

Lecture Notes in Computer Science 5289
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Martin Leucker (Ed.)

Runtime
Verification

8th International Workshop, RV 2008
Budapest, Hungary, March 30, 2008
Selected Papers

13

Volume Editor

Martin Leucker
Technical University Munich
Institute for Informatics I4
Boltzmannstr. 3
85748 Garching, Germany
E-mail: leucker@in.tum.de

Library of Congress Control Number: 2008938338

CR Subject Classification (1998): D.2, D.3, F.3, K.6

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-89246-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-89246-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12539178 06/3180 5 4 3 2 1 0

Preface

These proceedings are compiled from revised submissions presented at RV 2008,
the 8th International Workshop on Runtime Verification held on March 30, 2008
in Budapest, Hungary, as a satellite event of ETAPS 2008.

There were 27 submissions. Each submission was reviewed by at least three
ProgramCommittee members. The committee decided to accept nine papers. This
volume also includes two contributions by the invited speakers Jean Goubault-
Larrecq (LSV/ENS Cachan) on “A Smell of Orchids” and John Rushby (SRI) on
“Runtime Certification”.

We would like to thank the members of the Program Committee and the
additional referees for their timely reviewing and lively participation in the sub-
sequent discussion—the quality of the contributions herein is due to their efforts
and expertise. We would like to thank the local organizers of ETAPS 2008 for
facilitating this workshop. We would also like to thank the Technical University
of Munich for their financial support. Last but not least, we thank the partici-
pants of RV 2008 for the stimulating discussions during the workshop and the
authors for reflecting this discussion in their revised papers.

We acknowlege the effort of the EasyChair support team.

July 2008 Martin Leucker

Conference Organization

Program Chairs

Martin Leucker

Program Committee

Mehmet Aksit
Howard Barringer
Mads Dam
Bernd Finkbeiner
Klaus Havelund
Bengt Jonsson
Moonzoo Kim
Dejan Nickovic
Doron Peled
Mauro Pezze
Shaz Qadeer
Grigore Rosu
Gerardo Schneider
Henny Sipma
Oleg Sokolsky
Scott Stoller
Mario Suedholt
Serdar Tasiran
Stavros Tripakis
Yaron Wolfsthal

External Reviewers

Rahul Agarwal
Joachim Baran
Benedikt Bollig
Feng Chen
Nikhil Dinesh
Klaus Dräger
Tayfun Elmas
Ylies Falcone
Danny Harnik
Mark Hills
Shin Hong
Marcel Kyas
Nicolas Markey

Patrick Meredith
Mark Moulin
Christian Pfaller
Dmitry Pidan
Cristian Prisacariu
David Rydeheard
Christian Schallhart
Sven Schewe
Viktor Schuppan
Edi Shmueli
Haya Shulman
Volker Stolz
Alan Williams

Table of Contents

A Smell of Orchids (Invited Talk) . 1
Jean Goubault-Larrecq and Julien Olivain

Runtime Certification (Invited Talk) . 21
John Rushby

Model-Based Run-Time Checking of Security Permissions Using
Guarded Objects . 36

Jan Jürjens

Synthesizing Monitors for Safety Properties: This Time with Calls and
Returns . 51

Grigore Roşu, Feng Chen, and Thomas Ball

Forays into Sequential Composition and Concatenation in Eagle 69
Joachim Baran and Howard Barringer

Checking Traces for Regulatory Conformance . 86
Nikhil Dinesh, Aravind Joshi, Insup Lee, and Oleg Sokolsky

Deadlocks: From Exhibiting to Healing . 104
Yarden Nir-Buchbinder, Rachel Tzoref, and Shmuel Ur

A Scalable, Sound, Eventually-Complete Algorithm for Deadlock
Immunity . 119

Horatiu Jula and George Candea

Property Patterns for Runtime Monitoring of Web Service
Conversations . 137

Jocelyn Simmonds, Marsha Chechik, Shiva Nejati,
Elena Litani, and Bill O’Farrell

Runtime Monitoring of Object Invariants with Guarantee 158
Madhu Gopinathan and Sriram K. Rajamani

A Lightweight Container Architecture for Runtime Verification 173
Hakim Belhaouari and Frédéric Peschanski

Author Index . 189

A Smell of Orchids

Jean Goubault-Larrecq1 and Julien Olivain1,2

1 LSV, ENS Cachan, CNRS, INRIA
LSV, 61 avenue du président Wilson, F-94235 Cachan Cedex

{olivain,goubault}@lsv.ens-cachan.fr
2 Above Security, Suite 203

1919 Lionel-Bertrand boulevard, Boisbriand, Québec, Canada, J7H 1N8
julien.olivain@abovesecurity.com

Abstract. Orchids is an intrusion detection tool based on techniques
for fast, on-line model-checking. Orchids detects complex, correlated
strands of events with very low overhead in practice, although its detec-
tion algorithm has worst-case exponential time complexity.

The purpose of this paper is twofold. First, we explain the salient
features of the basic model-checking algorithm in an intuitive way, as
a form of dynamically-spawned monitors. One distinctive feature of the
Orchids algorithm is that fresh monitors need to be spawned at a pos-
sibly alarming rate.

The second goal of this paper is therefore to explain how we tame the
complexity of the procedure, using abstract interpretation techniques to
safely kill useless monitors. This includes monitors which will provably
detect nothing, but also monitors that are subsumed by others, in the
sense that they will definitely fail the so-called shortest run criterion. We
take the opportunity to show how the Orchids algorithm maintains its
monitors sorted in such a way that the subsumption operation is effected
with no overhead, and we correct a small, but definitely annoying bug in
its core algorithm, as it was published in 2001.

1 Introduction

It is a lieu commun that the security of computer systems and networks is
more and more challenged by new threats. Viruses, worms, Trojan horses have
been reported to infect computers since the early 1980s, network attacks such
as denial of service, spoofing, defacing have been commonplace since the late
1980s, and new attacks keep coming up, either based on new principles such
as phishing or keyloggers, or using older vulnerabilities. New applications create
new opportunities for vulnerabilities. E.g., the advent of Web-based applications
created new families of vulnerabilities such as SQL insertion, PHP insertion, or
cross-site scripting.

It is harder and harder to maintain an acceptable level of security on comput-
ers and networks, while keeping the induced nuisance at an acceptable level to
honest users. Static analysis and formal methods in general can certainly help
increase the faith we can put in critical pieces of code, but they are far from be-
ing able to ascertain the global security of a whole computer system or network.

M. Leucker (Ed.): RV 2008, LNCS 5289, pp. 1–20, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 J. Goubault-Larrecq and J. Olivain

A successful family of techniques in this respect is intrusion detection, whereby
flows of system and network events are monitored in real time, and analyzed so
as to detect attacks. Intrusion detection systems that also react against attacks
are sometimes called intrusion prevention systems.

Definitions in this domain tend to be fuzzy, starting from the very notion
of attack. Anomaly detection systems count as possible attack any significant
statistical deviation from normal behavior. Misuse detection systems would check
the flow of events against some security policy, raising an alert when the policy
is violated, or against some database of attack signatures, raising an alert when
one of the signatures is matched.

Orchids [6] is an intrusion prevention system that was developed at LSV
by the authors, starting from 2002. It was initially meant as a misuse detection
system, whose originality was that it could detect complex attacks consisting of
several events correlated over time. An example of such an attack is the ptrace
attack [10,11], which we shall describe shortly in Section 2. We shall again use
this attack to describe the Orchids detection algorithm by means of an example
run, in Section 3. In Section 4, we shall describe the core detection algorithm
in more detail, repairing a bug in [13]. The point of this algorithm is to detect
the shortest run by keeping all runs sorted with the lowest possible overhead—in
particular, we never call any sort routine. The ptrace example, while impressive,
remains simple-minded, for reasons we shall explain in Section 6. There, we shall
illustrate how a single signature can detect whole families of attacks, and even
some zero-day attacks. This is important to security practitioners.

Orchids was presented at the CAV’05 conference [7], and its core algorithm
is based on the one described in [13, Section 4]. In these papers, Orchids was de-
scribed as a model-checker for a specific temporal logic. However, somehow Or-
chids is better described as running monitors, with the twist that each monitor
will spawn new monitors dynamically, to follow possible beginnings of attacks.
Presenting this work at RV’08 is therefore quite apt indeed, and we must thank
Martin Leucker and the organizers for inviting the first author to Budapest and
allow him to give an overview of it.

2 The ptrace Attack Example

Let’s concentrate on the ptrace attack [10,11]. This is a local-to-root exploit,
i.e., it enables a user having local access to a host machine to get root privileges.
This is a real attack, which has been used in practice. Patches have been available
for some time, of course; none of the attacks presented here should be effective
on up-to-date systems.

The main point in using the ptrace attack as an example is that it is witnessed
by a flow of events that are all entirely uncharacteristic of any malicious activity
in isolation: most events in an instance of the attack are calls to the ptrace sys-
tem call, a perfectly benign system call used for all debugger-related activities.
Rather, the sequence of events throughout the attack must be identified to isolate

A Smell of Orchids 3

the attack. In other words, the ptrace attacks avoids detection by classical intru-
sion detection systems, which only match individual events against a database of
word patterns.

To understand the attack, it is useful

socket(AF_SECURITY, ...)

Malicious program

Not implemented

pid = 100

Search for
a matching
kernel module

modprobe

User mode

pid=101

(kernel privileges)

not found

Fail

errno=ENOSYS

Kernel mode

(unimplemented system functionality)

Fig. 1. Calling an unimplemented ker-
nel functionality

to realize what a modular operating sys-
tem kernel, such as most versions of Linux,
will do when a user program calls an unim-
plemented kernel functionality. See Fig-
ure 1, where the user program has pid
100, and the unimplemented functional-
ity is the special case of the socket sys-
tem call on the (never implemented, Linux
specific) domain AF_SECURITY. The kernel
will search for a kernel module implement-
ing this, calling the modprobe utility to
search and install the desired module. If
the search fails, an error code is reported.

While this is how this is meant to work,
some versions of Linux suffer from a race condition (Figure 2(a)). While modprobe
has started running, with kernel privileges, the kernel updates the owner tables to
make modprobe root-owned instead of user-owned. So there is a small amount of
time where the malicious user program has complete control over the kernel pro-
cess modprobe: between timepoints 1 and 2 . The malicious program takes this
opportunity to attach the modprobeprocess through the standard Unix debugging
API function ptrace, and to insert a shellcode (a code of the intruder’s choosing)
inside it. When modprobe resumes execution, it will execute the shellcode with
full root privileges (Figure 2(b)).

socket(AF_SECURITY, ...)

Malicious program

(unimplemented system call)

Not implemented

pid = 100

Search for
a matching
kernel module

modprobe

User mode

pid=101

(kernel privileges)

not found

Fail

errno=ENOSYS

Kernel mode

Kernel updates rights

pid 101 : root, root

1

2

(a) A race condition

1

2

socket(AF_SECURITY, ...)

(unimplemented system call)

Not implemented

Search for
a matching
kernel module

modprobe

Kernel mode User mode

pid=101

(kernel privileges)
Kernel updates rights

pid 101 : root, root

ptrace(PTRACE_ATTACH, 101)

Insert shellcode

exec ("/bin/sh")

Shellcode runs
with root privileges

Attacker has
root privileges.

Malicious program

(b) The final exploit

Fig. 2. The ptrace Linux attack

4 J. Goubault-Larrecq and J. Olivain

3 Detecting the ptrace Attack

Orchids can be made to detect this attack using the following signature:

1 2 3 4 75 6
ptrace exec ptrace ptraceptrace

ε(ATTACH, (SYSCALL,

(GETREGS,
ptrace

(POKETEXT, (DETACH,
Pid,Euid,Tgt

(
) Pid,Tgt

Pid,Tgt

Pid,Tgt Pid,Tgt)

)

))
)X, Tgt

(1)

This can be thought as an automaton (a monitor), with starting state 1 , and fi-
nal state 7 . Transitions are labeled with patterns , say ptrace(ATTACH, P id, Euid,
T gt), meant to match single events such as ptrace(ATTACH, 57, 500, 58) (with the
variable Pid mapped to 57, Euid to 500, Tgt to 58; Orchids actually uses ex-
plicit field selectors instead of patterns—we use patterns to simplify the exposi-
tion). Transitions can also be labeled with the symbol ε: these can be triggered
without matching any event.

Patterns may contain variables, i.e., signatures have first-order capabilities.
However, the main difference with standard monitors is that such an automaton
is meant to match subsequences of the event flow, not the whole sequence of
events. For example, the ptrace signature above should match the subsequence
of the event flow shown in Figure 3 (see Section 3.2) consisting of events number
3, 4, 7, 8, 9, 12 with Pid = 100, Euid = 500, Tgt = 101. It should also match
the sequence of events 3, 4, 7, 9, 12, omitting event 8 by choosing to go through
the ε transition between states 4 and 5 instead of going through the transition
labeled ptrace(GETREGS, P id, T gt). Note that it should also match the sequence
of events 3, 4, 7, 8 (optional), 10, and 12, and also the sequence 3, 4, 7, 8
(optional), 11, and 12.

To fix ideas, let events be ground first-order terms over some set of func-
tion symbols (e.g., ptrace, exec). This signature includes numbers such as 100,
101, or 58 as constants, as well as symbolic values and character strings such
as GETREGS. (Interpreting actual events, such as provided by the Linux kernel
module Snare or other input modules, as terms, is essentially a parsing task.)
Patterns are just first-order terms, not necessarily ground. We take the set V
of variables to be the disjoint union of two countably infinite subsets, the set
Vr of so-called rigid variables and Vf of flexible variables. Rigid variables such
as Pid, Euid, or Tgt above are meant to match the same value over all events
in a matching subsequence, while flexible variables may assume distinct values
at each event. This is reminiscent of Manna and Pnueli [2]. Orchids actually
imposes a typing discipline on variables, events, and patterns, of which the dis-
tinction between rigid and flexible is just one aspect. We shall largely ignore the
details of this typing discipline, except in Section 5.

Let T (V) be the set of all terms (patterns), T be the subset of all ground
terms (events). We let fv(t) denote the set of free variables in t, tσ denote the
result of applying the substitution σ to t, where substitutions σ are finite maps
[x1 := t1, . . . , xn := tn] with x1, . . . , xn pairwise disjoint variables—in which
case the domain dom σ of σ is {x1, . . . , xn}. Substitutions σ are meant to keep

A Smell of Orchids 5

1: open ("/etc/passwd", "r", 58, 500)
2: ptrace (ATTACH, 57, 500, 58)
3: ptrace (ATTACH, 100, 500, 101)
4: exec ("modprobe", 101)
5: ptrace (ATTACH, 100, 500, 101)
6: exit (58)

7: ptrace (SYSCALL, 100, 101)
8: ptrace (GETREGS, 100, 101)
9: ptrace (POKETEXT, 100, 101)
10: ptrace (POKETEXT, 100, 101)
11: ptrace (POKETEXT, 100, 101)
12: ptrace (DETACH, 100, 101)

Fig. 3. A typical event flow

the values of specific variables such as Pid or Euid above. Let σ ⊕ σ′ be the
substitution with domain dom σ ∪ dom σ′, mapping every x ∈ dom σ′ to σ′(x),
and every x ∈ dom σ \ dom σ′ to σ(x).

Given a substitution σ, a pattern p and a ground term t, we let σ � p � t ⇒
σ⊕σ′, provided the most general matcher σ′ of p against t exists, and σ(x) = σ′(x)
for every x ∈ Vr ∩ dom σ ∩ dom σ′ (i.e., we check that rigid variables do not
change; flexible variables may be overwritten at will). In this case, we say that pat-
tern p matches event t in σ, yielding σ ⊕ σ′. E.g., ptrace(ATTACH, P id, Euid, T gt)
matches ptrace(ATTACH, 57, 500, 58) (event number 2 in Figure 3) in the empty
substitution, yielding [Pid := 57, Euid := 500, T gt := 58]; ptrace(SYSCALL,
P id, T gt) matches ptrace(SYSCALL, 100, 101) (event 7) in [Pid := 100, Euid :=
500, T gt := 101] but not in [Pid := 57, Euid := 500, T gt := 58].

Each transition in a signature may be additionally labeled with a guard , which
is an expression over the variables in V denoting a Boolean value. The actual
syntax of guards is unimportant here. Letting G be the set of guards, we shall
only assume that one may compute the finite set fv(g) of free variables in the
guard g, and that we may evaluate a guard g in an environment σ to a Boolean
value �g�σ, as soon as fv(g) ⊆ dom σ.

Signatures Σ are automata (Q, I, T, ∆), where Q is a finite set of states ,
I ⊆ Q is the subset of initial states , T ⊆ Q is the set of final states , and
∆ ⊆ Q× (T (V) � {ε})× G × Q is the transition relation. Any transition of the
form (q0, ε, g, q1) is called an ε-transition. We assume that no ε-transition goes
out of the initial state, i.e., that there is no transition of the form (q0, ε, g, q1)
with q0 ∈ I.

An event flow t• is any finite or infinite sequence t1t2 . . . ti . . . of events,
i.e., of ground terms in T . We are interested in finding specific subsequences
of events with indices i1 < i2 < . . . < ik (k ≥ 1): these subsequences are
uniquely determined by the sets {i1, i2, . . . , ik}, which we call subflows . A par-
tial run of an event flow t• against a signature Σ = (Q, I, T, ∆) is a sequence
q0, σ0

i1→q1, σ1
i2→ . . .

ik→qk, σk, where k ≥ 1, q0, q1 . . . , qk are states in Q, q0 ∈ I,
σ0 is the empty substitution, and there is an integer ik+1 such that for all j,
1 ≤ j ≤ k, either there is a transition (qj−1, ε, g, qj) ∈ ∆ with �g�σj−1 true and
ij = ij+1 (go through the ε-transition, do not move in the event flow), or there is
a transition (qj−1, p, g, qj) ∈ ∆ with p �= ε, σj−1 � p � tij ⇒ σj , with �g�σj true,
and ij < ij+1 (go through the transition, acquiring new values for variables, and
proceed to some later point in the event flow). The subflow of such a partial run

6 J. Goubault-Larrecq and J. Olivain

is the set of indices i1, i2, . . . , ik, with duplicates removed. We say that i1 is its
birthdate. A complete run is a partial run such that, additionally, qk ∈ F .

Orchids is in fact based on a more complex, and more expressive, language
of signatures, with mutable variables, external system calls, and an embedded
Prolog interpreter to maintain various databases: black lists, attacks that have
succeeded in the past and that may be prerequisites to some others, neighboring
relations between hosts in networks, equivalences between host names and be-
tween other services, and alert correlation information as in the M2D2 model [5].
However, the above simpler automata are enough to convey the essential ideas.

3.1 Shortest Runs

It is important to note that there is no unique complete run of a given event
flow against a given signature in general, as we have seen above on the example
of the ptrace attack: even the corresponding subflows are not unique.

An intrusion detection system cannot just report the existence of a matching
subsequence (an attack): it should also collect, report enough information about
the attack, and use it to react appropriately. Complete runs are enough informa-
tion. On the other hand, it cannot report all matching complete runs either. This
would flood the security administrator with too many alerts, prompting him to
turn the intrusion detection system off, or to ignore its warnings. Instead, Or-
chids reports a shortest run [13] among all matching subsequences starting at a
given event. The definition is as follows. For any subflows i1 < i2 < . . . < ik and
j1 < j2 < . . . < j� (k, � ≥ 1), we let (i1, i2, . . . , ik) (j1, j2, . . . , j�) iff i1 = j1 (the
subflows have the same birthdate), ik ≤ j� (the first one stops earlier than the
second one), and (i1, i2, . . . , ik) is lexicographically smaller than (j1, j2, . . . , j�).

On subflows with a given, fixed birthdate i1, is a total well-founded ordering,
so any non-empty family F of subflows with the same birthdate i1 has a unique
smallest element wrt. . This is the shortest subflow of F . By extension, a
shortest run of a flow t• against a signature Σ with birthdate i1, is a complete
run whose subflow is shortest, among all subflows of complete runs against Σ
with birthdate i1.

Orchids will only return shortest runs, taken as canonical representatives of
all runs against a given signature Σ with a given birthdate i1. Another view is to
say that Orchids considers all runs against the same signature Σ and starting
at the same position as equivalent. Pouzol and Ducassé [9] consider more general
notions of equivalence. However, the efficiency of the algorithm of Section 4 owes a
lot to our particular definition of equivalence. While the latter is fixed in Orchids,
experience shows that it is adequate. It was argued in [13] that the shortest run
against a given signature with birthdate i1, was in a sense the most informative
one, and experience again has vindicated this stance. We discuss this briefly.

First, shortest runs are shortest in the intuitive sense that they can be reported
as soon as one run succeeds that matches the given signature. A simple example is
the signature 1 32

AA

, with some arbitrary event A, and the event flow
AAAAA . . .AA. While matching runs with birthdate i1 = 1 include all pairs 1, n for

A Smell of Orchids 7

all n ≥ 2, only the pair 1, 2 counts as shortest. This guarantees that the intrusion
detection system will react as soon as some matching run is encountered.

Second, and more subtly, consider the signature shown on the right, and the
event flow ACDCDCDCB. Any shortest run with birthdate i1 = 1 must end at
ik = 9, on the final B. Candidates are 1, 9, which only matches the initial A and
the final B; or 1, 2, 3, 9, which additionally matches the first CD, going around the
loop between states 2 and 3 ; or 1, 4, 5, 9; or 1, 4, 7, 9. . . we invite the reader to
check that the shortest run is 1, 2, 3, 4, 5, 6, 7, 9: contrarily to what the adjective
“shortest” may suggest, the shortest run contains as many relevant events as
permitted to describe a matching attack.

Returning to the ptrace attack signature (1), and the

1 4

3

2
A B

CDexample event flow of Figure 3, the only matching runs have
birthdate i1 = 3, and the only shortest run is 3, 4, 7, 8,
10, 12. Note that the optional event 8 is included, although
it would be allowed to skip it, by going through the ε-transi-
tion from 4 to 5 , instead of that labeled ptrace(GETREGS, P id, T gt). The lat-
ter transition would be irrelevant without the shortest run semantics. Here, it in-
structs Orchids to report an event of the form ptrace(GETREGS, P id, T gt) in a
matching attack, in case one is indeed present.

3.2 Running Orchids on the ptrace Signature

Let us simulate an execution of Orchids of the signature (1) against the example
event flow of Figure 3. This will give us an opportunity to illustrate the salient
features of the Orchids algorithm, which we shall explain in more detail in
Section 4. Here Orchids will try to match just one signature; in normal use, it
will try to match all signatures in a given signature database at the same time.

Initially, Orchids reads event 1. Since (1) does not contain any pattern match-
ing an open event, we skip to event 2, t = ptrace(ATTACH, 57, 500, 58). The pat-
tern p = ptrace(ATTACH, P id, Euid, T gt) matches this, i.e.: σ0 � p � t ⇒ [Pid :=
57, Euid := 500, T gt := 58]. So Orchids produces the partial run 1 , σ0

2→ 2

[Pid := 57, Euid := 500, T gt := 58], where σ0 is the empty substitution.
Think of these partial runs as being threads running in parallel, of a single

program that tries several ways of matching subflows against the signature (1).
(Threads will actually be partial runs, plus some extra information, but we
shall equate the two concepts for now.) Such threads will be put in a queue.
Currently, this queue only contains thread (i) below (i.e., signature (1), at state

2), with substitution [Pid := 57, Euid := 500, T gt := 58], and the subflow of
the corresponding partial run contains just 2. From now on, we write subflows
with visible spaces ␣ to make explicit those events that were not taken into
account; e.g., we write ␣2␣␣5 6 instead of {2, 5, 6}.

(i) 1 3 4 75 6
ptrace exec ptrace ptraceptrace

ε(ATTACH, (SYSCALL,

(GETREGS,
ptrace

(POKETEXT, (DETACH,
Pid,Euid,Tgt

(
) Pid,Tgt

Pid,Tgt

Pid,Tgt Pid,Tgt)

)

))

2
)X, Tgt [Pid := 57, Euid := 500, T gt := 58] ␣2

8 J. Goubault-Larrecq and J. Olivain

In other words, Orchids is considering event 2 as the first event of a possible
attack.

Now Orchids reads event 3, and decides to create a new thread (ii). Indeed,
event 3 is also matched by the first pattern of the signature (1), so might also be
the beginning of a possible attack. The current state of the thread queue is now:

(i) 1 3 4 75 6
ptrace exec ptrace ptraceptrace

ε(ATTACH, (SYSCALL,

(GETREGS,
ptrace

(POKETEXT, (DETACH,
Pid,Euid,Tgt

(
) Pid,Tgt

Pid,Tgt

Pid,Tgt Pid,Tgt)

)

))

2
)X, Tgt [Pid := 57, Euid := 500, T gt := 58] ␣2␣

(ii) 1 3 4 75 6
ptrace exec ptrace ptraceptrace

ε(ATTACH, (SYSCALL,

(GETREGS,
ptrace

(POKETEXT, (DETACH,
Pid,Euid,Tgt

(
) Pid,Tgt

Pid,Tgt

Pid,Tgt Pid,Tgt)

)

))

2
)X, Tgt [Pid := 100, Euid := 500, T gt := 101] ␣␣3

Orchids has to spawn this new thread. Otherwise, it might miss an attack.
If Orchids had not spawned this new thread, there would be opportunities for
intruders to launch so-called masking attacks . In other words, to start fake attack
beginnings so as to lead the intrusion detection system on a false track. Orchids
cannot know whether there is indeed an attack starting at event 2 (first thread),
or at event 3 (second thread), or none, but needs to consider both possibilities.
Similar behavior is typical of modern multi-event intrusion detection systems,
e.g., chronicles [4], or GnG [15].

Orchids now reads event 4, i.e., the exec event launching the instance of
modprobe where the shellcode will eventually be inserted. The thread queue is
now:

(i) 1 3 4 75 6
ptrace exec ptrace ptraceptrace

ε(ATTACH, (SYSCALL,

(GETREGS,
ptrace

(POKETEXT, (DETACH,
Pid,Euid,Tgt

(
) Pid,Tgt

Pid,Tgt

Pid,Tgt Pid,Tgt)

)

))

2
)X, Tgt [Pid := 57, Euid := 500, T gt := 58] ␣2␣␣

(ii) 1 4 75 6
ptrace exec ptrace ptraceptrace

ε(ATTACH, (SYSCALL,

(GETREGS,
ptrace

(POKETEXT, (DETACH,
Pid,Euid,Tgt

(
) Pid,Tgt

Pid,Tgt

Pid,Tgt Pid,Tgt)

)

))

2 3
)X, Tgt

[Pid := 100, Euid := 500,
T gt := 101, X := "modprobe"]

␣␣3 4

where the second thread has advanced to state 3 , and is waiting on an event
matching ptrace(SYSCALL, P id, T gt). The first thread does not advance, since
the value of Tgt (here, 101) does not match the one it already got (58).

If this seems natural to you, you have probably missed something—or you’re
clever. To avoid masking attacks, Orchids should also have launched a third
thread:

1 3 4 75 6
ptrace exec ptrace ptraceptrace

ε(ATTACH, (SYSCALL,

(GETREGS,
ptrace

(POKETEXT, (DETACH,
Pid,Euid,Tgt

(
) Pid,Tgt

Pid,Tgt

Pid,Tgt Pid,Tgt)

)

))

2
)X, Tgt [Pid := 100, Euid := 500, T gt := 101] ␣␣3 ␣

Indeed, it may be the case that the exec event 4 was only used to mount a
masking attack again. If this is the case, we should spawn the thread above,
which would disregard event 4 in the hope of finding a later exec event which
would be the right one.

Orchids does not spawn this thread, because it is able to show that this is
useless. It is not that this thread has no chance of eventually detecting an attack:
this would not be true. But, if this new thread eventually detects an attack, the
corresponding subflow will never be shortest: if the new thread detects an attack
at some event n, with subflow ␣␣3␣. . . n, then thread (ii) will have detected an
attack at event n too, with subflow of the form ␣␣3 4 . . . n. Now notice that
the latter is strictly smaller in the ordering, hence is more informative. We

A Smell of Orchids 9

can therefore safely ignore the above, useless, thread: we say that thread (ii)
subsumes the above thread. This is an example of a green cut , see Section 5.
Such green cuts are crucial to the efficiency of Orchids.

Orchids now reads event 5, which may against be the beginning of a ptrace
attack. So Orchids launches a new thread:

(i) 1 3 4 75 6
ptrace exec ptrace ptraceptrace

ε(ATTACH, (SYSCALL,

(GETREGS,
ptrace

(POKETEXT, (DETACH,
Pid,Euid,Tgt

(
) Pid,Tgt

Pid,Tgt

Pid,Tgt Pid,Tgt)

)

))

2
)X, Tgt [Pid := 57, Euid := 500, T gt := 58] ␣2␣␣␣

(ii) 1 4 75 6
ptrace exec ptrace ptraceptrace

ε(ATTACH, (SYSCALL,

(GETREGS,
ptrace

(POKETEXT, (DETACH,
Pid,Euid,Tgt

(
) Pid,Tgt

Pid,Tgt

Pid,Tgt Pid,Tgt)

)

))

2 3
)X, Tgt

[Pid := 100, Euid := 500,
T gt := 101, X := "modprobe"]

␣␣3 4␣

(iii) 1 3 4 75 6
ptrace exec ptrace ptraceptrace

ε(ATTACH, (SYSCALL,

(GETREGS,
ptrace

(POKETEXT, (DETACH,
Pid,Euid,Tgt

(
) Pid,Tgt

Pid,Tgt

Pid,Tgt Pid,Tgt)

)

))

2
)X, Tgt [Pid := 100, Euid := 500, T gt := 101] ␣␣␣␣5

Event 6 is irrelevant, and event 7 advances thread (ii):

(i) 1 3 4 75 6
ptrace exec ptrace ptraceptrace

ε(ATTACH, (SYSCALL,

(GETREGS,
ptrace

(POKETEXT, (DETACH,
Pid,Euid,Tgt

(
) Pid,Tgt

Pid,Tgt

Pid,Tgt Pid,Tgt)

)

))

2
)X, Tgt [Pid := 57, Euid := 500, T gt := 58] ␣2␣␣␣␣␣

(ii) 1 75 6
ptrace exec ptrace ptraceptrace

ε(ATTACH, (SYSCALL,

(GETREGS,
ptrace

(POKETEXT, (DETACH,
Pid,Euid,Tgt

(
) Pid,Tgt

Pid,Tgt

Pid,Tgt Pid,Tgt)

)

))

2 3 4
)X, Tgt

[Pid := 100, Euid := 500,
T gt := 101, X := "modprobe"]

␣␣3 4␣␣7

(iii) 1 3 4 75 6
ptrace exec ptrace ptraceptrace

ε(ATTACH, (SYSCALL,

(GETREGS,
ptrace

(POKETEXT, (DETACH,
Pid,Euid,Tgt

(
) Pid,Tgt

Pid,Tgt

Pid,Tgt Pid,Tgt)

)

))

2
)X, Tgt [Pid := 100, Euid := 500, T gt := 101] ␣␣␣␣5␣␣

Again, there is no need to create another thread that would consider the possibil-
ity that thread (ii) might not advance, because it would be subsumed by (ii),
i.e., it would violate shortest runs. Event 8, ptrace(SYSCALL, 100, 101), matches
the ptrace(SYSCALL, P id, T gt) pattern of the non-ε-transition of thread (ii) from
state 4 to 5 . Again thanks to the shortest run trick, Orchids does not need
to consider spawning a new copy of thread (ii) that would remain in state 4 .
More importantly, Orchids does not need to consider spawning a new copy of
thread (ii) that would advance to state 5 : again, Orchids detects that this
would be subsumed. The thread queue is now therefore:

(i) 1 3 4 75 6
ptrace exec ptrace ptraceptrace

ε(ATTACH, (SYSCALL,

(GETREGS,
ptrace

(POKETEXT, (DETACH,
Pid,Euid,Tgt

(
) Pid,Tgt

Pid,Tgt

Pid,Tgt Pid,Tgt)

)

))

2
)X, Tgt [Pid := 57, Euid := 500, T gt := 58] 2

(ii) 1 75 6
ptrace exec ptrace ptraceptrace

ε(ATTACH, (SYSCALL,

(GETREGS,
ptrace

(POKETEXT, (DETACH,
Pid,Euid,Tgt

(
) Pid,Tgt

Pid,Tgt

Pid,Tgt Pid,Tgt)

)

))

2 3 4
)X, Tgt

[Pid := 100, Euid := 500,
T gt := 101, X := "modprobe"]

3 4 7

(iii) 1 3 4 75 6
ptrace exec ptrace ptraceptrace

ε(ATTACH, (SYSCALL,

(GETREGS,
ptrace

(POKETEXT, (DETACH,
Pid,Euid,Tgt

(
) Pid,Tgt

Pid,Tgt

Pid,Tgt Pid,Tgt)

)

))

2
)X, Tgt [Pid := 100, Euid := 500, T gt := 101] 5

Reading event 9, Orchids decides to advance thread (ii) to state 6 . Again,
Orchids is able to show that it would be useless to spawn a copy of thread
(ii) that would wait at state 5 , because it would be subsumed. Orchids
will then ignore events 10 and 11 in thread (ii), although they would be rel-
evant (we let the reader rewrite the signature so that it captures all relevant
ptrace(POKETEXT, . . .) events), and will reach the final state 7 with thread (ii),
and subflow ␣␣3 4␣␣7 8 9␣␣12.

At this point, Orchids’ thread queue still contains threads (i) and (iii). These
may be indicative of attacks starting at event 2, resp. 5, and which haven’t been
completed yet. For the moment, where we have just read event 12, Orchids
reports an alert. We decided to have Orchids kill the offending user’s processes

10 J. Goubault-Larrecq and J. Olivain

(with pid 100, and all descendants), and to close his account. Such retaliation
measures have sometimes been described as characteristic of intrusion prevention
systems, as opposed to intrusion detection systems. They are needed: a typical
shellcode will insert some form of trapdoor into the system, such as setting the
setuid bit on one of the user’s process, to allow him to become root at any later
time, without running the attack again.

The actual signature Orchids uses to detect the ptrace attack is a bit more
complicated. While Orchids really reports and retaliates at state 7 , this state
is not final, and the real signature has added transitions. This allows Orchids to
track down all events done by the shellcode (with pid obtained in variable Tgt,
here 101) until it exits (which it will eventually do, if only because Orchids
sent it a KILL signal). This allows a security engineer to analyze the inserted
shellcode and its effects—this is called forensic analysis—and to take appropriate
corrective countermeasures.

4 The Core Algorithm

The core algorithm that Orchids uses, and which we have illustrated in Sec-
tion 3.2, is based on the algorithm of [13, Figure 6]. However, the latter algorithm
contains a bug, which the first author found 6 months after the paper was pub-
lished. We take the opportunity to describe a correct algorithm, with a simpler
presentation.

As far as simplifications go, first, we don’t consider green cuts for now, in
particular those related to shortest runs: see Section 5. Also, we consider only one
signature Σ = (Q, I, T, ∆), although the extension to more is straightforward.
Finally, we assume Σ does not contain any ε-transition. Removing ε-transitions
is done mostly as in standard finite-state automata, and only requires that we
can form the conjunction g1 ∧ g2 of two guards g1 and g2, so that �g1 ∧ g2�σ
is true if and only if �g1�σ and �g2�σ are both true: whenever Σ contains two
transitions (q1, p, g1, q2) and (q2, ε, g2, q3), add the transition (q1, p, g1 ∧ g2, q3)
unless it is already present. When the signature is saturated under applications
of this rule, remove all ε-transitions.

The main idea of the algorithm is to keep the thread queue sorted, and to
traverse this queue in such a way that the first thread with a given birthdate
i1 and signature Σ that reaches a final state in the queue is shortest. Then, we
remove all other threads with the same birthdate i1 and Σ from the queue—we
kill these threads.

Intuitively, it should be enough to keep all threads sorted in the lexicographic
ordering of the corresponding subflows, but this is wrong. Imagine the current
thread queue contains threads corresponding to subflows 1 2 3, 1 2␣, and 1␣3.
If event 4, the next event to be considered, led each of these to a final state,
then we would have to pick the lexicographically smallest subflow among 1 2 3
4, 1 2␣4, and 1␣3 4: this is 1 2 3 4. Observe that {1, 2, 3, 4} <lex {1, 2, 4} <lex

{1, 3, 4}, where <lex is lexicographic ordering. Before event 4, we would therefore
like the threads to be ordered as 1 2 3, then 1 2␣, then 1␣3. This way, no

A Smell of Orchids 11

reordering will have to happen when adding 4 to each subflow. However, 1 2 3
is certainly not smaller, lexicographically, than 1 2␣, i.e., {1, 2}! So we have to
maintain the thread queue in some different ordering. This was recognized in
[13, Theorem 4.11], where an ordering <i is defined for this purpose, for each
event position i. (In the example, i = 3.) The right ordering is given by: for every
subflows D, D′ ⊆ {1, . . . , i}, D <i D′ if and only if D and D′ have the same least
element, and D ∪ {i + 1} <lex D′ ∪ {i + 1}. Roger and the first author [13] use
a more complex, equivalent formula (up to the condition on least elements). Let
≤i be the reflexive closure of <i, i.e., D ≤i D′ if and only if D = D′ or D <i D′.

Say that a list of partial runs R1, R2, . . . , Rm is ≤i-sorted if and only if Rj ≤i

Rk implies j ≤ k. We aim at keeping queues of partial runs sorted, with minimal
algorithmic effort. Whenever we read event number i + 1, starting from a ≤i-
sorted thread queue R1, R2, . . . , Rk, we must create a ≤i+1-sorted thread queue
of all possible extensions of the runs Rj , 1 ≤ j ≤ k, as predicted by the semantics
of signatures, and all possible partial runs starting at event i + 1.

Extensions are defined as follows. Let R = q0, σ0
i1→q1, σ1

i2→ . . .
ik→qk, σk be

a partial run, with subflow included in {1, . . . , i}, and R′ a partial run with
subflow included in {1, . . . , i, i + 1}. We say that R′ extends R at position i +
1 if and only if either R′ = R (wait without taking a transition), or R′ =
q0, σ0

i1→q1, σ1
i2→ . . .

ik→qk, σk
i+1−→qk+1, σk+1, where there is a transition (qk, p, g,

qk+1) ∈ ∆ with p �= ε, σk � p � ti+1 ⇒ σk+1, and with �g�σk+1 true (go through
the transition, acquiring new values for variables, and proceed to some later
point in the event flow). In the latter case, R′ extends R non-trivially, through
the outgoing transition (qk, p, g, qk+1). Remember we assume Σ does not contain
any ε-transition, so we can safely ignore them.

A partial run starts at event i+1 if and only if it is of the form q0, σ0
i+1−→q1, σ1,

where q0 ∈ I, σ0 is the empty substitution, and there is a transition (q0, p, g, q1) ∈
∆ with σ0 � p � ti+1 ⇒ σ1, and with �g�σ1 true.

Given a ≤i-sorted list of partial runs R1, R2, . . . , Rm, we must produce a ≤i+1-
sorted list R′

1, R
′
2, . . . , R

′
n of all partial runs extending some Rj , 1 ≤ j ≤ m, or

starting at i + 1. In the case of extensions of the partial runs Rj , the idea of
the algorithm of [13] is to enumerate each Rj in turn, and to list the partial
runs R′

k that extend Rj , starting with those that extend Rj non trivially. For
example, starting from the partial runs 1 2 3 <3 1 2␣<3 1␣3 (where we identify
partial runs with their subflows), imagine each has both trivial and non-trivial
extensions at position 4. We start with 1 2 3, and output 1 2 3 4 first, then 1 2
3␣. Going on with 1 2␣, we output 1 2␣4, then 1 2␣␣. Eventually, this algorithm
will output the partial runs 1 2 3 4, 1 2 3␣, 1 2␣4, 1 2␣␣, 1␣3 4, and 1␣3 ␣. We
let the reader check that this is ≤4-sorted.

However, there is a bug, which occurs whenever two partial runs are generated
that induce the same subflow. Imagine for example that we must generate two
partial runs with subflow 1␣3 4, on reading event 4. The above algorithm lists
them in an arbitrary order. However, it may be that the first one will eventually
lead to a complete run such as 1␣3 4␣6, and that the second one will lead to another
complete run such as 1␣3 4 5 6. . . and 1␣3 4␣6, the first one, is then not shortest.

12 J. Goubault-Larrecq and J. Olivain

Orchids uses a corrected algorithm, where partial runs are first grouped in
blobs , i.e., non-empty sets of threads with the same subflow. Each blob therefore
has a unique associated subflow. Then, blobs are ≤i-sorted, in the sense that the
associated subflows are ≤i-sorted. In other words, a list of blobs B1, B2, . . . , Bm

is ≤i-sorted if and only if Dj ≤i Dk implies j ≤ k, for all 1 ≤ j, k ≤ m, writing
Dj for Bj ’s subflow.

More precisely, at position i, Orchids produces a ≤i-sorted list B1, B2, . . . ,
Bm. On reading event number i + 1, Orchids produces the queue described in
Proposition 1 below, obtained by listing all partial runs starting at i + 1 in a
unique blob B′

0, and dealing with partial runs from Bj by first listing all non-
trivial extensions of partial runs from Bj , in a new blob B′

2j−1 that will precede
the blob B′

2j of the (unique) trivial extension. In other words, the corrected
algorithm works as above, except it needs to consider blobs instead of single
partial runs.

Proposition 1. Let B1, B2, . . . , Bm be a ≤i-sorted list of blobs, and assume all
the subflows of each Bj, 1 ≤ j ≤ m, are contained in {1, . . . , i}. Let B′

0 be the set
of all partial runs starting at i + 1, B′

2j−1 be the set of all non-trivial extensions
to partial runs in Bj, B′

2j be the set of all trivial extensions to partial runs
in Bj, 1 ≤ j ≤ m. Then the queue obtained from B′

0, B
′
1, B

′
2, . . . , B

′
2m−1, B

′
2m

by eliminating those B′
js that are empty is ≤i+1-sorted, and their subflows are

contained in {1, . . . , i, i + 1}.

Proof. Assume that B′
0, B

′
1, B

′
2, . . . , B

′
2m−1, B

′
2m is not ≤i+1-sorted. Let D′

j be
the subflow of B′

j , for all j, and Dj be the subflow of Bj . Then there are j′, k′

with 0 ≤ k′ < j′ ≤ 2m and D′
j′ ≤i+1 D′

k′ . Note that k′ �= 0, since the birthdate
of any partial run in B′

0 is i + 1, which is different from all other birthdates.
Write k′ = 2k− δk and j′ = 2j − δj , where δk, δj are 0 or 1, and k ≤ j. If k = j,
then k′ < j′ implies δk = 1, δj = 0, so that D′

k′ = Dk ∪ {i + 1} (the partial
runs of B′

k′ = B′
2k−1 are non-trivial extensions of those of Bk), and D′

j′ = Dk

(those of B′
j′ = B′

2j = B′
2k are trivial extensions). But Dk ∪ {i + 1} <i+1 Dk, so

D′
k′ <i+1 D′

j′ , contradiction.
So k < j. Then Dk′ equals Dk, possibly with i + 1 added, and Dj′ equals Dj ,

possibly with i+1 added. Since B1, B2, . . . , Bm is ≤i-sorted, it is impossible that
Dj ≤i Dk, i.e., that Dj ∪{i+1} ≤lex Dk∪{i+1}. Since ≤lex is a total ordering,
we must have Dk ∪ {i + 1} <lex Dj ∪ {i + 1}. Write the elements of Dk as i1 <
i2 < . . . < ip (with ip < i+1), those of Dj as j1 < j2 < . . . < jq (with jq < i+1,
and j1 = i1). Let ip+1 = i+1, jq+1 = i+1. Since Dk ∪{i+1} <lex Dj ∪{i+1},
for some � between 1 and min(p+1, q+1), i1 = j1, i2 = j2, . . . , i�−1 = j�−1, and
i� < j�. Now � �= p + 1, else i + 1 = i� < j� ≤ jq+1 = i + 1. So � ≤ p. But then
Dk′∪{i+2}, which is composed of i1, i2, . . . , ip (optionally ip+1 = i+1) and i+2,
is lexicographically smaller than Dj′ ∪{i+2}, which is composed of j1, j2, . . . , jq

(optionally jq+1 = i + 1) and i + 2. That is, Dk′ <i+1 Dj′ , contradiction. ��

While we have equated threads with partial runs until now, threads are in fact
pairs of a partial run R and an outgoing transition (qk, p, g, qk+1). One may think
of a thread as waiting on a particular transition to fire. In general, there may

A Smell of Orchids 13

be several threads with the same partial run, waiting on different transitions in
the same blob. From now on, call thread queue at position i a ≤i-sorted list of
blobs, composed of such threads. At the moment, this organization of blobs in
threads rather than in partial runs only leads to a minor modification in the core
algorithm. This will become important in Section 5.

Additionally, Orchids maintains a set Kill of birthdates of partial runs
that have reached their final state, to kill non-shortest runs. On reading event
i + 1, Orchids first resets Kill to ∅. Orchids runs through the threads R
in B1, B2, . . . , Bm as described in Proposition 1, with two modifications. First,
whenever a thread with run R′ is produced in one of the new blobs B′

j′ , 0 ≤
j′ ≤ 2m, that reaches a final state, Orchids adds the birthdate i1 of R′ to Kill.
This is a shortest complete run. Second, Orchids kills all other threads with
the same birthdate i1 by simply ignoring the threads in B1, B2, . . . , Bm whose
birthdate are in Kill when their turn comes.

Orchids also ignores a number of other threads, see Section 5. Note that the
actual thread queue, consisting of subsets of the blobs of Proposition 1, will also
remain ≤i-sorted at each event number i, guaranteeing that the unique complete
run that will reach a final state (with given birthdate and signature) indeed has
a shortest subflow.

Finally, we didn’t say what Orchids did on reaching a final state. It might
seem obvious that this would be the right point to emit a report, warning the
security administrator that an attack has just successfully completed, and to
take active countermeasures. This is in fact wrong, and confuses two roles for
final states. One of these roles is recognizing that enough information has been
collected to conclude that some attack was indeed under way. The other role is to
terminate Orchids monitoring, and kill the corresponding threads. These two
roles are distinct. The actual signature we use for ptrace has more states. State

7 is not final, and is the state at which Orchids takes corrective actions—here,
Orchids will emit an attack report, store it into a secured database of successful
fatal attacks, kill the offending attacking process (whose pid is in Pid) and all its
descendants, securely close the attacker’s account (whose id is in Euid) through
an SSH connection to the attacked machine. (We assume that Orchids runs
on a different, dedicated host, for obvious security reasons.) However, killing
subprocesses and closing user accounts takes some time, in particular if this is
done through a remote SSH connection, so the shellcode has some time to do
harm. The actual ptrace signature we use in Orchids has additional states
following 7 , whose purpose is to trace and record all subsequent events done
by the shellcode. This allows later, precise forensic analysis of the attack, and
is crucial both for repairing the attacked host and for acquiring information on
emerging viruses and worms.

5 Cuts, Green Cuts, Red Cuts

By cut , we mean any optimization or construction allowing one to kill threads.
Cuts are important to be able to bound the number of active threads at any

14 J. Goubault-Larrecq and J. Olivain

given position in the event flow. Following Prolog conventions [1], we distinguish
between green cuts , which preserve the semantics, and red cuts , which don’t.
We first describe green cuts based on the notion of monotonic variables. These
cuts are green, because they eliminate threads that will provably never reach
a final state. Some other green cuts allow one to kill threads that may reach a
final state, but if they do, the corresponding subflow will never be shortest. We
have already seen an example of this in Section 3.2. We explain this in a second
subsection. We argue for red cuts in the final subsection.
Green Cuts I: Monotonicity and Generalized Timeouts. The monotonic-
ity cuts we describe now are typically justified by the need for timeouts , although
they are not limited to the latter. Timeouts are needed to eliminate proliferating
threads. Otherwise, attacker might mount denial-of-service attacks against the
intrusion prevention system itself. Instead, it is necessary to kill threads that
have exceeded a certain quota in terms of time or number of events. Naturally,
this opens the door to slow attacks , i.e., to attacks that would evade detection
by taking a long time to complete, and by generating events that are far away
from each other in the event flow. A security administrator has to define suitable
timeouts, as a result of a compromise between avoiding denial-of-service attacks
and detecting slow attacks.

Enough freedom should be given to the security administrator to tune timeout
information. We said that timeout information may be some combination of
elapsed time and number of events. We may also take into account other time
fields: the time at which a given event happened on a remote host, the time at
which it was sent to the intrusion prevention system, the time at which it was
received, the time at which it was logged. These are usually available as different
time fields in the incoming events.

Instead of designing a specific notation for timeouts, it is simpler and more
versatile to just use the guards g ∈ G for this purpose. For example, assuming
the rigid variable T0 holds the time at which the first event in the current partial
run was logged and I0 holds its position, the flexible variable $t holds the time at
which the current event was logged, and the flexible variable $i holds the event
position (obtained through pattern-matching), the guard $t < T0 + 60 ∧ $i <
I0 + 30 000 states that we wish to continue to monitor the given possible attack
for at most 60 seconds and at most 30 000 events.

Such guards by themselves are not enough to reduce the number of threads.
However, recognizing that a guard will always be false in the future allows us to
disregard it entirely. We accomplish this in Orchids by subdividing the int type
of integers (and other numerical types) into those of values that are monotonic
(non-decreasing over time), antitonic (non-increasing over time), constant (i.e.,
both monotonic and antitonic), and arbitrary. We also equate Boolean values
as the subtype consisting of 0 (false) and 1 (true) for this purpose. Such mono-
tonicity information can be formalized by using the familiar 4-element lattice
Four of subsets of {↑, ↓} ordered by inclusion: ∅ means arbitrary, {↑} mono-
tonic, {↓} antitonic, and {↑, ↓} means constant. Numerical types τi also include
a monotonicity information, in Four, e.g., int/{↓}.

A Smell of Orchids 15

Specific fields in events are marked as monotonic, such as time fields, or event
numbers. Formally, each function symbol f comes with a typing rule, e.g., stating
that any term f(t1, . . . , tn) gives each ti some type τi, 1 ≤ i ≤ n. To simplify the
presentation, assume that all variables have type int/m for some monotonicity
information m, and that the types τi mentioned earlier are either int/∅, or
int/{↑}—in which case we say that i is a monotonic position. Given a pattern
p and a set V of variables (denoting variables that are already bound to some
value), let Γ [p, V] be the typing context of all bindings x : τ , where either x
is rigid and in V and τ = int/{↑, ↓} (rigid variables, once bound, will remain
constant), or x is flexible and occurs in p at some monotonic position, and
τ = int/{↑}. Guards are typed using typing rules that include:

m ⊇ m′

int/m <: int/m′ τ <: τ

Γ � t : τ τ <: τ ′

Γ � t : τ ′

Γ, x : τ � x : τ

(c numerical constant)

Γ � c : int/{↑, ↓}

Γ � t1 : int/m1 Γ � t2 : int/m2

Γ � t1 + t2 : int/(m1 ∩m2)
Γ � t1 : int/m1 Γ � t2 : int/m2

Γ � t1 < t2 : int/(m1 ∩m2)

Γ � t1 : int/m1 Γ � t2 : int/m2

Γ � t1 ∧ t2 : int/(m1 ∩m2)

In the last rules, we use the fact that Boolean values are considered as integers,
and we take the convention that ↑ =↓, ↑ =↓, m = {s | s ∈ m}. Using the typing
rules above, it is easy to see that we can derive $t : int/{↑}, $i : int/{↑}, T0 :
int/{↑, ↓}, I0 : int/{↑, ↓} � $t < T0 + 60 ∧ $i < I0 + 30 000 : int/{↓}. This
implies that the guard g = ($t < T0 + 60 ∧ $i < I0 + 30 000) is antitonic, in
particular that if it is false at event position i, it will remain false at every later
position. This is a consequence of the following, easily proved proposition, with
t = g. We assume the evaluation function �_�σ to behave as expected, e.g.,
�t1 + t2�σ = �t1�σ + �t2�σ.

Proposition 2. Assume that event fields are marked monotonic or arbitrary, and
that monotonic fields of events ti are integers that are non-decreasing in i. For any
pattern p, substitution σ, and term t, if Γ [p, dom σ] � t : int/m is derivable, and
if σ � p � ti ⇒ σi, then for every j > i such that σ � p � tj ⇒ σj, �ti�σi and �tj�σj

are integers, �ti�σi ≤ �tj�σj if ↑ ∈ m, and �ti�σi ≤ �tj�σj if ↓ ∈ m.

Orchids implements this as follows. Recall that one may think of each thread,
with partial run R = q0, σ0

i1→q1, σ1
i2→ . . .

ik→qk, σk, as waiting on a transition
(qk, p, g, qk+1) to fire. If σk � p � ti ⇒ σ′ for some substitution σ′ but �g�σ′ = 0
(false), and if Γ [p, dom σk] � g : int/{↓} is derivable, then Orchids kills the
thread, i.e., removes it from its blob (and removes the blob from the queue if
it becomes empty): not only does this transition fail to fire at position i, it will
never fire.
Green Cuts II: Predicting Non-Shortest Runs. The algorithm of Sec-
tion 4 kills all threads with a given birthdate and signature, once a correspond-
ing (shortest) complete run has been found. However, as we have illustrated
in Section 3.2, Orchids also kills some threads in advance, knowing that they
cannot be completed to a shortest run. This is crucial to the performance of

16 J. Goubault-Larrecq and J. Olivain

Orchids. Otherwise, we would accumulate useless threads, only to kill them en
masse when one of them completes, if ever.

Returning to the example of Section 3.2, the first case this happened was on
reading event 4, where we decided that it was useless to spawn the thread with
subflow ␣␣3␣, since it would be subsumed by thread (ii), with subflow ␣␣3 4.
In this example, most states only have one outgoing transition, so that we had
only one thread per partial run. Hence, we equated threads with partial runs.
In general, we should be careful that threads are partial runs waiting on a given
transition. Here, before reading event 4, we had a thread (ii), with a partial
run of subflow ␣␣3 ␣, waiting on transition (2 , exec(X, Tgt), 1, 3). The core
algorithm should in principle create two threads from the latter when reading
event 4 (exec("modprobe", 101)). One would advance this thread to one with
subflow ␣␣3 4, waiting on (3 , ptrace(SYSCALL, P id, T gt), 1, 4). The other (the
trivial extension of the partial run) would decide to continue waiting on a later
event matching exec(X, Tgt). As we have already argued, the latter is useless.

It would be wrong to think that all trivial extensions of a partial run R are
subsumed by any non-trivial extension of R, i.e., that it is always useless to wait
when a transition could be fired. Although the case does not happen in the ex-
ample of Section 3.2, consider the signature 1 3 4

)(Tgt, X

start
2

action final

(X)(Tgt)
, and the

event flow 1: start (58); 2: action (58, A); 3: action (58, B); 4: final (B). On
reading event 2, while in state 2 , both the trivial extension 1␣ (with Tgt := 58)
and the non-trivial extension 1 2 (with Tgt := 58, X := A) have to be considered.
The point is that we don’t know whether A is the right value for X that will lead
to a subflow that matches the signature. And indeed, the only such subflow is 1␣3
4, with Tgt := 58, X := B. We may say that, at state 2 , the value of X still has
to be discovered. On the contrary, in the ptrace example, the value of rigid vari-
able Tgt has already been discovered at state 2 , while the value of X , which we
discover at this point, will never be used by any later guard.

This is formalized as follows. Given a computable property P (Γ, g) of a typing
context Γ and a guard g, we say that P holds at all reachable transitions from
Γ and the transition (q, p, g, q′), inductively, if and only if P (Γ, g) holds and P
holds at all reachable transitions from Γ ⊕ {x : int/{↑, ↓} | x ∈ fv(p′)} and
(q′, p′, g′, q′′) for all outgoing transitions (q′, p′, g′, q′′). This is meant to say that
P (Γ ′, g′) holds whenever we reach a transition (q′, p′, g′, q′′), where Γ ′ is Γ , with
all variables bound in-between assumed constant. Let Γ 〈p, V 〉 be the typing
context of all bindings x : τ , where: if x is in V and not a flexible variable in
fv(p), then τ = int/{↑, ↓}; if x is flexible and occurs in p at some monotonic
position, then τ = int/{↑}; otherwise, τ = int/∅.

Proposition 3. Assume that event fields are marked monotonic or arbitrary,
and that monotonic fields of events ti are integers that are non-decreasing in i.

Let R = q0, σ0
i1→q1, σ1

i2→ . . .
ik→qk, σk be a partial run, with subflow included in

{1, . . . , i}, and where qk is not final. Let (qk, p, g, qk+1) be some outgoing transition,
assume that σk � p�ti+1 ⇒ σk+1, and that P holds at all reachable transitions from
Γ 〈p, dom σk〉 and (qk, p, g, qk+1), where P (Γ ′, g′) is the property: Γ ′ � g′ : int/{↓}

A Smell of Orchids 17

is derivable.Foranycomplete run q0 , σ0
i1→q1, σ1

i2→ . . .
ik→qk, σk

ik+1→ qk+1, σ
′
k+1

ik+2→ . . .
im→qm, σ′

m with i+1 < ik+1, there is a strictly shorter complete run q0, σ0
i1→q1, σ1

i2→
. . .

ik→qk, σk
i+1→ qk+1, σk+1

ik+2→ . . .
im→qm, σm.

Proof. (Sketch.) I.e., we can build a strictly shorter run by firing the transition
(qk, p, g, qk+1) at event position i + 1 instead of waiting for some later position
ik+1. The assumption σk � p � ti+1 ⇒ σk+1 ensures that we can indeed fire this
at position i + 1. All further transitions, from qk+1 to qk+2 to . . . to qm are the
same in both runs. This may change variable bindings, from σ′

k+1 to σk+1, . . . ,
and from σ′

m to σm. But, by the typing condition, this can only make the value
of guards increase. Since all guards were made true by σ′

k+1, . . . , σ′
m, the same

guards are made true by σk+1, . . . , σm. ��

So, under the assumptions of Proposition 3, it is safe to advance along the
transition (qk, p, g, qk+1), without spawning a thread waiting on a later event
position for the same transition. Note that, as a particular case, the assumptions
of Proposition 3 are satisfied whenever p only binds rigid variables, and those
that were not in dom σk are free in no guard occurring later in the signature.
This is what we illustrated in Section 3.2.

Such green cuts are, as we have said, crucial to the performance of Orchids.
Totel et al. have already recognized the importance of timeouts, and shown
[15, Figure 7] that with a timeout value of 1 s on a user machine, the number of
plans (similar to our threads) culminated to a few hundreds. We worked together
in 2002, in the framework of the French RNTL project DICO, and evaluated our
respective algorithms by comparing numbers of threads throughout several event
flows, both artificial and real. On E. Totel’s main signature example, which was
meant to test the limits of multi-event intrusion detection systems, our algorithm
never maintained more than 6 threads in the queue. Our worst case was on a
real flow of 31 467 events, in which we had introduced two attack subflows, one
on sendmail and one on rpcinfo, with interleaved events, and very far apart:
our algorithm culminated to 19 threads, with an average of 7.1. (We didn’t
rely on any timeout.) Analysis showed that this good performance was a direct
consequence of the green cuts described here, which allow us to kill threads that
will violate shortest runs, in advance. We have also run Orchids on the LSV
network, in normal operation, during six months in 2005. It caught some attack
attempts (mostly IP range probing), while only consuming a few minutes of
system time total.
Red Cuts. By red cut, we mean any feature designed to kill threads arbitrarily,
possibly missing some attacks. This is in analogy with Prolog’s cut “!” [1]. While
the concept may seem ugly, it is definitely required in practice. For example,
remember that the complete ptrace signature has more transitions after state

7 than shown in (1), which collect actions done by the intruder before its
processes are killed and its account closed. On reaching state 7 , we use a red
cut to instruct Orchids to kill all threads with the same birthdate and signature.

18 J. Goubault-Larrecq and J. Olivain

So we collect intruder actions for only one instance of the attacks that succeeded
with the same birthdate.

Red cuts are important, in general, to avert denial-of-service attacks against
the intrusion prevention system. They allow a more direct control on the num-
ber of generated threads. Notably, they allow us to implement a form of the
Without operator of Totel et al. [15], an effective tool to control the growth of
the thread queue. This allows one to monitor one signature Σ1, provided some
other signature Σ2 does not match in-between. For example, this allows us to
monitor what a given process does, while it is alive, i.e., while no exit event is
recorded by this process. This is implemented in Orchids by running threads
that monitor both Σ1 and Σ2. Once a complete run for Σ2 is found, a red cut
is issued that kills all pending instances of both Σ2 and Σ1.

6 Detecting Families of Attacks

The ptrace attack example may give the wrong impression thatOrchids requires
one signature for each attack, requiring high maintenance overhead. Instead, one
may write signatures that detect attacks by their effects, e.g., illicitly acquiring
root privileges. In Orchids, this is done by using the pidtracker signature, which
has three states. There are transitions labeled with patterns matching calls to
fork, vfork, execve, setgid32, and setresuid32, from state 1 to 1 . The lat-
ter two primitives are the only ones (in Linux) that may legitimately change one of
the variants of the user id (i.e., user id, effective user id, saved user id), and these
transitions are used to track all changes to these user ids by a given process (whose
pid is stored in some rigid variable Pid). The first three primitives are monitored
to track down all created processes. Even without red cuts, the shortest run se-
mantics guarantees that no such call will be missed.

Additionally, there is a transition from 1 to 2 , tracking all calls made by the
process with pid Pid with some user id different from the one obtained through
tracking the events above. This detects any system call done with an unexpected
user id, typically with user id 0 (root) while the process was normally running
under a non-root user id. Finally, there is a transition from 1 to 3 , tracking
calls to exit by process Pid, with a red cut to kill all threads monitoring the
same process Pid.

The pidtracker rule is a practical way to detect instances of the do_brk
attack [14], a vicious local-to-root attack in which the intruder repeatedly calls
do_brk to allocate all available memory until kernel space is mapped into user
space, and the process rights table in kernel space is modified to obtain root
privileges. This is vicious in the sense that the only characteristic events of this
attack are calls to do_brk, and a flurry of SIGSEGV signals. None of these are
logged in any event logging system, for technical reasons. So a characteristic event
subflow for this attack would be empty! And the do_brk attack has already been
used, with disastrous effects: crackers used it to infect the Savannah servers (the
master servers of the GNU distribution) and the Debian Linux master servers

A Smell of Orchids 19

in 2004. Once the infection was suspected, these servers had to be turned down
for manual inspection of all packages, and this took several weeks.

The pidtracker signature detects that an attack such as do_brk has suc-
ceeded as soon as the offending process invokes the next system call. An added
benefit of this signature is that it will detect all such local-to-root attacks. It is
important that signatures be able to detect whole families of attacks, to decrease
the maintenance overhead of the signature base. In this case, we discovered in
2005 that the pidtracker signature, unchanged, would catch the newer but
similar map, munmap, mremap attacks.

This also shows that, contrary to popular belief, it is possible to detect zero-
day attacks , i.e., attacks which are launched before an advisory is made public.
To wit, the pidtracker rule caught the recent Linux vmsplice attack [12],
an attack published less than two months before our presentation at RV’08.
(By the way, this attack gets completely undetected by the SELinux security
enhancement to Linux, under standard reference policies, in ENFORCED mode.)

7 Conclusion

There is much more that could be said about Orchids, in particular from a per-
spective more geared towards security administrators. One strand would have
been to expand on the fact that Orchids is both able to detect bad behavior
(attacks described through signatures), or deviation from good behavior (where
“good” is defined through some security policy, of which the setuid model of Sec-
tion 6 was a simple example). Another would have been to show how Orchids,
originally a misuse detection system, can also work as an anomaly detection sys-
tem: adding statistical classifiers to Orchids is essentially a matter of adding an
event logging module that outputs statistical data in the form of events, which
Orchids can then match. We could also have demonstrated how Orchids de-
tects complex, network attacks such as the mod_ssl attack [3], using such a
statistical module [8]. Instead, we have chosen to center our presentation on
algorithmic issues, taking the opportunity to describe both the core algorithm
and the notion of cuts—in particular the green cuts that are so central to the
efficiency of Orchids—in as clear and intuitive a way as possible. We hope to
have demonstrated how efficient multi-event intrusion prevention was possible,
and how much monitor technology was relevant to this task. Orchids is freely
available under the Cecill 2 (GPL) license [6].

References

1. Clocksin, W., Mellish, C.: Programming in Prolog. Springer, Heidelberg (1981)
2. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems.

Springer, Heidelberg (1991)
3. McDonald, J., A.L. Digital Ltd., The Bunker: OpenSSL SSLv2 malformed client

key remote buffer overflow vulnerability (July 2002),
http://www.securityfocus.com/bid/5363

http://www.securityfocus.com/bid/5363

20 J. Goubault-Larrecq and J. Olivain

4. Morin, B., Debar, H.: Correlation of intrusion symptoms: An application of chron-
icles. In: Vigna, G., Krügel, C., Jonsson, E. (eds.) RAID 2003. LNCS, vol. 2820,
pp. 94–112. Springer, Heidelberg (2003)

5. Morin, B., Mé, L., Debar, H., Ducassé, M.: M2D2: A formal data model for IDS
alert correlation. In: Wespi, A., Vigna, G., Deri, L. (eds.) RAID 2002. LNCS,
vol. 2516. Springer, Heidelberg (2002)

6. Olivain, J.: ORCHIDS—real-time event analysis and temporal correlation for in-
trusion detection in information systems (2004),
http://www.lsv.ens-cachan.fr/orchids/

7. Olivain, J., Goubault-Larrecq, J.: The Orchids intrusion detection tool. In: Etes-
sami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 286–290. Springer,
Heidelberg (2005)

8. Olivain, J., Goubault-Larrecq, J.: Detecting subverted cryptographic protocols by
entropy checking. Research Report LSV-06-13, Laboratoire Spécification et Vérifi-
cation, ENS Cachan, France, 19. pages (June 2006)

9. Pouzol, J.-P., Ducassé, M.: Formal specification of intrusion signatures and de-
tection rules. In: Cervesato, I. (ed.) 15th IEEE Computer Security Foundations
Workshop (CSFW 2002), pp. 64–76. IEEE Comp.Soc.Press, Los Alamitos (2002)

10. Purczyński, W.: Linux ptrace/execve race condition vulnerability. BugTraq Id 2529
(March 2001), http://www.securityfocus.com/bid/2529

11. Purczyński, W.: Linux kernel privileged process hijacking vulnerability. BugTraq
Id 7112 (March 2003), http://www.securityfocus.com/bid/7112

12. Purczyński, W., qaaz.: Linux kernel prior to 2.6.24.2 ‘vmsplice_to_pipe()’ local
privilege escalation vulnerability (February 2008),
http://www.securityfocus.com/bid/27801

13. Roger, M., Goubault-Larrecq, J.: Log auditing through model checking. In: 14th
IEEE Computer Security Foundations Workshop (CSFW 2001), pp. 220–236. IEEE
Computer Society Press, Los Alamitos (2001)

14. Starzetz, P.: Linux kernel 2.4.22 do_brk() privilege escalation vulnerability, K-Otik
ID 0446, CVE CAN-2003-0961 (December 2003),
http://www.k-otik.net/bugtraq/12.02.kernel.2422.php

15. Totel, E., Vivinis, B., Mé, L.: A language driven IDS for event and alert correlation.
In: Deswarte, Y., Cuppens, F., Jajodia, S., Wang, L. (eds.) Security and Protec-
tion in Information Processing Systems, IFIP 18th World Computer Congress,
TC11 19th International Information Security Conference, pp. 209–224. Kluwer,
Dordrecht (2004)

http://www.lsv.ens-cachan.fr/orchids/
http://www.securityfocus.com/bid/2529
http://www.securityfocus.com/bid/7112
http://www.securityfocus.com/bid/27801
http://www.k-otik.net/bugtraq/12.02.kernel.2422.php

Runtime Certification�

John Rushby

Computer Science Laboratory
SRI International

333 Ravenswood Avenue
Menlo Park, CA 94025, USA

Abstract. Software often must be certified for safety, security, or other
critical properties. Traditional approaches to certification require the
software, its systems context, and all their associated assurance arti-
facts to be available for scrutiny in their final, completed forms. But
modern development practices often postpone the determination of final
system configuration from design time to integration time, load time, or
even runtime. Adaptive systems go beyond this and modify or synthesize
functions at runtime.

Developments such as these require an overhaul to the basic frame-
work for certification, so that some of its responsibilities also may be
discharged at integration-, load- or runtime.

We outline a suitable framework, in which the basis for certification is
changed from compliance with standards to the construction of explicit
goals, evidence, and arguments (generally called an “assurance case”).
We describe how runtime verification can be used within this framework,
thereby allowing certification partially to be performed at runtime or,
more provocatively, enabling “runtime certification.”

1 Introduction

Runtime verification, whose technology provides for automated construction of
monitors for formally specified properties [1], can be considered from two view-
points: one sees it as a form of testing, performed as part of pre-deployment
verification activities, while the other sees it as a form of post-deployment moni-
toring. From the latter viewpoint, the ability to generate monitors that guarantee
certain properties can be seen as valuable evidence that might be considered in
certification.

Traditional approaches to certification are based on adherence to standards or
guidelines and do not readily embrace new technologies, such as runtime verifica-
tion. But other trends, such as the use of adaptive systems for greater resilience,
create situations where runtime verification and monitoring could be particularly
valuable. Hence, there is increasing interest in alternative approaches to certifica-
tion that can better exploit new technical opportunities, as well as accommodate
� This work was supported by National Science Foundation Grant CNS-0720908 and

by NASA Cooperative Agreement NNX08AC64A.

M. Leucker (Ed.): RV 2008, LNCS 5289, pp. 21–35, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

22 J. Rushby

new hazards. Within suitable new frameworks, some of the evidence required for
certification can be achieved by runtime monitoring—by analogy with runtime
verification, this approach can, somewhat provocatively, be named “runtime cer-
tification.”

We do not argue that runtime methods should replace traditional, pre-
deployment methods of assurance and certification. Rather, the argument is that
traditional methods have become sufficiently effective that accidents seldom oc-
cur within the anticipated operating envelope of the system concerned, so that
attention has turned to attempting to maintain safe control in unanticipated
circumstances, such as those involving major structural damage. Software that
attempts to maintain control in these circumstances is necessarily adaptive, and
possibly heuristic. The role of runtime verification in these circumstances is first,
through assumption monitoring and anomaly detection to contribute to the de-
tection of novel circumstances and, second, to check that any attempted recovery
or adaptive control does not violate essential safety properties. It is also possible
that technology related to runtime verification can extend its contribution from
analysis toward synthesis of safe methods for adaptive control.

More controversially, runtime verification can contribute to detection and re-
covery from software failure. This is controversial because certified software in a
critical system should not fail, and methods for “software fault tolerance” such
as n-version programming have not been particularly successful and have fallen
into disfavor. However, serious software-induced incidents have been observed in
certified critical systems (we describe some involving commercial airplane later
in the paper) and there is concern that these may become more significant as
systems become more complex and evolve into systems-of-systems. An example
is Next-Generation Air Traffic Control, where the software of different airplanes
will interact to operate as a distributed system for maintaining separation with-
out the ground-based supervision employed today. Experience suggests that the
primary source of software failure will be violations of assumptions under which
it was constructed and certified. Some of these violated assumptions may be due
to oversights, some to unanticipated circumstances, and some to “software ag-
ing,” where software remains constant while the environment in which it operates
undergoes change [2].

This paper is organized as follows. The next section outlines an emerging new
framework for certification, which we refer to as an “assurance case.” The three
sections that follow suggest how the framework of an assurance case can guide
runtime monitoring for assumptions, anomalies, and safety, respectively. Section
6 considers diagnosis and recovery from failures detected by monitoring, and the
final section provides a summary and conclusion.

2 Assurance Cases

Certification is a judgement that deploying a given system in a given context will
not pose unacceptable risks of adverse consequences. The intellectual foundation
for certification rests on three elements: claims, evidence, and argument. The

Runtime Certification 23

claims identify the adverse consequences to be considered and the degree of risk
considered acceptable; evidence comprises the results of analyses, reviews, and
tests; the argument makes the case, based on the evidence, that the claims are
satisfied.

The traditional approach to certification may be called “standards based” and
largely requires (or strongly recommends) that system development follows pre-
scribed processes (e.g., DO-178B [3] for airborne software) and generates speci-
fied evidence (e.g., MC/DC tests [4]). The standards-based approach focuses on
evidence: the claims and the argument are largely implicit. Thus, it is not imme-
diately clear whether the evidence from MC/DC testing is intended to support
an argument for adequate testing, or one for high-quality requirements, or one
for absence of unintended function. Standards-based certification can be very ef-
fective in fields where change is relatively slow, so that extensive experience can
support the efficacy of the recommended processes and evidence. However, it is
less appropriate when rapid innovation leads to systems that are very different
to those anticipated in the standard, and it can inhibit the introduction of new
assurance methods that provide novel kinds of evidence.

An emerging alternative to standards-based certification is known as a “safety
case” [5]. In a safety case, the claims, evidence, and argument for assurance are pre-
sented explicitly and are evaluated by the certifying authority or some delegated
third party. The exact form of the assurance case is a matter for negotiation by the
parties involved, but must generally conform to a given outline (e.g., [6,7]). The ad-
vantage of the safety-case approach is that it focuses on the specifics of the system
under consideration, and hence can tailor the methods of assurance appropriately
(for this reason, it is sometimes referred to as a goal-based approach to assurance).
The idea that certification should be based on explicit goal-based argumentation
began in the UK (following inquiries into several disasters in the petro-chemical
industry), and is becoming widely accepted—for example, it is a principal recom-
mendation in a recent report of the National Research Council [8]—and it is now
being generalized from safety, so that one hears of “dependability cases,” “security
cases,” and general “assurance cases,” which is the term we will use.

Assurance cases are attractive to runtime verification because they not only
provide a flexible framework in which we may construct arguments to be dis-
charged by evidence from runtime verification, but the assurance argument can
be a source of properties to be monitored at runtime. We explore these topics in
the following sections.

3 Runtime Assumption Monitoring

Certification is ultimately a human judgement that might not—or perhaps
should not—be reduced to a completely formal or mechanized process. For this
reason, some proponents of goal-based assurance look to Toulmin [9] rather
than classical logic in framing assurance cases [10]; Toulmin stresses justifica-
tion rather than inference. Toulmin’s model of argument has the following six
elements (from [11]), which are also portrayed in Figure 1.

24 J. Rushby

(Argument)

(Evidence)

Backing

Grounds
Qualifier Claim

Rebuttal
Warrant

Fig. 1. Toulmin’s Model of Argument

Claim: This is the expressed opinion or conclusion that the arguer wants ac-
cepted by the audience.

Grounds: This is the evidence or data for the claim.
Qualifier: An adverbial phrase indicating the strength of the claim (e.g., cer-

tainly, presumably, probably, possibly, etc.).
Warrant: The reasoning or argument (e.g., rules or principles) for connecting

the grounds to the claim.
Backing: Further facts or reasoning used to support or legitimate the warrant.
Rebuttal: Circumstances or conditions that cast doubt on the argument; it

represents any reservations or “exceptions to the rule” that undermine the
reasoning expressed in the warrant or the backing for it.

The claim, grounds, and warrant of Toulmin’s approach correspond to the
claim, evidence, and argument of an assurance case. The overall structure will
often be hierarchical, with the (sub)claim at one level providing the grounds
(evidence) at a higher level. Toulmin’s qualifier, backing, and rebuttal find no
direct correspondence in an assurance case and, in fact, represent elements in
Toulmin’s rejection of formal logic.

The case that Toulmin advances against formal logic has some appeal when
the topics of discourse are ethics, or aesthetics, say, but it is less persuasive for
the topic of certification. There may certainly be areas of doubt in an assurance
case, and human judgement and experience may be the appropriate recourse, but
these doubts concern our ignorance of the true state of affairs (i.e., facts), rather
than genuine judgements (where differences—on aesthetics, for example—cannot
be resolved by facts, and reasonable people may come to different conclusions),
so the presence of uncertainty need not lead us to reject formal logic.1 Further-
more, Toulmin’s use of adverbial qualifiers (“presumably,” “possibly” and so on)
rather than the “proves” (�) or “models” (|=) of classical logic precludes use of
automated tools such as theorem provers and model checkers.
1 Although even within formal logic, there are controversies about the treatment of

probabilistic uncertainty in evidential reasoning [12,13].

Runtime Certification 25

An alternative to expressing doubts and partial knowledge in the qualifier is
to express these as explicit assumptions in the hypotheses to a theorem (i.e.,
using qualifier “proves”). Thus, the elements of an assurance case could be (me-
chanically analyzed) theorems of the form

A1, . . . , An, S � R

where A1, . . . , An are the assumptions under which the system or design S satis-
fies requirements or claim R. Toulmin’s backing and rebuttal and can likewise be
represented by further assumptions and by additional case analysis, respectively.

Once we have made assumptions explicit, we can subject them to analysis in
the same way as other claims: we can ask whether they can be substantiated
by subsidiary arguments and evidence, in what circumstances might they be
invalidated (cf. fault-tree analysis), and what might be the consequences if they
are false (cf. failure modes and effects analysis). And, of course, we can some-
times check them at runtime. We do not describe here how to generate suitable
monitors for runtime assumption verification—we suggest use of existing lan-
guages and frameworks for runtime verification, such as Eagle or RuleR [14]
and Monitoring-Oriented Programming (MOP) [15]—but we note that one of
the strengths of runtime verification is that it provides technology to synthesize
monitors automatically from their formal descriptions.

Our central point is that construction of formal arguments in support of as-
surance cases helps make assumptions explicit—and in a form that makes them
available for runtime verification. Runtime detection of an assumption violation
is not necessarily a harbinger of imminent system failure or safety violation,
for the assumption might not be required for the specific execution scenario in
progress (but then the assurance case could have been refined by a sharper anal-
ysis). Suitable responses to an assumption violation could range from merely
logging it and waiting for a more definite indication of trouble, to proactively
initiating some repair or fault recovery activity. We consider these in Sections 5
and 6, respectively, but first we consider other kinds of runtime “early warning”
or anomaly detection.

4 Runtime Anomaly Detection

Not all assumptions can be verified at runtime. For example, one of the most
serious in-flight incidents due to software occurred to a Boeing 777, registration
9M-MRG, near Perth, Australia, on 1 August 2005 [16]. The air data inertial
reference unit (ADIRU) performed a restart in circumstances where two of its
accelerometers were faulty—whereas the restart algorithm assumed at most one
accelerometer would be faulty. The outcome was a series of wild excursions as
the autopilot responded to essentially random inputs from its ADIRU. It is not
always feasible to detect faulty components (if it were, fault tolerance would be
easy), so direct assumption monitoring would not have been feasible in this case.

An alternative to monitoring assumptions and properties that are explicit in
the requirements or in the assurance case is to monitor for properties learned by

26 J. Rushby

“experience”: that is, we check that the system is behaving “as usual.” This idea
has its roots in methods for intrusion detection in computer security [17], which
were subsequently refined to detect infections by computer viruses. An activated
virus causes a program to change its behavior—as does an activated fault or
violated assumption; hence, it is plausible that methods for detecting anomalies
caused by viruses may also detect manifestations of a developing problem.

Most modern methods for anomaly detection work by constructing a model
of the normal behavior of the software, in terms, for example, of the invariants
that it maintains, or the execution paths that it follows. A program’s execution
paths can represented as a context-free grammar or, more crudely, as a set of
digraphs on monitored control points (i.e., the set of all pairs of monitored control
points—which are often system calls—that are encountered consecutively). The
program is monitored in execution and an anomaly alarm is raised whenever
execution departs from the recorded model. Following the lead of Wagner and
Dean [18], models are often generated by automated formal analysis: for example,
an overapproximation to the set of expected execution paths can be constructed
using static analysis, and invariants also can be generated in this way.

However, our context for anomaly detection is rather different than that of
computer security, and this makes models constructed by static analysis less
useful. In computer security, the context is a program that has been changed
by activation of a virus, whereas our context is an unchanged program whose
behavior has been changed by violation of an assumption (which we can think of
as a bug if the assumption is unrecorded). Thus, in our context, static analysis
will generate its models from a program in which the bug or faulty assumption is
already present, and monitoring will therefore be ineffective. We need, instead,
to generate models from bug-free representations of the program.

One way to do this is to generate models from the behavior of the program
during test. Critical software is subjected to very thorough testing (e.g., MC/DC
coverage in the case of DO-178B Level A) so that models generated from tests
should be very accurate, but they will not include faulty behaviors due to ac-
tivated bugs or violated assumptions—for if those were to arise in test, they
would be detected and fixed. The dynamic analyzer Daikon [19] can synthe-
size invariants from behavior observed in test, and digraphs or other compact
representations of observed control flow can be constructed by monitoring test
executions. By these means, we can build models that allow runtime monitoring
to detect when software behavior departs from that observed during test. Mon-
itoring execution against control flows encountered during test is related to the
“vital coded processor” used in railway signaling [20] and is also suggested in
the IEC 61508 standard [21, Part 7, page 159].

Violation of an invariant or control flow derived from tests may indicate a
genuine error, or simply an untested scenario. If the latter is considered the more
likely, then logging the anomaly, rather than initiating repair or fault recovery,
may be the most suitable response. Logs of detected anomalies then provide a
way to identify inadequately tested or poorly documented cases, and also provide
information for post-deployment testing and cooperative bug isolation [22].

Runtime Certification 27

5 Runtime Safety Monitoring

Runtime monitoring for assumptions and anomalies can give early warning that
things may be going wrong, but monitoring requirements and safety properties
should provide more definitive indications of trouble or, dually, more assurance
that the system is operating safely. However, this expectation must be tempered
by consideration of the sources of the monitored properties.

Obvious sources for properties to monitor are the requirements for the soft-
ware concerned. The problem with this choice is that critical software is devel-
oped and assured to exacting standards that provide rather effective guarantees
that requirements—particularly low-level requirements—will be satisfied. For
example, flight-critical software is generally developed and assured according to
the guidelines DO-178B Level A [3]. These demand construction of high- and
low-level software requirements and rigorous testing of the code against these
requirements; in particular, tests generated from the low-level software require-
ments must achieve MC/DC coverage on the code [4]. These development and
assurance processes seem very effective in producing software that is correct
with respect to its requirements. Furthermore, these requirements are generally
at the unit level and the correctness of the software is often robust at this level;
that is to say, there may be problems present at the system level, but individ-
ual software units will still be operating correctly according to their unit-level
requirements.

Thus, there is unlikely to be much benefit in monitoring requirements at or
below the unit level: not only is critical software generally correct with respect
to this level of specification, but larger problems may not be manifested at this
level. Instead, we need to monitor properties that more directly relate to the
safe functioning of the system, and that are more likely to be violated when
problems are present—and this invites the question of how might we obtain
such properties.

Certification guidelines such as DO-178B offer rather little support in this
enterprise because the goal of assurance for the software development process
is to establish that the delivered software exactly matches (i.e., is correct with
respect to) its requirements, rather than that it is safe. Thus Conmy [23] and
Amey and Hilton [24] argue that DO-178B is about software correctness, not
system safety (“there is no relation of the software to the system hazards, the
developer can only state that the whole box has been tested to level A”) and
Ankrum and Kromholz [25] find no clear link between desired system properties
and many of the evidence artifacts required by DO-178B.

However, the system-level arguments and certification evidence for airplane
safety are based on various kinds of system and safety analysis such as hazard
analysis, failure modes and effects analysis, and fault tree analysis (e.g., [26,27]),
and these penetrate down into subsystems and the top-level requirements for
the software. Thus, although it is not couched in these terms, the upper levels of
assurance for airplane safety, and possibly other classes of systems, too, already
have much in common with the notion of a safety or assurance case, as introduced
in Section 2.

28 J. Rushby

Thus, we envisage that with modest amendments to current practices for sys-
tem development and assurance, it will be feasible to introduce elements of a
formal assurance case, and that this will yield explicit safety claims that can
be subjected to runtime monitoring. Runtime monitoring for critical properties
is not new: the idea of a “reference monitor” for security was introduced in
1972 [28]. Later, Rushby analyzed the general class of properties that can be
guaranteed by monitoring [29], and this analysis was developed further by Wika
and Knight [30] and, for the case of security properties, by Schneider [31]. Re-
duced to essentials, these analyses demonstrate that only safety (as opposed to
liveness [32]) properties can be ensured by monitoring.

In this regard, it is worth recalling another serious in-flight incident due to
software. An Airbus A340-642, registration G-VATL, suffered a fuel emergency
on 8 February 2005 [33]. The plane was over Europe on a flight from Hong
Kong to London when two engines flamed out. The crew found that the tanks
supplying those engines were empty and those for the other two engines were very
low. They declared an emergency and landed at Amsterdam. The subsequent
investigation reported that two Fuel Control Monitoring Computers (FCMCs)
are responsible for pumping fuel between the tanks on this type of airplane. The
two FCMCs cross-compare and the “healthiest” one drives the outputs to the
data bus. In this case, both FCMCs had known faults (but complied with the
minimum capabilities required for flight); unfortunately, one of the faults in the
one judged healthiest was the inability to drive the data bus. Thus, although it
gave correct commands to the fuel pumps (there was plenty of fuel distributed
in other tanks), these were never received. Backup systems were not invoked
because the FCMCs indicated that not both were failed.

Monitoring low-level requirements for the FCMCs would not detect this prob-
lem, since faulty requirements were the root of the problem. At the top level, the
failure was a loss of function, so that the high-level requirement most directly
violated was a liveness property: one that says “something good”—i.e., pumping
fuel—eventually happens. As noted above, monitoring is effective only for safety
properties: ones that say “something bad” does not occur, so it might seem that
monitoring would not be effective for this example.

This conundrum is easily solved: most critical systems perform some kind
of real-time control function, and a liveness property constrained by a deadline
becomes a safety property. For example, “the fuel pumps should activate at least
once per hour” is a safety property that can be monitored. In all likelihood, there
are many other safety properties suitable for monitoring in this system (e.g.,
those concerning the acceptable distribution of fuel among the different tanks,
or minimum levels in the tanks feeding the engines).

The other classes of major system faults—that is, malfunction and unintended
function—are safety properties and should be suitable for runtime safety mon-
itoring. Other properties that seem suitable for monitoring are interfaces and
invariants for distributed algorithms (in the spirit of interface automata [34])
and cooperatively maintained data structures (in the spirit of robust data struc-
tures [35]). Although these may be below the level of properties cited in an

Runtime Certification 29

assurance case, they do relate to component interactions, and so assurance of
their health is a valuable benefit.

6 Diagnosis, Recovery, and Mitigation

Runtime verification for assumptions, anomalies, and safety properties can de-
liver strong evidence for an assurance case and, ultimately, for certification. As
we noted in the introduction, a principal driver for adoption of these techniques
is the desire to maintain safe control in the presence of unanticipated events. The
idea is that control will be maintained by various “adaptive” methods, and that
runtime verification will provide some assurance that these are operating safely.
However, runtime verification derives from formal methods and closely related
techniques from this field could provide assured mechanization for some of the
“adaptive” tasks—such as diagnosis, and recovery or mitigation of unplanned
events—that currently often use ad-hoc methods.

The component whose monitor raises an alarm may not be the source of the
fault. Given some symptoms in the form of alarms from software health monitors,
fault diagnosis is the problem of identifying the source and nature of the fault.
Early approaches to fault diagnosis in physical systems used rule-based “expert
systems” but these proved fragile and modern methods are based on model-based
reasoning “from first principles” [36].

The idea of model-based diagnosis is to perturb a model of the system until
the modeled behavior matches that observed. The diagnosis is then derived from
the perturbation. Models can range from simple graphs representing connectiv-
ity among components to interacting state machines. Models are perturbed by
replacing the standard model of a component by one that is faulty; each compo-
nent is generally provided with a set of fault models (or a single model that can
manifest different faults under control of a set of Boolean “switches”), that may
range from very specific kinds of fault to a generic “something’s wrong,” which
may be represented by a fully nondeterministic state machine, or communica-
tion of a distinguished “bad” data value. The preferred diagnosis is generally
one that accounts for the observed symptoms with the smallest number of pos-
tulated faults. Calculation of a diagnosis is performed using methods related to
model checking, which effectively reduce the problem to one that can be solved
using techniques from automated deduction such as SAT or SMT solving. More
elaborate diagnostic methods can take probabilities into account, and the under-
lying methods of deduction then involve Markov decision processes, which can
be solved by Monte Carlo methods or by model counting [37].

Much of the research in diagnosis is concerned with the challenge of making
exactly the correct identification of the underlying fault. However, although there
may be many possible faults, the number of possible reconfigurations or other
mitigating actions may be rather few. For the case of jet engines, which were
the target of NASA’s pioneering Faultfinder system [38], there are just four
possible actions: do nothing, reduce power, shut the engine down, or discharge
its fire extinguisher. There is no point in performing diagnosis to greater precision

30 J. Rushby

than that required to identify the appropriate mitigation. Thus, we propose that
diagnosis should be performed in tandem with the search for an appropriate
mitigation. Some mitigations (e.g., reconfigurations) can be found through an
extension to model-based diagnosis ([39] was the first to propose this), while
others require methods akin to AI planning, or program synthesis.

Local mitigations for faults that are attributed to software include retrying a
computation, reverting to a checkpointed state, or performing a reset or reboot
[40]. Sometimes it will be preferable to adjust input data rather than the system
state (cf. data diversity [41]): for example, if a sensor sample provokes overflow
or division by zero, then we can perturb it slightly, or substitute a previous value
(e.g., from a prior iteration in a cyclic control loop). Alternatively, we may be
able to reconfigure the system so that a faulty software component is replaced
by a diverse alternate. Recovery blocks [42] provide a systematic framework for
such reconfigurations; alternates may perform graceful degradation rather than
exactly reproduce the behavior of the failed primary, and a final alternate may
be verified to guarantee some safe minimal functionality (this is provably safe
programming [43]; a similar idea appears in monitoring-oriented programming
and in the work of Sha [44]).

Local mitigations such as those described above require additional implemen-
tation mechanism, add complication, and are of uncertain effectiveness. In some
cases, the mitigation may be more hazardous than the fault. For example, on 12
May 1997, hard-coded anomaly detection and mitigation caused the display sys-
tem (EFIS) of American Airlines Flight 903 (an Airbus A300) to go blank: the
indicated roll rate of more than 40 degrees/second was considered implausible,
and so a bus reset was performed. In fact, the pilots were attempting recovery
from a major upset and the roll rate was real; the loss of all instruments at this
critical time jeopardized the recovery.

Just as we believe that runtime monitoring will be performed most effectively
against properties derived from a system-level assurance case, so we suspect
that diagnosis and mitigation will best be performed at the system level also.
Safety critical systems such as airplanes already contain massive, well-designed
redundancy to protect against anticipated hardware faults, and it will often be
possible to invoke this so that safe operation may continue in the presence of
unanticipated events or software faults. For example, in the case of the 777
ADIRU problem, we could switch the autopilot to a different source of air data.
Even when redundant components have identical designs and are running iden-
tical software, their internal state and sensor inputs are likely to differ slightly.
Hence, the circumstances that provoke failure in one component (e.g., two faulty
accelerometers) may not be present in another, and the same assumptions and
the same software that has failed in one component may continue to operate
perfectly well in the other.

Diagnosis at the system level may involve a number of steps (e.g., to see if the
symptoms persist when various components are reset or shut down) and mitiga-
tion may also require several steps rather than a simple reconfiguration. In these
cases, we need to synthesize a multi-step program of action and the appropriate

Runtime Certification 31

framework for doing this is supervisory controller synthesis, introduced by Ra-
madge and Wonham [45]. Controller synthesis can be formulated as a game
between the controller and its environment: the controller seeks a strategy to
maintain or achieve a given property no matter how the environment behaves.
Simple instances, such as certain kinds of AI planning, can be reduced to SAT
solving—for example, when the system is deterministic with respect to the in-
puts and the task is to find a sequence of inputs that places the system in some
specific state. In more complicated cases, the controller must really be a strategy
that reacts to the environment rather than a simple sequence or a schedule. In
this situation, the controller synthesis problem can be solved using techniques
derived from model checking [46].

The advantage of a formal, model-based approach to mitigation is that it
can consider multiple possible diagnoses and calculate the best overall response.
The model can also be cognizant of system-level safety properties, so that we
can be sure that an action that seems reasonable at the local level does not
have adverse consequences at a higher level (as in the case of American Flight
903). Above all, correctness of the formally synthesized approach is guaranteed,
relative to the model. Thus, assurance and certification can focus on the models
employed, unlike more heuristic methods whose behavior must be determined
experimentally.

It is likely that mitigations undertaken at the system level will require partic-
ipation by the human operators (e.g., to power-cycle a subsystem or to switch
to a backup system). In these cases it will be important that the recovery and
mitigation procedures communicate effectively with the operators so that they
understand the possible states of the system, the available courses of action, and
the reasons behind those recommended. One way to do this is to include an
explicit representation of the information available to the operators as part of
the model that drives the search for diagnosis and mitigations. The feasibility of
doing this is supported by [47], which shows how pilots’ mental models can be
represented and used in formal analysis to help avoid mode confusion and other
forms of automation surprise, and to guide selection of information presented to
the pilots.

7 Summary and Conclusion

There is extensive prior work on runtime monitoring for assurance and for error
detection and recovery (e.g., [48,49]). The main novelty in the approach proposed
here is use of an assurance case as the source of monitored properties.

Runtime monitoring of safety properties related to an assurance case can
provide potent evidence to support the case. Such runtime evidence is most use-
ful in adaptive systems that attempt to maintain safe control in unanticipated
circumstances that are beyond those considered in the standard design and pre-
deployment certification of the system. Assurance delivered by runtime monitor-
ing can therefore contribute to certification of systems that follow a “never give
up” strategy, in the spirit of autonomic and resilient systems [50].

32 J. Rushby

Unanticipated circumstances and violation of assumptions may cause even
certified software to fail. Monitoring for assumptions—also derived from an as-
surance case—and for anomalies—which may be regarded as departures from be-
haviors encountered in test—can give early warning that problems are at hand,
while monitoring for safety properties can give assurance that those problems
are being contained or, dually, that they are not and that recovery should be at-
tempted. Formal methods related to runtime verification can provide automated
techniques for diagnosis, mitigation, and recovery. These methods for monitor-
ing, analysis, and synthesis are driven by formal models, so their assurance can
focus on the models. This may be contrasted with ad-hoc methods, where as-
surance must often be obtained experimentally.

Complex modern systems, such as airplanes, increasingly incorporate sophis-
ticated functions for sensing, monitoring, and managing the “health” of the
system; in airplanes these functions are called Integrated Vehicle Health Man-
agement (IVHM). We hope the techniques proposed here will contribute to the
effectiveness and to the assurance and certification of IVHM systems, and to the
emerging field of software health management.

Acknowledgment. I appreciate helpful discussions on these topics with Robin
Bloomfield and Bev Littlewood of City University, and with my SRI colleagues
Bruno Dutertre, Bob Riemenschneider, and Hassen Säıdi.

References

1. Havelund, K., Rosu, G.: Efficient monitoring of safety properties. Software Tools
for Technology Transfer 6(2), 158–173 (2004)

2. Parnas, D.: Software aging. In: 16th International Conference on Software Engi-
neering, pp. 279–287. IEEE Computer Society, Sorrento (May 1994)

3. Requirements and Technical Concepts for Aviation Washington, DC: DO-178B:
Software Considerations in Airborne Systems and Equipment Certification, This
document is known as EUROCAE ED-12B in Europe (December 1992)

4. Chilenski, J.J., Miller, S.P.: Applicability of modified condition/decision cover-
age to software testing. Issued for information under FAA memorandum ANM-
106N:93-20 (August 1993)

5. Bishop, P., Bloomfield, R.: A methodology for safety case development. In: Safety-
Critical Systems Symposium, Birmingham, UK (February 1998),
http://www.adelard.com/resources/papers/pdf/sss98web.pdf

6. UK Ministry of Defence: Interim Defence Standard 00-56, Issue 3: Safety Man-
agement Requirements for Defence Systems. Part 2: Guidance on Establishing a
Means of Complying with Part 1 (December 2004)

7. Safety Regulation Group, UK Civil Aviation Authority: Air Traffic Services Safety
Requirements, CAP 670 (2005)

8. Jackson, D., Thomas, M., Millett, L.I.: Software for Dependable Systems: Sufficient
Evidence? National Academies Press, Washington (May 2007)

9. Toulmin, S.E.: The Uses of Argument. Cambridge University Press, Cambridge
(2003); Updated edition (the original is dated 1958)

http://www.adelard.com/resources/papers/pdf/sss98web.pdf

Runtime Certification 33

10. Bishop, P., Bloomfield, R., Guerra, S.: The future of goal-based assurance cases.
In: DSN Workshop on Assurance Cases: Best Practices, Possible Obstacles, and
Future Opportunities, Florence, Italy (July 2004),
http://www.aitcnet.org/AssuranceCases/agenda.html

11. Adelman, L., Lehner, P.E., Cheikes, B.A., Taylor, M.F.: An empirical evaluation
of structured argumentation using the Toulmin argument formalism. IEEE Trans-
actions on Systems, Man, and Cybernetics—Part A: Systems and Humans 37(3),
340–347 (2007)

12. Fitelson, B.: Studies in Bayesian Confirmation Theory. PhD thesis, Department of
Philosophy, University of Wisconsin, Madison (May 2001),
http://fitelson.org/thesis.pdf

13. Joyce, J.M.: On the plurality of probabilist measures of evidential relevance. In:
Bayesian Epistemology Workshop of the 26th International Wittgenstein Sympo-
sium, Kirchberg, Austria (August 2003),
http://www.uni-konstanz.de/ppm/kirchberg/Joyce 1.pdf

14. Barringer, H., Rydeheard, D., Havelund, K.: Rule systems for run-time monitoring:
From Eagle to RuleR. In: Sokolsky, O., Taşıran, S. (eds.) RV 2007. LNCS, vol. 4839,
pp. 111–125. Springer, Heidelberg (2007)

15. Monitoring-Oriented Programming (MOP) home page,
http://fsl.cs.uiuc.edu/index.php/Monitoring-Oriented Programming

16. Australian Transport Safety Bureau: In-flight upset event, 240 km north-
west of Perth, WA, Boeing Company 777-200, 9M-MRG, Reference number
Mar2007/DOTARS 50165. aair200503722.aspx. (August 1, 2005) (March 2007),
http://www.atsb.gov.au/publications/investigation reports/2005/AAIR/
aair200503722.aspx

17. Denning, D.E.: An intrusion-detection model. IEEE Transactions on Software En-
gineering 13(2), 222–232 (1987)

18. Wagner, D., Dean, D.: Intrusion detection via static analysis. In: Proceedings of
the Symposium on Security and Privacy, pp. 156–168. IEEE Computer Society,
Oakland (May 2001)

19. Ernst, M.D., Cockrell, J., Griswold, W.G., Notkin, D.: Dynamically discovering
likely program invariants to support program evolution. IEEE Transactions on
Software Engineering 27(2), 99–123 (2001)

20. Chapront, P.: Vital coded processor and safety related software design. In: Frey,
H.H. (ed.) Safety of Computer Control Systems (SAFECOMP 1992), Zurich,
Switzerland, International Federation of Automatic Control, pp. 141–145 (October
1992)

21. International Electrotechnical Commission Geneva, Switzerland: IEC 61508—
Functional Safety of Electrical/Electronic/Programmable Electronic Safety-
Related Systems (March 2004)

22. Liblit, B.: Cooperative Bug Isolation. Winning Thesis of the 2005 ACM Doctoral
Dissertation Competition. LNCS, vol. 4440. Springer, Heidelberg (May 2007)

23. Conmy, P.: Safety Analysis of Computer Resource Management Software. PhD
thesis, Department of Computer Science, University of York, UK (2005)

24. Amey, P., Hilton, A.J.: Practical experiences of safety- and security-critical tech-
nologies. Ada User Journal 22(1) (March 2001)

25. Ankrum, T.S., Kromholz, A.H.: Structured assurance cases: Three common stan-
dards. In: High-Assurance Systems Engineering Symposium (HASE 2005). IEEE
Computer Society, Heidelberg (2005)

http://www.aitcnet.org/AssuranceCases/agenda.html
http://fitelson.org/thesis.pdf
http://www.uni-konstanz.de/ppm/kirchberg/Joyce_1.pdf
http://fsl.cs.uiuc.edu/index.php/Monitoring-Oriented_Programming
http://www.atsb.gov.au/publications/investigation_reports/2005/AAIR/aair200503722.aspx
http://www.atsb.gov.au/publications/investigation_reports/2005/AAIR/aair200503722.aspx

34 J. Rushby

26. Society of Automotive Engineers: Aerospace Recommended Practice (ARP) 4754:
Certification Considerations for Highly-Integrated or Complex Aircraft Systems
(November 1996)

27. Society of Automotive Engineers: Aerospace Recommended Practice (ARP) 4761:
Guidelines and Methods for Conducting the Safety Assessment Process on Civil
Airborne Systems and Equipment (December 1996)

28. Anderson, J.P.: Computer security technology planning study. Technical Report
ESD-TR-73-51, US Air Force (October 1972) (Two volumes)

29. Rushby, J.: Kernels for safety? In: Anderson, T. (ed.) Safe and Secure Computing
Systems, pp. 210–220. Blackwell Scientific Publications, Malden (1989)

30. Wika, K.G., Knight, J.C.: On the enforcement of software safety policies. In: COM-
PASS 1995 (Proceedings of the Tenth Annual Conference on Computer Assurance),
Gaithersburg, MD, IEEE Washington Section, pp. 83–93 (June 1995)

31. Schneider, F.: Enforceable security policies. ACM Transactions on Information and
System Security 3(1), 30–50 (2000)

32. Alpern, B., Schneider, F.B.: Defining liveness. Information Processing Let-
ters 21(4), 181–185 (1985)

33. UK Air Investigations Branch: AAIB Special Bulletin S1/2005: Airbus A340-642,
G-VATL (2005),
http://www.aaib.dft.gov.uk/cms resources/G-VATL Special Bulletin1.pdf

34. de Alfaro, L., Henzinger, T.A.: Interface automata. In: Proceedings of the Ninth
Annual Symposium on Foundations of Software Engineering (FSE), Association
for Computing Machinery, pp. 109–120 (2001)

35. Taylor, D.J., Morgan, D.E., Black, J.P.: Redundancy in data structures: Improving
software fault tolerance. IEEE Transactions on Software Engineering 6(6), 585–594
(1980)

36. Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32,
57–95 (1987)

37. Williams, B.C., Ingham, M., Chung, S.H., Elliott, P.H.: Model-based programming
of intelligent embedded systems and robotic space explorers. Proceedings of the
IEEE 91(3), 212–237 (2003)

38. Abbott, K.H., Schutte, P.C., Palmer, M.T., Ricks, W.R.: Faultfinder: A diag-
nostic expert system with graceful degradation for onboard aircraft applications.
In: Proceedings, 14th Symposium on Aircraft Integrated Monitoring Systems,
Friedrichshafen, W. Germany (September 1987)

39. Crow, J., Rushby, J.: Model-based reconfiguration: Toward an integration with
diagnosis. In: Proceedings, AAAI 1991, Anaheim, CA, vol. 2, pp. 836–841 (July
1991)

40. Grottke, M., Trivedi, K.: Fighting bugs: Remove, retry, replicate, and rejuvenate.
IEEE Computer, 107–109 (February 2007)

41. Ammann, P.E., Knight, J.C.: Data diversity: An approach to software fault toler-
ance. IEEE Transactions on Computers 37(4), 418–425 (1998)

42. Anderson, T., Kerr, R.: Recovery blocks in action: A system supporting high relia-
bility. In: Proceedings of the 2nd International Conference on Software Engineering,
pp. 447–457. IEEE Computer Society, San Francisco (1976)

43. Anderson, T., Witty, R.W.: Safe programming. BIT 18, 1–8 (1978)
44. Sha, L.: Using simplicity to control complexity. IEEE Software 18(4), 20–28 (2001)
45. Ramadge, P.J.G., Wonham, W.M.: The control of discrete event systems. Proceed-

ings of the IEEE 77(1), 81–98 (1989)
46. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: 16th ACM Sym-

posium on Principles of Programming Languages, pp. 179–190 (1989)

http://www.aaib.dft.gov.uk/cms_resources/G-VATL_Special_Bulletin1.pdf

Runtime Certification 35

47. Rushby, J.: Using model checking to help discover mode confusions and other
automation surprises. Reliability Engineering and System Safety 75(2), 167–177
(2002)

48. Bauer, A., Leucker, M., Schallhart, C.: Model-based runtime analysis of distributed
reactive systems. In: Proceedings of the Australian Software Engineering Confer-
ence (ASWEC 2006), Sydney, Australia, pp. 243–252 (April 2006)

49. Lee, I., Kannan, S., Kim, M., Sokolsky, O., Viswanathan, M.: Runtime assurance
based on formal specifications. In: Proceedings of International Conference on Par-
allel and Distributed Processing Techniques and Applications, Las Vegas, NV, pp.
279–287 (June 1999)

50. Hollnagel, E., Woods, D.D., Leveson, N. (eds.): Resilience Engineering, Ashgate
(2005)

Model-Based Run-Time Checking of

Security Permissions Using Guarded Objects�

Jan Jürjens

Computing Department, The Open University, GB
http://www.jurjens.de/jan

Abstract. In this paper we deal with the application of run-time check-
ing to enforce requirements which, because of their nature, cannot be
enforced statically. More specifically, it deals with the problem how to
control access to objects within an object-oriented system at run-time in
a way that enforces an overall security policy. It aims to improve on the
ad-hoc (and often untrustworthy) way it is currently done in practice by
automatically generating the run-time checks from a model-based spec-
ification of the system that captures the security policy. Concretely, the
models are expressed in the UML security extension UMLsec, and the
run-time checks that are generated for Java programs rely on Guarde-
dObjects.

1 Introduction

A commonly used security concept is permission-based access control, i.e. asso-
ciating entities (e.g., users or objects) in a system with permissions and allowing
an entity to perform a certain action on another entity only if it owns the nec-
essary permissions. Designing and enforcing a correct permission-based access
control policy (with respect to the general security requirements) is very hard,
especially because of the complex interplay between the system entities. This is
aggravated by the fact that permissions can also be delegated to other objects
for actions to be performed on the delegating object’s behalf.

Especially dynamic access control mechanisms such as provided by Java since
the JDK 1.2 security architecture [Gon99] in the form of GuardedObjects can be
difficult to administer since it is easy to forget an access check. If the appro-
priate access controls are not performed, the security of the entire system may
be compromised. Additionally, access control may be granted indirectly and un-
intentionally by granting access to an object containing the signature key that
enables access to another object.

In this paper, we present an approach for the integration of run-time checks
to enforce permissions into early design models, in particular for object-oriented
design using UML. We both describe static modelling aspects, where we intro-
duce owned and required permissions and capabilities for their delegation into
� This work was partially funded by the Royal Society within the project Model-based

Formal Security Analysis of Crypto Protocol Implementations.

M. Leucker (Ed.): RV 2008, LNCS 5289, pp. 36–50, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Model-Based Run-Time Checking of Security Permissions 37

class diagrams, and dynamic modelling aspects. Dynamic modelling aspects are
characterized by the use and delegation of permissions within a interaction of
the system objects, modelled as a sequence diagram. To gain confidence in the
correctness of the permission-based access control policy, we define checks for
the consistency of the permission-related aspects within the static and dynamic
models and between these models. For the implementation as run-time checks,
we show a way to transfer permissions using cryptographic certificates and pro-
vide a formal analysis. We also address the realization of the run-time checks in
Java using GuardedObjects. We demonstrate our approach at the example of a
model of an instant message service.

The work presented here is part of a more general approach towards model-
based security engineering visualized in Fig. 1 a) (see [Jür04]).

UML editor

Java editor

Automated
Theorem

Prover

Trace
Attack

Report
Text

AnalyzerRefactoring
Engine

Assert’s

Code
with

data flow

"uses"

model
UMLsec

code
Java

fmla
FOL

generator
Attack

prog.
Prolog

Assertion
Generator

Security
Analyzer

Fig. 1. a) Model-based Security Engineering; b) Model-based Security Tool Suite

2 Run-Time Checks for OO Security Permissions

Objects in object-oriented systems usually interact with each other in the fol-
lowing way: one object becomes an actor and performs an action on another
(passive) object. The passive object will be changed or activated by these ac-
tions. Activation means that the entity will also become an actor in order to
perform actions on other entities.

In security-critical systems, it is crucial to have control over the execution
of the actions. For this purpose, the execution of the actions is controlled by
permissions. An actor is only allowed to initiate actions on certain objects when
he owns the associated permissions.

In the context of such a model, we denote objects which own or define permis-
sions as permission-secured objects. Permission-secured objects are the smallest
entities on which permissions can be defined. Not every object in a system must
be a permission-secured object. The permissions are attached to the actions
that can be performed on an object. It is possible to define several permissions,
which must all be owned for performing an action. In the following, we write

38 J. Jürjens

the names of objects, classes and methods in italics, and denote permissions and
corresponding model annotations in sansserif.

As an example, we consider a simple file. There is the permission-secured ob-
ject file. The file defines two protected actions: read, which is protected by the
permission read, and write, protected by the permission write and the permis-
sion read. These permissions are valid for the whole file object. We assume the
protection of lower levels like lines or characters is not possible.

There are two types of owning permissions: there are permissions which are
defined statically, but there is also the possibility to delegate permissions to
other objects. Delegation is necessary to enable an activated object to fulfil the
jobs an actor has given to it, but where the activated object itself does not have
the necessary rights.

In this case, it should be possible for the delegate to act in the name of the actor.
For this purpose, it is necessary to restrict the given permissions to the ones actu-
ally needed, to limit security risks. It is also necessary that it is always recogniz-
able that the delegate acts in commission. Therefore re-delegation of permissions
to other objects is an important issue. It is possible that the delegating object does
not know the final delegate at delegation time.

An example for a re-delegation is the use of an account statement printer.
The account owner wants to get his account statement and initiates the process.
As he is not able to enquire the banking host system himself, he charges the
account statement printer with doing this. Therefore, he gives the permission
for reading the account information to the machine, in order for it to get the
information in behalf of the account owner.

As we regard this example in more detail, it turns out that it is suitable to
restrict this authorization because of two aspects:

– The printer should be able to make use of the authorization only once. If
it is possible to use the authorization more than once, the printer can print
the owners account balance to every other customer.

– There should be a timeout, after which the authorization expires. If there
is no timeout, it is possible that the printer makes use of the authorization
after the customer has left the bank.

3 Run-Time Checks for Security Permissions with
UMLsec

To model the permission-based security aspects of a system, we must identify
the permission-secured objects. The smallest entities on which actions may be
executed are the objects. Thus, every object that is defined in a system may be
a permission-secured object.

The next step is to define the protected actions. The usual way to change
an object’s state from the outside is to invoke a corresponding method. So it
is necessary to treat method invocations as security-critical actions and thus to
protect methods by permissions.

Model-Based Run-Time Checking of Security Permissions 39

Another way of changing an object’s state is to read or write public attributes
directly. Although public attributes are not a good way of object design, reading
and writing them must also be regarded as an action. While it is possible to
restrict access to public variables at the modelling level of a system, it is not
possible to do so in common object oriented programming languages. The best
way to cope with this problem is to use only private variables in combination
with get and set methods.

Let us reconsider the file system example. In this case, we can model two
objects: a file object and a line object, where the file object is an aggregation of
many line objects. The only way to access the line objects is to use the methods
of the corresponding file object. The methods of the file object are protected
by permissions, whereas the methods the line object places at the file object’s
disposal are not. As these methods are only available to the file object, it is not
necessary to make the line object a permission-secured object.

In a first step, we will look at the static description of the permissions in an sys-
tem model. After that, we describe the permission-related aspects of the dynamic
interaction of the system regarding the activities the system is designed for.

3.1 Static Definitions

First, we describe the static aspects of an integration of permission-based security
into UML models. For this purpose, we consider class diagrams and deal with
the following questions:

– Which classes define permission-secured objects?
– Which permissions will be assigned to these objects at instantiation time?

These permissions are the same for all objects instantiated from the same
class.

– Which methods (and public attributes) will be protected by permissions?
– What kinds of permissions are these?
– Which of the assigned permissions may be delegated? How can one define to

which type of objects they may be delegated?

First of all, the permission-secured objects will be identified by marking
classes that define or own permission objects with the stereotype 〈〈 permission−
secured 〉〉. If an object owns certain permissions on other objects at instanti-

ation time, this is also stated at this place. A tagged value is associated with
the 〈〈 permission− secured 〉〉 stereotype consisting of a list of tuples structured as
follows: {permission = [(class , permission)]}. The first parameter of the tuple in-
dicates the class on which the permission is valid. The second parameter names
the permission.

Methods and public attributes to which access is restricted are marked with
the stereotype 〈〈 permissioncheck 〉〉 and an associated tagged value containing the
list of permissions needed for access ({permission = [permission]}). This list is
only a simple list naming the permissions. The association to classes is given by
the class implementing the method or containing the attribute. To allow objects

40 J. Jürjens

of certain classes classified as reliable unrestricted access to particular methods
and public variables, it is possible to associate a second tag to the stereotype
〈〈 permission check 〉〉. The tagged value {no permission needed = [class]} indicates
that objects of the named classes need no permissions for access.

Although delegation is a dynamic process, which comes into effect at execution
time, at this point of view it is of interest which permissions can be delegated
at all, and if so, to which class of objects these permissions may be delegated.

Classes that can delegate at least some of their permissions have the following
tag: {delegation = [(class , permission, role/class)]}. The first two parameters
name the permission which is delegated together with the class it belongs to.
The third parameter names the class to which the permission can be delegated.

The last aspect to be regarded in the static class definition is inheritance. Def-
initions belonging to the modelling of permissions are inherited in the same way
as all other definitions are inherited. Redefining a method or an attribute makes
it necessary to also redefine the stereotypes and tags for permission modelling.

Now let us describe the example of the Instant Messaging Service which will
be used to illustrate the definitions in the remainder of this paper. The class
diagram for this example contains the SubscriptionClient and the InstantMes-
senger on the client side, which define permission-secured objects. The class
SubscriptionClient contains the permission subscribe on objects of class Subscrip-
tionServer and the permission receive on objects of class InstantMessenger. In
the model, this is reflected by the tagged value {permission=[(SubscriptionServer,
subscribe), (InstantMessenger, receive)]}. The latter permission is marked for del-
egation to objects of class Forwarder. This is defined by the tag {delegation =
[(InstantMessenger , receive, [Forwarder])}.

On the server side, there are the classes SubscriptionServer and Forwarder.
The class SubscriptionServer gets the permission forward on objects of class
Forwarder. The access to the method subscribe() is guarded by the permis-
sion subscribe. This is stated by the stereotype 〈〈 permission check 〉〉 and the tag
{permission = [subscribe]}. For calling the method checkLogin(), the possession of
the permission checkLogin is necessary. The class Forwarder defines the method
forward(msg, receiver), which is guarded by the permission forward.

3.2 Dynamic Definitions

In this section, the point of view on the system changes to the modelling of
interactions between the objects instantiated from the classes defined above. For
that purpose, we identify and model workflows.

For workflow modelling in UML, activity diagrams are used, where activities
are assigned to the objects. It is possible to depict the interaction of several
objects solving one problem regarding the causal and temporal dependencies.

For the description of used and needed permissions, we often need more de-
tailed information than activity diagrams can offer. The main problem arises
from the possibility to combine a number of single actions into one activity,
which is connected with a number of objects. For coping with permissions in
an automated way, one needs to identify the objects communicating with each

Model-Based Run-Time Checking of Security Permissions 41

other clearly. This means that for every single action we must be able to name
the sender and the receiver to coordinate the necessary permissions. This infor-
mation easily gets lost when aggregating actions to activities. For this reason it
is only possible to use activity diagrams to catch the workflow whereas for fur-
ther use the workflow must be converted to a sequence diagram. In a sequence
diagram one can identify caller and callee in every single step of communication,
which allows to assign the permissions to the sent messages.

For refinement of the workflow, a sequence diagram is created, allowing to
specify the connection between permissions and messages by regarding the ex-
change of messages between objects. In a first step, we define which of the objects
are permission-secured objects, using the same stereotype 〈〈 permission− secured 〉〉

as in the class diagram. To this stereotype, we attach the permissions the ob-
ject owns on other objects, utilizing tagged values. These tags are defined the
same way as in the class diagrams, by {permission = [(object , permission)]}. In
contrast to the class diagram, here the first parameter of the tuple means no
longer a class but a concrete object on which the permission is valid. Addition-
ally, the ability for delegation of certain permissions is stated by a tag as well
({delegation = [(class, permission, role/class)]}).

Permissions which are needed for executing a method – or in other words for
sending a message successfully – are attached directly to the message which is
to be protected by these permissions. To signalize that a message is protected
by permissions, the message is marked with the stereotype 〈〈 permission check 〉〉,
where the permissions are named as tagged values ({permission = [permission]}).

The delegation is performed by emitting and passing on certificates, which
are formally defined as 7-tuples

certificate = (e, d, c, o, p, x, s)

with emittent e, delegate d, class c of the delegate, object o, permission p which
is valid on o, expiration timestamp x and sequence number s.

A certificate contains the following information:

– Who is delegating a permission? The emittent e is named in the certificate;
he is signing the certificate.

– To whom is the permission to be delegated? For the definition of the dele-
gate, there are two possibilities, depending on the relation between emittent
and delegate. If the emittent knows the delegate at emission time of the cer-
tificate, he can name him explicitly (field d in the certificate). Otherwise, he
can name the class c the delegate must be an instance of to make use of this
certificate. In this case, d has the value null. In our example, the emittent
never knows the delegate, thus the latter (more general) type of certificate
is used.

– Which permission is to be delegated? The permission to be delegated is
defined by two parameters: the permission p and the object o on which this
permission is valid.

– For how long is the permission to be delegated? As it is not possible to define a
contiguous time in sequence diagrams, it is also not possible to make temporal

42 J. Jürjens

restrictions on the validity of certificates. Time will be approximated by the
number of messages to be sent, starting at zero with the first message. Thus,
if a certificate is valid unrestrictedly, this parameter is set to -1.

– What about the sequence number? The sequence number s is contained in
the certificate to avoid that it is used several times. The sequence number of
certificates which are defined by the same parameter values must differ. It
is also necessary that the number is the same if a certificate is passed along
several objects. For defining a certificate which might be used more than
once, this parameter is to be set to -1.

In the sequence diagram, messages where permission certificates are sent are
marked by the stereotype 〈〈 certification 〉〉, where a 7-tuple representing a certifi-
cate will be directly attached as an tagged value. The parameters of this tag
correspond to the definition above.

4 Statically Verifying the Run-Time Checks in UMLsec

In this section, we explain how one can statically verify the run-time checks
that can be specified on the UMLsec model level (as explained in the previous
section) against security requirements. This is supported by the security checkers
provided within the UMLsec tool suite [Too08,JY07,JS08] (Fig. 1 b).

4.1 Consistency between Class and Sequence Diagrams

As class diagrams and sequence diagrams are linked very closely to each other
regarding the security permissions, it is necessary to check the consistency of the
definitions made in these two diagrams.

In the class diagram, classes are assigned permissions on other classes. The
definitions made there have to correspond to the definitions of the objects in-
stantiated out of these class definitions. This means that objects must not have
been assigned definitions, which are not contained in the corresponding class def-
inition. It is only admissible to define less permissions in the sequence diagram
than in the class diagram.

The definitions for delegation are treated in a similar way, with some restric-
tions. In the sequence diagram, only permissions can be delegated for which this
possibility is defined in the class diagram. Besides that, it is necessary that the
permission which is to be delegated is present, which means that it is not only
defined in the class definition, but also in the object definition.

The next thing to check is the definition of methods. The permissions needed
to execute a single method are defined in the class diagram. It is necessary that
these definitions fit the definitions of the sequence diagrams. The method calls
are defined as messages there. Attached to these messages are the permissions
which are necessary to force the receiver to execute the message in the desired
way. Therefore, it is necessary that these permissions are consistent with the
ones defined in the receiver’s class definition.

Model-Based Run-Time Checking of Security Permissions 43

4.2 Dynamic Checking of the Sequence Diagram

Are all permissions assigned in a system in a way that the processes modeled
in the sequence diagram are able to be completed? This is the next question to
solve. If an object should be able to send a message, it must own all permissions
necessary for that action. Permissions which are assigned statically are not a
problem (addressed by the consistency checks described above), but permissions
assigned dynamically by delegation are:

– A permission certificate must be received before it can be used, which means
both using the permission included in the certificate and passing on the
certificate to other objects.

– The emittent of a certificate must be able to create the certificate. This
means that he must own the permission statically and the permission must
be released for delegation.

– A certificate must be valid at time of use. The loss of validity will be defined
by a time stamp in the certificate.

– A certificate which is defined for being used only once looses validity by
being used, so no object can use it again.

In the sequence diagram for the instant messaging service the object Sender
calls the method forward() of ForS where the permission forward is needed. As
the object Sender does not own this permission, it is delegated by an certificate
which is passed on by the message create():

{certificate = (SubS , null,ForS , forward, InstantMessenger ,−1,−1)}

Because of lack of this permission, SubSender, the sender of this message, cannot
create this certificate must receive it from SubS by sending subscriptionConfir-
mation(). SubS owns the permission and is able to delegate it. One can see this
by the tags assigned to this object:

– {permission = [(ForS, forward)]}
– {delegate = [(ForS, forward, InstantMessenger)]}

The period of validity has not been considered in this example, because no
time stamp is available. Also, the certificates may be used more than once.

5 Run-Time Checks for Permission Delegation

A permission is a message consisting of permission and identifier (of the object
the permission is valid on). The object owning the permission will be specified
by appending the object’s public key. Therefore it is impossible for any other
object to use this permission. A certificate is defined as a triple consisting of
the identifier followed by the permission and the public key of the user of the
certificate.

For signing the permissions, there is a trusted instance in the system called
security authority (SA). This instance releases all permissions and passes them

44 J. Jürjens

on to the objects at their instantiation time. It is not possible to change the
definition of a permission once signed by this authority.

So the a certificate defining a permission will be formally defined as follows:
Sign(identifier::permission::K legitimate ,K SA

−1).
To enable the delegation of permissions, passing on the permission is not

enough. The delegating object must issue a certificate containing the permission
and restrictions for its use. In addition, the certificate contains the public key of
the owner of the permission. This allows other objects to prove that this object
originally was the owner of the permission. The certificate is be signed with the
private key of the permission’s owner:

Sign(K legitimate :: Sign(object :: permission :: K legitimate ,K
−1
SA):: [properties],K−1

legitimate)

Making use of a delegated permission is only allowed for objects which are
implementing the properties of the properties-list.

Here, we now have to deal with the usual Dolev-Yao attacker model:

– The intruder can save all messages sent between objects.
– Messages can be deleted by the intruder, so that the receiver is not able to

get a specific message
– The intruder is able to insert messages into the communication between

objects
– By combination of these threats, the intruder is able to manipulate messages.

As usual, one makes use of cryptography to try to avoid such attacks by
encrypting messages. In the case of security permissions it must be ensured that
only the legitimate object is able to make use of a permission. Although by the
definition of permissions it is guaranteed that only legitimate objects are able to
create certificates for granting permissions, it is possible for intruders to obtain
such a certificate in order to use the included permission. This threat can only
be avoided by using an additional encryption mechanism for transmitting these
certificates.

For proving such a modelling we enhance the UML model by cryptographic
functions given in Table 1 for producing a protocol for secure communication
between the objects following [Jür04]. The security check for this protocol is done
automatically using the first-order predicate logic automated theorem prover e-
Setheo. For this, the protocol is converted into predicates in the TPTP-syntax
following the formal semantics for UML given in [Jür04].

We explain the modelling of such a protocol by the example of the instant
messaging service. For simplification, only the communication between sender
and server will be regarded. In the communication with the receiver, it is assumed
that the Forwarder ForS obtained the permission receive on the receiver-object
before using it.

In Figure 2, the corresponding sequence diagram is shown. The notation for
cryptographic expressions used in this diagram is given in Table 1. For better
readability, the messages contain names of functions (such as subscribe or conf),

Model-Based Run-Time Checking of Security Permissions 45

Table 1. Notation for cryptographic expressions

inv(k) Inverse key of k ; a message, encrypted with key k can be decrypted by
inv(k).

sign(E,inv(k)) The message E is signed with the inverse key inv(k).

enc(E,k) The message E is encrypted with the key k.

conc(E1,E2) A message consists of two concatenated single messages E1 and E2.

fst(E) Inversion of conc(E1,E2); gives back the first element E1 of the
concatenation.

snd(E) Inversion of conc(E1,E2); gives back the second element E1 of the
concatenation.

ext(E, k) Extracts the message E out of a message signed message with the
inverse key inv(k) of k.

dec(E, inv(k)) Decrypts the message E out of a message encrypted message with the
inverse key inv(k) of k.

Fig. 2. Delegation protocol

indicating their purpose. On the receiving side, the components of the received
messages are referred to by A 1, A 2 and A 3 (parameters of the subscribe mes-
sage), respectively by B i, C i, and D i (parameters of the messages conf, init
and forward). Note that the protocol in Figure 2 is only considered as an exam-
ple to demonstrate our approach, not necessarily as an optimal solution for the
situation at hand.

As specified in Figure 2, the object SubSender connects to the server SubS and
delivers the necessary certificate sign(conc(conc(SubS,subscribe),K SC),
inv(K SA)) to the Server, which was signed by the security authority with key
inv(K SA). It is encrypted with the public key K Sub of SubS to ensure that

46 J. Jürjens

only SubS can access the message. When SubS gets the message, it checks the
permission and the certification of the public key. If the check is successful, an ac-
knowledgement is sent back to SubSender that contains a permission certificate
allowing an object of class InstantMessenger to send messages to the Forwarder
ForS. This certificate consists of the following parameters:

– The permission, signed by the security authority,
– The name of the class InstantMessenger, so that only objects of that class

are able to use the permission,

For a secure transmission, the certificate is encrypted with the public key
K SC of SubSender.

SubSender analyzes the message. It expects a permission and a restriction to
the class InstantMessenger. If the certificate fulfills these recommendations, the
object Sender is initialized. For transmission, the certificate is encrypted with
the public key K SND of Sender.

The Sender object uses this permission certificate to send a message to ForS
in order to transmit it to Receiver. For transmission, the certificate to ForS is
signed with inv(K SND) and encrypted afterwards with KFOR, the public key
of ForS. The kind of class is also attested using a certificate emitted by the
certification authority. This certificate will be attached to the message.

ForS checks the contained permission conc(ForS, forward), and whether the
sender of the message identified itself as an object of class InstantMessenger, by
comparing the declaration in the certificate to the certificate of the certification
authority. If these checks are successful, the message is passed on to the Receiver.

6 Run-Time Checks in Java GuardedObjects

We now explain how this permission model can be realized in a concrete object
oriented programming language such as Java.

In the JDK 1.0 security architecture, the challenges posed by mobile code
were addressed by letting code from remote locations execute within a sandbox
offering strong limitations on its execution. However, this model turned out to
be too simplistic and restrictive. From JDK 1.2, a more fine-grained security
architecture is employed which offers a user-definable access control, and the
sophisticated concepts of signing, sealing, and guarding objects [Gon99].

A protection domain [SS75] is a set of entities accessible by a principal. In
the JDK 1.2, permissions are granted to protection domains (which consist of
classes and objects). Each object or class belongs to exactly one domain.

The system security policy set by the user (or a system administrator) is
represented by a policy object instantiated from the class java.security.Policy.
The security policy maps sets of running code (protection domains) to sets of
access permissions given to the code. It is specified depending on the origin of
the code (as given by a URL) and on the set of public keys corresponding to the
private keys with which the code is signed.

Model-Based Run-Time Checking of Security Permissions 47

There is a hierarchy of typed and parameterised access permissions, of which
the root class is java.security.Permission and other permissions are subclassed
either from the root class or one of its subclasses. Permissions consist of a target
and an action. For file access permissions in the class FilePermission, the targets
can be directories or files, and the actions include read, write, execute, and delete.

An access permission is granted if all callers in the current thread history
belong to domains that have been granted the said permission. The history of a
thread includes all classes on the current stack and also transitively inherits all
classes in its parent thread when the current thread is created. This mechanism
can be temporarily overridden using the static method doPrivileged().

Also, access modifiers protect sensitive fields of the JVM: For example, system
classes cannot be replaced by subtyping since they are declared with access
modifier final.

The sophisticated JDK 1.2 access control mechanisms are not so easy to use.
The granting of permissions depends on the execution context (which however is
overridden by doPrivileged(), which creates other subtleties). Sometimes, access
control decisions rely on multiple threads. A thread may involve several protec-
tion domains. Thus it is not always easy to see if a given class will be granted a
certain permission.

This complexity is increased by the new and rather powerful concepts of
signed, sealed and guarded objects [Gon99]. A SignedObject contains the (to-be-
)signed object and its signature. It can be used internally as an authorisation
token or to sign and serialise data or objects for storage outside the Java runtime.
Nested SignedObjects can be used to construct sequences of signatures (similar
to certificate chains).

Similarly, a SealedObject is an encrypted object ensuring confidentiality.
If the supplier of a resource is not in the same thread as the consumer, and

the consumer thread cannot provide the access control context information,
one can use a GuardedObject to protect access to the resource. The supplier
of the resource creates an object representing the resource and a GuardedOb-
ject containing the resource object, and then hands the GuardedObject to the
consumer. A specified Guard object incorporates checks that need to be met so
that the resource object can be obtained. For this, the Guard interface contains
the method checkGuard, taking an Object argument and performing the checks.
To grant access the Guard objects simply returns, to deny access is throws a
SecurityException. GuardedObjects are a quite powerful access control mecha-
nism. However, their use can be difficult to administer [Gon99]. For example,
guard objects may check the signature on a class file. This way, access to an
object may be granted indirectly (and possibly unintentionally) by giving ac-
cess to another object containing the signature key for which the corresponding
signature provides access to the first object.

To get access to the encapsulated Object, the requesting object calls the
method getObject() of the GuardedObject. In a second step, it is checked if the
accessing object owns the permissions defined by the GuardObject. If it does, the

48 J. Jürjens

method returns the reference of the encapsulated Object. The requesting object
can now call any method on this object by using this reference.

The Guard normally checks the permissions by using the Java AccessCon-
troller. This object reads the class of which the requesting object in an instance
off the execution stack. The classes are linked to their code sources and protection
domains, to which the permissions are also assigned. This means in particular
that all objects of the same class own the same permissions. For permissions
assigned at instantiation time this is certainly right, but if one wants to allow
the delegation of permissions at run-time (as in our approach), this may lead to
different sets of permissions for objects of the same class.

For this reason, it is necessary to enhance this method of permission checking.
For delegating permissions dynamically, it is necessary that every object manages
its certificates it received for delegation on its own. If such permissions should be
considered, they must be given to the GuardedObject as a parameter when invoking
the method getObject(). The Guard must thus be enhanced that it not only checks
the static permissions but also the permissions contained in the certificates.

It must be ensured that an object is not able to use “foreign” certificates
to get access to another object. For that reason, the object references that the
getObject() method produces may be secured by an asymmetric key.

If there is a permission to be delegated to a certain class, the relevant instance
of the class will be referenced in the certificate. For checking that the callers’
class and the named class in the certificate coincide, the callers’ class will be read
from the execution stack. Is there at least one certificate which is emitted for
a specific object, a reference to this object must be saved in the certificate. To
check the permission, the object’s public key will be requested, and the reference
of the encapsulated object will be encrypted with this key.

For using the reference, the caller must decode it using the corresponding
private key. Since unauthorized objects do not have the appropriate private key,
they are not able to decode the reference.

Another problem of the Guarded Objects in Java is that the caller gets ei-
ther no or complete access to an object after the permission check. To achieve
restricted access to objects, we cannot give back the real reference to an object,
but build a wrapper object around the encapsulated object, having only the
methods the caller has the permission for calling. These wrapper objects are the
only ones which call the original object. This means that there must be created
a wrapper class for all possible combinations of methods.

Note that there is one problem not to be solved by these modifications: Does
one object get the reference to an encapsulated object the owner of the reference
may pass it to unauthorized objects. This simply means that trusted objects
must be developed in a trustworthy way.

We illustrate our approach with the example of a web-based financial appli-
cation. Two (fictional) institutions offer services over the Internet to local users:
an Internet bank, Bankeasy, and a financial advisor, Finance. To make use of
these services, a local client needs to grant the applets from the respective sites
certain privileges.

Model-Based Run-Time Checking of Security Permissions 49

CheckReq WaitReq
checkGuard()

[otherwise] \throw new SecurityException()

[origin=signed=bankeasy,timeslot]\return

CheckReq WaitReq
checkGuard()

[otherwise] \throw new SecurityException()

\return[origin=finance,signed={finance,certiflow}]

Fig. 3. Statechart FinGd resp. ExcGd

(1) Applets that originate at and are signed by the bank can read and write the
financial data stored in the local database, but only between 1 pm and 2 pm
(when the user usually manages her bank account).

(2) Applets from (and signed by) the financial advisor may read an excerpt of the
local financial data created for this purpose. Since this information should
only be used locally, they additionally have to be signed by a certification
company, CertiFlow, certifying that they do not leak out information via
covert channels.

(3) Applets originating at and signed by the financial advisor may use the micro-
payment signature key of the local user (to purchase stock rate information
on behalf of the user), but this should only be granted five times a week.

Financial data sent over the Internet is signed and sealed to ensure integrity and
confidentiality. Access to the local financial data is realised using GuardedObjects.
The access controls are realised by Guard objects such as FinGd, ExpGd, whose be-
haviour is specified in Figures 3 (we assume that the condition timeslot is fulfilled
if and only if the time is between 1pm and 2pm).

Using the security checkers provided within the UMLsec tool suite [Too08,
JY07, JS08] (Fig. 1 b), we can now, first, check that the specification given by
UML diagrams is secure in the following sense: The specification given by UML
diagrams for the guard objects does not grant any permissions not implied by
the access permission requirements given in (1)–(3). Second, the tool implements
the generation of the Java run-time checks in form of Guards.

7 Related Work

Despite a lot of work on formally verifying abstract specifications of security-
critical systems, there is so far comparatively little work on making a link to
the implementation level. For example, [GD04] explains how to verify a cryp-
tographic protocol written in an abstract imperative language against secu-
rity properties. Work on formal verification of access control policies includes
[SYSR06]. The difference to ours is that that paper deals with static verifica-
tion, while the paper here has the goal to generate run-time checks. Work on
run-time verification in Java includes [HR04, KVK+04]. Note that the current
work is not run-time verification in the special sense of verification against tem-
poral logic, but only in the wider sense of verification that is not performed at
compile-time but at run-time. Instead of using temporal logic, we make use of

50 J. Jürjens

UML statecharts to specify the properties for which run-time checks should be
generated, and we make use of the GuardedObjects that are readily available in
Java. The current work is an extension of a model-based security-engineering ap-
proach [Jür04,Jür05] from the specification level to incorporate run-time checks
for security permissions.

8 Conclusion

We presented an approach for application of run-time checking to enforce access
control requirements at run-time in a way that enforces an overall security policy.
Our approach is an improvement on the ad-hoc and error-prone way Guarde-
dObjects are manually created and used in practice. It generates the run-time
checks from a UMLsec specification of the system that captures the security
policy, thereby reducing the risk for error.

References

[GD04] Giambiagi, P., Dam, M.: On the secure implementation of security pro-
tocols. Sci. Comput. Program. 50(1-3), 73–99 (2004)

[Gon99] Gong, L.: Inside Java 2 Platform Security – Architecture, API Design,
and Implementation. Addison-Wesley, Reading (1999)

[HR04] Havelund, K., Rosu, G.: An overview of the runtime verification tool Java
PathExplorer. Formal Methods in System Design 24(2), 189–215 (2004)

[JS08] Jürjens, J., Schreck, J.: Automated analysis of permission-based security
using UMLsec. In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE 2008. LNCS,
vol. 4961. Springer, Heidelberg (2008)

[Jür04] Jürjens, J.: Secure Systems Development with UML. Springer, Heidelberg
(2004)

[Jür05] Jürjens, J.: Sound methods and effective tools for model-based security
engineering with UML. In: ICSE. IEEE, Los Alamitos (2005)

[JY07] Jürjens, J., Yu, Y.: Tools for model-based security engineering: Models
vs.code. In: 22nd IEEE/ACM Int. Conf. Autom. Softw. Eng. ACM,
New York (2007)

[KVK+04] Kim, M., Viswanathan, M., Kannan, S., Lee, I., Sokolsky, O.: Java-MaC:
A run-time assurance approach for Java programs. Formal Methods in
System Design 24(2), 129–155 (2004)

[SS75] Saltzer, J., Schroeder, M.: The protection of information in computer
systems. Proceedings of the IEEE 63(9), 1278–1308 (1975)

[SYSR06] Sasturkar, A., Yang, P., Stoller, S.D., Ramakrishnan, C.R.: Policy analy-
sis for administrative Role Based Access Control. In: CSFW, pp. 124–138.
IEEE, Los Alamitos (2006)

[Too08] Security verification tool (2001-2008),
http://computing-research.open.ac.uk/jj/umlsectool

http://computing-research.open.ac.uk/jj/umlsectool

Synthesizing Monitors for Safety Properties:

This Time with Calls and Returns�

Grigore Roşu1, Feng Chen1, and Thomas Ball2

1 Department of Computer Science, University of Illinois at Urbana-Champaign
2 Microsoft Research, Redmond

Abstract. We present an extension of past time LTL with call/return
atoms, called ptCaRet, together with a monitor synthesis algorithm
for it. ptCaRet includes abstract variants of past temporal operators,
which can express properties over traces in which terminated function or
procedure executions are abstracted away into a call and a correspond-
ing return. This way, ptCaRet can express safety properties about pro-
cedural programs which cannot be expressed using conventional linear
temporal logics. The generated monitors contain both a local state and
a stack. The local state is encoded on as many bits as concrete temporal
operators the original formula has. The stack pushes/pops bit vectors
of size the number of abstract temporal operators the original formula
has: push on begins, pop on ends of procedure executions. An optimized
implementation is also discussed and is available to download.

1 Introduction

Theoretically speaking, it appears to be straightforward to monitor properties
expressed as past time linear temporal logic (ptLTL) formulae, since the fix-
point semantics of the temporal operators gives a direct deterministic automa-
ton. The practical challenge in monitoring ptLTL formulae stays in how to do
it efficiently, both time-wise and memory-wise, so that the added runtime over-
head to the observed system is minimal. Since in a real-life runtime verification
application there could be millions of monitor instances living at the same time,
each observing tens of millions of events (see, e.g., [1,4] and [6,7] for numbers
and evaluations of runtime verification systems on large benchmarks), every bit
of memory or monitor processing time may translate into significantly higher
runtime overhead, to an extent that the overall use of runtime verification in a
particular application may become unfeasible. For example, in many cases it may
not be a good idea to generate an actual deterministic automaton as a monitor,
because that may have an exponential or worse size; instead, a non-deterministic
automaton performing an NFA-to-DFA construction on the fly saving space ex-
ponentially may be more appropriate, or even a monitor that does not store any
automaton at all, but has an efficient way to generate the next state on-the-fly.
� Supported by NSF CCF-0448501, NSF CNS-0509321, NASA ARMD safety Program

and Air Force STTR phase I award (Topic Number AF07-T019, Proposal Number
F074-019-0162).

M. Leucker (Ed.): RV 2008, LNCS 5289, pp. 51–68, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

52 G. Roşu, F. Chen, and T. Ball

Havelund and Roşu proposed a monitor synthesis algorithm ptLTL) formulae
ϕ [9]. The generated monitors implement the recursive semantics of ptLTL using
a dynamic programming technique, and need O(|ϕ|) time to process each new
event and O(|ϕ|) total space. Roşu proposed an improved monitor synthesis
algorithm for ptLTL in [12] (un unpublished technical report) which, using a
divide-and-conquer strategy, generates monitors that need O(k) space and still
O(|ϕ|) time, where k is the number of temporal operators in ϕ.

Alur et al. gave an extension of linear temporal logic (LTL) with calls and
returns [2], called CaRet. Unlike LTL, CaRet allows for matching call/return
states in linear traces, allowing to express program trace properties not express-
ible using plain LTL. In particular, one can express properties on the execution
stack of a program, such as “function g is always called from within function f”,
or structured-programming safety policies such as “each method must release
before it terminates all the locks that it acquired during its execution”, or even
properties that are allowed to be temporarily violated, such as “user u never
directly accesses the passwords file (but may access it through system proce-
dures)”. Because of allowing such important and desirable safety properties to
be formally stated at the same time faithfully including LTL, CaRet can be a
more attractive temporal logic then LTL, provided of course that the complexity
of checking programs against CaRet formulae does not make it unfeasible.

We define a past time variant of CaRet, called ptCaRet, show by examples
its usefulness in expressing a series of safety properties involving calls of func-
tions/procedures, and then propose a monitor synthesis algorithm for properties
expressed as ptCaRet formulae. Motivated by practical reasons, ptCaRet dis-
tinguishes call/return states from begin/end states: the former take place in the
caller’s context, while the latter take place in the callee’s. This simple and stan-
dard distinction allows more flexibility and elegance in expressing properties,
but requires an additional (but reasonable) constraint on traces: calls always
immediately precede begins, and ends always immediately precede returns.

ptCaRet conservatively extends ptLTL by adding abstract variants of tem-
poral operators, namely “abstract previously” and “abstract since”. The seman-
tics of these operators is that of their corresponding core ptLTL operators “pre-
viously” and “since”, but on the abstract trace obtained by collapsing executed
functions or procedures into only two states, namely the caller’s state at the call
of the invoked function or procedure and the caller’s state at its corresponding
return. In other words, from the point of view of the abstract temporal opera-
tors, the intermediate states generated during function executions are invisible.
Of course, the standard temporal operators continue to “see” the whole trace.

The monitors generated from ptCaRet formulae using the proposed algo-
rithm have both a monitor state and a monitor stack, so they can be regarded
as push-down automata; however, both the monitor states and the data pushed
onto stacks are calculated online, on a by-need basis. The monitor state is en-
coded on as many bits as standard past time operators in the original formula,
while the monitor stack pushes/pops as many bits of data as abstract temporal
operators in the original formula. If no abstract temporal operators are used in a

Synthesizing Monitors for Safety Properties 53

ptCaRet formula, that is, if the ptCaRet formula is a ptLTL formula, then
its generated monitor is identical to that obtained using the technique in [12]. In
other words, not only is ptCaRet a conservative extension of ptLTL, but the
proposed monitor synthesis algorithm conservatively extends the best known,
provably optimal monitor synthesis algorithm for ptLTL.

The proposed ptCaRet monitor synthesis algorithm has been implemented
and is available to download and experiment with via a web interface at [3]. The
rest of the paper is structured as follows: Section 2 discusses ptCaRet as an
extension of ptLTL; Section 3 introduces useful derived operators and shows
some examples of ptCaRet specifications. Section 4.2 discusses our monitor
synthesis algorithm, including its implementation. Section 5 concludes the paper.

2 ptLTL and ptCaRet

We here recall past time linear temporal logic (ptLTL) and define its extension
ptCaRet. For simplicity, we assume only two types of past operators, namely
“previously” and “since”. Other common or less common temporal operators
can be added as derived operators. ptLTL contains only the usual, standard
variants of temporal operators, while ptCaRet contains both standard and
abstract variants. We follow the usual recursive semantics of past time LTL and
adopt the simplifying assumption that the empty trace invalidates any atomic
proposition and any past temporal operator; as argued in [9], this may not
always be the best choice, but other semantic variations regarding the empty
trace present no difficulties for monitoring and can easily be accommodated.

Definition 1. Syntactically, ptLTL consists of formulae over the grammar

ϕ ::= true | a | ¬ϕ | ϕ ∧ ϕ | ◦·ϕ | ϕS ϕ,

where a ranges over a set A of state predicates. Other common syntactic con-
structs can be defined as derived operators in a standard way: false is ¬true, �·ϕ
(“eventually in the past”) is trueS ϕ, �·ϕ (“always in the past”) is ¬(�· ¬ϕ)), etc.

LTL’s models, even for its safety fragment, traditionally are infinite traces (see,
e.g., [11]), where a trace is a sequence of states, where a state is commonly
abstracted as a set of atomic predicates in A. According to Lamport [10], a safety
property is a set of such infinite traces (properties are commonly identified with
the sets of traces satisfying them) such that once an execution “violates” it then
it can never satisfy it again later. Formally, a set of infinite traces Q is a safety
property if and only if for any infinite trace u, if u �∈ Q then there is some finite
prefix w of u such that wv �∈ Q for all infinite traces v.

It can be shown that there are as many safety properties as real numbers
[12]. Unfortunately, any logical formalism can define syntactically only as many
formulae as natural numbers. Thus, any logical formalism can only express a
small portion of safety properties. In LTL, a common way to specify safety
properties is as “always past” formulae, that is, as formulae of the form �ϕ

54 G. Roşu, F. Chen, and T. Ball

(� is “always in the future”), where ϕ is a formula in ptLTL. There are two
problems with identifying the problem of monitoring a ptLTL specification ϕ
with checking the running system against the LTL safety formula �ϕ: on the
one hand, LTL has an infinite trace semantics, while during monitoring we only
have a finite number of past states available, and, on the other hand, once the
LTL formula �ϕ is violated then it can never be satisfied in the future. However,
a major use of monitoring is in the context of recoverable systems, in the sense
that the monitor can trigger recovery code when ϕ is violated, in the hope that
ϕ will be satisfied from here on. For these reasons, we adopt a slightly modified
semantics of past time LTL, namely the one on finite traces borrowed from [9]:

Definition 2. A (program) state is a set of atomic predicates in A; let s, s′,
etc., denote states, and let ProgState denote the set of all states. A trace is a
finite sequence of states in ProgState∗; let w, w′, etc., denote traces, and ε denote
the empty trace. If w �= ε, that is, if w = w′s for some trace w′ and some state
s, then we let prefix(w) denote the trace w′ and call it the (concrete) prefix of
w, and let last(w) denote the state s. The satisfaction relation w |= ϕ between a
trace w and a ptLTL formula ϕ is defined recursively as follows:

w |= true is always true,
w |= a iff w �= ε and a ∈ last(w),
w |= ¬ψ iff w �|= ψ,
w |= ψ ∧ ψ′ iff w |= ψ and w |= ψ′,
w |= ◦·ψ iff w �= ε and prefix(w) |= ψ,
w |= ψ S ψ′ iff w �= ε and (w |= ψ′ or w |= ψ and prefix(w) |= ψ S ψ′).

We next introduce ptCaRet as an extension of ptLTL. Syntactically, it only
adds abstract versions of the two temporal operators “previously” and “since”
to ptLTL; semantically, some special atomic predicates corresponding to calls,
returns, begins and ends of functions/procedures need to be assumed, as well as
some natural and practically reasonable restrictions on traces.

Definition 3. ptCaRet syntactically extends ptLTL with: “ϕ ::= · · · | ◦·ϕ |
ϕS ϕ.” The former is called “abstract previously” and the latter “abstract since”.

The semantics of abstract previously and since are defined exactly as the seman-
tics of their concrete counterparts, but on an abstract version of the trace from
which all the intermediate states of the terminated function or procedure exe-
cutions are erased. In order for this erasure, or abstraction, process to work, we
need to impose some constraints on traces that are always satisfied in practice.

Definition 4. In ptCaRet, the set of atomic predicates A contains four special
predicates: call, begin, end, and return. A state contains at most one of these and
is called call, begin, end, or return state if it contains the corresponding predicate.
ptCaRet traces are constrained to the following restrictions:

(1) any call state, except when the last one, must be immediately followed by a
begin state, and any begin state must be immediately preceded by a call state;

Synthesizing Monitors for Safety Properties 55

(2) any end state, except when the last one, must be immediately followed by a
return state, and any return state must be immediately preceded by an end.

For a trace w as above, we let w denote its abstraction, which is obtained by
iteratively erasing contiguous subtraces sbw

′se of w in which sb is a begin state,
se is an end state which is not the last one in w, and w′ contains no begin or
end states. One more restriction is imposed on ptCaRet traces:

(3) the abstractions of ptCaRet traces contain no return states which are not
immediately preceded by call states.

Call and return states occur in the caller’s context. Thus, call/return states can
contain other predicates which may not be possible to evaluate in the callee’s
context during runtime monitoring. The begin/end states are generated in the
callee’s context, at the beginning and at the end of the execution of the invoked
function, respectively. Similarly, for some common programming languages, be-
gin/end states may contain other predicates that cannot be evaluated in the
caller’s context. The original CaRet logic [2] did not distinguish between call
and begin states or between end and return states. We included all four of them
in ptCaRet for the reasons above and also because most trace monitoring sys-
tems (e.g., Tracematches [1,4] and MOP [6,7]) make a clear distinction between
these four types of states.

Fig. 1 (A) shows a ptCaRet trace. To better reflect the call-return structure
of the ptCaRet trace, states are placed on different levels: states on the higher
level are generated in the caller’s context while those on the lower level are
generated in the callee’s. The vertical dotted lines connect the corresponding
call-begin and end-return pairs. Fig. 1 (B) shows the abstraction of that trace: if
w ends with the state pointed by ⇓, w contains only the circled states.

Restrictions (1) and (2) on ptCaRet traces are very natural. One source of
doubt though can be the sub-requirements that any return state must be pre-
ceded by an end state, and that any begin state must be preceded by a call state.
While a return or a begin can indeed happen in any programming language only
after a corresponding end or call state, respectively, one may argue that moni-
toring of a property should be allowed to start at any moment, in particular in
between call and begin, or in between end and return states. While our synthe-
sized monitors from ptCaRet formulae (see Section 4.2) can be easily adapted
to start monitoring at any moment in the trace, for the sake of a smoother and

call return

begin end (A) (B)

Fig. 1. ptCaRet trace (A) and abstraction (B). ⇓: end of w, �: w state, ◦: w state.

56 G. Roşu, F. Chen, and T. Ball

(A) (B)

Fig. 2. prefix(w) on two traces, (A) and (B). ⇓: the end of w, �: state in prefix(w).

simpler development of the theoretical foundations of ptCaRet, we assume
that any ptCaRet trace starts from the beginning of the program execution
and thus satisfies the above-mentioned restrictions. Restriction (3) ensures that
a trace does not contain return states that do not have corresponding matching
call states, also a natural restriction on complete traces.

Our definition of trace abstraction above is admittedly operational, but we
think that it captures the desired end/begin matching concept both compactly
and intuitively. Alternatively, we could have followed the CaRet style in [2]
and define the matching begin state of an end state as the latest begin state
containing a balanced number of begin/end states in between.

Definition 5. For a non-empty ptCaRet trace w, let prefix(w), called the ab-
stract prefix of w (not to be confused with the abstraction of the prefix of w,
prefix(w)), be either prefix(w) if last(w) is not a return state, or otherwise the
prefix of w up to and including the corresponding matching call state of last(w)
if it is a return state; formally, if last(w) is a return state then prefix(w) is the
trace w′sc, where w = w′w′′ for some w′′ with w′′ = scsr, where sc and sr are
call and return states, respectively.

Fig. 2 illustrates prefix(w) on two traces, with the down arrow pointing to the
ends of the traces. In Fig. 2 (A) we assume that w ends with a state that is not
a return (the arrow points to a call state) and in Fig. 2 (B) w ends with a return
state (the states of the corresponding prefix(w) are marked with diamonds).

Definition 6. The satisfaction relation between a ptCaRet trace w and a pt-

CaRet formula ϕ is defined recursively exactly like in ptLTL for the ptLTL

operators, and as follows for the two abstract temporal operators:

w |= ◦·ψ iff w �= ε and prefix(w) |= ψ,
w |= ψ S ψ′ iff w �= ε and (w |= ψ′ or w |= ψ and prefix(w) |= ψ S ψ′).

Therefore, a formula ◦·ψ is satisfied in a return state iff ψ was satisfied at the
corresponding matching call state. It is satisfied in a non-return state, including
an end state, iff ◦·ψ is satisfied in that state (that is, if and only if ψ was satisfied
in the concrete (non-abstract) previous state).

Fig. 3 compares the ◦· and ◦· operators. The arrows point, for each state, where
the formula ψ in ◦·ψ (A) and in ◦·ψ (B) holds. For most states, their abstract
previous state is the concrete previous one; the only difference is on return states,
because the abstract previous state of a return state is its call state.

Figure 4 compares ψ S ψ′ and ψ S ψ′. Notice that the various call/return levels
play no role in the satisfaction of ψ S ψ′, but that they play a crucial role in the

Synthesizing Monitors for Safety Properties 57

(A) (B)

Fig. 3. Concrete (A) and abstract (B) “previous” states for ◦· and ◦·

(A) (B)

Fig. 4. ψ S ψ′ (A) versus ψ S ψ′ (B). ⇓: where ψ′ holds, �: where ψ holds.

satisfaction of ψ S ψ′: for the latter, ψ′ must hold on the same level or a higher
level as the level of the current state. One can show the following expected
property of abstract since:

Proposition 1. ϕ1 S ϕ2 is semantically equivalent to ϕ2 ∨ ϕ1 ∧ ◦· (ϕ1 S ϕ2).

One should not get tricked and assume that w |= ◦·ϕ if and only if w |= ◦·ϕ, or
that w |= ϕ1 S ϕ2 if and only if w |= ϕ1 S ϕ2! The reason is that subformulae ϕ,
ϕ1 or ϕ2 may contain concrete temporal operators whose semantics still involve
the entire execution trace, not only the abstract one. Some examples in this
category are shown in Section 3. Nevertheless, the following holds:

Proposition 2. For a ptCaRet trace w and formula ϕ containing no concrete
temporal operators ◦· and S , w |= ϕ iff w |= ϕ̂, where ϕ̂ is the ptLTL formula
replacing each abstract temporal operator in ϕ by its concrete variant.

3 ptCaRet Derived Operators and Examples

Besides the usual derived Boolean operators and past time temporal operators
“eventually in the past”, “always in the past”, as well as “start”, “stop”, and
“interval” operators like in [9], which can all be also defined abstract variants, we
can define several other interesting, ptCaRet-specific derived operators. In the
rest of the paper we use the standard notation for the derived Boolean operators,
e.g., “→”, “∨”, etc., with their usual precedences, and assume that “◦· ” binds as
tight as “¬” while “S ” binds tighter than the binary Boolean operators.

At beginning. Suppose that one would like a particular property, say ψ, to
hold at the beginning of the execution of the current function. We can define
the derived temporal operator @b, say “at beginning”, as follows:

@bψ
def= (begin → ψ) ∧ (¬begin → ◦· (begin → ψ)S begin).

58 G. Roşu, F. Chen, and T. Ball

Note that the concrete “previously” operator is used inside the argument of
the “abstract since” operator. The above is correct because the last begin state
seen by the “abstract since” is indeed the beginning of the current function or
procedure. One should not get tricked and try to define the above as:

@bψ
def= (begin → ψ) ∧ (¬begin → (begin → ψ)S call).

That is because the current function may have called and returned from several
other functions, and the “abstract since” can still see all the call/return states.
The above would vacuously hold in such a case.

At call. Suppose now that one wants ψ to hold at the state when the current
function was called. For the same reason as above, one cannot simply replace
begin by call in the definition of @b above. However, one can define the derived
temporal operator @c, say “at call”, in terms of “at beginning” simply as follows:

@cψ
def= @b◦·ψ.

In Fig. 5 (A), supposing that the current state is the one pointed to by the arrow,
ψ should hold in the diamond state for @bψ and in the circle state for @cψ.

Stack since on beginnings. The “abstract since” can be used to write prop-
erties in which the terminated function executions are irrelevant. There may be
cases in which one wants to write properties referring exclusively to the execution
stack of a program, ignoring any other states. For example, one may want to say
that ψ held on the stack since property ψ′ held. As usual, one may be interested
in properties ψ and ψ′ to hold either at call time, or at execution beginning time.
Let us first define a “stack since on beginnings” derived operator:

ψ S bψ
′ def= (begin → ψ)S (begin ∧ ψ′).

Stack since on calls. To define a “stack since on calls” one cannot simply
replace begin by call in the above. Instead, one can define it as follows:

ϕ1 S cϕ2
def= (call → ϕ1)S (begin ∧ ◦·ϕ2).

In Fig. 5 (B), if the current state is the one pointed by the arrow, the begin
stack consists of the diamonds and the call stack consists of the circles.

With the stack since derived temporal operators above, one can further define
other derived operators, such as “stack eventually in the past on calls” (say �· c),
“stack always in the past on beginnings” (say �· b), etc.

(A) (B)

Fig. 5. Derived operators. ⇓: current state, �: states for @b, S b; ◦: states for @c,S c

Synthesizing Monitors for Safety Properties 59

Let us next further illustrate the strength of ptCaRet by specifying some
concrete properties that would be hard or impossible to specify in ptLTL.

Suppose that in a particular context, function f must be called only directly
by function g. Assuming call f and call g are predicates that hold when f and
g are called, respectively, we can specify this property in ptCaRet as follows:

call f → @ccall g.

Suppose now that f can be called only directly or indirectly by g: a call to g
must be on the stack whenever f is called. We can specify that as follows:

call f → �· ccall g.

A common safety property in many systems is that resources acquired during
a function execution must be released before the function ends. Assuming that
acquire and release are predicates that hold when the resource of interest is
acquired or released, respectively, we can specify this property as follows:

end → (¬acquireS begin ∨ ¬(¬release S acquire)).

A more complex example is discussed in Section 4.3.

4 A Monitor Synthesis Algorithm for ptCaRet

As discussed in [12] for ptLTL, thanks to the recursive nature of the satisfaction
relation on the standard ptLTL temporal operators (see Definition 2), the mon-
itor generated from a ptCaRet formula needs only one global bit per standard
(non-abstract) temporal operator. This bit maintains the satisfaction status of
the subformula corresponding to that standard temporal operator; when a new
state is observed, the satisfaction status of that subformula is recalculated ac-
cording to the recursive semantics in Definition 2 and the bit is updated. In
order for this to work, one needs to have already updated or have an easy way
to calculate the status of the subformulae.

The situation is more complex for the abstract temporal operators, as one
needs to store enough information about the past so that one is able to update
the status of abstract operators’ satisfaction regardless of how the future evolves.
The main complication comes from the fact that one needs to “freeze” the satis-
faction status of the subformulae corresponding to abstract temporal operators
whenever a begin state is observed, and then “unfreeze” it when the correspond-
ing end state is observed, thus recovering the information that was available right
when the function call took place. Fortunately, that can be obtained by using a
stack to push/pop the satisfaction status of the abstract temporal subformulae.

More precisely, a stack bit is needed per abstract temporal operator in the
ptCaRet formula, maintaining the satisfaction status of the subformula cor-
responding to that abstract operator. When a new state is observed, the sat-
isfaction status of that subformula is recalculated according to the recursive

60 G. Roşu, F. Chen, and T. Ball

semantics in Definition 5 and the stack bit updated; if the newly observed state
is a begin, then the status of the stack bits is pushed on the stack before the
actual monitor state update; if the newly observed state is an end, then the
status of the stack bits is popped from the stack after the monitor state update.

4.1 The Target Language

To state and prove the correctness of any program generation algorithm, one
needs to have a formal semantics of the target language. This section gives a
formal syntax and semantics to the simple and generic language in which we
synthesize monitors. One can very easily translate this language into standard
languages, such as C, C++, C#, Java, or even into native machine code. For
each ptCaRet formula ϕ, we are going to generate (in Section 4.2) a monitor
Mϕ as a statement in a language Lϕ. The only difference between the languages
Lϕ is the set of variables that one can assign values to; the rest of the language
constructs are the same for all ϕ. The language Lϕ has the following simple
syntax (note that Lϕ1 ⊆ Lϕ2 whenever ϕ1 is a subformula of ϕ2):

Var ::= αφ (one for each subformula φ of ϕ rooted in ◦· or S)
| βφ (one for each subformula φ of ϕ rooted in ◦· or S)

Exp ::= true | A | Var | ¬ Exp | Exp ∧ Exp
Stm ::= Var := Exp | if begin then push | if end then pop | output(Exp) | StmStm

Therefore, programs in Lϕ can use predicates in A (the atomic predicate set of
ptCaRet) as ordinary (Boolean) expressions, together with Boolean variables
αφ and βφ, one per standard and abstract temporal operator in ϕ, respectively,
and together with Boolean constructs such as complement and conjunction.
Statements can be composed using juxtaposition, and can be: αφ or βφ vari-
able assignment, output of a Boolean expression, or conditional push/pop, the
latter pushing or popping, by convention, precisely the bit vector β. We assume
a (rather conventional) denotational semantics for Lϕ as follows:

Definition 7. If ϕ has k1 standard temporal operators and k2 abstract temporal
operators, then let MonStateϕ (we think of Lϕ programs as monitors) be the state
space of Lϕ, that is, the domain Boolk1 × Boolk2 × Stack × Output, where Bool
is the set {true, false}, Stack is the domain (Boolk2)∗ of stacks, or lists, over bit
vectors of size k2, and Output is the domain Bool∗ of bit lists. Let the functions

� � : Exp → MonStateϕ → ProgState → Bool
� � : Stm → MonStateϕ → ProgState → MonStateϕ

be defined as follows:

Synthesizing Monitors for Safety Properties 61

�true�(α, β, σ, ω)(s) = true, �a�(α, β, σ, ω)(s) = s(a),
�αφ�(α, β, σ, ω)(s) = α(i), where i ≤ k1 is the α-index corresponding to φ,
�βφ�(α, β, σ, ω)(s) = β(j), where j ≤ k2 is the β-index corresponding to φ,
�b1 ∧ b2�(α, β, σ, ω)(s) = �b1�(α, β, σ, ω)(s) and �b2�(α, β, σ, ω)(s),
�αφ := b�(α, β, σ, ω)(s) = (α[α(i) ← �b�(α, β, σ, ω)(s)], β, σ, ω),
�βφ := b�(α, β, σ, ω)(s) = (α, β[β(j) ← �b�(α, β, σ, ω)(s)], σ, ω),

�if begin then push�(α, β, σ, ω)(s) =
{

(α, β, β · σ, ω) if s(begin),
(α, β, σ, ω) otherwise,

�if end then pop�(α, β, σ, ω)(s) =
{

(α, β′, σ′, ω) if s(end) and σ = β′ · σ′,
(α, β, σ, ω) otherwise,

�output(b)�(α, β, σ, ω)(s) = (α, β, σ, ω · �b�(α, β, σ, ω)),
�stm stm′�(α, β, σ, ω)(s) = �stm′�(�stm�(α, β, σ, ω)(s)).

We can now associate a function �Mϕ� : MonStateϕ → ProgState → MonStateϕ

to each program Mϕ in Lϕ. For a monitor state (α, β, σ, ω) ∈ MonStateϕ and a
program state s ∈ ProgState, �Mϕ�(α, β, σ, ω)(s) = (α′, β′, σ′, ω′) if and only if
the monitor Mϕ executed in state (α, β, σ, ω) when program state s is observed,
produces monitor state (α′, β′, σ′, ω′).

Definition 8. By abuse of notation, we also let �Mϕ� : ProgState∗ → MonStateϕ

be the function (falsek1 is the vector of k1 false bits, and ε is the empty list):{
�Mϕ�(ε) = (falsek1 , falsek2 , ε, ε) — the “initial” monitor state —
�Mϕ�(ws) = �Mϕ�(�Mϕ�(w))(s)

4.2 The Monitor Synthesis Algorithm

We next present the actual monitor synthesis algorithm at a high-level. We re-
frain from giving detailed pseudocode as in [9], because different applications
may choose different implementation paradigms. For example, our implementa-
tion of the ptCaRet logic plugin in the context of the context of the MOP
system [6,7], discussed in Section 4.3, uses term rewriting techniques. The mon-
itoring code for a ptCaRet formula ϕ can be split into three pieces: code to
be executed before the monitor outputs the satisfaction status of the formula,
the outputting code, and code to be executed after the output. Let Codeϕ

before

denote the former and let Codeϕ
after denote the latter.

Codeϕ
before is concerned with updating the status of the “since” operators in a

bottom-up fashion, while Codeϕ
after with updating the status of the “previously”

operators. Indeed, in order to output the satisfaction status of ϕ, one needs to
know the status of all the “since” operators, which may depend upon values
in the current state as well as upon values of nested “since” operators, so the
inner “since” operators need to be processed before the outer ones. On the other
hand, one need not know the particular details (values of atomic predicates)
of the current state in order to know the status of the “previously” operators;

62 G. Roşu, F. Chen, and T. Ball

Input: A ptCaRet formula ϕ
Output: Code that monitors ϕ

Step 1 Allocate a bit αφ, initially false, for each subformula φ of ϕ rooted in a
standard temporal operator. The intuition for this bit is as follows:
– if φ = ◦·ψ then αφ says if ψ (no typo!) was satisfied at the previous state;
– if φ = ψ S ψ′ then αφ says if φ was satisfied at the previous state.

Step 2 Allocate a bit βφ, initially false, for each subformula φ of ϕ rooted in an
abstract temporal operator. The intuition for this bit is as follows:
– if φ = ◦·ψ then βφ says if ψ was satisfied at the abstract previous state;
– if φ = ψ S ψ′, βφ says if φ was satisfied at the abstract previous state.

Step 3 Initialize Codeϕ

before and Codeϕ

after as follows:

– Codeϕ
before to the code “if begin then push”, and

– Codeϕ

after to the code “if end then pop”.

Notation: For subformulae φ of ϕ, let φ be the Boolean expression replacing in
φ each temporal-operator-rooted subformula ψ which is not a subformula of
another temporal-operator-rooted subformula of φ, by either αψ when ψ is
rooted in a standard temporal operator, or by βψ when ψ is rooted in an
abstract operator. For example, a∧◦· bS c∧◦· (dS ◦· e) is a∧β◦· b S c ∧α◦· (d S ◦· e).

Step 4 Following a depth-first-search (DFS) traversal of ϕ, for each subformula
φ of ϕ rooted in a temporal operator do:
– if φ = ◦·ψ then Codeϕ

after ← (αφ := ψ) Codeϕ

after

– if φ = ◦·ψ then Codeϕ
after ← (βφ := ψ) Codeϕ

after

– if φ = ψ S ψ′ then Codeϕ

before ← Codeϕ

before (αφ := ψ′ ∨ ψ ∧ αφ)

– if φ = ψ S ψ′ then Codeϕ
before ← Codeϕ

before (βφ := ψ′ ∨ ψ ∧ βφ)

Step 5 Output monitor Mϕ as the code “Codeϕ

before output(ϕ) Codeϕ

after”

Fig. 6. The monitor synthesis algorithm for ptCaRet

all one needs to make sure of is that the status of the “previously” operators
has been updated at the appropriate previous state (or states in the case of
“abstract previously”), after the monitor output. Interestingly, note that, unlike
the “since” operators, the “previously” operators need to be processed in a top-
down fashion, that is, the outer ones need to be processed before the inner ones.

Note that the monitors Mϕ generated in Figure 6 are well-defined, in the
sense that each time a generated Boolean expression ψ is executed, all the α
and β bits that are needed have been calculated. That is because the code is
generated following a DFS traversal of the original ptCaRet formula. Mϕ is
run at each newly generated event, or program state, and outputs either true
or false. Note that each Mϕ has the form “(if begin then push) Cϕ

1 output(Oϕ)
Cϕ

2 (if end then pop)”, for some potential statements Cϕ
1 and Cϕ

2 , and for some
Boolean expression Oϕ. To simplify notation, we introduce the following:

Synthesizing Monitors for Safety Properties 63

Definition 9. Let 〈Cϕ
1 , Oϕ, Cϕ

2 〉 be a shorthand for (we use ∅ for Cϕ
1 or Cϕ

2 when
they do not exist): “(if begin then push) Cϕ

1 output(Oϕ) Cϕ
2 (if end then pop)”.

The following result structurally relates monitors generated for formulae ϕ to
monitors generated for its subformulae. One can use this proposition as an equiv-
alent, recursive way to synthesize monitors for ptCaRet:

Proposition 3. If Mψ = 〈Cψ
1 , Oψ , Cψ

2 〉 and Mψ′ = 〈Cψ′

1 , Oψ′
, Cψ′

2 〉 then:

– Mtrue = 〈∅, true, ∅〉
– Ma = 〈∅, a, ∅〉
– M¬ψ = 〈Cψ

1 ,¬Oψ , Cψ
2 〉

– Mψ∧ψ′ = 〈Cψ
1 Cψ′

1 , Oψ ∧ Oψ′
, Cψ′

2 Cψ
2 〉

– M◦·ψ = 〈Cψ
1 , α◦·ψ, (α◦· ψ := ψ) Cψ

2 〉
– Mψ S ψ′ = 〈Cψ

1 Cψ′

1 (αψ S ψ′ := ψ′ ∨ ψ ∧ αψ S ψ′), αψ S ψ′ , Cψ′

2 Cψ
2 〉

– M◦·ψ = 〈Cψ
1 , β◦·ψ, (β◦·ψ := ψ) Cψ

2 〉
– Mψ S ψ′ = 〈Cψ

1 Cψ′

1 (βψ S ψ′ := ψ′ ∨ ψ ∧ βψ S ψ′), βψ S ψ′ , Cψ′

2 Cψ
2 〉

To prove the correctness of our monitor synthesis algorithm, we need to show
that after observing any sequence of program states w, a synthesized monitor
Mϕ outputs the same result as the satisfaction status of w |= ϕ. Therefore, we
need to define “the output of the monitor Mϕ after observing w”:

Definition 10. Let �Mϕ� : ProgState+ → Bool be defined for each (non-empty)
w ∈ ProgState+ as �Mϕ�(w) = b iff �Mϕ�(w) = (α, β, σ, ω · b). For uniformity,
let us extend �Mϕ� to a function ProgState∗ → Bool (as in Definitions 2 and 5):

– �Mϕ�(ε) = false when ϕ = a, ◦·ψ, ψ S ψ′, ◦·ψ, ψ S ψ′;
– �M¬ψ�(ε) = ¬�Mψ�(ε);
– �Mψ∧ψ′�(ε) = �Mψ�(ε) ∧ �Mψ′�(ε).

Proposition 4. The following hold for any w ∈ ProgState∗:

– �Mtrue�(w) is always true,
– �Ma�(w) iff w �= ε and a ∈ last(w),
– �M¬ψ�(w) iff not �Mψ�(w),
– �Mψ∧ψ′�(w) iff �Mψ�(w) and �Mψ′�(w),
– �M◦·ψ�(w) iff w �= ε and �Mψ�(prefix(w)),
– �Mψ S ψ′�(w) iffw �= ε and (�Mψ′�(w)or �Mψ�(w)and �Mψ S ψ′�(prefix(w))),
– �M◦·ψ�(w) iff w �= ε and �Mψ�(prefix(w)),
– �Mψ S ψ′�(w) iffw �= ε and (�Mψ′�(w)or �Mψ�(w)and �Mψ S ψ′�(prefix(w))).

Proof. The non-trivial ones are those for temporal operators. We only discuss
S , because the others follow the same idea and are simpler. The monitors for
ψ S ψ′, ψ, and ψ′, respectively, following the notations in Proposition 3 are:

64 G. Roşu, F. Chen, and T. Ball

Mψ S ψ′ Mψ Mψ′

1. if begin then push if begin then push if begin then push

2. Cψ
1 Cψ′

1 Cψ
1 Cψ′

2

3. βψ S ψ′ := ψ′ ∨ ψ ∧ βψ S ψ′

4. output(βψ S ψ′) output(ψ) output(ψ′)
5. Cψ′

2 Cψ
2 Cψ

2 Cψ′

2

6. if end then pop if end then pop if end then pop

Note that the property holds vacuously if w = ε. Assume now that w = w′s,
for some s ∈ ProgState. An interesting and useful property of the generated
monitors is that their semantics is very modular, and that pushing or popping
β does not affect the modular semantics. For example, note that Cψ

1 in Mψ S ψ′

uses no variables defined in Cψ′

1 or in Cψ′

2 , and the bit βψ S ψ′ is only defined in
line 3. and used in lines 3. and 4. This modularity guarantees that, if we were
to output ψ or ψ′ at line 3. or 4. in Mψ S ψ′ , then its output after processing
w would be nothing but �Mψ�(w) or �Mψ′�(w), respectively. That means that
the ψ and ψ′ in the expression assigned to βψ S ψ′ at line 4. when processing the
last state in w are �Mψ�(w) and �Mψ′�(w), respectively. We claim that βψ S ψ′

in the assigned expression at line 4. is �Mψ S ψ′�(prefix(w)). There are two cases
to analyze. (1) if s is not a return state, then βψ S ψ′ was assigned at line 3. in
the previous execution of the monitor, when processing the last state in w′, so it
is nothing but �Mψ S ψ′�(prefix(w)); and (2) if s is a return state, then it means
that the last state in w′ was an end state, so the vector β was popped from the
stack at the end of the previous step. The only thing left to note is that our push
on begins and pop or ends correctly match begin and end states; this follows
from the fact that we assume traces complete and well-formed (Definition 4).

Theorem 1. The monitor synthesis algorithm in Figure 6 is correct, that is,
for any ptCaRet formula ϕ and for any w ∈ ProgState∗, �Mϕ�(w) iff w |= ϕ.

Proof. Straightforward, by induction on both the structure of ϕ and the length
of w, noticing that there is a one-to-one correspondence between the definition
of satisfaction in Definitions 2 and 5, and the properties in Proposition 4.

4.3 Implementation as Logic Plugin, Optimizations, Example

MOP [6,7] is a configurable runtime verification framework, in which specifica-
tion requirements formalisms can be added modularly, by means of logic plugins.
A logic plugin essentially encapsulates a monitor synthesis algorithm for a for-
malism that one can then use to specify properties of programs. The current
JavaMOP tool has logic plugins for future time LTL, past time LTL, Allen
algebra, extended regular expressions, JML, JASS. JavaMOP takes a Java ap-
plication to be monitored and specifications using any of the included formalisms
together with validation and/or violation handlers (saying what to do if property
validated or violated, in particular nothing), and then waves them together in

Synthesizing Monitors for Safety Properties 65

a runtime verified application by first generating monitors for all the properties
using their corresponding logic plugins, and then generating and compiling an
AspectJ extension of the original program (runtime monitors are “aspects”). To
maintain a reduced runtime overhead (shown on large benchmarks to be, on
average, below 10%), MOP piggybacks monitor states onto object states.

The ptCaRet MOP logic plugin. We implemented the ptCaRet monitor
synthesis algorithm in Section 4.2 as an MOP logic plugin. Our implementation
can be found and experimented with online at [3]. Large-scale experiments are
still to be performed; we are currently engineering the MOP system to allow
monitor states to piggyback not only object states, but also the program stack.
In short, our implementation uses term rewriting and the Maude system [8],
and follows the monitor synthesis algorithm in Figure 6 and its “equivalent”,
recursive formulation in Proposition 3. Implementations in other languages are
obviously also possible; however, term rewriting proved to be an elegant means
to synthesize monitors from logical formulae in several other contexts (the other
MOP plugins, as well as in JPaX [13]), and so seems to be here.

Our implementation starts by defining the Boolean expressions as an algebraic
specification using Maude’s mixfix notation (equivalent to context-free gram-
mars); derived Boolean operators are also defined, together with several simpli-
fication rules (¬ true = false, etc.). Boolean expressions are imported both in
the target language module and in the ptCaRet module. Both the target lan-
guage and the ptCaRet modules are defined as algebraic signatures, enriched
with structural equalities which turn into simplification rules when executed; this
way, for example, each ptCaRet derived operator is defined with one equation
capturing its definition. Several other derived operators are defined in addition
to those discussed in Section 3. The monitor generation module imports both
the target language and the ptCaRet modules, and adds two equations per
temporal logic operator; e.g., the equations below process the “abstract since”:

eq form(F1 Sa F2) = [form(F1), form(F2)] -> Sa .
eq k([exp(B1),exp(B2)] -> Sa -> K) code(I,C1,C2) nextBeta(N)
= k(exp(beta[N]) -> K) code(I beta[N] := false,

C1 beta[N] := B2 or B1 and beta[N], C2) nextBeta(N + 1) .

First equation says that subformulae should be processed first (DFS traversal).
The second equation combines the codes generated from the subformulae as
shown in Proposition 3, appending the assignment for the corresponding bit to
C1. Note that C1 here accumulates the “code before” of both subformulae; in
terms of Proposition 3, it is “Cψ

1 Cψ′

1 ”. I accumulates the monitor initialization
code. Finally the optimizations below are implemented also as rewrite rules.

Optimizations. Term-rewriting-based code-generation algorithms can be eas-
ily extended with optimizations, because these can be captured as rewrite rules.
We discuss some of the optimizations enabled in our implementation. First, we
perform Boolean simplifications when calculating ψ to reduce runtime overhead
(¬¬ψ = ψ, true∧ψ = true, etc.). Another immediate optimization is the follow-
ing. The generated code originally has the form (see Fig. 6) “(if begin then push)

66 G. Roşu, F. Chen, and T. Ball

C (if end then pop)”, for some code C. However, since a program state can only
contain at most one of the special predicates, this can be optimized into (syntax
of target language needs to be slightly extended):

if begin then (push; C[begin← true, end← false, call← false, return← false]; exit)

if end then (C[begin← false, end← true, call← false, return← false]; pop; exit)

C[begin← false, end← false];

After the substitutions above, further Boolean simplifications may be triggered.
Also, some assignments may become redundant, such as, for example, “beta[3]
:= beta[3]”; rules to eliminate such assignments are also given. A further op-
timization on the generated code is possible, but we have not implemented it
yet: some subformulae can repeat in different parts of the original formula; the
current implementation generates monitoring code for each repeating instance,
which is redundant and can be reduced using a smarter optimization algorithm.

Example. We here show the monitor generated by our implementation for a
more complex ptCaRet specification. Suppose that a program carries out a
critical multi-phase task and the following safety properties must hold when
execution enters the second phase:

1. Execution entered the first phase within the same procedure;
2. Resource acquired within same procedure since first phase must be released;
3. Caller of current procedure must have had approval for the second phase;
4. Task is executed directly or indirectly by the procedure safe exec.

These can be captured as the following ptCaRet formula:

enter phase 2 → (¬(¬enter phase 1S begin)
∧(¬acquire S enter phase 1 ∨ ¬(¬releaseS acquire))
∧@c(has phase 2 pass)
∧�· b(safe exec)

Our implementation generates the following monitor for this specification:
if begin then {push(beta);

beta[0] := safe_exec or beta[0]; beta[1] := enter_ph1 or not acquire and beta[1];
beta[2] := acquire or not release and beta[2]; beta[3] := true; beta[4] := true;
output(not enter_ph2 or not beta[4] and alpha[0] and beta[0] and (not beta[2] or beta[1]));
alpha[3] := true; alpha[2] := alpha[1]; alpha[1] := has_ph2_pass; alpha[0] := has_ph2_pass;
exit}

if end then {
beta[1] := enter_ph1 or not acquire and beta[1]; beta[2] := acquire or not release and beta[2];
beta[3] := beta[3] and (not alpha[3] or alpha[2]); beta[4] := not enter_ph1 and beta[4];
output(not enter_ph2 or not beta[4] and beta[0] and beta[3] and (not beta[2] or beta[1]));
alpha[3] := false; alpha[2] := alpha[1]; alpha[1] := has_ph2_pass; alpha[0] := has_ph2_pass;
pop(beta); exit}

beta[1] := enter_ph1 or not acquire and beta[1]; beta[2] := acquire or not release and beta[2];
beta[3] := beta[3] and (not alpha[3] or alpha[2]); beta[4] := not enter_ph1 and beta[4];
output(not enter_ph2 or not beta[4] and beta[0] and beta[3] and (not beta[2] or beta[1]));
alpha[3] := false; alpha[2] := alpha[1]; alpha[1] := has_ph2_pass; alpha[0] := has_ph2_pass

The formula contains derived operators, e.g., @c, which are first expanded. The
monitoring code uses four α bits and five β bits (the expanded formula con-
tains four concrete temporal operators and five abstract ones). For example,

Synthesizing Monitors for Safety Properties 67

�· b(safe exec) is expanded into (begin → true)S (begin∧ safe exec), which is then
simplified to trueS (begin∧safe exec), equivalent to �· (begin∧safe exec). beta[0]
in the generated code is used to check this operation; it only needs to be updated
at the begin state, where it becomes true if safe exec holds.

5 Conclusion and Future Work

We presented the logic ptCaRet and a monitor synthesis algorithm for it.
ptCaRet includes abstract variants of past temporal operators. It can express
safety properties about procedural programs which cannot be expressed using
conventional ptLTL. The generated monitors contain both a local state and a
stack. The local state is encoded on as many bits as concrete temporal operators
the original formula had, while the stack pushes/pops bit vectors of size the
number of abstract temporal operators the original formula had. An optimized
implementation of the monitor synthesis algorithm has been organized as an
MOP logic plugin, and is available to download from [3]. There is room for further
optimizations of the generated code. An extensive evaluation of the effectiveness
of ptCaRet runtime verification on large programs needs to be conducted. On
the theoretical side, it would be interesting to explore the relationship between
our monitors generated for ptCaRet and the nested word automata in [5]; [5]
gives an operational monitoring language for nested words based on BLAST’s
specification language. In contrast, our language is declarative and an operational
encoding synthesized automatically.

References

1. Allan, C., Avgustinov, P., Christensen, A.S., Hendren, L., Kuzins, S., Lhotak, O.,
de Moor, O., Sereni, D., Sittampalam, G., Tibble, J.: Adding trace matching with
free variables to AspectJ. In: OOPSLA 2005 (2005)

2. Alur, R., Etessami, K., Madhusudan, P.: A temporal logic of nested calls and
returns. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp.
467–481. Springer, Heidelberg (2004)

3. F.S.L.: at UIUC. ptCaRet MOP Logic Plugin,
http://fsl.cs.uiuc.edu/index.php/Special:JavaMOPPTCARETOnline

4. Avgustinov, P., Tibble, J., de Moor, O.: Making Trace Monitors Feasible. In: OOP-
SLA 2007 (2007)

5. Chaudhuri, S., Alur, R.: Instrumenting C programs with nested word monitors.
In: Bošnački, D., Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 279–283.
Springer, Heidelberg (2007)

6. Chen, F., Roşu, G.: Towards Monitoring-Oriented Programming: A Paradigm
Combining Specif. and Implementation. In: RV 2003. ENTCS, vol. 89(2) (2003)

7. Chen, F., Roşu, G.: MOP: An Efficient and Generic Runtime Verification Frame-
work. In: OOPSLA 2007 (2007)

8. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: Maude Manual, http://maude.cs.uiuc.edu

http://fsl.cs.uiuc.edu/index.php/Special:JavaMOPPTCARETOnline
http://maude.cs.uiuc.edu

68 G. Roşu, F. Chen, and T. Ball

9. Havelund, K., Roşu, G.: Efficient monitoring of safety properties. Software Tools
and Technology Transfer 6(2), 158–173 (2004); In: Katoen, J.-P., Stevens, P. (eds.)
TACAS 2002. LNCS, vol. 2280, Springer, Heidelberg (2002)

10. Lamport, L.: Proving the correctness of multiprocess programs. IEEE Trans. Soft-
ware Eng. 3(2), 125–143 (1977)

11. Manna, Z., Pnueli, A.: Temporal verification of reactive systems: safety. Springer-
Verlag New York, Inc., New York (1995)

12. Roşu, G.: On Safety Properties and Their Monitoring. Technical Report
UIUCDCS-R-2007-2850, Dept. of Comp. Sci. Univ. of Illinois at Urbana-
Champaign (2007)

13. Roşu, G., Havelund, K.: Rewriting-based techniques for runtime verification. Au-
tomated Software Engineering 12(2), 151–197 (2005)

Forays into Sequential Composition and

Concatenation in Eagle

Joachim Baran and Howard Barringer

The University of Manchester, School of Computer Science, Oxford Road,
Manchester, M13 9PL, United Kingdom

{joachim.baran,howard.barringer}@cs.manchester.ac.uk

Abstract. The run-time verification logic Eagle is equipped with two
forms of binary cut operator, sequential composition (;) and concate-
nation (·). Essentially, a concatenation formula F1 · F2 holds on a trace
if that trace can be cut into two non-overlapping traces such that F1

holds on the first and F2 on the second. Sequential composition differs
from concatenation in that the two traces must overlap by one state.
Both cut operators are non-deterministic in the sense that the cutting
point is not uniquely defined. In this paper we establish that sequential
composition and concatenation are equally expressive. We then extend
Eagle with deterministic variants of sequential composition and con-
catenation. These variants impose a restriction on either the left or right
operand so that the cut point defines either the shortest or longest pos-
sible satisfiable cut trace. Whilst it is possible to define such determin-
istic operators recursively within Eagle, such definitions based on the
non-deterministic cut operators impose a complexity penalty. By aug-
menting Eagle’s evaluation calculus for the deterministic variants, we
establish that the asymptotic time and space complexity of on-line mon-
itoring for the variants with deterministic restrictions applied to the left
operand is no worse than the asymptotic time and space complexity of
the sub-formulæ.

1 Introduction

Although common temporal logics like propositional temporal logic, extended
temporal logic and the modal µ-calculus are quite expressive [Wol83, Koz83],
they define no operator analog to the most common principle in imperative
programming: sequential composition. Sequential composition allows one to glue
two traces together, where the last state of the first trace overlaps with the first
state of the second trace. A sequential composition formula is then satisfied at
the start of a trace, if the trace can be cut into two sub-traces, overlapping as
above, on which both its operands hold respectively.

Concatenation defines the cut of the trace such that there is no overlapping
part, so the two traces butted together form the original trace. Even though

M. Leucker (Ed.): RV 2008, LNCS 5289, pp. 69–85, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

70 J. Baran and H. Barringer

sequential composition and concatenation seem to be closely related, this has
not been formally investigated yet.1

In this paper the runtime verification logic Eagle is examined [BGHS04b].
Eagle is a temporal fixed-point logic on finite traces. Eagle is able to perform
efficient on-line monitoring without storing the execution trace [BGHS04b]. In
Eagle, both sequential composition and concatenation are part of the logics
language. We show that sequential composition can be expressed in terms of
concatenation and vice-versa. We then extend Eagle with deterministic variants
of concatenation and sequential composition. These variants impose a restriction
on either the left or right operand so that the cut point defines either the shortest
or longest possible satisfiable cut trace. We augment Eagle’s evaluation calculus
by the new operators and establish that the asymptotic space complexity of on-
line monitoring for the variants with restrictions applied to the left operand is no
worse than the asymptotic space complexity of the sub-formulæ. Two examples
now follow to provide motivation for the deterministic cut operators.

Fig. 1. Traces of a fail-safe system (Example 1)

Example 1. Consider a fail-safe system that in the occurrence of an error even-
tually resets itself and enters a predefined “good” system state in that way. In
Figure 1(a), an acceptable observation trace is depicted, where “ok” denotes that
the system is in a good state, “err” denotes the occurrence of an error and “rst”
denotes a reset of the system. We allow that a reset can occur with a finite delay
after an error has occured. We can formulate this behaviour by the following
specification:

max ErrHandler(Form F) = �F � · (�err ∧ Eventually(rst)� · ErrHandler(F))
mon FailSafe = ErrHandler(Always(ok))

The formulæ �F1�·F2 and �F1�·F2 are constraint variants of the concatenation
formula F1 ·F2, where the cut has to be placed so that there is no longer or shorter
sub-trace satisfying F1, respectively. For the specification above it means that a
trace without erroneous behaviour is completely labelled with “ok”s. If an error

1 In [CHMP81], concatenation was defined in terms of sequential composition. This
cannot be done in Eagle so easily, which is shown in the following. Instead of
referring to the operators as sequential composition and concatenation, Chandra et
al. referred to them as “chop” and “chomp” respectively.

Forays into Sequential Composition and Concatenation in Eagle 71

occurs, i.e. a state labelled by “err”, then the good behaviour resumes after a
reset, i.e. “rst”.

While this specification can also be written without formulæ of the form
�F1� · F2 and �F1� · F2, specification without these the new operators are not
necessarily as succinct as specification that make use of �F1� · F2 and �F1� ·
F2, and furthermore, will incur a significant monitoring cost penalty for the
compositional recodings.

Example 2. We introduce a conditional concatenation operator, �F1� ·→ F2, based
on the operator �F1�·F2 which we used in the previous example. Let �F1�·→F2 be
the syntactic abbreviation for ¬(�F1� ·True)∨ (�F1� ·F2). Informally, �F1� ·→ F2

can be interpreted as “whenever F1 matched, do F2 afterwards”.
Consider a nested locking pattern, where we wish to detect when a thread t

takes a lock l1 and does not release it until t has taken a different lock l2, after
which we verify another property ϕ. Using the newly defined operator, we can
formulate the corresponding specification as

Always(�lock(t, l1) ∧ Until(¬release(t, l1), lock(t, l2) ∧ l1 �= l2)� ·→ ϕ

The latter specification is not an Eagle monitoring formula, since data
parametrisation in Eagle is bound to evaluating the current state. However,
we can formulate a semantically equivalent monitoring formula in Eagle:

mon NestedLck = Always(isLock() → Nested(getThread(), getLock()))

with the rule definition

max Nested(int t, int l) = �Until(¬release(t, l), isLock() ∧ getLock() �= l)� ·→ ϕ

SinceEagle is implemented inJava,we rely on themethods isLock(), getLock(),
getThread() and release() with the obvious semantics and we use integers as han-
dles for threads and locks. It should be noted that getLock() returns the last lock
obtained by the current thread, so that its return value when called in the moni-
toring formula NestedLck and its return value when called in the rule Nested(. . .)
eventually differ.

The shortest trace-length restriction in the concatenation formula of the rule
definition Nested(. . .) ensures that we match the first occurrence of a newly
obtained lock, i.e. the rule parameter l and the return value of getLock() dif-
fer,where it is also ensured that the previous lock is not released yet.

The paper is structured as follows. A formal definition of Eagle is given in
Section 2. In Section 3 it is proven that sequential composition and concatena-
tion are definable in terms of each other. In Section 4 Eagle is extended by
deterministic cut operators, where it is shown that those operators are definable
in unextended Eagle. In Section 5 Eagle’s calculus is extended by the deter-
ministic cut operators and it is proven that deterministic cut operators enable
more efficient on-line monitoring. Section 6 concludes our work.

72 J. Baran and H. Barringer

2 Preliminaries

Eagle is a temporal logic based on recursively defined temporal predicates
(rules) with four primitive temporal operators, �, �, ·, ; . Formally:

Definition 1. Specifications in Eagle are formed by a pair 〈D, O〉, where D
is the declaration part and O the observer part. Rule definitions R define named
parametrised rules N . Monitors M specify the requirements.

D ::= R∗

R ::= {min |max} N(T1 x1, . . . , Tn xn) = F

T ::= Form | primitive type
F ::= False |True |xi | expression | ¬F |F1 ∨ F2 | � F | �F |

F1 · F2 |F1 ; F2 |N(F1, . . . , Fn)

O ::= M∗

M ::= mon N = F

In the following, we use standard operators of propositional logic that are defined
by De Morgan’s laws.

Formulæ are evaluated over discrete finite traces of observation states. A se-
quence of states s1, s2, . . . , sn constitutes a trace σ of length |σ| = n. In order to
keep track of the positions on the trace, states will be enumerated incrementally
starting with one. σ[i,j] denotes then the sub-trace si, si+1, . . . , sj of a trace σ.
For sub-traces, the numbering of states will again begin from one. We write σ(i)
to denote the i-th state of the trace. The empty trace, i.e. the trace of length 0,
is abbreviated as ε.

Definition 2. For trace σ = s1s2 . . . s|σ|, the satisfiability relation σ, i |=D F ,
with 0 ≤ i ≤ |σ| + 1, is defined as

σ, i |=D expression iff 1 ≤ i ≤ |σ| and evaluate(expression)(σ(i)) == true
σ, i |=D �F iff i ≤ |σ| and σ, i + 1 |=D F

σ, i |=D �F iff 1 ≤ i and |σ| ≥ 1 and σ, i− 1 |=D F

σ, i |=D F1 · F2 iff ∃j.i ≤ j ≤ |σ| + 1 and
σ[1,j−1], i |=D F1 and σ[j,|σ|], 1 |=D F2

σ, i |=D F1 ; F2 iff ∃j.i < j ≤ |σ| + 1 and
σ[1,j−1], i |=D F1 and σ[j−1,|σ|], 1 |=D F2

σ, i |=D N(F1, . . . , Fn) iff

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if 1 ≤ i ≤ |σ| then
σ, i |=D F [F1/x1, . . . , Fn/xn],where

(N(T1 x1, . . . , Tn xn) = F) ∈ D
if i = 0 or i = |σ| + 1 then

if (max N(T1 x1, . . . , Tn xn) = F) ∈ D then
σ, i |=D True,

if (min N(T1 x1, . . . , Tn xn) = F) ∈ D then
σ, i |=D False

and the propositional constants and operators are defined in the obvious way.

Forays into Sequential Composition and Concatenation in Eagle 73

If the set of declarations D follows from the context, then |= is used instead of
|=D. In formulæ where an expression can be chosen arbitrarily, i.e. it is treated
as a propositional variable, the evaluation is simplified to evaluate(p)(σ(i)) ==
true, where p denotes a propositional variable and p is True at σ(i).

Remark: It should be noted that at trace boundaries, i.e. the absent states at
index 0 and |σ| + 1, only the logical constant True and maximal defined rules
evaluate to true, while all other formulæ including tautologies evaluate to False.
Once the trace has been left, i.e. a step has been made onto the boundary of
the trace, it is possible to step back into the trace, but stepping beyond the
boundary (stepping to indices -1 and |σ| + 2) evaluates to False.

A specification 〈D, O〉 is satisfied by a trace σ if all monitoring formulæ of the
specification are satisfied on σ. Each monitoring formula is evaluated from posi-
tion one, regardless of the trace length. A trace is said to model a specification,
if the specification is satisfied by the trace. The latter we denote by σ |= 〈D, O〉.

Definition 3. A given trace σ satisfies a specification 〈D, O〉 if all monitoring
formulæ hold on the trace from position one, i.e. σ |= 〈D, O〉 iff ∀(mon N =
F) ∈ O. σ, 1 |=D F

In the remainder of the paper, the rule max Limit() = False is assumed to be
part of every specification. It evaluates to True on the boundaries of a trace,
i.e. when the current state is either 0 or |σ| + 1, otherwise it is False.

3 Interdefinability of Sequential Composition and
Concatenation

Interdefinability of operators, i.e. expressibility of an operator in terms of an-
other operator due to syntactical transformations, simplify definitions, proofs
and implementations of a logic. A proof or implementation has only to focus on
one of the operators then, where the obtained results can be carried forward to
other operators.

For the logic Eagle, we show that sequential composition and concatena-
tion are equally expressive. Hence, sequential composition can be syntactically
formulated in terms of concatenation and vice-versa. In Section 3.1 below we
define sequential composition recursively in terms of concatenation. The other
direction, however, is not so straightforward: Section 3.2 outlines our elimination
procedure and argues its correctness.

3.1 Sequential Composition in Terms of Concatenation

A sequential composition formula F1 ; F2 can be expressed in terms of concatena-
tion by simulation of the former operator’s semantics using a fixed-point rule def-
inition. We define and add the new rule min SequentialComposition(Form F1,
Form F2) to every specification. The sequential composition operator can then
be removed from arbitrary formulæ, by substituting each sub-formula of the

74 J. Baran and H. Barringer

form F1 ; F2 by an application of the rule SequentialComposition(F1, F2) ,where
the rule is given as:

min SequentialComposition(Form F1,Form F2) =
(((F1 ∧ �Limit()) ·True) ∧ (Limit() · (F2 ∧ �Limit()))) ∨�SequentialComposition(�F1, F2)

We defined the rule SequentialComposition(F1, F2) as a minimal fixed-point,
so that it will not be satisfied on the empty trace or the boundaries of a trace.
This behaviour coincides with the semantics of the sequential composition oper-
ator. For non-empty traces, the first application of the rule body splits the trace,
so that F1 is evaluated on a sub-trace with its boundary in the next state and F2

is evaluated on a sub-trace with its boundary in the previous state. Hence, the
evaluation of F1 and F2 overlaps at the index at which the rule is evaluated. Ad-
ditionally, the rule body contains a recursion �SequentialComposition(�F1, F2)
that repeats the just described splitting of the trace, but now the sub-trace
boundary for F1 is shifted one index to the right, and likewise, the evaluation of
F2 begins one index later. The recursion finally terminates when the boundary of
the trace is reached, on which SequentialComposition(F1, F2) was first invoked.

Theorem 1.2 For every formula F of Eagle, we can give a semantically equiv-
alent formula F ′ of Eagle, where F ′ contains no sequential composition sub-
formula.

This result can be carried forward to any arbitrary Eagle-specification, where
one subsequently replaces occurrences of sequential composition formulæ – from
innermost sub-formulæ to outermost sub-formulæ.

3.2 Concatenation in Terms of Sequential Composition

Concatenation can be expressed in terms of sequential composition as well. How-
ever, due to the semantics of the concatenation operator, there is no single substi-
tution mechanism for substituting all occurrences of concatenation sub-formulæ
by equivalent sequential composition sub-formulæ. For concatenation, one or
even both operands can hold on the empty trace, while sequential composition
requires that its operands hold on sub-traces of non-zero length. Therefore a
substitution of a concatenation sub-formula by an equivalent sequential compo-
sition formula has to take into account that one or both of the concatenation’s
sub-formulæ might hold on the empty trace. Depending on which of the two
operands of concatenation sub-formulæ can hold on the empty trace, different
sequential composition formulæ have to be substituted.

In the following, it will be proven that for a given Eagle formula, it can be
determined if it holds on the empty trace (Lemma 1). From this particular result
it follows immediately that concatenation is expressible in terms of sequential

2 We omit most proofs in this paper due to page number restrictions. The full proofs
were included for the review of the paper and can be obtained from the authors.

Forays into Sequential Composition and Concatenation in Eagle 75

composition, such that for each combination of concatenation sub-formulæ which
may or may not hold on the empty trace, a suitable sequential composition
formula can be substituted (Theorem 2).

We show that it is sufficient to inspect an Eagle-formula syntactically, in
order to verify whether it would be satisfied on the empty trace or not. More
importantly, rule applications do not have to be substituted by their rule bodies
at any point, which would otherwise lead to undecidability of the problem. The
latter is due to the possible encoding of a Turing-machine or equivalent device
in Eagle.3

Lemma 1. For an arbitrary formula in Eagle, it is decidable whether it is
satisfiable on the empty trace.

Proof. For an arbitrary formula we can inductively determine whether it holds
on the empty trace or not.

Base cases: The formulæ False, expression , �F , �F , F1 ; F2 and N(. . .),
with (min N(T1 x1, . . . , Tn xn) = F) ∈ D, are not satisfied on the empty trace,
whereas True, and N(. . .), with (max N(T1 x1, . . . , Tn xn) = F) ∈ D, are
satisfied on the empty trace.

Inductive step: The formulæ F1 ∧ F2 and F1 · F2 are satisfied on the empty
trace, iff F1 and F2 are satisfied on the empty trace. ¬F is satisfied on the empty
trace, when F is not satisfied on the empty trace. ��

We give a translation from any formula F1 · F2 to an equivalent concatenation-
free formula, which is parametrised by which of the operands F1 and F2 are
satisfiable on the empty trace. An arbitrary formula F1 · F2 is substituted by

ψ iff ε, 1 |= ¬F1 ∧ ¬F2,
ψ ∨ F1 iff ε, 1 |= ¬F1 ∧ F2,

ψ ∨ (�Limit() ∧ F2) iff ε, 1 |= F1 ∧ ¬F2,
ψ ∨ F1 ∨ (�Limit() ∧ F2) ∨ Limit() iff ε, 1 |= F1 ∧ F2,

where ψ ≡ (F1 ; (�2Limit() ; F2)) ∨�(�(F1 ∧ Limit()) ; (�2Limit() ; F2)).

Theorem 2. For every formula F of Eagle, we can give a semantically equiv-
alent formula F ′ of Eagle, where F ′ contains no concatenation sub-formula.

Again, this result can be carried forward to any arbitrary Eagle-specification,
where one subsequently replaces occurrences of concatenation formulæ – from
innermost sub-formulæ to outermost sub-formulæ.

4 Deterministic Cut Operators

Both sequential composition and concatenation allow a trace to be split non-de-
terministically, i.e. due to the semantics of the operators, several cut positions
3 It is in fact straightforward to implement a Minsky machine in Eagle, which is

Turing complete [Min61].

76 J. Baran and H. Barringer

may satisfy a formula F1 ; F2 or F1 · F2 on a given trace. The designer of a
monitoring specification may however desire a unique position of the cut, i.e. a
deterministic choice of where a trace is being cut.

In the following, mixfix operators are introduced which allow us to express de-
terministic cuts in specifications. These operators extend sequential composition
and concatenation by additionally verifying that there is no shorter, respectively
longer, sub-trace on which the sub-formula holds. It is shown that all determin-
istic cut operators can be formulated in unextended Eagle. Even though the
operators do not increase Eagle’s expressiveness, we show in Section 5 that the
new operators enable more efficient on-line monitoring.

4.1 Syntax and Semantics of Deterministic Cut Operators

Eagle with deterministic cut operators extends the syntax of Definition 1. For
brevity just the new BNF production F is given. The other productions are left
unchanged.

Definition 4. Eagle[] denotes an extension of Eagle with additional mixfix
operators, where the production F of Definition 1 is replaced by

F ::= False |True |xi | expression | ¬F |F1 ∨ F2 | � F | �F |
F1 ◦ F2 | �F1� ◦ F2 | �F1� ◦ F2 | F1 ◦ �F1� | F1 ◦ �F1� | N(F1, . . . , Fn)

◦ ::= ; | ·

In conjunction with a concatenation or sequential composition operator, we write
�F � and �F � to denote that F is only satisfied on its respectively shortest and
longest sub-trace of all the sub-traces that satisfy the unrestricted F . In the
following, we will then refer to �F � and �F � as the minimally and maximally
trace length restricting formulæ, respectively. As with the definition of Eagle[]’s
syntax, only the extensions to Eagle’s semantics is given.

Definition 5. On traces σ = s1s2 . . . s|σ| the satisfiability relation σ, i |=D F ,
with 0 ≤ i ≤ |σ| + 1, is extended by

σ, i |=D �F1� · F2 iff ∃j. i ≤ j ≤ |σ| + 1 and σ[1,j−1], i |=D F1 and
σ[j,|σ|], 1 |=D F2 and ¬∃k.i − 1 ≤ k < j − 1 and σ[1,k], i |= F1

σ, i |=D �F1� · F2 iff ∃j. i ≤ j ≤ |σ| + 1 and σ[1,j−1], i |=D F1 and
σ[j,|σ|], 1 |=D F2 and ¬∃k.j ≤ k ≤ |σ| and σ[1,k], i |= F1

σ, i |=D F1 · �F2� iff ∃j. i ≤ j ≤ |σ| + 1 and σ[1,j−1], i |=D F1 and
σ[j,|σ|], 1 |=D F2 and ¬∃k.j < k ≤ |σ| + 1 and σ[k,|σ|], 1 |= F2

σ, i |=D F1 · �F2� iff ∃j. i ≤ j ≤ |σ| + 1 and σ[1,j−1], i |=D F1 and
σ[j,|σ|], 1 |=D F2 and ¬∃k.1 ≤ k < j and σ[k,|σ|], 1 |= F2

σ, i |=D �F1� ; F2 iff ∃j. i < j ≤ |σ| + 1 and σ[1,j−1], i |=D F1 and
σ[j−1,|σ|], 1 |=D F2 and ¬∃k.i ≤ k < j − 1 and σ[1,k], i |= F1

Forays into Sequential Composition and Concatenation in Eagle 77

σ, i |=D �F1� ; F2 iff ∃j. i < j ≤ |σ| + 1 and σ[1,j−1], i |=D F1 and
σ[j−1,|σ|], 1 |=D F2 and ¬∃k.j ≤ k ≤ |σ| and σ[1,k], i |= F1

σ, i |=D F1 ; �F2� iff ∃j. i < j ≤ |σ| + 1 and σ[1,j−1], i |=D F1 and
σ[j−1,|σ|], 1 |=D F2 and ¬∃k.j ≤ k ≤ |σ| and σ[k,|σ|], 1 |= F2

σ, i |=D F1 ; �F2� iff ∃j. i < j ≤ |σ| + 1 and σ[1,j−1], i |=D F1 and
σ[j−1,|σ|], 1 |=D F2 and ¬∃k.1 ≤ k < j − 1 and σ[k,|σ|], 1 |= F2

We depict three applications of the deterministic cut operators in Figure 2 below,
where we show the evaluation of σ, 1 |= Eventually(err) ; �rst�, σ, 1 |= ϕ and
σ, 1 |= ψ on an example trace σ as shown below:

Eventually(err) ; �rst

ϕ

ψ

ϕ ≡ �Eventually(err ∧ Eventually(rst))� · ok
ψ ≡ True · ��err ∧ Eventually(rst)� · ok

Fig. 2. Examples of deterministic cut operator applications

Remark : It should be noted that while σ, 1 |= Eventually(err) ; �rst� is satisfied
on the example trace, we have σ, 1 �|= Eventually(err) ; �ok�. The longest sub-
trace on which “ok” is satisfied is the whole trace, but for that cut the left-hand
formula Eventually(err) is not true.

4.2 Definability of Deterministic Cut Operators in Eagle

It is not apparent whether the mixfix variants of sequential composition and
concatenation can also be defined in Eagle. In the following it will be shown
that Eagle[] is not more expressive than Eagle. The translation of the maximal
mixfix operators into Eagle is given first, followed by the translation for the
minimal mixfix operators.

For the maximal mixfix-operators, we will use the rules4

4 NonMtMxLT spells out as NonEmptyMaximalLeftTrace, etc.

78 J. Baran and H. Barringer

min NonMtMxLT(Form F1,Form F2) =
(((F1 ∧ �Limit()) · F2) → ¬((F1 ∧ Eventually(�2Limit())) ·True)) ∨�NonMtMxLT(�F1, F2,),

min NonMtMxRT(Form F1,Form F2) =
((F1 · (F2 ∧ �Limit())) → ¬(True · (F2 ∧ Eventually(�2Limit())))) ∨�NonMtMxRT(F1,�F2),

min NonMtMxOvrlpngLT(Form F1,Form F2) =
(((F1 ∧ �Limit()) ; F2) → ¬((F1 ∧ Eventually(�2Limit())) ; True)) ∨�NonMtMxOvrlpngLT(�F1, F2,),

min NonMtMxOvrlpngRT(Form F1,Form F2) =
((F1 ; (F2 ∧ �Limit())) → ¬(True ; (F2 ∧ Eventually(�2Limit())))) ∨�NonMtMxOvrlpngRT(F1,�F2),

in order to denote the semantics of �F1�·F2, F1 ·�F2�, �F1� ; F2 and F1 ; �F2� on
non-empty traces, respectively. Since �F1� ·F2 and F1 · �F2� could be satisfiable
on the empty trace, their corresponding rules in the respective translations have
to be accompanied by a formula that explicitly handles the formulæ holding on
the empty trace.

We outline the semantics of NonMtMxLT(F1, F2) only, since the semantics
of the remaining rules can be explained similarly. When NonMtMxLT(F1, F2)
is substituted for �F1� · F2, the first invocation of its rule body will cause a cut
of the form (((F1 ∧ �Limit()) · F2) → ¬((F1 ∧ Eventually(�2Limit())) ·True)).
The sub-formula (F1 ∧ �Limit()) · F2 denotes that the cut is enforced so that
the right boundary of the left-subtrace follows immediately the current index at
which the rule body is evaluated at. Then, the implication following the formula
¬((F1 ∧ Eventually(�2Limit())) ·True)) assures that F1 is not satisfied on any
sub-trace for which the cut is made further to the right. Alternatively, the rule
body enters a recursion due to the disjunctive formula �NonMtMxLT(�F1, F2).
With each recursion, the cut is moved one index further to the right, where the
recursion terminates as soon as the boundary of the trace under inspection is
reached.

With these rule definitions, the maximal mixfix operators can be expressed in
Eagle as

�F1� · F2 ≡ (((F1 ∧ Limit()) · F2) → ¬((F1 ∧ ¬Limit()) ·True)) ∨
NonMtMxLT(F1, F2)

F1 · �F2� ≡ ((F1 · (F2 ∧ Limit())) → ¬(True · (F2 ∧ ¬Limit()))) ∨
NonMtMxRT(F1, F2)

�F1� ; F2 ≡ NonMtMxOvrlpngLT(F1, F2)
F1 ; �F2� ≡ NonMtMxOvrlpngRT(F1, F2)

Theorem 3. For each of the formulæ �F1�·F2, F1 ·�F2�, �F1� ; F2 and F1 ; �F2�
of Eagle[] there exists a semantically equivalent formula in Eagle.

For the minimal mixfix-operators, the translations are much simpler. Here, we
only need an additional rule

Forays into Sequential Composition and Concatenation in Eagle 79

min ShorterNonEmptyTrace(Form F) =
((F ∧�Limit()) ·�True) ∨ �ShorterNonEmptyTrace(�F)

which is satisfied when there is a shorter non-empty sub-trace of the current trace
under inspection on which F is satisfied. In the actual translation, it is then suffi-
cient to verify whether the restricted sub-formula cannot be satisfied on a shorter
sub-trace. For example, �F1�·F2 becomes (F1∧¬ShorterNonEmptyTrace(F1))·F2,
which reflects the semantics of �F1� ·F2 under the assumption that F1 is not sat-
isfied on the empty trace. Since for mixfix concatenation formulæ it is the case
that the trace length restricted formula can also be satisfied on the empty trace,
we have to add a formula to the translations which explicitly addresses this.

When also considering the minimal mixfix operators’ semantics on the empty
trace, we get the following translations into Eagle:

�F1� · F2 ≡ ((F1 ∧ Limit()) · F2) ∨
(((F1 ∧ ¬ShorterNonEmptyTrace(F1)) · F2) → ¬(F1 ∧ Limit() ·True))

F1 · �F2� ≡ (F1 · (F2 ∧ Limit())) ∨
((F1 · (F2 ∧ ¬ShorterNonEmptyTrace(F2))) → ¬(True · (F2 ∧ Limit())))

�F1� ; F2 ≡ (F1 ∧ ¬ShorterNonEmptyTrace(F1)) ; F2

F1 ; �F2� ≡ F1 ; (F2 ∧ ¬ShorterNonEmptyTrace(F2))

Theorem 4. For each of the formulæ �F1�·F2, F1 ·�F2�, �F1� ; F2 and F1 ; �F2�
of Eagle[] there exists a semantically equivalent formula in Eagle.

5 On-Line Monitoring of Deterministic Cut Operators

In [BGHS04b], a calculus for Eagle was presented that defines directly an on-
line monitoring algorithm in which observation states are consumed on a step-by-
step basis in tandem with a partial evaluation of the monitoring formula. Here,
Eagle’s calculus is extended by rules that encode the semantics of the mixfix
operators of Eagle[]. For the calculus of Eagle[], we establish that the asymp-
totic space complexity of on-line monitoring for the variants with restrictions
applied to the left operand is no worse than the asymptotic space complex-
ity of the sub-formulæ. For the operators with restrictions applied to the right
operand, we show that the space complexity coincides with the corresponding
non-deterministic operators.

The extended calculus allows us an efficient evaluation, which can not be
achieved by substituting appearances of mixfix operators by their semantically
equivalent Eagle-formulæ. For example, in the extended calculus the evaluation
of F1 ; �F2� takes |σ| applications of eval 〈〈. . .〉〉, while the semantically equivalent
Eagle-formula F1 ; (F2 ∧ ¬ShorterNonEmptyTrace(F2)) takes already |σ|2 ap-
plications of eval 〈〈. . .〉〉 due to evaluation of the sequential composition operator
in the formula, plus the evaluation steps for the rule ShorterNonEmptyTrace(F2).

80 J. Baran and H. Barringer

5.1 Eagle’s On-Line Monitoring Algorithm

The evaluation calculus presented in [BGHS04b] used four functions. First, a
formula is initialised using init〈〈. . .〉〉, which substitutes rules by their rule bodies.
Second, eval 〈〈. . .〉〉 evaluates the resulting formula in the current state, where
update〈〈. . .〉〉 takes care of �-operators so that a history of states does not need
to be stored. Third, value〈〈. . .〉〉 determines the truth value of the verification at
the boundaries of the trace.

In the following, ρb.F (b) is a closed term which denotes a fixed-point, such that
ρb.F (b) = F (ρb.F (b)), where b represents the recursion variable. Furthermore,
named operators are introduced. The named operators are indeed functions of
some type Form × . . . × Form → Form such that it is possible to rewrite a
formula during evaluation.

Rules are assumed to have their parameters ordered by their type in the
form N(Form F1, . . . ,Form Fm, primitive type x1, . . . , primitive type xn) = F .
W.l.o.g. all definitions can be rewritten into this form by simply reordering the
rule’s arguments. The arguments are then written as two vectors �F and �P with
types −−−→Form and �T respectively. Similar to the rewriting of �, each rule N
is rewritten as N : Form × �T → Form during initialisation, where the first
argument denotes a recursive application of the rule body of N .

Definition 6. A monitoring formula F holds on a trace σ = s1s2 . . . s|σ|, iff the
formula value〈〈eval〈〈. . . eval〈〈eval〈〈init〈〈F, null, null〉〉, s1〉〉, s2〉〉 . . ., s|σ|〉〉〉〉 evalu-
ates to True, where null denotes a special element that is not equivalent to any
other formula of Eagle. Instances of vector types −−−→Form and �T are denoted
by 〈F1, . . . , Fn〉 and 〈p, . . . , r〉 respectively. For both vector types, �∅ denotes the
empty vector. The rules for the temporal operators and temporal predicates are:

init〈〈�F,Z, b′〉〉 = Next(init〈〈F,Z, b′〉〉)
init〈〈�F,Z, b′〉〉 = Previous(α, value〈〈α〉〉), where α = init〈〈F,Z, b′〉〉

init〈〈F1 ◦ F2, Z, b
′〉〉 = init〈〈F1, Z, b

′〉〉 ◦ init〈〈F2, Z, b
′〉〉, where ◦ ∈ {·, ; }

init〈〈N(�F , �P), N(�F , �P ′), b′〉〉 = N(b′, �P)

init〈〈N(�F , �P), Z, b′〉〉 = N(ρb.init〈〈F [F̂ / �F], N(�F , �P), b〉〉, �P), where

F̂ = init〈〈�F ,Z, b′〉〉 and Z �≡ N(�F , . . .)

value〈〈Next(F)〉〉 =

j
F if at the beginning of the trace
False if at the end of the trace or |σ| = 0

value〈〈Previous(F, F̂)〉〉 =

j
False if at the beg. of the trace or |σ| = 0
value〈〈F 〉〉 if at the end of the trace

value〈〈F1 · F2〉〉 = value〈〈F1〉〉 ∧ value〈〈F2〉〉
value〈〈F1 ; F2〉〉 = False

value〈〈N(�F , �P)〉〉 =

j
True if (max N(. . .)) ∈ R,
False otherwise

Forays into Sequential Composition and Concatenation in Eagle 81

eval〈〈Next(F), s〉〉 = update〈〈F, s,null, null〉〉
eval〈〈Previous(F, F̂), s〉〉 = eval〈〈F̂ , s〉〉

eval〈〈F1 · F2, s〉〉 = if value〈〈F1〉〉 = True then (α · F2) ∨ eval〈〈F2, s〉〉
else α · F2, where α = eval〈〈F1, s〉〉

eval〈〈F1 ; F2, s〉〉 = if value〈〈α〉〉 = True then (α ; F2) ∨ eval〈〈F2, s〉〉
else α ; F2, where α = eval〈〈F1, s〉〉

eval〈〈N(ρb′.F (b′), �P), s〉〉 = eval〈〈F (ρb′.F (b′))[eval〈〈�P , s〉〉/�p], s〉〉

update〈〈Next(F), s, Z, b′〉〉 = Next(update〈〈F, s, Z, b′〉〉)
update〈〈Previous(F, F̂), s, Z, b′〉〉 = Previous(update〈〈F, s, Z, b′〉〉, eval〈〈F, s〉〉)

update〈〈F1 ◦ F2, s, Z, b
′〉〉 = update〈〈F1, s, Z, b

′〉〉 ◦ F2, where ◦ ∈ { ; , ·}
update〈〈α, s, α, b′〉〉 = N(b′, �P), where α ≡ N(ρb.F (b), �P)

update〈〈α, s, F̂ , Z〉〉 = N(ρb′.update〈〈F (ρb′.F (b′)), s, α, �P 〉〉, �P),

where α ≡ N(ρb.F (b), �P) and Z �≡ N(�F , . . .)

The rules for propositional constants and operators are defined in the obvious way.

We provide a rather simple example that shows the evaluation of the temporal
operators � and �. As example trace we have chosen a trace of length one,
where in its only state the proposition p is true.
Evaluating ��p on 〈{p}〉:

1. value〈〈eval 〈〈init〈〈��p, null, null〉〉, s1〉〉〉〉
2. value〈〈eval 〈〈Next(init〈〈�p, null, null〉〉), s1〉〉〉〉

For the next step, init〈〈�p, null, null〉〉 is rewritten to Previous(init〈〈p, null,
null〉〉, value〈〈init〈〈p, null, null〉〉〉〉). The first parameter of Previous(. . .) stores
the formula that would be evaluated after the �-operator. In the second pa-
rameter, the past is stored, which is referring to the left boundary of the trace
now.

3. value〈〈eval 〈〈
Next(Previous(init〈〈p, null, null〉〉, value〈〈init〈〈p, null, null〉〉〉〉)), s1〉〉〉〉

4. value〈〈eval 〈〈Next(Previous(p, value〈〈p〉〉)), s1〉〉〉〉
5. value〈〈eval 〈〈Next(Previous(p,False)), s1〉〉〉〉
6. value〈〈update〈〈Previous(p,False), s1, null, null〉〉〉〉

When Next(. . .) is evaluated, it is rewritten to update〈〈. . .〉〉. The last two pa-
rameters of update〈〈. . .〉〉 are only used in conjunction with the evaluation of rules,
so that they can be ignored in this example. update〈〈. . .〉〉 rewrites the arguments
of appearances of Previous(. . .), since due to the next operator, previous states
occur now as being shifted one state to the end of the trace. Hence, the first
parameter of Previous(. . .), which was used to store the initialised parameter
of the �-operator, is evaluated in this state and the result of this evaluation is
placed in the second parameter.

82 J. Baran and H. Barringer

7. value〈〈Previous(update〈〈p, s1, null, null〉〉, eval 〈〈p, s1〉〉)〉〉

value〈〈. . .〉〉 is now referring to the right boundary of the trace. Hence, the
second parameter of Previous(. . .), which is storing the result of the last state,
determines the outcome of value〈〈. . .〉〉.

8. value〈〈Previous(p,True)〉〉
9. value〈〈True〉〉

10. True

5.2 Eagle’s Monitoring Algorithm Extended

The following ternary rules LMxConcat(. . .), RMnConcat(. . .), RMxConcat(. . .),
LMxSeqComp(. . .), and RMnSeqComp(. . .), RMxSeqComp(. . .), with self-ex-
planatory correspondences to their respective mixfix operators, are used during
evaluation to sort out the shortest/longest sub-traces by updating the third ar-
gument depending on whether the first two arguments allow a cut to be made
or not.

Definition 7. (Extension of Definition 6) Eagle’s calculus is extended by mix-
fix variants of sequential composition, such that

init〈〈�F1� ◦ F2, Z, b
′〉〉 = �init〈〈F1, Z, b

′〉〉� ◦ init〈〈F2, Z, b
′〉〉

init〈〈�F1 ◦ F2, Z, b
′〉〉 = ϕ(init〈〈F1, Z, b

′〉〉, init〈〈F2, Z, b
′〉〉, null)

init〈〈F1 ◦ �F2�, Z, b′〉〉 = ϕ(init〈〈F1, Z, b
′〉〉, init〈〈F2, Z, b

′〉〉, null)
init〈〈F1 ◦ �F2, Z, b′〉〉 = ϕ(init〈〈F1, Z, b

′〉〉, init〈〈F2, Z, b
′〉〉,List(False,False, null))

value〈〈null〉〉 = False

value〈〈List(F1, F2, F3)〉〉 = if value〈〈F2〉〉 = True then F1

else value〈〈F3〉〉
value〈〈�F1� · F2〉〉 = value〈〈F1〉〉 ∧ value〈〈F2〉〉

value〈〈LMxConcat(F1, F2, F3)〉〉 = if value〈〈F1〉〉 = True then value〈〈F2〉〉
else value〈〈F3〉〉

value〈〈RMnConcat(F1, F2, F3)〉〉 = if value〈〈F2〉〉 = True then value〈〈F1〉〉
else value〈〈F3〉〉

value〈〈RMxConcat(F1, F2, F3)〉〉 = value〈〈Append(F3,List(value〈〈F1〉〉, F2, null))〉〉
value〈〈�F1� ; F2〉〉 = False

value〈〈LMxSeqComp(F1, F2, F3)〉〉 = value〈〈RMnSeqComp(F1, F2, F3)〉〉 =

value〈〈RMxSeqComp(F1, F2, F3)〉〉 = value〈〈F3〉〉

eval〈〈null, s〉〉 = null

eval〈〈List(F1, F2, F3), s〉〉 = List(F1, β, γ)

eval〈〈�F1� · F2, s〉〉 = if value〈〈F1〉〉 = True then β

else �α� · F2

Forays into Sequential Composition and Concatenation in Eagle 83

eval〈〈LMxConcat(F1, F2, F3), s〉〉 = if value〈〈F1〉〉 = True then

LMxConcat(α, F2, β)

else LMxConcat(α, F2, γ)

eval〈〈RMnConcat(F1, F2, F3), s〉〉 =

RMnConcat(α, F2, eval〈〈List(value〈〈F1〉〉, F2, F3), s〉〉)
eval〈〈RMxConcat(F1, F2, F3), s〉〉 =

RMxConcat(α, F2, eval〈〈Append(F3,List(value〈〈F1〉〉, F2, null)), s〉〉)
eval〈〈�F1� ; F2, s〉〉 = if value〈〈α〉〉 = True then β

else �α� ; F2

eval〈〈LMxSeqComp(F1, F2, F3), s〉〉 = if value〈〈α〉〉 = True then

LMxSeqComp(α, F2, β)

else LMxSeqComp(α, F2, γ)

eval〈〈RMnSeqComp(F1, F2, F3), s〉〉 =

RMnSeqComp(α, F2, eval〈〈List(value〈〈α〉〉, F2, F3), s〉〉)
eval〈〈RMxSeqComp(F1, F2, F3), s〉〉 =

RMxSeqComp(α, F2, eval〈〈Append(F3,List(value〈〈α〉〉, F2, null)), s〉〉)

update〈〈�F1� ◦ F2, s, Z, b
′〉〉 = �update〈〈F1, s, Z, b

′〉〉� ◦ F2

update〈〈ϕ(F1, F2, F3), s, Z, b
′〉〉 =

ϕ(update〈〈F1, s, Z, b
′〉〉, F2, F3)

where α ≡ eval〈〈F1, s〉〉, β ≡ eval〈〈F2, s〉〉, γ ≡ eval〈〈F3, s〉〉, ◦ ∈ { ; , ·}, and ϕ denotes
the rule LMxSeqComp, RMnSeqComp, RMxSeqComp, LMxConcat, RMnConcat,
RMxConcat, which is apparent from the context.

Theorem 5. The semantics of Eagle[]’s calculus (Definition 7) coincide with
the semantics of the corresponding logic (Definition 5).

5.3 On-Line Monitoring Complexity

We now consider the time and space requirements of the evaluation of con-
catenation, sequential composition and the mixfix operators. In [BGHS04a], we
showed that the time and space complexity of the future LTL fragment of Ea-

gle is independent of the length of the monitoring trace. We first show below
that the evaluation of a non-deterministic cut operator F1 ◦F2, ◦ ∈ { ; , ·}, whose
operands are free of cut formula may require O(|σ|2) number of calls to evalu-
ate F2 (Theorem 6). However, for the mixfix operators with restrictions on the
left, the complexity is reduced to being independent of the trace length again
(Theorem 7).

Consider an arbitrary formula F1 · F2. The state evaluation rule for concate-
nation is given by

eval 〈〈F1 · F2, s〉〉 = if value〈〈F1〉〉 = True then (eval 〈〈F1, s〉〉 · F2) ∨ eval 〈〈F2, s〉〉
else eval 〈〈F1, s〉〉 · F2

84 J. Baran and H. Barringer

In the worst case scenario of evaluating concatenation, a non-deterministic cut
is made at each state of a trace. This can be enforced by the formula True ·F2.
On an arbitrary trace σ, True · F2 is evaluated as

value〈〈eval 〈〈. . . eval 〈〈eval 〈〈init〈〈True · F2, null, null〉〉, s1〉〉, s2〉〉 . . ., s|σ|〉〉〉〉

By straightforward applications of rules of Eagle[]’s calculus, the evaluation
can be unfolded as

value〈〈
|σ|∨

n=1

eval 〈〈. . . eval 〈〈eval 〈〈init〈〈F2, null, null〉〉, sn〉〉, sn+1〉〉 . . ., s|σ|〉〉〉〉

Relative to the evaluation of F2, the formula requires (|σ|2 + |σ|)/2 appli-
cations of eval〈〈. . .〉〉. This argumentation can be carried forward to sequential
composition as well, and additionally, to all mixfix operators with restrictions
on the right operand.

Theorem 6. For a given trace σ, the operators F1 · F2, F1 ; F2, F1 · �F2�, F1 ·
�F2�, F1 ; �F2� and F1 ; �F2� require up to O(|σ|2) applications of eval〈〈. . .〉〉 in
addition to the applications required to evaluate F1 and F2.

When we consider a mixfix formula with deterministic restrictions on the left
operand, e.g. �F1� · F2, then we can show that we only need linear-space for its
evaluation – relative to the space required to evaluate the operands. By taking
the state-evaluation rule for �F1� · F2, i.e.

eval 〈〈�F1� · F2, s〉〉 = if value〈〈F1〉〉 = True then eval 〈〈F2, s〉〉
else �eval 〈〈F1, s〉〉� · F2

one can immediately see that the non-deterministic choice of concatenation (i.e.
(eval 〈〈F1, s〉〉 ·F2) ∨eval 〈〈F2, s〉〉) is replaced by a single application of eval〈〈. . .〉〉.
We can carry this forward to all mixfix operators with restrictions on the left
operand, so that we obtain the following result:

Theorem 7. For a given trace σ, the left mixfix operators �F1� · F2, �F1� · F2,
�F1� ; F2 and �F1� ; F2 require only O(|σ|) applications of eval〈〈. . .〉〉 in addition
to the applications required to evaluate F1 and F2.

6 Conclusion

For the runtime verification logic Eagle, we have shown that concatenation
and sequential composition are equally expressive. Furthermore, mixfix oper-
ators were introduced, which limit the possible number of cuts of sequential
composition and concatenation. The new operators restrict the lengths of the
sequential composition/concatenation sub-traces, such that the corresponding
sub-formula is satisfied on a sub-trace of minimal or maximal length. Since the

Forays into Sequential Composition and Concatenation in Eagle 85

cut is then uniquely defined on the trace, the mixfix variants of sequential com-
position and concatenation are deterministic counterparts of their corresponding
non-mixfix operators. We further showed that the semantics of the mixfix op-
erators are already definable in unextended Eagle. For all mixfix operators,
semantically equivalent mixfix operator free formulæ were presented. We then
extended Eagle’s on-line monitoring calculus with rules for the new operators,
where we could show that right-hand side restricted mixfix operators evaluate as
efficiently as their non-deterministic counterparts, and left-hand side restricted
mixfix operators can be evaluated more efficiently.

Acknowledgements

Joachim Baran thanks the EPSRC and the School of Computer Science for the
research training awards enabling this work to be undertaken.

References

[BGHS04a] Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Program monitoring
with LTL in EAGLE. In: 18th International Parallel and Distributed Pro-
cessing Symposium, IPDPS 2004. IEEE Computer Society, Los Alamitos
(2004)

[BGHS04b] Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Rule-based runtime
verification. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937,
pp. 44–57. Springer, Heidelberg (2004)

[CHMP81] Chandra, A., Halpern, J., Meyer, A., Parikh, R.: Equations between regu-
lar terms and an application to process logic. In: STOC 1981: Proceedings
of the 13th Annual ACM Symposium on Theory of Computing, pp. 384–
390. ACM Press, New York (1981)

[Koz83] Kozen, D.: Results on the propositional µ-calculus. Theoretical Computer
Science 27, 333–354 (1983)

[Min61] Minsky, M.L.: Recursive unsolvability of Post’s problem of “tag” and
other topics in theory of Turing machines. The Annals of Mathemat-
ics 74(3), 437–455 (1961)

[Wol83] Wolper, P.: Temporal logic can be more expressive. Information and Con-
trol 56(1–2), 72–99 (1983)

Checking Traces for Regulatory Conformance�

Nikhil Dinesh, Aravind Joshi, Insup Lee, and Oleg Sokolsky

Department of Computer Science,
University of Pennsylvania,

Philadelphia, PA 19104-6389, USA
{nikhild,joshi,lee,sokolsky}@seas.upenn.edu

Abstract. We consider the problem of checking whether the operations of an
organization conform to a body of regulation. The immediate motivation comes
from the analysis of the U.S. Food and Drug Administration regulations that ap-
ply to bloodbanks - organizations that collect, process, store, and use donations of
blood and blood components. Statements in such regulations convey constraints
on operations or sequences of operations that are performed by an organization.
It is natural to express these constraints in a temporal logic.

There are two important features of regulatory texts that need to be accommo-
dated by a representation in logic. First, the constraints conveyed by regulation
can be obligatory (required) or permitted (optional). Second, statements in regu-
lation refer to others for conditions or exceptions. An organization conforms to a
body of regulation if and only if it satisfies all the obligations. However, permis-
sions provide exceptions to obligations, indirectly affecting conformance.

In this paper, we extend linear temporal logic to distinguish between obli-
gations and permissions, and to allow statements to refer to others. While the
resulting logic allows for a direct representation of regulation, evaluating refer-
ences between statements has high complexity. We discuss an empirically moti-
vated assumption that lets us replace references with tests of lower complexity,
leading to efficient trace-checking algorithms in practice.

1 Introduction

Regulations, laws and policies that affect many aspects of our lives are represented
predominantly as documents in natural language. Mechanically checking compliance
with these regulations and policies is an area of growing importance [1,2,3].

In this paper, we will consider one such regulation, the Food and Drug Administra-
tion’s Code of Federal Regulations (FDA CFR) [4] that governs the operations of U.S.
bloodbanks. The CFR is developed by experts in the field of medicine, and regulates
the tests that need to be performed on donations of blood before they are used.

Bloodbanks are organizations that perform collection, testing, storage, and distri-
bution of blood donations and are required to conform to the regulation (CFR). The
operations of a bloodbank are logged in a database that keeps track of donations that
are collected by the bloodbank, tests that are performed on them and, ultimately, the

� This research was supported in part by NSF CCF-0429948, NSF-CNS-0610297, ARO
W911NF-05-1-0158, and ONR MURI N00014-04-1-0735.

M. Leucker (Ed.): RV 2008, LNCS 5289, pp. 86–103, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Checking Traces for Regulatory Conformance 87

way each donation is used. Our goal is to check in an efficient manner that the opera-
tions as recorded in the database are compliant with the CFR, and to raise an alarm if a
non-compliant action is detected. To achieve this goal, we first need to settle on an ap-
proach to formalize regulatory documents, and then consider the feasibility of checking
database logs with respect to the formalized regulations.

As we illustrate with examples in Section 2, the basic structure of regulatory state-
ments is to declare that a certain action can take place when certain conditions apply.
At a first glance, it seems that such statements can be encoded as logical clauses, where
a set of preconditions imply a postcondition. However, there are two complications that
need to be addressed. First, regulations convey permissions and obligations, which have
to be reflected in the formal description and handled accordingly during the checking.
Second, a common phenomenon in regulatory texts is for sentences to function as con-
ditions or exceptions to others. This function of sentences makes them dependent on
others for their interpretation, and makes the translation to logic difficult. We call this
the problem of references to other laws, and it is the central focus of this paper.

In Section 2, we argue that a logic to represent regulation should provide mechanisms
for statements to refer to others, and to make inferences from the sentences referred to.
We then turn to formalization of regulatory documents and regulated operations. In Sec-
tion 3.1, we define an abstract model for representing the operations of an organization,
followed in Section 3.2 by a predicate-based linear temporal logic to express normative
statements in regulation. Formal definitions of conformance are given. We then extend
the logic to allow sentences to refer to others, in Section 3.3.

Section 4 describes the checking process. We adapt the methodology of the rule-
based formalism Eagle [5] to handle references. In order to check statements with ref-
erences, we need to compute a fixed point, propagating information between references
from one statement to another until we get a consistent evaluation. The evaluation of
references has high complexity. We identify a condition, motivated by a case study of
the CFR, under which references can be replaced by tests of lower complexity. We also
discuss a prototype checking tool.

Section 5 concludes with a discussion of future research directions and a survey of
related work.

2 Motivation

In this section, we consider a representative sample of the CFR and argue that a logic
to represent regulation should provide a mechanism for sentences to refer to others.

Example. Below we present shortened versions of sentences from the CFR Section
610.40, which we will use as a running example throughout the paper.

(1) Except as specified in (2), every donation of blood or blood component must be
tested for evidence of infection due to Hepatitis B.

(2) You are not required to test donations of source plasma for evidence of infection
due to Hepatitis B.

Statement (1) conveys an obligation to test donations of blood or blood component
for Hepatitis B, and (2) conveys a permission not to test a donation of source plasma

88 N. Dinesh et al.

(a blood component) for Hepatitis B. To assess an organization’s conformance to (1)
and (2), it suffices to check whether “all non-source plasma donations are tested for
Hepatitis B”. In other words, (1) and (2) imply the following obligation:

(3) Every non-source plasma donation must be tested for evidence of infection due
to Hepatitis B.

There are a variety of logics in which one can capture the interpretation of (3), as
needed for conformance. For example, in first-order logic, one can write ∀x : (d(x) ∧
¬sp(x)) ⇒ test(x), where d(x) is true iff x is a donation, sp(x) is true iff x is a source
plasma donation, and test(x) is true iff x is tested for Hepatitis B. Thus, to represent (1)
and (2) formally, we inferred that they implied (3) and (3) could be represented more
directly in a logic.

Now suppose we have a sentence that refers to (1):

(4) To test for Hepatitis B, you must use a screening test kit.

The reference is more indirect here, but the interpretation is: “if (1) requires a test,
then the test must be performed using a screening test kit”. A bloodbank is not prevented
from using a different kind of test for source plasma donations. (4) can be represented
by first producing (3), and then inferring that (3) and (4) imply the following:

(5) Every non-source plasma donation must be tested for evidence of infection due
to Hepatitis B using a screening test kit.

It is easy to represent the interpretation of (5) directly in a logic. However, (5) has a
complex relationship to the sentences from which it was derived, i.e., (1), (2) and (4).
The derivation takes the form of a tree:

(5)

(3)

(1) (2)

(4)

We argue that constructing a single derived obligation from multiple statements
should be avoided. On the one hand, the derived obligation can become very com-
plex. The full version of statement (1) in the CFR contains six exceptions, and these
exceptions in turn have statements that qualify them further. A statement can be used
as an exception to multiple other statements, and it is easy to see that the derived obli-
gation can be exponentially larger than the original set of statements. We advocate an
approach that allows us to introduce references into the syntax of the logic, and resolve
references during evaluation.

3 Formalization of Regulatory Documents

In this section, we extend linear temporal logic (LTL) to distinguish between obligations
and permissions, and allow references between statements. We begin, in Section 3.1,
by representing a bloodbank as a run or trace. Section 3.2 extends LTL to distinguish
between obligations and permissions, leading to definitions of conformance. We then
extend the logic to allow sentences to refer to others (Section 3.3).

Checking Traces for Regulatory Conformance 89

3.1 Model for Regulated Operations

Given the need to demonstrate conformance to the regulation in case of an audit, regu-
lated organizations such as bloodbanks keep track of their operations in a database, for
example donor information and the tests they perform. Such a system can be thought
of abstractly as a relational structure evolving over time. At each point in time (state),
there are a set of objects (such as donations and donors) and relations between the ob-
jects (such as an association between a donor and her donations). The state changes by
the creation, removal or modification of objects. We represent this as a run.

Definition 1 (A Run of a System). Given a set O (of objects) and countable sets
Φ1, ..., Φn (where Φj is a set of predicate names of arity j), a run of a system R(O,
Φ1, ..., Φn), abbreviated as R, is a tuple (r, π1, ..., πn) where:

– r : N → S is a sequence of states. N is the set of natural numbers, and S is a set
of states.

– πj : Φj × S → 2Oj

is a truth assignment to predicates of arity j. Given p ∈ Φj ,
we will say that p(o1, ..., oj) is true at state s iff (o1, ..., oj) ∈ πj(p, s).

Given a run R and a time i ∈ N , the pair (R, i) is called a point (statements in linear
temporal logic are evaluated at points). Given the predicate names (Φ1, ..., Φn), the
corresponding space of runs is denoted by R(Φ1, ..., Φn), abbreviated as R.

Table 1. A run of a bloodbank

Time Objects Predicates
1 o1 d(o1), sp(o1), ¬test(o1)
2 o1 d(o1), sp(o1), ¬test(o1)

o2 d(o2), ¬sp(o2), ¬test(o2)
3 o1 d(o1), sp(o1), test(o1)

o2 d(o2), ¬sp(o2), ¬test(o2)

Table 1 shows a possible run of a bloodbank. First, an object o1 is entered into the
system. o1 is a donation of source plasma (d(o1) and sp(o1) are true). When a donation
is added, its test predicate is initially false. Then, an object o2 is added, which is a
donation but not of source plasma. In the third step, the object o1 is tested.

3.2 Logic for Regulatory Conformace

Predicate-based Linear Temporal Logic (PredLTL). The logic that we define in
this section is a restricted fragment of first-order modal logic. The restriction is that
we allow formulas with free variables, but no quantification over objects. Formulas
will be interpreted using the universal generalization rule, i.e., over all assignments to
free variables. The restrictions are similar in spirit to logic programs, which have been
observed to be sufficiently expressive for the generic statements in regulation [6,7].

90 N. Dinesh et al.

Definition 2 (Syntax). Given sets Φ1, ..., Φn (of predicate names) and a set of variables
X , the language L(Φ1, ..., Φn, X), abbreviated as L, is the smallest set such that:

– p(y1, ..., yj) ∈ L where p ∈ Φj and (y1, ..., yj) ∈ Xj .
– If ϕ ∈ L, then ¬ϕ ∈ L and �ϕ ∈ L. If ϕ, ψ ∈ L, then ϕ ∧ ψ ∈ L.

Disjunction ϕ ∨ ψ = ¬(¬ϕ ∧ ¬ψ) and implication ϕ ⇒ ψ = ¬ϕ ∨ ψ are derived
connectives. The temporal operator is understood in the usual way: �ϕ (ϕ holds and
will always hold (globally)). �ϕ (ϕ will eventually hold) is defined as ¬�¬ϕ.

We now extend the syntax to express normative statements in a body of regulation,
by distinguishing between obligations and permissions.

Definition 3 (Syntax of Regulation). Given a finite set of identifiers ID, a body of
regulation Reg is a set of statements such that for each id ∈ ID, there exist ϕ, ψ ∈ L
such that either: id.o: ϕ � ψ ∈ Reg, or id.p: ϕ � ψ ∈ Reg

id.o: ϕ � ψ (id.p: ϕ � ψ) is read as: “it is obligated (permitted) that the precondition
ϕ leads to the postcondition ψ”.

Definition 4 (Semantics). Given a run R = (r, π1, ..., πn), ϕ ∈ L, and a variable
assignment v : X → O, the relation (R, i, v) |= ϕ is defined inductively as follows:

– (R, i, v) |= p(y1, ..., yj) iff (v(o1), ..., v(oj)) ∈ πj(p, r(i)).
– The semantics of conjunction and negation is defined in the usual way.
– (R, i, v) |= �ϕ iff for all k ≥ i : (R, k, v) |= ϕ.

We extend the semantic relation to regulatory staments. We take |= to stand for “con-
forms to”:

– (R, i, v) |=id.o: ϕ � ψ iff (R, i, v) |= ϕ ⇒ ψ (⇒ is implication)
– (R, i, v) |=id.p: ϕ � ψ. Runs vacuously conform to permissions. Permissions will

become relevant when references from obligations are present (Section 3.3).

Consider again our example from Section 2. We use three predicates defined as follows.
d(x) is true iff x is a donation. sp(x) is true iff x consists of source plama. test(x) is
true iff x is tested for Hepatitis B.

Statement (3) is represented as: 3.o: d(x) ∧ ¬sp(x) � �test(x). Statement (2) can
be represented as: 2.p: d(y) ∧ sp(y) � ¬�test(y). However, statement (1) cannot be
represented directly.

The deontic concepts of obligation and permission are treated as properties of sen-
tences. Only obligations matter for conformance. If a non-source plasma donation is not
tested, there is a problem. On the other hand, a bloodbank may choose to test a donation
of source plasma or not. In assessing conformance, the function of a permission is to
serve as an exception to an obligation, and in this indirect manner it becomes relevant.
We will give a semantics to this function of permissions in Section 3.3. Such a treatment
of permissions has its basis in the legal theory of Ross [8].

In the formulation here, obligations and permissions are top-level operators and can-
not be negated. This restriction can be removed in several ways, e.g., using a many-
valued interpretation. However, we avoid this to simplify presentation. A more crucial

Checking Traces for Regulatory Conformance 91

restriction is that iterated deontic constructs cannot be expressed directly, i.e., sentences
of the form “required to allow x” or “allowed to require x.”. One has to decide what
top-level obligations or permissions are implied by these constructs. To our knowledge,
handling iterated constructs is an open problem in deontic logic [9].

Conformance of a run R is defined using the notion of validity. ϕ is valid at the point
(R, i), (R, i) |= ϕ, iff for all variable assignments v: (R, i, v) |= ϕ. ϕ is valid in R,
R |= ϕ iff for all i : (R, i) |= ϕ.

Definition 5 (Run Conformance). Given a body of regulation Reg and a run R rep-
resenting the operations of an organization, we say that R conforms to the regulation
iff for all obligations id.o: ϕ � ψ ∈ Reg we have R |=id.o: ϕ � ψ.

The definition of conformance is given in terms of obligations. We now extend the logic
to allow sentences to refer to others making permissions relevant to conformance.

3.3 References to Other Laws

In this section, we describe the logical machinery we use to express and handle refer-
ences to laws. We give an example-driven account here, followed by a formal account
in the context of a runtime checking algorithm in Section 4.1.

We extend the syntax with an inference predicate byId(ϕ), where Id is a set of iden-
tifiers. byId(ϕ) is read as “by the laws in Id ϕ holds”. There are two restrictions: (a) ϕ is
a statement in PredLTL (Definition 2) and (b) the predicate byId(ϕ) can appear only in
preconditions of laws. These restrictions are similar to those that apply to justifications
in default logic [11]. In the examples that we discuss, the set Id has a single element,
i.e., a statement refers to a single other law. In general, laws refer to sets of statements,
e.g., “except as specified in this section”.

Consider again our example statements (1) and (2), which can now be represented as
follows:

– 1.o: d(x) ∧ ¬by{2}(ϕ(x)) � �test(x), and
– 2.p: d(y) ∧ sp(y) � ¬�test(y)

In the formula above, the subformula by{2}(ϕ(x)) is understood as “by the law (2) the
formula ϕ(x) holds”. It remains to define the formula ϕ(x). Intuitively, this should be
the negation of the postcondition of (1). In other words, if ¬�test(x) follows from (2),
then the postcondition of (1) need not hold.1

1.o: d(x) ∧ ¬by{2}(¬�test(x)) � �test(x)

We interpret by{2}(¬�test(x)), by letting formulas have output. In other words,
when the precondition of an obligation or permission is true at a point, the point is
annotated with the postcondition. Given a point (R, i) and a variable assignment v, first
we consider the formula 2.p: d(y) ∧ sp(y) � ¬�test(y). We evaluate this as follows:

1 When byId(ϕ) appears in the precondition of a law, ϕ need not be the negation of the post-
condition. An example is statement (4) in Section 2, which can be represented as:
4.o: by{1}(�test(z)) � �scr(z), where scr(z) is true iff z is tested using a screening test.

92 N. Dinesh et al.

– If (R, i, v) |= d(y) ∧ sp(y), (R, i) is annotated with 2: ¬�test(v(y)) . Observe
that the annotation happens regardless of whether (R, i, v) |= ¬�test(y) and the
variable is replaced with the object assigned to it.

– Otherwise, there is no annotation.

Given a variable assignment v and a PredLTL formula ϕ, v(ϕ) is the formula ob-
tained by replacing all variables x by an identifier for the object v(x). Note that v(ϕ)
is equivalent to a propositional LTL formula, as the variables have been replaced by
constant symbols. We now define annotations:

Definition 6 (Annotation). Given a run R, a set of identifiers ID, a variable assign-
ment v, and a body of regulation Reg, an annotation is a statement id: v(ψ) such that
id ∈ ID and id.x: ϕ � ψ ∈ Reg (which is either an obligation or a permission). The
set of annotations is denoted by A(R, ID, Reg), abbreviated A.

Definition 7 (Annotation Function). Given a run R, an annotation function α : N →
2A assigns a set of annotations to each point. Given a set of identifiers ID and Id ⊆
ID, we use α.Id(i) to denote the set of annotations id: ψ ∈ α(i) such that id ∈ Id.

Table 2. A run and its annotations

Time Objects Predicates Annotations
1 o1 d(o1), sp(o1), ¬test(o1) 2: ¬�test(o1)

2 o1 d(o1), sp(o1), ¬test(o1) 2: ¬�test(o1)
o2 d(o2), ¬sp(o2), ¬test(o2) 1: �test(o2)

3 o1 d(o1), sp(o1), test(o1) 2: ¬�test(o1)
o2 d(o2), ¬sp(o2), ¬test(o2) 1: �test(o2)

Table 2 shows a run of a bloodbank augmented with annotations. As we discussed in
Section 3.1, o1 is a donation of source plasma which is tested at time 3 and o2 is a
non-source plasma donation which has not been tested. Unless the run is extended to
test o2 as well, it does not conform with the regulation according to Definition 5.

Since the precondition of statement (2) is true for the assignment of y to o1, we
have the annotation 2: ¬�test(o1) at all points. However, since o2 is not a donation of
source plasma, there is no correponding annotation.

Now consider the formula by{2}(¬�test(x)). This is evaluated as follows:

– Evaluate 2.p: d(y) ∧ sp(y) � ¬�test(y) at (R, i) w.r.t. all variable assignments.
– Let ψ2 be the conjunction of the annotations produced by the formula for (2), i.e.,

ψ2 =
∧

ϕ for all ϕ ∈ α.{2}(i).
– (R, i, v) |= by{2}(¬�test(x)) iff |= ψ2 ⇒ ¬�test(v(x)).

Notice that the last step requires a validity check, but it is a validity check in (proposi-
tional) LTL. Validity in LTL is coNP-complete when the only modality is globally, and
PSPACE-complete with the until modality [12]. In Section 4, we discuss cases where
the size of the validity tests grows large, and we explore a restriction that lets us avoid
validity tests during checking.

Checking Traces for Regulatory Conformance 93

Returning to the run in Table 2, the states are annotated with 2: ¬�test(o1) and |=
¬�test(o1) ⇒ ¬�test(o1), since ϕ ⇒ ϕ is a propositional tautology. So (R, i, v) |=
by{2}(¬�test(x)) when v(x) = o1.

We can evaluate 1.o: d(x) ∧ ¬by{2}(¬�test(x)) � �test(x) similarly by an-
notating states with �test(x) if the precondition holds. In Table 2, this results in an
annotation of 1: �test(o2) on the appropriate states. If o2 is never tested, the run will
be declared non-conforming (by Definition 5), but the annotation will remain. This lets
a law which depends on (1) draw the correct inference.

The semantic evaluation outlined above works only when the references are acyclic,
since an order of evaluation needs to be defined. To handle cycles, we move to a three-
valued logic where the third (middle) value stands for undetermined. Initially, all state-
ments are undetermined, and there are no annotations. At each step we assign truth
values and annotations, using truth values and annotations from the previous step, until
we reach a fixed point. In a companion paper [10], which focusses on the design of the
logic, we prove that there is a least fixed point, which can be computed in an iterative
fashion. In this paper, we use the existence of the least fixed point to derive a runtime
checking algorithm.

4 Runtime Checking of Specifications with References

4.1 An Algorithm for Evaluating Specifications with References

We augment the evaluation procedure of the rule-based formalism Eagle [5] to handle
references. In Eagle, formulas in LTL are evaluated by transforming them into other
formulas, and discharging the remainder (if any) at trace end. The update calculus used
in [5] provides a general treatment of past modalities and data dependencies. To sim-
plify presentation, we will work directly with the formulas in the logic.

The key idea is to treat the predicate byId(ϕ) as kind of eventuality. As we discussed
in Section 3.3, to evaluate byId(ϕ) at time i, we need to check the annotations obtained
from the laws in Id at time i. If the preconditions of the laws in Id are temporal, we
need to wait until they are evaluated before the annotations are obtained. So, we need
to keep annotations for a time i until all subformulas byId(ϕ) for time i have been
evaluated. Given byId(ϕ) and a time i, we attempt to evaluate it using the current set
of annotations. If we cannot determine the truth value, byId(ϕ) is transformed into
byId(ϕ, i) (read as “byId(ϕ) is true at time i”), and evaluated at subsequent times.

Following [13], we use a three-valued logic with values from B3 = {#,⊥, ?}, with
the meaning true, false, and undetermined, respectively. For notational simplicity, we
use truth values as terms in preconditions:

Definition 8 (Syntax of Preconditions). Given sets Φ1, ..., Φn (of predicate names), a
set of variables X , and a finite set of identifiers ID, the language L′(Φ1, ..., Φn, X, ID),
abbreviated as L′, is the smallest set such that:

– If t ∈ B3, then t ∈ L′. p(y1, ..., yj) ∈ L′, where p ∈ Φj and (y1, ..., yj) ∈ Xj .
– If ϕ ∈ L′, then ¬ϕ ∈ L′ and �ϕ ∈ L′. If ϕ, ψ ∈ L′, then ϕ ∧ ψ ∈ L′

– If Id ⊆ ID and ϕ ∈ L(Φ1, ..., Φn, X) (Definition 2), then byId(ϕ) ∈ L′. In
addition, for all natural numbers i ∈ N , byId(ϕ, i) ∈ L′

94 N. Dinesh et al.

The syntax of regulatory statements (Definition 3) is modified so that the preconditions
of laws are statements from L′. The set L′ together with a set of regulatory statements
Reg is denoted by L+ = L′ ∪ Reg. Given a set of objects O, V (X, O) denotes the set
of all variable assigments, i.e., functions v : X → O.

We can now adapt the Eagle procedure of transforming formulas. The transformation
function uses two annotation functions α and α′ such that for all i, α(i) ⊆ α′(i). α(i) is
the set of annotations obtained from laws with true preconditions, while α′(i) is set of
annotations from laws with true or undetermined preconditions. The truth of byId(ϕ) is
determined using α, and falsity is determined using α′.

Definition 9 (Transformation function). Given a set of objects O and annotation
functions α and α′ such that α(i) ⊆ α′(i) for all i ∈ N , the transformation function
τ(α,α′) : L+ × S ×N × V (X, O) → L+ is defined as follows:

– τ(α,α′)(t, s, i, v) = t if t ∈ B3.
– τ(α,α′)(p(y1, ..., yj), s, i, v) = # if (v(y1), ..., v(yj)) ∈ πj(p, s).

τ(α,α′)(p(y1, ..., yj), s, i, v) = ⊥ otherwise.
– τ(α,α′)(ϕ ∧ ψ, s, i, v) = τ(α,α′)(ϕ, s, i, v) ∧ τ(α,α′)(ψ, s, i, v).

τ(α,α′)(¬ϕ, s, i, v) = ¬τ(α,α′)(ϕ, s, i, v)
– τ(α,α′)(�ϕ, s, i, v) = τ(α,α′)(ϕ, s, i, v) ∧ �ϕ
– τ(α,α′)(byId(ϕ), s, i, v) = τ(α,α′)(byId(ϕ, i), s, i, v)

τ(α,α′)(byId(ϕ, j), s, i, v)=

⎧⎨
⎩
if j ≤ i and

∧
α.Id(j) ∧ v(¬ϕ) is not satisfiable

⊥ if j ≤ i and
∧

α′.Id(j) ∧ v(¬ϕ) is satisfiable
byId(ϕ, j) otherwise

– τ(α,α′)(id.o: ϕ � ψ, s, i, v) =id.o: τ(α,α′)(ϕ, s, i, v) � τ(α,α′)(ψ, s, i, v)
τ(α,α′)(id.p: ϕ � ψ, s, i, v) =id.p: τ(α,α′)(ϕ, s, i, v) � ψ

Note that the postcondition of permissions are not transformed, as their truth value is
irrelevant. The only use of postconditions of permissions is to provide annotations. To
update the annotation function, we need to know if a precondition has become true or
false. We now define a function to map formulas to truth values:

Definition 10. Given a set of objects O and annotation functions α and α′ such that
α(i) ⊆ α′(i) for all i ∈ N , the function value(α,α′) : L+ × S ×N × V (X, O) → B3

is defined as follows:

– Truth values, predicates, conjunction and negation are handled in the usual way.
– value(α,α′)(�ϕ, s, i, v) = # if s is the final state.

value(α,α′)(�ϕ, s, i, v) =? otherwise.
– value(α,α′)(byId(ϕ), s, i, v) = value(α,α′)(byId(ϕ, i), s, i, v)

value(α,α′)(byId(ϕ, j), s, i, v)=

{� if j≤ i and
V
α.Id(j) ∧ v(¬ϕ) is not satisfiable

⊥ if j ≤ i and
V
α′.Id(j) ∧ v(¬ϕ) is satisfiable

? otherwise

– value(α,α′)(id.o: ϕ � ψ, s, i, v) = value(α,α′)(ϕ ⇒ ψ, s, i, v).
value(α,α′)(id.p: ϕ � ψ, s, i, v) = #

Checking Traces for Regulatory Conformance 95

At the end of the trace, subformulas �ϕ are replaced by #, but subformulas byId(ϕ, j)
may still be undetermined. This is due to the fact that with circular references, we can
create paradoxical statements – id.o: ¬by{id}(ϕ) � ϕ. This statement requires ϕ to
hold when it doesn’t require ϕ, and is always undetermined.

Update(Reg,Φ, α, α′, s, i):
Input: The regulation Reg, the set of formulas to be updated Φ, the annotation functions α

and α′, the state s and time i
Let α(i) = α′(i) = ∅;
for all id.x: ϕ � ψ ∈ Reg and assignments v do

Let φ = τ(α,α′)(id.x: ϕ � ψ, s, i, v);
Φ = Φ ∪ {(φ,id: v(ψ), i, v)}, and α′(i) = α′(i) ∪ {id: v(ψ)}

end
repeat

for all (id.x: ϕ � ψ, a, j, v) ∈ Φ do
If value(ϕ, s, i, v) = �, then α(j) = α(j) ∪ {a};
If value(ϕ, s, i, v) = ⊥, then α′(j) = α′(j) − {a}

end
Let Φ′ = ∅;
for all (id.x: ϕ � ψ, a, j, v) ∈ Φ do

Let φ = τ(α,α′)(id.x: ϕ � ψ, s, i, v) and ϕ′ = τ(α,α′)(ϕ, s, i, v);
If value(φ, s, i, v) =? or value(ϕ′, s, i, v) =?, then Φ′ = Φ′ ∪ {(φ, j)};
If value(φ, s, i, v) = ⊥, then raise alarm.

end
Φ = Φ′

until α and α′ do not change ;

Algorithm 1. An algorithm for evaluating statements with references

We note that the function value(α,α′) does not determine a formula to be true or
false as early as possible. To decide if a formula is true as early as possible, we need to
check whether all possible suffixes to the trace satisfy the formula, as in [13]. In other
words, we need to decide if the transformed formula is valid. In [10], we show that with
references one can encode formulas in first-order logic as regulations, and as a result,
the validity problem is undecidable for L+. The satisfiability tests used to evaluate the
inference predicates are in propositional LTL, and are decidable.

Fixed points are defined at the level of a run. Suppose we are given a body of regula-
tion Reg, a run R and annotation functions (α1, α

′
1). The result of evaluation gives us

new annotations (α2, α
′
2) corresponding to laws that have true preconditions (α2), and

true or undetermined preconditions (α′
2). We will say that (α1, α

′
1) is a fixed point iff

(α1, α
′
1) = (α2, α

′
2).

The function value(α,α′) is extended to runs. The definition remains identical except
that for byId(ϕ, j) we do not require that j ≤ i to determine truth or falsity, and for the
temporal operator:

value(α,α′)(�ϕ, R, i, v) =

⎧⎨
⎩
if for all j ≥ i, value(α,α′)(ϕ, R, i, v) =
⊥ if there exists j ≥ i, value(α,α′)(ϕ, R, i, v) = ⊥
? otherwise

96 N. Dinesh et al.

Definition 11 (Consistent Annotations). Given a body of regulation Reg and a run R
with a set of objects O, the pair of annotation functions (α, α′) is consistent iff for all
(id.x: ϕ � ψ, i, v) ∈ Reg ×N × V (X, O):

If id: v(ψ) ∈ α(i) ∩ α′(i), then value(α,α′)(ϕ, R, i, v) = #
If id: v(ψ) �∈ α(i) ∪ α′(i), then value(α,α′)(ϕ, R, i, v) = ⊥
In addition, for all i, we require that α(i) ⊆ α′(i).

Definition 12 (Fixed Point). Given a body of regulation Reg and a run R with a set of
objects O, the pair of consistent annotation functions (α, α′) is a fixed point iff for all
(id.x: ϕ � ψ, i, v) ∈ Reg ×N × V (X, O):

If value(α,α′)(ϕ, R, i, v) = #, then id: v(ψ) ∈ α(i) ∩ α′(i)
If value(α,α′)(ϕ, R, i, v) =?, then id: v(ψ) ∈ α′(i) − α(i)
Otherwise, id: v(ψ) �∈ α(i) ∪ α′(i)

We say that (α1, α
′
1) ≤ (α2, α

′
2) if for all i, we have α1(i) ⊆ α2(i). We now review

some results that are proved in [10]. The partially ordered set of consistent annotations
has a least fixed point and one or more maximal fixed points. Distinct fixed points arise
if there are circular references. The converse is not necessarily true, i.e., there may be
circular references and a unique fixed point. There is a smallest element in the set of
consistent annotations (α0, α

′
0) such that for all i, α0(i) = ∅ and α′

0(i) contains all
annotations. The least fixed point can be obtained iteratively using (α0, α

′
0).

Algorithm 1 describes the procedure for computing the least fixed point in a runtime
setting. In addition to α and α′, we maintain a set of tuples Φ, where each element is a
transformed regulatory statement, the associated annotation, time and variable assign-
ment. Given (id.x: ϕ � ψ, a, j, v) ∈ Φ, if ϕ is determined to be true, the annotation a
is added to α(j). On the other hand, if ϕ is determined to be false a is removed from
α′(j). For all j ∈ N , α(j) increases monotonically, and α′(j) decreases monotonically
with each execution of the repeat loop, until a fixed point is reached.

4.2 Complexity Analysis by Example

The complexity of Algorithm 1 in each state of a run depends on two factors – the
number of steps necessary to reach a fixed point, and the size of satisfiability problem
instances that need to be handled in the evaluation of the predicate byId(ϕ). We discuss
examples that illustrate these two aspects, by encoding the graph reachability problem
in different ways. In the first example, the number of steps taken to reach the fixed point
grows with the number of objects. In the second example, the size of the satisfiability
instances grows with the number of objects.

Both examples operate on the same model, where a state in the run contains a de-
scription of a graph. Objects o1 and o2 represent nodes, and the predicate δ(o1, o2) is
true iff there is an edge between o1 and o2. In addition, δ+(o1, o2) is true iff there is a
path from o1 to o2. Suppose we wish to check whether δ+ has been computed correctly.

Example 1. Consider a self-referential sentence:

id.o: δ(x, z) ∨ (δ(x, y) ∧ by{id}(δ+(y, z))) � δ+(x, z)

The precondition of this sentence corresponds to the definition of a path. In other words,
there is a path between x and z (δ+(x, z)), if there is an edge between x and y (δ(x, y)),

Checking Traces for Regulatory Conformance 97

and a path between y and z (by{id}(δ+(y, z))). Consider the sequence of annotations
obtained in the least fixed point computation – α0, ..., αf . It is easy to see that id:
δ+(o, o′) ∈ αj(i) iff there is a path of length at most j from o to o′. Given a graph
with |O| nodes, there is a path from o to o′ iff there is a path of length at most |O| from
o to o′. As a result, the fixed point will be reached in at most |O| steps. The worst-case
number of steps needed to reach the fixed point is O(m× |O|k), where m is the size of
the regulation, and k is the maximum number of variables appearing in a sentence.

Example 2. Consider now the following statements:

A.o: by{B,C}(δ+(x, y)) � δ+(x, y)
B.o: δ(x, y) � δ+(x, y)
C.o: # � (δ+(x, y) ∧ δ+(y, z)) ⇒ δ+(x, z)

Note that A refers to C. The presence of implication in the postcondition of C is an
important feature of this example. Let, for simplicity, the graph in the state be a chain.
Since the precondition of C is always true, the first step of the fixed point computation
yields an annotation that contains C: (δ+(o, o′) ∧ δ+(o′, o′′)) ⇒ δ+(o, o′′) ∈ α1(i) for
all o, o′, o′′ in the graph. The next step of the evaluation will yield the fixed point, but
the size of the validity test performed in this step is O(|O|3), as Algorithm 1 uses all the
available annotations. The worst-case size of the validity instances is in O(m × |O|k),
and the time complexity of a step in computing the fixed point is O(2m×|O|k).

Discussion. In both examples above, Algorithm 1 checks validity instances of size poly-
nomial in |O|. However, there is a crucial difference in the maximum size of tests that
are needed. In Example 1, by{id}(δ+(o, o′)) is true iff id: δ+(o, o′) ∈ α(i). In other
words, at most one annotation is need to evaluate by{id}(δ+(o, o′)). In Example 2, we
do need validity tests of size |O| to evaluate by{B,C}(δ+(o, o′)). A case study of the
CFR revealed that the references behaved like Example 1 in that a single annotation or
copy of the referenced statement suffices to evaluate formulas byId(ϕ). We call this the
single copy property.

Definition 13 (Single Copy Property). Given a body of regulation Reg, byId(ϕ, j)
has the single copy property iff for all runs R, and consistent annotations (α, α′):

t =

⎧⎨
⎩
if ψ ∧ v(¬ϕ) is not satisfiable for some ψ ∈ α.Id(j)
⊥ if ψ ∧ v(¬ϕ) is satisfiable for all ψ ∈ α′.Id(j)
? otherwise

where, t = value(α,α′)(byId(ϕ, j), s, i, v)

While the single copy property allows us to reduce the size of the satisfiability tests, we
need to perform O(m× |O|k) tests for each inference predicate. The question arises as
to whether satisfiability tests can be avoided during checking. We answer this question
positively in the following section.

4.3 Pre-computing Satisfiability

Algorithm 1 evaluates byId(ϕ) using satsfiabilty tests. The size of the satisfiability tests
depends on α.Id(i), which in turn depends on the number of objects. If byId(ϕ) has

98 N. Dinesh et al.

the single copy property, we can consider smaller satisfiability tests. In this section, we
show that the single copy property gives us a way to assess satisfiability symbolically,
and use tests of lower complexity during checking.

The strategy we use is as follows. Given a body of regulation, we perform a compila-
tion step which involves: a) testing satisfiability, and b) replacing the predicates byId(ϕ)
by equivalent formulas in another logic. We begin by discussing two examples, and then
formalize the compilation step.

Example 1. Consider our regulatory sentences:

– 1.o: d(x) ∧ ¬by{2}(¬�test(x)) � �test(x), and
– 2.p: d(y) ∧ sp(y) � ¬�test(y)

Consider a state at which o1, o2, ..., on are source plasma donations. This would result
in ¬�test(o1), ¬�test(o2), ...,¬�test(on) being available as annotations. To evaluate
byId(¬�test(oi)), Algorithm 1 uses all the annotations in the satifiability test. How-
ever, in this case, it suffices to check if ¬�test(oi) is present as an annotation. The
other annotations are irrelevant. To check if ¬�test(oi) is present as an annotation, it
suffices to evaluate the precondition of the referenced law, i.e., whether d(oi) ∧ sp(oi)
is true (whether oi is a donation of source plasma). Instead of evaluating byId(φ) using
satisfiability tests, we will check if the precondition of a referenced law is true.

Informally, the compilation step involves anwering the question when does state-
ment 2 provide an exception for statement 1. Equivalently, when does ¬�test(y) imply
¬�test(x). The answer is only when y = x. We can then evaluate the precondition of
2 with y replaced by x, i.e., d(x) ∧ sp(x). This lets us replace statement 1 with 1.o:
d(x) ∧ ¬(d(x) ∧ sp(x)) � �test(x), which is equivalent to 1.o: d(x) ∧ ¬sp(x) �

�test(x). Observe that this is the derived obligation implied by statements 1 and 2, i.e.,
every non-source plasma donation must be tested.

Example 2. The example above is simple in two ways: a) the number of variables in
both statements are the same, and b) the references are acyclic. We discuss the general
case in the context of the reachability example we saw in the previous section:

id.o: δ(x, z) ∨ (δ(x, y) ∧ by{id}(δ+(y, z))) � δ+(x, z)

We observe that the precondition is structurally similar to a procedure that checks if a
path exists between two nodes x and z. That is, if δ(x, z) then δ+(x, z) is true. Other-
wise, if there exists y such that δ(x, y) and there is a path from y to z, then δ+(x, z) is
true, otherwise false.

We will produce a formula which mimics the procedure. There are two pieces of
machinery used by the procedure that are not directly available in the logic: a) an ex-
istential quantifier over objects (there exists y), and b) a mechanism for recursion. To
address this, let us consider a logic which extends PredLTL with existential quantifiers,
and a function symbol Pid for id ∈ ID (P stands for precondition). Pid takes as ar-
gument a substitution θ : X → X , which is a function from variables to variables. A
substitution is represented a set of replacements x/y (read as “x is replaced by y”), such
that each variable has at most one replacement. We replace the formula above with:

id.o: δ(x, z) ∨ (δ(x, y) ∧ ∃y1 : Pid({x/y, y/y1, z/z})) � δ+(x, z)

Checking Traces for Regulatory Conformance 99

It remains to give this formula a semantics. Given a variable assignment v and a sub-
titution θ, θ(v) denotes the variable assignment v′ such that v′(x) = v(θ(y)). Given
a run R, time i and regulation Reg, the idea is to say that (R, i, v) |= Pid(θ) iff
(R, i, θ(v)) |= ϕ where id.x: ϕ � ψ ∈ Reg. We now formalize the compilation
procedure.

Compiling References into Precondition Tests: We begin by defining the syntax of
compiled preconditions:

Definition 14 (Syntax of Compiled Preconditions). Given sets Φ1, ..., Φn (of pred-
icate names), a set of variables X , and a finite set of identifiers ID, the language
L′

C(Φ1, ..., Φn, X, ID), abbreviated as L′
C , is the smallest set such that:

– If t ∈ B3, t ∈ L′
C . And, p(y1, ..., yj) ∈ L′

C where p ∈ Φj and (y1, ..., yj) ∈ Xj .
– If ϕ ∈ L′

C , then ¬ϕ ∈ L′
C and �ϕ ∈ L′

C . If ϕ, ψ ∈ L′
C , then ϕ ∧ ψ ∈ L′

C
– If ϕ ∈ L′

C , for all y ∈ X , we have ∃y : ϕ ∈ L′
C .

– For all id ∈ Id and substitutions θ : X → X , we have Pid(θ) ∈ L′
C . In addition,

for all natural numbers i ∈ N , Pid(θ, i) ∈ L′
C

The syntax of regulatory statements (Definition 3) is modified so that the preconditions
of laws are statements from L′

C . The set L′
C together with a set of regulatory statements

RegC is denoted by L+
C = L′

C ∪ RegC . We remind the reader that L+ and L′ are the
languages with the predicate byId(ϕ).

The semantics of L+
C is defined in a manner similar to L+. Rather than using annota-

tions (α, α′), we now evaluate statements w.r.t. two sets of assignment functions (γ, γ′).
γ(i, id) (resply., γ′(i, id)) is a set of variable assignments for which the precondition
of the law with identifier id is true (resply., true or undetermined). As with annotations,
we require that for all i ∈ N and id ∈ ID, γ(i, id) ⊆ γ′(i, id). Given an assignment
v and a substitution θ, θ(v) denotes the assignment v′ such that for all y ∈ X , we have
v′(y) = v(θ(y)). We can now adapt the value function:

value(γ,γ′)(Pid(θ, j), R, i, v) =

⎧⎨
⎩
if θ(v) ∈ γ(j, id)
⊥ if θ(v) �∈ γ′(j, id)
? otherwise

The definitions of consistency and fixed points (Definitions 11 and 12) are easily
adapted, and we leave the details to the reader.

We now describe the compilation procedure. Given ϕ ∈ L+, we use X(ϕ) to denote
the set of variables appearing in ϕ, and θ(ϕ) to denote the formula obtained by perform-
ing the substitution θ on ϕ. Consider byId(ϕ, j), which has the single copy property,
and variables disjoint from all regulatory statements:

– Let S(ϕ, id) = { θ| id.x: ϕ � ψ ∈ Reg, and θ(ψ ⇒ ϕ) is valid}.
– For all θ ∈ S(ϕ, id), let ϕC(θ, id) = ∃z1, ..., zm : Pid(θ, j), where the existentially

quantified variables are in one-to-one correspondence with those in X(φ)−X(ψ).
More formally, zj �∈ X(φ) − X(ψ) and θ is a one-to-one function from {zj|1 ≤
j ≤ m} to X(φ) −X(ψ).

– ϕC(byId(ϕ, j), id) =
∨
{ϕC(θ, id)|θ ∈ S(ϕ, id)}, and

– ϕC(byId(ϕ, j)) =
∨
{ϕC(byId(ϕ, j), id)|id ∈ Id}

100 N. Dinesh et al.

We note that the first step makes crucial use of the single copy property (SCP). In
computing S(ϕ, id), it suffices to find substitutions such that θ(ψ ⇒ ϕ) is valid. If the
SCP does not hold, then we need to check if multiple copies of postconditions provide
the necessary implication (as in Example 2, Section 4.2). For example, we need to
check if θ(ψ1 ∧ ... ∧ ψn ⇒ ϕ), where ψ1, ..., ψn are copies of the postcondition of a
law with the variables renamed. It can be shown that detecting whether the SCP holds
is undecidable. In future work, we plan to investigate restrictions on postconditions that
make SCP-detection decidable.

To prove the correctness of the compilation procedure, we use a notion of corre-
spondence between annotations and assignments. Let us assume as given a body of
regulation Reg (in L+), a run R and consistent annotations (α, α′). Rather than pro-
ducing a regulation in L+

C , we prove correctness by evaluating formulas in L′
C against

Reg. We construct (γα, γ′
α′) such that for all i ∈ N and id ∈ ID, v ∈ γα(i, id) iff id:

v(ψ) ∈ α(i), and v ∈ γ′
α′(i, id) iff id: v(ψ) ∈ α′(i). We can now show the following:

Lemma 1. Given a body of regulation Reg, a run R, consistent annotations (α, α′),
and byId(ϕ, j) which has the single copy property, for all i ∈ N and assignments v:

value(α,α′)(byId(ϕ, j), R, i, v) = value(γα,γ′
α′)

(ϕC(byId(θ, j)), R, i, v)

Proof. The proof follows straightforwardly from the construction of ϕC(byId(θ, j))
and the single copy property. We sketch one of the cases.

Suppose value(α,α′)(byId(ϕ, j), R, i, v) = #. There exists id: v′(ψ) ∈ α(i) such
that v′(ψ) ∧ v(¬ϕ) is not satisfiable, or equivalently v′(ψ) ⇒ v(ϕ) is valid. It fol-
lows that there exists a substitution θ such that θ(ψ ⇒ ϕ) is valid. By definition
v′ ∈ γα(i), and hence, value(γα,γ′

α′)
(Pid(θ, j), R, i, v′) = #. We can then argue

using the construction that value(γα,γ′
α′)

(∃z1, ..., zm : Pid(θ, j), R, i, v) = #, and
as a result, value(γα,γ′

α′)
(ϕC(byId(θ, j)), R, i, v) = #. The other cases are handled

similarly. ��

Given Reg in which all subformulas byId(ϕ) have the single copy property, we can
now produce the regulation RegC in L+

C with all occurences of byId(ϕ) replaced by
ϕC(byId(ϕ)). It follows from Lemma 1 that if (α, α′) is a fixed point w.r.t. Reg, then
(γα, γ′

α′) is a fixed point w.r.t. RegC . In addition, the truth values assigned to regulatory
statements are identical.

The complexity of evaluation depends on the number of disjuncts in ϕC(byId(ϕ)),
which in turn depends on the size of the set: S(ϕ, id). |S(ϕ, id)| ≤ (2k)2k, where
k is the maximum number of variables in a regulatory statement. (2k)2k is a bound
on the number of equivalence classes, i.e., we have 2k variables (k in ϕ and k in ψ)
and at most one equivalence class for each variable. Hence, the size of ϕC(byId(ϕ))
is O(m × (2k)2k), where m is the number of regulatory statements. Each quantified
precondition test can be evaluated in O(|O|k) time, where O is the set of objects. As
a result, the time complexity for evaluating ϕC(byId(ϕ)) is O(m × (2k)2k × |O|k).
We now describe an evaluation of the system, using a prototype implementation which
performs this compilation procedure.

Checking Traces for Regulatory Conformance 101

4.4 Evaluation

We have developed a prototype implementation of the checker. We briefly describe
two aspects of the implementation: (a) the interface between regulations and traces
(schemas), and (b) the trace-checker.

Schemas form the interface between the regulation and trace. A schema is a set of
class and type definitions. Classes can inherit from others, and have attributes which
have atomic types, tuples or unions of types, pointers to other objects or sets of values.

Our current implementation of the trace-checker is static in the sense that the en-
tire trace is stored on disk (in an NDBM database). The objects at each state belong
to classes in a given schema. The regulation, which is type-checked against the same
schema, is compiled using the techniques discussed in Section 4.3, and evaluated at
each state. We do not have any special optimizations for speed. The objects are stored
as strings, and reparsed every time they are loaded into memory. The checker evaluates
each obligation w.r.t. all variable assignments, loading into memory a single variable
assignment at a time.

We now describe a preliminary evaluation of the implementation. Our goal was to
check if we could scale to traces with a large number of objects, rather than very long
traces. We created a schema based on the CFR, capturing donors, donations of several
types, and various tests. We then checked a number of synthetic (final) states for con-
formance. Given a schema, we generate a set of donors by choosing random values for
atomic attributes. For each donor we generate a set of donations again choosing attribute
values at random. Each donation is randomly tested as follows: with p = 0.3 it is tested
for all diseases with negative results, with p = 0.3 it is test for diseases with a random
result, and otherwise it is not tested.

On the regulatory side, we created logic formulas for a portion of the CFR 610.40.
A total of 12 sentences, and a list of 6 disease names were used. Lists are frequent in
regulation, and statements refer to particular list items. Of the 12 sentences, 7 were obli-
gations and 5 were permissions. A total of 8 reference formulas (byId(ϕ)) were used,
and of these 3 referred to list items. The compilation step of removing the references
took 26 seconds with a total of 96 satisfiability tests. Each statement had at most 2
variables (one for donations and the other for disease names).

We evaluated performance of the checker against a number of states. The number of
disease names was 8, and the number of donations varied. The time taken varied lin-
early with a number of donations. For states with 100, 1000, 5000, and 10000 donations
the conformance check took 12s, 130s, 500s, and 1042s respectively. The performance
suggests that the approach is practical for checking short traces. However, more incre-
mental algorithms are needed to deploy such specifications in a runtime setting.

5 Discussion and Conclusions

We have described a logic for representing regulatory documents for the application
of conformance checking. The logic allows statements to refer to others for condi-
tions or exceptions. While references give us a way to represent regulation directly, the

102 N. Dinesh et al.

evaluation of references during checking has high complexity. Algorithm 1 uses satis-
fiability tests of size polynomial in the number of objects. In Sections 4.2 and 4.3, we
described an emprically motivated assumption (the single copy property), which lets
us replace satifiablity tests with tests of lower complexity. The evaluation of our pro-
totype implementation suggests that the approach is suitable for conformance audits of
medium-sized traces.

An important part of making this approach useful in practice is to provide support for
translating the regulatory documents into their formal representation. Such support has
to rely heavily on natural language processing techniques, which require substantial
extension of current state of the art. We are actively pursuing this line of research.
Preliminary results are reported in [14,15].

Related Work. The use of logic to represent and reason about regulation has been of
interest for several years. We begin by discussing the literature in relation to two issues:
a) the representation of obligation and permission, and b) references between laws. We
compare our work with other approaches to conformance checking, and place it in the
context of previous work on run-time checking of LTL.

The goal of deontic logic is a formalization of concepts such as obligation, per-
mission and rights. There are many systems of deontic logic, but the most common
approach is to treat obligation and permission as modal operators [16,17]. The logic de-
veloped here focusses on the problem of references between laws, and we believe that
the representation of obligation and permission is an important but orthogonal issue.
In future work, we plan to add a modal treatment of obligation and permission to our
system.

The problem of references between laws has been observed in regulatory texts in
different domains [2,18]. More generally, the function of sentences as conditions or
exceptions to others has been studied in a variety of contexts. Alchourron and Makinson
[19] proposed a hierarchical structure for a legal discourse, to handle exceptions to
statements. This led to the development of input-output logic [20], which is closely
related to default logic [11]. Previous work on applying default logic has been mainly
in the context of computing extensions to a theory, in the manner of logic programs
[7,18,6]. We believe that the application of these ideas in conformance checking is
novel.

Conformance checking has been receiving increasing attention in recent years
[1,2,3,21]. [1] represents business contracts as SQL queries. [3,21] use a logic on a
UML description of a domain. While the approaches of [1,3,21] are similar in spirit to
ours, they do not provide a treatment of references. [2] discusses the problem of refer-
ences in the context of privacy regulation, and the references are resolved manually.

Our work builds upon the well-established work on run-time checking of LTL and its
extensions. We have adapted the calculus of Eagle [5] to handle references. Rule-based
formalisms [5,22] are quite general, but the transformation of formulas at each state
can be expensive. Automata-based approaches [13] offer a more efficient alternative at
the price of generality. We are currently exploring ways to adapt the automata-based
approach to our setting.

Checking Traces for Regulatory Conformance 103

References

1. Abrahams, A.: Developing and Executing Electronic Commerce Applications with Occur-
rences. PhD thesis, Univeristy of Cambridge (2002)

2. Breaux, T.D., Vail, M.W., Anton, A.I.: Towards regulatory compliance: Extracting rights
and obligations to align requirements with regulations. In: Proceedings of the 14th IEEE
International Requirements Engineering Conference (2006)

3. Giblin, C., Liu, A., Muller, S., Pfitzmann, B., Zhou, X.: Regulations Expressed as Logical
Models (REALM). In: Moens, M.-F., Spyns, P. (eds.) Legal Knowledge and Information
Systems (2005)

4. U.S. Food and Drug Administration: Code of Federal Regulations,
http://www.gpoaccess.gov/cfr/index.html

5. Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Rule-based runtime verification. In: Stef-
fen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 44–57. Springer, Heidelberg
(2004)

6. McCarty, L.T.: A language for legal discourse - i. basic features. In: Proceedings of ICAIL
(1989)

7. Sergot, M., Sadri, F., Kowalski, R., Kriwaczek, F., Hammond, P., Cory, H.: The british na-
tionality act as a logic program. Communications of the ACM 29(5), 370–386 (1986)

8. Ross, A.: Directives and Norms. Routlege and Kegan Paul (1968)
9. Marcus, R.B.: Iterated deontic modalities. Mind 75(300) (1966)

10. Dinesh, N., Joshi, A., Lee, I., Sokolsky, O.: Reasoning about conditions and exceptions to
laws in regulatory conformance checking (in submission, 2008),
http://www.cis.upenn.edu/ nikhild/reasoning.pdf (2008)

11. Reiter, R.: A logic for default reasoning. In: Readings in nonmonotonic reasoning, pp. 68–93.
Morgan Kaufmann Publishers Inc., San Francisco (1987)

12. Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logic. ACM 32,
733–749 (1985)

13. Bauer, A., Leucker, M., Schallhart, C.: Monitoring of real-time properties. In: Arun-Kumar,
S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337. Springer, Heidelberg (2006)

14. Dinesh, N., Joshi, A.K., Lee, I., Webber, B.: Extracting formal specifications from natural
language regulatory documents. In: Proceedings of the Fifth International Workshop on In-
ference in Computational Semantics (2006)

15. Dinesh, N., Joshi, A., Lee, I., Sokolsky, O.: Logic-based regulatory conformance checking.
In: Proceedings of the 14th Monterey Workshop (2007)

16. von Wright, G.H.: Deontic logic. Mind 60, 1–15 (1951)
17. Aqvist, L.: Deontic logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical

Logic, Extensions of Classical Logic, vol. II, pp. 605–614 (1984)
18. Bench-Capon, T.J., Robinson, G., Routen, T., Sergot, M.: Logic programming for large scale

applications in law: A formalisation of supplementary benefit legislation. In: Proceedings of
the 1st International Conference on AI and Law (1987)

19. Alchourron, C., Makinson, D.: Hierarchies of regulation and their logic. In: Hilpinen, R. (ed.)
New Studies in Deontic Logic (1981)

20. Makinson, D., van der Torre, L.: Input/output logics. Journal of Philosophical Logic 29, 383–
408 (2000)

21. Glasse, E., Engers, T.V., Jacobs, A.: Power: An integrated method for legislation and reg-
ulations from their design to their use in e-government services and law enforcement. In:
Moens, M.-F. (ed.) Digitale Wetgeving, Digital Legislation, pp. 175–204 (2003)

22. Barringer, H., Rydeheard, D., Havelund, K.: Rule systems for run-time monitoring: From
Eagle to RuleR. In: Sokolsky, O., Taşıran, S. (eds.) RV 2007. LNCS, vol. 4839, pp. 111–125.
Springer, Heidelberg (2007)

http://www.gpoaccess.gov/cfr/index.html

Deadlocks: From Exhibiting to Healing�

Yarden Nir-Buchbinder, Rachel Tzoref, and Shmuel Ur

IBM Haifa Research Laboratory, Israel
{yarden,rachelt,ur}@il.ibm.com

Abstract. Deadlocks are possibly the best known bug pattern in com-
puter systems in general; certainly they are the best known in concurrent
programming. Numerous articles, some dating back more than 40 years,
have been dedicated to the questions of how to design deadlock free pro-
grams, how to statically or dynamically detect possible deadlocks, how to
avoid deadlocks at runtime, and how to resolve deadlocks once they hap-
pen. We start the paper with an investigation on how to exhibit potential
deadlocks. Exhibiting deadlocks is very useful in testing, as verifying if a
potential deadlock can actually happen is a time-consuming debugging
activity. There was recently some very interesting research in this direc-
tion; however, we believe our approach is more practical, has no scaling
issues, and in fact is already industry-ready.

The second contribution of our paper is in the area of healing multi-
threaded programs so they do not get into deadlocks. This is an entirely
new approach, which is very different from the approaches in the liter-
ature that were meant for multi-process scenarios and are not suitable
(and indeed not used) in multithreaded programming. While the basic
ideas are fairly simple, the details here are very important as any mistake
is liable to actually create new deadlocks. The paper describes the basic
healing idea and its limitations, the pitfalls and how to overcome them,
and experimental results.

1 Introduction

The increasing popularity of concurrent programming has brought the issue of
concurrent defect analysis to the forefront. While the server side has been em-
ploying concurrency ubiquitously for some time, it is now becoming a require-
ment also for clients and stand-alone applications, as every CPU available these
days is multicore, so if applications are to take advantage of it they should be-
come concurrent. Hardware companies such as Intel invest a lot in educating
programmers and testers on how to create concurrent software. Otherwise, the
new many-cored processors will be of little use.
� This work is partially supported by the European Community under the Information

Society Technologies (IST) programme of the 6th FP for RTD - project SHADOWS
contract IST-035157. The authors are solely responsible for the content of this paper.
It does not represent the opinion of the European Community, and the European
Community is not responsible for any use that might be made of data appearing
therein.

M. Leucker (Ed.): RV 2008, LNCS 5289, pp. 104–118, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Deadlocks: From Exhibiting to Healing 105

Deadlock is possibly the best known concurrent bug pattern. There are many
types of deadlocks and many definitions. For our purposes, a deadlock is when a
number of processes or threads cannot proceed as each is waiting for a resource
held by the others. The simplest, best known type of potential deadlock can be
seen in Figure 1. The deadlock manifests when each of the two threads waits for
a lock held by the other. Unlike sequential deterministic code, where if a test
passed once it is expected to pass again (unless the code changes), this is not
true in the concurrent realm. A deadlock as described above can exist in the code
for a long time, and then manifest only when specific timing scenarios occur.

}
 }

 }

}

lock A

lock B {

 lock B {
lock A {

Thread 1 Thread 2

{

Fig. 1. A program with a potential deadlock

The problem of deadlocks and their avoidance has been around for a long
time; the Baker Algorithm for deadlock avoidance was published by Dijkstra as
early as 1965. For several decades, this work centered on preventing or resolving
deadlocks between processes competing for resources. In this context, deadlock
handling is seen as the burden of the operating system. See [4, 5, 6, 16, 19] for
some algorithms for deadlock prevention or resolution. These solutions require
processes to declare up-front which resources they need, or alternatively, work by
killing one of the processes involved in the deadlock. Neither are applicable to the
more modern problem of deadlocks in multithreaded programs synchronizing on
mutual exclusion objects. In this domain, deadlocks are considered an internal
problem of the program; i.e., a bug.

One useful programming technique to avoid deadlocks is lock discipline [2]:
when several locks need to be taken together (nestedly), they must be taken
in a predefined order, and this order is shared among all threads in the sys-
tem 1. There are quite a number of other guidelines related to additional bug
patterns [11], such as avoiding lost-notify, and writing small synchronized blocks
that avoid blocking operations.

An additional direction in deadlock research is detection. Deadlock detection
is about statically [20] or dynamically [9] finding that a deadlock is possible in

1 The term ”lock discipline” has been used in the literature also in another context –
in [17] it is defined as a programming policy that ensures the absence of data races.

106 Y. Nir-Buchbinder, R. Tzoref, and S. Ur

the code. For example, if lock discipline violation is detected, even if no deadlock
occurred, then the developer is informed that a deadlock is possible, similar in
spirit to much of the work on race detection.

This paper is about two complementary techniques: exhibiting, first suggested
by [8, 14], and healing. Exhibiting is about making the deadlocks more likely to
manifest. The idea is to adjust the timing so that if a deadlock can happen, it will
occur with a higher probability. This is very useful in testing, as unlike deadlock
detection methods that may exhibit false positives, deadlock exhibiting shows
only genuine deadlocks by causing them to happen. The algorithms we present
are effective, efficient, and fairly easy to implement. Because we do not control
the execution flow we have no guarantee of success. However, the overhead of
our interventions is small.

Healing is about detecting potential deadlocks and then modifying the control
flow with wrapper locks to ensure that lock cycles do not cause deadlocks. Unlike
exhibiting, healing is very complicated. There are many wrong ways to do it and
a mistake can cause deadlocks that did not exist in the first place. In the paper
we explain the general idea and the many details that complicate the solution.

For both healing and exhibiting we show experimental results on two real-life
Java examples. Both techniques worked successfully on these examples. The use
case for exhibiting is very clear and we are starting now to try it out in industrial
setting. Exhibiting techniques improve the efficiency of testing. For healing—the
much harder of the two problems—the scenario in which it should be applied needs
very careful attention. An example of such a scenariowhere healing may be applied
is a programming environmentwhere the code was written by people with little ex-
perience in concurrent programming (sometimes referred to as business program-
mers). In such a case the risks of adding our healing algorithm are outweighed by
the benefits. We would like to stress that translating our work on healing to other
programming languages and concurrency primitives should be done with care.

2 Background

The classical deadlock situation happens when a thread T1 has taken lock L1 and
attempts to take (nestedly) L2, while another thread T2 has taken L2 and attempts
to take L1. A well-known methodology to avoid deadlocks is lock discipline; when
several locks need to be taken together (nestedly), they must be taken in a prede-
fined order, and this order is shared among all threads in the system.

The order can be described as a directed graph, where the nodes are the locks
in the system, and an edge exists from node A to B if and only if the system may
take lock A and then lock B. If the system may take lock A, lock B inside it, and
lock C inside that, there will be edges A → B and B → C. If the graph contains
no cycles, then this classical deadlock cannot happen. Conversely, if there are
cycles, i.e., lock discipline is not kept, then there is a danger of deadlocks. Figure 1
illustrates a run of a program that violates lock discipline.

A cycle (A → B, B → A) may be safe, however, if it is guarded by a gate
lock – if there is another lock D which is scoped outside all pairs of locking from

Deadlocks: From Exhibiting to Healing 107

the cycle, that is, if whenever A is taken inside B or vice versa, D is taken prior
to taking the first lock of the pair, and held at least after the second one has
been taken. This can obviously be generalized to cycles of more than two locks.
Some concurrent algorithms call for this pattern. A cycle may also be deadlock-
free for other reasons such as that only one part of the code may be executed,
for example, a start-join relationship may prevent concurrent execution of the
two orders. However, relying on such guarantees is considered bad programming
practice because the cycle is prone to become a real deadlock as the code evolves.

As noted above, most of the related work so far has been on detecting poten-
tial deadlocks. Several works, such as the GoodLock algorithm ([14] augmented
in [8]), and Microsoft’s Driver Verifier [1], identify violations of lock discipline
during test runtime. GoodLock monitors events of lock taking and releasing by
the program under test. It knows at each time which thread is holding which
lock, and so it creates a lock graph and searches for unguarded cycles. The work
described in [3] is similar, except that at test runtime it only prints trace in-
formation about lock taking and releasing (lock ID and thread ID). The graph
creation and analysis is done off-line. This has the advantage that the additional
runtime cost at test time is negligible, and hence there is less intrusion to the
program under test. The advantage of on-line analysis is that if a cycle is found,
direct debugging is possible.

The three tools mentioned look within the scope of one process run. If a cycle
in the graph is caused by lock sequences from two different runs, then these tools
do not reveal it. A test suite is often composed of many small tests, each in a
different process, each activating only a few and short paths, so these tools are
less likely to reveal cycles than a tool that has a view of the entire test suite
run. The ConTest tool’s [10] lock discipline feature [12] tries to overcome this
limitation by identifying locks across different runs. The challenge here is that
lock ID in Java has no meaning outside the scope of a given run.

As in [3], ConTest traces information during test runtime, creates the graph,
and analyzes it off-line. However, the information traced at test runtime includes,
in addition to lock ID and thread ID, the source location of taking the lock. A
different trace file is written for each test run (each Java process in the test
suite). When the test suite has finished running, there is a set of traces, and the
analyzer is run. It creates a partition of the code locations to the ”same lock”
relation, as follows:

1. Two locations l1 and l2 are the same-lock’ if there exists a trace t in the set
of traces and a runtime ID x such that both l1 and l2 appear in t associated
with x at least once.

2. Same-lock is the transitive closure of same-lock’.

In effect, different lock operations are associated according to the disjunction
of two conditions: that they involve the same lock object in some run (similarly
to the previously mentioned tools), and that they were done in the same code
location (this is unique to ConTest). We argued that from the programmer’s
point of view, this is the correct, as well as the natural, unit for defining lock
discipline.

108 Y. Nir-Buchbinder, R. Tzoref, and S. Ur

Then, a directed graph is created, where each node is an equivalence class
of same-lock. An edge exists from L1 to L2 if and only if there is at least one
trace entry where a member of L2 was taken inside a member of L1. The graph is
searched for unguarded cycles, or more precisely, strongly-connected components
(SCC; a maximal subset of the nodes such that a path exists between each two
nodes in the subset). An SCC is guarded if and only if an equivalence class Lg

(a gate lock) exists such that whenever two members of the component were
taken together, it was under the scope of a lock from Lg. In addition, a warning
is given for mixtures; when two different lock objects from the same equivalence
class were taken together, this also represents a deadlock potential.

This summarizes the previous work on deadlock-potential detection. In addi-
tion, there has been work on deadlock exhibiting. ConTest’s core functionality
(as opposed to the enhancement described in this paper) uses ”noise” – adding
instructions of yield, sleep, and wait (with timeout) to raise the probability
that concurrent bugs will occur. If a test may deadlock, then with ConTest the
probability that it will deadlock increases, since more interleavings are exercised.
However, ConTest does not target deadlocks in particular, and makes no use of
lock graph data.

Two works by Havelund et. al. use the deadlock-potential warnings from an
algorithm such as those described above to aid in exhibiting deadlocks. In [14],
the warnings are used to narrow down the state space in a model checking aimed
at finding actual deadlocks. While this reduction may be very effective in some
scenarios (when the warning applies to a few, small threads), in many other
scenarios the state space is still too big for practical purposes.

In the second work [8], the deadlock-potential data is used in a subsequent
run of the program under test to try to guide it towards a deadlock. This guiding
is intrusive, in that it introduces an extra control thread; the original program’s
threads request the controller’s permission to proceed before taking locks. The
deadlock exhibition aspect of our work is probably similar, although it uses a
less intrusive approach in which there is no controller thread, and instead the
original program’s threads perform ”noise” guided towards the deadlock2.

3 Exhibiting Deadlocks Using Targeted Noise

As explained in Section 2, given the output of the lock discipline analysis in the
form of a directed lock graph, each unguarded strongly connected component
(SCC) in the graph represents one or more deadlock potentials, since there can
be several cycles in the SCC, and several lock locations represented by a node.
To check whether a deadlock potential can actually occur, we try to exhibit the
deadlocks using noise targeted at the SCCs. The intuition is that if a deadlock
actually exists, we will raise the probability of manifesting it. We emphasize

2 The paper [8] is not explicit about how the locks are identified between the runs.
In private communication, the authors indicated that this can be done according to
variable names or program locations.

Deadlocks: From Exhibiting to Healing 109

that since the locks are represented by program locations, there is no problem
in using a lock graph generated in previous runs as input for a new run.

Our technique for exhibiting deadlocks works as follows: whenever a thread
T is about to take a lock that appears in an unguarded SCC, if T already
holds another lock from the same SCC, then noise is inserted to delay acquiring
the lock. This technique is similar to the ideas presented in [8]. The difference is
that [8] used a central controller that decides which thread can advance, whereas
our technique only injects noise into the program and hence is simpler, less
intrusive, and has no scalability issues. The downside is that we have less control
over the execution of the program.

3.1 Experimental Results for Deadlock Exhibiting

We implemented the deadlock exhibiting technique for Java programs using Con-
Test’s listener architecture [15]. The listener architecture is a library that can
be used to write tools that need to hook into given programs under test, for ex-
ample, race detectors. ConTest Listeners provide an API for doing things when
certain types of events happen in the program under test.

At initialization stage, the lock graph is constructed based on ConTest’s lock
discipline analysis output from previous runs. The events we listen to include
entry and exit of synchronization blocks, where we keep an updated record of
the locks from unguarded SCCs that each thread is holding or trying to take,
and insert noise accordingly through noise API provided by ConTest. The type
of noise is determined by ConTest runtime parameters. The noise API that
ConTest provides ensures that the inserted noise does not affect the semantics
of the program. For example, it prevents an injected call to sleep for a certain
thread from occurring simultaneously with an interrupt of the thread. We also
disable ConTest’s own noise through its runtime parameters, to make sure that
the only noise injected into the program is the one performed by the listener for
exhibiting deadlocks.

All runs were performed on an IBM ThinkPad T60 with an Intel dual core
CPU 1.83GHz and 2GB RAM.

NASA Ames K9 Rover Executive. The first example we ran on was the
NASA Ames K9 Rover Executive, whose verification is presented in [13]. The
NASA Ames K9 Rover is an experimental platform for autonomous wheeled
vehicles called rovers, targeted for the exploration of a planetary surface such
as Mars. The Rover Executive software prototype monitors the executions of
actions, and performs responses and cleanup when execution fails. The Java
version of the prototype contains 82 classes and consists of eight threads.

ConTest’s lock discipline analysis detected one unguarded SCC, consisting of
two nodes. Each node in the SCC represented four different program locations,
and so our exhibiting technique can potentially inject noise in only eight locations
in the program, out of the 31 locations where a lock is taken. To try exhibiting a
deadlock, we first ran the Rover Executive 100 times without instrumentation and
noise injection. No deadlock was exhibited. Next, we tried to exhibit a deadlock

110 Y. Nir-Buchbinder, R. Tzoref, and S. Ur

using ConTest’s random noise. When using ConTest default parameters (that are
not necessarily targeted at deadlocks), a deadlock was still never exhibited in 100
runs. Since we are trying to exhibit a deadlock caused by lock discipline violation,
accesses to shared variables are probably irrelevant [7], and so we turned off the
shared variables noise heuristic in ConTest. We set the noise type to sleep—our
experience shows that this is an effective noise type for exhibiting deadlocks—and
ran the Rover Executive with increasing noise strength. 100 runs were performed
for each value for noise strength. Once more, a deadlock was never exhibited. We
then ran with ConTest and our deadlock exhibiting technique, again using the
sleep noise type and the strength values that were tried out with ConTest. A
deadlock from the SCC was exhibited starting from 3 times out of 100 runs, to 35
out of 100 runs for the maximal strength tried.

We also tried out a simple heuristic where noise is injected whenever a thread
tries to take a lock while already holding a lock, regardless of the lock graph
information. The purpose is to compare the effectiveness of our technique with
techniques that use noise targeted at deadlocks without lock discipline analysis.
The same noise parameters and number of runs were used as for our deadlock
exhibiting technique. The simple heuristic did not exhibit the deadlock.

The runtime overhead depends both on the frequency of noise injection and on
the noise strength. The overhead of the book-keeping in our deadlock exhibiting
technique is negligible. Of all the noise injection techniques we tried, our deadlock
exhibiting technique uses the most targeted noise, and thus injects noise with
the lowest frequency. In comparison, ConTest’s random noise can be potentially
injected at a call to any synchronization primitive, start and end of threads and
accesses (read and write) of shared variables. The simple heuristic that ignores
lock discipline is much more targeted than ConTest, as it injects noise only
at lock acquisitions, but can still potentially inject noise with a much higher
frequency than our deadlock exhibiting technique, depending on the number of
nested locks taken throughout the run. For example, in the Rover Executive, our
technique injects noise with an average frequency of 6.3 times per run, whereas
the simple heuristic injects noise with an average frequency of 18.9 times per run.
Note that the performance of our method is not directly affected by the number
of threads, but rather by the number of locks participating in unguarded SCCs.

To conclude, of all the techniques we tried out, only our deadlock exhibiting
technique using lock analysis was able to exhibit a deadlock. The results confirm
that too much noise may mask the bug [7], and that our targeted noise based
on runtime analysis is more effective than our targeted noise that considers only
the bug pattern.

Java 1.4 Collection Library. The second example is the Java 1.4 collection
library that was used as a case study in [18]. This is a thread-safe Collection
framework implemented as part of the java.util package of the standard Java
library provided by Sun Microsystems. ConTest lock discipline analysis discov-
ered two unguarded mixtures in this implementation, using six different tests
that were performed in [18], each consisting of two threads. The first mixture
consists of three nodes and the second consists of six nodes.

Deadlocks: From Exhibiting to Healing 111

For each test, we compared five different modes of runs, similarly to the runs
that were performed for the first example. The first mode is a regular run with
no instrumentation and noise injection. The second mode is with ConTest alone,
using random noise and default parameters. The third mode is with ConTest
and without shared variables noise. The fourth mode is with ConTest and the
deadlock exhibiting technique on top of it. The fifth mode is with the simple
heuristic that injects noise at nested lock acquisitions, regardless of lock disci-
pline analysis. For all modes, the strength and type of noise were randomly set
according to ConTest’s default parameters. For each mode of run, we present the
number of times a deadlock manifested out of 100 runs. The results are presented
in Table 1.

Table 1. Deadlock exhibiting results for Java 1.4 collection library

Name No noise ConTest No shared vars With lock analysis Without
lock analysis

Vector 0/100 24/100 52/100 93/100 97/100

ArrayList 2/100 32/100 61/100 98/100 98/100

LinkedList 2/100 16/100 81/100 96/100 99/100

LinkedHashSet 96/100 100/100 100/100 100/100 100/100

TreeSet 93/100 97/100 100/100 100/100 98/100

HashSet 95/100 96/100 100/100 100/100 99/100

Upon analyzing the results, we observe the following: for the List tests, where
deadlocks are hardly ever exhibited without noise, there is indeed a clear order of
effectiveness of methods; noise targeted at the SCCs outperforms random noise
that ignores shared variables, which outperforms random noise. For example, if
we statistically compare noise targeted at SCCs with random noise that ignores
shared variables, then assuming normal distribution, we get that at 95% confi-
dence, the former method will succeed in finding the Vector bug in more than
88% of the runs, while the latter method will succeed in less than 61% of the
runs. Similarly, the former method will succeed in finding the ArrayList bug in
more than 95% of the runs, while the latter method will succeed in less than
70% of the runs. As for the LinkedList bug, the former method will succeed in
finding it in more than 92% of the runs, while the latter method will succeed in
less than 88% of the runs. As a result, we can conclude that at 90% confidence,
noise targeted at SCCs is significantly better than random noise that ignores
shared variables. Similar analysis can be done for the other methods.

The simple heuristic—injecting noise at nested lock acquisitions regardless
of lock analysis—performs similarly to our deadlock exhibiting technique. The
reason is that these tests are small and focus only on the problematic scenarios.
As a result, the simple heuristic injected noise in the same locations as our
technique. However, if the test is bigger and activates larger parts of the software
where additional locks are acquired, then our technique is expected to outperform
the simple heuristic, as demonstrated by the Rover Executive example.

112 Y. Nir-Buchbinder, R. Tzoref, and S. Ur

For the Set tests, where deadlocks are easily exhibited without noise, all noise
injection methods maintain the high rate of deadlock exhibiting, or even slightly
improve it. The advantage of our method over other noise injection methods in
such a case is in the low runtime overhead until reaching a deadlock, since its
noise injection frequency is considerably lower than the other methods.

4 Healing Deadlocks

Given the lock graph as input, our healing technique works as follows: for each
set of deadlock potentials, given in the form of an unguarded SCC in the lock
graph, we generate a new wrapper lock that is acquired by a thread before any
of the locks in the SCC are acquired, and is released by the thread when all locks
in the SCC are not held by the thread anymore. Figure 2 illustrates our healing
technique, activated on the program from Figure 1.

A limitation of the algorithm is that it currently supports only scoped locks:
synchronized blocks (referred to as implicit locks), java.util.concurrent.
ReentrantLock (referred to as explicit locks), and pthread mutexes in C. If
semaphores, barriers, etc. are involved in the original program then our wrap-
per lock may lead to a deadlock. Such cases can easily be filtered out (for the
purposes of avoiding a healing attempt), either statically (if the program uses
them anywhere), or dynamically (if it uses them in the presence of scoped locks;
if different threads use different mechanisms, it is OK). Note that a mixed usage
of mechanisms probably merits a lock discipline warning in itself; it is very hard
to reason about the correctness of such programming. Note also that scoped
locks are probably the most common kind of locks, certainly in Java. Thus, for
many programs this limitation does not apply.

A problem that rises from the proposed healing solution is that new deadlocks
involving a wrapper lock can occur when the graph is incomplete. We refer to this

lock A {

Thread 1 Thread 2

lock B {

 }
}

}

lock AB {

lock AB {

lock A {

 lock B {

 }

}
}

Fig. 2. The healed version of the program from Figure 1. AB is the added wrapper
lock.

Deadlocks: From Exhibiting to Healing 113

}
 }

 }

}

Thread 1 Thread 2

{

 lock C {

lock C {

lock B

lock A {

Fig. 3. A possible run of the program from
Figure 1

{lock B
 }

}

Thread 1 Thread 2

 lock C {

lock C {

lock A {
lock AB {

}

lock AB

 }
 }

}

{

Fig. 4. The incomplete input prob-
lem. The addition of wrapper lock AB
causes a deadlock that did not exist in
the original run.

problem as the incomplete input problem. The graph may be incomplete since
it describes only lock acquiring patterns observed in previous runs rather than
in all possible runs. Statically finding all SCCs is undecidable, since we cannot
calculate all possible program executions. To illustrate the problem, consider
the program from Figure 1. Suppose that lock analysis was performed according
to runs of the form depicted in Figure 1, where locks A and B form an SCC.
Thus, a wrapper lock AB is added as depicted in Figure 2. Now suppose that
the run depicted in Figure 3 is a possible run of the program, i.e., a thread T1

acquires lock A and then lock C, while a thread T2 acquires C and then B. This
means that locks A, B, and C are in the same SCC, but the healing algorithm
is unaware of this fact, since the type of run where C is taken with A or B was
never seen before. Note that the run in Figure 3 does not deadlock. However,
if the healing algorithm is activated, as depicted in Figure 4, then the following
occurs: thread T1 needs to acquire AB, then A and then C, while thread T2

needs to acquire C, then AB and then B, resulting in a deadlock.
An additional manifestation of the incomplete input problem is when the same

lock relation is incomplete, i.e., there are two program locations which should be
considered the same lock, but were not detected as such. This can similarly lead
to a deadlock involving a wrapper lock.

Any attempt to continue healing once a new deadlock involving a wrapper
lock has been detected, may result in inserting new deadlocks into the program,
or alternatively cause race conditions. Therefore, we handle the incomplete input
problem by aborting the healing of the involved SCCs (by canceling the wrapper
lock and continuing the run without it), and updating the lock graph with the
missing information. This both guarantees that the healing is safe, and that the
observed deadlock does not occur in the future.

To implement the solution, at runtime we maintain the dynamic lock graph
of the program (as opposed to the input lock graph built from lock discipline
analysis), representing the current state of lock requests and acquisitions in the

114 Y. Nir-Buchbinder, R. Tzoref, and S. Ur

program, so that there is an edge from node A to B if and only if there is a
thread holding lock object A while requesting or acquiring lock object B. Each
thread, before requesting or releasing a lock (either an original lock or a wrapper
lock), updates the graph. When a thread updates the graph before requesting a
lock, it checks whether the resulting graph contains an SCC involving at least
one wrapper lock. If so, the thread cancels the wrapper locks, effectively aborting
the healing of the involved SCCs.

If a new SCC with no wrapper locks is detected in the dynamic lock graph,
then this is an actual deadlock resulting from an SCC which was not part of the
input lock graph. In this case we cannot avoid the deadlock; we print debugging
information and update the SCCs of the input lock graph, so that in future runs
this deadlock is healed.

How are the wrapper locks implemented in Java? since we need to take
the wrapper lock in one method run (listener call) and release it in another,
java.util.concurrent.ReentrantLockare a natural implementation for wrap-
per locks, but the following problem exists: as described before, sometimes a
thread needs to notify other threads that are waiting for the wrapper lock to
abort and not try to take it (premature release). This cannot be done straight-
forwardly with ReentrantLocks. Interrupts should not be used either, since they
may interfere with the original program’s interrupt semantics. The solution is
to use java.util.concurrent.Semaphore. Usually it is given one permit, so
it behaves like a ReentrantLock. aquireUninterruptibly is used, so that it
cannot interfere with the original program’s interrupts. When a thread wants to
cancel the wrapper lock, it simply raises the number of permits to infinity.

Naively, one would think that while the wrapper lock is taken, there is no need
to take the original locks. This fails because it can lead to a race in case of an
incomplete graph. Moreover, even if the graph is complete, we need to consider
the issue of the wait synchronization primitive. The semantics of wait attach it
to a certain lock. This leads to the following question. Suppose locks A and B
are in an SCC, a thread T1 takes lock A and then B, and then waits on B, and
a thread T2 tries to take A. Now suppose that only the wrapper lock is taken.
Should T1 wait on the wrapper lock instead of waiting on B? If it does, then
this can lead to a race condition, since T2 can now proceed. If T1 does not wait
on the wrapper lock, then the wait is effectively canceled, which can result in a
different semantics for the program. Thus, the original locks must also be taken
in addition to the wrapper lock.

Looking more into the wait primitive, we observe additional pitfalls. Suppose
the thread still holds another lock from the same SCC as the lock it waits on. If
the thread releases the wrapper lock, then the thread is holding a lock without
its wrapper lock, which may lead to a deadlock involving the wrapper lock. If the
thread does not release the wrapper lock, then another thread that is supposed
to notify this thread will be blocked. Thus, we cancel the wrapper lock before
the call to wait, and abort the healing of this SCC. Note that if a thread holds
a lock while waiting on another lock, this is already hazardous. For example, if a

Deadlocks: From Exhibiting to Healing 115

thread acquires lock A and inside it lock B, and then waits on A, another thread
(possibly running the same code!) may take lock A, and then deadlock on B.

If the thread holds no other locks from the same SCC as the lock it waits
on, the thread releases the wrapper lock before the call to wait. When the
thread returns from wait, it reacquires the lock. Thus, it first needs to reacquire
the wrapper lock. There is a problem that in a typical implementation of the
wait primitive (such as in Java and the pthread library for C), by the time the
execution of the thread continues after wait, it has already reacquired the lock.
For example, in Java there is no bytecode event related to reacquiring the lock
when returning from wait. Therefore, using program instrumentation (either
source level or binary), we cannot force the thread to reacquire the wrapper
lock before it reacquires the original lock. Note that if the thread acquires the
wrapper lock after it returns from wait, a deadlock can occur since we reversed
the order of lock acquisitions.

Our solution is as follows: immediately after returning from wait, we temporar-
ily release the original lock, acquire the wrapper lock, and reacquire the original
lock. This requires acquiring and releasing of the original locks not through syn-
chronized blocks, which we have implemented, as will be described in Section 4.1.

Without these complications, the implementation of the healing algorithm can
be performed statically, by adding to the code acquires and releases of wrapper
locks before those of the program locks appearing in SCCs. If the locks are
represented by program locations, as in our case, this is an even simpler task,
since the locks appearing in an SCC can be easily identified. However, since the
algorithm must also track runtime information to avoid inserting new deadlocks,
we had to implement it at runtime.

4.1 Experimental Results for Deadlock Healing

We implemented the healing algorithm for Java programs. Our implementation
uses bytecode instrumentation and consists of code that performs healing and
runtime analysis of potential deadlocks involving wrapper locks, as described
above. Similarly to the deadlock exhibiting code, we use ConTest for the byte-
code instrumentation and its listener architecture for the runtime code. We listen
to entry and exit of synchronization blocks and calls to wait, and activate the
healing and analysis code immediately before and after these events. Releasing
and acquiring locks after returning from wait, which is a necessary step in our
healing solution, are not trivial to implement for implicit locks: this is not possi-
ble in the Java language. However, it is possible in Java bytecode, so we created
the appropriate bytecode methods in ConTest, that can be called directly from
the healing listener code.

We return to the Rover Executive example. To test the effectiveness of the
healing algorithm, we ran it together with the deadlock exhibiting algorithm.
Otherwise, we never see a deadlock occurring and it is hard to evaluate the
effectiveness of healing. We note that ConTest’s listener architecture enables
running multiple listeners without interfering each other, and so we ran the Rover
Executive with both the deadlock exhibiting and deadlock healing listeners. For

116 Y. Nir-Buchbinder, R. Tzoref, and S. Ur

the deadlock exhibiting we used the same parameters that previously lead to
exhibiting a deadlock in 35 out of 100 runs. With healing, a deadlock never
occurred. The healing was never aborted – no new SCCs were discovered, and
there were no cases where a thread called wait while holding another lock from
the same SCC as the lock it waited on. There were numerous calls to wait, in
many of them a thread that returned from wait then tried to nestedly acquire
another lock from the same SCC. These cases could be handled correctly by our
solution as described above.

We now return to the Java 1.4 Collection Library. We reran all tested modes
that appear in Table 1 from Section 3.1, with 100 runs for each mode, this time
with the addition of healing (the ”no noise” mode now uses instrumentation for
healing purposes but no noise injection). A deadlock never occurred. No calls to
wait were encountered, and the healing was never aborted.

We also measured the healing runtime overhead for the Rover Executive and
for the Java 1.4 List tests, that did not tend to deadlock without noise inser-
tion. For the Rover Executive we observed an average runtime overhead of 15%,
whereas for the List tests we observed an average overhead of 30%. The runtime
overhead stems both from the dynamic lock graph computation and from the
fact that our healing solution increases the thread serialization. The List tests
are very short and the lock operations consume a significant part of their run-
time. Thus, for these tests, the dynamic lock graph computation is much more
costly than for the Rover Executive. As for the performance overhead due to
thread serialization, it is more evident since the runs were performed on a dual
core machine. A possible future direction to reduce this overhead is to iden-
tify decompositions of the SCCs, so it is sufficient to generate a new wrapper
lock for each part of the decomposition to guarantee the absence of deadlocks.
In addition, we can reduce the performance overhead due to the dynamic lock
graph computation by using online algorithms for cycle detection, instead of
the DFS-based algorithm for detecting strongly connected components. Over-
all, more experience with industrial programs is needed to better estimate the
runtime overhead.

To conclude, for both examples, the healing mechanism worked with 100%
success.

5 Conclusions

In this paper we have looked at exhibiting and healing deadlocks. Our work
assumes that deadlock detection is already done. The case for using deadlock
exhibiting in testing is straightforward because detection suffers from the prob-
lem of false alarms (a killer for analysis tools) while exhibiting does not. We
showed a practical deadlock exhibiting technique with very little intervention
and small performance impact. We think we found the right balance, where our
technique is a lot more effective than the next simplest thing (applying noise to
nested synchronization calls) and a lot more practical than trying to force the
program into deadlocks using partial replay schemes.

Deadlocks: From Exhibiting to Healing 117

Healing, on the other hand, requires more research. A possible future direc-
tion is to combine the computation of the SCCs using dynamic analysis with a
conservative over-approximation using static analysis. This should be done with
care, as an over-approximation may be too coarse, leading to thread serialization,
as mentioned in Section 4.1.

One use case for healing is when there is a program in the field and we want
it to run correctly, even though deadlocks are possible. Correct healing, while
simple in concept (involves simply adding a wrapper lock to strongly connected
components), needs to pay careful attention to a wide variety of issues. Some are
language dependent such as the exact type of locks used, some depend on the
risk of working with partial information, and some are related to the semantics of
different synchronization primitives. Our experience with implementing deadlock
healing showed us that there are many pitfalls that need to be avoided, and some
of them may cause new deadlocks. We have resolved many of the issues in the
context of Java 5, and have shown that healing is a viable technique. However,
anyone who would like to translate our work to a different context will need to
consider carefully the issues raised in this paper.

We are now starting to deploy deadlock exhibiting in customer sites. For
healing, the technology is ready and we are looking for users and use cases for
which it can make a difference.

Acknowledgement. We thank the reviewers for their useful suggestions.

References

1. http://msdn2.microsoft.com/en-us/library/ms792855.aspx

2. Agarwal, R., Stoller, S.D.: Run-time detection of potential deadlocks for programs
with locks, semaphores, and condition variables. In: PADTAD 2006: Proceeding
of the 2006 workshop on Parallel and distributed systems: testing and debugging
(2006)

3. Agarwal, R., Wang, L., Stoller, S.D.: Detecting potential deadlocks with static
analysis and run-time monitoring. In: Proceedings of the Parallel and Distributed
Systems: Testing and Debugging track of the 2005 IBM Verification Conference
(2005)

4. Holliday, J., El Abbadi, A.: Distributed deadlock detection. In: Encyclopedia of
Distributed Computing. Kluwer Academic Publishers, Dordrecht (accepted for
publication)

5. Banaszak, Z.A., Krogh, B.H.: Deadlock avoidance in flexible manufacturing sys-
tems with concurrently competing process flows. IEEE Transactions on Robotics
and Automation 6(6) (1990)

6. Belik, F.: An efficient deadlock avoidance technique. IEEE Trans. Comput. 39(7)
(1990)

7. Ben-Asher, Y., Eytani, Y., Farchi, E., Ur, S.: Noise makers need to know where
to be silent - producing schedules that find bugs. In: International Symposium on
Leveraging Applications of Formal Methods, Verification and Validation (ISOLA)
(2006)

http://msdn2.microsoft.com/en-us/library/ms792855.aspx

118 Y. Nir-Buchbinder, R. Tzoref, and S. Ur

8. Bensalem, S., Fernandez, J.-C., Havelund, K., Mounier, L.: Confirmation of dead-
lock potentials detected by runtime analysis. In: PADTAD 2006: Proceeding of the
2006 workshop on Parallel and distributed systems: testing and debugging (2006)

9. Bensalem, S., Havelund, K.: Dynamic deadlock analysis of multi-threaded pro-
grams. In: Ur, S., Bin, E., Wolfsthal, Y. (eds.) HVC 2005. LNCS, vol. 3875.
Springer, Heidelberg (2006)

10. Edelstein, O., Farchi, E., Nir, Y., Ratsaby, G., Ur, S.: Multithreaded Java program
test generation. IBM Systems Journal 41(1) (2002),
http://alphaworks.ibm.com/tech/contest

11. Farchi, E., Nir, Y., Ur, S.: Concurrent bug patterns and how to test them. In:
IPDPS 2003: Proceedings of the 17th International Symposium on Parallel and
Distributed Processing. IEEE Computer Society, Los Alamitos (2003)

12. Farchi, E., Nir-Buchbinder, Y., Ur, S.: Cross-run lock discipline checker for Java.
In: PADTAD / Haifa Verification Conference (2005)

13. Giannakopoulou1, D., Pasareanu, C.S., Lowry, M., Washington, R.: Lifecycle verifi-
cation of the NASA Ames K9 Rover Executive. In: ICAPS 2005: Workshop on Ver-
ification and Validation of Model-Based Planning and Scheduling Systems (2005)

14. Havelund, K.: Using runtime analysis to guide model checking of java programs.
In: Proceedings of the 7th International SPIN Workshop on SPIN Model Checking
and Software Verification. Springer, Heidelberg (2000)

15. Nir-Buchbinder, Y., Ur, S.: ConTest Listeners: a concurrency-oriented infrastruc-
ture for java test and heal tools. In: Fourth International Workshop on Software
Quality Assurance (2007)

16. Sánchez, C., Sipma, H.B., Manna, Z., Gill, C.D.: Efficient distributed deadlock
avoidance with liveness guarantees. In: EMSOFT 2006: Proceedings of the 6th
ACM & IEEE International conference on Embedded software (2006)

17. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.: Eraser: a dy-
namic data race detector for multi-threaded programs. In: SOSP 1997: Proceedings
of the sixteenth ACM symposium on Operating systems principles (1997)

18. Sen, K., Agha, G.: Cute and jcute: Concolic unit testing and explicit path model-
checking tools. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144. Springer,
Heidelberg (2006)

19. Terekhov, I., Camp, T.: Time efficient deadlock resolution algorithms. Information
Processing Letters 69(3) (1999)

20. Williams, A., Thies, W., Ernst, M.D.: Static deadlock detection for Java libraries.
In: Black, A.P. (ed.) ECOOP 2005. LNCS, vol. 3586. Springer, Heidelberg (2005)

http://alphaworks.ibm.com/tech/contest

A Scalable, Sound, Eventually-Complete

Algorithm for Deadlock Immunity

Horatiu Jula and George Candea

EPFL – Swiss Federal Institute of Technology, Lausanne,
Switzerland

Abstract. We introduce the concept of deadlock immunity—a program’s
ability to avoid all deadlocks that match patterns of deadlocks experienced
in the past. We present here an algorithm for enabling large software sys-
tems to automatically acquire such immunity without any programmer
assistance. We prove that the algorithm is sound and complete with re-
spect to the immunity property. We implemented the algorithm as a tool
for Java programs, and measurements show it introduces only modest per-
formance overhead in real, large applications like JBoss. Deadlock immu-
nity is as useful as complete freedom from deadlocks in many practical
cases, so we see the present algorithm as a pragmatic step toward ridding
complex concurrent programs of their deadlocks.

1 Introduction

Writing concurrent software is a challenging task, because it requires careful
reasoning about complex interactions between concurrently-running threads.
Programmers consider concurrency bugs to be some of the most insidious. An
important category of such bugs result in deadlocks—situations in which a set of
threads cannot make forward progress because each thread is waiting to acquire
a lock held by another thread in that set. Avoiding the introduction of dead-
lock bugs during development is challenging, because large software systems are
developed by multiple teams totaling hundreds to thousands of programmers.
Testing is not a panacea either, because exercising all possible execution paths
and thread interleavings is still infeasible for large programs; the result is that
deadlock bugs do slip into most large production software. Unfortunately, de-
bugging deadlocks is tedious, because they are hard to reproduce and diagnose.

We expect deadlocks to become more frequent, as multi-core CPUs lead to
higher degrees of concurrency and encourage new software systems to be increas-
ingly more parallel. There have been proposals for making concurrent program-
ming easier, such as transactional memory [6], but issues concerning I/O and
long-running operations still make it difficult to provide atomicity transparently
(ironically, several transactional memory implementations resort to locking for
implementing efficient transactions and can thus lead to application deadlocks).
We believe that locks will continue being a primary vehicle for synchronization
in multi-threaded applications.

M. Leucker (Ed.): RV 2008, LNCS 5289, pp. 119–136, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

120 H. Jula and G. Candea

Several approaches detect and prevent the introduction of deadlocks before a
program runs, by using various forms of static analysis [3,4,7,16]. These ap-
proaches typically aim to find deadlock bugs in the source code and either
let the programmer fix them, or automatically instrument the application with
new locks that introduce serialization in the deadlock-prone code. The challenge
faced by static approaches is that they either generate many false positives (i.e.,
wrongly identify deadlock bugs) and burden programmers with sifting through
the reports to pick out the true bugs, or they do not scale to large applications
due to resource consumption that is exponential in the size of the analyzed pro-
gram. In fact, false positives vs. scalability appears to be an essential tradeoff in
static techniques for finding deadlocks.

Dynamic approaches [2,5,12,15,17] often face a different challenge: false neg-
atives. Since they rely exclusively on runtime information from the present ex-
ecution (e.g., a lock trace), deadlocks may still occur, because they cannot be
predicted. In fact, the pure version of the deadlock avoidance problem is gen-
erally undecidable, because it can be reduced to the halting problem [9]1. One
way to simplify the problem and circumvent undecidability is to save deadlock
information that persists across executions, and leverage this knowledge to avoid
solely the already-encountered deadlocks.

Our proposed approach detects deadlocks at runtime and saves the contexts
in which they occurred, in order to avoid the contexts in future runs. This con-
stitutes achieving “immunity” against the corresponding deadlocks. To avoid
previously-seen deadlocks we employ program steering [10] and automatically
change the scheduling of threads. A program with deadlock immunity will pro-
gressively eliminate the manifestations of its deadlocks bugs, by automatically
avoiding a monotonically increasing set of deadlock contexts. We expect this
approach to result in fewer false positives, because it relies on deadlock patterns
that actually manifested, not on inferred deadlocks that may occur in the future.
However, if a deadlock does not have a pattern similar to an already encountered
one, our approach will not avoid it (false negative). To be precise, the false neg-
ative rate of our approach is exactly one per deadlock context, because all runs
after the first occurrence will be free of the corresponding deadlock pattern.

Fortunately, deadlock immunity is often as useful as complete deadlock avoid-
ance in practice, since the only difference is that one occurrence per deadlock
pattern. Thus, software users now have the option of employing a tool based
on our approach, instead of waiting for the manifest deadlock bugs to be fixed
by software vendors. In fact, deadlock immunity must not be only an interim
solution, but could also provide permanent immunity against those deadlocks,
without having to risk the system destabilization often associated with patching.

This paper makes three main contributions: (a) An algorithm for developing
deadlock immunity with no assistance from programmers or users; (b) Proof
that the algorithm is sound (i.e., avoids deadlocks while preserving liveness) and
eventually complete (i.e., avoids all deadlocks after a finite number of steps); and

1 In the limited space here we cannot do justice to all the prior work that has provided
us with inspiration; we therefore include a more extensive survey in [9].

A Scalable, Sound, Eventually-Complete Algorithm for Deadlock Immunity 121

(c) Preliminary evidence that the algorithm can scale to large programs (over
350,000 lines of code) and large degrees of concurrency (up to 280 threads).

In the rest of this paper we describe the deadlock immunity algorithm (§2), de-
scribe a proof of its soundness and completeness (§3) and analyze its complexity
(§4). We present an implementation for Java programs and a preliminary evalua-
tion of effectiveness and performance in real systems (§5), after which the paper
concludes (§6).

2 Algorithm for Deadlock Immunity

In this section we present the algorithm per se. After an overview and necessary
definitions (§2.1), we describe in detail the instrumentation needed to intercept
lock/unlock requests (§2.2). Afterward, we present the two main parts of our
approach: the avoidance algorithm (§2.3) and the detection algorithm (§2.4).

2.1 Overview and Definitions

The deadlock immunity algorithm applies to the following abstract model of a
multi-threaded program: there is a finite number of threads performing synchro-
nization operations (i.e., lock and unlock) on a finite number of shared mutex
locks. When a thread t performs a lock(l) on mutex l, it follows 3 steps: (1) t
requests lock l; then (2) t waits until l becomes free, i.e., not held by any other
thread; and finally (3) t acquires l. A thread can request only one lock at time,
and a lock can be held by only one thread at a time. When t performs unlock(l),
it releases l, which becomes available to other threads for acquisition. A code
region protected by a lock l (i.e., situated between a lock(l) and unlock(l)) is
called a critical section. When a thread performs lock(l’) within the critical sec-
tion of lock l, we say the thread is doing a nested lock (if l′ �= l) or a reentrant
lock (if l′ = l). Both reentrant and nested locking is supported. We identify the
program position p at which a thread requests or acquires a lock as the offset of
the corresponding instruction within the program source code or binary.

A set of threads is deadlocked iff every thread from that set is waiting (step 2
above) for a lock held by another thread in that set. The immediate cause of a
deadlock (or, alternatively, its context) is a given sequence of lock acquisitions
that have led to the situation described above. A deadlock avoidance mechanism
generally tries to predict impending deadlocks and dynamically reorder the lock
acquisitions in order to avoid the predicted deadlocks.

The deadlock immunity algorithm consists of two parts, one that detects dead-
locks and another that avoids them by forcing threads to yield (in step 1 above)
when they are approaching a previously-seen deadlock. In order to detect dead-
locks, we maintain a standard resource allocation graph RAG=[V, E]. The ver-
tices v ∈ V can be threads or locks, and the edges e ∈ E can be request, hold,
grant, or yield edges.

A request edge t→rl represents thread t requesting permission to wait for lock
l (step 1 above). A grant edge t

p→gl represents the fact that thread t was granted

122 H. Jula and G. Candea

permission by the algorithm to wait for lock l at position p in the program (i.e.,
to enter step 2). A hold edge t

p←hl indicates that t has acquired lock l at position
p (step 3). A group of yield edges t

p1→yt1, ..., t
pn→ytn indicates that thread t was

forced to yield because threads t1, ..., tn had acquired (or were granted) locks at
positions p1, ..., pn; the usefulness of yield edges will become clear later on. In
summary, a request edge is the manifestation in the RAG of a lock request and
a hold edge the manifestation of a lock acquisition. A grant edge reflects the
algorithm’s decision to allow a thread to do a blocking wait for a lock, while a
yield edge captures the immunity algorithm’s decision to pause a thread in order
to avoid a potential deadlock. In terms of notation, when the value of an edge
label or an endpoint is irrelevant, we mark it with ∗ (as in v1

∗→yv2, or v1
∗→y∗).

A deadlock appears as a cycle in the RAG, involving exclusively request, grant,
and hold edges (i.e., no yield edges). When avoiding deadlocks using thread
yields, livelocks can arise; e.g., when a thread t1 is forced to yield because of
thread t2, while thread t2 waits for a lock held by thread t1. We call such livelocks
avoidance-induced livelocks.

l

t2

t1

t3 t4

t5

t6

ownership edge
grant edge

yield edge

Fig. 1. Livelocked threads and yield cycles

Avoidance-induced livelocks
appear as yield cycles in the
RAG—a cycle is a yield cy-
cle iff all yield edges emerg-
ing from its nodes belong to
yield cycles. One can think of
avoidance-induced livelocks as a
group (conjunction) of yield cy-
cles that intersect in a vertex v
of the RAG as well as in all yield
edges that emerge from v. The
yield cycle construct enables the
algorithm to detect and avoid
all avoidance-induced livelocks the same way it detects and avoids deadlocks.

To illustrate the concept, consider Figure 1: for thread t1 to be livelocked, all
of its yield edges must be part of cycles, as well as all of t4’s yield edges, since
t4 is in one of t1’s yield cycles. If the RAG had solely the (t1, t2, . . . , t1) and
(t1, t3, l, t4, t6, . . . , t1) cycles, then there would be no livelock, because t4 could
“evade” livelock through t5, allowing t1 to “evade” through t3. If, as in Figure 1,
cycle (t1, t3, l, t4, t5, . . . , t1) is also present, then the threads have no way to make
forward progress and are thus livelocked.

We use instruction location information to capture and save templates of dead-
locks and induced livelocks. Remember, the program position p is an abstraction
that denotes the location of an instruction in the source code or binary. A tem-
plate is the set of program positions (edge labels) corresponding to the edges
of a cycle in the RAG; remember that only grant, hold, and yield edges carry
labels. For example, the template of the cycle t1 →r l1

p1→h t2 →r ...ln
pn→h t1

is {p1, ..., pn}. Templates capture the “contexts” in which deadlocks occur. A
template instance is an instantiation of a template in a program execution, i.e.,

A Scalable, Sound, Eventually-Complete Algorithm for Deadlock Immunity 123

a set of (thread, position) tuples, representing distinct threads that are currently
holding or have been granted locks at positions corresponding to the template,
that cover all positions in the template; e.g., the instantiation of {p1, ..., pn} in
the current state of a program would take the form {(t1, p1), ..., (tn, pn)}.

Templates are analogous to “antibodies”—the algorithm saves them to per-
sistent storage and avoids their re-instantion in all future executions. Since both
deadlocks and avoidance-induced livelocks have their templates saved to the
same template history, we will refer to all of them as simply templates, the uni-
fied deadlock and induced livelock history simply history, and the deadlocks and
avoidance-induced livelocks simply cycles when no distinction needs to be made.

An immunizing tool based on the proposed algorithm instruments programs
such that all lock and unlock operations are intercepted and relayed to the
immunity algorithm’s avoidance module. This module shares an event queue
and the history with the detection module, as illustrated in in Figure 2.

lock(l)

unlock(l)

Thread
Avoidance

Detection
History

decide

periodically do :
 process events
 search for cycles
 if cycles found
 save to history
 recover program

request

acquired

release

grant / yield
lock-free
event
queue

RAG

Fig. 2. Architecture of an immunizing tool

The avoidance module runs
synchronously with the applica-
tion, in that it is invoked on
every lock request, acquisition
or release; avoidance decisions
are made only for lock requests.
This module is responsible for
avoiding cycles, based on the
templates stored in history. The
avoidance module notifies asyn-
chronously the detection com-
ponent about events (lock re-
quest/acquisition/release) and
decisions (grant/yield) using an
event queue. On every lock re-
quest, this module checks whether any templates in the history would be instan-
tiated by granting the requested lock. If not, the thread is allowed to proceed
with locking; otherwise, the thread must yield.

The detection module runs asynchronously, in parallel with the program’s
threads. It periodically updates the RAG based on notifications received from the
avoidance module, detects cycles in the RAG, and saves these cycles’ templates
to the history. It then restarts the deadlocked application’s threads.

In summary, the proposed approach has three key features: (1) it captures
execution-independent templates of previously-encountered deadlocks and avoids
future instantiations of these templates; (2) detects and avoids livelocks induced
by avoidance in exactly the same way as deadlocks (yield cycles allow us to cast
a liveness property into an easily detectable safety property); (3) detects cycles
asynchronously in a separate thread, in order to remove this expensive compu-
tation from the critical path. Given that a deadlocked application is not making
any progress anyway, the only drawback of asynchrony is a potentially longer
recovery time; the latter can easily be tuned by selecting a suitable period.

124 H. Jula and G. Candea

2.2 Instrumentation

The code or binary of the original program needs to be instrumented such that
all lock and unlock operations are intercepted. The instrumentation replaces
each call to a native lock/unlock with corresponding code that relays events to
the avoidance module and exercises control over the scheduling of the calling
thread, as shown in Figure 3. We discuss the instrumentation here as much as
necessary for understanding the mechanics of the runtime system; the details
appear in the next section.

When an immunized thread t wants a lock l at position p, it asks for permission
from the avoidance module, which could ask the thread to yield, in which case
the thread will sleep until permitted to proceed. When the avoidance module
allows the thread to proceed, t uses the native locking mechanism to acquire
l and then notifies the avoidance module of the acquisition event. An unlock
operation is analogous, but simpler. This form of instrumentation is just one
possible design choice—it could also be implemented inside the runtime, the
operating system kernel, etc.

2.3 Avoidance

The avoidance module is responsible for controlling the schedule of threads to
avoid previously-encountered deadlocks and avoidance-induced livelocks. The
interface offered by this module to the instrumented threads consists of three
operations: Request , Acquired and Release, that process lock requests, acquisi-
tions and releases, respectively. We developed both a synchronized version of the
algorithm, which uses a global lock to ensure atomicity of Request and Release,
as well as a lock-free version, which eliminates this global lock, but requires addi-
tional checks in Request , Release and in the instrumentation of lock operations.
We present here the lock-free version of the algorithm; the synchronized version
appears together with the lock-free one in [9].

The Request , Acquired and Release operations are described in Figure 5. The
core avoidance occurs in Request , whose return value determines whether a
thread is paused or allowed to proceed. But, before discussing the algorithms
in any more detail, we describe the data structures they employ.

Since avoidance is performed synchronously with calling threads, we aim to
minimize the amount of work performed in the critical path; for this we choose
fine-grain, efficient data structures in the avoidance module. The avoidance mod-
ule shares only two data structures with the cycle detector: an event queue (up-
dated by the avoidance module and read by the detector) and the template
history (updated by the detector and read by the avoidance module). Cycle de-
tection requires a consistent view of the RAG, thus requiring exclusive access to
it, but is also a complex operation, thus holding the RAG locked for extended
periods of time. We therefore opted to have all RAG updates be performed in the
detection module, based on the events received through the queue. This provides
optimal decoupling between the two modules.

A Scalable, Sound, Eventually-Complete Algorithm for Deadlock Immunity 125

The avoidance module uses the following data structures:

• lockGrantees[p] is a multiset2 containing the threads that hold (or are granted)
locks at position p; it is initially empty. This is the data structure used in search-
ing for template instantiations.
• history is the set of templates of previously-encountered cycles. It is persistent,
in that all updates are saved on disk, to be available in subsequent executions.
At program startup, history is loaded in memory.

lock wrapper(l)
1 t := current thread ID
2 p := current program position
3 if owner[l] �= t then
4 events := events + [request(t, l, p)]
5 yCause := Request(t,l,p)
6 if yCause �= null then
7 foreach (t′, p′) ∈ yCause do
8 native lock for read((t’,p’))
9 if ∀(t′, p′) ∈ yCause :

1lockGrantees[p′](t
′) > 0 then

10 native lock(yieldLock[t])
11 foreach (t′, p′) ∈ yCause do
12 yielders[t’,p’] :=

yielders[t’,p’] ∪ {t}
13 native unlock for read((t’,p’))
14 yieldCause[t] := yCause
15 events := events +

[yield(t, yieldCause[t])]
16 yieldLock[t].wait()
17 native unlock(yieldLock[t])
18 else
19 foreach (t′, p′) ∈ yCause do
20 native unlock for read((t’,p’))
21 goto 5
22 native lock(l)
23 Acquired(t, l, p)

unlock wrapper(l)
1 t := current thread ID
2 Release(t,l)
3 native unlock(l)

Fig. 3. Lock/Unlock Instrumentation

• yieldCause[t] is the cause of
thread t’s yield; yieldCause[t] has
the same structure as a template
instance, because it is in effect a
subset of a real template instance.
It is initially null.
• yielders[t, p] is the set of threads
that are currently paused and
have (t, p) in their yieldCause;
the yielders map is initially
empty.
• yielders[t, p] is the set of threads
that are currently paused and
have (t, p) in their yieldCause;
the yielders map is initially
empty.
• owner[l] is the thread currently
holding lock l; it is initially null.
• acqPos[l] is the program posi-
tion where lock l was acquired by
its current owner; it is initially
null.
• nLockings[l] is the number
of times lock l was reentrantly
locked; it is initially 0.
• yieldLock[t] is the lock (condi-
tion variable) used for pausing or
waking up thread t.

The instrumentation for the
lock operation (Figure 3) per-
forms avoidance iff the current
thread t does not already hold the
lock l it is currently requesting
2 A multiset is a set whose elements can be present more than once. An element x

is added to a multiset M using the � operator and removed from M using the
\ operator. For a multiset M and an element x, 1M (x) represents the number of
times x was added to M (M := M � {x}) less the number of times it was removed
(M := M \ {x}). x is deleted from M only when 1M (x) reaches zero.

126 H. Jula and G. Candea

(line 3). To perform the avoidance, the cycle detector is first notified of the
request (line 4). Then lines 5-6 check if it is safe for t to proceed with locking
l. If yes, t uses the native locking mechanism to acquire l (line 22), notifies the
avoidance module of the acquisition event (lines 23) and is done. If unsafe, i.e.,
the avoidance module returned a non-null yield cause on line 5, we must check if
the yield cause is still current (lines 7-9). If yes, a yield is required: register t in all
(thread, position) pairs from the yield cause (lines 11-12), store the yield cause
(line 14), notify the detector about the yield decision (line 15), and wait until a
thread from the yield cause releases all required locks and wakes t up (line 16).
If the yield cause is no longer valid (line 18), we need to re-check whether it is
safe to proceed (line 21). The immunity algorithm influences the thread schedule
via a simple wait mechanism that relies on the condition variable yieldLock[t];
an alternative choice would have been to call yield in a loop, but that is more
CPU-intensive.

When a thread requests a lock, the avoidance module checks whether grant-
ing that lock would instantiate any of the templates currently in history. An
instantiation of template T = {p1, ..., pn} is a set of (thread, position) tuples
representing distinct threads t that hold (or are granted) locks at positions
p from T (i.e., t ∈ lockGrantees[p]), with all positions being covered (i.e.,
∀p ∈ T : lockGrantees[p] �= ∅). Thus, a template T would be instantiated
by thread t being granted a lock at position p iff p ∈ T and T − {p} is already
covered by threads different from t (i.e., instance(T − {p}, {t}) �= null).

The templateInstance(t,p) helper, shown in Figure 4, returns a template in-
stantiation that would occur, if thread t granted a lock at position p (lines 2-4).

templateInstance(t,p)
1 foreach T ∈ history where p ∈ T do
2 templInstance := instance(T − {p}, {t})
3 if templInstance �= null then
4 return templInstance
5 return null

instance(T, exclThreads)
1 if T = ∅ then
2 return ∅
3 else
4 pos := choose p ∈ T
5 foreach t ∈ lockGrantees[pos]

where t /∈ exclThreads do
6 match :=

instance(T \ {pos}, exclThreads∪ {t})
7 if match �= null then
8 return {(t, pos)} ∪match
9 return null

Fig. 4. Helpers for matching templates

If no potential template in-
stantiations are found, tem-
plateInstance(t,p) returns null.
The instance(T,exclThreads)
helper returns an instantia-
tion of template T that does
not involve any thread from
exclThreads (line 8), or null if
such an instantiation does not
exist (line 9). If templateIns-
tance(t, p) returns an instantia-
tion {(t1, p1) . . . , (tn, pn)}, then
it means that yieldCause[t] =
{(t1, p1) . . . , (tn, pn)}, i.e.,
thread t has to wait until t1 re-
leases all the locks it acquired at
p1, or . . . , or tn releases all the
locks it acquired at pn. When-
ever a thread t releases all locks
acquired at position p, it wakes
up all yielding threads ti for

A Scalable, Sound, Eventually-Complete Algorithm for Deadlock Immunity 127

which (t, p) ∈ yieldCause[ti] by performing a notify on the corresponding con-
dition variable (i.e., on yieldLock[ti]).

Request(t,l,p)
1 lockGrantees[p] :=

lockGrantees[p] � {t}
2 yieldCause := templateInstance(t,p)
3 if yieldCause = null then
4 events := events + [grant(t, l, p)]
5 else
6 RemoveGrant(t,p)
7 return yieldCause

Acquired(t,l,p)
1 if owner[l] �= t then
2 owner[l] := t
3 acqPos[l] := p
4 events := events + [acquired(t, l, p)]
5 nLockings[l] := nLockings[l] + 1

Release(t,l)
1 nLockings[l] := nLockings[l] - 1
2 if nLockings[l] = 0 then
3 p := acqPos[l]
4 owner[l] := null
5 acqPos[l] := null
6 events := events + [release(t, l)]
7 RemoveGrant(t,p)

RemoveGrant(t,p)
1 if 1lockGrantees[p](t) = 1 then
2 native lock for write((t,p))
3 lockGrantees[p] :=

lockGrantees[p] \ {t}
4 if 1lockGrantees[p](t) = 0 then
5 foreach t′ ∈ yielders[t, p] do
6 native lock(yieldLock[t’])
7 yieldLock[t’].notify()
8 native unlock(yieldLock[t’])
9 yielders[t,p] := ∅

10 native unlock for write((t,p))

Fig. 5. The avoidance module

Figure 5 presents the core op-
erations of the avoidance module.

When Request(t,l,p) is in-
voked, thread t is intially granted
lock l (line 1). Then, one checks if
thread t can safely proceed, i.e.,
if no template can be instanti-
ated (line 2). If it is unsafe, the
lock grant is canceled (line 6) and
thread t must be forced to wait
and the yield cause is returned
(line 7). If it is safe, one lets t
execute the lock by returning a
null yield cause (line 7) and noti-
fies the cycle detector about this
decision (line 4).

However, a group of threads
may still simultaneously instan-
tiate a template after being
granted on line 1 the locks they
required. If this occurs, at least
one thread in the group will no-
tice the instantiation during the
check from line 2.

In Acquired(t,l,p), if thread t
does not own l, then l is marked
as acquired by t (line 2), the po-
sition p where l was acquired is
saved (line 3), and the detector is
notified (line 4). If t already holds
l, a counter for reentrant locking
of l is incremented (line 5).

In Release(t,l), we decrement
the counter associated with t
(line 1). If l can be released (line
2), the owner and acquisition po-
sition for l must be reset (lines
4-5), the cycle detector notified
(line 6), and the lock grant given to t removed by deregistering t from acqPos[l]
(line 7).

In RemoveGrant(t,p), if t is about to release all locks from p (line 1), lock
(t, p) in write mode (line 2) to ensure consistency of the operations performed in
the instrumentation, and remove the grant given to t for position p (line 3). If t

128 H. Jula and G. Candea

released all locks from p (line 4), then wake up (notify) all yielders, i.e., threads
that have (t, p) in their yield cause, and finally unlock (t, p) on line 12.

2.4 Detection

The detection module finds cycles in the RAG—deadlocks and avoidance-induced
livelocks—and saves their templates to history. As illustrated in Figure 7, it peri-
odically fetches and processes the notifications—RAG events and avoidance

waitCycles(v)
1 foreach x ∈ rag do
2 x.color := white
3 endings := ∅
4 hasCycles(v, endings)
5 return

S
x ∈ endings

waitChains(x, x)

hasCycles(v, endings)
1 if v.color = black then
2 return false
3 if v.color = grey then
4 endings := endings ∪ {v}
5 return true
6 v.color := grey
7 if ∃ v ∗→r/g/h v

′ ∈ rag s.t. hasCycles(v′, endings)

∨ ∀ v ∗→yvi ∈ rag : hasCycles(vi, endings) then
8 return true
9 else

10 v.color := black
11 return false

template(C)

1 return {e.pos | e ∈ C ∧ (e = ∗ ∗←h∗ ∨ e = ∗ ∗→y∗)}

waitChains (v1, v2)
1 cycles := ∅
2 if ∃e = v1

∗→r/g/h v ∈ rag s.t. v.color = grey then
3 if v = v2 then
4 cycles := cycles ∪ {{e}}
5 else
6 cycles := cycles ∪ (

S
c ∈ waitChains(v,v2)

{e} ∪ c)

7 if ∀v1 ∗→yvi ∈ rag : vi.color = grey then
8 choose e = v1

∗→yvi ∈ rag
9 if vi = v2 then

10 cycles := cycles ∪ {{e}}
11 else
12 cycles := cycles ∪ (

S
c ∈ waitChains(vi ,v2)

{e} ∪ c)

13 return cycles

Fig. 6. Helpers for the detection module

decisions—sent by the
avoidance module, up-
dates the RAG, and
looks for cycles in the
RAG. If cycles are found,
their templates are com-
puted and saved, af-
ter which the threads
(or a subset thereof)
are restarted. The detec-
tion module looks only
for RAG cycles contain-
ing threads with pend-
ing lock requests, be-
cause only request events
can introduce new cycles
in the RAG (see proof
in §3).

These actions are per-
formed with a period of
τ (e.g., 1 second). In
principle, the value of τ
does not affect correct-
ness, given that it merely
introduces a delay be-
tween the moment the
program becomes dead-
locked/livelocked and
when this condition is de-
tected. In practice, how-
ever, τ is a “knob” for
tuning the tradeoff be-
tween computation over-
head and recovery time: a
higher τ reduces the CPU
time consumed on updat-
ing the RAG and detect-
ing cycles, while a lower τ

A Scalable, Sound, Eventually-Complete Algorithm for Deadlock Immunity 129

leads to more prompt detection and, thus, faster recovery from deadlock/livelock,
which improves the availability of the program.

The detection module uses two data structures, rag (the resource allocation
graph) and events (the event queue used to receive RAG events and avoidance
decisions from the avoidance module), which is initially empty. A RAG event can
be request(t, l, p), yield(t, yieldCause), grant(t, l, p), acquired(t, l, p) or release(t,
l), corresponding to adding a request edge, adding a yield edge, converting a
request edge into a grant edge, converting a grant edge into a hold edge, and
removing a hold edge, respectively. requestingThreads is the set of threads
having pending lock requests.

main loop
1 while stop = false
2 sleep τ milliseconds
3 processEvents()
4 foundCycles := ∅
5 foreach t ∈ requestingThreads do
6 foundCycles :=

foundCycles ∪ waitCycles(t)
7 if foundCycles �= ∅ then
8 foreach c ∈ foundCycles do
9 history := history ∪ template(c)

10 restart program

processEvents()
1 while events �= ∅ do
2 evt := events.head
3 events := events.tail
4 switch evt do
5 case request(t, l, p)
6 rag := rag ∪ {t→rl}
7 requestingThreads :=

requestingThreads ∪ {t}
8 case yield(t, yCause)

9 rag := rag \ {t ∗→yt
′|t ∗→yt

′ ∈ rag}
∪{t p→yt

′| (t′, p) ∈ yCause}
10 case grant(t, l, p)

11 rag := rag \ {t→rl} ∪ {t
p→gl}

12 case acquired(t, l, p)

13 rag := rag \ {t p→gl} ∪ {t p←hl}
14 requestingThreads :=

requestingThreads \ {t}
15 case release(t, l, p)

16 rag := rag \ {t ∗←hl}

Fig. 7. The detection module

As in the case of the avoidance
module, we make use of helpers,
defined in Figure 6. We only give
a high-level description of these
helpers, because the underlying
algorithms are well-known. The
waitCycles, waitChains, and has-
Cycles helpers are used for cy-
cle detection, and template(C)
is used to extract the template
of a cycle C. hasCycles(v, end-
ings) is easiest implemented us-
ing colored-DFS [11], in which
all explored nodes are marked
“grey” or “black”, depending on
whether they are involved in
deadlocks/livelocks. hasCycles(v,
endings) finds out whether v
is involved in deadlocks/livelocks
and returns the nodes in which
the deadlocks/livelocks (if any)
end. waitCycles(v) retrieves cy-
cles involving v by exploring the
“grey” nodes, starting from the
endings returned by

hasCycles(v, endings).

A RAG node of type thread
can have multiple edges emerging
from it: up to one request edge
and zero or more yield edges.
Thus, a node can be involved
in more than one cycle, which
means waitCycles(v) could re-
turn more than one cycle. However, it is not necessary to retrieve, save and
avoid the templates of all cycles containing a particular node: to avoid an

130 H. Jula and G. Candea

induced livelock, it is sufficient to avoid one of its corresponding yield cycles.
Thus, if a thread t is involved in an avoidance-induced livelock, it is enough for
waitCycles(t) to return just one yield cycle of the livelock.

The two core algorithms are shown in Figure 7. As long as it is not asked to
stop, the cycle detector periodically (every τ msec) processes the notifications
from the avoidance module (line 3), finds all cycles containing threads with
pending requests (lines 4-6) and, if cycles found (line 7), adds the templates of
the detected cycles to the history (lines 8-9) and recovers the program (line 10).

3 Soundness and Completeness

In this section we outline the proof of the deadlock immunity algorithm’s sound-
ness and refer the reader to [9] for the details. The proof shows soundness by
demonstrating safety, i.e., that the algorithm indeed avoids previously-seen dead-
locks, and liveness, i.e., that all threads will eventually make progress. The al-
gorithm is also proven to be eventually complete, i.e., that it eventually detects
and avoids all cycles, i.e., deadlocks and avoidance-induced livelocks.

In proving soundness and completeness of our algorithm, we make the follow-
ing assumptions:

– All avoidance routines (Request , Acquired , Release) are thread-safe. This
depends on implementation: in the synchronized version of the algorithm
[9], atomicity (and therefore thread-safety) is ensured by a global lock. In
the lock-free version (Figure 5), thread-safety (consistency) is preserved via
the additional check performed in the Request routine.

– The number of threads in a program and the number of possible program
positions (i.e., program size) are finite.

– All existing deadlock bugs in a program and avoidance-induced livelocks
eventually manifest.

– All critical sections eventually terminate, except in cases of deadlock or live-
lock.

– The native thread scheduler is fair.
– All lock/unlock statements performed in the program are instrumented as

shown in Figure 3.
– The position within the program of lock operations previously involved in

deadlocks or livelocks does not change from one execution to another, i.e.,
templates are execution-independent. This assumption could be invalidated
by a program upgrade or patch.

We first prove completeness of the cycle detection algorithm. The detection
module looks only for cycles containing threads with pending requests, so we
first prove that, indeed, only the request events can introduce new cycles in the
RAG; we do this by proving that the remaining RAG events — acquired and
release — cannot introduce new cycles in the RAG. Second, we prove that the
detection module detects all cycles required to perform avoidance.

To prove safety (i.e., that we achieve deadlock immunity), we split history
into its version before the current execution (historyold) and the additions made

A Scalable, Sound, Eventually-Complete Algorithm for Deadlock Immunity 131

during the current run (historynew), i.e., history = historyold ∪ historynew .
We then prove that the following invariant is maintained: ∀T ∈ historyold :
instance(T, ∅) = null, i.e., the algorithm avoids the instantiation of all tem-
plates from historyold. Then, we prove the invariant ∀C ∈ waitCycles(t) :
template(C) /∈ historyold, i.e., no newly-detected cycle has its template in
historyold. Finally, we prove the invariant historynew ∩ historyold = ∅, i.e.,
templates do not repeat in different runs.

To prove completeness (i.e., that an application instrumented with our algo-
rithm eventually develops immunity against all possible deadlocks and avoidance-
induced livelocks), we first prove that the number of possible templates is finite.
Then we prove that every program instrumented according to Figure 3, after a
finite number of restarts, eventually reaches a point beyond which all subsequent
executions become free of deadlocks and avoidance-induced livelocks. Finally, we
prove that the deadlock immunity algorithm preserves liveness, i.e., all lock re-
quests are eventually granted by our algorithm. The detailed proofs, for both syn-
chronized and lock-free implementations, are presented in [9].

4 Complexity Analysis

In this section, we discuss the theoretical complexity of the algorithm, and in the
next section we analyze its empirically measured performance. For conciseness,
we highlight here the main results of the complexity analysis and direct the
reader to [9] for the details.

For the avoidance module, assume an immunized program is running with
a history containing N templates, containing NP positions on average, and for
each position p in a template, |lockGrantees[p]| = NG, on average. Let NW

be the average number of yields (waits) performed by a thread before being
granted a lock, and Cwait the cost of a wait() system call. Let |yielders[t, p]| =
NY on average, and Cnotify the cost of a notify() call. The complexity of the
Request operation, which is the most expensive in the avoidance module, is
O(NW · (Cwait + N · (NP + (NP − 1)! · NNP−1

G)) + NY · Cnotify).
Note that we expect NP to be small in practice, on the order of NP = 2...4,

since deadlocks normally involve no more than 4 threads. This is justified by the
fact that, for a group of threads to deadlock, first they have to simultaneously
perform nested locks, and then to perform the inner locks in such a way that
a circular wait occurs. As far as induced livelocks are concerned, note that an
avoidance-induced livelock is a conjunction of yield cycles (§2.4) and a yield cycle
will mirror one of the already-encountered deadlocks. Thus, since NP is small,
we expect that the exponential term in NP to not be dominant in practice.

For the detection module, considerRAG = [V, E], with |requestingThreads| =
NR, on average; say we have on average NE events in the event queue. The com-
plexity of the detection module is O(NE +NR ·(|V |+ |E|)), because every event is
processed in constant time, and we use the optimal colored DFS algorithm (§2.4)
for detecting RAG cycles starting from each thread in requestingThreads.

For the complete derivation of the two modules’ complexities, please see [9].

132 H. Jula and G. Candea

5 Evaluation

In order to verify the practicality of deadlock immunity, we built a prototype of
the deadlock immunity algorithm for Java programs. After describing the imple-
mentation and experimental setup, we evaluate effectiveness (§5.1), performance
overhead in a real application server (§5.2), as well as discuss the effect of false
positives (§5.3). The interested reader can additionally find in [9] the evaluation
of performance overhead using a lock-intensive microbenchmark.

In our implementation, we rely on AspectJ [1], an aspect-oriented compiler, to
instrument Java programs.We instrument the bytecode-level calls to monitorenter
(corresponding to the start of Java synchronizedblocks) and to monitorexit (cor-
responding to the end of synchronizedblocks). The instrumentation is embodied
by advices that capture lock requests (before-monitorenter advice), lock acquisi-
tions (after-monitorenter advice), and lock releases (before-monitorexit advice).
Lock positions are represented as file:line strings corresponding to the line of code
containing the statement in the source file.

The experiments reported here were run on computers with 2 x 4-core Intel
Xeon E5310 1.6GHz CPUs, 4GB RAM, WD-1500 hard disk, 2 NetXtreme II GbE
interfaces, interconnected by a dedicated GbE switch, running Linux Fedora Core
7 with kernel 2.6.20, Java HotSpot Server VM 1.6.0, and Java SE 1.6.0.

5.1 Effectiveness

The first question we wanted to answer was whether the proposed approach will
avoid deadlocks in real applications. We scoured bug reports for the MySQL
database system [13] and, of the various reports of deadlocks or hangs, we were
able to reproduce four (#21427, #14972, #31126, and #17709). They all occur
in the connector that allows Java programs to interact with the database engine.
We wrote test programs that deterministically reproduce these bugs. The im-
munized test programs detected each deadlock the first time it occurred, saved
the template to history, and successfully avoided it in subsequent executions.
Since extensive repeated runs never deadlocked, we cite this as an empirical
proof point that the immunized programs had developed immunity against the
deadlock bugs. MySQL users encountering these bugs face the option of waiting
for the MySQL team to fix them, or to use an immunization tool right away.

While in some cases deadlocks can be eliminated by fixing the root cause,
in other cases this is not a reasonable option. For example, a number of syn-
chronized classes in the Java runtime environment can cause deadlocks in the
applications that call them. Consider two vectors v1, v2 in a multithreaded
program—since Vector is a synchronized class, programmers allegedly need not
be concerned by concurrent access to vectors. However, if one thread wants to
add all elements of v2 to v1 via v1.addAll (v2), while another thread concurrently
does the reverse via v2.addAll (v1), the program can deadlock, because under-
neath the covers, the JDK locks v1 then v2 in one thread, and v2 then v1 in the

A Scalable, Sound, Eventually-Complete Algorithm for Deadlock Immunity 133

other thread. This is a general problem for all synchronized Collection classes
in the JDK, of which there are dozens. It is difficult for developers to knowingly
steer clear of deadlocks resulting from the implementation of an opaque interface,
and deadlocks hidden underneath the runtime interface are some of the most
insidious. At the same time, it is tenuous to precisely document in this interface
all possible usage scenarios that could lead to deadlock.

We wrote test cases for six such deadlock traps and immunized them. After
encountering the respective deadlocks for the first time, all subsequent executions
were free of deadlocks. This resolution requires no programmer intervention and
no JDK modifications.

5.2 Performance Overhead in Real Applications

We applied our immunization tool to JBoss [8], a J2EE application server. JBoss
is a piece of middleware that allows enterprise and Web applications to be written
in Java, with all complexities of transactions, persistence, group communication,
replication, etc. being handled transparently on the applications’ behalf. Behind
virtually every e-commerce Web site today lies an application server. JBoss is
one of the most widely used J2EE servers and, at over 350,000 lines of code
(excluding comments), it is likely one of the largest systems written in Java.

0
1%
2%
3%
4%
5%
6%

 0 2 4 8 16 32

T
hr

ou
gh

pu
t r

ed
uc

tio
n

Number of templates

RUBiS threads=900, JBoss threads=280, Template len=2
 Baseline=515.5 req/sec

Fig. 8. JBoss throughput drop at 280 threads

To benchmark perfor-
mance on the immunized
JBoss, we used the RU-
BiS benchmark [14], an
online auction applica-
tion modeled after eBay.
In our measurements, we
used the servlet ver-
sion of RUBiS with the
browse workload.

We ran JBoss+RU-
BiS, the corresponding
MySQL database tier,
and the RUBiS clients on
separate nodes. We operated the auction site just below its saturation point (900
RUBiS client threads); below and above this level we found the impact of our
algorithm to be virtually unmeasurable. The JBoss console reported that 280
threads were running inside JBoss. In Figure 8, we show the measured reduction
in throughput introduced by our immunization tool for history sizes ranging
from 0 to 32 templates of length 2. The templates are random combinations of
program locations at which JBoss performs synchronization.

The conclusion is that the cost of immunity against up to 32 templates is
a penalty of < 6% in request throughput on an e-commerce workload, which
suggests that our approach offers an efficient deadlock avoidance solution even
for the largest production systems.

134 H. Jula and G. Candea

5.3 Effects of False Positives

An important question is whether, by pruning executions that might lead to
deadlock, the immunity algorithm is not being too conservative. Said otherwise,
paths that once led to deadlock may not deterministically lead to deadlock. For
example, if wrapper methods are used to perform locking (instead of direct calls
to native lock), all the lock positions may end up being the same (the location
of the lock statement in the wrapper) resulting in overly aggressive serialization
of the threads. Exaggerated conservativeness might lead to performance degra-
dation by reducing parallelism, or even to the elimination of some functionality
through the persistent avoidance of deadlock-prone executions paths.

While we do not know yet how to quantify the true effect of false positives, or
how to measure them directly, our initial experimentation indicates that func-
tionality does not get eliminated for some of the largest programs. Moreover,
the low performance overhead suggests that, for the systems we measured, even
if loss of parallelism influences negatively the performance, it does so to a small
degree. Nevertheless, further experimentation is required, as well as further the-
oretical analysis of the false positives introduced by deadlock immunity.

The way to reduce false positives is by improving the precision of avoidance.
We are currently experimenting with storing more contextual information in
the template, such as a suffix of the call path that led to the deadlock-forming
lock statements. The added information defines more precisely the particular
execution that led to the observed deadlock, thus allowing the algorithm to better
distinguish an execution heading for a similar deadlock from one that will not
deadlock. Such increase in precision (reduction in false positive rate) will hurt,
however, the convergence rate—the less general the avoided templates are, the
longer it takes to develop immunity against all the existing deadlock bugs. Said
differently, increased precision makes the “eventual” in eventual completeness
longer.

We are also exploring techniques for dynamically adjusting (learning) the ideal
length of call path suffixes, in order to achieve an optimal precision vs. generality
tradeoff. We are also considering saving the sequence of lock positions traversed
along the call paths.

Another area we wish to explore further is the use of static analysis and
symbolic execution as a way to complement deadlock immunity. In particular, we
want to use look-ahead static analysis to help predict deadlocks that are similar
to ones we have already seen. Using bounded symbolic execution, on the order
of a few instructions ahead of the current state, we can identify unsafe states
without having to actually reach them. Performing such analyses at runtime
could harness the “free parallelism” made available by the advent of multi-core
CPUs. We could also use static analysis for detecting lock statements that would
never lead to deadlocks. We could avoid instrumenting these lock statements,
thus reducing the intrusiveness and therefore the overhead of our algorithm.

Our empirical evaluation indicates that the deadlock immunity approach is
effective at developing immunity against deadlocks, scales to real programs with
hundreds of thousands of lines of code, and introduces low overheads on a real

A Scalable, Sound, Eventually-Complete Algorithm for Deadlock Immunity 135

e-commerce workload. There are still some questions to be answered with respect
to the effect of false positives, and this is the subject of future work.

6 Conclusion

We described an algorithm for imparting deadlock immunity to software systems,
that helps avoid deadlocks with no assistance from programmers or users. We
showed that, once an immunized program encounters a deadlock, it avoids in
all future executions all deadlocks with that same template. We proved the
algorithm’s soundness and eventual completeness; we also showed empirically
that the algorithm is effective against deadlocks in real software like MySQL
JDBC and Java JDK. Preliminary results indicate that the algorithm scales
gracefully to large software systems: in JBoss, a >350 KLOC application server
with 280 threads, worst-case overhead introduced by immunization was a drop
of <6% in request throughput while avoiding up to 32 deadlock templates.

While pure deadlock avoidance is undecidable, deadlock immunity is decid-
able, to the extent imposed by the definition of similarity between deadlocks.
Our technique builds upon and complements prior work by addressing the chal-
lenges of real systems: code size scalability, correctness in the face of program
I/O, and performance overhead. We believe deadlock immunity is a practical
way to eventually run production systems deadlock-free despite the deadlock
bugs that lurk within.

References

1. Aspectj (2007), http://www.eclipse.org/aspectj
2. Boronat, P., Cholvi, V.: A transformation to provide deadlock-free programs. In:

Intl. Conf. on Computational Science (2003)
3. Engler, D., Ashcraft, K.: RacerX: Effective, static detection of race conditions and

deadlocks. In: 19th ACM Symp. on Operating Systems Principles (2003)
4. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.:

Extended static checking for Java. In: Conf. on Programming Language Design
and Implementation (2002)

5. Habermann, A.N.: Prevention of system deadlocks. Communications of the
ACM 12(7) (1969)

6. Herlihy, M., Moss, J.E.B.: Transactional memory: architectural support for lock-
free data structures. In: 20th Intl. Symposium on Computer Architecture (1993)

7. Java pathfinder (2007),
http://javapathfinder.sourceforge.net/doc/
What can be checked with JPF.html

8. JBoss, http://jboss.org
9. Jula, H., Candea, G.: A scalable, sound, eventually-complete algorithm for deadlock

immunity. Technical Report EPFL-DSLAB-2007-002, EPFL, Lausanne, Switzer-
land (2007), http://dslab.epfl.ch/pubs/dimmunix-algo

10. Kim, M., Viswanathan, M., Kannan, S., Lee, I., Sokolsky, O.: Java-MaC: A run-
time assurance approach for java programs. In: Formal Methods in System Design
(2004)

http://www.eclipse.org/aspectj
http://javapathfinder.sourceforge.net/doc/What_can_be_checked_with_JPF.html
http://javapathfinder.sourceforge.net/doc/What_can_be_checked_with_JPF.html
http://jboss.org
http://dslab.epfl.ch/pubs/dimmunix-algo

136 H. Jula and G. Candea

11. Knuth, D.E.: The Art of Computer Programming, vol. III: Sorting and Searching.
Addison-Wesley, Reading (1998)

12. Li, T., Ellis, C.S., Lebeck, A.R., Sorin, D.J.: Pulse: A dynamic deadlock detection
mechanism using speculative execution. In: USENIX Annual Technical Conference
(2005)

13. MySQL bug database, http://bugs.mysql.com/
14. RUBiS (2007), http://rubis.objectweb.org
15. Singhal, M.: Deadlock detection in distributed systems. IEEE Computer 22(11)

(1989)
16. Williams, A., Thies, W., Ernst, M.D.: Static deadlock detection for Java libraries.

In: 19th European Conference on Object-Oriented Programming (2005)
17. Zeng, F., Martin, R.P.: Ghost locks: Deadlock prevention for Java. In: Mid-Atlantic

Student Workshop on Programming Languages and Systems (2004)

http://bugs.mysql.com/
http://rubis.objectweb.org

Property Patterns for Runtime Monitoring of

Web Service Conversations�

Jocelyn Simmonds1, Marsha Chechik1, Shiva Nejati1,
Elena Litani2, and Bill O’Farrell2

1 University of Toronto, Toronto ON M5S3G4, Canada
{jsimmond,chechik,shiva}@cs.toronto.edu

2 IBM Toronto Lab, Markham ON L6G 1C7, Canada
{elitani,billo}@ca.ibm.com

Abstract. For a system of distributed processes, correctness can be en-
sured by statically checking whether their composition satisfies the prop-
erties of interest. However, web services are distributed processes that
dynamically discover properties of other web services. Since the overall
system may not be available statically and since each business process
is supposed to be relatively simple, we propose to use runtime monitor-
ing of conversations between partners as a means of checking behavioral
correctness of the entire web service system. Specifically, we identify a
subset of UML 2.0 Sequence Diagrams (SD) as a property specification
language. We show how our language can be used to specify the patterns
in the Specification Property System (SPS) [1]. By formalizing this sub-
set using automata, we can check finite execution traces of web services
against various complex properties. Finally, we discuss our experience
using our language for runtime monitoring of an existing application,
and conclude with a description of existing tool support.

1 Introduction

Web services are collections of components which discover and bind to other
components using published interfaces, with support of Service-Oriented Archi-
tectures (SOA). The goal of SOA is to increase the flexibility of business inter-
actions. Each web service component can be written in a traditional compiled
language such as Java R©, or in an XML-centric language such as BPEL [2].

Consider, for example, a web-based Loan Application system (LA), distributed
as a sample applicationwith the IBM R© Websphere R© IntegrationDeveloper v6.0.2.
Users enter loan application information (name, taxpayer id, loan amount) through
a web page, and are eventually informed of the status of their applications. The LA
workflow first checks the user’s credit score and declines a loan if the user has a bad
credit score, i.e., less than 750. If the credit score is good, the workflow then checks
the loan amount: loans for $50,000 or less are automatically approved; loans for
larger amounts are earmarked for manual approval.

� c© Copyright 2008, International Business Machines. All Rights Reserved.

M. Leucker (Ed.): RV 2008, LNCS 5289, pp. 137–157, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

138 J. Simmonds et al.

(a) (b)

Fig. 1. The LA system: (a) workflow, describing the high level steps of the LA system;
(b) assembly diagram, describing how the main process of the LA system interacts
with its partners

The workflow diagram in Fig. 1(a), which is described as a BPEL specification,
shows high level steps that are executed in a loan application system, and Fig. 1(b)
shows an assembly diagram describing how the main process of the LA system
invokes its partners, such as CreditCheck (implemented in Java), rule groups
(LoanLimit), or human tasks (FollowUpDeclinedApp, CompleteTheLoan and
ProcessTheAppli− cation). Specifically, the CheckCredit activity in Fig. 1(a)
invokes the CreditCheck partner in Fig. 1(b), and the conditional activities
ScoreEvaluation and AutoApproval− Test invoke the LoanLimit partner. The
partners in Fig. 1(b) implement the following functions: CreditCheck uses the
taxpayer id to retrieve the corresponding credit score; the LoanLimit rule group
checks the credit score and the loan amount. The human tasks CompleteTheLoan,
ProcessApplication and FollowUp follow the application results Approved,
ManualApproval and Declined, respectively.

Since the LA system is a composition of several distributed business processes,
its correctness depends on the correctness of its partners and their interactions.
For example, the system should guarantee that every request is eventually ac-
knowledged and none are lost or blocked indefinitely, or that loans are only given
to customers with a good credit score. However, in the provided LA application,
the CreditCheck module assigns a credit score at random, without using the
customer id, thus preventing the overall system from satisfying this property.

Property Patterns for Runtime Monitoring of Web Service Conversations 139

Table 1. Some properties of the LA system

P1 The loan amount must be always greater than zero.
P2 The credit score should eventually be checked if the loan amount is greater than zero.
P3 A loan cannot be granted if the loan amount is less than or equal to zero.
P4 After checking that the applicant has a good credit score, a loan cannot be granted

if the loan amount is less than or equal to zero.
P5 Noone can get a loan without first going through a credit check.

Since each web service is a relatively simple process, analysis can concentrate
on the message exchange between partners – their conversations. While static
techniques for checking partner composition against properties of interest, such
as [3,4,5,6,7], are appealing, they have a number of limitations: the problem is
decidable only under certain conditions [8], since the partners communicate via
infinite-sized channels, and existing techniques are unable to deal with complex
message interactions and heterogeneity of partners.

Instead, we concentrate on the dynamic analysis via runtime monitoring. This
approach has been shown effective for the webservice domain [9,10,11]. Our
goal is to build on the success of this technique to create an industrial-strength
(with partnership with the IBM Toronto Lab) monitoring framework that is
non-intrusive, supports the dynamic discovery of web services, deals with syn-
chronous and asynchronous communication and partners implemented in dif-
ferent languages, allows for specifying and efficient monitoring of a variety of
temporal behaviour, and is usable by practitioners.

In [12], we chose a subset of UML 2.0 Sequence Diagrams [13] as our spec-
ification language. This language allows specification of events, has an explicit
emphasis on components, and is able to deal with positive and negative scenar-
ios of interaction as well as global properties. We have shown that this subset is
sufficiently expressive for capturing safety (nothing bad can ever happen) and
liveness (something good will eventually happen) properties. For example, for
the LA system described earlier, possible safety and liveness properties are P1

and P2, respectively (see Table 1). While liveness properties are not monitorable
in general, they can be effectively checked for web services with finitely terminat-
ing behaviours. For example, we can check whether the LA process terminates
without giving feedback to the customer. Specifically, for finite behaviours, live-
ness can be seen as the dual of safety: liveness properties are expressed as finite
positive traces, and safety properties as finite negative traces.

To enable monitoring, [12] formalized the chosen subset of Sequence Diagrams
using finite-state automata. These automata are then used in the implementa-
tion of our non-intrusive monitoring framework which runs in parallel with the
system being monitored, intercepting events from web service conversations. The
resulting system enables conformance checking of finite execution traces against
their specifications expressed in our subset of Sequence Diagrams.

In [12], we showed that assert and negate operators in UML 2.0 [13] can be
used to describe simple safety and liveness properties, namely, invariants, e.g.,
P1 in Table 1, and request-response properties, e.g., P2 in Table 1. However,

140 J. Simmonds et al.

in [12], we assumed that only one assert or negate operator can be applied to
a sequence diagram, always as the outermost operator. To conveniently spec-
ify and verify various system properties that arise in practice, e.g., P4 and P5

in Table 1, we need a more expressive language. In this paper, we extend this
language by allowing certain nested applications of assert and negate operators.
Furthermore, we enriched the language with several operators, adopted from
UML 2.0 [13] and other scenario-based languages [14]. Examples of these opera-
tors include critical, ref (which allows to reuse portions of sequence diagrams in
other diagrams) and message complementation. We show that the resulting lan-
guage can not only be converted into finite-state automata for monitoring, but
is also sufficiently expressive to capture a wide variety of frequently used prop-
erties, captured and catalogued in the Specification Pattern System (SPS) [1].
This approach also gives basis for tool support to enable usable specification of
runtime conversations.

The rest of this paper is organized as follows. We describe syntax of the sub-
set of UML 2.0 sequence diagrams used for expressing properties of webservice
conversations in Section 2. Such properties are then converted into monitoring
automata using the techniques discussed in Section 3. We then show how our
specification language can be used to specify the complete set of temporal logic
property patterns in Section 4. We describe the implementation of the runtime
monitoring framework and report on the result of applying our framework to
the LA system in Section 5. Finally, we conclude the paper in Section 6 with a
summary of the paper, comparison with related work, and an outline of future
research directions.

2 A Language for Specifying Conversations

We choose a subset of UML 2.0 Sequence Diagrams as our language for speci-
fying web service conversations. Sequence Diagrams [13] is a popular formalism
for modeling behavioural scenarios by describing sequences of messages commu-
nicated between different objects over time. Sequence Diagrams have two di-
mensions: vertical, representing time, and horizontal, representing objects. Each
object is illustrated by a rectangle with a vertical dashed line, called a lifeline.
Lifelines are connected by horizontal arrows denoting messages that are sent from
one object to another, synchronously or asynchronously. We refer to Sequence
Diagrams with these features as basic.

An example sequence diagram describing a scenario of the LA system is shown
in Fig. 2(a). The diagram contains three objects, MnPs, CtCk, and LnLt. Object
MnPs corresponds to the main workflow of the LA system, and CtCk and LnLt
correspond to components CreditCheck and LoanLimit, respectively. The dia-
gram in Fig. 2(a) shows two alternative scenarios: In the first alternative, MnPs
first sends a check credit score request, i.e., ckCtSe, to CtCk and then a check
loan amount request, i.e., ckLnAt, to LnLt. In the second alternative, LnLt re-
ceives a check loan amount request from MnPs. Since the credit score has not yet
been checked, LnLt sends a check credit score request to CtCk.

Property Patterns for Runtime Monitoring of Web Service Conversations 141

alt

consider
SD Basic

ckLnAt

ckCtSe

ckCtSe

CtCkMnPs

{ckLnAt,ckCtSe,ckTrID}

LnLt

ckLnAt

(a)

q0 q1

q2

q3 q4

q5

q6
!ckCtSe

?ckCtSe

!ckLnAt

!ckLnAt

?ckCtSe
?ckLnAt

?ckLnAt ?ckCtSe

(b)

Fig. 2. (a) An SD describing a scenario of the LA example; and (b) the NFA corre-
sponding to the first argument of the alt operator in Fig 2(a)

Basic Sequence Diagrams can be augmented by a number of operators to
capture more sophisticated scenarios. We use the operators described below in
our property specification language, and refer to our language as SD.

Compositional operators: Operators parallel (par) and alternatives (alt) are
used to compute intersection and union of two SDs, respectively. The op-
erator loop is used for repeating the scenario described by an SD multiple
times, opt – for denoting an optional scenario, equivalent to alt with only
one argument.

Alphabet changing operators: Operators consider and ignore are used for
modifying the communicating alphabet of SDs.

Critical operator: The critical operator is used to ensure atomicity of the
enclosed sequence.

Assertion and negation operators: Operators assert and negate allow users
to express mandatory and forbidden system scenarios, respectively.

Interaction use operator: SDs can be shared by references, using the ref op-
erator. This is a shorthand for copying the contents of the referred SD where
the ref operator occurs, and is a new feature in UML 2.0.

To describe system scenarios, we often need to express complementation of an
individual message or a set of messages appearing on the same arrow. The negate
operator is unsuitable for this: it captures negative sequences of messages rather
than set complementation. Instead,weuse themessage complementation operator,
originally introduced in the Property Sequence Charts (PSC) language [14]. We
denote the complement of a message m by¬m and define it as the set of all messages
that are potentially exchanged between objects of the system except for m.

Basic Sequence Diagrams, denoted BasicSDs, are the building blocks of our
language. The critical, alphabet changing, interaction use, assert, and composi-
tional operators, except for par, can be intermixed and applied any number of
times to BasicSDs. The use of negate and par operators, however, is restricted
to sequence diagrams which do not use an assert operator. We discuss this as-
sumption and the rationale behind it in Section 3.1 and show in Section 4 that
even with this restriction, the resulting language remains very expressive.

142 J. Simmonds et al.

SD ::= BasicSD | unaryOp SD | SD alt SD | assert SD |
NotAssertedSD par NotAssertedSD | negate NotAssertedSD |

NotAssertedSD ::= BasicSD | unaryOp NotAssertedSD | negate NotAssertedSD |
NotAssertedSD alt NotAssertedSD |
NotAssertedSD par NotAssertedSD

unaryOp ::= considerE | ignoreE | loop | critical | opt | ref

Fig. 3. Grammar of the SD language

The grammar for our language, SD, is given in Fig. 3 where BasicSD , par ,
alt , loop, critical , opt , negate, assert , consider , ignore and ref are terminal
symbols, and E is a set of SD messages. Since operators consider and ignore
change the communicating alphabet of SDs, they take a set E of messages as an
input argument. In what follows, we denote by SD the set of Sequence Diagrams
generated by the above grammar.

3 From SDs to Automata

We define the formal semantics of SD by translating it into non-deterministic
finite automata (NFAs), following the approach of [15]. This translation allows
us to not only formalize our language but also to study its expressiveness. Specif-
ically, in [12], we have shown that certain scenarios in SD can be captured by
particular forms of NFAs known as Safe and Live automata [16], indicating
that SD is capable of expressing safety and liveness properties. In what follows,
we briefly review the translation of basic sequence diagrams and the operators
described in Section 2 into NFA. We then discuss that the negate and assert
operators allow us to express safety and liveness properties, respectively.

Basic sequence diagrams, i.e, diagrams describing a sequence of events without
any additional operator, can be translated into NFAs using the procedure in [15].
Consider the scenario in the first argument of the alt operator in Fig 2(a). This
basic sequence diagram shows that MnPs first sends event ckCtSe to CtCk and
then event ckLnAt to LnLt. We denote the sending of a message m by !m and its
receiving by ?m. Thus, the set of events of the sequence diagram in Fig. 2(a) is
{!ckCtSe, ?ckCtSe, !ckLnAt, ?ckLnAt}. Intuitively, lifelines and message arrows
in a sequence diagram define a partial order on the set of events of that diagram.
Given a basic sequence diagram S, an NFA AS is equivalent to S iff AS accepts
exactly the set of traces that respect the partial order of S. For example, the
automaton AS corresponding to the scenario in the first argument of the alt
operator in Fig 2(a) is shown in Fig 2(b).

The semantics of the compositional operators can be given in terms of the
standard operations defined on NFAs (e.g., see [17]). For example, alt corre-
sponds to the union operator and loop corresponds to the Kleene star operator.

Operators consider and its dual, ignore, are used to change the set of commu-
nicating alphabets of an SD. Both of them receive an SD S and a set of events E
as input, but consider adds the elements in E to the set of events of S, whereas
ignore removes the elements in E from the set of events of S.

Property Patterns for Runtime Monitoring of Web Service Conversations 143

critical
s

t

ba

(a)

q0 q1

q2

q3

q4

q5

q6
!s

!t

?s

?s

?t

!t

?t

(b)

q0 q1

q2

q3

q4

q5

q6
!s

!t

?s

?s

?t

!t

?tΣ\ {!s} Σ

(c)

Fig. 4. (a) A basic SD enclosed by a critical operator and its corresponding NFAs: (b)
before applying critical ; (c) after applying critical

 {p,q}

a b

(a)

alt
s

t

a b

(b)

q0

q1

q2

q3

q4

!t

!s

?t

?s

(c)

Fig. 5. (a) An SD with message complementation; (b) the same SD after eliminat-
ing the complement operator, if the underlying alphabet Σ is {p, q, s, t}; and (c) its
corresponding NFA.

We can specify a critical region in a sequence diagram using the critical oper-
ator. A critical region means that the traces of the region cannot be interleaved
by other messages and thus should be treated atomically. We treat this operator
to mean that if the first message of the critical region is observed, then the rest
of the behavior must be observed as well.

For a sequence enclosed by a critical operator, once the first symbol of the
sequence has been seen, the entire sequence should be seen as well. For this
reason, the self-loop at the initial state of an automaton corresponding to a crit-
ical region is labelled by Σ minus the initial symbols of the expected sequences.
For example, Fig. 4(a) shows a sequence diagram with a critical operator, and
Fig. 4(c) – its corresponding automaton.

The operator ref is used for sharing portions of SDs between several others.
Our treatment of ref is to inline the SD being referenced, applying the necessary
translation rules to the result in order to obtain the corresponding NFA, as
illustrated in Fig. 6.

The message complement operator has been adopted from [14]. If Σ is the
set of messages exchanged in an SD, and m ∈ Σ, then ¬m is Σ \ {m}. For a
set {m, n} of messages, ¬{m, n} = Σ \ {m, n}. For example, let Σ = {p, q, s, t}.
Then, ¬p = {q, s, t} and ¬{p, q} = {s, t}.

This operator, although not being part of UML 2.0, can be expressed in terms
of UML operators as follows: Let S ⊆ Σ be a set of messages. We replace ¬S by
an SD fragment in which the operator alt is applied to individual messages in

144 J. Simmonds et al.

ref
C

SD ex

t

a b

(a)

SD C

s

a b

(b)

SD ex

s

t

a b

(c)

q0 q1

q2

q3

q4

q5

q6
!s

!t

?s

?s

?t

!t

?t

(d)

Fig. 6. (a) An SD which references SD C; (b) SD C; (c) SD ex after copying the
content of SD C; and (d) its corresponding NFA

Σ \S. For example, consider the SD in Fig. 5(a) with a message ¬{p, q}, and let
Σ = {s, t, p, q}. This SD is equivalent to the one in Fig. 5(b) where ¬{p, q} is
replaced by an alt fragment in which s and t are two alternative messages. The
NFA for the sequence diagram without message complement operators can be
generated in a straightforward way following the translation for the alt operator
(see Fig. 5(c)).

3.1 Assertion and Negation Operators

The negate operator provides a mechanism for specifying undesirable (negative)
scenarios, and the assert operator allows us to specify desirable (positive) sce-
narios. The former operator can be used to express safety properties, e.g., P1 in
Table 1, and the latter – finitary liveness properties, e.g., P2.

Various formal treatments of the semantics of the assert and negate operators
are given in the literature, e.g., [16,18,19]. These operators have a rich expressive
power, and yet their arbitrary combinations are not well understood. In partic-
ular, it is unclear whether negating an asserted scenario should mean that this
scenario is not required to occur or that its negation has to occur. In this sec-
tion, we define the semantics of assert and negate operators in terms of NFAs.
Our formalization allows us to arbitrarily combine these operators as long as we
never attempt to apply a negate operator to a sequence diagram containing an
asserted fragment.

Representing safety properties. The negate operator over SDs is equivalent
to the complementation operator of NFA. Given an SD S and its corresponding
automaton AS , we first add a self-loop transition labeled Σ, i.e., the underlying
alphabet of S, to the initial state of AS in order to enable AS to guess when
a satisfying run begins. For example, Fig. 7(b) illustrates the automaton corre-
sponding to the SD in Fig. 7(a) after adding this self-loop and before comple-
mentation. Note that after adding this self-loop, AS becomes non-deterministic.
To obtain the automaton for the negated SD, we need to first determinize AS ,
and then complement the result.

As mentioned above, negate allows us to express safety properties. By ap-
plying negate to a SD S, we indicate that the scenario represented by S is
a forbidden one, and therefore, a safe system should never produce this

Property Patterns for Runtime Monitoring of Web Service Conversations 145

neg

SD Safe

MnPs LnLt CtCk

ckLnAt

lnAtNO

(a)

q0

q1

q2

q3

q4

!ckLnAt ?ckLnAt

!lnAtNO

?lnAtNO

Σ Σ(b)

Fig. 7. (a) An SD describing P1 in Table 1 and its corresponding NFAs: (b) before
applying negate

scenario [16]. For example, Fig. 7(a) shows a negate operator applied to the se-
quence !ckLnAt.?ckLnAt.!lnAtNo.?lnAtNo, representing the safety property P1

in Table 1.

Representing liveness properties. The meaning of the assert operator is
given by the UML standard as follows [13], “the sequences of the operand are the
only valid continuations. All other continuations result in invalid behaviour”.
This interpretation has been formalized in different ways [18,16]. The one that
we have adopted is that of [18] which is described as follows: given an asserted
behaviour σ = σ0 . . . σn and a system behaviour σ′, every occurrence of σ0 in σ′

should be followed by the rest of σ. Thus, an SD with an assert is interpreted
universally: “for every run, once it satisfies the start of the sequence, it must
complete the sequence before termination”. Note that the difference between
assert and critical is that the former checks all possible suffixes of the input run
to probe the sequence, whereas the latter only checks the first occurrence of its
sequence.

In [18], alternating automata with universal initial states are used to capture
this meaning of assert. Such automata accept a trace if all of the runs emanating
from their initial states are accepting. NFA, however, accept a trace when there
exists an accepting run emanating from the initial state. Rather than moving
outside NFA (and thus complicating the monitoring framework), we chose to
reinterpret the acceptance for the assert operator instead: an NFA for an as-
serted trace σ checks all suffixes of the system traces, and if one is not accepted,
a failure is reported. This “universal” treatment is given to the entire sequence
diagram, not just the part containing assert. This works correctly as long as such
NFAs are not complemented or composed (in parallel) – the negation and paral-
lel composition operators over automata with universally interpreted acceptance
are different from those operators of NFA. While negation and parallel composi-
tion operators for NFA are computed via subset construction and cross-product,
respectively, these operators for the alternating automata simply convert univer-
sal states into existential or add an additional universal state, respectively [20].
Thus, we restrict the application of negate and par to SDs that contain an assert
described in Section 2.

Since alternating automata can be converted into NFA with a possibly expo-
nential blow-up in size, we could have translated the assert operator directly into

146 J. Simmonds et al.

MnPs LnLt

assert

SD Live

CtCk

lnAtOk

ckCtSe

(a)

q0

q1

q2

q3

q4∧

!lnAtOk ?lnAtOk

!ckCtSe

?ckCtSe

Σ Σ(b)

Fig. 8. (a) An SD describing P2 in Table 1 and its corresponding NFAs: (b) after
applying assert

NFA. However, we chose not to do it to preserve the succinctness and relatively
small size of our monitoring automata.

Given the above discussion, the translation of assert operator is straightfor-
ward: After deriving the NFA AS for SD S and adding a self-loop labelled Σ
at its initial state, the automaton for assert S is obtained by interpreting the
initial state as universal (we follow the notation of [18], denoting this state with
a “∧”) and making it accepting. For example, the SD in Fig. 8(a) describes the
liveness property P2 in Table 1 – the desirable scenario is enclosed in the scope
of an assert operator. Fig. 8(b) shows the automaton corresponding to this SD.

Complexity of the Translation. The size of an automaton AS corresponding
to a basic sequence diagram S is O(nk) where n is the number of events and k
is the number of processes [15]. Applying the sequence diagram operators does
not cause a significant increase in the size of the resulting automata except for
the cases that involve a determinzation step which can be exponential in the
number of states of AS . However, we note that in practice, the automata we
have generated are relatively small, less than 9 states and 30 transitions [12].
Obviously, it remains to be seen whether the approach remains feasible for larger
web service systems and more complex properties.

4 SD Templates for Temporal Logic Property Patterns

In this section, we introduce several templates expressed in the SD language for
describing temporal logic property patterns [1]. We first provide an overview of
these patterns in Section 4.1. We then describe our templates in the SD language
in Section 4.2 and show how they can encode the property patterns.

4.1 Temporal Logic Property Patterns

The Specification Pattern System (SPS), proposed by Dwyer et al. [21], is a
pattern-based approach to the presentation, codification, and reuse of property
specifications. The system allows patterns like “event P is absent between events
Q and S” or “S precedes P between Q and R” to be easily expressed in and

Property Patterns for Runtime Monitoring of Web Service Conversations 147

Bounded
Existence

Absence

Universality

Existence Chain
Precedence

Chain
Response

Precedence

Response

Occurrence Order

Property Patterns

Fig. 9. Pattern Hierarchy Fig. 10. Pattern Scopes

translated between linear-time temporal logic (LTL) [22], computational tree
logic (CTL) [22] and other state-based and event-based formalisms. SPS has
been advocated as a standard tool for measuring the practical usefulness and
expressive power of specification languages, e.g., [14] and [23].

The property patterns are organized into a hierarchy based on the kinds of
system behaviors they describe (see Fig. 9): Occurrence patterns talk about the
occurrence of a given event/state during system execution, and Order patterns
specify relative order in which multiple events/states occur during system exe-
cution. The patterns are described below in detail:

Absence An event does not occur within a given scope;
Existence An event must occur within a given scope;
Bounded Existence An event can occur at most a certain number of times within a

given scope;
Universality An event must occur throughout a given scope;
Response An event must always be followed by another within a scope;
Response Chain A chain of events must always be followed by another chain of

events within a scope;
Precedence An event must always be preceded by another within a scope;
Precedence Chain A chain of events must always be preceded by another chain of

events within a scope.

Each pattern is associated with scopes – the regions of interest over which the
pattern must hold. There are five basic kinds of scopes (depicted in Fig. 10):

Global The entire program execution;
Before R The execution up to event R;
After Q The execution after event Q;
Between Q and R All parts of the execution between events Q and R;
After Q until R Similar to between, except that the designated part of

the execution continues even if the second event does
not occur.

For example, consider a property that says between every enqueue and empty
messages, there must be a dequeue message. This property falls into the “Ex-
istence” pattern group because it indicates the occurrence of an event within a
scope. The scope of this property is that of “Between” shown in Fig 10. Looking

148 J. Simmonds et al.

SD absence

neg

p

a b

(a) Absence

SD existence

assert
p

a b

(b) Existence

SD bounded existence

assert

loop 0,2

neg

p

p

a b

(c) Bounded Existence

SD universality

neg
p

a b

(d) Universality

loop *

assert

SD response

p

s

a b

(e) Response

loop *

critical

SD response 2s − 1r

assert

s

t

p

a b

(f) Response Chain
2 stimulus - 1 response

loop *

SD response 1s − 2r

assert

p

s

t

a b

(g) Response Chain
1 stimulus - 2 response

loop 1,n

alt

neg

SD until (p U q)

neg
p

p

{p,q}

a b

(h) Until

SD precedence

alt

ref

ref

absence p

until (p U s)

a b

(i) Precedence

SD

alt

ref

ref

absence

precedence 2c − 1e

p

until (p U (s,t))

a b

(j) Precedence Chain
2 cause - 1 effect

Fig. 11. Property pattern mappings for SDs

Property Patterns for Runtime Monitoring of Web Service Conversations 149

up the LTL formalization of this pattern/scope combination from the cata-
logue and substituting our event names, we obtain the formula �((enqueue ∧
¬empty) ⇒ (¬empty W (dequeue∧ ¬empty))).

4.2 Mapping Property Patterns to SDs

In this section, we provide several SD templates for the SPS patterns (see
Fig. 11), and show how these tempolates are used to express patterns in the
SPS hierarchy. Selected mappings are described below; the remainder can be
found in Appendix A.

Absence: Message p cannot occur in a given scope. This can be expressed as
shown in Fig. 11(a).

Existence: Message p must occur in a given scope. This can be expressed as
shown in Fig. 11(b).

Until: This pattern is not part of the SPS; however, it is used to specify the
Precedence patterns. A sequence p∗ of messages occurs until the first oc-
currence of message q, in a given scope (see Fig. 11 (h)). This pattern,
formalized using a single “until” temporal operator [22], can be refuted in
one of two ways: a) p never occurs, or b) after seeing a finite number of
p messages (expressed using loop 1, n in Fig 11(h)), neither a p nor a q
message occurs (expressed as ¬{p, q} in Fig 11(h)).

Precedence: Message s (cause) precedes message p (effect), as shown in Fig. 11
(i). Note that this pattern allows the cause part to occur without the effect
part. We describe this pattern in SD by expressing the two possible cases
that this pattern specifies: a) p never occurs, or b) p never occurs before s.
The first case corresponds to checking absence of p; the second – to checking
¬p U s, since we want to be sure that no p messages are sent before the first
s message.

In the SDs in Fig. 11, symbols p, q, s, and t can denote more complex SDs,
not just individual messages. In this case, we treat these symbols as place hold-
ers and use a ref operator for the SDs that should be inserted in their place,
and replace message complementation by negation. In Section 4.4, we provide
detailed examples of how these patterns are used to specify properties of the LA
system.

4.3 Mapping Property Scopes

We now show how to express property patterns involving scopes which are used to
define the traces over which a property will be monitored. Scopes can be simple
messages or more complex scenarios in our specification language. The ref op-
erator is used to introduce scope delimiters in the corresponding locations. For
example, to apply the Before R scope to a property, the scope delimiter R is in-
serted after the property we wish to verify (see Fig. 12(a)). In the case of the Af-
ter Q scope, the delimiter is inserted before the property (see Fig. 12(b)). Finally,
both the Between (see Fig. 12(c)) and the After-until (see Fig. 12(d)) scopes

150 J. Simmonds et al.

ref

ref

Property

R

a b

(a)

ref

ref
Property

Q

a b

(b)

ref

ref

ref

Q

Property

R

a b

(c)

ref

ref

Q

Property

R
opt ref

a b

(d)

Fig. 12. Scope mapping for sequence diagrams: (a) Before R; (b) After Q; (c) Be-
tween Q and R; and (d) After Q until R

add before/after delimiters. In the After-until scope, the property is valid even
if the “until” part does not occur. Therefore, the second delimiter in this scope is
optional. Thus, there is an implicit opt operator in each scope delimiter.

4.4 Specifying Properties of the Loan Application
The following examples show how property patterns can be used to specify ex-
ample properties of the LA system given in Table 1. Properties P1 and P2 are
described in Figs 7 and 8, respectively. The rest of the properties in that table
are discussed below.

Property P3: “A loan cannot be granted if the loan amount is less than or
equal to zero.”

We express this property using the Absence pattern (see Fig. 11(a)): our
property holds if there are no scenarios where a loan is granted after the sys-
tem has been warned that the loan amount is less than or equal to zero. In the
LA system, the LnLt component sends a loanAmountNotOkay (lnAtNO) mes-
sage when the loan amount is less than or equal to zero. A loan is considered
granted if it is manually or automatically approved, which can be monitored
by checking if the main workflow MnPs sends a completeTheLoan (ceLn) or
processTheApplication (psAn) message. See Fig. 13(a) for the corresponding
SD; the resulting monitor is shown in Fig. 13(b).

MnPs LnLt CtCk CeLn PsAn

neg

alt

SD P3

ckLnAt
lnAtNO

ceLn

psAn

(a)

q0

q1

q2

q3 q4

q5

q6

q7

!ckL
nAt

Σ\{!c
kLn

At, ?
ckL

nAt
}

?ckLnAtΣ\{!ckLnAt, !lnAtNO}

!c
kL
nA
t

!lnAtNOΣ\{!ckLnAt, ?lnAtNO}

!c
k
L
n
A
t

?lnAtNO

!c
eL
n

!psAn

Σ
\
{!ceLn,!psAn,?ceLn

}

?psAn

?ceLn

Σ\{!ceLn, !psAn, ?psAn}

?c
eL
n

?p
s
A
n

Σ\{!ckLnAt}

!ckLnAt

Σ\{!ceLn, !psAn}

!csLn

!psAn

Σ

(b)

Fig. 13. P3: Absence pattern. (a) SD describing the LA property P3 and (b) the
resulting monitor.

Property Patterns for Runtime Monitoring of Web Service Conversations 151

MnPs LnLt CtCk CeLn PsAn

ref

SD P4

ckCtSe
ctSeOk

P3

(a)

q4

q5

q6

q7 q8

q9

q10

q11

q0q1q2q3
!ckCtSe?ckCtSe!ctSeOk

?c
t
S
e
O
k

!ckL
nAt

Σ\{!c
kLn

At, ?
ckL

nAt
}

?ckLnAtΣ\{!ckLnAt, !lnAtNO}

!c
kL
nA
t

!lnAtNOΣ\{!ckLnAt, ?lnAtNO}

!c
k
L
n
A
t

?lnAtNO

!c
eL
n

!psAn

Σ
\
{!ceLn,!psAn,?ceLn

}

?psAn
?ceLn

Σ\{!ceLn, !psAn, ?psAn}

?c
eL
n

?p
s
A
n

Σ\{!ckLnAt}

!ckLnAt

Σ\{!ceLn, !psAn}

!csLn

!psAn

Σ

(b)

Fig. 14. P4: Absence pattern, Scope After. (a) SD describing the LA property P4

and (b) the resulting monitor, obtained by concatenating the NFAs for the scope and
P3.

Property P4: “After checking that the applicant has a good credit score, a loan
cannot be granted if the loan amount is less than or equal to zero.”

This property is equivalent to the property P3 with the After Q scope, where
Q is “checking for a good credit score”. To express it, we introduce the scope
delimiter Q before the property P3, as seen in Fig. 12(b). The SD corresponding
to P4 is shown in Fig. 14(a) and consists of two parts: (1) scope Q and (2) prop-
erty P3, i.e., the fragment specified by a ref operator which should be replaced
by the SD for P3. The resulting monitor is shown in Fig. 14(b).

Property P5: “Noone can get a loan without first going through a credit check.”
At this point, we have identified common scenarios that occur in the LA

system: SDs creditCheck (Fig. 15(a)) and loanGranted (Fig. 15(b)). We can
now express property P5 using the Precedence pattern: SD creditCheck must
precede SD loanGranted. Note that the SD creditCheck is not optional and must
occur for the property to hold. The SD for P5 is shown in Fig. 15(c).

5 Tool Support and Experience

Tool Support. We have implemented our runtime monitoring framework within
the IBM WebSphere R© business integration products [24]. In what follows, we
describe the architecture of our solution and its intended use. We also report
on preliminary experience of using this framework to check correctness of web
services. For implementation details, see [12].

Our solution uses the WebSphere Process Server (WPS) [25] and the WebSphere
IntegrationDeveloper (WID) [26]. The former provides a BPEL-compliantprocess
engine for executing BPEL processes and a built-in Service Component Architec-
ture (SCA), which is a particular instantiation of SOA. The latter provides a devel-
opment environment for building web service applications and a graphical package
for creating UML Sequence Diagrams.

152 J. Simmonds et al.

SD checkCredit

MnPs LnLt CtCk

ckCtSe
ctSeOk

(a)

SD loanGranted

alt

MnPs CeLn PsAn

ceLn

psAn

(b)

until (loanGranted U creditCheck)

alt

ref
absence

SD P5

MnPs LnLt CtCk CeLn PsAn

loanGranted

ref

(c)

Fig. 15. P5: The Precedence pattern. (a) SD for checkCredit ; (b) SD for loanGranted ;
(c) SD showing application of the Precedence pattern.

During and after application development, users can create UML SD specifica-
tions for their web service applications within the WID environment. If monitor-
ing is enabled, our framework translates these diagrams into monitor automata
using the techniques in Section 3. During the execution of the web service, in-
teraction events from the WPS are sent to our framework using sockets. These
events are immediately used to update the state of every active monitor automa-
ton, until an error has been found or all partners terminate. This provides an
online feedback mechanism through the SD editor to report violations.

Our patterns are available as editable UML sequence diagrams (.dnx files).
Users must first add these files to the WID project of the application they wish to
monitor. These patterns can now be modified to create actual system properties,
using our Sequence Diagram editor.

Violations in our framework are either due to the occurrence of a negative
trace (safety violation), or the absence of a positive trace (liveness violation). To
report violations, we display the causes in the Sequence Diagram editor by high-
lighting the beginning of the negative trace for safety violations (see Fig 16 (a)),
and the termination location for liveness violations (see Fig 16 (b)).
Experience. We applied our framework to the Loan Application system, with
the goal of specifying and checking the properties mentioned in Table 1. On
normal execution traces of this system, these properties should never fail, as
this application implements the workflow shown in Fig 1(a). As it is a sample
application, some details have been simplified. For example, the CreditCheck
component generates random credit scores.

We ran the system on two different taxpayer ids (tpid) and three different
loan amounts (la), with the following specific input configurations:

c1 = <tpid = 1234, la = $10,000>, c2 = <tpid id = 1234, la = $60,000>,
c3 = <tpid id = 1888, la = -$1,000>.

As the system is supposed to generate random credit scores, we ran the system
10 times with each configuration. For configuration c1, we expected to see some
automatic approvals of the loan, and some declines, based on whether the good
or the bad score is generated. For c2, we expected some manual approvals of
the loan (the loan amount is above the automatic approval limit), and some
declines. Finally, since the loan amount in c3 is invalid, we expected to see only
loan declines.

Property Patterns for Runtime Monitoring of Web Service Conversations 153

(a) (b)

Fig. 16. Reporting errors: (a) A complete (negative) trace; (b) An incomplete sequence:
violation of a liveness property.

For configurations c1 and c2, the behavior we observed was as expected:
P1, P2, P5 always held and P3, P4 held when the loan was granted. However,
for all executions of c3, the system automatically approved the loan, meaning
that properties P1, P3 and P4 were violated. For all executions of c3, the system
produced the following faulty execution trace:

FT = (MnPs, ckCtSe, LnLt), (LnLt, ctSeOK, CtCk), (MnPs, ckLnAt, LnLt),
(LnLt, lnAtNO, CtCk), (MnPs, ceLn, CeLn).

where each triple (Sender , m,Receiver) denotes partner Sender sending a mes-
sage m to partner Receiver . This trace depicts a failure of P1 because the loan
amount is not greater than zero, as indicated by the triple (LnLt, lnAtNO, CtCk).
This trace also shows a violation of P3 because it includes an invalid behaviour,
acceptance of the invalid loan, indicated by the subtrace

(MnPs, ckLnAt, LnLt), (LnLt, lnAtNO, CtCk), (MnPs, ceLn, CeLn).

Finally, P4, being the scoped version of the property P3, fails on this trace as
well.

To identify the cause of the violations, we examined the BPEL diagram in Fig. 1
(a) to see that the trace FT is produced if the LA system obtains the taxpayer’s
credit score, checks if the credit score is greater than 750 (ScoreEvaluation),
checks if the loan amount is greater than zero (input validation), and checks if
the loan amount is less than $50,001 (AutoApprovalTest). The ScoreEvaluation
should only occasionally be true, as the CreditCheck component generates ran-
dom credit scores. However, we obtained trace FT every time the system was run
with the taxpayer id 1888, i.e., the system always approved a negative loan.

We traced this behaviour to two problems. The first, identified after looking
at the BPEL code of the LA system, was that the application did not use the
results of the input validation, allowing requests for negative loans to go through.
The second, identified only after examining the source code for the CreditCheck
partner, was that the partner was distributed with hard-coded logic: an applicant
with a taxpayer id that ends with “888” was always given a good credit score
instead of a random one. Combined, these two problems yielded the approval of
the loan for configuration c3 every single time.

154 J. Simmonds et al.

Overall, our experience showed that the system can handle simultaneous fail-
ure of several monitors and allowed us to specify interesting properties which
led to the discovery of two real faults in the LA system.

6 Conclusion

In this paper, we described our framework for runtime monitoring of web service
conversations developed as part of an industrial-strength system. The framework
is an aggregation of existing runtime verification techniques and is a continua-
tion of [12]. It is non-intrusive, running in parallel with the monitored system
and intercepting interaction events during run time. Thus, it does not require
any code instrumentation, does not significantly affect the performance of the
monitored system, and enables reasoning about partners expressed in different
languages. Furthermore, the use of a subset of UML 2.0 SDs as a specification
language ensures that the framework is usable by practitioners to specify a wide
range of properties. By formalizing this subset using automata, we can check fi-
nite execution traces of web services against these properties. Liveness becomes
finitary, where user-specified time limits or the process termination act as the
stopping conditions.

We have successfully mapped all the Specification Property System patterns
into our SD subset. The availability of customizable patterns should improve
the usability of our specification language. More complex conversations can be
checked, as it is easy to build properties through SD composition. Using SD
references, our properties are also easier to read, since details can be hidden.
Finally, we have created a library of such sequence diagram patterns and showed
how patterns can be used to specify monitors which lead to discovery of bugs in
real webservice applications.

Future Work. While the initial experience using the framework has been pos-
itive, we need to address a number of issues before it becomes fully usable. The
first set of issues deals with increasing the range of properties that can be spec-
ified and monitored. In the examples presented here, all objects were unique,
whereas in practice, users may be interested in verifying interactions between
multiple processes of the same type. For example, a user with a good credit score
may concurrently apply for two loans, each for less than $50 001, to bypass the
manual approval required for a loan for the total amount. In this case, two bank
branches may want to communicate to avoid this kind of situation. We feel that
the problem can be easily solved by encoding process IDs into the specification,
the automata transition relation, and interaction events.

We also plan to begin investigation of techniques to help locate cause of er-
rors from seeing results of successful and unsuccessful runs of the system. For
example, given a monitor violation, we would like to produce similar conversa-
tions that do not cause a violation, so as to help pinpoint cause of the violation
(as the place signaled with the violation is not necessarily the cause). We will
experiment with the techniques in [27,28] for this task.

Property Patterns for Runtime Monitoring of Web Service Conversations 155

On a side note, our work so far has been built on a basis that all partners
operate within the same process server and thus a centralized monitor is a viable
option. In practice, most web services are distributed, requiring a distributed
monitoring framework. We plan to investigate techniques used in the DESERT
project [29] to turn a centralized monitor into a set of distributed ones, running
in different process servers.

Acknowledgements and Trademarks

We thank Yuan Gan and Jonathan Amir for implementing several parts of the
monitoring framework, and Simon Moser and Axel Martens for generating many
useful discussions. This work is financially supported by the IBM Toronto Centre
for Advanced Studies, Ontario Graduate Scholarship and NSERC.

IBM and WebSphere are trademarks or registered trademarks of International
Business Machines Corporation in the United States, other countries, or both.
Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc.
in the United States, other countries, or both. Other company, product, and
service names may be trademarks or service marks of others.

References

1. Dwyer, M., Avrunin, G., Corbett, J.: Patterns in Property Specifications for Finite-
State Verification. In: Proceedings of 21st International Conference on Software
Engineering (ICSE 1999) pp. 411–420 (May 1999)

2. IBM: Business Process Execution Language for Web Services,
http://www-128.ibm.com/developerworks/library/specification/ws-bpel/

3. Fu, X., Bultan, T., Su, J.: Conversation Protocols: A Formalism for Specification
and Verification of Reactive Electronic Services. In: H. Ibarra, O., Dang, Z. (eds.)
CIAA 2003. LNCS, vol. 2759, pp. 188–200. Springer, Heidelberg (2003)

4. Fu, X., Bultan, T., Su, J.: Analysis of Interacting BPEL Web Services. In: Proceed-
ings of the Thirteenth International World Wide Web Conference (WWW 2004),
New York, pp. 621–630 (May 2004)

5. Kazhamiakin, R., Pistore, M.: A Parametric Communication Model for the Verifi-
cation of BPEL4WS Compositions. In: EPEW/WS-FM, pp. 318–332 (2005)

6. Baldoni, M., Baroglio, C., Martelli, A., Patti, V., Schifanella, C.: Verifying the
Conformance of Web Services to Global Interaction Protocols: A First Step. In:
EPEW/WS-FM, pp. 257–271 (2005)

7. Foster, H., Uchitel, S., Magee, J., Kramer, J.: Model-based Verification of Web
Service Compositions. In: Proceedings of 18th IEEE International Conference on
Automated Software Engineering (ASE 2003), pp. 152–163. IEEE Computer Soci-
ety, Los Alamitos (2003)

8. Ghafari, N., Gurfinkel, A., Klarlund, N., Trefler, R.: Algorithmic Analysis of Piece-
wise FIFO Systems. In: Proceedings of 7th International Conference on Formal
Methods in Computer-Aided Design (FMCAD 2007), Austin, Texas, LNCS, pp.
45–52 (November 2007)

9. Baresi, L., Ghezzi, C., Guinea, S.: Smart Monitors for Composed Services. In:
ICSOC 2004, pp. 193–202 (2004)

http://www-128.ibm.com/developerworks/library/specification/ws-bpel/

156 J. Simmonds et al.

10. Robinson, W.N.: Monitoring Web Service Requirements. In: Proceedings of RE
2003, pp. 65–74 (2003)

11. Mahbub, K., Spanoudakis, G.: Run-time Monitoring of Requirements for Systems
Composed of Web-Services: Initial Implementation and Evaluation Experience. In:
Proceedings of ICWS 2005, pp. 257–265 (2005)

12. Gan, Y., Chechik, M., Nejati, S., Bennett, J., O’Farrell, B., Waterhouse, J.: Run-
time Monitoring of Web Service Conversations. In: Proceedings of CASCON 2007
(November 2007)

13. Object Management Group (OMG): Unified Modeling Language (UML 2.0),
http://www.uml.org/

14. Autili, M., Inverardi, P., Pelliccione, P.: A Scenario Based Notation for Specifying
Temporal Properties. In: Proceedings of SCESM, ICSE 2006 Workshop (2006)

15. Alur, R., Yannakakis, M.: Model Checking of Message Sequence Charts. In: Baeten,
J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 114–129. Springer,
Heidelberg (1999)

16. Grosu, R., Smolka, S.A.: Safety-Liveness Semantics for UML 2.0 Sequence Dia-
grams. In: ACSD 2005, pp. 6–14 (2005)

17. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Reading (1979)

18. Harel, D., Maoz, S.: Assert and Negate Revisited: Modal Semantics for UML Se-
quence Diagrams. In: Proceedings of SCESM, ICSE 2006 Workshop, pp. 13–20
(2006)

19. Störrle, H.: Assert, Negate and Refinement in UML 2 Interactions. In: Stevens, P.,
Whittle, J., Booch, G. (eds.) UML 2003. LNCS, vol. 2863, pp. 79–94. Springer,
Heidelberg (2003)

20. Vardi, M.: An Automata-Theoretic Approach to Linear Temporal Logic. In: Moller,
F., Birtwistle, G. (eds.) Logics for Concurrency. LNCS, vol. 1043, pp. 236–266.
Springer, Heidelberg (1996)

21. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Property Specification Patterns for
Finite-state Verification. In: Proceedings of 2nd Workshop on Formal Methods in
Software Practice (March 1998)

22. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

23. Yu, J., Manh, T.P., Han, J., Jin, Y., Han, Y., Wang, J.: Pattern Based Property
Specification and Verification for Service Composition. In: Aberer, K., Peng, Z.,
Rundensteiner, E.A., Zhang, Y., Li, X. (eds.) WISE 2006. LNCS, vol. 4255, pp.
156–168. Springer, Heidelberg (2006)

24. IBM: WebSphere Business Integration Software, http://www-306.ibm.com/
software/info1/websphere/index.jsp?tab=products/businessint

25. IBM: WebSphere Process Server,
http://www-306.ibm.com/software/integration/wps/

26. IBM: WebSphere Integration Developer,
http://www-306.ibm.com/software/integration/wid/

27. Zeller, A.: Isolating cause-effect chains from computer programs. SIGSOFT Softw.
Eng. Notes 27(6), 1–10 (2002)

28. Groce, A., Chaki, S., Kroening, D., Strichman, O.: Error explanation with distance
metrics. Int. J. Softw. Tools Technol. Transf. 8(3), 229–247 (2006)

29. Inverardi, P., Mostarda, L., Tivoli, M., Autili, M.: Synthesis of Correct and Dis-
tributed Adaptors for Component-Based Systems: an Automatic Approach. In:
Proceedings of ASE 2005, pp. 405–409 (2005)

http://www.uml.org/
http://www-306.ibm.com/software/info1/websphere/index.jsp?tab=products/businessint
http://www-306.ibm.com/software/info1/websphere/index.jsp?tab=products/businessint
http://www-306.ibm.com/software/integration/wps/
http://www-306.ibm.com/software/integration/wid/

Property Patterns for Runtime Monitoring of Web Service Conversations 157

A Other Property Patterns

k−Bounded Existence: Message p can occur at most k times in a given scope.
We can check the existence of at most k messages using the loop operator.
After the loop, we need to check that p does not occur, which corresponds
to the absence pattern (see Fig. 11 (c)).

Universality: Only a sequence p∗ of messages can occur in a given scope. This
is equivalent to checking for the absence of complement messages (see Fig. 11
(d)).

Response: Message p (stimulus) must be followed by message s (response),
in a given scope. A response can occur without stimuli, so the stimulus is
represented using a regular message, whereas the response is mandatory. The
existence of stimulus/response pairs are checked in an infinite loop, as there
can be many stimulus/response pairs in one execution trace (see Fig. 11 (e)).

Response Chain: A sequence p1, . . . , pn of messages must be followed by the
sequence q1, . . . , qm of messages, in a given scope. We show two examples
of this pattern: p responds to s, t (see Fig. 11 (f)), and s, t responds to p
(see Fig. 11 (g)). Response chain patterns have the same basic form of the
response pattern.

– p responds to s, t: 2 stimulus – 1 response. The critical operator is used
to enclose the message sequence s, t, to ensure atomicity of this sequence.
An assert cannot be used since the stimulus sequence is optional.

– s, t responds to p: 1 stimulus – 2 response. The message sequence now oc-
curs within the assert operator, so an additional critical operator would
be superfluous).

Precedence Chain: A sequence p1, . . . , pn of messages must precede the se-
quence q1, . . . , qm of messages, in a given scope. We show an example of this
pattern, 2 cause – 1 effect, p is preceded by s, t (see Fig. 11 (j)). This pattern
is mapped using the absence and until patterns, just like in the precedence
pattern. The implicit negate operators in the absence and until patterns
handle the message sequences, so there is no need to add critical operators.

Runtime Monitoring of Object Invariants with

Guarantee

Madhu Gopinathan1 and Sriram K. Rajamani2

1 Indian Institute of Science
gmadhu@csa.iisc.ernet.in
2 Microsoft Research India
sriram@microsoft.com

Abstract. High level design decisions are never captured formally in
programs and are often violated as programs evolve. In this paper, we
focus on design decisions in which an object o works correctly only if
another object p is in some specific states. Such decisions can be specified
as the object invariant of o.

The invariant of o must hold when control is not inside any of o’s
methods (i.e. when o is in a steady state). From discussion forums on
widely used APIs, it is clear that there are many instances where o’s
invariant is violated by the programmer inadvertently changing the state
of p when o is in a steady state. Typically, o and p are objects exposed by
the API, and the programmer (who is the user of the API), unaware of
the dependency between o and p, calls a method of p in such a way that
o’s invariant is violated. The fact that the violation occurred is detected
much later, when a method of o is called again, and it is difficult to
determine exactly where such violations occur.

We propose a runtime verification scheme which guarantees that when
o is in a steady state, any violation of o’s invariant is detected exactly
where it occurs. This is done by tracking dependencies automatically
and validating whether a state change of an object p breaks the in-
variant of any object o that depends on p. We demonstrate that our
tool InvCOP, which implements this scheme, can accurately pinpoint
violations of invariants involving multiple objects that were reported in
discussion forums on widely used APIs.

1 Introduction

Design decisions impose constraints on both the structure and behavior of the
software. Typically, these decisions are described informally in comments em-
bedded within code, or in documents. These documents are seldom updated as
the software evolves. As a result, valuable design information is missing in most
complex software. A promising approach to solve this problem is to capture de-
sign decisions formally as rules, and build tools that automatically enforce that
programs obey these rules.

Data types are the only rules that are formally captured in programs, and
enforced by programming languages. Over the past decade, we have witnessed

M. Leucker (Ed.): RV 2008, LNCS 5289, pp. 158–172, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Runtime Monitoring of Object Invariants with Guarantee 159

practical tools and type systems that extend this type of checking to allow state-
ful protocols on objects [1,2,3]. All these systems treat the state associated with
each object independently. For example, they can check if every lock in the pro-
gram is acquired and released in strict alternation, or if every file is opened before
read, and then closed before the program exits. However, they are not capable of
expressing rules that involve multiple inter-related objects. Since objects usually
depend on other objects, such rules are common:

”. . . no object is an island. All objects stand in relationship to others,
on whom they rely for services and control” [4]

In this paper, we present a runtime verification approach for enforcing the
following inv-rule: The invariant of object o (which can refer to the state of
other objects p) must hold when control is not inside any of o’s methods. The
unique feature of our approach is that we track dependencies between objects
automatically, and guarantee that violations of the inv-rule are detected exactly
when they occur.

Example 1: Iterators for collection classes. Consider the Java code frag-
ment below that uses an iterator to access the integers in a list sequentially.

1 //list is of type ArrayList<Integer>
2 //with integers 1,2,3 added
3 for(Iterator<Integer> i = list.iterator(); i.hasNext();) {
4 int v = i.next();
5 if(v == 1)
6 list.remove(v);
7 else
8 System.out.println(v);
9 }

On execution, a ConcurrentModificationException (CME) (the name is
misleading as it occurs in single threaded programs also) is thrown at line 4.
The API documentation for ArrayList [5] states the following:

If list is structurally modified at any time after the iterator is created, in
any way except through the iterator’s own remove or add methods, the
iterator will throw a ConcurrentModificationException.

The Iterator i depends on the list to not change during iteration. This can
be specified as the invariant of Iterator:

List myList = ..;
int expectedVersion = ..;

//object invariant of Iterator
public boolean Inv() {
return myList != null &&

expectedVersion == myList.version;
}

160 M. Gopinathan and S.K. Rajamani

Since list.remove (line 6) removes an element from the list and changes
list.version as a side-effect, the invariant of the iterator is violated at this
point. However, this violation is detected only when the next() method is called
at line 4. Hence CME is thrown at line 4.

Example 2: Statement and Connection. Consider the code below that uses
JDBC(Java Database Connectivity) API to access a database.

1 Connection con = DriverManager.getConnection(..);
2 Statement stmt = con.createStatement();
3 ResultSet rs1 = stmt.executeQuery("SELECT EMPNO
4 FROM EMPLOYEE");
5 ..
6 con.close();
7 ..
8 ResultSet rs2 = stmt.executeQuery("SELECT EMPNAME
9 FROM EMPLOYEE");

A statement depends on the connection used to create it for executing SQL
statements. Closing a connection will invalidate any statement created by that
connection. Calling any method of an invalid statement other than isClosed or
close results in a SQLException. To avoid such errors, a connection must not
be closed before closing any statement created by that connection. This can be
specified as the invariant of Statement.

Connection connection = ..;
boolean isClosed = ..;

//object invariant of Statement
public boolean Inv() {
return isClosed ||

(connection != null && !connection.isClosed());
}

The invariant of stmt is violated at line 6 as con is closed before closing
stmt. When the executeQuery method is called later, this is detected. Hence
SQLException is thrown at line 8.

The inv-rule is difficult to enforce, since it requires keeping track of the
state of related objects. In Example 1, a programmer may not be aware that
iterator i depends on the list, and that changing the list will break the iterator’s
invariant. Similarly, in Example 2, a programmer may not be aware that closing
the connection will break a statement’s invariant. Such violations routinely occur
in large programs [6,7,8]. Debugging such violations is hard. In Example 1, an
exception is thrown at line 4, and the stack trace of the exception does not refer
to line 6, which violated the rule. In Example 2, an exception is thrown at line
8, and the stack trace does not refer to line 6, which violated the rule.

Our goal is to enable providers of APIs to document the inv-rule precisely
and provide a tool to help users of the API to detect exactly where violations

Runtime Monitoring of Object Invariants with Guarantee 161

occur in the user code. Thus, we can rely on the inv-rule being enforced in any
program using the API.

We are not the first to consider rules involving multiple objects. Several “own-
ership” type systems have been invented to enable objects to own other objects
they depend on [9,10]. However, these require making changes to the program-
ming language, and there is still a lot of debate on the pros and cons of various
ownership type systems [11]. Also, program verification tools to check such in-
variants have been proposed, which force programmers to follow a particular
methodology [12]. While this methodology works naturally for certain owner-
ship structures, they need to be extended to handle cases where multiple objects
depend on the same object [13] (as in Example 2 where multiple statements
depend on the connection used to create them).

In this paper, we show how to enforce the inv-rule. The paper has two main
contributions:

– We guarantee that in every run of a program, either a violation of the inv-
rule is reported exactly where it occurs, or the run indeed satisfies the
inv-rule (see Theorem 1 in Section 2.3 for a precise statement). This dis-
tinguishes our work from other runtime monitoring approaches to rule en-
forcement such as MOP [14], Tracematches [15] and JLo [16], where no such
guarantees can be given if critical events from the program are missed by
the monitor (see Section 4 for an example).

– Our approach is implemented in a tool called InvCOP. We demonstrate
that rules involving objects exposed by the API are not violated by detecting
usage errors previously reported in discussion forums on two commonly used
APIs.

2 Approach

In this section, we explain the key features of our approach in stages, motivating
the need for each feature. Consider Example 2 in Section 1. Our goal is to
enforce the rule that in any program, a connection cannot be closed unless all
the statements created using that connection are closed. We have seen that this
can be specified as the object invariant of Statement.

public boolean Inv() {
return isClosed ||

(connection != null && !connection.isClosed());
}

Similarly, we can capture the dependency of iterator on list using the object
invariant of iterator. Consider designing a reusable monitor object which reports
an assertion violation if the inv-rule is violated. For every object that registers
with the monitor, we require a side-effect free public method boolean Inv()
returning a boolean, that checks the actual invariant (depending on the imple-
mentation of the object). To capture this requirement, we introduce the role
ObjWInv (object with invariant).

162 M. Gopinathan and S.K. Rajamani

role ObjWInv {
boolean Inv();

}

For every object o of role ObjWInv (i.e. a subtype of ObjWInv), we add a
boolean auxiliary field inv. Our goal is to ensure that for every object o of
role ObjWInv in the program, whenever o.inv is true, o.Inv() returns true. In
the monitor, o.inv is set to true only by using CheckAndSetInv(o) that asserts
o.Inv() before setting o.inv to true:

CheckAndSetInv(ObjWInv o) {
assert o.Inv();
o.inv = true;

}

The goal of the monitor is to report an assertion violation whenever a state
change of p breaks the invariant of any o that depends on p. For this, the monitor
must know the dependents of p. Therefore, we introduce another auxiliary field
ObjWInv .dependents of type Set of ObjWInv . To register an object o, the moni-
tor’s Init method must be called which initializes o.inv to false and o.dependents
to empty set.

Init(ObjWInv o) {
o.inv := false;
o.dependents := nullset;

}

The monitor must be informed of dependencies (e.g. when a statement is
created using a connection) by calling its Add method.

Add(ObjWInv o, ObjWInv p) {
assert(o.inv = false);
p.dependents.Add(o);

}

The monitor must be informed that o is in a steady state and o.inv must be
monitored by calling its Start method. Before executing a method of o, Stop
must be called to indicate that o.inv need not be monitored.
Start(ObjWInv o) {
assert(o.inv = false);
CheckAndSetInv(o);

}

Stop(ObjWInv o) {
assert(o.inv = true);
o.inv := false;

}

Whenever the state of an object p changes, we should check with the monitor
by calling its Validate method. This method checks whether the state change of
p breaks the invariant of any o that depends on p.

Validate(ObjWInv p) {
for(o in p.dependents) {

if(o.inv = true)
CheckAndSetInv(o);

}
}

Runtime Monitoring of Object Invariants with Guarantee 163

Next, we need to instrument the program with appropriate calls to the mon-
itor. Consider again, the JDBC user code given below. The calls to the monitor
methods are shown in italics.

1 Connection con = DriverManager.getConnection(..);
2 Init(con); // register con
3

4 Statement stmt = con.createStatement();
5 Init(stmt); // register stmt
6 Add(con, stmt); // inform monitor that stmt depends on con
7 Start(stmt); //start monitoring stmt.inv
8 ..
9 Stop(stmt); //stop monitoring stmt.inv

10 ResultSet rs1 = stmt.executeQuery("SELECT EMPNO FROM EMPLOYEE");
11 Start(stmt); //start monitoring again
12 ..
13 con.close();
14 Validate(con); // inform monitor that con’s state changed
15 ..
16 ResultSet rs2 = stmt.executeQuery("SELECT NAME FROM EMPLOYEE");

With this added instrumentation, the call to Validate (line 14) reports an
assertion violation as closing con breaks the invariant of stmt which is still
open. Without the monitor, the error manifests subsequently, on line 16, when
stmt is used. In this example, this is close to line 13, but in large programs the
manifestation could be arbitrarily far away from the cause, resulting usually in
long hours of debugging. With the monitor, we can detect the error at the point
where inv-rule is violated (line 13).

However, there are two problems with the approach above:

1. Adding calls to monitor methods in the program creates a tight coupling
between the monitor and the program bound to the rule. It is not easy to
disable the monitor during deployment.

2. Errors can be missed if a call to an appropriate monitor method is omitted.
For example, if the call to Validate(con) is omitted on line 13 above, then the
error in the program is not detected by the monitor. The API programmer
must ensure that the monitor knows about dependencies (by calling Add)
and state changes of p are validated (by calling Validate). As new methods
are added to p’s class, the API programmer must ensure that appropriate
calls to Validate are made. This process is error prone.

Sections 2.1 and 2.2 give solutions to problems 1 and 2.

2.1 Specifying Bindings Using AOP

Aspect oriented programming (AOP) [17] enables the various concerns (in this
case, the JDBC specific code and the monitor specific code) to be specified
separately. A description of the relationships of the two separate concerns enables

164 M. Gopinathan and S.K. Rajamani

an AOP implementation such as AspectJ [18] to compose them together. Thus,
if the relationship is correctly specified, then the appropriate monitor methods
are implicitly invoked.

Any class in the program with a public method boolean Inv() can be bound
to the role ObjWInv (i.e. it becomes a subtype of ObjWInv). The API pro-
grammer can bind the classes Statement and Connection as shown below (the
binding below uses AspectJ syntax).

declare parents: Statement implements ObjWInv;
declare parents: Connection implements ObjWInv;

In AspectJ, a join point is an identifiable point, such as a call to a method
or an assignment of a field, in the execution of a program. All join points have
an associated context. For e.g., a method call has the context caller, target
and arguments. These are the points at which the monitor specific code can be
composed with the JDBC code. A pointcut is a set of join points. Advice is the
code to be executed at the join points in a particular pointcut. At runtime, a
before advice is triggered before the join point and an after advice after the join
point.

The initialization of ObjWInv occurs before the constructor body of a class
implementing ObjWInv executes. After this point, the auxiliary state of o is
initialized by calling the monitor method Init(o).

pointcut init(ObjWInv o) : initialization(ObjWInv.new(..))
&& this(o);

after(ObjWInv o) : init(o) {
Init(o);

}

After the field Statement.connection is set (during the construction of
Statement), the target Statement o and the argument Connection p are col-
lected and o is added as a dependent of p.

pointcut setConnection(ObjWInv o, ObjWInv p) :
set(Connection Statement.connection)
&& target(o)
&& args(p);

after(ObjWInv o, ObjWInv p) : setConnection(o,p) {
Add(o,p);

}

After statement is created, the monitor is asked to start monitoring its invari-
ant.

pointcut create() : call(Statement.new(..));
after() returning(ObjWInv o) : create() {
Start(o);

}

Before closing the statement, the monitor is asked to stop monitoring its
invariant.

Runtime Monitoring of Object Invariants with Guarantee 165

pointcut stmtClose(ObjWInv o) : call(public void Statement.close())
&& target(o);

before(ObjWInv o) : stmtClose(o) {
Stop(o);

}

After closing the connection p, we must validate whether this change breaks
the invariant of any statement o that depends on the connection p.

pointcut conClose(ObjWInv p) : call(public void Connection.close())
&& target(p);

after(ObjWInv p) : conClose(p) {
Validate(p);

}

It is easy to see that the Iterator/List code can be composed with the same
monitor in a similar fashion. Mistakes can be made in the binding: suppose
the pointcut conClose does not list the call to Connection.close. Then the
monitor misses the critical event that a connection with an associated open
statement is closed in the program. Other runtime monitoring approaches using
AOP [14,16] rely on the programmer to correctly specify all the events that
create dependencies and change relevant state in the program. In section 2.2,
we show how to improve upon this by automatically tracking dependencies (as
o.Inv() executes) and calling Validate whenever a relevant state change occurs.

Note that in many cases, a default binding such that Stop(o) is called before
and Start(o) is called after every public method execution on o suffices. Then
with automatic dependency tracking and validation, the API programmer need
not write a binding description at all. However, in some cases, a custom binding
is needed (see section 3).

2.2 Automatic Dependency Tracking with Validation

The key insight we have is that for any object o, the objects p on which o’s in-
variant depends can be computed when o.Inv() executes using AOP techniques.
Thus, if we compute these dependencies, we can check whether o.Inv() holds
every time an object p that o depends on changes, and flag a violation of the
inv-rule exactly where it occurs. In this section, we show how to track depen-
dencies and validate relevant state changes automatically.

Definition 1. (o, p, f) ∈ D iff the object invariant of o depends on the value of
the field p.f .

We must have (o, p, f) ∈ D iff the field p.f is read during the last execution of
o.Inv() (i.e. o is a dependent of p). Suppose the value of p.f changes. It can
potentially break the invariant of some o iff (o, p, f) ∈ D and o.inv is true.
Validate is invoked to check whether the change in value of p.f breaks any such
o’s invariant.

The fields read during the execution of o.Inv() can be captured using AOP.
We require that all such fields f must be either of a built-in type or of a subtype

166 M. Gopinathan and S.K. Rajamani

Fig. 1. Automatic dependency tracking with validation

of ObjWInv . This restriction is imposed so that we can register with the AOP
execution environment for changes to these fields. We rely on the AOP execution
environment to get a notification when the value of such a field f changes. More
details on the implementation are given in section 3.

Consider Figure 1. In scenario 1, after the statement o is constructed, Start(o)
is invoked. Since Start calls CheckAndSetInv(o), o.Inv() is called, and we
compute all the fields p.f that o depends upon. Therefore, (o, p, isClosed) ∈
D. In scenario 2, after the field Connection.isClosed is set to false in
Connection.close, Validate(p) is called. As o.inv is true and o.Inv() returns
false, an assertion violation occurs. We now show that our approach always
catches such errors subject to certain restrictions and assumptions.

2.3 Correctness

We consider sequential programs only. To summarize, the following restrictions
on the program enable us to automatically track dependencies and validate state
changes that may violate object invariants.

R1 Every field f read during the execution of o.Inv() must be either of a built-in
type or of a subtype of ObjWInv .

R2 The execution of o.Inv() cannot modify any state.

These restrictions are checked by InvCOP using AOP, and if they are violated,
an assertion violation is thrown.

The assumptions made on the AOP environment are:

A1 Every read access of a field p.f , where p is an object of type ObjWInv , can
be detected.

Runtime Monitoring of Object Invariants with Guarantee 167

A2 Every change of a field p.f , where p is an object of type ObjWInv , can be
detected.

A3 The initialization of an object of type ObjWInv can be detected.

Assuming A3, we can ensure that every object o of type ObjWInv is registered
with the monitor by calling Init(o). Note that Init(o) sets o.inv to false. The
following theorem relates the auxiliary field o.inv to the actual invariant of the
object o.Inv().

Theorem 1. Let r be any run of program P composed with the monitor using
binding B. Suppose r does not have any assertion violations. Then, the following
holds in all states of r:

∀o ∈ ObjWInv .(o.inv = true) =⇒ (o.Inv() = true)

Proof. The auxiliary field o.inv is set to true only using CheckAndSetInv(o).
Therefore, o.Inv() must have returned true. Let f be a field declared in a class
P . Consider the assignment of a new value to p.f , where p is an instance of
P . If this assignment violates the object invariant of o (i.e. o.Inv() now returns
false and its previous execution returned true), then, the previous execution of
o.Inv() must have accessed p.f . By assumption A1, we have (o, p, f) ∈ D. By
assumption A2, the assignment of p.f is detected and Validate(p) is called. Since
o.inv is true and (o, p, f) ∈ D, CheckAndSetInv(o) is called. Since we assume
that r does not have assertion violations, and CheckAndSetInv(o) calls assert
o.Inv(), we have that o.Inv() = true.

3 Implementation

We have implemented the above approach in a tool called InvCOP. We first
present the tool description followed by experimental results. The components
of InvCOP are:

Monitor. As we have discussed in section 2.
Depend. Compute D during the execution of o.Inv(). Invoke the monitor

method Validate when a state change is detected.
Aspect Generator. Generate an aspect combining the above two components

and a binding. In most cases, a default binding suffices. However, in certain
cases (given below), the API programmer may need to provide a custom
binding.

The Depend component uses AOP to to compute the dependency relation
D. The execution of o.Inv() is captured using a pointcut. Then using a control
flow pointcut (cflow), any read operation of a field p.f during the execution of
o.Inv() can be captured. If a joinpoint specified by such a pointcut is reached,
then (o, p, f) is added to D. A call to p.Inv() during the execution of o.Inv()
can be captured similarly to add (o, p, inv) to D, i.e. o depends on p.inv.

168 M. Gopinathan and S.K. Rajamani

The Aspect Generator generates an aspect A by combining the Monitor, De-
pend and binding. The binding is attached verbatim. For binding a class C
to the role A.ObjWInv , AspectJ compiler modifies the inheritance hierarchy of
C to introduce A.ObjWInv as a parent. Currently, this is possible only if the
byte code of C is under its control. Therefore, we cannot bind the collection
classes in java.util to ObjWInv . Our prototype implementation uses proxy
objects to keep track of the relationship between iterators and collection classes.
At runtime, a singleton instance of the generated aspect is created in the vir-
tual machine. This instance enforces the inv-rule by validating state changes of
objects of type A.ObjWInv .

Custom Binding. In the default binding, Start(o) is invoked after the object
o is constructed. Before the execution of every public method on o, Stop(o) is
invoked and after such an execution, Start(o) is invoked again. However, in some
cases, the API programmer may need to specify explicitly when Start and Stop
are to be invoked. Consider the following example [12].

class T {
public boolean Inv() {

return 0 <= x && x < y;
}

public void method1() {
x++;
y++;
//invoke method m on user object
user.m(this,..);
..

}

public float method2() {
return 1/(y-x);

}
}

class User {
public void m(T t,..) {
//callback
t.method2();
..

}
}

If the API programmer allows the user to call back the method T.method2
during the execution of m, then Start(t) must be invoked before the call
user.m(this,..). Otherwise, Stop(t) (called before executing method2) will
report an assertion violation as t.inv is false.

Experimental Results. We first illustrate the difficulty faced by an API user
using a real world scenario [7]. Figure 2 shows the usage of class Document in
JDOM, a library for in-memory representation of XML documents.

A document iterator for navigating an XML document (in the form of a tree)
uses a stack of list iterators where each list iterator is used for iterating over
nodes at each level in the tree. An element in the tree is returned by the list
iterator on top of the stack. If the user code calls detach on an element, then
it is removed from the list of nodes at that level. An exception is thrown if user
code invokes detach during iteration followed subsequently by next as shown in
the stack trace below. The user code in the stack trace is shown in italics.

java.util.ConcurrentModificationException
at java.util.AbstractList$Itr.checkForComodification(Unknown Source)
at java.util.AbstractList$Itr.next(Unknown Source)
at org.jdom.DescendantIterator.next(DescendantIterator.java:134)

Runtime Monitoring of Object Invariants with Guarantee 169

User Document Document
Iterator Content Iterator List

getDescendants()

hasNext()

next()
next()

next()
next()

get()

CME

detach()
remove(this)

Fig. 2. Navigating a XML tree

at org.jdom.FilterIterator.hasNext(FilterIterator.java:91)
at OrderHandler.processOrder(OrderHandler.java:26)

From the above trace, it is not clear to the API user where exactly the invari-
ant of iterator has been violated. After compiling with the aspect generated by
InvCOP, the stack trace is as shown below.

java.lang.AssertionError: Invariant does not hold
at rules.Inv_jdom.CheckAndSetInv(Inv_jdom.aj:122)
..
at org.jdom.Element.removeContent(Element.java:885)
at org.jdom.Content.detach(Content.java:91)
at ItemHandler.processItem(OrderHandler.java:12)

at OrderHandler.processOrder(OrderHandler.java:29)

This clearly points out that the user code processItem violated the iterator’s
invariant by calling Content.detach.

Table 1 shows some libraries for which we used InvCOP to detect inv-rule
violations. Each scenario was modeled after usage violations reported in discus-
sion forums. For each scenario, the columns show the total number of classes in
the library and the number of classes bound to ObjWInv . We have already dis-
cussed the first scenario. Scenario 2 is based on an error report filed for MySQL
JDBC library [8]. In scenario 3, user code first associates an implementation of
Key with some value using a dictionary (implemented as a binary search tree).
Then the key is modified violating the tree invariant.

With our prototype implementation, the time for each run with the gener-
ated aspect was 2-3 times that of the run without the aspect. However, this is
insignificant compared to the amount of human effort spent in debugging these
problems without a tool like InvCOP. Instead of documenting the reason for
an exception in a FAQ (as in [6]), API users can be asked to use a tool such

170 M. Gopinathan and S.K. Rajamani

Table 1. Detected inv-rule violations

API Scenario Total Classes
of classes bound to ObjWInv

JDOM Figure 2 [7] 69 IteratorProxy
ListProxy

MySQL [8] 95 Statement
Connection

Binary Search Tree [19] 5 BinarySearchTree
Node
Key

as InvCOP so that the violations of API rules can be detected quickly. Even if
the API programmer has not formally captured all the API rules, as problems
are reported, API rules can be captured incrementally. Once the violations have
been found and fixed, the generated aspect can be removed during deployment.

4 Related Work

The SLAM toolkit [1] checks if C programs obey interface rules specified as state
machines in the SLIC rule language. Powerful type systems have been designed
to track a state machine as part of an object’s type [2,3,20]. However, all these
systems treat the state associated with each object independently. In this work,
we focus on rules involving the states of multiple objects.

Contracts [21] identified behavioral compositions and obligations on partici-
pants as key to object oriented design. Recently, [22] has pointed out the need
to enforce framework constraints (which typically involve multiple objects) so
that plugin writers cannot violate them. These papers point to the need to au-
tomatically enforce constraints involving multiple objects in large programs.

Several “ownership” type systems have been invented to track dependencies
between objects [9,10]. The proposals in the literature differ in how they con-
strain programs: for example, some allow ownership transfer whereas some others
do not. Program verification tools have been built to check if programmers follow
particular programming methodologies [12]. When multiple objects depend on
a shared object (many Statements may depend on the same Connection), the
methodology needs to be extended [13]. Also, these systems do not work with
existing programming languages.

JML [23] requires that an invariant must hold at the end of each constructor’s
execution, and at the beginning and end of all public methods. Our approach
ensures that this is indeed the case during runtime.

MOP [14], Tracematches [15] and JLo [16] also use aspects for runtime verifi-
cation. Consider the MOP specification (from [14]) for ensuring that a vector v
is not modified when enumeration e is being used for enumerating the elements
of the vector:

Runtime Monitoring of Object Invariants with Guarantee 171

1 SafeEnum (Vector v, Enumeration+ e) {
2 [String location = "";]
3 event create<v,e>: end(call(Enumeration+.new(v,..))) with (e);
4 event updatesource<v>: end(call(* v.add*(..))) \/
5 end(call(* v.remove*(..))) \/ ...
6 {location = @LOC;}
7 event next<e>: begin(call(* e.nextElement()));
8 formula : create next* updatesource+ next
9 }

10 validation handler { System.out.println("Vector updated at "
11 + @MONITOR.location); }

In this MOP specification, a faulty pattern is specified using a formula which
encodes incorrect sequences of events. After the event create<v,e> occurs, e
depends on v to not change. The event updatesource<v> signals that the vec-
tor is modified. The formula create next* updatesource+ next specifies the
faulty pattern: the enumeration is created, then vector is modified, followed by
a next method call on the enumeration.

Suppose the specification of the event updatesource<v> inadvertently omits
the method v.remove() (line 5 above). Then, an error similar to the one in
Example 1 cannot be detected by MOP. In contrast, InvCOP does not require
explicit specification of events that signal dependencies or state changes. With
InvCOP, the programmer merely specifies that the enumerator depends on the
vector’s state. Whenever the state of the vector changes, automatic dependency
tracking helps to check whether the invariant of the enumerator is violated.
Thus, we believe that automatic dependency tracking is a useful feature that
can be added to tools such as MOP to give guarantees such as the one offered
by Theorem 1.

For us to track state changes of an object p that may affect the invariant of
another object o, o must refer to p directly or indirectly. The AOP based moni-
toring approaches mentioned above do not place any such restrictions. However,
the advantage of our approach is that we can enforce the inv-rule without the
programmer having to list all methods that change object state and potentially
break some other object’s invariant.

5 Conclusion

We have presented an approach to formally capture design decisions which re-
quire an object o to constrain the state changes of another object p. We have
also shown that our tool InvCOP guarantees to enforce such design decisions.
Compared to other runtime verification approaches based on AOP, our approach
reduces the specification burden on API programmers for the kind of design de-
cisions we focus on in this paper. This is due to our novel dependency tracking
and validation mechanism.

We have used our tool InvCOP to accurately pinpoint several usage violations
that involved inter-related objects, reported in discussion forums on widely used

172 M. Gopinathan and S.K. Rajamani

APIs. Extending our work to concurrent programs, handling subclasses, and
building a modular and scalable static analysis scheme for enforcing such design
decisions require further research, and are beyond the scope of this paper.

References

1. Ball, T., Rajamani, S.K.: The SLAM project: Debugging system software via static
analysis. In: POPL, pp. 1–3. ACM, New York (2002)

2. DeLine, R., Fähndrich, M.: Enforcing high-level protocols in low-level software. In:
PLDI. ACM, New York (2001)

3. Chin, B., Markstrum, S., Millstein, T.: Semantic type qualifiers. In: PLDI, pp.
85–95. ACM, New York (2005)

4. Beck, K., Cunningham, W.: A laboratory for teaching object-oriented thinking. In:
OOPSLA, pp. 1–6 (1989)

5. http://java.sun.com/j2se/1.5.0/docs/api/
6. JDOM FAQ – http://www.jdom.org/docs/faq.html#a0390
7. http://www.jdom.org/pipermail/jdom-interest/2005-March/014694.html
8. http://bugs.mysql.com/bug.php?id=2054
9. Clarke, D.G., Potter, J., Noble, J.: Ownership types for flexible alias protection.

In: OOPSLA, pp. 48–64 (1998)
10. Boyapati, C., Liskov, B., Shrira, L.: Ownership types for object encapsulation. In:

POPL, pp. 213–223. ACM, New York (2003)
11. Boyland, J.: Why we should not add readonly to java (yet). JOT 5(5), 5–29 (2006)
12. Barnett, M., DeLine, R., Fähndrich, M., Leino, K.R.M., Schulte, W.: Verification

of object-oriented programs with invariants. JOT 3(6), 27–56 (2004)
13. Barnett, M., Naumann, D.A.: Friends need a bit more: Maintaining invariants over

shared state. In: MPC, pp. 54–84. Springer, Heidelberg (2004)
14. Chen, F., Rosu, G.: Mop: an efficient and generic runtime verification framework.

In: OOPSLA, pp. 569–588 (2007)
15. Avgustinov, P., Bodden, E., Hajiyev, E., Hendren, L.J., Lhoták, O., de Moor, O.,

Ongkingco, N., Sereni, D., Sittampalam, G., Tibble, J., Verbaere, M.: Aspects for
trace monitoring. In: FATES/RV, pp. 20–39 (2006)

16. Stolz, V., Bodden, E.: Temporal assertions using aspectj. Electr. Notes Theor.
Comput. Sci. 144(4), 109–124 (2006)

17. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J.M.,
Irwin, J.: Aspect-oriented programming. In: ECOOP, pp. 220–242 (1997)

18. AspectJ –, http://www.eclipse.org/aspectj/
19. http://www.ibm.com/developerworks/java/library/j-jtp02183.html
20. Foster, J.S., Terauchi, T., Aiken, A.: Flow-sensitive type qualifiers. In: PLDI, pp.

1–12. ACM, New York (2002)
21. Helm, R., Holland, I.M., Gangopadhyay, D.: Contracts: Specifying behavioural

compositions in object-oriented systems. In: OOPSLA/ECOOP, pp. 169–180
(1990)

22. Jaspan, C., Aldrich, J.: Checking framework plugins. In: OOPSLA Companion,
pp. 795–796 (2007)

23. Leavens, G., Cheon, Y.: Design by contract with jml (2003)

http://java.sun.com/j2se/1.5.0/docs/api/
http://www.jdom.org/docs/faq.html#a0390
http://www.jdom.org/pipermail/jdom-interest/2005-March/014694.html
http://bugs.mysql.com/bug.php?id=2054
http://www.eclipse.org/aspectj/
http://www.ibm.com/developerworks/java/library/j-jtp02183.html

A Lightweight Container Architecture for

Runtime Verification

Hakim Belhaouari and Frédéric Peschanski

Laboratoire d’Informatique de Paris 6
UPMC Paris Universitas
first.last@lip6.fr

Abstract. We present in this paper a runtime verification architecture
that enforces formal contracts for component-based systems. The con-
tracts are based on logical assertions combined with state-transition sys-
tems. They are expressed separately from the implementation logic. A
set of static analyses can be applied on the contracts but ultimately fur-
ther verifications have to be performed on-line. This is the main purpose
of the monitoring system we describe in this paper. The monitoring ar-
chitecture is based on a model of lightweight hierarchical containers that
exhibits a high-level of flexibility and extensibility. For instance, con-
tainers can be dynamically composed and unplugged on a per-instance
basis. Beyond runtime verification, the monitoring architecture is reused
for other purposes such as QoS monitoring and component hot-swapping.
A performance comparison with other design by contract environments
is also proposed.

1 Introduction

Lightweight formal methods represent a privileged way to increase the overall
quality of software without impacting too strongly the mainstream develop-
ment methodologies. Design by contract (DbC) is a particularly representative
lightweight formalism [1]. In the classical DbC approach, contracts are specified
by annotations of the (object-oriented) source code using simple Hoare-style logic
assertions. The contracts are then verified at runtime. Recent works introduce
more expressive logics together with tools performing partial static analyses of
the contract, e.g. in Java Modeling Language (JML) [2] and Spec# [3].

In this paper, we present Tamago, a platform that supports the design by con-
tract methodology in the development of software components [4]. The platform
provides a contract specification language, a set of analysis tools and a runtime
verification infrastructure. The contract language tries to offer a good balance
between the expressivity of the proposed constructs, their potential for static
analysis and, ultimately, the efficient verifications of the remaining contracts at
runtime. The specifications of contracts are based on classical DbC assertions
(extended with first-orders quantifiers) combined with state-transition systems.
An important aspect is that unlike most related approaches the contracts are
expressed and verified separately from the implementation logic.

M. Leucker (Ed.): RV 2008, LNCS 5289, pp. 173–187, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

174 H. Belhaouari and F. Peschanski

The present paper mostly discusses the monitoring architecture that performs
the verification of the contracts at runtime. While most runtime verifiers employ
code injection to weave the implementation code on the one side and the verifier
logic on the other side, we introduce a container-based architecture for the same
purpose. A first advantage of this approach is that the containers performing
the runtime verifications are non-intrusive wrt. the implementation code. This
is clearly a safer approach in that there is far less opportunity of breaking
the underlying implementations. Moreover, the approach is more flexible: the
Tamago containers can be composed and even plugged/unplugged at runtime.
We show, also, that beyond runtime verification other kinds of containers can
be developed. A further contribution is that despite the increase in flexibility,
the runtime monitoring delivers good performances if compared to other DbC
environments based on code injection.

The outline of the paper is as follows. In section 2 the overall Tamago plat-
form is presented. We briefly describe the contract specification language and
the static analyses that can be applied on the contracts. The contract compiler
is then presented in section 3. We emphasize the support of multiple percola-
tion patterns and the pre-compilation of product automata. The container-based
monitoring architecture is described in section 4. We illustrate, in particular, its
use as a runtime verifier for contracts. Two extensions are also discussed: a sup-
port for component hot-swapping and a QoS monitoring system. Section 5 gives
a performance comparison between Tamago and other related DbC frameworks.
A panorama of related work, conclusion and bibliography follow.

2 The Tamago Platform

We overview in this section the Tamago platform. We first describe briefly the
language for contract specifications and then present the tool-suite we develop
to assist the enforcement of contracts from both a static and dynamic point of
view.

2.1 Contract Specifications

One of the key characteristics of Tamago is the separation of concerns between
the contract specifications on the one side and the implementations of compo-
nents on the other side. Instead of source code annotations [2,3,5,6], the contracts
in Tamago are specified separately. A contracted interface, or service, defines
a set of functionalities that any provider of the service must implement. In
complement to their signatures, the functionalities are also annotated with pre-
conditions and postconditions expressed in first-order logical assertions. Global
invariants can also be expressed separately. Since the assertions do not directly
apply to specific implementations but in general to any implementation of the
service, the observable properties of the service must be precisely characterized.
To increase the expressivity of the contract language while preserving good op-
portunities for static analyses, an automata-theoretic model of service behavior
(similar to component protocols [7]) is proposed.

A Lightweight Container Architecture for Runtime Verification 175

service MessageBufferService {
property int size;
property bool isEmpty;
property Message[] messages;

invariant (�size ≥ 0) ∧ [�isEmpty ⇐⇒ (�size = 0)];
invariant �messages.length = �size

Message match(MessageType type) {
pre type 	= null;
post ∃m ∈ �messages{m.getType() = type }

=⇒ return = m
∨return = null

}

bool put(Message m) {
pre m 	= null;
post return ⇐⇒ �size@pre = �size + 1;

}

bool contains(Message m) {
post return =⇒ ∃ msg ∈ �messages{

m.equals(msg)
}

}

Message take() {
pre ¬�isEmpty;
post return ∧ contains(m)@pre

=⇒ �size@pre = �size − 1;
}

behavior {
init state empty { allow match, put, contains;}
state notempty { allow all; }
transition empty to notempty with put when ¬�isEmpty
transition notempty to empty with take when �isEmpty

}
}

service MessageQueueService
extends MessageBufferService {

bool put(Message m) {
post �messages[0] = m;
post ∀i∈ [1; �size@pre]
{�messages[i] = �messages@pre[i − 1]}

}

Message take() {
post return = �messages@pre[�size]

}
}

component MessageQueue
provides MessageQueueService {

property const int capacity;
invariant �capacity ≥ �size;

bool put(Message m) {
pre �size < �capacity;

}
void flush() {

post �size <= �size@pre
}

behavior {
state notempty { allow flush; }

}
}

Fig. 1. Examples of service and component contracts

Fig. 1 illustrates a simple example of a message buffer specification (for a
communication system). We briefly overview the MessageBufferService (on the
left side of the figure). All assertions are based on observations made on proper-
ties, here the size of the buffer, an empty flag and an array used to observe the
buffered messages (the buffer itself, of course, does not have to be implemented
using an array). In the assertions, the � operator is used to access the value of
a property. The invariants speak for themselves. Each functionality (or method)
is specified using a triple: signature, precondition(s) and postcondition(s). The
suffix operator @pre is used to reference observations made at the time of the
precondition. The behavior part describes an automaton that imposes further
constraints on the activation of functionalities. For the message buffer, there
are only two states: empty or not. Each state corresponds to a set of available
functionalities. The transitions between the states are triggered by method invo-
cations. A transition can be further guarded by logical assertions. For example,
while in the notempty state, an invocation of take can trigger a transition to
the empty state if the property isEmpty becomes true. This automata-theoretic
framework plays in fact a prominent role in the approach.

176 H. Belhaouari and F. Peschanski

On the right side of Fig. 1 we illustrate the subtyping relation between services.
We define a MessageQueueService that inherits from the message buffer service.
It strengthens the contracts for two of the functionalities: put and take. The
remainder of the specification is inherited from the parent. We should stress the
fact that a given service can inherit from multiple parent services. From a DbC
perspective, such a subtyping relation relates to behavioral subtyping [8,9]. This
is further discussed in section 3.

The bottom right of the figure shows an example of a component specification, a
MessageQueue component that provides the MessageQueueService. A component
may in general both require and provide multiple services [4]. For the purpose of
designing by contract, an advantage is that the interactions between the required
and provided services may be captured at the component level. Finally the com-
ponent adds a new method called flush. Tamago also supports specifications at
higher level of abstractions. At the assembly level a contract for a complete archi-
tecture of interconnected components can be specified. Such an assembly can be
given the status of a first-class component by defining a composite specification.

2.2 Static Analyses

The Tamago contract description language tries to find a compromise between
(1) the simplicity of use for real-world situations, (2) the expressivity of the pro-
posed constructs and (3) the possibility of performing thorough static analyses on
the contract specifications. While (1) is quite subjective, finding a good balance
between (2) and (3) is challenging. In this section we briefly describe the static
analysis tools that we develop for the Tamago platform (a more comprehensive
overview is proposed in [10]).

The first analysis performs a structural consistency check of the contracts.
The automaton underlying the contracts is used to drive the static verification.
In case such an automaton is left unspecified, the algorithm generates a de-
fault automaton on-the-fly with an unique state that allows every methods. A
LeanTap-based first order theorem prover is used to discover symbolic inconsis-
tencies and tautologies [11]. Unreachable states, redundant assertions and invalid
transitions are also tracked down. The structural subtyping issues [12] are also
resolved during this first analysis. In Fig. 1, the precondition of the take method
for the message buffer is for example warned as redundant by the analysis (it is
subsumed by a transition guard).

In a second phase, a symbolic interpreter is used to animate the contract
specification resulting from the structural analysis. The algorithm performs a
depth-first search of the automaton and exploits a finite-domain constraint re-
solver to refine the domains of properties’ values in preconditions and invariants.
The postconditions are used both as next states constraints and as effects on the
observable properties. Various fixpoint detection heuristics are used to ensure the
termination of the analysis. As an illustration we consider the message queue
component of Fig. 1. By default, the domain for the capacity is left unspecified,
which avoids any exhaustive verification of the contract. However, the value of
such a constant can be specified for the analysis.

A Lightweight Container Architecture for Runtime Verification 177

The Tamago tool-suite finally provides an automated testing framework, which
also uses the animation of the automaton and the constraint resolver. The goal
here is to determine the possible domains of the method parameters in the con-
tracts. For the moment, we only provide such an automated generation of test
cases for primitives types (i.e. integer, real, boolean and string). However an API
is proposed to extend the generation of tests case for user-defined types.

The structural analyzer and symbolic evaluator cannot encompass the whole
expressivity of the proposed contract model. Ultimately, the Tamago environ-
ment rely on a runtime system that enforces the (remaining) contracts at run-
time. This is described in the next section.

3 Contract Compilation

The objective of the Tamago-CC compiler is to generate the code that enforces
the behavioral contracts on implementations partly at instantiation and binding
times but mostly at runtime. The architecture and behavior of the generated
code itself is discussed in the next section. There are at least two aspects worth
studying on the compiler itself: the generation of percolation patterns and product
automata.

3.1 Percolation Pattern

A percolation pattern describes the generation of the effective pre/post-condition
from a contract specifications [13,14]. The presence of behavioral subtyping
complicates the mapping between the specified assertions and their effective
counterpart. Most approaches follow the Eiffel percolation pattern, which builds
assertions by OR-ing preconditions and AND-ing postconditions [1,8,13]. The
Eiffel percolator is rather weak since it allows to contradict the preconditions of
ancestors at the specification level. In fact, there is no single best solution for
the percolation problem and various algorithms have been proposed in the lit-
erature: exact pre/post, exact pre, exact post, plug-in (Eiffel approach [1]), weak
plug-in or guarded plug-in, relaxed plug-in, etc [13]. Indeed, the choice of one
percolation algorithm or another depends on the context of use. For example,
the component presented in Fig. 1 adds a precondition to the put functionality.
The Eiffel percolator would “forget” about this constraint, which could lead to
an inconsistency wrt. the implementation. A weak plugin percolator would on
the contrary raise an exception in such situation1. In the context of a secure
environment a restricting percolator may be preferable whereas an open-ended
plugin system may benefit from more relaxed assertions.

1 A solution that works for all percolation patterns in the example of Fig. 1 would be
to remove the added precondition and report the constraint on the postcondition:
capacity = size@pre =⇒ ¬return. In more involved examples, though, such a
workaround might be difficult to find in practice. Hence the interest of more precise
percolation patterns.

178 H. Belhaouari and F. Peschanski

To allow for the maximum flexibility in percolation patterns, Tamago supports
the choice of the specific percolator to use at deployment time. The contract
compiler can emit verification code for most of the known percolation algorithms.
The advantage is that the component implementors are allowed to offer a panel
of available percolators, which are then selected by the clients at deployment
time depending on their specific contexts of use. Moreover, a dedicated API is
provided to develop user-defined percolators.

An advantage of pre-compiling the percolation patterns is to provides in-
creased performances: the work will not be required at runtime anymore. The
impact of this is discussed in the section 5.

3.2 Product Behaviors

Beyond the logical assertions, the automata defining the service behaviors play
a prominent role in the Tamago platform. Taken in isolation, the enforcement of
a single automaton is trivial. However, the possibility to inherit from multiple
services requires the possibility to compose automata. Another case is when
components provide multiple services. To ensure that the generated automaton
may simulate the union of all the automata defined by the provided/inherited
services, we implement a product operator that consists in computing all the
reachable states of synchronized automata [15].

Informally, the purpose of the algorithm is first to determine the initial merged
state from all the initials states of the combined services. Then, the arrival states
for all the transitions starting from the initial state must be determined. The
algorithm then reiterate the process until all the abstract states and transitions
have been taken into account. Various optimization and minimization techniques
exist for this problem [15].

We illustrate the operation in Fig. 2, which describes the generation of the
automaton for the component MessageQueue of Fig. 1. This component provides
the MessageQueueService, which itself is a subtype of the MessageBufferService.
There are thus three contracts to combine in this case and two automata. On
the left side of Fig. 2 is depicted the automaton of the message buffer service.
The second operand is the automaton described for the component, which adds
the possibility to invoke the flush method in the notempty state. The result of
the product between these automata is shown on the right-side of the figure.

The generation of such a global automaton allows to emit an efficient ver-
ification code for the runtime system. It also allows to isolate completely the
verification logic on a per-component basis. Even if a component provides a
large number of services, there will be only one automaton to “follow”.

4 Monitoring

This section investigates themost important characteristics of the runtime verifica-
tion of contracts in Tamago. Unlike most of other DbC tools [2,3,5,6] the Tamago-
CC compiler is not based on code injection but rather adopts a container-based
architecture, which is inspired from the PicoContainer approach [16].

A Lightweight Container Architecture for Runtime Verification 179

�� ��
�� ��empty

put

��

contains,match,take

��

�� ��
�� ��notempty

remove,contains,match,take,put

��

remove
<isEmpty>

��

N �� ��
�� ��notempty

flush

��
=⇒

�� ��
�� ��empty

put

��

contains,match,take

��

�� ��
�� ��notempty

remove,contains,match,take,put,flush

��

remove
<isEmpty>

��

Fig. 2. Example of a product automaton

«Container»
Concrete_Container2

+check(): boolean

«Container»
Concrete_Container1

+getDescription(): String

delegates

MyComponentImpl

* provider implementation *

«Container Interface»
Abstract_Container

-delegate: MyComponent

«Component Interface»
MyComponent

+funct3(i : int) : int

«Service Interface»
MyService

+funct1(o : Object) : boolean
+funct2(x : real) : void

requires

provides

«Interface»
Container

isBind() : boolean
bind(label : string, o : Obj) : void

«Interface»
Service

«Interface»
Component

core_set(o : Prop): void

Tamago framework

Fig. 3. Runtime Architecture

4.1 Architecture

The container architecture we propose is based on a variant of the decorator
design pattern [17] that allows the generated code to be specialized for a type,
i.e. a component interface composed of provided and required service interfaces.

In Fig. 3, we describe the hierarchy generated for an arbitrary component
(named MyComponent on the figure). The root interfaces are inherited from the
runtime support libraries. The architecture largely exploits interface inheritance
to ensure type compatibility at all levels: service, component and container.

180 H. Belhaouari and F. Peschanski

For example, the component interface implements the interfaces of all its
provided services. Consequently, an implementation of the component must only
implement this single combined interface. The abstract container (technically
a kind of decorator) also implements this component interface and by default
delegates all the invocations to another implementation of the same interface. A
delegate can thus be an arbitrary container (that extends the abstract container)
or an implementation of the component. It is thus possible to form a chain of
hierarchical, lightweight containers ultimately ended by real implementations.

An important feature of this framework is to allow the combination of multi-
purpose containers, e.g. containers for security, transaction control, etc. We ex-
ploit this feature to decompose the issues of contract enforcement at runtime. By
default, the Tamago-CC compiler generates two containers: one for automaton
checking and the other one for evaluating the logical assertions. The compiler
can emit code for containers implementing various percolation patterns. Conse-
quently, Tamago supports several dynamically-selectable percolation patterns.
Note that the container architecture also allows containers to be dynamically
inserted/removed in a type-safe manner.

4.2 Runtime Verification

The dynamics of the runtime monitoring architecture is illustrated in Fig.4. Here
we see a typical chain of containers, consisting in first the behavior manager (that
interprets and verifies the product automaton described in section 3.2), followed
by the assertion verifier. The chain is ultimately ended by the implementation
of the component. All containers (as well as the implementation) are assumed
locally independent from each others. It is for example possible to inverse the
order between the behavior and assertion checkers. This may result in different
errors and diagnostics to be reported but only if there are some redundancy be-
tween the automaton and assertion constraints. And of course no false diagnostic
may be reported anyway.

Perhaps the most important aspect of this isolation policy it that it is impos-
sible for containers to interfere directly with the internals of others containers.
Most of all, this makes the approach non-intrusive wrt. the implementation
code, unlike most of other DbC approaches based on code injection. In Tamago
implementations are considered as black boxes, and the whole verification must
be performed without direct access to the component internals. Beyond the ad-
vantages of dealing with proprietary and/or secured implementation, this makes
the extremely sensible and difficult aspect of semantic preservation reduces to
a much simpler problem of consistent filtering/wrapping.

At runtime, it is possible to dynamically enable/disable a verification con-
tainer in a transparent way for the client. This is firstly by “playing” with the
chain of containers: insertions and removals in the chain. This mechanism is
enough to handle enabling/disabling of stateless containers, for example the as-
sertion checker. For stateful containers the enable protocol must also deal with
the (re-)activation of the container in a consistent internal state. This is the case
of the behavior manager that can be disabled easily but whose reactivation can

A Lightweight Container Architecture for Runtime Verification 181

Fig. 4. Default Containers Hierarchy at Runtime

become non-trivial. The idea, in this case, is to implement a consistent state de-
tection heuristics that can be inferred by intercepting the calls from and to the
wrapped implementations. If a unique state can be determined in the automa-
ton, then the container goes back to the runtime verification mode. Since the
containers must be independent, the heuristics for reactivation must be imple-
mented in the container itself. Of course, disallowing the dynamic reactivation
of containers is always safe (albeit sometimes counter-productive).

4.3 Extension Framework

One of the key feature of the proposed container architecture is its extensibility.
While runtime verification is the main purpose of the monitoring system, we
developed early proof-of-concept containers that serve very different objectives.

One of the interest of having separate contract specifications and implementa-
tions is that a single specification can be provided by multiple implementations
(possibly from different vendors). At deployment-time, it is of course possible to
select the implementation as long as it implements the correct interfaces. We devel-
oped a further possibility of replacing provider components at runtime, so-called
hot-swapping, thanks to a dedicated container as well as some conventions for im-
plementors.Tomake the runtime verification resilient upon hot-swapping, the con-
tainer proceeds as follow. First, the framework locks the component to be replaced
and store all its observables values. Then it injects those values inside the replacing
implementation and finally unbinds/rebinds all the required services. Of course,
there must exist some convention so that the implementation can find back the
correct run state to restart with. One possibility we explore, suggested by [18], is
to apply a set of characteristic tests on the plugged component.

The second proof of concept container we developed is a monitoring support
for tracking Quality of Service. The hierarchical container pattern allows to wrap
method calls in both a flexible and efficient way. Depending on where the QoS
container is placed in the hierarchy, it can be used for example to measure the
execution time of method calls directly on the implementation, or the overhead
implied by one of multiple containers, or any combination we might think of
(e.g. total response-time).

182 H. Belhaouari and F. Peschanski

Fig. 5. Disable verification and enabling new monitoring

Fig. 5 illustrates an instantiation of the proposed QoS manager. Two QoS
probe containers are deployed, one for measuring the response-time (QoSProbe1)
and another for measuring the overhead involved by the verification containers
(QoSProbe2). As the figure explains, the QoS manager does not have to be
explicitly implemented itself as a container. It can, however, interact with the
probe containers, e.g. to allow their reconfiguration at runtime.

5 Performance Evaluation

Most of the tools for runtime verification of software contracts are based on code
injection/static weaving. We see at least two explanations for this fact. First,
code injection allows to interfere at the most detailed level of implementations.
Our opinion is that for many if not all situations this is not strictly required. The
price to pay also is very high since the injected code could easily interfere too
much with the implementation. The second explanation relates to performances,
and it is a well accepted fact that in most cases indirections are less efficient than
injections. To verify this common idea we decided to compare the monitoring
system of Tamago with other DbC infrastructures. The experiments are carried
out on a Pentium4 computer with 1GB of RAM memory and a 3.6GHz clock
speed. The operating system is linux/mandriva and the Java environment is Sun
JDK version 1.5.0 06. We compare the code generated by the Tamago compiler
with three DbC tools based on Java: JML (release 5.4) [2], jContractor (release
0.1) [6] and STClass (release 4.0) [5].

In a first benchmark we implemented a set of classical examples of the DbC
literature. Despite their simplicity, these examples are both representative and
relevant for such a benchmark. Indeed, they involve most of the features found in
typical DbC platforms (except the advanced features of JML or our own service
behaviors). The examples we (re)wrote are: purse (withdraw/deposit of money),
bucket and bounded bucket (inspired by a game called Pipe Mania) as well as a
classical abstract data type for lists. In each case, the first step is to implement
and measure the execution time of a reference implementation without contracts.
The second step is to enrich a copy of the reference implementation with the

A Lightweight Container Architecture for Runtime Verification 183

contract assertions. In the case of JML and STClass, this means decorating the
implementation with special comments. In the case of jContractor, the situation
is worst in that the assertions are not specified in a given logic but must be man-
ually implemented in the host java language. Tamago, on the other hand, offers
a separate language for the specification of contracts, as described in section 2.1.
All the examples are tested with various parameters and the average execution
time resulting from a very large number of runs (10000) is finally reported.

Fig. 6 shows the runtime overheads induced by the tested platforms on the
four examples. The bottom line, indiced 0, corresponds to the running time of the
examples without any contract. The overhead is then expressed as a percentage
wrt. the basic running time. For example, an overhead of 100% means the run
with verification enabled takes twice the running time of the reference implemen-
tation. The results obtained are relatively high, which can be explained by the
simplicity of the computations performed in each case. More realistic examples
would probably lead to better results but it would be cumbersome to maintain
a version for each one of the tested platforms. As seen from the figures, Tamago
is in general faster than all the other platforms, even if it does not perform any
code injection. These results are somewhat surprising. We see two possible ex-
planations for this. First, the Tamago-CC compiler performs a thorough analysis
of the contracts, which allowed us to implement various optimizations (such as
the pre-compilation of percolation patterns and the generation of the product
automaton, both explained in section 3). A second (more tentative) explana-
tion is that the indirections induced by the container architecture of Tamago
are relatively shallow and static (as long as the containers are not constantly
plugged/unplugged), which probably allows many opportunities for the Just-In-
Time compiler. This hypothesis should be investigated more thoroughly but we
do not see any other meaningful explanation when comparing the code gener-
ated by all the platforms. The case of JML also is worth discussing, in that it
in average induces a penalty of more than ten times the execution time of the
reference implementation. Of course, JML is advertised as a heavyweight DbC
platform, and is probably not well suited for runtime verification in general.

Fig. 6. Performance evaluation for classical DbC examples

184 H. Belhaouari and F. Peschanski

In a second benchmark we decided to test the support for behavior suptyping
in all the platforms. We only tested the plugin percolator since only Tamago
supports more precise percolators. The benchmark example is a simple service
with a unique observable property, an invariant and a method surrounded by
preconditions and postconditions. Such a service is then inherited by a child
service that adds a new invariant, weakens the precondition and strengthens the
postcondition. The main parameter is the depth of the hierarchy of inherited
services.

Figure 7 shows the execution times (in milliseconds) with respect to the depth
of the hierarchy. Because of the very poor results of the JML percolator, we use
a logarithmic scale. We see an exponential (asymptotic/logarithmic) increase in
the JML case, while all the other cases are roughly linear. Once again the Tamago
percolator seems to deliver the best performances, which can be explained by
the pre-compilation of the percolator. Not that we tested the percolation until
a depth of 100, which is not realistic in practice. So, while the curves have a
tendency to coincide as depth increases, the difference between Tamago and
jContractor/STClass really is significant for practical purposes.

In a third benchmark we study the horizontal composition of contracts. The
parameters in the example are now the number of invariants, preconditions and
postconditions to check on a given functionality. We excluded JML from the
benchmark because a linear scale is more interesting in this example, and a
preliminary run convinced us that JML would not deliver better performances.
The case for jContractor, also, is problematic. In fact, jContractor does not
support any notion of logic since all the assertions must be written by hand. Put
in other terms, the combination of the various assertions also must be written
by hand and there is no point in measuring the efficiency of hand-written code
in this benchmark. So we are left with STClass and Tamago which both support
a logic and deliver acceptable performances.

Fig. 8 shows the absolute response times with relation to the breadth of the
contracts. Both implementations exhibit a linear overhead wrt. the parameter.

 1

 10

 100

 1000

10000

 0 10 20 30 40 50 60 70 80 90 100

jContractor
Tamago

JML
STClass

(depth)

(ms)

Fig. 7. Benchmarking the plugin percolation pattern

A Lightweight Container Architecture for Runtime Verification 185

 0

 5

10

15

20

25

30

35

40

45

50

 0 10 20 30 40 50 60 70 80 90 100

(ms)

STClass
Tamago

(breadth)

Fig. 8. Horizontal composition of contracts

The absolute times computed in the case of Tamago are below the ones for
STClass, but the slope is bigger also at first. So we think that for very large
contracts the two platforms should deliver approximately similar performances.

These benchmarks, though of course incomplete and subjective by nature, at
least comforts us in thinking that the proposed container architecture is quite
efficient in practice. This, together with its increased safety and flexibility, makes
this kind of container architecture a better candidate for supporting runtime
verification, if compared to code injection/static weaving. Finally, of the tested
platforms, only Tamago supports the full disabling of the verification at runtime.

6 Related Works

DbC tools support contract specifications in various forms, e.g. with dedicated
language construct [1,3], comments/annotations in the source code [2,5], or di-
rectly in the implementation [6]. These approaches do not offer, in general, to
separate the contract descriptions and their various possible implementations. It
is finally the implementations that take responsibility in enforcing the contracts.
Tamago, on the contrary, clearly separates the two aspects, and the platform
only is responsible of contract enforcement.

From the point of view of expressivity, the logic proposed in Tamago can be
seen as an intermediate between basic Eiffel-like approaches, e.g. STClass [5],
and an heavyweight specification language such as JML [2]. The basic boolean
conditions are extended with first-order quantifiers, which can be analyzed by a
first-order prover [11]. A prominent feature of the Tamago-CDL language is the
model of behavior automata it supports. While increasing the expressivity of the
language, it also uncovers many interesting static analyses to be performed on the
contracts. Similar notions are proposed in other works, e.g. component protocols
[7], but for a different purpose. In [7] for instance, the protocols (modelled as
petri-nets) are used to check the consistent binding of multiple components at
runtime, no static analysis is performed.

186 H. Belhaouari and F. Peschanski

Most of DbC tools use code injection/static weaving techniques [2,5,6] that
are intrusive wrt. the underlying implementation (source or binary). There are
several concerns with such intrusive approaches. First, the preservation of the
implementations integrity is threatened. In some situations, the injection would
even be forbidden for intellectual property/security reasons. The container ar-
chitecture proposed in Tamago on the contrary is non-intrusive. Beyond the
increased levels of flexibility and safety it provides, the containers also deliver
good performances.

7 Conclusion and Future Work

The current trend in lightweight formal methods is the integration of static and
dynamic analyses of contracts expressed in rich logics. Our experiments with
the Tamago platform shows that even relatively simple logical and automata-
theoretic contracts are quite complex to handle from a static analysis point
of view. Of course, more expressive languages could be introduced, and the
tendency is to do so, but this would undoubtedly come at the price of making
the end-to-end approach we aim for less realistic.

One direction we explore at the moment is the introduction of higher-level log-
ical modalities (e.g. spatial/temporal) that could be interpreted in our automata
framework. A similar example is that of never-claim conditions for linear tem-
poral logic. Another direction is to address concurrency issues by introducing
rely/guarantee assertions together with pre and postconditions. Thanks to the
flexible container architecture of Tamago, we think that the runtime verification
part of the problem could be solved rather effortlessly.

References

1. Meyer, B.: Object-Oriented Software Construction, 2nd edn. Prentice Hall, Engle-
wood Cliffs (1997)

2. Leavens, G.T., Cheon, Y., Clifton, C., Ruby, C., Cok, D.R.: How the design of JML
accommodates both runtime assertion checking and formal verification, vol. 55, pp.
185–208. Elsevier, Amsterdam (2005)

3. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: an
overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005)

4. Szyperski, C.: Component Software: Beyond Object-Oriented Programming.
Addison-Wesley Longman Publishing Co., Inc., Boston (2002)

5. Deveaux, D., Jezequel, J.M.: Increase software trustability with self-testable classes
in java. In: IEEE Software Engineering Conference (2001)

6. Karaorman, M., Hlzle, U., Bruno, J.: jContractor: A reflective Java library to
support design by contract. In: Cointe, P. (ed.) Reflection 1999. LNCS, vol. 1616.
Springer, Heidelberg (1999)

7. Reussner, R., Poernomo, I., Schmidt, H.W.: Reasoning about software architectures
with contractually specified components. In: Cechich, A., Piattini, M., Vallecillo, A.
(eds.) Component-Based Software Quality. LNCS, vol. 2693, pp. 287–325. Springer,
Heidelberg (2003)

A Lightweight Container Architecture for Runtime Verification 187

8. Findler, R.B., Latendresse, M., Felleisen, M.: Behavioral contracts and behavioral
subtyping. In: ESEC/FSE-9: Proceedings of the 8th European software engineering
conference, pp. 229–236. ACM Press, New York (2001)

9. Liskov, B.H., Wing, J.M.: A behavioral notion of subtyping, vol. 16, pp. 1811–1841.
ACM Press, New York (1994)

10. Belhaouari, H., Peschanski, F.: An integrated platform for contract-oriented devel-
opment. Formal Languages and Analysis of Contract-Oriented Software (2007)

11. Beckert, B., Posegga, J.: leantap: Lean tableau-based deduction. J. Autom. Rea-
soning 15, 339–358 (1995)

12. Abadi, M., Cardelli, L.: A Theory of Objects. Springer, Heidelberg (1996)
13. Toth, H.: On theory and practice of assertion based software development. Journal

of Object Technology 4, 109–129 (2005)
14. Zaremski, A.M., Wing, J.M.: Specification matching of software components, vol. 6,

pp. 333–369. ACM Press, New York (1997)
15. Zampunieris, D., Charlier, B.L.: An efficient algorithm to compute the synchronized

product, vol. 00, p. 77. IEEE Computer Society, Los Alamitos (1995)
16. Fowler, M.: Inversion of control containers and the dependency injection pattern

(2004), http://www.martinfowler.com/articles/injection.html
17. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Addison-Wesley,

Boston (1995)
18. Chen, F., Rosu, G.: Mop: an efficient and generic runtime verification framework.

In: OOPSLA, pp. 569–588. ACM, New York (2007)

http://www.martinfowler.com/articles/injection.html

Author Index

Ball, Thomas 51
Baran, Joachim 69
Barringer, Howard 69
Belhaouari, Hakim 173

Candea, George 119
Chechik, Marsha 137
Chen, Feng 51

Dinesh, Nikhil 86

Gopinathan, Madhu 158
Goubault-Larrecq, Jean 1

Joshi, Aravind 86
Jula, Horatiu 119
Jürjens, Jan 36

Lee, Insup 86
Litani, Elena 137

Nejati, Shiva 137
Nir-Buchbinder, Yarden 104

O’Farrell, Bill 137
Olivain, Julien 1

Peschanski, Frédéric 173

Rajamani, Sriram K. 158
Roşu, Grigore 51
Rushby, John 21

Simmonds, Jocelyn 137
Sokolsky, Oleg 86

Tzoref, Rachel 104

Ur, Shmuel 104

	Title Page
	Preface
	Conference Organization
	Table of Contents
	A Smell of Orchids
	Introduction
	The \tt{ptrace} Attack Example
	Detecting the \tt{ptrace} Attack
	Shortest Runs
	Running Orchids on the ptrace Signature

	The Core Algorithm
	Cuts, Green Cuts, Red Cuts
	Detecting Families of Attacks
	Conclusion
	References

	Runtime Certification
	Introduction
	Assurance Cases
	Runtime Assumption Monitoring
	Runtime Anomaly Detection
	Runtime Safety Monitoring
	Diagnosis, Recovery, and Mitigation
	Summary and Conclusion
	References

	Model-Based Run-Time Checking of Security Permissions Using Guarded Objects
	Introduction
	Run-Time Checks for OO Security Permissions
	Run-Time Checks for Security Permissions withUML sec
	Static Definitions
	Dynamic Definitions

	Statically Verifying the Run-Time Checks in UMLsec
	Consistency between Class and Sequence Diagrams
	Dynamic Checking of the Sequence Diagram

	Run-Time Checks for Permission Delegation
	Run-Time Checks in Java GuardedObjects
	Related Work
	Conclusion
	References

	This Time with Calls and Returns
	Introduction
	\ptLTL and \ptCaRet
	\ptCaRet Derived Operators and Examples
	A Monitor Synthesis Algorithm for \ptCaRet
	The Target Language
	The Monitor Synthesis Algorithm
	Implementation as Logic Plugin, Optimizations, Example

	Conclusion and Future Work
	References

	Forays into Sequential Composition and Concatenation in {\sc Eagle}
	Introduction
	Preliminaries
	Interdefinability of Sequential Composition and Concatenation
	Sequential Composition in Terms of Concatenation
	Concatenation in Terms of Sequential Composition

	Deterministic Cut Operators
	Syntax and Semantics of Deterministic Cut Operators
	Definability of Deterministic Cut Operators in {\sc Eagle}

	On-Line Monitoring of Deterministic Cut Operators
	{\sc Eagle}’s On-Line Monitoring Algorithm
	{\sc Eagle}’s Monitoring Algorithm Extended
	On-Line Monitoring Complexity

	Conclusion
	References

	Checking Traces for Regulatory Conformance
	Introduction
	Motivation
	Formalization of Regulatory Documents
	Model for Regulated Operations
	Logic for Regulatory Conformace
	References to Other Laws

	Runtime Checking of Specifications with References
	An Algorithm for Evaluating Specifications with References
	Complexity Analysis by Example
	Pre-computing Satisfiability
	Evaluation

	Discussion and Conclusions
	References

	Deadlocks: From Exhibiting to Healing
	Introduction
	Background
	Exhibiting Deadlocks Using Targeted Noise
	Experimental Results for Deadlock Exhibiting

	Healing Deadlocks
	Experimental Results for Deadlock Healing

	Conclusions
	References

	A Scalable, Sound, Eventually-Complete Algorithm for Deadlock Immunity
	Introduction
	Algorithm for Deadlock Immunity
	Overview and Definitions
	Instrumentation
	Avoidance
	Detection

	Soundness and Completeness
	Complexity Analysis
	Evaluation
	Effectiveness
	Performance Overhead in Real Applications
	Effects of False Positives

	Conclusion
	References

	Property Patterns for Runtime Monitoring of Web Service Conversations
	Introduction
	A Language for Specifying Conversations
	From SDs to Automata
	Assertion and Negation Operators

	SD Templates for Temporal Logic Property Patterns
	Temporal Logic Property Patterns
	Mapping Property Patterns to SDs
	Mapping Property Scopes
	Specifying Properties of the Loan Application

	Tool Support and Experience
	Conclusion
	References
	Other Property Patterns

	Runtime Monitoring of Object Invariants with Guarantee
	Introduction
	Approach
	Specifying Bindings Using AOP
	Automatic Dependency Tracking with Validation
	Correctness

	Implementation
	Related Work
	Conclusion
	References

	A Lightweight Container Architecture for Runtime Verification
	Introduction
	TheTamagoPlatform
	Contract Specifications
	Static Analyses

	Contract Compilation
	Percolation Pattern
	Product Behaviors

	Monitoring
	Architecture
	Runtime Verification
	Extension Framework

	Performance Evaluation
	Related Works
	Conclusion and Future Work
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

