,j ∈
Zp, and tT ∈ GT , these equations have the form:

n∏
i=1

e(Ai,Yi)
m∏

i=1

e(Xi,Bi)
m∏

i=1

n∏
j=1

e(Xi,Yj)ai,j = tT

Groth and Sahai show how to construct Witness Indistinguishable proof-of-
knowledge of a satisfying witness to such an equation, in prime-order groups
where the SXDH or Decision Linear assumptions hold. The proof system they
describe can be composed over multiple equations involving the same variables.
They point out that in some special cases, their techniques can be strengthened
to provide Zero Knowledge. Unlike the interactive proofs used in [10, 22], the
Groth-Sahai proofs do not use adversarial rewinding in their security analysis.

Groth-Sahai Commitments [24]. At the core of the Groth-Sahai system is
a homomorphic commitment scheme to elements of G1 or G2.2 The public pa-
rameters for the commitment scheme can be generated in two ways. Method
(1) leads to a perfectly-binding commitment scheme, while method (2) leads to
a perfectly-hiding scheme. Note that the two parameter distributions are com-
putationally indistinguishable under the SXDH assumption. When the GS com-
mitment parameters are configured according to method (1), they are equivalent

2 As noted in [3, 24] commitment scheme can also be used to commit to elements of
Zp, though we use this only in the context of simulating proofs.
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to an Elgamal encryption of a group element, and can be decrypted by a party
that knows a trapdoor to the commitment parameters. When commitments are
configured according to method (2), a “simulation” trapdoor can be used on
random commitments to open them to any value gx (or g̃x) for known x.

The Proof System. We now describe the proof system at a high level, adopting
some notation and exposition from [3]. For this description we will conceal many
of the underlying details, though the reader can refer to [3, 24] for a more detailed
explanation. The proof system contains the following (possibly probabilistic)
polynomial time algorithms:

GSSetup(γ). On input γ ∈ BMsetup(1κ), outputs a string GS containing pa-
rameters for the proof system. This string embeds binding parameters for
the G-S commitment scheme.

GSProve (GS, S,W ). On input a statement S describing the equation, and a
satisfying witness W ∈ 〈{X}1...m, {Y}1...n〉, outputs a proof π. To formu-
late this proof, a commitment Ĉi is generated for each element in W . The
proof embeds openings to the commitments in such a way that a prover can
ascertain that S is verifiably satisfied, and yet the elements of W remain
hidden.

GSVerify(GS, π). Verifies the proof π (using the commitments and opening val-
ues) and outputs Accept if π is valid, Reject otherwise. (For compactness
of notation, we will specify that π embeds the statement S).

Above we describe the proof system in normal operation. In our security proofs
we will additionally use:

GSExtractSetup(γ). Outputs GS (distributed identically to the output of
GSSetup(γ)) and an extraction trapdoor tdext containing a trapdoor for the
commitment scheme. This trapdoor permits an extraction of a valid witness
from the commitments embedded within a proof.

GSExtract(GS, tdext, π). Given a proof π and the extraction trapdoor, extracts
Xi or Yi from each commitment Ĉi, and outputs the witness W = 〈{X}1...M ,
{Y}1...N〉 that satisfies the equations.

GSSimulateSetup(γ). Outputs parameters GS′ that are computationally indis-
tinguishable from the output of GSSetup(γ), as well as a simulation trapdoor
tdsim which consists of a simulation trapdoor for the commitment scheme.

GSSimProve(GS′, tdsim, S). Given simulation parameters GS′ and trapdoor
tdsim, outputs a proof π of statement S that such that GSVerify(GS′, π) =
Accept. Note that this algorithm operates on certain restricted classes of
statements (see below).

GS proofs can be defined over multiple pairing product equations. In this case,
satisfiability implies knowledge of a witness for the full set of equations. In our
constructions, we will denote a GS proof statement using the notation of Ca-
menisch and Stadler [11]. For instance, N IWIGS{(a1, a2) : e(a1, a2)e(g, h−1) =
1 ∧ e(a2, g2)e(d−1

2 , a3) = 1} represents a non-interactive Witness Indistinguish-
able proof of knowledge, formed under parameters GS, of a witness W = 〈a1, a2〉
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that simultaneously satisfies both listed equations. All values not in enclosed
within the initial ()’s are assumed to be known to the verifier.

Witness Indistinguishability and Zero Knowledge. In general, Groth-
Sahai proofs satisfy a strong definition of Witness Indistinguishability in groups
where the SXDH assumption holds (complete security definitions can be found
in the full version of this work [23]). However, for certain restricted classes of
statements, the proof system can also be used to construct non-interactive Zero
Knowledge (NIZK) proofs. For certain trivial statements, this is simply a matter
of using a WI proof for which a witness can easily be found. E.g., in the special
case where tT = 1 for a pairing product equation, a simulator can always com-
pute a satisfying witness by selecting each Xi or Yi to be g0 or g̃0 respectively.

More practically, Groth and Sahai observe that some non-trivial statements
can be proven in Zero Knowledge by applying the simulation trapdoor for the
Groth-Sahai commitment scheme. This trapdoor allows the simulator to open a
random commitment to any gx or g̃x (for known x), and can be applied such
that the same commitment is opened differently for each equation within the
statement. In some cases, we may need to re-write a statement in order to
construct a ZK proof. For example, consider a proof of the statement e(a, d) =
e(g, h) made on variable a and constants d, g, h. By adding a second variable b
and a further equation, we obtain an equivalent statement which can be proven
using the following zero knowledge proof:

N IZKGS{(a, b) : e(a, d)e(b, h−1) = 1 ∧ e(b, g)e(g−1, g) = 1}

Note that the equivalence holds by the property that b = g is the only valid
solution to the revised equation. However, using the simulation trapdoor we can
open the appropriate commitments such that a = b = g0 in the first equation,
while in the second equation b = g. We will use similar techniques to simulate
the Zero-Knowledge proofs in our constructions.

3.2 Additional Tools

Modified CL Signatures. Our constructions use a variant of the Camenisch-
Lysanskyaya signature scheme [9], altered to operate on messages in G1. Whereas
CL signatures rely on the interactive LRSW assumption to achieve security
against adaptive chosen-message attacks, in the context of our construction we
will require only a non-interactive q-Hidden LRSW assumption to achieve a
weaker property (unforgeability given a set of signatures on random messages).

CLKeyGen(γ, g, g̃). On input γ = (p,G1,G2,GT , e, . . . ) and generators (g, g̃),

select s, t
$← Zp and set S̃ ← g̃s, T̃ ← g̃t. Output vk = (γ, g, g̃, S̃, T̃ ), and

sk = (vk , s, t).

CLSignsk (m). On input a message m ∈ G1, select w
$← Zp and output the

signature sig = (gw,mw, gwsmwst,mwt, g̃w) ∈ G4
1 × G2.

CLVerifyvk (sig,m). On input the value m ∈ G1 and sig = (a1, a2, a3, a4, ã5),
verify that e(g, ã5) = e(a1, g̃) ∧ e(m, ã5) = e(a2, g̃) ∧ e(a2, T̃ ) = e(a4, g̃) ∧
e(a3, g̃) = e(a1a4, S̃).
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Note that the verification algorithm can be represented as a set of pairing product
equations, and thus it is possible to prove knowledge of a pair (m, sig) using the

GS proof system. To prove knowledge of m, sig, first select y
$← Zp, compute

sig′ = 〈a′1, a′2, a′3, a′4, ã′5〉 = 〈ay
1 , a

y
2, a

y
3 , a

y
4 , ã

y
5〉 and release the pair a′1, ã′5 along

with the following witness indistinguishable proof:

π = N IWIGS{(m, a′2, a
′
3, a

′
4) :

e(m, ã′5)e(a
′
2, g̃

−1) = 1 ∧ e(a′2, T̃ )e(a′4, g̃
−1) = 1 ∧ e(a′3, g̃)e(a

′−1
4 , S̃) = e(a′1, S̃)}

The verifier checks both the proof and the fact that e(a′1, g̃) = e(g, ã′5).

Selective-message Secure Boneh-Boyen Signatures. Our constructions
also make use of a weak signature scheme built from the Boneh-Boyen selective-
ID IBE scheme [4] (§4).

BBKeyGen(γ, g1, g̃1). On input γ = (p,G1,G2,GT , e, . . . ) and bases (g1, g̃1),

select α, z
$← Zp, g ← g

1/α
1 , g̃ ← g̃

1/α
1 , g2 ← gz, g̃2 ← g̃z, h $← G1. Output

vk = (γ, g, g̃, g1, g2, h, g̃2), and sk = (vk , gα
2 ).

BBSignsk (m). On input a message m ∈ G1, select r
$← Zp and output the

signature sig = ((mh)rgα
2 , g̃

r, gr) ∈ G2
1 × G2.

BBVerifyvk (sig,m). On input m ∈ G1 and sig = (s1, s̃2, s3), verify that
e(s1, g̃) / e(mh, s̃2) = e(g1, g̃2) and e(g, s̃2) = e(s3, g̃).

We can prove knowledge of a pair (m, sig) as follows. Select y
$← Zp and set

sig′ = (s′1, s̃
′
2, s

′
3) = (s1(mh)y, s̃2g̃

y, s3g
y). Output s̃′2, s

′
3 and the WI proof:

π = N IWIGS{(m, s′1) : e(s′1, g̃)e(m, s̃′−1
2 ) = e(h, s̃′2)e(g1, g̃2)}

The verifier checks the proof and the fact that e(g, s̃′2) = e(s′3, g̃).

Double-Trapdoor BBS Encryption. Our OT constructions employ an en-
cryption scheme with a “double-trapdoor” (so that both the simulator in charge
of the crs and the sender in charge of the pk can extract the messages of the
ciphertext.) It is crucial that the holder of either secret key can verify the consis-
tency of the ciphertext with respect to the other secret key (i.e., that decryption
using the other key would reveal the same plaintext.) We use a variant of Boneh-
Boyen-Shacham encryption [5], which has a public consistency check.

Let BMsetup(1κ) → γ = (p,G1,G2,GT , e, g, g̃). Publish global parameters
γ, h, h̃ such that e(g, h̃) = e(g̃, h), and for i ∈ [1, 2] select sk i ← (xi, yi ∈R Zp)
and pk i = (ui, vi, ũi, ṽi) ← (h1/xi , h1/yi , h̃1/xi , h̃1/yi). To encrypt a message m ∈
G1 under pk1/pk2, first select random values r, s ∈ Zp and output the ciphertext
(ur

1, v
s
1, u

r
2, v

s
2, h

r+sm). To decrypt a message (c1, . . . , c5) under sk1 = (x1, y1),
output c5/(cx1

1 · cy1
2 ). To decrypt under sk2 = (x2, y2), output c5/(cx2

3 · cy2
4 ). Note

that the structure of a ciphertext can be verified using the bilinear map, by
checking that e(c1, ũ2) = e(c3, ũ1) ∧ e(c2, ṽ2) = e(c4, ṽ1) In the full version [23]
we show that scheme above is semantically-secure under the DLIN assumption.
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Protocol OTA

OTA is parameterized by the algorithms (OTGenCRS, OTInitialize,
OTRequest, OTRespond, OTComplete).
When S is activated with (sid, sender, 〈M1, . . . , MN ∈ {0, 1}�〉):
1. S queries FCRS with (sid,S,R) and receives (sid, crs). R then

queries FCRS with (sid,S,R) and receives (sid, crs).a

2. S computes (T, sk) ← OTInitialize(crs, M1, . . . , MN ), sends (sid, T )
to R and stores (sid, T, sk).

When R is activated with (sid, receiver, σ), and R has previously re-
ceived (sid, T ) and (sid, crs):
1. R runs (Q,Qpriv) ← OTRequest(crs, T, σ), sends (sid, Q) to S and

stores (sid, Qpriv).
2. S gets (sid, Q) from R, runs R ← OTRespond(crs, T, sk, Q), and

sends (sid, R) to R.
3. R receives (sid, R) from S, and outputs

(sid, OTComplete(crs, T, R, Qpriv)).

a FCRS computes computes crs ← OTGenCRS(1κ).

Fig. 4. A high-level outline of the OTN
k×1 protocol, with details of each algorithm

described in Section 4. We make no explicit mention of the value k, the total transfers
permitted by the Sender, because our protocol does not depend on it. The Sender may
choose to stop answering the Receiver’s queries at any point, in which case OTRespond
outputs “reject” and OTComplete accepts this as the message ⊥.

4 A UC-Secure Adaptive OT Construction

Our adaptive oblivious transfer protocol, OTN
k×1 follows the framework described

in Figure 4. We now describe one instantiation of the algorithms (OTGenCRS,
OTInitialize, OTRequest, OTRespond, OTComplete). In the full version [23], we
provide a second instantiation, under different assumptions.

OTGenCRS(1κ). Given security parameter κ, generate parameters for a bilin-
ear mapping γ = (p,G1,G2,GT , e, g, g̃) ← BMsetup(1κ). Compute GSS ←
GSSetup(γ) and GSR ← GSSetup(γ). Choose a, b, c

$← Zp, and set (g1, g2,

h, g̃1, g̃2, h̃) ← (ga, gb, gc, g̃a, g̃b, g̃c). Output crs = (γ, GSS , GSR, g1, g2, h,
g̃1, g̃2, h̃). (In the full version [23], we describe how this common reference
string can be replaced by a common random string.)

OTInitialize(crs,m1, . . . ,mN ). This algorithm is executed by the Sender. On
input a collection of N messages and the crs, it outputs a commitment to
the database, T , for publication to the Receiver, as well as a Sender secret
key, sk. We treat messages as elements of G1, since there exist efficient
mappings between strings in {0, 1}� and elements in G1 (e.g., [1, 6]).
1. Parse crs to obtain GSS , g1, g2, h, g̃1, g̃2, h̃ and γ.
2. Choose random values x1, x2 ∈ Zp.
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3. Set (u1, u2) ← (h1/x1 , h1/x2), (ũ1, ũ2) ← (h̃1/x1 , h̃1/x2).
4. Set (vk1, sk1) ← CLKeyGen(γ, u1, ũ1), (vk2, sk2) ← CLKeyGen(γ, u2, ũ2)

and (vk3, sk3) ← BBKeyGen(γ, u1, ũ1).
5. Set pk ← (u1, u2, ũ1, ũ2, vk1, vk2, vk3).
6. For j = 1, . . . , N encrypt each message mj as:

(a) Select random r, s, t ∈ Zp.
(b) Compute sig1 ← CLSignsk1

(ur
1), sig2 ← CLSignsk2

(us
2), and sig3 ←

BBSignsk3
(ur

1u
s
2).

(c) Set Cj ← (ur
1, us

2, gr
1, gs

2, mj · hr+s, sig1, sig2, sig3).
7. Set T ← (pk , C1, . . . , CN ) and sk ← (x1, x2). Output (T, sk).

Each ciphertext Cj above can be thought of as a signcryption where it is
the randomness for each ciphertext that is signed, rather than the plaintext
itself. Each plaintext mj is encrypted under S’s public key u1, u2, as well as a
“key” g1, g2 drawn from crs. This “double-trapdoor” encryption is necessary
for the security proof of the OT scheme.

To verify the format of each ciphertext Cj = (c1, . . . , c5, sig1, sig2, sig3)
in T , anyone can check that CLVerifyvk1

(c1, sig1), CLVerifyvk2
(c2, sig2), and

BBVerifyvk3
(c1c2, sig3) each succeed, and that e(c1, g̃1)=e(c3, ũ1)∧e(c2, g̃2)=

e(c4, ũ2).
OTRequest(crs, T, σ). This algorithm is executed by a Receiver. On input T

generated by the Sender, along with an item index σ, generates a query Q
for transmission to the Sender.
1. Parse T as (pk , C1, . . . , CN ), and ensure that it is correctly formed (see

above). If T is not correctly formed, abort the protocol. (This is only
necessary on the first transfer.)

2. Parse crs to obtain (GSR, h̃), and parse pk as (u1, u2, ũ1, ũ2, vk1, vk2, vk3).
Parse the σth ciphertext Cσ as (c1, . . . , c5, sig1, sig2, sig3).

3. Select random v1, v2 ∈ Zp.
4. Set d1 ← (c1 · uv1

1 ), d2 ← (c2 · uv2
2 ), t1 ← hv1 , t2 ← hv2 .

5. Use the Groth-Sahai techniques and reference string GSR to compute
a Witness Indistinguishable proof π that the values d1, d2 pertaining to
the ciphertext Cσ (which the Receiver wishes to have the Sender help
him open) have the correct structure:

π = N IWIGSR{(c1, c2, t1, t2, sig1, sig2, sig3) :

e(c1, h̃)e(t1, ũ1) = e(d1, h̃) ∧ e(c2, h̃)e(t2, ũ2) = e(d2, h̃) ∧
CLVerifyvk1

(c1, sig1) = 1 ∧ CLVerifyvk2
(c2, sig2) = 1 ∧

BBVerifyvk3
(c1c2, sig3) = 1}

6. Set request Q ← (d1, d2, π), and private state Qpriv ← (Q, σ, v1, v2).
Output (Q,Qpriv).

To explain what is happening in the statement of step (5), first observe
that the signature proofs of knowledge ensure that the values c1, c2 and the
product (c1c2) each correspond to a valid signature held by the Receiver. The
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remaining equations ensure that the values d1, d2 correspond to “blinded”
versions of the elements c1, c2. These checks guarantee that the witness used
by the Receiver, and thus the decryption request being made, corresponds
to one of the N ciphertexts published by the Sender.

OTRespond(crs, T, sk,Q). This algorithm is executed by the Sender. If the
Sender does not wish to answer any more requests for the Receiver, then
the Sender outputs the message “reject”. Otherwise, the Sender processes
the Receiver’s request Q as:
1. Parse crs to obtain (GSR, g̃, h̃), and parse T as (pk , C1, . . . , CN ), and sk

as (x1, x2).
2. Parse pk (from T ) as (u1, u2, ũ1, ũ2, vk1, vk2, vk3).
3. Parse Q as (d1, d2, π) and verify proof π using GSR. Abort if check fails.
4. Set a1 ← dx1

1 , a2 ← dx2
2 , and s ← a1 · a2.

5. Use the Groth-Sahai techniques and reference string GSS to formulate a
zero-knowledge proof3 that the decryption value s is properly computed:

δ = N IZKGSS{(a1, a2) : e(a1, ũ1)e(d−1
1 , h̃) = 1

∧ e(a2, ũ2)e(d−1
2 , h̃) = 1 ∧ e(a1a2, h̃)e(s−1, h̃) = 1}

The third equation ensures that s = a1 ·a2, while the first two, since the
values (u1, d1, u2, d2, h̃) are known to both parties, ensure that a1 = dx1

1
and a2 = dx2

2 .
6. Output R ← (s, δ).

OTComplete(crs, T, R,Qpriv). This algorithm is executed by the Receiver. On
input R generated by the Sender in response to a request Q, along with
state Qpriv, outputs a message m or ⊥. If R is the message “reject”, then
the Receiver outputs ⊥. Otherwise, the Receiver does:
1. Parse crs to obtain (GSS , h). Parse T as (pk , C1, . . . , CN ), R as (s, δ),

and Qpriv as (Q, σ, v1, v2).
2. Verify proof δ using GSS . If verification fails, output ⊥.
3. Parse Cσ to obtain the first five elements (c1, . . . , c5) and output m =

c5/(s · h−v1 · h−v2). Map this element to a value in {0, 1}� [1].

4.1 Efficiency Analysis

When the protocol in Figure 4 is implemented using the algorithms described
above, we obtain a (k+1/2)-round protocol with communications cost O(N+k),
where k ≤ N . More concretely, the crs is comprised of 7 elements in G1 and 7
elements of G2, the Sender’s public key contains 5 elements in G1 and 6 elements
in G2. Each of the N ciphertexts in T requires 15 elements in G1 and 3 elements
in G2. Moreover, each item transfer involves transmission of 68 elements of G1

3 We present a simplified version of this proof above. However, to permit simulation, we
must add a third variable ã3 = h̃ and re-write the proof as N IZKGSS {(a1, a2, ã3) :
e(a1, ũ1)e(d−1

1 , ã3) = 1 ∧ e(a2, ũ2)e(d−1
2 , ã3) = 1 ∧ e(a1a2, ã3)e(s−1, ã3) =

1 ∧ e(u1, ã3) = e(u1, h̃)}. See the full version for details.
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and 38 elements of G2 from Receiver to Sender, and then 20 elements of G1
and 18 elements of G2 from Sender to Receiver. The message space of our OT
protocol is elements in G1, which will be sufficient for transferring a symmetric
encryption key to unlock a file of arbitrary size.

4.2 Security Analysis

Theorem 1. Instantiated with the above algorithms, OTA securely realizes the
functionality FN×1

OT in the FCRS-hybrid model under the SXDH, DLIN, and q-
Hidden LRSW assumptions.

Due to space considerations, we provide only a sketch of Theorem 1 below (the
complete proof can be found in the full version of this work [23]). When either
the Sender or the Receiver is corrupted, we wish to describe a simulator S such
that it can interact with the ideal functionality FN×1

OT (which we’ll denote simply
as F) and the environment Z appropriately; i.e., IDEALF ,S,Z

c≈ EXECOTA,A,Z .

Simulating the case where only S is corrupted. We first consider the case
where the real-world adversary A corrupts the Sender, and thus S must interact
with F as the ideal Sender and with (an internal copy of) A as a real-world
Receiver. Here S does the following:

1. Ask A to begin an OT protocol, and set the crs for these two parties by
running γ = (p,G1,G2,GT , e, g ∈ G1, g̃ ∈ G2) ← BMsetup(1κ), GSS ←
GSSetup(γ), GSR ← GSSetup(γ), selecting random elements a1, a2 ∈ Zp,
and setting ga1

1 = ga2
2 = h (and a corresponding relationship for g̃1, g̃2, h̃).

Set crs = (γ,GSS , GSR, g1, g2, h, g̃1, g̃2, h̃). When the parties query FCRS ,
return (sid, crs).

2. Obtain the database commitment T from A. Verify that T is well-formed,
abort if not. Otherwise, ∀i ∈ [1, N ] use a1, a2 to decrypt each ciphertext
Ci = (c1, . . . , c5, . . . ) as mi = c5/(ca1

3 ca2
4 ). Map each element mi ∈ G1 to a

string in {0, 1}� [1]. Send (sid,S,m1, . . . ,mN ) to F .
3. Upon receiving (sid, request) from F , return OTRequest(crs, T, 1) to A. This

response includes two random values d1, d2 and a non-interactive witness
indistinguishable proof π with respect to GSR ∈ crs that d1, d2 are “blinded”
values corresponding to ciphertext C1. This proof can be performed honestly
and without rewinding.

4. If A issues a “reject” message or responds with anything other than a value
in G1 and a valid NIZK proof, then S tells F to fail the request by sending
message (sid, 0). Otherwise, S sends the message (sid, 1) to F .

The indistinguishability argument here follows from the indistinguishability
of the crs (which is identically distributed to a real crs), the perfect extrac-
tion of the messages in step (2),4 and the Witness Indistinguishability of the
4 Note that a ciphertext that passes the validity check can be represented as C =

(ur
1, u

s
2, g

r
1 , gs

2, h
r+sm, . . . ) for some r, s ∈ Zp, and when (g1, g2, h) have the relation-

ship described above, decryption using a1, a2 always produces m.
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GS proof π issued during each request phase, which guarantees that A (the
corrupt Sender) cannot distinguish a request to decrypt C1 from a request to
decrypt any other valid ciphertext. Thus, S can adequately mimic its response
pattern.

Simulating the case where only R is corrupted. Next, we consider the
case where the real world adversary A corrupts the Receiver, and thus S must
interact with F as the ideal Receiver and with (and internal copy of) A as
real-world Receiver. This case requires that the q = N for the q-Hidden LRSW
assumption. Here S does the following:

1. Ask A to begin an OT protocol, and set the crs for these two parties by run-
ning γ = (p,G1,G2,GT , e, g ∈ G1, g̃ ∈ G2) ← BMsetup(1κ), (GSS , tdsim) ←
GSSimulateSetup(γ) and (GSR, tdext) ← GSExtractSetup(γ). Select random
elements for g1, g2, h, g̃1, g̃2, h̃. Set crs ← (γ,GSS , GSR, g1, g2, h, g̃1, g̃2, h̃).
When the parties query FCRS , return (sid, crs).

2. S must commit to a database of messages for A without knowing the mes-
sages m1, . . . ,mN . Thus, S simply commits to random junk messages, and
sends the corresponding T to A.

3. When A makes a transfer request, S uses tdext to extract the witness W cor-
responding to A’s decryption request from the NIWI proof. (This extraction
is done via opening perfectly-binding commitments which are included in
the WI proof and does not require any rewinding.) This witness includes the
first two elements (c1, c2) of the ciphertext that A is requesting to decrypt,
and from these it is possible to determine the index σ′ of the ciphertext that
A has requested to open.

4. S now sends (sid,R, σ′) to F to obtain the real mσ′ message.
5. Finally, S returns a response to A which opens Cσ′ to mσ′ and then uses

tdsim to simulate an NIZK proof that this opening is correct. The NIZK
proof here is designed in such a way that simulation is always possible and
no rewinding is necessary.

The indistinguishability argument here follows from the indistinguishability
of the crs (from a real crs), the indistinguishability of the “fake” database T ,
the ability to extract witnesses from the NIWI proofs, and the zero-knowledge
property of “fake” NIZK proofs. In particular, note that the N -Hidden LRSW as-
sumption ensures that any decryption request made by the receiver corresponds
to a valid ciphertext from the database T (if A produces a proof π embedding
invalid ciphertext values, we can use A to solve N -Hidden LRSW or the co-CDH
problem [7], which is implied by N -Hidden LRSW).5 Unlike the protocol of [10]

5 Note that we are using both an existentially unforgeable signature scheme, as well
as a selective-ID IBE scheme that has been “retasked” as signature scheme. The
latter leads to a signature that is only secure for a polynomial-sized, fixed message
space. In the full version, we show that this limitation is acceptable given that we
are signing the product of other messages which have been signed using the stronger
signature scheme. Since there are at most a polynomial number of such products,
the construction is secure.
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we are able to base the semantic security of the ciphertexts on a standard de-
cisional assumption (the Decision Linear assumption). This is possible because
the full ciphertext can be constructed using only the DLIN input (see the note
on Ciphertext security below). Notice that S is never both simulating and ex-
tracting via the same (subsection of the) common reference string; indeed, we
do not require that the proofs be simulation-sound.

Simulating the remaining cases. When both the Receiver and Sender are
corrupted, S knows the inputs to S and R and can simulate a protocol execution
by generating the real messages exchanged between the two parties. In the case
where neither party is corrupted, then: when S receives messages of the form
(sid, bi) indicating that transfers have occurred, S generates a simulated tran-
script between the honest S and R. In this case, S runs the protocol as specified,
using as S’s input a random database (m̂1, . . . , m̂N), and (for each transfer), R’s
input σ′ = 1. If in the ith transfer bi = 0 then S’s responds with an invalid R
(the empty string). Else, S returns a valid response as in the protocol.

Ciphertext security. We briefly elaborate on the security of the ciphertexts in
our scheme. To prove security when Receiver is corrupted, we must show that a
ciphertext vector encrypting random messages is indistinguishable from a vector
encrypting the real message database. We argue that this is the case under the
Decision Linear assumption. Let D = (g, g̃, f, f̃ , h, h̃, ga, f b, zd) be a candidate
Decision Linear tuple. We consider a simulation that behaves as follows:

1. Set u1 = g, u2 = f, ũ1 = g̃, ũ2 = f̃ . Select random y1, y2 ∈ Zp, and set
g1 = uy1

1 , g2 = uy2
2 (and similarly for g̃1, g̃2). Fix crs ← (γ, GS′

S , GS′
R, g1,

g2, h, g̃1, g̃2, h̃).
2. Generate (vk1, sk1), (vk2, sk2), (vk3, sk3) as in normal operation. Set pk =

(u1, u2, ũ1, ũ2, vk1, vk2, vk3).
3. For i = 1 to N , choose fresh random s, t1, t2 ∈ Zp and set c1 = gasgst1 , c2 =

f bsfst2 . Set Ci:

Ci = (c1, c2, c
y1
1 , cy2

2 , zs
dh

s(t1+t2)mj , sig1, sig2, sig3)

where sig1, sig2, sig3 are generated normally using the proper secret keys.
4. Set T ← (pk , C1, . . . , CN ).
5. The simulation answers requests from the malicious Receiver by extracting

from its proof and simulating correct responses (as described above.)

Note that in the above, if zd = ha+b, then the above simulation perfectly encrypts
(m1, . . . ,mN ). However, when zd is a random element of G1, then the ciphertexts
correspond to encryptions of random elements in G1. Now, suppose for the sake
of contradiction, that there exists an environment Z who can distinguish case
one from case two with non-negligible probability ε. Then, it is easy to see that
we can use Z to decide Decision Linear.
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5 On Multiple Receivers

OT is traditionally described as a two-party protocol between a Sender and Re-
ceiver. We presented our main construction in this setting. However, since we
are motivated by the application of OT to database systems, we would also like
to support applications where multiple users share a single database. Naively
this can be accomplished by requiring the database to run separate OT proto-
col instances with each user. However, this approach can be quite inefficient,
and moreover does not ensure consistency in the database viewed by individ-
ual Receivers. Consider a strengthening of the security definition of FN×1

OT (in
Figure 3) to include the additional requirement that all Receivers “view” the
same database, i.e., the database owner cannot selectively alter the messages in
the database when interacting with different receivers – on query σ from any
receiver, he must return a value in {mσ,⊥}. In the full version of this work [23]
we discuss extensions to our protocol designed to achieve this property.
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Abstract. Numerous methods have been proposed to conduct crypto-
graphically secure elections. Most of these protocols focus on 1-out-of-n
voting schemes. Few protocols have been devised for preferential voting
systems, in which voters provide a list of rankings of the candidates, and
many of those treat ballots as if they were ballots in a 1-out-of-n voting
scheme. We propose a linked-list-based scheme that provides improved
privacy over current schemes, hiding voter preferences that should not
be revealed. For large lists of candidates we achieve improved asymptotic
performance.

Keywords: Electronic Voting, Secure Computation.

1 Introduction

Electronic voting is by far the most mature area of secure computation, with
a vast literature (c.f. [17]). Most electronic voting protocols may be viewed as
attempts to emulate the following physical metaphor: Voters cast ballots into a
large box, at the conclusion of which the box is shaken and opened.

Much work has gone into efficiently and securely approximating this physical
paradigm. However, this type of balloting represents merely one way of specifying
and aggregating preferences. Numerous ways of aggregating preferences have
been proposed, and indeed, are used in major political elections. We consider
one such system, known as instant runoff voting.

1.1 Instant Runoff Voting

Ballots in a single transferable vote (STV) system are submitted as a list of
ordinal preferences. The voters’ first choices are counted, and any candidate
receiving a certain quota of votes is declared a winner. One such example is the
Hare-Clark quota, used in Australian elections:

number of eligible votes
number of open seats + 1

+ 1.
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Votes in excess of the quota are proportionally “returned” to the voters, and
applied to the next viable choice on their list. If not enough candidates reach
their quota in this fashion, the candidate with the fewest number of votes is
eliminated, and the process continues until all of the open seats are filled.

Although Arrow’s theorem guarantees that there will be some cases for which
Hare-Clark voting induces some pathology, it is attractive in practice for its ability
to avoid “wasted” votes. One has comparatively less incentive (though some still
exists) for strategically not supporting ones favorite candidate because the candi-
date is either assured to win or very likely to lose. Beyond its aesthetic appeal, the
fact that it is in actual use for an important election motivates our attention.

We focus on the special case of Hare-Clark in which there is one open seat,
and thus a candidate needs to win a majority of the votes in order to win the
election. This is a special case known as Instant Runoff Voting (IRV), which is
used in certain local jurisdictions in the United States, including elections in San
Francisco [18] and Cambridge, Massachusetts [16]. In this scheme, if a candidate
has a majority of votes, then he is elected. Otherwise, the candidate with the
fewest votes is eliminated; counters look at the next choices of each ballot that
had a vote for the recent loser. We note that for this special case, there is no need
to redistribute excess winning votes; however, it remains necessary to eliminate
candidates and redistribute these votes.

1.2 Difficulties with the Physical Paradigm

In simple voting an ideal physical ballot box with paper ballots is the “gold stan-
dard” against which electronic protocols are judged; indeed, there have been per-
haps over-nostalgic calls for its use in practice. However,with instant runoff voting,
merely severing the identification between voters and their preference list gives in-
sufficient privacy. Particularly in the case where there is a large number of candi-
dates, a full preference order may conceivably be used to identify a voter and thus
leak information far beyond that revealed by the final vote counts, with obvious
implications for privacy and coercibility. We note that this problem is not specific
to a protocol implementation, but to the nature of what is to be revealed.

As a result, in actual physical elections, one has the choice of either revealing
extra information or placing a great deal of trust in the discretion and trustwor-
thiness of the election officials.

The secure multi-party computation paradigm [5, 14] is arguably a superior
gold standard than any physical ballot box. One endeavors to simulate trusted
election officials, who compute the correct results, but then only reveal that
which is supposed to be revealed.

Thus, an intriguing aspect of this type of voting is that a cryptographic pro-
tocol may potentially offer a solution that is qualitatively superior to current
best practices.

1.3 Related Work

Electronic voting has been a model problem of secure multi-party computation
since it was proposed by Chaum [7]. Many protocols have been proposed for
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single-vote, first-past-the-post-style elections, leveraging homomorphic encryp-
tion or mix-network technologies; see, for example, [2, 4, 8, 9, 12, 22, 23, 24, 26]).

Without leaving the realm of simple elections, variations are possible in the
security and privacy guarantees of the voting protocol. For example, receipt-
free and incoercible voting schemes aim to prevent voter intimidation and vote
selling by preventing the voter from being able to prove how they voted; see, for
example, [3, 20, 24]. One may view this property as a closer approximation to
the physical paradigm, in which the voter cannot prove which ballot is theirs. It
should be noted that incoercibility does not follow from the generic multi-party
solutions (though incoercibility can be generalized to this setting [6]).

Hevia and Kiwi [15] consider the problem of revealing the winner of the elec-
tion, but keeping secret the vote tally. As with the problem we consider, the
“ideal” physical implementation of voting does not guarantee as strong privacy
conditions.

The techniques of “standard” electronic voting also yield solutions to simple
preference voting, in which a voter may cast either zero or one votes for each
candidate. For example, one can implement a k-candidate preference voting elec-
tion by k simple 2-candidate elections in which the ith election is used to count
votes for the ith candidate.

Protocols for preferential voting schemes, such as IRV, adopt a similar ap-
proach. Aditya et al. consider elections for the Australian Senate and House
of Representatives [1]. They examine the efficiency of balloting using a naive
balloting representation and straight mix-network and homomorphic encryption
schemes. For an election with k candidates, their scheme using homomorphic
encryptions requires posting a ballot of size O(k!) bits. Their basic mix-network
based scheme requires a voter to post a number between 1 and k!, corresponding
to each set of preferences. In their most efficient scheme, they leverage Australia’s
voting machine structure, and adapt it to the vector-ballot approach introduced
by Kiayias and Yung [21] to handle elections with write-in ballots. Each vote is
a 3-vector. The first position contains a homomorphically-encrypted vote, cor-
responding to one of twenty preset choices. The other two positions are used
to represent “write-in” votes (in which voters list their preferences rather than
choosing from a preset list). The write-in votes are submitted in blocks with
some preset preferential votes to a shrink-and-mix network, while blocks with
no write-in votes are tabulated.

1.4 Our Contribution

We contribute a new protocol for instant runoff voting that has superior asymp-
totic performance when there are a large number of candidates and superior
privacy guarantees.

The protocols of Aditya et al. may be applied to the case we consider, as it
is a special case of their own. We thus compare our protocol to this solution,
noting that the comparison is somewhat unfair due to their greater generality.

Although the work required of the voter in the protocol of [1] was small in
other respects, the message length scales super-exponentially in the number of
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candidates. In our solution, the work per ballot construction is roughly quadratic
in the number of candidates.

An arguably more important improvement is in our privacy guarantees. The
protocol of [1] essentially attempts to mirror the privacy properties of existing
systems. Thus, it is acceptable in their framework to reveal individual preference
lists once the direct linkage with voters has been eliminated. Hence, this protocol
necessarily suffers from the weaknesses of the physical solution with respect to
privacy and coercion.

In our protocol, we first reveal the counts of the first-choice preferences each
candidate obtained. Whenever a candidate is eliminated and their votes recast
(using the next viable preference on the preference list), the new counts are also
revealed. However, only these intermediate results are revealed.

One could, of course, strive for even stronger privacy guarantees, such as
revealing only the winner(s), or only revealing the order of elimination. One
might argue that our protocol necessarily reveals statistics, such as the second-
choice preference statistics of those voters whose first choice candidate is the
first to be eliminated.

However, revealing such intermediate counts seems to be reasonable and in-
deed often necessary from a procedural point of view. For most elections, the
electorate wishes to know the final counts, not merely the winner. It would likely
be considered unreasonable to declare that a candidate is eliminated without
giving the actual vote count that was the basis of their elimination.

Furthermore, one can imagine using our protocols on a precinct by precinct
basis, with intermediate counts reported to a conventional voting authority that
decides who next to eliminate. Such regional counts can be useful in detecting
vote fraud. Thus, it may be essential that the tallies from each round be re-
vealed, and that elimination decisions can be made externally and in principle
independently of a the results within an individual precinct.

1.5 Techniques Used

We make original use of standard electronic voting techniques, particularly the
use of re-encryption mix networks (c.f. [7]) and group cryptography (c.f. [10])
and efficient proofs on committed values (c.f. [8]). On a very high level, vot-
ers generate linked lists of encrypted votes that specify their preferences. The
encryptions are done with respect to a key that is held in aggregate by the elec-
tion committee, who can decrypt elements using group cryptography. The head
of the list corresponds to the highest ranked viable candidate. By using group
decryption to decrypt these heads, the first round vote counts may be computed.

When a candidate is eliminated, we must efficiently search out the next el-
ement in the list. However, we must be very careful about leaking extraneous
information. For example, it cannot be revealed what was the original ranking
of the current head of a list. Nor can we reveal for any list the history of which
elements are moved to the head (or we will reveal the list). For this reason, we
keep all but the (current) head elements in a separate table of elements that is
constantly remixed. This separation complicates the problem of finding the next
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element of a list. We use a system of random ID tags to allow us to use group
decryption to find the next elements in the set.

An important technical problem we must deal with is that it would reveal too
much to follow a link from an eliminated top-choice vote only to find another elim-
inated candidate. We must therefore perform surgery on our linked lists, deleting
eliminated candidates from interiors of lists so we will never arrive at them.

To perform all of these list manipulations, we use three mix networks in dif-
ferent ways. Pieces of the ballots are proved consistent before being distributed
among the mix networks. The consistency proofs are done using standard proofs
of equality on committed values. We use standard witness-hiding techniques
and heuristically replace the honest-verifiers with hash function using Gennaro’s
variant [13] of the Fiat-Shamir heuristic [11] (designed to avoid vote duplication
attacks).

Summarizing, we present a scheme that uses a linked-list structure to represent
a ballot, treats all ballots equally using three mix-networks, and also improves
privacy by hiding preferences.

Road Map: In Section 2, we present the basic cryptographic elements of the
protocol: mix-networks, group decryption, and plaintext equality proofs. We
discuss the ballot design and voting procedure in Section 3. We briefly discuss
efficiency and security in Section 4. We discuss other possible research directions
in Section 5.

2 Preliminaries

We use a number of basic cryptographic primitives, which we review for self-
containment of the exposition.

Re-encryption Mix-Networks: Mix-networks (or mixnets), which are used
to create communication channels that are difficult to trace, consist of a series
of servers that take a series of texts M1, . . . ,Mn and output a permutation
π(M1), . . . , π(Mn) of these texts. In re-encryption mixnets, each mix server takes
in a series of encrypted messages and applies a re-randomization to each cipher
text. In the case of an El Gamal cipher text this re-encryption corresponds
to a selecting a random group element and applying a small number of group
operations. Neff [22] describes a protocol for the shuffling of sequences of El
Gamal pairs. We use a variant of Neff’s protocol in which blocks of encryptions
are mixed - the block are re-encrypted in random order, but the (plaintext)
values within each block are preserved in their original order.

Secret Sharing and Group Decryption: We proceed with secret sharing
as in [9]. To generate a private El Gamal key to distribute to counters, we use
the (t, n) threshold protocol of Shamir [25]. Namely, for the secret exponent s,
we announce shares s1, . . . sn for the counters, such that for any set Γ of t shares,
we can recover the secret.

Using group cryptography, the authorities can simulate a single entity that
alone has access to the decryption key. Decryptions of encrypted values by the
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group is comparatively straightforward and efficient. In our analysis, we will
treat such decryptions as basic operations.

Plaintext Equality Proofs and proofs of knowledge: Given El Gamal
encryptions of M1 and M2, (α1, β1) = (gr,M1h

r) and (α2, β2) = (gs,M2h
s), we

can execute an efficient plaintext equality proof protocol, that proves that M1
and M2 are the same. Also, given an encryption of M and a known value of r, we
must be able to produce (with proof) an encryption of M ′ = M + r. For most
homomorphic encryption systems, one can compute the encryption of M + r
from an encryption of M .

It is also crucial that we can perform σ proofs of knowledge of encrypted
values (i.e., proofs in which the prover sends an honest verifier a message, the
honest verifier sends a random challenge to the prover, and the prover sends a
reply). In practice, we “compress” such proofs using Gennaro’s variant of the
Fiat-Shamir heuristic in which the verifier’s challenge is computed as a hash of
the first message and the prover’s identity (so as to avoid replaying other player’s
proofs). This heuristic results in a single message “certificate” that the player
knows the values being committed to. We heuristically analyze our protocol as
if the actual proofs were invoked.

The use of proofs of knowledge is crucial to both the correctness and privacy
of our protocol. Intuitively, proving knowledge of a committed value prevents
malleability attacks in which one commits to values that one doesn’t know, but
which are somehow related to other committed values.

3 Voting Scheme

3.1 Preliminary Setup

The protocol uses three mix networks. The pool of first place votes is sent to
mix network 1, subsequent choices of each voter are sent to mix network 2,
and elimination links are sent to mix network 3. At the start of each election,
the authorities announce the public key used for all encryptions. Shares of the
corresponding private key are distributed to the counters using the secret-sharing
scheme described in the previous section.

We also assume the existence of a public “bulletin board” that is used as a
staging area for the mix networks. As we describe below, the encrypted values
sent through the mix networks are subject to various constraints that must be
verified. The encrypted values and their consistency proofs are posted to the
bulletin board and checked before being routed through the mix networks.

3.2 Counter Initialization

The voting authorities collectively set up an El Gamal based public-key group en-
cryption scheme. The public key is made public and is used for the re-encryption
mixer. The private key is held in a distributed fashion by the group.
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3.3 Ballot Design: Constructing the Linked List

On a high level, a ballot is composed of a set of preference elements, each of
which consists of preference data and additional keys used to link the preference
element. In the following discussion, i will denote the preference in the list. We
will have multiple elimination rounds, index by j, each requiring separate links.

To establish a link, each preference element has a set of incoming keys (thought
of as a large random number) ini,j , used to establish a connection with the
preceding element in the list, and a set of outgoing keys, outi,j , used to establish
links with following elements. To establish that xi′ follows xi in the linked list
we set outi,j = ini′,j . We similarly set up random tags losei,j that will aid in the
removal of xi if it corresponds to a candidate being eliminated.

For an election with k candidates, a (proper) voter does the following to
construct a ballot (see Figure 1 in the appendix):

1. Determine the order of preferences, x1, . . . , xk, where each xi is a name (or
number) representing each candidate.

2. For i = 1, . . . , k + 1 and j = 1, . . . , k
– Select the keys ini,j for i = 1, . . . , k + 1 and j = 1, . . . , k independently

at random (in fact, we require a further step, to ensure that keys are
distinct; see Section 3.6). .

– If i �= k+1, let outi,j = ini+1,j . This operation creates the links between
choices.

– Otherwise, select outk+1,j independently at random. This operation ends
the list at the terminal choice.

– Select the keys losei,j independently at random.
3. Post (x̂1, în1,j , ôut1,j, l̂ose1,j), encryptions of (x1, in1,j , out1,j), for j=1, . . . , k

to mix network 1.
4. For i = 2, . . . , k + 1 and j = 1, . . . , k, post the tuple (x̂i, îni,j , ôuti,j , l̂osei,j)

to mix network 2.
5. For i = 1, . . . , k + 1 and j = 1, . . . , k, post the tuple (x̂i, l̂osei,j) to mix

network 3.

To complete the ballot, the voter posts plaintext equality proofs [19] made non-
interactive by Gennaro’s modification to the Fiat-Shamir heuristic [13] to verify
that the linked list is composed properly, namely that ini+1,j = outi,j . To verify
that the removal links point to the proper candidate to be removed, the voter
must also prove that xi and losei,j are equal across mix networks. Similarly,
the voter posts proofs of knowledge of the encrypted values. All such proofs are
posted to the public bulletin board, and may be verified by all interested parties.

Remark. For our analysis, it is useful to enforce other constraints on the ballot.
For example, there is no real point in having a duplicated a name on ones list,
and we may optionally wish to restrict the names to a specific list of candidates.
The former may be accomplished using proofs of inequality. The latter may be
accomplished used standard mix-net proofs - one writes down a list of encrypted
names and proves that it is a permutation of the allowed list.
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Figure 1 shows an example of each component: a portion of a vote and a
removal tag, for an election with 3 candidates. A concrete example and diagram
showing a full voter’s posting are included in the next subsection.

Fig. 1. A visualization of the components of a voter’s ballot. A choice posted to mix
networks 1 or 2 is on the left. A removal tag posted to mix network 3 is on the right.
See figure 2, in the appendix, for an example of a complete ballot posted by a voter.

3.4 An Example

Consider an election with three candidates: A. Smith, B. Jones, and C. Johnson,
in which a voter wants to post a vote of (Johnson, Smith, Jones) in that order.
His ballot will be constructed as follows (we give a graphical example of a three
candidate ballot in Figure 2):

x1, C. Johnson
– Encrypt x1.
– For j = 1, 2, 3

• Select in1,j independently (indeed, select all keys in·,j at random).
• Set out1,j = in2,j after in2,j has been selected.
• Select lose1,j independently.

– Encrypt in1,j , out1,j , and lose1,j .
– Create copies of x̂1 and l̂ose1,j by re-randomizing the encryption. As a

tuple, these copies are the removal tag that gets posted to mix network
3.

– Post the tuple (x̂1, în1,j , ôut1,j , l̂ose1,j) to mix network 1.
x2, A. Smith and x3, B. Jones

– Proceed as with x1. Compute the tuples (x̂2, în2,j , ôut2,j , l̂ose2,j) and
(x̂3, în3,j , ôut3,j , l̂ose3,j) as above.

– Post those tuples to mix network 2.
– Post the (re-encrypted) removal tags (x̂2, l̂ose2,j) and (x̂3, l̂ose3,j) to mix

network 3.
x4, the terminal choice

– Encrypt x4.
– For j = 1, 2, 3
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• Select in4,j randomly and encrypt.
• Select out4,j randomly and encrypt.
• Select lose4,j randomly and encrypt.

– Post (x̂4, în4,j, ôut4,j , l̂ose4,j) to mix network 2.

In order to prove that a vote is valid, the voter must prove the following using
plaintext equality proofs:

– Given în2,j and ôut1,j , show that in2,j = out1,j (i.e., that în2,j and ôut1,j

encrypt the same value)
– Given în3,j and ôut2,j , show that in3,j = out2,j .
– Given în4,j and ôut3,j , show that in4,j = out3,j .

Similarly, show that

– x1 in network 1 = x1 in network 3.
– xi in network 2 = xi in network 3 (for i > 1).
– lose1,j in network 1 = lose1,j in network 3.
– losei,j in network 2 = losei,j in network 3 (for i > 1).

3.5 Counting and Elimination

Counting: After polls close, counters begin tallying votes:

1. The counters verify the posted proofs of plaintext equality, and accept those
votes whose proofs pass.

2. The mix networks shuffle the pools of votes. The removal tags are mixed in
round 1 only.

3. The counters leave the output of mix network 2, the voters’ subsequent
choices, encrypted.

4. The counters decrypt the first slots, representing the choice of candidate, of
the first-place votes (from mix network 1) and of the removal tags.

5. Counters discard terminal choices or votes for eliminated candidates that
show up in the primary vote pool.

6. Actual counting is trivial. The counters read the decrypted names of the
first-place votes. A candidate is declared the winner if he has enough votes.
Otherwise, a candidate is eliminated.

Elimination: When a candidate L is eliminated, the counters act accordingly:

1. They announce the candidate L to be eliminated in round r, and locate the
removal tags corresponding to L in mix network 3. Recall that this network
contains pairs consisting of encrypted names and encrypted lose values. The
counters can collectively decrypt all of the names, and then for all entries
corresponding to L, decrypt the corresponding lose values. These values may
then be efficiently matched to their corresponding entries in mix net 2, as
discussed below.

2. For each choice c in the pools of votes, the counters decrypt l̂osec,r and înc,r.
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3. For each removal tag, the counters decrypt l̂oseL,r, and search for loseL,r in
the pools of votes.

4. When a matching lose key is found, the counters check that the choice slot
encrypts L, to ensure that they are eliminating the proper vote.

5. Link forwarding is now performed; see Figure 3. The counters decrypt ôutL,r

and search for an incoming key inc,r. The counters use a plaintext equality
test to ensure that the correct link is being followed.

6. The counters set înc,j = înL,j , for j = r, . . . , k. This redirects the links from
the eliminated choice to a choice that is still competing in the election.

7. If a vote for L was in the primary choice pool, the counters promote the
choice found by following the link.

8. At the end of round r, the counters discard inc,r, outc,r, and losec,r are
discarded for each candidate c. All keys corresponding to round r are now
discarded, and counters will use keys corresponding to round r + 1 for the
next elimination.

9. Counters remix the votes using mix networks 1 and 2.

Remark. Eliminating a candidate and forwarding links illustrates the need for
a terminal choice. If a voter’s last choice is eliminated, the previous choice will
now link to the terminal choice, instead of having hanging links. The terminal
choice serves as an “anchor” that will always be among the pool of candidates.

3.6 Ensuring Distinctness and Unrelatedness of Keys

Recall that a link is created by generating a random tag that appears in multiple
places in the mix net. The correctness of the protocol requires that the tags
be distinct and the privacy of the protocol depends on the the inability of an

Fig. 2. A sample ballot for an election with three candidates
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Fig. 3. An example of link forwarding. Encrypted items are in gray, decrypted items
are in white, and discarded items are in black.

adversarial coalition to create nontrivial relations between their tags and those
of good voters.

The latter problem is implicitly dealt with in the full privacy analysis, and
follows from the fact that all of the tags come with proofs of knowledge (here
we assume the idealized version of the protocol, where the proofs of knowledge
are carried out). The values of the tags chosen by the adversarial players must
be decided upon, and known to the adversarial players (via the extractor for
the proof), given only the encryptions of these tags and zero-knowledge proofs
based on these encryptions. If any nontrivial polynomial-time relation R held
(with probability greater than chance) between the values chosen by the good
voters and the values known to the adversaries, this could be used to obtain a
distinguisher that breaks the underlying probabilistic encryption scheme.

However, nothing stops colluding voters (or even a single voter) from making
two tags equal when they should not be. We solve this problem by using a
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standard coin-flipping in the well protocol. The interactive form of this protocol
is as follows:

1. The tag creator generates a random tag T , and encrypts it, generating C.
2. A randomizer generates a random r.
3. The tag creator generates an encryption C′ of T ′ = T + r. Note that for

most homomorphic encryption systems, C′ can be generated from C and r.

In this ideal interactive scenario, the value of T ′ is random. Following Gennaro,
we heuristically choose r as a hash of C, the identity of the tag creator, and a
representation of the “place” of this tag in the protocol as a whole (we simply
ask that this representation never appear twice in the same election).

Of course, if a tag is prescribed to be equal to an earlier generated value, we
simply create the commitment with this earlier value (and prove equality).

It can be shown that if T and C are chosen correctly (a random value and a
random encryption), then the distribution of T ′ is indistinguishable from random.
This is not true if T is chosen adversarially. However, by a standard argument, T ′

cannot be chosen to collide with any other tag value, except with negligible prob-
ability, if one replaces the hash function with a random oracle. We heuristically
assume the same holds true for a suitable cryptographic hash function.

We note that the tags are homomorphically encrypted for use in the mix-net;
one can achieve greater efficiency (at some loss of clarity) by putting a randomiza-
tion step in at this point. Even further efficiency can be obtained by limiting the
range of r, say to 192 bits even if the range of the tags is much larger.

4 Analysis

4.1 The Framework and Limits of Our Analysis

Aside from the analysis of efficiency, we cannot formally analyze our protocol in
its recommended usage, which makes use of variants of the Fiat-Shamir heuristic.
We instead, following a long tradition, analyze the “idealized” protocol, in which
the parties engage in true proofs of knowledge and coin-flipping protocols with
a trusted external party.

We also assume that while some of the counters may be corrupt, sufficiently
many are honest so that the mix-net and group decryption protocols are secure
and serially composable.

We also assume that the (essentially external) decisions as to which candidate
is eliminated in any phase are independent of the “internals” of the protocol (i.e.,
based on the encrypted , though they may of course depend on the tallies of who
has how many votes. We note that any sensible decision procedure will not look
any deeper than the precincts vote sub-totals. This limitation may be relaxed,
particularly if k is small - essentially giving the adversary full choice over the
elimination sequence requires a k! increase in the computational hardness of
breaking the probabilistic encryptions and subverting the mix-net, coin-flipping
and group decryption protocols.1

1 We suspect that with some care, the k! factor may be reduced to kO(1). However, a
slightly more intricate analysis is required.
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Thus, we view and analyze our protocol, and the attacks on it, as follows.
1. The voters, both good and malicious, prepare their encrypted lists, and per-

form the requisite proofs and coin-flipping protocols with an honest party.
The malicious voters may see the encryptions generated by the good voters,
and the transcripts of these protocols, but must engage in the proofs and
coin flipping protocols anew (this is why we use Gennaro’s trick to prevent
the reuse of the Fiat-Shamir proofs). It is in the creation of these encrypted
ballots that we allow the adversary the most freedom of operation.

2. For each phase of the counting process, the counters engage in various secure
computations (mix net operations and group decryptions) on the encrypted
values. As we assume that the adversary is unable to corrupt these protocols
(sufficiently), we assume that
– The operations proceed correctly.
– The adversary is able to see the inputs and output of these operations,

but not the actual operation of the protocol.
These two assumptions are justified based on the correctness and simulata-
bility of the underlying sub-protocols. Given the inputs and outputs, anyone
can simulate the set of messages comprising the execution of the secure
computation.

After some of these secure computations, tallies of votes for each surviving can-
didate are generated. We call these tallies ideal snapshots. We call the output of
the secure computations protocol snapshots.

Thus, we can view the attack on the protocol as comprising the (mis)generation
of ballots followed by the observation of a series of protocol snapshots. We compare
such an attack with an ideal attack, which works as follows:

1. The voters, adversarial or not, create ordered lists of candidates.
2. Initially, or after a candidate has been eliminated, the tallies of current first

choice votes for candidate are revealed, corresponding to the ideal snapshot
defined above.

To analyze correctness, we observe that our protocol (at least in its idealized
form) ensures that the ballots correspond to well-defined lists of candidates, and
that the resulting “ideal snapshots” are what they should be given given this list.
To analyze privacy, we go on to show that given the information that may be
extracted from the adversarial voters and the ideal snapshots, one may generate
simulated protocol snapshots that are computationally indistinguishable from
the actual protocol snapshots.

4.2 Efficiency

In a correct vote, each choice consists of a name slot and O(k) keys. The com-
plete construction of the linked list requires O(k2) key values. Because El Gamal
encryption and the plaintext equality proof take a constant number of exponen-
tiations, a quadratic number of exponentiations is needed to cast a vote. Each
ballot will also require O(k2) encryptions. The centers must perform shuffles
on O(nk2) encrypted values per elimination round. Group decryptions must be
performed on O(nk) encrypted values per elimination round.
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4.3 Correctness

To show that this protocol is correct, we show that accepted ballots correspond
to independent, well-formed lists of names, and that the protocol performs the
correct operations on these lists.

Lemma 1 summarizes the result of the zero-knowledge proofs of knowledge
and coin-flipping protocols.

Lemma 1. Suppose we have a collection of submitted ballots that have passed
the zero-knowledge proofs of knowledge given in the Section 3.3. Then, assum-
ing that all the ballot creators run in probabilistic polynomial time and that the
probabilistic encryptions are secure, the following will hold almost always:

1. All accepted ballots can be mapped to a well-formed list of names and well
formed tag values; all such values may be extracted from the entity submitting
the ballot (and hence performing the proofs of knowledge).

2. All tag values that are specified by the protocol to be equal will be equal; any
two tag values that are not specified to be equal will not be equal.

One important consequence of the proofs of knowledge is that vote duplication
or other forms of mauling are impossible. Suppose that the good voters have vote
lists {L} and generate the (essentially) random tags {t} used for the linked lists.
We consider two types of adversary. The ideal model adversary, A′, chooses vote
lists {L} and tags {t′}, without seeing {L} and {t}. The real model adversary, A∗

sees a transcript consisting of the actual ballots generated by the good voters, and
is allowed to generate ballots for itself. However, it must perform the specified
proofs of equality and knowledge on these ballots; let {L∗} and {t∗} be the lists
and tags obtained by the extractor for these proofs (by Lemma 1, these lists are
well defined with all but negligible probability). Lemma 2 asserts that A∗ cannot
use its extra information to any better effect than A′.

Lemma 2. For any probabilistic polynomial time adversary, A∗, there is a prob-
abilistic polynomial time adversary A′ such that ({L}, {t}, {L′}, {t′}) is compu-
tationally indistinguishable from ({L}, {t}, {L∗}, {t∗}).

Proof. (Sketch) We use a standard hybrid argument. Given A∗, we create a hy-
brid adversary,A1, that runs A∗ given the encryptions, but with simulated proofs
instead of actual proofs. The output of this adversary must be computationally
indistinguishable from that of A∗, or we have a violation of the zero-knowledge
property. We define A′ as the adversary that generates random encrypted val-
ues and runs A1. The output of A′ must be computationally indistinguishable
from that of A1, or there would be a violation of the semantic security of the
encryption.

We pause to reflect on the meaning of Lemma 1 and Lemma 2 for the types of
attacks that can be staged during the ballot reconstruction phase. The adversary
must create ballots that correspond to well formed lists and tags, such that the
set of tags have no spurious duplications. The lists and tag values had might as
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well be chosen independently of the honest voters. In short, the adversary acts
no differently than an adversary that chooses its lists and tags and engages in
the protocol.

It remains to consider the remainder of the protocol. Recall, we assume that
the adversary is assumed not to be able to corrupt enough counters to interfere
with the mix-net and group decryption operations.

We observe that the details of the ballots (other than the fact that they
are valid) are essentially irrelevant to the rest of the protocol. The proofs are
essentially dropped once they are verified, leaving only the choice of encryptions.
Recall that a re-encrypting mix-net replaces the encryption of some value x with
a random encryption of x. Thus, the precise encryptions chosen by the adversary
almost immediately become irrelevant, as summarized in Lemma 3.

Lemma 3. The result of the first re-encrypting mix-net operation depends only
on the values of the lists and tags encrypted in the ballots, not on the ballots
themselves.

Thus, the only effective difference between a general adversary that chooses its
ballots and a comparatively ideal adversary that chooses its list of candidates
and then participates in the protocol is that the general adversary can specify its
tags arbitrarily (but not to collide spuriously). By a straightforward but tedious
argument, one can show the following:

Lemma 4. Given a set of well-formed ballots, corresponding to a set of lists of
candidates, with no spurious tag collisions, and sequence of candidate elimina-
tions, the vote counts produced at each round will be the same as that produced
by the ideal vote-counting algorithm on these lists of candidates.

Hence, the (partial) freedom to choose the tag values is irrelevant to the inter-
mediate counts of the protocol.

The above Lemmas imply the correctness of our (idealized) protocol.

Privacy. The methodology of the previous section can be extended to simulta-
neously establish privacy as well. Consider the view of the adversary attempting
to corrupt the election. At the time it selects its ballots, it has only seen proba-
bilistic encryptions of the good voters’ lists and tags, and zero-knowledge proofs
on these values. As with the proof of Lemma 2, we can simulate this view with
simulated proofs on random committed values. It remains to simulate the views
of the later parts of the protocols. As before, we use the extraction property of
the proofs to extract the lists {L′} and tags {t′} specified by the adversary. By
the previous section (particularly Lemma 3), once the ballots have been con-
structed and tested, these values are the only aspects that are relevant to future
steps of the protocol.

We consider the view of the adversary in the ideal and actual settings. In
the ideal setting, the adversary sees {L′} and {t′} and then sees the sequence
of intermediate vote counts (one initial, and one for each elimination phase).
In reality, the adversary sees a sequence of “snapshots” consisting of encrypted
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values output by the mix net, of which some subset are revealed at each stage,
as specified by the protocol and which candidates are eliminated. Additionally,
there is the adversaries view of the actual secure computations we are invoking,
but these are assumed to be simulatable. Lemma 5 states that one can simulate
the snapshots given the information available in the ideal model.

Lemma 5. Given the vote lists {L′} and tags {t′} given by the adversary, and
the sequence of vote totals generated in each elimination phase, and the identities
of each eliminated candidate, one can in probabilistic polynomial time generate
simulations of the output of each secure computation operation that are compu-
tationally indistinguishable from the outputs of the protocol.

The proof is a tedious but straightforward hybrid argument.

5 Discussion

Receipt Freeness: One of the more obvious deficiencies of this protocol is its
lack of receipt-freeness. It seems likely that, at the cost of modestly greater com-
plexity, one can make a receipt-free version of this protocol using standard tech-
niques (though we do not claim such a result). The natural approach would be
for voters to interact with a voting entity to securely compute a ballot; the voter
inputs its preferences, but has no more knowledge of the proofs and encryptions
than if another voter had cast a ballot with the same preference list. While gen-
eral secure computation is impractical, the operations required for constructing a
ballot, namely creating randomized encryptions for the candidate names, random
tags and proofs of equality of these tags, are quite amenable to this approach.

Practicalities: It should be pointed out that we have ignored an entire space
of trust and security issues, assuming for example that voters have completely
trustworthy implementations of their part of the protocol. We view this work as
an early step towards efficient preference-based voting.

Extension to multiple winners: This protocol only covers the case of an
election with a single victor. If the election is for multiple seats, winners get
“eliminated.” They keep a quota’s worth of first-choice votes, with the surplus
getting redistributed with a fractional weight. From this protocol, a STV proto-
col, which modifies this protocol by preserving preference hiding and using the
same ideas for link forwarding, but taking the fractional redistribution of votes
into account, may arise.

Handling multiple losers and Write-in votes: It may be foreseeable that a
number of candidates with relatively small tallies of votes will not be able to garner
enough votes to win the election. In this protocol, the votes have to be reshuffled
after each elimination, or authorities may reveal significant link information. We
would like to modify this protocol so that multiple losing candidates can be re-
moved efficiently. This would also allow for the inclusion of write-in candidates.
Write-in candidates with a significant number of votes will stay in the vote pool,
while the occasional sporadic write-in vote will be eliminated promptly.
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Incomplete Voting: A voter may not need to fill out a complete ballot, instead
opting for ranking t-out-of-k candidates. In San Francisco elections, for example,
voters select only three out of k candidates when voting. This scheme is adaptable
to such an incomplete vote, so long as voters post one key per candidate. Each vote
listing t candidates will take O(tk) bits. Schemes that encode a full list of choices
in one ballot will now require at least log(k!)+1 bits. If t is sufficiently small, then
this system also improves on the space efficiency of previous schemes. On the other
hand, the privacy of some ballots will be compromised, as terminal choices will
appear in the primary pool of votes; counters may be able to reconstruct ballots
consisting of only eliminated candidates. One potential solution to this is to have
a voter post dummy choices to fill out the ballot.
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Abstract. Encryption schemes that support computation on encrypted
data are useful in constructing efficient and intuitively simple cryp-
tographic protocols. However, the approach was previously limited to
stand-alone and/or honest-but-curious security. In this work, we apply
recent results on “non-malleable homomorphic encryption” to construct
new protocols with Universally Composable security against active cor-
ruption, for certain interesting tasks. Also, we use our techniques to
develop non-malleable homomorphic encryption that can handle homo-
morphic operations involving more than one ciphertext.

1 Introduction

Computation on encrypted data is one of the most intriguing problems in cryptog-
raphy today. There is a long history of works investigating this problem in various
general settings [1, 2, 3, 5, 11, 12, 13, 17, 22, 23], as well as in relation to specific
computational tasks (e.g., searching on encrypted inputs [4, 8, 10, 13, 14, 15, 18,
19, 24]). As demonstrated by these works, being able to compute on encrypted
inputs leads to simple intuitive protocols for many cryptographic tasks.

However, compared to some of the core areas in cryptography like encryption,
authentication and secure multi-party computation, the state of the art for com-
putation on encrypted inputs remains quite limited. The majority of encryption
schemes that allow computations on encrypted data are only known to achieve
security against chosen-plaintext attacks. As such, protocols that manipulate
encrypted data often have to employ complicated machinery of zero-knowledge
proofs and/or distributed key management to provide protection against mali-
cious participants. Similarly, issues like composability of protocols have hardly
been explored for this problem.

In this work we take a closer look at the composability and non-malleability
aspects of computation on encrypted data. Our goal is to construct protocols
that are secure in the demanding setting of Universally Composable (UC) secu-
rity [7]. The main challenge is in forbidding a malicious party from manipulating
encrypted data in unwanted ways. The traditional solution to this problem is
to use zero-knowledge proofs to enforce honest behavior. However, general zero-
knowledge proofs are not possible in the UC framework.
� Partially supported by NSF grant CNS 07-47027.
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Instead, our approach is to restrict malicious parties’ capabilities via strong
non-malleable guarantees on the encryption scheme itself. This approach has the
additional benefit that shifting some of the security burden to the encryption
scheme allows us to construct conceptually simple protocols that still achieve
strong security against malicious parties.

Requiring “non-malleability” for an encryption scheme may seem counter-
productive to the goal of computing on its encrypted data. Indeed, a scheme
must necessarily be malleable in some way for its encrypted data to be manip-
ulated. However, a security notion called Homomorphic-CCA (HCCA) security
has recently been defined in [20], meaningfully combining homomorphic com-
putational features and non-malleability. Briefly, a scheme that achieves HCCA
security is homomorphic with respect to certain operations, but explicitly forbids
all other manipulations to the underlying plaintext.

The HCCA security requirement is strong enough to be meaningful in the
UC framework, but unlike general-purpose UC zero-knowledge proofs, can be
achieved in the plain model. Indeed, such a scheme has been constructed in
[20], under a standard assumption. However, that construction only supports a
very limited class of homomorphic operations. In particular, it does not support
operations which combine multiple encrypted inputs, which are relevant in the
context of computation on encrypted data. Our contribution in this work is to
show that when used with appropriately encoded data, the relatively unexpres-
sive scheme from [20] can be used to robustly implement more sophisticated
computations on data encrypted in multiple ciphertexts.

1.1 Overview of Our Results

Background: Non-Malleable Homomorphic Encryptions. Computation on en-
crypted data necessitates having an encryption scheme that supports some ho-
momorphic operations. However, when considering security against malicious
parties, a non-malleability requirement is also generally needed.

A key component in our constructions is a public-key encryption scheme that
meaningfully combines both non-malleability and homomorphic operations. Such
schemes were introduced in [20]. We review the relevant security definitions for
these schemes in Section 2. For the purposes of this overview, the reader may
consider a “non-malleable (unary) homomorphic encryption scheme” to be one
in which the only ways to construct a valid ciphertext are: (1) encrypting a
known message, or (2) applying a homomorphic operation to some Enc(m) to
obtain Enc(T (m)), for any function T in a set of allowed transformations. The
set of allowed transformations is a fixed parameter of the encryption scheme,
and it is infeasible for an adversary to generate a ciphertext whose value de-
pends on other ciphertexts in any other way. Furthermore, ciphertexts derived
via the homomorphic operation are completely indistinguishable (even to the
recipient) from ciphertexts generated by the standard encryption operation. In
[20], a construction was given for a family of encryption schemes that support
these requirements for a range of allowed transformation operations related to
cyclic group operations. Our results do not rely on any additional properties of
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that construction, but uses the primitive in a black-box manner, and as such, can
be instantiated with the construction in [20] or any future construction satisfying
the appropriate security requirements.

The common technique in our constructions is to exploit the power of this en-
cryption scheme as follows: We encode the input data with some special random-
ized “integrity” information into a vector of several ciphertexts. The integrity
information is intended to correlate the vector of ciphertexts together into one
“bundle.” The homomorphic property of the scheme ensures that the integrity
information and data can be manipulated in certain ways. For instance, in both
of our main results, the integrity information can be “re-randomized” using the
scheme’s homomorphic operations.

When using a homomorphic non-malleable encryption scheme in a protocol,
already by the non-malleability property of the encryption scheme, ciphertexts
can only be derived from others using a certain limited class of operations. By
employing an appropriate integrity encoding, we further enforce that among
the small set of allowed operations, the only ones which preserve/maintain the
integrity information are the legitimate operations prescribed by the protocol.
In other words, the integrity encoding provides a means to give and verify an
implicit zero-knowledge proof that the protocol is being honestly implemented.

Opinion Polling. Our first result is an “opinion poll” protocol that elegantly
illustrates the power of the combination of non-malleability, unlinkability and
homomorphism in a single encryption scheme. The protocol is motivated by the
following scenario: A pollster wishes to collect information from many respon-
dents. However, the respondents are concerned about the anonymity of their
responses. Indeed, it is in the interest of the pollster to set things up so that
the respondents are guaranteed anonymity, especially if the subject of the poll
is sensitive personal information.

To help collect responses anonymously, the pollster can enlist the help of an
external tabulator. The respondents require that the external tabulator too does
not see their responses, and that if the tabulator is honest, then responses are
anonymized for the pollster (i.e., so that he cannot link responses to respon-
dents). The pollster, on the other hand, does not want to trust the tabulator at
all: if the tabulator tries to modify any responses, the pollster should be able to
detect this so that the poll can be invalidated.

A relevant view of this problem is as an instance of a model that we call
crypto-computing on third-party inputs — a model that extends the “crypto-
computing” model from [23]. In this new model, the inputs to the computation
are owned by a set of parties other than the client (who receives the output —
the pollster in our case) and the server (who does the actual computation on
encrypted data — the tabulator in our case). This separation of roles introduces
new security requirements: (1) Privacy for the input parties: the client should
not learn anything other than the intended output value. The server should not
learn anything either. (The input providers are not necessarily interested in the
correctness of the computation.) (2) Robustness: a malicious server cannot make
the client accept an output that is inconsistent with the parties’ inputs.
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The opinion poll scenario is similar to the classic setting for mix-nets [9],
where a group of servers accepts a list of ciphertexts and outputs a random
permutation of their decrypted values. However, in many mix-net protocols it
can be quite complicated to enforce the correctness of outputs against a malicious
(i.e., actively corrupt) server (in our case, the tabulator in particular). Often
zero-knowledge proofs [16], or distributed decryption via verifiable secret sharing
are used to enforce the integrity of operations performed on the ciphertexts. In
contrast, our use of non-malleable homomorphic encryption leads to a simple
and elegant UC-secure protocol.

The main idea in our protocol is to use an encryption scheme whose only
homomorphic operation is Enc(α, β) �→ Enc(α, tβ), where t, α, β are elements of
some cyclic group. In other words, plaintexts consist of a pair of group elements.
Anyone can multiply (apply the group operation to) the second plaintext compo-
nent with a known value t, but the first component is completely non-malleable,
and the two components remain “tied together.” Now, to implement the opinion
poll protocol, the pollster generates a (multiplicative) secret sharing r1, . . . , rn

of a random secret group element R, then sends to the ith respondent a share
ri. Each respondent sends Enc(mi, ri) to the tabulator, where mi is his response
to the poll. Now the tabulator can blindly re-randomize the shares (multiply the
ith share by a random si, such that

∏
i si = 1), shuffle the resulting ciphertexts,

and send them to the pollster. The pollster will ensure that the shares encode
the secret R and accept the results.

Informally, security is argued as follows. The pollster only sees a random
permutation of the responses, and since the multiplicative sharing of R is re-
randomized, there is no way to link any responses to the ri shares he originally
dealt to the respondents. The tabulator sees only encrypted data, and in par-
ticular has no information about the secret R or any individual shares ri. The
only way the tabulator could successfully (with non-negligible probability) gen-
erate ciphertexts whose second components are a multiplicative share of R is
by making exactly one of his ciphertexts be derived from each respondent’s ci-
phertext. By the non-malleability of the encryption scheme, each response mi

is inextricably “tied to” the corresponding share ri and cannot be modified, so
each respondent’s response should be represented exactly once in the tabulator’s
output. Finally, observe that the responses of malicious respondents must be in-
dependent of honest parties’ responses – by “copying” an honest respondent’s
ciphertext to the tabulator, a malicious respondent also “copies” the correspond-
ing ri. The resulting shares would be inconsistent with overwhelming probability.

We also show a similar protocol where the computation performed is a boolean-
OR of the respondents’ boolean inputs (where the tabulator also provides an in-
put). Again, the non-triviality in these constructions is not in the complexity of the
computation performed, but in ensuring (using only the properties of the encryp-
tion scheme, and in particular no zero-knowledge proofs) that a malicious server
cannot do anything unwanted without detection.

Binary Homomorphic Encryption. Our second contribution is an extension of
the non-malleable homomorphic encryption scheme of [20]. The scheme of [20]
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is homomorphic in an inherently unary way; it prohibits operations that com-
bine multiple ciphertexts together in a homomorphic way. However, many
existing applications of (plain) homomorphic encryption schemes rely on com-
bining multiple ciphertexts together. Unfortunately, in [20], it was shown that
it is impossible to achieve the natural extension of the security definitions to
the setting where the homomorphic operations act on multiple ciphertexts.
The complication arose from the tension between the non-malleability require-
ment and the unlinkability requirement (namely, that a ciphertext not leak
whether it was derived as a normal encryption or via one of the homomorphic
operations).

In this work, we show that a meaningful relaxation of these definitions can be
achieved. Instead of settling for absolute unlinkability, we consider a relaxation
similar to that used in [23], in which ciphertexts grow in size after applying
the operations. Thus, a ciphertext will reveal no more than (an upper bound
on) the number of homomorphic operations that have been applied to derive it.
However, unlike in [23], our goal is to achieve non-malleability and robustness
against malicious adversaries.

We construct an encryption scheme that supports the binary group operation
in a cyclic group; i.e., anyone can transform Enc∗(α) and Enc∗(β) into Enc∗(αβ),
but the scheme is otherwise non-malleable. Lacking a “standard” security defi-
nition for such an encryption scheme, we prove that our construction is a UC-
secure realization of a natural ideal functionality, whose details are motivated
by extending the UC functionality considered in [20].

The main idea in our construction is to encode a message m as a vector
Enc(m1), . . . ,Enc(mk), where the mi’s are a random multiplicative sharing of m
in the group. and Enc is a non-malleable homomorphic encryption scheme that
supports (unary) group operations (from [20]). To “multiply” two such encrypted
encodings, we can simply concatenate the two vectors of ciphertexts together,
and rerandomize the new set of shares (multiply each component by si, where∏

i si = 1, as in the opinion poll protocol) to bind the sets together.
The above approach captures the main intuition, but our actual construction

uses a slightly different approach to ensure UC security. In the scheme described
above, anyone can split the vector Enc(m1), . . . ,Enc(mk) into two smaller vectors
that encode two (random) elements whose product is m. We interpret this as a
violation of our desired properties, since it is a way to make two encodings whose
values are related to a longer encoding. To get around this problem of “breaking
apart” these ciphertexts, we encode m as Enc(α1, β1), . . . ,Enc(αk, βk), where the
αi’s and βi’s form two independently random secret sharings of m. Rerandom-
izing these encodings is possible when we use a scheme that is homomorphic
with respect to the operations (α, β) �→ (tα, sβ). Now these encodings cannot
be split up in such a way that the first components and second components
are shares of the same value. Note that it is crucial here that because of the
non-malleability properties of the scheme, the (αi, βi) pairs cannot themselves
be “broken apart.”
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2 Preliminaries

Homomorphic Encryption Syntax and Security. Our constructions use homo-
morphic encryption schemes that have unary homomorphic operations on the
plaintext messages. That is, we suppose there is a procedure CTrans, which
takes a ciphertext and a (description) of a function T on plaintexts, such that
DecSK(CTrans(ζ, T )) = T (DecSK(ζ)) is satisfied.

Prabhakaran and Rosulek [20] introduced security definitions for homomor-
phic encryptions that combine non-malleability as well as robust homomorphic
features. Schemes satisfying these definitions are vital for achieving UC security
in our constructions. We present a high-level overview of their security definitions
below; we refer the reader to Appendix A for the complete formal definitions.

Informally, a homomorphic encryption scheme achieves Homomorphic-CCA
(HCCA) security with respect to a set of functions T if the scheme is non-
malleable except for the possibility of changing an encryption of m into an
encryption of T (m), for T ∈ T (i.e., no other operations are possible in the
scheme). We also consider the complementary requirement: Informally, a homo-
morphic scheme is unlinkable with respect to T if it is indeed possible to change
encryptions of m into encryptions of T (m) for T ∈ T as a feature (using the
CTrans operation), in such a way that ciphertexts do not reveal whether they
were generated via Enc or via CTrans.

Formalizing the intuitive HCCA requirement in a general way is non-trivial. It
is achieved in [20] by requiring that there be an additional procedure RigEncPK

(used only in the analysis) which outputs a special “rigged” ciphertext ζ and
some auxiliary information S, such that ζ is indistinguishable from a normal ci-
phertext. The rigged ciphertext does not necessarily encode a message; however,
there is a corresponding procedure RigExtractSK which, when given another ci-
phertext ζ′ and the auxiliary information S, determines whether ζ′ was obtained
by applying a transformation to ζ, and if so, outputs that transformation. The
formal HCCA security experiment enforces the indistinguishability of rigged and
normal ciphertexts, as well as the correctness of RigExtract’s output. Intuitively,
if RigExtract only outputs transformations in T , then ciphertexts can only de-
pend on the values of other ciphertexts according to transformations in T .

The unlinkability requirement is formalized via a more straight-forward se-
curity experiment. At a high level, the experiment enforces that for all adver-
sarially generated ciphertexts ζ such that DecSK(ζ) �= ⊥, the two distributions
EncPK(T (DecSK(ζ))) and CTrans(ζ, T ) are indistinguishable, even in the pres-
ence of a decryption oracle.

Concrete constructions. Prabhakaran and Rosulek [20] give a construction achiev-
ing the desired properties for various kinds of homomorphic operations, under the
Decisional Diffie-Hellman assumption.

Let G be a cyclic group, and let Gn denote the product group, where we
extend the group operation in G component-wise. For σ ∈ Gn, define the function
Tσ : Gn → Gn as the “multiplication by σ” operation: Tσ(α) = σα. Finally, for
any H ⊆ Gn, define TH = {Tσ | σ ∈ H}.
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Theorem 1 ([20]). For any n ≥ 1 and any subgroup H of Gn, there is an en-
cryption scheme with message space Gn that is simultaneously HCCA-secure and
unlinkable, with TH as the set of allowed operations, provided that the Decisional
Diffie-Hellman (DDH) assumption holds in G and any subgroup of Z∗

|G|.

Our two main results use instantiations of the above construction with n = 2,
and H = {1} × G and H = G2, respectively.

3 Opinion Polling

We describe an intuitively simple yet robust protocol for the opinion polling
application described in Section 1.1, using HCCA encryption as a component.

Formally, we give a secure protocol for the UC ideal functionality Fpoll, de-
scribed in Figure 1. For the opinion polling application, we associate the pollster
with party Pclient, the tabulator with Pserver, and the respondents with the input
parties P1, . . . , Pn. Note that in Fpoll, Pclient learns only a random permutation
of the parties’ inputs, while Pserver learns nothing about their inputs (except the
knowledge of who has submitted inputs). Also, Pserver and each input party can
cause the process to abort without Pclient accepting any output.

On input [setup, Pclient, Pserver, P1, . . . , Pn] from party Pclient:

– Send [setup, Pclient, Pserver] to each party Pi.
– Send [setup, Pclient, P1, . . . , Pn] to Pserver.

On input [input, xi] from input party Pi:

– Send [inputfrom, Pi] to Pserver, and remember xi.

On input “ok” from Pserver:

– If Pserver is corrupt, expect to receive from Pserver a permutation σ on {1, . . . , n}.
If Pserver is honest, choose σ at random.

– If not all P1, . . . , Pn parties have supplied an input, or if some xi = ⊥, then
send ⊥ to Pclient.

– Otherwise, give (xσ(1), . . . , xσ(n)) to Pclient.

On input “cancel” from a corrupt Pserver, send ⊥ to Pclient.

Fig. 1. UC ideal functionality Fpoll

The Protocol. We present our protocol for Fpoll following the high-level overview
given in Section 1.1. We then prove that the protocol is a UC-secure realization
of Fpoll, provided that at least one of {Pclient, Pserver} are honest.

Let E = (KeyGen,Enc,Dec,CTrans) be an unlinkable HCCA-secure scheme,
whose message space is G2 for a cyclic group G, and whose allowed (unary)
transformations are (α, β) �→ (α, tβ) for all t ∈ G. We suppose the CTrans
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operation accepts arguments as CTrans(C, t), where t ∈ G specifies the transfor-
mation (α, β) �→ (α, tβ). We abbreviate the CTrans(C, t) operation as “t ∗ C”.
Thus t ∗EncPK(α, β) is indistinguishable from EncPK(α, tβ), in the sense of the
unlinkability definition.

The protocol proceeds as follows:

1. Pclient generates a key pair (SK,PK) ← KeyGen and chooses random elements
r1, . . . , rn ← G, remembering R =

∏
i ri. She then sends (PK, ri, Pserver) to

each party Pi, and sends (Pclient, P1, . . . , Pn) to Pserver.
2. Input party Pi holds input xi. He receives (PK, ri, Pserver) from Pclient, then

sends EncPK(xi, ri) to Pserver through a secure channel.
3. Pserver collects ciphertext Ci from each input party Pi, then chooses a random

permutation σ on [n] and random s1, . . . , sn ← G subject to
∏

i si = 1. He
computes C′

i = sσ(i) ∗ Cσ(i) and sends (C′
1, . . . , C

′
n) to Pclient.

4. Pclient decrypts each C′
i as (x′

i, r
′
i) ← DecSK(C′

i). If any decryptions fail, or if∏
i r

′
i �=R, she aborts. Otherwise, she outputs (x′

1, . . . , x
′
n)=(xσ(1), . . . , xσ(n)).

Theorem 2. If E is unlinkable and HCCA-secure with message space G2, and
allowed transformations as described above, where |G| is superpolynomial in
the security parameter, then our protocol is a secure realization (with respect
to static corruptions) of Fpoll, against adversaries who corrupt at most one of
{Pserver, Pclient}.

Proof. Given a real-world adversary A, we construct a simulator S. We break
the proof down into 3 cases according to which parties A corrupts:

Case 1: If A corrupts neither Pserver nor Pclient, then suppose by symmetry
that A corrupts some input parties P1, . . . , Pk. Then the main task for S is to
extract the inputs of each corrupt Pi and send them to Fpoll. S simply does the
following:

– On receiving [setup, Pclient, Pserver, P1, . . . , Pn] from Fpoll, generate (PK,SK)
← KeyGen. Choose random r1, . . . , rk ← G and simulate that Pclient sent
(PK, ri, Pserver) to each corrupt input party Pi.

– If not all corrupt parties Pi send a ciphertext Ci to Pserver, then abort. Oth-
erwise, set (xi, r

′
i) ← DecSK(Ci).

– If any of the above decryption fails, or if
∏

i r
′
i �=

∏
i ri, then send [input,⊥]

to Fpoll on behalf of each corrupt input party Pi.
– Otherwise send [input, xi] to Fpoll on behalf of each corrupt input party Pi.

It is straight-forward to see that in the cases where S sends [input,⊥], then by
the honest behavior of Pserver and Pclient, the protocol would have mandated that
Pclient refuse the output.

Case 2: If A corrupts Pclient and (without loss of generality) input parties
P1, . . . , Pk, then S does the following:

– When corrupt Pclient sends (PK, ri, Pserver) to each honest input party Pi,
send [setup, Pclient, Pserver, P1, . . . , Pn] to Fpoll on behalf of Pclient.
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– When a corrupt input party Pi sends a ciphertext Ci to honest Pserver, send
[input, 1] to Fpoll on behalf of Pi.

– When Fpoll gives the final output to S, remove as many 1’s from the output
list as there are corrupt input parties. Call the remaining outputs xk+1,
. . . , xn. Honestly simulate the remainder of the protocol on behalf of the
honest input parties, using xi as the input for honest party Pi.

Since Pclient is corrupt, S can legally obtain the set of honest input parties’
inputs. The only difference therefore between the view of A in the real world
and our simulation is that the honest parties are simulated with inputs that
may be permuted. However, since Pserver is honest, Pclient’s view in the protocol
is independent of any permutation on the honest parties’ inputs.

Case 3: If A corrupts Pserver and input parties P1, . . . , Pk, then S does the
following:

– When Fpoll gives [setup, Pclient, P1, . . . , Pn] to S, generate (PK,SK) ←
KeyGen. Pick random r1, . . . , rn ← G and simulate that Pclient sent (PK, ri,
Pserver) to each corrupt Pi.

– When Fpoll gives [inputfrom, Pi] to S for an honest party (i > k), generate
(Ci, Si) ← RigEncPK and simulate that Pi sent Ci to Pserver. Remember Si.

– When Pserver sends Pclient a list of ciphertexts (C′
1, . . . , C

′
n), do the following

for each i:
• If DecSK(C′

i) �= ⊥, then set (xi, r
′
i) ← DecSK(C′

i).
• Else, if RigExtractSK(C′

i, Sj) �= ⊥ for some j, set r′i := ri · RigExtractSK

(C′
i, Sj).

• If both these operations fail, send cancel to Fpoll on behalf of Pserver.
If
∏

i r
′
i �=

∏
i ri or for some j > k, there is more than one i such that

RigExtractSK(C′
i, Sj) �= ⊥, then send cancel to Fpoll on behalf of Pserver.

Otherwise, let σ be any permutation on [n] that maps each j > k to the
unique i such that RigExtractSK(C′

i, Sj) �= ⊥. Send [input, xσ(i)] to Fpoll on
behalf of corrupt Pi (i ≤ k), and then send ok to Fpoll on behalf of Pserver,
with σ as the permutation that Fpoll expects.

In this case, the primary task of S is to determine whether the corrupt Pserver

gives a valid list of ciphertexts to Pclient. Applying the HCCA definition in a se-
quence of hybrid interactions, we see that the behavior of the real world interac-
tion versus this simulation interaction is preserved when appropriately replacing
Enc/Dec with RigEnc/RigExtract.

Note that the adversary’s view is independent of rk+1, . . . , rn. If DecSK(C′
i) �=

⊥, then the corresponding r′i value computed by the simulator is also indepen-
dent of rk+1, . . . , rn. Thus the only way

∏
i ri =

∏
i r

′
i can be satisfied with

non-negligible probability is if for each honest party Pj , exactly one i satisfies
RigExtractSK(C′

i, Sj) �= ⊥. In this case, there will be exactly as many xi’s as cor-
rupt players, and the simulator can legitimately send these to Fpoll as instructed
(with the appropriate permutation).

Boolean OR on Encrypted Data. Using a similar technique, we can obtain a UC-
secure protocol for a boolean-OR functionality. This functionality is identical
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to Fpoll except that Pserver also gets to provide an input (say we identify Pserver

with P0), and instead of giving (xσ(0), . . . , xσ(n)), it gives
∨

i xi as the output to
Pclient.

We can achieve this new functionality with a similar protocol — this time,
using an encryption scheme that is unlinkable HCCA-secure with respect to all
group operations in G2. Pclient sends shares ri to the input parties as before. The
input parties send EncPK(xi, ri) to Pserver, where xi = 1 if Pi’s input is 0, and xi

is randomly chosen in G otherwise. Then, Pserver rerandomizes the ri shares as
before, and also randomizes the xi’s in the following way: Pserver multiplies each
xi by si such that

∏
i si = 1 if Pserver’s input is 0, and

∏
i si is random otherwise

(Pserver can randomize both sets of shares simultaneously using the homomorphic
operation). Pclient receives the processed ciphertexts and ensures that

∏
i r

′
i = 1.

Then if
∏

i x
′
i = 1, it outputs 0, else it outputs 1.

We note that this approach to evaluating a boolean OR (where the induced
distribution is a fixed element if the result is 0, and is random if the result is 1)
has previously appeared elsewhere, e.g., [5, 6].

Relation to Voting. Our opinion polling protocol falls short of a solution for the
classic election scenario in several aspects. First, in our scheme, respondents can
cause the entire protocol to abort. Second, the respondents have no stake in the
correctness of the results; if the pollster publishes the entire set of responses,
there is no way for respondents to verify its correctness. Respondents may sub-
mit their vote accompanied by a randomly chosen nonce — this would allow a
respondent to verify that his own response was included, but not that the entire
set of responses is valid. Adding a publicly published nonce also allows trivial
vote-selling. We finally note that an election protocol (in which all participants
receive guaranteed correct results) is not possible in the plain UC model, given
the impossibility results of [21].

4 Non-malleable Homomorphic Encryption for Binary
Operations

In [20], it was shown that no homomorphic encryption can be completely un-
linkable and also allow a group operation over the message space as a binary
homomorphic operation — that is, an operation that multiplies two encrypted
group elements. Still, the impossibility result left open the possibility of achiev-
ing a relaxation of these requirements. We consider a relaxation similar to [23];
namely, we allow the ciphertext to leak the number of operations applied to it
(i.e., the depth of the circuit applied), but ideally no additional information.

Informally, we associate a length parameter with each ciphertext. If a length-
� and a length-�′ ciphertext are combined, then the result is a length � + �′

ciphertext.

Security Definition. Our formal definition is in the form of an ideal functionality
in the UC framework. It is a generalization of the “homomorphic message post-
ing” functionality presented in [20], to the case where multiple messages can be
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The functionality keeps track of a database of records of the form (handle, �, m).
Let GetHandle(args) be a subroutine which sends [handle-req, args] to the ad-
versary and expects in return a string handle. If handle is previously recorded in
the database, abort; otherwise, return handle.

Setup: On receiving a command [setup] from a party P : If a previous setup

command has been processed, abort. Else, send [id-req, P ] to the adversary, and
expect in response a string id. Broadcast [id-announce, P, id] to all other parties.

Dummy handles: On receiving a command [dummy, �, handle] from a corrupt party
only, internally record (handle, �, ⊥) and broadcast [handle-announce, handle] to
all parties.

Posting messages: On receiving a command [post, �, m0, handle1, . . . , handlek] from
a party sender: If any handlei is not recorded internally, or m0 �∈ G, ignore the
request. Otherwise, suppose (handlei, �i, msgi) is recorded for each i. If � <

∑
i �i,

ignore the request. Let D = {i | mi = ⊥} ⊆ [k], the indices of the dummy handles.
Set m∗ = m0 ∗

∏
i�∈D mi, the product of known plaintexts involved.

– If D = ∅ (no dummy handles involved): If P is corrupt, set handle∗ ←
GetHandle(sender, �,m∗); otherwise let handle∗ ← GetHandle(sender, �). Inter-
nally record (handle∗, �, m∗) and broadcast [handle-announce, handle∗] to all
parties.

– If � >
∑

i∈D �i (not entirely derived from dummy handles): If P is corrupt, set
handle′ ← GetHandle(sender, �′, m∗), else set handle′ ← GetHandle(sender, �′).
Internally record (handle′, �′, m∗).
Set handle∗ ← GetHandle(sender, �, {handle′} ∪ {handlei | i ∈ D}). Internally
record (handle∗, �,⊥) and send [handle-announce, handle∗] to all parties.

– Otherwise (dummy handles only), Set handle∗ ←
GetHandle(sender, �,m0, {handlei | i ∈ D}). Internally record (handle∗, �, ⊥)
and send [handle-announce, handle∗] to all parties.

Message reading: On receiving a command [get, handle] from party P (who gave
the first setup command): If (handle, �, msg) is recorded internally, send msg to P ;
else send ⊥.

Fig. 2. UC ideal functionality FG, parametrized by a cyclic group G

combined. The functionality, called FG, is given in full detail in Figure 2. Below
we explain and motivate the details of the definition.

The FG functionality allows users to post messages to each other, as on a bul-
letin board. The messages are stored in the functionality’s memory, and are not
given out except to the designated recipient. Instead, messages can be referred
to using abstract handles, which reveal no information about the message.

Following our desired intuition, users can only generate new messages in two
ways (for uniformity, all handled in the same part of the functionality’s code).
A user can simply post a message by supplying a group element m (this is
the case where k = 0 in the user’s post command). Alternatively, a user can
provide a list of existing handles along with a group element m. If all these
handles correspond to honestly-generated posts, then this has the same effect as
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if the user posted the product of all the corresponding messages (though note
that the user does not have to know what these messages are to do this). We
model the fact that handles reveal nothing about the message by letting the
adversary choose the actual handle string, without knowledge of the message.
The designated recipient can obtain the message by providing a handle to the
functionality. Note that there is no way (even for corrupt parties) to generate a
handle derived from existing handles in a non-approved way.

However, (as in [20]) adversaries can also post dummy handles, which contain
no message. When a user posts a derived message using such a handle, the
resulting handle also contains no message. However, the adversary is also told
that the handle was used in a derived post command. The adversary also gets
access to an “intermediate” handle corresponding to all the non-dummy handles
that were combined in the post request. Still, the adversary learns nothing
about the messages corresponding to these handles. This weakness is slight and
natural, since the adversary could output a ciphertext encrypted under some
key unknown to the other participants. The ciphertext would be meaningless to
the other parties, but the adversary could also be able to detect when someone
has derived another message using it.

One may of course consider interactive protocols for FG. However, we restrict
attention to non-interactive protocols obtained via encryption schemes — where
KeyGen implements the setup command, Enc and CTrans implement the post

command, and Dec implements the get command, all in the natural ways.

The Construction. Let E = (KeyGen,Enc,Dec,CTrans) be an unlinkable HCCA-
secure scheme, whose message space is G2 for a cyclic group G, and whose allowed
(unary) transformations are all group operations in G2. We suppose the CTrans
operation accepts arguments as CTrans(C, (r, s)), where r, s ∈ G specify the
transformation (α, β) �→ (rα, sβ). We abbreviate the CTrans(C, (r, s)) operation
as “(r, s)∗C”. Thus (r, s)∗EncPK(α, β) is indistinguishable from EncPK(rα, sβ),
in the sense of the unlinkability definition.

The new scheme E∗ is given by the following algorithms:

Key generation (KeyGen∗). Same as KeyGen.
Encryption (Enc∗). To encrypt an element m ∈ G in a length-� ciphertext,

output

C =
(
EncPK(α1, β1), . . . ,EncPK(α�, β�)

)
where αi, βi are randomly chosen in G subject to the constraint

∏
i αi =∏

i βi = m.
Decryption (Dec∗). To decrypt a ciphertext C = (C1, . . . , C�), decrypt each

Ci to get (αi, βi). If any decryption returns ⊥, or if
∏

i αi �=
∏

i βi, output
⊥. Else output

∏
i αi.

Transformation operation (CTrans∗). To “multiply” two given ciphertexts
C = (C1, . . . , C�) and C′ = (C1, . . . , C�′), output a random permutation of:(

(r1, s1) ∗ C1, . . . , (r�, s�) ∗ C�, (r�+1, s�+1) ∗ C′
1, . . . , (r�+�′ , s�+�′) ∗ C′

�′

)
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where ri, si are randomly chosen in G subject to
∏

i ri =
∏

i si = 1
To “multiply” a single given ciphertext C = (C1, . . . , C�) by a given known
group element R ∈ G (without increasing the ciphertext length), output:(

(r1, s1) ∗ C1, . . . , (r�, s�) ∗ C�

)
where ri, si are randomly chosen in G subject to

∏
i ri =

∏
i si = R.

We note that the syntax of CTrans∗ can be naturally extended to support mul-
tiplying several ciphertexts and/or a known group element at once, simply by
composing the operations described above.

Theorem 3. If E is unlinkable and HCCA-secure with respect to G2, where |G|
is superpolynomial in the security parameter, then E∗ (as described above) is a
secure realization of FG, with respect to static corruptions.

Proof. LetE = (KeyGen,Enc,Dec,CTrans)be theunlinkableHCCA-secure scheme
used as the main component in our construction, and let RigEnc and RigExtract be
the procedures guaranteed by HCCA security.

We proceed by constructing an ideal-world simulator for any arbitrary real-
world adversary A. The simulator S is constructed by considering a sequence of
hybrid functionalities that culminate in FG. These hybrids differ from FG only
in how much they reveal in their handle-req requests to the adversary.

Correctness. Note that FG only makes two kinds of handle-req requests: those
containing a lone message, and those containing a list of handles.

Let F1 be the functionality that behaves exactly as FG, except that every time
it sends a handle-req to the simulator, it also includes the entire party’s input
that triggered the handle-req. Define S1 to be the simulator that internally
runs the adversary A, and does the following:

– When F1 gives (id-req, P ) to S1, it generates a key pair (PK,SK) ←
KeyGen and responds with PK. It simulates to A that party P broadcast
PK.

– When F1 gives a handle-req to S1, it generates the handle appropriately
— with either Enc∗PK or CTrans∗ on an existing handle, depending on the
party’s original command which is included in the handle-req. It simulates
to A that the appropriate party output the handle.

– When A broadcasts a length-� ciphertext C, S1 tries to decrypt it with
Dec∗SK . If it decrypts (say, to m), then S1 sends a (post, �,m) command to
F1 and later gives C as the handle; else it sends (dummy, �, C).

S1 exactly simulates the honest parties’ behavior in the real world interaction.
By the correctness properties of E∗, the outputs of the honest ideal-world parties
match that of the real world, except with negligible probability; thus, real

E∗

Z,A ≈
ideal

F1
Z,S1

for all environments Z.

Unlinkability. Let F2 be exactly like F1, except for the following change: For
requests of the form [handle-req, sender, �,m], F2 does not send the handles
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that caused this request. That is, whereas F1 would tell the simulator that
the handle is being requested for a post command combining some non-dummy
handles, F2 would instead act like sender had sent [post, �,m] (that this is closer
to what FG does; internally behaving identically for such requests). Let S2 = S1,
since F1 is only sending one fewer type of handle-req to the simulator.

By a standard hybrid argument, we can see that ideal
F1
Z,S1

≈ ideal
F2
Z,S2

for all environments Z. The hybrids are over the number of post requests af-
fected by this change. Consecutive hybrids differ by whether a single handle was
generated by Enc∗ or by CTrans∗. The only handles that are affected here are
non-dummy handles, and thus ciphertexts which decrypt successfully under SK.
Thus distinguishing between consecutive hybrids can be reduced to succeeding
in the unlinkability experiment (by further hybridizing over the individual Enc
ciphertext components).

HCCA. If the owner P of the functionality is corrupt, then S2 is already a
suitable simulator for FG, and we can stop at this point.

Otherwise, the difference between FG and F2 is that FG does not reveal the
message in certain handle-req requests. Namely, those in which the simulator
receives [handle-req, sender, �].

Let S3 be exactly like S2, except for the following changes: Each time S2
would generate a ciphertext component via EncPK(α, β), S3 instead generates
it with RigEncPK . It keeps track of the auxiliary information S and records
(S, α, β) internally. Also, whenever S2 would decrypt a ciphertext component
using DecSK , S3 instead decrypts it via:

D(C) =

{
(rα, sβ) if any (S, α, β) is recorded such that (r, s) ← RigExtractSK(C, S)
DecSK(C) otherwise

By a straight-forward hybrid argument (where distinguishing between con-
secutive hybrids reduces to distinguishing in one execution of the HCCA exper-
iment), we have that ideal

F2
Z,S2

≈ ideal
F2
Z,S3

for all environments Z.
Suppose the internal records (S, α, β) are labeled as (Sj , αj , βj) for j ≥ 1.

Now for each handle-req request q sent to S3, we define Jq to be the set of
indices j such that (Sj , αj , βj) was generated as a result of servicing request q.

Each α, β is chosen randomly in G, subject to a constraint on some of their
products, as prescribed by Enc∗ and CTrans∗. However, the ciphertexts given to
the adversary are generated by RigEncPK , and thus independent of these random
choices. In fact, the entire adversary’s view is (essentially) independent of the
random choices of α, β, subject to

∏
j∈Jq

αj/βj being fixed (we pessimistically
assume that A knows this fixed value for each q). Put another way,

∏
j∈J′ (αj/βj)

is uniformly distributed for a multiset J ′ if and only if for all q, all elements of
Jq have the same multiplicity in J ′.

We now examine when a ciphertext given by the adversary is successfully
decrypted by the simulator (and thus given to the functionality as a post instead
of as a dummy handle).

Given a ciphertext (sequence of HCCA ciphertexts) C = (C1, . . . , C�), S3 first
decrypts each Ci to obtain (αi, βi) = D(Ci). The overall decryption
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succeeds if
∏

i(αi/βi) = 1. Let J ′ be the multiset of indices j such that ⊥ �=
RigExtractSK(Ci, Sj), with multiplicity for each i where this holds. The decryp-
tion constraint above is uniformly distributed (and thus equality holds only
with negligible probability) unless all elements of Jq have the same multiplic-
ity in J ′. However, when all elements of Jq have the same multiplicity in J ′,
we may cancel all the αj/βj terms in the constraint. What remains are terms
of the form αi/βi, where (αi, βi) ← DecSK(Ci), and terms of ri/si, where
(ri, si) ← RigExtractSK(Ci, Sj). The ciphertext then decrypts successfully if and
only if the constraint holds with respect to these remaining terms.

Thus, we can consider a simulator S4 which behaves just like S3, except that
when A outputs a ciphertext C = (C1, . . . , C�), it processes it as follows:

– If some Ci is such that D(Ci) = ⊥, the ciphertext is invalid; send [dummy, C]
to the functionality.

– Define J ′ as above. If for some q, the elements of Jq do not all have the
same multiplicity in J ′, the ciphertext is invalid; send [dummy, C] to the
functionality.

– Let I be the set of indices such that ⊥ �= (αi, βi) ← DecSK(Ci). If
∏

i∈I

(αi/βi) �= 1, then the ciphertext is invalid; send [dummy, C] to the
functionality.

– Let (ri, si) ← RigExtractSK(Ci, Sj) for each i �∈ I, If
∏

i∈I(ri/si) �= 1, then
the ciphertext is invalid; send [dummy, C] to the functionality.

– Otherwise, send [post, �,m0, {handlej | j ∈ J ′}] to the functionality, where
m0 =

∏
i∈I αi

∏
i∈I ri.

Except with negligible probability, S4 interacts identically with the function-
ality as S3. However, note that S4 does not actually look at the αj , βj values
that are recorded for each call to RigEnc. Thus S4 can be successfully imple-
mented even if the functionality does not reveal m in messages of the form
[handle-req, sender, �,m]. Therefore S4 is a suitable simulator for FG itself,
and ideal

F2
Z,S3

≈ ideal
FG

Z,S4
for all environments Z.

Acknowledgments

We would like to thank Josh Benaloh and the anonymous referees for suggesting
helpful improvements.

References

1. Abadi, M., Feigenbaum, J.: Secure circuit evaluation. J. Cryptology 2(1), 1–12
(1990)

2. Abadi, M., Feigenbaum, J., Kilian, J.: On hiding information from an oracle. J.
Comput. Syst. Sci. 39(1), 21–50 (1989)

3. Aiello, W., Ishai, Y., Reingold, O.: Priced oblivious transfer: How to sell digital
goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135.
Springer, Heidelberg (2001)



Towards Robust Computation on Encrypted Data 231

4. Boneh, D., Crescenzo, G.D., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

5. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005)

6. Broadbent, A., Tapp, A.: Information-theoretic security without an honest ma-
jority. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 410–426.
Springer, Heidelberg (2007)

7. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. Cryptology ePrint Archive, Report 2000/067 (2005)

8. Chang, Y.-C., Mitzenmacher, M.: Privacy preserving keyword searches on remote
encrypted data. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005.
LNCS, vol. 3531, pp. 442–455. Springer, Heidelberg (2005)

9. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms.
Commun. ACM 4(2) (February 1981)

10. Chor, B., Gilboa, N., Naor, M.: Private information retrieval by keywords. TR
CS0917, Department of Computer Science, Technion (1997)

11. Desmedt, Y.: Computer security by redefining what a computer is. In: NSPW
1992-1993: Proceedings on the 1992-1993 workshop on New security paradigms,
pp. 160–166. ACM Press, New York (1993)

12. Feigenbaum, J.: Encrypting problem instances: Or.., can you take advantage of
someone without having to trust him? In: Williams, H.C. (ed.) CRYPTO 1985.
LNCS, vol. 218, pp. 477–488. Springer, Heidelberg (1986)

13. Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious
pseudorandom functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–
324. Springer, Heidelberg (2005)

14. Goh, E.-J.: Secure indexes. Cryptology ePrint Archive, Report 2003/216 (2003),
http://eprint.iacr.org/2003/216/

15. Golle, P., Staddon, J., Waters, B.R.: Secure conjunctive keyword search over en-
crypted data. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS,
vol. 3089, pp. 31–45. Springer, Heidelberg (2004)

16. Groth, J.: A verifiable secret shuffle of homomorphic encryptions. In: Desmedt,
Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 145–160. Springer, Heidelberg (2002)

17. Ishai, Y., Paskin, A.: Evaluating branching programs on encrypted data. In: Vad-
han, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 575–594. Springer, Heidelberg
(2007)

18. Ogata, W., Kurosawa, K.: Oblivious keyword search. J. Complexity 20(2-3), 356–
371 (2004)

19. Park, D.J., Kim, K., Lee, P.J.: Public key encryption with conjunctive field keyword
search. In: Lim, C.H., Yung, M. (eds.) WISA 2004. LNCS, vol. 3325, pp. 73–86.
Springer, Heidelberg (2005)

20. Prabhakaran, M., Rosulek, M.: Homomorphic encryption with CCA security. In:
Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A.,
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A Security Definitions for Non-Malleable Homomorphic
Encryption

The formal definitions in this section are summarized from [20] for reference:

HCCA Security. The main security definition, called Homomorphic-CCA (HCCA) secu-
rity, formalizes the intuition that a homomorphic encryption scheme is “non-malleable
except for a certain set of operations.” The complete security experiment is given in Fig-
ure 3, and we give an overview and motivation below.

Definition 1. A homomorphic encryption scheme is Homomorphic-CCA
(HCCA) secure with respect to T if there are PPT algorithms RigEnc and
RigExtract, where the range of RigExtract is T ∪{⊥}, and such that for all PPT adver-
saries A, the advantage of A in the IND-HCCA experiment (Figure 3) is negligible.

When b = 0 in the experiment, the adversary simply receives an encryption of his
chosen plaintext msg∗, and gets access to an unrestricted decryption oracle. However,
when b = 1 in the experiment, instead of an encryption of msg∗, the adversary receives
a “rigged” ciphertext generated by RigEnc, without knowledge of msg∗. Such a rigged
ciphertext need not encode any actual message, so if the adversary asks for it (or any of
its derivatives via the homomorphic operations) to be decrypted, the decryption oracle’s
response must be compensated in some way, or else it would be easy to distinguish the
b = 0 from b = 1 scenarios. For this purpose, the RigEnc procedure also produces some
(secret) extra state information, which makes it possible to identify (via the RigExtract
procedure) all ciphertexts derived from that particular rigged ciphertext, as well as how
they were derived. So in the b = 1 scenario, the decryption oracle first uses RigExtract
to check whether the given ciphertext was derived via a homomorphic operation of the
scheme, and if so, compensates in its response. For example, if the query ciphertext was
derived by applying the T transformation, then the decryption oracle should respond
with T (msg∗), to mimic the b = 0 case.

It is easily seen that if it is feasible for an adversary to modify an encryption of
Enc(msg) into a related encryption Enc(T (msg)), but RigExtract never outputs T , then
there is a way for an adversary to distinguish between b = 0 and b = 1 in the ex-
periment. Thus by restricting the range of the RigExtract procedure in the security
definition, we limit the feasible malleability of the scheme.

Finally, because RigExtract uses the private key, as well as secret auxiliary infor-
mation from RigEnc, we should provide an oracle for these procedures. We do so in a
“guarded” way that keeps the auxiliary shared information hidden from the adversary
in the experiment.

Unlinkability. The second security definition, called unlinkability, formalizes of the nat-
ural requirement that a ciphertext hides not only its plaintext, but also its “history”
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Setup: Pick (PK, SK) ← KeyGen and give PK to A.
Phase I: A gets access to the DecSK(·) oracle and the following two “guarded”

RigEnc and RigExtract oracles:

GRigEncPK() = ζi, where (ζi, Si) ← RigEncPK , when called for the ith time

GRigExtractSK(ζ, i) = RigExtractSK(ζ, Si)

Challenge: A outputs a plaintext msg∗. We privately flip a coin b ← {0, 1}. If
b = 0, we compute ζ∗ ← EncPK(msg∗). If b = 1, we compute (ζ∗, S∗) ←
RigEncPK . In both cases, we give ζ∗ to A.

Phase II: A gets access to the same GRigEnc and GRigExtract oracles as in Phase
I, as well as a “rigged” version of the decryption oracle RigDec. When b = 0,
RigDec is simply the normal decryption oracle DecSK(·). When b = 1, RigDec
is implemented as follows:

RigDecSK(ζ) =

{
T (msg∗) if ⊥ �= T ← RigExtractSK(ζ, S∗)
DecSK(ζ) otherwise

.

Output: A outputs a bit b′. The advantage of A is Pr[b′ = b] − 1
2 .

Fig. 3. IND-HCCA security experiment, parametrized by T

Setup: Pick (PK, SK) ← KeyGen and give PK to A.
Phase I: A is given access to the decryption oracle DecSK(·).
Challenge: Flip a coin b ← {0, 1}. A outputs a ciphertext ζ and a transformation

T ∈ T . If DecSK(ζ) = ⊥, do nothing. Else give ζ∗ to A where

ζ∗ ←
{

EncPK(T (DecSK(ζ))) if b = 0
CTrans(ζ, T ) if b = 1

.

Phase II: A is given access to the decryption oracle DecSK(·).
Output: A outputs a bit b′. The advantage of A is Pr[b′ = b] − 1

2 .

Fig. 4. Unlinkability security experiment, parametrized by T

— i.e., whether it was generated as a normal Enc, or by applying the homomorphic
operations to some other ciphertext.

We note that the definition is more than just a correctness property, as it involves the
behavior of the scheme’s algorithms on maliciously-crafted ciphertexts. The security
experiment also includes a decryption oracle, making it applicable even to adversaries
with chosen-ciphertext attack capabilities.

Definition 2. A homomorphic encryption scheme is unlinkably homomorphic with
respect to T if for all PPT adversaries A, the advantage of A in the unlinkability
experiment (Figure 4) is negligible.
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Abstract. We consider the following problem: Given a commitment to
a value σ, prove in zero-knowledge that σ belongs to some discrete set
Φ. The set Φ can perhaps be a list of cities or clubs; often Φ can be a
numerical range such as [1, 220]. This problem arises in e-cash systems,
anonymous credential systems, and various other practical uses of zero-
knowledge protocols.

When using commitment schemes relying on RSA-like assumptions,
there are solutions to this problem which require only a constant num-
ber of RSA-group elements to be exchanged between the prover and
verifier [5, 15, 16]. However, for many commitment schemes based on
bilinear group assumptions, these techniques do not work, and the best
known protocols require O(k) group elements to be exchanged where k
is a security parameter.

Inthispaper,wepresenttwonewapproachestobuildingset-membership
proofs. The first is based on bilinear group assumptions. When applied to
the casewhereΦ is a rangeof integers, ourprotocols requireO( k

log k−log log k
)

group elements to be exchanged. Not only is this result asymptotically bet-
ter, but the constants are small enough toprovide significant improvements
even for small ranges. Indeed, foradiscrete logarithmbasedsetting,ournew
protocol isanorderofmagnitudemoreefficient thanpreviouslyknownones.

We also discuss alternative implementations of our membership proof
based on the strong RSA assumption. Depending on the application, e.g.,
when Φ is a published set of values such a frequent flyer clubs, cities, or
other ad hoc collections, these alternative also outperform prior solutions.

Keywords: Range proofs, set membership proofs, proofs of knowledge,
bi-linear maps.

1 Introduction

In this paper we consider zero-knowledge protocols which allow a prover to
convince a verifier that a digitally committed value is a member of a given
public set. A special case of this problem is when to show that the committed
value lies in a specified integer range.

The first problem, which we denote the set membership proof, occurs for
instance in the context of anonymous credentials. Consider a user who is issued
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a credential containing a number of attributes such as address. Further assume
the user needs to prove that she lives in a European capital. Thus, we are given
a list of all such cities and the user has to show that she possesses a credential
containing one of those cities as address (without of course, leaking the city the
user lives in). Or, consider a user who has a subscription to a journal (e.g., the
news and the sports section). Further assume that some general sections are
to all subscribers of a list of sections. Thus, using our protocol, the user can
efficiently show that she is a subscriber to one of the required kinds.

The second problem, which we denote the range proof, also occurs often in
anonymous credential and e-cash scenarios. For example, a user with passport
credential might wish to prove that her age is within some range, e.g. greater
than 18, or say between 13 and 18 in the case of a teen-community website. This
problem is a special case of the set membership proof. Since the elements of the
set occur in consecutive order, special techniques can be applied.

1.1 Our Results

Given a set Φ = {φ1, φ2, . . . , φn} and a commitment1 C, a typical approach to
the set membership problem is to use a zero-knowledge proof of the form

“C is a commitment to the element φ1 OR it is a commitment to φ2 OR
it is a commitment to φ3 · · · OR it is a commitment to φn.”

Even though there exist efficient algebraic Σ (Sigma) protocols for handling a
single such OR clause, such a proof still has length which is proportional to n.
One might argue that such proofs necessarily have length proportional to n since
the task of describing the set Φ itself requires space n.

However, in many practical situations, the set Φ is often specified in advance
by the verifying party. In other words, Φ can be considered a common input to
both Prover and Verifier, and thus we might ask whether it is possible to prove
a commitment is a commitment to an element of Φ without having to explicitly
list Φ in the proof.

To the best of our knowledge, we are the first to propose such a scheme
for general, unstructured sets. Our approach is incredibly simple. We provide
a way to “encode” the set Φ in a way that allows for O(1)-sized proofs that a
committed element belongs to Φ. Specifically, we let the verifier specify Φ by
providing “digital signatures” on the elements of Φ under a new verification key
vk. Now if we consider this set of digital signatures as a common input, the proof
becomes a statement of the form:
1 One might wonder what it means to say “the element committed to in C” when the

commitment scheme is not a perfectly-binding one. In such a case, technically, the
proof is only computationally sound—often called an argument instead of a proof. In
other words, we assume that a computationally-bounded prover knows only one way
to open the commitment C and cannot deduce other ways. Indeed, such protocols
are technically called arguments instead of proofs. Since prior work refers to the
problem as a “proof,” we continue to use that term.



236 J. Camenisch, R. Chaabouni, and a. shelat

“The prover knows a signature under vk for the element committed to
in C.”

We provide two types of protocols that are instantiations of this idea. The first
one is based on a bilinear-group signature scheme which enables an efficient way
to make this proof. The second way is based on the Strong RSA assumption
and uses the idea of cryptographic accumulators. In both cases, the actual proof
of the statement requires O(1) group elements to be exchanged between prover
and verifier.

The special case of Range proofs. A popular special case of the set membership
problem occurs when the set Φ consists of a range [a, a+ 1, a+ 2, . . . , b]—which
we denote [a, b]. This problem has been well-studied because it occurs so often
in practice. Indeed, under the Strong RSA assumption, there are very efficient
proofs for this problem as we discuss in the prior work section below. However,
in cases when the range is small or the same range is used in many protocol
instantiations, our protocol will be more efficient (by a factor of about 8-10,
depending on the group employed).

If one is not willing to rely on the Strong RSA assumption, the folklore method
to the problem of range proofs is to have the Prover commit to all k bits of his
secret, prove that these commitments all encode either a 0 or a 1 and prove that
the commitments indeed commit to all the bits of s. The verifier is then convinced
that the secret lies in [0, 2k+1 − 1] since there were only k commitments. The
method can be generalized to any range. The size of such a proof is thus O(k)
group elements.

Using the simple idea of the set membership proof, we are able to reduce this
size both asymptotically and in practice for many often-occurring ranges. Our
simple idea is as follows: Instead of committing to the individual bits of the
committed value, we write the secret value in base-u (for some optimally chosen
u) and commit to these u-ary digits. If we only provide � such commitments
and prove that the secret can be written in u-ary notation, then we implicitly
prove that the secret is in the range [0, u�]. A generalization of this technique
can be used to prove that the secret is in [a, b] for arbitrary integers a and b. The
key technique is to use the set-membership protocol in order to prove that each
committed digit is indeed a digit in base-u. Writing the secret in base-u (instead
of base 2) is indeed an obvious step. However, with prior methods, doing so does
not reduce the proof size. With prior methods, proving that a committed digit
is a u-ary digit requires a u-wise OR proof of size O(u); since this u-wise OR
proof must be done � times independently, prior methods require communication
O(u · �).

The key insight in our scheme is to design a scheme which can reuse part of
one u-ary digit proof in all � proof instances. Specifically, the verifier can send one
list of u signatures representing u-ary digits, and the prover can use this same list
to prove that all � digits are indeed u-ary digits. Thus, the total communication
complexity of our approach is O(u + �). With well-selected values for u and �,
we show that this approach yields a proof of size O( k

log k−log log k ) which is both
asymptotically and practically better than the only other known method.
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Note that if the range is small or the same range is used for many protocols,
then it is more efficient to employ the set membership protocol directly.

1.2 Prior and Related Work

Assume for concreteness the Pedersen commitment scheme over a prime order
group. Let g, h be elements of a group G of prime order q. Let C = gshr be
the commitment that the prover has sent to the verifier, where s is the secret of
which the prover want to show that it lies in a specific range and r is a randomly
chosen element from Zq.

There are a number of known ways that a prover can convince a verifier that
the secret committed in C lies in a given range assuming the hardness of the
Strong (or sometimes called flexible) RSA problem. Let us review them here.

The most frequent method used in practice is the following. First, the verifier
picks a safe prime product n = (2p + 1)(2q + 1) and two random quadratic
residues g, h modulo n, and proves to the prover that g ∈ 〈h〉 is true. Next, the
verifier computes c = gshr′

mod n, sends this value to the prover and then runs
the following protocol with him:

PK{(s, r, r′) : c = gshr′
(mod n) ∧ C = gshr ∧ s ∈ [−A,A]}

The protocol is basically a generalized Schnorr proof (in a group of unknown
order), where the verifier in addition to accepting the basic proof also verifies
whether the answer corresponding to the secret s lies in [−A/2, A/2]. If it does so,
then the verifier can conclude that the secret must lie in the range [−A,A] (this
becomes apparent when one considers the knowledge extractor for the protocol).
The drawback of this proof is that it in fact works only if the secret lies in the
smaller range [−A2−(k′+k′′), A2−(k′+k′′)], with k′ being the number of bits of the
challenge sent by the verifier and k′′ determining the statistical zero-knowledge
property, i.e., the secret must be k′ + k′′ bits smaller. Therefore the protocol
cannot be used for situations where one has to show that a secret lies exactly in
a given range.

Boudot [5] provided an efficient proof that did not have this drawback. He used
the observation that any positive number can be composed as the sum of four
squares. Thus, to show that a secret s lies in [A,B], one just needs to show that
the values s1 = s−A and s2 = B− s are positive. So basically, what the prover
has to do is to give commitments to s1 and s2 and to the numbers s(1,1), . . . , s(1,4)
and s(2,1), . . . , s(2,4), the sum of whose squares are equal to s1 and s2 respectively.
Of course, if these commitments were, e.g., Pedersen commitments in a group of
prime order q, them all we could conclude is that s1 and s2 are the sum of four
square modulo q, which is not very helpful. Luckily, Okamoto and Fujisaki [13]
have shown that when the commitments and the proof is done in a group where
the order is not known to the prover, then these relations hold over the integers
and thus one can really assert that s1 and s2 are positive.

Thus, we get the following protocol: First the prover computes the following
commitments c(i,j) = gs(i,j)hr(i,j) mod n for some randomly chosen r(i,j), sends
these to the verifier and then engages in the following proof with him :
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PK{(s, r, r′, s(1)
1 , . . . , s

(4)
1 , s

(1)
2 , . . . , s

(4)
2 , r′′, r∗) :

c(1,1) = gs(1,1)hr(1,1) ∧ . . . ∧ c(1,4) = gs(1,4)hr(1,4)∧
c(2,1) = gs(2,1)hr(2,1) ∧ . . . ∧ c(2,4) = gs(2,4)hr(2,4)∧

c/gA = c(1,1)
s(1,1) · · · c(1,4)

s(1,4)hr′′ ∧ gB/c = c(2,1)
s(2,1) · · · c(2,4)

s(2,4)hr∗∧
c = gshr′

(mod n) ∧ C = gshr}

We see that this protocol requires the prover to compute 22 modular expo-
nentiations (including the computations of the commitments) and the verifier
to compute 12 modular exponentiations. The communication complexity is in
about 35 group elements. Groth [15] optimizes this protocol by exploiting the
fact that special integers can be written as the sum of 3 squares instead of 4
squares. The major drawback of these approaches is that the Rabin and Shal-
lit algorithm typically used to find the 4 (or 3) squares which sum to the secret
takes time O(k4) where k is the size of the interval. Lipmaa [16] provides another
algorithm to find this squares that improves somewhat on the Rabin-Shallit one.
However, in practice, these algorithms running times quickly make this approach
preventive.

Independently to our work, Teranishi and Sako [20] presented a k-Times
Anonymous Authentication in which they present a range proof using Boneh-
Boyen signature scheme [4], that can be obtained from our generalized set mem-
bership. However their range proof does not compete with ours as our verifier
publishes significantly less signatures.

Schoenmakers [18, 19] studied and discussed several recursive relations which
can be used to reduce the number of basic Schnorr proofs when committing to
the individual bits of the secret. In particular, he writes the upper bound L of the
positive range [0, L) as either the product or the sum of two numbers. By doing
this scheme recursively he decreased the amount of work needed. However the
overall communication load in his protocols is still O(k), where 2k−1 < L � 2k.
We note that some of his techniques for reducing certain ranges to other more
convenient ranges can be used with any range proof technique.

Micali, Kilian, and Rabin [17] considered a more general problem in which
a polynomial-time prover wants to commit to a finite set Φ of strings so that,
later on, he can, for any string x, reveal with a proof whether x ∈ Φ or x �∈ Φ
without leaking any knowledge beyond the membership assertions. In particular,
the proofs do not even reveal the size of Φ—much less the actual elements. Thus,
these protocols are not directly comparable to ours.

1.3 Organization

In section 2, we recall zero-knowledge proofs, Σ-protocols and define proofs of
set membership and range proofs. In section 3, we describe our new signature-
based set membership together with its corresponding proof. In section 4, we
explain how to apply our new signature-based set membership for efficient range
proof. We also emphasis on the communication complexity and show how our
new range proof is asymptotically better. To have a better insight of our state
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of the art, we provide a concrete example together with some comparison of
previous work. In section 5, we recall cryptographic accumulators together with
their proofs, and we describe our new accumulator-based set membership.

2 Definitions

Zero-knowledge proofs and Σ-protocols. We use definitions from [2, 11]. A
pair of interacting algorithms (P,V) is a proof of knowledge (PK) for a relation
R = {(α, β)} ⊆ {0, 1}∗ × {0, 1}∗ with knowledge error κ ∈ [0, 1] if (1) for
all (α, β) ∈ R, V(α) accepts a conversation with P(β) with probability 1; and
(2) there exists an expected polynomial-time algorithm E, called the knowledge
extractor, such that if a cheating prover P∗ has probability ε of convincing V
to accept α, then E, when given rewindable black-box access to P∗, outputs a
witness β for α with probability ε− κ.

A proof system (P,V) is honest-verifier zero-knowledge if there exists a p.p.t.
algorithm Sim, called the simulator, such that for any (α, β) ∈ R, the outputs
of V (α) after interacting with P(β) and that of Sim(α) are computationally
indistinguishable.

Note that standard techniques can be used to transform an honest-verifier zero-
knowledge proof system into a general zero-knowledge one [11]. This is especially
true of special Σ-protocols that will be presented later in the paper. Thus, for the
remainder of the paper, our proofs will be honest-verifier zero-knowledge. (This
also allows us to make more accurate comparisons with the other proof techniques
since they are usually also presented as honest-verifier protocols).

A Σ-protocol is a proof system (P,V) where the conversation is of the form
(a, c, z), where a and z are computed by P, and c is a challenge chosen at ran-
dom by V. The verifier accepts if φ(α, a, c, z) = 1 for some efficiently computable
predicate φ. Given two accepting conversations (a, c, z) and (a, c′, z′) for c �= c′,
one can efficiently compute a witness β. Moreover, there exists a polynomial-
time simulator Sim that on input α and a random string c outputs an accepting
conversation (a, c, z) for α that is perfectly indistinguishable from a real conver-
sation between P(β) and V(α).

We use notation introduced by Camenisch and Stadler [9] for the various zero-
knowledge proofs of knowledge of discrete logarithms and proofs of the validity
of statements about discrete logarithms. For instance,

PK{(α, β, γ) : y = gαhβ ∧ y = gαhγ ∧ (u ≤ α ≤ v)}

denotes a “zero-knowledge Proof of Knowledge of integers α, β, and γ such that
y = gαhβ and y = gαhγ holds, where v ≤ α ≤ u,” where y, g, h, y, g, and h are
elements of some groups G = 〈g〉 = 〈h〉 and G = 〈g〉 = 〈h〉. The convention is
Greek letters denote quantities the knowledge of which is being proved, while all
other parameters are known to the verifier. Using this notation, a proof-protocol
can be described by just pointing out its aim while hiding all details. We note
that all of the protocols we present in this notation can be easily instantiated as
Σ-protocols.
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Definition 1 (Proof of Set Membership). Let C = (Gen,Com,Open) be the
generation, the commit and the open algorithm of a string commitment scheme.
For an instance c, a proof of set membership with respect to commitment scheme
C and set Φ is a proof of knowledge for the following statement:

PK{(σ, ρ) : c ← Com(σ; ρ) ∧ σ ∈ Φ}

Remark: The proof system is defined with respect to any commitment scheme.
Thus, in particular, if Com is a perfectly-hiding scheme, then the language ΓS

consists of all commitments (assuming that S is non-empty). Thus for soundness,
it is important that the protocol is a proof of knowledge.

Definition 2 (Range Proof). A range proof with respect to a commitment
scheme C is a special case of a proof of set membership in which the set Φ is a
continuous sequence of integers Φ = [a, b] for a, b ∈ N.

3 Signature-Based Set Membership

Here we present a new set membership protocol that is inspired by the oblivious
transfer protocol presented by Camenisch, Neven, and shelat [8]. The basic idea
is that the verifier first sends the prover a signature of every element in the
set Φ. Thus, the prover receives a signature on the particular element σ to
which C is a commitment. The prover then “blinds” this received signature and
performs a proof of knowledge that she possesses a signature on the committed
element. Notice that the communication complexity of this proof depends on
the cardinality of Φ—in particular because the verifier’s first message contains a
signature of every element in Φ. The rest of the protocol, however, requires only
a constant number of group elements to be sent. The novelty of this approach
is that the first verifier message can be re-used in other proofs of membership;
indeed, we use this property to achieve our results for range proofs.

Computational Assumptions. Our protocols in this section require bilinear
groups and associated hardness assumptions. Let PG be a pairing group genera-
tor that on input 1k outputs descriptions of multiplicative groups G1 and GT of
prime order p where |p| = k. Let G∗

1 = G1 \ {1} and let g ∈ G∗
1. The generated

groups are such that there exists an admissible bilinear map e : G1 ×G1 → GT,
meaning that (1) for all a, b ∈ Zp it holds that e(ga, gb) = e(g, g)ab; (2) e(g, g) �=
1; and (3) the bilinear map is efficiently computable.

Definition 3 (Strong Diffie-Hellman Assumption [4]). We say that the
q-SDH assumption associated to a pairing generator PG holds if for all p.p.t.
adversaries A, the probability that A(g, gx, . . . , gxq

) where (G1,GT) ← PG(1k),
g ← G∗

1 and x ← Zp, outputs a pair (c, g1/(x+c)) where c ∈ Zp is negligible in k.

A recent work by Cheon [10] shows a “weakness” in the q-SDH assumption.
However, this “weakness” is not so relevant when q is a very small number like
50 as it is in our paper.
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Boneh-Boyen Signatures. Our scheme relies on the elegant Boneh-Boyen
short signature scheme [4] which we briefly summarize. The signer’s secret key is
x ← Zp, the corresponding public key is y = gx. The signature on a message m
is σ ← g1/(x+m); verification is done by checking that e(σ, y · gm) = e(g, g). This
scheme is similar to the Dodis and Yampolskiy verifiable random function [12].

Security under weak chosen-message attack is defined through the following
game. The adversary begins by outputting � messages m1, . . . ,m�. The challenger
generates a fresh key pair and gives the public key to the adversary, together
with signatures σ1, . . . , σ� on m1, . . . ,m�. The adversary wins if it succeeds in
outputting a valid signature σ on a message m �∈ {m1, . . . ,m�}. The scheme is
said to be unforgeable under a chosen-message attack if no p.p.t. adversary A
has non-negligible probability of winning this game. Our scheme relies on the
following property of the Boneh-Boyen short signature [4] which we paraphrase
below:

Lemma 1 ([4](Lemma 3.2)). Suppose the q-Strong Diffie Hellman assump-
tion holds in (G1,GT). Then the basic Boneh-Boyen signature scheme is q-secure
against an existential forgery under a weak chosen message attack.

A Note on Protocol Clarity. In order to make our protocols more readable in this
version, we do not specifically mention standard checks such as verifying that a
received number is a prime, verifying that an element is a proper generator and
in the correct group, and, specifically related to our protocols, whether all of the
received verifier values are signatures, etc. Again, many of these checks only apply
when compiling from honest-verifier zero-knowledge to full zero-knowledge; as
we mentioned above, we only consider the honest case.

Common Input: g, h, a commitment C, and a set Φ

Prover Input: σ, r such that C = gσhr and σ ∈ Φ.

P y,{Ai}� V Verifier picks x ∈R Zp and

sends y ← gx and Ai ← g
1

x+i for every i ∈ Φ.
P V � V Prover picks v ∈R Zp and sends V ← Av

σ.

Prover and Verifier run PK{(σ, r, v) : C = gσhr ∧ V = g
v

x+σ }

P a,D � V Prover picks s, t, m ∈R Zp and
sends a ← e(V, g)−se(g, g)t and D ← gshm.

P c� V Verifier sends a random challenge c ∈R Zp.
P zσ,zv ,zr� V Prover sends zσ ← s − σc, zv ← t − vc, and zr ← m − rc.

Verifier checks that D
?= Cchzr gzσ and

that a
?= e(V, y)c · e(V, g)−zσ · e(g, g)zv

Fig. 1. Set membership protocol for set Φ
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Theorem 1. If the |Φ|-Strong Diffie-Hellman assumption associated with a pair-
ing generator PG holds, then protocol in Fig. 1 is a zero-knowledge argument of
set membership for a set Φ.

Proof. The completeness of the protocol follows by inspection. The soundness
follows from the extraction property of the proof of knowledge and the unforge-
ability of the random function. In particular, the extraction property implies that
for any prover P ∗ that convinces V with probability ε, there exists an extractor
which interacts with P ∗ and outputs a witness (σ, r, v) with probability poly(ε).
Moreover, if we assume that the extractor input consists of two transcripts, i.e.,

{y, {Ai}, V, a,D, c, c′, zσ, z
′
σ, zv, z

′
v, zr, z

′
r},

the witness can be obtained by computing:

σ =
zσ − z′σ
c′ − c

; r =
zr − z′r
c′ − c

; v =
zv − z′v
c′ − c

The extractor succeeds when (c′ − c) is invertible in Zp. If σ �∈ Φ, then P ∗ can
be (almost) directly be used to mount a weak chosen-message attack against the
Boneh-Boyen signature scheme with probability poly(ε) of succeeding. Thus, ε
must be negligible.

Finally, to prove honest-verifier zero-knowledge, we construct a simulator Sim
that will simulate all interactions with any honest verifier V ∗, see Fig. 2.

1. Sim retrieves y, {Ai} from V ∗.
2. Sim chooses σ ∈R Φ, v ∈R Zp and sends V ← Av

σ to V ∗.
3. Sim chooses s, t,m ∈R Zp and sends a ← e(V, g)−se(g, g)t and D ← gshm to V ∗.
4. Sim receives c from V ∗

5. Finally Sim computes and sends zσ ← s − σc, zv ← t − vc, and zr ← m − rc to
V ∗.

Fig. 2. Simulator for the set membership protocol

Since G1 is a prime-order group, then the blinding is perfect in the first
two steps; thus the zero-knowledge property follows from the zero-knowledge
property of the Σ-protocol (Steps 3 to 5).

4 Range Proofs

We now turn our attention to the range proofs.
First note that the protocol for set membership can be directly applied to the

problem of range proofs. This will not be efficient for ranges spanning more than
a few hundred elements. However, if the particular range is fixed over many
protocols as it might often be (as is for instance the case when one needs to
prove that one is between 13 and 18 years old), then the verifier can publish the
signatures once and for all. Thus, the proofs become just the second phase which
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amounts to one pairing and two exponentiation for the prover and the verifier.
This will be about a factor of 8-10 times more efficient than employing Boudot’s
method.

For the remainder assume, however, that the range is large or that the cost
of publishing/sending the signatures on the set elements cannot be amortized.

Instead, our approach is to write the secret σ in u-ary notation, i.e., σ =∑�
j σj · uj . We may now easily prove that σ ∈ [0, u�) by simply providing (and

proving) commitments to the u-ary digits of σ. This problem, however, can be
solved by repeating the basic set-membership protocol from above on the set
[0, u− 1]. Moreover, the first verifier message, which requires the most commu-
nication, can be re-used for each of the � digits. Assuming that σ ∈ [0, B), the
goal is thus to minimize the communication load under the constraint u� � B.

4.1 Range Proofs From Our Signature-Based Set-Membership
Protocol

We first present how to prove that our secret σ lies in [0, u�) (see Figure 3).
Write σ in the base u to obtain � elements as such: σ =

∑
j

(
σju

j
)
.

Common Input: g, h, u, �, and a commitment C

Prover Input: σ, r such that C = gσhr and σ ∈ [0, u�).

P y,{Ai}� V Verifier picks x ∈R Zp and

sends y ← gx and Ai ← g
1

x+i for every i ∈ Zu.
P {Vj } � V Prover picks vj ∈R Zp and

sends Vj ← A
vj
σj for every j ∈ Zl, s.t. σ =

∑
j

(
σju

j
)

Prover and Verifier run PK{(σj , r, vj) : C = hr
∏

j(g
uj

)σj ∧ Vj = g
vj

x+σj }

P {aj},D � V Prover picks sj , tj , mj ∈R Zp for every j ∈ Zl and

sends aj ← e(Vj , g)−sje(g, g)tj and D ←
∏

j

(
gujsj

)
hmj .

P c� V Verifier sends a random challenge c ∈R Zp.

P
{zσj

},{zvj
},zr� V Prover sends zσj ← sj − σjc, zvj ← tj − vjc for every j ∈ Z�,

and zr = m − rc.

Verifier checks that D
?= Cchzr

∏
j

(
gujzσj

)
and

that aj
?= e(Vj, y)c · e(Vj , g)−zσj · e(g, g)zvj for every j ∈ Zl

Fig. 3. Range proof protocol for range [0, u�)

Lemma 2. If the (log k)-Strong Diffie Hellman assumption associated to a pair-
ing generator PG(1k) holds, there exists a zero-knowledge range argument for the
range [0, u�) where u� < {0, 1}k−1.
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Proof. (Sketch)
Completeness follows from inspection. As before, the soundness follows from

the unforgeability of the Boneh-Boyen signature and the extraction property of
the proof of knowledge protocol. The honest-verifier zero-knowledge property
follows from the perfect blinding of the signatures in the first phase, and the
corresponding honest-verifier zero-knowledge property of the Σ-protocol.

Remark: The prover will have to compute 5� exponentiations.

4.2 Communication Complexity

The first message consisting of u signatures and a verification key sent by the
verifier to the prover, is not counted as part of the protocol ((u + 1) · |G1|).
The prover then sends � blinded values back. Thus, the first phase requires
Initl(u, �) = � · |G1| communication. The second phase of the protocol involves
a proof of knowledge. The prover sends �+1 first-messages of a Σ-protocol. The
verifier sends a single challenge, and the prover responds with 2� + 1 elements.
Thus the overall communication load according to the parameters u and � is:

Com(u, �) = � · (|G1| + |GT | + 2 · |Zp|) + (|G1| + 2 · |Zp|) (1)

Finding the optimal u and � thus involves solving

min c1u + c2� + c3 s.t. u� � B

Notice that the bit-committing protocol corresponds to a setting where u = 2
and � = k which leads to a total communication complexity O(k). Since our
protocol allows us to choose more suitable u, we first show that the asymptotic
complexity of our approach is smaller than the prior protocols.

Asymptotic Analysis. For the asymptotic analysis, we may ignore the con-
stants c1, c2 and c3. Moreover, we can take B ≈ p/2 as this is sufficient for
showing that a committed value is “positive,” i.e., in the range [0, (p − 1/2)].
Since p/2 ≈ 2k, the constraint becomes u� � 2k−1.

By taking logs and dividing, we have that � ≈ k
log u . Setting u = k

log k then we
get that

u = O

(
k

log k

)
, � = O

(
k

log k − log log k

)
resulting in a total communication complexity of

Com(u, �) = O

(
k

log k − log log k

)
which is asymptotically smaller than O(k).
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Concrete Optimization. Not only is our solution asymptotically better, but
it also performs well for realistic concrete parameters. In order to perform the
optimization for concrete parameters we substitute the constraint that u� ≈ B
into the equation u + � above. To minimize, we set the derivative with respect
to u to 0 and attempt to solve the equation:

c1 −
c2 logB
u log2 u

= 0

which simplifies to

u log2 u =
c2 logB

c1
. (2)

where c2
c1

≈ 10 when standard bilinear groups are used [14]. This equation can-
not be solved analytically. However, given B, c1 and c2, we can use numerical
methods to find a good u as described in [3].

4.3 Handling Arbitrary Ranges [a, b]

The above protocol works for the range [0, u�). In order to handle an arbitrary
range [a, b], we use an improvement of a folklore reduction described by Schoen-
makers in [18] and [19]. Suppose that u�−1 < b < u�. To show the σ ∈ [a, b], it
suffices to show that

σ ∈ [a, a + u�] and σ ∈ [b − u�, b]

Proving that our secret lies in both subsets can be derived from our general

proof that σ ∈ [0, u�) as illustrated in the figure:

σ ∈ [b− u�, b) ⇐⇒ σ − b + u� ∈ [0, u�)

σ ∈ [a, a + u�) ⇐⇒ σ − a ∈ [0, u�).

Note that the u signatures and the verification key need to be sent only once for
both subsets. Since both a, b are public, the only modification necessary is the
verifier’s check, which should now be:

D
?= Ccg−B+u�

hzr

∏
j

(gzσj ) , D
?= Ccg−Ahzr

∏
j

(gzσj ) .

Thus, essentially 3� extra elements are sent in the protocol, and the prover will
have to compute in overall 7� exponentiations.
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This scheme can be further optimized when A+u�−1 < B with an OR-compo-
sition. Indeed, the decomposition becomes:

[A,B) = [B − u�−1, B) ∪ [A,A + u�−1).

The needed modifications are similar to the previous case; the efficiency arises
from the fact that we are now working with Z�−1. The length of the range set
can also be optimized. Indeed if B − A = u� then the proof reduces to proving
that σ −A ∈ [0, u�).

Combining this analysis with Lemma 2 yields the following theorem.

Theorem 2. If the log k-Strong Diffie Hellman assumption associated to a pair-
ing generator PG(1k) holds, there exists a zero-knowledge range argument for
the range [a, b] where 0 < a < b < {0, 1}k−1 whose communication complexity is
O( k

log k−log log k ).

4.4 Concrete Example and Discussion

Let us discuss our protocol and compare it with other available solutions. The
bottom line is the performance of the different methods depend on the applica-
tion at hand as well as for the assumptions one is willing to make. Assume for a
while, all assumptions are fine. Then, for very small intervals (a couple of bits),
the standard bit-by-bit method and Schoenmaker’s method will probably be the
most efficient one. For very large intervals, the method by Boudot will probably
be the one of choice as it is mostly independent of the size of the interval. More
precisely, it is independent for the verifier but not for the prover as the prover
needs to run the Rabin-Shallit algorithm to represent numbers as the sum of
four squares and this algorithm has complexity O(n4) where n is the bit-length
of the number to be decomposed.

Having said that, our methods will typically be the most efficient one when
the signatures can be made part of the system parameters, which is probably
the case in many scenarios. Of course, at some point it will no longer possible
to publish signature of all elements in the range and thats where one will have
to restrict these signatures and employ the protocol in this section. When this
becomes necessary, one will in practice to make a choice whether it is more
efficient to use our algorithm or Boudot’s one, the other two will definitely be
less efficient.

If one is not restricted by the assumptions one is willing to make, the case
is not so clear cut. Let us give a concrete example to shed some light on this.
If we pick B = 599644800 (which will represent people born before 1989, with
their birth date encoded using the Unix Epoch system), we can find the optimal
values of u and � by either computing them numerically or by following [3].
Both methods will lead us to u = 57 and � = 5, which minimize the overall
communication load:

Coml(57, 5) = 6 · |G1| + 5 · |GT | + 12 · |Zp| (3)
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Let us illustrate this optimization case with a concrete example. We will
assume that an airline company wants to provide special offers to its young
clients from a third party. However the exact age of clients should not be divulged
to the third party. This offer targets those who are born between 1981 and 1989
(not included). Following the previous example, the birth date will be a secret
number between [347184000, 599644800). Here the best option will be to use the
OR-composition as A + u�−1 < B (we know from the previous example that
u = 57 and � = 5). Using parameters from Galbraith, Paterson, and Smart [14],
we estimate that the size of G1 is 256 bits, the size of GT is 3072 bits and the
size of Zp is upper-bounded by 256 bits. This leads to an overall communication
load of:

Coml(u = 57, � = 5) = � · |G1| + (2�− 2) · |GT | + 4� · |Zp| = 30976 bits (4)

In order to have a better appreciation of this result, let us compare it to previous
protocols:

Scheme Communication Complexity
Our new range proof 30976 bits
Boudot’s method 48946 bits
Standard bit-by-bit method 96768 bits
Schoenmaker’s method 50176 bits

Fig. 4. Communication load comparison for range proof [347184000, 599644800)

Let us also discuss the computational complexities. For the verifier, the figure
are about similar to the communication complexities as basically the verifier
needs to do some computation with the elements received. For the prover it is
about the same with the exception that for Boudot’s method where the prover
needs to run the Rabin-Shallit algorithms. Experiments show that the later
algorithm dominates by far the other operations the prover needs to do.

Now, when one does not want to resort to the (strong) RSA assumption, our
methods is the only one that provides an efficient proof except when the interval
is only a couple of bits.

5 Alternative Set Membership Proofs

The protocol in the previous section employed a set-membership proof as a
building block. The set-membership proof protocol we presented in Section 3 has
the verifier to produce signatures on the set elements, send them to the prover
and then has the prover to show that he knows a signature (by the verifier) and
the element he holds. Concretely, we employed the weak signature scheme by
Boneh and Boyen in that section. We now discuss alternative solutions to the set
membership protocol, i.e., essentially so that the whole protocol could be based
on different assumptions. Due to space restriction we do not give all the details
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here but only in the full version of this paper. However, the solution presented
previously is the most efficient one, the alternatives discussed in this section are
of similar efficiency.

5.1 Using Alternative Signature Schemes

The protocol that we presented in Section 3 required the prover to be able to
prove the knowledge of a signature on a value that he has committed to, where we
used Pedersen commitment scheme. Apart for the weak Boneh-Boyen signature
scheme, there are other signature schemes that could be employed. In terms
of assumptions, one notable alternative would be the one by Camenisch and
Lysyanskaya [7] that is based on the strong RSA assumption. It is not hard to
adapt the protocol given in Section 3 to that signature scheme, in particular, as
Camenisch and Lysyanskaya give protocols to prove knowledge of a committed
value in their paper [7].

5.2 Alternative Protocol Using Cryptographic Accumulators

The reasons why we employed a signature scheme in our set-membership pro-
tocol is that the prover needed to show that he committed to a value for which
he knows an authenticator without revealing that value or authenticator. Now
it turns out that one can achieve exactly the same goal with cryptographic ac-
cumulators with similar complexities.

Recall cryptographic accumulators. A cryptographic accumulator is an algo-
rithm that allows one to compress a list of elements into a single accumulator
value. For each element there exists a witness attesting to the fact that the
element is indeed contained in the accumulator value. For some cryptographic
accumulator, there exists efficient proof protocols that allow a prover holding
the element and the witness to prove to a verifier in zero knowledge that he
indeed is privy to an element that is contained in the accumulator. Camenisch
and Lysyanskaya have given an implementation of such an accumulator and a
protocol that a committed value is indeed contained in the accumulator based
on the strong RSA assumption[6].

Now the idea to build an efficient set-membership proof with dynamic accu-
mulator is very similar to the signature based one: The verifier add each element
in the set into the accumulator and sends the accumulator value to the prover
together with the witness for each element. The prover then proves to the veri-
fier that the value he has committed to is indeed contained in the accumulator
produced by the verifier using the witness obtained for the verifier. This protocol
is depicted in Appendix A for the SRSA-based accumulator.
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A Accumulator Based Membership Proof

A.1 Cryptographic Accumulators and Proofs for Them

Definition 4. [6] A secure accumulator for a family of inputs {Xk} is a family of
families of functions G = {Fk} with the following properties:

Efficient generation: There is an efficient probabilistic algorithm G that on input 1k

produces a random element f of Fk. Moreover, along with f , G also outputs some
auxiliary information about f , denoted tf .

Efficient evaluation: f ∈ Fk is a polynomial-size circuit that, on input (u, x) ∈ Uf ×Xk,
outputs a value v ∈ Uf , where Uf is an efficiently-samplable input domain for
the function f ; and Xk is the intended input domain whose elements are to be
accumulated.

Quasi-commutative: For all k, for all f ∈ Fk, for all u ∈ Uf , for all x1, x2 ∈ Xk,
f(f(u, x1), x2) = f(f(u, x2), x1). If X = {x1, . . . , xm} ⊂ Xk, then by f(u, X) we
denote f(f(. . . (u, x1), . . .), xm).

Witnesses: Let v ∈ Uf and x ∈ Xk. A value w ∈ Uf is called a witness for x in v under
f if v = f(w, x).

Security: Let U ′
f × X ′

k denote the domains for which the computational procedure for
function f ∈ Fk is defined (thus Uf ⊆ U ′

f , Xk ⊆ X ′
k). For all probabilistic

polynomial-time adversaries Ak,

Pr[f ← G(1k); u ← Uf ; (x, w, X) ← Ak(f, Uf , u) :

X ⊂ Xk; w ∈ U ′
f ; x ∈ X ′

k; x /∈ X; f(w, x) = f(u, X)] = neg(k)

Note that only the legitimate accumulated values, (x1, . . . , xm), must belong to Xk;
the forged value x can belong to a possibly larger set X ′

k.

Implementation Based on the Strong RSA Assumption. Here we recall
the Camenisch-Lysyanskaya accumulator [6].

– Fk is the family of functions that correspond to exponentiating modulo safe-prime
products drawn from the integers of length k. Choosing f ∈ Fk amounts to choos-
ing a random modulus n = pq of length k, where p = 2p′ + 1, q = 2q′ + 1, and
p,p′,q,q′ are all prime. We will denote f corresponding to modulus n and domain
XA,B by fn,A,B . We denote fn,A,B by fn or by f when it does not cause confusion.

– XA,B is the {e ∈ primes : e �= p′, q′ ∧ A ≤ e ≤ B}, where A and B can be
chosen with arbitrary polynomial dependence on the security parameter k, as long
as 2 < A and B < A2. X ′

A,B is (any subset of) of the set of integer from [2, A2 − 1]
such that XA,B ⊆ X ′

A,B .
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Common Input: g, h, a commitment C, and a set §
Prover Input: sj , r such that C = gsj hr and sj ∈ §.

P n,§ew� V Verifier picks a safe prime product n = (2p + 1)(2q + 1) and
a random quadratic residues u, g, h modulo n,

picks random ui ∈ {0, 1}k′
such that ei = si2k + ui are prime.

computes v ← u2
∏

ei mod n; wi ← v1/ei mod n,
sends n, u, v, g, h, and §ew ← {(s1, e1, w1).....(sn, en, wn)}
convinces the prover that g ∈ 〈h〉
(we will discuss the details separately below).

P W,R,C� V Prover picks r1, r2, r3 ∈ {0, . . . , n2�},
where � is a security parameter and
sends W ← wju

r1 mod n, R ← gr1hr2 mod n

and C ← gej hr3 mod n

Prover and Verifier run

PK{(α, β, γ, δ, ε, ρ, ρ1, ρ2, ρ3, φ, ξ, ν) : C = gσhρ ∧
C = (g2k

)σgµhρ3 (mod n) ∧ R = gρ1hρ2 (mod n) ∧
v = Wε( 1

u
)δ (mod n) ∧ 1 = Rεgδhφ (mod n)

∧ µ ∈ [−2k−1, 2k−1]}

Fig. 5. Set membership protocol for set §

– For f = fn, the auxiliary information tf is the factorization of n.
– For f = fn, Uf = {u ∈ QRn : u �= 1} and U ′

f = Z∗
n .

– For f = fn, f(u, x) = ux mod n.
Note that f(f(u, x1), x2) = f(u, {x1, x2}) = ux1x2 mod n

A.2 Membership Proof with Cryptographic Accumulators

We are now ready to employ the accumulator for the membership proof which can be
used as an alternative building block for our range proof presented in Section 4.

One complication that we have to deal with here is that the accumulator allows
one to accumulator prime number only whereas our set is arbitrary bits strings. We
thus need to encode a mapping. This can be done as follows. Let {s1, . . . , sn} be our
set, where we assume that the si are integers. We let ei = si2k + ui where ui <
2k′

< 2k is selected so that ei is prime as k and k′ are security parameters (we discuss
them below). With this encoding, the verifier can accumulate all the ei’s and send
the accumulator value, the ei, and the corresponding witnesses to the prover. Now the
prover has to prove that ei that corresponds to the si in his commitment is contained
in the accumulators. The resulting protocol is given in Figure A.1, where we adapt the
accumulator proof given by Camenisch and Lysyanskaya [6] to our setting. That is, we
have to additionally prove that the correspondence between the ei and the committed
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si holds. For this to work, the prover need that show he knows some ui such that
ei = si2k + ui holds. Here it is of course important that this ui be at most 2k−1 bits.
This can be enforced efficiently provided that in reality ui is a couple of bits smaller,
i.e., k′ bits, where in practice the difference should be about 300 bits for this to work.
More precisely, we employ the first range proof discussed in Section 1.2.

Remarks: 1) We need to discuss how the verifier can convince the prover that g ∈ 〈h〉
holds. One way to achieve this, is that the prover runs with the verifier the protocol
PK{(α) : g = hα (mod n)} using binary challenges. Another, more efficient, way is
described by Bangerter et al.[1].

2) We note also, that for many applications, the parameters n, u, v, g, h, and
§ew ← {(s1, e1, w1).....(sn, en, wn)} can be computed and published once and for all
(possibly a trusted third party). In this case the computational complexity of our
protocols becomes independent of the number of members in the set.
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Abstract. This paper proposes preimage attacks on hash function
HAVAL whose output length is 256 bits. This paper has three main
contributions; a preimage attack on 3-pass HAVAL at the complexity
of 2225, a preimage attack on 4-pass HAVAL at the complexity of 2241,
and a preimage attack on 5-pass HAVAL reduced to 151 steps at the
complexity of 2241. Moreover, we optimize the computational order for
brute-force attack on full 5-pass HAVAL and its complexity is 2254.89 . As
far as we know, the proposed attack on 3-pass HAVAL is the best attack
and there is no preimage attack so far on 4-pass and 5-pass HAVAL.
Note that the complexity of the previous best attack on 3-pass HAVAL
is 2230. Technically, our attacks find pseudo-preimages of HAVAL by
combining the meet-in-the-middle and local-collision approaches, then
convert pseudo-preimages to a preimage by using a generic algorithm.

Keywords: HAVAL, splice-and-cut, meet-in-the-middle, local collision,
hash function, one-way, preimage.

1 Introduction

Cryptographic hash functions are important primitives to build secure schemes.
A hash function takes arbitrarily long bit string and outputs a hash value with
a fixed length. A hash function is required to satisfy the security properties such
as collision resistance, 2nd preimage resistance, and preimage resistance. When
the length of the hash value is n bits, a collision, a 2nd preimage, and a preimage
should not be computed faster than 2n/2, 2n, and 2n operations, respectively.

HAVAL [18] is one of the dedicated hash functions and has relatively long
history. HAVAL is based on Merkle-Damg̊ard construction, and its compression
function is similar to MD5 [10]. The basic operation of HAVAL is done in 32 bits
that is the same as MD5. Therefore, 32-bit values are called words. However, the
interface of the HAVAL compression function is doubled compared to MD5, that
is, the number of chaining variables and the message length of the compression
function are 8 words and 32 words respectively. The nonlinear function of HAVAL
takes seven words as input and outputs a word. So, one step of HAVAL only
changes one word out of 8 words of the internal state. To satisfy several security
requirements, HAVAL has three variants called x-pass HAVAL (x = 3, 4, 5).
x-pass HAVAL consists of 32x steps.

Due to the simple structure, there are several cryptoanalytic results on HAVAL
as shown in the next paragraph. However, regarding the preimage attack, there is
only one result on 3-pass HAVAL [2]. In this paper, we propose preimage attacks

J. Pieprzyk (Ed.): ASIACRYPT 2008, LNCS 5350, pp. 253–271, 2008.
c© International Association for Cryptologic Research 2008
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Table 1. Comparison of preimage attacks on HAVAL

Attack Number of Attack type Previous Our attack
target steps work [2] strategy 1* strategy 2

3-pass 96 (Full) Pseudo-preimage 2224 2192

Preimage 2230 2253 2225

4-pass 128 (Full) Pseudo-preimage - 2224

Preimage - 2254.43 2241

5-pass 151 Pseudo-preimage - 2224

(Steps 0-150) Preimage - Not evaluated 2241

160 (Full) Pseudo-preimage - 2253.81*
Preimage - 2254.89 —

∗ This attack is a kind of brute force attack, but the computation is optimized.

on HAVAL: the best attack on 3-pass HAVAL so far, the first attack on 4-pass
HAVAL and 5-pass HAVAL.

Known previous results except for the preimage attack are as follows: collision
attacks on 3-pass HAVAL are discussed in Ref. [12,11,13,14], and those on 4-pass
HAVAL are discussed in Ref. [15,17]. Note that a real collision has been generated
up to 4-pass HAVAL. Theoretically, a collision of 5-pass HAVAL can be generated
in 2123 compression function evaluations [17] that is faster than the birthday
paradox for 256-bit output. (Hereafter, we omit the unit of complexity whenever
it is obvious and it is the number of “compression function evaluation.”) Non-
randomness of 4-pass and 5-pass of HAVAL in the encryption mode is analyzed
by Ref. [6,16]. The security of the HMAC-HAVAL is analyzed by Ref. [5]. A 2nd
preimage attack on 3-pass HAVAL and its application to HMAC-3-pass HAVAL
are proposed by Ref. [7]. However, this 2nd preimage attack is different from the
one usually considered. In Ref. [8] a useful statement to clarify the difference
of these two types of 2nd preimage attacks is shown. The attack of Ref. [7] can
generate a 2nd preimage at the complexity of one compression function with a
probability of 2−114 for a given random message, and it requires the complexity
of 2128 with a probability of 1−2−114. Therefore, the average complexity is very
close to 2128. Consequently, no result that produces a 2nd preimage of any given
message is known. Moreover, no result is known on preimage attack on HAVAL,
except for the recent result on 3-pass HAVAL [2].

1.1 Related Work Regarding Preimage Attack

In 2008, a preimage attack on MD4 was proposed by Leurent [8]. The attack
first generates pseudo-preimages based on the Dobbertin’s pioneering work [4],
and converts a pseudo-preimage attack to a preimage attack by using the generic
approach [9, Fact9.99]1. Preimage attacks on step-reduced MD5 and full 3-pass
1 The following works that compute a preimage from partial-pseudo-preimages also use

this kind of conversion. The method of the conversion from partial-pseudo-preimages
to a preimage is improved by using hash-tree [8] and P3graph [3].
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HAVAL are proposed by Aumasson et al. [2], whose approach is based on the
meet-in-the-middle technique. Preimage attacks on full MD4 and 63-step MD5
are proposed by [1], whose approach is also based on the meet-in-the-middle
technique. Note, both of [2,1] use the conversion algorithm of [9, Fact9.99].

In the meet-in-the-middle attack of Aumasson et al. [2], a compression func-
tion is divided into the first half and the last half, and both computation results
are compared in the middle. They also use new techniques that make the attack
efficient by using the absorption properties of Boolean functions. On the other
hand, Aoki and Sasaki propose new techniques to apply the meet-in-the-middle
attack to not only the first half and the last half but also any two consecu-
tive parts of a compression function [1]. This paper combines the techniques of
Ref. [1,2], and attacks more passes of HAVAL.

1.2 Our Contributions

In this paper, we propose preimage attacks on 3-, 4-, and 5-pass HAVAL whose
output length is 256 bits. First, we consider a strategy to find preimages of 3-, 4-,
and 5-pass HAVAL faster than the brute force attack by a few bits (strategy 1).
Second, we consider another strategy that can find a preimages of 3-, 4-, and
5-pass HAVAL much more efficiently by combining techniques of [1] and [2]
(strategy 2). As a result of applying strategy 2 to each pass of HAVAL, we find
the best preimage attack so far on 3-pass HAVAL by using the techniques of [1],
the first preimage attack on 4-pass HAVAL by combining techniques of [1] and
[2], and the first preimage attack on step-reduced 5-pass HAVAL by combining
techniques of [1] and [2] and further improving a technique of [2]. We summarize
the results of the previous work and ours in Table 1.

Organization of this paper is as follows. Section 2 introduces the specification
of HAVAL and techniques of existing attacks. Section 3 gives two strategies of the
preimage attack that can be applied to HAVAL and other hash functions whose
message expansion is similar to HAVAL. Regarding the technique in Ref. [2] as
an application of a local collision, we can compute preimages of a hash function
that has more rounds. Section 4 describes attacks on HAVAL following the strat-
egy 1. Section 5 describes attacks on HAVAL following the strategy 2. Finally,
we conclude this paper in Section 6.

2 Previous Works: Specification and Techniques for
Preimage Attacks

2.1 Description of HAVAL

HAVAL is a hash function proposed by Zheng et al. in 1992, which compresses
a message up to (264 − 1) bits into either 128, 160, 192, 224, or 256 bits. Since
this paper only analyzes 256-bit version, we only describe the specification for
256 bits. HAVAL iteratively computes a step function to compute a hash value.
The number of steps is chosen from either 96, 128, or 160, where correspond-
ing HAVAL algorithms are called 3-pass HAVAL, 4-pass HAVAL, and 5-pass
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Fig. 1. Step function of HAVAL

Table 2. HAVAL message expansion

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
5 14 26 18 11 28 7 16 0 23 20 22 1 10 4 8 30 3 21 9 17 24 29 6 19 12 15 13 2 25 31 27

19 9 4 20 28 17 8 22 29 14 25 12 24 30 16 26 31 15 7 3 1 0 18 27 13 6 21 10 23 11 5 2
24 4 0 14 2 7 28 23 26 6 30 20 18 25 19 3 22 11 31 21 8 27 12 9 1 29 5 15 17 10 16 13
27 3 21 26 17 11 20 29 19 0 12 7 13 8 31 10 5 9 14 30 18 6 28 24 2 23 16 22 4 1 25 15

HAVAL, respectively. HAVAL has the Merkle-Damg̊ard structure, which uses
256-bit (8-word) chaining variables and a 1024-bit (32-word) message block to
compute a compression function.

An input message M is processed to be a multiple of 1024 bits by the padding
procedure. A single bit ‘1’ is appended followed by ‘0’s until the length be-
comes 944 modulo 1024. At the last, 3-bit field representing a version number
of HAVAL, 3-bit field representing the number of the pass used, 10-bit field rep-
resenting the output length, and 64-bit field representing an unpadded message
length are appended.

Padded message M∗ is separated into 1024-bit message blocks (M0,M1, . . . ,
Mn−1). Let CF : {0, 1}256 × {0, 1}1024 → {0, 1}256 be the compression function
of HAVAL. A hash value is computed as follows.

1. H0 ← IV ,
2. Hi+1 ← CF (Hi,Mi) for i = 0, 1, . . . , n− 1,

where Hi is a 256-bit value and IV is the initial value defined in the specification.
Finally, Hn is output as a hash value of M .

Compression Function. The compression function Hi+1 ← CF (Hi,Mi) is
computed as follows.

1. Mi is divided into 32-bit message words mj (j = 0, 1, . . . , 31).
2. p0 ← Hi.
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0 ≤ j ≤ 31 : fj(x6, x5, . . . , x0) = x1x4 ⊕ x2x5 ⊕ x3x6 ⊕ x0x1 ⊕ x0

32 ≤ j ≤ 63 : fj(x6, x5, . . . , x0) = x1x2x3 ⊕ x2x4x5 ⊕ x1x2 ⊕ x1x4⊕
x2x6 ⊕ x3x5 ⊕ x4x5 ⊕ x0x2 ⊕ x0

64 ≤ j ≤ 95 : fj(x6, x5, . . . , x0) = x1x2x3 ⊕ x1x4 ⊕ x2x5 ⊕ x3x6 ⊕ x0x3 ⊕ x0

96 ≤ j ≤ 127 : fj(x6, x5, . . . , x0) = x1x2x3 ⊕ x2x4x5 ⊕ x3x4x6⊕
x1x4 ⊕ x2x6 ⊕ x3x4 ⊕ x3x5⊕
x3x6 ⊕ x4x5 ⊕ x4x6 ⊕ x0x4 ⊕ x0

128 ≤ j ≤ 159 : fj(x6, x5, . . . , x0) = x1x4 ⊕ x2x5 ⊕ x3x6 ⊕ x0x1x2x3 ⊕ x0x5 ⊕ x0

xaxb represents bitwise AND operation.

Fig. 2. Boolean Functions of HAVAL

Table 3. Wordwise rotation of HAVAL

x6 x5 x4 x3 x2 x1 x0 x6 x5 x4 x3 x2 x1 x0 x6 x5 x4 x3 x2 x1 x0

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
φ3,1 x1 x0 x3 x5 x6 x2 x4 φ4,1 x2 x6 x1 x4 x5 x3 x0 φ5,1 x3 x4 x1 x0 x5 x2 x6

φ3,2 x4 x2 x1 x0 x5 x3 x6 φ4,2 x3 x5 x2 x0 x1 x6 x4 φ5,2 x6 x2 x1 x0 x3 x4 x5

φ3,3 x6 x1 x2 x3 x4 x5 x0 φ4,3 x1 x4 x3 x6 x0 x2 x5 φ5,3 x2 x6 x0 x4 x3 x1 x5

- - φ4,4 x6 x4 x0 x5 x2 x1 x3 φ5,4 x1 x5 x3 x2 x0 x4 x6

- - - - φ5,5 x2 x5 x0 x6 x4 x3 x1

3. pj+1 ← Rj(pj ,mπ(j)) for j = 0, 1, . . . , k, where k = 32x− 1 for x-pass.
4. Output Hi+1(= pk +Hi), where “+” denotes a 32-bit word-wize addition. In

this paper, we similarly use “−” to denote a 32-bit word-wize subtraction.

Rj is the step function for Step j. Let Qj be a 32-bit value that satisfies
pj = (Qj−7‖Qj−6‖Qj−5‖Qj−4‖Qj−3‖Qj−2‖Qj−1‖Qj). Rj for x-pass HAVAL
(x ∈ {3, 4, 5}) is defined as follows:{

T = fj ◦ φx,j(Qj−6, Qj−5, Qj−4, Qj−3, Qj−2, Qj−1, Qj)
Rj(pj ,mπ(j)) = (Qj−7 ≫ 11) + (T ≫ 7) + mπ(j) + Kx,j

where fj is a bitwise Boolean function defined in Fig. 2, φi,j is a word-wize
permutation defined in Table 3, πj is a message expansion function defined in
Table 2, ≫ n is n-bit right rotation, and Kx,j is a constant defined in the speci-
fication. We show a graph of the step function in Fig. 1. Note that R−1

j (·,mπ(j))
can be computed in almost the same complexity as that of Rj .

2.2 Converting Pseudo-preimages to a Preimage

For a given hash value y, a pseudo-preimage is a pair of (x,M) such that
CF (x,M) = y, where x may not equal to IV and CF is a compression function
of a Merkle-Damg̊ard hash function. There is a generic algorithm that converts
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a pseudo-preimage attack to a preimage attack [9, Fact9.99]. Let the complexity
of a pseudo-preimage attack be 2k. The procedure of this attack when the hash
value is n-bit long is as follows.

1. Generate 2(n−k)/2 pseudo-preimages at the complexity of 2k · 2(n−k)/2.
2. Generate 2(n+k)/2 messages that start from the IV , and compute their hash

values.

One of these hash values is expected to be matched. The complexity of this
attack is 2k · 2(n−k)/2 + 2(n+k)/2 = 21+(n+k)/2.

This algorithm has been used in previous preimage attacks [8,2,1].

2.3 Preimage Attacks on 3-Pass HAVAL

Aumasson et al. proposed two attacks that find a preimage of 3-pass HAVAL at
the complexity of 2230, and the attacks require 16 × 264 words of memory [2].
Both attacks take an approach of the meet-in-the-middle attack. In this paper,
we are particularly interested in the Attack A of their paper [2, Algorithm 4].

In the Attack A of [2, Algorithm 4], the authors focused attention on the
location of the message words m5 and m6, where m5 appears at Step 5, 32, and
94 and m6 appears at Step 6, 55, and 89 as shown in Table 22. First, chaining
variables p0 to p6, where p0 is IV and pi+1 is the 256-bit output of the i-th step,
are fixed so that the change of m6 in Step 6 is guaranteed to be absorbed by
changing Q−1, which is the seventh word of the IV . Similarly, chaining variables
p95 and p96 are fixed so that the change of m5 in Step 94 is guaranteed to be
absorbed by changing Q95, which is the seventh word of p96. Due to this effort,
computation for Step 0 to 47 becomes independent of m6, and computation for
Step 95 to 48 becomes independent of m5. The authors of [2] and we call these
independent words neutral words.

Finally, the authors apply the meet-in-the-middle attack to find a pseudo-
preimage of a given hash value Hn = (Ha‖Hb‖Hc‖Hd‖He‖Hf‖Hg‖Hh). The
rough sketch of the procedure is as follows. Refer to [2] for details.

Algorithm
1. Fix mx, x /∈ {5, 6} and py, y ∈ {0, . . . , 6, 95, 96} so that changes of m6 in

Step 6 and of m5 in Step 94 are absorbed and p0 + p96 = Hn is satisfied
except for Q−1 + Q95 = Hg.

2. For all 64 bits of (m5, Q−1), compute pj+1 ← Rj(pj ,mπ(j)) for j=0, 1, . . . , 47,
and store them in a table.

3. For all 64 bits of (m6, Q95), compute pj ← R−1
j (pj+1,mπ(j)) for j = 95,

94, . . . , 48. Then, check if resulting p48 are matched with p48s in the table.
4. For all matched pairs, check if Q−1 + Q95 = Hg is satisfied.

In the above procedure, the meet-in-the-middle attack saves the complexity of
64 bits but step 4 of the procedure succeeds with a probability of 2−32. Thus,
this attack is faster than the brute force attack by the factor of 232.
2 We number the first step as 0.
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2.4 Preimage Attacks on MD4 and MD5

Preimage attacks on MD4 and MD5 are proposed by Aoki and Sasaki [1]. They
proposed a new technique called the splice-and-cut technique.
Splice-and-Cut: Splice the last and the first step and divide the attack target into
two chunks of steps so that each chunk includes at least one message word that
is independent of the other chunk. Then, pseudo-preimages are computed by the
meet-in-the-middle approach.

Different from Aumasson et al. [2], Aoki and Sasaki focused attention on the
property that chaining variables in the first and last steps can be considered to
be consecutive by the equation p0 = Hn − plast. This idea enables them to start
the meet-in-the-middle attack from any step.

Aoki and Sasaki also proposes another technique named partial matching.
This technique enables attackers to skip several steps when they search for good
chunks in the attack target. Assume that one of divided chunks provides the value
of pi, where pi = (Qi−7‖Qi−6‖Qi−5‖Qi−4‖Qi−3‖Qi−2‖Qi−1‖Qi) and the other
chunk provides the value of pi−4, where pi−4 = (Qi−11‖Qi−10‖Qi−9‖Qi−8‖Qi−7‖
Qi−6‖Qi−5‖Qi−4). pi and pi−4 cannot be directly compared, however, a part of
these values, that is, Qi−7, Qi−6, Qi−5, and Qi−4 can be compared immediately.
In such a case, we can ignore the value of mπ(i−1),mπ(i−2),mπ(i−3), and mπ(i−4)
when we perform the meet-in-the-middle attack.

3 General Strategies of Our Preimage Attack

3.1 Strategy 1: Speed Up the Brute-Force Attack

This is a technique that enables us to quickly search for a message which con-
nects a given initial value IV and a given hash value Hn. The idea is to reuse
an intermediate value of computation of a message when we compute different
messages. Assume ma and mb form a local collision in the first round, that is,
any change of ma can be offset by changing mb, and these messages appear at
Steps s1, s2, (s1 < s2) in the second round. In this case, the computation result
until Step s1 can be reused with all ma and corresponding mb.

Moreover, since IV and Hn are fixed, the values of chaining variables in
the last round can also be reused. Let steps at which ma and mb are used be
s3, s4, (s3 < s4). In this case, the computation result from Step s4 to the last
can be reused.

Notice, this technique can also be achieved by inserting local collision in the
last round.

3.2 Strategy 2: Finding Pseudo-preimages by the
Meet-in-the-Middle Attack

Combining the splice-and-cut and local-collision. The technique proposed
by Aumasson et al. [2] is for finding a pseudo-preimage by applying the meet-in-
the-middle attack that starts from the first step and the last step. On the other
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Fig. 3. A local collision formed by the neu-
tral words used by Aumasson et al. [2]
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Fig. 4. A long collision pass
used in the splice-and-cut
technique

hand, the splice-and-cut and partial-matching techniques proposed by Aoki and
Sasaki [1] are for finding a pseudo-preimage by applying the meet-in-the-middle
attack that starts from an intermediate step. We found that these two techniques
can be combined together, and more steps might be attacked.

Aumasson et al. use the fact that m6 is used near the first step, m5 is used near
the last step, and corresponding chaining variables appear in the same equation
for the computing hash value. We found that their technique can be used at not
only the first and last several steps but also intermediate steps.

Observation: The key idea of the attack is searching for message words that can
form a local collision. In fact, their selection of message words can be considered
as a local collision that starts with Step 94 and ends with Step 6.

The graphical explanation is shown in Fig. 3. Cells denote 32-bit chaining vari-
ables and highlighted cells denote chaining variables whose values are changed
according to the selection of values of neutral words (m5,m6). The left diagram
explains the attack procedure of Aumasson et al., and the right diagram de-
scribes it in a different step order to show (m5,m6) forms a local collision. Note,
in the splice-and-cut technique, the first and last steps are considered to be con-
secutive by the equation p0 = Hn − p96, which can be ignored when we analyze
the dependency of message words.

As you can see in Fig. 3, the technique of Aumasson et al. [2] can be inserted in
any part of an attack target. Therefore, this can be combined with the splice-and-
cut technique. For convenience, we call this technique local-collision technique,
and we summarize the property of the local-collision technique.

New technique 1. Local-Collision: When we search for chunks in an attack target,
neutral words forming a local collision can be ignored. This occurs when neutral
words appear (L+ 1) steps away and other chaining variables can be guaranteed
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Step 0 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (n − 1)
Round 1 a ‖ b

Attack strategy on a one-round hash function
Step 0 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (n − 1)

Round 1 a ‖ b
Round 2 b ‖ a

Attack strategy on a two-round hash function
Step 0 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (n − 1)

Round 1 a ‖ (b
Round 2 a) ‖ b
Round 3 b ‖ a

Attack strategy on a three-round hash function
Step 0 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (n − 1)

Round 1 a ‖ (b
Round 2 a) ‖ b
Round 3 b ‖ (a
Round 4 b) ‖ a

Attack strategy on a four-round hash function

Fig. 5. Attack strategies on a hash function with up to 4 rounds

not to be affected by the local collision, where L represents the number of chaining
variables (e.g. L = 4 for MD5, L = 8 for HAVAL).

Extension to use long collision paths. The local-collision technique de-
scribed above can be extended to use a long collision path as shown in Fig. 4.

In HAVAL, the influence of changing mπ(i) can be offset by changing mπ(i+8n),
n ≥ 1. In this case, mπ(i+8k), 1 ≤ k < n can be any message word. We call
mπ(i+8k) uninvolved messages. As long as the meet-in-the-middle attack with a lo-
cal collision such as the attack approach of Aumasson et al. is taken, neutral words
can also be used as uninvolved messages. On the other hand, in our approach ex-
plained in Section 5.3, we use “meet-in-the-middle attack” which uses two tables
but does not get the gain of the time-to-memory conversion. Thus, neutral words
require to increase the complexity of about n/(number of all steps), since we need
to fix all variables within local collision steps before we perform the “meet-in-the-
middle attack”. We also note that the changes of a 32-bit chaining variable corre-
sponding to neutral words must be absorbed in the Boolean functions so that other
chaining variables are not changed. Achieving this tends to be difficult if several
message words appear twice or messages used as padding string appear in a local
collision path.

Number of rounds that can be attacked. The meet-in-the-middle attack
works very efficiently if the message expansion consists of a permutation of mes-
sage word order in each round like MD5 or HAVAL. In this section, we formalize
how many rounds can be attacked. Attack strategies are also drawn in Fig. 5.

We explain how to attack a hash function that has only one-round. Let us
divide the attack target into the first half and the last half steps. In a round,
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each message appears only once. Therefore, any pair of message words used in
the first and second chunks are independent each other, hence they can be used
as the neutral words. Finally, we perform the meet-in-the-middle attack between
the first chunk including ma and the second chunk including mb.

To attack a two-round hash function, we use the property that chaining vari-
ables in the first and last steps can be considered to be consecutive. Let a pair
of message words (ma,mb) appear in the first round in this order. In the second
round, if mb is used in an earlier step than ma, the attack target can be divided
into two chunks so that one chunk includes a neutral word ma and the other
chunk includes mb. Therefore, a pseudo-preimage attack can be achieved by the
splice-and-cut technique.

A three-round hash function can be attacked by combining the splice-and-cut
technique and one of the partial-matching or local collision techniques. Assume
(ma,mb) is a pair of message words that can be skipped by using the partial-
matching or local-collision technique. In Fig. 5, skipped steps are indicated by
parentheses. If the same strategy for the two-round attack can be applied in the
rest of steps, a pseudo-preimage attack can be achieved.

To attack a four-round hash function, we need to use all techniques. At the
beginning of two chunks, we skip several steps by the local-collision technique,
and at the end of two chunks, we skip several steps by the partial-matching
technique. Both skipped steps need to include both neutral words.

4 Preimage Attacks on HAVAL Following the Strategy 1

We apply the general strategy 1 explained in Section 3 to all passes of HAVAL.
The memory requirement of the attack is negligible.

First, we consider a preimage attack on 3-pass HAVAL. According to the
message expansion of HAVAL shown in Table 2, if we make a local collision from
Steps 9 to 17, computation results for 77 steps out of 96 steps can be reused
among different messages. The message word distribution for this attack is shown
in Table 4.

Table 4. Message word distribution for fast brute-force attack on 3-pass HAVAL

Step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 · · · 29 30 31
index 0 1 2 3 4 5 6 7 8 9© 10 11 12 13 14 15 16 17© 18 19 20 21 · · · 29 30 31

reused local collision reused
Step 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 · · · 61 62 63
index 5 14 26 18 11 28 7 16 0 23 20 22 1 10 4 8 30 3 21 9© 17© 24 · · · 25 31 27

reused
Step 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 · · · 93 94 95
index 19 9© 4 20 28 17© 8 22 29 14 25 12 24 30 16 26 31 15 7 3 1 0 · · · 11 5 2

reused
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The attack procedure is as follows:

Attack procedure
1. Fix m29,m30, and m31 to satisfy the padding for a 1-block message.
2. Temporarily determine m9 and m17, and determine chaining variables and

messages mi, i /∈ {9, 17, 29, 30, 31} so that Steps 9-17 form a local collision3.
3. Randomly determine other message words that are not specified yet.
4. Compute Rj(pj ,mπ(j)) for j = 0, 1, . . . , 50 and compute R−1

j (pj+1,mπ(j))
for j = 95, 94, . . . , 70, where p96 = Hn − IV . Store the values of p51 and p70
in a table, where p70 = (Q63‖Q64‖Q65‖Q66‖Q67‖Q68‖Q69‖Q70).

5. For all 32 bits of m9, compute m17 so that the value of Q18 does not change.
Then, compute Rj(pj ,mπ(j)) for j = 51, 52, . . . , 62 and check whether com-
puted Q63 is in the table or not. If it is in the table, compute Q63, . . ., Q70
and check all values are matched. Otherwise, choose other m9 and repeat
this process.

The complexity of the above procedure is 229(= 232 · 12
96 ) and success probability

of step 5 is 2−224(= 2−256 ·232). Therefore, by repeating the procedure 2224 times
by changing the values of mi, 18 ≤ i ≤ 28, a message that connects a given IV
and Hn will be found at the complexity of 2253(= 229 · 2224).

On 4-pass HAVAL, the attack procedure is similar to 3-pass HAVAL. Applying
local collision in the last round between Steps 102-110, the complexity of the
attack is 2256 · 128−(19+59+7)

128 ≈ 2254.43. On 5-pass HAVAL, applying local collision
in the first round between Steps 19-27, the complexity of the attack is 2256 ·
160−(56+23+7)

160 ≈ 2254.89.

5 Preimage Attacks on HAVAL Following the Strategy 2

Our general strategy 1 can work for all passes of HAVAL, however, the efficiency
is not so high. This section further reduces the complexity of preimage attacks
by using the general strategy 2, which uses the meet-in-the-middle approach.

5.1 A Preimage Attack on 3-Pass HAVAL

We propose a preimage attack on 3-pass HAVAL, which finds a pseudo-preimage
of 3-pass HAVAL at the complexity of 2192, and is converted to a preimage
attack of the complexity of 2225. Thus, the resulting preimage is 2-block long.
This attack uses the splice-and-cut and partial-matching techniques as shown in
Table 5.

The attack procedure for a hash value Hn = (Ha‖Hb‖Hc‖Hd‖He‖Hf‖Hg‖
Hh) is as follows.

3 How to determine the chaining variables and messages to obtain a local collision
is explained in Section 5.2. A local collision for this attack can be obtained in the
similar method.
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Table 5. Message word distribution for 3-pass HAVAL

Step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 · · · 21 22 23 24 25 26 27 28 29 30 31
index 0© 1© 2 3 4 5© 6 7 8 9 10 11© 12 13 · · · 21 22 23 24 25 26 27 28 29 30 31

skip first chunk
Step 32 33 34 35 36 37 38 39 40 41 42 43 44 45 · · · 53 54 55 56 57 58 59 60 61 62 63
index 5© 14 26 18 11© 28 7 16 0© 23 20 22 1© 10 · · · 24 29 6 19 12 15 13 2 25 31 27

first chunk second chunk
Step 64 65 66 67 68 69 70 71 72 73 74 75 · · · 83 84 85 86 87 88 89 90 91 92 93 94 95
index 19 9 4 20 28 17 8 22 29 14 25 12 · · · 3 1© 0© 18 27 13 6 21 10 23 11© 5© 2

second chunk skip

Attack procedure
1. Fix m29,m30, and m31 to satisfy the padding for a 2-block message.
2. Fix mi (i �∈ {0, 1, 5, 11}) and p40 to randomly chosen values.
3. For all (m0,m1), do: pj+1 ← Rj(pj ,mπ(j)) for j = 40, 41, . . . , 92.
4. Make a table of (m0,m1, p93, (He−Q93, H

d−Q92, H
c−Q91))s which are com-

puted in the last step, where p93 = (Q86‖Q87‖Q88‖Q89‖Q90‖Q91‖Q92‖Q93).
5. For all (m5,m11),

(a) do the following: pj ← R−1
j (pj+1,mπ(j)) for j = 39, 38, . . . , 2,

where, p2 = (Q−5‖Q−4‖Q−3‖Q−2‖Q−1‖Q0‖Q1‖Q2).
(b) Check whether Q−5, Q−4, and Q−3 are matched with Hc−Q91, H

d−Q92,
and He −Q93 in the table.

(c) If they are matched, compute p94, p95, p96, p0, and p1 by using the
matched pairs, and check whether Hn = p0 + p96 are satisfied.

(d) If satisfied, the pair of corresponding message and p0 is a pseudo-
preimage of Hn.

In the above procedure, the complexity of step 3 is 264 · 53
96 and the complexity

of step 5a is 264 · 38
96 . After step 5b, 232(= 2128 · 2−96) pairs are expected to be

remained. After step 5c, 2−128(= 2−160 · 232) pair are expected to be remained.
Therefore, by repeating the above procedure 2128 times, we expect to obtain a
pseudo-preimage, where the complexity is 2192(= 264 ·2128). Finally, this pseudo-
primage attack is converted to a preimage attack of the complexity of 2225 by
the generic approach explained in Section 2.24. Step 4 requires 13 × 264 words
of memory and other steps require negligible amount of memory.

5.2 A Preimage Attack on 4-Pass HAVAL

We propose a preimage attack on 4-pass HAVAL, which finds a pseudo-preimage
of 4-pass HAVAL at the complexity of 2224, and is converted to a preimage attack
of the complexity of 2241. Thus, the resulting preimage is 2-block long. This
4 Combination of the attack proposed by Aumasson et al. described in Section 2.3

and P3graph proposed in [3] will be the preimage attack with a complexity of 2225.
Moreover, following [1, Appendix], the complexity is further improved to 2224, but
the length of the preimage message will be very long.
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Table 6. Message word distribution for 4-pass HAVAL

Step 0 1 2 3 4 5 6 7 · · · 20 21 22 23 24 25 26 27 28 29 30 31
index 0 1 2 3 4 5© 6 7 · · · 20 21 22 23 24© 25 26 27 28 29 30 31

second chunk local collision (1-cycle)
Step 32 33 34 · · · 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
index 5© 14 26 · · · 30 3 21 9 17 24© 29 6 19 12 15 13 2 25 31 27

first chunk
Step 64 65 66 67 68 69 70 71 72 73 74 75 76 77 · · · 90 91 92 93 94 95
index19 9 4 20 28 17 8 22 29 14 25 12 24© 30 · · · 21 10 23 11 5© 2

first chunk skip
Step 96 97 98 · · · 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
index24© 4 0 · · · 22 11 31 21 8 27 12 9 1 29 5© 15 17 10 16 13

second chunk

Table 7. Fixed values for preimage attack on 4-pass HAVAL

step j mπ(j) Qj−7 Qj−6 Qj−5 Qj−4 Qj−3 Qj−2 Qj−1 Qj

24 m24© Q17© C1 C2 C3 C4 1 0 0
25 m25 C1 C2 C3 C4 1 0 0 ∗
26 m26 C2 C3 C4 1 0 0 ∗ 0
27 m27 C3 C4 1 0 0 ∗ 0 0
28 m28 C4 1 0 0 ∗ 0 0 0
29 m29 1 0 0 ∗ 0 0 0 C5

30 m30 0 0 ∗ 0 0 0 C5 C6

31 m31 0 ∗ 0 0 0 C5 C6 C7

32 m5© ∗ 0 0 0 C5 C6 C7 C8

33 0 0 0 C5 C6 C7 C8 Q33©
Messages used for the padding string are underlined.
Variables which we try all possible values are circled.

attack uses the splice-and-cut, partial-matching, and local-collision techniques
as shown in Table 6.

In this attack, we need to guarantee that the neutral words form a local-
collision in Steps 24-32. This is achieved by fixing chaining variables so that
the change of a chaining variable corresponding to both neutral words does not
propagate through the Boolean functions. How chaining variables are fixed is
shown in Table 7, where, 0, 1, Ci, and ∗ denote 0x00000000, 0xffffffff, a
fixed value, and a flexible value which depends on the value of neutral words,
respectively.

The attack procedure for a hash value Hn = (Ha‖Hb‖Hc‖Hd‖He‖Hf‖
Hg‖Hh) is as follows.

Attack procedure
1. Randomly choose the values of C1, . . . ,C5, and fix the values of chaining

variables denoted by C1, . . . ,C5,0, and 1 in Table 7.
2. Compute mi (i ∈ {25, 26, 27, 28}) by solving the step function.
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3. Fix m29,m30, and m31 to satisfy the padding for a 2-block message.
4. Compute Q30, Q31, and Q32 by the step function.
5. Randomly determine other message words that are not specified yet.
6. For all (m5, Q17), do the following:⎧⎨⎩

pj ← R−1
j (pj+1,mπ(j)) for j = 23, 22, . . . , 0,

p128 ← Hn − p0,
pj ← R−1

j (pj+1,mπ(j)) for j = 127, 126, . . . , 97.

7. Make a table of (m5, Q17, p97)s which are computed in the last step, where
p97 = (Q90‖Q91‖Q92‖Q93‖Q94‖Q95‖Q96‖Q97).

8. For all (m24, Q33),
(a) do the following: pj+1 ← Rj(pj ,mπ(j)) for j = 33, 34, . . . , 93,

where, p94 = (Q87‖Q88‖Q89‖Q90‖Q91‖Q92‖Q93‖Q94).
(b) Check whether Q94, Q93, Q92, Q91, and Q90 are matched with those

stored in the table.
(c) If they are matched, compute p95, p96, and p97 with the matched pairs,

and check whether they are matched with those stored in the table.
(d) If matched, compute Q25, which is denoted by ∗ in Table 7, by the step

function for Step 24 with matched (m24, Q17) and by the step function
for Step 33 with matched (m5, Q33).

(e) Check whether both results of Q25 are matched.
(f) If matched, the pair of corresponding message and p0 is a pseudo-

preimage of Hn.

In the above procedure, the complexity of step 6 is 264 · 55
128 and the complexity

of step 8a is 264 · 61
128 . After step 8b, 2−32(= 2128 · 2−160) pair is expected to be

remained. After step 8c, 2−128(= 2−32 · 2−96) pair is expected to be remained.
After step 8e, 2−160(= 2−32 · 2−128) pair is expected to be remained. Therefore,
by repeating the above procedure 2160 times, we expect to obtain a pseudo-
preimage, where the complexity is 2224(= 264 ·2160). Finally, this pseudo-primage
attack is converted to a preimage attack of the complexity of 2241 by the generic
approach explained in Section 2.2. Step 7 requires 10×264 words of memory and
other steps require negligible amount of memory.

5.3 Notes on Preimage Attack on 5-Pass HAVAL

A preimage attack on 5-pass HAVAL reduced to 151 steps
5-pass HAVAL reduced to 151 steps, which use the first 151 steps of 5-pass
HAVAL, can be attacked by using the almost same approach as the attack on
4-pass HAVAL. In Table 6, Step 127 is a part of the second chunk that includes
m5 and is independent of m24. According to the message expansion shown in
Table 2, Steps 128-150 are independent from m24. Therefore, the attack on 4-
pass HAVAL in the last section can also be applied to the first 151 steps of
5-pass HAVAL. The complexity is almost the same, so we can find a pseudo-
preimage at the complexity of 2224, and this attack is converted to a preimage
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Table 8. Message word distribution for 5-pass HAVAL (full)

Step 0 1 2 3 4 5 · · · 19 20 21 22 23 24 25 26 27 28 29 30 31
index 0 1 2 3 4 5 · · · 19 20© 21 22 23 24 25 26© 27 28 29 30 31

second chunk skip
Step 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 · · · 63
index 5 14 26© 18 11 28 7 16 0 23 20© 22 1 10 4 8 30 3 · · · 27

skip
Step 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 · · · 95
index 19 9 4 20© 28 17 8 22 29 14 25 12 24 30 16 26© 31 15 · · · 2

skip first chunk
Step 96 · · · 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 · · · 121 · · ·
index 24 · · · 23 26© 6 30 20© 18 25 19 3 22 11 31 21 8 27 · · · 29 · · ·

first chunk local collision (3-cycle)
Step 128 129 130 131132 133 134 135 136 137 138 139 140 141 142 143 144 145 · · · 159
index 27 3 21 26© 17 11 20© 29 19 0 12 7 13 8 31 10 5 9 · · · 15

local collision second chunk

attack of the complexity of 2241, and requires 10 × 264 words of memory. Note,
we experimentally confirmed that there is no selection of chunks that can attack
more than 151 steps at the better complexity.

A preimage attack on full 5-pass HAVAL
As mentioned in Section 3.2, our attack works efficiently on a hash function
with less than or equal to 4 rounds, but does not work on the one with more
than 4 rounds. However, by combining the exhaustive search, we can find a
pseudo-preimage at 2253.81.

To attack full 5-pass HAVAL, we need to use all the techniques explained:
splice-and-cut, partial-matching, and local-collision techniques. The selection of
the chunks are shown in Table 8. We stress that our computer search program
did not find a pair of chunks that can be attacked with a 9-step local collision.
This problem was solved by using a long collision path introduced in Section 3.2.

To guarantee that the neutral words form a local-collision in Steps 107-131,
we fix chaining variables as shown in Table 9.

1. Fix the value of chaining variables as shown in Table 9, and derive the
corresponding messages by using the step function.

2. Fix the value of message words that are not used inside the local collision
steps. Note there is enough message space to find a pseudo-preimage.

3. For all 232 values of Q108, compute a corresponding value of Q124. Store the
result in a table named Table A.

4. For all 264 values of (m26, Q100), do the following:

pj ← R−1
j (pj+1,mπ(j)) for j = 106, 105, . . . , 68.

Store (m26, Q100, p68) in a table named Table B.



268 Y. Sasaki and K. Aoki

Table 9. Fixed values for preimage attack on 5-pass HAVAL

Round Step j mπ(j) Qj−7 Qj−6 Qj−5 Qj−4 Qj−3 Qj−2 Qj−1 Qj

4R 107 m20© Q100© C1 C2 C3 1 0 1 1
108 m18 C1 C2 C3 1 0 1 1 ∗(Q108)
109 m25 C2 C3 1 0 1 1 ∗ 1
110 m19 C3 1 0 1 1 ∗ 1 1
111 ◦m3 1 0 1 1 ∗ 1 1 1
112 m22 0 1 1 ∗ 1 1 1 1
113 m11 1 1 ∗ 1 1 1 1 0
114 m31 1 ∗ 1 1 1 1 0 1
115 (◦m21) ∗ 1 1 1 1 0 1 1
116 m8 1 1 1 1 0 1 1 ∗(Q116)
117 ◦m27 1 1 1 0 1 1 ∗ 1
118 m12 1 1 0 1 1 ∗ 1 1
119 m9 1 0 1 1 ∗ 1 1 1
120 m1 0 1 1 ∗ 1 1 1 1
121 m29 1 1 ∗ 1 1 1 1 0
122 m5 1 ∗ 1 1 1 1 0 0
123 (m15) ∗ 1 1 1 1 0 0 0
124 m17 1 1 1 1 0 0 0 ∗(Q124)
125 m10 1 1 1 0 0 0 ∗ 0
126 m16 1 1 0 0 0 ∗ 0 0
127 m13 1 0 0 0 ∗ 0 0 C4

5R 128 ◦m27 0 0 0 ∗ 0 0 C4 0
129 ◦m3 0 0 ∗ 0 0 C4 0 C5

130 ◦m21 0 ∗ 0 0 C4 0 C5 C6

131 m26© ∗ 0 0 C4 0 C5 C6 C7

132 0 0 C4 0 C5 C6 C7 Q132©
Messages that appear twice are stressed with ◦.
Uninvolved messages are written in parentheses.

5. For all 264 values of (m20, Q132), do the followings:⎧⎨⎩pj+1 ← Rj(pj ,mπ(j)) for j = 132, 133, . . . , 159,
p0 ← Hn − p160,
pj+1 ← Rj(pj ,mπ(j)) for j = 0, 1, . . . , 25.

Store (m20, Q132, p26) in a table named Table C.
6. For all 296 values of (m26, Q100,m20), do the followings.

(a) Compute a value of Q108 by using (m20, Q100).
(b) Find a value of corresponding Q124 by looking up Table A.
(c) Compute a value of corresponding Q132 by using Q124 and m26.
(d) Find values of corresponding p68 and p26 by looking up Tables B and C.
(e) Compute skipped steps, which are Steps 26-67, by using (m26, p26,m20,

p68).
(f) If skipped steps are matched, output corresponding messages.

In the above procedure, steps 1 and 2 finish in negligible time. Step 3 takes
the complexity of about 232 · 3

160 . Step 4 takes the complexity of 264 · 39
160 , and
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step 5 takes the complexity of 264 · 54
160 . Steps 6a to 6d finishes in negligible time

for each of (m26, Q100,m20). Step 6e seems to take the complexity of 296 · 42
160 ,

but this can be easily improved to 296 · 35
160 by the partial-matching technique.

Furthermore, the equation for computing Step 26 can be written as follows:

Q27 ← mπ(26) + (term independent from mπ(26)).

Therefore, Step 26 can be computed in negligible cost compared to one step
function, and thus, the complexity becomes 296 · 34

160 . After Step 6e, the number
of matched message is evaluated as 2−160(= 2−256 ·296). Therefore, by repeating
steps 2 to 6 of the above procedure 2160 times, a pseudo-preimage can be found
at the complexity of 2160 · 296 · 34

160 ≈ 2253.81. Steps 4 and 5 require 20 × 264

words of memory in total and other steps require negligible amount of memory.
To apply the depth first search for steps 4-6, Table B or C can be removed and
memory requirement becomes half.

Notes on local collision shown in Table 9. In the local collision shown
in Table 9, m3,m21, and m27 appear twice. Therefore, we need to be careful
so that all fixed values in Table 9 can be achieved. m21 is used in Steps 115
and 130. Since a message used in Step 115 is an uninvolved message, we can
determine m21 so that Step 130 is satisfied. We can ignore the influence to Step
115. Regarding m3 and m27, since they are used in Steps 129 and 128 whose
outputs can be any value (C6 and C5), m3 and m27 can be fixed so that Steps
111 and 117 are satisfied. This local collision also includes m29, which is involved
to the message padding. Unfortunately, this local collision needs to fix m29 to
a unique value, since all input and output values of Step 121 are fixed. As a
result, this attack cannot satisfy the message padding of 5-pass HAVAL. It is
interesting that the uniquely fixed m29 satisfies the message padding rules of
MD5. Since the padding rules of HAVAL require to produce more information
than those of MD5, for example output length and pass number, the fixed m29
does not satisfy the padding for HAVAL but satisfies the padding for MD5.

6 Conclusion

In this paper, we proposed preimage attacks on HAVAL. We considered two
general strategies to find a preimage. The first approach is speeding up the brute-
force attack. By this approach, we can reduce the complexity of preimage attacks
by a few bits. The second approach is the meet-in-the-middle approach. We
found that the techniques proposed by [1] and [2] can be combined to attack hash
functions with more rounds than previous works. As a result, we found a pseudo-
preimage attack and a preimage attack on 3-pass HAVAL whose complexities
are 2192 and 2225, a pseudo-preimage attack and a preimage attack on 4-pass
HAVAL whose complexities are 2224 and 2241, and a pseudo-preimage attack
and a preimage attack on 151-step 5-pass HAVAL whose complexities are also
2224 and 2241. Moreover, we optimized the computational order for brute force
attack on 5-pass HAVAL and its complexity is 2254.89. As far as we know, the
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proposed attack on 3-pass HAVAL is the best attack and proposed attacks on
4-pass HAVAL and 5-pass HAVAL are the first attacks.
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Abstract. Many of the popular Merkle-Damg̊ard hash functions have
turned out to be not collision-resistant (CR). The problem is that we no
longer know if these hash functions are even second-preimage-resistant
(SPR) or one-way (OW), without the underlying compression functions
being CR. We remedy this situation by introducing the “split padding”
into a current Merkle-Damg̊ard hash function H . The patched hash func-
tion H̄ resolves the problem in the following ways: (i) H̄ is SPR if the
underlying compression function h satisfies an “SPR-like” property, and
(ii) H̄ is OW if h satisfies an “OW-like” property. The assumptions we
make about h are provided with simple definitions and clear relations
to other security notions. In particular, they belong to the class whose
existence is ensured by that of OW functions, revealing an evident sep-
aration from the strong CR requirement. Furthermore, we get the full
benefit from the patch at almost no expense: The new scheme requires
no change in the internals of a hash function, runs as efficiently as the
original, and as usual inherits CR from h. Thus the patch has significant
effects on systems and applications whose security relies heavily on the
SPR or OW property of Merkle-Damg̊ard hash functions.

Keywords: hash function, Merkle-Damg̊ard, padding, second-preimage
resistance, one-wayness.

1 Introduction

Most of the modern cryptographic hash functions follow a design principle called
the Merkle-Damg̊ard construction. A main feature of such a hash function is that
its collision resistance (CR) is guaranteed by that of its underlying compression
function [21,8], yet unfortunately popular hash functions MD5 [28] and SHA-
1 [24] are now shown to be not CR [37,38], hence losing the CR of their respective
compression functions. These attacks have a profound impact on current systems
using hash functions, not to mention those applications whose security is entirely
based on the CR property of their hash-function components.

The loss of CR also exerts a strong influence on schemes whose security de-
pends on the second-preimage resistance (SPR) or one-wayness (OW) of Merkle-
Damg̊ard hash functions. This is due to the fact that the SPR or OW security
of such a hash function is hitherto ensured only by its CR (Recall that SPR is
immediately implied by CR [23] and that OW is also implied by CR as long as

J. Pieprzyk (Ed.): ASIACRYPT 2008, LNCS 5350, pp. 272–289, 2008.
c© International Association for Cryptologic Research 2008
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the hash function is “uniform” [36] or “sufficiently compressing” [31]). Now that
the popular hash functions are not CR, we lose our proof-based assurance of the
SPR and OW properties for these hash functions. To summarize:

We have no guarantee whatsoever of the SPR or OW prop-
erty for a Merkle-Damg̊ard hash function without CR by its
underlying compression function.

This is the main problem we explore in the paper. We come up with a solution
by first making a slight modification to the design of current hash functions.
The change is fully compatible with a standard Merkle-Damg̊ard interface. We
then show that the patched hash functions indeed accomplish SPR and OW,
assuming weaker-than-CR properties of the underlying compression functions.

Obtaining Upper-Bound Results for SPR and OW. A more direct way
to overcome our problem in hand is to analyze exactly what sorts of properties
the underlying compression function must possess in order to ensure the SPR
and OW security of the Merkle-Damg̊ard construction. [26,10] takes this ap-
proach and identifies complexity assumptions about the underlying compression
function, which assure the SPR or OW property of the whole hash function.
However, they do not consider the non-randomness involved in the padding or
length-encoding bits.

Rather, we treat the problem of padding and length-encoding bits in detail.1

The importance of these bits are already pointed out by [18,4]. We then come
up with simple formulations of the complexity assumptions about the compres-
sion function, showing that these assumptions are indeed weaker than the CR
requirement.

Need for SPR and OW Hash Functions. CR, SPR and OW are the three
classical requirements for security of keyless hash functions (e.g., [32,23]). We
already know that the notion of CR plays an important role in designing cryp-
tographic schemes. However, there are situations in which CR is not necessarily
required but SPR or OW is essential to the security of systems. For example,
adversaries might be unable to control input data to the hash function, say by
protocol specification or by the fact that inputs are encrypted under a secret key
before hashing.

A CR hash function may not be best suited to above scenarios due to its large
hash size. Recall that for n-bit security the hash size of a CR hash function needs
to be (at least) 2n bits. Suppose we want to use an SPR hash function with n-bit
security. If the SPR security of hash functions were guaranteed only by their CR,
then we would have needed to use a 2n-bit hash function, whereas we could just use
an n-bit hash function if the SPR security is directly guaranteed (not via its CR).

Our Results. We apply a patch to the Merkle-Damg̊ard construction so that the
SPR and OW properties are now guaranteed by certain reasonable and simple
assumptions about the compression function.
1 On the other hand, we assume that messages are distributed uniformly at random,

which may not hold true in some of the practical applications, as pointed out by [3].
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Split Padding. This is the patch. The new scheme works exactly the same as
the original hash function except for the very end; the split-padding method
alters processing of the last two blocks of a message. Message expansion is
minimal, requiring at most one extra block (and such a case is rare). The new
scheme is compatible with fixed-IV (initialization vector) usage and Merkle-
Damg̊ard strengthening. It can also handle a message in stream by delaying
processing and buffering the two most recent blocks of the message.

CR Preservation. There is “nothing to lose” by applying the patch. Namely,
we show that the CR preservation property of the original Merkle-Damg̊ard
construction is still in action with our new scheme. This motivates us to apply
the patch to the systems whose hash functions are still CR (e.g., SHA-256).

SPR Guarantee. This is one of the main features of our new mode of operation.
The entire hash function can be proven SPR based on the assumption that
the underlying compression function satisfies a property we call “cs-SPR”
(chosen-suffix SPR).

OW Guarantee. This is the other main feature of the new construction. We
show that the OW security of the entire hash function is ensured by the “cs-
OW” (chosen-suffix OW) property of the underlying compression function.

Justification for cs-SPR and cs-OW. We give the rationale behind our choice of
these assumptions by demonstrating their relationships with several known
versions of SPR and OW properties. In particular, we show that these as-
sumptions are strictly weaker than the strong CR requirement, by proving
that they belong to the class whose existence is guaranteed by that of an
OW function.

Without Random Oracles. We avoid use of random oracles in our proofs of
security. The proofs of the SPR and OW properties are conducted in the
standard model, following the concrete-security-reduction methodology. For
the proof of CR preservation, we adopt the “human-ignorance” approach
developed by [29].

Organization of the Paper. In Sect. 2 we review previous work related to the
topic. Section 3 provides necessary definitions for the security of hash functions.
In Sect. 4 we give a description of our patch “split padding.” The proofs for
the CR, SPR and OW properties of our scheme are given in Sect. 5, 6 and 7,
respectively. We analyze the assumption cs-SPR in Sect. 8, followed by a simi-
lar analysis of cs-OW in Sect. 9. Section 10 presents certain application of our
scheme.

2 Related Work

Merkle-Damg̊ard Construction. [2] points out that the SPR or OW as-
sumption about a compression function alone is not sufficient for the SPR or
OW property of its Merkle-Damg̊ard iteration. [19] observes that the use of a
fixed IV precludes the trivial “truncation” or “free-start” SPR attack and that
Merkle-Damg̊ard strengthening (i.e., length encoding in the final block) appears
to defeat “long-message” SPR attacks. Then later it is shown that birthday-type
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SPR attacks are still possible on the Merkle-Damg̊ard construction [9,17], dis-
proving the effectiveness of Merkle-Damg̊ard strengthening against long-message
SPR attacks.

Keyed (Randomized) Hash Functions. Hash functions in theory are often
in the dedicated-key setting [6]. [31] describes seven security notions in such a
setting: Coll, Sec, eSec, aSec, Pre, ePre and aPre. ROX [2] is a powerful mode of
operation that preserves all the seven properties of the underlying compression
function. Since aSec and aPre correspond with SPR and OW in the keyless
setting, ROX can be used with its keys fixed, thereby as a keyless hash function.
Unfortunate aspects of ROX are that it requires major modifications to the
design of current hash functions and that its security is based on the use of
random oracles.

BCM [3] achieves Coll, Sec and Pre properties with its proof of Sec security
conducted in the standard model (That of Pre is in the random oracle model).
However, aSec property is not achieved, and hence BCM is not suited to our
keyless setting (BCM construction yields a keyed, Sec-secure hash function, and
the keys cannot be fixed because it does not assure aSec).

There exist a number of domain-extension constructions for eSec(=TCR,
UOWHF). Prominent one is the Randomized Hashing [13]. The Randomized
Hashing has a close connection with our split padding, cf. Sect. 10.

SPR and OW Attacks on Specific Hash Algorithms. MD4 [27] is now
shown to be not OW [18]. The attack first finds “pseudo-preimages” for the com-
pression function and then extends them to the entire hash function. [4] studies
the SPR and OW properties of the Snefru, being already aware of the importance
of padding scheme to these security notions.

Other Weaknesses of Merkle-Damg̊ard Construction. It has been pointed
out that there exist a number of properties that the Merkle-Damg̊ard construc-
tion does not achieve. These include multi-collisions [15], herding attacks [16],
indifferentiability [7] and balance [5]. It is certainly not the purpose of our con-
struction to achieve these goals. Rather, we focus on the classical three notions
of CR, SPR and OW.

3 Definitions

Notation. Given a finite bit string x ∈ {0, 1}∗ we define |x| as the bit length of x.
The notation x1‖x2 represents the concatenation of two strings x1, x2 ∈ {0, 1}∗.
We write �·� for the ceiling function. By x

$← X we indicate the operation of
selecting an element uniformly at random from the set X and assigning its value
to variable x. We write 0n for the bit string 00 · · · 0 (n times).

Given a function f : X → Y , we say that a pair (x, x′) ∈ X ×X is colliding
with respect to f if f(x) = f(x′) and x �= x′. We write x � f x′, or simply x � x′,
to indicate the fact that x and x′ are colliding. Similarly, given a keyed function
fk : X → Y we write (k, x) � f (k′, x′) when fk(x) = fk′(x′) and (k, x) �= (k′, x′).
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Algorithm MD -strengthening (y)
101 Set η ← �(|y| + 1)/(m − n)�
102 Divide y = y[1]

∥∥ · · ·
∥∥ y[η − 1]

∥∥ y[η]
so that

∣∣y[1]
∣∣ = · · · =

∣∣y[η − 1]
∣∣ = m − n and 0 ≤

∣∣y[η]
∣∣ ≤ m − n − 1

103 If
∣∣y[η]

∣∣ ≤ m − n − σ − 1 then z ← y‖10m−n−σ−1−|y[η]|‖ 〈|y|〉 EndIf
104 If

∣∣y[η]
∣∣ ≥ m − n − σ then z ← y‖10m−n−1−|y[η]|‖0m−n−σ‖ 〈|y|〉 EndIf

105 Output z

Algorithm MD -iteration (z) // Accepts only z with |z| being a multiple of m − n
201 Set ζ ← |z|/(m − n)
202 Divide z = z[1]

∥∥ · · ·
∥∥ z[ζ] so that

∣∣z[1]
∣∣ = · · · =

∣∣z[ζ]
∣∣ = m − n

203 Set v[0] ← IV ; For i = 1, . . . , ζ do v[i] ← h
(
z[i]

∥∥ v[i − 1]
)

EndFor; Output v[ζ]

Fig. 1. Definitions of functions MD -strengthening and MD -iteration

An adversary A is a probabilistic algorithm that takes inputs. An adversary
A may often be a pair of such algorithms, as A = (A1, A2). We write y ← A(x)
to mean that adversary A outputs a value upon its input x, the output value
being assigned to variable y.

Merkle-Damg̊ard Construction. Throughout the paper we fix a compression
function h : {0, 1}m → {0, 1}n with m > n. We also fix a value IV ∈ {0, 1}n. We
choose a length-encoding function 〈 · 〉, which takes an integer as its input and
returns a σ-bit representation of the input value (A typical value of σ is 64).
This restricts message lengths to a maximum of 2σ − 1 bits. Hence, the domain
of the hash function should be written as {0, 1}≤2σ−1 formally, but for simplicity
we write {0, 1}∗ to indicate the message space. Now the Merkle-Damg̊ard hash
function H : {0, 1}∗ → {0, 1}n is defined as

H(x) def= MD -iteration
(
MD -strengthening (x)

)
,

where the functions MD -strengthening and MD -iteration are as described in
Fig. 1.2 We adopt the convention that on empty input (i.e., null string) function
MD -iteration returns the value IV .

Let z and z′ be two strings whose lengths are multiples of m− n bits. Divide
them into (m− n)-bit blocks as z = z[1]

∥∥ · · ·
∥∥ z[ζ] and z′ = z′[1]

∥∥ · · ·
∥∥ z′[ζ′].

Suppose MD -iteration (z) = MD -iteration (z′) and z �= z′. We define

index (z, z′) def=

{
ζ if ζ �= ζ′,
i if ζ = ζ′,

where i is defined to be the largest integer in {1, 2, . . . , ζ} such that follow-
ing (i), (ii) and (iii) hold: (i) MD -iteration

(
z[1]

∥∥ · · ·
∥∥ z[i]

)
= MD -iteration

2 For a technical reason we deliberately define the iteration as h
(
z[i]

∥∥ v[i − 1]
)

at
line 203 rather than as h

(
v[i − 1]

∥∥ z[i]
)
.
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Table 1. Complexity assumptions about keyless compression function
h : {0, 1}m → {0, 1}n

(Alias) Game

fp-CR (c-SPR [13]) x̃
$← {0, 1}µ, (a, x′) ← A(x̃), x̃‖a

?
�� x′

cs-SPR (a, St ) ← A1(·), x̃
$← {0, 1}µ, x′ ← A2(x̃, St ), x̃‖a

?
�� x′

SPR (weak CR) x
$← {0, 1}m, x′ ← A(x), x

?
�� x′

cs-OW (a, St ) ← A1(·), x̃
$← {0, 1}µ, v ← h(x̃‖a), x′ ← A2(v, St ), v ?= h(x′)

ks-OW (partial OW [23])
a

$← {0, 1}m−µ, x̃
$← {0, 1}µ, v ← h(x̃‖a), x′ ← A(a, v), v ?= h(x′)

OW (preimage resistance) x
$← {0, 1}m, v ← h(x), x′ ← A(v), v ?= h(x′)

(
z′[1]

∥∥ · · ·
∥∥ z′[i]

)
, (ii) z[j] = z′[j] for all j ≥ i + 1, (iii) Either z[i] �= z′[i] or

MD -iteration
(
z[1]

∥∥ · · ·
∥∥ z[i− 1]

)
�= MD -iteration

(
z′[1]

∥∥ · · ·
∥∥ z′[i− 1]

)
.

Complexity Assumptions about Keyless Compression Functions. Ta-
ble 1 lists six notions of security for the compression function h : {0, 1}m →
{0, 1}n. Here we have a fixed security parameter 1 ≤ µ ≤ m. A typical value
of µ is µ = n/2 or µ = n. Of the six notions, the two most important ones
in the current work are cs-SPR and cs-OW, because these are the assumptions
that we make about the underlying compression function h. Others are fp-CR
(forced-prefix CR, cf. [35]), SPR, ks-OW (known-suffix OW) and OW. These
four appear in the list only for the purpose of analyzing the nature of cs-SPR
and cs-OW in Sect. 8 and 9, respectively.

The notion of cs-SPR is a variant of SPR where a suffix is chosen by adver-
saries. Informally, the game of cs-SPR for the compression function h : {0, 1}m →
{0, 1}n proceeds as follows: First a suffix a of a given length is chosen by an ad-
versary, and then a challenge x̃ of a given length is randomly drawn and shown
to the adversary. The goal of the adversary is to find a second preimage x′ �= x̃‖a
such that h(x̃‖a) = h(x′). Here we emphasize that the adversary is required to
commit on the value a before observing the challenge x̃.

Security Goals for Keyless Hash Functions. Our SPR and OW goals for
a hash function H : {0, 1}∗ → {0, 1}n is formalized in Table 2. Note that an
adversary can choose the challenge length λ ≥ µ at the beginning of each game.
Also note that the adversary’s response x′ may be of length different from λ.

Security Notions for Keyed Function Family. We utilize four notions, Coll,
eColl (enhanced Coll), TCR (target collision resistance) and eTCR (enhanced

Table 2. Security goals for keyless hash function H : {0, 1}∗ → {0, 1}n

Game

SPR (λ, St ) ← A1(·), x
$← {0, 1}λ, x′ ← A2(x,St ), x

?
�� x′

OW (λ, St ) ← A1(·), x
$← {0, 1}λ, v ← H(x), x′ ← A2(v, St ), v ?= H(x′)
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Table 3. Security notions for keyed function family ϕk : {0, 1}m → {0, 1}n

(Alias) Game

Coll k
$← K, (x, x′) ← A(k), (k, x) ?

�� (k, x′)
eColl k

$← K, (x, k′, x′) ← A(k), (k, x) ?
�� (k′, x′)

TCR (eSec, UOWHF) (x, St ) ← A1(·), k
$← K, x′ ← A2(k, St ), (k, x) ?

�� (k, x′)
eTCR (x, St ) ← A1(·), k

$← K, (k′, x′) ← A2(k, St ), (k, x) ?
�� (k′, x′)

TCR) for analyzing cs-SPR in Sect. 8. See Table 3. The notion of eColl appears
to be new.

Advantage Functions and Adversarial Resources. For a CR-like or SPR-
like goal, we define the advantage function of an adversary A as Advgoal

f (A) def=

Pr
[ ?
� holds

]
, where f is the target function (h, H , etc.). Similarly, we define

Advgoal
f (A) def= Pr

[
?= holds

]
for an OW-like goal. The probabilities are over

all coins defined in game and used by A. We fix a model of computation and
measure the time complexity of adversaries. The time complexity of an adver-
sary is the time for execution of its overlying game plus its code size. We let
time (h) denote the time complexity necessary for one computation of h. Define
Advgoal

f (t, �) def= maxA Advgoal
f (A), where max runs over all adversaries A, with

its time complexity being at most t, with λ, |St | and |x′| each being at most �
blocks. A “block” is m−n bits. � may be omitted from the notation if irrelevant
in the context.

4 How to Insert Split Padding

Our new hash function H̄ operates exactly the same as the original hash H
except for the last two blocks of messages. More precisely, the new hash function
is defined as

H̄(x) def= H
(
split -padding (x)

)
,

with a plain Merkle-Damg̊ard hash function H : {0, 1}∗ → {0, 1}n. The definition
of split -padding is given in Fig. 2 along with a pictorial representation in Fig. 3.

The basic idea of the “split padding” method is to make sure that every block
input to the compression function h has at least µ bits of a message,3 rather than
being entirely padding bits or length-encoding bits. Indeed, when combined with
split -padding , the function MD -strengthening never invokes line 104 of Fig. 1.

For this mechanism to work, we need to impose a condition σ+1+2µ ≤ m−n
on h : {0, 1}m → {0, 1}n. As long as this condition is fulfilled, the algorithm
split -padding is well-defined. Also observe that no message bits are shared across
the blocks. We will come back to this issue after proving the following basic result.

Proposition 1. The function split -padding is one-to-one (i.e., injective).
3 Of course, here we are assuming that the message is at least µ bits long to begin

with.
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Algorithm split -padding (x)
301 Set ξ ← �(|x| + 1)/(m − n)�
302 Divide x = x[1]

∥∥ · · ·
∥∥ x[ξ − 1]

∥∥ x[ξ]
so that

∣∣x[1]
∣∣ = · · · =

∣∣x[ξ − 1]
∣∣ = m − n and 0 ≤

∣∣x[ξ]
∣∣ ≤ m − n − 1

303 If µ ≤
∣∣x[ξ]

∣∣ ≤ m − n − σ − 2 then pad -plain EndIf
304 If

∣∣x[ξ]
∣∣ ≤ µ − 1 then pad -with -borrow EndIf

305 If
∣∣x[ξ]

∣∣ ≥ m − n − σ − 1 then pad -with -carry EndIf
306 Output y

310 Subroutine pad -plain
311 Put y ← x‖0

320 Subroutine pad -with -borrow
321 If ξ ≥ 2 then divide x[ξ − 1] = x̃[ξ − 1]

∥∥ brw
so that |brw | = µ and

∣∣x̃[ξ − 1]
∣∣ = m − n − µ

322 Set x̃[ξ] ← brw ‖x[ξ]
323 Put y ← x[1]

∥∥ · · ·
∥∥ x[ξ − 2]

∥∥ x̃[ξ − 1]
∥∥ 10µ−1

∥∥ x̃[ξ]
∥∥ 1 EndIf

324 If ξ = 1 then put y ← x[1]
∥∥ 1 EndIf

330 Subroutine pad -with -carry
331 Divide x[ξ] = x̃[ξ]

∥∥ cry so that |cry | = µ and
∣∣x̃[ξ]

∣∣ =
∣∣x[ξ]

∣∣ − µ

332 Set x̃[ξ + 1] ← cry
333 Put y ← x[1]

∥∥ · · ·
∥∥ x[ξ − 1]

∥∥ x̃[ξ]
∥∥ 10m−n−|x̃[ξ]|−1

∥∥ x̃[ξ + 1]
∥∥ 1

Fig. 2. Description of “split padding” algorithm

Proof. Let x, x′ ∈ {0, 1}∗. We want to prove that the equality split -padding (x) =
split -padding (x′) implies x = x′. So suppose we have x and x′ such that the
condition split -padding (x) = split -padding (x′) holds. Set y ← split -padding (x)
and y′ ← split -padding (x′). Divide y = w‖b and y′ = w′‖b′ so that |b| = |b′| = 1.
The equality y = y′ tells us that b = b′ and w = w′.

Case A: b = b′ = 0. In this case we know that both y and y′ come from
pad -plain . Hence, we must have x = w and x′ = w′, which yields x = x′.

Case B: b = b′ = 1. We observe that in this case both y and y′ originate from
either pad -with -borrow or pad -with -carry . We divide the case according to
the size |y| = |y′|.
Case B1: |y| = |y′| ≤ m − n. Note that pad -with -carry always produces

more than or equal to two blocks of output, which implies that both y
and y′ must have been processed through pad -with -borrow in this case.
Consequently, we get x = w, x′ = w′ and x = x′.

Case B2: |y| = |y′| > m − n. Put η ← �(|y| + 1)/(m − n)�. We must
have η ≥ 2. Divide y = y[1]

∥∥ · · ·
∥∥ y[η − 1]

∥∥ y[η] and y′ = y′[1]
∥∥

· · ·
∥∥ y′[η − 1]

∥∥ y′[η], so that
∣∣y[1]

∣∣ = · · · =
∣∣y[η − 1]

∣∣ =
∣∣y′[1]

∣∣ = · · · =∣∣y′[η − 1]
∣∣ = m − n. Recall that pad -with -borrow sets the last block to
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Fig. 3. Split padding: “plain” (top), “borrow” (middle) and “carry” (bottom),
combined with MD -strengthening . Note that the last 10∗‖ 〈|y|〉 comes from
MD -strengthening , not from split -padding . 10∗ means 10 · · · 0 with an appropriate num-
ber of zeros.

a length between µ+ 1 and 2µ bits, whereas pad -with -carry always sets
the last block to a length of µ + 1 bits. Now we further divide the case
according to the value

∣∣y[η]∣∣.
Case B2a:

∣∣y[η]
∣∣ =

∣∣y′[η]
∣∣ ≥ µ + 2. This case assures that both y

and y′ originate from pad -with -borrow . It means that we can write
y[η− 1] = ỹ[η− 1]

∥∥ 10µ−1 and y′[η− 1] = ỹ′[η− 1]
∥∥ 10µ−1. We can

also write y[η] = ỹ[η]
∥∥ 1 and y′[η] = ỹ′[η]

∥∥ 1. Therefore, we obtain

x = y[1]
∥∥ · · ·

∥∥ y[η − 2]
∥∥ ỹ[η − 1]

∥∥ ỹ[η],

x′ = y′[1]
∥∥ · · ·

∥∥ y′[η − 2]
∥∥ ỹ′[η − 1]

∥∥ ỹ′[η],

which immediately implies that x = x′.
Case B2b:

∣∣y[η]
∣∣ =

∣∣y′[η]
∣∣ = µ + 1. There are multiple possibilities

in this case: y and y′ may come from either pad -with -borrow or
pad -with -carry . To identify the case, we further divide y[η − 1] =
ỹ[η−1]‖10α and y′[η−1] = ỹ′[η−1]‖10α for some integer α. Observe
that pad -with -borrow always sets α = µ−1, whereas pad -with -carry
sets α ≥ µ. Hence, by looking at the value α we see that either
(i) both y and y′ are from pad -with -borrow , or (ii) both y and y′ are
from pad -with -carry . Write y[η] = ỹ[η]

∥∥ 1 and y′[η] = ỹ′[η]
∥∥ 1. We

see that

x = y[1]
∥∥ · · ·

∥∥ y[η − 2]
∥∥ ỹ[η − 1]

∥∥ ỹ[η],

x′ = y′[1]
∥∥ · · ·

∥∥ y′[η − 2]
∥∥ ỹ′[η − 1]

∥∥ ỹ′[η],

which gives us the desired equality x = x′.
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Thus, we have shown that split -padding (x) = split -padding (x′) always implies
x = x′. This proves the injectivity of the function split -padding . ��

On the Constraint σ + 1 + 2µ ≤ m − n. We need to impose this constraint
on the underlying compression function h. Thanks to the constraint, every block
ends up containing at least µ bits of a message after the split -padding procedure.

The constraint is necessary for handling the last block properly. Recall that
the subroutine pad -with -borrow produces the last block with a length at most
µ+ µ− 1 + 1 = 2µ bits. The subroutine pad -with -carry produces the last block
with a length always equal to µ + 1 bits. The constraint guarantees that the
last block of either type, padded with MD -strengthening , fits neatly in a single
block. The subroutine pad -plain by definition handles only the case when the
last block fits in one block.

The constraint also guarantees that the second last block contains at least
µ bits of the message. This holds true for pad -plain , pad -with -borrow and
pad -with -carry .

The constraint is not problematic as long as we are dealing with MD5 or
SHA-1 with µ = n/2 or n = µ. It puts an obstacle in the way of using SHA-256
with σ = 64 and µ = 256. In such a case we are limited to setting the value of
µ only up to µ ≤ 223.

5 CR of Merkle-Damg̊ard with Split Padding

We follow the “human-ignorance” approach developed by [29] for formalizing
the notion of CR.

Proposition 2. Let H̄ : {0, 1}∗ → {0, 1}n be the Merkle-Damg̊ard hash function
with split padding constructed of a compression function h : {0, 1}m → {0, 1}n. If
there exists an explicitly-given adversary that finds a pair of colliding messages
for H̄ with a probability ε, spending time complexity at most t, each message
being at most � blocks, then there exists an explicitly-given adversary that finds
a collision for h with a probability ε, spending time complexity at most t′ ≈
t + 2� · time (h).

Proof. This statement immediately follows from the injectivity of split -padding
and the well-known CR reduction of the plain Merkle-Damg̊ard iteration
[21,8]. ��

6 SPR of Merkle-Damg̊ard with Split Padding

In this section we prove that the patched hash function H̄ is SPR assuming that
the underlying compression function h is cs-SPR. After proving our result, we
also discuss the birthday bound implied by the reduction.
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Adversary B

410 Run A = (A1, A2) and obtain a bit length (λ, St ) ← A1(·) // λ ≥ µ

411 Generate a random message x
$← {0, 1}λ

412 Put z ← MD -strengthening
(
split -padding (x)

)
413 Divide z = z[1]

∥∥ z[2]
∥∥ · · ·

∥∥ z[ζ] so that
∣∣z[1]

∣∣ =
∣∣z[2]

∣∣ = · · · =
∣∣z[ζ]

∣∣ = m − n

414 Choose an index i
$← {1, 2, . . . , ζ}

415 Compute v[i − 1] ← MD -iteration
(
z[1]

∥∥ z[2]
∥∥ · · ·

∥∥ z[i − 1]
)

416 Divide z[i] = α‖β so that |α| = µ and |β| = m − n − µ

420 Submit β‖v[i − 1] as a committed suffix and receive a challenge x̃ ∈ {0, 1}µ

421 Put w ← (MD -strengthening ◦ split -padding )−1(z[1]
∥∥ · · ·

· · ·
∥∥ z[i − 1]

∥∥ x̃
∥∥ β

∥∥ z[i + 1]
∥∥ · · ·

∥∥ z[ζ]
)

430 Feed w and St to A2 and obtain a second preimage x′ ← A2(w, St )
431 Put z′ ← MD -strengthening

(
split -padding (x′)

)
432 Divide z′ = z′[1]

∥∥ · · ·
∥∥ z′[ζ′] so that

∣∣z′[1]
∣∣ = · · · =

∣∣z′[ζ′]
∣∣ = m − n

433 If ζ �= ζ′ then v′[ζ′ − 1] ← MD -iteration
(
z′[1]

∥∥ z′[2]
∥∥ · · ·

∥∥ z′[ζ′ − 1]
)

434 x∗ ← z′[ζ′]
∥∥ v′[ζ′ − 1] EndIf

435 If ζ = ζ′ then v′[i − 1] ← MD -iteration
(
z′[1]

∥∥ z′[2]
∥∥ · · ·

∥∥ z′[i − 1]
)

436 x∗ ← z′[i]
∥∥ v′[i − 1] EndIf

440 Output x∗

Fig. 4. Definition of adversary B attacking h : {0, 1}m → {0, 1}n in the cs-SPR sense

Theorem 1. Let H̄ : {0, 1}∗ → {0, 1}n be the Merkle-Damg̊ard hash function
with split padding constructed of a compression function h : {0, 1}m → {0, 1}n.
Then H̄ is SPR if h is cs-SPR. More concretely, we have

Advspr
H̄

(t, �) ≤ (� + 1) · Advcs-spr
h (t′),

where t′ ≈ t + 2� · time (h). Note that the security parameter µ is implicit in the
statement.

Proof. Let A = (A1, A2) be an adversary attacking the hash function H̄ :
{0, 1}∗ → {0, 1}n in the SPR sense. Assume that A has time complexity at
most t and only handles strings whose lengths are at most � blocks. We shall
construct an adversary B that uses A1 and A2 as black-boxes and that attacks
the underlying compression function h in the cs-SPR sense. The definition of B
is given in Fig. 4. The basic idea is that B simulates an SPR game for A with
B’s challenge embedded into a randomly chosen block. Then B “hopes” that A
finds a second preimage colliding at that block.

Let us first check if B simulates an SPR game for A correctly. In order to
do this, we only need to verify that the distribution of simulated challenges w
at line 421 is uniformly random on the set {0, 1}λ. The only difference between
this w and the x ∈ {0, 1}λ at line 411 is that the α in the i-th block is replaced
with the challenge x̃. Because of the split padding, all the bits of α ∈ {0, 1}µ
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come from the random message x. Since x̃ is random and independent from x,
we see that w is indeed drawn uniformly at random from the set {0, 1}λ. The
point here is that B can choose any block, as every block contains at least µ bits
of a message owing to the split padding.

We next evaluate the success probability of B. We see that B succeeds when-
ever A succeeds, provided that at the same time B correctly guesses the index i
(Here we need (i) injectivity of split -padding , (ii) injectivity of MD -strengthening ,
and (iii) the length encoding in MD -strengthening ). The choice of index i does
not affect the overall distribution of w ∈ {0, 1}λ; the distribution is the same
as w

$← {0, 1}λ, being independently random from i. Moreover, the value i is
completely hidden from A. Therefore, the choice of i is independent from the
transcript of A producing x′. Putting u ← MD -strengthening

(
split -padding (w)

)
we get:

Advcs-spr
h (B) ≥ Pr

[
w � H̄ x′ and i = index (u, z′)

]
= Pr

[
w � x′]× Pr

[
i = index (u, z′)

∣∣ w � x′]
= Pr

[
A succeeds

]
× (1/ζ) ≥ 1/(� + 1) · Advspr

H̄
(A).

Lastly, we compute the time complexity of adversary B. It is about equal to
the time complexity of A plus two executions of MD -iteration at lines 415, 433
and 435, each of which costs at most � · time (h). This proves the theorem. ��

Remarks on the Birthday Bound. We note that our bound for SPR is of
quadratic degradation in � (a linear term in the coefficient of the advantage
function and another one in time complexity). This means that the security
guarantee becomes vacuous when � ≈ 2n/2 (with µ = n; recall that with t ≈
2n/2 · time (h) the advantage increases to about 2−n/2, cf. [23]). In fact, the
long-message SPR attacks described in [9,17] are still applicable to the patched
construction. It also implies that our reduction essentially gives a tight bound.

This is neither regression to the plain Merkle-Damg̊ard construction nor severe
limitation in practice. In the original Merkle-Damg̊ard construction, the SPR of
a hash function is assured up to the birthday bound based on the strong CR
assumption about the underlying compression function rather than cs-SPR. The
birthday bound by CR is at t ≈ 2n/2·time (h) irrespective of the message length �.
Thus, our result provides a stronger bound than the one originally assured by
CR. Also, in practice a typical value of σ restricts message lengths to less than
2n/2 blocks, so speaking of the security beyond � ≈ 2n/2 often becomes moot.

Moreover, many of the provably secure SPR (TCR) constructions, including
Randomized Hashing [13] and Higher-Order UOWHF [14], are susceptible to the
long-message SPR attacks, hence giving security only up to the birthday bound.
It is true that there exist some constructions that accomplish SPR beyond the
birthday bound, such as Wide-Pipe [20] and ROX [2], but the security of these
constructions relies on the use of random oracles.

It seems a non-trivial task for us to construct a mode of operation that achieves
the full SPR security without random oracles: The “dithering” and “checksum”
require major modifications to the current Merkle-Damg̊ard construction, and
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these techniques are shown to be not effective in precluding long-message at-
tacks [1,11].

7 OW of Merkle-Damg̊ard with Split Padding

In this section we prove that the Merkle-Damg̊ard construction combined with
split padding is OW provided that the underlying compression function is cs-
OW. The result contrasts sharply with the one for SPR of the previous section
in that we have a security reduction without the birthday bound.

Theorem 2. Let H̄ : {0, 1}∗ → {0, 1}n be the Merkle-Damg̊ard hash function
with split padding constructed of a compression function h : {0, 1}m → {0, 1}n.
Then H̄ is OW if h is cs-OW. More concretely, we have

Advow
H̄ (t, �) ≤ Advcs-ow

h (t′),

where t′ ≈ t + 2� · time (h). Note that the security parameter µ is implicit in the
statement.

Proof. Let A = (A1, A2) be an adversary trying to invert the hash function
H̄ : {0, 1}∗ → {0, 1}n in the OW sense. Assume that A has time complexity at
most t and only handles strings whose lengths are at most � blocks. We shall
construct an adversary B that uses A1 and A2 as black-boxes and that tries to
invert the underlying compression function h in the cs-OW sense. The definition
of B is given in Fig. 5. A significant difference from the SPR case is that B
simulates an OW game for A with its challenge embedded always into the last
block.

We first check if B simulates an OW game for A correctly. For this, we need to
verify that the distribution of the challenge v given at line 520 indeed coincides
with the distribution v ← H̄(x), x

$← {0, 1}λ. By definition of cs-OW oracle,
the value v at line 520 is computed as v ← h(x̃‖β‖v[ζ − 1]) with x̃

$← {0, 1}µ.
Now note that all the bits of α at line 515 come from the random message
x ∈ {0, 1}λ and appear in no other blocks, owing to the split padding. Since
the randomness of x̃ is independent from that of x, replacing α with x̃ does not
affect the distribution of v. Thus we see that B indeed simulates the correct
distribution of v.

It remains to evaluate the success probability of B. We observe that B suc-
ceeds whenever A succeeds in inversion, so Advcs-ow

h (B) ≥ Advow
H̄ (A) holds. The

time complexity of B is about that of A plus two executions of MD -iteration at
lines 514 and 533. This proves the theorem. ��

Tightness of the Bound. Unlike the case of SPR, this time the degradation is
only linear in � (i.e., we do not have the coefficient �+1 in front of the advantage
function).4 This means that we still have some security left even when � ≈ 2n/2

4 [26,10] obtains an OW result based on the OW assumption about h and the “output
regularity” of h. The result, however, has a coefficient of � in front of the advantage
function (associated with the regularity).
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Adversary B

510 Run A = (A1, A2) and obtain a bit length (λ, St ) ← A1(·) // λ ≥ µ

511 Generate a random message x
$← {0, 1}λ

512 Put z ← MD -strengthening
(
split -padding (x)

)
513 Divide z = z[1]

∥∥ z[2]
∥∥ · · ·

∥∥ z[ζ] so that
∣∣z[1]

∣∣ =
∣∣z[2]

∣∣ = · · · =
∣∣z[ζ]

∣∣ = m − n

514 Compute v[ζ − 1] ← MD -iteration
(
z[1]

∥∥ z[2]
∥∥ · · ·

∥∥ z[ζ − 1]
)

515 Divide z[ζ] = α‖β so that |α| = µ and |β| = m − n − µ

520 Submit β‖v[ζ − 1] as a committed suffix and receive a challenge v ∈ {0, 1}n

530 Feed v to A2 and obtain a preimage x′ ← A2(v, St )
531 Put z′ ← MD -strengthening

(
split -padding (x′)

)
532 Divide z′ = z′[1]

∥∥ · · ·
∥∥ z′[ζ′] so that

∣∣z′[1]
∣∣ = · · · =

∣∣z′[ζ′]
∣∣ = m − n

533 Compute v′[ζ′ − 1] ← MD -iteration
(
z′[1]

∥∥ z′[2]
∥∥ · · ·

∥∥ z′[ζ′ − 1]
)

534 Set x∗ ← z′[ζ′]
∥∥ v′[ζ′ − 1]

540 Output x∗

Fig. 5. Definition of adversary B attacking h : {0, 1}m → {0, 1}n in the cs-OW sense

(with µ = n) and that long-message birthday attacks do not apply to the OW
case.

Our bound for OW is “essentially” tight, except for the �-degradation in time
complexity. To see this, consider an inverter A (in the OW sense) attacking H̄ ,
who outputs λ = µ at the beginning of each game and receives a challenge
v ∈ {0, 1}n. Then the challenge is computed as v ← h(x̃‖a), x̃ $← {0, 1}µ with the
suffix a = 010∗‖ 〈|µ|〉 ‖IV . This is “essentially” a cs-OW game on h, except that
the suffix a ∈ {0, 1}m−µ is not completely “chosen” by A but rather “known”
to A. We shall discuss more on the gap between cs-OW and ks-OW in Sect. 9.

8 Analysis of cs-SPR

The purpose of this section is to reveal the nature of cs-SPR. It is clear that CR
implies cs-SPR5 but not vice versa, so cs-SPR is a strictly weaker requirement
than CR. Here we do want to say more; that is, we claim that cs-SPR is an
assumption which is inherently weaker than CR, by showing:

A cs-SPR function exists if an OW function exists.

This is a complexity-theoretic result. It is known that the existence of Coll
functions implies that of OW functions [12], but not vice versa—[34] shows that
there exists no black-box construction of Coll functions from OW functions. This
is a strong evidence of separation between the Coll property and the OW, and
we show that cs-SPR belongs to the latter class.

5 More formally, it should read “fp-CR implies cs-SPR.”
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⇒ 

Fig. 6. A ⇒ B indicates “A-secure implies B-secure,” while A → B indicates “A-
existence implies B-existence.” Dotted boxes indicate black-box separation from the
Coll requirement.

Our claim is based on the results [25,30] which prove that the existence of an
OW function implies that of a TCR function family.6 The existence of a TCR
function family is equivalent to that of an SPR function [33], so we actually
present explicit black-box construction of a cs-SPR function from an SPR func-
tion, thereby showing the existence of a cs-SPR function based on that of an
OW function. For better understanding of cs-SPR, we also point out a symme-
try between cs-SPR and eTCR; roughly speaking, cs-SPR can be regarded as
an unkeyed version of eTCR. The diagram on the left in Fig. 6 summarizes the
relationships among these various notions.

Proposition 3. A cs-SPR function exists if an SPR function exists.

Proof. Let f : {0, 1}µ → {0, 1}ν be an SPR function. Define g : {0, 1}m →
{0, 1}ν+m−µ as g(x̃‖a) def= f(x̃)‖a for x̃ ∈ {0, 1}µ and a ∈ {0, 1}m−µ. Then it can
be directly verified that Advcs-spr

g (t) ≤ Advspr
f (t′) where t′ ≈ t. ��

Proposition 4. A cs-SPR function exists if and only if an eTCR function fam-
ily exists.

Proof. Let f : {0, 1}m → {0, 1}n be a cs-SPR function with a security parameter
µ < m. Define a family of functions ϕk : {0, 1}m−µ → {0, 1}n with k ∈ {0, 1}µ

as ϕk(a) def= f(k‖a). Then it is easy to see that Advetcr
ϕ (t) ≤ Advcs-spr

f (t′) where
t′ ≈ t. Conversely, let ϕk : {0, 1}m−µ → {0, 1}n be an eTCR function family
with k ∈ {0, 1}µ. Define f : {0, 1}m → {0, 1}n as f(x̃‖a) def= ϕx̃(a). Then we see
that Advcs-spr

f (t) ≤ Advetcr
ϕ (t′) where t′ ≈ t. ��

The notion of cs-SPR provides a bridge between SPR and CR, depending on the
value µ. This can be viewed as an unkeyed version of the continuum developed
in [22]. Also, the notion of cs-SPR contrasts sharply with that of fp-CR, as there
is a clear distinction between the two: The notion of fp-CR is open to generic
birthday attacks, whereas that of cs-SPR is not.

6 These results are based on polynomially-bounded reductions. [25] proves the exis-
tence based on that of an OW permutation, while [30] on that of an OW function.
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9 Analysis of cs-OW

There are obvious implications: cs-OW-secure ⇒ ks-OW-secure ⇒ OW-secure.
Thus our assumption cs-OW is the strongest of these three notions. We show
that cs-OW is, however, not “too far” from OW, by proving (see the diagram
on the right in Fig. 6):

A cs-OW function exists if an OW function exists.

Unlike the case of cs-SPR, we have a direct black-box construction this time:

Proposition 5. A cs-OW function exists if an OW function exists.

Proof. Let f : {0, 1}µ → {0, 1}ν be an OW function. Define g : {0, 1}m →
{0, 1}ν+m−µ as g(x̃‖a) def= f(x̃)‖a for x̃ ∈ {0, 1}µ and a ∈ {0, 1}m−µ. Then it can
be directly verified that Advcs-ow

g (t) ≤ Advow
f (t′) where t′ ≈ t. ��

10 Application to Randomized Hashing

In closing the paper we point out that our split padding is compatible with the
Randomized Hashing [13]. Recall that the Randomized Hashing first mixes a
message with a randomly generated mask and then hashes the data using the
Merkle-Damg̊ard construction. A problem arises when line 104 of the algorithm
MD -strengthening in Fig. 1 is invoked, because it would then result in an insuffi-
cient amount of randomness in the last block. The Randomized Hashing suggests
using “double padding” for dealing with this problem. Our split padding offers
an alternative to this method, assuring at least µ bits of randomness in the very
last invocation to the compression function.
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Abstract. The collision-resistance of hash functions is an impor-
tant foundation of many cryptographic protocols. Formally, collision-
resistance can only be expected if the hash function in fact constitutes a
parametrized family of functions, since for a single function, the adver-
sary could simply know a single hard-coded collision. In practical appli-
cations, however, unkeyed hash functions are a common choice, creating
a gap between the practical application and the formal proof, and, even
more importantly, the concise mathematical definitions.

A pragmatic way out of this dilemma was recently formalized by Ro-
gaway: instead of requiring that no adversary exists that breaks the pro-
tocol (existential security), one requires that given an adversary that
breaks the protocol, we can efficiently construct a collision of the hash
function using an explicitly given reduction (constructive security).

In this paper, we show the limits of this approach: We give a protocol
that is existentially secure, but that provably cannot be proven secure
using a constructive security proof.

Consequently, constructive security—albeit constituting a useful im-
provement over the state of the art—is not comprehensive enough to
encompass all protocols that can be dealt with using existential security
proofs.

1 Introduction

The collision-resistance of hash functions is an important ingredient of many
cryptographic protocols. Formally, collision-resistance can only be expected if
the hash function in fact constitutes a parametrized family of functions, since
for a single function, the adversary could simply have a collision hard-coded into
its program. In practical applications, however, such unkeyed hash functions are
often used (e.g., SHA-1), creating a gap between the practical application and the
formal proof, and, even more importantly, the concise mathematical definitions.

A pragmatic way out of this dilemma was discussed by Stinson [10] and re-
cently formalized by Rogaway [9]: instead of requiring that no adversary exists
that breaks the protocol (existential security), one requires that given an adver-
sary that breaks the protocol, one can efficiently construct a collision of the hash
function using an explicitly given reduction (constructive security).

Slightly more formally, the dilemma can be described as follows: An exis-
tential security proof for a protocol π shows the following: If there exists a
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polynomial-time adversary A that has a non-negligible advantage in breaking
the protocol, then there exists a polynomial-time adversary B that has a non-
negligible advantage in breaking at least one of the assumptions of the protocol.
Here, the exact meaning of the word advantage depends on the security notion
under consideration; in a proof system for example, the advantage would be
the probability to convince the verifier of a wrong fact. For collision-resistant
hash functions, it would be the probability of finding a collision. Considering
a protocol π whose security is based on the collision-resistance of an unkeyed
hash function H , an existential security proof would show the following: If an
adversary A has non-negligible advantage in breaking π, there is an adversary
B that outputs a collision of H with non-negligible probability. However, this
is vacuously true: There always exists an adversary that has a collision of H
hard-coded into its program and outputs this collision with probability one. We,
that is the totality of all human beings, might not know this adversary, but it
exists nonetheless. To circumvent this problem, mathematical definitions and
proofs usually make use of keyed hash functions. In this case, for every key K
the collision might be different so that the assumption that no polynomial-time
adversary can compute collisions for more than a small fraction of the keys is
sensible.

But what if we are forced to use unkeyed hash functions, e.g., because of
efficiency considerations or simply because industrial applications often rely on
unkeyed hash functions? Do we lose all possibility to prove security, since we
cannot expect an existential security proof in this case? Fortunately, this is not
necessarily the case: we may ground security on the observation that although
there always exists an adversary finding a collision of an unkeyed hash func-
tion, this adversary might not be explicitly known. This leads to the following
approach that was recently formalized by Rogaway [9]: A constructive security
proof for a protocol π that uses a hash function H is an efficient transformation
C (that must be explicitly given) that, upon input an adversary A and the hash
function H , outputs a collision of H . If someone finds a successful adversary A,
he hence also knows a collision, thereby breaking the collision-resistance of the
hash function.

Rogaway [9] stresses that most existential security proofs already constitute
constructive security proofs and that all that must be done for concisely han-
dling unkeyed hash functions is to rephrase those proofs in a constructive set-
ting. Indeed, folklore has always believed that protocols with existential security
proofs can be transformed into constructive ones. In some cases it may be as
easy as rephrasing the theorem statement, in other cases it may be as hard as
finding a different proof. E.g., [9] writes: “In general, it is well understood that
one can rephrase provable-security results as assertions about explicitly given
reductions”. Although this folklore statement may hold true in many cases of
practical interest, we show that it does not hold true in general. We construct a
protocol (more exactly, a zero-knowledge argument of knowledge) that we show
secure with an existential security proof, but for which we further show that
there provably does not exist any constructive security proof.
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Hence although constructive security proofs may constitute a useful improve-
ment over the state of the art, there are applications where the use of unkeyed
hash functions cannot be justified even with this technique.

1.1 Our Contribution

We show how hash functions can be used to construct protocols that can be
shown secure using an existential security proof, but that cannot be proven
secure using a constructive security proof.

The main idea underlying this separating example is to construct a protocol
whose security is based on a non-uniform security reduction. Then, this reduc-
tion will only lead to a non-uniform collision-finding algorithm. Since an unkeyed
hash function can only be secure against uniform adversaries, such a reduction
does not lead to a contradiction when basing the protocol on an unkeyed hash
function. Thus, in particular, a non-uniform reduction does not give rise to a
constructive security proof. The main technical difficulty lies in actually prov-
ing that the security of the protocol can only be shown using a non-uniform
reduction.

More specifically, we investigate argument systems (computationally sound
proof systems) as our security notion of interest. The approach can be adapted
to other notions as well, e.g., by constructing a protocol for another task that
uses and depends on the argument system presented in this paper.

In more detail, we construct, depending on a hash function H , a proof system
(PH , V H) of which we can show the following properties:
– Under two nonstandard but reasonable assumptions (discussed below in

the paragraph on complexity assumptions and formalized in Assumption 1
in the body of the paper) and the assumption that H is a non-uniform
collision-resistant hash function, we can give an existential security proof for
(PH , V H).

– Using Assumption 1, we can prove that one cannot give a constructive secu-
rity proof that reduces the security of (PH , V H) to the collision-resistance
of H . This even holds independent of any additional assumptions we might
use for the constructive security proof (as long as these assumptions are not
false).

At a first glance, this separation may seem confusing because of the different
layers of assumptions (in the proofs themselves and in the proofs about proofs).
Thus the following view might help to improve the intuition underlying our
result: In a world where Assumption 1 has been proven to hold, it will be possible
to show existentially that (PH , V H) is secure if H is collision-resistant, but a
constructive security proof for (PH , V H) reducing to the collision resistance of H
will be impossible.

At this point, we consider it important to stress that our assumptions and
in particular our proofs strongly rely on the careful distinction of non-uniform
and uniform complexity. In particular, we use non-uniform techniques to prove
results about uniform algorithms.
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Basic Idea of the Construction. In order to construct a zero-knowledge argument
of knowledge that has an existential proof of security but no constructive security
proof, we use the following general approach. We take an existing zero-knowledge
proof of knowledge (P †, V †) and modify it as follows: Instead of directly showing
that a given statement σ holds, the prover PH shows (using P †) that one of the
following two statements holds:

– he knows a witness for the statement σ, or
– he knows a ciphertext c that is the encryption of a collision of H .

The basic idea is that given an adversary that knows such a ciphertext c, one can
break the argument. However, given an adversary with a hard-coded ciphertext,
a constructive security proof should not be able to extract the collision contained
in the ciphertext. We have to achieve the following two goals:

– If H is a collision-resistant keyed hash function, it is hard to find a ciphertext
c that is the encryption of a collision of H . Otherwise the argument can
be easily broken even if the hash function is secure, thus even defying the
existential security proof.

– Given c, it is hard to extract a collision from c; in particular, the decryp-
tion key should be secret. Otherwise a constructive security proof can use a
knowledge extractor to extract c from a successful prover and then extract
a collision from c. Further, the decryption of c should not be part of the
witness used for the proof system (P †, V †) since this witness could then be
extracted from the adversary.

We achieve the first goal as follows: To ensure that it is hard to find a ciphertext
given a collision-resistant keyed hash function, we use an encryption scheme that
can be broken by non-uniform adversaries, but that is secure against uniform
adversaries. An adversary that breaks (PH , V H) entails an adversary that finds
a ciphertext c that is the encryption of a collision of H . This again entails
the existence of a non-uniform adversary decrypting these ciphertexts and thus
finding collisions. Consequently, if we require H to be a keyed hash function that
is collision-resistant against non-uniform adversaries, we obtain a contradiction.
On the other hand, a constructive security proof cannot obtain the collisions in
this way, since in such a proof the reduction would have to be explicitly given
and thus in particular be a uniform algorithm.

The second goal is achieved as follows: We do not directly show (using P †)
that c is the encryption of a collision of H , since this would necessitate to use the
plaintext, i.e., the collision, as a witness, which in turn would allow to extract
this witness. Instead, we introduce another proof system (P ∗, V ∗). This proof
system is non-interactive (in the strong sense that it does not even use a common
reference string), statistically sound (otherwise the overall scheme could be bro-
ken by non-uniform adversaries that know a single wrong proof) and it should
hide the plaintext of the encryption c. The last condition roughly means that
if some adversary can extract the plaintext of c given a proof N , then it could
also extract the plaintext without knowledge of N with non-negligible proba-
bility. We call such a proof system a content-hiding proof of content. Given a
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content-hiding proof of content, we do not directly prove that c is an encryp-
tion of a collision, but that we know a non-interactive proof N that c is an
encryption of a collision. Then in the constructive security proof, c and N might
be extractable from an adversary, but this would not be of help: If one could
extract a collision from c and N , one could extract one from c alone as well
(since (P ∗, V ∗) is content-hiding). If the encryption scheme is IND-CPA secure,
the encryption c alone is indistinguishable from a random encryption. Thus one
could also find the collision without using c at all. A constructive security proof
would hence imply the existence of an algorithm to find collisions.

Summary of the Construction. We now summarize our construction in a more
detailed and a more concise manner. Let f be a one-way permutation that is se-
cure against uniform adversaries, but can be inverted by non-uniform adversaries
(Definition 2). From f we construct an encryption scheme Ef such that for each
security parameter, there is a fixed public key, and such that the corresponding
secret key can be found by a non-uniform adversary (Definition 3). The scheme
Ef is shown to be IND-CPA secure (Lemma 2).

Let then (P ∗, V ∗) be a content-hiding proof of content for the encryption
scheme Ef (Definitions 4 and 5). That is, using P ∗ we can show non-interactively
that a given ciphertext c is the encryption of a cleartext m that fulfills a given
property π. Since P ∗ is content-hiding, we know that if we can extract the
plaintext from c given the non-interactive proof, we can also do so without
access to the proof. Let (P †, V †) be a computational zero-knowledge proof of
knowledge. Let H be a hash function (keyed or unkeyed). Then we construct the
argument system (PH , V H) as follows (Definition 6):

– The prover PH takes as input a SAT-instance σ and a corresponding witness
w. The verifier V H expects a SAT-instance σ.

– To show his knowledge of w, the prover PH invokes the prover P † to show
that either
• he knows a witness w for σ, or
• he knows a ciphertext c and a non-interactive proof N such that the

proof N convinces the verifier V ∗ that the ciphertext c is an encryption
of a collision of H .

The prover can easily perform this proof since he knows the witness w.
– The verifier V H uses V † to verify the above proof.

Note that the prover P ∗ is never used in the above construction. The existence
of P ∗ will however be used in the proofs.

On our Complexity Assumptions. Our proof is based on the existence of content-
hiding proofs of content as well as on the existence of one-way permutations with
non-uniform trapdoors, which constitute nonstandard complexity assumptions.
To motivate these assumptions, we prove that relative to a random oracle these
assumptions follow from standard ones.

At a first glance, it may seem that a result that needs such strong assump-
tions and involved constructions will not be of relevance for the provability of
natural protocol constructions, i.e., construction which do not have the creation
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of a counterexample in mind. We would like to point out the following counter-
arguments: First, one reason why we need such strong assumptions is that we do
not only want a protocol that cannot be proven secure using constructive proofs,
but that provably cannot be proven secure using constructive proofs. The reason
for the complexity of our example may hence not follow from the fact that all
natural protocols have constructive proofs, but rather from the fact that proving
unprovability is in general a difficult task. Secondly, somewhat similar techniques
have already been used in the literature: Barak [3] presents an argument system
in which the prover proves that the statement under consideration is true or that
he knows a short circuit describing (the data sent by) the verifier. This seemingly
contrived construction then was shown to allow for argument systems that enjoy
properties that where shown to be impossible for zero-knowledge argument sys-
tems that do not use the circuit of the adversary (i.e., black-box zero-knowledge
argument systems). In that light it may well be possible that some useful proto-
col will have to use constructions similar to the ones presented in this work and
therefore will have no constructive security proof.

1.2 Related Work

Hash functions where first formalised in [4]. In [9] the notion of a constructive
security proof was made explicit, although the concept was already discussed or
implicitly used in many other papers.

The idea of considering problems relative to oracles to analyze complexity
assumptions was introduced by [2]. See also [6] for a survey and a discussion of
such relativisation techniques.

An example of a non-constructive security proof can be found in [5, Section 8].
They give a resettable zero-knowledge proof in the timing-model, and the proof
of soundness uses a non-constructive reduction. However, it is not shown that
their protocol does not have a constructive proof. In contrast, the complexity of
our constructions result from the necessity of creating a scheme where we can
prove that no constructive security proof exists. We believe that the result of [5]
and our result complement each other: [5] show that there are natural protocols
where we do not know constructive security proofs, while we show that there
are contrived protocols where constructive security proofs do not exist (under
certain complexity assumptions).

2 Preliminaries and Notation

By x ← A we mean assigning the output of the probabilistic algorithm A to x,
and by x

$← M assigning a uniformly randomly chosen element of M to x. By
〈A,B〉 we mean the output of B after an interaction of the interactive machines
A and B. The variable k will always denote the security parameter.

An unkeyed hash function H is a function from {0, 1}∗ to {0, 1}n for some
n that can be computed in deterministic polynomial time. A keyed (family of)
hash functions consists of a family {HK} of functions together with an efficient
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key generation algorithm GH such that the following holds: Given K and x, the
image HK(x) can be computed in deterministic polynomial time. Further, for
K ← GH(1k), the function HK maps {0, 1}∗ to {0, 1}�(k) for some polynomially
bounded function �.

Of central interest to this paper is the notion of a constructive security proof.
In principle, a constructive security proof consists of two parts: an explicitly
given reduction C from adversaries to collisions, and a proof that C is indeed
such a reduction. Since we are only interested in negative results in this paper, it
will be sufficient to show that no such reduction C exists. We therefore slightly
abuse notation and define a constructive security proof to solely consist of this
reduction C. That is, we do not even require that the reduction is proven to be
correct.

Furthermore, we will confine ourselves to constructive security proofs that a
given protocol is an argument system. This results in a less abstract definition,
which is sufficient for our application. Examples of constructive security proofs
for other properties are given in [9].

Let (PH , V H) be a proof system parametrized by an unkeyed hash function H
that is assumed to be given as a circuit. For an adversary A (given as a circuit)
and an unsatisfiable SAT-formula σ, we define

Advarg
V H ,k(A, σ) := Pr[〈A, V H(1k, σ)〉 = 1].

Further, for an algorithm C, let

Advcol
H,k(C,A, σ) := Pr[(x, x′) ← C(1k, H,A, σ) : x �= x′ and H(x) = H(x′)].

Definition 1 (Constructive Security Proof). Let (PH , V H) be a proof sys-
tem parametrised by an unkeyed hash function H. We call an algorithm C a
constructive security proof that (PH , V H) is an argument if C runs in uniform
probabilistic polynomial-time and there exist some c > 0 and some negligible
function µ such that for all circuits A, all unsatisfiable boolean formulas σ and
all k ∈ � we have

Advcol
H,k(C,A, σ) ≥

(
Advarg

V H ,k
(A, σ)

k + |A| + |H | + |σ|

)c

− µ(k).

Our notion of a constructive security proof slightly deviates from the notion
put forward in [9]. The most obvious difference is that [9] does not contain
any asymptotic definition of a constructive security proof. Instead, all results
are given in terms of concrete security, i.e., the relation between the advantage
to break the protocol and the advantage to find collisions is given explicitly.
A negative statement, i.e., a claim that a given protocol has no constructive
security proof, cannot rely on concrete security since one does not aim to show
that a given relation between the two advantages does not hold, but that no
(useful) lower bound for Advcol in terms of Advarg exists. To characterize such
useful lower bounds we have introduced the above asymptotic formulation. Since
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we are interested in a negative result, we have made the lower bound as weak as
possible.

A notion of black-box constructive proofs has also been formalized in [9]. Since
black-box is the stricter kind of reduction, our negative result encompasses this
notion as well.

3 Assumptions Underlying Our Negative Result

In this section, we will present two cryptographic assumptions that are needed
in our proof.

3.1 One-Way Permutations with Non-uniform Trapdoors

The first assumption roughly states that there are one-way permutations that
are secure against uniform adversaries but that can be inverted by non-uniform
ones.

Definition 2 (One-Way Permutations with Non-Uniform Trapdoors).
A function f : {0, 1}∗ → {0, 1}∗ is a one-way permutation with non-uniform
trapdoors, if

– The function f is a length-preserving permutation that is computable in de-
terministic polynomial time.

– The function f is one-way against uniform adversaries.
– There exists a sequence tk of polynomial-sized circuits, such that tk(f(x)) = x

for all k ∈ � and all x ∈ {0, 1}k.

The existence of one-way permutations with non-uniform trapdoors constitutes
a nonstandard complexity assumption in cryptography. Although we did not
succeed in reducing the existence of one-way permutations with non-uniform
trapdoors to more common assumptions in general, we show that there is an
oracle relative to which this is possible.

Lemma 1. Assume that trapdoor one-way permutations with dense public keys1

exist that are one-way against uniform probabilistic polynomial-time adversaries.
Then there exists an oracle O relative to which one-way permutations with non-
uniform trapdoors exist.

The proof of this lemma is given in the full version [1].
The proof of Lemma 1 in fact shows a stronger statement: choosing a random

oracle entails one-way permutations with non-uniform trapdoors with probability
one. If we accept the random oracle heuristic, the following conjecture is thus
made realistic by the proof of Lemma 1:
1 We say a family of trapdoor permutations has dense public keys if the distribution

of the public keys is near the uniform distribution on the set of strings of a given
length. Intuitively, this means that we can choose the public key using only public
coins.
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Conjecture 1. Let R be a sufficiently unstructured, efficiently computable func-
tion. Then using R in the construction of the proof of Lemma 1 yields one-way
permutations with non-uniform trapdoors.

Using one-way permutations with non-uniform trapdoors, we can use the stan-
dard construction for creating IND-CPA secure encryption schemes from one-
way permutations. The result is an encryption scheme where for each security
parameter there is a single public key, and where the corresponding secret keys
can be recovered by non-uniform adversaries (but not by uniform ones).

Definition 3 (Singleton Encryption). Let f be a one-way permutation with
non-uniform trapdoors. We define the singleton encryption scheme Ef ,Df for
f as follows: Let pkk := 1k and skk := tk, where tk denotes the trapdoors of
the function f . For x ∈ {0, 1}, we have Ef (pk , x) := (f(r1), r2, (r1 · r2) ⊕ x)
where r1, r2 are uniformly random from {0, 1}|pk|. For x ∈ {0, 1}∗, we have
Ef (pk , x) := (Ef (pk , x1), . . . , Ef (pk , x|x|)).

The corresponding (deterministic) decryption algorithm Df proceeds as fol-
lows: Upon input (pk , sk , (c1, r2, c2)) where sk is a circuit and (c1, r2, c2) the en-
cryption of a single bit, the decryption algorithm first verifies that f(sk(c1)) = c1
and that |c1| = |pk |. If so, it outputs (sk(c1) · r2) ⊕ c2. Otherwise, it outputs ⊥.
The encryption of multiple bits is handled by decrypting each bit individually
(with output ⊥ if one of the decryptions fails).

The set of valid public keys of Ef for security parameter k is hence {pkk};
consequentely the public key generation algorithm is trivial. The corresponding
secret-keys skk, i.e., the trapdoors of f , are guaranteed to exist, but they are not ef-
ficiently computable by a uniform adversary. We haveDf (pkk, skk, Ef (pkk,m)) =
m for all m by construction; moreover,Df (pkk, sk , c) = m �= ⊥ for some (possibly
invalid) secret key sk implies Df (pkk, skk, c) = m since the checks performed by
Df guarantee sk(c1) = skk(c1).

The following lemma states that the construction given above indeed results
in an IND-CPA secure encryption scheme, at least against uniform adversaries:

Lemma 2. Let f be a one-way permutation with non-uniform trapdoors and
let Ef be the singleton encryption scheme for f . Then Ef is IND-CPA secure
against uniform adversaries in the following sense: For all uniform probabilistic
polynomial-time algorithms A1, A2, we have that

Pr
[
(m0,m1, z) ← A1(1k), b $← {0, 1}, c ← Ef (pkk,mb) :

A2(1k, c, z) = b ∧ |m0| = |m1|
]

is negligible in k.

A proof of Lemma 2 can be found in [8, Section 5.3.4.1]. Although this proof
applies to a slightly different definition of public-key encryption where the public
and secret keys are chosen by an explicit key generation algorithm, the proof
carries over, mainly because the secret keys are not used in the definition of
IND-CPA security.
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3.2 Proofs of Content

We now introduce the novel notion of a non-interactive proof of content. In-
tuitively, a proof of content is a non-interactive proof system that proves that
a given ciphertext c is the encryption of some plaintext m that fulfills some
predicate π.

We first introduce some additional notation: Given an encryption scheme
(E ,D) with deterministic decryption, a Boolean circuit π, a ciphertext c, a
public key pk and a private key sk , let πpk ,sk [c] := true if and only if
m := D(pk , sk , c) �= ⊥ and π(m) = 1, and let πpk [c] = true if there exists a
secret key sk such that πpk ,sk [c] = true.

Definition 4 (Non-Interactive Proofs of Content). A non-interactive
proof of content for an encryption scheme (E ,D) (where D is deterministic)
consists of a polynomial-time prover P and a polynomial-time verifier V such
that the following holds:
– Polynomial length. There exists a polynomial p such that for every π, c, pk,

sk, and k, we have |P (1k, π, c, pk , sk)| ≤ p(|(1k, π, c, pk , sk)|).
– Completeness. There is a negligible function µ such that for every π, c, pk

and sk satisfying πpk ,sk [c] = true and for every k, we have

Pr
[
V (1k, pk , π, c, P (1k, π, c, pk , sk)) = 0

]
≤ µ(k).

– Soundness. There is a negligible function µ such that for every π, c, and pk
satisfying πpk[c] = false and for every k and every string N , we have

Pr
[
V (1k, pk , π, c,N) = 1

]
≤ µ(k).

So far, a proof of content can be quite easily realized by revealing the secret
key of the encryption scheme. This of course is not satisfying; hence we need
an additional secrecy property. We cannot expect the proof system to be zero-
knowledge (since it is non-interactive without a common reference string), but
we can require that a proof will not help us to extract the plaintext from the
ciphertext m (which would be clearly violated if we learned the secret key). We
will call this property content-hiding.

We now define content-hiding proofs of content. This notion will crucially de-
pend on the notion of a valid public key of a given encryption scheme, and of
the notion of the corresponding secret key. The notion of a valid public key and
corresponding secret key has a natural meaning for most public-key cryptosys-
tems, but it may not be well-defined in general. However, in the remainder of
the paper we will only consider the encryption scheme from Definition 3 where
a public key is valid if and only if it has the form 1k, and where the secret key
corresponding to a given public key is uniquely determined as tk. So for the sake
of readability we abstain from formally specifying what a valid public key and
the corresponding secret key are.

Definition 5 (Content-Hiding Proofs of Content). A non-interactive proof
of content (P, V ) for an encryption scheme (E ,D) is called content-hiding if the
following holds:
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Let G be any polynomial-time algorithm that upon input 1k outputs a valid
public key pk for E, a message m ∈ {0, 1}∗, a circuit π and some auxiliary
information z ∈ {0, 1}∗. Let A be any polynomial-time algorithm such that

Pr
[
(pk ,m, π, z) ← G(1k), c ← E(pk ,m), N ← P (1k, π, c, pk , sk),

m′ ← A(1k, pk , c, π, z,N) : m = m′
]

is not negligible in k, where sk denotes the secret key corresponding to pk.
Then there exists a polynomial-time algorithm S outputting a list of strings,

such that

Pr
[
(pk ,m, π, z) ← G(1k), c ← E(pk ,m), M ′ ← S(1k, pk , c, π, z) : m ∈ M ′

]
.

is not negligible in k.

While the definition of content-hiding proof is similar to that of witness-hiding
proofs, there is an important difference: Witness-hiding proofs guarantee that
the witness cannot be guessed if the statement is chosen according to some fixed
distribution, while we require that the content-hiding property holds for any
efficiently sampleable distribution on the messages m. Furthermore, a witness-
hiding proof only guarantees that the witness is not disclosed as a whole, while
we only require that the message m is not disclosed as a whole; the latter re-
quirement is weaker since a witness would consist of m and the randomness used
for encryption.

The existence of content-hiding proofs of content constitutes a novel crypto-
graphic assumption. We did not succeed in reducing it to existing assumptions,
but we show that at least there is an oracle relative to which this is possible.

Lemma 3. Assume that trapdoor one-way permutations with dense public keys
exist that are secure against non-uniform probabilistic polynomial-time adver-
saries. Then there exists an oracle O relative to which content-hiding proofs of
content with deterministic verifiers exist for any encryption scheme (E ,D).

The proof of Lemma 3 (which is given in the full version [1]) establishes the
following slightly stronger statement: choosing a random oracle entails content-
hiding proofs of content with probability one. Hence the following conjecture is
again justified by the random oracle heuristic:

Conjecture 2. Let R be a sufficiently unstructured efficiently computable func-
tion. Then using R in the construction of the proof of Lemma 3 yields content-
hiding proofs of content with deterministic verifiers.

In the next section we will need both the existence of one-way permutations
with non-uniform trapdoors as well as of content-hiding proofs of content. We
additionally use some standard complexity assumptions. All assumptions used
are summarized in the following statement:
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Assumption 1. There exist a one-way function with non-uniform trapdoors f
(Definition 2) and a content-hiding proof of content with a deterministic verifier2

for the singleton encryption scheme Ef for f (Definition 3).
Further, we assume the existence of one-way functions secure against non-

uniform adversaries and the existence of a keyed family of hash functions that
is collision-resistant against non-uniform adversaries.

4 Limits of Constructive Security Proofs

Based on the definitions and assumptions from the preceding sections, we are
now ready to show the existence of an existentially secure argument system that
does not have a constructive security proof.

In the following, let f be a length-regular one-way function with non-uniform
trapdoors, let Ef be the singleton encryption scheme for f , and let (P ∗, V ∗)
denote a content-hiding proof of content for Ef . Let (P †, V †) be a computa-
tional zero-knowledge proof of knowledge, which can be constructed from one-
way functions secure against non-uniform polynomial-time adversaries (see e.g.,
[7, Section 4.7.3]). When passing an algorithm A as argument to a function or
algorithm, we assume that A is encoded as a circuit in some canonical way. Let
H be the description of a function from {0, 1}∗ to {0, 1}∗. When considering H
as a circuit, we will always mean the circuit describing the function H restricted
to the domain {0, 1}k.

Stating the construction in a concise manner necessitates a few auxiliary def-
initions:

– Let πH(x1, x2) := true if and only if x1, x2 ∈ {0, 1}k, x1 �= x2 and H(x1) =
H(x2).

– Let γ(H, c,N) := true if and only if V ∗(1k, pkk, πH , c,N) = 1.
– Let η(H,σ, c,N,w) := true if and only if σ(w) = 1 or γ(H, c,N) = true.
– Let lc(k) := |Ef (1k, 12k)| denote the length of an encryption of a 2k-bit

plaintext.
– Let lP be a polynomial such that for all k ∈ � and c ∈ {0, 1}lc(k), the value

lP (k+|H |) is an upper bound on |P ∗(1k, πH , c, tk)| where |H | denotes the size
of the circuit H and tk is the non-uniform trapdoor for f (cf. Definition 2).
Such a polynomial lP exists, since there are polynomial upper bounds on
all arguments of P ∗, and P ∗ satisfies the polynomial length property from
Definition 4.

– Let Lη be the language consisting of all (H,σ) such that there exist a
triple (c,N,w) with |c| ≤ lc(k) and |N | ≤ lP (k + |H |) that satisfies
η(H,σ, c,N,w) = true. Obviously, Lη ∈ NP. Note that if σ(w) = 1, then w
is a witness for (H,σ) ∈ Lη.

2 We could also weaken the assumption slightly by allowing a probabilistic verifier.
While our results hold as well for probabilistic verifiers, we have chosen to use this
slightly stronger formulation since it makes the separating example and the proof
easier.
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Using this notation, we can now describe the protocol that will have an existential
security proof, but that will provably not have a constructive proof:

Definition 6 (The Separating Argument System). The proof system
(PH , V H) where H may be a keyed or unkeyed hash function, is defined as
follows:

– The prover PH is invoked with input (1k, σ, w) where σ is a Boolean circuit
and w is an assignment such that σ(w) = 1. The verifier is invoked with
input (1k, σ).

– The prover PH invokes P † on security parameter 1k, Lη-instance (H,σ) and
witness w; here H is treated as a circuit mapping {0, 1}k to {0, 1}∗.

– The verifier V H invokes V †(1k, σ) to verify the proof given by the prover
PH .

The notation introduced in front of Definitions 4 and 6 (e.g., πpk [c], γ, P †, etc.)
will be used in the following proofs without explicit reference.

We have assumed in Assumption 1 that V ∗ is deterministic. If V ∗ was prob-
abilistic, we would have to change the above proof system as follows: First, the
prover commits to a witness (c,N,w). The prover and the verifier then perform
a coin-toss to choose a random tape R for V ∗. Finally the prover proves that
σ(w) = 1 or that the verifier V ∗ accepts with random tape R. We have opted to
consider the case of a deterministic verifier V ∗ to make the presentation more
readable.

Theorem 1. Under Assumption 1, if HK is a keyed hash-function that is se-
cure against non-uniform adversaries then the proof system (PH , V H) is a (non-
uniformly secure) computational zero-knowledge argument of knowledge for SAT.
(We assume the key K to be chosen by some key generation algorithm K(1k).)

Proof. Since (P †, V †) is a computational zero-knowledge proof, the computa-
tional zero-knowledge property and the completeness of (PH , V H) follow from
the construction.

We show that (PH , V H) is an argument of knowledge, i.e., we construct a
knowledge extractor E such that there exists a polynomial q such that for any
non-uniform polynomial-time prover P̃ and any sequence σ of SAT-instances of
polynomial length, there is a negligible function µ such that the following holds
for each k ∈ �:

Pr[K ← K(1k) : EP̃ (1k,K)(1k, HK , σk) is a SAT-witness for σk]

≥ 1
q(k)

Pr[K ← K(1k) : 〈P̃ (1k,K), V HK (1k, σk)〉 = 1] − µ(k). (1)

Here EP̃ (1k,K)(1k, HK , σk) denotes the extractor E with black-box access to
P̃ (1k,K) and that is given a description of HK .

Let E† be the knowledge-extractor of (P †, V †). Then there is a polynomial q
such that for every non-uniform polynomial-time prover P̂ and every sequence of
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polynomial-sized Lη-instances (Hk, σk) there exists a negligible function ν such
that for all k the following holds:

Pr[EP̂ (1k)
† (1k, Hk, σk) is an Lη-witness for (Hk, σk)]

≥ 1
q(k)

Pr[〈P̂ (1k), V †(1k, Hk, σk)〉 = 1] − ν(k). (2)

Here EP̂ (1k) denotes the extractor E† with black-box access to HK and P̂ (1k,K).
We construct the knowledge-extractor E as follows: When invoked with black-

box access to P̃ and with input (1k, H, σ), it invokes (c,N,w) ← EP̃
† (1k, H, σ)

and then returns w.
It is left to show that E satisfies (1). Let P̃ be a non-uniform polynomial-time

prover as in (1) and σ a sequence of SAT-instances of polynomial length. Let K
be a sequence of keys for the hash-function H . By (2) and by definition of Lη,
there exists a negligible function ν such that

Pr[(c,N,w) ← E
P̃ (1k,Kk)
† (1k, Hk, σk) : η(HKk

, σk, c,N,w) = true]

≥ 1
q(k)

Pr[〈P̃ (1k,Kk), V †(1k, HKk
, σk)〉 = 1] − ν(k) (3)

Since this holds for every sequence K of keys, we have for some negligible ν and
all k ∈ �:

Pr[K ← K(1k), (c,N,w) ← E
P̃ (1k,K)
† (1k, HK , σk) :

η(HK , σk, c,N,w) = true]

≥ 1
q(k)

Pr[K ← K(1k) : 〈P̃ (1k,K), V †(1k, HK , σk)〉 = 1] − ν(k). (4)

(Otherwise we could simply use the worst-case sequence of keys to contradict (3).)
Let µ1 be defined as follows:

µ1(k) :=Pr[K ← K(1k), (c,N,w) ← E
P̃ (1k,K)
† (1k, HK , σk) : γ(HK , c,N)= true].

By definition, γ(HK , c,N) = true is equivalent to V ∗(1k, pkk, πHK , c,N) = 1
which in turn implies πpkk

HK
[c] = true. Hence there exists a secret key sk such that

Df (pkk, sk , c) =: m �= ⊥ and πHK (m) = true. Since Df (pkk, sk , c) = m �= ⊥ im-
plies Df (pkk, skk, c) = m by construction, it follows that πHK (Df (pkk, skk, c)) =
true. We therefore have

µ1(k) ≤ Pr[K ← K(1k), (c,N,w) ← E
P̃ (1k,K)
† (1k, HK , σk),

m ← Df (pkk, skk, c) : πHK (m) = true].

Since (c,N,w) ← E
P̃ (1k,K)
† (1k, HK , σk), m ← Df (pkk, skk, c) can be com-

puted by a non-uniform polynomial-time algorithm (given 1k and K), and since
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πHK (m) = true implies that m encodes a collision of HK , we have constructed
a non-uniform polynomial-time algorithm that finds collisions of HK with prob-
ability at least µ1. Since by assumption, HK is collision-resistant against non-
uniform polynomial-time adversaries, this implies that µ1 is negligible.

By definition, we have η(HK , σk, c,N,w) = true if and only if σk(w) = 1 or
γ(HK , c,N) = true. So using the definition of E and V H we get

Pr[K ← K(1k), w ← EP̃ (1k,K)(1k, HK , σk) : σk(w) = 1]

= Pr[K ← K(1k), (c,N,w) ← E
P̃ (1k,K)
† (1k, HK , σk) : σk(w) = 1]

≥ Pr[K ← K(1k), (c,N,w) ← E
P̃ (1k,K)
† (1k, HK , σk) :

η(HK , σk, c,N,w) = true] − µ1(k)
(4)

≥ 1
q(k)

Pr[K ← K(1k) : 〈P̃ (1k,K), V †(1k, HK , σk)〉 = 1] − ν(k) − µ1(k).

=
1

q(k)
Pr[K ← K(1k) : 〈P̃ (1k,K), V HK (1k, σk)〉 = 1] − ν(k) − µ1(k). (5)

Setting µ := ν + µ1, this gives us (1) and thus shows that (PH , V H) is a (non-
uniformly secure) computational zero-knowledge argument of knowledge. ��

Theorem 2. Under Assumption 1, there exists no constructive security proof C
that (PH , V H) is an argument.

In particular, the theorem implies that no constructive security proof exists that
(PH , V H) is a computational zero-knowledge argument of knowledge.

Proof. Assume for contradiction that a constructive security proof C exists that
(PH , V H) is an argument.

Let f be a one-way permutation with non-uniform trapdoors and let
{H̃K}K∈K be a keyed family of hash functions that is one-way against non-
uniform adversaries. Let GH̃ be the key generation algorithm for H̃K , and assume
w.l.o.g. that for K ← GH̃(1k) the function H̃K maps from {0, 1}∗ to {0, 1}k.

We first construct a keyed family {Ha,b,K}(a,b,K)∈Y ×K of hash functions
Ha,b,K : {0, 1}∗ → {0, 1}k+1 with Y :=

⋃
Yk and Yk := {(a, b) : a, b ∈

{0, 1}k, a �= b} as follows:

Ha,b,K(x) :=

⎧⎪⎨⎪⎩
0‖H̃K(x), |x| �= k,

1‖f(x), |x| = k, f(x) �= a,

1‖b, |x| = k, f(x) = a.

for a, b, x ∈ {0, 1}k.

It is easy to see that the only collision (x, x′) of Ha,b,K that satisfies |x| = |x′| = k
is (f−1(a), f−1(b)). Hence finding such a collision of Ha,b,K for random (a, b)
implies inverting f at a. Finding collisions (x, x′) with |x| �= k or |x′| �= k breaks
the collision-resistance of H̃K . So Ha,b,K is collision-resistant against uniform
polynomial-time adversaries.
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In the following, we write k-collision to denote a collision (x, x′) with |x| =
|x′| = k. Then there exists only a single k-collision (x, x′) of Ha,b,K (where
k = |a| = |b|).

Let σfalse denote some fixed unsatisfiable circuit. Let P̃ be a prover that upon
input (1k, H, c,N) invokes P † on security parameter 1k, Lη-instance (H,σfalse)
and witness (c,N,w).

By construction of (PH , V H) and since (P †, V †) is complete, there exists
a negligible function µ1 such that for all c,N with |c| ≤ lc(k) and |N | ≤
lP (k + |H |) such that N is a valid proof for π

pkk

H [c] = true (i.e., such that
V ∗(1k, pkk, πH , c,N) = 1), we have

Pr
[
〈P̃ (1k, H, c,N), V H(1k, σfalse)〉 = 1

]
≥ 1 − µ1(k). (6)

Consider the following game G0:

(ã, b̃) $← Yk, a := f(ã), b := f(b̃), K ← GH̃(1k), H := Ha,b,K , (7)

c ← Ef (pkk, (ã, b̃)), N ← P ∗(1k, πH , c, pkk, skk), (8)

(â, b̂) ← C(1k, H, P̃ (1k, H, c,N), σfalse). (9)

That is, first, in (7) we construct a hash-function H such that we know the (only)
k-collision (ã, b̃). Then in (8) we construct an encryption c of that k-collision and
a proof that c indeed contains a k-collision (i.e., that π

pkk

H [c] = true). Finally,
in (9) we invoke the generic security proof C with a description of the hash-
function H , with a description of P̃ (instantiated with input (1k, H, c,N)) and
with the SAT-instance σfalse .

By the completeness of (P ∗, V ∗), there is a negligible function µ2 such that in
G0 the following holds: Pr[V ∗(1k, pkk, πH , c,N) = 1] ≥ 1 − µ2(k). Further, by
definition of lc and lP it is |c| ≤ lc(k) and |N | ≤ lP (k+ |H |). Then using (6) we get

Advarg
k := Pr

[
〈P̃ (1k, H, c,N), V H(1k, σfalse)〉 = 1

]
≥ 1 − µ1(k) − µ2(k)

when H , c and N are chosen as in game G0.
Since σfalse is not satisfiable, this violates the soundness of the argument

system (PH , V H). So by the definition of constructive security proofs, C
should be able to extract a collision given 1k, H , P̃ (1k, H, c,N) and σfalse .
More exactly, let p be a polynomial such that p(k) bounds the length of
(1k, H, P̃ (1k, H, c,N), σfalse). Such a polynomial exists, since H is constructed
by a polynomial-time algorithm and P̃ runs in polynomial time. Then there is a
c > 0 and a negligible function µ5 such that

Pr
[
(â, b̂) is a collision of H

]
≥
(

Advarg
k

p(k)

)c

− µ5(k)

≥
(

1 − µ1(k) − µ2(k)
p(k)

)c

− µ5(k) =: ν(k).
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Then ν is not negligible. On the other hand, since H̃K is collision-resistant against
non-uniform adversaries, and (â, b̂) is computed by non-uniform polynomial-time
algorithms in (7–9),3 there is a negligible function µ4 bounding the probability
that (â, b̂) is a collision of H̃K . Since by construction of H := Ha,b,K , the only
collision of H that is not a collision of H̃K is the k-collision (f−1(a), f−1(b)) =
(â, b̂), it follows that

Pr
[
(â, b̂) = (ã, b̃)] ≥ ν(k) − µ4(k). (10)

Let now A(1k, pk , c, π,H,N) := C(1k, H, P̃ (1k, H, c,N), σfalse). Since C and P̃
are polynomial-time algorithms, so is A. Further let G(1k) be an algorithm that
chooses m := (ã, b̃) and H as in game G0 and then outputs (pkk,m, πH , H).
Then G runs in polynomial-time, too. Then the following game G1 is just a
rewriting of game G0:

(pk ,m, π,H) ← G(1k), c ← Ef(pk ,m),

N ← P ∗(1k, π, c, pk , sk), m′ ← A(1k, pk , c, π,H,N)

with (â, b̂) := m′ and with sk being the secret key corresponding to pk . So by (10)
it follows that Pr[m = m′] ≥ ν(k)−µ4(k) in game G0. This is not negligible. Since
(P ∗, V ∗) is content-hiding, it follows that there is a polynomial-time simulator
S such that

ν2(k) := Pr
[
(pk ,m, π,H) ← G(1k), c ← Ef (pk ,m),

M ′ ← S(1k, pk , c, π,H) : m ∈ M ′] (11)

is not negligible. Since Ef is IND-CPA by Lemma 2, and the algorithms in
(11) are all uniform polynomial-time algorithms, we can replace Ef (pk ,m) by
Ef (pk , 02k) (since |m| = 2k). (For this, note that G chooses pk := pkk.) Then,
for some negligible function µ3, we have

Pr[(pk ,m, π) ← G(1k), c ← Ef (pk , 02k),

M ′ ← S(1k, pk , c, π,H) : m ∈ M ′] ≥ ν2(k) − µ3(k)

Since given a description of Ha,b,K with a = f(ã) and b = f(b̃), we can efficiently
verify whether for some m′ we have m′ = (ã, b̃), we can modify S so that it
directly outputs m = (ã, b̃) if that m is in M ′. Call the resulting algorithm S′.
By substituting the definition of G we get

Pr[(ã, b̃) $← Yk, a := f(ã), b := f(b̃), K ← GH̃(1k),

(â, b̂) ← S′(1k, pkk, Ef (pkk, 0
2k), πHa,b,K

, Ha,b,K) :

(â, b̂) = (ã, b̃)] ≥ ν2(k) − µ3(k).

3 The non-uniformity stems from the appearance of skk in game G0.
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Let the algorithm T (1k, a) perform as follows: First, it chooses b uni-
formly from {0, 1}k \ {a} and K using GH̃(1k). Then it executes (â, b̂) ←
S′(1k, pkk, Ef (pkk, 02k), πHa,b,K

, Ha,b,K) and outputs â. Then the previous prob-
ability can be rewritten as

Pr[ã $← {0, 1}k, â := T (1k, f(ã)) : ã = â] ≥ ν2(k) − µ3(k).

Since ν2−µ3 is not negligible and T is a uniform polynomial-time algorithm, this
is a contradiction to f being one-way against uniform polynomial-time adver-
saries. Hence our assumption that C is a constructive security proof was wrong.

��
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Abstract. Recently Cash, Kiltz, and Shoup [13] showed a variant of the
Cramer-Shoup (CS) scheme [14] whose chosen-ciphertext (CCA) security
relies on the computational Diffie-Hellman (CDH) assumption. The cost
for this high security is that the size of ciphertexts is much longer than the
CS scheme (which is based on the decisional Diffie-Hellman assumption).
In this paper, we show how to achieve CCA-security under the CDH
assumption without increasing the size of ciphertexts. We also show a
more efficient scheme under the hashed Diffie-Hellman assumption.

Both of our schemes are based on a certain broadcast encryption (BE)
scheme while the Cash-Kiltz-Shoup scheme is based on the Twin DH
problem. Of independent interest, we also show a generic method of
constructing CCA-secure PKE schemes from BE schemes.

1 Introduction

1.1 Background

Chosen-ciphertext security (CCA-security, for short) [35,16] is considered as a
standard notion of security for public key encryption (PKE) in practice. Further-
more, this security also implies universally composable security [11]. So far, many
CCA-secure PKE schemes have been proposed, both theoretical ones [31,16,36]
and practical ones [14,38,12,26,10,1,25,22], and their security are proven under
existence of enhanced trapdoor permutations (for theoretical schemes) or un-
der various number theoretic assumptions (for practical schemes). Theoretical
schemes pursue weaker assumptions and practical schemes pursue efficiency.

One of the most important research topics in this field is to design CCA-
secure PKE schemes with weaker assumptions and better efficiency. Cramer
and Shoup showed the first practical PKE scheme under the decisional Diffie-
Hellman (DDH) assumption. Kurosawa and Desmedt showed a more efficient
scheme under the DDH assumption [26].

However, there has been no (even theoretical) CCA-secure PKE scheme under
the computational Diffie-Hellman (CDH) assumption except for a recent work
by Cash, Kiltz, and Shoup [13].1

1 We started our work independently of [13]. In fact, the authors of [13] kindly cited
an earlier version of our paper as an independent work.

J. Pieprzyk (Ed.): ASIACRYPT 2008, LNCS 5350, pp. 308–325, 2008.
c© International Association for Cryptologic Research 2008



Efficient Chosen Ciphertext Secure Public Key Encryption 309

1.2 Our Contribution

In this paper, we present a practical CCA-secure PKE scheme under the CDH
assumption such that the size of a ciphertext is much smaller than that of the
Cash-Kiltz-Shoup (CKS) scheme. Indeed, the ciphertext length of our scheme
is the same as that of the Cramer-Shoup (CS) scheme (which is based on the
DDH assumption). Specifically, ciphertext overhead of our CDH-based scheme is
only three group elements for arbitrary plaintext length, while that of the CKS
scheme is k/ log k + 2 group elements where k is the security parameter.

We also present a more efficient CCA-secure PKE scheme under the hashed
Diffie-Hellman (HDH) assumption. This scheme is as efficient as the Kurosawa-
Desmedt (KD) scheme [26] in terms of both computational costs and data sizes
while the HDH assumption is weaker than the DDH assumption.2

Both of our schemes are based on the Naor-Pinkas broadcast encryption (BE)
scheme while the CKS scheme is based on the Twin DH problem. Of indepen-
dent interest, we show a generic method of transforming any selectively chosen-
plaintext (CPA) secure verifiable BE scheme into a CCA-secure key encapsulation
mechanism (KEM) with almost no cost, where we say that a BE scheme is verifi-
able if any receiver can tell whether all receivers decrypt a given ciphertext to the
identical result or not.

Further, we show that almost all existing methods for achieving CCA-security,
e.g. [16,14,12], can be explained by using verifiable BE schemes. It is also possible
to construct a new PKE scheme based on this paradigm, for example, from
the Boneh-Gentry-Waters (BGW) BE scheme [6]. Moreover, we can generically
convert any CPA-secure verifiable BE into a CCA-secure BE with almost no cost.
Our results imply that verifiable BE is a powerful tool to obtain CCA-security.

1.3 Related Works

Under Stronger Assumptions than CDH. After the KD scheme, several
CCA-secure encryption schemes were constructed under stronger assumptions
than the CDH assumption. The scheme of Boyen, Mei, and Waters [10] is based
on the bilinear Diffie-Hellman (BDH) assumption. The scheme of Kiltz [25] is
based on the gap hashed Diffie-Hellman (GHDH) assumption. The scheme of
Hofheinz and Kiltz [22] is based on the n-linear DDH assumption.

KEM/DEM Framework. The KEM/DEM framework was formalized by
Shoup [38] for the design of hybrid encryption schemes, and the CS hybrid en-
cryption scheme was constructed. However, the KD scheme does not fit into this
framework. To explain the KD scheme in a general framework, Abe, Gennaro,
Kurosawa, and Shoup [1] established the Tag-KEM/DEM framework. Hofheinz
and Kiltz [22] introduced the notion of Constrained CCA (CCCA) security of
KEM.
2 After an earlier version of this paper [21], in the latest full-version of [13], Cash,

Kiltz, and Shoup pointed out that the Hofheinz-Kiltz scheme in [22] can be also
proved to be secure under the HDH assumption.
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How to Achieve CCA Security. Naor and Yung showed that a non-adaptively
CCA-secure encryption scheme can be constructed from any semantically secure
encryption [19] and non-interactive zero knowledge (NIZK) proof [4]. Dolev,
Dwork, and Naor [16] and Sahai [36] improved this idea and presented adaptively
CCA-secure constructions. However, it is not known if an NIZK proof can be con-
structed from any semantically secure encryption scheme. (A partial answer to
this question is given in [32].)

Canetti, Halevi, and Katz [12] proposed another generic method such that
a CCA-secure PKE scheme can be obtained from a selectively secure identity-
based encryption (IBE) scheme [37,5]. Boneh and Katz [7] improved its efficiency.
Kiltz [24] discussed a more relaxed condition for achieving CCA-security.

Broadcast Encryption. In the model of broadcast encryption (BE) schemes,
there are multiple receivers. The sender broadcasts a ciphertext such that only
privileged receivers can decrypt. Fiat and Naor [17] proposed the first non-trivial
construction of BE. Naor, Naor, and Lotspiech [29] presented a significantly more
efficient scheme. Naor and Pinkas [30] proposed a public key BE scheme by using
ElGamal-like construction, and Dodis and Fazio [15] improved it to be secure
against adaptive adversaries as well as chosen-ciphertext adversaries. Boneh,
Gentry, and Waters [6] proposed the first fully collusion resistant (public key)
BE scheme whose ciphertext and user decryption keys are of constant size.

1.4 Organization

Definitions are given in Sec. 2. Our main idea is described in Sec. 3. The proposed
scheme under the CDH assumption is shown in Sec. 4. A more efficient scheme
under the HDH assumption is presented in Sec. 5. A comparison with other
PKE schemes is given in Sec. 6. Finally, we show a generic method to construct
CCA-secure PKE schemes from verifiable BE in Sec. 7.

2 Definitions

2.1 Key Encapsulation Mechanisms

It is well-known that by combining a CCA-secure KEM and a CCA-secure data
encryption mechanism (DEM), a CCA-secure PKE scheme is generically ob-
tained [38], and furthermore, there exist some other flexible methods for hybrid
encryption as well [1,22]. It is also known that a CCA-secure DEM can be generi-
cally constructed from any pseudorandom functions without redundancy [27,33].

A KEM consists of the following three algorithms: Setup(1k) takes as input
the security parameter 1k and outputs a decryption key dk and a public key PK.
Encrypt(PK) takes as input a public key PK and outputs a pair (ψ,K) where ψ
is a ciphertext and K ∈ K is a data encryption key. Decrypt(dk, ψ, PK) takes as
input the decryption key dk, a ciphertext ψ, and the public key PK, and outputs
K ∈ K which will be used for decrypting the DEM part of hybrid encryption.
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We require that if (dk, PK) R← Setup(1k) and (ψ,K) R← Encrypt(PK) then
Decrypt(dk, ψ, PK) = K.

CCA-security of a KEM is defined using the following game between an attack
algorithm A and a challenger. Both the challenger and A are given 1k as input.

Setup. The challenger runs Setup(1k) to obtain a decryption key dk and a
public key PK. The challenger also runs algorithm Encrypt to obtain
(ψ�,K�) R← Encrypt(PK) where K� ∈ K. Next, the challenger picks a
random b ∈ {0, 1}. It sets K0 = K� and picks a random K1 ∈ K. It then
gives the public key PK and the challenge ciphertext (ψ�,Kb) to algorithm
A.

Query. Algorithm A adaptively issues decryption queries ψ1, ..., ψqD . For query
ψi(�= ψ�), the challenger responds with Decrypt(dk, ψi, PK).

Guess. Algorithm A outputs its guess b′ ∈ {0, 1} for b and wins the game if
b = b′.

Let AdvKEMA denote the probability that A wins the game.

Definition 1. We say that a KEM is (τ, ε, qD) CCA-secure if for all τ -time algo-
rithms A who make a total of qD decryption queries, we have that |AdvKEMA −
1/2| < ε.

2.2 Number Theoretic Assumptions

The CDH, HDH, and DDH Assumptions. Let G be a multiplicative group with
prime order p. Then, the CDH problem on G is stated as follows. Let A be an
algorithm, and we say that A has advantage ε in solving the CDH problem on
G if Pr[A(g, gα, gβ) = gαβ ] ≥ ε, where the probability is over the random choice
of generator g in G, the random choice of α and β in Zp, and the random bits
consumed by A.

Definition 2. We say that the (τ, ε)-CDH assumption holds in G if no τ -time
algorithm has advantage ε in solving the CDH problem on G.

The hashed Diffie-Hellman (HDH) problem on G and function h : G → D is
stated as follows. Let A be an algorithm, and we say that A has advantage ε in
solving the HDH problem on G and h if

1/2 · |Pr[A(g, gα, gβ, h(gαβ)) = 0] − Pr[A(g, gα, gβ , T ) = 0]| ≥ ε,

where the probability is over the random choice of generator g in G, the random
choice of α and β in Zp, the random choice of T ∈ D, and the random bits
consumed by A.

Definition 3. We say that the (τ, ε)-HDH assumption holds in G and h if no
τ -time algorithm has advantage ε in solving the HDH problem on G and h.
Especially, we say that the (τ, ε)-DDH assumption holds in G if (τ, ε)-HDH
assumption holds in G and h, where h is the identity function.
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Important Implications. It is important to note that the HDH assumption is
strictly weaker than the DDH assumption for appropriately chosen h. If h is a
key derivation function [38], then the DDH assumption immediately implies the
HDH assumption (but not vice versa). Furthermore, if h is a hardcore bit for
the Diffie-Hellman key [18,9,8,23], then the CDH assumption is equivalent to
the HDH assumption. Obviously, the CDH assumption is weaker than both the
HDH and DDH assumptions.

Hardcore Bits for the Diffie-Hellman Key. Let A be a τ -time algorithm which
has advantage ε in solving the HDH problem on G and h : G → {0, 1}.

Definition 4. We say that function h : G → {0, 1} is a (p1, p2) hardcore bit
function in G if there exists a p1(τ)-time algorithm B which for any given A, can
solve the CDH problem with advantage p2(ε) for some polynomials p1 and p2.

2.3 Public Key Broadcast Encryption Schemes

Model. Here, we review definitions for public key BE schemes. For simplicity,
we define encryption schemes as key encapsulation mechanisms, and borrow the
same notations as [6] with some slight modifications. A BE scheme consists
of the following three algorithms: Setup(1k, n, t) takes as input the security
parameter 1k, the number of receivers n, and the maximum number of revoked
users t (t < n). It outputs n decryption keys d1, ..., dn and a public key PK.
Encrypt(S, PK) takes as input a subset S ⊆ {1, ..., n} with |S| ≥ n− t, and a
public key PK. It outputs a pair (ψ,K) where ψ is called the header and K ∈ K
is a message encryption key. Let M be a message to be broadcast to the set S
and let CM be the encryption of M under the symmetric key K. The broadcast
to users in S consists of (S, ψ, CM ). The pair (S, ψ) is often called the full header
and CM is often called the broadcast body. Decrypt(S, i, di, ψ, PK) takes as
input a subset S ⊆ {1, ..., n}, a user index i ∈ {1, ..., n} and the decryption key
di for user i, a header ψ, and the public key PK. If i ∈ S and |S| ≥ n− t, then
the algorithm outputs the message encryption key K ∈ K. The key K can then
be used to decrypt the broadcast body CM and obtain the message body M .

As usual, we require that the scheme be correct, namely that for all S ⊆
{1, ..., n} and all i ∈ S, if ((d1, ..., dn), PK) R← Setup(1k, n, t) and (ψ,K) R←
Encrypt(S, PK) then Decrypt(S, i, di, ψ, PK) = K.

CCA Security. We define CCA-security of a BE scheme against a static adver-
sary. Security is defined using the following game between an attack algorithm A
and a challenger. Both the challenger and A are given 1k, n and t, the total num-
ber of potential users and the maximum number of revoked users, respectively,
as inputs.

Init. Algorithm A begins by outputting a set S� ⊆ {1, ..., n} of receivers that A
wants to attack, where |S�| ≥ n− t.

Setup. The challenger runs Setup(1k, n, t) to obtain decryption keys d1, ..., dn

and a public key PK. The challenger also runs algorithm Encrypt to obtain
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(ψ�,K�) R← Encrypt(S�, PK) where K� ∈ K. Next, the challenger picks a
random b ∈ {0, 1}. It sets K0 = K� and picks a random K1 ∈ K. It then
gives (ψ�,Kb) to algorithm A.

Query. Algorithm A adaptively issues decryption queries q1, ..., qD where a de-
cryption query consists of the triple (u,S, ψ) where ψ �= ψ�, S ⊆ S� and
u ∈ S. The challenger responds with K (or ⊥) = Decrypt(S, u, du, ψ, PK).

Guess. Algorithm A outputs its guess b′ for b and wins the game if b = b′.

Let AdvBrA,n,t denote the probability that A wins the game when the challenger
is given n and t.

Definition 5. We say that a broadcast encryption scheme is (τ, ε, n, t, qD) CCA-
secure if for all τ -time algorithms A who make a total of qD decryption queries, we
have that |AdvBrA,n,t − 1/2| < ε. Especially, we say that a broadcast encryption
scheme is (τ, ε, n, t) semantically secure if it is (τ, ε, n, t, 0) CCA-secure.

Verifiability. For achieving CCA-security, we need an important property for
underlying BE, which we call verifiability. Roughly speaking, we say that a BE
scheme has verifiability if a valid receiver of a broadcasted message can verify if
his decryption result is the same as that for any other receiver. We can define two
flavors of verifiability: public verifiability and private verifiability. Their difference
is that in a publicly verifiable BE scheme, a receiver can verify equality of keys
without using his decryption key, and on the other hand, it is necessary in a
privately verifiable scheme.

For public verifiability, we define adversary A’s advantage AdvVfyA,n,t as

AdvVfyA,n,t

= Pr[∃i, j ∈ S�, Decrypt(S�, i, di, ψ
�, PK) �= Decrypt(S�, j, dj , ψ

�, PK)|

((d1, ..., dn), PK) R← Setup(1k, n, t); (S�, ψ�) R← A((d1, ..., dn), PK)].

Definition 6. We say that a broadcast encryption scheme is (τ, ε, n, t) publicly
verifiable if for all τ -time algorithms A, we have that AdvVfyA,n,t < ε.

We can also define private verifiability in a similar manner, and its formal defi-
nition is given in the full version of this paper [21].

2.4 Other Cryptographic Tools

Target Collision Resistant Hash Functions. Let TCR : X → Y be a hash function
(we individually define the range and domain of TCR for each scheme), A be an
algorithm, and A’s advantage AdvTCRA be AdvTCRA = Pr[TCR(x′) = TCR(x) ∈
Y ∧ x′ �= x| x R← X ; x′ R← A(x)].

Definition 7. We say that TCR is a (τ, ε) target collision resistant hash function
if for all τ -time algorithms A, we have that AdvTCRA < ε.
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One-Time Signatures. A signature scheme consists of the following three al-
gorithms: Gen(1k) takes as input the security parameter 1k, and outputs a
verification key vk and a signing key sk. Sign(sk,m) takes as input a signing
key sk and a message m, and outputs a signature σ. Verify(vk,m, σ) takes as
input a verification key vk, a message m, and a signature σ, and outputs a bit
b ∈ {0, 1}. We require that for all sk, all m in the message space, and all σ
output by Sign(sk,m), we have Verify(vk,m, σ) = 1.

Security is defined using the following game between an attack algorithm A
and a challenger. Both the challenger and A are given 1k as input.

Setup. The challenger runs Gen(1k) to obtain vk and sk. It gives A the verifi-
cation key vk.

Query. Algorithm A may issue at most one query m. The challenger responds
with σ

R← Sign(sk,m).
Forge. Algorithm A outputs (m�, σ�) such that (m�, σ�) �= (m,σ).

Let AdvOTSA denote the probability that Verify(vk,m�, σ�) = 1.

Definition 8. We say that a signature scheme is (τ, ε) strongly unforgeable if
for all τ -time algorithms A, we have that AdvOTSA < ε.

3 Toward Efficient CCA-Secure Scheme under CDH

The Naor-Pinkas BE scheme [30] is one-way under the CDH assumption. In this
section, we construct a verifiable BE scheme from the Naor-Pinkas BE scheme,
where we say that a BE scheme is verifiable if any receiver can tell whether
all receivers decrypt a given ciphertext to the identical result or not. The main
difficulty in this paper is how to add verifiability to the Naor-Pinkas scheme.

Our CCA-secure PKE scheme under the CDH assumption is obtained from
this variant of the Naor-Pinkas BE scheme. See Sec. 7 for details on this obser-
vation.

3.1 The Naor-Pinkas Broadcast Encryption Scheme

The Naor-Pinkas scheme [30], which was constructed based on [2], is as follows.
Let G be a multiplicative group with prime order p, and g ∈ G be a generator.
Suppose that there are at most t potential revoked users.

In the setup phase, the center chooses a polynomial f(x) =
∑

0≤i≤t aix
i

over GF (p) randomly, and computes yi = gai for 0 ≤ i ≤ t. The public key
is PK = (G, g, y0, ..., yt). The center keeps f(x) as the master key, and gives
di = f(i) to each user i = 1, ..., p− 1 as his decryption key.

To revoke users i1, ..., it ∈ Zp, the sender generates a ciphertext

ψ = (gr, (gf(i1))r, ..., (gf(it))r) and a key K = yr
0 where r

R← Zp. Notice that
gf(i) can be computed as

∏
0≤j≤t y

ij

j for any i ∈ {1, ..., p − 1}. On receiving
ψ = (C0, ..., Ct), user u �∈ {i1, ..., it} computes Cu = Cdu

0 and recovers the key
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as K = C
λ(u)
u

∏
1≤j≤t C

λ(ij)
j where λ(x) is the Lagrange coefficient such that

λ(x) =
∏

i′∈{i,i1,...,it}\{x} i
′ · (i′ − x)−1 over Zp.

3.2 Verifiability

As we mentioned, the main difficulty in this paper is how to add verifiability
to the Naor-Pinkas scheme. Here we give a solution. Consider a modification
of the Naor-Pinkas scheme such that user i is given (f(i), f(rnd), rnd) as his
decryption key, where rnd

R← Zp. We note that a legitimate user i can decrypt
a ciphertext in two different ways according to two different keys, i.e. f(i) and
f(rnd). If these decryption results are not identical, then the user can detect
that the ciphertext is in an invalid form. Notice that since rnd is random and
not known to other users, it is difficult to generate an invalid ciphertext whose
decryption results under f(i) and f(rnd) are identical.

Unfortunately, the above idea is faulty. Namely, even if user i is revoked
and f(i) does not work for decryption, he still has f(rnd) and can decrypt
a ciphertext by using it. Hence, the modified scheme is not secure any more.
Therefore, we further modify the Naor-Pinkas scheme as follows: For at most
t revoked users, in the setup phase, a polynomial f(x) =

∑
0≤i≤2t+1 aix

i is
generated in the same manner as the original Naor-Pinkas scheme except that
its degree is changed to be 2t + 1. The public key is PK = (G, g, y0, ..., y2t+1).
We assume that a user i has two unique identities i and i, where we denote
i = (i, i) ∈ {1, ..., p−1}2. The center keeps f(x) as the master key, and for user i =
(i, i) ∈ {1, ..., p− 1}2 he publishes di = (f(i), f(i), f(rnd), rnd) as i’s decryption
key, where rnd

R← Zp. Assuming that users i1(= (i1, i1)), ..., it(= (it, it)) are
revoked, the sender generates ψ = (gr, (gf(i1))r, ..., (gf(it))r, (gf(i1))r, ..., (gf(it))r)
and K = yr

0 where r
R← Zp.

On receiving ψ = (C0, ..., C2t), a user i = (i, i)(�∈ {i1, ..., it}) computes
Ci = C

f(i)
0 , Ci = C

f(i)
0 , and Crnd = C

f(rnd)
0 . We notice that ψ can be de-

crypted by using any two of Ci, Ci, and Crnd with the Lagrange interpo-
lation (for example, by using (Ci, Ci), the session key is recovered as K =
C

λ(i)
i C

λ(i)
i

∏
1≤j≤t(C

λ(ij)
j C

λ(ij)
j+t ) where λ(x) is the Lagrange coefficient such that

λ(x) =
∏

i′∈{i,i,i1,...,it,i1,...,it}\{x} i
′ · (i′ − x)−1 over Zp). Then, user i carries out

decryption in three different ways according to the three different choices of
(Ci, Ci), (Ci, Crnd), and (Ci, Crnd). Then, user i can be convinced of the equality
of decryption results for all legitimate subscribers if i’s three decryption results
are identical. Furthermore, when i is revoked, he cannot decrypt a ciphertext
at all even though he still has f(rnd). Now, we obtain a new verifiable BE
scheme from Naor-Pinkas BE, and are ready to convert it into a CCA-secure
PKE scheme.

4 Efficient CCA-Secure KEM from CDH

In this section, we show an efficient CCA-secure KEM under the CDH assump-
tion such that the size of ciphertexts is the same as that of the CS scheme. Our
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KEM is obtained from a verifiable BE scheme which was shown in Sec. 3. Let G
be a multiplicative group with prime order p, and g ∈ G be a generator. Then,
the construction of the scheme is as follows:

Setup(1k): Generate a random polynomial f(x) = a0 + a1x + · · · + ak+2x
k+2

over Zp, and compute yi = gai for 0 ≤ i ≤ k + 2. The decryption key
is f(x), and the public key is PK = (G, g, y0, y1, ..., yk+2,TCR0,TCR1, h),
where TCRb : G → Sb (b = 0, 1) are target collision resistant hash functions
such that S0 ∪ S1 ⊆ Z∗

p, S0 ∩ S1 = ∅, and h : G → {0, 1} is a hardcore bit
function for the Diffie-Hellman key in G.3

Encrypt(PK): Pick a random r
R← Zp, and compute

ψ = (gr, gr·f(i), gr·f(i)), K = (h(yr
0)||h(yr

1)||...||h(yr
k−1))

where i = TCR0(gr) and i = TCR1(gr). The final output is (ψ,K). (Notice
that one can easily compute gf(x) as gf(x) =

∏
0≤i≤k+2 y

xi

i .)
Decrypt(dk, ψ, PK): For a ciphertext ψ = (C0, C1, C2), check whether

(C1, C2)
?= (Cf(i)

0 , C
f(i)
0 ), where i = TCR0(C0) and i = TCR1(C0). If not,

output ⊥. Otherwise, output K = (h(Ca0
0 )||h(Ca1

0 )||...||h(Cak−1
0 )).

Theorem 1. Let G be a multiplicative group with prime order p, TCR0 and
TCR1 be (τ, εtcr) target collision resistant hash functions, and h be a (p1, p2)
hardcore bit function for the Diffie-Hellman key in G. Then, the above scheme
is (p−1

1 (τ)− o(p−1
1 (τ)), k · p−1

2 (εcdh) + 2εtcr + qD(2k/(p− 3)+ 1/(p− k− 2)), qD)
CCA-secure under the (τ, εcdh) CDH assumption on G.

Proof. Assume that for challenge ciphertext (gβ, gβ·f(i�), gβ·f(i�)) such that
i� = TCR0(gβ) and i� = TCR1(gβ), there exists an adversary A′ which dis-
tinguishes (h(yβ

0 )||h(yβ
1 )||...||h(yβ

k−1)) from a random k-bit string. Then, by a
standard hybrid argument, there also exists another adversary A which for some
j such that 0 ≤ j ≤ k − 1 distinguishes

(h(yβ
0 )||h(yβ

1 )||...||h(yβ
j )||randomk−j−1)

from

(h(yβ
0 )||h(yβ

1 )||...||h(yβ
j−1)||randomk−j)

where random� denotes an �-bit random string.
Now, assume we are given such an adversary A which distinguishes these two

values with running time τ , advantage ε, and qD decryption queries. We use A
to construct another adversary B which for given (g, gα, gβ) distinguishes h(gαβ)
from a random bit. Define adversary B as follows:

3 h is a random string R if it is the Goldreich-Levin (GL) bit [18], where the size of
R is equal to that of a group element. See also Appendix of [9] for the GL bit of the
Diffie-Hellman keys.
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1. For given (g, gα, gβ), B picks target collision resistant hash functions TCR0
and TCR1, and computes i� = TCR0(gβ) and i� = TCR1(gβ).

2. B sets yj = gα, and picks distinct randoms rndj , ..., rndk−1 from Z∗
p\{i�, i�}.

B also picks randoms ui� , ui� , a0, ..., aj−1, and uj , ..., uk−1 from Zp.
3. B calculates yl = gal for 0 ≤ l ≤ j − 1.
4. Let f(x) =

∑k+2
i=0 aix

i be a polynomial over Zp such that aj = α, f(i�) =
ui� , f(i�) = ui� , and f(rndj) = uj , ..., f(rndk−1) = uk−1. Then, by using
the Lagrange interpolation, B calculates yj+1, ..., yk+2 such that gf(x) =∏

0≤j≤k+2 y
xj

j . Notice that yl = gal holds for 0 ≤ l ≤ k + 2.
5. B inputs public key PK = (G, g, y0, y1, ..., yk+2,TCR0,TCR1, h) and chal-

lenge ciphertext ψ� = (gβ, (gβ)ui� , (gβ)ui� ) and

K� = (h((gβ)a0)||h((gβ)a1)||...||h((gβ)aj−1 )||γ||randomk−j−1)

to A where γ is h(gαβ) or a random bit.
6. When A makes decryption query ψ = (C0, C1, C2), B proceeds as follows:

(a) If C0 = gβ , then B responds ⊥.
(b) If C0 �= gβ and TCRb(C0) ∈ {i�, i�, rndj , ..., rndk−2, rndk−1} for b = 0 or

1, then B aborts and outputs a random bit.
(c) If C0 �= gβ and TCRb(C0) �∈ {i�, i�, rndj , ..., rndk−2, rndk−1} for both

b = 0 and 1, B computes Cui�
0 , Cui�

0 , C
uj

0 , ..., C
uk−2
0 , and C

uk−1
0 . Let

TCR0(C0) = i and TCR1(C0) = i, and f1, f2, and f3 be polynomials over
Zp with degree k+ 2 whose coefficient for xl term is al for 0 ≤ l ≤ j− 1,
such that

(f1(i), f1(i), f1(i�), f1(i�), f1(rndj+1), ..., f1(rndk−1))
= (logC0

C1, logC0
C2, ui� , ui� , uj+1, ..., uk−1)

(f2(i), f2(i), f2(i�), f2(rndj), ..., f2(rndk−1))
= (logC0

C1, logC0
C2, ui� , uj, ..., uk−1)

(f3(i), f3(i), f3(i�), f3(rndj), ..., f3(rndk−1))
= (logC0

C1, logC0
C2, ui� , uj, ..., uk−1).

Then, B calculates C0
a1,l , C0

a2,l , C0
a3,l by using the Lagrange interpola-

tion where a1,l, a2,l, and a3,l denote the coefficients of xl term of f1, f2,
and f3 for j ≤ l ≤ k − 1, respectively, and responds

K = (h(Ca0
0 )||...||h(Caj−1

0 )||h(Ca1,j

0 )||...||h(Ca1,k−1
0 ))

if C0
a1,j = C0

a2,j = C0
a3,j , or “⊥” otherwise.

7. Finally, A outputs a bit b as his guess, and B outputs the same bit b as his
own guess for h(gαβ).

Let Win denote the event that A’s guess is correct in the real world, Abort denote
the event that A submits a ciphertext ψ = (C0, C1, C2) such that C0 �= gβ and
TCRb(C0) ∈ {i�, i�, rndj , ..., rndk−2, rndk−1} for b = 0 or 1, and Invalid denote
the event that A submits a ciphertext ψ = (C0, C1, C2) such that B does not
abort, C0

a1,j = C0
a2,j = C0

a3,j , but (C1, C2) �= (Cf(i)
0 , C

f(i)
0 ).
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Then, B’s advantage for guessing h(gαβ) is estimated as follows:

1
2
· |Pr[B(g, gα, gβ, h(gαβ)) = 0] − Pr[B(g, gα, gβ, T ) = 0]|

≥ |Pr[Win|Abort ∧ Invalid] Pr[Abort ∧ Invalid] − 1
2
|

≥ |Pr[Win] − Pr[Abort] − Pr[Invalid] − 1
2
|.

Now, we prove following lemmas.

Lemma 1. Pr[Abort] ≤ 2εtcr + 2qDk
p−3 .

Proof. Assume we are given an adversary A with Pr[Abort] = pA. Then, we can
construct another adversary B′ which for given C

R← G, finds C′(�= C) ∈ G such
that TCRb(C′) = TCRb(C) for b = 0 or 1 as follows: For given C, B′ generates
decryption key f(x) and public key PK = (G, g, y0, y1, ..., yk+2,TCR0,TCR1, h),
and computes challenge ciphertext ψ� = (C,Cui� , Cui� ), where ui� = f(i�),
ui� = f(i�), i� = TCR0(C), and i� = TCR1(C). B′ also picks distinct randoms
rndj , ..., rndk−1 from Z∗

p\{i�, i�}, and gives PK and (ψ�,K�) to A, where K� is
a correct key under f(x) or a random element of G with probability 1/2.

Since rndj , ..., rndk−1 are information-theoretically hidden to A, for a query
ψ = (C0, C1, C2), TCR0(C0) or TCR1(C0) ∈ {rndj , ..., rndk−2, rndk−1} happens
with probability at most 2(k − j)/(p − 3). Therefore, the probability that A
submits a ciphertext ψ = (C0, C1, C2) (C0 �= C) such that TCR0(C0) = i� or
TCR1(C0) = i� is at least pA − 2qD(k − j)/(p− 3). B′ outputs such C0 as C′.

By using B′ as it is, we immediately have an algorithm B′′ which for given
C

R← G, finds C′′(�= C) ∈ G such that TCR0(C′′) = TCR0(C) with probability
at least pA −2qD(k− j)/(p−3)−p1, where p1 is the probability that B′ outputs
C′ such that TCR1(C′) = TCR1(C). Since p1 ≤ εtcr, B′′’s advantage is at least
pA − 2qD(k− j)/(p− 3)− εtcr. Hence, εtcr ≥ pA − 2qD(k− j)/(p− 3)− εtcr, and
therefore, we have 2εtcr + 2qD(k − j)/(p− 3) ≥ pA. ��

Lemma 2. Pr[Invalid] ≤ qD

p−k−2 .

Proof. Let f0(x) =
∑

0≤l≤j−1 alx
l, and f ′

1(x), f ′
2(x), and f ′

3(x) be polynomials
such that fl(x) = f0(x)+xj ·f ′

l (x) for l = 1, 2, 3. Let f ′(x) be a polynomial such
that f(x) = f0(x) + xj · f ′(x). Suppose ψ = (C0, C1, C2) is a ciphertext such
that B does not abort, C0

f ′
1(0) = C0

f ′
2(0) = C0

f ′
3(0), but (C1, C2) �= (Cf(i)

0 , C
f(i)
0 ).

Then, we notice that f ′
1 and f ′

2 which are polynomials with degree k− j+2 have
k− j + 3 intersections, and consequently they have to be identical. Similarly, we
have that f ′

1 = f ′
2 = f ′

3. This implies that for [Invalid = true], A has to choose C1
and C2 (without knowing rndj , ..., rndk−1) such that f ′

1 (with degree k − j + 2)
satisfies

1. (f ′
1(i), f

′
1(i), f

′
1(i

�), f ′
1(i

�), f ′
1(rndj), ..., f ′

1(rndk−1))
= ((logC0

C1 − f0(i)) · i−j, (logC0
C2 − f0(i)) · i−j , f ′(i�), f ′(i�),

f ′(rndj), ..., f ′(rndk−1)),
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2. f ′
1 �= f ′.

Since f ′
1 and f ′ have at most k − j + 2 intersections and k − j + 1 of them

are (i�, f ′(i�)), (i�, f ′(i�)), (rndj+1, f
′(rndj+1)), ..., (rndk−1 , f

′(rndk−1)), there
is only one remained intersection which must be (rndj , f

′(rndj)). Therefore,
[Invalid = true] happens only when A correctly guesses the value of rndj (even
if A is given rndj+1, ..., rndk−1). Hence, for any invalid query ψ, the probability
that B does not respond “⊥” is at most 1/(p− k + j − 2)(≤ 1/(p− k − 2)). ��

A’s advantage is estimated as at least 1/k times A′’s advantage due to the hybrid
argument. ��

5 Efficient CCCA-Secure KEM from HDH

In this section, based on the strategy in Sec. 3, we propose another KEM which
is CCCA-secure [22] under the HDH assumption. This scheme is as efficient as
the KD scheme [26] with a weaker assumption. As shown in [22], a CCA-secure
PKE scheme can be constructed by combining any CCCA-secure KEM and
authenticated symmetric key encryption [3] as a DEM. Let G be a multiplicative
group with prime order p, and g ∈ G be a generator. Then, the construction of
our CCCA-secure KEM is as follows:

Setup(1k): Generate a random polynomial f(x) = a0 + a1x + a2x
2 over Zp,

and compute yj = gaj for 0 ≤ j ≤ 2. The decryption key is f(x), and the
public key is PK = (G, g, y0, y1, y2,TCR, h), where TCR : G → Z∗

p is a target
collision resistant hash function and h : G → {0, 1}ν is a hash function.

Encrypt(PK): Pick a random r
R← Zp, and compute ψ = (gr, gr·f(i)) and

K = h(yr
0), where i = TCR(gr). The final output is (ψ,K). (Notice that one

can easily compute gf(x) as gf(x) =
∏

0≤j≤2 y
xj

j .)

Decrypt(dk, ψ, PK): For a ciphertext ψ = (C0, C1), check whether C1
?= C

f(i)
0 ,

where i = TCR(C0). If not, output ⊥. Otherwise, output K = h(Ca0
0 ).

The above scheme can be proved to be CCCA-secure, and its security is formally
addressed in the full version of this paper [21].

6 Comparison

Table 1 shows a comparison of our schemes with other CCA-secure schemes, i.e.
Cramer-Shoup (CS) [14,38], Kurosawa-Desmedt (KD) [26], Boyen-Mei-Waters
(BMW) [10], Kiltz [25], Cash-Kiltz-Shoup (CKS) [13], and Hofheinz-Kiltz (HK)
[22]. In the comparison, we utilize a redundancy-free CCA-secure DEM [20,33]
for constructing a CCA-secure hybrid encryption scheme from a CCA-secure
KEM.

As seen in Table 1, our proposed scheme in Sec. 4 yields both provable security
under the CDH assumption and short ciphertext length which is comparable
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Table 1. Efficiency comparison for CCA-secure PKE schemes. Some figures are bor-
rowed from [10,25]. For efficiency, we count the number of pairings, multi(or sequential)-
exponentiations [34], regular-exponentiations, and other group operations (“ops” de-
notes group operations) used for encryption and decryption. All symmetric operations
(such as hash function/MAC/KDF) are ignored. Ciphertext overhead represents the
difference between ciphertext and plaintext length, and |g| and |mac| are the length of a
group element and an authentication tag, respectively. In the table, we let k′ = k/ log k
where k is the security parameter, i.e. DEM-key length.

Security Ciphertext Encryption Decryption
Assumption Overhead #pairings + #[multi,regular]-exp (+ #ops)

CS [14] DDH 3|g| 0 + [1, 3] 0 + [1, 1]
KD [26] DDH 2|g| + |mac| 0 + [1, 2] 0 + [1, 0]
BMW [10] BDH 2|g| 0 + [1, 2] 1 + [0, 1]
Kiltz [25] GHDH 2|g| 0 + [1, 2] 0 + [1, 0]

CDH (k′ + 2)|g| 0 + [k′ + 1, k′ + 1] 0 + [1‡, 0]CKS [13]
HDH 3|g| 0 + [2, 2] 0 + [1, 0]

HK† [22] HDH 2|g| + |mac| 0 + [1, 2] 0 + [1, 0]
Ours §4 CDH 3|g| 0 + [2‡, k′ + 1] 0 + [1‡, 0]
Ours §5 HDH 2|g| + |mac| 0 + [1, 2] 0 + [1, 0]
Ours §7.3 2�-BDHE 2|g| 0 + [0, 3] + � 3 + [0, 0] + �
† A slight modification by [13] is applied.
‡ Relatively more expensive computation is needed for one exponentiation.

to other practical schemes. Comparing with the CDH-based CKS scheme, our
scheme in Sec. 4 is more efficient, and especially, the ciphertext overhead of our
scheme, i.e. three group elements, is much shorter than that of the CKS scheme,
i.e. k/ log k + 2 group elements, since k/ log k * 18 for 128-bit security. In the
comparison, we assume that log k hardcore bits can be extracted from a single
DH key [18]. Furthermore, the ciphertext overhead of our scheme is the same as
that of the CS scheme. Our scheme in Sec. 5 is as efficient as the KD scheme
with a weaker underlying assumption. The Hofheinz-Kiltz scheme [22] (with a
modification by [13]) has almost the same property as ours. (See also the footnote
in Sec. 1.2.)

7 CCA-Security from BE with Verifiability

In this section, we observe that it is possible to construct a CCA-secure PKE
scheme from an arbitrary verifiable BE scheme, and that security of many exist-
ing CCA-secure PKE schemes can also be explained from this viewpoint. This
observation implies that one of promising approaches for achieving CCA-security
is to concentrate on designing verifiable BE schemes. In fact, constructions of
our proposed schemes are based on this approach.

7.1 The Generic Conversion

Given a verifiable BE scheme Π ′ = (Setup′,Encrypt′,Decrypt′) which is
CPA-secure against selective adversaries, we construct a CCA-secure KEM
Π = (Setup,Encrypt,Decrypt). In the construction, we use a strong
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one-time signature scheme Σ = (Gen,Sign,Verify) in which the verification
key generated by Gen(1k) has length k. We assume that the maximum number
of potential users in Π ′ is n, and a sender can revoke t users where there exists an
injective mapping (or a target collision resistant hash function) INJ : {0, 1}k → P
and P is the set of all subsets S ⊆ {1, ..., n} with |S| = n− t. Notice that for ex-
istence of such an injective mapping, it is necessary that nCt ≥ 2k (for example,
(n, t) = (2k, k)). The construction of Π is as follows:

Setup(1k): Choose n and t (which is a possible parameter choice for Π ′) such
that nCt ≥ 2k. Run Setup′(1k, n, t) to obtain (d1, ..., dn, PK), and pick an
injective mapping INJ : {0, 1}k → P . The decryption key is dk = (d1, ..., dn)
and the public key is PK = (PK, INJ).

Encrypt(PK): Run Gen(1k) to obtain verification key vk and signing key sk
(with |vk| = k), and compute Svk = INJ(vk), (ψ,K) ← Encrypt′(Svk, PK)
and σ ← Sign(sk, ψ). The final output is ((ψ, vk, σ),K).

Decrypt(dk, ψ, PK): For a ciphertext (ψ, vk, σ), check whether
Verify(vk, ψ, σ) ?= 1. If not, output ⊥. Otherwise, compute Svk = INJ(vk)
and output K ← Decrypt′(Svk, i, di, ψ, PK) where i ∈ Svk.

CCA-security of the above construction can be proven in a similar manner to
[12]. We give an intuitive explanation for the security. Let A be an algorithm
which can break CCA-security of Π . Then, it is possible to construct another
algorithm B which can break Π ′ by using A as follows: B runs (vk�, sk�) ←
Gen(1k), and commits S� = INJ(vk�) as the subset of users which will be
attacked. For given public key PK of Π ′, B passes (PK, INJ) to A as a public
key of Π . When A submits decryption query (ψ, vk, σ), B responds to it by simply
decrypting the ciphertext with decryption key di such that i ∈ INJ(vk)\S� ⊆
{1, ..., n}. We note that there always exists at least one such a decryption key
unless vk = vk�, and vk �= vk� holds with an overwhelming probability if σ is a
valid signature. Let (ψ�,K�) be a challenge ciphertext of Π ′ from the challenger.
Then, B gives ((ψ�, vk�, σ�),K�) to A as a challenge ciphertext of Π where
σ� ← Sign(sk�, ψ�). A formal security proof is given in the full version of this
paper [21].

Theorem 2. If Π ′ is a (τ, εcpa, n, t) semantically secure and (τ, εvfy, n, t) pub-
licly verifiable broadcast encryption scheme such that nCt ≥ 2k, and Σ
is a (τ, εuf ) strongly unforgeable one-time signature scheme, then Π is a
(τ − o(τ), εcpa + εvfy + 1

2εuf , qD) CCA-secure key encapsulation mechanism.

A similar result can also be obtained from privately verifiable BE schemes.

7.2 Remarks

We notice that the above generic conversion is identical to the Canetti-Halevi-
Katz (CHK) paradigm [12] except that the underlying primitive of CHK, i.e.
IBE, is replaced with verifiable BE in our construction. Kiltz [24] also showed
that IBE is not always necessary for CHK and a weaker primitive which is called
tag-based encryption (TBE) [28] is sufficient, and demonstrated to construct a
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Table 2. Relation among broadcast encryption and public key encryption schemes.
The column “(n, t)” denotes a possible and typical parameter setting for each under-
lying broadcast encryption scheme, and poly(k) and exp(k) denote polynomial and
exponential functions for the security parameter k, respectively. For verifiability, re-
lated cryptographic tools are described, and

√
means that the underlying broadcast

encryption has verifiability as it is.

BE Scheme (n, t) Verifiability ⇒ PKE Scheme
Trivial BE (poly(k), n/2) NIZK DDN [16]

DDH a variant of CS [14]
Naor-Pinkas [30] (exp(k), 1) GHDH ⇒ Kiltz [25]

Sec. 3.2 Ours §4
IBE (exp(k), n − 1)

√
CHK [12]

BGW [6] (poly(k), n/2)
√

Ours §7.3

concrete TBE scheme without using IBE-related techniques. There are also other
CCA-secure schemes whose security can be explained via the TBE framework,
e.g. [14,10,25]. Our proposed method is a generic construction of TBE from BE
with verifiability.

Many existing CCA-secure PKE schemes can be explained via our observation
in Sec. 7.1 with different underlying BE schemes, and relations among existing
BE and CCA-secure PKE schemes are summarized in Table 2. We give more
detailed explanations for this in the full version of this paper [21].

7.3 Another New CCA-Secure KEM from Boneh-Gentry-Waters

Based on the proposed methodology, we can construct yet another new practical
CCA-secure KEM from the BGW BE scheme [6]. This can be a further evidence
that BE with verifiability is a powerful tool for constructing CCA-secure PKE.
The proposed scheme yields tight security reduction to the 2�-BDHE problem [6]
for relatively small �, short ciphertexts and short decryption keys. The concrete
construction of the scheme is as follows: Let G1 and G2 be multiplicative cyclic
groups with prime order p, and e : G1 × G1 → G2 be a bilinear mapping [5].
Setup(1k) chooses � ∈ N such that 2�C� ≥ 2k, and picks a random generator g ∈
G1 and random α, γ ∈ Zp. It also generates g1, ..., g4�, v, and Z where gi = g(αi),
v = gγ , and Z = e(g2�+1, g). The decryption key is dk = gα2�+1

, and the public
key is PK = (g, g1, ..., g2�, g2�+2, ..., g4�, v, Z,TCR), where TCR : G1 → P is a
target collision resistant hash function and P = {S|S ⊆ {1, ..., 2�}, |S| = �}.
Encrypt(PK) picks a random r ∈ Zp, sets K = Zr ∈ G2, computes
S = TCR(gr), and outputs (ψ,K) where ψ = (gr, (v ·

∏
j∈S g2�+1−j)r) ∈ G2

1.
For ciphertext ψ = (C0, C1), Decrypt(dk, ψ, PK) computes S = TCR(C0), and
checks whether e(g, C1)

?= e(v ·
∏

j∈S g2�+1−j , C0). It outputs “⊥” if it is invalid,
or K = e(dk, C0) otherwise. Security of this scheme can be proven by a straight-
forward combination of the proofs of Theorem 2 of this paper and Theorem 3.1
of [6]. Unfortunately, this scheme is not very advantageous to other schemes, but
it is still comparably efficient to other practical schemes (see Table 1).
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7.4 A Generic Construction of CCA-Secure Broadcast Encryption

By using our methodology, it is also generically possible to construct a CCA-
secure BE scheme from CPA-secure one with public verifiability. The conversion
is fairly simple, and the resulting CCA-secure scheme can be practical. When
applying this to the BGW BE scheme, we can have a new CCA-secure BE
scheme with verifiability whose computational cost is slightly better than the
previous scheme [6]. More detailed explanation is given in the full version of this
paper [21].
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Abstract. This paper introduces fast algorithms for performing group
operations on twisted Edwards curves, pushing the recent speed limits of
Elliptic Curve Cryptography (ECC) forward in a wide range of applica-
tions. Notably, the new addition algorithm uses1 8M for suitably selected
curve constants. In comparison, the fastest point addition algorithms for
(twisted) Edwards curves stated in the literature use 9M +1S. It is also
shown that the new addition algorithm can be implemented with four
processors dropping the effective cost to 2M. This implies an effective
speed increase by the full factor of 4 over the sequential case. Our re-
sults allow faster implementation of elliptic curve scalar multiplication.
In addition, the new point addition algorithm can be used to provide
a natural protection from side channel attacks based on simple power
analysis (SPA).

Keywords: Efficient elliptic curve arithmetic, unified addition, side
channel attack, SPA.

1 Introduction

Edwards curves are drawing increasing attention with their low cost and memory
friendly arithmetic in cryptographic applications. Recently, there has been a
rapid development of Edwards curves and their use in cryptology. An outline of
the previous work that closely relates to twisted Edwards curves is as follows.

– Building on the historical results of Euler and Gauss, Edwards introduced
a normal form for elliptic curves and stated the addition law in [13]. These
curves are defined by x2 + y2 = c2 + c2x2y2.

– Bernstein and Lange introduced a more general version of these curves de-
fined by x2 + y2 = c2(1 + dx2y2) or simply x2 + y2 = 1 + dx2y2 together
with the first algorithms for computing the group operations on projective
coordinates in [5]. For instance, the addition costs 10M + 1S + 1D with
c = 1. Here, and in the rest of this paper, multiplication by a curve constant
is denoted by D. With the definitions in [5], these curves are today known
as the Edwards curves.

– Bernstein and Lange introduced the inverted Edwards coordinates in [6]
which reduce the cost for the group operations on Edwards curves. For in-
stance, the addition costs 9M + 1S + 1D.

1 M: Field multiplication, S: Field squaring, I: Field inversion.

J. Pieprzyk (Ed.): ASIACRYPT 2008, LNCS 5350, pp. 326–343, 2008.
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– Bernstein, Birkner, Joye, Lange, and Peters introduced twisted Edwards
curves ax2 + y2 = 1 + dx2y2 in [1], a generalization of Edwards curves.

In this paper, the speed of the arithmetic of twisted Edwards curves is in-
creased by a suitable point representation. The new system is called extended
twisted Edwards coordinates which adds an auxiliary coordinate to twisted Ed-
wards coordinates. Despite the computational overhead of the additional coordi-
nate, we develop faster ways of performing point addition since the new formulae
are composed of polynomial expressions with lower total degrees. We show that
the increase in the number of coordinates comes with an increase in the level
of parallelism which is exploited for further improvements. We also provide op-
timizations for the scalar multiplication by mixing extended twisted Edwards
coordinates with twisted Edwards coordinates.

The paper is organized as follows. A review of twisted Edwards curves together
with some new results is given in Section 2. The new point representation is
introduced in Section 3. Several applications of the new achievements are given
in Section 4. We draw our conclusions in Section 5.

2 Twisted Edwards Curves

In what follows some terms related to the group law on elliptic curves will be
extensively used. In particular, the term unified is used to emphasize that point
addition formulae remain valid when two input points are identical, see [10, Sec-
tion 29.1.2]. Therefore, unified addition formulae can be used for point doubling.
The term complete is used to emphasize that addition formulae are defined for
all inputs, see [5]. The term readdition is used to emphasize that a point addition
has already taken place and some of the previously computed data is cached, see
[5]. The term mixed addition refers to adding an affine point to a point in some
projective representation, see [11]. We adapt the notation from [11], [5], and [1].

Let K be a field of odd characteristic. In [5], Bernstein and Lange introduce
Edwards curves defined by x2 + y2 = c2(1 + dx2y2) where c, d ∈ K with cd(1 −
dc4) �= 0. In [1], this form is generalized to twisted Edwards form defined by

EE,a,d : ax2 + y2 = 1 + dx2y2

where a, d ∈ K with ad(a − d) �= 0. Edwards curves are then a special case
of twisted Edwards curve where a can be rescaled to 1. We next review some
formulae regarding the group law on twisted Edwards curves which will be used
with slight modifications in Section 3.

Affine addition formulae for twisted Edwards curves in [1] (also see [13],
[5]):

(x1, y1) + (x2, y2) =
(

x1y2 + y1x2

1 + dx1y1x2y2
,
y1y2 − ax1x2

1 − dx1y1x2y2

)
= (x3, y3). (1)

The point (0, 1) is the identity element and the point (0,−1) is of order 2.
The negative of a point (x, y) is (−x, y). For further facts such as the resolution
of singularities or the points at infinity or the coverage of these curves or the
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group structure, we refer the reader to the original reference [1]. Also see [13],
[5], [4], [6], and [3].

In [5] (where a = 1) and later in [1], it was proven that if d is not a square
in K and a is a square in K then these formulae are complete. In Theorem 1,
with reasonable assumptions, we show that it is possible to prevent exceptions
in the addition formulae even if d is a square in K or a is not a square in K. We
should note that this statement should not be considered as a recommendation
for selecting d a square in K and/or a a non-square in K. The desired properties
for a and d may change depending on the target application. We will recall
Theorem 1 in Section 4.

Theorem 1. Let K be a field of odd characteristic. Let EE,a,d be a twisted
Edwards curve defined over K. Let P = (x1, y1) and Q = (x2, y2) be points on
EE,a,d. Assume that P and Q are of odd order. It follows that 1−dx1x2y1y2 �= 0
and 1 + dx1x2y1y2 �= 0.

Proof. In [5] (where a = 1) and later in [1], it is proven that the points at infinity
(over the extension of K where they exist) are of even order. Assume that P
and Q are of odd order. Thus, P , Q and P +Q cannot be the points at infinity.
Since the formulae (1) are complete (see [1]) provided that the points at infinity
are not involved, the denominators of (1); 1−dx1x2y1y2 and 1+dx1x2y1y2 must
be nonzero. ��

Affine doubling formulae (independent of d) for twisted Edwards curves
deduced from [1] (also see [5], [2], [3]):

2(x1, y1) =
(

2x1y1

y2
1 + ax2

1
,

y2
1 − ax2

1

2 − y2
1 − ax2

1

)
= (x3, y3). (2)

The exceptional cases and how to prevent them are analogous to formulae (1).

Affine addition formulae (independent of d) for twisted Edwards curves
adapted from our preprint [17]: Consider the relations obtained by the curve
equation; ax2

1 + y2
1 = 1 + dx2

1y
2
1 , ax2

2 + y2
2 = 1 + dx2

2y
2
2 . After straight forward

eliminations, we express a and d in terms of x1, x2, y1, y2 as follows,

a =
(x2

1y
2
1 − x2

2y
2
2) − y2

1y2
2(x2

1 − x2
2)

x2
1x

2
2(y2

1 − y2
2)

, d =
(x2

1 − x2
2) − (x2

1y
2
2 − y2

1x2
2)

x2
1x

2
2(y2

1 − y2
2)

.

Ignoring any exceptions that can be introduced by these rational expressions,
substitutions in the addition formulae (1) yield

x3 =
x1y2 + y1x2

1 + (x2
1−x2

2)−(x2
1y2

2−y2
1x2

2)
x2
1x2

2(y2
1−y2

2) x1y1x2y2

=
x1x2(y2

1 − y2
2)

x1y1 − x2y2 − y1y2(x1y2 − y1x2)

=
x1y1 + x2y2

y1y2 + (x2
1y2

1−x2
2y2

2)−y2
1y2

2(x2
1−x2

2)
x2
1x2

2(y2
1−y2

2) x1x2

=
x1y1 + x2y2

y1y2 + ax1x2
,

y3 =
y1y2 − (x2

1y2
1−x2

2y2
2)−y2

1y2
2(x2

1−x2
2)

x2
1x2

2(y2
1−y2

2) x1x2

1 − (x2
1−x2

2)−(x2
1y2

2−y2
1x2

2)
x2
1x2

2(y2
1−y2

2) x1y1x2y2

=
x1y1 − x2y2

x1y2 − y1x2
.
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The addition formulae (independent of d) are then as follows,

(x1, y1) + (x2, y2) =
(

x1y1 + x2y2

y1y2 + ax1x2
,
x1y1 − x2y2

x1y2 − y1x2

)
= (x3, y3). (3)

The formulae given by (3) produce the same outputs as the addition formu-
lae (1). However, these formulae fail for point doubling. In addition, there are
exceptional cases even if d is a not a square in K and a is a square in K. The
following theorem states these points explicitly.

Theorem 2. Let K be a field of odd characteristic. Let EE,a,d be a twisted
Edwards curve defined over K. Let P = (x1, y1) and Q = (x2, y2) be points on
EE,a,d. Assume that P is fixed.

If x1 = 0 or y1 = 0 then y1y2 + ax1x2 = 0 if and only if Q ∈ Sx where
Sx = {(y1/

√
a,−x1

√
a), (−y1/

√
a, x1

√
a)}. Similarly, x1y2 − y1x2 = 0 if and

only if Q ∈ Sy where Sy = {(x1, y1), (−x1,−y1)}.
Otherwise (i.e. x1 �= 0 and y1 �= 0), Sx and Sy are given by

Sx =
{(

y1√
a

, −x1
√

a

)
,

(
− y1√

a
, x1

√
a

)
,

(
1

x1
√

a d
, −

√
a

y1
√

d

)
,

(
− 1

x1
√

a d
,

√
a

y1
√

d

)}
,

Sy =
{

(x1, y1), (−x1, −y1),
(

1
y1

√
d
,

1
x1

√
d

)
,

(
− 1

y1
√

d
, − 1

x1
√

d

)}
.

Proof. ⇒ : The set of all solutions to the system of equations y1y2 + ax1x2 =
0, ax2

1 +y2
1 = 1+dx2

1y
2
1 , ax

2
2 +y2

2 = 1+dx2
2y

2
2 gives Sx. The set of all solutions to

the system of equations x1y2−y1x2 = 0, ax2
1+y2

1 = 1+dx2
1y

2
1 , ax

2
2+y2

2 = 1+dx2
2y

2
2

gives Sy. Clearly, all solutions are distinct since (0, 0) is not on the curve.
⇐ : Trivial, by substitution. ��

Theorem 2 shows that suitable selection of a and d are not enough to eliminate
all exceptional cases. Therefore the formulae given by (3) are not complete. Nev-
ertheless, the exceptional inputs have a special property given by the following
lemma.

Lemma 1. Let K,EE,a,d, P,Q be defined as in Theorem 2. Assume that P is a
fixed point of odd order. Assume that Q ∈ Sx ∪ Sy − {P}. Then Q is of even
order.

Proof. The proof is given in Appendix-A. ��

We now provide a practical solution to prevent exceptional cases. We will recall
Corollary 1 in Section 4.

Corollary 1. Let EE,a,d be a twisted Edwards curve defined over K. Let P =
(x1, y1) and Q = (x2, y2) be points on EE,a,d. Assume that P and Q are of odd
order with P �= Q. It follows that y1y2 + ax1x2 �= 0 and x1y2 − y1x2 �= 0.

Proof. The proof follows from Theorem 2 and Lemma 1. ��
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Cryptographic applications involving elliptic curve scalar multiplication typically
use points of prime order. If this is the case, Corollary 1 shows that the addition
formulae given by (3) are exception-free for distinct input points. Furthermore,
extending K cannot introduce any exception. Of course, one can still choose
arbitrary points as the input at the expense of exception handling or leave the
exceptions unhandled. However, this can lead active attackers to succeed in ex-
ceptional point attacks, see [19]. As a general solution, a suitable randomization
technique can be used. For various randomization techniques, a comprehensive
reference is [10, chapter 29].

The rest of the paper is about cryptographic applications. Therefore, we now
further assume that K is finite. In some implementations the ratio I/M is quite
large. For this reason, a natural strategy is to prevent the frequent use of field
inversions and a classical solution is using projective coordinates.

At this stage, consider the homogenous projective coordinates in [1]. In this
system, each point (x, y) on ax2 + y2 = 1 + dx2y2 is represented as the triplet
(X : Y : Z) which corresponds to the affine point (X/Z, Y/Z) with Z �= 0. These
triplets satisfy the homogenous projective equation

(aX2 + Y 2)Z2 = Z4 + dX2Y 2. (4)

The curve defined by (4) is the projective closure of the curve ax2 + y2 =
1 + dx2y2. The identity element is represented by (0 : 1 : 1). The negative of
(X : Y : Z) is (−X : Y : Z). For all nonzero λ ∈ K, (X : Y : Z) = (λX : λY : λZ).
We denote this system by E . The choice of E leads to inversion-free very efficient
point addition algorithms recently proposed in [1, Section 6].

3 Extended Twisted Edwards Coordinates

To gain more speed, it is convenient to introduce an auxiliary coordinate t = xy
to represent a point (x, y) on ax2 +y2 = 1+dx2y2 in extended affine coordinates
(x, y, t). One can pass to the projective representation using the map (x, y, t) �→
(x : y : t : 1). For all nonzero λ ∈ K, (X : Y : T : Z) = (λX : λY : λT : λZ) which
satisfies (4) and corresponds to the extended affine point (X/Z, Y/Z, T/Z) with
Z �= 0. The auxiliary coordinate T has the property T = XY/Z. This point
representation is named extended twisted Edwards coordinates and is denoted
by Ee. The identity element is represented by (0 : 1 : 0 : 1). The negative of
(X : Y : T : Z) is (−X : Y : −T : Z). Given (X : Y : Z) in E passing to Ee can be
performed in 3M + 1S by computing (XZ, Y Z,XY,Z2). Given (X : Y : T : Z)
in Ee passing to E is cost-free by simply ignoring T .

3.1 Unified Addition in Ee

Given (X1 : Y1 : T1 : Z1) and (X2 : Y2 : T2 : Z2) with Z1 �= 0 and Z2 �= 0, a
unified addition can be performed as (X1 : Y1 : T1 : Z1) + (X2 : Y2 : T2 : Z2) =
(X3 : Y3 : T3 : Z3) where
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X3 = (X1Y2 + Y1X2)(Z1Z2 − dT1T2),

Y3 = (Y1Y2 − aX1X2)(Z1Z2 + d T1T2),

T3 = (Y1Y2 − aX1X2)(X1Y2 + Y1X2),

Z3 = (Z1Z2 − dT1T2)(Z1Z2 + d T1T2). (5)

These unified formulae are derived from the addition formulae (1). We deduce
from [5] and [1] that these formulae are also complete when d is not a square in
K and a is a square in K. The operations can be performed with a 9M + 2D
algorithm given by

A ← X1 · X2, B ← Y1 · Y2, C ← dT1 · T2, D ← Z1 · Z2,

E ← (X1 + Y1) · (X2 + Y2) − A − B, F ← D − C, G ← D + C,

H ← B − aA, X3 ← E · F, Y3 ← G · H, T3 ← E · H, Z3 ← F · G.

An 8M+2D mixed addition algorithm can then be derived by setting Z2 = 1.
This means that we are adding (X1 : Y1 : T1 : Z1) and an extended affine point
(x2, y2, x2y2) which is equally written as (x2 : y2 : x2y2 : 1).

Choosing curve constants with extremely small sizes or extremely low (or
high) hamming weight can be used to eliminate the computational overhead of
a field multiplication. For instance see [9], [7], [12]. See also [1, Section 7] for an
alternative strategy for the selection of constants. When using Ee the situation
is even better if a = −1; we save 1M + 1D rather than just 1D. Consider a
twisted Edwards curve given by

ax2 + y2 = 1 + dx2y2.

The map (x, y) �→ (x/
√
−a, y) defines the curve,

−x2 + y2 = 1 + (−d/a)x2y2.

This map can be constructed if −a is a square in K. It is worth pointing out
here that the curve −x2 + y2 = 1 + (−d/a)x2y2 corresponds to the Edwards
curve x2 + y2 = 1 + (d/a)x2y2 via the map (x, y) �→ (ix, y) if i ∈ K with
i2 = −1. For such curves a 10M + 1S + 1D point addition algorithm is given in
[4, add-2007-bl-4].

After a renaming of the constant −d/a to d′, the point addition on the twisted
Edwards curve −x2 + y2 = 1 + d′x2y2 can now be performed with an 8M + 1D
algorithm given by

A ← (Y1 − X1) · (Y2 − X2), B ← (Y1 + X1) · (Y2 + X2), C ← k T1 · T2,

D ← 2Z1 · Z2, E ← B − A, F ← D − C, G ← D + C,

H ← B + A, X3 ← E · F, Y3 ← G · H, T3 ← E · H, Z3 ← F · G

where k = 2d′. The optimization that leads to the removal of the extra multipli-
cation is similar to the optimizations in [23] and [4, add-2007-bl-4]. A 7M + 1D
mixed addition algorithm can be derived by setting Z2 = 1.
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In the case a = −1, we comment that it is possible to save two additions by fur-
ther extending the coordinates to (X : Y : T : Z : Y −X : Y + X). Alternatively,
(Y2 − X2), (Y2 + X2), 2Z2, and k = 2d′ can be cached to save two additions and
two multiplications by 2 when performing readdition. We do not claim that these
cachings are very useful in practice. On the other hand, a caching of kT2 leads to
readdition in 8M rather than 8M+1D. This can save time if D is large. As a conse-
quence, readditionwithZ2 = 1needs 7M rather than 7M+1D. Similar arguments
can be easily extended over the other algorithms in Section 3 when appropriate.

3.2 Dedicated Addition in Ee

Given the representations (X1 : Y1 : T1 : Z1) and (X2 : Y2 : T2 : Z2) of distinct
points with Z1 �= 0 and Z2 �= 0, the point addition can be performed as
(X1 : Y1 : T1 : Z1) + (X2 : Y2 : T2 : Z2) = (X3 : Y3 : T3 : Z3) where

X3 = (X1Y2 − Y1X2)(T1Z2 + Z1T2),

Y3 = (Y1Y2 + aX1X2)(T1Z2 − Z1T2),

T3 = (T1Z2 + Z1T2)(T1Z2 − Z1T2),

Z3 = (Y1Y2 + aX1X2)(X1Y2 − Y1X2). (6)

These formulae are independent of the curve constant d. These formulae are
analogous to the addition formulae (3). The operations can be performed with
a 9M + 1D algorithm given by

A ← X1 · X2, B ← Y1 · Y2, C ← Z1 · T2, D ← T1 · Z2,

E ← D + C, F ← (X1 − Y1) · (X2 + Y2) + B − A, G ← B + aA,

H ← D − C, X3 ← E · F, Y3 ← G · H, T3 ← E · H, Z3 ← F · G.

An 8M + 1D mixed addition algorithm can be derived by setting Z2 = 1.
For the case a = −1, the operations can be performed with an 8M algorithm

given by

A ← (Y1 − X1) · (Y2 + X2), B ← (Y1 + X1) · (Y2 − X2), C ← 2Z1 · T2,

D ← 2T1 · Z2, E ← D + C, F ← B − A, G ← B + A,

H ← D − C, X3 ← E · F, Y3 ← G · H, T3 ← E · H, Z3 ← F · G.

A 7M mixed addition algorithm can be derived by setting Z2 = 1. A parallel
version of the dedicated addition algorithm is given in Section 4.4 for the case
a = −1.

3.3 Dedicated Doubling in Ee

Given (X1 : Y1 : T1 : Z1) with Z1 �= 0, point doubling can be performed as
2(X1 : Y1 : T1 : Z1) = (X3 : Y3 : T3 : Z3) where

X3 = 2X1Y1(2Z2
1 − Y 2

1 − aX2
1 ),

Y3 = (Y 2
1 + aX2

1 )(Y 2
1 − aX2

1 ),

T3 = 2X1Y1(Y 2
1 − aX2

1 ),

Z3 = (Y 2
1 + aX2

1 )(2Z2
1 − Y 2

1 − aX2
1 ). (7)
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These formulae are independent of the curve constant d. These are essentially
the same formulae from [1] plus the formula T3 = 2X1Y1(Y 2

1 − aX2
1 ) which

increases the number of multiplications needed to compute a point doubling by
1. The operations can be performed with a 4M + 4S + 1D algorithm given by

A ← X2
1 , B ← Y 2

1 , C ← 2Z2
1 , D ← aA, E ← (X1 + Y1)2 − A − B,

G ← D + B, F ← G − C, H ← D − B, X3 ← E · F, Y3 ← G · H,

T3 ← E · H, Z3 ← F · G.

This algorithm is similar to 3M + 4S + 1D point doubling algorithm in [1].
The slowing down from 3M + 4S + 1D to 4M + 4S + 1D will be remedied in
Section 4.3 by mixing Ee with E . A parallel version of the doubling algorithm is
given in Section 4.4 for the case a = −1.

3.4 More Formulae

Since we have two different addition formulae for computing x3 and another two
for y3, it is possible to produce hybrid addition formulae from (1) and (3). The
hybrid formulae are given by

(x1, y1) + (x2, y2) =
(

x1y1 + x2y2

y1y2 + ax1x2
,

y1y2 − ax1x2

1 − dx1y1x2y2

)
= (x3, y3), (8)

(x1, y1) + (x2, y2) =
(

x1y2 + y1x2

1 + dx1y1x2y2
,
x1y1 − x2y2

x1y2 − y1x2

)
= (x3, y3). (9)

We comment that Ee analogs of (8) and (9) lead to similar speeds.

4 Applications

We provide further optimizations targeting scalar multiplication operations, nP
where n is an integer called the scalar and P is the base point multiplied by the
scalar.

The impact of the new unified addition algorithms in Ee for preventing side
channel attacks is discussed in Section 4.1. Parallel versions of the 8M+1D uni-
fied addition in Ee are provided in Section 4.2. The speed of scalar multiplication
on twisted Edwards curves is increased by mixing Ee with E in Section 4.3. A
parallel implementation of fast scalar multiplication in Ee is explained in Sec-
tion 4.4. When parallelization is desired the algorithms in Section 4.2 and Sec-
tion 4.4 help to reduce significantly the effective cost of scalar multiplication.
Other applications appear in Section 4.5.

4.1 Defeating SPA Attacks

It is well known that a scalar multiplication algorithm can gain SPA protection
when unified additions are used as the only group operation, see [10, Section
29.1.2] for instance. From Section 3.4 we know that the unified addition costs
9M+2D in Ee. For the case a = −1 the cost drops to 8M+1D. Both results are
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faster than all the other unified addition algorithms known to date. Assuming
that S = 0.8M and D ≈ 0, the 8M + 1D algorithm is approximately 17.5%,
22.5%, 35%, 50%, 55%, 82.5%, 97.5% faster than the best results in [17], [6],
[5], [20], [7], [22], [8], respectively. Note, if S = M most speedups will be even
more significant. Furthermore, both unified addition algorithms are complete for
suitably selected parameters, see section 2 for pointers. The completeness is a
stronger property than the unification, see [5, p.2].

Another approach to a protected scalar multiplication is using the Mont-
gomery ladder with Montgomery curves or Kummer surfaces. Montgomery’s
algorithm for Montgomery curves in [23] use 5M + 4S + 1D per scalar bit.
Gaudry/Lubicz algorithm for Kummer surfaces (genus 1, odd characteristic
case) in [16] use 3M + 6S + 3D per scalar bit. We will only provide com-
parisons with Montgomery curves in the rest of the paper. Assuming that an
optimized protected scalar multiplication algorithm uses 1.2 unified additions
per scalar bit, scalar multiplication using the 8M + 1D algorithm then requires
(8M+1D)× 1.2 = 9.6M+1.2D per scalar bit. Assuming that 0.67M ≤ S ≤ M
and 0 < D ≤ M, this will be approximately 6% to 25% slower2 than Montgomery
curves. However, we will show in Section 4.2 that the 8M + 1D algorithm can
be faster on parallel implementations. When designing the parallel algorithms
we try exploiting all inherent parallelism. If an M is performed in parallel with
a D and/or an S then the cost is counted as an effective 1M.

4.2 Defeating SPA Attacks in Parallel Environments

A useful feature of the 8M + 1D unified addition algorithm is that it is highly
parallelizable. In this section, targeting parallel environments, we explain how
a protected scalar multiplication using the 8M + 1D unified addition in Ee can
perform faster than a protected scalar multiplication based on the Montgomery
ladder [23]. For details on the ladder algorithm and Montgomery curves, we refer
the reader to [23] and [21]. See [18] and [15] for preventing side channel attacks
in parallel environments using general elliptic curves.

The Montgomery curve EM,A,B is defined by By2 = x3 + Ax2 + x with
B(A2 − 4) �= 0. Given the projective coordinates of two points (Xm : Zm) and
(Xn : Zn) and also (Xm−n : Zm−n) = (Xm : Zm)−(Xn : Zn); (Xm+n, : Zm+n) =
(Xm : Zm) + (Xn : Zn) is given in [23] by

Xm+n = Zm−n((Xm − Zm)(Xn + Zn) + (Xm + Zm)(Xn − Zn))2,

Zm+n = Xm−n((Xm − Zm)(Xn + Zn) − (Xm + Zm)(Xn − Zn))2.

Dedicated doubling formulae (which can be faster than the addition) are used
to compute X2n and Z2n given in [23] by

4XnZn = (Xn + Zn)2 − (Xn − Zn)2,

X2n = (Xn + Zn)2(Xn − Zn)2,

Z2n = (4XnZn)((Xn − Zn)2 + ((A + 2)/4)(4XnZn)).

2 The ratios S/M and D/M are fixed equally for both cases.
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The doubling algorithm uses 2M + 2S + 1D and the addition algorithm uses
3M+2S assuming that Zm−n = 1. The total cost of a doubling and an addition
is then 5M+4S+1D. In a sequential environment it is convenient to consider the
addition and doubling operations as a single composite operation. This approach
is given in [4]. To follow the same notation rename

[(A + 2)/4, Xm−n, Zm−n, Xm, Zm, Xn, Zn, X2n, Z2n, Xm+n, Zm+n]

as [a24, X1, Z1, X2, Z2, X3, Z3, X4, Z4, X5, Z5]. Assuming that Z1 = 1, a 5M +
4S+1D Montgomery differential-addition-and-doubling algorithm is given in [4,
mladd-1987-m] by

A ← X2 + Z2, AA ← A2, B ← X2 − Z2, BB ← B2,

E ← AA − BB, C ← X3 + Z3, D ← X3 − Z3, DA ← D · A,

CB ← C · B, X5 ← (DA + CB)2, Z5 ← X1 · (DA − CB)2,
X4 ← AA · BB, Z4 ← E · (BB + a24E).

2-Processor Montgomery addition and doubling. In [21], it is observed
that the doubling and the addition phases of the Montgomery ladder algorithm
can be performed independently. From this, it is clear that one of the processors
needs 2M + 2S + 1D and the other needs 3M + 2S to perform doubling and
addition, respectively. Since 3M + 2S ≥ 2M + 2S + 1D we conclude that one
round of computing a doubling and an addition can be done in an effective
3M+2S. Alternatively, we can parallelize the “mladd-1987-m” algorithm in [4].
This approach also yields an effective 3M + 2S. See Appendix-B. The ladder
algorithm then uses 3M + 2S per scalar bit.

2-Processor twisted Edwards (a = −1) unified addition in Ee. We now
investigate the 8M + 1D unified addition algorithm. We can split the computa-
tional task into 9 steps with a full utilization of 2 processors. The unified addition
can then be performed with an effective 4M + 1D algorithm.

Cost Step Processor 1 Processor 2
1 R1 ← Y1 − X1 R2 ← Y2 − X2
2 R3 ← Y1 + X1 R4 ← Y2 + X2

1M 3 R5 ← R1 · R2 R6 ← R3 · R4
1M 4 R7 ← T1 · T2 R8 ← Z1 · Z2
1D 5 R7 ← kR7 R8 ← 2R8

6 R1 ← R6 − R5 R2 ← R8 − R7
7 R3 ← R8 + R7 R4 ← R6 + R5

1M 8 X3 ← R1 · R2 Y3 ← R3 · R4
1M 9 T3 ← R1 · R4 Z3 ← R2 · R3

Assuming that an optimized SPA protected scalar multiplication algorithm
uses 1.2 unified additions per scalar bit, we have the cost estimate (4M+1D)×
1.2 = 4.8M + 1.2D per scalar bit (for each of 2 processors). The fastest system
is determined by the ratios S/M and D/M. For instance, if S = M and D ≈
0 then twisted Edwards (a = −1) curves are approximately 4.2% faster than
Montgomery curves. On the other hand, using Montgomery curves still seems to
be preferable since the ladder algorithm needs less memory and it is not affected
by changes in the ratio D/M. Note also that S < M in some applications.

We omit details for the 3-processor case which can be derived with similar
approaches.
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4-Processor Montgomery addition and doubling. The Montgomery addi-
tion and doubling does not nicely fit the 4-processor setting. For instance the
“mladd-1987-m” algorithm in [4] seems to be quite uncompetitive even if we ex-
ploit all inherent parallelism. A quick investigation shows that we can perform
a doubling and addition in an effective 2M + 2S. See Appendix-B. The ladder
algorithm then uses 2M + 2S per scalar bit.

4-Processor twisted Edwards (a = −1) unified addition in Ee. We can
split the computational task into 5 sequential steps among 4 processors. The
unified addition can then be performed with an effective 2M + 1D algorithm.

Cost Step Processor 1 Processor 2 Processor 3 Processor 4
1 R1 ← Y1 − X1 R2 ← Y2 − X2 R3 ← Y1 + X1 R4 ← Y2 + X2

1M 2 R5 ← R1 · R2 R6 ← R3 · R4 R7 ← T1 · T2 R8 ← Z1 · Z2
1D 3 idle idle R7 ← kR7 R8 ← 2R8

4 R1 ← R6 − R5 R2 ← R8 − R7 R3 ← R8 + R7 R4 ← R6 + R5
1M 5 X3 ← R1 · R2 Y3 ← R3 · R4 T3 ← R1 · R4 Z3 ← R2 · R3

Following the assumption from the 2-processor case we have the cost estimate
(2M+1D)×1.2 = 2.4M+1.2D per scalar bit. If S = M and D ≈ 0 then twisted
Edwards (a = −1) curves are approximately 66.7% faster than Montgomery
curves. If S = 0.8M and D = 0.25M then twisted Edwards (a = −1) curves
are approximately 33.3% faster. If S = 0.8M and D = M then twisted Edwards
(a = −1) curves are approximately 5.9% faster.

Assuming D ≈ 0, we estimate that a “256-bit, sliding window, 4-NAF” scalar
multiplication on twisted Edwards (a = −1) curves will require approximately
602M for each of 4 processors, depending on the analysis in [5, Section 5].

Consider the field multiplication operation kR7 in Step 3. The finite field
arithmetic can be implemented building on integer arithmetic. Treating field
elements k as a 4n-bit integer and R7 as an integer, we fix k1, k2, k3, k4 ∈

[
0, 2n−

1
]

such that k = k0 + 2nk1 + 22nk2 + 23nk3. Now, kR7 can be obtained as
k0R7+2n(k1R7)+22n(k2R7)+23n(k3R7) by computing kiR7 in parallel. The rest
of the computation for obtaining kR7 can be practically negligible (depending on
the application). Here, the 3 additions to obtain kR7 and R8 ← 2R8 can be put
in a new parallel step. Furthermore if #K is a special prime allowing very fast
modular reduction (such as NIST primes) then the cost of casting the integer kR7
to K (i.e. the modular reduction) can also be practically negligible (depending
on the application). This method leads to a better utilization of processors and
can be used for decreasing D. Even if k is of the full size (i.e. D = M), this
technique fixes each ki to a quarter of the size of k (i.e. D is close to 0.25M
if schoolbook multiplication and fast reduction are being used). Alternatively,
fixing n to the word size of the underlying hardware (or maybe to the size of a
compiler-supported data type) can be advantageous in some applications. The
same method can be adapted to the 2-processor case.

The parallel implementation of Ee ← Ee + Ee is easier than the Montgomery
case because all processors perform similar tasks at each step. In addition, the
implementation does not require a special field squaring circuit to gain better
timings.
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2×2-Processor Montgomery addition and doubling. If the doubling op-
eration is assigned to a team of two processors and the addition operation is
assigned to another team of two processors, the 2M+2S figure can be improved
to 2M+ 1S. See Appendix-B. Here, we make the assumption that the addition-
team and the doubling-team work in an unsynchronized fashion and perform the
synchronization at the end (of each round); we are not claiming that the imple-
mentation of this is easy. Even with this assumption twisted Edwards (a = −1)
curves can still be faster. For instance, if S = M and D ≈ 0 then twisted Ed-
wards (a = −1) curves are approximately 25% faster than Montgomery curves.

4.3 Fast Scalar Multiplication

In [11], Cohen, Miyaji, and Ono introduced the modified Jacobian coordinates
and studied other systems in the literature, namely affine, projective, Jacobian,
and Chudnovsky Jacobian coordinates. To gain better timings they proposed a
technique of carefully mixing these coordinates. We follow a similar approach.
Note, the notations E and Ee follow the notation introduced in [11].

On twisted Edwards curves, the speed of scalar multiplications which involve
point doublings can be increased by mixing Ee with E . The following technique
replaces (slower) doublings in Ee with (faster) doublings in E . In the execution
of a scalar multiplication:

(i) If a point doubling is followed by another point doubling, use E ← 2E .
(ii) If a point doubling is followed by a point addition, use

1. Ee ← 2E for the point doubling step; followed by,
2. E ← Ee + Ee for the point addition step.

E ← 2E is performed using 3M + 4S + 1D doubling algorithm in [1]. The
details of the other operations are given below.

Ee ← 2E using (7):

(i) In Section 3 it was noted that passing from (X : Y : Z) to (X : Y : T : Z) (i.e.
passing from E to Ee) can be performed in 3M+1S. From this, it might seem
at the first glance that computing Ee ← 2E will more costly than expected.
However, the doubling algorithm for (7) does not use the input T1 and so it
can be used for Ee ← 2E without modification.

(ii) Theorem 1 implies that Z1 and Z3 are always nonzero if the base point is of
odd order. Alternatively, careful selection of a and d also guarantees that Z1
and Z3 are always nonzero regardless of the order of the base point, see [1].

E ← Ee + Ee based on (either) (5) or (6):

(i) Observe that one field multiplication can be saved by not computing T3.
This can be regarded as a remedy to the extra field multiplication which
appears in Ee ← 2E while computing T3.

(ii) If (6) is used (without computing T3), scalar multiplication is independent of
d. Indeed E ← 2E (see [1]) and Ee ← 2E (see Section 3.3) are also independent
of d. Formulae (6) save time if D is large. In addition, Corollary 1 implies
that Z1, Z2 and Z3 are always nonzero if the base point is of odd order.
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(iii) If (5) is used (without computing T3), the curve constant d will be involved
in the calculations. Using the concept of readdition discussed in Section 3.4,
one can also achieve similar performance in comparison to the case of (6).
In addition, Theorem 1 implies that Z1, Z2 and Z3 are always nonzero if
the base point is of odd order. Alternatively, careful selection of a and d also
guarantees that Z1, Z2 and Z3 are always nonzero regardless of the order of
the base point, see [1].

In Table 1, a comparison is made for the speeds that can be achieved under
different S/M and D/M scenarios. These estimates are based on the analysis
in [5, Section 5]. To gain the best speed, we assume that (a = −1). To make
the cost estimation easier (without sacrificing the accuracy), we can consider the
cost of Ee ← 2E as 3M+4S by pushing the extra multiplication to the operation
count of E ← Ee + Ee. In this case, the relevant costs for various additions based
on the formulae (6) are as follows. Addition: 8M; readdition: 8M; readdition
with Z2 = 1: 7M; mixed addition (i.e. addition with Z2 = 1 reasonably denoted
by E ← Ee + Ae): 7M. As a special case, we also include cost estimates for the
Montgomery ladder [23] which require 5M + 4S + 1D per scalar bit. The rows
are sorted with respect to the column (.8, 0) in descending order. The headers
(e.g. (.8, .5)) of columns 2 to 7 fix the ratios S/M and D/M, respectively. (Of
course, D/M = 0 should be regarded as D/M ≈ 0 when it appears.)

Table 1. Cost estimates (M) for fast scalar multiplication, 256-bit. (The Montgomery
ladder algorithm for Montgomery curves and “sliding window, 4-NAF” method for
Edwards, inverted Edwards, and mixed twisted Edwards coordinates)

System (1,1) (.8, 1) (1, .5) (.8, .5) (1, 0) (.8, 0)
Montgomery Ladder, [23] 2560 2355 2432 2227 2304 2099
Edwards, [5] 2351 2139 2326 2115 2301 2090
Inverted Edwards, [6] 2552 2341 2402 2191 2251 2040
Twisted Edwards (a = −1), mixed 2152 1951 2152 1951 2152 1951

It is also convenient to consider Ee ← 2E followed by E ← Ee + Ee as a single
composite operation as E ← 2E + Ee where Ee is the base point. See [14] for a
similar approach in affine Weierstrass coordinates.

4.4 Fast Scalar Multiplication in Parallel Environments

It is natural to ask whether the speed of the protected scalar multiplication
discussed in Section 4.2 can be increased by using a fast dedicated doubling
algorithm. Unfortunately mixing Ee with E does not seem to be helpful in parallel
environments for increasing the speed. Nevertheless, Ee ← 2Ee can be performed
with an effective 1M + 1S algorithm, as follows.

Cost Step Processor 1 Processor 2 Processor 3 Processor 4
1 idle idle idle R1 ← X1 + Y1

1S 2 R2 ← X2
1 R3 ← Y 2

1 R4 ← Z2
1 R5 ← R2

1
3 R6 ← R2 + R3 R7 ← R2 − R3 R4 ← 2R4 idle
4 idle R1 ← R4 + R7 idle R2 ← R6 − R5

1M 5 X3 ← R1 · R2 Y3 ← R6 · R7 T3 ← R2 · R6 Z3 ← R1 · R7
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This is essentially the same algorithm as in Section 3.3. It is easy to deduce
that the 2-processor point doubling needs an effective 2M + 2S. Point addition
Ee ← Ee + Ee can be performed with an effective 2M algorithm, as follows.

Cost Step Processor 1 Processor 2 Processor 3 Processor 4
1 R1 ← Y1 − X1 R2 ← Y2 + X2 R3 ← Y1 + X1 R4 ← Y2 − X2

1M 2 R5 ← R1 · R2 R6 ← R3 · R4 R7 ← Z1 · T2 R8 ← T1 · Z2
3 idle idle R7 ← 2R7 R8 ← 2R8
4 R1 ← R8 + R7 R2 ← R6 − R5 R3 ← R6 + R5 R4 ← R8 − R7

1M 5 X3 ← R1 · R2 Y3 ← R3 · R4 T3 ← R1 · R4 Z3 ← R2 · R3

This is essentially the same algorithm as in Section 3.2. It is easy to deduce
that the 2-processor point doubling needs an effective 4M. One may prefer using
the parallel version of the addition formulae (1) which comes at the expense of
multiplication by d. See the discussions about readdition in Section 3.4 and
partitioning k in Section 4.2. Assuming S = 0.8M and D ≈ 0, we estimate that
“256-bit, sliding window, 4-NAF” scalar multiplication using Ee will require
approximately 552M for each of 4 processors, depending on the analysis in [5,
Section 5].

4.5 Other Applications

Point addition intensive operations bring out the full power of the new addition
algorithms. Therefore, we will consider the batch signature verification algorithm
in this section.

There is a vast literature on the optimization of special exponentiation tech-
niques. A general references is [10]. An example to the case of scalar multipli-
cation is computing

∑
niPi with fixed base point(s) or fixed scalar(s). In [5,

Section 7], cost estimations for selected applications about
∑

niPi are provided
for several curve models. The expected increases in speed for twisted Edwards
curves can be deduced from [5] by simply substituting the new operation counts.
For instance, the batch signature verification technique in [24] attributed to Bos-
Coster is summarized in [5, Section 5] for one variant of the ElGamal signature
system. The cost estimates for this operation are given in Table 2 in comparison
to Edwards coordinates and inverted Edwards coordinates.

Table 2. Cost estimates (M) for batched verification of 100 ElGamal signatures, 256-
bit

System (1,1) (.8, 1) (1, .5) (.8, .5) (1, 0) (.8, 0)
Edwards, [5] 302 297 289 284 276 271
Inverted Edwards, [6] 276 271 264 259 251 246
Twisted Edwards (a = −1), Ee 201 201 201 201 201 201

5 Conclusion

In this work, a new point representation Ee is introduced for twisted Edwards
curves. We derive efficient and highly parallel group operations and discuss
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alternative ways of preventing exceptional cases. We then provide performance
estimates and comparisons for different implementation scenarios.

Defeating SPA Attacks. We provide two fast unified addition algorithms which
cost 9M + 2D and 8M + 1D. The latter case is at least 22% faster than all the
other unified addition methods stated in the literature. These formulae are even
17.5% faster than our preliminary result in [17].

Defeating SPA Attacks in Parallel Environments. We provide an effective 2M+
1D unified point addition algorithm on a 4-processor environment. We further
showed that twisted Edwards (a = −1) curves can be faster up to 66.7% than
Montgomery curves in this parallel environment.

Fast Scalar Multiplication. We first handle single-scalar multiplication. We ex-
plain how to perform fast scalar multiplication by mixing Ee with twisted Ed-
wards coordinates E , improving the current relevant literature bounds by ap-
proximately 4%-18%. We then point out that multi-scalar multiplications profit
even more from the faster point additions in Ee.

Fast Scalar Multiplication in Parallel Environments. We also point to the parallel
versions of fast scalar multiplication offering a speed increase by a factor of 3.54
(using 4 processors) over the optimized sequential case.

In conclusion, we have pushed the recent speed limits of Elliptic Curve Cryp-
tography forward in a wide range of applications. Building on our observations
we recommend using Ee (and mixing Ee with E when useful) for speeding up the
scalar multiplication in several different settings.
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A Proof of Lemma 1

Proof. Note that the points at infinity are of even order, see [1]. Assume that
P = (x1, y1) is of odd order. Thus, P is not one of the points at infinity. Assume
that Q ∈ Sx ∪ Sy − {P}. If Q were one of the points at infinity it would have
even order and the claim follows. Note also that P �= Q and P �= −Q since
P,−P /∈ Sx∪Sy−{P}. Instead of a further case by case analysis on Sx∪Sy−{P},
we will prove the lemma with a general approach. The proof has two parts.

In the first part we will prove that all points in Sx are of even order. Assume
that Q = (x2, y2) is an element of Sx. By Theorem 2, ax1x2 + y1y2 = 0.

Suppose that x1 = 0. Since P is of odd order P �= (0,−1) and consequently
P = (0, 1). By Theorem 2, Q = (±1/

√
a, 0). Since 4(±1/

√
a, 0) = (0, 1), Q is of

even order as desired.
Assume from now on that x1 �= 0. We can write x2 = −y1y2/(ax1) since x1 is

nonzero. Let M = 2P and N = 2Q. Since P is of odd order, so is M . Therefore,
M is not one of the points at infinity. We can assume that N is not one of the
points at infinity; for otherwise Q is of even order as desired. Using the relation
x2 = −y1y2/(ax1) and formula (3) for computing x3 we get

x(N) =
2x2y2

y2
2 + ax2

2
=

2(−y1y2/(ax1))y2

y2
2 + a(−y1y2/(ax1))2

= − 2x1y1

y2
1 + ax2

1
= −x(M).

The denominators y2
1 + ax2

1 and y2
2 + ax2

2 must be nonzero since M and N are
not points at infinity. By the curve definition we have

y = ±
√

(1 − ax2)/(1 − dx2).

So y(M) = ±y(N) since |x(M)| = |x(N)|.
y(M) = −y(N) implies that M − N = (0,−1), a point of order 2. Then

2(M −N) = 2(2P − 2Q) = 4(P −Q) = (0, 1). So P −Q is a point of order 4.
y(M) = y(N) implies that M + N = (0, 1), the identity. Then M + N =

2P + 2Q = 2(P + Q) = (0, 1). So P + Q is a point of order 2 since P �= −Q.
In conclusion, we have P ± Q of even order for all situations. Since P is of

odd order, Q ∈ Sx must be of even order.
In the second part of the proof we will prove that all points in Sy −{P} are of

even order. Assume that Q = (x2, y2) is an element of Sy −{P}. By Theorem 2,
x1y2 − y1x2 = 0.

Suppose that x1 = 0. Since P is of odd order P �= (0,−1) and consequently
P = (0, 1). By Theorem 2, Q = (0,−1). Then Q is of even order as desired.

Assume from now on that x1 �= 0. We can write y2 = y1x2/x1 since x1 is
nonzero. Let M = 2P and N = 2Q. Since P is of odd order, so is M . Therefore,
M is not one of the points at infinity. We can assume that N is not one of the
points at infinity; for otherwise Q is of even order as desired. Using the relation
y2 = y1x2/x1 and formula (3) for computing x3 we get

x(N) =
2x2y2

y2
2 + ax2

2
=

2x2(y1x2/x1)
(y1x2/x1)2 + ax2

2
=

2x1y1

y2
1 + ax2

1
= x(M).

The denominators y2
1 +ax2

1 and y2
2 +ax2

2 must be nonzero since M and N are not
points at infinity. By the curve definition y(M) = ±y(N) since |x(M)| = |x(N)|.
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y(M) = −y(N) implies that M + N = (0,−1), a point of order 2. Then
2(M + N) = 2(2P + 2Q) = 4(P + Q) = (0, 1). So P + Q is a point of order 4.

y(M) = y(N) implies that M − N = (0, 1), the identity. Then M − N =
2P − 2Q = 2(P −Q) = (0, 1). So P −Q is a point of order 2 since P �= Q.

In conclusion, we have P ± Q of even order for all situations. Since P is of
odd order, Q ∈ Sy − {P} must be of even order.

In summary, all points in Sx ∪ Sy − {P} are of even order provided that P is
of odd order. ��

B Parallel Algorithms

This appendix contains parallel algorithms for Montgomery addition and dou-
bling discussed in Section 4.2.

2-processor Montgomery differential-addition-and-doubling. Effective
3M + 2S, assumption Z1 = 1, adapted from [4, mladd-1987-m].

Cost Step Processor 1 Processor 2
1 R1 ← X2 + Z2 R2 ← X2 − Z2
2 R3 ← X3 + Z3 R4 ← X3 − Z3

1S 3 R5 ← R2
1 R6 ← R2

2
4 R7 ← R5 − R6 idle

1M 5 R1 ← R1 · R4 R2 ← R2 · R3
6 R3 ← R1 + R2 R4 ← R1 − R2

1S 7 X5 ← R2
3 R2 ← R2

4
1M 8 R8 ← a24R7 X4 ← R5 · R6

9 R8 ← R6 + R8 idle
1M 10 Z4 ← R7 · R8 Z5 ← X1 · R2

4-processor Montgomery differential-addition-and-doubling. Effective
2M + 2S, adapted from [4, mladd-1987-m].

Cost Step Processor 1 Processor 2 Processor 3 Processor 4
1 R1 ← X2 + Z2 R2 ← X2 − Z2 R3 ← X3 + Z3 R4 ← X3 − Z3

1S 2 R5 ← R2
1 R6 ← R2

2 idle idle
3 R7 ← R5 − R6 idle idle idle

1M 4 R1 ← R1 · R4 R2 ← R2 · R3 R8 ← a24R7 idle
5 R3 ← R1 + R2 R4 ← R1 − R2 R8 ← R6 + R8 idle

1S 6 X5 ← R2
3 R2 ← R2

4 idle idle
1M 7 Z5 ← X1 · R2 X4 ← R5 · R6 Z4 ← R7 · R8 idle

2×2-processor Montgomery differential-addition and Montgomery
doubling. Effective 2M + 1S. Using the notation from [4].

2-processor Montgomery Addition 2-processor Montgomery Doubling
Cost Step Processor 1 Processor 2

1 R0 ← X2 − Z2 R1 ← X3 + Z3
2 R2 ← X2 + Z2 R3 ← X3 − Z3

1M 3 R0 ← R0 · R1 R2 ← R2 · R3
4 R1 ← R0 + R2 R3 ← R0 − R2

1S 5 R0 ← R2
1 R2 ← R2

3
1M 6 X5 ← Z1 · R0 Z5 ← X1 · R2

Cost Step Processor 1 Processor 2
1 R4 ← X2 + Z2 R5 ← X2 − Z2

1S 2 R4 ← R2
4 R5 ← R2

5
3 R6 ← R4 − R5 idle

1D 4 R7 ← a24R6 idle
5 R7 ← R5 + R7 idle

1M 6 X4 ← R4 · R5 Z4 ← R6 · R7

The effective cost of addition is 2M+1S (even if Z1 = 1). The effective cost of
doubling is 1M+1S+1D. Since 2M+1S ≥ 1M+1S+1D the overall effective
cost is 2M + 1S depending on the assumption in Section 4.2.
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Abstract. Most cryptographic protocols, in particular asymmetric pro-
tocols, are based on assumptions about the computational complexity of
mathematical problems. The Φ-Hiding assumption is such an assump-
tion. It states that if p1 and p2 are small primes exactly one of which
divides ϕ(N), where N is a number whose factorization is unknown and
ϕ is Euler’s totient function, then there is no polynomial-time algorithm
to distinguish which of the primes p1 and p2 divides ϕ(N) with a prob-
ability significantly greater than 1/2. In this paper, it will be shown
that the Φ-Hiding assumption is not valid when applied to a modulus
N = PQ2e, where P, Q > 2 are primes, e > 0 is an integer and P hides
the prime in question. This indicates that cryptographic protocols using
such moduli and relying on the Φ-Hiding assumption must be handled
with care.

Keywords: Φ-Hiding assumption, Jacobi symbol, Euler’s totient func-
tion.

1 Introduction

The Φ-Hiding assumption as defined by Cachin, Micali and Stadler [3] is an
assumption about the difficulty of finding small factors of ϕ(N), where N is
a number whose factorization is unknown, and ϕ(·) is Euler’s totient function,
i.e. the number of positive integers less than or equal to N that are coprime to
N . The security of several cryptosystems is based on the presumed difficulty of
solving this problem [2,5,6,7]. In this paper, it will be shown how information
about the unknown factors of ϕ(N) can be obtained when the modulus N is
chosen as N = PQ2e, where P,Q > 2 are primes, e > 0 is an integer and P
hides the prime in question, such that the Φ-Hiding assumption is not valid in
this case. Moduli of the form N = PQ2e are called Multi-Power RSA moduli
and are used to speed up cryptographic operations [1]. In addition, it will be
shown that if two random composite integers instead of two primes are used, the
probability of choosing the integer that divides ϕ(N) reaches 99% if the integers
have at least 7 prime factors. Furthermore, the paper suggests an approach to
get more information about ϕ(N) without knowing the factorization of N .

The paper is organized as follows. In Section 2, two definitions of the Φ-Hiding
assumption are given. Our approach to show that the Φ-Hiding assumption is

J. Pieprzyk (Ed.): ASIACRYPT 2008, LNCS 5350, pp. 344–354, 2008.
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not valid in certain circumstances is presented in Section 3. Section 4 concludes
the paper and outlines areas for future research.

2 The Φ-Hiding Assumption

The Φ-Hiding assumption [3] can be defined in two different ways. The first
definition illustrates the computational problem the assumption is based on.

Definition 1 (Φ-Hiding assumption (1)). Given an integer N with unknown
factorization, it is computationally hard to decide whether a prime pi with 2 <
pi << N1/4 divides ϕ(N) or not.1

The second definition represents a special case of the assumption, since it is
assumed that exactly one of two given integers divides ϕ(N).

Definition 2 (Φ-Hiding assumption (2)). If p1 and p2 are two random,
small primes and N is constructed such that exactly one of these primes di-
vides ϕ(N), then there is no polynomial-time algorithm to distinguish which of
the primes p1 > 2 and p2 > 2 divides ϕ(N) with a probability significantly greater
than 0.5, if N is an integer with unknown factorization. If pi divides ϕ(N), it is
said that ϕ(N) hides pi.

In cryptographic protocols, Definition 2 of the Φ-Hiding assumption is used, since
in this case some previous knowledge is involved (i.e. which of the two primes
divides ϕ(N)), that can be used to create a necessary backdoor for asymmetric
cryptography. To the best of our knowledge, no attack on the Φ-Hiding assump-
tion has been published until now. In the next section, we present our approach
to show that the Φ-Hiding assumption is not valid when Multi-Power RSA mod-
uli are used.

3 The Φ-Hiding Assumption Revisited

The Φ-Hiding assumption is only valid when it is applied to a composite number
that cannot be completely factored in feasible time, since otherwise it would
be trivial to decide whether a prime divides ϕ(N) or not. Our approach to
decide whether a prime divides ϕ(N) for a composite number N uses the Jacobi
symbol. It can be evaluated efficiently, even for composite numbers with unknown
factorization [4]. The Jacobi symbol JP (r), for P prime, generalizes the Legrende
symbol and states information about quadratic residues: If a2 ≡ r (mod P ) for
given integers r and P has a solution in a, then JP (r) = 1, otherwise JP (r) = −1

1 Following the remarks of the original paper of Cachin, Micali and Stadler [3], N can
be efficiently factored when a prime > N1/4 of ϕ(N) is known, thus the Φ-Hiding
assumption asks for very small primes. Even if it is known which small primes pi

divide ϕ(N), if log pi is significantly smaller than (log N)c, for a constant c between
0 and 1, N cannot be factored significantly faster.
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(if gcd(P, r) > 1, then JP (r) = 0). For composite odd integers, the Jacobi
symbol is defined as JN (r) =

∏m
j=1 JPj (r)νj , if N = P ν1

1 . . . P νm
m . Furthermore,

a particular 2k-th root of unity is used to show that the values of the Jacobi
symbol are related to factors of ϕ(N), and that the Jacobi symbol adopts non-
random values when the evaluated integer r is a divisor of ϕ(N). Thus, the
novel idea to use the existence and the non-existence of 2k-th roots of unity in
finite fields/rings allows us to gain knowledge about the divisors of ϕ(N), which
in some cases can be used to make the decision whether a given integer divides
ϕ(N) or not. These results will be used to show that the Φ-Hiding assumption as
defined by Cachin, Micali and Stadler [3] is not valid when applied to a modulus
N = PQ2e, where P,Q > 2 are primes, e > 0 is an integer and P hides the
prime in question. Lemma 1 is central for our approach:

Lemma 1. Let ξ2k be any fixed primitive 2k-th root of unity and k ∈ N+, then:

i1−k
k−1∏
j=1

(
ξj
2k − ξ−j

2k

)
= k (1)

Proof (of Lemma 1). The polynomial f(X) = (Xk−1)/(X−1) = Xk−1+Xk−2+
... + 1 has ξj

k for j = 1, ..., k − 1 as its roots, where ξk is any fixed primitive kth
root of unity. Writing f(X) in factored form f(X) =

∏k−1
j=1 (X − ξj

k), we obtain
f(1) =

∏k−1
j=1 (1 − ξj

k) = k. Since

i1−k
k−1∏
j=1

(ξj
2k − ξ−j

2k ) = i1−k
k−1∏
j=1

ξj
2k

k−1∏
j=1

(1 − ξ−j
k ) = i1−kk

k−1∏
j=1

ξj
2k (2)

and since
∏k−1

j=1 ξj
2k = ξ

(k−1)k/2
2k = ξk−1

4 = ik−1, the product i1−k
∏k−1

j=1 ξj
2k van-

ishes and we get

i1−k
k−1∏
j=1

(ξj
2k − ξ−j

2k ) = k (3)

which proves the lemma. �
We now rewrite the (k − 1) terms covered by the product symbol in equation
(1), such that it contains a large square:

Lemma 2 (Square Lemma). Let k ∈ Z+ and k > 2. Then:
1. If k is odd:

k−1∏
j=1

(
ξj
2k − ξ−j

2k

)
=

(k−1)/2∏
j=1

(
ξj
2k + ξk−j

2k

)2
(4)

2. If k is even:

k−1∏
j=1

(
ξj
2k − ξ−j

2k

)
= 2i

(k−2)/2∏
j=1

(
ξj
2k + ξk−j

2k

)2
(5)



On the Validity of the Φ-Hiding Assumption in Cryptographic Protocols 347

Proof (of Lemma 2)
1. k is odd: Since k is odd, the j-th and the (k − j)-th factor for 1 ≤ j ≤ k − 1
can be paired. The result is:

(ξj
2k − ξ−j

2k ) · (ξk−j
2k − ξ

−(k−j)
2k ) = (ξj

2k − ξ−j
2k ) · (ξk−j

2k + ξj
2k)

= ξj
2kξ

k−j
2k + ξj

2kξ
j
2k − ξ−j

2k ξk−j
2k − ξ−j

2k ξj
2k = −1 + ξ2j

2k − ξk−2j
2k − 1

= ξ2j
2k − 2 − ξk−2j

2k = ξ2j
2k − 2 + ξk

2kξ
k−2j
2k

= ξ2j
2k − 2 + ξ

2(k−j)
2k = (ξj

2k + ξk−j
2k )2

The pairing contains a square. Since k− 1 is even, no term is left and a product
of (k − 1)/2 squares is generated, which proves the case for odd values of k.
2. k is even: Since k is even, the jth and the (k− j)th factor for 1 ≤ j < k/2 and
k/2 < j ≤ k − 1 can be paired, which leads to the same terms as in case 1. The
difference is that the factor

(
ξj
2k − ξ−j

2k

)
with j = k/2 remains. For this factor,

ξ
k/2
2k − ξ

−k/2
2k = (−1)1/2 − (−1)−1/2 = i − i−1 = i(1 − 1/i2) = 2i, which proves

the case for even values of k. �

By Lemma 2, the product in Equation (1) is transformed to a product with a
perfect square and the factor i1−k (k odd) and 2i2−k (k even), respectively.

3.1 Application to Finite Fields and Rings

In this section, the results are applied to finite fields FP with P being a prime
number. We distinguish between two cases. In the first case, we assume that a
ξ2k ∈ FP does not exist, and in the second case, we assume that a ξ2k ∈ FP

exists.

Case 1: A ξ2k ∈ FP does not exist. In this case, it is assumed that FP

does not contain a 2k-th root of unity. As a consequence, there is no integer
of order 2k and thus the factors

(
ξj
2k + ξk−j

2k

)
are not defined properly in FP .

Thus, it cannot be assumed that the product
∏(k−1)/2

j=1

(
ξj
2k + ξk−j

2k

)2
forms a

valid square in FP and vanishes from the Jacobi symbol. The integer k, which
nevertheless exists, has no defined counterpart on the left side of Equation 1.
In this case, JP (k) cannot be distinguished from a random coin flip between
1 and −1.

Case 2: A ξ2k ∈ FP exists. This leads to the fact that the square∏(k−1)/2
j=1

(
ξj
2k + ξk−j

2k

)2
obtained from Lemma 2 is valid in FP , since each ξ2k is

defined properly. Therefore, equation (1) can be written as a well defined con-
gruence in FP . Corollary 1 shows the outcome when the Jacobi symbol is applied
to this congruence and the square obtained from Lemma 2 is inserted.

Corollary 1. Let P be an odd prime number, k ∈ FP . Assume that a ξ2k ∈ FP

exists, then:
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1. If k is odd:

JP

⎛⎝(−1)(1−k)/2
(k−1)/2∏

j=1

(
ξj
2k + ξk−j

2k

)2

⎞⎠ = JP ((−1)(1−k)/2) = JP (k) (6)

2. If k is even:

JP

⎛⎝2(−1)1−k/2
(k−2)/2∏

j=1

(
ξj
2k + ξk−j

2k

)2

⎞⎠ = JP (2(−1)1−k/2) = JP (k) (7)

After the square has vanished from the Jacobi symbol, a simple congruence is
left. This congruence indicates a relationship between the value of the Jacobi
symbol and the divisors of ϕ(P ), because Corollary 1 is only valid if 2k divides
ϕ(P ). Again, this implicitly shows that it is important to distinguish between
the two cases of divisibility introduced above, since the square vanishes only
if it is defined properly. Otherwise, the Jacobi symbol of an arbitrary integer k
would always be equal to JP ((−1)(1−k)/2) or JP (2(−1)1−k/2), respectively, which
obviously is wrong.

Example: Let P = 31 with ϕ(31) = 30. By setting k = 5 due to (2·5)|30, there
must be an integer of order 10, e.g. 23 or 15. It does not matter which of them is
chosen here, since it disappears after applying the Jacobi symbol. Now, calculate
(−1)(1−5)/2 = (−1)−2 = 1. Since k is odd, J31((−1)(1−5)/2) = J31(1) = J31(5)
must hold, which is true since both sides are equal to 1.

Next, a Theorem is stated that describes the relationship between JP (k)
and ξ2k.

Theorem 1. Let P be an odd prime number, k ∈ FP . JP (k) and the divisors of
ϕ(P ) are connected via the following implications:
1. If k is odd, then:

If ξ2k ∈ FP exists ⇒ JP ((−1)(1−k)/2) = JP (k).
If JP ((−1)(1−k)/2) �= JP (k) ⇒ ξ2k ∈ FP does not exist.

2. If k is even, then:

If ξ2k ∈ FP exists ⇒ J
(
2(−1)1−k/2

)
= JP (k).

If J
(
2(−1)1−k/2

)
�= JP (k) ⇒ ξ2k ∈ FP does not exist.

Proof (of Theorem 1)
The proof of the theorem follows directly from Corollary 1. �

Theorem 1 indicates that either a divisor k of ϕ(P ) must be known to con-
clude that the corresponding Jacobi symbols JP (k) and JP ((−1)(1−k)/2) (or
J
(
2(−1)1−k/2

)
) are equal, or it must be tested whether the two Jacobi symbols

JP (k) and JP ((−1)(1−k)/2) (or J
(
2(−1)1−k/2

)
) are different in order to get the

information that k cannot be a divisor of ϕ(P ). In the two other cases, no in-
formation can be obtained. The reason is that either the k-th root of −1 is not
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defined, or from the equality of the Jacobi symbols it cannot be concluded that
k divides ϕ(P ).

To summarize, if 2k divides ϕ(P ), the Jacobi symbol of k adopts non-
random values. Furthermore, Corollary 1 shows that the resulting congruences
JP ((−1)(1−k)/2) ≡ JP (k) and JP (2(−1)1−k/2) ≡ JP (k) for odd and even values
of k are independent of the chosen ξ2k. Thus, it is only essential that a ξ2k exists
in FP , but it is not necessary to know it.

3.2 Leakage Corollaries

In this section, we present tables for special composite integers N that contain
the values the Jacobi symbol must adopt to leak information about the divisors
of ϕ(N). For composite integers N with unknown factorization, we do not know
the order of an arbitrary integer a, but we can compute the Jacobi symbol JN (a).
Thus, we are only able to use the first implication of item 1 and and the second
implication of item 2 of Theorem 1. For clarity, the following corollary divides
these items further with respect to different residue classes of a prime P and an
integer k.

Corollary 2 (Leakage corollary for prime numbers). Let P be an odd
prime number, k ∈ FP . In any of the following six cases, there does not exist a
ξ2k ∈ FP .
If P ≡ 1 (mod 4):

If k is odd: If JP

(
i1−k

)
= 1 �= −1 = JP (k).

If k is even: If JP

(
2i2−k

)
= (−1)(p

2−1)/8 �= JP (k).

If P ≡ 3 (mod 4):

If k ≡ 0 (mod 4): If JP

(
2(−1)1−k/2

)
= (−1)(P

2+7)/8 �= JP (k).
If k ≡ 1 (mod 4): If JP

(
(−1)(1−k)/2

)
= 1 �= JP (k).

If k ≡ 2 (mod 4): If JP

(
2(−1)1−k/2

)
= (−1)(P

2−1)/8 �= JP (k).
If k ≡ 3 (mod 4): If JP

(
(−1)(1−k)/2

)
= −1 �= JP (k).

Corollary 2 states which two Jacobi symbols must differ to be sure that the
integer k is not a divisor of ϕ(P ). Thus, in some cases, the access to the Jacobi
symbol is sufficient to decide whether a prime divides P − 1 or not. Next,
the corollary is extended to composite integers N being the product of two
distinct prime numbers P and Q. This leads to the tables shown in Figure 1.
The tables must be read in the following way: The four tables handle the four
different residues of k modulo 4. Furthermore, the first two tables (horizontal
direction) show the 64 combinations of the 8 different residues of P and Q
modulo 16 (P,Q > 2) for even residues of k. The third tables was reduced to
one a single row since it contains 64 values of −1. The fourth table shows the
64 combinations of the 8 different residues of P and Q modulo 16 (P,Q > 2) for
k ≡ 3 (mod 4). The entries for each combination of P and Q illustrate which
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Q \ P

k=0+4s 1 3 5 7 9 11 13 15

1 -1 -1 +1 +1 -1 -1 +1 +1

3 -1 -1 +1 +1 -1 -1 +1 +1

5 +1 +1 -1 -1 +1 +1 -1 -1

7 +1 +1 -1 -1 +1 +1 -1 -1

9 -1 -1 +1 +1 -1 -1 +1 +1

11 -1 -1 +1 +1 -1 -1 +1 +1

13 +1 +1 -1 -1 +1 +1 -1 -1

15 +1 +1 -1 -1 +1 +1 -1 -1

Q \ P

k=2+4s 1 3 5 7 9 11 13 15

1 -1 +1 +1 -1 -1 +1 +1 -1

3 +1 -1 -1 +1 +1 -1 -1 +1

5 +1 -1 -1 +1 +1 -1 -1 +1

7 -1 +1 +1 -1 -1 +1 +1 -1

9 -1 +1 +1 -1 -1 +1 +1 -1

11 +1 -1 -1 +1 +1 -1 -1 +1

13 +1 -1 -1 +1 +1 -1 -1 +1

15 -1 +1 +1 -1 -1 +1 +1 -1

Q \ P

k=1+4s 1 3 5 7 9 11 13 15

* -1 -1 -1 -1 -1 -1 -1 -1

Q \ P

k=3+4s 1 3 5 7 9 11 13 15

1 -1 +1 +1 -1 -1 +1 +1 -1

3 +1 -1 +1 -1 +1 -1 +1 -1

5 -1 +1 +1 -1 -1 +1 +1 -1

7 +1 -1 +1 -1 +1 -1 +1 -1

9 -1 +1 +1 -1 -1 +1 +1 -1

11 +1 -1 +1 -1 +1 -1 +1 -1

13 -1 +1 +1 -1 -1 +1 +1 -1

15 +1 -1 +1 -1 +1 -1 +1 -1

Fig. 1. Entries: JPQ(k). Tables for N = PQ for different residues of P and Q modulo 16.

value of the Jacobi symbol JN (k) reveals that there is no integer of order 2k for
at least one of the primes P and Q. For example, the first entry of −1 in the
upper left table represents the case k ≡ 0 (mod 4) and P ≡ Q ≡ 1 (mod 16).
Applying Corollary 2 to this combination yields JP

(
2i2−k

)
= JQ

(
2i2−k

)
= 1.

The corresponding table entry of −1 shows that JN (k) must be −1, therefore at
least for one of the primes P or Q, there is no integer of order 2k.

The conclusion is too weak to obtain knowledge regarding the Φ-Hiding as-
sumption, since φ(N) could still be divisible by 2k. Some integers, even with
unknown factorization, allow to obtain more information about the divisors of
ϕ(N). These are integers of the form N = PQ2e, since one of the two involved
primes is a square, which is ignored by the Jacobi symbol. In this way, the
Jacobi symbol leaks information about the other prime involved. If N has the
form N = PQ2e, then for the Jacobi symbol and a co-prime integer k > 2,
JN(k) = JPQ2e(k) = JP (k) · JQ(k)2e = JP (k).

Using this fact, the tables displayed in Figure 2 show the values the Jacobi
symbol JN (k) must adopt such that 2k does not divide ϕ(P ).

Example: Suppose N = 1323801442080750176044871 and N is of the form
N = PQ2e, e > 0. Suppose we want to test whether k = 41 divides P − 1. Since
k ≡ 1 (mod 4), the third table must be used. Thus, JN (41) = −1. The table
shows that whenever the Jacobi symbol of k is negative, k can not divide P − 1.
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Q \ P

k=0+4s 1 3 5 7 9 11 13 15

* -1 -1 +1 +1 -1 -1 +1 +1

Q \ P

k=2+4s 1 3 5 7 9 11 13 15

* -1 +1 +1 -1 -1 +1 +1 -1

Q \ P

k=1+4s 1 3 5 7 9 11 13 15

* -1 -1 -1 -1 -1 -1 -1 -1

Q \ P

k=3+4s 1 3 5 7 9 11 13 15

* -1 +1 -1 +1 -1 +1 -1 +1

Fig. 2. Entries: JPQ2e(k). Tables for N = PQ2e for different residues of P and Q
modulo 16.

In the next section, the last two tables in Figure 2 are used to invalidate the
Φ-Hiding assumption when using moduli of the form N = PQ2e and choosing
P to hide the prime number in question.

3.3 Application to the Φ-Hiding Assumption

In both Definitions 1 and 2 of Section 2, it is only required that N is a composite
integer with unknown factorization. By applying our results from the previous
sections, we show that this requirement is not sufficient. If the Φ-Hiding assump-
tion is applied to a modulus of the form PQ2e, where the integer P is constructed
in such a way that P hides a given prime, then the Φ-Hiding assumption is vio-
lated with non-negligible probability. Moduli of this form, mostly with e = 1, are
used by several cryptographic protocols, as described by Boneh and Shacham [1]
and used, e.g., by Poupard and Stern [8], to speed up some computations that
profit from the form PQ2e with e > 0 instead of PQ. Using the results of the
previous sections, the following theorem can be stated:

Theorem 2. Let N = PQ2e and suppose that P hides p. Then, the Φ-Hiding
assumption from Definition 2 can be violated. An attacker can choose the hidden
prime with an average success probability of 3

4 .

The following notation is used: N is again of the form N = PQ2 and T(N, k) is
the value of the corresponding table entry of Figure 2.

Proof (of Theorem 2). Suppose that either p1 or p2 divides ϕ(N) and an attacker
has to decide which of them divides ϕ(N). Without loss of generality, we assume
that p1 is the prime that is hidden by P . For this prime, JN (p1) �= T(N, p1) holds,
because it divides P − 1 (see Theorem 1). Thus, the attacker will find at least
one matching Jacobi symbol concerning the primes p1 and p2. From the attackers
point of view, the probability that a prime pi, i ∈ {1, 2} divides ϕ(N) is

Prob[pi|ϕ(N)] =

⎧⎪⎨⎪⎩
0, JN (pi) = T(N, pi)
1, JN (pi) = T(N, pi)
1
2 , JN (pi) = JN (pi)

(8)
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where pi denotes the other one of the two primes. Note the factorization of N
is not needed to construct the tables in figure 2. They are universally valid for
moduli of the form N = PQ2e and thus known to the attacker. Whenever the
Jacobi symbol JN (pi) is equal to T(N, pi), Theorem 1 states that pi cannot be
a divisor of ϕ(N), thus the probability is Prob[pi|ϕ(N)] = 0. Consequently, the
Jacobi symbol JN (pi) must be not equal to T (N, pi), which indicates that it
is the hidden prime. If both Jacobi symbols do not match the table entry, no
information is leaked and the attacker cannot argue in any direction. Thus, in
this case the probability is Prob[pi|ϕ(N)] = 1

2 . Since the primes pi are chosen
randomly, it can be assumed that the Jacobi symbol JN (p2) adopts random
values of −1 and +1. The calculation of the total probability for the attacker
to choose the hidden prime correctly is as follows: Whenever a Jacobi symbol
evaluates to a value unequal to the table entry, it cannot be the prime that
is hidden by P , so the attacker chooses the other one, the hidden one, with a
probability of 1. When both Jacobi symbols evaluate to �= T(N, ·), the attacker
chooses the right one with a probability of 1

2 . Thus, in total there is an aver-
age probability of 1

2 · 1 + 1
2 · 1

2 = 3
4 to choose the correct prime, which proves

Theorem 2. �

Composite Integers. The situation is even worse when the Φ-Hiding assump-
tion is used with composite integers n1 and n2 instead of the primes p1 and p2,
as done, for example, by Gentry et al. [5]. Assume that there is a modulus of
the form N = PQ2 and we want to determine whether the composite integer ni,
which is the product of m distinct primes greater than 2, divides ϕ(N). Suppose
the Jacobi symbol is applied and the result does not allow to decide whether
ni divides ϕ(N) or not. In this case, we can proceed with the prime factors of
ni. Since ni is

∏m
j=1 pj, the Jacobi symbol can simply be evaluated for all of its

prime factors. If there is a prime pj with a Jacobi symbol that leaks the required
information, we know that ni cannot divide ϕ(N), since from ni|ϕ(N) it follows
that pj|ϕ(N) must also hold. If the integers in question consist only of 7 prime
numbers, there already is a success probability of ≈ 99% to choose the right
integer.

Corollary 3. If n1 =
∏l1

j=1 pi and n2 =
∏l2

j=1 qj are two random, composite in-
tegers that are odd and square free and n1 is the hidden integer, then an attacker
has a success probability of (1 − 1

2l2 ) to choose the hidden integer.

Proof. Let n1 =
∏l1

j=1 pj and n2 =
∏l2

j=1 qj be two odd, square free integers.
If N = PQ2e and exactly one of the two integers n1 and n2 divides ϕ(N), the
probability to choose the right one of the two possibilities is as follows. The case
l1 = l2 = 1 was already addressed in the paper; it has a success probability of
3
4 . Note that if ni|ϕ(N), then also each divisor of ni is a divisor of N . Thus, if
we find a divisor of ni that does not divide ϕ(N), we can conclude that ni is
not the integer hidden by ϕ(N). Since the same argument applies to all divisors
that are prime numbers, it is sufficient to check all prime factors of ni whether
they are divisors of ϕ(N) or not.
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Table 1. Success Probability

l1 = l2 1 2 3 4 5 6 7
0.5 0.75 0.875 0.938 0.969 0.984 0.992

Without loss of generality, we assume that n1 is the integer hidden by ϕ(N). For
each of its l1 prime factors pi, JN (pi) �= T(N, pi) must hold. For the other integer
n2, it follows that for each of its l2 prime factors qi it holds with a probability
of 1

2 that JN (qi) �= T(N, qi) and with a probability of 1
2 that JN (qi) = T(N, qi).

Whenever the first case occurs, no knowledge is gained. But whenever the latter
case occurs, the information that n2 cannot be a divisor of ϕ(N) is gained, so n1
is the hidden number. The method fails if for all prime factors JN (qi) �= T(N, qi)
is obtained, which occurs with a probability of

∏l2
i=1 Prob[JN (qi) �= T(N, qi)] =

1
2l2 . Thus, the success probability of choosing the right integer is (1 − 1

2l2 ). �

Table 1 illustrates the success probability of choosing the right prime for different
numbers of prime factors.

3.4 Discussion

In the previous section we have shown that in some circumstances it can be
efficiently decided whether a given prime p divides ϕ(N) or not. A necessary
condition is that moduli of the form PQ2e with e > 1 are used and P hides p. If
someone implements a cryptographic protocol based on the Φ-Hiding assumption
and uses such moduli, an attacker has an average probability of 3

4 to choose the
right prime, if the primes the attacker can choose from are selected randomly. In
cases when it is desired to ask which composite number ni is hidden by P , the
success probability would be even greater than 3

4 , since for each prime factor of
n the attacker has the success probability of 3

4 .
There are two possible countermeasures to the presented attack. First, moduli

of the form PQ2e, e > 1 should not be used in conjunction with the Φ-Hiding
assumption. Second, the primes a user can choose from should not be selected
randomly, but only those primes that have a positive Jacobi symbol regarding
N should be used. Thus, the assumption as stated in the original form should
be adapted to avoid its vulnerability to the presented attack.

4 Conclusions

In this paper, it was shown that by utilizing an identity of 2k-th roots in ZN and
the Jacobi symbol, it is possible to gain knowledge about the unknown factors
of Euler’s totient function ϕ(N) even if N is computationally hard to factorize.
This knowledge was used to invalidate the Φ-Hiding assumption as defined by
Cachin, Micali and Stadler [3] for moduli of the form N = PQ2e with P hiding
the prime in question, since the Jacobi symbol adopts non-random values when
being applied to a factor of ϕ(N). Our results are important for evaluating
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the security of cryptographic protocols that use the Φ-Hiding assumption and
exemplify the situation when it has to handled with care.

There are several areas for future work. For example, an interesting issue is
to examine the case when the integer k does not divide ϕ(N). In this case,
the identity is not well defined. Thus, it should be investigated whether there
are methods to bypass this problem to obtain further relationships between the
Jacobi symbol and the factors of ϕ(N). Since the approach makes use of an
identity of 2k-th roots in ZN and this identity is only one of many, future work
should be directed to analyze other results of such identities that may offer attack
possibilities on the Φ-Hiding assumption.

Acknowledgements. The authors would like to thank Frederik Vercauteren for
his excellent comments to improve the presentation of the material contained in
this paper.
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Abstract. Every public-key encryption scheme has to incorporate a cer-
tain amount of randomness into its ciphertexts to provide semantic security
against chosen ciphertext attacks (IND-CCA). The difference between the
length of a ciphertext and the embedded message is called the ciphertext
overhead. While a generic brute-force adversary running in 2t steps gives a
theoretical lower bound of t bits on the ciphertext overhead for IND-CPA
security, the best known IND-CCA secure schemes demand roughly 2t bits
even in the random oracle model. Is the t-bit gap essential for achieving
IND-CCA security?

We close the gap by proposing an IND-CCA secure scheme whose
ciphertext overhead matches the generic lower bound up to a small con-
stant. Our scheme uses a variation of a four-round Feistel network in
the random oracle model and hence belongs to the family of OAEP-
based schemes. Maybe of independent interest is a new efficient method
to encrypt long messages exceeding the length of the permutation while
retaining the minimal overhead.

1 Introduction

1.1 Background

Motivation. Ever since Goldwasser and Micali introduced the concept of “prob-
abilistic encryption” [16] it is well understood that every public-key encryption
scheme has to incorporate a certain amount of randomness into their ciphertexts
in order to achieve semantic security. Thus a ciphertext c must be longer than
the embedded message m and the difference �oh := |c| − |m| is called the cipher-
text overhead. In order to achieve stronger security properties, the ciphertext
overhead tends to be even larger due to the use of extended randomness or extra
integrity checking mechanisms. In this paper we are asking for the minimal pos-
sible ciphertext overhead to protect against adaptive chosen ciphertext attacks
(IND-CCA security).

A Generic Lower Bound. A ciphertext overhead of �oh bits means that at
most �oh bits of randomness can be incorporated into a ciphertext. A brute-force
� Supported by the research program Sentinels (http://www.sentinels.nl). Sentinels
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Table 1. Upper bounds on the ciphertext overhead (up to small additive constants)
in OAEP variants for (2ε, 2−t)-adversaries. The lower bound is �oh ≥ t + ε. OW: one-
wayness. SPD-OW: set partial domain one-wayness.

Scheme Ciphertext Assumption #Feistel
Overhead on TDP rounds

OAEP [4, 15] �oh ≤ 3t + 2ε SPD-OW 2
OAEP+ [25] �oh ≤ 3t + 2ε OW 2
PSS-E [10] �oh ≤ 2t + 2ε SPD-OW 2
PSP2 S-Pad [14] �oh ≤ 2t + 2ε OW 4
OAEP-3R [23] �oh ≤ 2t + ε OW 3
OAEP-4X (ours) �oh = t + ε OW 4

adversary in the IND-CPA experiment can exhaustively search for the random-
ness used for the challenge ciphertext. After encrypting one of the challenge
messages up to 2t times, it has an advantage of Ω(2t/2�oh). Requiring the ad-
vantage to be smaller than 2−ε (and ignoring small additive constants), it must
hold that

�oh ≥ t + ε .

Accordingly, t+ε bits are a lower bound on the ciphertext overhead with respect
to adversaries running in 2t steps and having a success probability of at most 2−ε,
by counting encryption as one step. (We refer to Section 2 for a more formal
treatment.) We say that the ciphertext overhead is optimal if it matches the
lower bound up to a (small) constant term, i.e., if �oh ≤ t+ ε+O(1). Since every
IND-CPA adversary is also an IND-CCA adversary, the above lower bound also
applies to IND-CCA secure schemes.

For a number of schemes the ciphertext overhead primarily depends on the
size of the underlying number-theoretic primitive, which often suffers from more
sophisticated attacks. For example, ciphertexts of ElGamal-type schemes con-
tain at least one group element of overhead which must be longer than 2t + ε
bits due to the generic square-root bounds on the discrete-logarithm problem.
Hence, the ciphertext overhead of such schemes can never match the generic
lower bound.

Upper Bounds from Existing Schemes. Among the cryptosystems based
on trapdoor permutations, there are ones whose ciphertext overhead is essen-
tially independent of the size of the underlying permutation. We focus on such
schemes for the rest of the paper. An example with optimal ciphertext overhead
is the basic version of OAEP [4], which omits the zero padding and therefore
only offers IND-CPA security. Considering IND-CCA security, however, OAEP
loses its optimal ciphertext overhead as exemplified in Section 2.2. On the other
hand, concrete security proofs for existing schemes provide upper bounds on the
ciphertext overhead with which the desired level of security is attained. Table 1
summarizes the ciphertext overhead of existing schemes. Its content is discussed
in the rest of this section.
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IND-CCA Security via Validity Checking. As in OAEP, a common ap-
proach [25, 19, 21, 10, 20, 14] to achieve IND-CCA security is to attach a
deterministic validity string (such as zero-padding or a hash of the message,
etc) to the message (or the ciphertext) so that decryption can verify and re-
ject almost all invalid ciphertexts. The ciphertext overhead is thus determined
by the size of the randomness and the validity string. OAEP and the schemes
in [25, 19] require randomness of 2t+ε bits plus a validity string of t+ε bits. (See
Section 2.2 for details on how to compute these values.) Their ciphertext over-
head is thus �oh = 3t+2ε. The schemes in [10, 14] have a better security reduction
and achieve �oh = 2t + 2ε, which seems the best one can expect as long as en-
cryption incorporates a validity string into the ciphertexts.

Validity-free Encryption. A considerable step towards minimizing the ci-
phertext overhead was the validity-free approach introduced by Phan and
Pointcheval [22, 23]. In their scheme (called 3-round OAEP) decryption never re-
jects but returns a randomly looking message if a given ciphertext was not prop-
erly created with the encryption algorithm. Since no validity string is needed,
the ciphertext overhead only depends on the randomness. As we shall discuss
later, their security reduction however forces the ciphertext overhead to be
�oh = kr = 2t + ε bits because of a “quadratic term” qhqd/2kr that appears in
the success probability of their reduction. A more recent scheme in [13] suffers
from the same problem. In summary, these schemes successfully eliminate the
validity string but instead demand an extended randomness to prove IND-CCA
security.

Encrypting long messages. The problem of getting optimal overhead be-
comes even more difficult when considering longer messages. Notice that all
above schemes limit the messages to the size of the permutation minus the
overhead. To encrypt long inputs, [4, 17] suggest to stretch the width of the
Feistel network to cover the entire message and apply the permutation only to
a part of the output. But no general and formal treatment has been given to
this methodology and it is unclear if and how it affects the ciphertext overhead.
Furthermore, for schemes that use several Feistel rounds, this approach is ex-
pensive in computation as every internal hash function has to deal with a long
input or output. A number of methods for constructing hybrid encryption are
available (e.g., [12, 8, 9, 1, 6]), but they all increase the ciphertext overhead
mainly because a one-time session-key is being encrypted.

1.2 Our Contribution

Our main contribution is an IND-CCA-secure public-key encryption scheme
with optimal ciphertext overhead based on arbitrary family of trapdoor one-
way permutation in the random oracle model. We follow the validity-free ap-
proach of 3-round OAEP [22] but instead use a 4-round Feistel network. (See
Figure 1 in Section 3 for a diagram.) We stress that the essential difference is
not the increased number of rounds; it is rather the way we bind the message
to the randomness in the first round of the Feistel network while most of OAEP
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variants separately input the message and the randomness. (See Section 1.3 for
more intuition.)

Our contribution is mostly theoretical; Our scheme demonstrates that lower
and upper bounds on the ciphertext overhead with respect to IND-CCA security
can match up to a small additive constant in the random oracle model. The
design approach that binds the message to the randomness and the security
proof may be of technical interest, too. In practice, when implemented with
an 1024-bit RSA permutation (80-bit security), our scheme encrypts 943-bit
and longer messages while it is 863 bits for a known best scheme, which is at
most 9% increase of the message space. Though such a t-bit saving may have
limited practical impact in general, the scheme could find applications with edgy
requirements in bandwidth.

We also introduce a novel method to securely combine simple passively secure
symmetric encryption with the Feistel network to encrypt long messages while
retaining the optimal ciphertext overhead. While the construction is interesting
in that it suggests a new variant of a KEM that allows partial message recovery,
it is interesting also in a theoretical sense as it illustrates the difference in the
properties of the round functions in a 4-round Feistel network as it will be
discussed later.

1.3 Technical Overview

Achieving Optimal Overhead. We explain the technical details in 3-round
OAEP that seem to make it difficult to prove an optimal ciphertext overhead.
The extended randomness of size kr ≥ 2t + ε stems from a quadratic term
qh qd/2kr in the success probability of the security reduction. Since an adversary
running in time 2t can make at most qh ≤ 2t hash oracle queries and qd ≤ 2t

decryption queries, we must assume that qh qd ≈ (2t)2. Requiring qh qd/2kr ≤
2−ε results in kr ≥ 2t + ε.

Where does this quadratic loss in the reduction actually come from? In the
security proof, every time the simulated decryption oracle receives a ciphertext
that was not legitimately generated by asking the random oracles, it returns a
random plaintext. Later, it patches the hash table for the simulated randomness
so that the hash output looks consistent. The patching fails if the randomness
has already been asked to the random oracle. This happens with probability at
most qh/2kr since there are at most qh hash queries. Throughout the attack,
there are at most qd decryption queries and hence the error probability of the
patching is bounded by qh qd/2kr .

Our main technical contribution is to provide a security analysis for our
scheme where only linear terms of the form qh/2kr or qd/2kr appear. We over-
come the problem observed in 3-round OAEP by feeding the randomness together
with a part of the input message (say m1) into the hash function, i.e., by com-
puting H1(r ‖m1). This link between the randomness and the message allows
the reduction to partition hash queries by m1 and therefore reducing the error
probability in patching the hash table to qh,m1/2kr , where qh,m1 is the num-
ber of hash queries with respect to m1. By summing up the probabilities for
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all m1 returned from the decryption oracle, the error probability is bounded by∑
m1

qh,m1/2kr ≤ qh/2kr . The quadratic term is thus eliminated. The fourth
round of the Feistel network is then needed to cover m1.

Encrypting Long Messages. In order to encrypt long messages exceeding
the size of the permutation (while retaining the optimal overhead), we incorpo-
rate the idea of the Tag-KEM/DEM framework [1] that allows to use a simple
passively secure length-preserving symmetric cipher. The exceeding part of the
message is encrypted with the symmetric cipher whose key is derived from the
randomness used in the asymmetric part of encryption. The symmetric part is
then tied to the asymmetric part of the ciphertext by feeding it back into one
of the hash function used in the Feistel network. Conceptually, our approach is
similar to Tag-KEMs with partial ciphertext recovery [6] but in our case the
message can be directly recovered. Namely, the main part of our construction
can be used as a Tag-KEM with partial message recovery.

A concrete technical difficulty is how and where to include the feedback from
the symmetric part. Including it in the F-function (random oracle) in every
round of the 4-round Feistel network should work but may be redundant. Is it
then secure if the feedback is given only to one of the F-functions? Which one?
[24] showed that the inner two rounds have different properties than the outer
two ones. Does that also apply to our case? Our result shows that it is sufficient
to give the feedback to one of the inner two hash functions. We remark that when
including the feedback only in the outer hash functions then either our security
proof does no longer hold or there is a concrete attack. We refer to Section 3.3
for further details.

1.4 Related Work

In Other Models. [22] constructed a simple scheme with optimal ciphertext
overhead in the ideal full-domain permutation model. Looking at the construc-
tion and the security proof, however, one can see that the model is very strong
and has little difference from idealizing the encryption function itself. Recently
it is shown that ideal full-domain permutation can be constructed using random
oracles [11] but the reduction is very costly and a tight reduction needed to re-
tain the optimal overhead is highly unlikely. Note that [22] could only present a
non-optimal scheme in the random oracle model, which shows the difficulty of
achieving the optimality.

For Short Messages. Schemes based on general one-way permutations can
never offer the optimal overhead for messages shorter than the size of the permu-
tation. For the state of art in this issue, we refer to [2] which presents a scheme
that offers non-optimal but �oh ≥ 2t + ε that is currently the shortest overhead
for messages of arbitrary (small) length. It is left as another open problem to
construct a scheme with optimal overhead for arbitrary message size.
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2 Lower Bound of Ciphertext Overhead

We follow the standard definition of public-key encryption PKE = (G, E ,D) and
indistinguishability against chosen plaintext attacks (IND-CPA) and adaptive
chosen ciphertext attacks (IND-CCA). For formal definitions, we refer to the
full version [3].

2.1 General Argument

Let PKE = (G, E ,D) be a public-key encryption scheme and let M and R be
the message and randomness space associated to a public-key pk . For (pk , sk) ←
G(1k) and M ∈ M, let C(M) denote the set of ciphertexts that recover message
M . The ciphertext overhead �k

oh with respect to k is defined by �k
oh = |Epk (M ; r)|−

|M |. To obtain a simple form of the lower bound, we restrict ourselves to PKE
where �k

oh is a fixed positive constant for any pk ∈ G(1k), M ∈ M and r ∈ R.
Let A be an adversary that runs in 2t steps and breaks the semantic (IND-

CPA) security of PKE with advantage at most 2−ε. To study the relation between
the adversary’s ability and the ciphertext overhead, we treat t, ε independently
from k and represent the bounds of the ciphertext overhead as a function �k

oh(t, ε).
In the following argument, we count every encryption as one step. A launches
the following attack.
1. Given pk generated by (pk , sk) ← G(1k), pick arbitrary M0 and M1 of the

same length from M. Send (M0,M1) to the challenger and receive c∗ =
Epk (Mb) where b ← {0, 1}.

2. Repeat the following up to 2t times.
– r ← R, c = Epk (M0; r).
– If c = c∗, output b̃ = 0 and stop.

3. Output b̃ = 1.
For a string c, let p(c) denote the probability that c = Epk (M0; r) happens for

uniformly chosen r. Similarly, let p′(pk ) denote the probability that pk is selected
by G(1k). The advantage of adversary A in breaking the semantic security with
respect to pk is

AdvA,pk = |Pr[b̃ = 0 | b = 0] − Pr[b̃ = 0 | b = 1]|
= Pr[b̃ = 0 | b = 0] − 0

=
∑

c∈C(M0)

p(c)(1 − (1 − p(c))2
t

). (1)

Let η be the min-entropy with respect to the ciphertexts in C(M0) in bits. Since
p(c) ≥ 1

2η for any c ∈ C(M0),

AdvA,pk ≥
∑

c∈C(M0)

p(c)(1 − (1 − 1
2η

)2
t

) ≥ 2t

2η
− 2t − 1

22η
. (2)
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Since η ≤ �k
oh, we have

AdvA(k) =
∑

pk∈G(k)

p′(pk ) · AdvA,pk

≥
∑

pk∈G(k)

p′(pk ) ·
(

2t

2�k
oh
− 2t − 1

22�k
oh

)

≥ 1
2
· 2t

2�k
oh
. (3)

Since we require AdvA(k) ≤ 2−ε, it holds that 2−ε ≥ 1
2 · 2t

2�k
oh

for t, ε ≥ 1. Thus
we have the lower bound:

�k
oh(t, ε) ≥ t + ε− 1 . (4)

If c ← Epk (M ; r) is bijective with respect to c and r, the adversary can search r

one by one without duplication and the advantage for this case is AdvA,pk = 2t

2η ,
which results in �k

oh(t, ε) ≥ t + ε.
In the above discussion we used the simplified argument to count one en-

cryption as one single time unit. More generally, one should count each funda-
mental cryptographic operation (such as hashing, group operation, etc.) as one
step. Hence the value 2t is understood as the total number of times the adver-
sary performs the fundamental cryptographic operations. A precise assessment
is possible by incorporating an adequate scaling factor that represent the exact
number of steps (depending on the computational model).

2.2 Example: Ciphertext Overhead of OAEP

OAEP includes randomness of size kr and zero-padding of size kv. These parame-
ters define the ciphertext overhead as �oh = kr +kv. Together with the size of per-
mutation, n, they are provided as a security parameter k = (n, kr, kv). According
to [15, Th. 1], the advantage of an adversary A against the IND-CCA security of
OAEP, making up to q decryption and hash queries is upper bounded by

Advcca
A (k) ≤ εspd(n) +

c q2

2kr
+

c′q
2kv

, (5)

where εspd(n) is the probability of breaking set partial one-wayness of the un-
derlying trapdoor permutation of size n, and c, c′ ≥ 1 are two (small) constants.

Consider an (2t, 2−ε) adversary that can make at most q ≤ 2t oracle queries.
Since parameter n can be chosen essentially independently from kr and kv, we
can safely assume that εspd(n) is small enough. Assuming εspd(n) ≤ c′′ 2−ε with
a constant 0 < c′′ ≤ 1

2 for concreteness, each of the remaining two terms in (5)
must be smaller than 2−ε − εspd(n) ≥ (1 − c′′) 2−ε. Namely,

c 22t

2kr
≤ (1 − c′′) 2−ε and

c′2t

2kv
≤ (1 − c′′) 2−ε (6)
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Fig. 1. The diagram of (a part of) encryption. Input message is m = m1 ‖ m2 ‖ me ∈
{0, 1}km1 ×{0, 1}km2 ×{0, 1}∗ and the randomness is r ∈ {0, 1}kr . The actual ciphertext
is (u, c) where u = f(t ‖ s).

must hold. Accordingly, in order to attain the desired security level, it is sufficient
to choose

kr = 2t + ε and kv = t + ε (7)

plus some small positive constants. As a result, the ciphertext overhead of OAEP
is upper bounded by

kr + kv = 3t + 2ε + O(1). (8)

3 Proposed Scheme

3.1 Description

Our construction requires a symmetric-key encryption scheme SEke = (E,D) and
a trapdoor permutation family Pn as building blocks. The symmetric encryption
scheme SE must be length-preserving and passively secure (indistinguishable
against passive attacks), and the trapdoor permutation family must be one-way.
For formal definitions, we refer to the full version [3].

Let (n, ke, kr) be a set of security parameters where n represents the bit-length
of the trapdoor permutation, ke is the key size of the symmetric-key encryption,
and kr is the size of randomness incorporated into the ciphertext. The proposed
scheme PKE = (G, E ,D) is the following. See also Figure 1 for a diagram of
encryption.

Key Generation G: Given a security parameter k = (n, ke, kr) for n ≥ 6kr,
set parameters km1 and km2 so that

km1 ≥ 2kr, km2 ≥ 3kr, n = kr + km1 + km2 (9)
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are fulfilled. Then select (f, f−1) ← Pn (the trapdoor permutation genera-
tor) and hash functions G and Hi for i = 1, 2, 3, 4 such that

G : {0, 1}kr+km1 → {0, 1}ke, H1 : {0, 1}kr+km1 → {0, 1}km2 ,
H2 : {0, 1}km2 → {0, 1}kr+km1 , H3 : {0, 1}∗ → {0, 1}km2 ,
H4 : {0, 1}km2 → {0, 1}kr+km1 .

The private-key is f−1. The public-key includes f , SEke , and the hash func-
tions with associated parameters.

Encryption E: Given a plaintext m ∈ {0, 1}∗, first chop it into three blocks,
m1, m2, and me such that

m = m1 ‖m2 ‖me ∈ {0, 1}km1 × {0, 1}km2 × {0, 1}∗.

Then choose random r ← {0, 1}kr and compute

z = r ‖m1, w = G(z), c = Ew(me),
h1 = H1(z), v = h1 ⊕m2, h2 = H2(v), d = h2 ⊕ z,
h3 = H3(d ‖ c), s = h3 ⊕ v, h4 = H4(s), t = h4 ⊕ d,

and u = f(t ‖ s). The ciphertext is (u, c) ∈ {0, 1}n × {0, 1}∗.

Decryption D: Given a ciphertext (u, c) ∈ {0, 1}n × {0, 1}ke, compute y =
f−1(u) and parse y as y = t ‖ s ∈ {0, 1}kr+km1 × {0, 1}km2 . Then compute
the following values:

h4 = H4(s), d = h4 ⊕ t, h3 = H3(d ‖ c), v = h3 ⊕ s,
h2 = H2(v), z = h2 ⊕ d, h1 = H1(z), m2 = h1 ⊕ v,
w = G(z), me = Dw(c),

and parse z = r ‖m1 ∈ {0, 1}kr × {0, 1}km1 . The output is m1 ‖m2 ‖me.

3.2 Security and Optimality

The following theorems hold for PKE described in the previous section. A proof
sketch is in Section 4 and the complete proof is in [3].

Theorem 1 (Chosen Ciphertext Security). Suppose A is an adversary that
runs in time τ with at most qh hash queries and qd decryption queries. Then there
exist an adversaries B that runs in time at most τ + O(q2

h) and an adversary C
that runs in time at most τ + O(1) with

Advcca
A (k) ≤ Advind-pa

C,SE (ke) + 2Advowp
B,P (n) + O(

qh + qd

2kr
) .

Note that the number of hash queries includes the ones made through the decryp-
tion queries. In an asymptotic sense, Theorem 1 states that the above scheme
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is semantically secure against adaptive chosen message attacks in the random
oracle model if the trapdoor permutation P is one-way and SE is passively secure.

As it is the case for most OAEP variants, our security reduction includes
a quadratic factor q2

h in the running time of the adversary against the one-
way permutation. It results in demanding larger n which increases the minimal
length of the message the scheme can encrypt attaining the optimal overhead.
The approach from [19, 14] helps achieving a linear running time if desired.

Theorem 2 (Optimality in Ciphertext Overhead). If Advind-pa
C,SE (ke) +

2Advowp
B,P (n) ≤ 2−(ε+1) holds for all adversaries C and B running in time 2t,

then kr = �oh = t + ε + 4 is sufficient for messages of size equal or larger than
n− kr bits.

Note that parameters ke and n are independent of the overhead and can be set
arbitrary to fulfill the condition.

3.3 Notes on Variations

Why Not 3 Rounds? Consider the 3-round version of our scheme obtained by
removing H4 and simply letting t = d. We show that the 3-round version is not
simulatable, at least with the technique that constructs a plaintext extractor
from the queries to the random oracles. Since the following argument holds
regardless of the presence of the extended part c, let us ignore it.

Suppose that the adversary creates two ciphertexts u and u′ by randomly
choosing t, s, t′ and computing s′ = H3(t) ⊕ s ⊕ H3(t′), u = f(t ‖ s), and u′ =
f(t′ ‖ s′). Since H3(t) ⊕ s = H3(t′) ⊕ s′, decrypting u and u′ yield the same v.
However, such a relation between u and u′ can not be detected by the simulator
since H2(v) is not asked. Accordingly the decryption oracle must return random
m1 ‖m2 and m1

′ ‖m2
′ to answer to the queries on u and u′, respectively. Then

the adversary asks H2(v) and obtains h2. For consistency, it must hold that
h2 = (r ‖m1) ⊕ t = (r′ ‖m1

′) ⊕ t′. However, since m1 and m1
′ are randomly

chosen before the simulator sees t and t′, such a relation can be fulfilled only by
chance. The adversary can notice the inconsistency by checking the relation and
the simulation should fail.

Including c Into a Hash Other than H3. We discuss on the variants that
includes c into one of the hash functions rather than H3. In summary, only the
inner two hash functions, H2 and H3, are the right choice.

– Case of H1(z ‖ c). This is clearly a wrong choice since (u∗, c∗) and (u∗, c)
yield the same m1.

– Case of H2(v ‖ c). It is possible to modify the proof of Theorem 1 to show
that this variant is also secure.

– Case of H4(s ‖ c). For this case, we can show that a (powerful) adversary can
distinguish the simulation from the reality. The underlying idea is that, given
a challenge ciphertext (u∗, c∗), the adversary builds a ciphertext (u, c) that
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yields the same plaintext without making queries to H3. Suppose that the
adversary finds (t∗, s∗). It obtains h∗

4 = H4(s∗ ‖ c∗) and d∗ = h∗
4 ⊕ t∗. It then

selects arbitrary c and asks h4 = H4(s∗ ‖ c). Note that c must be different
from c∗. It further computes t = d∗ ⊕ h4 and u = f(t ‖ s∗). Observe that
(u, c) recovers d∗ and v∗ since d = t⊕H4(s∗ ‖ c) = d∗⊕h4⊕H4(s∗ ‖ c) = d∗⊕
h4⊕h4 = d∗ and v = s∗⊕H3(d) = s∗⊕H3(d∗) = v∗. Therefore, the selected
challenge message is returned if (u, c) is asked to the real decryption oracle.
However, since H3(d∗) has only been defined implicitly and was never directly
asked by the adversary, the simulated decryption oracle cannot detect such
a case and returns a random message which is noticed by the adversary.

4 Proofs

4.1 Proof of Theorem 1 (Sketch)

We proceed in games. Let Xi denote the event that adversary A outputs b̃ = b
in Game i.
Game 0. The original CCA game. By definition, we have

Pr[X0] =
1
2
· Advcca

A (k) +
1
2
. (10)

Game 1. Modify the challenge oracle so that it returns random u∗ that is
independent from the challenge messages as follows.

Challenge Oracle (M0, M1).
C.1 Choose u∗ ← {0, 1}n.
C.2 Choose b ← {0, 1} and split Mb into m1

∗, m2
∗ and me

∗, accordingly.
Then choose w∗ ← {0, 1}ke and compute c∗ = Ew∗ (me

∗).
C.3 Return (u∗, c∗).

For u∗, c∗ and w∗, let (t∗, s∗, d∗, v∗, z∗, h∗
4, h

∗
3, h

∗
2, h

∗
1) be a consistent internal

state. Let AskH+
3 denote an event such that (d∗ ‖ c∗) is asked to H3 after s∗ is

asked to H4. The following bound can be shown.

|Pr[X0] − Pr[X1]| ≤
qg

2kr
+

qh1

2kr
+

qh2

2km2
+

qh3

2kr+km1
+ Pr[AskH+

3 ] (11)

It is straightforward to see that distinguishing b breaks the passive security
of the symmetric encryption since only the symmetric part is related to b in
Game 1. We thus have

Pr[X1] ≤
1
2

+
1
2
· Advind-pa

C,SE (ke) , (12)

for some suitable adversary C that has similar running time as A.
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To bound Pr[AskH+
3 ], we initiate a new series of sub-games starting from

Game 1. In the following games, each random oracle X is simulated with an
independent list LX that is initially empty. When X is first asked on fresh input
a, output b is uniformly selected and (a, b) is stored in LX . If a has been asked
before, the corresponding b is read from LX and returned. By (a, [b]) ∈ LX , we
mean that table LX includes an entry whose first element is a. If such entry
exists, the second element is denoted by b. List LX is consistent for oracle X if
every input a is unique in LX . By F1.i we denote the same event in the following
sub-games Game 1.i.

Game 1.0. This game is the same as Game 1. Since this is just a change of
notation, we have

Pr[AskH+
3 ] = Pr[F1.0.] . (13)

Game 1.1. The game is modified so that it immediately stops at the moment
AskH+

3 happens. To capture event AskH+
3 , hash oracle H3 is modified so that

it checks whether the query d ‖ c equals the value d∗ ‖ c∗ by searching LH4 for
corresponding s∗.

Hash Oracle H3(d ‖ c).
A.1 If (d ‖ c, [h3]) ∈ LH3, return h3.
A.2 Choose h3 ← {0, 1}km2 and add (d ‖ c, h3) to LH3.
A.3 Repeat the following for every entry (h4, s) in LH4.

(a) Compute t = d ⊕ h4, u = f(t ‖ s).
(b) If u = u∗, abort the game. (event: F1.1.).

A.4 Return h3.

Since this modification does not change the view of the adversary unless AskH+
3

happens, we have
Pr[F1.0.] = Pr[F1.1.] . (14)

Game 1.2. Modify the decryption oracle so that it returns a random message
when a decryption query is made on a ciphertext whose associated d ‖ c was not
yet asked to H3. Modify H3 for consistency, too.

Decryption Oracle D(u, c).
D.1 Compute t ‖ s = f−1(u).
D.2 h4 ← H4(s).
D.3 Let d = t⊕h4. If (d ‖ c, [h3]) �∈ LH3, go to the next step. Otherwise, return

m1 ‖ m2 ‖ me computed normally by using t, s, d, and h3.
D.4 Return m1 ‖ m2 ‖ me computed as follows.

(a) Select m1, m2, and w uniformly and compute me = Dw(c).
(b) Add (u, c, w, m1, m2) to Lwatch .
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Hash Oracle H3(d ‖ c).
A.1 If (d ‖ c, [h3]) ∈ LH3, return h3.
A.2 Choose h3 ← {0, 1}km2 and put (d ‖ c, h3) to LH3.
A.3 Repeat the following for every entry (h4, s) in LH4.

(a) Compute t = d ⊕ h4, u = f(t ‖ s), v = h3 ⊕ s.
(b) If u = u∗, abort the game. (event: F1.2.).
(c) If (u, c, [w], [m1], [m2]) ∈ Lwatch , do as follows.

– Select r ← {0, 1}kr and compute z = r ‖ m1, h2 = d ⊕ z, h1 =
m2 ⊕ v.

– Add (z, w), (z, h1), and (v, h2) to LG, LH1, and LH2, respectively.
– Remove entry (u, c, w, m1, m2) from Lwatch .

A.4 Return h3.

The following bound can be shown.

|Pr[F1.1.] − Pr[F1.2.]| ≤
q2
d

2km1
+

qh1 + qg

2kr
+

qh2 qd

2km2
. (15)

Game 1.3. Modify the decryption oracle so that it also returns a random mes-
sage when a decryption query is made on a ciphertext whose associated s was
not yet asked to H4.

Decryption Oracle D(u, c).
D.1 Compute t ‖ s = f−1(u).
D.2 If (s, [h4]) ∈ LH4 and (d ‖ c, [h3]) ∈ LH3 for d = t ⊕ h4, then return

m1 ‖ m2 ‖ me computed normally by using t, s, d, and h3.
D.3 Otherwise, return m1 ‖ m2 ‖ me computed as follows.

(a) Select m1, m2, and w uniformly and compute me = Dw(c).
(b) Add (u, c, w, m1, m2) to Lwatch .

The following bound can be shown.

|Pr[F1.2.] − Pr[F1.3.]| ≤
qd qh3

2kr+km1
. (16)

Game 1.4. Modify the decryption oracle so that it uses a lookup table instead
of computing t ‖ s = f−1(u).

Decryption Oracle D(u, c).
D.1 If (u, c, [t], [s]) ∈ LX , then continue the normal decryption procedure by

using t and s and return the obtained message.
D.2 Otherwise, return random m1 ‖ m2 ‖ me computed as follows.

(a) Select m1, m2, and w uniformly and compute me = Dw(c).
(b) Add (u, c, w, m1, m2) to Lwatch and return m1 ‖ m2 ‖ me.
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Hash Oracle H3(d ‖ c).
A.1 If (d ‖ c, [h3]) ∈ LH3, return h3.
A.2 Choose h3 ← {0, 1}km2 and put (d ‖ c, h3) to LH3.
A.3 Repeat the following for every entry (h4, s) in LH4.

(a) Compute t = d ⊕ h4, u = f(t ‖ s), v = h3 ⊕ s.
(b) If u = u∗, abort the game with status 1 (event: F1.4.).
(c) If (u, c, [w], [m1], [m2]) ∈ Lwatch , do as follows

– Select r ← {0, 1}kr and compute z = r ‖ m1, h2 = d ⊕ z, h1 =
m2 ⊕ v.

– Add (z, w), (z, h1), and (v, h2) to LG, LH1, and LH2, respectively.
– Remove entry (u, c, w, m1, m2) from Lwatch .

(d) Put (u, c, t, s) to LX .
A.4 Return h3.

Hash Oracle H4(s).
B.1 If (s, [h4]) ∈ LH4, return h4.
B.2 Choose h4 ← {0, 1}kr+km1 and put (s, h4) to LH4.
B.3 Repeat the following for every entry ([d], [c], [h3]) in LH3.

(a) Let t = d ⊕ h4, v = s ⊕ h3, and u = f(t ‖ s).
(b) Put (u, c, t, s) to LX .

B.4 Return h4.

Since the adversary’s view is not influenced by this modification, we have

Pr[F1.3.] = Pr[F1.4.]. (17)

Game 1.4. does not use f−1 and any ∗-marked internal values at all. Challenge
u∗ is a random element in {0, 1}n, and s∗ ‖ t∗ such that f(s∗ ‖ t∗) = u∗ can be
extracted if F1.4. happens. It is thus straightforward to construct adversary B
that computes f−1 using adversary A that causes F1.4.. We thus have

Pr[F1.4.] ≤ Advowp
B,f (k) . (18)

The running time of B is bounded by that of A plus O(q2
h).

From (11), (14), (16), (17), and (18), we have

Advcca
A (k) ≤ Advind-pa

C,SE (ke) + 2 ·Advowp
B,P (n)

+
4(qh1 + qg)

2kr
+

2q2
d

2km1
+

2qh2(qd + 1)
2km2

+
2qh3(qd + 1)

2kr+km1
.

Finally, using km1 ≥ 2kr, km2 ≥ 3kr and setting qh = qh1 + qh2 + qh3 + qh4 + qg,
this simplifies to the claimed form in the theorem as follows.

Advcca
A (k) ≤ Advind-pa

C,SE (ke) + 2 ·Advowp
B,P (n) +

4qh

2kr
+

2q2
d

22kr
+

2qh(qd + 1)
23kr

≤ Advind-pa
C,SE (ke) + 2 ·Advowp

B,P (n) + O(
qh + qd

2kr
) (19)
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4.2 Proof of Theorem 2

Fix ε and t. We require Advcca
A (k) ≤ 1/2ε for adversaries A running time in 2t.

Using the explicit bound (19) from the proof of Theorem 1, it is sufficient to set
kr so that

Advind-pa
C,SE (ke) + 2 ·Advowp

B,P (n) +
4qh

2kr
+

2q2
d

22kr
+

2qh(qd + 1)
23kr

=
1
2ε

(20)

is fulfilled. By assuming that ke and n are set to satisfy

Advind-pa
C,SE (ke) + 2 · Advowp

B,P (n) ≤ 1/2ε+1,

it is sufficient to choose kr such that

4qh

2kr
+

2q2
d

22kr
+

2qh(qd + 1)
23kr

≤ 1
2ε+1 . (21)

To achieve semantic security, qh/2kr ≤ 1 and qd/2kr ≤ 1 must hold. Since 2t

upper bounds the running time, qh ≤ 2t and qd ≤ 2t must hold, too. By using
these bounds, the left side of (21) simplifies to

1
2kr

(4qh + 2qd + qh + 1) ≤ 8 · 2t

2kr
. (22)

Thus we have
8 · 2t

2kr
≤ 1

2ε+1 ,

which results in t+ ε+4 ≤ kr. Since �oh = kr holds for all messages of size equal
or larger than n− kr bits, �oh = kr = t+ ε+ 4 is sufficient. It matches the lower
bound up to the constant term.

5 Conclusion and Open Problems

We propose a variant of OAEP that attains an optimal overhead in the random
oracle model and thereby proved that the lower bound of ciphertext overhead is
tight even with respect to IND-CCA security. Open problems include:

– Show the bound without random oracles. In the standard model, the schemes
in [7, 18] have the shortest known ciphertext overhead consisting of two group
elements that results in �oh ≥ 4t + 2ε bits. It remains as a very interesting
open question whether or not the optimality can be achieved without random
oracles.

– Optimal ciphertext overhead for shorter messages. We refer to [2] whose
(DH-based) schemes offer �oh ≥ 2t + ε for short messages.

– Show that 4-round is necessary (or not) in our construction.



370 M. Abe, E. Kiltz, and T. Okamoto

References

[1] Abe, M., Gennaro, R., Kurosawa, K.: Tag-KEM/DEM: A new framework for
hybrid encryption. Journal of Cryptology 21(1), 97–130 (2008)

[2] Abe, M., Kiltz, E., Okamoto, T.: Compact CCA-secure encryption for arbitrary
messages (Unpublished Manuscript Available from the authors) (2007)

[3] Abe, M., Kiltz, E., Okamoto, T.: Chosen ciphertext security with optimal over-
head. IACR ePrint Archive 2008/374, September 2 (2008)

[4] Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: De Santis, A. (ed.)
EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995)

[5] Bellare, M., Rogaway, P.: Code-based game-playing proofs and the security of
triple encryption. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004,
pp. 409–426. Springer, Heidelberg (2006); Full version available from IACR ePrint
Archive 2004/331

[6] Bjørstad, B., Dent, A., Smart, N.: Efficient KEMs with partial message recovery.
In: Galbraith, S.D. (ed.) Cryptography and Coding 2007. LNCS, vol. 4887, pp.
233–256. Springer, Heidelberg (2007)

[7] Boyen, X., Mei, Q., Waters, B.: Direct chosen ciphertext security from identity-
based techniques. In: ACM Conference on Computer and Communications Se-
curity, pp. 320–329. ACM, New York (2005); Also available at IACR e-print
2005/288

[8] Coron, J., Handschuh, H., Joye, M., Paillier, P., Pointcheval, D., Tymen, C.: GEM:
A generic chosen-ciphertext secure encryption method. In: Preneel, B. (ed.) CT-
RSA 2002. LNCS, vol. 2271, pp. 263–276. Springer, Heidelberg (2002)

[9] Coron, J., Handschuh, H., Joye, M., Paillier, P., Pointcheval, D., Tymen, C.: Op-
timal chosen-ciphertext secure encryption of arbitrary-length messages. In: Nac-
cache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 17–33. Springer,
Heidelberg (2002)

[10] Coron, J.S., Joye, M., Naccache, D., Paillier, P.: Universal padding schemes for
RSA. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 226–241. Springer,
Heidelberg (2002)

[11] Coron, J.S., Patarin, J., Seurin, Y.: The random oracle model and the ideal cipher
model are equivalent. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
1–20. Springer, Heidelberg (2008)

[12] Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM Journal on Com-
puting 33(1), 167–226 (2003)

[13] Cui, Y., Kobara, K., Imai, H.: A generic conversion with optimal redundancy.
In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 104–117. Springer,
Heidelberg (2005)

[14] Dodis, Y., Freedman, M., Jarecki, S., Walfish, S.: Versatile padding schemes for
joint signature and encryption. In: ACM CCS 2004. ACM Press, New York (2004)

[15] Fujisaki, E., Okamoto, T., Pointcheval, D., Stern, J.: RSA-OAEP is secure under
the RSA assumption. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp.
260–274. Springer, Heidelberg (2001)

[16] Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and
System Sciences 28, 270–299 (1984)

[17] Jonsson, J.: An OAEP variant with a tight security proof. IACR e-print Archive
2002/034 (2002)



Chosen Ciphertext Security with Optimal Ciphertext Overhead 371

[18] Kiltz, E.: Chosen-ciphertext security from tag-based encryption. In: Halevi, S.,
Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg
(2006)

[19] Kobara, K., Imai, H.: OAEP++: A very simple way to apply OAEP to determin-
istic OW-CPA primitives. IACR ePrint archive, 2002/130 (2002)

[20] Komano, Y., Ohta, K.: Efficient universal padding schemes for multiplicative trap-
door one-way permutation. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729,
pp. 366–382. Springer, Heidelberg (2003)

[21] Okamoto, T., Pointcheval, D.: REACT: Rapid enhanced-security asymmetric
cryptosystem transform. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020,
pp. 159–174. Springer, Heidelberg (2001)

[22] Phan, D.H., Pointcheval, D.: Chosen-ciphertext security without redundancy. In:
Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 1–18. Springer, Heidel-
berg (2003)

[23] Phan, D.H., Pointcheval, D.: OAEP 3-round: A generic and secure asymmetric
encryption padding. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp.
63–78. Springer, Heidelberg (2004)

[24] Ramzan, Z., Reyzin, L.: On the round security of symmetric-key cryptographic
primitives. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 376–393.
Springer, Heidelberg (2000)

[25] Shoup, V.: OAEP reconsidered. In: Kilian, J. (ed.) CRYPTO 2001. LNCS,
vol. 2139, pp. 239–259. Springer, Heidelberg (2001)



Concurrently Secure Identification Schemes
Based on the Worst-Case Hardness of Lattice Problems

Akinori Kawachi, Keisuke Tanaka, and Keita Xagawa

Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Japan
�������������	���
����������������������

Abstract. In this paper, we show that two variants of Stern’s identification
scheme [IEEE Transaction on Information Theory ’96] are provably secure
against concurrent attack under the assumptions on the worst-case hardness
of lattice problems. These assumptions are weaker than those for the previous
lattice-based identification schemes of Micciancio and Vadhan [CRYPTO ’03]
and of Lyubashevsky [PKC ’08]. We also construct eÆcient ad hoc anonymous
identification schemes based on the lattice problems by modifying the variants.

Keywords: Lattice-based cryptography, identification schemes, concurrent secu-
rity, ad hoc anonymous identification schemes.

1 Introduction

Many researchers have so far developed cryptographic schemes based on combinato-
rial problems related to knapsacks, codes, and lattices, due to the intractability of the
underlying problems, the eÆciency of primitive operations, and the threat of quantum
computers to number-theoretic schemes.

The cryptographic schemes based on combinatorial problems usually assume the
average-case hardness of the underlying problem because they have to deal with ran-
domly generated cryptographic instances such as keys, plaintexts, and ciphertexts. This
implies security risk in such schemes since it is generally hard to show their average-
case hardness. In fact, several attacks against such schemes, e.g., [25], were found in
practical settings. The cryptographic schemes based only on the average-case hardness
are more likely to be at risk of these kinds of attacks.

It is therefore significant to guarantee the security under the worst-case hardness.
Ajtai [1] showed that the average-case hardness of some lattice problem is equivalent
to its worst-case hardness. His seminal result opened the way to cryptographic schemes
based on the worst-case hardness of lattice problems. Several lattice-based schemes
were proposed such as public-key encryption schemes, e.g., by Ajtai and Dwork [2],
and hash functions [1,11,19].

Among varieties of lattice-based cryptographic schemes, there are very few results
on the identification (ID) schemes based on the worst-case hardness of lattice problems.
For example, Micciancio and Vadhan proposed ID schemes based on the worst-case
hardness of lattice problems, such as the gap versions of the Shortest Vector Problem.
These schemes are obtained from their statistical zero-knowledge protocol with eÆcient
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provers [20]. Recently, Lyubashevsky also constructed lattice-based ID schemes secure
against active attack [14]. Unfortunately, the approximation factors of the underlying
problems in their schemes are large for practical use as noted in [14, Sec. 5] since secu-
rity parameters for ID schemes should be large in order to achieve the required hardness.
Therefore, it is necessary to construct the schemes based on weaker assumptions, i.e.,
the assumptions on lattice problems with smaller approximation factors.

1.1 Our Contributions

In this paper, we propose two variants, which we call S�GL and S�C�IL, of Stern’s ID
scheme [26]. These variants are secure against concurrent attack1 under the assump-
tions on the worst-case hardness of lattice problems, while Stern’s original scheme as-
sumes the average-case hardness of certain decoding problem in coding theory and the
existence of a collision-resistant hash function, and its security is only against passive
attack. The underlying problems of S�GL and S�C�IL are the gap version of the Shortest

Vector Problem with approximation factor Õ(n) (GapSVP2
Õ(n)

) and the Shortest Vector

Problem for ideal lattices with approximation factor Õ(n) (�( f )-SVP�
Õ(n)

), respectively,

where Õ(g(n)) � O(g(n) poly log g(n)) for a function g in n, The assumptions are weaker
than those for the previous lattice-based ID schemes [20,14]. We stress that such weaker
assumptions will take a step for practical use of lattice-based ID schemes.

Moreover, we show that our variants yield eÆcient ad hoc anonymous identification
schemes (AID schemes). In an AID scheme, which introduced by Dodis, Kiayias, Ni-
colosi, and Shoup [7], the protocol is done by two parties, a prover and verifier, but we
implicitly suppose an ad hoc group. Given public keys of all members of the group to
the verifier (and the prover), the goal is to convince the verifier that the prover belongs
to the group, without being specified who the prover is of the group, if and only if the
prover is an actual member of the group. We formally define a concurrent version of
the security notion, the security against impersonation under concurrent chosen-group
attack, and prove that our AID schemes satisfy this security notion. Our schemes are
based on the worst-case hardness of GapSVP2

Õ(n)
and �( f )-SVP�

Õ(n)
. To authors’ best

knowledge, this is the first non-trivial construction under the assumption of the worst-
case hardness of lattice problems.

1.2 Main Ideas

In this section, we only discuss the ID scheme S�GL based on GapSVP. We first construct
a string commitment scheme based on the lattice problem which will be used in ID
schemes. Then we will describe the idea of the proof on concurrent security of the
variant. Finally, we give a sketch of our construction method of an AID scheme.

Before giving the overview, we review the underlying problem GapSVP� and the
fundamental problem, the Small Integer Solution Problem (SISq�m��), on which our

1 In active attack, an adversary could interact with the prover prior to impersonation. In concur-
rent attack, an adversary could interact with many di�erent prover “clones” concurrently prior
to impersonation. Each clone has the same secret key, but has independent random coins and
maintains its own state. After interacting with many clones, the adversary tries impersonation.
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variants are directly based. The informal definitions and the relationship of two prob-
lems are given as follows:

– SISq�m��: Given a random n-by-m matrix A whose elements are in �q, the problem
is finding an m-dimensional integral non-zero vector z such that Az � 0 (mod q)
and �z�2 � �.

– GapSVP2
�: Given an n-dimensional lattice L and a rational number d, the problem

is outputting YES if there exists a non-zero vector v � L such that �v�2 � d, or NO
if for any non-zero vector v � L �v�2 � �d.

– ([19]) For suitable q and m, if there exists a probabilistic polynomial-time algorithm
which solves SISq�m�� on the average then there exists a probabilistic polynomial-
time algorithm which solves GapSVP2

Õ(�n1�2)
in the worst case.

As in Lyubashevsky’s result [14], we use the above relationship for our security reduc-
tion. Hence we mainly deals with SIS instead of GapSVP.

We simply obtain the lattice-based hash functions as in [11]: Choose a random matrix
A � �n�m

q . For any x � �0� 1�m, a hash value is fA(x) :� Ax mod q. A collision (x� x�)
of the hash function fA implies a solution z � x � x� of SISq�m�

�
m. Thus, the security of

the hash functions is based on the worst-case hardness of GapSVP2
Õ(
�

nm)
.

String commitment schemes: We construct a string commitment scheme from lattice-
based hash functions. General constructions of string commitment schemes from
collision-resistant hash functions were shown by Damgård, Pedersen, and Pfizmann [4]
and Halevi and Micali [12]. Stern also constructed a string commitment scheme from
collision-resistant hash functions in [26, Sec. III-A]: Let h be a hash function. Given a
string s and a random string �, a commitment is h(� Æ (� � s)), where Æ and � denote
the concatenation and XOR operators, respectively. However, its hiding property was
not shown. We construct a string commitment scheme by a more direct and simpler
way than the general one and Stern’s one: Given s and �, a commitment is h(� Æ s),
where h is a lattice-based hash function. The binding property simply follows from the
collision-resistance property of h. We derive its hiding property from �-regularity of h
for some negligible function � (see, e.g., [16, Sec. 4.1]). As mentioned in the above, we
have collision-resistant lattice-based hash functions based on the worst-case hardness
of GapSVP, while Stern assumed the existence of collision-resistant hash functions.

Our ID scheme and its concurrent security: In Stern’s scheme and our variant, a prover
has a binary vector x with fixed Hamming weight as his�her secret key. We also feed to
the prover and the verifier a matrix A as a system parameter and a vector y as the public
key corresponding to x. The task of the prover is to convince the verifier that he�she
knows a correct secret key x satisfying a relation Ax � y and x has a valid weight.

In Stern’s protocol [26], the prover computes three commitments and sends them to
the verifier. The verifier sends a random challenge to the prover. The prover reveals two
of three commitments corresponding to the challenge. He constructed the knowledge
extractor which computes a collision of a hash function in a string commitment scheme
or a secret key corresponding to the target public key if a passive adversary responds
correctly to any challenges after sending commitments.

One of standard strategies to achieve concurrent security is to prove that a public key
corresponds to multiple secret keys and that the protocol is witness indistinguishable
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(WI) [8] and proof-of-knowledge: The reduction algorithm generates sk and pk and runs
the adversary on pk by simulating the prover with sk. Using the knowledge extractor of
the protocol, the algorithm obtains another sk� corresponding to pk with probability at
least 1�2 since the protocol is WI. The algorithm then solves the underlying problem
by using pk, sk, and sk�.

In our reduction, when the algorithm is given A, it generates a secret key x and a
public key y � Ax, and feeds A and y to the adversary. Note that the algorithm can
simulate the prover with A and x that the adversary concurrently accesses. Using the
knowledge extractor for the adversary in Stern’s proof, the algorithm obtains a collision
of a string commitment scheme or a secret key x� such that x� � x and Ax� � y, di�er-
ently from the general strategy. In the former case, the algorithm outputs the collision
(s� s�) of a hash function hA in the string commitment scheme. Thus, the solution for
SIS is obtained by z � s � s�. In the latter case, the condition x � x� will be satisfied
with probability at least 1�2 by witness indistinguishability of Stern’s protocol. Thus,
the algorithm has the solution z � x � x� for SIS. The �2 norm of both solutions is at
most

�
m � Õ(n1�2). From the relationship between SIS and GapSVP the assumption

is the worst-case hardness of GapSVP2
Õ(n)

.

AID schemes: Our construction for AID schemes also has the following structure: Each
of l members in the ad hoc group has a vector xi (i � 1� 	 	 	 � l). Then, the common inputs
of the scheme are a system parameter A and a set of public keys y1� 	 	 	 � yl of the mem-
bers, which satisfy yi � Axi (i � 1� 	 	 	 � l). We can show that, by Stern’s protocol, the
prover can anonymously convince the verifier that the prover knows xi corresponding
to one of y1� 	 	 	 � yl, since he�she knows a new vector x� such that [A y1 	 	 	 yl]x� � 0.
(This idea is due to Wu, Chen, Wang, and Wang [27], who presented an AID scheme
from certain combinatorial problem.) Additionally, we force the prover to prove that the
positions of �1 and �1 in x� are proper by modifying Stern’s protocol. We succeed to
give security proof for the scheme, while Wu et al. gave no formal proof on the security
of their scheme.

1.3 Comparison with Other Lattice-Based Schemes

ID schemes: In [20], Micciancio and Vadhan proposed a statistical zero-knowledge
and proof-of-knowledge protocol for GapSVP. Combining it with lattice-based hash
functions, we obtain an ID scheme which is secure against passive attack based on
SISq�m�Õ(n), which can be reduced from GapSVP2

Õ(n1�5)
.

In the scheme, the prover and the verifier are given a matrix A as a common input,
and the prover has a binary vector x as secret information. The task of the prover is to
convince the verifier that he�she knows x satisfying the relations that Ax � 0 and x is
relatively short. It seems diÆcult to directly simulate the prover since a simulator has
to prepare a dummy short vector x� satisfying Ax� � 0, which is the task of SIS itself.
Thus, we cannot straightforwardly prove the concurrent security for their ID scheme.

By a simple modification, we can construct a concurrently secure ID scheme (MV�

GL
for short) based on the worst-case hardness of lattice problems by Micciancio and Vad-
han’s ID scheme as noted in [20, Sec. 5]. In particular, applying techniques of De Santis,
Di Crescenzo, Persiano, and Yung [6] and of Feige and Shamir [8], a modification of
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Table 1. Comparisons among ID schemes and AID schemes. A secret key sk is x � �0� 1�m. The
factor n denotes the security parameter. We denote the Hamming weight of x by wH(x). Assume
that the protocols are repeated t times in parallel for reducing errors. In the table for AID schemes,
l denotes the number of the members in the group. Note that the parameters in ideal-lattice-based
versions are almost same as those in general-lattice-based versions.

ID schemes (A0,A1,A ∈ Zn×m
q )

Param. Public key Relation γ in GapSVP2
γ Comm. cost Errors

MV+GL [20] – A0,A1 A0 x = 0 or A1 x = 0 Õ(n1.5) t · Õ(n) 1-sided

LGL [14] (A) A, y Ax = y Õ(n2) t · Õ(n) 2-sided

S+GL A y Ax = y and wH(x) = m/2 Õ(n) t · Õ(n) 1-sided

AID schemes (Ai,0,Ai,1,A ∈ Zn×m
q )

Base Param. Set of pks Relation γ in GapSVP2
γ Comm. cost Errors

MV+GL [20] – {Ai,0,Ai,1}i=1,...,l Ai,0 x = 0 or Ai,1 x = 0 Õ(n1.5) tl · Õ(n) 1-sided

LGL [14] A y1, . . . , yl Ax = yi Õ(n2) tl · Õ(n) 2-sided

S+GL A y1, . . . , yl Ax = yi and wH(x) = m/2 Õ(n) t · Õ(l + n) 1-sided

the ID scheme can be proven to have concurrent security2 based on the same problem
as that in the original scheme.

Recently, Lyubashevsky proposed new concurrently secure ID schemes based on
lattice problems [14]; we call it LGL for short. In his protocol, the prover proves, given
A and y, he�she has x � �0� 1�m such that Ax � y. Using an active adversary, his
knowledge extractor obtains another vector x� such that Ax� � y and the length of
x� is at most O(m1�5) � Õ(n1�5). Thus, in the LGL scheme, the underlying problem is
SISq�m�Õ(n1�5), which can be reduced from GapSVP2

Õ(n2)
.

As mentioned in the previous section, the assumption of S�GL is the worst-case hard-
ness of GapSVP2

Õ(n)
, which is weaker than those of MV�

GL and LGL. This improvement
is obtained by the condition that the knowledge extractor outputs another secret key x�

whose length is at most
�

m � Õ(
�

n). Our schemes has 1-sided error (perfect com-
pleteness and soundness error), while LGL has 2-sided error (completeness and sound-
ness errors). As a summary, see Table 1.

AID schemes: By taking OR of l statements [6], we can straightforwardly obtain
MV�

GL-based and LGL-based AID schemes, whose security are based on the worst-case
hardness of lattice problems. We feed only pk1� 	 	 	 � pkl as the common inputs to the
prover and the verifier. In this case, the prover convinces the verifier that he�she has a
secret key corresponding to one of public keys, pki.

However, each of these simple modifications requires a large overhead cost involving
the size of the ad hoc group. Let l be the number of the members of the group and n the
security parameter. The protocol is run in t times in parallel to reduce the errors. The

2 Combining ORing technique by De Santis et al. [6] and discarding technique by Feige and
Shamir [8], we derive a construction technique for ID schemes secure against active attack.
Moreover, we can construct concurrently secure ID schemes by the same technique as a folk-
lore says.
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communication costs of the MV�

GL-based and LGL-based schemes are tl 	 Õ(n). The size
of a set of the public keys is l 	 Õ(n2) and Õ(n2) � l 	 Õ(n) in the modified versions of
MV�

GL and LGL, respectively.
On AID schemes, the LGL-based and our schemes require many vectors proportional

to the size of the group, while the MV�

GL-based scheme requires many matrices propor-
tional to the size of the group (see Table 1). Additionally, the communication cost of
our schemes is t 	 Õ(n � l), while those in the MV�

GL-based and LGL-based schemes are
tl 	 Õ(n). This shows the advantage of our scheme on the eÆciency.

1.4 Organization

The rest of this paper is organized as follows. In Section 2, we review basic notations
and notions, and the cryptographic schemes we consider. In Section 3, we review lattice-
based hash functions and give a commitment scheme based on the lattice-based hash
functions for our ID and AID schemes. In Section 4, we construct the ID scheme by
combining the framework of Stern’s scheme with our string commitment scheme. We
present the AID scheme in Section 5.

In this paper, due to lack of space, we only describe the schemes based on GapSVP
since the construction on �( f )-SVP follows from a similar strategy to that on GapSVP.
We discuss the constructions on �( f )-SVP in the full paper.

2 Preliminaries

Basic notions and notations: We denote by n the security parameter of cryptographic
schemes throughout this paper, which corresponds to the rank of the underlying lattice
problems. We say that a problem is hard in the worst case if there exists no probabilistic
polynomial-time algorithm solves the problem in the worst case with non-negligible
probability. We sometimes use Õ(g(n)) for any function g in n as O(g(n)	polylog(g(n))).
We assume that all random variables are independent and uniform. For a positive integer
n, let [n] denote a set �1� 2� 	 	 	 � n�.

For any p 
 1, the �p norm of a vector x � t(x1� 	 	 	 � xn) � �n, denoted by �x�p, is
(
�

i�[n] xp
i )1�p. For ease of notation, we define �x� :� �x�2. The �� norm is defined as

�x�� � limp�� �x�p � maxi�[n] �xi�. Let wH(x) denote the Hamming weight of x, i.e.,
the number of non-zero elements in x. Let B(m�w) denote the set of binary vectors in
�0� 1�m whose Hamming weights are exactly equal to w, i.e., B(m�w) :� �x � �0� 1�m �
wH(x) � w�. We denote the concatenation of two vectors or strings v1 and v2 by v1 Æ v2.

We omit the definitions of zero-knowledge arguments and witness-indistinguishable
protocols. For formal definitions, see textbooks, e.g., by Goldreich [10].

Hash functions: We briefly review the definition of collision-resistant hash function
families. Let �n � �hk : Mn  Dn � k � Kn� be a family of hash functions, where
Mn, Dn, and Kn denote a space of messages, digests, and indices, respectively. Let � �

��n�n��. Roughly speaking, if � is collision resistant, any polynomial-time adversary
cannot, on input a random index k, output a collision of the hash function indexed by k.
For a formal definition, see, e.g., the textbook by Katz and Lindell [13, Sec. 4.6.1].
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String commitment schemes: We consider a string commitment scheme in the trusted
setup model. The trusted setup model is often required to construct practically eÆ-
cient cryptographic schemes such as non-interactive string commitment schemes. In
this model, we assume that a trusted party � honestly sets up a system parameter for
the sender and the receiver.

First � distributes the index k of a commitment function to the sender and the re-
ceiver. Both parties then share a common function Comk by a given k. The scheme runs
in two phase, called committing and revealing phases. In the committing phase, the
sender commits his�her decision, say a string s, to a commitment string c � Comk(s; �)
with a random string � and sends c to the receiver. In the revealing phase, the sender
gives the receiver the decision s and the random string �. The receiver verifies the va-
lidity of c by computing Comk(s; �).

We require two security notions of the string commitment schemes, statistically-
hiding and computationally-binding properties. Intuitively, we say that the commitment
scheme is statistically hiding, if any computationally unbounded adversarial receiver
cannot distinguish two commitment strings generated from two distinct strings. Also, it
is computationally binding, if any polynomial-time adversarial sender cannot change the
committed string after sending the commitment. See, e.g., [12] for the formal definition.

Canonical identification schemes: Let �� � (SetUp�KG�P�V) be an identification
scheme, where SetUp is the setup algorithm which on input 1n outputs param, KG is
the key-generation algorithm which on input param outputs (pk� sk), P is the prover
algorithm taking input sk, V is the verifier algorithm taking inputs param and pk. We
say �� is a canonical identification scheme if it is a public-coin 3-move protocol.

We are interested in concurrent attack, which is stronger than active and passive
attack. We employ the definition of concurrent security in [3]. In concurrent attack, the
adversary will play the role of a cheating verifier prior to impersonation and can interact
many di�erent prover clones concurrently. Each clone has the same secret key, but has
independent random coins and maintains its own state. We say �� is secure against
impersonation under concurrent attack, if any polynomial-time adversary cannot, given
a random public key of a legitimate prover, impersonate the legitimate prover. For the
formal definition, see [3].

Ad hoc anonymous identification schemes: An AID scheme allows a user to anony-
mously prove his�her membership in a group if and only if the user is an actual member
of the group, where the group is formed in an ad hoc fashion without help of the group
manager. We then assume that every user registers his�her public key to the public key
infrastructure.

We define the algorithms in AID schemes. An AID scheme is four tuple ��� �

(SetUp�Reg�P�V), where SetUp is the setup algorithm which on input 1n outputs
param, Reg is the key generation and registration algorithm which on input param
outputs (pk� sk), P is the prover algorithm taking inputs param, a set of public keys
R � (pk1� 	 	 	 � pkl), and one of the secret keys ski such that pki � R, and V is the verifier
algorithm taking inputs param and R. For more formal definition, see [7].

There are two goals for security of AID schemes: security against impersonation and
anonymity. Dodis et al. formally defined security against impersonation under passive
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attack. They mentioned the definition of security against impersonation under concur-
rent attack. However, they did not give the formal definition (see [7, Sec. 3.2]). Thus,
we define the security notion with respect to concurrent attack. In the setting of chosen-
group attack, the adversary could force the prover to prove the membership in an ar-
bitrary group if the prover is indeed a member of the group. Additionally, concurrent
attack allows the cheating verifier to interact with the clones of any provers. Also, they
allow the cheating prover to interact with the clones of provers, but prohibit it from
interacting with the target provers. We say ��� is secure against impersonation under
concurrent chosen-group attack, if any polynomial-time adversary cannot impersonate
the legitimate prover in the above settings.

The security notion, anonymity against full key exposure, captures the property that
an adversary cannot distinguish two transcripts even if the adversary has the secret
keys of all the members. We say ��� is anonymous against full key exposure if any
polynomial-time adversary cannot distinguish two provers with a common set of public
keys even though the adversary generates all keys of the set. The formal definitions of
two notions are in the full paper.

3 Main Tools

In this section, we review main tools, lattices, lattice problems, and lattice-based hash
functions, and construct string commitment schemes.

Lattices and lattice problems: We first review fundamental notions of lattices, well-
known lattice problems, and a related problem.

An n-dimensional lattice in �m is the set L(b1� 	 	 	 � bn) � ��i�[n] 
ibi � 
i � �� of all
integral combinations of n linearly independent vectors b1� 	 	 	 � bn � �m. The sequence
of vectors b1� 	 	 	 � bn is called a basis of the lattice L and denoted by B. For more details
on lattices, see the textbook by Micciancio and Goldwasser [18].

We give the definitions of well-known lattice problems, the Shortest Vector Problem
(SVPp) and its approximation version (SVPp

�): The problem SVPp is, given a basis B
of a lattice L, finding the shortest non-zero vector v in L in the �p norm. The problem
SVPp

� is, given a basis B of a lattice L, finding a non-zero vector v in L such that for any
non-zero vector x in L, �v�p � � �x�p.

We next give the definition of the gap version of SVPp
� , which is the underlying

problem of lattice-based hash functions.

Definition 3.1 (GapSVPp
� [18]). For a gap function �, an instance of GapSVPp

� is a
pair (B� d) where B is a basis of a lattice L and d is a rational number. In YES input
there exists a vector v � L��0� such that �v�p � d. In NO input, for any vector v � L��0�,
�v�p � �d.

We also define the Small Integer Solution problem SIS (in the �p norm), which is of-
ten considered in the context of average-case�worst-case connections and a source of
lattice-based hash functions as we see later.

Definition 3.2 (SISp
q�m��

[19]). For a fixed integer q and a real �, given a matrix A �
�

n�m
q , the problem is finding a non-zero integer vector z � �m such that Az � 0 (mod q)

and �z�p � �.

The relation between SIS and GapSVP is reviewed in the next paragraph.
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Lattice-based hash functions: We review the lattice-based hash functions. For a prime
q � q(n) � nO(1) and an integer m � m(n) � n log q(n), we define a family of hash
functions,

�(q�m) � � fA : �0� 1�m  �
n
q � A � �n�m

q ��
where fA(x) � Ax mod q.

Originally, Ajtai [1] showed that the worst-case hardness of GapSVP2
� for some poly-

nomial �(n) is reduced to the average-case hardness of SIS2
q�m�n for suitable q(n) and

m(n). It is known that �(q�m) is indeed collision resistant for suitably chosen q and
m by Goldreich, Goldwasser, and Halevi [11]. They observed that finding a collision
(x� x�) for fA � �(q�m) implies finding a short non-zero vector z � x � x� such that
�z� � �

m and Az � 0 (mod q), i.e., solving SIS2
q�m�

�
m

. Recently, Micciancio and

Regev showed that �(q�m) is collision resistant under the assumption that GapSVP2
Õ(n)

is hard in the worst case [19].

Theorem 3.1 ([19]). For any polynomially bounded functions � � �(n), m � m(n), q �
q(n), with q 
 4

�
mn3�2� and � � 14�

�
n�, there exists a probabilistic polynomial-time

reduction from solving GapSVP2
� in the worst case to solving SIS2

q�m�� on the average
with non-negligible probability.

There were another reductions from the gap version of the covering radius problem
GapCRP�, the shortest independent vector problem SIVP�, and the guaranteed distance
decoding problem GDD� by adjusting the parameters [19]. It is worth that we note the
results following the above results: Peikert [22] showed the reductions from the same
problems in any �p norms for p 
 2. The recent paper [9, Sec. 9] by Gentry, Peikert,
and Vaikuntanathan showed that the modulus q in SIS can be Õ(n).

A string commitment scheme: General constructions of statistically-hiding and
computationally-binding string commitment schemes are known from a family of
collision-resistant hash functions [4,12]. Their constructions used universal hash func-
tions for the statistically-hiding property.

Here, we give a more direct and simpler construction from the lattice-based hash
functions without the universal hash functions. The input of the commitment function
is an m-bit vector x obtained by concatenating a random string � � (�1� 	 	 	 � �m�2) and
a message string s � (s1� 	 	 	 � sm�2), i.e., x � � Æ s. We then define the commitment
function on inputs s and � as

ComA(s; �) :� Ax mod q � At(�1� 	 	 	 � �m�2� s1� 	 	 	 � sm�2) mod q	

Lemma 3.1. For m � 10n log q, if SISq�m�
�

m is hard on the average, then ComA is
a statistically-hiding and computationally-binding string commitment scheme in the
trusted set up model. In particular, for any polynomially bounded functions m � m(n),
q � q(n), � � �(n), with q 
 4mn3�2, � � 14�

�
nm, and m � 10n log q, ComA is

a statistically-hiding and computationally-binding string commitment scheme in the
trusted setup model if GapSVP2

� is hard in the worst case.

Before the proof, we review a definition of statistical distances: Given two probability
density functions �1 and �2 on a finite set S , we define the statistical distance between
them as (�1� �2) :� 1

2

�
x�S ��1(x) � �2(x)�.
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Proof. The computationally-binding property immediately follows from the collision-
resistant property. We now show the statistically-hiding property.

Let A � [a1 	 	 	 am]. We then have ComA(s; �) �
�m�2

i�1 �iai �
�m�2

i�1 si ai�m�2. The
following claim in [24] says that a random subset sum of ai is statistically close to the
uniform distribution for almost all choices of ai.

Claim ([24]). Let G be some finite Abelian group and let l be some integer. For any l
elements g1� 	 	 	 � gl � G, consider (

�
i�[l] aigi� u), where u and ai is chosen uniformly at

random from G and �0� 1�, respectively. Then the expectation of this statistical distance
over a uniform choice of g1� 	 	 	 � gl � G is at most

�
�G� �2l. In particular, the probability

that this statistical distance is more than (�G� �2l)1�4 is at most (�G� �2l)1�4.

In our proof, we consider �n
q as a finite Abelian group G. Since m � 10n log q,

(�G� �2m�2)1�4 � q�n. Thus, for all but an at most q�n fraction of A � [a1� 	 	 	 � am] � �n�m
q ,

we have that (u�
�

i�[m�2] �i ai) � q�n, where u � �n
q is uniform random variable. As-

sume that we have such A. So, we have (u�ComA(0m�2; �)) � q�n. By the definition of
ComA, for any s � �0� 1�m�2, we have (u�ComA(s; �)) � q�n. By the triangle inequality,
we obtain

(ComA(s1; �1)�ComA(s2; �2)) � (u�ComA(s1; �2)) � (u�ComA(s2; �2)) � 2q�n�

for any message s1 and s2. This shows that, for all but negligible fraction of choice of
A, the distributions of two commitments are statistically close. ��

Using the Merkle-Damgård technique, we obtain a string commitment scheme whose
commitment function is ComA : �0� 1�� � �0� 1�m�2  �

n
q rather than ComA : �0� 1�m�2 �

�0� 1�m�2  �
n
q as the following.

Assume that m � 2r. Let A � [B C], where B�C � �n�r
q . For X � �n�l

q , we define
fX : �0� 1�l  �

n
q as the hash function fX(s) � Xs mod q. Let l be

�
n log q

�
and let

t : �n
q  �0� 1�l be some one-to-one function that we can compute t and t�1 eÆciently.

Let pad : �0� 1��  �0� 1�� be a padding function for the Merkle-Damgård construction.
Applying the Merkle-Damgård construction to fC, we obtain a new hash function hC :
�0� 1��  �

n
q. The precise definition of hC is as follows:

Hash function hC:
1. On input s, obtain a padded message S � pad(s).
2. Chop it into (S 0� 	 	 	 � S k), where S i � �0� 1�r�l.
3. Let H0 � 0 (more generally, some fixed H0 can be used).
4. For i � 1 to k � 1 do Hi � fC(t(Hi�1) Æ S i�1).
5. Output Hk�1.

Our new commitment scheme is defined as follows: for s � �0� 1�� and � � �0� 1�r,

ComA(s; �) :� hC(s) � fB(�) mod q	

Lemma 3.2. If there exists a polynomial-time machine outputting a collision for ComA,
then there exists a polynomial-time machine outputting a collision for fA.
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Proof. Let us assume that we obtain a collision (s� �)� (s̃� �̃) � �0� 1����0� 1�r for ComA.
By the assumption, we have

hC(s) � fB(�) � hC(s̃) � fB(�̃) (mod q)	

If � � �̃, we have s � s̃ and hC(s) � hC(s̃). Using the reduction for the Merkle-
Damgård construction (see e.g., [13, Thm. 4.14]), we obtain u � ũ � �0� 1�r such that
fC(u) � fC(ũ). Thus, we have a collision u Æ �� ũ Æ � � �0� 1�2r for fA.

Next, we assume that � � �̃. Let S and S̃ be padded messages of s and s̃, respectively.
Assume that S and S̃ are chopped into (S 0� 	 	 	 � S k) and (S̃ 0� 	 	 	 � S̃ k�), respectively. Let
Hk and H̃k� be inner hash values for s and s̃ in the algorithm, respectively. By the defi-
nition of Hk and H̃k� , we obtain

hC(s) � fC(t(Hk) Æ S k)�

hC(s̃) � fC(t(H̃k� ) Æ S̃ k� )	

Combining the above equations with the assumption, we obtain

fA(t(Hk) Æ S k Æ �) � fA(t(H̃k�) Æ S̃ k� Æ �̃)	

So, we have a collision t(Hk) Æ S k Æ � and t(H̃k� ) Æ S̃ k� Æ �̃ � �0� 1�2r for fA. ��
We use this commitment scheme in the rest of the paper. We often abuse the notation
of ComA. For example, ComA(v1� v2; �) denotes ComA(string(v1) Æ string(v2); �), where
string(v) is a binary representation of v.

4 An Identification Scheme

Our variant S�GL is obtained by replacing the string commitment scheme in Stern’s ID
scheme [26] with our lattice-based one. Stern’s protocol deals with the decoding prob-
lem on binary codewords called the Syndrome Decoding Problem3. He also proposed
that an analogous scheme in �q, where q is extremely small (typically 3, 5, or 7) [26,
Sec. VI]. We adjust this parameter to connect his framework to our assumptions of the
lattice problems.

We now describe the protocol S�GL below. Obviously, it has perfect completeness, and
at most 2�3 soundness error. By parallelizing each step of this protocol in t � �(log n)
times, the soundness error becomes negligibly small. To simplify the notations, we write
Com instead of ComA and we do not write random strings in Com explicitly.

SetUp: The setup algorithm, on input 1n, outputs a random matrix A � �n�m
q .

KG: The key-generation algorithm, on input A, chooses a random vector x �
B(m�m�2) and computes y :� Ax mod q. It outputs (pk� sk) � (y� x).

P, V: The common inputs are A and y. The prover’s auxiliary input is x. They interact
as follows:

3 The Syndrome Decoding Problem is defined as follows: Given A � �n�m
2 , y � �n

2, and w � �,
the problem is finding a vector x � B(m� w) such that Ax � y mod 2. We can consider this
problem as a restricted version of SISq�m��.
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Step P1: Choose a random permutation � over [m] and a random vector r � �
m
q

and send commitments c1, c2, and c3 computed as
– c1 � Com(��Ar),
– c2 � Com(�(r)),
– c3 � Com(�(x � r)).

Step V1 Send a random challenge Ch � �1� 2� 3� to P.
Step P2

– If Ch � 1, reveal c2 and c3. So, send s � �(x) and t � �(r).
– If Ch � 2, reveal c1 and c3. Send � � � and u � x � r.
– If Ch � 3, reveal c1 and c2. Send � � � and v � r.

Step V2
– If Ch � 1, check that c2 � Com(t), c3 � Com(s � t), and s � B(m�m�2).
– If Ch � 2, check that c1 � Com(��Au � y) and c3 � Com(�(u)).
– If Ch � 3, check that c1 � Com(��Av) and c2 � Com(�(v)).

Output Dec � 1 if all checks are passed, otherwise output Dec � 0.

4.1 Statistical Zero-Knowledge Property

The proof of the zero-knowledge property of the original protocol is in [26, Thm. 4].
Stern left completion of the proof as the problem for reader. Thus, we give the whole
proof that Stern’s protocol is statistically zero knowledge when Com is a statistically-
hiding and computationally-binding string commitment scheme.

Theorem 4.1. The protocol is statistically zero knowledge when Com is a statistically-
hiding and computationally-binding string commitment scheme.

Proof. Following the definition, we construct a simulator � which on input A and y
and given oracle access to a cheating verifier ��, outputs a simulated transcript. A real
transcript between P and �� on input A and y is denoted by �P����(A� y).

First, � chooses a random value c̄ from �1� 2� 3� which is a prediction what value the
cheating verifier �� will not choose. Next, it chooses a random tape of ��, denoted
by r�. We remark that, by the assumption on the commitment, the distributions of a
challenge from �� in the real interaction and in the simulation are statistically close.

Case c̄ � 1: � computes x� � �
m
q such that Ax� � y by using linear algebra. Next,

it chooses a random permutation �� over [m], a random vector r� � �
m
q , and random

strings ��1, ��2, and ��3. So, it computes

– c�1 :� Com(���Ar�; ��1),
– c�2 :� Com(��(r�); ��2),
– c�3 :� Com(��(x� � r�); ��3).

It sends them to ��. Since the commitment scheme is statistically hiding, the distribu-
tion of a challenge from �� is statistically close to the real distribution. Receiving a
challenge Ch from ��, the simulator � computes a transcript as follows:

– If Ch � 1, � outputs � and halts.
– If Ch � 2, it outputs (r�; (c�1� c

�
2� c

�
3)� 2� (��� x� � r�� ��1� �

�
3)).

– If Ch � 3, it outputs (r�; (c�1� c
�
2� c

�
3)� 3� (��� r�� ��1� �

�
2)).
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We analyze the case Ch � 2. In this case, we obtain that

�P����(A� y) � (r; (c1� c2� c3)� 2� (�� x� r� �1� �3)�

�(A� y) � (r�; (c�1� c
�
2� c

�
3)� 2� (��� x� � r�� ��1� �

�
3))	

Assume that (��� r�� ��1� �
�
3) � (�� r � x � x�� �1� �3). By this equation, we have that

c�1 � c1, c�3 � c3, and the responses from the simulator equal to the responses from the
prover. Since the commitment is statistically hiding, we have the distributions of c2 and
c�2 are statistically close. Thus, we conclude that the both distributions of the simulated
transcript and the real transcript are statistically close.

It is straightforward to show it in the case Ch � 3 by using the equation (��� r�) �
(�� r). Thus, we omit this part from the proof.

Case c̄ � 2: � chooses a random permutation �� over [m], two random vectors r� � �m
q ,

x� � B(m�m�2), and random strings ��1, ��2, and ��3. � computes commitments

– c�1 :� Com(���Ar�; ��1),
– c�2 :� Com(��(r�); ��2),
– c�3 :� Com(��(x� � r�); ��3).

It sends them to ��. Receiving a challenge Ch, the simulator computes a transcript as
follows:

– If Ch � 1, then � outputs (r�; (c�1� c
�
2� c

�
3)� 1� (��(x�)� ��(r�)� ��2� �

�
3)).

– If Ch � 2, then it outputs � and halts.
– If Ch � 3, then it outputs (r�; (c�1� c

�
2� c

�
3)� 3� (��� r�� ��1� �

�
2)).

We analyze the case Ch � 1. In this case, we have that

�P����(A� y) � (r; (c1� c2� c3)� 1� (�(x)� �(r)� �2� �3)�

�(A� y) � (r�; (c�1� c
�
2� c

�
3)� 1� (��(x�)� ��(r�)� ��2� �

�
3))	

Let � be a permutation over [m] such that �(x�) � x. In this case, we set (��� r�� ��2� �
�
3) �

(�Æ��1� �(r)� �2� �3). By this equation, we have that �(x) � ��(x�), �(r) � ��(r�), c�2 � c2,
and c�3 � c3, that is, the responses from the simulator equal to the responses from the
prover. Since the commitment scheme is statistically hiding, the distributions of the real
transcript and the output of the simulator are statistically close.

We omit the proof of the case Ch � 3, since it is trivial.

Case c̄ � 3: � chooses a random permutation � over [m], two random vectors r � �m
q ,

x� � B(m�m�2), and random strings �1, �2, and �3. � computes

– c1 :� Com(��A(x� � r) � y; �1),
– c2 :� Com(�(r); �2),
– c3 :� Com(�(x� � r); �3).

It sends them to ��.

– If Ch � 1, then � outputs (r�; (c1� c2� c3)� 1� (�(x�)� �(r)� �2� �3).
– If Ch � 2, then it outputs (r�; (c1� c2� c3)� 2� (�� x� � r�)).
– If Ch � 3, it outputs � and halts.
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In the case Ch � 1, we consider the equation (��� r�� ��2� �
�
3) � (� Æ ��1� �(r)� �2� �3),

where � denotes a permutation over [m] such that �(x�) � x. The remaining part of
proof is the same as that in the case c̄ � 2 and Ch � 1. In the case Ch � 2, we let
(��� r�� ��1� �

�
3) � (�� r� x� x�� �1� �3). The remaining part of proof is the same as that in

the case c̄ � 1 and Ch � 2.
The probability that the simulator � outputs � is at most 1�3� �(n) � 1�2 where � is

some negligible function. Additionally, by the above arguments, the distribution of the
output of � conditioned on it is not � is statistically close to the distribution of the real
transcript. Therefore, we have constructed the simulator and completed the proof. ��

Since the protocol is statistically zero knowledge for t � 1, it has a witness-
indistinguishable property. Witness-indistinguishable property is closed under the par-
allel composition [8]. Thus, the above protocol is witness indistinguishable for t �

�(log n) if a statistically-hiding string commitment scheme is used.

4.2 Security of the Protocol

We show the theorem of the security on our ID protocol, which concerns impersonation
under concurrent attack.

Theorem 4.2. For any m(n) � �(n log n), there exist q(n) � O(n2�5 log n) and �(n) �
O(n

�
log n) such that m 
 10n log q and qn� �B(m�m�2)� is negligible in n and the above

ID scheme is secure against impersonation under concurrent attack if GapSVP2
� is hard

in the worst case.

Before the proof of security, we need to mention the following trivial lemma.

Lemma 4.1. For any fixed A, let Y :� �y � �
n
q � ��x � B(m�m�2) � Ax � y�� � 1�,

i.e., a set of vectors y such that the preimage x of y is uniquely determined for A. If
qn� �B(m�m�2)� is negligible in n, then the probability that, if we obtain (y� x) � KG(A),
then y � Y is negligible in n.

We now prove Theorem 4.2. The part of the proof is similar to that in [26].

Proof (Proof of Theorem 4.2). Since there exists average-case�worst-case reduction
from GapSVP2

� to SIS2
q�m�

�
m

(Theorem 3.1), we only construct � solving SIS2
q�m�

�
m

on the average from an impersonator � � (�����) which succeeds impersonation
under concurrent attack with non-negligible probability �.

For the clarity, we write the transcript of interaction by (Cmt�Ch�Rsp�Dec). Since
the protocol is parallelized, each Cmt, Ch, and Rsp is an ordered list which contains t
elements. For example, Cmt � (Cmt1� 	 	 	 �Cmtt).

Given A, � chooses a random secret key x � B(m�m�2) and computes y � Ax.
Using the secret key, it can simulate the prover oracle perfectly. � runs �� on input
(A� y) and obtains a state for ��. � feeds the state to �� and acts as a legitimate
verifier. Receiving commitments Cmt, � chooses three challenges Ch(1), Ch(2), and
Ch(3) from �1� 2� 3�t uniformly at random. Rewinding with three challenges, � obtains
three transcripts (Cmt�Ch(i)�Rsp(i)�Dec(i)) for i � 1� 2� 3 as the results of the interactions.
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By the Heavy Row Lemma [21], the probability that all Dec(i) are 1 is at least (��2)3.
Meanwhile, we have

Pr
�
� j � [t] : �Ch(1)

j �Ch(2)
j �Ch(3)

j � � �1� 2� 3�
�
� 1 � (7�9)t

by a simple calculation. Thus the probability that � has three transcripts
(Cmt�Ch(i)�Rsp(i)�Dec(i)) for i � 1� 2� 3 such that Dec(i) � 1 for all i, and
�Ch(1)

j �Ch(2)
j �Ch(3)

j � � �1� 2� 3� for some j � [t] is at least (��2)3 � (7�9)t, which is
non-negligible since � is non-negligible and t � �(log n).

We next show how� obtains a secret key or finds a collision of the hash functions in
the string commitment scheme by using three good transcripts. Assume that� has three
transcripts (Cmt(i)�Ch(i)�Rsp(i)�Dec(i)) for i � 1� 2� 3 such that Cmt(1) � Cmt(2) � Cmt(3),
Dec(i) � 1 for all i, and �Ch(1)

j �Ch(2)
j �Ch(3)

j � � �1� 2� 3� for some j � [t]. Without loss of

generality, we assume that Ch(i)
j � i. We parse Rsp(i)

j as in Step V2. We have following
equations (We omit j for simplification):

c1 � ComA(��Au � y; �(2)
1 ) � ComA(��Av; �(3)

1 )�
c2 � ComA(t; �(1)

2 ) � ComA(�(v); �(3)
2 )�

c3 � ComA(s � t; �(1)
3 ) � ComA(�(u); �(2)

3 )�
s � B(m�m�2)	

If there exists a distinct pair of arguments of ComA, � obtains a collision for A and
solves SISq�m�

�
m.

Next, we suppose that there exist no distinct pairs of the arguments of ComA. Let
� denote the inverse permutation of �. From the first equation, we have ��1 � � � �.
Thus, we obtain u � �(s � t) from the third equation. Combining it with the first
equation, we have Av � A(�(s) � �(t)) � y. Since v � ��1(t) � �(t) from the second
equation, we obtain y � A 	 �(s). Since s � B(m�m�2), so �(s) also is in B(m�m�2).
Therefore, � sets x� :� �(s).

We now have to show that x� � x with probability at least 1�2. By Lemma 4.1,
there must be another secret key x� corresponding to y with overwhelming probability.
Recall that the protocol is statistically witness indistinguishable. Hence, �’s view is
independent of �’s choice of x with overwhelming probability. Thus we have x� � x
with probability at least 1�2. In this case � outputs z � x� x� and solves SISq�m�

�
m. ��

We note that the above proof is extended into multi-user settings as in the proof of
Lyubashevsky [14].

5 An Ad Hoc Anonymous Identification Scheme

We next construct our AID scheme based on GapSVP. First, we sketch a basic idea for
our construction: Let A be a system parameter. Each user has a secret key xi � B(m�w)
and a public key yi � Axi. In the AID scheme, a group is specified by a set of public keys
(y1� 	 	 	 � yl) of the members. Let ei�l denote an l-dimensional vector t(0� 	 	 	 � 0� 1� 0� 	 	 	 � 0)
whose i-th element is 1. The prover in the group, who has a secret key xi, wants con-
vinces the verifier that he�she knows that x� :� xi Æ �ei�l such that [A y1 	 	 	 yl]x� � 0
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and xi � B(m�m�2). Changing the parameters and using Stern’s protocol, the prover
can convinces the verifier that he�she has x� such that [A y1 	 	 	 yl]x� � 0, the numbers
of �1 in x� is m�2, and the numbers of �1 in x� is 1. Additionally, we force the prover
to prove that x� is in the form x� � xi Æ �ei�l. To do so, we divide a permutation � in
Step P1 into two permutations.

Let �h be a permutation over [m] and �t be a permutation over [l]. For a permutation
� over [m � l], we denote � � �h � �t if

� �

�
1 2 	 	 	 m

�h(1) �h(2) 	 	 	 �h(m)

�
	
�

m � 1 m � 2 	 	 	 m � l
m � �t(1) m � �t(2) 	 	 	 m � �t(l)

�
	

For any �h and �t, we have (�h � �t)�1 � ��1
h � ��1

t . For any xh � �m and xt � �l, if
� � �h � �t then �(xh Æ xt) � �h(xh) Æ �t(xt).

We here construct an AID scheme based on GapSVP. Similarly to the ID scheme in
Section 4, the protocol is repeated t � �(log n) times in parallel to achieve exponentially
small soundness error. As in the previous section, we hide randomness in ComA.

SetUp: Same as SetUp of the protocol in Section 4.
Reg: Same as KG of the protocol in Section 4.
P, V: The common inputs are A and (y1� 	 	 	 � yl). The prover’s auxiliary input is xi for

some i � [l]. Let A� :� [A y1 	 	 	 yl] and x :� xi Æ �ei�l. We write Com instead of
ComA for ease of notation. They interact as follows:
Step P1: Choose random permutations �h over [m] and �t over [l]. Let � � �h ��t.

Choose a random vector r � �m�l
q . Send commitments c1, c2, and c3 as

– c1 � Com(�h� �t�A�r),
– c2 � Com(�(r)),
– c3 � Com(�(x � r)).

Step V1 Send a random challenge Ch � �1� 2� 3� to P.
Step P2

– If Ch � 1, reveal c2 and c3. Send s � �(x) and t � �(r).
– If Ch � 2, reveal c1 and c2. Send �h � �h, �t � �t, and u � x � r.
– If Ch � 3, reveal c1 and c3. Send �h � �h, �t � �t, and v � r.

Step V2
– If Ch � 1, check that c2 � Com(t), c3 � Com(s � t), and s is in the form

sh Æ �e j�l for some j and sh � B(m�m�2).
– If Ch � 2, check that c1 � Com(�h� �t�A�u) and c3 � Com((�h � �t)(u)).
– If Ch � 3, check that c1 � Com(�h� �t�A�) and c2 � Com((�h � �t)(v)).

Output Dec � 1 if all checks are passed, otherwise output Dec � 0.

The security of the above protocol is stated as follows. We omit the proof, since it is
similar to the proof of Theorem 4.2.

Theorem 5.1. Let m � m(n) and q � q(n) be polynomially bounded functions satisfy-
ing the conditions that m 
 10n log q and qn� �B(m�m�2)� is negligible in n. Assume
that there exists an impersonator � that succeeds impersonation under concurrent
chosen-group attack with non-negligible probability. Then there exists a probabilistic
polynomial-time algorithm � that solves SIS2

q�m�
�

m
.

Combining Theorem 5.1 with Theorem 3.1, we obtain the following theorem.
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Theorem 5.2. For any m(n) � �(n log n), there exist q(n) � O(n2�5 log n) and �(n) �
O(n

�
log n) such that qn� �B(m�m�2)� is negligible in n and the above scheme is secure

against impersonation under concurrent chosen-group attack if GapSVP2
� is hard in the

worst case.

The statistical anonymity of the above scheme follows from witness indistinguishability
of the protocol.
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Abstract. The Kannan-Fincke-Pohst enumeration algorithm for the
shortest and closest lattice vector problems is the keystone of all strong
lattice reduction algorithms and their implementations. In the context of
the fast developing lattice-based cryptography, the practical security es-
timates derive from floating-point implementations of these algorithms.
However, these implementations behave very unexpectedly and make
these security estimates debatable. Among others, numerical stability
issues seem to occur and raise doubts on what is actually computed.
We give here the first results on the numerical behavior of the floating-
point enumeration algorithm. They provide a theoretical and practical
framework for the use of floating-point numbers within strong reduction
algorithms, which could lead to more sensible hardness estimates.

Keywords: Lattices, SVP, lattice cryptanalysis, numerical stability.

1 Introduction

A lattice L is a discrete subgroup of some Rn. It can always represented by
a basis, i.e., some d ≤ n linearly independent vectors b1, . . . , bd ∈ Rn such
that L =

∑
Zbi. A given lattice has infinitely many bases as soon as d ≥ 2.

One is most often interested in bases made of rather short/orthogonal vectors,
which are generically called reduced. They provide a more tractable description
of the lattice. Since a lattice is discrete, it contains a vector of smallest non-zero
Euclidean length: this length λ is called the lattice minimum. The most famous
problem related to lattices is the Shortest Vector Problem (SVP), which aims
at finding a lattice vector of length λ from an arbitrary basis. SVP is known to
be NP-hard under randomized reductions [2]. Another popular lattice problem
is the Closest Vector Problem (CVP): given a lattice basis and a target vector
in Rn, find a lattice vector that is closest to the target. This non-homogeneous
version of SVP is NP-hard [7]. Since these problems are costly to solve for large
dimensions, one is often satisfied with weaker variants. E.g., in γ-SVP one asks
for a non-zero lattice vector no longer than γ · λ.
� This work is part of the Australian Research Council Discovery Project on Lattices

and their Theta Series.
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Lattice reduction algorithms range between two extremes. On one side, the
LLL algorithm [20] provides a basis with relatively poor properties, in polynomial
time. On the opposite, the Hermite-Korkine-Zolotarev (HKZ) reduction provides
an excellent basis but requires a huge computational effort. Schnorr [31] was the
first to devise hierarchies of algorithms ranging from LLL to HKZ, depending
on a parameter k. Schnorr’s algorithms make use, in a LLL fashion, of HKZ
reductions in projections of sublattices of dimension O(k). When k increases,
the cost increases as well, but the quality of the bases improves. The recent
hierarchies [9,10] achieve better trade-offs but follow the same general strategy.
In practice, the Schnorr-Euchner BKZ algorithm [32] seems to be the best, at
least for small values of k. The HKZ reduction uses the Kannan-Fincke-Pohst
(KFP) enumeration of short lattice vectors [19,8]. KFP may be replaced by the
probabilistic algorithm of [4], but the latter seems slower in practice [28].

Lattices appeared for the first time in cryptology at the beginning of the 80’s,
when the renowned LLL algorithm [20] was used to break knapsack cryptosys-
tems [29]. For many years lattices were mostly used as a cryptanalytic tool [18].
The landscape changed dramatically in the mid-90’s with the invention of sev-
eral lattice-based encryption schemes, among which Ajtai-Dwork [3], NTRU [17]
and GGH [13]. Their securities provably/heuristically rely on the hardness of
relaxed variants of SVP and CVP. For example, in the GGH/NTRU frame-
work, the hardness of recovering the secret key from the public key is related to
SVP and the hardness of maliciously deciphering a message is related to CVP.
A recent but very active and promising trend consists in building other cryp-
tographic schemes whose securities provably reduce to the assumed worst-case
hardness of Poly(d)-SVP for special lattices (called ideal). This includes hash-
ing [23], signatures [22] and public-key identification [21]. Gentry, Peikert and
Vaikuntanathan [12] introduced other elaborate schemes, including a signature
and an identity-based cryptosystem. We refer to [24] for more details. Besides
cryptology, lattice reduction and in particular KFP is used in many areas, includ-
ing number theory [6] and communications theory [25,15], in which the present
results may prove useful as well.

Despite the high-speed development of lattice-based cryptography, its prac-
tical security remains to be assessed (see [11] for a first step in that direction).
Contrary to factorization and discrete logarithm in finite fields and in elliptic
curves, the practical limits for solving SVP and CVP and their relaxed variants
are essentially unknown, implying that the practicality of the schemes above is
debatable. It could be that the suggested key sizes are below what they should,
as what happened to be the case with GGH [26]. They may also be too large and
then unnecessarily sacrifice efficiency. No significant computational project has
ever been undertaken. The main reason is that the algorithmic facet of lattice re-
duction remains mysterious. In particular, the theoretically best algorithms [9,10]
seem to remain slower than heuristic ones such as [32], whose practical behav-
iors are themselves suspicious. Let us discuss NTL’s BKZ routine [33] which
implements [32] and is the only publicly available such implementation: when
the so-called block-size k is around 30, the number of internal calls to SVP in
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dimension k seems to explode suddenly (although the corresponding quantity
decreases with k in the theoretical algorithms); when k increases, BKZ seems to
require more precision for the underlying floating-point computations, although
the considered bases should become more orthogonal, which implies a better
conditioning with respect to numerical computations. The latter raises doubts
on what is actually computed and thus on the practical security estimates of
lattice-based cryptography.

Classically, to obtain correctness guarantees, the lattices under study should
be in Qn and the KFP enumeration should rely on a rational arithmetic. How-
ever, the rationals may have huge bit-sizes (though polynomial in the bit-size of
the input basis). The bit-size of the rationals is a polynomial factor of the overall
enumeration cost (between linear and quadratic, depending on the integer arith-
metic). Keeping a rational arithmetic would decrease the efficiency of KFP signif-
icantly. In practice, e.g., in NTL, these rational numbers are always replaced by
small precision floating-point numbers. Finding a small lattice vector corresponds
to disclosing an integer linear combination of vectors whose coordinates are small,
i.e., for which any coordinate is a cancellation of integer multiples of initial coor-
dinates. However, floating-point computations are notoriously inadequate when
cancellations occur since it often implies huge losses of precision (and thus a pos-
sibly dramatic growth of relative errors). Moreover, the precision is rather low
(usually 53 bits), though the number of operations performed may be exponen-
tial with the dimension. If the operations reuse the variables sequentially, then
one may run out of precision simply because of the accumulation of the errors.
Finally, there is no efficient way to check the optimality of a solution but to re-run
the whole algorithm in rational arithmetic: by comparing the length of the output
vector with the lattice determinant, one can check that it looks reasonable, but it
could be that (much) better solutions have been missed.

In the present paper, we give the first analysis of the influence of floating-point
arithmetic within the KFP enumeration algorithm. More precisely, we show that
if it is called on an LLL-reduced basis of a lattice made of integer vectors and
uses floating-point arithmetic with a precision that is Ω(d) (the constant being
explicit), then it finds the desired solution, i.e., a vector reaching the lattice min-
imum λ. Moreover, if the lattice is known only approximately (which may be the
case for the projected sublattices in BKZ-style algorithms), then it finds a close
to optimal solution. Finally, we also prove that the floating-point enumeration in-
volves essentially the same number of arithmetic operations as the rational one.
The results hold in a broad context: the technique can be adapted to fixed-point
arithmetic, a weak condition is required for the input basis (if the input basis is
not LLL-reduced, then the cost of the enumeration would grow dramatically), and
the input may not be known exactly. Furthermore, the worst-case precision may
be provably and adaptively decreased to a usually much smaller sufficient preci-
sion that can be computed efficiently from a given input basis. Double precision
seems to suffice for KFP for all computationally tractable dimensions.

For the result to be valid, KFP has to be slightly modified (essentially, the
initial upper bound has to be enlarged). The proof relies on a subtle analysis
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of the floating-point variant with respect to the rational enumeration: because
of internal tests whose outcomes may differ due to inaccuracies, the execution
of the floating-point variant may not mimic at all the ideal one. After working
around that difficulty, the proof reduces to standard error analysis. To obtain a
low sufficient precision, we heavily use the LLL-reducedness of the input basis.

Our result complements the Nguyen-Stehlé floating-point LLL [27]. By com-
bining these two results, the use of floating-point arithmetic in all practical
lattice algorithms may be made rigorous. Providing tight conditions leading to
guarantees for the enumeration algorithm is likely to lead to significantly faster
algorithms. Since the possible troubles coming from the use of floating-point
arithmetic are better understood, one may work around them in the cheapest
valid way rather than using unnecessarily large precisions. Like LLL [34], one
may hope to design combinations of reduction algorithms whose arithmetic han-
dling is oblivious to the user, that are guaranteed and as fast as possible. A
good understanding of the underlying numerical stability issues provides a firm
ground to study other questions. Furthermore, the knowledge of a small suf-
ficient precision for the enumeration algorithm is an invaluable ingredient for
hardware-based enumeration: in software, one should not use a precision cruder
than the processor double precision; in hardware, however, the smaller the preci-
sion the faster. Overall, the floating-point analysis of the enumeration algorithm
is a step towards intense cryptanalytic computations.

Road-map. In Section 2, we give the necessary background on lattices and
floating-point arithmetic. In Section 3, we precisely describe the algorithm under
scope and describe our results. We give elements of the proofs in Section 4, the
more technical details being postponed to the appendix of the full version. In
Section 5, we discuss the practicality of our results.

Notations. If x ∈ R, we denote by �x� its closest integer (if there are two
possibilities, the even one is chosen). A variable x̄ is supposed to approximate
the corresponding x, and we define ∆x = |x̄− x|.
Remarks. For simplicity, we will only consider SVP. The results can be extended
to CVP. Many variables occur in the text. This is due to the combined technicali-
ties of floating-point arithmetic and LLL. This also comes from the will to provide
explicit bounds, which is necessary to actually derive rigorous implementations.
Here is a heuristic glossary for a first reading: the LLL-parameters δ, η, α, ρ are
essentially 1, 1/2,

√
4/3,

√
3; the variables C1, C2, . . . are Õ(1); the variables ε

and ε′ quantify inaccuracies and are negligible, whereas K is close to 1.

2 Reminders on Lattices and Floating-Point Arithmetic

We give some quick reminders on floating-point arithmetic and lattices. For more
details, we respectively refer to [16] and [6].

Floating-point arithmetic. A precision t floating-point number is a
triple (s, e,m) ∈ {0, 1}×Z×

(
Z ∩ [2t−1, 2t − 1]

)
. It represents the real (−1)s ·m ·
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2e−t+1. The unit in the last place is ε = 2−t+1. If a ∈ R, we denote by �(a) the
floating-point number that is closest to a (the one with an even m if there are two
solutions). We have |a−�(a)| ≤ ε/2·|a|. If a and b are two floating-point numbers,
we define a⊕b, a+b and a⊗b by �(a+b), �(a−b) and �(a·b). The double precision
t = 53 is a common choice as ⊕,+ and ⊗ are implemented at the processor level
in most computers. In practice, and for the KFP enumeration in particular, one
should use double precision as much as possible. However, asymptotically with
respect to the growing lattice dimension d, we will need t = Ω(d).

Gram-Schmidt orthogonalization. Let b1, . . . , bd be linearly indepen-
dent vectors. We define their Gram-Schmidt orthogonalization by b∗

i = bi −∑
j<i µi,jb

∗
j with µi,j =

〈bi,b
∗
j 〉

‖b∗
j ‖2 for i > j. We define ri = ‖b∗i ‖2. The µi,j ’s

and ri’s. are the Gram-Schmidt coefficients. The b∗i ’s are pairwise orthogonal.
If the bi’s are integral, then the µi,j ’s are rational and can be computed in
polynomial time with the formula above.

LLL-reduction. Let η ∈ [1/2, 1) and δ ∈ (η2, 1). Consider a lattice ba-
sis b1, . . . , bd and its corresponding b∗i ’s and µi,j ’s. The basis is said to be (δ, η)-
LLL-reduced if for all i > j we have |µi,j | ≤ η and δ‖b∗i−1‖2 ≤ ‖b∗i +µi,i−1b

∗
i−1‖2.

This directly implies that the lengths of the b∗i ’s cannot decrease too fast:
if α := (δ − η2)−1/2 then α2ri ≥ ri−1. In this paper, we will further assume
that δ > η2 + (1 + η)−2. This assumption is reasonable, since before starting an
enumeration one should always LLL-reduce the lattice with δ close to 1 and η
close to 1/2. Our analysis can be adapted to the general case, but this com-
plicates the exposure for a useless situation. Lenstra, Lenstra and Lovász [20]
gave an algorithm that computes an LLL-reduced basis from an arbitrary in-
tegral basis in time O(d5n log3 B) where B is the maximum of the lengths
of the input vectors. Using (low precision) floating-point arithmetic for the
Gram-Schmidt computations, Nguyen and Stehlé [27] decreased that complex-
ity to O(d4n(d + logB) logB). Their algorithm requires η > 1/2. They rely on
floating-point approximation to the Gram-Schmidt orthogonalization, which is
much cheaper to obtain than computing the exact one. As an intermediate re-
sult, they show that if the input basis is LLL-reduced and if the computations
are based on the exact Gram matrix (the matrix of the pairwise scalar products
of the basis vectors), then this approximation is accurate even with low precision
(linear with respect to the dimension).

Theorem 1 ([27]). Let b1, . . . , bd ∈ Zn be a (δ, η)-LLL-reduced basis, with η ∈
[1/2, 1) and δ ∈ (η2, 1). Let u ∈ (0, 1/16) and ρ = (1 + η + u)(δ − η2)−1/2. Let t
be such that C1ρ

2dε < u where ε = 2−t+1 and C1 = 32d2. Starting from the
Gram matrix of the bi’s and using precision t floating-point arithmetic, one can
compute some r̄i’s and µ̄i,j’s such that:

∀i > j, |µ̄i,j − µi,j | ≤ C1ρ
2jε and ∀i, |r̄i − ri| ≤ C1ρ

2iε · ri.
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3 Floating-Point Lattice Enumeration

The usual method to solve SVP and CVP relies on the KFP enumeration [19,8].
We refer to [1] for a comprehensive survey. Here we will consider the variant due
to Schnorr and Euchner [32] since it is the fastest and the one used in NTL.
After describing the algorithm, we explain how to use floating-point arithmetic
and finally give our main results.

3.1 The Enumeration Algorithm

The KFP algorithm for SVP takes as input a lattice basis and returns a short-
est non-zero lattice vector. For this, it considers some A and finds all solu-
tions (x1, . . . , xd) ∈ Zd to the equation∥∥∥∥∥

d∑
i=1

xibi

∥∥∥∥∥
2

≤ A. (1)

If A ≥ ‖b1‖2, then the set of solutions is non-trivial and SVP is solved by keeping
the best one. Equation (1) is equivalent to

d∑
i=1

⎛⎝xi +
d∑

j=i+1

µj,ixj

⎞⎠2

ri ≤ A. (2)

We let ci = −
∑d

j=i+1 µj,ixj and perform the change of variable yi := xi − ci.
This corresponds to applying to x the triangular matrix whose diagonal co-
efficients are 1 and whose off-diagonal coefficients are the µi,j ’s. Any se-
quence (yi, . . . , yd) corresponds to a unique sequence (xi, . . . , xd). Equation (2)
becomes

∑d
i=1 y

2
i ri ≤ A, which implies that:

y2
drd ≤ A,

y2
d−1rd−1 ≤ A− y2

drd,

. . .

y2
1r1 ≤ A−

d∑
j=2

y2
j rj .

KFP finds all yd’s satisfying the first equation, then all (yd−1, yd)’s satisfying
the second equation, etc. until it discloses all (y1, . . . , yd)’s satisfying the last
equation. Let i < d. Suppose that yi+1, . . . , yd are already set. Then there is a
finite number of possibilities for yi since yi belongs to a bounded interval and is
the fixed shift (by ci) of the integer variable xi. The number of possibilities for yi

is ≤ 1+2
√
A/ri. This shows that the bigger the ri’s, the faster the enumeration.

We will see that big ri’s also help decreasing the required floating-point precision
needed for the computations. Overall, KFP consists in trying to build solution
vectors

∑d
i=1 xibi to Equation (1) by successively looking at the projections
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orthogonally to the spans of (b1, . . . , bi) for a decreasing i. For a given choice
of (xi+1, . . . , xd), the variable xi belongs to an interval centered in ci. Its length

is
√

A−�i+1
ri

, where �i+1 :=
∑

j>i y
2
j rj .

Schnorr and Euchner improved KFP as follows. Suppose (xi+1, . . . , xd) is set.
Instead of looking at the possible xi’s in a straight increasing fashion, they are
chosen from the center of the interval to its borders: the first value is �ci�,
then the integer that is second closest to ci, etc. This has the effect of sorting
the �i’s by increasing order, and thus of maximizing the likelihood of quickly
finding a solution to Equation (1). Once a solution is found, the value of A
may be decreased, which possibly cuts off many branches of the execution tree.
In Figure 1, we give a detailed description of the enumeration algorithm using
the Schnorr-Euchner zig-zag path. The vector sol stores the non-zero vector x
that is currently thought as minimizing ‖

∑
i≤d xibi‖. It remains 0 as long as no

length below
√
A has been found. The ∆xi’s and ∆2xi’s are used to implement

the zig-zag path.

Input: A bound A. Approximations µ̄i,j ’s and r̄i’s to the Gram-Schmidt
coefficients of a possibly unknown basis b1, . . . , bd.
Output: A coordinate vector x ∈ Zd \ {0} such that

∑d
i=1 xibi is

likely to reach the lattice minimum.
1. x := (1, 0, . . . , 0); ∆x := (1, 0, . . . , 0); ∆2x := (1, −1, . . . , −1); sol := 0.
2. c, �, y := 0.
3. i := 1. Repeat
4. yi := |xi − ci|; �i := �i+1 + y2

i ri.
5. If �i ≤ A and i = 1, then (sol, A) := update(sol, A, x, �1).
6. If �i ≤ A and i > 1, then i := i − 1 and
7. ci := −

∑d
j=i+1 xjµj,i.

8. xi := �ci�; ∆xi := 0; if ci < xi then ∆2xi := 1 else ∆2xi := −1.
9. Else if �i > A and i = d return sol and stop.
10. Else i := i + 1 and
11. ∆2xi := −∆2xi; ∆xi := −∆xi + ∆2xi; xi := xi + ∆xi.

Fig. 1. The Schnorr-Euchner variant of the KFP enumeration algorithm

The algorithm of Figure 1 calls an update routine. In the ideal case, i.e., with
correct input Gram-Schmidt coefficients and exact computations, we simply take
update1(sol, A,x, �1) = (x, �1). If we use floating-point arithmetic, however,
this strategy may lead us to cut off branches of the tree that could contain the
minimal non-zero length: if the computed approximation to �1 under-estimates
it and if the lattice minimum is between both values and has not been reached
yet, it will be missed. One can avoid this pitfall when floating-point arithmetic is
used but the lattice is perfectly known, i.e., the genuine bi’s or the correct Gram-
Schmidt quantities are given. In that situation, it is useful to consider update2
defined as follows: update2(sol, A,x, �1) = (x, A) when sol = 0 or ‖

∑
i xibi‖ ≤

‖
∑

i solibi‖ (exactly), and update2(sol, A,x, �1) = (sol, A) otherwise.
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When using floating-point arithmetic, it is crucial to specify the order in
which the operations are performed. At Step 4, we will evaluate the term y2

i ri

as: r̄i ⊗ (ȳi ⊗ ȳi). At Step 7, we will evaluate
∑

j=i+1 xjµj,i as (xi+1 ⊗ µ̄i+1,i)⊕
[(xi+2⊗ µ̄i+2,i)⊕ [. . .⊕(xd⊗ µ̄d,i) . . .]]. Finally, notice that the xi’s, ∆xi’s, ∆2xi’s
and soli’s remain integers.

An iteration of the loop is uniquely determined by the values of i and
(xi, . . . , xd) at the beginning of the iteration. We say that the state is σ =
(i, [xi, . . . , xd]). Let i ≤ d and xi, . . . , xd ∈ Z. The floating-point algorithm and
the exact algorithm do not necessarily perform the same iterations, and even
if they do they may not be performed in the same order. It is thus impossi-
ble to compare the values of the variables for a given loop iteration. However,
one may compare the values of the variables for a given state of the loop. In
both the exact and floating-point variants, the values of the ci’s, yi’s and �i’s
do not depend on the iteration, but only on the state. Furthermore, these val-
ues are well-defined even if they are not actually computed: they do not de-
pend on the initial bound A, nor on the existence of an iteration with the right
state, nor in the order in which the states are visited. Consider a variable of
the algorithm. We use the notation v to represent its value at a given state
with exact computations and v̄ its value at the same state with floating-point
computations.

3.2 Main Results

We consider a lattice basis b1, . . . , bd that is (δ, η)- LLL-reduced with η ∈ [1/2, 1)
and η2 + 1

(1+η)2 < δ < 1. We let α = 1√
δ−η2

and ρ = (1 + η)α. The minimum of

the lattice spanned by the bi’s is denoted by λ. Below, when using KFP, the basis
may not be known. In that case, its Gram-Schmidt coefficients or approximations
thereof are known. The former situation may arise if one knows only the Gram
matrix of the basis. The latter is typical of BKZ-style algorithms: one tries to
reduce a large-dimensional lattice basis b1, . . . , bd by enumerating short vectors
of lattices spanned by the projections of the vectors bi+1, . . . , bi+k orthogonally
to b1, . . . , bi, for some i and k; usually, one only knows approximations to the
Gram-Schmidt coefficients of the projected k-dimensional basis.

Suppose we use floating-point arithmetic in the enumeration procedure, as
described above. We denote by ε the unit in the last place and we define K =
1 + ε/2 ≈ 1. We allow the input Gram-Schmidt coefficients to be incorrect. For
this purpose, we define:

κ = max
(

max
i>j

∆µi,j

ε
,max

i

∆ri

ri · ε

)
.

If the Gram-Schmidt coefficients are exactly known and then rounded, we
have κ ≤ 1. They can also be computed as mentioned in Theorem 1, in which
case we have κ ≤ C1ρ

2d(1 + u′)2d for some small u′ > 0.
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To simplify the theorems below, we introduce some notation. We define R =
(1 + κε) ·maxi ri: it bounds all the ri’s as well as the ri +∆ri’s. We also define:

C2 =
κ + 2
α− 1

+
κ + 4
ρ− 1

, C3 =
2α(2 + κ + 2C2)

1 + η − α
,

ε′ = 2
R

r1

[
(1 + κ)α2d + (2C2 + C3)ρd

]
· ε, C4 = C3

K + dε

1 − ε′
(2 + dε).

The following theorem shows that when some exact knowledge of the lattice is
provided then the floating-point enumeration solves SVP, if the precision is Ω(d)
and the initial length upper bound is slightly increased in order to take care of
the inaccuracies. In particular, in the most usual case where the ri’s decrease,
one can choose A = r1 ·(1+(2d+C3ρ

d)ε), which is only slightly larger than r1. If
the ri’s do not decrease, they can still be assumed of the same order of magnitude
(up to a factor 2O(d)), thanks to the LLL-reducedness of the input basis, and
the a priori knowledge that larger ri’s will not be used in vectors reaching the
minimum.

Theorem 2. Consider the floating-point KFP algorithm described in Subsec-
tion 3.1. Suppose that either the bi’s are known or that the Gram-Schmidt
quantities are correct, and that the update2 function is used. We assume
that C2ρ

d · ε ≤ 0.01 and A ≥ (1 + 2dε) · λ2 + C3ρ
dε · R. Then the returned

coordinates sol satisfy ‖
∑

i≤d solibi‖ = λ.

In the theorem above, we do not cut off branches of the computation once a short
vector has been found: we keep the initial bound A. It is possible to decrease A
each time a significantly shorter vector is found. Suppose a vector of exact squared
norm A′ < A has been found. Then we can set A = min(A,A′(1 + ε”)), for a
well chosen ε” that can be made explicit. This takes care of possible slight over-
estimates of internal �i’s which could erroneously lead to the removal of useful loop
iterations. For the sake of simplicity, we do not consider this variant here.

Within BKZ-style algorithms, one may only know approximations to the
Gram-Schmidt coefficients of the input basis, making Theorem 2 useless in such
situations. Furthermore, due to the input uncertainty, one may not be able to
decide which is the shortest between two vectors of close-by lengths: one cannot
do better than finding a vector which is not much longer than λ. Of course, if
there is a sufficient gap between λ and the length of any lattice vector different
that does not reach the minimum, then an optimal solution will be found. The
theorem below shows that finding a close to optimal vector is actually possible.

Theorem 3. Consider the floating-point KFP algorithm described in Subsec-
tion 3.1, with the update1 function. Let γ = ‖

∑
i solibi‖ be the norm of the

found solution. If A ≥ r̄1 and ε′ < 0.01, then:

λ2 ≤ γ2 ≤ (1 + 4dε) · λ2 + C4 max
(

1,
A

r1

)
ρdε · R.
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It should be noted that floating-point variants of BKZ cannot solve their
internal SVP instantiations exactly: the best they can do is to solve (1 + ε”)-
SVP instantiations instead, for some small ε”. However, with a small enough ε”,
this does not change significantly the overall quality of the output bases.

The two results above provide as good as could be expected correctness guar-
antees to the floating-point enumeration. However, since the algorithm is not
the rational one, the complexity analyzes do not hold anymore. The following
theorem shows that the overhead of the floating-point enumeration with respect
to the rational one is small.

Theorem 4. Consider the floating-point KFP algorithm described in Subsec-
tion 3.1 with either of the update functions and either the knowledge of the ba-
sis or the Gram-Schmidt coefficients or only approximations thereof. Let γ =
‖
∑

i solibi‖ be the norm of the found solution. We suppose that ε′ < 0.01.
Then the number of loop iterations is lower than the number of loop itera-
tions of the rational algorithm given the genuine basis and an input bound A′ =
(1 + dε) ·A + C4 max

(
1, A

r1

)
ρdε · R.

As a consequence of Theorems 2 and 4, the cost of Kannan’s algorithm [19] can
be decreased from Poly(n, logB)·d d

2e (1+o(1)) (see [14]) to
(
d

d
2e + Poly(n, logB)

)
·

do(d): it suffices to use rationals everywhere but in the enumerations which should
be performed with precision Θ(d).

4 Error Analysis of the Floating-Point Enumeration

We now turn to the proofs of Theorems 2, 3 and 4. We proceed by proving that
the computed lengths �̄i of the projected vectors are accurate. Lemma 1 means
that �̄1 cannot be much larger than �1, which suffices for Theorem 3. For the
other results, we need the converse: Lemma 2 means that the true �i cannot
be much larger than the computed one. The proofs of Lemmata 1 and 2 are
explained in Subsection 4.2.

As mentioned in Section 3, an �̄i computed by the floating-point algorithm
may not correspond to any �i computed by the rational one with the same
bound A, and vice-versa. To be rigorous, we need the following definitions.
For x ∈ Zd, we let n(x) = ‖

∑d
i=1 xibi‖2 and n̄(x) its approximation as would

be computed by the enumeration were the state (1, [x1, . . . , xd]) visited. We use
the notations and hypotheses of Subsection 3.1.

Lemma 1. Suppose that C2ρ
d · ε < 0.01. Let x ∈ Zd. If n(x) ≤ r1, then:

n̄(x) ≤ (1 + 2dε) · n(x) + C3ρ
dε · R.

Lemma 2. Suppose that ε′ < 0.01. Let x ∈ Zd and i ≤ d. We consider the
state (i, [xi, . . . , xd]). Then

�i ≤ (1 + dε) · �̄i + C3 max
(

1,
�̄i(K + dε)
r1(1 − ε′)

)
ρdε ·R.
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4.1 Using Lemmata 1 and 2 to Prove the Theorems

Let us first prove Theorem 2 from Lemma 1. Let (x1, . . . , xd) be the coordi-
nates of a shortest vector. If the state (1,x) is considered by the floating-point
algorithm with A ≥ (1 + 2dε) · λ2 + C3ρ

dε · R, then a shortest vector will be
found. Making sure that (1,x) is indeed considered is the purpose of the follow-
ing lemma. It relies on subtle properties of the floating-point model, in particular
that the rounding is a non-decreasing function.

Lemma 3. If one uses the update1 function within the enumeration, then all
coordinate vectors x such that n̄(x) ≤ A will indeed be considered during the
execution.

Proof. Let x ∈ Zd with n̄(x) ≤ A. We show by induction on decreasing i
that (i, [xi, . . . , xd]) is considered and that at this moment the test �̄i ≤ A
is satisfied. Let i ≤ d. We consider the sequence (σ1, . . . , στ ) of considered
states (i, [X,xi+1, . . . , xd]) with X ∈ Z. It is non-empty if i = d, and it is
also non-empty if i < d by induction hypothesis.

The sequence
(
�̄i(σt)

)
t

is non-decreasing. The first integer X = xi(σ1) is
exactly �c̄i�. The computation of xi(σt) from xi(σt−1) is exact, and the distance
between xi(σt) and c̄i is non-decreasing. Since the rounding function is non-
decreasing, the sequence (ȳi(σt))t is also non-decreasing. For the same reason,
the sequence

(
�̄i(σt)

)
t

is non-decreasing.
Consider the value �̄ of �̄i were it computed with (xi, . . . , xd). We have �̄ ≤

n̄(x) ≤ A. Since �̄i(στ ) > A, there must exist t such that xi(σt) = xi and the
test �̄i ≤ A is satisfied for that state σt. ��

We now prove Theorem 3. If we use update2, the bound A may decrease during
the execution, to finally reach a value Aend. The final output would have been
the same if we had started with A = Aend. We consider that it is the case,
which implies that A is not modified during the execution. Let x ∈ Zd such
that n(x) = λ2. Lemma 1 implies that n̄(x) ≤ (1 + 2dε) · λ2 + C3ρ

dε · R. We
must have A ≤ (1 + 2dε) · λ2 + C3ρ

dε · R since otherwise A would have been
decreased after x was found. Applying Lemma 2 with sol and using the above
bound on A provides the result.

For Theorem 4, consider a state (i, [xi, . . . , xd]) with a successful test �̄i ≤ A.
Lemma 2 gives �i ≤ (1 + dε) · A + C3 max

(
1, A(K+dε)

r1(1−ε′)

)
ρdε · R ≤ A′. Therefore,

the exact algorithm with the bound A′ would have considered this state and the
corresponding test would have been successful as well. Moreover, there are as
many failed loop iterations with i < d as successful loop iterations with i > 1.
This completes the proof.

4.2 Proving Lemmata 1 and 2

The proofs of Lemmata 1 and 2 rely on standard techniques of floating-point
error analysis. We simultaneously bound the errors and the variables, which leads
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us to use an induction on the decreasing index i. Within the induction step, we
rely on three basic facts whose proofs are tedious but straightforward. They are
given in the appendix of the full version.

Lemma 4. Suppose that C2ρ
dε ≤ 0.01. Suppose we are at the end of Step 4 of

some loop iteration with state (i, [xi, . . . , xd]). If there exists a constant ν ≥ 1
such that for any j > i we have yj ≤ ναj−1, then

∆ci ≤ C2να
d(1 + η)d−iε and ∆yi ≤ yiε/2 + KC2να

d(1 + η)d−iε.

Lemma 5. At Step 4 of the floating-point algorithm, we have:

|(ȳi ⊗ ȳi) ⊗ r̄i − riy
2
i | ≤ RK2[(κ + 1)y2

i ε + (2yi + ∆yi)∆yi]

Lemma 6. Suppose that C2ρ
dε ≤ 0.01. Suppose we are at the end of Step 4 of

some loop iteration with state (i, [xi, . . . , xd]). If there exists a constant ν ≥ 1,
such that for any j ≥ i we have yi ≤ ναi−1, then:

∆�i ≤ dε · �i + C3ν
2ρdε ·R and ∆�i ≤ dε · �̄i + C3ν

2ρdε · R.

We can now prove Lemma 1. Let x ∈ Zd such that n(x) ≤ r1. Since the basis
is LLL-reduced, the yi’s corresponding to w satisfy yi ≤

√
n(x)/ri ≤

√
r1/ri ≤

αi−1. The first part of Lemma 6 with ν = 1 provides the result.
Finally, we prove Lemma 2. Let x ∈ Zd and i ≤ d. We show by induction

on j decreasing from d to i that the bound on ∆cj of Lemma 4 holds and that

we have yj ≤ ναj−1, with ν = max
(

1,
√

�̄i(K+dε)
r1(1−ε′)

)
. Lemma 2 will then follow

from the second part of Lemma 6. Let j ≥ i. By induction, we have yk < ναk−1

for any k > j, so that the bounds of Lemma 4 hold. It remains to see that yj ≤
ναj−1. Lemmata 5 and 6 provide:

rjy
2
j ≤ �j ≤ �̄j + ∆�j ≤ K�̄j + ∆�j+1 +

∣∣(ȳj ⊗ ȳj) ⊗ r̄j − rjy
2
j

∣∣
≤ K�̄j + dε�̄j + C3ν

2ρdεR + RK2 [(κ + 1)y2
j ε + (2yj + ∆yj)∆yj

]
.

We use Lemma 4 to bound ∆yj in the equation above. This leads P (yj) ≤ 0,
where P is the degree-2 polynomial with coefficients:

P0 = −�̄j(K + dε) − C3ν
2Rρdε−RK4(C2νρ

dε)2,
P1 = −2RK4C2να

d−j(1 + η)dε and P2 = rj − 2RK3(κ + 1)ε.

The fact that ε′ < 0.01 implies that P2 > 0 and thus that yj is below the positive
root of P . It can be checked that P (ναj−1) ≥ 0, which implies that yj ≤ ναj−1.
This completes the proof.

5 Practical Considerations

The algorithm described in Section 3 has been implemented in C++ and is freely
distributed within fplll-3.0 [5]. The code does not use the worst-case bounds
above but remains guaranteed, as explained below. We also explain how our
results may be used within BKZ-style algorithms.
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5.1 Guaranteeing the Computations with Smaller Precision

The worst-case bounds given in Section 3 are very pessimistic for generic instan-
tiations. This is due to the facts that all |µi,j |’s (resp. ri−1/ri’s) are bounded by
their worst-case value η (resp. α2) and all floating-point errors are considered
to be always maximal and in the worst direction. Although they might occur,
cases where all these bounds are tight are unlikely. In the worst-case analy-
sis, we also use loose bounds to simplify the technicalities, though they do not
modify the terms that are exponential with d. For (δ, η) = (0.99, 0.51), if the
Gram-Schmidt coefficients are correct up to their last bit (κ ≤ 1), the provably
sufficient precision for a d-dimensional enumeration is ≈ 0.8 ·d (when d grows to
infinity). To take advantage of the machine instructions, one is tempted to use
double precision, i.e., ε = 2−52. In that case, the enumeration is guaranteed up
to dimension ≈ 45 (for an output relative error ≤ 1%).

In practice, one should rather turn the worst-case error analysis into an algo-
rithm. One can use the values the actual Gram-Schmidt coefficients rather than
general upper bounds. If they are known approximately, one should take into
consideration their intrinsic inaccuracies. The adaptive precision computation
uses O(d2) arithmetic operations: Lemmata 4 and 6 are applied O(d) times each
and both perform O(d) operations. This computation is thus dominated by the
enumeration. The error computations are themselves performed in floating-point
arithmetic, but one should be cautious with the rounding modes: since we try to
upper bound a quantity, the default rounding to nearest should be replaced by
roundings towards infinities and zero. In the code, we used MPFR [30] for that
purpose.

The table below illustrates the above technique. Each entry corresponds to 10
samples of the following experiment. A (d+1)×d matrix B is sampled: for any i,
B[1, i] is a random integer with 100 · d bits, B[i+ 1, i] is 1 and the other entries
are 0. The columns of the matrix B are then (0.99, 0.51)-LLL-reduced. Then
the adaptive precision computation is performed. The precision is computed so
that the algorithm is guaranteed to solve 1.01-SVP. One observes that double
precision suffices for dimensions up to 90, which is higher than what is currently
handleable in practice.

Dimension d 20 30 40 50 60 70 80
Worst-case required precision (Theorem 3) 33 41 49 57 66 74 82
Adaptively computed required precision

(worst-case over the samples) 20 25 29 33 38 42 47

5.2 Enumerating within BKZ-Style Algorithms

With the floating-point LLL of Nguyen and Stehlé [27] and the present results,
one may use floating-point arithmetic within BKZ-style algorithms in a guar-
anteed way. However, it is not clear yet how to maximize the efficiency while
doing this. As a target, double precision should be used as much as possible,
since multi-precision arithmetic is significantly slower.
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A first solution consists in performing all operations with the same provably
sufficient precision, provided by the bounds given in Section 3 after replacing κ by
the bounds of Theorem 1 and R by 2α2d · r1 (the vectors whose ri’s are > α2dr1
cannot be used to create a vector of minimal non-zero length). Though the
precision remains O(d), it will be fairly large and slow multi-precision arithmetic
will be necessary. It can be checked that the required precision can be decreased
by a constant factor by noticing that in Theorem 1 the errors on µi,j and rj

depends on j.
Another possibility is to use a Gram-Schmidt orthogonalization with very

high precision and then use the adaptive precision estimate described above.
Double precision is likely to be sufficient for all reasonable values of the hierar-
chy parameter k, making the computed approximations to the Gram-Schmidt
coefficients correct up to relative error ≈ 2−53. Since the enumerations are likely
to dominate the overall cost, it is worth using multi-precision arithmetic to com-
pute accurate Gram-Schmidt coefficients in order to be allowed double precision
within the enumerations.

If the Gram-Schmidt computations are not negligible with respect to the
enumerations, then one could try using double precision in all computations.
This may be done by relying with the following strategy:

– Run the floating-point LLL algorithm with double precision for the Gram-
Schmidt computations, with infinite loop detection (see [34]).

– If the double precision seemed to suffice (i.e., the execution terminated with-
out an infinite loop detection), compute a posteriori accuracy bounds as
described by Villard in [35].

– Run the adaptive precision computation to see if double precision suffices
for the enumeration.

6 Concluding Remarks

We proved strong numerical properties of the KFP enumeration algorithm, which
gives a stronger insight about the use of floating-point arithmetic within lattice
reduction algorithms. To obtain a full hierarchy of reduction algorithms ranging
from LLL to HKZ that efficiently relies on floating-point arithmetic, it only
remains to see how to combine our new results with those on floating-point LLL
from [27]. It would also be interesting to devise new techniques to decrease the
required precision in order to be able to use double precision as often as possible.

However, we answered only one of the two main troubles related to BKZ-style
algorithms: it is still unknown how to best use small dimensional lattice enu-
meration within a large dimensional reduction. It would be desirable to have an
algorithm which is theoretically at least as good as the best current one [10], that
would beat BKZ in practice and whose behavior would be perfectly understood.
Once this will be done, there will remain to mount massive computational
projects to assess the limits of current computers against lattice-based cryptog-
raphy. It will then make sense to run the enumeration on hardware. Our analysis
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extends to fixed-point arithmetic, which is the natural arithmetical choice in
hardware.
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Abstract. We study the problem of finding solutions to linear equations
modulo an unknown divisor p of a known composite integer N . An im-
portant application of this problem is factorization of N with given bits
of p. It is well-known that this problem is polynomial-time solvable if at
most half of the bits of p are unknown and if the unknown bits are lo-
cated in one consecutive block. We introduce an heuristic algorithm that
extends factoring with known bits to an arbitrary number n of blocks.
Surprisingly, we are able to show that ln(2) ≈ 70% of the bits are suffi-
cient for any n in order to find the factorization. The algorithm’s running
time is however exponential in the parameter n. Thus, our algorithm is
polynomial time only for n = O(log log N) blocks.

Keywords: Lattices, small roots, factoring with known bits.

1 Introduction

Finding solutions to polynomial modular equations is a central mathematical
problem and lies at the heart of almost any cryptanalytic approach. For in-
stance, most symmetric encryption functions can be interpreted as polynomial
transformations from plaintexts to ciphertexts. Solving the corresponding poly-
nomial equations yields the secret key.

Among all polynomial equations the linear equations f(x1, . . . , xn) = a1x1 +
a2x2 + · · · + anxn play a special role, since they are often easier to solve. Many
problems already admit a linear structure. For instance, the subset sum problem
for finding a subset of s1, . . . , sn that sums to t asks for a 0,1-solution (y1, . . . , yn)
of the linear equation s1x1 + · · ·+snxn− t = 0. Special instances of this problem
can be solved by lattice techniques [CJL+92].

Although many problems are inherently of non-linear type, solution strategies
for these problems commonly involve some linearization step. In this work, we ad-
dress the problem of solving modular linear equations f(x1, . . . , xn) = 0 mod N
for some N with unknown factorization. Note that modular equations usually
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have many solutions (y1, . . . , yn) ∈ Zn
N . An easy counting argument however

shows that one can expect a unique solution whenever the product of the un-
knowns is smaller than the modulus - provided the coefficients ai are uniformly
distributed in ZN . More precisely, let Xi be upper bounds such that |yi| ≤ Xi

for i = 1 . . . n. Then one can roughly expect a unique solution whenever the
condition

∏
i Xi ≤ N holds.

It is folklore knowledge that under the same condition
∏

i Xi ≤ N the unique
solution (y1, . . . , yn) can heuristically be recovered by computing a shortest vec-
tor in an n-dimensional lattice. In fact, this approach lies at the heart of many
cryptanalytic results (see e.g. [GM97, NS01, Ngu04, BM06]). If in turn we have∏

i Xi ≥ N1+ε then the linear equation usually has N ε many solutions, which is
exponential in the bit-size of N . So there is no hope to find efficient algorithms
that in general improve on this bound, since one cannot even output all roots in
polynomial time.

In the late 80’s, Hastad [Has88] and Toffin, Girault, Vallée [GTV88] extended
the lattice-based approach for linear equations to modular univariate monic poly-
nomials f(x) = a0 + a1x+ · · ·+ aδ−1x

δ−1 + xδ. In 1996, Coppersmith [Cop96b]
further improved the bounds of [Has88, GTV88] to |x0| ≤ N

1
δ for lattice-based

solutions that find small roots of f(x). For modular univariate polynomials f(x)
there are again counting arguments that show that this bound cannot be im-
proved in general. Even more astonishing than the improved bound is the fact
that Coppersmith’s method does neither rely on a heuristic nor on the computa-
tion of a shortest vector, but provably provides all roots smaller than this bound
and runs in polynomial time using the L3 algorithm [LLL82].

In the same year, Coppersmith [Cop96a] formulated another rigorous method
for bivariate polynomials f(x, y), see also [Cor07]. This method has several nice
applications, most notably the problem of factoring with high bits known and
also an algorithm that shows the deterministic polynomial time equivalence of
factoring and computing the RSA secret key [May04, CM07]. In the factoring
with high bits known problem, one is given an RSA modulus N = pq and an
approximation p̃ of p. This enables to compute an approximation q̃ of q, which
leads to the bivariate polynomial equation f(x, y) = (p̃+x)(q̃+ y)−N . Finding
the unique solution in turn enables to factor. Coppersmith showed that this can
be done in polynomial time given 50% of the bits of p and thereby improved
upon a result from Rivest and Shamir [RS85], who required 60% of the bits of
p. Using an oracle that answers arbitrary questions instead of returning bits of
the prime factor, Maurer [Mau95] presented a probabilistic algorithm based on
elliptic curves, that factors an integer N in polynomial time making at most
ε logN oracle queries for any ε > 0.

In 2001, Howgrave-Graham [HG01] gave a reformulation of the factoring with
high bits known problem, showing that the remaining bits of p can be recovered
if gcd(p̃ + x,N) is sufficiently large. This can also be stated as finding the root
of the linear monic polynomial f(x) = p̃ + x mod p where p ≥ Nβ for some
0 < β ≤ 1. Later, this was generalized by May [May03] to arbitrary monic
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modular polynomials of degree δ which results in the bound |x0| ≤ N
β2

δ . The
result for factoring with high bits known follows for the choice β = 1

2 , δ = 1.
Notice that in the factoring with high bits known problem, the unknown bits

have to be in one consecutive block of bits. This variant of the factorization
problem is strongly motivated by side-channel attacks that in most cases enable
an attacker to recover some of the bits of the secret key. The attacker is then left
with the problem of reconstructing the whole secret out of the obtained partial
information. Unfortunately, the unknown part is in general not located in one
consecutive bit block but widely spread over the whole bit string. This raises the
question whether we can sharpen our tools to this general scenario.

Our contribution: We study the problem of finding small roots of linear mod-
ular polynomials f(x1, . . . , xn) = a1x1 + a2x2 + · · · + anxn + an+1 mod p for
some unknown p ≥ Nβ that divides the known modulus N . This enables us
to model the problem of factoring with high bits known to an arbitrary number
n of unknown blocks. Namely, if the k-th unknown block starts in the �-th bit
position we choose ak = 2�.

We are able to show an explicit bound for the product
∏

i Xi = Nγ , where
γ is a function in β and n. For the special case in which p = N , i.e. β = 1
and the modulus p is in fact known, we obtain the previously mentioned folklore
bound

∏
i Xi ≤ N . Naturally, the larger the number n of blocks, the smaller

is the bound for
∏

i Xi and the larger is the running time of our algorithm. In
other words, the larger the number of blocks, the more bits of p we do have to
know in the factoring with known bits problem. What is really surprising about
our lattice-based method is that even for an arbitrary number n of blocks, our
algorithm still requires only a constant fraction of the bits of p. More precisely,
a fraction of ln(2) ≈ 70% of p is always sufficient to recover p.

Unfortunately, the running time for our algorithm heavily depends on n.
Namely, the dimension of the lattice basis that we have to L3-reduce grows expo-
nentially in n. Thus, our algorithm is polynomial time only if n = O(log logN).
For larger values of n, our algorithm gets super-polynomial. To the best of
our knowledge state-of-the-art general purpose factorization algorithms like the
GNFS cannot take advantage of extra information like given bits of one of the
prime factors. Thus, our algorithm still outperforms the GNFS for the factoring
with known bits problem provided that n = o(log

1
3 N log log

2
3 N).

We would like to notice that our analysis for arbitrary n yields a bound∏
i Xi ≤ Nγ that holds no matter how the size of the unknowns are distributed

among the Xi. In case the Xi are of strongly different sizes, one might even
improve on the bound Nγ . For our starting point n = 2, we sketch such a general
analysis for arbitrary sizes of X1, X2. The analysis shows that the bound for the
product X1X2 is minimal when X1 = X2 and that it converges to the known
Coppersmith result N

1
4 in the extreme case, where one of the Xi is set to Xi = 1.

Notice that if one of the upper bounds is set to Xi = 1 then the bivariate
linear equation essentially collapses to a univariate equation. In this case, we
also obtain the bound N

1
4 for the factoring with known bits problem. Thus, our
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algorithm does not only include the folklore bound as a special case but also the
Coppersmith bound for univariate linear modular equations.

As our lattice-based algorithm eventually outputs multivariate polynomials
over the integers, we are using a well-established heuristic [Cop97, BD00] for
extracting the roots. We show experimentally that this heuristic works well in
practice and always yielded the desired factorization. In addition to previous
papers that proposed to use resultant or Gröbner basis computations, we use
the multidimensional Newton method from numerical mathematics to efficiently
extract the roots.

The paper is organized as follows. Section 2 recalls basic lattice theory. In
Section 3 we give the analysis of bivariate linear equations modulo an unknown
divisor. As noticed before, we prove a general bound that holds for all distribu-
tions of X1, X2 as well as sketch an optimized analysis for strongly unbalanced
X1, X2. Section 4 generalizes the analysis to an arbitrary number n of variables.
Here, we also establish the ln(2) ≈ 70% result for factoring with known bits. We
experimentally verify the underlying heuristic in Section 5.

2 Preliminaries

Let b1, . . . , bk be linearly independent vectors in Rn. Then the lattice spanned
by b1, . . . , bk is the set of all integer linear combinations of b1, . . . , bk. We call
b1, . . . , bk a basis of L. The integer k is called the dimension or rank of the lattice
and we say that the lattice has full rank if k = n.

Every nontrivial lattice in Rn has infinitely many bases, therefore we seek
for good ones. The most important quality measure is the length of the basis
vectors which corresponds to the basis vectors’ orthogonality. A famous theorem
of Minkowski [Min10] relates the length of the shortest vector in a lattice to the
determinant:

Theorem 1 (Minkowski). In an ω-dimensional lattice, there exists a non-zero
vector v with

‖v‖ ≤
√
ω det(L)

1
ω . (1)

In lattices with fixed dimension we can efficiently find a shortest vector, but for
arbitrary dimensions, the problem of computing a shortest vector is known to
be NP-hard under randomized reductions [Ajt98]. The L3 algorithm, however,
computes in polynomial time an approximation of the shortest vector, which is
sufficient for many applications. The basis vectors of an L3-reduced basis fulfill
the following property (for a proof see e.g. [May03]).

Theorem 2 (L3). Let L be an integer lattice of dimension ω. The L3 algorithm
outputs a reduced basis spanned by {v1 . . . , vω} with

‖v1‖ ≤ ‖v2‖ ≤ . . . ≤ ‖vi‖ ≤ 2
ω(ω−i)

4(ω+1−i) det(L)
1

ω+1−i , i = 1, . . . , ω (2)

in polynomial time.
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The underlying idea of Coppersmith’s method for finding small roots of polyno-
mial equations is to reduce the problem of finding roots of f(x1, . . . , xn) mod p
to finding roots over the integers. Therefore, one constructs a collection of poly-
nomials that share a common root modulo pm for some well-chosen integer m.
Then one finds an integer linear combination which has a sufficiently small norm.
The search for such a small norm linear combination is done by defining a lattice
basis via the polynomials’ coefficient vectors. An application of L3 yields a small
norm coefficient vector that corresponds to a small norm polynomial.

The following lemma due to Howgrave-Graham [HG97] gives a sufficient con-
dition under which modular roots are also roots over Z and quantifies the term
sufficiently small.

Lemma 1. Let g(x1, . . . , xn) ∈ Z[x1, . . . , xn] be an integer polynomial with at
most ω monomials. Suppose that

1. g(y1, . . . , yn) = 0 mod pm for |y1| ≤ X1, . . . , |yn| ≤ Xn and
2. ‖g(x1X1, . . . , xnXn)‖ < pm

√
ω

Then g(y1, . . . , yn) = 0 holds over the integers.

Our approach relies on heuristic assumptions for computations with multivariate
polynomials.

Assumption 1. Our lattice-based construction yields algebraically independent
polynomials. The common roots of these polynomials can be efficiently computed
using numerical methods.

The first part of Assumption 1 assures that the constructed polynomials allow
for extracting the common roots, while the second part assures that we are able
to compute these common roots efficiently. We would like to point out that
our subsequent complexity considerations solely refer to our lattice-based con-
struction, that turns a linear polynomial f(x1, . . . , xn) mod p into n polynomials
over the integers. We assume that the running time for extracting the desired
root out of these n polynomials is negligible compared to the time complexity
of the lattice construction. We verify this experimentally in Section 5. Usually,
our method yields more than n polynomials, so one can make use of additional
polynomials as well.

3 Bivariate Linear Equations

The starting point of our analysis are bivariate linear modular equations
f(x1, x2) = a1x1 + a2x2 + a3 mod p. The parameter p is unknown, we only
know a multiple N of p, and the parameter β that quantifies the size relation
p ≥ Nβ . Let X1, X2 be upper bounds on the desired solution y1, y2, respectively.
Moreover, we require that our linear polynomial is monic with respect to one of
the variables, i.e. either a1 = 1 or a2 = 1. This is usually not a restriction, since
we could e.g. multiply f(x1, x2) by a−1

1 mod N . If this inverse does not exist, we
can factorize N .
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In the following theorem, we give an explicit bound on X1X2 under which
we can find two polynomials g1(x1, x2) and g2(x1, x2) that evaluate to zero at
all small points (y1, y2) with |y1y2| ≤ X1X2. Under the heuristic that g1 and g2
are algebraically independent, all roots smaller than X1X2 can be recovered by
standard methods over the integers.

Theorem 3. Let ε > 0 and let N be a sufficiently large composite integer with
a divisor p ≥ Nβ. Furthermore, let f(x1, x2) ∈ Z[x1, x2] be a linear polynomial
in two variables. Under Assumption 1, we can find all solutions (y1, y2) of the
equation f(x1, x2) = 0 mod p with |y1| ≤ Nγ and |y2| ≤ N δ if

γ + δ ≤ 3β − 2 + 2(1 − β)
3
2 − ε (3)

The algorithm’s time and space complexity is polynomial in logN and ε−1.

Before we provide a proof for Theorem 3, we would like to interpret its im-
plications. Notice that Theorem 3 yields in the special case β = 1 the bound
X1X2 ≤ N1−ε that corresponds to the folklore bound for linear equations. Since
we are unaware of a good reference for the folklore method in the cryptographic
literature, we briefly sketch the derivation of this bound in Appendix A. Thus,
our result generalizes the folklore method to more general moduli.

On the other hand, we would like to compare our result with the one of
Coppersmith for factoring with high bits known when p, q are of equal bit-size,
i.e. β = 1

2 . Coppersmith’s result allows a maximal size of N0.25 for one unknown
block. Our result states a bound of N0.207 for the product of two blocks. The
best that we could hope for was to obtain a total of N0.25 for two blocks as well.
However, it seems quite natural that the bound decreases with the number n of
blocks. On the other hand, we are able to show that if the unknown blocks are
significantly unbalanced in size, then one can improve on the bound N0.207. It
turns out that the more unbalanced X1, X2 are, the better. In the extreme case,
we obtain X1 = N0.25, X2 = 1. Notice that in this case, the variable x2 vanishes
and we indeed obtain the univariate result N0.25 of Coppersmith. Hence, our
method contains the Coppersmith-bound as a special case as well. We give more
details after the following proof of Theorem 3.

Proof. Define X1X2 := N3β−2+2(1−β)
3
2 −ε and fix m =

⌈
3β(1+√

1−β)
ε

⌉
.

We define a collection of polynomials which share a common root modulo pt

by
gk,i(x1, x2) := xi

2f
k(x1, x2)Nmax{t−k,0} (4)

for k = 0, ...,m; i = 0, ...,m− k and some t = τm, that will be optimized later.
We can define the following polynomial ordering for our collection. Let gk,i, gl,j

be two polynomials. If k < l then gk,i < gl,j , if k = l then gk,i < gl,j ⇔ i < j. If
we sort the polynomials according to that ordering, every subsequent polynomial
in the ordering introduces exactly one new monomial. Thus, the corresponding
coefficient vectors define a lower triangular lattice basis, like in Figure 1.
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Fig. 1. Basis Matrix in Triangular Form

From the basis matrix we can easily compute the determinant as the product
of the entries on the diagonal as det(L) = XsxY syNsN , where

sx = sy =
1
6
(m3 + 3m2 + 2m), sN =

τm∑
i=0

(m + 1 − i)(τm− i) (5)

Now we apply L3 basis reduction to the lattice basis. Our goal is to find two
coefficient vectors whose corresponding polynomials contain all small roots over
the integer. Theorem 2 gives us an upper bound on the norm of a second-to-
shortest vector in the L3-reduced basis. If this bound is in turn smaller than
the bound in Howgrave-Graham’s lemma (Lemma 1), we obtain the desired two
polynomials. I.e., we have to satisfy the condition

2
d(d−1)
4(d−1) det(L)

1
d−1 < d−

1
2Nβτm, (6)

where d is the dimension of the lattice L, which in our case is d = 1
2 (m2+3m+2).

If we plug in the value for the determinant and use the fact that sx = md
3 , we

obtain the condition

X1X2 < 2−
3(d−1)

4m d−
3(d−1)
2md N

3βτm(d−1)
md − 3sN

md . (7)

Setting τ = 1 −
√

1 − β, the exponent of N can be lower bounded by

3β − 2 + 2(1 − β)
3
2 −

3β
(
1 +

√
1 − β

)
m

. (8)

[Details can be found in Appendix B.]
Comparing this with the value of X1X2, which we defined in the beginning,

we can express how m depends on the error term ε:

m ≥
3β

(
1 +

√
1 − β

)
ε

. (9)

which holds for our choice of m. Therefore, the required condition is fulfilled.
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It remains to show that the algorithm’s complexity is polynomial in log(N)
and ε−1. The running time is dominated by L3 reduction, which is polynomial
in the dimension of the lattice and in the bitsize of the entries. Recall that our
lattice’s dimension is O(m2) and therefore polynomial in ε−1. For the matrix
entries we notice that the power fk in the gk,i’s can be reduced modulo Nk, since
we are looking for roots modulo Nk. Thus, the coefficients of fkNmax(τm−k,0)

have bitsize O(m log(N)). Powers of X2 appear only with exponents up to m
and therefore their bitsize can also be upper bounded by O(m log(N)). Thus,
the coefficients’ bitsize is O(ε−1 log(N)).

Remark: We also analyzed the bivariate modular instance as a trivariate equation
over the integers, which is modelled by

(a1x1 + a2x2 + a3)y −N = 0, (10)

where y stands for N
p . It turns out that we obtain the same bounds as in the

modular case.
Theorem 3 holds for any bounds X1, X2 within the proven bound for the

product X1X2. As pointed out before, the analysis can be improved if one of
the bounds is significantly smaller than the other one, say X1 % X2. Then one
should employ additional extra shifts in the smaller variable, which intuitively
means that the smaller variable gets stronger weight since it causes smaller costs.

We do not give the exact formulas for this optimization process. Instead, we
show in Figure 2 the resulting graph that demonstrates how the result converges
to the known bound N0.25 for unbalanced block-sizes.

Notice that the result from Theorem 3 is indeed optimal not only for equal
block-sizes X1 = X2 but for most of the possible splittings of block-sizes. Only
in extreme cases a better result can be achieved. In the subsequent chapter, we
generalize Theorem 3 to an arbitrary number n of blocks. In the generalization
however, we will not consider the improvement that can be achieved for strongly
unbalanced block-sizes.

0.05 0.10 0.15 0.20 0.25
Γ

0.05

0.10

0.15

0.20

0.25

∆

Fig. 2. Optimized Result

Naturally, the bounds N0.25 for n = 1 and
N0.207 for n = 2 get worse for arbitrary n. But
surprisingly, we will show that for n → ∞ the
bound does not converge to N0 as one might ex-
pect, but instead to N0.153. To illustrate this re-
sult: If N is a 1000-bit modulus and p, q are 500
bit each. Then 153 bit can be recovered given the
remaining 347 bits, or 69.4% of p, in any known
positions. However as we will see in the next sec-
tion, the complexity heavily depends on the num-
ber of unknown blocks.

4 Extension to More Variables

In this section, we generalize the result of Section 3 from bivariate linear equa-
tions with n = 2 to an arbitrary number n of variables x1, . . . , xn.
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Let X1, X2, . . . , Xn be upper bounds for the variables x1, x2, . . . , xn. As in
Theorem 3, we will focus on proving a general upper bound for the product
X1X2 . . .Xn that is valid for any X1, X2, . . . , Xn. Similar to the reasoning in
Section 3 it is possible to achieve better results for strongly unbalanced Xi by
giving more weight to variables xi with small upper bounds. Although we did not
analyze it, we strongly expect that in the case X1 = N0.25, X2 = · · · = Xn = 1
everything boils down to the univariate case analyzed by Coppersmith/Howgrave-
Graham – except that we obtain an unnecessarily large lattice dimension.

Naturally, we achieve an inferior bound than N0.25. But in contrast, our bound
holds no matter how the sizes of the unknowns are distributed among the upper
bounds Xi. Let us state our main theorem.

Theorem 4. Let ε > 0 and let N be a sufficiently large composite integer with
a divisor p ≥ Nβ. Furthermore, let f(x1, . . . , xn) ∈ Z[x1, . . . , xn] be a monic
linear polynomial in n variables. Under Assumption 1, we can find all solutions
(y1, . . . , yn) of the equation f(x1, . . . , xn) = 0 mod p with |y1| ≤ Nγ1 , . . . , |yn| ≤
Nγn if

n∑
i

γi ≤ 1 − (1 − β)
n+1

n − (n + 1)(1 − n
√

1 − β)(1 − β) − ε (11)

The time and space complexity of the algorithm is polynomial in logN and ( e
ε )n,

where e is Euler’s constant.

We will prove Theorem 4 at the end of this section. Let us first discuss the
implications of the result and the consequences for the factoring with known bits
problem. First of all, the algorithm’s running time is exponential in the number
n of blocks. Thus in order to obtain a polynomial complexity one has to restrict

n = O
(

log logN
1 + log(1

ε )

)
.

This implies that for any constant error term ε, our algorithm is polynomial time
whenever n = O(log logN).

The proof of the following theorem shows that the bound for X1 . . .Xn in
Theorem 4 converges for n → ∞ to Nβ+(1−β) ln(1−β). For the factoring with
known bits problem with β = 1

2 this yields the bound N
1
2 (1−ln(2)) ≈ N0.153. This

means that we can recover a (1 − ln(2)) ≈ 0.306-fraction of the bits of p, or in
other words an ln(2) ≈ 0.694-fraction of the bits of p has to be known.

Theorem 5. Let ε > 0. Suppose N is a sufficiently large composite integer with
a divisor p ≥ Nβ. Further, suppose we are given an(

1 − 1
β

)
· ln(1 − β) + ε fraction (12)

of the bits of p. Then, under Assumption 1, we can compute the unknown bits
of p in time polynomial in logN and ( e

ε )n, where e is Euler’s constant.
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Proof. From Theorem 4 we know, that we can compute a solution to the equation

a1x1 + a2x2 + . . . + anxn + an+1 = 0 mod p

as long as the product of the unknowns is smaller than Nγ , where γ =
∑n

i γi

is upper-bounded as in Inequality (11). As noticed already, the bound for γ
actually converges for n → ∞ to a value different from zero. Namely,

lim
n→∞

(
1 − (1 − β)

n+1
n − (n + 1)(1 − n

√
1 − β)(1 − β)

)
= β + (1 − β) ln(1 − β)

(13)
Hence, this is the portion of p we can at least compute, no matter how many
unknowns we have.

Conversely, once we have ((β−1) ln(1−β)+ ε) log(N) bits of p given together
with their positions, we are able to compute the missing ones. Since logN ≤ log p

β ,
we need at most an ((1 − 1

β ) ln(1 − β) + ε)-fraction of the bits of p.

Theorem 5 implies a polynomial-time algorithm for the factoring with known
bits problem whenever the number of unknown bit-blocks is n = O(log logN).
However, the algorithm can be applied for larger n as well. As long as n is sub-
polynomial in the bit-size of N , the resulting complexity will be sub-exponential
in the bit-size of N .

It remains to prove our main theorem.

Proof of Theorem 4
Define

∏n
i=1 Xi := N1−(1−β)

n+1
n −(n+1)(1− n

√
1−β)(1−β)−ε. Let us fix

m =
⌈
n( 1

π (1 − β)−0.278465 − β ln(1 − β))
ε

⌉
(14)

We define the following collection of polynomials which share a common root
modulo pt

gi2,...,in,k = xi2
2 . . . xin

n fkNmax{t−k,0} (15)

where ij ∈ {0, . . . ,m} such that
∑n

j=2 ij ≤ m − k. The parameter t = τm
has to be optimized. Notice that the set of monomials of gi2,...,in,k defines an
n-dimensional simplex.

It is not hard to see that there is an ordering of the polynomials in such a
way that each new polynomial introduces exactly one new monomial. Therefore
the lattice basis constructed from the coefficient vectors of the gi2,...,in,k’s has
triangular form, if they are sorted according to the order. The determinant det(L)
of the corresponding lattice L is then simply the product of the entries on the
diagonal:

det(L) =
n∏

i=1

X
sxi

i NsN , (16)

with sxi =
(
m+n
m−1

)
and sN = mdτ −

(
m+n
m−1

)
+
(m(1−τ)+n

m(1−τ)−1

)
, where d =

(
m+n

m

)
is the

dimension of the lattice.
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Now we ensure that the vectors from L3 are sufficiently small, so that we can
apply the Lemma of Howgrave-Graham (Lemma 1) to obtain a solution over Z.
We have to satisfy the condition

2
d(d−1)

4(d−n+1) det(L)
1

d−n+1 < d−
1
2Nβτm

Using the value of the determinant in (16) and the fact that sxi = md
n+1 we obtain

n∏
i=1

Xi ≤ 2−
(d−1)(n+1)

4m d−
(n+1)(d−n+1)

2md N (βmτ(d−n+1)−dmτ+(m+n
m−1)−(m(1−τ)+n

m(1−τ)−1)) n+1
md .

In Appendix C we show how to derive a lower bound on the right-hand side for
the optimal value τ = 1 − (1 − β)

1
n . Using Xi = Nγi the condition reduces to

n∑
i=1

γi ≤ 1−(1−β)
n+1

n −(n+1)(1− n
√

1 − β)(1−β)−
n 1

π
(1 − β)−0.278465

m
+β ln(1−β)

n

m
.

Comparing this to the initial definition of
∏n

i=1 Xi, we obtain for the error term ε

−
n 1

π (1 − β)−0.278465

m
+ β ln(1 − β)

n

m
≥ −ε

⇔ m ≥
n( 1

π (1 − β)−0.278465 − β ln(1 − β))
ε

= O(
n

ε
)

which holds for our choice of m.
To conclude the proof, we notice that the dimension of the lattice is d =

O(mn

n! ) = O(nnen

εnnn ) = O( en

εn ). For the bitsize of the entries in the basis matrix
we observe that we can reduce the coefficients of f i in g modulo N i. Thus the
product fkNmax{τm−k,0} is upper bounded by B = m log(N). Further notice
that the bitsize of X i2

2 . . .X i2
n is also upper bounded by m log(N) since

∑n
i=2 ij ≤

m and Xi ≤ N .
The running time is dominated by the time to run L3-lattice reduction on a

basis matrix of dimension d and bit-size B. Thus, the time and space complexity
of our algorithm is polynomial in logN and ( e

ε )n. �

5 Experimental Results

We implemented our lattice-based algorithm using the L2-algorithm from
Nguyen, Stehlé [NS05]. We tested the algorithm for instances of the factoring
with known bits problem with n = 2, 3 and 4 blocks of unknown bits. Table 1
shows the experimental results for an 512-bit RSA modulus N with divisor p of
size p ≥ N

1
2 .

For given parameters m, t we computed the number of bits that one should
theoretically be able to recover from p (column pred of Table 1). For each bound
we made two experiments (column exp). The first experiment splits the bound
into n equally sized pieces, whereas the second experiment unbalancedly splits
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Table 1. Experimental Results

n m t dim(L) pred (bit) exp (bit) time (min)
2 15 4 136 90 45/45 25
2 15 4 136 90 87/5 15
3 7 1 120 56 19/19/19 0.3
3 7 1 120 56 52/5/5 0.3
3 10 2 286 69 23/23/23 450
3 10 2 286 69 57/6/6 580
4 5 1 126 22 7/6/6/6 3
4 5 1 126 22 22/2/2/2 4.5

the bound in one large piece and n − 1 small ones. In the unbalanced case, we
were able to recover a larger number of bits than theoretically predicted. This
is consistent with the reasoning in Section 3 and 4.

In all of our experiments, we successfully recovered the desired small root,
thereby deriving the factorization of N . We were able to extract the root both by
Gröbner basis reduction as well as by numerical methods in a fraction of a second.

For Gröbner basis computations, it turns out to be useful that our algorithm
actually outputs more sufficiently small norm polynomials than predicted by the
L3-bounds. This in turn helps to speed up the computation a lot.

As a numerical method, we used multidimensional Newton iteration on the
starting point 1

2 (X1, . . . , Xn). Usually this did already work. If not, we were
successful with the vector of upper-bounds (X1, . . . , Xn) as a starting point. Al-
though this approach worked well and highly efficient in practice, we are unaware
of a starting point that provably lets the Newton method converge to the desired
root.

Though Assumption 1 worked perfectly for the described experiments, we also
considered two pathological cases, where one has to take special care.

First, a problem arises when we have a prediction of k bits that can be re-
covered, but we use a much smaller sum of bits in our n blocks. In this case,
the smallest vector lies in a sublattice of small dimension. As a consequence,
we discovered that then usually all of our small norm polynomials shared f(x)
as a common divisor. When we removed the gcd, the polynomials were again
algebraically independent and we were able to retrieve the root. Notice that re-
moving f(x) does not eliminate the desired root, since f(x) does not contain the
root over the integers (but mod p).

A second problem may arise in the case of two closely adjacent unknown
blocks, e.g. two blocks that are separated by one known bit only. Since in com-
parison with the n-block case the case of n − 1 blocks gives a superior bound,
it turns out to be better in some cases to merge two closely adjacent blocks
into one variable. That is what implicitly seems to happen in our approach.
The computations then yield the desired root only in those variables which
are sufficiently separated. The others have to be merged before re-running the
algorithm in order to obtain all the unknown bits. Alternatively, we confirmed
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experimentally that merging the nearby blocks from the beginning immediately
yields the desired root.

Both pathological cases are no failure of Assumption 1, since one can still
easily extract the desired root. All that one has to do is to either remove a gcd
or to merge variables.

6 Conclusion and Open Problems

We proposed a heuristic lattice-based algorithm for finding small solutions of
linear equations a1x1 + · · · + anxn + an+1 = 0 mod p, where p is an unknown
divisor of some known N . Our algorithm gives a solution for the factoring with
known bits problem given ln(2) ≈ 70% of the bits of p in any locations.

Since the time and space complexity of our algorithm is polynomial in logN
but exponential in the number n of variables, we obtain a polynomial time al-
gorithm for n = O(log logN) and a subexponential time algorithm for n =
o(logN). This naturally raises the question whether there exists some algorithm
with the same bound having complexity polynomial in n. This would immedi-
ately yield a polynomial time algorithm for factoring with 70% bits given, inde-
pendently of the given bit locations and the number of consecutive bit blocks.
We do not know whether such an algorithm can be achieved for polynomial
equations with unknown divisor. On the other hand, we feel that the complexity
gap between the folklore method for known divisors with complexity linear in n
and our method is quite large, even though the folklore method relies on much
stronger assumptions.

Notice that in the factoring with known bits problem, an attacker is given the
location of the given bits of p and he has to fill in the missing bits. Let us give a
crude analogy for this from coding theory, where one is given the codeword p with
erasures in some locations. Notice that our algorithm is able to correct the erasures
with the help of the redundancy given byN . Now a challenging question is whether
there exist similar algorithms for error-correction of codewords p. I.e., one is given p
with a certain percentage of the bits flipped. Having an algorithm for this problem
would be highly interesting in situations with error-prone side-channels.

We would like to thank the anonymous reviewers and especially Robert Israel
for helpful comments and ideas.
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A Linear Equations with Known Modulus

We briefly sketch the folklore method for finding small roots of linear modular
equations a1x1 + · · · + anxn = 0 mod N with known modulus N . Further, we
assume that gcd(ai, N) = 1 for some i, wlog gcd(an, N) = 1. Let Xi be upper
bounds on |yi|. We can handle inhomogeneous modular equations by introducing
a term an+1xn+1, where |yn+1| ≤ Xn+1 = 1.

We would like to point out that the heuristic for the folklore method is quite
different compared to the one taken in our approach. First of all, the method
requires to solve a shortest vector problem in a certain lattice. This problem is
known to be NP-hard for general lattices. Second, one assumes that there is only
one linear independent vector that fulfills the Minkowski bound (Theorem 1) for
the shortest vector.

We will show under this heuristic assumption that the shortest vector yields
the unique solution (y1, . . . , yn) whenever

n∏
i=1

Xi ≤ N.

We multiply our linear equation with −a−1
n and obtain

b1x1 + b2x2 + . . . + bn−1xn−1 = xn mod N ,where bi = a−1
n ai (17)

For a solution (y1, . . . , yn) of (17) we know
∑n−1

i=1 biyi = yn−yN for some y ∈ Z.
Consider the lattice L generated by the row vectors of the following matrix

B =

⎛⎜⎜⎜⎜⎜⎜⎝
Y1 0 0 . . . 0 Ynb1
0 Y2 0 0 Ynb2
...

. . .
...

...
... Yn−1 Ynbn−1
0 0 0 . . . 0 YnN

⎞⎟⎟⎟⎟⎟⎟⎠
with Yi = N

Xi
. By construction,

v = (y1, . . . , yn−1, y) ·B = (Y1y1, . . . , Ynyn)

is a vector of L. We show, that this is a short vector which fulfills the Minkowski
bound from Theorem 1. If we assume that v is actually the shortest vector, then
we can solve an SVP instance.

Since Yiyi = yi

Xi
N ≤ N we have ‖v‖ ≤

√
nN . Further, the determinant of the

lattice L is

det(L) = N

n∏
i=1

Yi = N

n∏
i=1

N

Xi
= Nn+1

n∏
i=1

1
Xi

.

The vector v thus fulfills the Minkowski bound, if

√
nN ≤

√
n det(L)

1
n ⇔

n∏
i=1

Xi ≤ N.
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B Lower Bound in Theorem 2

Starting with
X1X2 < 2−

3(d−1)
4m d−

3(d−1)
2md N

3βτm(d−1)
md − 3sN

md

we wish to derive a lower bound of the right-hand side. First we notice that
for sufficiently large N the powers of 2 and d are negligible. Thus, we only
examine the exponent of N . We use the values d = 1

2 (m2 + 3m + 2) and sN =∑τm
i=0(m + 1 − i)(τm− i) and get

τ
(
3β − 3τ + τ 2) +

−τ − 6βτ + τ 3

1 + m
−

2
(
τ − 3βτ − 3τ 2 + 2τ 3)

2 + m
.

For τ we choose 1 −
√

(1 − β), resulting in

− 2 + 2
√

1 − β + 3β − 2β
√

1 − β

− 3
√

1 − β

1 + m
+

6
√

1 − β

2 + m
+

7β
√

1 − β

1 + m
− 10β

√
1 − β

2 + m
+

6(−1 + 2β)
2 + m

− 3(−1 + 3β)
1 + m

.

Now we combine the terms that change their sign in the possible β-range, such
that we obtain a term which is either positive or negative for all β ∈ (0, 1)

−3
√

1 − β

1 + m
− 3(−1 + 3β)

1 + m
+

7β
√

1 − β

1 + m
=

3 − 3
√

1 − β − 9β + 7β
√

1 − β

1 + m
< 0

6(−1 + 2β)
2 + m

+
6
√

1 − β

2 + m
=

6
(
−1 +

√
1 − β + 2β

)
2 + m

> 0 for all β ∈ (0, 1).

Finally, we approximate the positive terms by ∗
2m and the negative ones by ∗

m
and obtain

2−
3(d−1)

4m d−
3(d−1)
2md N

3βτm(d−1)
md − 3sN

md ≥ N−2+2
√

1−β+3β−2β
√

1−β− 3β(1+√
1−β)

m . (18)

C Lower Bound in Theorem 3

We derive a lower bound of

2−
(d−1)(n+1)

4m d−
(n+1)(d−n+1)

2md N (βmτ(d−n+1)−dmτ+(m+n
m−1)−(m(1−τ)+n

m(1−τ)−1)) n+1
md .

For sufficiently large N , the powers of 2 and d are negligible and thus we consider
in the following only the exponent of N(

βmτ (d − n + 1) − dmτ +

(
m + n

m − 1

)
−
(

m(1 − τ ) + n

m(1 − τ ) − 1

))
n + 1
md

= βτ (n + 1) − βτ (n − 1)(n + 1)
d

− τ (n + 1) + 1 −
∏n

k=0(m(1 − τ ) + k)
n!md

.

With d =
(
m+n

m

)
= (m+n)!

m!n! =
∏n

k=1(m+k)
n! we have

βτ (n + 1) − τ (n + 1) + 1 − βτ (n − 1)(n + 1)!∏n
k=1(m + k)

−
∏n

k=0(m(1 − τ ) + k)∏n
k=0(m + k)

.
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We now analyze the last two terms separately. For the first one, if we choose
τ = 1 − n

√
(1 − β) we obtain

βτ (n − 1)(n + 1)!∏n
k=1(m + k)

≤ β(1 − n
√

1 − β)(n − 1)(n + 1)!
(m + 1)

∏n
k=2 k

≤ β(1 − n
√

1 − β)n2

m
.

Fact 1
n(1 − n

√
1 − β) ≤ − ln(1 − β) (19)

Using this approximation, we obtain

βτ (n − 1)(n + 1)!∏n
k=1(m + k)

≤ − ln(1 − β)β
n

m
.

The analysis of the second term
∏n

k=0(m(1−τ)+k)∏
n
k=0(m+k) is a bit more involved. We use

its partial fraction expansion to show an upper bound.

Lemma 2. For τ = 1 − (1 − β)
1
n we have∏n

k=0(m(1 − τ) + k)∏n
k=0(m + k)

≤ (1 − β)
n+1

n +
1
π

(1 − β)−0.278465 n

m
. (20)

Proof. First notice that∏n
k=0(m(1 − τ ) + k)∏n

k=0(m + k)
= (1 − τ )n+1 +

∏n
k=0(m(1 − τ ) + k) − (1 − τ )n+1∏n

k=0(m + k)∏n
k=0(m + k)

.

We analyze the second part of this sum. Its partial fraction expansion is∏n
k=0(m(1 − τ ) + k) − (1 − τ )n+1 ∏n

k=0(m + k)∏n
k=0(m + k)

=
c0

m
+

c1

m + 1
+ . . . +

cn

m + n
. (21)

Our goal is to determine the values ci. Start by multiplying with
∏n

k=0(m+ k):

n∏
k=0

(m(1 − τ ) + k) − (1 − τ )n+1
n∏

k=0

(m + k) =
n∑

i=0

ci

n∏
k=0
k �=i

(m + k).

Now we successively set m equal to the roots of the denominator and solve for
ci. For the i-th root m = −i we obtain

n∏
k=0

(−i(1 − τ ) + k) = ci

n∏
k=0
k �=i

(k − i)

ci =
∏n

k=0(−i(1 − τ ) + k)∏n
k=0
k �=i

(k − i)
.

We can rewrite this in terms of the Gamma function as

ci = (−1)i Γ (−i(1 − τ ) + n + 1)
Γ (i + 1)Γ (n − i + 1)Γ (−i(1 − τ ))

.
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Using the identity Γ (−z) = − π
sin(πz)Γ (z+1) , we obtain

ci = (−1)i+1 Γ (−i(1 − τ ) + n + 1)Γ (i(1 − τ ) + 1)
Γ (i + 1)Γ (n − i + 1)

sin(πi(1 − τ ))
π

.

In the following we use Q := Γ (−i(1−τ)+n+1)Γ (i(1−τ)+1)
Γ (i+1)Γ (n−i+1) .

We now give an upper bound on the absolute value of ci. Start by using the
value τ = 1 − n

√
1 − β and let 1 − β = e−c for some c > 0. Consider

ln
Γ (ie− c

n + 1)
Γ (i + 1)

= ln(Γ (ie− c
n + 1)) − ln(Γ (i + 1)) = −

∫ i−ie
− c

n

0
Ψ(1 + i − t)dt and

ln
Γ (−ie−

c
n +n+1)

Γ (n − i + 1)
=ln(Γ (−ie− c

n +n+1))−ln(Γ (n−i+1))=
∫ i−ie

− c
n

0
Ψ(n−i+1+t)dt.

Therefore

lnQ =
∫ i−ie

− c
n

0
Ψ(n − i + 1 + t) − Ψ(1 + i − t)dt.

The Digamma function Ψ is increasing and thus the integrand is increasing and
we get the approximation

ln Q ≤ (i − ie− c
n )(Ψ(n + 1 − ie− c

n ) − Ψ(1 + ie− c
n )).

Let i = tn. Then for fixed t the expression on the right-hand side converges for
n → ∞ to

lim
n→∞

(i − ie− c
n )(Ψ(n + 1 − ie− c

n ) − Ψ(1 + ie− c
n )) = ct ln(

1
t

− 1).

By numeric computation, the maximum of t ln(1
t − 1) in the range 0 < t < 1 is

0.278465. Thus,

ln Q ≤ 0.278465c

Q ≤ (1 − β)−0.278465 .

Putting things together, we have

ci ≤ (−1)i+1(1 − β)−0.278465 sin(πi(1 − τ ))
π

≤ 1
π

(1 − β)−0.278465 .

The initial problem of estimating the partial fraction expansion from equa-
tion (21) now states∏n

k=0(m(1 − τ ) + k) − (1 − τ )n+1 ∏n
k=0(m + k)∏n

k=0(m + k)
=

c0

m
+

c1

m + 1
+ . . . +

cn

m + n

≤
∑

ci

m

≤
n 1

π
(1 − β)−0.278465

m
.
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Now that we have bounds on the individual terms, we can give a bound on
the complete expression

2−
(d−1)(n+1)

4m d−
(n+1)(d−n+1)

2md N (βmτ(d−n+1)−dmτ+(m+n
m−1)−(m(1−τ)+n

m(1−τ)−1)) n+1
md

≥ Nβτ(n+1)−τ(n+1)+1−(1−τ)n+1−n 1
π

(1−β)−0.278465

m +ln(1−β)β n
m .
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Abstract. After the improvement by Courtois and Meier of the alge-
braic attacks on stream ciphers and the introduction of the related notion
of algebraic immunity, several constructions of infinite classes of Boolean
functions with optimum algebraic immunity have been proposed. All of
them gave functions whose algebraic degrees are high enough for resisting
the Berlekamp-Massey attack and the recent Rønjom-Helleseth attack,
but whose nonlinearities either achieve the worst possible value (given by
Lobanov’s bound) or are slightly superior to it. Hence, these functions
do not allow resistance to fast correlation attacks. Moreover, they do
not behave well with respect to fast algebraic attacks. In this paper, we
study an infinite class of functions which achieve an optimum algebraic
immunity. We prove that they have an optimum algebraic degree and a
much better nonlinearity than all the previously obtained infinite classes
of functions. We check that, at least for small values of the number of
variables, the functions of this class have in fact a very good nonlinearity
and also a good behavior against fast algebraic attacks.

Keywords: Algebraic attack, Boolean function, Stream cipher.

1 Introduction

Before this century, the Boolean functions used in the combiner and filter models
of stream ciphers (see description e.g. in [9]) had mainly to be balanced, to have
a high algebraic degree, a high nonlinearity and, in the case of the combiner
model, a high correlation immunity (in the case of the filter model, a correlation
immunity of order 1 is commonly considered as sufficient; in most cases, it is
easily achieved without losing the other properties, by replacing the function by
a linearly equivalent one). These properties could be satisfied by functions of
about 10 variables. But the algebraic attacks introduced by Courtois and Meier
[15] (or more properly speaking improved by them, since the idea of algebraic
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attacks comes already from Shannon), which have allowed cryptanalysing several
stream ciphers [1,12,13,15,25] have led to more constraints on the functions, and
obliged to increase the number of variables up to at least 13 variables and in
practice much more (maybe 20). The property needed for resisting the standard
algebraic attack of Courtois and Meier [15] is a high algebraic immunity [33]: for
a given Boolean function f on n variables, any nonzero Boolean function g such
that f ∗g = 0 or (1+f)∗g = 0 should have high algebraic degree, where ∗ is the
multiplication of functions inherited from multiplication in F2, the finite field
with two elements. The best possible algebraic immunity of n-variable functions
is �n

2 � [15]. It has been proved in [19] that, for all a < 1, when n tends to infinity,

AI(f) is almost surely greater than n
2 −

√
n
2 ln

(
n

a ln 2

)
. Hence, random functions

behave well with respect to the algebraic immunity (but this does not mean that
functions with good algebraic immunity are easy to construct).

Having a high algebraic immunity is not sufficient for resisting the fast alge-
braic attacks introduced by Courtois in [13]: if one can find g of low degree and
h �= 0 of reasonable degree such that f ∗g = h, then a fast algebraic attack (FAA)
is feasible. No result is known on the behavior of random functions against FAA.

Even a high resistance to fast algebraic attacks is not sufficient, since alge-
braic attacks on the augmented function [23] can be efficient when fast algebraic
attacks are not. The resistance to these attacks is not properly speaking a prop-
erty of the function used in a cipher and studying the resistance of the cipher to
them obliges to consider all possible update functions (of the linear part of the
pseudo-random generator).

It is a difficult challenge to find functions achieving all of the necessary crite-
ria and the research of such functions has taken a significant delay with respect
to cryptanalyses. The research of Boolean functions that can resist algebraic
attacks, the Berlekamp-Massey attack and the fast correlation attacks has not
given fully satisfactory results: we know that functions achieving optimal or
suboptimal algebraic immunity and in the same time balancedness, high alge-
braic degree and high nonlinearity must exist thanks to the results of [19,37].
Such functions have been found with sufficient numbers of variables thanks to
Algorithm 1 of [2] (others can be found by using the algorithm of [20]). But
the functions given in [2] belong to classes which have not, potentially, a good
asymptotic algebraic immunity (see [35]), and there remains to see whether these
functions behave well against fast algebraic attacks. No infinite class of functions
with good algebraic immunity and good nonlinearity has been exhibited so far.

There are, up to now, two main infinite classes of Boolean functions achieving
optimum algebraic immunity. The first one contains functions in even numbers n
of variables and is obtained by an iterative construction. The constructed func-
tions have been further studied in [10], where it is shown that their algebraic
degrees are close to n but their nonlinearity is 2n−1 −

(
n−1

n
2

)
, which is insuf-

ficient. Moreover, they are not balanced (but it is possible to build balanced
functions from these ones) and are weak against fast algebraic attacks [2,18].
The second class contains symmetric functions (whose values depend only on the
Hamming weight of the input vectors) [3,18] or functions whose values depend



An Infinite Class of Balanced Functions 427

on the Hamming weight of the input vectors except for a few inputs [7]. The non-
linearities of these functions are often not exceeding 2n−1−

(
n−1
	n

2 

)

and when they
do, they are not much greater than this number, see [11]. They are still weaker
against fast algebraic attacks [2]. The functions constructed in [28,29] seem to
have worse nonlinearity than those of [7]. Apart from these infinite classes, some
power functions with sub-optimal algebraic immunity, in at most 20 variables,
have been exhibited in [2, Table 1]. The behavior of these functions against fast
algebraic attacks has not been investigated so far.

In the present paper, we show that an infinite class of balanced functions
with optimal algebraic immunity, which has been considered in [22] for showing
the tightness of bounds on the algebraic immunity of vectorial functions, has
potentially a good nonlinearity. We give a very simple proof of the optimal
algebraic immunity of these functions. We show that they have also optimal
algebraic degree and we prove a lower bound on their nonlinearities which is
much larger than the best nonlinearities of the infinite classes of functions with
optimal algebraic immunity found so far. However, this bound is not enough for
saying these functions have good nonlinearities. We compute for small values
of n the exact values of the nonlinearity, which are very good and much bigger
than the lower bound, and we also check for these values of n that the functions
behave well against fast algebraic attacks. This is the first time a function (and
moreover a whole infinite class of functions) seems able to satisfy all of the main
criteria for being used as a filtering function in a stream cipher.

The rest of the paper is organized as follows. In Section 2, we recall the
necessary background. In Section 3, we give a simple proof that the functions
of the class have optimal algebraic immunity. In Section 4, we calculate the
univariate representation of the functions and deduce their algebraic degree. We
prove a lower bound on their nonlinearity. We give also the exact values of the
nonlinearity for small values of n. In Section 5, we give the results of computer
investigations suggesting a good immunity of the functions against fast algebraic
attacks.

2 Preliminaries

Let Fn
2 be the n-dimensional vector space over F2, and Bn the set of n-variable

(Boolean) functions from Fn
2 to F2. The basic representation of a Boolean func-

tion f(x1, · · · , xn) is by the output column of its truth table, i.e., a binary string
of length 2n,

[f(0, 0, · · · , 0), f(1, 0, · · · , 0), f(0, 1, · · · , 0), f(1, 1, · · · , 0), · · · , f(1, 1, · · · , 1)].

The Hamming weight wt(f) of a Boolean function f ∈ Bn is the weight of
this string, that is, the size of the support Supp(f) = {x ∈ Fn

2 | f(x) = 1} of the
function. The Hamming distance dH(f, g) between two Boolean functions f and
g is the Hamming weight of their difference f + g (by abuse of notation, we use
+ to denote the addition on F2, i.e., the XOR). We say that a Boolean function
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f is balanced if its truth table contains an equal number of 1’s and 0’s, that is,
if its Hamming weight equals 2n−1.

Any Boolean function has a unique representation as a multivariate polyno-
mial over F2, called the algebraic normal form (ANF), of the special form:

f(x1, · · · , xn) =
∑

I⊆{1,2,··· ,n}
aI

∏
i∈I

xi.

The algebraic degree, deg(f), is the global degree of this polynomial, that is,
the number of variables in the highest order term with non zero coefficient. A
Boolean function is affine if it has degree at most 1. The set of all affine functions
is denoted by An.

We shall need another representation of Boolean functions, by univariate poly-
nomials over the field F2n . We identify the field F2n and the vector space Fn

2 : this
field being an n-dimensional F2-vector space, we can choose a basis (β1, · · · , βn)
and identify every element x =

∑n
i=1 xiβi ∈ F2n with the n-tuple of its coor-

dinates (x1, · · · , xn) ∈ Fn
2 . Every function f : F2n → F2n (and in particular

every Boolean function f : F2n → F2) can then be uniquely represented as a
polynomial

∑2n−1
j=0 ajx

j where aj ∈ F2n . Indeed, the mapping which maps every
such polynomial to the corresponding function from F2n to itself is F2n -linear,
injective (since a non-zero polynomial of degree at most 2n−1 over a field cannot
have more than 2n−1 zeroes in this field) and therefore surjective since the F2n -
vector spaces of these polynomials and of the functions from F2n to itself have
the same dimension 2n. The function is Boolean if and only if the functions f(x)
and (f(x))2 are represented by the same polynomial, that is, if a0, a2n−1 ∈ F2
and, for every i = 1, · · · , 2n − 2, we have a2j = (aj)2, where 2j is taken mod
2n − 1. Then the algebraic degree of the function equals the maximum 2-weight
w2(j) of j such that aj �= 0, where the 2-weight of j equals the number of 1’s
in its binary expansion. We briefly recall why, since the algebraic degree is an
important parameter and we will need this when studying the functions. Writing
j =

∑n−1
s=0 js2s, we have the equalities:

f(x) =
2n−1∑
j=0

aj

(
n∑

i=1

xiβi

)j

=
2n−1∑
j=0

aj

(
n∑

i=1

xiβi

)∑n−1
s=0 js2s

=
2n−1∑
j=0

aj

n−1∏
s=0

(
n∑

i=1

xiβ
2s

i

)js

;

expanding these products, simplifying and decomposing again over the basis
(β1, . . . , βn) gives the ANF of F ; this proves that the algebraic degree is upper
bounded by the number max{w2(j); aj �= 0}, and it cannot be strictly smaller,
because the number of those functions from F2n to itself of algebraic degrees at
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most d equals the number of those univariate polynomials
∑2n−1

j=0 ajx
j , aj ∈

F2n , such that max
j=0,...,2n−1/ aj =0

w2(j) ≤ d.

In this representation, the elements of An are all the functions tr(ax), a ∈ F2n ,
where tr is the trace function: tr(x) = x + x2 + x22

+ · · · + x2n−1
.

Any Boolean function should have high algebraic degree to allow the cryp-
tosystem resisting the Berlekamp-Massey attack [21].

Boolean functions used in cryptographic systems must have high nonlinearity
to withstand fast correlation attacks (see e.g. [6,34]). The nonlinearity of an n-
variable function f is its distance to the set of all n-variable affine functions, i.e.,

nl(f) = min
g∈An

(dH(f, g)).

This parameter can be expressed by means of the Walsh transform. Let x =
(x1, · · · , xn) and λ = (λ1, · · · , λn) both belong to Fn

2 and λ ·x be the usual inner
product in Fn

2 : λ ·x = λ1x1 + · · ·+λnxn ∈ F2, or any other inner product in Fn
2 .

Let f(x) be a Boolean function in n variables. The Walsh transform (depending
on the choice of the inner product) of f(x) is the integer valued function over
Fn

2 defined as
Wf (λ) =

∑
x∈Fn

2

(−1)f(x)+λ·x.

If we identify the vector space Fn
2 with the field F2n , then we can take for inner

product: λ · x = tr(λx).
A Boolean function f is balanced if and only if Wf (0) = 0. The nonlinearity

of f can also be given by

nl(f) = 2n−1 − 1
2

max
λ∈Fn

2

|Wf (λ)|.

For every n-variable function f we have nl(f) ≤ 2n−1 − 2n/2−1.
Algebraic attacks have been introduced recently (see [15]). They recover the

secret key, or at least the initialization of the cipher, by solving a system of
multivariate algebraic equations. The idea that the key bits can be characterized
as the solutions of such a system comes from C. Shannon [39]. In practice, for
cryptosystems which are robust against the usual attacks, this system is too
complex to be solved (its equations being highly nonlinear). In the case of stream
ciphers, we can get a very overdefined system (i.e. a system with a number of
linearly independent equations much greater than the number of unknowns).
In the combiner or the filter model, with a linear part of size N and with an
n-variable Boolean function f as combining or filtering function, there exists
a linear permutation L : FN

2 �→ FN
2 and a linear mapping L′ : FN

2 �→ Fn
2 such

that, denoting by u1, · · · , uN the initialisation and by (si)i≥0 the pseudo-random
sequence output by the generator, we have, for every i ≥ 0:

si = f(L′ ◦ Li(u1, · · · , uN )).

The number of equations can then be much larger than the number of unknowns.
This makes less complex the resolution of the system by using Groebner basis,
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and even allows linearizing the system (i.e. obtaining a system of linear equations
by replacing every monomial of degree greater than 1 by a new unknown); the
resulting linear system has however too many unkwnowns and cannot be solved.
Courtois and Meier have had a simple but very efficient idea. Assume that there
exist functions g �= 0 and h of low degrees (say, of degrees at most d) such that
f ∗ g = h. We have then, for every i ≥ 0:

si g(L′ ◦ Li(u1, · · · , uN)) = h(L′ ◦ Li(u1, · · · , uN )).

This equation in u1, · · · , uN has degree at most d, since L and L′ are linear,
and the system of equations obtained after linearization can then be solved by
Gaussian elimination. Low degree relations have been shown to exist for several
well known constructions of stream ciphers, which were immune to all previously
known attacks.

It has been shown [15,33] that the existence of such relations is equivalent to
that of non-zero functions g of low degrees such that f ∗ g = 0 or (f +1) ∗ g = 0.
This led to the following definition.

Definition 1. For f ∈ Bn, we define AN(f) = {g ∈ Bn | f ∗ g = 0}. Any
function g ∈ AN(f) is called an annihilator of f . The algebraic immunity (AI)
of f is the minimum degree of all the nonzero annihilators of f and of all those
of f + 1. We denote it by AI(f).

Note that AI(f) ≤ deg(f), since f ∗ (1 + f) = 0. Note also that the algebraic
immunity, as well as the nonlinearity and the degree, is affine invariant (i.e. is
invariant under composition by an affine automorphism). As shown in [15], we
have AI(f) ≤ �n

2 �.
The complexity of the standard algebraic attack on the combiner model or

the filter model using a nonlinear function f equals roughly O(D3) in time and
O(D) in data, where D =

∑AI(f)
i=0

(
N
i

)
, where N is the size of the linear part of

the pseudo-random generator.
If a function has optimal algebraic immunity

⌈
n
2

⌉
with n odd, then it is bal-

anced (see e.g. [10]). Whatever is n, a high value of AI(f) automatically implies
that the nonlinearity is not very low: M. Lobanov has obtained in [31] the fol-
lowing tight lower bound:

nl(f) ≥ 2
AI(f)−2∑

i=0

(
n− 1
i

)
.

However, this bound does not assure that the nonlinearity is high enough:

• For n even and AI(f) = n
2 , it gives nl(f) ≥ 2n−1 − 2

(
n−1

n/2−1

)
= 2n−1 −

(
n

n/2

)
which is much smaller than the best possible nonlinearity 2n−1 − 2n/2−1 and,
more problematically, much smaller than the asymptotic almost sure nonlinearity
of Boolean functions, which is, when n tends to ∞, located in the neighbourhood
of 2n−1− 2n/2−1

√
2n ln 2 (see [37]); the nonlinearity reached by the known func-

tions with optimal AI is equal to (or is close to) that of the majority function
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which maps an input vector x ∈ Fn
2 to 1 if its weight is not smaller (resp. is strictly

greater) than n/2 and 0 otherwise (the two versions are affinely equivalent) and
of the iterative construction recalled in [10] : 2n−1 −

(
n−1
n/2

)
= 2n−1 − 1

2

(
n

n/2

)
; it

is a little better than what gives Lobanov’s bound but it is insufficient. Some
functions exhibited in [11,28,29] have better nonlinearities but the increasement
is not quite significant.
• For n odd and AI(f) = n+1

2 , Lobanov’s bound gives nl(f) ≥ 2n−1−
(

n−1
(n−1)/2

)
*

2n−1− 1
2

(
n

(n−1)/2

)
which is a little better than in the n even case, but still far from

the average nonlinearity of Boolean functions; the nonlinearity of the majority
function matches this bound; here again, some functions exhibited in [11,28,29]
have better nonlinearities but the increasement is not sufficient.

A high algebraic immunity is a necessary but not sufficient condition for ro-
bustness against all kinds of algebraic attacks. Indeed, if one can find g of low
degree and h �= 0 of reasonable degree such that f ∗ g = h, then a fast algebraic
attack is feasible, see [13,1,24] (note however that fast algebraic attacks need
more data than standard ones). This has been exploited in [14] to present an
attack on SFINKS [4] and we can say that with this attack, which comes in
addition to the standard algebraic attack, Courtois has made very difficult the
work of the designer. Since f ∗ g = h implies f ∗ h = f ∗ f ∗ g = f ∗ g = h,
we see that h is then an annihilator of f + 1 and if h �= 0, then its degree is at
least equal to the algebraic immunity of f . So summarizing, we shall say that
the function behaves well with respect to fast algebraic attacks if there exists k
(which can be small with respect to n, but not too small) such that, for every
nonzero function g of algebraic degree at most k, the function h = f ∗ g has
algebraic degree significantly greater than �n

2 �. It has been shown in [13] that
when e + d ≥ n, there must exist g of degree at most e and h of degree at most
d such that f ∗ g = h. Hence, an n-variable function f can be considered as
optimal with respect to fast algebraic attacks if there do not exist two functions
g �= 0 and h such that f ∗ g = h and deg(g) + deg(h) < n with deg(g) < n/2.
The question of the existence of such functions was completely open until the
present paper.

The pseudo-random generator must also resist algebraic attacks on the
augmented function [23], that is, on the vectorial function F (x) whose coordi-
nate functions are f(x), f(L(x)), · · · , f(Lm−1(x)), where L is the (linear) up-
date function of the linear part of the generator. Algebraic attacks can be
more efficient when applied to the augmented function rather than to the func-
tion f itself. The efficiency of the attack depends not only on the function
f , but also on the update function (and naturally also on the choice of m),
since for two different update functions L and L′, the vectorial functions F (x)
and F ′(x) = (f(x), f(L′(x)), ..., f(L′m−1(x)) are not linearly equivalent (nei-
ther equivalent in the more general sense called CCZ-equivalence, that is, affine
equivalence of the graphs of the functions). Testing the behavior of a function
with respect to this attack is therefore a long term work (all possible update
functions have to be investigated).
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A new version of algebraic attack has been found recently by S. Rønjom and
T. Helleseth [38] and is very efficient. Its time complexity is roughly O(D), where
D =

∑deg(f)
i=0

(
N
i

)
, where N is the size of the linear part of the pseudo-random

generator. But it needs much more data than standard algebraic attacks: O(D)
also! When f has degree close to n and algebraic immunity close to n

2 , this is
the square of what is needed by standard algebraic attacks. However, this attack
obliges the designer to choose a function with very high degree.

The functions used in the combiner model must be additionally highly resilient
(that is, balanced and correlation immune of a high order; see definition e.g. in
[9]) to withstand correlation attacks. It seems quite difficult to achieve all of
the necessary criteria including this one, and for this reason, the filter generator
seems more appropriate.

3 The Infinite Class and Its Algebraic Immunity

We shall show that, for every n, the Boolean function on F2n whose support
equals {0}∪{αi; i = 0, · · · , 2n−1−2}, where α is a primitive element of F2n , has
optimal algebraic immunity. This function (or more precisely its complement)
makes thinking of the majority function but we shall see that it is in fact quite
different since it has much better nonlinearity and it behaves much better with
respect to fast algebraic attacks too.

Theorem 1. Let n be any integer such that n ≥ 2 and α a primitive element of
the field F2n .

Let f be the Boolean function on F2n whose support is {0, 1, α, · · · , α2n−1−2}.
Then f has optimal algebraic immunity �n/2�.

Proof
Let g be any Boolean function of algebraic degree at most �n/2�−1. Let g(x) =∑2n−1

i=0 gix
i be its univariate representation in the field F2n , where gi ∈ F2n is

null if the 2-weight w2(i) of i is at least �n/2� (which implies in particular that
g2n−1 = 0).

If g is an annihilator of f , then we have g(αi) = 0 for every i = 0, · · · , 2n−1−2,
that is, the vector (g0, · · · , g2n−2) belongs to the Reed-Solomon code over F2n of
zeroes 1, α, · · · , α2n−1−2 (the Reed-Solomon code of zeroes α�, · · · , α�+r equals
by definition the set of vectors (g0, · · · , g2n−2) of F2n−1

2n such that these elements
are zeroes of the polynomial

∑2n−2
i=0 giX

i, see [32]; there exists an equivalent
definition where Reed-Solomon codes are given by evaluating polynomials at
points but we shall not need it).

According to the BCH bound, if g is non-zero, then the vector (g0, · · · , g2n−2)
has Hamming weight at least 2n−1. The general proof of this lower bound can
be found in [32] as well. For self-completeness, we briefly recall how it can be
simply proved in our framework. By definition, we have:
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⎛⎜⎜⎜⎜⎜⎝
g(1)
g(α)
g(α2)

...
g(α2n−2)

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
1 1 1 · · · 1
1 α α2 · · · α2n−2

1 α2 α4 · · · α2(2n−2)

...
...

... · · ·
...

1 α2n−2 α2(2n−2) · · · α(2n−2)(2n−2)

⎞⎟⎟⎟⎟⎟⎠×

⎛⎜⎜⎜⎜⎜⎝
g0
g1
g2
...

g2n−2

⎞⎟⎟⎟⎟⎟⎠
which implies (since for every 0 ≤ i, j ≤ 2n − 2, the sum

∑2n−2
k=0 α(i−j)k equals 1

if i = j and 0 otherwise):⎛⎜⎜⎜⎜⎜⎝
g0
g1
g2
...

g2n−2

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
1 1 1 · · · 1
1 α−1 α−2 · · · α−(2n−2)

1 α−2 α−4 · · · α−2(2n−2)

...
...

... · · ·
...

1 α−(2n−2) α−2(2n−2) · · · α−(2n−2)(2n−2)

⎞⎟⎟⎟⎟⎟⎠×

⎛⎜⎜⎜⎜⎜⎝
g(1)
g(α)
g(α2)

...
g(α2n−2)

⎞⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎝
1 1 · · · 1

α−(2n−1−1) α−2n−1 · · · α−(2n−2)

...
... · · ·

...
α−(2n−1−1)(2n−2) α−2n−1(2n−2) · · · α−(2n−2)(2n−2)

⎞⎟⎟⎟⎠×

⎛⎜⎜⎜⎝
g(α2n−1−1)
g(α2n−1

)
...

g(α2n−2)

⎞⎟⎟⎟⎠
Suppose that at least 2n−1 of the gi’s are null. Then, g(α2n−1−1), · · · , g(α2n−2)
satisfy a homogeneous system of linear equations whose matrix is a 2n−1 × 2n−1

Vandermonde matrix and whose determinant is therefore non-null. This implies
that g(α2n−1−1), · · · , g(α2n−2) and therefore g must then be null, a contradiction.
Hence the vector (g0, · · · , g2n−2) has weight at least 2n−1.

Moreover, suppose that this vector has Hamming weight 2n−1 exactly. Then
g(x) =

∑
0≤i≤2n−2

w2(i)≤(n−1)/2

xi and n is odd (so that g(x) can have 2n−1 terms); but this

contradicts the fact that g(0) = 0. We deduce that the vector (g0, · · · , g2n−2) has
Hamming weight strictly greater than 2n−1, leading to a contradiction with the
fact that g has algebraic degree at most �n/2�− 1, since the number of integers
of 2-weight at most �n/2� − 1 is not strictly greater than 2n−1.

Let g be now a non-zero annihilator of f + 1. The vector (g0, · · · , g2n−2)
belongs then to the Reed-Solomon code over F2n of zeroes α2n−1−1, · · · , α2n−2.
According to the BCH bound (which can be proven similarly as above), this
vector has then Hamming weight strictly greater than 2n−1. We arrive to the
same contradiction. Hence, there does not exist a non-zero annihilator of f or
f + 1 of algebraic degree at most �n/2� − 1 and f has then (optimal) algebraic
immunity �n/2�. �

Remark
1. We have proved in fact that f admits no non-zero annihilator whose univariate
representation has at most 2n−1 non-zero coefficients.
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2. The same proof shows that, for every even n, denoting D =
∑n/2−1

i=0

(
n
i

)
=

2n−1 −
(
n−1
n/2

)
, if the support of f contains {0, αi, αi+1, · · ·αi+D−2} and if the

support of f + 1 contains {αj , αi+1, · · ·αj+D−1} for suitable parameters i, j,
then the function f also has optimal AI. Moreover, for every n and every
positive integer D, if Supp(f) ⊇ {0, αi, αi+1, · · ·αi+D−2} and Supp(f + 1) ⊇
{αj , αi+1, · · ·αj+D−1} for suitable parameters i, j, then the function f has AI
at least k such that D ≥

∑k−1
i=0

(
n
i

)
. Hence, we can build functions with sub-

optimal algebraic immunity. Sub-optimality is sometimes better than optimality
in cryptography, when it allows avoiding a too strong structure of the function.
Here, this allows constructing a balanced function of algebraic immunity �n

2 �−1
(for instance) and whose support is not made exclusively of consecutive powers
of a primitive element.
3. Note that the function of Theorem 1 is not a priori linearly equivalent to the
Boolean function whose support equals the set of the binary expansions of the in-
tegers in the range [0; 2n−1− 1]. Indeed, for general i =

∑n−1
k=0 2ik , j =

∑n−1
k=0 2jk

there is no bilinear relationship between tr(αi+j) and i0j0 + · · ·+ in−1jn−1. This
means that the inner products in both frameworks are not linearly linked.

4 Algebraic Degree and Nonlinearity of the Function

We shall see now that the algebraic degree of the function of Theorem 1 is
cryptographically quite satisfactory and that its nonlinearity is provably much
better than for the previously known functions with optimal algebraic immunity.
However, the lower bound we obtain gives a value which is not high enough for
saying that the function has good nonlinearity. Nevertheless, for the values of
n for which we could compute the exact value of the nonlinearity, it is quite
satisfactory too.

Theorem 2. The univariate representation of the function f of Theorem 1
equals

1 +
2n−2∑
i=1

αi

(1 + αi)1/2 xi (1)

where u1/2 = u2n−1
. Hence, f has algebraic degree n− 1 (which is optimal for a

balanced function).

Proof. Let f(x) =
∑2n−1

i=0 fi x
i be the univariate representation of f . We have

f0 = f(0) = 1, f2n−1 = 0 (since f has even Hamming weight and therefore
algebraic degree at most n− 1) and for every i ∈ {1, · · · , 2n − 2}:

fi =
2n−2∑
j=0

f(αj)α−ij =
2n−1−2∑

j=0

α−ij =
1 + α−i(2n−1−1)

1 + α−i
=

(
1 + α−i(2n−2)

1 + α−2i

)1/2

=
(

1 + αi

1 + α−2i

)1/2

=
αi

(1 + αi)1/2 .
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This proves Relation (1). We can see that f2n−2 �= 0 and therefore f has alge-
braic degree n− 1. �

Remark. Computing the expression of Theorem 2 has high complexity. Actually,
the complexity of computing f(x) is comparable to computing the discrete log
since the latter can be obtained by computing n outputs to f (with a dichotomic
method).

Theorem 3. Let f be defined as in Theorem 1, then:

nl(f) ≥ 2n−1 +
2n/2+1

π
ln
(

π

4(2n − 1)

)
− 1 ≈ 2n−1 − 2 ln 2

π
n 2n/2.

Proof.

nl(f) = 2n−1 − 1
2

max
λ∈Fn

2

|Wf (λ)| (2)

= 2n−1 − 1
2

max
0=λ∈Fn

2

|Wf (λ)| (since Wf (0) = 0)

= 2n−1 − max
λ∈F∗

2n

∣∣∣∣∣∣
∑

x ∈supp(f)

(−1)tr(λx)

∣∣∣∣∣∣
(since (−1)f = 2 (f + 1) − 1 and

∑
x∈Fn

2

(−1)λ·x = 0)

= 2n−1 − max
λ∈F∗

2n

|Sλ|

where

Sλ =
2n−2∑

i=2n−1−1

(−1)tr(λαi) (λ ∈ F∗
2n) (3)

Let ζ = e
2π

√
−1

2n−1 be a primitive (2n − 1)-th root of 1 in the complex field C, χ be
the multiplicative character of F2n defined by χ(αj) = ζj (0 ≤ j ≤ 2n − 2) and
χ(0) = 0. We define the Gauss sum:

G(χµ) =
∑

x∈F∗
2n

χµ(x)(−1)tr(x) (0 ≤ µ ≤ 2n − 2)

It is well-known (see [30]) that G(χ0) = −1 and |G(χµ)| = 2
n
2 for 1 ≤ µ ≤ 2n−2.

By Fourier transformation we have

(−1)tr(αj) =
1

2n − 1

2n−2∑
µ=0

G(χµ)χµ(αj) (0 ≤ j ≤ 2n − 2)
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Let λ = αl (0 ≤ l ≤ 2n − 2) and q = 2n. Then χµ(λαi) = ζ−µ(l+i) and by (3),

Sλ =
1

q − 1

q−2∑
µ=0

G(χµ)
q−2∑

i= q
2−1

χµ(λαi)

=
1

q − 1

q−2∑
µ=0

G(χµ)
q−2∑

i= q
2−1

ζ−µ(l+i)

=
1

q − 1

(
q−2∑
µ=1

G(χµ)ζ−µl ζ−µ( q
2−1) − 1

1 − ζ−µ
− q

2

)

Therefore, for λ ∈ F∗
q ,

|Sλ| ≤
1

q − 1

⎛⎜⎜⎝q−2∑
µ=1

|G(χµ)| ·

∣∣∣∣sin πµ( q
2−1)

q−1

∣∣∣∣
sin πµ

q−1
+

q

2

⎞⎟⎟⎠
≤ 1

q − 1

(
q−2∑
µ=1

|G(χµ)| · 1
sin πµ

q−1
+

q

2

)

=
1

q − 1

⎛⎝2
√
q

q
2−1∑
µ=1

(
sin

πµ

q − 1

)−1

+
q

2

)

since sin(π−u) = sin(u). By convexity of the function 1
sin t , we have, for 0 ≤ θ < t

and t + θ ≤ π:

1
sin(t− θ)

+
1

sin(t + θ)
≥ 2

sin t
.

Then we deduce ∫ t+ θ
2

t− θ
2

du

sin u
≥ θ

sin t

and taking θ = π
q−1 :

q
2−1∑
µ=1

(
sin

πµ

q − 1

)−1

≤ q − 1
π

q
2−1∑
µ=1

∫ πµ
q−1 + π

2(q−1)

πµ
q−1− π

2(q−1)

du

sin u

=
q − 1
π

∫ π
2

π
2(q−1)

du

sin u
.
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Set t(x) = tan(x/2). We have sinx = 2t(x)
1+t2(x) and therefore 1

sin x = t′(x)
t(x) . Hence

a primitive of 1/ sinx equals ln(| tan(x/2)|). This implies

2n−1 − maxSλ ≥ 2n−1 −
(

2n/2+1
[

1
π

ln(tan(x/2))
]π

2

π
2(2n−1)

+ 1

)

= 2n−1 +
2n/2+1

π
ln
(

tan
(

π

4(2n − 1)

))
− 1

≥ 2n−1 +
2n/2+1

π
ln
(

π

4(2n − 1)

)
− 1(

since tanx ≥ x; ∀x ∈
[
0;

π

2

[)
≈ 2n−1 − 2 ln 2

π
n 2n/2.

�

Remarks
1. The lower bound given by Theorem 3 shows that the nonlinearity of our
function f is provably considerably better (at least asymptotically) than those
of the previously found functions. Moreover, we checked for small values of n
that the exact value of nl(f) is much better than what gives this lower bound
and better than the nonlinearity of random functions and that it seems quite
sufficient for resisting fast correlation attacks (for these small values of n, it
behaves as 2n−1 − 2n/2). We give in Table 1 below, for n ranging from 6 to 11,
the values of the nonlinearity of f compared with Lobanov’s lower bound (when
applied with optimal algebraic immunity), with the best nonlinearities of those
functions with optimal AI known before the present paper, with the lower bound
of Theorem 3, and with the upper bound 2n−1 − 2n/2−1.
2. We have seen that the computation of the value of f(x) has high complexity.
The power functions seen in [2, Table 1] may be better in practice for being used
with a high number of variables, if their behavior against fast algebraic attacks
can be proved good. Our construction might be useful with different designs,
using less variables. It would be nice to find other infinite classes with the same
qualities and which would be more easily computable.

Table 1. The values of the nonlinearity of f compared with Lobanov’s lower bound
and with the upper bound 2n−1 − 2n/2−1

n 6 7 8 9 10 11
Lobanov’s bound 12 44 58 186 260 772

Best nl of fcts with optimal AI known before 22 48 98 196 400 798
The bound of Theorem 3 10 28 70 163 366 798

The values of the nl of fct f of Theorem 1 24 54 112 232 478 980
The upper bound 2n−1 − 2n/2−1 28 58 120 244 496 1001
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5 Immunity against Fast Algebraic Attacks

Computer investigations made using [2, Algorithm 2] suggest the following prop-
erties of the class of functions of Theorem 1:

– No nonzero function g of degree at most e and no function h of degree at
most d exist such that f ∗ g = h, when (e, d) = (1, n − 2) for n odd and
(e, d) = (1, n − 3) for n even. This has been checked for n ≤ 12 and we
conjecture it for every n.

– For e > 1, pairs (g, h) of degrees (e, d) such that e + d < n − 1 were never
observed. Precisely, the non-existence of such pairs could be checked exhaus-
tively for n ≤ 9 and e < n/2, for n = 10 and e ≤ 3 and for n = 11 and e ≤ 2.
This suggests that this class of functions, even if not always optimal against
fast algebraic attacks, has a very good behavior.

The instance with n = 9 turns out to be optimal. To the best of our knowledge,
this is the first time where a function with optimal immunity against FAA’s can
be observed.

6 Conclusion

The functions of Theorem 1 seem to gather all the properties needed for allowing
the stream ciphers using them as filtering functions to resist all the main attacks
(the Berlekamp-Massey and Rønjom-Helleseth attacks, fast correlation attacks,
standard and fast algebraic attacks). They are the only functions of this kind
found so far.
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Abstract. MISTY1 is a Feistel block cipher that received a great deal
of cryptographic attention. Its recursive structure, as well as the added
FL layers, have been successful in thwarting various cryptanalytic tech-
niques. The best known attacks on reduced variants of the cipher are
on either a 4-round variant with the FL functions, or a 6-round variant
without the FL functions (out of the 8 rounds of the cipher).

In this paper we combine the generic impossible differential attack
against 5-round Feistel ciphers with the dedicated Slicing attack to
mount an attack on 5-round MISTY1 with all the FL functions with
time complexity of 246.45 simple operations. We then extend the attack
to 6-round MISTY1 with the FL functions present, leading to the best
known cryptanalytic result on the cipher. We also present an attack on
7-round MISTY1 without the FL layers.

1 Introduction

MISTY1 [10] is a 64-bit block cipher with presence in many cryptographic stan-
dards and applications. For example, MISTY1 was selected to be in the CRYP-
TREC e-government recommended ciphers in 2002 and in the final NESSIE
portfolio of block ciphers, as well as an ISO standard (in 2005).

MISTY1 has a recursive Feistel structure, where the round function is in
itself (very close to) a 3-round Feistel construction. To add to the security of the
cipher, after every two rounds (and before the first round), an FL function is
applied to each of the halves independently. The FL functions are key-dependent
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linear functions which play the role of whitening layers (even in the middle of
the encryption).

MISTY1 has withstood extensive cryptanalytic efforts. The most successful
attacks on it are an impossible differential attack on 4 rounds (when the FL
layers are present) [8], an integral attack on 5 rounds (when all but the last FL
layers are present) [6], and an impossible differential attack on 6 rounds (without
FL layers) [9].

In this paper we show that the generic impossible differential attack against
5-round Feistel constructions [2,5] can be combined with the dedicated slicing
attack [8] to yield an attack on 5-round MISTY1 with all the FL functions. The
data complexity of the attack is 238 chosen plaintexts, and the time complexity
is 246.45 simple operations. The main idea behind this attack is to actually attack
the FL functions themselves as these functions are keyed linear transformations.

After presenting the 5-round attack, we extend it by one more round, and
show that by using key schedule considerations and a delicately tailored attack
algorithm, it is possible to attack 6 rounds of MISTY1 with all the FL functions
present. The 6-round attack requires 251 chosen plaintexts and has a running
time of 2123.4 encryptions.

Finally, we present an impossible differential attack on 7-round MISTY1 when
the FL layers are omitted. The attack uses 250.2 known plaintexts, and has a run-
ning time of 2114.1 encryptions. We summarize our results along with previously
known results on MISTY1 in Table 1.

Table 1. Summary of the Attacks on MISTY1

Attack Rounds FL Complexity
functions Data Time

Impossible Differential [7] 4 Most 223 CP 290.4

Impossible Differential [7] 4 Most 238 CP 262

Collision Search [7] 4 Most 220 CP 289

Collision Search [7] 4 Most 228 CP 276

Slicing Attack [8] 4† All 222.25 CP 245

Slicing Attack & Impossible Differential [8] 4 All 227.2 CP 281.6

Impossible Differential [8] 4 All 227.5 CP 2116

Integral [6] 5 Most 210.5 CP 222.11

Impossible Differential (Section 3) 5† All 238 CP 246.45

Impossible Differential (Section 4) 6 All 251 CP 2123.4

Higher-Order Differential [1] 5 None 210.5 CP 217

Impossible Differential [7] 6 None 254 CP 261

Impossible Differential [7] 6 None 239 CP 2106

Impossible Differential [9] 6 None 239 CP 285

Impossible Differential (Section 5) 7 None 250.2 KP 2114.1

KP – Known plaintext, CP – Chosen plaintext.
† – the attack retrieves 41.36 bits of information about the key.
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This paper is organized as follows: In Section 2 we give a brief description
of the structure of MISTY1. We present our 5-round attack in Section 3, and
discuss its extension to 6 rounds in Section 4. In Section 5 we present a 7-round
attack which can be applied when there are no FL layers. Section 6 concludes
the paper.

2 The MISTY1 Cipher

MISTY1 [10] is a 64-bit block cipher that has a key size of 128 bits. Since its
introduction it withstood several cryptanalytic attacks [1,6,7,8,9], mostly due to
its very strong round function (which accepts 32-bit input and 112-bit subkey1)
and the FL layers (keyed linear transformations) which are applied every two
rounds. The security of MISTY1 was acknowledged several times, when it was
selected to the NESSIE portfolio, the CRYPTREC’s list of recommended ciphers,
and as an ISO standard.

MISTY1 has a recursive structure. The general structure of the cipher is a
8-round Feistel construction, where the round function, FO, is in itself close to
a 3-round Feistel construction. The input to the FO function is divided into two
halves. The left one is XORed with a subkey, enters a keyed permutation FI,
and the output is XORed with the right half. After the XOR the two halves are
swapped, and the same process (including the swap) is repeated two more times.
After that, an additional swap and an XOR of the left half with a subkey are
performed.

The FI in itself also has a Feistel-like structure. The 16-bit input is divided
into two unequal halves — one of 9 bits, and the second of 7 bits. The left half
(which contains 9 bits) enters an S-box, S9, and the output is XORed with the
7-bit half (after padding the 7-bit value with two zeroes). The two halves are
swapped, the 7-bit half enters a different S-box, S7, and the output is XORed
with 7 bits out of the 9 of the right half. The two halves are then XORed with
a subkey, and swapped again. The 9-bit value again enters S9, and the output
is XORed with the 7-bit half (after padding). The two halves are then swapped
for the last time.

Every two rounds, starting before the first one, the two 32-bit halves enter an
FL layer. The FL layer is a simple transformation. The input is divided into two
halves of 16 bits each, the AND of the left half with a subkey is XORed to the
right half, and the OR of the updated right half with another subkey is XORed
to the left half. We outline the structure of MISTY1 and its parts in Figure 1.

The key schedule of MISTY1 takes the 128-bit key, and treats it as eight 16-
bit words K1,K2, . . . ,K8. From this set of subkeys, another eight 16-bit words
are generated according to K ′

i = FIKi+1(Ki).2

1 In [7] it was observed that the round function has an equivalent description that
accepts 105 equivalent subkey bits.

2 In case the index of the key j is greater than 8, the used key word is j − 8. This
convention is used throughout the paper.
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Fig. 1. Outline of MISTY1

In each round, seven words are used as the round subkey, and each of the FL
functions accepts two subkey words. We give the exact key schedule of MISTY1
in Table 2.

3 An Impossible Differential Attack on 5-Round MISTY1

Our attack on 5-round MISTY1 with all the FL functions is based on the generic
impossible differential attack against 5-round Feistel constructions with a bijec-
tive round function [2,5] and on the dedicated slicing attack [8] on reduced-round
MISTY1.
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Table 2. The Key Schedule Algorithm of MISTY1

KOi,1 KOi,2 KOi,3 KOi,4 KIi,1 KIi,2 KIi,3 KLi,1 KLi,2

K i+1
2

(odd i) K′
i+1
2 +6

(odd i)

Ki Ki+2 Ki+7 Ki+4 K′
i+5 K′

i+1 K′
i+3

K′
i
2 +2 (even i) K i

2+4 (even i)

3.1 The New 5-Round Impossible Differential

The generic attack on 5-round Feistel constructions is based on the following
impossible differential:

Observation 1 ([2], page 136). Let E : {0, 1}2n → {0, 1}2n be a 5-round Feis-
tel construction with a bijective round function f : {0, 1}n → {0, 1}n. Then for
all non-zero α ∈ {0, 1}n, the differential (0, α) → (0, α) through E is impossible.

Our proposition is based on the fact that a similar impossible differential can be
constructed even if FL layers are added to the construction, as in MISTY1. Note
that since for a given key the FL layers are linear, we can define FL(α) for a differ-
ence α as the unique difference β such that (x⊕ y = α) ⇒ (FL(x)⊕FL(y) = β).

Proposition 1. Let E denote a 5-round variant of MISTY1, with all the FL
functions present (including an FL layer after round 5). If for the given secret
key we have FL8(FL6(FL4(FL2(α)))) = β, where FLn is FL with the key
KLn, then the differential (0, α) → (0, β) through E is impossible.

Proof. If the plaintext difference is (0, α), then after the first FL layer, the dif-
ference becomes (0, FL2(α)). This difference evolves after two rounds (including
the second FL layer) to (x, FL4(FL2(α))), where x �= 0 due to the bijectiveness
of the round function of MISTY1.

On the other hand, if the output difference is (0, β) such that β =
FL8(FL6(FL4(FL2(α)))), then before the last FL layer, the difference is
(0, FL6(FL4(FL2(α)))), and thus the input difference to round 5 is also
(0, FL6(FL4(FL2(α)))). Thus, the difference before the third FL layer is
(0, FL4(FL2(α))).

However, if the input difference to round 3 is (x, FL4(FL2(α))) and the output
difference of round 4 (before the FL layer) is (0, FL4(FL2(α))), then the output
difference of the FO function in round 3 is zero. This is impossible since the input
difference to this FO function is x �= 0, and the FO function is bijective.

Hence, the differential (0, α) → (0, β) is indeed impossible. ��

We note that a similar approach is used in the slicing attack on 4-round
MISTY1 [8]. The slicing attack is based on the generic 3-round impossible differ-
ential (0, α) → (0, β) for all non-zero α, β which holds for every 3-round Feistel
construction with a bijective round function.
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3.2 The Structure of the FL Functions

A straightforward way to use the new impossible differential to attack 5-round
MISTY1 is to encrypt many pairs with difference (0, α) for non-zero α, con-
sider the pairs whose ciphertext difference is of the form (0, β), and discard
subkeys of the FL layers for which FL8(FL6(FL4(FL2(α)))) = β. However,
since the subkeys used in FL2, FL4, FL6, and FL8 are determined by 96 key
bits, this approach is very time consuming. Instead, we examine the structure
of the FL functions in order to find an efficient way to find the instances for
which FL8(FL6(FL4(FL2(α)))) = β, for a given pair (α, β). We use a series of
observations, most of which were first presented in [8].

In the rest of this section, the function FL8 ◦ FL6 ◦ FL4 ◦ FL2 is denoted
by G.

1. For each 0 ≤ i ≤ 15, the i-th bits of both halves of the input to an FL
function and the i-th bits of both halves of the subkey used in the FL
function, influence only the i-th bits of both halves of the output of the
function. As a result, each FL function can be represented as a parallel
application of 16 functions fi : {0, 1}2 → {0, 1}2 keyed by two different
subkey bits each.

2. Each fi is linear and invertible.
3. The two observations above hold also for a series of FL functions applied

sequentially. In particular, the function G = FL8 ◦ FL6 ◦ FL4 ◦ FL2 can
be represented as a parallel application of 16 functions gi : {0, 1}2 → {0, 1}2

keyed by eight subkey bits each. The gi’s are all linear and invertible, and
hence, can realize only six possible functions.3 Thus, there are only 616 =
241.36 possible G functions.

4. Since each gi is invertible, the differentials 0 → a and a → 0 through gi

are impossible, for each non-zero a ∈ {0, 1}2. As a result, most of the dif-
ferentials of the form α → β through G are impossible, regardless of the
subkeys used in the FL functions. In each of the gi-s, only 10 out of the 16
possible input/output pairs are possible. Hence, only (10/16)16 = 2−10.85 of
the input/output pairs for G are possible.

5. Assume that G(α) = β, for fixed α and β. We want to find how many
functions of the form G (out of the possible 241.36 functions) satisfy this
condition. For each gi, there are 10 possible input/output pairs (the other six
pairs are impossible for any subkey). For the 0 → 0 pair, all the six possible gi

functions satisfy this condition. For each of the 9 remaining pairs, two of the
six functions satisfy the condition. Since the gi functions are independent,
the expected number of functions satisfying the conditions for all the gi-s is:

16∑
j=0

(
16
j

)
·
(

9
10

)j

·
(

1
10

)16−j

· 2j · 616−j = 220.2.

3 Since we are interested only in differences, we treat two functions that differ by an
additive constant as the same function. The total number of functions for each fi is
actually 24.
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The 241.36 possible G functions can be enumerated in such a way that the
functions satisfying the condition for each (α, β) pair can be found efficiently.

Using these observations on the structure of the FL functions, we are ready
to present our attack.

3.3 The New Attack

1. Ask for the encryption of 64 structures of 232 plaintexts each, such that in
each structure, the left half of all the plaintexts is equal to some random value
A, while the right half obtains all possible values. (As a result, the difference
between two plaintexts in the same structure is of the form (0, α)).

2. For each structure, find the pairs whose output difference is of the form
(0, β).

3. For each pair with input difference (0, α) and output difference (0, β) check
whether α → β is an impossible differential for the function G (as described
in Section 3.2). Discard pairs which fail this test.

4. For each remaining pair, find all the G functions satisfying the condition
G(α) = β and discard them from the list of all possible G functions.

5. After analyzing all the remaining pairs, output the list of remaining G func-
tions.

Step 2 of the algorithm can be easily implemented by a hash table, resulting in
about 231 pairs from each structure. Step 3 can be easily performed by evaluating
a simple Boolean function on the input and the output (as we are concerned with
cases of a zero input causing a non-zero output or vice versa).4

As noted in Section 3.2, out of the 231 pairs, about 231 · 2−10.85 = 220.15 pairs
remain from each structure at this point. Each of these pairs discards about
220.2 possible values of G on average (as shown in Section 3.2), and thus, each
structure is expected to discard about 240.35 G functions. The identification of
the discarded functions can be performed very efficiently.

Thus, after analyzing about 64 structures, we are left only with the right G
function.5 The time complexity of the attack is about 64 · 220.15 · 220.2 = 246.35

simple operations, and the information retrieved by the attacker is equivalent to
41.36 key bits. In many situations, this is considered a break of the system and
the attack terminates.
4 The exact Boolean expression is as follows: Let the input difference of G be (x1, x2)

and the output difference of G be (y1, y2). Also let t be the bitwise NOT of t, let & be
a bitwise AND, and | be a bitwise OR. If x1&x2&(y1|y2) is non-zero then there is a
zero input difference transformed to a non-zero output difference. It is also required
to check whether the output difference is zero and the input difference is non-zero,
which is done by evaluating: y1&y2&(x1|x2).

5 We expect 240.35 · 64 = 246.35 functions to be discarded (with overlap). Thus, the
probability that a specific function remains after the analysis is(

1 − 2−41.36)246.35

≈ e−32 = 2−46.2.
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3.4 Retrieving the Rest of the Secret Key

If the attacker wants to retrieve the actual value of the key, she can use the
G function found in the attack to retrieve the value of the subkeys used in the
G function. A naive approach is to try the possible 296 subkeys which affect
the functions FL2, FL4, FL6, and FL8, and check (for each subkey) whether it
yields the correct G function. A more efficient algorithm is to guess the values of
the subkeys K ′

3,K4,K5,K6, and K7, and check whether they induce the correct
transformation from the input of G to the right half of the output of G. If
this is the case, the attacker can retrieve the suggested value for K8 efficiently,
and if the suggestion is consistent with the correct G function, the attacker
obtains a candidate for 96 bits of the key (the knowledge of K ′

3 and K4 allows
computing K3). The time complexity of this approach is roughly 280 evaluations
of four FL functions, and the attacker gets a list of 296 · 2−41.36 = 254.64 96-bit
subkeys. Retrieving the rest of the key by exhaustive search leads to a total time
complexity of 286.64 encryptions.

We note that possibly this part of the attack can be performed much more effi-
ciently using some different attack technique and exploiting the key information
obtained so far.6

4 Extending the Attack to 6 Rounds

The simplest way to extend a 5-round attack to 6 rounds is to guess the subkey of
the last round, peel the last round off, and apply the 5-round attack. In MISTY1,
this requires guessing the key of the last FL layer, as well as 112 subkey bits
which enter the sixth FO function. Thus, we need to use a more careful analysis
and key schedule considerations to present this attack.

In our attack we guess the subkey of the last FL layer (composed of 64 bits),
and examine only ciphertext pairs with a special structure in order to reduce the
amount of subkey material in the sixth FO we need to handle. Finally, we repeat
the five roundattack, taking into consideration the already known subkeymaterial.

The special structure of the pairs examined in the attack is based on the
following observation, presented in [7]:

Observation 2. ([7]) Assume that the input values to the function FOi are
known. The question whether the output difference of FOi is of the form (δ, δ),
for a 16-bit value δ, depends only on the 50 subkey bits KOi,1,KOi,2,KIi,1,2,
and KIi,2,2.

4.1 The Attack’s Algorithm

1. Take m structures (generated just like in the 5-round attack).
2. For each guess of the subkey used in the last FL layer (subkeys K ′

2,K4,K
′
6,

and K8), partially decrypt all the ciphertexts.
6 We note that a similar problem is discussed in [8], and several techniques applicable in

special cases (e.g., if the attacker can use both chosen plaintext and chosen ciphertext
queries) are presented.
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3. Find all pairs with plaintext difference (0, α) and ciphertext difference
((δ, δ), (x, y)),7 such that differential α → (x, y) through FL6 ◦ FL4 ◦ FL2
is not impossible (see Section 3.2).

4. Analysis of Round 6: For each such pair, with difference ((δ, δ), (x, y)),
perform the following steps:
(a) Given KO6,2 = K8 compute the actual values just before the key addi-

tion with KI6,2 for the pair. If the difference in the 7 left bits does not
fit the corresponding 7 difference bits of δ — discard the pair.

(b) Using the input and output differences of the second S9 S-box of the
function FI6,2, find the pairs of actual input values satisfying this dif-
ference relation.8 From the actual input values obtain (on average) one
candidate for the 9 bits of KI6,2,2.

(c) For each possible guess of KI6,2,1 (i.e., the remaining unknown bits of
K ′

7) compute KO6,1 = K6, and check whether the difference in the 7 left
bits before the key addition in the first FI is equal to the difference in
the 7 left bits of y.

(d) Similarly to Step (4b), deduce KI6,1,2 using the input/output differences
of the second S9 in the function FI6,1, suggested by the pair.

5. Application of the 5-Round Attack: For each guess of the 89 subkey
bits (i.e., K ′

2,K4,K
′
6,K

′
7,K8,KI6,1,2) and for each pair corresponding to this

subkey guess, perform the following:
(a) Guess the 9 least significant bits of K5 and use the key sched-

ule to compute bits 7, 8 of K ′
4 and K ′

5. Check whether the relation
FL6(FL4(FL2(α))) = (x, y) holds at bits 7, 8 of the left and the right
halves of α and β (note that all the subkey bits involved in this relation
are already known). If no, discard the pair.

(b) Guess the remainder of K5, and compute the full values of K ′
4 and K ′

5.
Check whether the pair can achieve α → (x, y), and retrieve the sug-
gested value for the 7 remaining bits of K ′

3.
(c) If at this stage, for a given key guess there are remaining pairs, discard

the subkey guess (as it suggests an impossible event). Otherwise, retrieve
the remaining key bits by exhaustive search.

4.2 Analysis of the Attack

Starting with m structures, for each guess of the subkey used in the last FL
layer (64 bits), about m · 263 · 2−16 · 2−10.85 = m · 236.15 pairs are expected to
enter Step (4). Each of these pairs has probability 2−7 to satisfy the differential
condition of Step (4a), leaving m ·229.15 pairs for each guess of the first 64 subkey
bits. Then, in Step (4b) we obtain (for each pair) one candidate on average for
9 additional subkey bits, reducing the number of pairs associated with a given
subkey guess (of 73 bits) to m·220.15 pairs. These two operations (a 7-bit filtering

7 The reader is advised that we give the values without the swap operation, to be
consistent with our figure describing MISTY1.

8 This can be done easily by examining the difference distribution table of S9.
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and a 9-bit subkey suggestion) are performed again in Steps (4c,4d) for each
guess of 7 additional subkey bits. As a result, m · 220.15 · 2−16 = m · 24.15 pairs
are expected to enter Step (5), for each of the 89-bit subkey guesses.

In Step (5), we guess a total of 16 additional key bits, and discard all the
pairs for which FL6(FL4(FL2(α))) �= (x, y). Since all the pairs for which the
differential α → (x, y) through FL6 ◦FL4 ◦FL2 is impossible were discarded in
Step (3) of the attack, the probability of a pair to pass the filtering of Step (5)
is 2−21.15. Hence, the number of pairs remaining after Step (5) for each subkey
guess is m · 24.15 · 2−21.15 = m · 2−17. As a result, the probability that a subkey
guess is not discarded is e−m·2−17

. Thus, the time complexity of Step (5c) is
2128 · e−m·2−17

encryptions.
We note that the number of pairs entering Step (5b) is m ·21.5 for each subkey

guess. Indeed, in Step (5a) we discard the pairs for which FL6(FL4(FL2(α))) �=
(x, y) in four bits. It may seem that the probability of a pair to pass this filtering
is 2−4. However, since the pairs for which the differential α → (x, y) through
FL6 ◦FL4 ◦FL2 is impossible were already discarded before, the probability of
a pair to pass the filtering9 is 2−2.65, and hence the number of remaining pairs
is indeed m · 21.5 for each subkey guess.

The two most time consuming steps of the attack are Steps (5b) and (5c).
Step (5b) takes 3 · m · 21.5 · 2105 = m · 2108.1 evaluations of FL. We take the
moderate assumption that the time complexity of three FL evaluations is not
greater than 1/8 of the time required for a 6-round encryption. Hence, the time
complexity of Step(5b) is about m · 2103.5 MISTY1 encryptions. Step (5c) takes
2128 · e−m·2−17

encryptions.
The least overall time complexity is achieved when both terms are the same,

i.e., when m · 2103.5 = 2128 · e−m·2−17
. Solving this equation numerically, sug-

gests that m = 218.945 is the optimal value. Thus, the data complexity of the
attack is m · 232 ≈ 251 chosen plaintexts, and the time complexity is 2123.4

encryptions.

5 Attack on 7-Round MISTY1 with No FL Layers

In this section we show that if the FL layers are removed from the structure of
MISTY1, then the generic impossible differential for 5-round Feistel construc-
tions [2,5] can be used to mount an attack on a 7-round variant of the cipher.
The attack is based on examining pairs with input difference (α, x) and output
difference (α, y), and discarding all the subkeys which lead to the impossible dif-
ferential (α, 0) → (α, 0) in rounds 2–6. However, since each of the FO functions
uses 112 key bits, trying all the possible subkeys is infeasible. Instead, we use dif-
ferential properties of the FO function, along with key schedule considerations,
in order to discard the possible subkeys efficiently.

9 As noted earlier, in the filtering in Step 3, the attacker discards (for a given pair of
bits) 6 out of 16 possible values. Hence, in this step, the attacker discards 9 out of
the remaining 10 values.
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5.1 Differential Properties of the FO Function

We start with an observation presented in [7].

Observation 3 ([7]). Given a pair of input values to the function FOi, the
corresponding output difference depends only on the equivalent of 75 subkey bits.
These bits are the subkeys KOi,1,KOi,2,KIi,1,2,KIi,2,2, and KIi,3,2, and the
equivalent subkey

AKOi,3 = KOi,3 ⊕KIi,1,1||00||KIi,1,1,

where || denotes concatenation.

We refer the reader to [7] for the complete proof of this observation.
Our next proposition is a novel observation concerning MISTY1:

Proposition 2. Assume that the input values and the output difference of the
function FOi are known, along with one of the following sets of subkey bits:

1. KOi,1,KIi,1,2,KIi,2,2,KIi,3,2, or
2. KOi,2,KIi,1,2,KIi,2,2,KIi,3,2.

Consider the remaining 32 key bits that influence the output difference (i.e.,
KOi,2 or KOi,1, respectively, along with AKOi,3). There exists one value of
these 32 bits on average which satisfies the input/output condition, and this
value can be found efficiently (using only several simple operations).

Proof. Consider the case when the bits of Set (1) are known. The knowledge
of bits KOi,1 and KIi,1,2 allows to encrypt the pair through the first FI layer
and (using the output difference of FOi) obtain the output difference of FIi,2.
The input difference to FIi,2 can be computed from the input of FOi. Given the
input and the output differences to the function FIi,2 and the subkey KIi,2,2,
there exists one pair of inputs on average which satisfies the input/output differ-
ence condition. This pair of actual values, along with the input to FOi, suggests
a unique value for the subkey KOi,2. Similarly, since the input and output dif-
ferences to FIi,3 and the subkey KIi,3,2 are known, they suggest one value of
the subkey AKOi,3 on average which satisfies these differences.

In the second case, when the bits of Set (2) are known, the knowledge of
bits KOi,2 and KIi,2,2 allows to encrypt the pair through the second FI layer
and (using the output difference of FOi) obtain the output difference of FIi,1.
The input difference to FIi,1 can be computed from the input of FOi. This
input/output difference pair suggests a single value of the subkey KOi,1 on
average. The single suggestion for AKOi,3 can be retrieved as in the first case.

In order to obtain the suggested subkeys efficiently, it is sufficient to pre-
compute the full difference distribution table [4] of the FI function (i.e., a table
containing also the actual values which satisfy each input/output difference con-
dition), for each possible value of KIi,j,2. Each such table requires about 234

bytes of memory. In the on-line phase of the attack, given the input/output
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differences to an FI function, along with the corresponding subkey KIi,j,2, the
possible actual values of the input can be found using a single table look-up.
Hence, the suggested values for the 32 subkey bits can be found using only sev-
eral simple operations. ��

Now we are ready to present the attack.

5.2 The Attack Algorithm

The attack algorithm is as follows:

1. Ask for the encryption of 250.2 known plaintexts.
2. Find all pairs (P1, P2) and their corresponding ciphertexts (C1, C2), re-

spectively, such that P1 ⊕ P2 = (α, x) and C1 ⊕ C2 = (α, y) for some
x, y and α. The expected number of pairs remaining after this stage is
(250.2)2/2 · 2−32 = 267.4.

3. Examining round 1: For each of the remaining pairs, perform the follow-
ing:
(a) Guess the subkey K1 and the 9 least significant bits of the subkeys

K ′
2,K

′
4,K

′
6 (which compose the subkeys KO1,1,KI1,1,2,KI1,2,2, and

KI1,3,2). Use Proposition 2 to find the suggested value for the subkeys
KO1,2 = K3 and AKO1,3.

(b) Guess the remaining bits of K ′
6 (which are the bits of KI1,1,1), and use

the value of AKO1,3 to obtain the value KO1,3 = K8.
(c) For each value of the subkeys K3 and K8, store the list of all the pairs

which suggested this value. The expected number of such pairs is 267.4 ·
216+9+9+9 · 27/282 = 235.4.

4. Examining round 7: For each possible value of the 82 bits of the key
considered in Step 3 (subkeys K1,K3,K

′
6,K8, and the 9 least significant bits

of K ′
2 and K ′

4), and for each of the pairs corresponding to each subkey value,
perform the following:
(a) Use Proposition 2 to find the values KO7,1 = K7 and AKO7,3 (note that

the values KO7,2,KI7,1,2,KI7,2,2, and KI7,3,2 are known at this stage).
(b) Use the key schedule to find the value of K6. Use the knowledge of

AKO7,3 and KO7,3 = K6 to get the value of KI7,1,1, along with a
9-bit filtering condition (only pairs for which AKO7,3 ⊕ KO7,3 is of
the form a||00||a, for some 7-bit value a, remain, and suggest the value
KI7,1,1 = a).

5. Discard the values of the 105 examined key bits (K1,K3,K
′
4,K6,K7,K8, and

the 9 least significant bits of K ′
2) suggested by at least one pair. The expected

number of pairs suggesting each subkey value is 235.4 · 2−9/223 = 10.56. As
the number of pairs suggesting a subkey value has a Poisson distribution, a
subkey remains (i.e., is not suggested by any pairs) with probability e−10.56 =
2−15.23. Hence, the expected number of remaining 105-bit subkeys is 2105 ·
2−15.23 = 289.77.
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6. For the remaining possibilities of the 105-bit subkey, exhaustively search all
possible keys, until the right key is found.

The data complexity of the attack is 250.2 known plaintexts. Its time com-
plexity is mostly dominated by Step (4) and Step (6). Step (4) is repeated
235.4 ·282 = 2117.4 times. Each such key deduction is expected to take one FI ap-
plication, two memory accesses, and a few XOR operations. For sake of simplicity
we assume that this is equal to 1/16 of 7-round MISTY1 encryption, and thus,
Step (4) takes a total of 2113.4 encryptions. Step (6) takes 2128 · 2−15.23 = 2112.8

trial encryptions. Therefore, the total time complexity of the attack is 2114.1

encryptions.

6 Summary and Conclusions

In this paper we presented several new impossible differential attacks on
MISTY1. While previous attacks were applicable only up to 4 rounds of the
cipher (including the FL layers), we presented a 5-round attack with time com-
plexity of 246.45 simple operations, and extended it to an attack on a 6-round
variant faster than exhaustive key search. We also presented a 7-round attack on
a variant of the cipher without FL functions. The best previously known attacks
against this variant were on 6 rounds.

It seems interesting to compare between the attacks on reduced-round variants
of MISTY1 including the FL functions, and the attacks on the variant without
the FL functions. If the FL functions do not exist, much simpler impossible dif-
ferential attacks can be mounted, and as a result, the attacks extend to one more
round, compared to the case where the FL-s are present. On the other hand, when
the FL functions are present, their linear structure can be exploited in order to
reduce significantly the time complexity of impossible differential attacks.

Thus, we conclude that while the FL functions do contribute to the security
of the full MISTY1 with respect to impossible differential attacks, they may
reduce the practical security of reduced variants with a relatively small number
of rounds.10
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Abstract. We provide a general framework for constructing identity-
based and broadcast encryption systems. In particular, we construct a
general encryption system called spatial encryption from which many
systems with a variety of properties follow. The ciphertext size in all
these systems is independent of the number of users involved and is just
three group elements. Private key size grows with the complexity of the
system. One application of these results gives the first broadcast HIBE
system with short ciphertexts. Broadcast HIBE solves a natural problem
having to do with identity-based encrypted email.

1 Introduction

In this paper we develop a general framework for constructing identity-based
encryption (IBE) [17,4] and broadcast encryption [9] with constant-size cipher-
texts. This framework enables one to easily combine different encryption prop-
erties via a product rule and to obtain encryption systems supporting multiple
properties. For example, a multi-authority, forward-secure, broadcast encryption
system (with constant-size ciphertexts) is easily derived by taking the “product”
of three systems. One new concept constructed using our framework is broadcast
hierarchical IBE. We discuss this concept at the end of the section and explain
its importance to secure email.

We start with an informal description of the framework; a precise definition is
given in the next section. Rather than an IBE or a broadcast system we consider
a higher level abstraction.
– Let P be a finite set of policies. Roughly speaking, a message m can be

encrypted to any policy π in P .
– Let R be a finite set of roles. Each decryptor has a role ρ in R and can

obtain a private key Kρ corresponding to its role ρ.
– We allow for an arbitrary predicate called open on the set R×P that specifies

which roles in R can open what policies in P .
A key Kρ can decrypt ciphertexts encrypted for policy π if and only if role ρ
opens policy π, i.e. open(ρ, π) is true.

To continue with the abstraction, we provide a notion of delegation which
is useful in hierarchical IBE (HIBE) [13,11]. To support delegation we assume
� Supported by NSF and the Packard Foundation.
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there is a partial order - defined on the set of roles R. The idea is that given
the key Kρ1 there is a delegation algorithm that can be used to generate the
key Kρ2 , whenever ρ1 - ρ2. Naturally, we require that the open relation respect
delegation, meaning that if role ρ2 opens policy π and ρ1 - ρ2 then ρ1 also
opens π.

Given the sets P ,R and relations open and -, one obtains a very general
notion of identity-based encryption. It generalizes HIBE, broadcast encryption,
attribute-based encryption [12], predicate encryption [6,14] and other variants.
We refer to such schemes as generalized IBE, or GIBE. In the next section we
define GIBE schemes more precisely along with their associated security games.

Spatial encryption. In Section 3 we study an important instance of GIBE called
spatial encryption in which policies are points in Zn

p and roles are affine subspaces
of Zn

p . The delegation relation - on roles is defined by subspace inclusion: role
ρ1 - ρ2 if ρ1’s affine space contains ρ2’s space.

As we will see, spatial encryption enables us to build a host of identity-based
and broadcast encryption schemes. In particular, it supports a product rule
that lets us combine encryption properties such as forward security, multiple
authorities, and others.

In Section 4 we construct an efficient spatial encryption system with constant-
size ciphertext. Our starting point is an HIBE construction of Boneh, Boyen, and
Goh [2]. We are able to extend their system to obtain a spatial encryption sys-
tem. However, the proof of security is more difficult and requires the BDDHE
assumption introduced in [5] (the proof in [2] used the slightly weaker BDHI as-
sumption). We describe various extensions of the system at the end of Section 4.

Our initial motivation: email encryption. Suppose user A wishes to send an
encrypted email to users B1, . . . , Bn. User A knows the identities of all recipients,
but does not know which private key generators (PKGs) issued their private keys.
Moreover, user A only trusts PKGs P1, . . . , P�. She wishes to encrypt the email
so that user Bj can decrypt it if and only if Bj has a private key issued by
one of the � trusted PKGs. Using basic IBE this will require ciphertext of size
O(n ·�). Our goal is to construct a system whose ciphertext size is constant, that
is, independent of n and �.

This natural email encryption problem can be modeled as a GIBE and con-
structed using the product of two instances of our spatial encryption scheme.
Here each PKG has a role which can delegate to a key for any user; a (possibly
distributed) dealer holds the master key K�. We obtain a system that precisely
solves the problem described above, with ciphertext size independent of n and
�. However, in our current construction the private key size is linear in n + �.

Similarly, we also construct a broadcast HIBE. Roughly speaking, in a broad-
cast HIBE there is a tree-like hierarchy of identities and private keys as in HIBE.
An encryptor picks a set S of nodes in the hierarchy and encrypts a message
m to this set S. We let c be the resulting ciphertext. As in a broadcast system,
any user in S can decrypt c, but (proper) coalitions outside of S cannot. We say
that the system has constant-size ciphertext if the size of c is independent of the
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size of S. Broadcast HIBE applies naturally to hierarchical email systems where
messages can have many recipients.

Broadcast HIBE can be easily modeled as a GIBE and constructed from our
spatial encryption system. This expands on the features of previous constant-size
broadcast systems such as Boneh et al. [5] and Sakai and Furukawa [16], albeit
at the cost of increased private-key size.

2 Generalized Identity-Based Encryption (GIBE)

A Generalized Identity-Based Encryption Scheme, or GIBE, allows a participant
to encrypt a message under a certain policy, in some set P of allowable policies.
We will enforce no structure on the allowed policies. To decrypt, users may hold
secret keys corresponding to roles. Roles are organized in a partially-ordered set
R, that is, a set endowed with a reflexive, transitive, antisymmetric relation -.

A GIBE may be parameterized in some way. For example, a system may have
a limited number of identities, hierarchy levels, time periods or the like. We call
such choices the setup parameters SP. As SP varies, P and R will generally
also vary. Similarly, P and R may depend on the security parameter λ or on
randomness chosen at setup. We encode these choices into a policy parameter χ
generated at setup, and use policies Pχ and roles Rχ. For brevity, we will omit
χ when it is unambiguous.

For a policy π and a role ρ, we write open(ρ, π) if a user with a secret key for ρ
is allowed to decrypt a message encrypted under π. We require this relation to be
monotone, meaning that if ρ - ρ′ and open(ρ′, π) then open(ρ, π). For simplicity,
we require that R contains a top element ., such that . - ρ for all ρ ∈ R, and
open(., π) for all π ∈ P . Informally, greater roles open more messages, and the
greatest role, ., can open them all. Obviously, only a highly-trusted authority
should hold the secret key K�.

A GIBE consists of four randomized algorithms:

– Setup(λ, SP) takes as input a security parameter λ and setup parameters
SP. It returns public parameters PP (which include the policy parameter χ)
and a master secret key K�.

– Delegate(PP, ρ,Kρ, ρ
′) takes the secret key Kρ for role ρ and returns a secret

key Kρ′ for ρ′, where ρ - ρ′.
– Encrypt(PP, π,m) encrypts a message m under a policy π.
– Decrypt(PP, ρ,Kρ, π, c) decrypts a ciphertext c using a secret key Kρ.

Decryption may fail. However, we require that decryption succeeds when
open(ρ, π), so that:

Decrypt( PP, ρ, Kρ, π, Encrypt(PP, π, m) ) = m

for all PP generated by Setup, for all policies π and roles ρ, and for all keys
Kρ for ρ delegated directly or indirectly from K�.
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We require that the algorithms Setup, Delegate, Encrypt, Decrypt and the predi-
cates open and - all run in expected polynomial time in λ. We also require that
delegation is independent of the path taken; that is, if ρ1 - ρ2 - ρ3, then

Delegate(PP, ρ1,Kρ1 , ρ3)

should produce the same distribution as

Delegate(PP, ρ2,Delegate(PP, ρ1,Kρ1 , ρ2), ρ3)

2.1 Security

We define the security of a GIBE I in terms of a family of security games between
a challenger and an adversary. The system parameters SP are fixed, and the
adversary is allowed to depend on them. We define the full, CCA2, anonymous
game first (anonymity here refers to the property that the ciphertext leaks no
information about the policy used to create it [1]).

Setup: The challenger runs Setup(λ, SP) and sends PP to the adversary.
First query phase: The adversary makes several delegation queries ρi to the

challenger, which runs Delegate(PP,.,K�, ρi) and returns the resulting Kρi .
The adversary may also make decryption queries (ρi, πi, ci) to the challenger,
where open(ρi, πi). The challenger runs Kρi ← Delegate(PP,.,K�, ρi), then
runs Decrypt(PP, ρi,Kρi , πi, ci) and returns the resulting mi (or fails).

Challenge: The adversary chooses messages m0 and m1 and policies π∗
0 and π∗

1 ,
and sends them to the challenger. We require that the adversary has not
been given decryption keys for these policies, that is, ¬open(ρi, π

∗
j ) for all

delegation queries ρi in the first query phase, and for j ∈ {0, 1}.
The challenger chooses a random b

R← {0, 1}, runs Encrypt(PP, π∗
b ,mb), and

returns the resulting challenge ciphertext c∗ to the adversary.
Second query phase: The second query phase is exactly like the first, except

that the adversary may not issue decryption queries for c∗, and the adversary
may not make delegation queries for roles that open π∗

j for j ∈ {0, 1}.
Guess: The adversary outputs a bit b′ ∈ {0, 1}. The adversary wins if b′ = b,

and otherwise it loses.

There are several important variants on the above game:

– In a CCA1 game, the adversary may not issue decryption queries during the
second query phase.

– In a CPA game, the adversary may not issue decryption queries at all.
– In a non-anonymous game, we require that π∗

0 = π∗
1 .

– In a selective game, the setup phase is modified. The challenger sends the
policy parameter χ to the adversary. The adversary chooses in advance its
π∗

0 and π∗
1 and sends them to the challenger. Then the challenger sends the

rest of the public parameters PP.
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We define adversary A’s advantage in game variant V (when A is attacking the
GIBE system I with parameter SP) to be

VAdvA↔(I,SP)(λ) := | Pr[A wins V ] − Pr[A loses V ] |

We say that a GIBE I is V-secure if for all setup parameters SP and all proba-
bilistic polynomial-time adversaries A, the function VAdvA↔(I,SP)(λ) is a neg-
ligible function of λ.

In this paper we will primarily focus on the simplest security model, namely
selective-security, non-anonymous, against a CPA adversary. We denote the ad-
versary’s advantage in this model by (NonAnon, Sel,CPA)AdvA↔(I,SP)(λ).

2.2 Example GIBE Instances

Many instances of GIBE already appear in the literature:

– In traditional IBE [17,4] the policies are simply identities and the roles are
identities or .. A message encrypted to an identity I can be decrypted only
with a key for I or for .. There is no delegation except from ..

– In broadcast IBE [9] the policies are sets of identities and the roles are
identities or .. A message to a set S of identities can be decrypted only
with a key for I ∈ S, or for .. There is no delegation except from ..

– In attribute-based encryption (ABE) [12], the policies are subsets of a set S of
attributes, and the roles are upwardly closed subsets of . := 2S . A message
to a set S of attributes can be decrypted with a key for any set containing S.
[12] does not define a delegation model for attribute-based encryption, but
the circuit-based implementation permits delegation by widening a k-of-n
threshold gate into a k + 1-of-n+ 1 threshold gate.

– In hierarchical IBE [13,11] the policies are identities and the roles are points
in the hierarchy, with . at the root of the hierarchy. Here the key for a point
x can either delegate to or decrypt from any point y below x.

– In forward-secure [7] systems, the roles and policies include a time t. Roles
can be delegated by increasing the time t, and cannot decrypt messages with
an earlier t.

The games used to define the security of these instances are special cases of
the GIBE games. In the next section we will show that most of these instances
can be constructed from a GIBE we call spatial encryption. These generic con-
structions for IBE and HIBE are competitive with the best known hand-tailored
constructions. For broadcast IBE and forward-secure IBE our generic construc-
tion has short ciphertexts, but the private key is longer than the best known
tailor-made constructions [7,16,5].

2.3 Embedding Lemmas

It is clear that some GIBEs can be used to construct other GIBEs. For example,
it is obvious that any broadcast IBE can also function as a traditional IBE.
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In particular, suppose that we have a GIBE I with policies Pχ and roles
Rχ, and we wish to define a GIBE with policies P ′

χ and roles R′
χ. Suppose

that we are given an efficient injective map fP : P ′
χ → Pχ and an efficient

embedding fR : R′
χ → Rχ which satisfy open(fR(ρ), fP(π)) ⇐⇒ open(ρ, π)

and fR(.) = .. Then we can define a GIBE I ′ with policies P ′
χ and roles R′

χ

simply by applying all fP to all policies and fR to all roles.

Lemma 1 (Embedding Lemma). Let I and I′ be GIBEs as defined above.
For any GIBE adversary A against I ′, there is a GIBE adversary B against I,
running in about the same time as A, such that

VAdvA↔(I,SP)(λ) = VAdvB↔(I,SP)(λ)

Similarly, we can sometimes use collision-resistant hashing to construct new
GIBEs. Suppose we have a GIBE I in which policies and roles are lists of elements
of some set X , and in which open and - are decided in a monotone fashion by
comparing certain elements for equality. Suppose also that we have an efficient
collision-resistant hash H : X ′ → X on some other set X ′. Then we can define a
GIBE I ′ which is identical to I except that its policies and roles are lists over
X ′ instead of X , and all operations apply H pointwise to the policies and roles.

Lemma 2 (Hashed Embedding Lemma). Let I and I ′ be GIBEs as defined
above. For any GIBE adversary A against I ′, there is a GIBE adversary B1
against I and a collision-resistance adversary B2 against H, each running in
about the same time as A, such that

VAdvA↔(I,SP)(λ) ≤ VAdvB1↔(I,SP)(λ) + CRAdvB2↔H(λ)

The proofs of these lemmas are immediate and are omitted.

3 Spatial Encryption: An Important Instance of GIBE

The building block for systems in our paper will be spatial encryption, a new
GIBE. In spatial encryption, the policies P are the points of an n-dimensional
affine space Zn

q . The roles R are all subspaces W of Zn
q ordered by inclusion,

and open(W,π) ⇐⇒ W / π.

3.1 Systems Derived from Spatial Encryption

To demonstrate the power of spatial encryption, we show that many other GIBEs
are embedded in it.

Hierarchical IBE. Hierarchical IBE is trivially embeddable in spatial encryp-
tion. Here the path components are elements of Zq, and the paths are limited
to length at most n. This extends easily to hierarchical IBE where the path
components are strings by using the Hashed Embedding Lemma. This is not the
only embedding of hierarchical IBE in spatial encryption, however.
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Inclusive IBE. In inclusive IBE, the policies are subsets of size at most n
of a set of identities. The roles are also subsets of size at most n, where ρ -
ρ′ ⇐⇒ ρ ⊆ ρ′; that is, one can delegate by adding elements to a set. We say
that open(ρ, π) iff ρ ⊆ π; that is, a message to a set can be decrypted with a key
for any subset.

We can embed inclusive IBE in a spatial system of dimension n + 1. Here
the identities are elements of Zq, but this extends to inclusive IBE with strings
as identities using the Hashed Embedding Lemma. We encode a policy π ⊂ Zq

as the coefficients of the polynomial π̂(t) :=
∏

c∈π x − c; this polynomial has
degree at most n and therefore has at most n+ 1 coefficients. We encode a role
ρ ⊂ Zq as the vector subspace of coefficients of polynomials which are divisible
by

∏
c∈ρ x− c.

Inclusive IBE seems almost as powerful as spatial encryption; nearly all the
applications in this paper use inclusive IBE rather than using spatial encryption
directly.

Inclusive IBE can be built using attribute-based encryption, but this con-
struction is less efficient than spatial encryption. In particular, the ciphertext
has size O(n). Our construction gives constant size ciphertext.

Co-inclusive IBE. Co-inclusive IBE is the dual of inclusive IBE. Policies and
roles (other than .) are sets of at most n identities, where r - r′ ⇐⇒ r ⊇ r′;
that is, one can delegate by removing elements from a set. We say that open(ρ, π)
iff ρ ⊇ π; that is, a message to a set can be decrypted with a key for any set
which contains it.

We can embed co-inclusive IBE in a spatial system of dimension 2n. For a
role ρ, we assign the span of {vi : i ∈ ρ}, where vi = (1, i, i2, . . . , i2n−1) is the
Vandermonde vector for i. To encrypt to a policy π, we encrypt to vπ :=

∑
i∈π vi.

It is clear that vπ is not contained in the subspace for any role ρ′ � π, for then
we would have expressed vπ as a sum of at most 2n linearly independent vectors
in two different ways.

Co-inclusive IBE can be built using attribute-based encryption, but this con-
struction is less efficient than spatial encryption. Once again, the ciphertext has
size O(n). Our construction gives constant size ciphertext.

Broadcast Hierarchical IBE. Broadcast HIBE (and therefore also vanilla
broadcast IBE [16]) is embeddable in inclusive IBE. The role for a path a/b/c/...
in the hierarchy is the set {a, a/b, a/b/c, . . .}. The policy for a set of nodes in the
hierarchy is the union of their roles. The scheme can broadcast to a set of points
S in the hierarchy if the number of distinct path prefixes in S is less than the di-
mension n.

For a useful broadcast system, short ciphertexts are required. Our spatial
encryption has constant-size ciphertexts, so our broadcast HIBE does as well.

Product Schemes. For GIBEs I1, I2 with roles R1,R2 and policies P1,P2,
respectively, we define a product scheme I1⊗I2. This scheme’s roles are R1×R2
and its policies are P1×P2. Here open((ρ1, ρ2), (π1, π2)) if and only if open(ρ1, π1)
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and open(ρ2, π2), and similarly (ρ1, ρ2) - (ρ′1, ρ
′
2) if and only if ρ1 - ρ′1 and

ρ2 - ρ′2. Note that this is different from what can be accomplished with double
encryption, for here the recipient needs to be able to decrypt both components
using a single key K(ρ1,ρ2). For instance, in the forward-secure encryption system
that follows, a recipient decrypts with a key for a role ρ issued before time t, not
a key for ρ and another key issued before time t.

Using the vector space Zn1+n2
q

∼= Zn1
q × Zn2

q , we can embed two instances of
spatial encryption with dimensions n1 and n2 in one of dimension n1+n2. There-
fore, if two schemes I1 and I2 are embeddable in spatial systems of dimensions
n1 and n2, their product I1 ⊗I2 is embeddable in a spatial system of dimension
n1 + n2. Similarly, we can construct product schemes in inclusive IBE. Here the
policies are of the form π1 1 π2 and the roles are of the form ρ1 1 ρ2, where 1
denotes a disjoint union.

Multiple Authorities. A common limitation in IBE systems is the need to
trust a single central authority. The central authority has the ability to decrypt
any message sent using the system, but equally importantly, the central author-
ity must correctly decide to whom it will issue keys for a given role. The hu-
man element of this authentication problem makes it less amenable to technical
solutions.

Product schemes are a step toward a solution to this problem. Let Ia be a
broadcast system whose identities are the names of authorities, and let Is be
any GIBE. Then the product system Ia ⊗ Is is a multi-authority version of Is.
A (possibly distributed) central dealer gives each authority a the decryption key
for the role (a,.). Then if a user wishes to encrypt a message to some policy
π ∈ Ps, and trusts a set A of authorities, she encrypts the message to (A, π).
This can be decrypted only by a user who holds the key for (a, ρ) where a ∈ A
and open(ρ, π), that is, one whom a has certified for a role which opens π.

Forward Security. There are already constructions of forward-secure IBE from
HIBE, so we already know that forward-secure encryption is embeddable in
spatial encryption [7]. We show a trivial forward-secure system from spatial
encryption that will be useful in constructing product schemes. Set the policy
for a time t to be the vector of t ones followed by n− t zeros, and the role for a
range of times [t1, t2] to be the affine subspace of t1 ones, followed by any t2 − t1
components, followed by n− t2 zeros.

A similar construction works for forward-secure IBE based on inclusive IBE.
These constructions require many more dimensions than [7], but they require
the user to store only one secret key for a given range of times. This makes them
more efficient for use in product schemes.

CCA2 Security. Following [3], we can use a MAC and a commitment scheme
to create a CCA2-secure encryption I ′ scheme from a scheme I which is merely
CPA-secure. To encrypt a message m to a policy π, we choose a random MAC
key k, a commitment com to k and the decommitment dec. We encrypt c :=
Encrypt(PP, (π, com), (m, dec)) using the product I⊗IBE, and set the ciphertext
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as (com, c,MAC(k, c)). The resulting scheme is anonymous if I is, and fully
secure if I is. The proof is exactly as in [3].

Email Encryption. We have now solved the motivating example of practical
email encryption: by composing the above constructions, we can easily build a
forward-secure, multiple-authority, CCA2-secure broadcast hierarchical encryp-
tion system. This system can encrypt a message to nr (path prefixes of) re-
cipients, trusting in na authorities, with t time periods in a single key. The
ciphertexts have constant size, and the private keys have size O(na + nr + t).

Short Identity-Based Ring Signatures. We can convert a GIBE I to an
identity-based signature scheme using the product scheme I ⊗ IBE. The signing
key for a role ρ is K(ρ,�), and a signature of a message m under a role ρ is
K(ρ,H(m)), where H is a collision-resistant hash. This construction has the curi-
ous property that a signature by ρ on a message m can be delegated to produce
a signature by ρ′ on m for any ρ′ 2 ρ. If this property is undesirable, delegation
can be prevented by using H((ρ,m)) instead of H(m) above.

If the construction of I ⊗ IBE is fully secure, then this signature scheme
will be unforgeable; if it is selectively secure, then the signature scheme will be
selectively unforgeable in the random oracle model for H .

If we choose I to be inclusive IBE, then this construction gives an identity-
based ring signature system [15,8,18], in which a user A can sign messages
anonymously on behalf of any set of users containing A. A straightforward im-
plementation using spatial encryption would result in long signatures, but the
length results from the ability to delegate signatures further. By removing this
ability, we can build constant-length identity-based ring signatures. We give the
details in the full version of the paper.

4 Constructing a Spatial Encryption System

We now turn to the construction of a selectively-secure n-dimensional spatial
encryption system with constant-size ciphertext. Our construction is inspired
by the construction of a constant size HIBE given in [2]. Our proof of security,
however, requires a slightly stronger complexity assumption, namely the BDDHE
assumption previously used in [5].

4.1 Notation

Vectors in this paper are always column vectors. When writing them inline, we
transpose them to save space. We will be working with vectors of group elements,
so we will adopt a convenient notation. For a vector v = (v1, v2, . . . , vn)� ∈ Zn

p

of field elements, we use gv to denote the vector of group elements

gv := (gv1 , gv2 , . . . , gvn)� ∈ Gn
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In many cases, we will manipulate these without knowing the actual vector v. For
example, given gv and w, we can easily compute g〈v,w〉, where 〈v,w〉 := v�w
is the usual dot product on Zn

p .
We will write Aff(M,a) ⊆ Zn

p for the d-dimensional affine space {Mx + a :
x ∈ Zd

p}.

4.2 The System

The system parameters for our spatial encryption system will be a prime p
(where log p is approximately the security parameter λ) and two groups G and
GT of order p, with a bilinear pairing e : G × G → GT . Additionally, the public
parameters will include group elements g, ga0 , t ∈ GT and a vector ga ∈ Gn.

A secret key for an affine space V := Aff(M,x) will have the form(
gr, gb+ra0+r〈x,a〉, grM�a

)
where b is the master secret and r is random in Zp.

The four GIBE algorithms work as follows:

– Setup(λ, n) generates the system parameters p,G,GT . It then chooses pa-
rameters

g
R← G∗, a0

R← Zp, a
R← Zn

p

and secret parameter b
R← G, then computes t := e(g, g)b. It outputs public

parameters
PP := ( p, G, GT ; g, ga0 , ga, t )

and master secret key

K� :=
(
g, gb, ga

)
∈ Gn+2

– Delegate(PP, V1,KV1 , V2) takes two subspaces V1 := S(M1,x1) and V2 :=
S(M2,x2). Since V2 is a subspace of V1, we must have M2 = M1T and
x′

2 = x1 + M1y for some (efficiently computable) matrix T and vector y.
We can then compute a key

K̂V2 :=
(
gr, gb+ra0+r〈x1,a〉 · gry�M�

1 a, grT �M�
1 a

)
=

(
gr, gb+ra0+r〈x2,a〉, grM�

2 a
)

for V2. However, we also need to re-randomize it. To do this, we pick a
random s

R← Zp and compute

KV2 :=
(
gr · gs, gb+r(a0+〈x2,a〉) · gs(a0+〈x2,a〉), grM�

2 a · gsM�
2 a

)
=

(
gr+s, gb+(r+s)(a0+〈x2,a〉), g(r+s)M�

2 a
)

Notice that V1 and V2 may be the same subspace. In that case, this formula
translates the secret key between different forms for V1 and re-randomizes
it. As a result, we are free to choose whatever representation of V we wish.
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– Encrypt(PP,x,m), where m is encoded as an element of the target group
GT , picks a random s

R← Zp and computes a ciphertext(
gs, gs(a0+〈x,a〉), m · ts

)
– Decrypt(PP, V,KV ,x, c) where c = (c1, c2, c3) is the above ciphertext, first

delegates KV to obtain the key K{x} = (k1, k2) :=
(
gr, gb+r(a0+〈x,a〉) ). It

then recovers

c3 · e(c2, k1)
e(c1, k2)

=
m · ts · e(g, g)rs(a0+〈x,a〉

e(g, g)sb+rs(a0+〈x,a〉) = m

4.3 Bilinear Decision Diffie-Hellman Exponent

To prove security we use a generalization of bilinear Diffie-Hellman first proposed
in [5]. Let G be a group of prime order p, and let g be a generator of g. Let
e : G × G → GT be a bilinear map, and let n be a positive integer. We define
the notation gα[a,b]

for integers a ≤ b as

gα[a,b]
:=

(
gαa

, gαa+1
, . . . , gαb

)�

We then define distributions

PBDDHE := choose: g
R← G∗, α R← Zp, h

R← G∗, z ← e(g, h)αn

output:
(
gα[0,n−1]

, gα[n+1,2n]
, h, z

)
RBDDHE := choose: g

R← G∗, α R← Zp, h
R← G∗, z R← GT

output:
(
gα[0,n−1]

, gα[n+1,2n]
, h, z

)
We define the BDDHE-advantage of a randomized algorithm A : G2n+1×GT →
{0, 1} as

BDDHE AdvA,n(λ) :=
∣∣∣Pr

[
A(x) = 1 : x R← PBDDHE

]
− Pr

[
A(x) = 1 : x R← RBDDHE

]∣∣∣
4.4 Proof of Selective Security

Call the spatial encryption system above S. To make the proof more readable
we abstract away re-randomization terms in the main proof of security. To do
so, we divide the proof into two steps:

– First, we show in Observation 1 that if the system S is insecure then so is a
system with rigged randomization parameters (i.e. a system where a0,a, b, r
and s are chosen non-uniformly). This step is straightforward.
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– Second, we show in Theorem 1 that a specific rigging of the randomization
parameters in S is secure. The combination of these two steps implies that
S is secure.

We believe that hiding re-randomization terms in the main simulation makes
the proof easier to understand.

Observation 1 (Rigged parameters). Let S′ be identical to S except that
a0,a, b, the r in delegation queries and the s in the challenge ciphertext are
chosen by some algorithm rather than uniformly at random. Then for any V-
adversary A against S, there is is a V-adversary B against S′, running in about
the same time as A, such that

VAdvA↔(S,n)(λ) = VAdvB↔(S′,\)(λ)

Proof. The adversary B runs A, but re-randomizes A’s queries and the simu-
lator’s responses. More concretely, at setup time B chooses uniformly random
a′0

R← Zp,a
′ R← Zn

p , b
′ R← Zp. It sends A the public parameters(
p, G, GT ; g, ga0+a′

0 , ga+a′
, t · e(g, g)b′

)
B then adjusts A’s queries to match these public parameters. For example, when
A makes a delegation query, B passes the query through directly to the chal-
lenger. Given the response(

gr, gb+ra0+r〈x,a〉, grM�a
)

B computes a new key(
gr, gb+ra0+r〈x,a〉 · gb′ · (gr)a′

0+〈x,a′〉, grM�a · (gr)M�a′
)

B re-randomizes it using Delegate, and returns it to A.
Because A’s view of the parameters is uniformly random, it is attacking the

system S. At the end, B will win its S′-game if and only if A wins its S-game, so

VAdvA↔(S,n)(λ) = VAdvB↔(S′,\)(λ)

as claimed.

We now proceed to the selective-security game. Here we prove that spatial
encryption is selectively CPA secure so long as the BDDHE-problem is hard
on G.

Theorem 1. Let A be any non-anonymous, selective CPA adversary against
S. Then there is a BDDHE-adversary B, running in about the same time as A,
such that:

BDDHE AdvB,n+1(λ) =
1
2
· (NonAnon, Sel,CPA)AdvA↔(S,n)(λ)
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Proof. We first use the above observation to construct an S′-adversary A′ with
the same advantage as A. Our proof then follows by direct reduction. The sim-
ulator B takes p,G,GT and (gα[0,n]

, gα[n+2,2n+2]
, h, z) from the BDDHE prob-

lem above. For the setup phase, B passes to A′ the policy parameters χ =
(p,G,GT , n). Upon receiving the intended target policy v, the simulator sets

a = α[1,n], a0 = −〈v,a〉 , b = αn+1

Note that while B cannot efficiently compute a, a0 or b, it can compute ga, ga0

and e(g, g)b which are all it needs to present the public parameters to A′.
To answer delegation queries for a subspace V = Aff(M,x), the simulator

finds a vector u = (u1, u2, . . . , un)� such that M�u = 0, but 〈x − v,u〉 �= 0.
Such a u must exist since v /∈ V , and it can easily be found by the Gram-Schmidt
process. The simulator then formally sets

r =
u1α

n + u2α
n−1 + . . . + unα

〈x − v,u〉

Note that while B cannot efficiently compute r, it can compute gr. Now, for
any vector y, the coefficient of the missing term αn+1 in r 〈y,a〉 is exactly
〈y,u〉/〈x − v,u〉. Therefore, rM�a is a vector of polynomials in α of degree
at most 2n, and the coefficient of αn+1 is zero by the choice of u. Therefore
B can compute grM�a efficiently from gα[0,n]

and gα[n+2,2n]
. Similarly, B can

compute

gb+r(a0+〈x,a〉) = gαn+r〈v−x,a〉

= gαn+P (α)+〈v−x,u〉αn/〈x−v,u〉

= gP (α)

where P (α) has degree 2n and a zero coefficient on the αn+1 term. B uses this
technique to answer delegation queries during both query phases.

To construct a challenge ciphertext for the message mi, the simulator formally
sets s = logg h, returning c = (h, z ·m).

B returns 1 if A′ guesses correctly, and 0 otherwise. Now, if z = e(g, h)αn+1
,

this is a valid challenge ciphertext, so A′ wins with probability

1
2

+
1
2
· (NonAnon, Sel,CPA)AdvA′↔(S′,\)(λ)

On the other hand, if z is random, then so is c and A′ wins with probability 1
2 .

As a result,

BDDHE AdvB,n+1(λ) =
1
2
· (NonAnon, Sel,CPA)AdvA′↔(S′,\)(λ)

=
1
2
· (NonAnon, Sel,CPA)AdvA↔(S,n)(λ)

as claimed.
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4.5 Extensions to Spatial Encryption

Short Public Parameters. The public parameters g, ga0 and ga in spatial
encryption consist of uniformly random elements of G (with the caveat that g �=
1). Therefore, given a random-oracle hash H : [1, n + 2] → G, these parameters
can be omitted.

Policy Delegation. It may be desirable to re-encrypt a message from a policy
π to a more restrictive policy π′. A simple model of this is to make P 1R into a
partially-ordered set. We say that π - π′ if π′ can be delegated to π, and ρ - π
if open(ρ, π). The bottom ⊥ ∈ P of the partially ordered set represents plaintext
or plaintext-equivalent, i.e. a policy which anyone can decrypt. Then encryption
becomes a special case of policy delegation, just as key generation is a special
case of delegation.

We can implement policy delegation in spatial encryption by allowing encryp-
tions to any affine subspace W = Aff(M,x) ⊂ Zn

p . This can be decrypted by a
key KV if and only if V ∩W �= ∅. The encryptions look much like the private
keys in Section 4.2: (

gs, gs(a0+〈x,a〉), gsM�a, m · ts
)

This allows us to construct dual systems for many of the systems in Section 3,
in which policies and roles are transposed. It also enables us to turn co-inclusive
encryption into a k-of-n threshold system.

However, ciphertexts for the policy-delegated systems are no longer constant-
size: their size is instead proportional to the dimension of the policy as a subspace
of Zn

p . Furthermore, while the proof given in Section 4.4 still holds, the limitations
of selective security seem much stronger: the adversary must choose a subspace
to attack ahead of time.

5 Future Work

The biggest drawback of cryptosystems derived from spatial encryption is that
our proof only shows selective security. We leave as a significant open problem
the construction of a fully-secure spatial encryption system under a compact,
refutable assumption (preferably one simpler than our BDDHE assumption).
Since most of the systems derived in this paper can be constructed through
inclusive IBE, a fully-secure inclusive system would be almost as strong a result.
We note that Gentry’s recent fully-secure “key-randomizable broadcast IBE” [10]
is nearly identical to our inclusive IBE, except that Gentry’s adversary is only
allowed to issue delegation requests for singleton identities. This result suggests
that a fully-secure inclusive IBE system is within reach.

Another important challenge is to reduce the the size of the secret keys. Our
current construction requires users to store O(n logλ) bits of sensitive informa-
tion in memory and on disk, which may be challenging in some scenarios.
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6 Conclusions

We presented GIBE, a general framework for viewing identity-based and broad-
cast encryption systems. We also constructed a spatial encryption system, which
is an important instance of GIBE. Spatial encryption supports a product rule
which enables us to easily construct systems with various encryption properties.
One result of spatial encryption is broadcast HIBE with short ciphertexts.

A natural open problem is to constuct a spatial encryption system where both
ciphertexts and private keys are short. Perhaps the techniques in [5] or [16] can
be used towards this goal.
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Abstract. We propose a method to speed up the r-adding walk on mul-
tiplicative subgroups of the prime field. The r-adding walk is an iterating
function used with the Pollard rho algorithm and is known to require less
iterations than Pollard’s original iterating function in reaching a collision.
Our main idea is to follow through the r-adding walk with only partial
information about the nodes reached.

The trail traveled by the proposed method is a normal r-adding walk,
but with significantly reduced execution time for each iteration. While
a single iteration of most r-adding walks on Fp require a multiplication
of two integers of log p size, the proposed method requires an operation
of complexity only linear in log p, using a pre-computed table of size
O((log p)r+1 · log log p). In practice, our rudimentary implementation of
the proposed method increased the speed of Pollard rho with r-adding
walks by a factor of more than 10 for 1024-bit random primes p.

Keywords: Pollard rho, r-adding walk, discrete logarithm problem,
prime field.

1 Introduction

Let G be a finite cyclic group of order q generated by g. Given h ∈ G, the
discrete logarithm problem (DLP) over G is to find the smallest non-negative
integer x such that gx = h. The answer x is called the discrete logarithm of
h to the base g, and is denoted by logg h. Along with the integer factorization
problem, the DLP is one of two most important mathematical primitives in
public key cryptography and its hardness is the basis of various cryptosystems
such as Diffie-Hellman key agreement protocol [3], ElGamal cryptosystem [6],
and signature schemes [5, 6].

Many of these systems, including the Digital Signature Standard [5], are im-
plemented on a multiplicative subgroup G of prime order q of a prime field Fp.
In such a setting, the index calculus method [1] determines the size of p to be
used, but the size of q is set by the Pollard rho method [14].

In this work, we use the r-adding walk style of iterating function for the
Pollard rho method, which is known to require less iterations before collision
than Pollard’s original iterating function. In an r-adding walk, a set M of r

J. Pieprzyk (Ed.): ASIACRYPT 2008, LNCS 5350, pp. 471–488, 2008.
c© International Association for Cryptologic Research 2008
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random elements from G is first fixed. Given the i-th element gi ∈ G of the
walk, the (i + 1)-th element gi+1 is defined to be the product of gi and an
element Ms ∈ M, whose choice is given by the index s = s(gi), a function of
gi. Our idea is to define the index function s in such a way that s(gi+1) can
be computed from gi and Ms(gi), without fully computing the product gi+1 =
giMs(gi). In the next iteration, gi+2 = gi+1 ·Ms(gi+1) is considered as a product of
gi and Ms(gi)Ms(gi+1), with the second term taken from a pre-computed table of
products among M elements. Thus, s(gi+2) is computed without fully computing
gi+2. More generally, we prepare a table M� := (M∪{1})� of � products from M
and a full product computation is done when we reach � iterations. Our method
can be used with the distinguished points [15] collision detection method, and
hence allows efficient parallelization, as with the original Pollard rho, i.e., n times
speedup with n processors [12].

The proposed method produces a normal r-adding walk trail, and hence
should reach a collision and solve DLP in the same number of steps as with
any other r-adding walk, but the execution time of each iteration is signifi-
cantly reduced. For 1024-bit random primes p the proposed algorithm replaces
a multiplication of two 1024-bit words by 64 multiplications between a 16-bit
word and a 32-bit word, and our rudimentary implementation of the proposed
method was faster than the usual r-adding walks by a factor of more than 10.
An incremental use of this algorithm will reduce each iteration of the original
r-adding walk on G ⊂ F×

p from one multiplication of integers of log p size to
an operation of complexity linear in log p, using a pre-computed table of size
O((log p)r+1 · log log p).

Previous Works. The fastest algorithm for the DLP on a finite field Fp is the
index calculus method whose complexity is sub-exponential in the size of the
base field [1]. Since the performance of the method depends on the size of the
base field, this method has the same performance on any subgroup of F×

p . If the
subgroup has a composite order, we can use Pohlig and Hellman [13] algorithm
to reduce the DLP in the subgroup to the DLP in its prime order subgroups.

For prime-order cyclic groups G, including multiplicative subgroups of suf-
ficiently large finite fields, the first non-trivial algorithm solving the DLP was
the Baby-Step Giant-Step method suggested by Shanks [20]. It requires O(

√
q)

operations and memory to work on an abelian group of order q. Pollard [14] pro-
posed a probabilistic algorithm, called the Pollard rho method, with the same
complexity, but requiring only small size of memory. There have been several
variants proposing different collision detection methods [2, 11, 19] and iterating
functions [17, 23]. An efficient parallelization of Pollard rho was developed by
van Oorschot and Wiener [12] using distinguished points. For (hyper-)elliptic
curves with fast endomorphisms, more efficient variants of Pollard rho methods
are known [4, 7, 25].

Organization. In Section 2, we introduce the Pollard rho method, r-adding
walks, and the distinguished point collision detection method. In Section 3, we
propose Tag Tracing, a method to speed up Pollard rho. In Section 4, we apply
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this to prime fields and analyze its complexity. Also, we present some imple-
mentation result for 1024-bit primes. In Section 5, we estimate the asymptotic
complexity of our algorithm when it is used incrementally. Section 6 concludes
this paper. Tag tracing on binary fields is briefly treated in Appendix B.

2 Pollard Rho Algorithm

To set the basis of our discussion and fix notation, we will quickly review variants
of the Pollard rho method in this section. Readers should consult the original
papers for any detail. Throughout this paper G = 〈g〉 will be a finite cyclic group
of prime order q, on which we wish to solve a discrete logarithm problem.

2.1 Function Iteration and Collision

Given any function f : G → G, we can create a sequence (gi)i≥0 by iteratively
defining

gi+1 = f(gi) (i ≥ 0),

starting from a random starting point g0 ∈ G. Because G is a finite set, this
sequence is eventually periodic. The smallest integers µ ≥ 0 and λ ≥ 1 satisfying
gλ+µ = gµ are said to be the pre-period and period of the sequence (gi)i≥0,
respectively.

When the function f is chosen uniformly at random from the set of all func-
tions sending G to G, the value λ+µ is expected to be

√
πq/2 ∼ 1.253

√
q. Each

variant of Pollard rho method provides an iterating function f and a method to
detect a collision, i.e., the happening of gi = gj with i �= j.

Suppose we are trying to solve for logg h. Given any element y ∈ G, there are
many ways to write it in the exponent form y = gahb. Let us say that a function
f : G → G is exponent traceable, or allows exponent tracing, with respect to g
and h, if it is possible to express the function in the form

f(gahb) = gfg(a,b)hfh(a,b),

with some (simple) functions fg and fh of the exponents. For example, if f was
the squaring function on G, we could set fg(a, b) = 2a and fh(a, b) = 2b.

The iterating function of a Pollard rho algorithm variant is always chosen in
such a way that it is exponent traceable. Thus, starting from g0 = ga0hb0 , with
randomly chosen, but known, (a0, b0), we can always keep track of the exponents
(ai, bi) satisfying gi = gaihbi . Then, when a collision gi = gj is detected, setting
x = logg h, we know gai(gx)bi = gaj(gx)bj , so we can use

ai + x · bi ≡ aj + x · bj (mod q)

to solve for x.
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2.2 Iterating Functions

An iterating function is taken to be of good design if the number of iterations
it takes to reach a collision is close to

√
πq/2, the value expected of a random

function.

Pollard. Pollard [14] originally targeted the DLP on (Z/pZ)∗, but his iterating
function, which we shall denote as fP : G → G, can be modified for use on any
cyclic group. Let G = T0 ∪ T1 ∪ T2 be a partition of G into nearly equal sized
subsets. The iterating function is defined as follows.

fP (y) =

⎧⎪⎨⎪⎩
gy, if y ∈ T0,
y2, if y ∈ T1,
hy, if y ∈ T2.

It is clear that this allows exponent tracing. For example, when gahb ∈ T0, we
have (fP )g(a, b) = a+1 and (fP )h(a, b) = b. Tests have shown that it takes more
than

√
πq/2 iterations for fP to reach a collision [23, 24], so that fP is not an

optimal choice for an iterating function.

r-adding walks. Let 3 ≤ r ≤ 100 be a small positive integer and let G =
T0 ∪ · · · ∪Tr−1 be a partition of G into r-many subsets of roughly the same size.
The index function s : G → {0, 1, . . . , r − 1} is defined by setting s(y) = s for
y ∈ Ts. For each s = 0, . . . , r − 1, randomly choose integers ms, ns ∈ Z/qZ and
set the multipliers to Ms = gmshns . The iterating function is given by

fT (y) = yMs(y).

That is, one of the r-many fixed elements Ms ∈ G is multiplied, depending on
which subset Ts the input belongs to. This is clearly exponent traceable, with
the exponent functions being addition by ms and ns. The name r-adding refers
to the additions.

This method was introduced in [17] and the work [16] shows that any r ≥ 8
will suffice for cyclic groups. Testing [24] on cyclic elliptic curve groups show
that 20-adding walks perform very close to a random function.

2.3 Collision Detection

The main issues with collision detection is to detect a collision with minimal
number of additional iterating function applications after collision occurs, and
with a small amount of memory. There have been several proposals on colli-
sion detection methods by Floyd [9], Brent [2], Sedgewick-Szymanski-Yao [19],
Quisquater-Delescaille [15], and Nivasch [11].

Among them, the method using distinguished points by Quisquater and De-
lescaille [15] is regarded as the most efficient one. This was originally an idea
for use with time-memory trade-off techniques. Distinguished points are those
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elements of G that satisfy a certain condition, which is easy to check. For exam-
ple, with a fixed encoding for G, we may set them to be those elements with a
certain number of starting bits equal to zero.

After each application of the iterating function, the current gi is stored in a
table, if it is a distinguished point. The algorithm terminates when a collision
is found among the distinguished points. The distinguished points should be
defined so that this table is of manageable size.

Let θ be the fraction of elements in G which satisfy the distinguishing prop-
erty. The algorithm is expected to terminate with a collision after

√
πq/2 + 1/θ

applications of the iterating function.
This method has the advantage that it can lead to n-times speedup with

n-processor parallelization [12].

3 Tag Tracing

Let us recall the r-adding walk iterating function fT . Given an input gi ∈ G,
it first determines the index s = s(gi), and produces gi+1 = giMs ∈ G as the
output. Occasionally, the output giMs is placed in a table of small size.

Notice that the storing operation is not very frequent. So, one may question
whether computing the product giMs is really necessary at every iteration. Of
course, iterated applications of fT require current gi to be available, but this
is avoidable if we have a pre-computed table of suitably many products of Ms.
Then it suffices for one to compute just the index at each iteration. We shall
explore this line of reasoning in this section.

3.1 Preparation

As in the r-adding walk, we fix an index set S = {0, 1, . . . , r− 1} for some small
r and let M = {Ms = gmshns}s∈S be a multiplier set for the r-adding walk. Fix
a small positive number � and consider the product set M� = (M∪ {1})�, i.e.,
the set of products of at most �-many Ms. Notice that we know how to write
each element of M� in the form gmhn. We shall treat the set M� as a table of
elements of G, listed together with their respective exponent forms.

For our tag tracing approach to the DLP, we want to pre-compute M� before
going into the actual r-adding walk, and the following two lemmas show the
range of r and � one may choose, depending on the resources available.

Lemma 1. The size of M� is at most
(

�+r
r

)
.

Proof. The size of M� is bounded above by the number of combinations with
repetitions, where one chooses � times from the set M∪ {1} of size r + 1. The
bound is reached only if all product elements produced are distinct. ��

Lemma 2. The set M� can be constructed in
(
�+r

r

)
− 1 multiplications in G.
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Proof. Consider the complete r-ary tree structure of depth �. Label each edge
with an index from S in such a way that from each node, the r edges extending
to its children nodes are labeled with different indices. We label the root node
with 1 ∈ G and label each node below with the element of M� which is the
product of multipliers labeled by edges on its way down.

The nodes of the complete r-ary tree will contain multiple copies of M�. It
is clear that if we collect just the nodes with paths to the root that are labeled
in non-decreasing order, then we will obtain one copy of M�. As the number
of edges leading to these nodes is one less than the number of these nodes, and
since each edge corresponds to one multiplication used in creation of node labels,
we arrive at our claim. ��

Some example values would be
(84
20

)
∼ 263.2 for 20-adding walks with � = 64, and(72

8

)
∼ 233.4 for 8-adding walks with � = 64. As M� can only be computed after

h, whose discrete logarithm we are looking for, is given, we do not want these
pre-computation complexities to go over our main attack complexity.

We now fix a tag set T together with three functions.

τ : G → T .

τ̄ : G×M� → T ∪ {fail}.
σ : T → S = {0, 1, . . . , r − 1}.

The first function τ is named the tag function. We define the index function
s : G → S to be s = σ ◦ τ and also consider the function s̄ = σ ◦ τ̄ : G×M� →
S ∪ {fail}. The three functions above are to be chosen so that they satisfy the
following condition.

1. The index function s = σ◦τ is surjective and roughly pre-image uniform, i.e.,
grouping G according to its image points under s partitions G into subsets
of roughly the same size.

2. When s̄(g,M) ∈ S, we have s̄(g,M) = s(g ·M). In particular, any successful
output of s̄ depends only on the product of its inputs.

So we are looking for a function τ that resembles a normal index function, but
with a larger image set, and also another way τ̄ to evaluate τ on product of
group elements.

The situation we have in mind concerning τ and τ̄ is as follows. Given a
random M ∈ M� and g ∈ G, the expected time for calculation of τ̄ (g,M) is
smaller than the time needed for computation of the product M · g. The general
thought behind this is that it should take less effort to obtain some partial
information about a product than the full product itself. For example, consider
the case G ⊂ F×

p and define τ(g) to be the most significant k bits of g ∈ G.
Intuitively, computing k bits out of the log p bits of product gM may take as
little as k

log p of the time for full product computation. If some of the product
bits were easier to calculate than others, the time could be even shorter.

We shall denote the expected time for s̄(g,M) evaluation by |s̄|.
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3.2 Iterating Function

The iterating function of our tag tracing algorithm will follow the usual r-adding
walks. We have already fixed an index set S = {0, 1, . . . , r − 1} with an appro-
priate index function s = σ ◦ τ and a multiplier set M during the preparation
phase.

We start with a random g0 ∈ G and the first index s0 = s(g0) is computed.
We set g1 = g0Ms0 , exactly as in the normal r-adding walk process, but the
product g0Ms0 is not computed. Instead, s̄(g0,Ms0) is computed in time |s̄|. If
s̄(g0,Ms0) ∈ S, we have computed

s1 = s(g1) = s(g0Ms0) = s̄(g0,Ms0).

We have not fully computed g1, but can set g2 = g1Ms1 = g0Ms0Ms1 , which is,
once again, not computed.

Now, since Ms0Ms1 ∈ M� is an element which has been pre-computed, we
can evaluate s̄(g0,Ms0Ms1) in time |s̄|. This leads us to index value s2 and we
can continue as before.

If we come across the situation s̄(g0,Ms0 · · ·Msk
) /∈ S, or arrive at � iterations

of the above process, we do a full product computation. That is, we compute
gk+1 = g0Ms0 · · ·Msk

and let this replace the role g0 has taken up to that
iteration. Notice that this full product requires just one multiplication, since
Ms0 · · ·Msk

∈ M� has been pre-computed.
Notice that since the set M� is a table of elements of G, listed together with

its respective exponent forms, the above process is fully exponent traceable.

3.3 Collision Detection

To complete the description of the tag tracing method, we need to check if is
possible to detect collisions. The distinguished point method is well suited for
our tag tracing.

Usually, the distinguished points is defined to be points with a certain number
of starting bits equal to zero, under a fixed encoding. With tag tracing, we use
this usual definition, but for more efficiency, impose an additional condition to
be satisfied. This extra condition is set to depend on the tag value τ(g) in such
a way that it can only be satisfied when τ̄(g′,M ′) /∈ T for every g′ and M ′ such
that g = g′M ′. Then, whenever there is a chance of some gi being a distinguished
point, we would already have the full form for gi, and there are no additional
full product computations involved in relation to collision detection. With the
extra condition on the tag, the original condition can be relaxed to maintain the
number of distinguished points.

3.4 Complexity Analysis

Let us make a rough time complexity comparison of our tag tracing with the orig-
inal r-adding walks. The storage complexity of tag tracing is given by Lemma 1.
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We can assume that the various parameters for tag tracing has been chosen
so that the time taken for preparation, given by Lemma 2, is insignificant com-
pared to the main function iterations. We shall also not include efforts needed
in following through the exponents needed in final computation of the discrete
logarithm.

Consider the time taken to do a full product computation in G. This will
be almost equal to |fT |, the time taken for one iteration of the r-adding walk.
Even though this time will depend on the encoding for G, we shall assume that
computation of full product in our tag tracing also requires time |fT |.

Recalling the notation |s̄| introduced earlier, we can restate one of our re-
quirements on τ̄ as |s̄|

|fT | < 1. It is now easy to see that a single iteration of tag
tracing is expected to take time

|s̄| +
(1
�

+ Pfail
)
|fT |, (1)

at the most, where Pfail is the probability of reaching s̄ value not in S.
The expected running time of tag tracing is the above value multiplied by

the number of iterations required for a normal r-adding walk style algorithm.
Hence the ratio of running time between tag tracing and a normal r-adding walk
would be

|s̄|
|fT |

+
1
�

+ Pfail.

If this is less than 1, we have a reduction in discrete logarithm solving time.
As discussed earlier, it should be possible to find τ and τ̄ such that |s̄| is much
smaller than |fT |, making the above a meaningful reduction in time.

4 Application to Prime Fields and Its Implementation

Throughout this section, p will be a prime and G = 〈g〉 ⊂ F×
p will be a cyclic

group of order q. We will show how to apply the proposed tag tracing algorithm
to G and present some implementation results. Tag tracing on subgroups of the
binary field, which is quite similar, is dealt in Appendix B.

4.1 Parameter Setup

We fix the index set size r and the multiplier product pre-computation length
� in such a way that the time and storage complexities given by Lemma 1 and
Lemma 2 are manageable. The tag set T = {0, 1, 2, . . . , T − 1} is taken to be of
size T = r · b, a multiple of r. We take a positive integer ε and set d = �logε p�.
Then we choose integer ω′ ≥ d(ε − 1) + 1. We use the notation ω = Tω′ and
assume that ω < p

1
3 .

Optimal choice for these parameters will depend on many factor including the
size of prime p, resources available, and the speed of large integer multiplications.
The parameter set below with � = 128 may be appropriate for use on a modern
PC when primes p is of 1024-bit size. Readers may keep these in mind to facilitate
understanding of further material.
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ω = 232

T = 210 ω′ = 222

r = 4 b = 28 d = 26 ε = 216

4.2 Tag Function

Our assumption ω < p
1
3 implies that we may always choose integer B > p

2
3 such

that 0 ≤ ωB − p < B
1
2 . For example, setting B = �p/ω� should always work.

We fix any such B and define the tag function τ : G → T as

τ(g) =
⌊
g mod p

ω′B

⌋
, (2)

where we are using “x mod y” to denote the unique integer between 0 and y− 1
that is congruent to x modulo y. Notice that 0 ≤ ωB − p implies p−1

ω′B < T ,
so that the above quotient indeed lies in T = {0, 1, . . . , T − 1}. We also define
σ : T → S = {0, 1, . . . , r − 1} as σ(x) = �x/b� and this fixes the index function
s = σ ◦ τ : G → S.

The following lemma shows that we can expect τ to be roughly pre-image
uniform.

Lemma 3. If variable x is uniformly distributed over Fp, then the probability
distribution of τ(x) over T is almost uniform in the sense that∣∣Prob[τ(x) = k] − Prob[τ(x) = k′]

∣∣ < 1
p

1
2

for any k, k′ ∈ T .

Proof. We view τ as having been defined on all of Fp. Note that p̄ := Tω′B−p =
ωB − p < B

1
2 < ω′B. This implies that for each fixed k = 0, . . . , T − 2, there

are exactly ω′B elements 0 ≤ x < p with τ(x) = k and that there are ω′B − p̄
elements satisfying τ(x) = T−1. Thus the maximal difference between pre-image
sizes is p̄. Notice that the condition ωB − p < B

1
2 implies B < p. The maximal

probability difference can now be seen to be less than p̄/p < B
1
2 /p < p−

1
2 . ��

Since the condition T = r · b makes σ exactly pre-image uniform, the above
lemma holds even when τ(x) is replaced by s(x), and we can state the following.

Proposition 1. Assuming that the elements of G are uniformly distributed over
Fp, we can expect the index function s to be roughly pre-image uniform.

4.3 Auxiliary Functions

We should now present the auxiliary function τ̄ : G×M� → T ∪ {fail} which is
essentially equal to τ .
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Given x,y ∈ Fp, we can always write

x =
d−1∑
i=0

xiε
i (0 ≤ xi < ε)

and, for each 0 ≤ i ≤ d− 1, we can write

εiy mod p = ŷiB + y̌i (0 ≤ ŷi ≤
p− 1
B

< ω, 0 ≤ y̌i < B). (3)

Using this notation, we define

¯̄τ(x,y) =

⌊∑d−1
i=0 xiŷi mod ω

ω′

⌋
. (4)

Let us check how close ¯̄τ(x,y) is to τ(xy).

Lemma 4. Given x,y ∈ Fp, we have τ(xy) = ¯̄τ(x,y) or ¯̄τ(x,y) + 1, unless
¯̄τ(x,y) = T − 1.

Proof. Before going into the proof, for easy reference, let us recall some of the
conditions that were placed on the parameters: d(ε − 1) < ω′; ω = Tω′; ω <

p
1
3 < B

1
2 ; ωB − p < B

1
2 ;

We start by writing

d−1∑
i=0

xiŷi = a2ω + a1ω
′ + a0,

where the coefficients a0, a1, and a2 are to be obtained through usual integer
divisions. In particular, we have a2 ≤ d(ε−1)(ω−1)

ω < d(ε− 1) < ω′ < ω < B
1
2 . It

should also be noted that a1 = ¯̄τ(x,y).
In the above notation, we may write

xy =
d−1∑
i=0

xiε
iy ≡

( d−1∑
i=0

xiŷi

)
B +

d−1∑
i=0

xiy̌i (mod p)

≡ a1ω
′B + a0B + a2(ωB − p) +

d−1∑
i=0

xiy̌i (mod p).

The various conditions allow us to bound the lower terms by

a0B + a2(ωB − p) +
d−1∑
i=0

xiy̌i

< (ω′ − 1)B + B
1
2 ·B 1

2 + d(ε− 1)(B − 1)
< ω′B + (ω′ − 1)B = 2ω′B −B.
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Now, if a1 = ¯̄τ(x,y) is strictly less than T − 1, then

a1ω
′B + a0B + a2(ωB − p) +

d−1∑
i=0

xiy̌i

< (T − 2)ω′B + 2ω′B −B = ωB −B < p.

So, when ¯̄τ(x,y) �= T − 1, we know

xy mod p = a1ω
′B +

{
a0B + a2(ωB − p) +

d−1∑
i=0

xiy̌i

}
.

Finally, since the sum of terms inside the braces is non-negative and strictly
less than 2ω′B, the quotient of xy mod p divided by ω′B must be either a1 or
a1 + 1. ��

Based on this lemma, we define τ̄ : G×M� → T ∪ {fail} as follows.

τ̄ (g,M) =

{
fail if ¯̄τ(g,M) mod b is either b− 1 or b− 2,
¯̄τ(g,M) if otherwise.

Recalling the definitions σ(x) = �x/b�, s = σ ◦ τ , and s̄ = σ ◦ τ̄ , it is now easy
to show the following proposition.

Proposition 2. When τ̄ (g,M) ∈ T and hence s̄(g,M) ∈ S, we have s(g ·M) =
s̄(g,M) and τ(gM) mod b �= b− 1.

Proof. We note that T − 1 mod b = b − 1, so that Lemma 4 together with
¯̄τ(g,M) mod b �= b− 1 implies τ(gM) = ¯̄τ(g,M) or ¯̄τ(g,M) + 1.

Now, this together with the condition that ¯̄τ(g,M) mod b is neither b− 1 nor
b− 2 implies τ(gM) mod b �= b− 1.

In addition, we have τ̄ (g,M) = ¯̄τ(g,M and τ̄ (g,M) mod b �= b− 1 implies

�τ̄(g,M)/b� = �(τ̄ (g,M) + 1)/b�,

which must be s(g ·M). ��

4.4 Tag Tracing

We are now ready to start tag tracing. Using the proof of Lemma 2 as a hint,
we compute a table containing entries (M,m, n) for M = gmhn ∈ M�. We also
append the associated vector

vε,B(M) =
(⌊

ε0M mod p

B

⌋
, . . . ,

⌊
εd−1M mod p

B

⌋)
to each entry of the table. Notice that these are the ŷi appearing in equation (3).
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We can now follow the discussion of Section 3.2 to compute each iteration of
tag tracing. The elements of G are written in ε-ary representation so that we may
quickly compute s using equation (4) and Proposition 2. Whenever we reach �
iterations or an s̄ calculation failure, the complete product gi is computed using
one group multiplication. A point g ∈ G is defined to be a distinguished points
only if τ(g) mod b = b− 1 and if it satisfies some additional on g. According to
Proposition 2, g ·M can be a distinguished point only when τ̄(g,M) /∈ T .

4.5 Implementation

We have tested tag tracing with an implementation on a modern PC and com-
pared it with a normal 20-adding walk. Both the tag tracing and 20-adding walks
were set to use distinguished points for collision detection. We used the finite
field arithmetics provided by the NTL [21] library to implement the 20-adding
walk, so as not to be biased. Throughout the test, prime p was taken to be of
1024-bit size, and whenever random primes p, q and 〈g〉 ⊂ F×

p of order q was
needed, they were generated in the style specified for DSA [5].

After comparing rho lengths of r-adding walks for various r, we opted to use
r = 4 for tag tracing, as we did not have much memory available. Compared to
the 20-adding walk, our tag tracing with r = 4 will have approximately 1.3 times
longer rho length. This is explained in Appendix A. Other parameters were set
to b = 28, ε = 216, T = 210, ω′ = 222, and ω = 232.

For speed comparison, we chose q to be of 160-bit size and ran both the 20-
adding walk and tag tracing for 228 iterations. For tag tracing this was done
for various choices of �, with a set of randomly chosen primes p and q, group
generator g, DLP target h, adding walk multipliers Ms, and initial starting point.
Timings are listed in Table 1. The size

(
�+r

r

)
·
(
(1 + ||ω||/||ε||)||p|| + 2||q||

)
of table

M� and its preparation time is also listed, where the || · || notation has been used
for bit length. The corresponding time, averaged over 10 randomly generated
starting points was 1071.4 seconds for the 20-adding walk.

The table shows that the speed of tag tracing iteration can be over 15 times
faster than that of a 20-adding walk. Since the rho length of a 4-adding walk
is 1.3 times longer than that of a 20-adding walk, this translates to tag tracing
being more than 11.5 times faster than a 20-adding walk in solving DLP.

Table 1 is also interesting in that it reflects the complexity estimate given by
equation (1). Larger � imply smaller number of full product computation and

Table 1. Tag tracing timing for 228 iterations (||q|| = 160)

� 10 20 30 40 50 60 70 80 90 100
|s̄| (sec) 156.6 91.8 75.0 70.5 70.3 70.0 70.8 71.6 72.6 73.9
|fT |/|s̄| 6.8 11.7 14.3 15.2 15.2 15.3 15.1 15.0 14.8 14.5

M� size (MB) 0.4 4.3 18.8 54.9 127.9 256.9 465.3 780.2 1233.1 1859.3
M� comp time (sec) 0.21 2.27 9.90 29.1 68.0 137 245 414 650 983
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Table 2. Full running time comparison of tag tracing and 20-adding walks

||q|| = 35 ||q|| = 40 ||q|| = 45 ||q|| = 50 ||q|| = 55
Pollard rho 1.103 sec 6.272 sec 38.738 sec 203.138 sec 1185.578 sec
20-adding 0.940 sec 5.174 sec 29.653 sec 159.977 sec 959.027 sec
tag tracing 0.093 sec 0.441 sec 2.634 sec 13.481 sec 80.785 sec

Pollard rho/tag tracing 11.89 14.24 14.70 15.07 14.68
20-adding/tag tracing 10.14 11.75 11.26 11.87 11.87

this results in steep increased speed for � = 10 ∼ 60. The gradual decrease in
speed after that seems to be from two factors. As we are using b = 28, we have
Pfail = 1/27, and the increasing of � looses effect as we approach � = 27. We
have experienced through various tweaks that table lookups to M� present a
considerable fraction of the time taken by a tag tracing iteration. This coupled
with our poor use of memory is another reason for decrease in speed at high �. In
any case, unlike our primitive testing, large scale implementation of tag tracing
will need to use advanced hash table techniques that allow constant time table
lookups.

We verified with small q that tag tracing has no problem in solving DLPs.
Except for the q size, parameters identical to the above were used with � = 40.
The timings, averaged over 200 randomly generated starting points and multi-
plier sets, are given in Table 2. The figures do not include the approximately
29 seconds spent on creation of M�. This may seem illogical here, but as table
creation time does not change much with q, the speed ratio calculated in this
way will reflect what can be expected of the ratio at large q. The data in Table
2 roughly coincides with our prediction of 11.5 factor speedup.

5 Asymptotic Complexity

In this section, we consider the asymptotic complexity of the proposed algorithm
for large p. We will use Mul(k) to denote the cost of multiplication modulo an
integer of k-bit size.

Looking at equation (4) and the definition of σ, we can check that the cost
of evaluating the auxiliary index function s̄ is d multiplications modulo ω, d− 1
additions modulo ω, and two divisions of integers less than ω. Thus, ignoring the
small fixed number of divisions and the relatively cheaper additions, we can say
that s̄ evaluation costs approximately dMul(||ω||). Recalling (1), we can write
the average cost of a single tag tracing iteration as

dMul(||ω||) +
(1
�

+
2
b

)
Mul(||p||).

If ω is set to grow with p, this complexity would not be linear in k = ||p||. To
obtain linear complexity, we perform tag computation in an incremental way,
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starting with fixed small parameters and recomputing with incrementally larger
parameters only when the previous attempt fails. Let us explain the procedure
in more detail.

We fix r ≥ 4 and b ≥ 2 to be small constants and define t = �logb k�. We
take � = Θ(k), fix ε to a positive integer satisfying εt ≤ p

1
3 /(rk2), and let

d = �logε p�, as before. Based on these, we prepare a parameter set for each
index i = 1, . . . , t, as follows: bi = bi, Ti = rbi, εi = εi, ω′

i = dεi, ωi = Tiω
′
i,

Bt = �p/ωt�, Bi =
(

ωt

ωi

)
Bt.

Note that ω′
i does not involve di = �logεi

p�, allowing each ωi to divide ωi+1
and making each Bi an integer. It is possible to check that each set of parameters
satisfy all conditions set forth on Section 4.1 and Section 4.2. For example,
ωi ≤ ωt = rbtdεt < p

1
3 and ω′

i = dεi ≥ diεi ≥ di(εi − 1) + 1. We can also use

p
2
3 < p/ωt ≤ Bt to show 0 ≤ ωiBi − p = ωtBt − p < ωt < p

1
3 < B

1/2
t ≤ B

1
2
i .

For each i, we can define the tag function τi and the index function si as in
Section 4, i.e.,

τi(g) =
⌊
g mod p

ω′
iBi

⌋
, si(g) =

⌊
τi(g)
bi

⌋
=
⌊
g mod p

ω′
iBibi

⌋
. (5)

Since biω
′
iBi = btω

′
tBt, we have si(g) = st(g), for any i. We already know that

this common index function is roughly pre-image uniform.
Let g ∈ G and M ∈ M�. For each i, we can define τ̄i(g,M) as in Section

4, which is computed in time di Mul(||ωi||), and is successful in giving si(g ·M)
with probability 1 − 2/bi. We now use an incremental approach in computing
the common index s1(g ·M). First, τ̄1(g ·M) is computed. If it returns a failure,
we compute τ̄2(g ·M), and so on. We stop whenever an output si(g ·M) for i ≤ t
is successfully obtained and move onto the next iteration of tag tracing. The full
product of g and M is computed if all t attempts fail.

Then the time complexity of this incremental approach is

d1 Mul(||ω1||) +
2d2

b
Mul(||ω2||) + · · · + 2dt

bt−1 Mul(||ωt||) +
(

1
�

+
2
bt

)
Mul(||p||)

≤ 2
(

b

b− 1

)2

Mul(||ω1||)�logε p� +
(

1
�

+
2
bt

)
Mul(||p||) = O(||p||) = O(k),

where we have used the facts ωi < ωi, di ≤ �d/i�, � = Θ(k), bt = Θ(k), and that
Mul(k) is at most quadratic in k.

The incremental approach requires t tables and since an entry in the i-th table
is of di||ωi|| < logε ω log p bits, noting that

∏r
i=1

�+i
i ≤ �r = O(kr), we can write

the storage requirement as

t

(
� + r

r

)
(logε ω · log p) = O(kr+1 · log k).

It only remains to consider collision detections. A point g ∈ G is defined to be
a distinguished point only if τt(g) mod bt = bt − 1 with possibly some additional
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conditions on g. Because �τi(g)/bi� = �τt(g)/bt� and τi(g) = �τt(g)/bt−i�, we
have τt(g) mod bt =

(
τi(g) mod bi

)
bt−i + τt(g) mod bt−i. From this, we see that

τt(g) mod bt = bt − 1 implies τi(g) mod bi = bi − 1 for any i. Thus distinguished
point candidates can be noticed from any τ̄i(g,M).

6 Conclusion

In this paper, we proposed a method to speed up the Pollard rho algorithm
on cyclic subgroups of the prime field Fp. The proposed algorithm replaces the
multiplication needed in r-adding walks with an operation of linear complexity.
As a further work, we would like to generalize our algorithms to elliptic or
hyperellipic curves.
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A Performance of 4-Adding Walks

For r ≥ 3, let us write fr to denotes the r-adding walk iterating function. We
also write fP for the Pollard’s iterating function. Where as the rho length of a
function graph on a set of size q is expected to be

√
πq/2 for a random function,

the actual rho lengths of various fr and fP are a small constant multiple of√
πq/2. We shall write Cr and CP for these constants. In this section, we show

experiment results on these values. During the test, size of p was always set to
1024 bits, but varying q sizes were used.

In order to use the iterating functions fr and fP we need to define an index
function. For each r ≥ 3, the index function sr : Fp → {0, . . . , r − 1} was
set to sr(g) = �r · (A · g mod 1)�, where A is a rational approximation of the
golden ratio (

√
5−1)/2. When A is of sufficient precision, this is known to bring

about uniform looking distribution [10], even on non-uniform inputs. For our
experiment, a precision of 1044 binary places for A is sufficient.

Estimates for the constants Cr and CP were found as follows. Primes p, q
and cyclic group generator g of order q in F×

p were randomly generated in the
DSA style [5], and the multiplier set was randomly selected. Then the iterating
function was iterated from a random starting point until the walk intersected

http://shoup.net/ntl/
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Table 3. Experimental rho length constant for various iterating functions

||q|| 10 15 20 25 30 35 40
CP 1.244 1.267 1.307 1.289 1.304 1.325 1.312
C3 1.628 1.830 2.051 2.201 2.408 2.568 2.742
C4 1.336 1.346 1.328 1.374 1.360 1.368 1.370
C8 1.092 1.105 1.072 1.087 1.061 1.098 1.058
C20 0.995 1.008 1.036 1.004 1.014 1.047 1.034

C4/C20 1.342 1.335 1.282 1.369 1.342 1.308 1.325

15 20 25 30 35 40

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

C_4�C_20

C_20

C_4

C_P

Fig. 1. Expected rho length constants for fP , f4, and f20

itself in a rho. The length of the rho was recorded and the process redone with a
newly generated g, h and multiplier set. This was repeated 1000 times for each
iterating function. The average rho lengths divided by

√
πq/2 are the constant

Cr and CP , and this is summarized in Table 3. We have also provided graphs
for some of these in Figure 1.

It is clear that our data is not very accurate, but it is good enough for one to
conclude that C4/C20 will not be too different from 1.3, even for large q.

B Tag Tracing on Binary Fields

Let us explain how tag tracing can be applied to cyclic subgroups of binary
fields. We shall be very brief, as much of this case is quite similar to the prime
field case.

Fix the binary field to F2m = F2[t]/p(t), where p(t) is an irreducible polyno-
mial of degree m, so that elements of the cyclic group G ⊂ F×

2m may be written
in the polynomial basis. Adopting the notation used with integers, we shall write
�p1(t)/p2(t)� and p1(t) mod p2(t) to denote the quotient and remainder, respec-
tively, resulting from the polynomial division of p1(t) by p2(t).

We fix positive integers u and v, such that v < u ≤ m+1
2 , and define the

polynomial B(t) = �p(t)/tu�. The tag function τ : G → T = {f ∈ F2[t] |
deg f < u− v} is defined as
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τ
(
g(t)

)
=
⌊
g(t) mod p(t)

tv ·B(t)

⌋
. (6)

Note that this map is surjective and will be roughly pre-image uniform for usual
choices of G.

Given an x(t) ∈ F2[t], we can write x(t) =
∑

i xi(t)·t(v+1)i, with deg xi(t) ≤ v.
Also, given y(t) ∈ F2[t], we can write, t(v+1)i ·y(t) mod p(t) = ŷi(t) ·B(t)+ y̌i(t)
with deg y̌i(t) < m−u, for each meaningful i. Using this notation, we define the
auxiliary tag function as

τ̄
(
x(t),y(t)

)
=
⌊∑

i xi(t) · ŷi(t) mod tu

tv

⌋
. (7)

Then, through careful counting of degrees and argument similar to the proof of
Lemma 4, one can show that

τ
(
x(t) · y(t)

)
= τ̄

(
x(t),y(t)

)
.

We emphasize that this is true for any choice of x(t),y(t) ∈ F2[t].
Finally, we view the polynomial set T as the set of non-negative integers less

than |T | = 2u−v and define σ : T → S = {0, . . . , r−1} to be division by �|T |/r�.
Then, the index function s = σ ◦ τ : G → S is pre-image uniform for r that is
a power of 2. For other r, the probability of reaching each of the indices may
differ by at most 1/|T |.

In the binary field case, unlike the prime field case, the auxiliary tag function
always gives the correct tag value, so one has a better chance of running through
the full �-many tag tracing steps with the pre-computed table M�, without fully
computing any product. However, the asymptotic complexity of the binary field
case remains equal to that of the prime field case.
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1 Introduction

The generic group model was introduced by Nechaev [1] and Shoup [2]. In this
model one considers algorithms that given a group G as black box, may only
perform a restricted set of operations on the elements of G such as applying the
group law, inversion of group elements and equality testing. Since in this model
the group is treated as black box, the algorithms cannot exploit any special
properties of a concrete group representation.

Many fundamental cryptographic problems were proven to be computation-
ally intractable in the generic model, most notably the discrete logarithm
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problem (DLP), the computational and decisional Diffie-Hellman problem (DHP
and DDHP) [2], and the root extraction problem (in groups of hidden order) [3].
These intractability results are considered to be evidence supporting crypto-
graphic assumptions of number-theoretic nature which underly the security of
a vast number of systems of applied cryptography. Moreover, loosely speak-
ing, it has become considered good practice, when making new intractabil-
ity assumptions, to prove the underlying problem to be hard in the generic
model. Many novel assumptions rely on more complex algebraic settings than
the standard assumptions. They involve multiple groups and operations on
group elements additional to the basic operations. Examples include the nu-
merous assumptions based on bilinear pairings (e.g., see [4,5]). Since the proper-
ties ensuring generic hardness had not been well-studied and formalized before
this work, for each novel problem an entire hardness proof had to be done
from scratch.

A generic group algorithm can only perform a subset of the operations that
can be performed by an algorithm that may exploit specific properties of the
representation of group elements. This implies that proving a problem to be
intractable in the generic group model is a necessary, but not sufficient condition
for the problem to be intractable in any concrete group. A generically intractable
problem that is easy in any concrete group has been considered in [6].

Our contributions. In a nutshell, we identify the core aspects making crypto-
graphic problems hard in the generic model. We provide a set of conditions, which
given the description of a cryptographic problem allow one to check whether the
problem at hand is intractable with respect to generic algorithms performing
certain operations. In this way we aim at (i) providing means to structure and
analyze the rapidly growing set of cryptographic assumptions as motivated in
[7] and (ii) making the first steps towards automatically checkable hardness con-
ditions in the generic model.

Related Work. In [8] the author analyzes a generalization of the Diffie-Hellman
problem, the P -Diffie-Hellman problem: given group elements (g, gx1 , gx2) the
challenge is to compute gP (x1,x2), where P is a (non-linear) polynomial and g is
a generator of some group G. Among other results, it is shown there that the
computational and decisional variant of this problem class is hard in the generic
model. Another general problem class has been introduced in [9] to cover DH
related problems over bilinear groups. The authors show that decisional problems
belonging to this class are hard in the generic model.

Recent work by Bresson et al. [10] independently analyzes generalized deci-
sional problems over a single prime order group in the plain model. They showed
that under several restrictions a so-called (P,Q)-DDH problem is efficiently re-
ducible to the standard DDH problem. However, one important requirement for
applying their results is that the P and Q polynomials describing the problem
need to be power-free, i.e., variables are only allowed to occur with exponents
being equal to zero or one.
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2 Some Preliminaries

Let poly(x) denote the class of univariate polynomials in x with non-negative
integer coefficients. We call a function f negligible if ∀poly ∈ poly(x)∃κ0 ∀κ ≥
κ0 : f(κ) ≤ 1

poly(κ) .
Throughout the paper we are concerned with multivariate Laurent polyno-

mials over the ring Zn. Informally speaking, Laurent polynomials are poly-
nomials whose variables may also have negative exponents. More precisely, a
Laurent polynomial P over Zn in indeterminates X1, . . . , X� is a finite sum
P =

∑
aα1,...,α�

Xα1
1 · · ·Xα�

� where aα1,...,αl
∈ Zn and αi ∈ Z. The set of Laurent

polynomials over Zn forms a ring with the usual addition and multiplication.
By deg(P ) = max{

∑
i |αi| | aα1,...,αl

�≡ 0 mod n} we denote the (absolute) total
degree of a Laurent polynomial P �= 0. Furthermore, we denote by L

(�,c)
n (where

0 ≤ c ≤ l) the subring of Laurent polynomials over Zn where only the variables
Xc+1, . . . , X� can appear with negative exponents. Note that for any P ∈ L

(�,c)
n

and x = (x1, . . . , x�) ∈ Zc
n × (Z∗

n)�−c the evaluation P (x) is well-defined.
If A is a probabilistic algorithm, then y

R← A(x) denotes the assignment to y
of the output of A’s run on x with fresh random coins. Furthermore, by [A(x)]
we denote the set of all possible outputs of a probabilistic algorithm A on input
of a fixed value x. If S is a set, then x

R← S denotes the random generation of
an element x ∈ S using the uniform distribution.

3 Problem Classes

In this section we formally define the classes of computational problems under
consideration. For our formalization we adapt and extend the framework in [11].

Definition 1 (DL-/DH-type problem). A DL-/DH-type problem P is char-
acterized by

– A tuple of parameters
ParamP = (k, �, c, z)

consisting of some constants k, � ∈ N, c ∈ N0 where c ≤ � and z ∈ poly(x).
– A structure instance generator SIGenP(κ) that on input of a security param-

eter κ outputs a tuple of the form

((G,g, n), (I, Q)),

where
• (G,g, n) denotes the algebraic structure instance consisting of descrip-

tions of cyclic groups G = (G1, . . . , Gk) of order n and corresponding
generators g = (g1, . . . , gk),

• (I, Q) denotes the relation structure instance consisting of the input
polynomials I = (I1, . . . , Ik), with Ii ⊂ L

(�,c)
n , |Ii| ≤ z(κ), and the chal-

lenge polynomial Q ∈ L
(�,c)
n .
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Then a problem instance of P consists of a structure instance
((G,g, n), (I, Q)) R← SIGenP(κ) and group elements (gP (x)

i |P ∈ Ii, 1 ≤ i ≤ k),
where x R← Zc

n × (Z∗
n)�−c are secret values. Given such a problem instance, the

challenge is to compute{
Q(x), for a DL-type problem
g

Q(x)
1 , for a DH-type problem

.

Numerous cryptographically relevant problems fall into the class of DL-type or
DH-type problems. Examples are problems such as the DLP [2], DHP [2], a vari-
ant of the representation problem [11], generalized DHP [11], square and inverse
exponent problem [11], bilinear DHP [4], w-bilinear DH inversion problem [5],
w-bilinear DH exponent problem [9], co-bilinear DHP [4], and many more. In
Appendix A we extend our definitions and conditions to also include problems
like the w-strong DH and w-strong BDH problem where the challenge is speci-
fied by a rational function. As an illustration of the definition, we consider the
w-BDHI problem in more detail.

Example 1 (w-BDHIP). For the w-BDHI problem we have parameters
Paramw-BDHI = (3, 1, 0, w + 1) and a structure instance generator SIGenw-BDHI
that on input κ returns

((G = (G1, G2, G3),g = (g1, g2, g3), p),
(I = (I1 = {1}, I2 = {1, X1

1 , . . . , X
w(κ)
1 }, I3 = {1}), Q = X−1

1 ))

such that p is a prime, there exists a non-degenerate, efficiently computable
bilinear mapping e : G2 ×G3 → G1 with e(g2, g3) = g1, and an isomorphism
ψ : G2 → G3 with ψ(g2) = g3. A problem instance additionally comprises group

elements (gP (x)
i |P ∈ Ii, 1 ≤ i ≤ 3) = (g1, g2, g

x1
2 , . . . , g

x
w(κ)
1

2 , g3), where x = x1
R←

Z∗
n, and the task is to compute g

Q(x)
1 = g

x−1
1

1 .

In the remainder of this paper, we are often only interested in individual parts of
the output of SIGenP . To this end, we introduce the following simplifying nota-
tion: By $ R← SIGen$

P(κ), where $ is a wildcard character, we denote the projec-
tion of SIGenP ’s output to the part $. For instance, (n, I, Q) R← SIGen(n,I,Q)

P (κ)
denotes the projection of the output to the triple consisting of the group or-
der, the input polynomials, and the challenge polynomial. Furthermore, by
[SIGen$

P(κ)] we denote the set of all possible outputs $ for a given fixed security
parameter κ.

4 Extending Shoup’s Generic Group Model

4.1 Generic Operations

For our framework we restrict to consider operations of the form ◦ : Gs1 ×
. . .×Gsu → Gd, where u ≥ 1, s1, . . . , su, d ∈ {1, . . . , k} are some fixed constants
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(that do not depend on κ). Furthermore, we demand that the action of ◦ on the
group elements can be represented by a fixed regular polynomial. That means,
there exists a fixed F ∈ Z[Y1, . . . , Yu] (also not depending on κ) such that for
any generators gs1 , . . . , gsu , gd given as part of a problem instance we have that
◦(a1, . . . , au) = g

F (y1,...,yu)
d where a1 = gy1

s1
, . . . , au = gyu

su
. For instance, the

bilinear mapping e : G2 ×G3 → G1 which is part of the algebraic setting of the
w-BDHIP is such an operation: for any g2, g3 and g1 = e(g2, g3) it holds that
e(a1, a2) = e(gy1

2 , gy2
3 ) = g

F (y1,y2)
1 where F = Y1Y2. In fact, to the best of our

knowledge, virtually any deterministic operation considered in the context of the
generic group model in the literature so far belongs to this class of operations.

We represent an operation of the above form by a tuple (◦, s1, . . . , su, d, F ),
where the first component is a symbol serving as a unique identifier of the oper-
ation. The set of allowed operations can thus be specified by a set of such tuples.
The full version of this paper [12] explains how to extend the operation set to
include decision oracles.

Example 2 (Operations Set for w-BDHIP). The operations set Ω =
{(◦1, 1, 1, 1, Y1 + Y2), (◦2, 2, 2, 2, Y1 + Y2), (◦3, 3, 3, 3, Y1 + Y2), (inv1, 1, 1,−Y1),
(inv2, 2, 2,−Y1), (inv3, 3, 3,−Y1), (ψ, 2, 3, Y1), (e, 2, 3, 1, Y1 · Y2)} specifies oper-
ations for the group law (◦i) and inversion (inv i) over each group as well as the
isomorphism ψ : G2 → G3 and the bilinear map e : G2 ×G3 → G1.

4.2 Generic Group Algorithms and Intractability

In this section, we formally model the notion of generic group algorithms for DL-
/DH-type problems. We adapt Shoup’s generic group model [2] for this purpose.

Let Sn ⊂ {0, 1}�log2(n)� denote a set of bit strings of cardinality n and
Σn the set of all bijective functions from Zn to Sn. Furthermore, let σ =
(σ1, . . . , σk) ∈ Σk

n be a k-tuple of randomly chosen encoding functions for the
groups G1, . . . , Gk

∼= Zn.
A generic algorithm A is a probabilistic algorithm that is given access to

a generic (multi-) group oracle OΩ allowing A to perform operations from Ω
on encoded group elements. Since any cyclic group of order n is isomorphic to
(Zn,+), we will always use Zn with generator 1 for the internal representation
of a group Gi.

As internal state OΩ maintains two types of lists, namely element lists
L1, . . . , Lk, where a Li ⊂ L

(�,c)
n , and encoding lists E1, . . . , Ek, where Ei ⊂ Sn.

For an index j let Li,j and Ei,j denote the j-th entry of Li and Ei, respec-
tively. Each list Li is initially populated with the corresponding input polyno-
mials given as part of a problem instance of a DL-/DH-type problem P , i.e.,
Li = (P |P ∈ Ii). A list Ei contains the encodings of the group elements cor-
responding to the entries of Li, i.e., Ei,j = σi(Li,j(x)). Ei is initialized with
Ei = (σi(P (x))|P ∈ Ii). A is given (read) access to all encodings lists. In or-
der to be able to perform operations on the randomly encoded elements, the
algorithm may query OΩ. Let (◦, s1, . . . , su, d, F ) be an operation from Ω. Upon
receiving a query (◦, j1, . . . , ju), the oracle computes P := F (Ls1,j1 , . . . , Lsu,ju),
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appends P to Ld and σd(P (x)) to the encoding list Ed. After having issued a
number of queries, A eventually provides its final output. In the case that P is a
DL-type problem, we say that A has solved the problem instance of P if its out-
put a satisfies Q(x) − a ≡ 0 mod n. In the case that P is a DH-type problem, A
has solved the problem instance if its output σ1(a) satisfies Q(x) − a ≡ 0 mod n.

Let a DL-/DH-type problem over cyclic groups G1, . . . , Gk of order n be given.
We can write the group order as n = pe · s with gcd(p, s) = 1 where p be the
largest prime factor of n. Then for each i it holds that Gi

∼= G
(pe)
i ×G

(s)
i where

G
(pe)
i and G

(s)
i are cyclic groups of order pe and s, respectively. It is easy to see

that solving an instance of a DL-/DH-type over groups Gi of order n is equivalent
for a generic algorithm to solving it separately over the subgroups G(pe)

i and the
subgroups G

(s)
i . Thus, computing a solution over the groups Gi is a least as

hard for generic algorithms as computing a solution over the groups G
(pe)
i . In

the following we always assume that SIGenP on input κ generates groups of
prime power order n = pe with p > 2κ and e > 0.

Definition 2 (q-GGA). A q-GGA is a generic group algorithm that for any
κ ∈ N, it receives as part of its input, makes at most q(κ) queries to the generic
group oracle.

Definition 3 (GGA-intractability of DL-type Problems). A DL-type
problem P is (Ω, q, ν)-GGA-intractable if for all q-GGA A and κ ∈ N we have

Pr
[

Q(x) ≡ a mod n
(n, I, Q) R← SIGen(n,I,Q)

P (κ); σ R← Σk
n;x R← Zc

n × (Z∗
n)�−c;

a
R← AOΩ (κ, n, I, Q, (σi(P (x))|P ∈ Ii)1≤i≤k)

]
≤ ν(κ)

Definition 4 (GGA-intractability of DH-type Problems). A DH-type
problem P is (Ω, q, ν)-GGA-intractable if for all q-GGA A and κ ∈ N we have

Pr
[

Q(x) ≡ a mod n
(n, I, Q) R← SIGen(n,I,Q)

P (κ); σ R← Σk
n;x R← Zc

n × (Z∗
n)�−c;

σ1(a) R← AOΩ (κ, n, I, Q, (σi(P (x))|P ∈ Ii)1≤i≤k)

]
≤ ν(κ)

5 Abstract Hardness Conditions: Linking GGA and SLP
Intractability

Informally speaking, the grade of intractability of a DL-/DH-type problem with
respect to generic algorithms can be “measured” by means of two “quantities”:

1. The probability of gaining information about the secret choices x in the
course of a computation by means of non-trivial equalities between group
elements. This quantity is called leak-resistance.

2. The probability to solve problem instances using a trivial strategy, i.e., by
taking actions independently of (in)equalities of computed group elements
and thus independent of the specific problem instance. This quantity is called
SLP-intractability.
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For formalizing both quantities, we make use of so-called straight-line pro-
gram (SLP) generators. Note that SLPs are a very common concept in the field
of computational algebra and has also proved its usefulness in the area of cryp-
tography. However, the SLP model and the GGA model have not been explicitly
related in the literature so far.

Definition 5 ((Ω, q)-SLP-generator). A (Ω, q)-SLP-generator S is a proba-
bilistic algorithm that on input (κ, n, I, Q), outputs lists (L1, . . . , Lk) where Li ⊂
L

(�,c)
n . Each list Li is initially populated with Li = (P |P ∈ Ii). The algorithm

can append a polynomial to a list by applying an operation from Ω to polynomi-
als already contained in the lists, i.e., for an operation (◦, s1, . . . , su, d, F ) ∈ Ω
and existing polynomials P1 ∈ Ls1 , . . . , Pu ∈ Lsu the algorithm can append
F (P1, . . . , Pu) to Ld. In this way, the algorithm may add up to q(κ) polyno-
mials in total to the lists. The algorithm additionally outputs an element a ∈ Zn

in the case of a DL-type problem and a polynomial P ∈ L1 in the case of DH-type
problem, respectively.

Let us first formalize the leak-resistance of a problem. When do group elements
actually leak information due to equality relations? To see this, reconsider the
definition of the generic oracle in Section 4.2 and observe that two encodings
Ei,j and Ei,j′ are equal if and only if the evaluation (Li,j −Li,j′)(x) yields zero.
However, it is clear that such an equality relation yields no information about
particular choices x if it holds for all elements from Zc

n×(Z∗
n)�−c. Thus, denoting

the ideal of L
(�,c)
n containing all Laurent polynomials that are effectively zero over

Zc
n × (Z∗

n)�−c by

In = {P ∈ L(�,c)
n | ∀x ∈ Zc

n × (Z∗
n)�−c : P (x) ≡ 0 mod n} (1)

an equality yields no information at all if (Li,j − Li,j′) ∈ In. Otherwise, a non-
trivial collision occurred and A learns that x is a modular root of Li,j − Li,j′ .

By Definition 6 we capture the chance that information about the secret
choices x is leaked in the course of a computation due to non-trivial equali-
ties between group elements. For this purpose we can make use of (Ω, q)-SLP-
generators since they generate all possible sequences of polynomials that may
occur in an execution of a q-GGA.

Definition 6 (Leak-resistance). A DL-/DH-type problem P is (Ω, q, ν)-leak-
resistant if for all (Ω, q)-SLP-generators S and κ ∈ N we have

Pr

⎡⎣ ∃i and P, P ′ ∈ Li such that
(P − P ′)(x) ≡ 0 mod n ∧ P − P ′ /∈ In

(n, I, Q) R← SIGen(n,I,Q)
P (κ);

(L1, . . . , Lk) R← S(κ, n, I, Q);
x R← Zc

n × (Z∗
n)�−c

⎤⎦ ≤ ν(κ)

Now assume that no information about x can be gained. In this case, we
can restrict to consider algorithms applying trivial solution strategies to solve
instances of a problem. That means, we can restrict our considerations to the
subclass of generic algorithms that, when fixing all inputs except for the choice
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of x, always apply the same fixed sequence of operations from Ω and provide the
same output in order to solve an arbitrary problem instance. Thus, the algorithm
actually acts as a straight-line program in this case.

Definition 7 (SLP-intractability of DL-Type Problems). A DL-type
problem P is (Ω, q, ν)-SLP-intractable if for all (Ω, q)-SLP-generators S and
κ ∈ N we have

Pr

⎡⎢⎣Q(x) ≡ a mod n

(n, I, Q) R← SIGen(n,I,Q)
P (κ);

(a, L1, . . . , Lk) R← S(κ, n, I, Q);
x R← Zc

n × (Z∗
n)�−c

⎤⎥⎦ ≤ ν(κ)

Definition 8 (SLP-intractability of DH-type Problems). A DH-type
problem P is (Ω, q, ν)-SLP-intractable if for all (Ω, q)-SLP-generators S and
κ ∈ N we have

Pr

⎡⎢⎣ (P −Q)(x) ≡ 0 mod n

(n, I, Q) R← SIGen(n,I,Q)
P (κ);

(P,L1, . . . , Lk) R← S(κ, n, I, Q);
x R← Zc

n × (Z∗
n)�−c

⎤⎥⎦ ≤ ν(κ)

Theorem 1 (GGA-intractability of DL-/DH-type Problems). If a DL-
type problem is (Ω, q, ν1)-leak-resistant and (Ω, q, ν2)-SLP-intractable then it is
(Ω, q, ν1 + ν2)-GGA-intractable. If a DH-type problem is (Ω, q, ν1)-leak-resistant
and (Ω, q, ν2)-SLP-intractable then it is (Ω, q, 1

2κ−(q(κ)+z(κ)) + ν1 + ν2)-GGA-
intractable.

The proof of this theorem is given in the full version of the paper [12].

6 Practical Conditions

In this section, we present easily checkable conditions ensuring that a DL-/DH-
type problem is (Ω, q, ν1)-leak-resistant and (Ω, q, ν2)-SLP-intractable with q
being polynomial and ν1 and ν2 being negligible functions in the security pa-
rameter. Reviewing the corresponding definitions, we see that the probabilities ν1
and ν2 are closely related to the probability of randomly picking roots of certain
multivariate Laurent polynomials. Lemma 1 shows in turn that the probability
of finding such a root is small for non-zero polynomials in L

(�,c)
n having low total

degrees.

Lemma 1. Let p be a prime, e ∈ N, n = pe, and let P ∈ L
(�,c)
n be a non-zero

Laurent polynomial of total degree d. Then for x R← Zc
n × (Z∗

n)�−c we have

Pr[P (x) ≡ 0 mod n] ≤ (�− c + 1)d
p− 1

.
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6.1 Operations Sets as Graphs: Bounding Polynomial Degrees

We aim at formalizing the class of operations sets that only allow for a small rise
in the degrees of polynomials that can be generated by any (Ω, q)-SLP-generator
S. Remember, these are the polynomials that can be generated from the input
polynomials by applying operations from Ω at most q(κ) times. To this end,
we introduce a special type of graph, called operations set graph (Definition 9),
modeling an operations set and reflecting the corresponding rise of degrees.

Definition 9 (Operations Set Graph). An operations set graph G = (V,E) is
a directed multi-edge multi-vertex graph. There are two types of vertices, namely
group and product vertices. The vertex set V contains at least one group vertex.
Each group vertex in V is labeled with a unique integer. All product vertices are
labeled by Π. Any edge in E may connect two group vertices or a group and a
product vertex.

Let Ω be an operations set involving k groups. Then the operations set graph
GΩ = (V,E) corresponding to Ω is constructed as follows: V is initialized with
k group vertices representing the k different groups, where these vertices are
labeled with the numbers that are used in the specification of Ω, say the numbers
1 to k. For each operation (◦, s1, . . . , su, d, F ) ∈ Ω we add additional product
vertices to V and edges to E. Let F =

∑
i Mi be represented as the sum of

non-zero monomials. Then for each Mi we do the following:

1. We add a product vertex and an edge from this vertex to the group vertex
with label d.

2. For each variable Yj (1 ≤ j ≤ u) occurring with non-zero exponent � in
Mi we add � edges from the group vertex labeled with the integer sj to the
product vertex just added before.

In order to embed the notion of increasing polynomial degrees by applying
operations into the graph model we introduce the following graph terminology:
We associate each group vertex in a graph with a number, called weight. The
weight may change by doing walks through the graph. Taking a walk through the
graph means to take an arbitrary path that contains exactly two group vertices
(that are not necessarily different) where one of these vertices is the start point
and the other is the end point of the path. A walk modifies the weight of the
end vertex in the following way:

– If the path contains only the two group vertices, the new weight is set to be
the maximum of the weights of the start and end vertex.

– If the path contains a product vertex, the new weight is set to be the max-

imum of the old weight and
u∑

j=1
wj , where u is the indegree and wj is the

weight of the j-th predecessor of this product vertex.

We define a free walk to be a walk through a path that only consists of the two
group vertices and no other vertex. A non-free walk is a walk through a path
containing a product vertex. It is important to observe that
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∏
1

2

3

Fig. 1. GΩ for Ω = {(◦1, 1, 1, 1, Y1 + Y2), (◦2, 2, 2, 2, Y1 + Y2), (◦3, 3, 3, 3, Y1 +
Y2), (inv1, 1, 1, −Y1), (inv2, 2, 2, −Y1), (inv3, 3, 3, −Y1), (ψ, 2, 3, Y1), (e, 2, 3, 1, Y1 ·Y2)} of
w-BDHIP. Strongly connected components are marked by dashed borders.

– a non-free walk can actually increase the maximum vertex weight of a graph
in contrast to a free-walk.

– after each non-free walk the weight of any vertex can be changed at most
finitely many times by doing free walks.

Hence, the following definition of the q-weight makes sense: Let q be a fixed
positive number. We consider finite sequences of walks through a graph, where
each sequence consists of exactly q non-free walks and an arbitrary finite number
of free walks. We define the q-weight of a (group) vertex to be the maximum
weight of this vertex over all such sequences. Similarly, we define the q-weight of
an operations set graph to be the maximum of the q-weights of all its vertices.

Obviously, the q-weights of the vertices 1, . . . , k of an operations set graph GΩ

can be used to upper bound the degrees of the output polynomials L1, . . . , Lk of
any (Ω, q)-SLP-generator S when setting the initial weight of each group vertex
i to the maximal degree of the polynomials in Ii. Similarly, we can bound the
maximum positive or negative exponent of a single variable Xj by setting the
initial weight of the group vertex i to be the maximum degree of Xj in any
polynomial in Ii.

With regard to the definition of the q-weight, we can immediately simplify
the structure of operations set graphs: Clearly, we do not change the q-weight
of a graph if we remove self-loops and product vertices with indegree 1, where
in the latter case the two edges entering and leaving the vertex are replaced
by a single edge going from the predecessor vertex to the successor vertex. We
call such a graph a reduced operations set graph. As an illustrating example,
consider the reduced operations set graph depicted in Figure 1, which belongs
to the operations set for the w-BDHI problem (cf. Example 2).

The following condition characterizes graphs that do not allow for a super-
polynomial grow of vertex weights. Intuitively, it prohibits any kind of repeated
doubling. For the q-weight of operations set graphs satisfying Condition 1, it is
possible to derive non-trivial upper bounds as given in Theorem 2. The proof is
given in the full version of the paper [12].
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Condition 1. Let GΩ be a reduced operations set graph. Then for every strongly
connected component1 C of GΩ it holds that every product vertex contained in C
has at most one incoming edge from a vertex that is also contained in C.

Theorem 2. Let GΩ be a reduced operations set graph satisfying Condition 1.
Let n1 denote the number of product vertices contained in GΩ, umax the maximal
indegree of these product vertices, dmax the maximal initial weight of any group
vertex, and n2 the number of SCCs containing at least one product and one group
vertex. Then the q-weight of GΩ is upper bounded by

D(n1, n2, umax, dmax, q) =

⎧⎪⎪⎨⎪⎪⎩
dmax(umax)n1 , n2 = 0
dmaxen1 , n2 > 0 and q < e

umax
n1

dmax

(
umaxq

n1

)n1

, n2 > 0 and q ≥ e
umax

n1

,

where e denotes Euler’s number.

Example 3. Condition 1 is satisfied for GΩ depicted in Figure 1 since the strongly
connected component containing the product vertex contains no other vertices.
We have n1 = 1, n2 = 0, and umax = 2. Since the problem instance implies
dmax = w we have that the q-weight of the graph is bounded by 2w.

Note that the factor by which the (maximal) initial weight of the vertices can be
increased only depends on the particular operations set graph. Hence, once we
have shown that an operations set only allows to increase degrees by a low (i.e.,
polynomial) factor, this certainly holds for all problems involving this operations
set and does not need to be reproven (as it is currently done in the literature).

It is possible to devise a graph algorithm (Algorithm 1) that finds individual
bounds on the q-weights of the group vertices which are often tighter than the
generic bound from Theorem 2. The principle of the algorithm is simple. We con-
sider the directed acyclic graph that is composed of the SCCs of the operations
set graph. We move from the sources to the sinks of the DAG and recursively
bound the q-weights of the vertices within each SCC. In the end when all SCCs
are labeled with such a bound, the q-weight of a group vertex is simply set to
be the q-weight bound of the (unique) SCC in which it is contained.

6.2 Practical Conditions: Leak-Resistance

To provide leak-resistance, we ensure that any difference of two distinct poly-
nomials computable by a (Ω, q)-SLP-generator is of low degree. We do so by
demanding that the input polynomials I of a problem P have low degrees (Con-
dition 2) and restrict to operations sets Ω only allowing for small increase of
degrees (Condition 1). If these conditions are satisfied, we can derive a concrete
leak-resistance bound ν for any runtime bound q (Theorem 3).

1 A strongly connected component of a directed graph GΩ = (V, E) is a maximal set
of vertices U ⊂ V s.t. every two vertices in U are reachable from each other. The
strongly connected components of a graph can be computed in time O(|V | + |E|).
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Algorithm 1. Computation of the q-weigths of group vertices
Input: q, reduced operations set graph G satisfying Condition 1, initial weights for

the k group vertices in G
Output: q-weights w1, . . . , wk of vertices 1, . . . , k
1: Perform a topological sort on the DAG of G, i.e., arrange the SCCs of G in layers

0 to � such that SCCs in layer j can only receive edges from SCCs contained in
layers i < j.

2: for each layer j = 0 : � do
3: for each SCC C in layer j do
4: if C consists only of group vertices then
5: set weight of C to maximum of weights of vertices contained in C and weights

of SCCs in layers i < j having edges to C
6: end if
7: if C consists only of a single product vertex then
8: set weight of C to sum of weights of SCCs in layers i < j having edges to C
9: end if

10: if C consists of at least one product vertex and one group vertex then
11: let w be the maximum of the weights of group vertices contained in C and

the weights of SCCs in layers i < j having edges to these group vertices
12: for each product vertex Π in C, compute sum of weights of SCCs in layers

i < j having edges to Π , and let v be the maximum of these sums
13: set weight of C to w + qv
14: end if
15: end for
16: end for
17: for i = 1 : k do
18: set wi to weight of SCC containing the group vertex i
19: end for

Condition 2. There exists r1 ∈ poly(x) such that for all κ ∈ N, I ∈ [SIGenI
P(κ)]

we have max
1≤i≤k,P∈Ii

(deg(P )) ≤ r1(κ)

Theorem 3. Let Ω be an operations set such that Condition 1 is satisfied. Fur-
thermore, let P be a DL-type or DH-type problem satisfying Condition 2. Then
for any q ∈ poly(x), the problem P is (Ω, q, ν)-leak-resistant, where

ν(κ) = 2−κk(q(κ) + z(κ))2(�− c + 1)D(n1, n2, umax, r1(κ), q(κ)) .

Example 4 (Leak-resistance for w-BDHIP). The degrees of the input poly-
nomials of the w-BDHI problem are polynomially upper bounded through
w by definition. Example 3 showed that Ω satisfies Condition 1 yielding
D(1, 0, 2, w(κ), q(κ)) = 2w(κ). Furthermore, for w-BDHIP we have parameters
k = 3, � = 1, and c = 0. Thus, by Theorem 3 the problem P is (Ω, q, ν)-leak-
resistant, where ν(κ) = 2−κ12(q(κ) + w(κ) + 1)2w(κ).
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6.3 Practical Conditions: SLP-Intractability of DL-Type Problems

In view of Lemma 1, in order to ensure SLP-intractability for a DL-type problem
it suffices to require the challenge polynomial being non-constant (Condition 3)
and of low degree (Condition 4).

Condition 3. There exists κ0 ∈ N such that for all κ ≥ κ0, (n,Q) ∈
[SIGen(n,Q)

P (κ)] the polynomial Q is not a constant in L
(�,c)
n .

Condition 4. There exists r2 ∈ poly(x) such that for all κ ∈ N, Q ∈
[SIGenQ

P (κ)] we have deg(Q) ≤ r2(κ).

Assuming the above conditions are satisfied for a DL-type problem, Theorem 4
implies that the problem is (Ω, q, ν)-SLP-intractable, where q is an arbitrary
polynomial and ν is a negligible function in the security parameter.

Theorem 4. Let P be a DL-type problem satisfying Condition 4 and Condi-
tion 3. Then for any q ∈ poly(x) and any operations set Ω, P is (Ω, q, ν)-SLP-
intractable, where

ν(κ) =

{
1, κ < κ0
(�−c+1)r2(κ)

2κ , κ ≥ κ0
.

6.4 Practical Conditions: SLP-Intractability of DH-Type Problems

To ensure SLP-intractability of DH-type problems we formulate similar condi-
tions as in the case of DL-type problems. More precisely, we ensure that the
difference polynomials considered in the definition of SLP-intractability (Defini-
tion 8) are never zero and of low degree.

The non-triviality condition (Condition 5) states that an efficient SLP-
generator can hardly ever compute the challenge polynomial, and thus solve
the problem with probability 1.

Condition 5. For every q ∈ poly(x) there exists κ0 ∈ N such that for all κ ≥
κ0, (Ω, q)-SLP-generators S, (n, I, Q) ∈ [SIGen(n,I,Q)

P (κ)], and (P,L1, . . . , Lk) ∈
[S(κ, n, I, Q)] we have P �= Q in L

(�,c)
n .

We note that Condition 5 appears to be more complex compared to the prac-
tical conditions seen so far and it is not clear to us how to verify it in its full
generality. However, it is usually easy to check in the case of a problem of prac-
tical relevance. Usually, one of the following properties is satisfied implying the
validity of Condition 5:

– The total degree of P ∈ L1 is bounded by a value which is smaller than the
total degree of Q.

– The positive/negative degree of P ∈ L1 is bounded by a value which is
smaller than the positive/negative degree of Q.
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– The positive/negative degree of some variable Xj of P ∈ L1 is bounded by
a value which is smaller than the positive/negative degree of that variable
in Q.

Remember, that we can make use of the results from Section 6.1 for proving that
a problem satisfies one of these properties.

Moreover, we have to prevent that an (Ω, q)-SLP-generator outputs a poly-
nomial P �= Q which frequently “collides” with Q and thus constitutes a good
interpolation for Q. If P is low degree (Conditions 1 and 2), then it is sufficient
to demand that Q is of low degree as well (Condition 4).

Hence, we need the practical conditions for leak-resistance in addition to the
ones stated in this section for showing that a DH-type problem is (Ω, q, ν)-SLP-
intractable, where ν is a negligible function in the security parameter.

Theorem 5. Let Ω be an operations set such that Condition 1 is satisfied.
Furthermore, let P be DH-type problem satisfying Condition 2, Condition 4
and Condition 5. Then for any q ∈ poly(x), the problem P is (Ω, q, ν)-SLP-
intractable, where

ν(κ) =

{
1, κ < κ0
(�−c+1)(r2(κ)+D(n1,n2,umax,r1(κ),q(κ)))

2κ , κ ≥ κ0

is a negligible function.

Example 5 (SLP-intractability of w-BDHIP). Remember that for this problem
the challenge polynomial is fixed to Q = X−1

1 . Moreover, observe that all vari-
ables occurring in the input polynomials only have positive exponents. Thus,
any polynomial P ∈ L1 has only positive exponents in any variable. Hence,
Condition 5 is trivially satisfied (independently of the considered operations set
Ω).2 Condition 4 is satisfied since we always have deg(Q) = 1 =: r2(κ). As we
have already seen in the previous sections, Conditions 1 and 2 hold yielding the
upper bound D(1, 0, 2, w(κ), q(κ)) = 2w(κ) on the degrees of the polynomials
P ∈ L1. Thus, by Theorem 5 the problem is (Ω, q, ν)-SLP-intractable, where
ν(κ) = 2−κ(2 + 4w(κ)).
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A Rational Functions Specifying Problem Challenges

Our framework so far only covers problems where the solution of a problem
instance can be represented as a Laurent polynomial. This restriction excludes
important problems like the w-strong Diffie-Hellman problem or the w-strong
Bilinear Diffie-Hellman problem. Informally speaking, the w-SDH problem can
be described as follows: Given group elements g, gx1

, gx2
, . . . , gxw

, where x R← Z∗
p,

the task is to find an integer v ∈ Z∗
p and a group element a such that a = g

1
x+v .

Observe that here the solution is defined by a rational function of the secret
choices and the value v that can be chosen freely. If 1

x+v is not defined over Zp

for particular x and v, then the problem instance is deemed to be not solved.
To let the class of DL-/DH-type problems (Definition 1) cover this problem

type we do the following: We first need introduce two additional parameters
�′ and c′ defining the range Zc′

n × (Z∗
n)�′−c′

from which the algorithm is al-
lowed to choose the value v. Furthermore, we consider structure instance gen-
erators SIGenP which output two Laurent polynomials Q1 and Q2 over Zn in
the variables X1, . . . , X�, V1, . . . V�′ , where only the variables Xc+1, . . . , X� and

http://eprint.iacr.org/2005/015
http://eprint.iacr.org/2007/360
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Vc′+1, . . . , V�′ may appear with negative exponents. These polynomials represent
a rational function

R : (Zc
n × (Z∗

n)�−c) × (Zc′

n × (Z∗
n)�′−c′

) → Zn ,

(x,v) �→ Q1(x,v)
Q2(x,v)

.

A problem instance of such an extended DL-/DH-type problem is defined as
before. Given a problem instance, the challenge is to output some v ∈ Zc′

n ×
(Z∗

n)�′−c′
with Q2(x,v) ∈ Z∗

n and the element⎧⎨⎩
Q1(x,v)

(Q2(x,v)) , for a DL-type problem

g
Q1(x,v)

(Q2(x,v))
1 , for a DH-type problem

. (2)

Adapting most of the framework to the new definition is quite straightfor-
ward. In fact, the definition of leak-resistance, the corresponding conditions and
theorems stay the same since the definition is completely independent of the
challenge polynomial. In the following, we only sketch important differences to
the previous version of the conditions.

For this purpose, we need to introduce some new notation: By

F(L(�,c)
n ) :=

{
Q1

Q2
| Q1, Q2 ∈ L(�,c)

n , Q2 is not a zero-divisor
}

we denote the ring of fractions of L
(�,c)
n . An element a

b ∈ F(L(�,c)
n ) with a, b ∈ Zn

is called a constant fraction. The ring L
(�,c)
n can be seen as a subring of this

ring by identifying Q ∈ L
(�,c)
n with Q

1 ∈ F(L(�,c)
n ). Note that if we evaluate the

fraction Q1
Q2

with some v ∈ Zc′

n × (Z∗
n)�′−c′

we obtain a fraction Q1(X,v)
Q2(X,v) that

is not necessarily a well-defined element of F(L(�,c)
n ). This is because Q2(X,v)

might be a zero-divisor in L
(�,c)
n . However, we can exclude this case, because by

choosing such a fraction (i.e., by selecting this particular v) an algorithm can
never solve a problem instance.

We stipulate the following definitions for the SLP-intractability of a (ex-
tended) DL-type and a DH-type problem, respectively. Note that the SLP-
generators now additionally output v in order to select a specific fraction.

Definition 10 (SLP-intractability of DL-Type Problems). A DL-type
problem P is (Ω, q, ν)-SLP-intractable if for all (Ω, q)-SLP-generators S and
κ ∈ N we have

Pr

⎡⎢⎣ Q2(x,v) ∈ Z∗
n and

R(x,v) ≡ a mod n

(n, I, Q1, Q2)
R← SIGen(n,I,Q1,Q2)

P (κ);
(v, a, L1, . . . , Lk) R← S(κ, n, I, Q1, Q2);
R ← Q1

Q2
;x R← Zc

n × (Z∗
n)�−c

⎤⎥⎦ ≤ ν(κ)
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Definition 11 (SLP-intractability of DH-type Problems). A DH-type
problem P is (Ω, q, ν)-SLP-intractable if for all (Ω, q)-SLP-generators S and
κ ∈ N we have

Pr

⎡⎣ Q2(x, v) ∈ Z∗
n and

(P − R(X, v))(x) ≡ 0 mod n

(n, I, Q1, Q2)
R← SIGen(n,I,Q1,Q2)

P (κ);

(v, P, L1, . . . , Lk) R← S(κ, n, I, Q1, Q2);

R ← Q1
Q2

;x R← Zc
n × (Z∗

n)�−c

⎤⎦ ≤ ν(κ)

The GGA-intractability of a DL-/DH-type problem is still related in the same
way to the leak-resistance property and the SLP-intractability of the problem.
That means, Theorem 1 holds unchanged for our extension.

To ensure SLP-intractability, we have Condition 6 and 7 for DL-type problems
and Condition 6 and 8 for DH-type problems. These conditions imply (Ω, q, ν)-
SLP-intractability for the same negligible functions ν as stated in Theorems 4
and 5.

Condition 6. There exists r2 ∈ poly(x) such that for all κ ∈ N,
(n,Q1, Q2) ∈ [SIGen(n,Q1,Q2)

P (κ)], and v ∈ Zc′

n × (Z∗
n)�′−c′

we have
max{deg(Q1(X,v)), deg(Q2(X,v))} ≤ r2(κ) .

Condition 7. There exists κ0 ∈ N such that for all κ ≥ κ0, (n,Q1, Q2) ∈
[SIGen(n,Q1,Q2)

P (κ)], and v ∈ Zc′

n ×(Z∗
n)�′−c′

we have that Q1(X,v)
Q2(X,v) is not a constant

fraction in F(L(�,c)
n ).

Condition 8. For every q ∈ poly(x) there exists κ0 ∈ N such that for all
κ ≥ κ0, (Ω, q)-SLP-generators S, (n, I, Q1, Q2) ∈ [SIGen(n,I,Q1,Q2)

P (κ)], and
(v, P, L1, . . . , Lk) ∈ [S(κ, n, I, Q1, Q2)] we have that Q1(X,v)

Q2(X,v) �= P in F(L(�,c)
n ).

Example 6 (SLP-intractability of w-SDHP). For the w-SDH problem we have
parameters Paramw-SDH = (k = 1, � = 1, c = 0, z = w + 1, �′ = 1, c′ = 0) and a
structure instance generator SIGenw-SDH that on input κ returns

((G = G1,g = g1, n = p), (I = I1 = {1, X1
1 , . . . , X

w(κ)
1 }, Q1 = 1, Q2 = X1+V1)) .

Note that for any v1 ∈ Z∗
p, the fraction Q1(X,v)

Q2(X,v) = 1
X1+v1

is an element of

F(L(�,c)
n ) but not an element of the subring L

(�,c)
n . Hence, Condition 8 is triv-

ially satisfied, since P is always a Laurent polynomial (independently of the
considered operations set Ω). Condition 6 is satisfied since we always have
max{deg(Q1(X,v), deg(Q2(X,v))} = 1 =: r2(κ). As we can easily see, Con-
ditions 1 and 2 hold assuming an operations set containing operations for per-
forming the group law and inversion of elements in G1, this yields an upper
bound D(0, 0, 0, w(κ), q(κ)) = w(κ) on the degrees of the polynomials P ∈ L1.
Thus, the problem is (Ω, q, ν)-SLP-intractable, where ν(κ) = 2−κ(w(κ) + 1).
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Abstract. Key-dependent message security, short KDM security, was
introduced by Black, Rogaway and Shrimpton to address the case where
key cycles occur among encryptions, e.g., a key is encrypted with itself.
We extend this definition to include the cases of adaptive corruptions
and arbitrary active attacks, called adKDM security incorporating
several novel design choices and substantially differing from prior defi-
nitions for public-key security. We also show that the OAEP encryption
scheme (using a partial-domain one-way function) satisfies the strong
notion of adKDM security in the random oracle model. The OAEP
construction thus constitutes a suitable candidate for implementating
symbolic abstractions of encryption schemes in a computationally sound
manner under active adversaries.

Keywords: Key-dependent message security, chosen ciphertext attacks,
RSA-OAEP.

1 Introduction

Encryption schemes constitute the oldest and arguably the most important cryp-
tographic primitive. Their security was rigorously studied very early, starting
with Shannon’s work for the information-theoretic case [31]. Computational
definitions for public-key encryption were developed over time, in particular
in [23,32,30,19]. For symmetric encryption, the first real definitions were, to the
best of our knowledge, given in [19,28,8], using the same basic ideas as in public-
key encryption. While these definitions seemed to take care of standard usage
of encryption schemes, it was soon recognized that larger protocols might pose
additional requirements on the encryption schemes, e.g., in multi-party compu-
tations with dynamic corruptions as in [7]. It was also recognized that in some
cases, symmetric encryption initially seemed to be the appropriate method to
use, but upon study other primitives such pseudorandom permutations [10,8] or
authenticated encryption [12,9] proved to be better.

A specific additional requirement some larger protocols pose on encryption
schemes is the ability to securely encrypt key-dependent messages. One speaks
of key-dependent messages if a key K is used to encrypt a message m where m
contains or depends on the key K (or the corresponding secret key in the case
of public-key encryption). The first concrete use of this case seems to have been

J. Pieprzyk (Ed.): ASIACRYPT 2008, LNCS 5350, pp. 506–523, 2008.
c© International Association for Cryptologic Research 2008
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in [15], where multiple private keys were used to encrypt one another in order
to implement an all-or-nothing property in a credential system to discourage
people from transferring individual credentials. Such key cycles also occur in
implementations of disk encryption in, e.g., Windows Vista, that can store an
encryption of its own secret keys to the disk in some situations. Key cycles also
occur in some naively designed key exchange protocols of session keys given
master keys shared among the two parties or with a key distribution center,
where at the end of the protocol the newly exchanged key is “confirmed” by
using it to encrypt or authenticate something that might include the master
keys.

Another area that has brought additional requirements on cryptographic
primitives, and in particular that of encryption with key cycles, is the use of
formal methods or “symbolic cryptography”. Here the question is whether sim-
ple abstractions of cryptographic primitives exist that can be used by automated
proof tools (model checkers or theorem provers) to prove or disprove a wide range
of security protocols that use cryptography in a blackbox manner. The original
abstractions used by this automation community are term algebras constructed
from certain base types and cryptographic operators such as E and D for en-
cryption and decryption. They are often called Dolev-Yao models after the first
such abstraction [20]. As soon as one has a multi-user variant of such a model,
the keys are terms, and from the term algebra side it is natural that keys can also
be encrypted, i.e., most models simply assume that key cycles are allowed. Once
cryptographic justification of such models was started in [2], it was recognized
that key cycles had to be excluded from the original models to get cryptographic
results. The same holds for later results [1,26,6,27,29,4,18,17].

Motivated primarily by symbolic cryptography, a definition of key-dependent
message security (KDM security) was introduced in [13]. It generalizes the defini-
tion from [15] by allowing arbitrary functions of the keys (and not just individual
keys) as plaintexts, and by considering symmetric encryption schemes. [13] also
presents a definition and a construction (without proof) for the asymmetric case
against passive attackers. In [5] it was shown that, in the case of symmetric
encryption, an extension of the KDM definition that additionally allows for a
limited revelation of secret keys of honest users, called DKDM security, is suit-
able for extending results about the justification of Dolev-Yao models to include
protocols with key cycles. Full security in the presence of key-dependent mes-
sages has so far only been achieved in the random oracle model. In [24] and
[25], the problem of implementing KDM secure symmetric encryption schemes
without random oracles is investigated. There, solutions are given for relaxed
variants of KDM security, e.g., security against a bounded number of queries or
security with respect to a single key dependency function. No scheme is known,
however, that fulfills any form of full-fledged KDM security (passive or active)
without the use of random oracles. In [14], a scheme is presented that is secure
if the key dependency functions are guaranteed to be affine. Extensions of KDM
security for public-key encryption to active adversaries have not been proposed
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yet, and establishing meaningful definitions for this case indeed raises non-trivial
problems.

Our Contributions. We first propose a new definition of security under key-
dependent messages, called adKDM security, that captures security against ac-
tive attackers and adaptive corruptions in the case of public-key encryption. This
definition incorporates several novel design choices and substantially differs from
prior definitions for public-key security; in particular, it allows the adversary to
iteratively construct nested encryptions without necessarily revealing inner en-
cryptions, and it is required to keep track of the knowledge that the adversary
maintains in an ideal setting.

We then investigate the OAEP encryption scheme and prove that it satisfies
adKDM security in the random oracle model, assuming the partial-domain one-
wayness of the underlying trapdoor-permutation. This in particular shows the
OAEP construction to constitute a suitable candidate for soundly implementing
symbolic abstractions of cryptography (so-called computational soundness). We
leave it as an open problem for future work to prove that our definition of adKDM
security is sufficient for a computational soundness result.

The need to incorporate key dependencies and the adaptive nature of adKDM
security require substantial changes to the CCA2-security proof of OAEP. In
particular, adKDM security does not allow for determining in advance which
encryptions will be used as challenge encryptions. At the point of construction
of these bitstrings, the adversary might not even know the challenge encryptions.
Consequently, performing the reduction to the underlying assumption requires
us to lazily construct them in order to decide as late as possible which encryption
constitutes a challenge encryption.

2 Preliminaries

In this section, we present some definitions and conventions that will be used
later on in the paper.

Notation. Let ⊕ denote the XOR operation, and let ‖ denote concatenation.
For a probabilistic algorithm B, let y ← B(x) denote assigning the output of
B(x) to y. Let Pr[π : X ] denote the probability that π holds after executing the
instructions in X (which are of the form y ← B(x)). A function in n is negligible
if it is in n−ω(1). A function is non-negligible if it is not negligible. We formulate
all our results for uniform adversaries, but they hold for nonuniform adversaries
as well.

Definition 1 (Circuit). A circuit is a Boolean circuit with n1 + · · ·+ nt input
bits (t ≥ 0) and m output bits. The circuit may have arbitrary fan-in and fan-
out, AND-, OR- and NOT-gates, and—in the case of an encryption scheme in the
random-oracle model—gates for querying the random oracle(s). We assume that
a circuit is always encoded by explicitly specifying all its gates and the numbers
n1, . . . , nt,m. The evaluation f(x1, . . . , xt) of a circuit f on bitstrings x1, . . . , xt
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is defined as follows: Let x′
i be the result of truncating or padding xi with 0∗ to the

length ni. Then f(x1, . . . , xt) is the result of evaluating f with input x′
1‖ . . . ‖x′

t.
1

Convention: Encryption is length-regular. For any encryption scheme, we
impose the following assumption on the output of the encryption function Enc
and the decryption function Dec: The length of the output of Enc depends only
on the public key and the length of the message. The length of the output of
Dec depends only on the public key and the length of the ciphertext. This can
easily be achieved by suitable padding and encoding.

The OAEP scheme. The optimal asymmetric encryption padding (OAEP)
scheme [11] constitutes a widely employed encryption scheme in the random
oracle model based on a trapdoor 1-1 function.

Definition 2 (OAEP). Let k denote the security parameter and let k0 and
k1 be functions such that k0, k1, k − k0 − k1 are superlogarithmic. Assume a
1-1 trapdoor function f with domain {0, 1}k = {0, 1}k−k0 × {0, 1}k0. Let G :
{0, 1}k0 → {0, 1}k−k0 and H : {0, 1}k−k0 → {0, 1}k0 denote random oracles.
The public and secret key for the OAEP encryption scheme (Enc,Dec) consists
of a public key and a trapdoor for f . An encryption c = Enc(pk ,m) with |m| =
k−k0−k1 is computed as r ← {0, 1}k0, s := (m‖0k1)⊕G(r), t := r⊕H(s), c :=
fpk (s‖t).

A decryption Dec(sk , c) is computed as s‖t := f−1
sk (c), r := t⊕H(s), m‖z :=

s⊕G(r) with |s| = k − k0, |t| = k0, |m| = k − k0 − k1 and |z| = k1. If z = 0k1 ,
the plaintext m is returned, otherwise the decryption fails with output ⊥.

It has been shown in [21] that the OAEP scheme is IND-CCA2 secure in the ran-
dom oracle model under the assumption that f fulfills the following Definition 3
of partial-domain one-wayness. They further showed that the RSA-trapdoor per-
mutation, which is most commonly used for the OAEP scheme, is partial-domain
one-way.

Definition 3 (Partial-Domain One-Wayness). A 1-1 function f : S × T →
rangef with key generation KeyGenf is partial-domain one-way if for any
polynomial-time adversary A we have that

Pr
[
s = s′ : pk ← KeyGenf , (s, t)

$← S × T, s′ ← A(pk , fpk (s ‖ t))
]

is negligible in k, where A,KeyGenf , f, S, T depend on the the security parameter
k. We sometimes call this probability the advantage of A.

3 The Definition of adKDM

We now present our definition of adKDM security. Since this definition incor-
porates several novel design choices and substantially differs from prior security
1 Not granting a circuit access to the length of its arguments is not a restriction in

our case, since this length will always be known in advance.



510 M. Backes, M. Dürmuth, and D. Unruh

definitions for public key security, we do not immediately present the definition.
Instead, we start with a direct adaption of an existing definition and show using
an example why this adaption is not sufficient. We proceed with several plausi-
ble approaches for extending this adaption and explain why they fail. We finally
present our definition of adKDM security and explain why it solves the problems
observed with the tentative definitions discussed before.

Extending DKDM security. In [5] the security notion DKDM was proposed
for the case of symmetric key-dependent encryptions. It is the strongest notion of
KDM security considered so far; restating it one-to-one in the public-key setting
would yield the following definition:2

Definition 4 (DKDM, public key setting – sketch). The DKDM oracle
maintains a sequence of key pairs pk i, sk i and a random challenge bit b. It an-
swers to the following queries:
– pk (j): Return pk j.
– reveal(j) where j has not been used in an enc(j, ·) query: Return sk j.
– enc(j, f) where f is a circuit and j has not been used in a reveal(j) query:

Compute m0 := f(sk1, sk2, . . . ), m1 := 0|m0| and encrypt c := Enc(pk j ,mb).
Return c.

– dec(j, c) where c has not been returned by an enc(j, ·) query with the same
key index j: Return Dec(sk j , c).

A public key encryption scheme (Enc,Dec) is DKDM secure if no polynomial
time adversary interacting with the DKDM-oracle guesses b with probability non-
negligibly greater than 1

2 .

This definition is an almost immediate generalization of the IND-CCA definition
to the multi-session setting (i.e., with several key pairs instead of only one).
DKDM extends IND-CCA in two ways: First, the messages that are contained
an enc(·, ·) encryption query may depend on all secret keys in the system. Second,
one can reveal secret keys as long as the corresponding public keys have not been
used for encrypting (otherwise one could decrypt a challenge ciphertext so that
the definition cannot be met).

Although the notion of DKDM has been shown to be useful for soundness
results for a specific class of protocols, it has obvious restrictions on the class of
protocols considered. In particular, it is not allowed to reveal a key that has been
used for encryption. The following simple protocol illustrates that this indeed
constitutes a restriction: Alice holds two secret keys sk1, sk2 and a secret message
m and sends the following messages to Bob:

c1 := Enc(pk1,Enc(pk2,m‖sk1‖sk2)), c2 := Enc(pk2,Enc(pk1,m‖sk1‖sk2))

Then Bob chooses a value i = 1, 2 and Alice sends sk i to Bob. We would intu-
itively expect the message m to stay secret since Bob learns at most one of the

2 We have omitted one condition of their definition, namely that it should not be
possible to generate a valid ciphertext without the knowledge of the secret key. This
condition is not applicable to the public-key setting.



OAEP Is Secure under Key-Dependent Messages 511

keys sk1, sk2. However, a direct reduction against DKDM security fails. Namely,
we have basically four possibilities to construct the messages c1, c2 by querying
the DKDM oracle (note that enc denotes the query to the adKDM oracle while
Enc is the encryption algorithm):

(i) c1 := enc(1, g1), c2 := enc(2, g2) where g1 and g2 are circuits computing
Enc(pk2,m‖sk1‖sk2) and Enc(pk1,m‖sk1‖sk2), respectively (given input
(sk1, sk2)).

(ii) c1 := Enc(pk1, enc(2, g)), c2 := Enc(pk2, enc(1, g)) where g computes
m‖sk1‖sk2.

(iii) c1 := Enc(pk1, enc(2, g)), c2 := enc(2, g2) where g and g2 are as before.
(iv) c1 := enc(1, g1), c2 := Enc(pk2, enc(1, g)), where g and g1 are as before.

Then, depending on the value of i chosen by Bob, we have to issue reveal(i). In
cases (i) and (ii), no reveal query is allowed since queries of the forms enc(1, ·)
and enc(2, ·) have been performed which excludes reveal queries reveal (1) and
reveal(2) by Definition 4. Similarly, in case (iii) we are not allowed to query
reveal(2), and in case (iv) we are not allowed to query reveal(1). Thus in order
to perform the first step, we have to know in advance what the value of i will
be and to construct c1, c2 as in case (iii) or (iv), respectively. Of course, in the
present example it is possible to save the reduction proof by guessing i; however,
it is easy to thwart this possibility by performing many such games in parallel.3 A
natural approach to extend the definition of DKDM to this case would be to allow
to even reveal keys sk j that are used in encryption queries enc(j, ·). However, a
query enc(j, ·) returns an encryption c of the message mb. So given the secret
key sk j , we could easily determine mb from c and therefore the challenge bit b.
Therefore, we will have to distinguish between two types of encryption queries: A
normal encryption query enc(j, f) will return the encryption of m0 := f(sk1, . . . )
irrespective of the value of b. A challenge encryption query challenge(j, f) returns
mb where m0 is as for enc(j, f) and m1 := 0|m0|. This leads to the following
tentative definition:

Definition 5 (KDM security – tentative). The oracle T chooses a random
bit b and accepts the following queries.
– pk (j) and reveal (j): Return pk j and sk j, respectively. dec(j, c): Return

Dec(sk j , c).
– enc(j, f(i1, . . . , it)) where f is a circuit: Compute m0 := f(sk i1 , . . . , sk it)

and return Enc(pk j ,m0).
– challenge(j, f(i1, . . . , it)): Compute m0 as before, m1 := 0|m0| and return

Enc(pk j ,mb).

3 E.g., Alice sends m
(1)
1 , m

(1)
2 , . . . , m

(n)
1 , m

(n)
2 with m

(µ)
1 :=

Enc(pk (µ)
1 , Enc(pk (µ)

2 , m‖keys)), m
(µ)
2 := Enc(pk (µ)

2 , Enc(pk (µ)
1 , m‖keys)) and

keys := sk (1)
1 ‖sk (1)

2 ‖ . . . ‖sk (n)
1 ‖sk (n)

2 . Then Bob chooses i1, . . . , in ∈ {1, 2} and
Alice sends sk (1)

i1
, . . . , sk (n)

in
. The fact that all keys are contained in each encryption

also disables hybrid arguments. To the best of our knowledge, the security of this
protocol cannot be reduced to DKDM security.
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The oracle aborts in the following cases: reveal(j) is queried but challenge(j, ·) has
been queried before. challenge(j, ·) is queried but reveal (j) has been queried. dec(j, c)
is queried but c was produced by challenge(j, ·). A scheme is KDM secure if no
polynomial-time adversary guesses b with probability noticeably larger than 1

2 .

This definition might look appealing, but it cannot be met: For example, one
could encrypt a challenge plaintext under pk1 via the query challenge(1,m),
then encrypt the key sk1 under pk2 via c := enc(2, sk1), and finally reveal sk2
via reveal(2).4 This sequence of queries is not forbidden by Definition 5. Now
we can compute sk1 from c using sk2 and then decrypt the challenge encryption
using sk1. This allows us to determine the bit b. Hence no encryption scheme can
fulfill Definition 5. We hence have to relax the definition by excluding queries that
would trivially allow to decrypt a challenge ciphertext. For this, we have to reject
queries to the oracle that would allow the adversary to decrypt the challenge even
in an ideal setting. For this, we keep track of the keys that the adversary can
deduce from the queries made so far. We call this set know (the knowledge of
the adversary) because it represents what the adversary knows ideally. The set
know is inductively defined as follows: (a) If reveal(j) has been queried, then
j ∈ know . (b) If j ∈ know , and a enc(j, f(i1, . . . , it)) has been queried, then
i1, . . . , in ∈ know . (c) If enc(j, f(i1, . . . , it)) has been queried and returned the
ciphertext c, and dec(j, c) has subsequently been queried, then i1, . . . , it ∈ know .
Roughly, we say that the adversary knows all keys that either were revealed or
are contained in ciphertexts it could decrypt using keys it knows. We can now
relax Definition 5 by disallowing queries that would allow the adversary to know
a secret key for a challenge encryption.

Definition 6 (KDM security – tentative). KDM security is defined as in
Definition 5 except that the oracle T additionally aborts if a query would lead
to the following situation: For some j ∈ know, a query challenge(j, ·) has been
performed (or is being performed).

Introducing hidden encryptions. Definition 6, however, is still too weak to
allow to adaptively choose which keys to reveal. In particular, the example pro-
tocol given above can still not be proven secure: When producing c1, c2 in a
reduction proof, we have to decide which of the ciphertexts will be created by
challenge encryptions (challenge(·, ·) queries) and which will be created by nor-
mal encryptions (enc(·, ·)). Since we might have to invoke reveal(1) later, we
may not use challenge(1, ·) queries, and since we might have to invoke reveal (2),
we may not use challenge(2, ·) queries. But if no challenge(·, ·) query is issued,
the oracle T never uses the bit b and thus the adversary cannot guess b.5

Handling adaptive revelations of keys hence requires to further extend our
approach. A closer inspection reveals why we failed to prove the security of
the example protocol: We had two possible ways to construct the ciphertext

4 We use the shorthand m and sk1 for the circuits outputting m and sk1, respectively.
5 Again, this problem might be remedied by guessing in advance whether sk1 or sk2

will be needed, but see footnote 3 for an example where guessing does not work.
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c1. Either (a) we could ask the oracle to produce c′1 := Enc(pk2,m‖sk1‖sk2)
and encrypt it ourselves using pk1 to produce c1. Or (b) we could request the
ciphertext c1 directly by sending to the oracle a circuit f that computes c′1 from
sk1, sk2. In case (a), we are not allowed to reveal sk2 since this would allow to
decrypt c′1 and thus reveal m. In case (b), if we were to reveal sk1 this would
allow to decrypt c1. As the plaintext c′1 for c1 has been produced using a circuit
f from sk1, sk2 and m, the oracle has no way of knowing that c′1 is actually
an encryption of these values (this would require an analysis of the circuit to
determine what it does) and thus has to consider the values sk1, sk2 and m to be
leaked when c1 is decrypted. Thus in case (b), we have to disallow the revelation
of sk1. This analysis shows that we need a way to send the following instructions
to the oracle: “First produce the ciphertext c′1 as an encryption of m‖sk1‖sk2
(where m‖sk1‖sk2 is described by a suitable circuit). Do not return the value
c′1 (as otherwise we would be in case (a)). Then produce the ciphertext c1 by
encrypting c′1. Return c1.”

Given these instructions, the oracle has enough information to deduce that
when revealing sk1, the message m is still protected by the encryption c′1 using
pk2 (the details of this deduction process are discussed below). And if only sk2
is revealed instead, c1 cannot be a decryption and m is protected. Analogous
reasoning applies to the construction of c2.

Hence we have to define an oracle T that allows us to construct ciphertexts
without revealing them. Instead, for each ciphertext we can adaptively decide
whether to reveal it or whether we only use it inside other ciphertexts (that
again may or may not be revealed). More concretely, whenever a query is issued
to T , instead of directly returning the result of that query, it is stored in some
register bitsh inside the oracle where h is a handle identifying the register. Only
upon a special reveal query, the value bitsh is returned to the adversary. A
challenge encryption (i.e., one whose content depends on the challenge bit b) is
then produced as follows: First produce a plaintext m (possibly using a circuit
and depending on other hidden strings) and assign it to register bitsh1 . Then,
depending on b, assign bitsh1 or 0|bitsh1 |, respectively, to register bitsh2 (using a
special challenge query h2 ← C(h1)). Encrypt bitsh2 using some key and assign
the result to bitsh3 . Finally (optionally) reveal bitsh3 .

6

These considerations lead to the following definition of the adKDM oracle
(however, for the definition of adKDM security we will additionally define which
sequences of queries are allowed):

Definition 7 (adKDM Oracle). The adKDM oracle T maintains two partial
functions cmd and bits (to increase readability we write bitsh for bits(h) and

6 This is, of course, not the only possible way to model challenge encryptions. One
could, e.g., use a special command for producing a challenge encryption. However,
we believe that the approach of being able to make challenge values out of arbitrary
messages allows for more direct reductions in proofs. E.g., in our example protocol
we could directly model the fact that m is the value that should remain hidden by
using oracle call h′ ← C(h) when bitsh contains m and then using bitsh′ instead of
bitsh in subsequent encryptions.
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cmdh for cmd(h)), a set Φ, a sequence of secret/public key pairs sk i, pk i (i ∈ �)
(which are generated when first accessed), and a bit b (the challenge bit). The
function cmd will store the structure of previous queries, the function bits will
store the corresponding bitstrings, and Φ will keep track of query results that
are revealed to the adversary. We will refer to the elements in the domain of
cmd and bits as handles in the following. Upon the first activation, b is chosen
uniformly from {0, 1}, bits and cmd are initially undefined, and Φ is empty. The
oracle responds to the following commands:

– Encryption: h′ ← E(j, h) where cmdh′ has not been assigned, cmdh has been
assigned, and j is a key index: Set bitsh′ := Enc(pk j , bitsh) and cmdh′ :=
E(j, h).

– Decryption: h′ ← D(j, h) where cmdh′ has not been assigned, cmdh has been
assigned, and j is a key index: Set bitsh′ := Dec(pk j , bitsh), and cmdh′ :=
D(j, h).

– Circuit evaluation: h′ ← F (f, h1, . . . , ht) where cmdh′ has not been assigned,
cmdhi has been assigned for all i, and f is a circuit with t arguments: Set
bitsh′ := f(bitsh1 , . . . , bitsht) and set cmdh′ := F (f, h1, . . . , ht).

– Key request: h′ ← K(j) where cmdh′ has not been assigned and j is a key
index: Set cmdh′ := K(j) and bitsh′ := sk j.

– Challenge: h′ ← C(h) where cmdh′ has not been assigned and cmdh has
been assigned: Set cmdh′ := C(h). If b = 1, set bitsh′ := bitsh, otherwise set
bitsh′ := 0|bitsh|.

– Reveal: reveal(h) where cmdh has been assigned: Add h to Φ and return bitsh.
– Public key request: pk (j) where j is a key index: Return pk j.

The above commands in particular allow to assign a constant c to a handle h′

by issuing h′ ← F (f) where f is a nullary circuit that returns c. We abbreviate
this as h′ ← F (c). Note that the length of every bitstring is always known to
the adversary, because Enc, Dec, and all f are length-regular.

The knowledge of the adversary. If T can be accessed in arbitrary ways, it is
easy to determine b, e.g., querying h1 ← F (1), h2 ← C(h1), reveal(h2) will return
b. Thus we have to restrict the adversary to queries that will not trivially allow
to deduce b. The necessary criteria are given below. In analogy to Definition 6
we do this by deriving a set know that characterizes what the adversary would
ideally be able to know after the queries it performed. In contrast to Definition 6
the set know does not only contain keys, but the handles of all values produced
by the oracle that the adversary would be able to know in an ideal setting.
Intuitively, the knowledge know is defined by the following rules: All handles
that the adversary requested (the set Φ) are considered known. If the decryption
of a message is known, then that message is considered known.7 If a circuit
evaluation is known, all its arguments are considered known. If a challenge is

7 It may seem surprising that by learning the result of a decryption we may learn
something about the ciphertext. However, in fact we can get a single bit about the
ciphertext, namely whether it is valid or not. Combining this with the application
of circuits, we can in principle retrieve the full ciphertext.
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known, the underlying message is considered known. If a key is known and an
encryption of some message under that key is known, the message is considered
known. And finally, if a decryption of some handle h1 is known, and some handle
h2 evaluates to the same bitstring as h1, and that handle h2 resulted from an
encryption of some message m, then that message m is considered known.

The last rule merits some additional explanation: The adversary may, e.g.,
construct and reveal an encryption c (assigned to some handle h2) of some m.
Then it constructs a circuit f that evaluates to c (by hard-coding c into f) and
assigns h1 ← F (f). Now h1 and h2 refer to the same bitstring. By revealing
the decryption of h1, the adversary will then learn m. So after this sequence of
queries, we have to ensure that m is considered known to the adversary. This is
ensured by the last of the above rules. The following definition formally states
the definition of the knowledge of the adversary.

Definition 8 (Knowledge). For partial functions cmd , bits and a set Φ, we
define the knowledge know = knowcmd,bits,Φ of the adversary to be inductively
defined as follows:
– Φ ⊆ know.
– If h′ ∈ know and cmdh′ = D(j, h) then h ∈ know.
– If h′ ∈ know and cmdh′ = F (f, h1, . . . , ht) then h1, . . . , ht ∈ know.
– If h′ ∈ know and cmdh′ = C(h) then h ∈ know.
– If h′ ∈ know and cmdh′ = D(j, h1), bitsh1 = bitsh2 and cmdh2 = E(j, h3)

then h3 ∈ know.
– If h′

1, h
′
2 ∈ know and cmdh′

1
= K(j) and cmdh′

2
= E(j, h) then h ∈ know.

Note that know can be efficiently computed given Φ, cmd , and bits by adding
handles to know according to the rules in Definition 8 until know does not grow
any more. We are now ready to state the final definition of adKDM security.
Intuitively, an encryption scheme is adKDM secure if the probability that the
adversary guesses b correctly without performing a query that would even ideally
allow it to retrieve a bitstring constructed using a C(·) query.

Definition 9 (Adaptive KDM Security (adKDM)). An encryption
scheme (Enc,Dec) is adKDM secure if for any polynomial-time adversary A
there is a negligible function µ such that the following holds:

Pr[Guess ∧ ¬Invalid] ≤ 1
2 + µ(k)

where the events refer to an execution of A with input 1k and oracle access to
T(Enc,Dec) and the events are defined as follows:

By Guess we denote the event that the adversary outputs b where b is the
challenge bit.

By Invalid we denote the event that h ∈ know cmd,bits,Φ with cmdh being of the
form C(·).
We will show that this definition can be met (at least in the random oracle
model) in the next section. Clearly adKDM security implies DKDM security,
since if we can only reveal keys that are not used for decrypting, the plaintexts
of the challenge encryptions will never be in know .
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Adaptive KDM security in the random oracle model. As the OAEP
construction is formulated in the random oracle model, we need to know how
Definition 9 needs to be adapted when used in the random oracle model. In this
case, the adversary A is given access to the random oracle, and the circuits f
passed to the adKDM oracle are allowed to contain invocations of the random
oracle. Furthermore, the key generation, encryption, and decryption algorithms
may contain invocations of the random oracle.

On simulation-based notions. We often motivated our design choices above
by comparison with an ideal setting in which the adversary knows exactly the
bitstrings associated with handles in know . This leads to the question whether
it is possible to instead directly define security under key-dependent message
attacks using a simulation-based definition, i.e., to define an ideal functionality
that handles encryption and decryption queries in an ideal fashion. This ap-
proach has been successfully used to formulate IND-CCA security in the UC
framework [16]. Their approach, however, strongly depends on the fact that the
functionality only needs to output public keys and (fake) encryptions (secret
keys are only implicitly present due to the ability to use the functionality to
decrypt messages).8 It is currently unclear how this approach could be extended
to a functionality that can output secret keys. (It is of course possible to define a
functionality that outputs secret keys as long as no encryption queries have been
performed for that key, but this lead to a definition that is too weak to handle,
e.g., our example protocol and that would roughly correspond to Definition 4.)
This difficulty persists if we do not use the strong UC model [16] but instead
the weaker stand-alone model as in [22, Chapter 7]. Consequently, although a
simulation-based definition of KDM security might be very useful, it is currently
unknown how to come up with such a definition.

4 OAEP Is adKDM-Secure

We now prove the adKDM security of the OAEP scheme for a partial-domain
one-way function. In particular, since the RSA permutation is partial-domain
one-way under the RSA assumption [21], the adKDM security of RSA-OAEP
follows.

Theorem 10 (OAEP is adKDM secure). If f is a partial-domain one-way
trapdoor 1-1 function, then the OAEP scheme (Enc,Dec) based on f is adKDM
secure in the random oracle model.

To show this theorem, we first define an alternative characterization of partial-
domain one-wayness.

8 Technically, the reason is that a simulator has to be constructed that chooses the
outputs of the functionality. As long as only public keys and ciphertexts are output,
fake ciphertexts can be used since they cannot be decrypted. If the simulator had to
generate secret keys, the fake ciphertexts could be decrypted and recognized.
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Definition 11 (PD-Oracle). The PD-oracle Pf for a trapdoor 1-1 function f :
S×T → range f (that may depend on a security parameter) maintains sequences
of public/secret key pairs sk i, pk i (generated on first use). It understands the
following queries:
– pk (j) and sk(j): Return pk j or sk j, respectively.
– challenge(h, j): If h has already been used, ignore this query. Let jh := j.

Choose (sh, th) uniformly from S × T . Set ch := fpkjh
(sh, th). Return ch.

– decrypt(h): Return (sh, th).
– xdecrypt(c, j) where (c, j) �= (ch, jh) for all h. Check whether f−1

skj
(c) =

(sh, th) for some h. If so, return (sh, th). Otherwise return ⊥.
– check (s): Return the first h with sh = s. If no such h exists, return ⊥.

By PDBreak we denote the event that a query check(s) is performed such that
– The query returns h �= ⊥.
– No query sk(jh) and no query decrypt(h) has been performed before the cur-

rent query.

Lemma 12. If f is partial-domain oneway, then for any polynomial-time ad-
versary A querying Pf we have that Pr[PDBreak] is negligible in the security
parameter.

The proof is given in Appendix A. We additionally define a variant of the notion
of knowledge as defined in Definition 8. We call this variant lazy knowledge.

Definition 13 (Lazy knowledge). For partial functions cmd , bits and a set
Φ, we define the lazy knowledge lknow = lknow cmd,bits,Φ of the adversary to be
inductively defined as follows:
– Φ ⊆ lknow.
– If h′ ∈ lknow and cmdh′ = D(j, h) then h ∈ lknow.
– If h′ ∈ lknow and cmdh′ = F (f, h1, . . . , ht) then h1, . . . , ht ∈ lknow.
– If h′ ∈ lknow and cmdh′ = C(h) then h ∈ lknow.
– If h′, h1, h2∈ lknow, cmdh′ = D(j, h1), bitsh1 = bitsh2 and cmdh2 =E(j, h3)

then h3 ∈ lknow.
– If h′

1, h
′
2 ∈ lknow and cmdh′

1
= K(j) and cmdh′

2
= E(j, h) then h ∈ lknow.

The only change with respect to Definition 8 is that in the fifth rule we require
that h1, h2 ∈ lknow . In Definition 13 all rules depend only on values bitsh for
which h ∈ lknow ; thus one can efficiently compute lknow without accessing bitsh

for values h /∈ lknow by adding handles to lknow according to these rules until
lknow does not grow any further. We call this algorithm the lazy knowledge
algorithm. Note that lknow ⊆ know .

Proof sketch (of Theorem 10). To prove Theorem 10 we give a sequence of games
that transforms an attack against the adKDM security of the OAEP scheme into
an attack against the PD-oracle. This proof sketch only contains the proof struc-
ture and highlights selected steps. The full proof is given in the full version [3].

GAME1. The adversary A runs with access to the unmodified adKDM oracle
T . We assume that T invokes an encryption oracle E for encrypting and a
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decryption oracle D for decrypting. In particular, the encryption oracle E
performs the following actions in the i-th query:

r
$← {0, 1}k0, g := G(r), s := (m‖0k1)⊕ g, h := H(s), t := r⊕h, c := fpk(s, t).

The decryption oracle D acts as follows, assuming key index j and ciphertext
c:

– (s, t) := f−1
pkj

(c), r := t ⊕ H(s), (m, z) := s ⊕ G(r) with |m| = k − k1 − k0

and |z| = k1.
– If z = 0k1 , return m, otherwise return ⊥.

GAME2. We change the encryption oracle to first choose the ciphertext c and
then compute the values s, t, r, h, t, g from it, i.e., upon the i-th query the
encryption oracle does the following:

(s, t) $← {0, 1}k−k0 × {0, 1}k0 , c
$← fpk (s, t), r

$← {0, 1}k0 , h := r ⊕ t, g := (m‖0k1)⊕s

In particular, the values h and g are not retrieved from the oracles G and
H any more. In order to keep the distribution of the values c, s, t, r, h, t, g
consistent with the answers of the oracles G and H , the oracles G and H are
additionally modified to return the values g and h chosen by the encryption
oracle. We show that the probability of a successful attack is modified only
by a negligible amount with respect to GAME1.

GAME3. We now change the definition of what constitutes a successful attack. In
GAME1–GAME2, we considered it a successful attack if the adversary guessed
the bit b chosen by the adKDM oracle T without performing queries such
that the knowledge in the sense of Definition 8 would contain a handle cor-
responding to a query of the form C(·); see Definition 9.
Now, in GAME3, we consider it to be a successful attack if the adversary
guessed b without performing queries such that the lazy knowledge in the
sense of Definition 13 does not contain a handle corresponding to a query
C(·). Since the lazy knowledge is a subset of the knowledge, this represents
a weakening of the restrictions put on the adversary. Thus the probability of
an attack in GAME3 is upper-bound by the probability of an attack in GAME2.

GAME4. This step is arguably the most important step in the proof. In GAME3,
bitstrings bitsh associated to handles h are often computed but never used.
For example, the adversary might perform a query h ← E(. . . ) and never
use the handle h again. More importantly, however, even if the adversary
performs a query h′ ← E(j, h) for that handle h, the value bitsh does not
need to be computed due to the following observation: The encryption oracle
as introduced in GAME2 chooses the ciphertext c at random. The value g
(which is the only value depending on the plaintext m) is only needed for
suitably reprogramming the oracles G (namely such that G(r) = g). Thus we
can delay the computation of g until G is queried at position r. Thus in case
of a query h′ ← E(j, h), the value m = bitsh is not needed for computing
bitsh′ . We use this fact to rewrite the whole game GAME3 such that it only
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computes a value bitsh when it is actually needed for computing some output
sent to the adversary or for computing the lazy knowledge.

The bit b is only used in this game if a value bitsh is computed that
corresponds to a query h ← C(·). If this is not the case, the communication
between the adversary and T is independent of b. Hence, for proving that
the probability of attack in the sense of GAME3 is only negligibly larger than
1
2 (which then shows Theorem 10), it is sufficient to show that only with
negligible probability, a value bitsh is computed such that h is not in the lazy
knowledge. Namely, as long as no such value bitsh is computed, the adversary
cannot have a higher probability in guessing b than 1

2 unless h ∈ lknow .
GAME5. Now we replace the decryption oracle by a plaintext extractor. More

concretely, the decryption oracle performs the following steps when given a
ciphertext c:

(a) First, it checks whether c = fpk (s, t) for some pair (s, t) generated by the
encryption oracle.9 Then values (s, t) are known such that fpk (s, t) = c, and
the oracle can decrypt c without accessing the secret key sk .

(b) Otherwise, it checks whether for some s that has been computed by the
encryption oracle, there exists a value t such that fpk (s, t) = c. (Doing this
efficiently requires the secret key; otherwise we had to iterate over all possible
values t.) If so, reject the ciphertext.

(c) Otherwise, for all values s, r that have been generated so far, compute t :=
r ⊕ H(s) and (m, z) = s ⊕ G(r). Then check whether fpk(s, t) = c and
z = 0k1 . If so, return m. Otherwise reject the ciphertext.
We can show that this plaintext extractor is a good simulation of the orig-
inal decryption oracle (in particular, the adversary is able to produce an s
triggering rejection in (b) only if the decryption would fail anyway). Thus
the probability that a value bitsh is computed such that h is not in the lazy
knowledge does not increase by a non-negligible amount.

GAME6. In this final step, we modify GAME5 not to generate the public/secret
key pairs on its own, but to use the PD-oracle P defined in Definition 11. In
particular, we make the following changes:

– When the secret key sk j is needed (for computing bitsh for a h ← K(j)
query), query sk(j) from P .

– When producing a ciphertext bitsh′ (that are produced just to be random
images of fpk ), use challenge(h′, j) where j is the corresponding key index.

– In the decryption oracle, for checking the condition (a) in GAME5, we distin-
guish two cases. If c was produced by the encryption oracle the decryption
oracle sends a decrypt(h) to P where h is the query where c was produced.
Otherwise it sends an xdecrypt(c, j) query to P where j is the index of the
key used in the decryption query. In both cases, if the check in (a) would
have succeeded, P will send back a preimage (s, t) of c.

– The check (b) is performed by sending check (s) to P .
A case analysis reveals that if a value bitsh is computed such that h is not in
the lazy knowledge, then the event PDBreak (as in Definition 11) occurs. By

9 This does not imply that c has been generated by the encryption oracle since the
encryption oracle might have used a different public key pk at that time.
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Lemma 12 this can only happen with negligible probability. Thus no value
bitsh is computed such that h is not in the lazy knowledge, and therefore
the advantage of the adversary is negligible (as discussed in GAME4). ��
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A Proof of Lemma 12

Proof. Given an adversaryA against the PD-Oracle P we construct an adversary
B against partial-domain one-wayness of the underlying function f as follows.
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The machine B that implements the PD-oracle with slight changes: Let q be
an upper bound on the number of queries performed by A. Then B gets as input
a key pair pk∗, sk∗, values (s∗, t∗) ∈ S × T and a value c∗. Let j∗ be the i1-th
key index that is used in A’s queries, and let h∗ the i2-th handle that is used in
a query of the form challenge(h, j∗). Then B answers to A’s queries as follows
(for simplicity, if we write f−1

pk we mean an application of the secret key sk):
– pk (j): If j = j∗, return pk∗, otherwise return pk j .
– sk(j): If j = j∗, return sk∗, otherwise return sk j .
– challenge(h, j): If h has already been used, ignore this query.

• If h = h∗ (and thus also j = j∗) then set ch := c∗ and return ch.
• If h �= h∗ then choose (sh, th) uniformly from S × T . Set ch :=
fpkjh

(sh, th). Return ch.
– decrypt(h): If h = h∗, return (s∗, t∗). Otherwise return (sh, th).
– xdecrypt(c, j) where (c, j) �= (ch, jh) for all h. This is equivalent to the fol-

lowing:
• If j �= j∗ then check whether f−1

pkj
(c) = (sh, th) for some h �= h∗ or

fpkj∗ (f−1
pkj

(c)) = ch∗ . If so, return f−1
pkj

(c). Otherwise, return ⊥.
• If j = j∗ then test if fpkj

(sh, th) = c for any h �= h∗. If such an h exists,
output (sh, th). Otherwise, return ⊥.

– check (s): If s = sh for some h, return the first h with sh = s. If sk(j∗) or
decrypt(h∗) has been queried, check whether s = s∗. If so, return h∗.

We claim that this machine B behaves identically to the PD-oracle P until the
event PDBreak occurs and that A’s view is independent of i1, i2 until the event
PDBreak occurs (assuming that the inputs sk∗, pk∗ are an honestly generated
key pair, (s∗, t∗) is uniformly distributed on S × T and c∗ = fpk∗(s∗, t∗)). For
the queries pk , sk , challenge , and decrypt this is straightforward. In the case of
xdecrypt we distinguish two cases: For j �= j∗, the check performed is equivalent
to checking whether f−1

pkj
(c) = (sh, th) for some h �= h∗ or f−1

pkj
(c) = (s∗, t∗)

and then returning h or h∗, respectively. Thus in this case the answer to the
query xdecrypt is the same as that the PD-oracle P would give. For j = j∗, in
comparison to P , the check whether fpkj

(s∗, t∗) = c is missing. However, if this
check held true, we would have that (c, j) = (c∗, j∗) which is excluded. To see that
the query check (s) gives the same answers in B and P until PDBreak occurs, note
that the only case where check (s) would give another answer in P is when s = s∗

but neither sk(j∗) nor decrypt(h∗) have been queried. However, in this case h∗

would be returned in P , thus PDBreak occurs.10 So altogether, we have that B
behaves identically to P and A’s view is independent of i1, i2 until the event
PDBreak occurs. By PDBreaki′

1,i′
2
, denote the event that check (s) is queried with

s = sh where h is the i′2-th handle used by A, and no query sk(jh) or decrypt(h)
has been performed where jh is the i′1-th key index used by A. Obviously, if

10 In slight abuse of notation, we denote by PDBreak not the event that h �= ⊥ is returned
without a query of sk(jh) or decrypt(h), but that some check (s) is queried such that
s = sh and no query sk(jh) or decrypt(h) has been performed. Since for P these are
equivalent, it is enough to show the lemma w.r.t. this slightly changed definition.
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PDBreak occurs, then PDBreaki′
1,i′

2
occurs for some i′1, i

′
2 ∈ {1, . . . , q}. Since the

view of A is independent of i1, i2, we have that Pr[PDBreaki1,i2 ] ≥ 1
q2 Pr[PDBreak].

So it is enough to show that Pr[PDBreaki1,i2 ] =: ε is negligible. Observe that in
the description of B, in case of the event PDBreaki1,i2 the inputs sk∗, s∗, h∗ are
never accessed. So if we run B with the inputs sk∗, s∗, h∗ set to ⊥, PDBreaki1,i2

still occurs with probability at least ε. Further, PDBreaki1,i2 implies that check (s)
is called an s satisfying f−1(c∗) = ⊥. So if let B output one of the values s used
in check (s) queries (randomly chosen), we break the partial-domain one-wayness
of f with probability at least ε/q. Thus by contradiction, ε must be negligible.
Thus Pr[PDBreak] is negligible in an execution of B and thus also in one of P . ��
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Abstract. In this paper, we present a correlation attack on Sosemanuk
with complexity less than 2150. Sosemanuk is a software oriented stream
cipher proposed by Berbain et al. to the eSTREAM call for stream ci-
pher and has been selected in the final portfolio. Sosemanuk consists of a
linear feedback shift register(LFSR) of ten 32-bit words and a finite state
machine(FSM) of two 32-bit words. By combining linear approximation
relations regarding the FSM update function, the FSM output function
and the keystream output function, it is possible to derive linear approx-
imation relations with correlation −2−21.41 involving only the keystream
words and the LFSR initial state. Using such linear approximation rela-
tions, we mount a correlation attack with complexity 2147.88 and success
probability 99% to recover the initial internal state of 384 bits. We also
mount a correlation attack on SNOW 2.0 with complexity 2204.38 .

Keywords: stream cipher, Sosemanuk, SNOW 2.0, correlation attack,
linear mask.

1 Introduction

Sosemanuk[3] is a software oriented stream cipher proposed by Berbain et al. to
the eSTREAM call for stream cipher and has been selected in the final portfolio.
The merits of Sosemanuk has been recognized as its considerable security margin
and moderate performance[2].

Sosemanuk is based on the stream cipher SNOW 2.0[11] and the block cipher
Serpent[1]. Though SNOW 2.0 is a highly reputed stream cipher, it is vulnerable
to linear distinguishing attacks using linear masks[14,15]. To strengthen against
linear distinguishing attacks, Sosemanuk applies the multiplication modulo 232

with a bit rotation in the FSM update function and a Serpent S-box in bit slice
mode in the keystream output function. As of now, there are no known attacks
against Sosemanuk with complexity less than 2226[5].

Linear masking has been used in the linear distinguishing attacks on word-
based stream ciphers such as SNOW 1.0[9], SNOW 2.0, NLS[7], and Dragon[8].
Coppersmith et al.[9] presented a linear distinguishing attack on SNOW 1.0.
They identified linear approximation relations of large correlation involving only
the LFSR states and the keystream words. Then using simple bitwise recur-
rence relations between the LFSR state words, they were able to mount a linear

J. Pieprzyk (Ed.): ASIACRYPT 2008, LNCS 5350, pp. 524–538, 2008.
c© International Association for Cryptologic Research 2008
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distinguishing attack on SNOW 1.0. Watanabe et al.[15] presented a linear dis-
tinguishing attack on SNOW 2.0 and then Nyberg and Wallén[14] refined the
attack.

On the other hand, Berbain et al.[4] presented a correlation attack on Grain
using linear approximation relations between the initial LFSR state and the
keystream bits to recover the initial LFSR state. As to solving systems of linear
approximation equations, similar technique was used in [6] and iterative decoding
technique was used in [12].

In this paper, combining the linear masking method with the techniques in [4]
using fast Walsh transform to recover the initial LFSR state of Grain, we mount
a correlation attack on Sosemanuk. The time, data and memory complexity are
all less than 2150.

This paper is organized as follows. In Sect. 2, we present a description of
Sosemanuk. In Sect. 3, we show how to get approximation relations between the
initial LFSR state and the keystream words. In Sect. 4, we describe the attack
using the approximation relations. In Sect. 5, we present simulation results. In
Sect. 6, we present a correlation attack on SNOW 2.0. We conclude in Sect. 7.

2 Preliminaries

2.1 Notations and Definitions

We define the correlation of a function with respect to masks as follows. Let
f : (GF(2)n)k → GF(2)n be a function and let Γ0, Γ1, . . . , Γk be n-bit masks.
Then the correlation of f with respect to the tuple (Γ0;Γ1, . . . Γk) of masks is
defined as

cf (Γ0;Γ1, . . . , Γk) := 2 Prob(Γ0 · f(x1, . . . , xk) = Γ1 · x1 ⊕ . . .⊕ Γk · xk) − 1,

where · represents the inner product which will be omitted henceforth. We also
define the correlation of an approximation relation as

2 Prob(the approximation holds) − 1 .

The following notations will be used in the following sections.

– wt(x): the Hamming weight of a binary vector or a 32-bit word x
– �: addition modulo 232

– ×: multiplication modulo 232

– [i1, . . . , im]: the 32-bit linear mask 2i1 + . . . + 2im (i1, . . . , im are distinct
integers in between 0 and 31.)

– c+(Γ0;Γ1, . . . , Γm): the correlation of f(x1, . . . , xm) = x1 � . . . � xm with
respect to the tuple (Γ0;Γ1, . . . Γk) of 32-bit masks

– c2+(Γ ) := c+(Γ ;Γ, Γ ) for 32-bit linear mask Γ
– c3+(Γ ) := c+(Γ ;Γ, Γ, Γ ) for 32-bit linear mask Γ
– cT (Γ0;Γ1): the correlation of Trans(x) with respect to the tuple (Γ0; Γ1) of

32-bit masks
– c2T (Γ ) = cT (Γ ;Γ ) for 32-bit linear mask Γ
– x(j): j-th least significant bit of a nibble, a byte or a 32-bit word x
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2.2 Description of Sosemanuk

The structure of Sosemanuk[3] is depicted in Fig. 1. Sosemanuk consists of three
main components: a 10-word linear feedback shift register, a 2-word finite state
machine, and a nonlinear output function. Sosemanuk is initialized with the key
of length in between 128 and 256 and the 128-bit initialization value. The output
of the cipher is a sequence of 32-bit keystream words (zt)t≥1. The LFSR state
at time t is denoted by LRt = (st+1, st+2, . . . , st+10).(t = 0 designates the time
after initialization.) The LFSR is updated using the recurrence relation

st+10 = st+9 ⊕ α−1st+3 ⊕ αst for all t ≥ 1,

where α is a zero of the primitive polynomial

P (X) = X4 + β23X3 + β245X2 + β48X + β239

on GF(28)(X) and GF(28) = GF(2)[γ], where γ is a zero of the primitive poly-
nomial

Q(X) = X8 + X7 + X5 + X3 + 1

on GF(2)(X). The FSM state at time t is denoted by (R1t, R2t). The FSM is
updated as follows.

R1t = R2t−1 � (st+1 ⊕ lsb(R1t−1)st+8),
R2t = Trans(R1t−1) = (M × R1t−1)<<<7,

where M = 0x54655307. The FSM has output

ft = (st+9 � R1t) ⊕R2t .

The keystream words are obtained as follows.

(zt+3, zt+2, zt+1, zt) = Serpent1(ft+3, ft+2, ft+1, ft) ⊕ (st+3, st+2, st+1, st)
(t ≡ 1(mod 4))

where Serpent1 denotes the Serpent S-box S2 applied in bit slice mode. Four
words are output per 4 LFSR clockings.

3 Linear Approximations

In this section, we get linear approximation relations involving only the LFSR
states and the keystream words with non-negligible correlation by approximating
the FSM update functions, the FSM output functions, and the keystream output
function using linear masks with non-negligible correlation.

Let at = lsb(R1t). We consider the following approximations using 32-bit
linear masks Γ by replacing all operations (modular additions and the Trans
function) by XORs in the FSM update function and the FSM output function:

ΓR1t+1 = ΓR2t ⊕ Γ (st+2 ⊕ atst+9),
ΓR2t+1 = ΓR1t,
Γ ft = Γst+9 ⊕ ΓR1t ⊕ ΓR2t,
Γ ft+1 = Γst+10 ⊕ ΓR1t+1 ⊕ ΓR2t+1 .
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R1

st+9 st+8 st+3 st+1 st

α−1 α

mux

R2Trans

Serpent1
ft (*4) output

Fig. 1. The Structure of Sosemanuk

XORing the above relations and applying the Piling-Up Lemma, we have the
approximation

Γ (ft ⊕ ft+1) = Γst+2 ⊕ atΓst+9 ⊕ Γst+9 ⊕ Γst+10 (1)

with correlation c2+(Γ )3c2T (Γ ) assuming that the four linear approximations
are independent.

However the way of computing the correlation as above is not accurate since
the approximation relations have high dependencies. For example, approxima-
tions of two modular additions with correlations c1, c2 do not necessarily yield an
approximation with correlation c1c2. So we need to consider approximation rela-
tions which do not have obvious dependencies. We have the following equations
regarding the internal states and keystream words:

ft ⊕R2t = st+9 � Trans−1(R2t+1),
ft+1 ⊕R2t+1 = st+10 � (R2t � (st+2 ⊕ atst+9)) .

We consider the following associated approximation relations

Γft ⊕ ΓR2t = Γst+9 ⊕ ΓR2t+1,
Λft+1 ⊕ ΛR2t+1 = Λst+10 ⊕ ΛR2t ⊕ Λst+2 ⊕ atΛst+9 .

where Γ and Λ are linear masks as depicted in Fig. 2. The correlations of the
above approximations are ∑

Φ

c+(Γ ;Γ, Φ)cT (Γ ;Φ)

and c3+(Λ), respectively.
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Fig. 2. Some Linear Masking of Sosemanuk

Note that the first correlation is a composite correlation of the function x2 =
Trans−1(x3) and the function y = x1 � x2 with respect to (Γ ;Γ, Γ ) which can
be computed as a sum of partial correlations [13, Theorem 3][14]. So if we let
Γ = Λ, we have the same approximation relation (1) with correlation

c3+(Γ )
∑
Φ

c+(Γ ;Γ, Φ)cT (Γ ;Φ) .

In order to remove terms involving ft and ft+1 in (1), we will utilize a linear
approximation relation regarding the keystream output function that comes from
the third S-box S2 of the block cipher Serpent in bit slice mode.

unsigned char S2[16] = {8,6,7,9,3,12,10,15,13,1,14,4,0,11,5,2}

S2 has maximal linear correlation 1
2 . Regarding the function y = S2(x), we have

8 linear approximation relations with maximal correlation 1
2 which is of the form

x(i) + x(i+1) + (terms involving only y) = 0 .
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Each of such approximation relations gives linear approximation relations re-
garding the keystream output function. We will use the relation

x(0) + x(1) + y(0) + y(3) = 0

which induces the following relation for any j = 0, . . . , 31,

(ft)(j) ⊕ (ft+1)(j) ⊕ (zt)(j) ⊕ (st)(j) ⊕ (zt+3)(j) ⊕ (st+3)(j) = 0,

with correlation 1
2 when t ≡ 1(mod 4). Thus if Γ is a linear mask, then

Γ (ft ⊕ ft+1) ⊕ Γzt ⊕ Γst ⊕ Γzt+3 ⊕ Γst+3 = 0, (2)

holds with correlation (1
2 )wt(Γ ) when t ≡ 1(mod 4). Noting that

atΓst+9 ⊕ Γst+9 = 0

holds with correlation 1
2 , we have linear approximation (3) involving only LFSR

states and keystream words by XORing relations (1) and (2)

Γst ⊕ Γst+2 ⊕ Γst+3 ⊕ Γst+10 = Γzt ⊕ Γzt+3 (3)

with correlation

C(Γ ) := (
1
2
)wt(Γ )+1c3+(Γ )

∑
Φ

c+(Γ ;Γ, Φ)cT (Γ ;Φ)

when t ≡ 1(mod 4), assuming that the approximations are independent. Note
that we don’t see obvious dependencies between the approximations given above.
We check the validity of our estimation by simulations described in Sect. 5.

3.1 Search for Linear Masks

We try to find Γ such that |C(Γ )| is as large as possible. Taking into considera-
tion the factor (1

2 )wt(Γ ), we confined the search to masks of weight less than or
equal to 5. Furthermore, we have the following observation from many examples
though we don’t have a proof:

– If c2T (Γ ) = 0, then C(Γ ) = 0.

Based on this observation, we compute C(Γ ) for a given mask Γ in the following
way:
If c2T (Γ ) �= 0, then

1. we compute c3+(Γ ) using [14, Theorem 1] regarding correlation of modular
addition.

2. We compute
∑

Φ c+(Γ ;Γ, Φ)cT (Γ ;Φ) using [14, Theorem 1] and fast Walsh
transform. Once Γ is fixed, we can compute c+(Γ ;Γ, Φ) for any Φ using
the description with finite automaton in [14]. It turns out that for each Γ ,
c+(Γ ;Γ, Φ) = 0 except for most Φ’s. Using fast Walsh transform, for each
fixed Γ , we can compute cT (Γ ;Φ) for all Φ with time complexity 237 and
memory complexity 232.



530 J.-K. Lee, D.H. Lee, and S. Park

Table 1. Correlations with respect to some linear masks of weight 4

Γ log2(|c3+(Γ )|) log2(|ΣΦ|) −(wt(Γ ) + 1) |C(Γ )|
[25, 14, 13, 0] −3.17 −14.33 −5 2−22.50

[25, 24, 14, 0] −3.17 −13.24 −5 2−21.41

[25, 22, 18, 0] −4.55 −15.13 −5 2−24.68

Then we obtain the following results:

– There does not exist a mask Γ of weight 1,2, or 3 such that |C(Γ )| > 2−29.
– The only masks Γ of weight 2 such that C(Γ ) �= 0 are [i, i+25] (i = 0, . . . , 6).
– There exist masks Γ of weight 4 such that |C(Γ )| > 2−25. Some of them are

listed in Table 1.

We also considered some masks Γ of the form [i, i+ 25, j, k, l], but we could not
find one such that |C(Γ )| > 2−25. Thus the best linear mask we found out is
[25, 24, 14, 0], for which the correlation is −2−21.41.

4 Correlation Attack on Sosemanuk

In this section, we describe a correlation attack against Sosemanuk recovering the
initial internal state. Using the approximation relations (3) involving only LFSR
state words and keystream words with non-negligible correlation obtained in the
preceding section, we apply the techniques in [4] using fast Walsh transform to
mount the attack.

Getting Approximation Relations between Initial LFSR State and
Keystream Words. Let Γ be the linear mask [25, 24, 14, 0], κ = C(Γ ) =
−2−21.41, and ε = |κ/2| = 2−22.41 throughout this section. Starting with the
approximation (3) with correlation κ, we can obtain arbitrarily many linear ap-
proximations with correlation κ involving the initial LFSR state s1, · · · , s10 and
the keystream words using the relation

(Γ0, Γ1, · · · , Γ9) · (st+j , st+j+1, · · · , st+j+9)
= (Gj(Γ0, Γ1, · · · , Γ9)) · (st, st+1, · · · , st+9)

for each j > 0, where G is the “dual” of the LFSR update transformation and is
given by

G(Γ0, Γ1, Γ2, Γ3, Γ4, Γ5, Γ6, Γ7, Γ8, Γ9)
= (α∗Γ9, Γ0, Γ1, Γ2 ⊕ (α−1)∗Γ9, Γ3, Γ4, Γ5, Γ6, Γ7, Γ8 ⊕ Γ9),

where α∗Γ and (α−1)∗Γ are 32-bit linear masks such that (α∗Γ )(x) = Γ (αx)
and ((α−1)∗Γ )(x) = Γ (α−1x) for each 32-bit x.

To be more explicit, the approximation relations (3) can be rewritten as

(Γ ⊕ α∗Γ, 0, Γ, Γ ⊕ (α−1)∗Γ, 0, 0, 0, 0, 0, Γ ) · (s1, · · · , s10) = Γz1 ⊕ Γz4
(Γ ⊕ α∗Γ, 0, Γ, Γ ⊕ (α−1)∗Γ, 0, 0, 0, 0, 0, Γ ) · (s5, · · · , s14) = Γz5 ⊕ Γz8
(Γ ⊕ α∗Γ, 0, Γ, Γ ⊕ (α−1)∗Γ, 0, 0, 0, 0, 0, Γ ) · (s9, · · · , s18) = Γz9 ⊕ Γz12
· · · ,

(4)
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which are again equivalent to

(Γ ⊕ α∗Γ, 0, Γ, Γ ⊕ (α−1)∗Γ, 0, 0, 0, 0, 0, Γ ) · (s1, · · · , s10) = Γz1 ⊕ Γz4
F(Γ ⊕ α∗Γ, 0, Γ, Γ ⊕ (α−1)∗Γ, 0, 0, 0, 0, 0, Γ ) · (s1, · · · , s10) = Γz5 ⊕ Γz8
F2(Γ ⊕ α∗Γ, 0, Γ, Γ ⊕ (α−1)∗Γ, 0, 0, 0, 0, 0, Γ ) · (s1, · · · , s10) = Γz9 ⊕ Γz12
· · · ,

(5)

where F = G4. Thus the complexity of getting R relations between the initial
LFSR state and the keystream words is comparable to the complexity of getting
128R bits of keystream.

Recovering Part of the Initial LFSR State. We apply the “Second LFSR
Derivation Technique” in [4]. Let n = 320 be the size of the LFSR state in bits
and m < n. Let ε′ = 2ε2 = 2−43.82 and N = ( 2λ

3ε′ )2, where λ satisfies

1√
2π

∫ ∞

λ

e−
t2
2 dt = 2−m.

Let R =
√
N2n−m+1. Let u1, · · · , un be the bits of the LFSR initial state

s1, · · · , s10. Suppose we have R linear approximation relations of correlation
κ involving ui’s. Let i1, · · · , im be any integers such that 1 ≤ i1 < . . . < im ≤ n.
XORing pairs of those R equations, we get about R(R−1)2m−n−1 ≈ N approx-
imation relations with correlation 2ε′ involving only ui1 , . . . , uim among ui’s. Let
these relations be

aj
i1
ui1 + · · · + aj

im
uim = bj . (j = 1, . . . , N) (6)

Let us define the function σ : GF(2)m → Z by

σ(a1, · · · , am) = |{j ∈ {1, . . . , N} : (aj
i1
, . . . , aj

im
) = (a1, . . . , am), bj = 0}|

− |{j ∈ {1, . . . , N} : (aj
i1
, . . . , aj

im
) = (a1, . . . , am), bj = 1}|

Let W be the fast Walsh transform defined by

W (f)(y1, . . . , ym) =
∑

x1,...,xm∈GF(2)

f(x1, . . . , xm)(−1)y1x1+...+ymxm

for f : GF(2)m → Z. Note that, for each (ui1 , · · · , uim), W (σ)(ui1 , · · · , uim) is

the number of relations in (6) satisfied by(ui1 , · · · , uim)
− the number of relations in (6) not satisfied by(ui1 , · · · , uim). (7)

For the right value of (ui1 , · · · , uim), above number follows the normal distri-
bution N(2Nε′, N(1 − 4ε′2)). So, using N(1 − 4ε′2) ≈ N , for the right value of
(ui1 , · · · , uim),

Prob
(
W (σ)(ui1 , · · · , uim) <

3
2
Nε′

)
=

1√
2π

∫ ∞

λ
3

e−
t2
2 dt .
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Table 2. Complexity of the Attack

with Precomputation without Precomputation
time(unit) memory(bit) data(bit) time(unit) memory(bit) data(bit)

Precomputation 2147.47 2148.34

Online computation 2144.66 2144.55 2145.50 2147.88 2147.10 2145.50

But for random (ui1 , · · · , uim), (7) follows the distribution N(0, N). So for ran-
dom (ui1 , · · · , uim),

Prob
(
W (σ)(ui1 , · · · , uim) >

3
2
Nε′

)
=

1√
2π

∫ ∞

λ

e−
t2
2 dt = 2−m .

Thus, when we use the threshold value 3
2Nε′ for determining whether a partial

LFSR state candidate (ui1 , · · · , uim) is the right one, we have non-detection
probability less than 1√

2π

∫∞
λ
3

e−
t2
2 dt and false alarm rate 2−m.

Complexity of the Attack. The attack can be performed in two ways. One
way is to precompute the coefficients (aj

i1
, · · · , aj

im
) and then perform all other

computations in online phase. The other is to perform all the computations
online. Complexity of both ways are described below and summarized in Table 2.

Attack with Precomputation. To recover partial bits ui1 , · · · , uim of the initial
initial state, in the precomputation phase, we get the coefficients of the left
hand sides of the R approximation relations (5) between the LFSR initial states
and the keystream words. Store the (320 + �log2(R)�)-bit values (Ui, i) (i =
0, · · · , R− 1) in a list, where

Ui := F i(Γ ⊕ α∗Γ, 0, Γ, Γ ⊕ (α−1)∗Γ, 0, 0, 0, 0, 0, Γ )

for each i. Then sort the list according to the components in {1, · · · ,m} −
{i1, · · · , im}. For each pair (i, k) such that the components of Ui and Uk in
{1, · · · ,m} − {i1, · · · , im} coincides, compute Xi,k := (Ui ⊕ Uk restricted to
i1-th, · · · , im-th components), and store (Xi,k, i, k) in a list. The list has about N
entries of size m+2�log2(R)�. In the online phase, set the function σ : GF(2)m →
Z as zero. Let wi = Γz4i+1+Γz4i+4 for each i = 0, · · · , R−1. For each (Xi,k, i, k)
in the list, compute the value wi + wk and update σ. (The update rule is that
σ(Xi,k) increases by 1 if wi +wk = 0 and decreases by 1 otherwise.) Perform the
fast Walsh transform to σ and check if there is some (ui1 , · · · , uim) such that
W (σ)(ui1 , · · · , uim) > 3

2Nε′. The complexity of the above attack to recover m
bits of the initial LFSR state is as follows. The complexity of the above attack to
recover m bits of the initial LFSR state is as follows. We assume the complexity
of the basic operations as in Table 3. The precomputation phase has time com-
plexity of about 128R+R log2(R)(320 + �log2(R)�) + (N +R)(320+ �log2(R)�)
and memory requirement of R(320 + �log2(R)�) + N(m + 2�log2(R)�) bits if
we apply a sorting algorithm of small memory requirement. The online phase
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Table 3. Complexity of basic operations

operations time complexity
XOR of two k-bit words k
Comparison of two k-bit words k
Sorting a list with r k-bit entries kr log2(r)
Walsh transform for 2m k-bit integers km2m

takes 2m�log2(N)�-bits of memory and time complexity of 8N +m2m�log2(N)�.
The data complexity of the online phase is 27R bits. Let m = 138. Then
λ ≈ 13.6(by e.g. Lemma 1 in the Appendix), N = 294.00 and R = 2138.50. For
recovery of the whole n bits of the LFSR initial state, we recover (u1, · · · , um)
and (um, · · · , u2m−1) using above-mentioned methods. Then restore the remain-
ing 45 bits of the initial LFSR state and 64 initial FSM bits simultaneously
using exhaustive search. The precomputation phase takes time complexity of
128R + 2(R log2(R)(320 + �log2(R)�) + (N + R)(320 + �log2(R)�)) = 2155.47.
(The number in the table is 2147.47 regarding 1 time unit as the time needed to
generate 256 bits of keystream which is not greater than the time cost of one
trial in the exhaustive search .)The required memory is 2R(320 + �log2(R)�) +
N(m + 2�log2(R)�) = 2148.34 bits. The online phase has time complexity of
2(8N+m2m�log2(N)�) = 2152.66, memory requirement of 2m�log2(N)� = 2144.55

bits, and data complexity of 27R = 2145.50 bits. The non-detection probability
is less than 2√

2π

∫∞
λ
3

e−
t2
2 dt ≤ 0.01. We mention that the increased complexity

due to sorting was not considered in [4].

Attack without Precomputation. To recover partial bits ui1 , · · · , uim of the initial
LFSR state, we first get all the coefficients of the R approximation relations
using the keystreams. Store the (320 + 1)-bit values (Ui, wi) (i = 0, · · · , R − 1).
Then sort the list according to the components in {1, · · · ,m} − {i1, · · · , im}.
Set the function σ as zero. For each pair (i, k) such that the components of Ui

and Uk in {1, · · · ,m} − {i1, · · · , im} coincides, compute Xi,k and update the
function σ using (Xi,k, wi + wk). Perform the fast Walsh transform to σ and
check if there is some (ui1 , · · · , uim) such that W (σ)(ui1 , · · · , uim) > 3

2Nε′. The
time complexity is about 128R+R log2(R)(n+ 1) + N(n+ 1) + m2m�log2(N)�
and memory requirement is about �log2(N)�2m + (320 + 1)R bits. The data
complexity is 27R bits. Let m = 138. For recovery of the whole n bits of the
LFSR initial state, we recover (u1, · · · , um) and (um, · · · , u2m−1) using above-
mentioned methods. Then restore the remaining 45 bits of the initial LFSR
state and 64 initial FSM bits simultaneously using exhaustive search. The time
complexity is 2(128R+R log2(R)(n+1)+N(n+1)+m2m�log2(N)�)+129·2129 =
2155.88. The memory requirement is �log2(N)�2m + (320 + 1)R = 2147.10 bits,
and the data complexity is 27R = 2145.50 bits.

Improving the Attack. We can reduce the data complexity without increasing
the time complexity. For the Serpent S-box S2, we have 8 linear approximations
with correlation 1

2 which is of the form
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x(i) + x(i+1) + (terms involving only y) = 0 .

Using these approximations, we can get 8 linear approximation relations involv-
ing the LFSR initial state and keystream words with correlation κ. Thus we
can reduce the data complexity at least by the factor of 23. We can also reduce
the memory requirement of the attack using the “Improved Hybrid Method”[4]
without increasing time complexity or data complexity much.

5 Simulations and Results

5.1 Simulations for a Reduced Cipher

We validate our claims by simulating a reduced version of Sosemanuk keystream
generator defined as follows. It consists of an LFSR of five bytes and an FSM of
two bytes. The LFSR state at time t is (st, st+1, . . . , st+5). The LFSR is updated
using the relation

st+5 = st+4 ⊕ β−1st+3 ⊕ βst,

where β is a zero of x8 + x7 + x5 + x3 + 1 in

GF (28) = GF (2)(β) = GF (2)[x]/ < x8 + x7 + x5 + x3 + 1 >

The FSM state at time t is denoted by (R1t, R2t). The FSM is updated as
follows.

R1t = R2t−1 + (st+1 ⊕ lsb(R1t−1)st+3)(mod 28)
R2t = Trans(R1t−1) = ((M ×R1t−1)(mod 28))<<<3

where, M = 0x59. The FSM has output

ft = (st+4 + R1t)(mod 28) ⊕R2t.

The keystream bytes are obtained as follows.

(zt+3, zt+2, zt+1, zt) = Serpent1(ft+3, ft+2, ft+1, ft) ⊕ (st+3, st+2, st+1, st)
(t ≡ 1(mod 4))

Then we get a linear approximation relation

Γst ⊕ Γst+2 ⊕ Γst+3 ⊕ Γst+5 = Γzt ⊕ Γzt+3 (t ≡ 1(mod 4))

with correlation

(
1
2
)wt(Γ )+1c3+(Γ )

∑
Φ

c+(Γ ;Γ, Φ)cT (Γ ;Φ)

when t ≡ 1(mod 4), for each 8-bit mask Γ . In the simulation, we generate 230

bytes of keystream and observe the actual correlation of the linear approximation
regarding the LFSR states and the keystream bytes for various initial internal
states. The observed actual correlation is about −2−6.12 when Γ = [5, 0] and
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Table 4. Correlations with respect to linear masks of weight 2

Γ log2(|c3+(Γ )|) log2(|ΣΦ|) −(wt(Γ ) + 1) correlation
[5, 0] −1.59 −1.91 −3 −2−6.50

[6, 1] −10 −3 −3 −2−16

[7, 2] −3.57 −3.36 −3 −2−9.93

about −2−10.31 when Γ = [7, 2] regardless of the initial internal state. Using
the observed correlation for Γ = [5, 0], we are able to recover the initial internal
state using the method explained in Sect. 4. The parameters are n = 40, m = 24,
λ = 2.83, N = 230.31 and R = 223.66. We get R approximation relations regarding
the n-bit initial LFSR state and the keystream words. Then we get about N
approximations regarding the latter m bits of the initial LFSR state. Applying
the fast Walsh transform to an array with 2m entries, we can recover the m bits
correctly most of the time. We performed the experiments to recover the latter
24 bits of the initial LFSR state for 100 initial initial internal states as follows.

– LFSR initial states: (i, i + 1, i + 2, i + 3, i + 4) (i = 0, · · · , 99)
– FSM initial state: (0,0) (fixed)

With the threshold 3
2N2−13.24 = 206382, we were able to get the right 24-bit

value in each case except when i = 26. In each case 0–4 false alarms occurred
with average 1.18. A few minutes was spent on a Pentium IV 3.4GHz CPU with
1GB RAM for each case. This experimental results corroborate our assertions.

5.2 Simulations with Long Keystreams for Full Sosemanuk

To check if the correlation of relations (3) is correct in another way, we generate
long keystreams for Sosemanuk for some initial internal states. We consider the
following 2 LFSR initial states and 8 FSM initial states.

– LFSR initial states
• A: (0x9000, 0x8000, · · · , 0x1000, 0x0000)
• B: (0x9111, 0x8000, · · · , 0x1000, 0x0111) (the same as A except

for the first and the last word)
– FSM initial states: (0x0000, 0x0000), · · · , (0x7000, 0x7000)

For each of the 16 initial states, we generate Sosemanuk keystreams of 253 bits
and count how many of the 246 induced relations (3) are satisfied for the mask
Γ = [25, 24, 14, 0] and compute the observed correlation. The results are as in
Table 5. In the table, “z-value” represents

(the number of the satisfied among the 246 relations)− (245 + 245C(Γ ))
222 ,

which is the normalized deviation in the assumed normal distribution. In total,
the observed correlation using the 250 relations is −2−21.45, which is very close
to C(Γ ). This result also corroborates our assertions.
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Table 5. Simulation Result for Long Keystreams

LFSR FSM z-value correlation∗ LFSR FSM z-value correlation∗

A 0 -0.29 −2−21.28 B 0 1.93 −2−22.89

1 -2.13 −2−20.64 1 -0.65 −2−21.13

2 0.69 −2−21.79 2 -0.15 −2−21.34

3 0.35 −2−21.59 3 1.09 −2−22.06

4 0.54 −2−21.70 4 -0.95 −2−21.02

5 -0.35 −2−21.25 5 -0.16 −2−21.34

6 -0.48 −2−21.20 6 0.99 −2−21.99

7 -0.62 −2−21.14 7 1.73 −2−22.64

∗:Observed correlation.

6 Correlation Attack on SNOW 2.0

SNOW 2.0[11] consists of an LFSR consisting of 16 words and an FSM of 2
words. In [14], it was shown that there exists a linear approximation relation of
the LFSR bits and keystream bits with bias 2−15.496 or correlation ±2−14.496[14,
Table 2]. One of such approximation relations is

Λst + Λst+1 + Λst+5 + Λst+15 + Λst+16 = Λzt + Λzt+1,

where Λ = [0, 15, 16]. Applying the “Second LFSR derivation technique” again
with parameter n = 512 and ε = 2−15.496, we can mount a correlation attack on
SNOW 2.0 without precomputation as follows.

Let m = 192. Using the same notation as in Sect. 4, λ ≈ 16.1, N = 266.54

and R = 2193.77. The time complexity of the attack for recovering m bits is
32R + R log2(R)(n + 1) + N(n + 1) + m2m�log2(N)�. (The factor 32 comes
from the fact that 32 bits of keystreams are needed per one approximation
relation.) Memory requirement is about �log2(N)�2m + (512 + 1)R bits. The
data complexity is 25R bits. For recovery of the whole initial LFSR state, recover
partial 192 bits of LFSR three times and then recover the initial FSM state by
exhaustive search. The total time complexity is 3(32R+R log2(R)(n+1)+N(n+
1)+m2m�log2(N)�) = 2212.38. The memory complexity is about �log2(N)�2m +
(512 + 1)R = 2202.83 bits. The data complexity is 25R = 2198.77 bits. Since the
initialization of SNOW 2.0 is a reversible process, we can recover the key from
the initial state.

7 Conclusion

We described an attack recovering the initial internal state with time complex-
ity 2147.88, memory complexity 2147.10 bits, and data complexity 2145.50 bits.
Though the attack does not threaten the claimed 128-bit security of Sosemanuk,
it indicates that using keys longer than 150 bits for Sosemanuk does not guar-
antee the security level of the key size. The main reason Sosemanuk is vul-
nerable to the attack described in this paper is that the LFSR state is too
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small in the presence of a relatively large correlation between the LFSR state
and the keystream words. Similar attack of complexity 2204.38 is valid against
SNOW 2.0.
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A An Approximation of the Cumulative Normal
Distribution Function

Lemma 1. For any 0 < a < 1, we have

a

λ
e−

λ2
2 ≤

∫ ∞

λ

e−
t2
2 dt ≤ 1

λ
e−

λ2
2

for any λ ≥ 1 such that a ≤ λ2

λ2+1 .

Proof. Let

F (x) =
∫ ∞

x

e−
t2
2 dt− 1

x
e−

x2
2 (x > 0) .

Then F ′(x) = 1
xe

− x2
2 > 0 and limx→∞ F (x) = 0. Hence F (x) < 0 for all x > 0.

Let
G(x) =

∫ ∞

x

e−
t2
2 dt− a

x
e−

x2
2 (x > 0) .

Then G′(x) = (a− 1)e−
x2
2 + a

x2 e
−x2

2 so that G′(x) < 0 if a < x2

x2+1 .

Since limx→∞ G(x) = 0, G(x) > 0 when a < x2

x2+1 . ��
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Département d’Informatique,

CNRS, INRIA
45 rue d’Ulm, 75230 Paris, France

orr.dunkelman@ens.fr
2 Einstein Institute of Mathematics, Hebrew University

Jerusalem 91904, Israel
nkeller@math.huji.ac.il

Abstract. In [6], Biryukov presented a new methodology of stream ci-
pher design, called leak extraction. The stream cipher LEX, based on this
methodology and on the AES block cipher, was selected to phase 3 of the
eSTREAM competition. The suggested methodology seemed promising,
and LEX, due to its elegance, simplicity and performance was expected
to be selected to the eSTREAM portfolio.

In this paper we present a key recovery attack on LEX. The attack
requires about 236.3 bytes of key-stream produced by the same key (pos-
sibly under many different IVs), and retrieves the secret key in time of
2112 simple operations. Following a preliminary version of our attack,
LEX was discarded from the final portfolio of eSTREAM.

Keywords: LEX, AES, stream cipher design.

1 Introduction

The design of stream ciphers, and more generally, pseudo-random number gen-
erators (PRNGs), has been a subject of intensive study over the last decades.
One of the well-known methods to construct a PRNG is to base it on a keyed
pseudo-random permutation. A provably secure construction of this class is given
by Goldreich and Levin [19]. An instantiation of this approach (even though an
earlier one) is the Blum and Micali [11] construction (based on the hardness of
RSA). A more efficiency-oriented construction is the BMGL stream cipher [21]
(based on the Rijndael block cipher). However, these constructions are relatively
slow, and hence are not used in practical applications.
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In [6], Biryukov presented a new methodology for constructing PRNGs of this
class, called leak extraction. In this methodology, the output key stream of the
stream cipher is based on parts of the internal state of a block cipher at certain
rounds (possibly after passing an additional filter function). Of course, in such
a case, the “leaked” parts of the internal state have to be chosen carefully such
that the security of the resulted stream cipher will be comparable to the security
of the original block cipher.

As an example of the leak extraction methodology, Biryukov presented in [6]
the stream cipher LEX, in which the underlying block cipher is AES. The key
stream of LEX is generated by applying AES in the OFB (Output Feedback
Block) mode of operation and extracting 32 bits of the intermediate state after
the application of each full AES round.

LEX was submitted to the eSTREAM competition (see [7]). Due to its high
speed (2.5 times faster than AES), fast key initialization phase (a single AES
encryption), and expected security (based on the security of AES), LEX was
considered a very promising candidate and selected to the third (and final) phase
of evaluation.

During the eSTREAM competition, LEX attracted a great deal of attention
from cryptanalysts due to its simple structure, but nevertheless, only two attacks
on the cipher were reported: A slide attack [23] requiring 261 different IVs (each
producing 20,000 keystream bytes), and a generic attack [17] requiring 265.7 re-
synchronizations. Both attacks are applicable only against the original version
of LEX presented in [6], but not against the tweaked version submitted to the
second phase of eSTREAM [8]. In the tweaked version, the number of IVs used
with a single key is bounded by 232, and hence both attacks require too much
data and are not applicable to the tweaked version.

In this paper we present an attack on LEX. The attack requires about 236.3

bytes of key stream produced by the same key, possibly under different IVs. The
time complexity of the attack is 2112 simple operations. Following a preliminary
version of our attack, LEX was discarded from the final portfolio of eSTREAM.

Our attack is composed of three steps:

1. Identification of a special state: We focus our attention on pairs of AES
encryptions whose internal states satisfy a certain difference pattern. While
the probability of occurrence of the special pattern is 2−64, the pattern can
be observed by a 32-bit condition on the output stream. Thus, the attacker
repeats the following two steps for about 232 cases which satisfy this 32-bit
condition.

2. Extracting information on the special state: By using the special dif-
ference pattern of the pair of intermediate values, and guessing the difference
in eight more bytes, the attacker can retrieve the actual values of 16 internal
state bytes in both encryptions.

3. Guess-and-Determine attack on the remaining unknown bytes: Us-
ing the additional known byte values, the attacker can mount a guess-and-
determine attack that retrieves the key using about 2112 simple operations
in total.
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The second and the third steps of the attack use several observations on the
structure of the AES round function and key schedule algorithm.1 One of them
is the following, probably novel, observation:

Proposition 1. Denote the 128-bit subkey used in the r-th round of AES-128
by kr, and denote the bytes of this subkey by an 4-by-4 array {kr(i, j)}3

i,j=0. Then
for every 0 ≤ i ≤ 3 and r,

kr(i, 1) = kr+2(i, 1) ⊕ SB(kr+1(i + 1, 3)) ⊕RCONr+2(i),

where SB denotes the SubBytes operation, RCONr+2 denotes the round constant
used in the generation of the subkey kr+2, and i + 1 is replaced by 0 for i = 3.

It is possible that the observations on the structure of AES presented in this
paper can be used not only in attacks on LEX, but also in attacks on AES itself.

This paper is organized as follows: In Section 2 we briefly describe the struc-
tures of AES and LEX, and present the observations on AES used in our attack.
In Section 3 we show that a specific difference pattern in the internal state can
be partially detected by observing the output stream, and can be used to retrieve
the actual value of 16 bytes of the internal state (in both encryptions). In Sec-
tion 4 we leverage the knowledge of these 16 bytes into a complete key recovery
attack that requires about 2112 simple operations. We give several additional
observations that may be useful for further cryptanalysis of LEX in Section 5.
We conclude the paper in Section 6.

2 Preliminaries

In this section we describe the structures of AES and LEX, and present the
observations on AES used in our attack.

2.1 Description of AES

The advanced encryption standard [14] is an SP-network that supports key sizes
of 128, 192, and 256 bits. As this paper deals with LEX which is based on AES-
128, we shall concentrate the description on this variant and refer the reader
to [22] for a complete detailed description of AES.

A 128-bit plaintext is treated as a byte matrix of size 4x4, where each byte
represents a value in GF (28). An AES round applies four operations to the state
matrix:

– SubBytes (SB) — applying the same 8-bit to 8-bit invertible S-box 16 times
in parallel on each byte of the state,

1 We note that in [6] it was remarked that the relatively simple key schedule of AES
may affect the security of LEX, and it was suggested to replace the AES subkeys
by 1280 random bits. Our attack, which relies heavily on properties of the AES
key schedule, would fail if such replacement was performed. However, some of our
observations can be used in this case as well.
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0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3
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ShiftRows MixColumns

SB SR MC ARK

SubBytes

Fig. 1. An AES round

– ShiftRows (SR) — cyclic shift of each row (the i’th row is shifted by i bytes
to the left),

– MixColumns (MC) — multiplication of each column by a constant 4x4 ma-
trix over the field GF (28), and

– AddRoundKey (ARK) — XORing the state with a 128-bit subkey.

We outline an AES round in Figure 1. Throughout the paper we allow ourselves
the abuse of notation SB(x) to denote the application of the S-box to x (whether
it is one S-box when x is 8-bit value, or four times when x is 32-bit value). In
the first round, an additional AddRoundKey operation (using a whitening key)
is applied, and in the last round the MixColumns operation is omitted. We note
that in LEX these changes to the first and last round are not applied.

AES-128, i.e., AES with 128-bit keys, has 10 rounds. For this variant, 11
subkeys of 128 bits each are derived from the key. The subkey array is denoted
by W [0, . . . , 43], where each word of W [·] consists of 32 bits. The first four words
of W [·] are loaded with the user supplied key. The remaining words of W [·] are
updated according to the following rule:

– For i = 4, . . . , 43, do
• If i ≡ 0 mod 4 then W [i] = W [i−4]⊕SB(W [i−1] ≪ 8)⊕RCON [i/4],
• Otherwise W [i] = W [i− 1] ⊕W [i− 4],

where RCON [·] is an array of predetermined constants, and ≪ denotes rotation
of the word by 8 bits to the left.

2.2 Description of LEX

For the ease of description, we describe only the tweaked version of LEX sub-
mitted to the second phase of eSTREAM [8]. The original version of LEX can
be found in [6]. We note that our attacks can be easily adopted to the original
version as well.

In the initialization step, the publicly known IV is encrypted by AES2 under
the secret key K to get S = AESK(IV ). Then, S is repeatedly encrypted in the
2 Actually, LEX uses a tweaked version of AES where the AddRoundKey before the

first round is omitted, and the MixColumns operation of the last round is present.
We allow ourselves the slight abuse of notations, for sake of clarity.
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Fig. 2. Odd and Even Rounds of LEX

OFB mode of operation under K, where during the execution of each encryption,
32 bits of the internal state are leaked each round. These state bits compose the
key stream of LEX. The state bytes used in the key stream are shown in Figure 2.
After 500 encryptions, another IV is chosen, and the process is repeated. After
232 different IVs, the secret key is replaced.3

2.3 Notations Used in the Paper

As in [6], the bytes of each internal state during AES encryption, as well as the
bytes of the subkeys, are denoted by a 4-by-4 array {bi,j}3

i,j=0, where bi,j is the
j-th byte in the i-th row. For example, the output bytes in the even rounds are
b0,1, b0,3, b2,1, b2,3.

2.4 Observations on AES Used in Our Attack

Throughout the paper we use several observations concerning AES.

Observation 1. For every non-zero input difference to the SubBytes operation,
there are 126 possible output differences with probability 2−7 each (i.e., only a
single input pair with the given difference leads to the specified output difference),
and a single output difference with probability 2−6.

As a result, for a randomly chosen pair of input/output differences of the Sub-
Bytes operation, with probability 126/256 there is exactly one unordered pair
of values satisfying these differences. With probability 1/256 there are two such
pairs, and with probability 129/256, there are no such pairs.

We note that while each ordered pair of input/output differences suggests
one pair of actual values on average, it actually never suggests exactly one pair.
In about half of the cases, two (or more) ordered pairs are suggested, and in
the rest of the cases, no pairs are suggested. In the cases where two (or more)
pairs are suggested, the analysis has to be repeated for each of the pairs. On
the other hand, if no pairs are suggested, then the input/output differences pair
is discarded as a wrong pair and the analysis is not performed at all. Hence,

3 We note that in the original version of LEX, the number of different IVs used with a
single key was not bounded. Following the slide attack presented in [23], the number
of IVs used with each key was restricted. This restriction also prevents the attack
suggested later in [17] which requires 265.7 re-synchronizations.
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when factoring both events, it is reasonable to assume that each input/output
differences pair suggests one pair of actual values.

Our attack uses this observation in situations where the attacker knows the
input and output differences to some SubBytes operation. In such cases, using
the observation she can deduce the actual values of the input and the output
(for both encryptions). This can be done efficiently by preparing the difference
distribution table [4] of the SubBytes operation, along with the actual values
of the input pairs satisfying each input/output difference relation (rather than
only the number of such pairs). In the actual attack, given the input and output
differences of the SubBytes operation, the attacker can retrieve the corresponding
actual values using a simple table lookup.

Observation 2. Since the MixColumns operation is linear and invertible, if the
values (or the differences) in any four out of its eight input/output bytes are
known, then the values (or the differences, respectively) in the other four bytes
are uniquely determined, and can be computed efficiently.

The following two observations are concerned with the key schedule of AES.
While the first of them is known (see [18]), it appears that the second was not
published before.

Observation 3. For each 0 ≤ i ≤ 3, the subkeys of AES satisfy the relations:

kr+2(i, 0) ⊕ kr+2(i, 2) = kr(i, 2).

kr+2(i, 1) ⊕ kr+2(i, 3) = kr(i, 3).

Proof. Recall that by the key schedule, for all 0 ≤ i ≤ 3 and for all 0 ≤ j ≤ 2,
we have kr+2(i, j) ⊕ kr+2(i, j + 1) = kr+1(i + 1, j + 1). Hence,

kr+2(i, 0) ⊕ kr+2(i, 2) = (kr+2(i, 0) ⊕ kr+2(i, 1)) ⊕ (kr+2(i, 1) ⊕ kr+2(i, 2)) =
kr+1(i, 1) ⊕ kr+1(i, 2) = kr(i, 2),

and the second claim follows similarly.

Observation 4. For each 0 ≤ i ≤ 3, the subkeys of AES satisfy the relation:

kr+2(i, 1) ⊕ SB(kr+1((i + 1) mod 4, 3)) ⊕RCONr+2(i) = kr(i, 1),

Proof. In addition to the relation used in the proof of the previous observation,
we use the relation

kr+2(i, 0) = kr+1(i, 0) ⊕ SB(kr+1((i + 1) mod 4, 3)) ⊕RCONr+2(i).

Thus,

kr+2(i, 1) ⊕ SB(kr+1((i + 1) mod 4, 3)) ⊕RCONr+2(i) =
(kr+2(i, 1) ⊕ kr+2(i, 0)) ⊕ (kr+2(i, 0) ⊕ SB(kr+1((i + 1) mod 4, 3))

⊕RCONr+2(i)) = kr+1(i, 1) ⊕ kr+1(i, 0) = kr(i, 1).

These two observations allow the attacker to use the knowledge of bytes of
kr+2 (and the last column of kr+1) to get the knowledge of bytes in kr, while
“skipping” (some of) the values of kr+1.



A New Attack on the LEX Stream Cipher 545

α0 α4

α1 α5

α2 α6

α3 α7

α0 α4

α1 α5

α2 α6

α3 α7

x0

x1

x2

x3

x4

x5

x6

x7

y0

y1

y2

y3

y4

y5

y6

y7

y0

y1

y2

y3

y4

y5

y6

y7

β3

β2

β1

β0

β7

β6

β5

β4

ε3

ε2

ε1

ε0

ε7

ε6

ε5

ε4

γ7

γ2

γ5

γ0

γ3

γ6

γ1

γ4

ν7

ν2

ν5

ν0

ν3

ν6

ν1

ν4

γ7

γ2

γ5

γ0

γ3

γ6

γ1

γ4

ν7

ν2

ν5

ν0

ν3

ν6

ν1

ν4

δ3
3

δ2
3

δ1
3

δ0
3

δ3
2

δ2
2

δ1
2

δ0
2

δ3
1

δ2
1

δ1
1

δ0
1

δ3
0

δ2
0

δ1
0

δ0
0

?
?
?
?

?
µ3

?
µ2

?
?
?
?

?
µ1

?
µ0

z0

z1

z2

z3

z4

z5

z6

z7

t00 t01 t02 t03
t10 t11 t12 t13
t20 t21 t22 t23
t30 t31 t32 t33

a0

?
a1

?

?
?
?
?

a2

?
a3

?

?
?
?
?

SB
SR

MC ARK
kr

SB
SR

MC

ARK
kr+3

MC

ARK
kr+2

MCSB
SR

ARK
kr+1

SB,SR

ARK
kr−1

In gray we mark bytes whose value is known from the output key stream.

Fig. 3. The Special Difference Pattern (for Odd Rounds)

3 Observable Difference Pattern in LEX

Our attack is applicable when the special difference pattern starts either in odd
rounds or in even rounds. For sake of simplicity of the description, we present
the results assuming the difference pattern occurs in the odd rounds, and give
in Appendix A the modified attack applicable when the difference pattern is
observed in even rounds.

3.1 Detecting the Difference Pattern

Consider two AES encryptions under the same secret key, K. The special dif-
ference pattern corresponds to the following event: The difference between the
intermediate values at the end of the (r + 1)-th round is non-zero only in bytes
b0,0, b0,2, b1,1, b1,3, b2,0, b2,2, b3,1, and b3,3. The probability of this event is 2−64.
The pattern, along with the evolution of the differences in rounds r, r + 1, r+ 2,
and r + 3, is presented in Figure 3.

The difference pattern can be partially observed by a 32-bit condition on
the output key stream: If the pattern holds, then all the four output bytes in
round r + 2 (bytes b0,1, b0,3, b2,1, b2,3) have zero difference.

Therefore, it is expected that amongst 264 pairs of AES encryptions under the
same key, one of the pairs satisfies the difference pattern, and about 232 pairs
satisfy the filtering condition. Thus, the following steps of the attack have to be
repeated 232 times on average (once for each candidate pair).

We note that if the special difference pattern is satisfied, then by the linearity
of the MixColumns operation, there are only 2552 possible values for the differ-
ence in each of the columns before the MixColumns operation of round r + 1
(denoted by β-s and ε-s in Figure 3), and in each of the columns after the Mix-
Columns operation of round r + 2 (denoted by t-s in Figure 3). This property



546 O. Dunkelman and N. Keller

is used in the second step of the attack to retrieve the actual values of several
state bytes.

3.2 Using the Difference Pattern to Retrieve Actual Values of 16
Intermediate State Bytes

In this section we show how the attacker can use the special difference pattern,
along with a guess of the difference in eight additional bytes, in order to recover
the actual values of 16 intermediate state bytes in both encryptions. We show
in detail how the attacker can retrieve the actual value of byte b0,0 of the state
in the end of round r. The derivation of additional 15 bytes, which is performed
in a similar way, is described briefly.

The derivation of the actual value of byte b0,0 of the state at the end of round
r is composed of several steps (described also in Figure 4):

1. The attacker guesses the differences ν1, ν7 and applies the following steps for
each such guess.

2. The attacker finds the difference in Column 0 before the MixColumns op-
eration of round r + 1, i.e., (β0, β1, β2, β3). This is possible since the at-
tacker knows the difference in Column 0 at the end of round r + 1 (which
is (α0, 0, α2, 0) where α0 and α2 are known from the key stream), and since
the AddRoundKey and the MixColumns operations are linear. By perform-
ing the inverse ShiftRows operation, the attacker can compute the output
difference in byte b0,0 after the SubBytes operation of round r + 1.

3. Given the differences ν1 and ν7, there are 2552 possible differences after
the MixColumns of round r in the leftmost column. Using the output bytes
b0,0, b2,2 of round r − 1, the attacker knows the difference in two bytes of
the same column before the MixColumns operation. Hence, using Observa-
tion 2 (the linearity of the MixColumns operation), the attacker retrieves
the difference in the whole column, both before and after the MixColumns
operation, including the difference γ0.

4. At this point, the attacker knows the input difference (γ0) and the output
difference (β0) to the SubBytes operation in byte b0,0 of round r+ 1. Hence,
using Observation 1 (the property of the SubBytes operation), the attacker
finds the actual values of this byte using a single table look-up. In particular,
the attacker retrieves the actual value of byte b0,0 at the end of round r.

The additional 15 bytes are retrieved in the following way:

1. The value of byte b2,2 at the end of round r is obtained in the same way
using bytes b0,2, b2,0 of the output of round r− 1 (instead of bytes b0,0, b2,2)
and examining the third column (instead of the first one).

2. The value of bytes b0,2 and b2,0 at the end of round r is found by examining
α4, α6 (instead of α0, α2), guessing the differences ν3, ν5 (instead of ν1, ν7),
and repeating the process used in the derivation of bytes b0,0, b2,2.

3. In a similar way, by guessing the differences x1, x3, x5, x7 and using the
output bytes of round r + 3, the attacker can retrieve the actual values of
bytes b0,0, b0,2, b2,0 and b2,2 in the output of round r + 2.
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4. Using the output of round r and Observation 2, the attacker can obtain the
differences α1, α3, α5, α7. Then, she can use the guessed differences x1, x3,
x5, x7 and Observation 1 to obtain the actual values of bytes b1,1, b1,3, b3,1
and b3,3 at the end of round r + 1.

5. Finally, using again the output of round r and Observation 2, the attacker
can obtain the differences ε1, ε3, ε5, ε7. Then, using the guessed differences
ν1, ν3, ν5, ν7 and Observation 1, the attacker can obtain the actual values of
bytes b1,0, b1,2, b3,0, and b3,2 at the end of round r.

The bytes whose actual values are known to the attacker at this stage are
presented in Figure 5 marked in gray.

4 Retrieving the Key in the Special Cases

The last step of the attack is a guess-and-determine procedure. Given the actual
values of the 16 additional state bytes obtained in the second step of the attack,
the entire key can be recovered using Observations 2 and 3 (properties of the
MixColumns operation and of the key schedule algorithm of AES-128).

The deduction is composed of two phases. In the first phase, presented in
Figure 5, no additional information is guessed. We outline in Appendix B the
exact steps of the deduction. At the beginning of the second phase, presented
in Figure 6, the attacker guesses the value of two additional subkey bytes. We
outline in Appendix C the exact steps the attacker performs after guessing these
two bytes. In both figures we use gray bytes to mark bytes which are known at
the beginning of that deduction phase. Then, if a byte contains a number i it
means that this byte is computed in the i-th step of the deduction sequence.

Summarizing the attack, the attacker guesses 10 bytes of information (8 bytes
of differences guessed in the second step of the attack, and 2 subkey bytes guessed
in the third step of the attack), and retrieves the full secret key. Since all the
operations used in the attack are elementary, the attack requires 280 simple
operations for each time the attack procedure is applied. Thus, as the attack
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procedure is repeated 232 times, the total running time of the attack is 2112

operations. Since the most time-consuming step of the attack is a guess-and-
determine procedure, it is very easy to parallelize the attack, and obtain a speed
up equivalent to the number of used CPUs.

4.1 Data Complexity of the Attack

The attack is based on examining special difference patterns. Since the probabil-
ity of occurrence of a special pattern is 2−64, it is expected that 232.5 encryptions
under the same key (possibly with different IVs) yield a single pair of encryptions
satisfying the special pattern.

However, we note that the attack can be applied for several values of the
starting round of the difference pattern. The attack presented above is applicable
if r is equal to 1, 3, 5, or 7, and a slightly modified version of the attack (presented
in Appendix A) is applicable if r is equal to 0, 2, 4, or 6.4 Hence, 264/8 = 261 pairs
of encryptions are sufficient to supply a pair satisfying one of the eight possible
difference patterns. These 261 pairs can be obtained from 231 AES encryptions,
or equivalently, 236.3 bytes of output key stream generated by the same key,
possibly under different IVs.
4 We note that while the attack considers five rounds of the encryption (rounds r − 1

to r + 3), it is not necessary that all the five rounds are contained in a single AES
encryption. For example, if r = 7 then round r+3 considered in our attack is actually
round 0 of the next encryption. The only part of the attack which requires the rounds
to be consecutive rounds of the same encryption is the key schedule considerations.
However, in these considerations only three rounds (rounds r to r+2) are examined.
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5 Further Observations on LEX

In this section we present several observations on the structure of LEX that may
be helpful in further cryptanalysis of the cipher.

5.1 Sampling Resistance of LEX

One of the main advantages of LEX, according to the designers (see [6], Section
1), is the small size of its internal state allowing for a very fast key initialization
(a single AES encryption). It is stated that the size of the internal state (256 bits)
is the minimal size assuring resistance to time-memory-data tradeoff attacks.

Time-memory-data tradeoff (TMDTO) attacks [2,9,10,20] are considered a
serious security threat to stream ciphers, and resistance to this class of attacks
is a mandatory in the design of stream ciphers (see, for example, [16]). A cipher
with an n-bit key is considered (certificationally) secure against TMDTO attacks
if any TMDTO attack on the cipher has either data, memory, or time complexity
of at least 2n.

In order to ensure security against conventional TMDTO attacks trying to
invert the function (State → Key Stream), it is sufficient that the size of the
internal state is at least twice the size of the key [10]. LEX satisfies this criterion
(the key size is 128 bits and the size of the internal state is 256 bits). As a result,
as claimed by the designers (see [6], Sections 3.2 and 5), the cipher is secure with
respect to TMDTO attacks.
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However, as observed in [1], having the size of the internal state exactly twice
larger than the key length is not sufficient if the cipher has a low sampling
resistance. Roughly speaking, a cipher has a sampling resistance of 2−t, if it is
possible to list all internal states which lead to some t-bit output string efficiently.
In other words, if it is possible to find a (possibly special) string of t bits, whose
“predecessor” states are easily computed, then the cipher has sampling resistance
of at most 2−t.

It is easy to see that LEX has maximal sampling resistance of 2−32, as out of
the 256 bits of internal state, 32 bits are output directly every round. As a result,
using the attack algorithm presented in [10], it is possible to mount a TMDTO
attack on LEX with data complexity 288, and time and memory complexities
of 2112. Hence, LEX provides only 112-bit security with respect to TMDTO
attacks.

5.2 Loss of Entropy in the Initialization of LEX

The first step in the initialization of LEX is the encryption of IV by AES under
the secret key K. When considering AESK(IV ) as a function of K, one can
easily see that under reasonable randomness assumptions on AES, this function
is a random function of the key K. As a result, the first internal state S used in
LEX, does not contain 128 bits of entropy, even when the IV has full entropy.
Actually, the expected number of possible S’s for a given IV is about 63% of all
possible values, i.e., about 2127.3 possible S’s.

Even though our attack does not use this observation, it might still be used in
attacks which rely on entropy. Especially, the variant of [15] of time-memory-data
tradeoff attacks (trying to invert the function (key, IV ) → keystream) might
use this observation by trying to invert the function (key, S) → keystream.

5.3 Analysis of the Submitted Reference Implementation of the
Original (Untweaked) Version of LEX

After communicating a preliminary version of our attack, we received a request to
discuss the implementation of the original (untweaked) version of LEX submitted
to eSTREAM. According to a claim made in [3] and verified later by us, the
submitted code of the untweaked LEX outputs different bytes than intended
and specified (specifically, in the even rounds, b1,1, b1,3, b3,1 and b3,3 are given
as the key stream). Of course, this seems like an unintended typo made in the
submission pack (as the fact that it was corrected in the tweaked submission
of LEX).

It appears that this variant is much weaker than the intended cipher: First,
given the difference in the key stream corresponding to an even round of AES
and the consecutive odd round, the difference in two full columns (i.e., four
additional internal bytes) can be found easily, without any assumption on the
difference between the states. Second, it is possible to devise a simple meet-in-
the-middle attack which uses only 256 bits of output stream and retrieves the
secret key using 2112 simple operations.
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The difference between the security of the intended version and that of the
actual implementation emphasizes the importance of verifying the implemen-
tations of cryptographic primitives very carefully. This importance was first
observed in [12] with respect to public key encryption, and adopted in [5] to
the symmetric key scenario. While differential fault analysis assumes that the
attacker can access both a faulty implementation and a regular implementa-
tion, our observations are valid when the attacker has to attack only the faulty
implementation.

6 Summary and Conclusions

In this paper we presented a new attack on the LEX stream cipher. We showed
that there are special difference patterns that can be easily observed in the
output key stream, and that these patterns can be used to mount a key recovery
attack.

The attack uses a total of 236.3 bytes of key stream produced by a single key
(possibly under different IVs) and takes 2112 simple operations to implement.

Our results show that for constructions based on the Goldreich-Levin ap-
proach (i.e., PRNGs based on pseudo-random permutations), the pseudo-
randomness of the underlying permutation is crucial to the security of the
resulting stream cipher. In particular, a small number of rounds of a (possi-
bly strong) block cipher cannot be considered random in this sense, at least
when a non-negligible part of the internal state is extracted.
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A Special Difference Pattern Starting with an Even
Round

In this section we present the modified version of the attack that can be applied
if the special difference pattern occurs in the even rounds. The first two steps of
the attack (observing the difference pattern and deducing the actual values of
16 additional bytes of the state) are similar to the first two steps of the attack
presented in Section 3. The known byte values after these steps are presented
in Figure 7, marked in gray. The third step of the attack is slightly different
due to the asymmetry of the key schedule, and Observation 4 is used in this
step along with Observations 2 and 3. The two phases of this step are presented in
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Fig. 7. The First Phase of the Guess-and-Determine Attack on LEX (in Even Rounds)

Figures 7 and 8. The overall time complexity of the attack is 2112 operations,
like in the case of a difference pattern in the odd rounds.

B Detailed Description of the Steps in the First
Deduction Phase

In this section we present the exact deduction steps done during the first phase
depicted in Figure 5. The numbers of the steps correspond to the numbers in
the figure.

1. The application of MixColumns in round r + 1 on two columns (second and
fourth) gives these bytes.

2. The application of MixColumns in round r + 2 on two columns (first and
third) gives these bytes.

3. The knowledge of the value of four bytes before the XOR with the subkey
kr+1 and after the XOR, gives the value of the subkey in these bytes.

4. The knowledge of the value of four bytes before the XOR with the subkey
kr+2 and after the XOR, gives the value of the subkey in these bytes.

5. By the key schedule of AES, the knowledge of byte (0,0) of the subkey kr+2
and byte (1,3) of the subkey kr+1 gives the value of byte (0,0) of the subkey
kr+1. Similarly, the knowledge of byte (2,0) of the subkey kr+2 and byte
(3,3) of the subkey kr+1 gives the value of byte (2,0) of the subkey kr+1.

6. These two bytes are the XOR of the two subkey bytes found in the previous
step and known bytes.
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Fig. 8. The Second Phase of the Guess-and-Determine Attack on LEX (in Even
Rounds)

7. Applying Observation 2 to the first column in the MixColumns operation of
round r + 1 gives these four bytes.

8. The two bytes after the SubBytes and ShiftRows operation are just computed
backwards.

9. These bytes are computed using the four bytes found in Step 4, and the
application of Observation 3.

10. These bytes are computed by XORing the subkey bytes found in the previous
step with known values.

11. Applying Observation 2 to the third column in the MixColumns operation
of round r gives these four bytes.

12. The input and output of the AddRoundKey operation of round kr in these
two bytes is known, and allows retrieving these two subkey bytes.

13. By the key schedule of AES, the knowledge of bytes (1,1) and (3,1) of the
subkey kr+1 and bytes (1,2) and (3,2) of the subkey kr gives the values of
bytes (1,2) and (3,2) of the subkey kr+1, respectively.

14. By the key schedule of AES, the knowledge of bytes (1,2) and (3,2) of the
subkey kr and bytes (1,3) and (3,3) of the subkey kr+1 gives the values of
bytes (1,3) and (3,3) of the subkey kr, respectively.

15. By the key schedule of AES, the knowledge of byte (0,0) of the subkey kr+1
and byte (1,3) of the subkey kr gives the value of byte (0,0) of the subkey
kr. Similarly, the knowledge of byte (2,0) of the subkey kr+1 and byte (3,3)
of the subkey kr gives the value of byte (2,0) of the subkey kr.

16. These bytes are computed by XORing the subkey bytes found in the previous
step with known values.
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17. Applying Observation 2 to the first column in the MixColumns operation of
round r gives these four bytes.

18. These bytes are the XOR of the bytes found in the previous step with known
bytes.

19. This byte is the XOR of one of the bytes found in Step 14 and a byte found
in Step 8.

C Detailed Description of the Steps in the Second
Deduction Phase

In this section we present the exact deduction steps performed during the second
phase depicted in Figure 6. The numbers of the steps correspond to the numbers
in the figure.

1. Using the key schedule algorithm, it is possible to deduce four bytes of kr+1
(each is the XOR of two known bytes in kr+2).

2. Decrypting two known bytes using two of the subkey words found in Step 1
gives these two bytes.

3. Applying Observation 2 to the third column in the MixColumns operation
of round r + 1.

4. These four bytes are computed by the XOR of known state bytes and subkey
bytes (in kr+1).

5. These four bytes are the application of the SubBytes and ShiftRows opera-
tions on the bytes found in the previous step.

6. These bytes are the XOR of known bytes and the subkey bytes that were
guessed.

7. Applying Observation 2 to the second column in the MixColumns operation
of round r + 2 gives these four bytes.

8. These two bytes are found by applying the inverse ShiftRows and SubBytes
operations to two of the bytes found in the previous step.

9. These two subkey bytes are computed as the XOR of the corresponding bytes
before and after the AddRoundKey operation of round r + 1.

10. By the key schedule of AES, the knowledge of byte (3,0) of the subkey kr+1
and byte (3,0) of the subkey kr gives the value of byte (2,3) of the subkey
kr.

11. By the key schedule of AES, the knowledge of bytes (1,0) and (2,3) of the
subkey kr+1 gives the value of byte (1,0) of the subkey kr+1.

12. This byte is the XOR of a known state byte with the subkey byte found in
the previous step.

13. This byte is computed by applying the SubBytes and ShiftRows operations
to the byte found in the previous step.

14. By the key schedule of AES, the knowledge of byte (2,2) of the subkey kr+2
and byte (2,3) of the subkey kr+1 gives the value of byte (2,3) of the subkey
kr+2.

15. This byte is the XOR of a known state byte with the subkey byte found in
the previous step.
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16. This byte is the partial decryption of a known byte by the byte found in the
previous step.

17. Applying Observation 2 to the fourth column in the MixColumns operation
of round r + 2 gives these four bytes.

18. This byte is found by applying the inverse ShiftRows and SubBytes opera-
tions to one of the bytes found in the previous step.

19. This byte is the partial decryption of a known byte by the byte found in the
previous step.
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Abstract. The F-FCSR stream cipher family has been presented a few
years ago. Apart from some flaws in the initial propositions, corrected
in a later stage, there are no known weaknesses of the core of these
algorithms. The hardware oriented version, called FCSR-H, is one of the
ciphers selected for the eSTREAM portfolio.

In this paper we present a new and severe cryptanalytic attack on the
F-FCSR stream cipher family. We give the details of the attack when
applied on F-FCSR-H. The attack requires a few Mbytes of received
sequence and the complexity is low enough to allow the attack to be
performed on a single PC within seconds.

1 Introduction

The cryptographic scene include a variety of efficient and trusted block ciphers.
However the same does not seem to hold for stream ciphers. The stream ciphers
that have received attention through use in various standards tend to have more
or less serious security weaknesses. Examples are A5 algorithms used in GSM,
the RC4 algorithm used in for example WLAN applications through the WEP
protocol and the E0 stream cipher used in Bluetooth.

Based on a belief that a dedicated stream cipher still has a capability of
significantly outperforming a block cipher, the eSTREAM project was launched
in 2004. The goal of this project was to solicit and evaluate submitted proposals
of stream ciphers for future standardization. The main evaluation criteria set
up were long-term security, efficiency in terms of performance, flexibility and
market requirements.

The eSTREAM project considered two different profiles, one targeting soft-
ware implemented stream ciphers; and one for hardware implemented stream
ciphers (in particular constrained devices). The hardware category received a
total of 25 submitted proposals. After three phases of evaluation, the final eS-
TREAM portfolio recommended four of them. One of them is a design called
F-FCSR-H v2.

F-FCSR-H v2 is one of several algorithms in the F-FCSR family of stream
ciphers designed by the French researchers F. Arnault, T.P. Berger, and C. Lau-
radoux. The family of ciphers is based on feedback with carry shift registers
(FCSR) together with a filtering function. The idea of using FCSRs to gener-
ate sequences for cryptographic applications was initially proposed by Klapper

J. Pieprzyk (Ed.): ASIACRYPT 2008, LNCS 5350, pp. 557–569, 2008.
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and Goresky in [6]. The F-FCSR family was introduced in [1], proposing four
concrete constructions. These proposals were cryptanalyzed in [5]. The initial
version submitted to eSTREAM, targeting hardware, was called F-FCSR-H. It
was shown in [4] that this construction also had security problems. This lead to
a change in the initialization procedure and the resulting algorithm was named
F-FCSR-H v2. This paper will focus on the specification of F-FCSR-H v2 given
in [2].

The eSTREAM class of hardware stream ciphers (and F-FCSR-H v2 in par-
ticular) prescribes a key of length 80 bits. Apart from the initial flaws (on the
IV-setup procedure, and a TMD tradeoff attack), there are yet no known weak-
nesses of the core of these algorithms and the best attack on F-FCSR-H v2 is an
exhaustive key search.

In this paper we present a new and severe cryptanalytic attack on the F-FCSR
stream cipher family. We give the details of the attack when applied on F-FCSR-
H v2. The attack is based on observing that the contribution of nonlinearity
comes from the carry bits and that sometimes this contribution is too low and
the system can be linearized. The whole attack require a few Mbytes of received
sequence and the complexity is low enough to allow the attack to be performed
on a single PC within seconds. The attack has been fully implemented using the
designers’ reference implementation.

In Section 2 we give an overview of the FCSR automaton and the F-FCSR
construction. In Section 3 we then discuss the underlying weaknesses giving the
attack. In Section 4 we give a description of the attack and in Section 5 we give
a more detailed analysis of parts of the attack and we also give the estimated
and simulated complexities. In Section 6 we give a rough outline of how the key
could be reconstructed from a known state.

2 Recalling the FCSR Automaton and the F-FCSR
Construction

Recall that a Feedback with Carry Shift Register (FCSR) is a device that com-
putes the binary expansion of a 2-adic number p/q, where p and q are some
integers, with q odd. For simplicity one can assume that q < 0 < p < |q|. Follow-
ing the notation from [2], the size n of the FCSR is the value such that n+ 1 is
the bitlength of |q|. In the stream cipher construction, p depends on the secret
key (and the IV), and q is a public parameter. The choice of q induces some prop-
erties of the FCSR. The most important one is that it completely determines the
length of the period T of the keystream. The conditions for an optimal choice
as used in the F-FCSR family of stream ciphers are: q is a (negative) prime of
bitsize n+1; the order of 2 modulo q is |q|−1; and T = (|q|−1)/2 is also prime.
Furthermore, set d = (1 + |q|)/2. Then the Hamming weight W (d) of the binary
expansion of d is checked to be not too small, say W (d) > n/2.

The FCSR automaton as described in [2] is one way to efficiently implement
the generation of the 2-adic expansion sequence. It contains two registers: the
main register M and the carries register C. The main register M contains n



Breaking the F-FCSR-H Stream Cipher in Real Time 559

pn−1 � pn−2 � � p1 � p0 ��

�
�

�

�dn−1 �
�

�

�dn−2 �
�

�

�dn−3 �
�

�

�d1 �
�

�

�d0

Fig. 1. Automaton to compute the 2-adic expansion of p/q

cells. Let M = (mn−1,mn−2, . . . ,m1,m0) and associate M to the integer M =∑n−1
i=0 mi · 2i.
Recall the positive integer d = (1 + |q|)/2 and its binary representation d =∑n−1
i=0 di ·2i. The carries register contains l active cells where l+1 is the number

of nonzero di binary digits in d. The active cells are the ones in the interval 0 ≤
i ≤ n−2 and dn−1 = 1 always hold. For this purpose we write the carries register
C as C = (cn−2, cn−3, . . . , c1, c0) and associate C to the integer C =

∑n−2
i=0 ci ·2i.

Note that only l of the bits in C are active and the remaining ones are set to
zero. Let the integer p be written as p =

∑n−1
i=0 pi · 2i, where pi ∈ {0, 1}. Then

the 2-adic expansion of the number p/q is computed by the automaton given in
Figure 1.

The automaton is referred to as the Galois representation and it is very similar
to the Galois representation of a usual LFSR. Other representations in connec-
tion with F-FCSR were considered in [7]. For all defined variables we also intro-
duce a time index t, and let M(t) denote the content of M at time t. Similarly,
C(t) denotes the content of C at time t.

The addition with carry, denoted � in Figure 1, has a one bit memory (the
carry). It takes three inputs in total, two external inputs and the carry bit. It
outputs the XOR of the inputs and it sets the new carry value to one if the
integer sum of the three inputs is two or three.

In Figure 2 we give an illustrating example (following [2]). Here q = −347 giv-
ing d = 174 and its binary expansion (10101110). The F-FCSR family of stream
ciphers uses this particular automaton as the central part of their construc-
tion. So for future considerations in this paper we only need to recall the FCSR
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Fig. 2. Example of an FCSR
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automaton as implemented in Figure 1 and Figure 2. Important facts are that
the FCSR automaton has n bits of memory in the main register and l bits in
the carry register, in total n+ l bits. If (M,C) is our state, then many states are
equivalent in the sense that starting in equivalent states will produce the same
output. As the period is |q| − 1 ≈ 2n the number of states equivalent to a given
state is in the order of 2l.

2.1 Describing the F-FCSR-H Construction

The F-FCSR family of stream ciphers combines the FCSR automaton with a
filtering function. The filtering function extracts keystream bits from the state of
the main register in the FCSR automaton. The filter is a simple linear function
of bits from the state. In order to increase the throughput, the constructions
extract not only one but many bits each clock cycle. The number of extracted
bits is eight for F-FCSR-H. Thus there are 8 different filters, now called subfilters,
used to extract an 8 bits keystream byte after each transition of the automaton.

A one bit filter F is a bitstring (f0, . . . , fn−1) of length n. The output bit of
the filter is defined to be,

F (M) =
n−1⊕
i=0

fimi,

i.e., the scalar product. As F is a known string the output is a linear function
(in F2).

For the 8 bit filter, it consists of 8 such binary functions F0, F1, . . . , F7. How-
ever, filter Fj uses only cells mi in the main register that satisfies i = j (mod 8).

The parameters for F-FCSR-H are now given. The proposal uses key length
80 and IV of bitsize v with 32 ≤ v ≤ 80. The core of the F-FCSR-H algorithm
has remained identical to the one originally proposed in [1]. Only the key and
IV initialization procedure was updated in [2].

The FCSR length (size of the main register) is n = 160. The carries register
contains l = 82 cells. The feedback is determined by the prime

q = 1993524591318275015328041611344215036460140087963.

This gives

d = (1 + |q|)/2 = (AE985DFF 26619FC5 8623DC8A AF46D590 3DD4254E)

(hexadecimal notation). So addition boxes and carries cells are present at the
positions matching the binary ones in the binary expansion of d. To extract one
keystream byte, FCSR-H uses the static filter

F = d = (AE985DFF26619FC58623DC8AAF46D5903DD4254E).

Using the designers notation, this means that the 8 subfilters (subfilter j is
obtained by selecting the bit j in each byte of F ) are given by



Breaking the F-FCSR-H Stream Cipher in Real Time 561

F0 = (00110111010010101010), F4 = (01110010001000111100),
F1 = (10011010110111000001), F5 = (10011100010010001010),
F2 = (10111011101011101111), F6 = (00110101001001100101),
F3 = (11110010001110001001), F7 = (11010011101110110100).

So the F-FCSR-H generator outputs one byte every time instance and it is simply
given as

z = (m8 + m24 + m40 + m56 + . . . + m136,m1 + m49 + . . . , . . . ,m23 + . . .).

The key and IV initialization consists of loading key and IV into the main
register, clocking 20 times and extracting 20 bytes of output. These 160 bits are
used as initial state in the main register of the FCSR automaton and it is clocked
162 times without producing output. More details are given in Section 6.

The second relevant construction in the F-FCSR family, called F-FCSR-16, is
constructed in a similar manner. However it has a larger state and extracts 16
bits every clock cycle.

3 Weaknesses of the FCSR Automaton and the F-FCSR
Family of Stream Ciphers

As the filtering function is F2 linear, essentially all the security of the FCSR con-
structions rely on the FCSR automaton ability to create nonlinearity. It might
at first glance look like this is achieved. The nonlinearity lies in the carry bit
calculation, and carry bits are quickly spread over the entire main register. They
enter new carry bit calculations, thus increasing the degree of nonlinear expres-
sions rapidly. This is probably the first way one tries to analyze the construction,
looking at the algebraic expressions created when the automaton is clocked a few
times. It looks difficult to find some useful algebraic expression or some correla-
tion between different variables that can be tracked all the way to the keystream
symbols.

Instead, we look at the nonlinearity from a different perspective. The main
observation we use is the fact that the carry bits in the carries register behave
very far from random. The key point is that they all have one common input
variable, the feedback bit. Let us look at what happens for a carry bit when the
feedback bit is set to zero. We can see that when the feedback bit is zero then a
carry bit that is zero must remain zero whereas if the carry bit is one then by
probability 1/2 it will turn to zero (assuming random input on the active input).
If we now assume that the feedback bit is zero a few consecutive time instances,
then it is very likely that the carry bit is pushed to zero.

Actually, the same arguments can be repeated when the feedback bit is one.
Then the carry is more likely to be one and by repeatedly having ones on the
feedback bit we push the carry value to one. However, for the moment we ignore
this case.

Since the feedback bit is a common input to all carries, this has a dramatic
effect on the carries vector C. We know that C has l = 82 active cells (carry
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bits) and we can expect that on average C will have a weight of 41. However, the
weight is strongly correlated to the values of the feedback bit. Every time the
feedback bit is zero all cells in C that are zero must remain zero, whereas those
with value one has a 50% chance of becoming zero. So a zero feedback bit at time
t gives a carries vector at time t+1 of roughly half the weight compared to time
t. This behavior is easily checked by just running the generator and observing
the contents of C.

Having found this crucial observation, the attack looks almost trivial. We
assume that we have a number of consecutive feedback bits all zero. This would
push the carries register to the all zero content. Then 19 more zero feedback bits
to keep C zero all the time. During this time the generator outputs 20 bytes, or
160 bits. We can thus reconstruct the main register from knowing these values
and the fact that C is zero. The only problem is that this does not work.

4 Describing the Attack

The underlying ideas of the attack were given in the previous section. However,
the assumption that a large number of consecutive zero feedback bits would push
the weight of C to zero is wrong. By simply running the generator we could
see that this never happened. Once you look at the details, there is a simple
explanation for this. Look at the FCSR automaton as illustrated in Figure 2,
especially the last (least significant) active cell c1 among the carries. Assume
that the feedback bits are zero from time t to t+ t0 and the feedback bit at time
t−1 was one. Now since the feedback bit at time t−1 was one and the feedback
bits are zero from time t to t + t0 the last carry addition must return zero to
the next main register cell. Thus it must set the carry to one. Now, when the
carry is one the only way we can have zero output and thus zero feedback is
if the main register input to the last carry addition is one. Thus the last carry
cell will never be pushed to zero, as we initially hoped. The fact that the carry
vector and the feedback will not be zero for several consecutive clock cycles was
actually observed in [3]. It was shown that this situation can not occur if the
FCSR automata has reached a state of the main cycle, which is the case for all
proposed F-FCSR stream ciphers.

However, this is not a problem. We slightly modify our approach and then it
will work. As we described above, the all zero feedback sequence can appear if
the main register input to the last carry addition is the all one sequence and we
start with setting the carry bit to one. Then the all zero feedback will push the
weight of C to one (the last active carry cell is always one). So it is natural to
define the following event.

Event Ezero : C(t) = C(t + 1) = . . . = C(t + 19) = (0, 0, . . . , 0, 1, 0).

When this happens we know that we have had 20 consecutive zeros in the feed-
back and that the carry has remained constant for 20 time instances. Using our
previous arguments we would think that we need about log2 82 ≈ 7 zeros in the
feedback to push the weight of C to 1 and then an additional 19 zeros in the
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feedback to keep C constant for 20 time instances. Assuming a uniform distri-
bution on the feedback bits this would lead to a probability of very roughly 2−26

for the event Ezero to happen. As we will see in the next section is it possible
to use more information about the state in order to increase the efficiency of the
attack. For now, let us just assume that we know how the main register M at
time t+ 1, t+ 2, . . . , t+ 19 depends on M(t) and that this dependency is linear.

Assuming that event Ezero occurs, the remaining part is to recover the main
register from the given keystream bytes z(t), z(t + 1), . . . , z(t + 19). This will
lead to a linear system of equations with 160 equations in 160 unknowns. This
could basically be solved through Gaussian elimination, costing something like
1603 operations. However, we observe that the equations have the special byte
structure explained before. There are 20 equations that only include the main
register variables m0,m8,m16, . . . ,m152, there are 20 equations that only include
m1,m9,m17, . . . ,m153, etc. Note that we are only shifting in zeros in M due to
the assumption.

So it is much more efficient to treat each 20 by 20 system of equations in-
dependently. Let us describe the received systems of linear equations in more
detail. We denote the least significant bit of z(t) by z(t)0, the next bit by z(t)1
etc, i.e., the output byte z(t) at time t is given by

z(t) = (z(t)7︸ ︷︷ ︸
MSB

, z(t)6, z(t)5, z(t)4, z(t)3, z(t)2, z(t)1, z(t)0)︸ ︷︷ ︸
LSB

. (1)

Then the linear equations involving the main register bits mi when i ≡ 0 mod 8
at time t can be written as

z(t)0 = m8 ⊕m24 ⊕ . . .⊕m136,

z(t + 1)7 = m24 ⊕m40 ⊕ . . .⊕m152,

...
z(t + 19)5 = m32 ⊕m48 ⊕ . . .⊕m152.

Similar equations containing only the main register bits mi such that i ≡ 1
mod 8 can also be listed. The same then goes for equations using only mi bits
when i ≡ 2 mod 8, etc. Altogether, we can for simplicity write

W0 = (z(t)0, z(t + 1)7, . . . , z(t + 19)5),
W1 = (z(t)1, z(t + 1)0, . . . , z(t + 19)6),

...
W7 = (z(t)7, z(t + 1)6, . . . , z(t + 19)4).

The vector of main register values m0,m8,m16, . . . ,m152 is denoted M̂0. Then
we get

W0 = M̂0P0, (2)

where P0 is a known 20 by 20 matrix (determined from the filter F ). Sim-
ilarly, M̂i, 1 ≤ i ≤ 7 will denote the main register variables (mi,mi+8,
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mi+16, . . . ,mi+152). With this notation we can write the eight 20 by 20 linear
systems of equations as

W0 = M̂0P0,W1 = M̂1P1, . . . ,W7 = M̂7P7. (3)

Of course, some equations need to have 1 added to them since we have to com-
pensate for the fact that the carry vector is given as C = (0, 0, . . . , 0, 1, 0).

The idea is now to precompute, for each linear system, the solution M̂i for
each possible value of the vector of keystream bits Wi. This would require 8
tables of size 220 entries, each entry being a 20 bit vector. Though, the real time
phase will be more efficient if 20 bytes are stored in each entry, having values
only in the bit positions corresponding to the bits in M̂i. Then a full candidate
state can be found by just ORing together the 8 saved contributions.

Finding the main register content would then require only to compute the
vectors Wi, 0 ≤ i ≤ 7 from the keystream and then 8 table lookups to get the
candidate main register state. The part of a candidate main register state given
by Wi is denoted TABLEi[Wi].

We can note that the Pi matrices are not all of full rank. This means that for
our table of solutions, some Wi values will have no solutions whereas other values
will have multiple (a power of two) solutions. This fact will then be combined over
all 8 systems of equations, leading to a total number of S =

∏7
i=0 si solutions,

where si is the number of solutions to the ith system. Thus TABLEi[Wi] returns
a set of zero or more solutions.

In our case this property will increase the efficiency of the attack because if we
get a value W0 for which TABLE0[W0] returns no solutions we can immediately
stop and conclude that our assumption of event Ezero was wrong.

We now summarize our attack as follows.

0. for t = 1 to Tmax do
1. Select the 20 consecutive output bytes z(t), z(t + 1), . . . , z(t + 19).

for i = 0 to 7
Compute Wi

if TABLEi[Wi] has no solutions
go to 0.

else
store all possible values for M̂i.

end for
3. "Check candidate states": Test all possible values of (M̂0, M̂1, . . . , M̂7),

by checking if a candidate value generates z(t + 20), z(t + 21), . . . .
4. go to 0.

5 Improving the Attack Complexity

In the previous section we assumed that the carry vector was fixed to C(t) =
C(t + 1) = . . . = C(t + 19) = (0, 0, . . . , 0, 1, 0) for all considered time instances.
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However we note that this is not necessary. As long as we can express the output
bits in z(t), z(t+1), . . . , z(t+19) as linear equations in the main register variables
at time t, the attack will work.

Denote the state at time t as (M,C)(t) and let x represent bits in the state
that the output can be expressed as linear combinations of. Let ? represent bits
that we do not need to know the value of. Assume that the state (M,C)(t) is
given by

(M,C)(t) = (xx . . . xx0 11 . . . 11︸ ︷︷ ︸
16

00, 000 . . .0010).

Then, the state will be updated as

(M,C)(t + 1) = (xx . . . xx0 11 . . . 11︸ ︷︷ ︸
15

00, 000 . . .0010),

(M,C)(t + 2) = (xx . . . xx0 11 . . . 11︸ ︷︷ ︸
14

00, 000 . . .0010),

...
(M,C)(t + 15) = (xxxxxxxx . . . xx0100, 000 . . .0010),
(M,C)(t + 16) = (xxxxxxxx . . . xxx000, 000 . . .0010),
(M,C)(t + 17) = (xxxxxxxx . . . xxxx10, 000 . . .0000),
(M,C)(t + 18) = (xxxxxxxx . . . xxxxx1, 000 . . . 0000),
(M,C)(t + 19) = (xxxxxxxx . . . xxxxxx, ???????????).

The only difference from the case presented in the previous section is that
we should not compensate for the carry bit when computing the state
(M,C)(t + 18) and we need to compensate for the 1 in the feedback when com-
puting the state (M,C)(t + 19). Note that the feedback used when calculating
(M,C)(t + 19) will cause the carry vector to be unpredictable. However, only
M(t + 19) is used to extract z(t + 19) and knowledge of the carry vector here
is not necessary. Using these observations, we can conclude that we only require
the carry vector to take the value (0, 0, . . . , 0, 1, 0) at least 17 consecutive time
instances. Thus, we update the definition of Ezero to

Event Ezero : C(t) = C(t + 1) = . . . = C(t + 16) = (0, 0, . . . , 0, 1, 0).

The probability of Ezero has been simulated using in total 2 TB data and 2000
different keys and is estimated to be

P (Ezero) = 2−25.3. (4)

Thus, we would expect that we need on average 225.3 bytes of keystream to
recover the state.

The attack using the observations from this section has been fully imple-
mented. The low complexity of the attack allows it to be simulated targeting
the full version of F-FCSR-H v2. Using 5000 random keys, the state was recov-
ered using on average 224.7 bytes of keystream. The success rate was 100%. The
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slightly lower amount of keystream which was observed compared to the expected
amount can easily be accounted for. For each state there are many equivalent
states and sometimes one of these equivalent states is recovered. As an example, if
C(t) = C(t+ 1) = C(t+ 15) = (0, 0, . . . , 0, 1, 0) but C(t− 1) �= (0, 0, . . . , 0, 1, 0),
then (M,C)t−1 can be recovered if it is equivalent to another state (M′,C′)
with C′ = (0, 0, . . . , 0, 1, 0). Since the two states will merge after a few clocks,
the attack will also recover the real state.

A slight improvement of the attack is achieved by noting that we can also look
at the situation when the carry vector is one in all active positions except the last.
The required keystream length will be halved, but the attack time will remain
unchanged. The same simulation was performed with this improvement and as
expected the state was recovered using on average 223.7 bytes of keystream.

6 Recovering the Key

We have described a state recovery attack that completely breaks F-FCSR-H.
We now outline how we can also derive the key from a known state at any time
t. In order to shortly describe this, we recall the initialization from the design
document (reference code). Inputs to the initialization are a key K of length 80
bits and an IV of length v ≤ 80 bits. For simplicity we fix the IV length to 80
bits.

Key+IV setup

1. The main register M is initialized with key and IV by

M = K + 280IV = (IV ||K),

and the carries register C = 0.
2. A loop is iterated 20 times. Each iteration of this loop consists in clocking

the FCSR and then extracting a pseudorandom byte Si(0 ≤ i ≤ 19) using
the filter.

3. The main register M is reinitialized with these bytes:

M = (S19, S18, . . . , S0),

and C = 0.
4. The FCSR is clocked 162 times (output is discarded).

Keystream generation
Keystream is produced by first clocking the FCSR, then extracting one pseudo-
random byte using filter F as described before.

Let us assume that time t = 0 appears directly after 3. in the initialization
above, i.e.,

M(0) = (S19, S18, . . . , S0).

Recall from Section 2 that every state (M,C) is associated with an integer p,
1 ≤ p ≤ |q|, as the state generate the 2-adic expansion of p/q, where p = M+2C.
Let us write the value of p at time t as p(t).
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Now assume that we have recovered the state M and the carries register
C at some time t. So p(t) is known. Thus p(0) can be derived since p(0) =
p(t) · 2t mod q. This gives us knowledge of M(0) = (S19, S18, . . . , S0), since the
carries register at time 0 was 0.

Recall that (S19, S18, . . . , S0) was the output from F-FCSR-H when the main
register was initialized with IV and key bits with C = 0. If we for simplicity
assume that IV = 0, then the remaining problem is to reconstruct the key bits.
We give a rough outline on how such a reconstruction could be done. A more
careful analysis might reveal more efficient ways to solve the problem.

The main register starts as M = (080||k79k78 . . . k1k0) and C = 0. The FCSR
is clocked once before any output.

We start by guessing the first 8 key bits k7, k6, . . . , k0 that control the feedback
the first 8 output bytes. With known feedback we can describe how every state
bit can be expressed in algebraic form. Note that as long as we have zero feedback
the carries register remain zero and we just get linear equations from the output
bytes. The nonlinearity starts to grow when feedback is one. So assuming that
the first feedback bit is one, we can examine the equations from the output bytes.

Similarly as before, let K̂0 = (k0, k8, . . . , k72), K̂1 = (k1, k9, . . . , k73), etc. Let
Li(K̂i) denote some linear function of variables in K̂i and let Ci(K̂i1 , K̂i2 , . . . , K̂in)
denote some nonlinear function of variables in K̂i1 , K̂i2 , . . . , K̂in . Then the re-
ceived equations for the first output byte have the form

(S0)7 = L0(K̂0),

(S0)1 = L1(K̂1),
...

...
(S0)6 = L7(K̂7).

The next output byte is written

(S1)6 = L8(K̂0) + C8(K̂7),

(S1)7 = L9(K̂1) + C9(K̂0),
...

...
(S1)5 = L15(K̂7) + C15(K̂6),

and then

(S2)5 = L16(K̂0) + C16(K̂6, K̂7),

(S2)6 = L17(K̂1) + C17(K̂7, K̂0),
...

...
(S2)4 = L23(K̂7) + C23(K̂5, K̂6),
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and so on. The last one we use is

(S7)0 = L56(K̂0) + C56(K̂1, . . . , K̂6, K̂7),

(S7)6 = L57(K̂1) + C57(K̂2, . . . , K̂7, K̂0),
...

...
(S7)4 = L63(K̂7) + C63(K̂0, . . . , K̂5, K̂6).

When K̂i appears in the linear expression but not in the nonlinear expression
in an equation, we can use the equation to eliminate one variable. Starting
with K̂7 we have 8 such equations. Since we guessed the first key byte K̂7

contains 9 unknown variables. By leaving or guessing one bit in K̂7 we can
derive the remaining ones as functions C(K̂0, . . . , K̂5, K̂6). These functions are
inserted instead of K̂7 variables in the remaining equations. Then examining the
equations and looking for those with K̂6 only in the linear part gives 7 more
equations that can be used to eliminate K̂6 variables. Then the same for K̂5
gives 6 more equations etc. Altogether we can remove 36 variables in this way
and we have to do a work effort of trying 244 choices of certain key bits. The
algebraic expressions we need to test can be precomputed. Observe that if the
first feedback bit is zero (probability 1/2) the complexity drops to 236, two zero
feedback bits give complexity 228, etc.

The key recovery part has not been fully implemented but the given arguments
show that also key recovery can be done with low complexity.

7 Conclusions

We have given a very strong attack on the F-FCSR-H stream cipher, a cipher
that has been selected for the eSTREAM portfolio. The state recovery attack
has been fully implemented to attack F-FCSR-H using the designers reference
code. It succeeds in a few seconds using on average 223.7 bytes (≈ 13 Mbyte) of
keystream.

The weakness that was exploited is that the FCSR automata sometimes tem-
porarily (almost) behaves as a regular LFSR. Together with the fact that the
output filter is linear, the complete cipher became temporarily linear, which
allowed us to recover the internal state.
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