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Abstract. Orchids is an intrusion detection tool based on techniques
for fast, on-line model-checking. Orchids detects complex, correlated
strands of events with very low overhead in practice, although its detec-
tion algorithm has worst-case exponential time complexity.

The purpose of this paper is twofold. First, we explain the salient
features of the basic model-checking algorithm in an intuitive way, as
a form of dynamically-spawned monitors. One distinctive feature of the
Orchids algorithm is that fresh monitors need to be spawned at a pos-
sibly alarming rate.

The second goal of this paper is therefore to explain how we tame the
complexity of the procedure, using abstract interpretation techniques to
safely kill useless monitors. This includes monitors which will provably
detect nothing, but also monitors that are subsumed by others, in the
sense that they will definitely fail the so-called shortest run criterion. We
take the opportunity to show how the Orchids algorithm maintains its
monitors sorted in such a way that the subsumption operation is effected
with no overhead, and we correct a small, but definitely annoying bug in
its core algorithm, as it was published in 2001.

1 Introduction

It is a lieu commun that the security of computer systems and networks is
more and more challenged by new threats. Viruses, worms, Trojan horses have
been reported to infect computers since the early 1980s, network attacks such
as denial of service, spoofing, defacing have been commonplace since the late
1980s, and new attacks keep coming up, either based on new principles such
as phishing or keyloggers, or using older vulnerabilities. New applications create
new opportunities for vulnerabilities. E.g., the advent of Web-based applications
created new families of vulnerabilities such as SQL insertion, PHP insertion, or
cross-site scripting.

It is harder and harder to maintain an acceptable level of security on comput-
ers and networks, while keeping the induced nuisance at an acceptable level to
honest users. Static analysis and formal methods in general can certainly help
increase the faith we can put in critical pieces of code, but they are far from be-
ing able to ascertain the global security of a whole computer system or network.
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A successful family of techniques in this respect is intrusion detection, whereby
flows of system and network events are monitored in real time, and analyzed so
as to detect attacks. Intrusion detection systems that also react against attacks
are sometimes called intrusion prevention systems.

Definitions in this domain tend to be fuzzy, starting from the very notion
of attack. Anomaly detection systems count as possible attack any significant
statistical deviation from normal behavior. Misuse detection systems would check
the flow of events against some security policy, raising an alert when the policy
is violated, or against some database of attack signatures, raising an alert when
one of the signatures is matched.

Orchids [6] is an intrusion prevention system that was developed at LSV
by the authors, starting from 2002. It was initially meant as a misuse detection
system, whose originality was that it could detect complex attacks consisting of
several events correlated over time. An example of such an attack is the ptrace
attack [10,11], which we shall describe shortly in Section 2. We shall again use
this attack to describe the Orchids detection algorithm by means of an example
run, in Section 3. In Section 4, we shall describe the core detection algorithm
in more detail, repairing a bug in [13]. The point of this algorithm is to detect
the shortest run by keeping all runs sorted with the lowest possible overhead—in
particular, we never call any sort routine. The ptrace example, while impressive,
remains simple-minded, for reasons we shall explain in Section 6. There, we shall
illustrate how a single signature can detect whole families of attacks, and even
some zero-day attacks. This is important to security practitioners.

Orchids was presented at the CAV’05 conference [7], and its core algorithm
is based on the one described in [13, Section 4]. In these papers, Orchids was de-
scribed as a model-checker for a specific temporal logic. However, somehow Or-
chids is better described as running monitors, with the twist that each monitor
will spawn new monitors dynamically, to follow possible beginnings of attacks.
Presenting this work at RV’08 is therefore quite apt indeed, and we must thank
Martin Leucker and the organizers for inviting the first author to Budapest and
allow him to give an overview of it.

2 The ptrace Attack Example

Let’s concentrate on the ptrace attack [10,11]. This is a local-to-root exploit,
i.e., it enables a user having local access to a host machine to get root privileges.
This is a real attack, which has been used in practice. Patches have been available
for some time, of course; none of the attacks presented here should be effective
on up-to-date systems.

The main point in using the ptrace attack as an example is that it is witnessed
by a flow of events that are all entirely uncharacteristic of any malicious activity
in isolation: most events in an instance of the attack are calls to the ptrace sys-
tem call, a perfectly benign system call used for all debugger-related activities.
Rather, the sequence of events throughout the attack must be identified to isolate
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the attack. In other words, the ptrace attacks avoids detection by classical intru-
sion detection systems, which only match individual events against a database of
word patterns.

To understand the attack, it is useful
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a matching
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not found
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Fig. 1. Calling an unimplemented ker-
nel functionality

to realize what a modular operating sys-
tem kernel, such as most versions of Linux,
will do when a user program calls an unim-
plemented kernel functionality. See Fig-
ure 1, where the user program has pid
100, and the unimplemented functional-
ity is the special case of the socket sys-
tem call on the (never implemented, Linux
specific) domain AF_SECURITY. The kernel
will search for a kernel module implement-
ing this, calling the modprobe utility to
search and install the desired module. If
the search fails, an error code is reported.

While this is how this is meant to work,
some versions of Linux suffer from a race condition (Figure 2(a)). While modprobe
has started running, with kernel privileges, the kernel updates the owner tables to
make modprobe root-owned instead of user-owned. So there is a small amount of
time where the malicious user program has complete control over the kernel pro-
cess modprobe: between timepoints 1 and 2 . The malicious program takes this
opportunity to attach the modprobeprocess through the standard Unix debugging
API function ptrace, and to insert a shellcode (a code of the intruder’s choosing)
inside it. When modprobe resumes execution, it will execute the shellcode with
full root privileges (Figure 2(b)).
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Fig. 2. The ptrace Linux attack
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3 Detecting the ptrace Attack

Orchids can be made to detect this attack using the following signature:

1 2 3 4 75 6
ptrace exec ptrace ptraceptrace

ε(ATTACH, (SYSCALL,

(GETREGS,
ptrace

(POKETEXT, (DETACH,
Pid,Euid,Tgt

(
) Pid,Tgt

Pid,Tgt

Pid,Tgt Pid,Tgt)

)

) )
)X, Tgt

(1)

This can be thought as an automaton (a monitor), with starting state 1 , and fi-
nal state 7 . Transitions are labeled with patterns , say ptrace(ATTACH, P id, Euid,
T gt), meant to match single events such as ptrace(ATTACH, 57, 500, 58) (with the
variable Pid mapped to 57, Euid to 500, Tgt to 58; Orchids actually uses ex-
plicit field selectors instead of patterns—we use patterns to simplify the exposi-
tion). Transitions can also be labeled with the symbol ε: these can be triggered
without matching any event.

Patterns may contain variables, i.e., signatures have first-order capabilities.
However, the main difference with standard monitors is that such an automaton
is meant to match subsequences of the event flow, not the whole sequence of
events. For example, the ptrace signature above should match the subsequence
of the event flow shown in Figure 3 (see Section 3.2) consisting of events number
3, 4, 7, 8, 9, 12 with Pid = 100, Euid = 500, Tgt = 101. It should also match
the sequence of events 3, 4, 7, 9, 12, omitting event 8 by choosing to go through
the ε transition between states 4 and 5 instead of going through the transition
labeled ptrace(GETREGS, P id, T gt). Note that it should also match the sequence
of events 3, 4, 7, 8 (optional), 10, and 12, and also the sequence 3, 4, 7, 8
(optional), 11, and 12.

To fix ideas, let events be ground first-order terms over some set of func-
tion symbols (e.g., ptrace, exec). This signature includes numbers such as 100,
101, or 58 as constants, as well as symbolic values and character strings such
as GETREGS. (Interpreting actual events, such as provided by the Linux kernel
module Snare or other input modules, as terms, is essentially a parsing task.)
Patterns are just first-order terms, not necessarily ground. We take the set V
of variables to be the disjoint union of two countably infinite subsets, the set
Vr of so-called rigid variables and Vf of flexible variables. Rigid variables such
as Pid, Euid, or Tgt above are meant to match the same value over all events
in a matching subsequence, while flexible variables may assume distinct values
at each event. This is reminiscent of Manna and Pnueli [2]. Orchids actually
imposes a typing discipline on variables, events, and patterns, of which the dis-
tinction between rigid and flexible is just one aspect. We shall largely ignore the
details of this typing discipline, except in Section 5.

Let T (V) be the set of all terms (patterns), T be the subset of all ground
terms (events). We let fv(t) denote the set of free variables in t, tσ denote the
result of applying the substitution σ to t, where substitutions σ are finite maps
[x1 := t1, . . . , xn := tn] with x1, . . . , xn pairwise disjoint variables—in which
case the domain dom σ of σ is {x1, . . . , xn}. Substitutions σ are meant to keep
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1: open ("/etc/passwd", "r", 58, 500)
2: ptrace (ATTACH, 57, 500, 58)
3: ptrace (ATTACH, 100, 500, 101)
4: exec ("modprobe", 101)
5: ptrace (ATTACH, 100, 500, 101)
6: exit (58)

7: ptrace (SYSCALL, 100, 101)
8: ptrace (GETREGS, 100, 101)
9: ptrace (POKETEXT, 100, 101)
10: ptrace (POKETEXT, 100, 101)
11: ptrace (POKETEXT, 100, 101)
12: ptrace (DETACH, 100, 101)

Fig. 3. A typical event flow

the values of specific variables such as Pid or Euid above. Let σ ⊕ σ′ be the
substitution with domain dom σ ∪ dom σ′, mapping every x ∈ dom σ′ to σ′(x),
and every x ∈ dom σ \ dom σ′ to σ(x).

Given a substitution σ, a pattern p and a ground term t, we let σ � p � t ⇒
σ⊕σ′, provided the most general matcher σ′ of p against t exists, and σ(x) = σ′(x)
for every x ∈ Vr ∩ dom σ ∩ dom σ′ (i.e., we check that rigid variables do not
change; flexible variables may be overwritten at will). In this case, we say that pat-
tern p matches event t in σ, yielding σ ⊕ σ′. E.g., ptrace(ATTACH, P id, Euid, T gt)
matches ptrace(ATTACH, 57, 500, 58) (event number 2 in Figure 3) in the empty
substitution, yielding [Pid := 57, Euid := 500, T gt := 58]; ptrace(SYSCALL,
P id, T gt) matches ptrace(SYSCALL, 100, 101) (event 7) in [Pid := 100, Euid :=
500, T gt := 101] but not in [Pid := 57, Euid := 500, T gt := 58].

Each transition in a signature may be additionally labeled with a guard , which
is an expression over the variables in V denoting a Boolean value. The actual
syntax of guards is unimportant here. Letting G be the set of guards, we shall
only assume that one may compute the finite set fv(g) of free variables in the
guard g, and that we may evaluate a guard g in an environment σ to a Boolean
value �g�σ, as soon as fv(g) ⊆ dom σ.

Signatures Σ are automata (Q, I, T, Δ), where Q is a finite set of states ,
I ⊆ Q is the subset of initial states , T ⊆ Q is the set of final states , and
Δ ⊆ Q × (T (V) 	 {ε}) × G × Q is the transition relation. Any transition of the
form (q0, ε, g, q1) is called an ε-transition. We assume that no ε-transition goes
out of the initial state, i.e., that there is no transition of the form (q0, ε, g, q1)
with q0 ∈ I.

An event flow t• is any finite or infinite sequence t1t2 . . . ti . . . of events,
i.e., of ground terms in T . We are interested in finding specific subsequences
of events with indices i1 < i2 < . . . < ik (k ≥ 1): these subsequences are
uniquely determined by the sets {i1, i2, . . . , ik}, which we call subflows . A par-
tial run of an event flow t• against a signature Σ = (Q, I, T, Δ) is a sequence
q0, σ0

i1→q1, σ1
i2→ . . .

ik→qk, σk, where k ≥ 1, q0, q1 . . . , qk are states in Q, q0 ∈ I,
σ0 is the empty substitution, and there is an integer ik+1 such that for all j,
1 ≤ j ≤ k, either there is a transition (qj−1, ε, g, qj) ∈ Δ with �g�σj−1 true and
ij = ij+1 (go through the ε-transition, do not move in the event flow), or there is
a transition (qj−1, p, g, qj) ∈ Δ with p = ε, σj−1 � p � tij ⇒ σj , with �g�σj true,
and ij < ij+1 (go through the transition, acquiring new values for variables, and
proceed to some later point in the event flow). The subflow of such a partial run
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is the set of indices i1, i2, . . . , ik, with duplicates removed. We say that i1 is its
birthdate. A complete run is a partial run such that, additionally, qk ∈ F .

Orchids is in fact based on a more complex, and more expressive, language
of signatures, with mutable variables, external system calls, and an embedded
Prolog interpreter to maintain various databases: black lists, attacks that have
succeeded in the past and that may be prerequisites to some others, neighboring
relations between hosts in networks, equivalences between host names and be-
tween other services, and alert correlation information as in the M2D2 model [5].
However, the above simpler automata are enough to convey the essential ideas.

3.1 Shortest Runs

It is important to note that there is no unique complete run of a given event
flow against a given signature in general, as we have seen above on the example
of the ptrace attack: even the corresponding subflows are not unique.

An intrusion detection system cannot just report the existence of a matching
subsequence (an attack): it should also collect, report enough information about
the attack, and use it to react appropriately. Complete runs are enough informa-
tion. On the other hand, it cannot report all matching complete runs either. This
would flood the security administrator with too many alerts, prompting him to
turn the intrusion detection system off, or to ignore its warnings. Instead, Or-
chids reports a shortest run [13] among all matching subsequences starting at a
given event. The definition is as follows. For any subflows i1 < i2 < . . . < ik and
j1 < j2 < . . . < j� (k, � ≥ 1), we let (i1, i2, . . . , ik) � (j1, j2, . . . , j�) iff i1 = j1 (the
subflows have the same birthdate), ik ≤ j� (the first one stops earlier than the
second one), and (i1, i2, . . . , ik) is lexicographically smaller than (j1, j2, . . . , j�).

On subflows with a given, fixed birthdate i1, � is a total well-founded ordering,
so any non-empty family F of subflows with the same birthdate i1 has a unique
smallest element wrt. �. This is the shortest subflow of F . By extension, a
shortest run of a flow t• against a signature Σ with birthdate i1, is a complete
run whose subflow is shortest, among all subflows of complete runs against Σ
with birthdate i1.

Orchids will only return shortest runs, taken as canonical representatives of
all runs against a given signature Σ with a given birthdate i1. Another view is to
say that Orchids considers all runs against the same signature Σ and starting
at the same position as equivalent. Pouzol and Ducassé [9] consider more general
notions of equivalence. However, the efficiency of the algorithm of Section 4 owes a
lot to our particular definition of equivalence. While the latter is fixed in Orchids,
experience shows that it is adequate. It was argued in [13] that the shortest run
against a given signature with birthdate i1, was in a sense the most informative
one, and experience again has vindicated this stance. We discuss this briefly.

First, shortest runs are shortest in the intuitive sense that they can be reported
as soon as one run succeeds that matches the given signature. A simple example is
the signature 1 32

AA

, with some arbitrary event A, and the event flow
AAAAA . . .AA. While matching runs with birthdate i1 = 1 include all pairs 1, n for
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all n ≥ 2, only the pair 1, 2 counts as shortest. This guarantees that the intrusion
detection system will react as soon as some matching run is encountered.

Second, and more subtly, consider the signature shown on the right, and the
event flow ACDCDCDCB. Any shortest run with birthdate i1 = 1 must end at
ik = 9, on the final B. Candidates are 1, 9, which only matches the initial A and
the final B; or 1, 2, 3, 9, which additionally matches the first CD, going around the
loop between states 2 and 3 ; or 1, 4, 5, 9; or 1, 4, 7, 9. . . we invite the reader to
check that the shortest run is 1, 2, 3, 4, 5, 6, 7, 9: contrarily to what the adjective
“shortest” may suggest, the shortest run contains as many relevant events as
permitted to describe a matching attack.

Returning to the ptrace attack signature (1), and the

1 4

3

2
A B

CDexample event flow of Figure 3, the only matching runs have
birthdate i1 = 3, and the only shortest run is 3, 4, 7, 8,
10, 12. Note that the optional event 8 is included, although
it would be allowed to skip it, by going through the ε-transi-
tion from 4 to 5 , instead of that labeled ptrace(GETREGS, P id, T gt). The lat-
ter transition would be irrelevant without the shortest run semantics. Here, it in-
structs Orchids to report an event of the form ptrace(GETREGS, P id, T gt) in a
matching attack, in case one is indeed present.

3.2 Running Orchids on the ptrace Signature

Let us simulate an execution of Orchids of the signature (1) against the example
event flow of Figure 3. This will give us an opportunity to illustrate the salient
features of the Orchids algorithm, which we shall explain in more detail in
Section 4. Here Orchids will try to match just one signature; in normal use, it
will try to match all signatures in a given signature database at the same time.

Initially, Orchids reads event 1. Since (1) does not contain any pattern match-
ing an open event, we skip to event 2, t = ptrace(ATTACH, 57, 500, 58). The pat-
tern p = ptrace(ATTACH, P id, Euid, T gt) matches this, i.e.: σ0 � p � t ⇒ [Pid :=
57, Euid := 500, T gt := 58]. So Orchids produces the partial run 1 , σ0

2→ 2

[Pid := 57, Euid := 500, T gt := 58], where σ0 is the empty substitution.
Think of these partial runs as being threads running in parallel, of a single

program that tries several ways of matching subflows against the signature (1).
(Threads will actually be partial runs, plus some extra information, but we
shall equate the two concepts for now.) Such threads will be put in a queue.
Currently, this queue only contains thread (i) below (i.e., signature (1), at state

2 ), with substitution [Pid := 57, Euid := 500, T gt := 58], and the subflow of
the corresponding partial run contains just 2. From now on, we write subflows
with visible spaces ␣ to make explicit those events that were not taken into
account; e.g., we write ␣2␣␣5 6 instead of {2, 5, 6}.

(i) 1 3 4 75 6
ptrace exec ptrace ptraceptrace

ε(ATTACH, (SYSCALL,

(GETREGS,
ptrace

(POKETEXT, (DETACH,
Pid,Euid,Tgt

(
) Pid,Tgt

Pid,Tgt

Pid,Tgt Pid,Tgt)

)

) )

2
)X, Tgt [Pid := 57, Euid := 500, T gt := 58] ␣2
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In other words, Orchids is considering event 2 as the first event of a possible
attack.

Now Orchids reads event 3, and decides to create a new thread (ii). Indeed,
event 3 is also matched by the first pattern of the signature (1), so might also be
the beginning of a possible attack. The current state of the thread queue is now:

(i) 1 3 4 75 6
ptrace exec ptrace ptraceptrace

ε(ATTACH, (SYSCALL,

(GETREGS,
ptrace

(POKETEXT, (DETACH,
Pid,Euid,Tgt

(
) Pid,Tgt

Pid,Tgt

Pid,Tgt Pid,Tgt)

)

) )

2
)X, Tgt [Pid := 57, Euid := 500, T gt := 58] ␣2␣

(ii) 1 3 4 75 6
ptrace exec ptrace ptraceptrace

ε(ATTACH, (SYSCALL,

(GETREGS,
ptrace

(POKETEXT, (DETACH,
Pid,Euid,Tgt

(
) Pid,Tgt

Pid,Tgt

Pid,Tgt Pid,Tgt)

)

) )

2
)X, Tgt [Pid := 100, Euid := 500, T gt := 101] ␣␣3

Orchids has to spawn this new thread. Otherwise, it might miss an attack.
If Orchids had not spawned this new thread, there would be opportunities for
intruders to launch so-called masking attacks . In other words, to start fake attack
beginnings so as to lead the intrusion detection system on a false track. Orchids
cannot know whether there is indeed an attack starting at event 2 (first thread),
or at event 3 (second thread), or none, but needs to consider both possibilities.
Similar behavior is typical of modern multi-event intrusion detection systems,
e.g., chronicles [4], or GnG [15].

Orchids now reads event 4, i.e., the exec event launching the instance of
modprobe where the shellcode will eventually be inserted. The thread queue is
now:

(i) 1 3 4 75 6
ptrace exec ptrace ptraceptrace

ε(ATTACH, (SYSCALL,

(GETREGS,
ptrace

(POKETEXT, (DETACH,
Pid,Euid,Tgt

(
) Pid,Tgt

Pid,Tgt

Pid,Tgt Pid,Tgt)

)

) )

2
)X, Tgt [Pid := 57, Euid := 500, T gt := 58] ␣2␣␣

(ii) 1 4 75 6
ptrace exec ptrace ptraceptrace

ε(ATTACH, (SYSCALL,

(GETREGS,
ptrace

(POKETEXT, (DETACH,
Pid,Euid,Tgt

(
) Pid,Tgt

Pid,Tgt

Pid,Tgt Pid,Tgt)

)

) )

2 3
)X, Tgt

[Pid := 100, Euid := 500,
T gt := 101, X := "modprobe"] ␣␣3 4

where the second thread has advanced to state 3 , and is waiting on an event
matching ptrace(SYSCALL, P id, T gt). The first thread does not advance, since
the value of Tgt (here, 101) does not match the one it already got (58).

If this seems natural to you, you have probably missed something—or you’re
clever. To avoid masking attacks, Orchids should also have launched a third
thread:

1 3 4 75 6
ptrace exec ptrace ptraceptrace

ε(ATTACH, (SYSCALL,

(GETREGS,
ptrace

(POKETEXT, (DETACH,
Pid,Euid,Tgt

(
) Pid,Tgt

Pid,Tgt

Pid,Tgt Pid,Tgt)

)

) )

2
)X, Tgt [Pid := 100, Euid := 500, T gt := 101] ␣␣3 ␣

Indeed, it may be the case that the exec event 4 was only used to mount a
masking attack again. If this is the case, we should spawn the thread above,
which would disregard event 4 in the hope of finding a later exec event which
would be the right one.

Orchids does not spawn this thread, because it is able to show that this is
useless. It is not that this thread has no chance of eventually detecting an attack:
this would not be true. But, if this new thread eventually detects an attack, the
corresponding subflow will never be shortest: if the new thread detects an attack
at some event n, with subflow ␣␣3␣. . . n, then thread (ii) will have detected an
attack at event n too, with subflow of the form ␣␣3 4 . . . n. Now notice that
the latter is strictly smaller in the � ordering, hence is more informative. We
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can therefore safely ignore the above, useless, thread: we say that thread (ii)
subsumes the above thread. This is an example of a green cut , see Section 5.
Such green cuts are crucial to the efficiency of Orchids.

Orchids now reads event 5, which may against be the beginning of a ptrace
attack. So Orchids launches a new thread:

(i) 1 3 4 75 6
ptrace exec ptrace ptraceptrace

ε(ATTACH, (SYSCALL,

(GETREGS,
ptrace

(POKETEXT, (DETACH,
Pid,Euid,Tgt

(
) Pid,Tgt

Pid,Tgt

Pid,Tgt Pid,Tgt)

)

) )

2
)X, Tgt [Pid := 57, Euid := 500, T gt := 58] ␣2␣␣␣

(ii) 1 4 75 6
ptrace exec ptrace ptraceptrace

ε(ATTACH, (SYSCALL,

(GETREGS,
ptrace

(POKETEXT, (DETACH,
Pid,Euid,Tgt

(
) Pid,Tgt

Pid,Tgt

Pid,Tgt Pid,Tgt)

)

) )

2 3
)X, Tgt

[Pid := 100, Euid := 500,
T gt := 101, X := "modprobe"]

␣␣3 4␣

(iii) 1 3 4 75 6
ptrace exec ptrace ptraceptrace

ε(ATTACH, (SYSCALL,

(GETREGS,
ptrace

(POKETEXT, (DETACH,
Pid,Euid,Tgt

(
) Pid,Tgt

Pid,Tgt

Pid,Tgt Pid,Tgt)

)

) )

2
)X, Tgt [Pid := 100, Euid := 500, T gt := 101] ␣␣␣␣5

Event 6 is irrelevant, and event 7 advances thread (ii):

(i) 1 3 4 75 6
ptrace exec ptrace ptraceptrace

ε(ATTACH, (SYSCALL,

(GETREGS,
ptrace

(POKETEXT, (DETACH,
Pid,Euid,Tgt

(
) Pid,Tgt

Pid,Tgt

Pid,Tgt Pid,Tgt)

)

) )

2
)X, Tgt [Pid := 57, Euid := 500, T gt := 58] ␣2␣␣␣␣␣

(ii) 1 75 6
ptrace exec ptrace ptraceptrace

ε(ATTACH, (SYSCALL,

(GETREGS,
ptrace

(POKETEXT, (DETACH,
Pid,Euid,Tgt

(
) Pid,Tgt

Pid,Tgt

Pid,Tgt Pid,Tgt)

)

) )

2 3 4
)X, Tgt

[Pid := 100, Euid := 500,
T gt := 101, X := "modprobe"] ␣␣3 4␣␣7

(iii) 1 3 4 75 6
ptrace exec ptrace ptraceptrace

ε(ATTACH, (SYSCALL,

(GETREGS,
ptrace

(POKETEXT, (DETACH,
Pid,Euid,Tgt

(
) Pid,Tgt

Pid,Tgt

Pid,Tgt Pid,Tgt)

)

) )

2
)X, Tgt [Pid := 100, Euid := 500, T gt := 101] ␣␣␣␣5␣␣

Again, there is no need to create another thread that would consider the possibil-
ity that thread (ii) might not advance, because it would be subsumed by (ii),
i.e., it would violate shortest runs. Event 8, ptrace(SYSCALL, 100, 101), matches
the ptrace(SYSCALL, P id, T gt) pattern of the non-ε-transition of thread (ii) from
state 4 to 5 . Again thanks to the shortest run trick, Orchids does not need
to consider spawning a new copy of thread (ii) that would remain in state 4 .
More importantly, Orchids does not need to consider spawning a new copy of
thread (ii) that would advance to state 5 : again, Orchids detects that this
would be subsumed. The thread queue is now therefore:

(i) 1 3 4 75 6
ptrace exec ptrace ptraceptrace

ε(ATTACH, (SYSCALL,

(GETREGS,
ptrace

(POKETEXT, (DETACH,
Pid,Euid,Tgt

(
) Pid,Tgt

Pid,Tgt

Pid,Tgt Pid,Tgt)

)

) )

2
)X, Tgt [Pid := 57, Euid := 500, T gt := 58] 2

(ii) 1 75 6
ptrace exec ptrace ptraceptrace

ε(ATTACH, (SYSCALL,

(GETREGS,
ptrace

(POKETEXT, (DETACH,
Pid,Euid,Tgt

(
) Pid,Tgt

Pid,Tgt

Pid,Tgt Pid,Tgt)

)

) )

2 3 4
)X, Tgt

[Pid := 100, Euid := 500,
T gt := 101, X := "modprobe"] 3 4 7

(iii) 1 3 4 75 6
ptrace exec ptrace ptraceptrace

ε(ATTACH, (SYSCALL,

(GETREGS,
ptrace

(POKETEXT, (DETACH,
Pid,Euid,Tgt

(
) Pid,Tgt

Pid,Tgt

Pid,Tgt Pid,Tgt)

)

) )

2
)X, Tgt [Pid := 100, Euid := 500, T gt := 101] 5

Reading event 9, Orchids decides to advance thread (ii) to state 6 . Again,
Orchids is able to show that it would be useless to spawn a copy of thread
(ii) that would wait at state 5 , because it would be subsumed. Orchids
will then ignore events 10 and 11 in thread (ii), although they would be rel-
evant (we let the reader rewrite the signature so that it captures all relevant
ptrace(POKETEXT, . . .) events), and will reach the final state 7 with thread (ii),
and subflow ␣␣3 4␣␣7 8 9␣␣12.

At this point, Orchids’ thread queue still contains threads (i) and (iii). These
may be indicative of attacks starting at event 2, resp. 5, and which haven’t been
completed yet. For the moment, where we have just read event 12, Orchids
reports an alert. We decided to have Orchids kill the offending user’s processes
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(with pid 100, and all descendants), and to close his account. Such retaliation
measures have sometimes been described as characteristic of intrusion prevention
systems, as opposed to intrusion detection systems. They are needed: a typical
shellcode will insert some form of trapdoor into the system, such as setting the
setuid bit on one of the user’s process, to allow him to become root at any later
time, without running the attack again.

The actual signature Orchids uses to detect the ptrace attack is a bit more
complicated. While Orchids really reports and retaliates at state 7 , this state
is not final, and the real signature has added transitions. This allows Orchids to
track down all events done by the shellcode (with pid obtained in variable Tgt,
here 101) until it exits (which it will eventually do, if only because Orchids
sent it a KILL signal). This allows a security engineer to analyze the inserted
shellcode and its effects—this is called forensic analysis—and to take appropriate
corrective countermeasures.

4 The Core Algorithm

The core algorithm that Orchids uses, and which we have illustrated in Sec-
tion 3.2, is based on the algorithm of [13, Figure 6]. However, the latter algorithm
contains a bug, which the first author found 6 months after the paper was pub-
lished. We take the opportunity to describe a correct algorithm, with a simpler
presentation.

As far as simplifications go, first, we don’t consider green cuts for now, in
particular those related to shortest runs: see Section 5. Also, we consider only one
signature Σ = (Q, I, T, Δ), although the extension to more is straightforward.
Finally, we assume Σ does not contain any ε-transition. Removing ε-transitions
is done mostly as in standard finite-state automata, and only requires that we
can form the conjunction g1 ∧ g2 of two guards g1 and g2, so that �g1 ∧ g2�σ
is true if and only if �g1�σ and �g2�σ are both true: whenever Σ contains two
transitions (q1, p, g1, q2) and (q2, ε, g2, q3), add the transition (q1, p, g1 ∧ g2, q3)
unless it is already present. When the signature is saturated under applications
of this rule, remove all ε-transitions.

The main idea of the algorithm is to keep the thread queue sorted, and to
traverse this queue in such a way that the first thread with a given birthdate
i1 and signature Σ that reaches a final state in the queue is shortest. Then, we
remove all other threads with the same birthdate i1 and Σ from the queue—we
kill these threads.

Intuitively, it should be enough to keep all threads sorted in the lexicographic
ordering of the corresponding subflows, but this is wrong. Imagine the current
thread queue contains threads corresponding to subflows 1 2 3, 1 2␣, and 1␣3.
If event 4, the next event to be considered, led each of these to a final state,
then we would have to pick the lexicographically smallest subflow among 1 2 3
4, 1 2␣4, and 1␣3 4: this is 1 2 3 4. Observe that {1, 2, 3, 4} <lex {1, 2, 4} <lex

{1, 3, 4}, where <lex is lexicographic ordering. Before event 4, we would therefore
like the threads to be ordered as 1 2 3, then 1 2␣, then 1␣3. This way, no
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reordering will have to happen when adding 4 to each subflow. However, 1 2 3
is certainly not smaller, lexicographically, than 1 2␣, i.e., {1, 2}! So we have to
maintain the thread queue in some different ordering. This was recognized in
[13, Theorem 4.11], where an ordering <i is defined for this purpose, for each
event position i. (In the example, i = 3.) The right ordering is given by: for every
subflows D, D′ ⊆ {1, . . . , i}, D <i D′ if and only if D and D′ have the same least
element, and D ∪ {i + 1} <lex D′ ∪ {i + 1}. Roger and the first author [13] use
a more complex, equivalent formula (up to the condition on least elements). Let
≤i be the reflexive closure of <i, i.e., D ≤i D′ if and only if D = D′ or D <i D′.

Say that a list of partial runs R1, R2, . . . , Rm is ≤i-sorted if and only if Rj ≤i

Rk implies j ≤ k. We aim at keeping queues of partial runs sorted, with minimal
algorithmic effort. Whenever we read event number i + 1, starting from a ≤i-
sorted thread queue R1, R2, . . . , Rk, we must create a ≤i+1-sorted thread queue
of all possible extensions of the runs Rj , 1 ≤ j ≤ k, as predicted by the semantics
of signatures, and all possible partial runs starting at event i + 1.

Extensions are defined as follows. Let R = q0, σ0
i1→q1, σ1

i2→ . . .
ik→qk, σk be

a partial run, with subflow included in {1, . . . , i}, and R′ a partial run with
subflow included in {1, . . . , i, i + 1}. We say that R′ extends R at position i +
1 if and only if either R′ = R (wait without taking a transition), or R′ =
q0, σ0

i1→q1, σ1
i2→ . . .

ik→qk, σk
i+1−→qk+1, σk+1, where there is a transition (qk, p, g,

qk+1) ∈ Δ with p = ε, σk � p � ti+1 ⇒ σk+1, and with �g�σk+1 true (go through
the transition, acquiring new values for variables, and proceed to some later
point in the event flow). In the latter case, R′ extends R non-trivially, through
the outgoing transition (qk, p, g, qk+1). Remember we assume Σ does not contain
any ε-transition, so we can safely ignore them.

A partial run starts at event i+1 if and only if it is of the form q0, σ0
i+1−→q1, σ1,

where q0 ∈ I, σ0 is the empty substitution, and there is a transition (q0, p, g, q1) ∈
Δ with σ0 � p � ti+1 ⇒ σ1, and with �g�σ1 true.

Given a ≤i-sorted list of partial runs R1, R2, . . . , Rm, we must produce a ≤i+1-
sorted list R′

1, R
′
2, . . . , R

′
n of all partial runs extending some Rj , 1 ≤ j ≤ m, or

starting at i + 1. In the case of extensions of the partial runs Rj , the idea of
the algorithm of [13] is to enumerate each Rj in turn, and to list the partial
runs R′

k that extend Rj , starting with those that extend Rj non trivially. For
example, starting from the partial runs 1 2 3 <3 1 2␣<3 1␣3 (where we identify
partial runs with their subflows), imagine each has both trivial and non-trivial
extensions at position 4. We start with 1 2 3, and output 1 2 3 4 first, then 1 2
3␣. Going on with 1 2␣, we output 1 2␣4, then 1 2␣␣. Eventually, this algorithm
will output the partial runs 1 2 3 4, 1 2 3␣, 1 2␣4, 1 2␣␣, 1␣3 4, and 1␣3 ␣. We
let the reader check that this is ≤4-sorted.

However, there is a bug, which occurs whenever two partial runs are generated
that induce the same subflow. Imagine for example that we must generate two
partial runs with subflow 1␣3 4, on reading event 4. The above algorithm lists
them in an arbitrary order. However, it may be that the first one will eventually
lead to a complete run such as 1␣3 4␣6, and that the second one will lead to another
complete run such as 1␣3 4 5 6. . . and 1␣3 4␣6, the first one, is then not shortest.
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Orchids uses a corrected algorithm, where partial runs are first grouped in
blobs , i.e., non-empty sets of threads with the same subflow. Each blob therefore
has a unique associated subflow. Then, blobs are ≤i-sorted, in the sense that the
associated subflows are ≤i-sorted. In other words, a list of blobs B1, B2, . . . , Bm

is ≤i-sorted if and only if Dj ≤i Dk implies j ≤ k, for all 1 ≤ j, k ≤ m, writing
Dj for Bj ’s subflow.

More precisely, at position i, Orchids produces a ≤i-sorted list B1, B2, . . . ,
Bm. On reading event number i + 1, Orchids produces the queue described in
Proposition 1 below, obtained by listing all partial runs starting at i + 1 in a
unique blob B′

0, and dealing with partial runs from Bj by first listing all non-
trivial extensions of partial runs from Bj , in a new blob B′

2j−1 that will precede
the blob B′

2j of the (unique) trivial extension. In other words, the corrected
algorithm works as above, except it needs to consider blobs instead of single
partial runs.

Proposition 1. Let B1, B2, . . . , Bm be a ≤i-sorted list of blobs, and assume all
the subflows of each Bj, 1 ≤ j ≤ m, are contained in {1, . . . , i}. Let B′

0 be the set
of all partial runs starting at i + 1, B′

2j−1 be the set of all non-trivial extensions
to partial runs in Bj, B′

2j be the set of all trivial extensions to partial runs
in Bj, 1 ≤ j ≤ m. Then the queue obtained from B′

0, B
′
1, B

′
2, . . . , B

′
2m−1, B

′
2m

by eliminating those B′
js that are empty is ≤i+1-sorted, and their subflows are

contained in {1, . . . , i, i + 1}.

Proof. Assume that B′
0, B

′
1, B

′
2, . . . , B

′
2m−1, B

′
2m is not ≤i+1-sorted. Let D′

j be
the subflow of B′

j , for all j, and Dj be the subflow of Bj . Then there are j′, k′

with 0 ≤ k′ < j′ ≤ 2m and D′
j′ ≤i+1 D′

k′ . Note that k′ = 0, since the birthdate
of any partial run in B′

0 is i + 1, which is different from all other birthdates.
Write k′ = 2k − δk and j′ = 2j − δj , where δk, δj are 0 or 1, and k ≤ j. If k = j,
then k′ < j′ implies δk = 1, δj = 0, so that D′

k′ = Dk ∪ {i + 1} (the partial
runs of B′

k′ = B′
2k−1 are non-trivial extensions of those of Bk), and D′

j′ = Dk

(those of B′
j′ = B′

2j = B′
2k are trivial extensions). But Dk ∪ {i + 1} <i+1 Dk, so

D′
k′ <i+1 D′

j′ , contradiction.
So k < j. Then Dk′ equals Dk, possibly with i + 1 added, and Dj′ equals Dj ,

possibly with i+1 added. Since B1, B2, . . . , Bm is ≤i-sorted, it is impossible that
Dj ≤i Dk, i.e., that Dj ∪{i+1} ≤lex Dk ∪{i+1}. Since ≤lex is a total ordering,
we must have Dk ∪ {i + 1} <lex Dj ∪ {i + 1}. Write the elements of Dk as i1 <
i2 < . . . < ip (with ip < i+1), those of Dj as j1 < j2 < . . . < jq (with jq < i+1,
and j1 = i1). Let ip+1 = i+1, jq+1 = i+1. Since Dk ∪{i+1} <lex Dj ∪{i+1},
for some � between 1 and min(p+1, q+1), i1 = j1, i2 = j2, . . . , i�−1 = j�−1, and
i� < j�. Now � = p + 1, else i + 1 = i� < j� ≤ jq+1 = i + 1. So � ≤ p. But then
Dk′ ∪{i+2}, which is composed of i1, i2, . . . , ip (optionally ip+1 = i+1) and i+2,
is lexicographically smaller than Dj′ ∪{i+2}, which is composed of j1, j2, . . . , jq

(optionally jq+1 = i + 1) and i + 2. That is, Dk′ <i+1 Dj′ , contradiction. ��

While we have equated threads with partial runs until now, threads are in fact
pairs of a partial run R and an outgoing transition (qk, p, g, qk+1). One may think
of a thread as waiting on a particular transition to fire. In general, there may
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be several threads with the same partial run, waiting on different transitions in
the same blob. From now on, call thread queue at position i a ≤i-sorted list of
blobs, composed of such threads. At the moment, this organization of blobs in
threads rather than in partial runs only leads to a minor modification in the core
algorithm. This will become important in Section 5.

Additionally, Orchids maintains a set Kill of birthdates of partial runs
that have reached their final state, to kill non-shortest runs. On reading event
i + 1, Orchids first resets Kill to ∅. Orchids runs through the threads R
in B1, B2, . . . , Bm as described in Proposition 1, with two modifications. First,
whenever a thread with run R′ is produced in one of the new blobs B′

j′ , 0 ≤
j′ ≤ 2m, that reaches a final state, Orchids adds the birthdate i1 of R′ to Kill.
This is a shortest complete run. Second, Orchids kills all other threads with
the same birthdate i1 by simply ignoring the threads in B1, B2, . . . , Bm whose
birthdate are in Kill when their turn comes.

Orchids also ignores a number of other threads, see Section 5. Note that the
actual thread queue, consisting of subsets of the blobs of Proposition 1, will also
remain ≤i-sorted at each event number i, guaranteeing that the unique complete
run that will reach a final state (with given birthdate and signature) indeed has
a shortest subflow.

Finally, we didn’t say what Orchids did on reaching a final state. It might
seem obvious that this would be the right point to emit a report, warning the
security administrator that an attack has just successfully completed, and to
take active countermeasures. This is in fact wrong, and confuses two roles for
final states. One of these roles is recognizing that enough information has been
collected to conclude that some attack was indeed under way. The other role is to
terminate Orchids monitoring, and kill the corresponding threads. These two
roles are distinct. The actual signature we use for ptrace has more states. State

7 is not final, and is the state at which Orchids takes corrective actions—here,
Orchids will emit an attack report, store it into a secured database of successful
fatal attacks, kill the offending attacking process (whose pid is in Pid) and all its
descendants, securely close the attacker’s account (whose id is in Euid) through
an SSH connection to the attacked machine. (We assume that Orchids runs
on a different, dedicated host, for obvious security reasons.) However, killing
subprocesses and closing user accounts takes some time, in particular if this is
done through a remote SSH connection, so the shellcode has some time to do
harm. The actual ptrace signature we use in Orchids has additional states
following 7 , whose purpose is to trace and record all subsequent events done
by the shellcode. This allows later, precise forensic analysis of the attack, and
is crucial both for repairing the attacked host and for acquiring information on
emerging viruses and worms.

5 Cuts, Green Cuts, Red Cuts

By cut , we mean any optimization or construction allowing one to kill threads.
Cuts are important to be able to bound the number of active threads at any
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given position in the event flow. Following Prolog conventions [1], we distinguish
between green cuts , which preserve the semantics, and red cuts , which don’t.
We first describe green cuts based on the notion of monotonic variables. These
cuts are green, because they eliminate threads that will provably never reach
a final state. Some other green cuts allow one to kill threads that may reach a
final state, but if they do, the corresponding subflow will never be shortest. We
have already seen an example of this in Section 3.2. We explain this in a second
subsection. We argue for red cuts in the final subsection.
Green Cuts I: Monotonicity and Generalized Timeouts. The monotonic-
ity cuts we describe now are typically justified by the need for timeouts , although
they are not limited to the latter. Timeouts are needed to eliminate proliferating
threads. Otherwise, attacker might mount denial-of-service attacks against the
intrusion prevention system itself. Instead, it is necessary to kill threads that
have exceeded a certain quota in terms of time or number of events. Naturally,
this opens the door to slow attacks , i.e., to attacks that would evade detection
by taking a long time to complete, and by generating events that are far away
from each other in the event flow. A security administrator has to define suitable
timeouts, as a result of a compromise between avoiding denial-of-service attacks
and detecting slow attacks.

Enough freedom should be given to the security administrator to tune timeout
information. We said that timeout information may be some combination of
elapsed time and number of events. We may also take into account other time
fields: the time at which a given event happened on a remote host, the time at
which it was sent to the intrusion prevention system, the time at which it was
received, the time at which it was logged. These are usually available as different
time fields in the incoming events.

Instead of designing a specific notation for timeouts, it is simpler and more
versatile to just use the guards g ∈ G for this purpose. For example, assuming
the rigid variable T0 holds the time at which the first event in the current partial
run was logged and I0 holds its position, the flexible variable $t holds the time at
which the current event was logged, and the flexible variable $i holds the event
position (obtained through pattern-matching), the guard $t < T0 + 60 ∧ $i <
I0 + 30 000 states that we wish to continue to monitor the given possible attack
for at most 60 seconds and at most 30 000 events.

Such guards by themselves are not enough to reduce the number of threads.
However, recognizing that a guard will always be false in the future allows us to
disregard it entirely. We accomplish this in Orchids by subdividing the int type
of integers (and other numerical types) into those of values that are monotonic
(non-decreasing over time), antitonic (non-increasing over time), constant (i.e.,
both monotonic and antitonic), and arbitrary. We also equate Boolean values
as the subtype consisting of 0 (false) and 1 (true) for this purpose. Such mono-
tonicity information can be formalized by using the familiar 4-element lattice
Four of subsets of {↑, ↓} ordered by inclusion: ∅ means arbitrary, {↑} mono-
tonic, {↓} antitonic, and {↑, ↓} means constant. Numerical types τi also include
a monotonicity information, in Four, e.g., int/{↓}.
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Specific fields in events are marked as monotonic, such as time fields, or event
numbers. Formally, each function symbol f comes with a typing rule, e.g., stating
that any term f(t1, . . . , tn) gives each ti some type τi, 1 ≤ i ≤ n. To simplify the
presentation, assume that all variables have type int/m for some monotonicity
information m, and that the types τi mentioned earlier are either int/∅, or
int/{↑}—in which case we say that i is a monotonic position. Given a pattern
p and a set V of variables (denoting variables that are already bound to some
value), let Γ [p, V ] be the typing context of all bindings x : τ , where either x
is rigid and in V and τ = int/{↑, ↓} (rigid variables, once bound, will remain
constant), or x is flexible and occurs in p at some monotonic position, and
τ = int/{↑}. Guards are typed using typing rules that include:

m ⊇ m′

int/m <: int/m′ τ <: τ

Γ � t : τ τ <: τ ′

Γ � t : τ ′

Γ, x : τ � x : τ

(c numerical constant)

Γ � c : int/{↑, ↓}

Γ � t1 : int/m1 Γ � t2 : int/m2

Γ � t1 + t2 : int/(m1 ∩ m2)
Γ � t1 : int/m1 Γ � t2 : int/m2

Γ � t1 < t2 : int/(m1 ∩ m2)

Γ � t1 : int/m1 Γ � t2 : int/m2

Γ � t1 ∧ t2 : int/(m1 ∩ m2)

In the last rules, we use the fact that Boolean values are considered as integers,
and we take the convention that ↑ =↓, ↑ =↓, m = {s | s ∈ m}. Using the typing
rules above, it is easy to see that we can derive $t : int/{↑}, $i : int/{↑}, T0 :
int/{↑, ↓}, I0 : int/{↑, ↓} � $t < T0 + 60 ∧ $i < I0 + 30 000 : int/{↓}. This
implies that the guard g = ($t < T0 + 60 ∧ $i < I0 + 30 000) is antitonic, in
particular that if it is false at event position i, it will remain false at every later
position. This is a consequence of the following, easily proved proposition, with
t = g. We assume the evaluation function �_�σ to behave as expected, e.g.,
�t1 + t2�σ = �t1�σ + �t2�σ.

Proposition 2. Assume that event fields are marked monotonic or arbitrary, and
that monotonic fields of events ti are integers that are non-decreasing in i. For any
pattern p, substitution σ, and term t, if Γ [p, dom σ] � t : int/m is derivable, and
if σ � p � ti ⇒ σi, then for every j > i such that σ � p � tj ⇒ σj, �ti�σi and �tj�σj

are integers, �ti�σi ≤ �tj�σj if ↑ ∈ m, and �ti�σi ≤ �tj�σj if ↓ ∈ m.

Orchids implements this as follows. Recall that one may think of each thread,
with partial run R = q0, σ0

i1→q1, σ1
i2→ . . .

ik→qk, σk, as waiting on a transition
(qk, p, g, qk+1) to fire. If σk � p � ti ⇒ σ′ for some substitution σ′ but �g�σ′ = 0
(false), and if Γ [p, dom σk] � g : int/{↓} is derivable, then Orchids kills the
thread, i.e., removes it from its blob (and removes the blob from the queue if
it becomes empty): not only does this transition fail to fire at position i, it will
never fire.
Green Cuts II: Predicting Non-Shortest Runs. The algorithm of Sec-
tion 4 kills all threads with a given birthdate and signature, once a correspond-
ing (shortest) complete run has been found. However, as we have illustrated
in Section 3.2, Orchids also kills some threads in advance, knowing that they
cannot be completed to a shortest run. This is crucial to the performance of
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Orchids. Otherwise, we would accumulate useless threads, only to kill them en
masse when one of them completes, if ever.

Returning to the example of Section 3.2, the first case this happened was on
reading event 4, where we decided that it was useless to spawn the thread with
subflow ␣␣3␣, since it would be subsumed by thread (ii), with subflow ␣␣3 4.
In this example, most states only have one outgoing transition, so that we had
only one thread per partial run. Hence, we equated threads with partial runs.
In general, we should be careful that threads are partial runs waiting on a given
transition. Here, before reading event 4, we had a thread (ii), with a partial
run of subflow ␣␣3 ␣, waiting on transition ( 2 , exec(X, Tgt), 1, 3). The core
algorithm should in principle create two threads from the latter when reading
event 4 (exec("modprobe", 101)). One would advance this thread to one with
subflow ␣␣3 4, waiting on ( 3 , ptrace(SYSCALL, P id, T gt), 1, 4). The other (the
trivial extension of the partial run) would decide to continue waiting on a later
event matching exec(X, Tgt). As we have already argued, the latter is useless.

It would be wrong to think that all trivial extensions of a partial run R are
subsumed by any non-trivial extension of R, i.e., that it is always useless to wait
when a transition could be fired. Although the case does not happen in the ex-
ample of Section 3.2, consider the signature 1 3 4

)( Tgt, X

start
2

action final

( X )( Tgt )
, and the

event flow 1: start (58); 2: action (58, A); 3: action (58, B); 4: final (B). On
reading event 2, while in state 2 , both the trivial extension 1␣ (with Tgt := 58)
and the non-trivial extension 1 2 (with Tgt := 58, X := A) have to be considered.
The point is that we don’t know whether A is the right value for X that will lead
to a subflow that matches the signature. And indeed, the only such subflow is 1␣3
4, with Tgt := 58, X := B. We may say that, at state 2 , the value of X still has
to be discovered. On the contrary, in the ptrace example, the value of rigid vari-
able Tgt has already been discovered at state 2 , while the value of X , which we
discover at this point, will never be used by any later guard.

This is formalized as follows. Given a computable property P (Γ, g) of a typing
context Γ and a guard g, we say that P holds at all reachable transitions from
Γ and the transition (q, p, g, q′), inductively, if and only if P (Γ, g) holds and P
holds at all reachable transitions from Γ ⊕ {x : int/{↑, ↓} | x ∈ fv(p′)} and
(q′, p′, g′, q′′) for all outgoing transitions (q′, p′, g′, q′′). This is meant to say that
P (Γ ′, g′) holds whenever we reach a transition (q′, p′, g′, q′′), where Γ ′ is Γ , with
all variables bound in-between assumed constant. Let Γ 〈p, V 〉 be the typing
context of all bindings x : τ , where: if x is in V and not a flexible variable in
fv(p), then τ = int/{↑, ↓}; if x is flexible and occurs in p at some monotonic
position, then τ = int/{↑}; otherwise, τ = int/∅.

Proposition 3. Assume that event fields are marked monotonic or arbitrary,
and that monotonic fields of events ti are integers that are non-decreasing in i.

Let R = q0, σ0
i1→q1, σ1

i2→ . . .
ik→qk, σk be a partial run, with subflow included in

{1, . . . , i}, and where qk is not final. Let (qk, p, g, qk+1) be some outgoing transition,
assume that σk � p�ti+1 ⇒ σk+1, and that P holds at all reachable transitions from
Γ 〈p, dom σk〉 and (qk, p, g, qk+1), where P (Γ ′, g′) is the property: Γ ′ � g′ : int/{↓}
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is derivable.Foranycomplete run q0 , σ0
i1→q1, σ1

i2→ . . .
ik→qk, σk

ik+1→ qk+1, σ
′
k+1

ik+2→ . . .
im→qm, σ′

m with i+1 < ik+1, there is a strictly shorter complete run q0, σ0
i1→q1, σ1

i2→
. . .

ik→qk, σk
i+1→ qk+1, σk+1

ik+2→ . . .
im→qm, σm.

Proof. (Sketch.) I.e., we can build a strictly shorter run by firing the transition
(qk, p, g, qk+1) at event position i + 1 instead of waiting for some later position
ik+1. The assumption σk � p � ti+1 ⇒ σk+1 ensures that we can indeed fire this
at position i + 1. All further transitions, from qk+1 to qk+2 to . . . to qm are the
same in both runs. This may change variable bindings, from σ′

k+1 to σk+1, . . . ,
and from σ′

m to σm. But, by the typing condition, this can only make the value
of guards increase. Since all guards were made true by σ′

k+1, . . . , σ′
m, the same

guards are made true by σk+1, . . . , σm. ��

So, under the assumptions of Proposition 3, it is safe to advance along the
transition (qk, p, g, qk+1), without spawning a thread waiting on a later event
position for the same transition. Note that, as a particular case, the assumptions
of Proposition 3 are satisfied whenever p only binds rigid variables, and those
that were not in dom σk are free in no guard occurring later in the signature.
This is what we illustrated in Section 3.2.

Such green cuts are, as we have said, crucial to the performance of Orchids.
Totel et al. have already recognized the importance of timeouts, and shown
[15, Figure 7] that with a timeout value of 1 s on a user machine, the number of
plans (similar to our threads) culminated to a few hundreds. We worked together
in 2002, in the framework of the French RNTL project DICO, and evaluated our
respective algorithms by comparing numbers of threads throughout several event
flows, both artificial and real. On E. Totel’s main signature example, which was
meant to test the limits of multi-event intrusion detection systems, our algorithm
never maintained more than 6 threads in the queue. Our worst case was on a
real flow of 31 467 events, in which we had introduced two attack subflows, one
on sendmail and one on rpcinfo, with interleaved events, and very far apart:
our algorithm culminated to 19 threads, with an average of 7.1. (We didn’t
rely on any timeout.) Analysis showed that this good performance was a direct
consequence of the green cuts described here, which allow us to kill threads that
will violate shortest runs, in advance. We have also run Orchids on the LSV
network, in normal operation, during six months in 2005. It caught some attack
attempts (mostly IP range probing), while only consuming a few minutes of
system time total.
Red Cuts. By red cut, we mean any feature designed to kill threads arbitrarily,
possibly missing some attacks. This is in analogy with Prolog’s cut “!” [1]. While
the concept may seem ugly, it is definitely required in practice. For example,
remember that the complete ptrace signature has more transitions after state

7 than shown in (1), which collect actions done by the intruder before its
processes are killed and its account closed. On reaching state 7 , we use a red
cut to instruct Orchids to kill all threads with the same birthdate and signature.
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So we collect intruder actions for only one instance of the attacks that succeeded
with the same birthdate.

Red cuts are important, in general, to avert denial-of-service attacks against
the intrusion prevention system. They allow a more direct control on the num-
ber of generated threads. Notably, they allow us to implement a form of the
Without operator of Totel et al. [15], an effective tool to control the growth of
the thread queue. This allows one to monitor one signature Σ1, provided some
other signature Σ2 does not match in-between. For example, this allows us to
monitor what a given process does, while it is alive, i.e., while no exit event is
recorded by this process. This is implemented in Orchids by running threads
that monitor both Σ1 and Σ2. Once a complete run for Σ2 is found, a red cut
is issued that kills all pending instances of both Σ2 and Σ1.

6 Detecting Families of Attacks

The ptrace attack example may give the wrong impression thatOrchids requires
one signature for each attack, requiring high maintenance overhead. Instead, one
may write signatures that detect attacks by their effects, e.g., illicitly acquiring
root privileges. In Orchids, this is done by using the pidtracker signature, which
has three states. There are transitions labeled with patterns matching calls to
fork, vfork, execve, setgid32, and setresuid32, from state 1 to 1 . The lat-
ter two primitives are the only ones (in Linux) that may legitimately change one of
the variants of the user id (i.e., user id, effective user id, saved user id), and these
transitions are used to track all changes to these user ids by a given process (whose
pid is stored in some rigid variable Pid). The first three primitives are monitored
to track down all created processes. Even without red cuts, the shortest run se-
mantics guarantees that no such call will be missed.

Additionally, there is a transition from 1 to 2 , tracking all calls made by the
process with pid Pid with some user id different from the one obtained through
tracking the events above. This detects any system call done with an unexpected
user id, typically with user id 0 (root) while the process was normally running
under a non-root user id. Finally, there is a transition from 1 to 3 , tracking
calls to exit by process Pid, with a red cut to kill all threads monitoring the
same process Pid.

The pidtracker rule is a practical way to detect instances of the do_brk
attack [14], a vicious local-to-root attack in which the intruder repeatedly calls
do_brk to allocate all available memory until kernel space is mapped into user
space, and the process rights table in kernel space is modified to obtain root
privileges. This is vicious in the sense that the only characteristic events of this
attack are calls to do_brk, and a flurry of SIGSEGV signals. None of these are
logged in any event logging system, for technical reasons. So a characteristic event
subflow for this attack would be empty! And the do_brk attack has already been
used, with disastrous effects: crackers used it to infect the Savannah servers (the
master servers of the GNU distribution) and the Debian Linux master servers
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in 2004. Once the infection was suspected, these servers had to be turned down
for manual inspection of all packages, and this took several weeks.

The pidtracker signature detects that an attack such as do_brk has suc-
ceeded as soon as the offending process invokes the next system call. An added
benefit of this signature is that it will detect all such local-to-root attacks. It is
important that signatures be able to detect whole families of attacks, to decrease
the maintenance overhead of the signature base. In this case, we discovered in
2005 that the pidtracker signature, unchanged, would catch the newer but
similar map, munmap, mremap attacks.

This also shows that, contrary to popular belief, it is possible to detect zero-
day attacks , i.e., attacks which are launched before an advisory is made public.
To wit, the pidtracker rule caught the recent Linux vmsplice attack [12],
an attack published less than two months before our presentation at RV’08.
(By the way, this attack gets completely undetected by the SELinux security
enhancement to Linux, under standard reference policies, in ENFORCED mode.)

7 Conclusion

There is much more that could be said about Orchids, in particular from a per-
spective more geared towards security administrators. One strand would have
been to expand on the fact that Orchids is both able to detect bad behavior
(attacks described through signatures), or deviation from good behavior (where
“good” is defined through some security policy, of which the setuid model of Sec-
tion 6 was a simple example). Another would have been to show how Orchids,
originally a misuse detection system, can also work as an anomaly detection sys-
tem: adding statistical classifiers to Orchids is essentially a matter of adding an
event logging module that outputs statistical data in the form of events, which
Orchids can then match. We could also have demonstrated how Orchids de-
tects complex, network attacks such as the mod_ssl attack [3], using such a
statistical module [8]. Instead, we have chosen to center our presentation on
algorithmic issues, taking the opportunity to describe both the core algorithm
and the notion of cuts—in particular the green cuts that are so central to the
efficiency of Orchids—in as clear and intuitive a way as possible. We hope to
have demonstrated how efficient multi-event intrusion prevention was possible,
and how much monitor technology was relevant to this task. Orchids is freely
available under the Cecill 2 (GPL) license [6].
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