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  Abstract   Roots have an extraordinary capacity for adaptive growth which allows 
them to avoid toxic soil patches or layers and grow into fertile sites. The response 
of roots to aluminum toxicity, a widespread problem in acid soils, is an excellent 
model system for investigating the mechanisms that govern this root behavior. 
In this review, after a short introduction to root growth movement in response to 
chemical factors in the soil, we explore the basic mechanisms of Al-induced inhibition 
of root growth. The actinomyosin network and endocytic vesicle trafficking are 
highlighted as common targets for Al toxicity in cell types with quite different 
origins: root tip transition zone cells, tip-growing cells like root hairs or pollen 
tubes, and astrocytes of the animal or human brain. In the roots of sensitive plants, the 
perception of toxic Al leads to a change in root tip cell patterning. The disturbance 
of polar auxin transport by Al seems to be a major factor in these developmental 
changes. In contrast, Al activates organic acid efflux and the binding of Al in a 
nontoxic form in Al-resistant genotypes.    

  1 Introduction  

 Individual terrestrial higher plants are sessile, living anchored to the substrate by their 
roots. Migration to better, more fertile soil conditions is only possible for their genetic 
information (pollen) or their offspring (seeds), which have different mechanisms of 
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dissemination. Slow movement away from the original placement is also possible as 
clones by vegetative propagation, e.g., through the formation of stolons or rhizomal 
growth (Hart  1990) . 

 Investigations into plant movements have so far mainly focused on aerial plant 
parts. Different mechanisms can be distinguished: those based on turgor changes 
(e.g., nyctinasty and thigmonasty), or those based on differential growth (such as 
phototropism and epinasty). An exception is gravitropism, another growth-based 
movement, which has mainly been investigated in roots. However, bending in 
response to gravitational stimulus is far from being the only movement available to 
roots (Barlow  1994) . Hydrotropism, the directed growth of roots in relation to the 
gradient of soil water potential, is a well-established growth-based movement of 
roots in response to an essential chemical soil factor (water) (Ponce et al.  2008) . 
The availability of other essential nutrients can also induce changes in the orientation 
of root growth in order to improve acquisition. Phosphorus and nitrogen are the 
best-studied examples (Desnos  2008) . The movement of roots into nutrient-rich soil 
patches implies complex morphogenetic events, such as root hair formation, the 
induction of new laterals, or—in certain species—proteoid root formation. These 
trophomorphogenetic responses are controlled directly by the nutrient concentration 
in the external medium or indirectly by the nutrient status of the plant, or by both 
(Forde and Lorenzo  2001) . 

 Avoiding toxic soil conditions by altering root growth patterns is a further 
mechanism that allows plants to move away and try to escape from inadequate 
growth conditions. Two different scenarios can be envisaged: (1) heterogeneous 
soil contamination with small hotspots of high toxicant concentrations embedded 
in less toxic soil, and (2) extended toxic layers in the subsoil. 

 A heterogeneous distribution of potentially toxic concentrations of metal ions is 
frequently observed in soils polluted by mining activities. The observation that less 
Cd was taken up by  Brassica juncea  from soil with a heterogeneous Cd distribution 
than from uniformly polluted soil supports the view that plants are able to sense the 
spot contamination and avoid growth into contaminated sites (Manciulea and 
Ramsey  2006) . Contrastingly,  Thlaspi caerulescens , a metal hyperaccumulating 
species with unusually high Zn requirements (Tolrà et al.  1996) , exhibits zincophilic 
root foraging patterns, i.e., preferential growth into hot spots with high Zn concen-
trations (Haines  2002) . The efficiencies of both avoidance and foraging responses 
seem to depend on the root system size of the species. While a negative correlation 
between species root biomass and precision of placement has been observed in 
foraging studies on nutrient-rich patches (Wijesinghe et al.  2001) , larger root systems 
seem to be more effective at avoiding toxic spots than small ones (Manciuela 
and Ramsey 2006). A well-developed tap root system can also be very useful for 
avoiding the relatively uniform topsoil contamination produced by (for example) 
smelting activities or after years of applying copper sulfate to vines or hopyards. 

 In contrast, subsoil acidity is a typical scenario where the extension of roots into 
the deep soil is hampered by the presence of a layer of soil with high metal 
availability extending from several decimeters below the soil surface. Crop plants 
used in tropical and subtropical agriculture and forest stands affected by natural 
acidification or that due to acid rain are the plants of most concern in this context 
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(Jentschke et al.  2001 ; Kochian et al.  2004) . Aluminum is considered to be the main 
toxic factor in acid soils with pH values of less than 4.5. More than 50% of the 
world’s arable land is acidic, so Al toxicity should be considered one of the most 
important ion toxicity stressors in crop production worldwide. Intensive research 
into the mechanisms of Al toxicity and Al tolerance mechanisms has been carried 
out over the last few decades in order to provide the scientific background needed 
to speed up breeding programs in order to improve crop productivity in acid soils. 
Aside from this evident practical reason, the responses of plants to Al toxicity are 
also being used as highly informative model systems. The Al-induced alterations 
allow fundamental aspects of root stress perception and transduction to be investi-
gated, as well as basic mechanisms of adaptative growth in roots, which are 
characterized by an enormous capacity for plastic responses to changing physical 
and chemical conditions in the soil.  

  2 Aluminum-Induced Inhibition of Root Growth  

 Root growth is a primary target for Al toxicity in plants. Maintenance of root elongation 
rate under Al stress is frequently used for Al tolerance screening purposes in hydroponics 
(Llugany et al.  1994 ; Ma et al.  2005 ; Narasihmamoorthy et al. 2007). Monitoring root 
elongation rates of maize varieties during the first minutes and hours upon exposure 
(Llugany et al.  1995)  reveals various response patterns ( Fig.    1  ): (1) The  threshold of 
toxicity  model, where a threshold time of 15–45 min and a threshold concentration 
(usually of a few  m M) is required before Al-induced inhibition of elongation is 
detectable; (2) the  hormesis  response, where a transient Al-induced stimulation of 
root elongation followed by inhibition is observed, and; (3) the  threshold of tolerance  
response, where a fast inhibition of elongation is followed by a recovery in the growth 
rate (Barceló and Poschenrieder  2002) .        

 Fig. 1a–c    Models for relative root elongation response (%) as a function of Al concentration or 
exposure time.  a  Toxicity threshold response: the greatest Al concentration or exposure time that 
does not have an observable effect on root elongation is an indicator of plant Al resistance.  b  Hormesis: 
growth stimulation by low Al concentrations or short exposure times due to the alleviation of 
another stress factor (e.g., proton toxicity).  c  Threshold of tolerance response: after the perception 
of Al-induced stress and the inhibition of elongation, defense mechanisms are activated (e.g., pattern 2 
of organic acid efflux)  
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 In the first response pattern, the threshold concentration and the time needed for 
growth inhibition are indicators of the Al tolerance of the plant. The need for a lag 
time of usually more than 15 min before elongation inhibition is detectable in sensitive 
plants (Llugany et al.  1995 ; Blamey et al.  2004)  does not imply that key processes 
governing root growth cannot be affected even more rapidly (see Sects. 4 and 5). 

 The second pattern, a transient Al-induced stimulation of root elongation, is a 
clear hormetic effect, i.e., a positive response to a potentially toxic factor due to the 
alleviation of another stress suffered by the target organism. In experimental systems 
where plants are exposed to Al in nutrient solutions with low pH in order to 
maintain high Al 3+  activity, proton toxicity is most probably the additional stress 
factor alleviated by Al (Llugany et al.  1994) . The ameliorating effect of the trivalent 
Al 3+  on the toxicity of monovalent H +  can be attributed to competition among these 
cations in binding to the cell wall and plasma membrane surface, leading to 
site-specific amelioration at biological ligand targets and to alterations of the 
plasma membrane surface potential. Effects on the plasma membrane surface 
potential, in turn, influence the bioavailability of the intoxicating and ameliorating 
cations (Kinraide  2006 ; Kinraide and Yermiyahu  2007) . 

 A threshold for tolerance response is observed in species with an inducible Al 
resistance mechanism, e.g., Al-induced secretion of organic acid anions following 
pattern II behavior (Ma  2000)  (see Sect. 5). This response implies that the initial 
inhibition of root elongation is reversible upon the activation of the resistance 
mechanisms leading to the removal of the toxic Al species from the early targets 
that were responsible for the inhibition of elongation. In fact, even in sensitive 
plants, the initial inhibition of root elongation after short-term exposure to Al can 
be completely reversed by transferring the plants to Al-free medium (Kataoka and 
Nakanishi  2001) . The duration of Al treatment after which full recovery of growth 
can be achieved in Al-sensitive plants varies between 15 and 120 min according to 
species and experimental conditions (Kataoka and Nakanishi  2001 ; Amenós  2007 ; 
Kikui et al.  2007) . The observation that recovery is accelerated in solutions contain-
ing organic acids or high Ca concentrations (Alva et al.  1986)  supports the view that 
lowering the Al concentration in the tips is crucial to the resumption of root elongation 
(Rangel et al.  2007) . Recent investigations, however, suggest that malate secretion 
can stimulate regrowth in roots of sensitive wheat, even without decreasing root-tip 
Al concentrations (Kikui et al.  2007) .  

  3 Mechanisms of Al-Induced Inhibition of Root Growth  

 Root growth is a complex process which implies not only the maintenance of cell 
viability, the production of new cells, and their enlargement, but also cell pattern-
ing, morphogenetic processes and coordination by hormonal signals (Barlow  2002 ; 
Osmont et al.  2007) . As the Al-induced inhibition of root elongation is observable 
within minutes upon exposure, mechanistic research has mainly focused on the 
processes of cell enlargement. Cell division makes a negligible contribution to the 
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root length in the short term, and Al-induced morphogenetic alterations are visible 
after prolonged exposure. Therefore, these processes have warranted less attention. 
However, recent investigations have demonstrated the relevance of alterations in 
cell patterning, morphogenetic processes and hormonal regulation in the primary 
responses of roots to Al toxicity (Doncheva et al.  2005) . 

  3.1 Al-Induced Inhibition of Cell Expansion 

 Expansion growth of root cells occurs in the elongation zone, located in the subapical 
root zone a few millimeters from the apex. Turgor-driven expansion requires loosened 
and extensible primary cell walls, intact plasma membrane, and an adequate water 
supply to maintain the water potential gradient (Barceló et al.  1996) . Cell integrity 
is a prerequisite for cell expansion. This begs the question of whether Al-induced 
cell death can account for fast inhibition of root elongation. 

 Aluminum is not a Fenton-type metal, but it clearly exhibits prooxidant activity 
(Exley  2004) . Aluminum-induced oxidative stress in roots has been found in 
many investigations (Cakmak and Horst  1991) . Aluminum-induced cell death 
has been observed after hours of exposure to extremely high Al concentrations 
(Pan et al.  2001 ; Šimonovičová et al.  2004) . Such lethal distress treatments, 
however, provide scarce information on the dynamics of Al-induced inhibition 
of root growth. Vital staining of root tips of plants suffering from Al-induced 
inhibition of root elongation under less drastic conditions has revealed that massive 
cell death due to loss of cell compartmentation is not a primary cause of the 
inhibition of root elongation (Corrales et al.  2008) . As an example,  Fig.    2   shows 
root tips of a maize ( Fig.    2a  ) and a cucumber plant ( Fig.    2b  ) suffering from a 
30–40% inhibition of relative root elongation rate in comparison to the untreated 
control ( Fig.    2c  ). Note that only a few cells stain with propidium iodide, i.e., 
have damaged plasma membranes ( Fig.    2  ). Time-dependent studies also demon-
strated that cell death and protein oxidation in Al-exposed maize plants occurred 
later than inhibition of root elongation (Boscolo et al.  2003) . Fast, locally 
induced formation of reactive oxygen species (ROS) can, however, play a crucial 
role in both stress signaling and cell wall alterations, leading to cell wall stiffening 
and inhibition of cell expansion.        

  3.1.1 Cell Wall Expansion and Al Binding 

 Large amounts of Al accumulate in the cell walls and intercellular spaces of root 
tips. This apoplastic Al comprises between 85 and 99.9% of the total Al fraction in 
roots (Ma  2007) . Besides Al precipitation on the root surface and in intercellular 
spaces, an exchangeable form of Al bound to the negative charges of the pectin 
substances can be identified (Blamey et al.  1993) , or it can be found in a more 
tightly bound form (Eticha et al.  2005) . 
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 Al-induced stiffening of cell walls has been observed in different experimental 
systems (Gunsé et al.  1997 ; Tabuchi and Matsumoto  2001 ; Ma et al.  2004) . In vitro 
studies with maize coleoptiles floating on Al solutions (Llugany et al.  1992 ; Barceló 
et al.  1996)  or dead root tips treated with Al (Ma et al.  2004)  did not reveal Al-induced 
cell wall stiffening. This supports the view that Al-induced stiffening of cell walls is a 
biochemical process and not merely physical crosslinking of pectin substances by 
trivalent Al 3+ . Cell wall expansion requires both the loosening of the wall matrix and 
the synthesis of new wall components. The binding of Al to the newly formed material, 
which is required for the elongation process, may lead to a deterioration in the mechan-
ical properties of the walls, hampering cell elongation (Ma et al.  2004 ; Ma  2007) . 

 Other polar wall constituents, such as the hydroxyproline-rich glycoprotein 
(HRGP), have received scant attention in Al toxicity research. Higher extensin 
concentrations were observed in Al-sensitive than in Al-resistant wheat (Kenzhebaeva 
et al.  2001) . The binding of Al to extensin was observed both in vitro and in vivo 
(Kenjebaeva et al.  2001) . The crosslinking of HRGPs by reactive oxygen species in 
combination with callose deposition induced by the ethylene precursor ACC has 
been shown to be an important mechanism for inhibiting cell expansion (de Cnodder 
et al.  2005) . Aluminum-induced enhancement of ethylene evolution clearly precedes 
the inhibition of root growth in bean seedlings (Massot et al.  2002) . Taken together, 
these results suggest that crosslinking of HRGPs—either directly by Al or indirectly 

 Fig. 2a–c    Root tips double stained with fluorescein diacetate (green fluorescence of intact living 
cells) and propidium iodide (orange fluorescence of cells with damaged plasma membranes). 
 a  Root tip of maize plant exposed to 50  m M Al and suffering a relative root elongation inhibition 
of 40%. Only a few cells in the meristem and the transition zone are damaged.  b  Root of a cucumber 
plant exposed to 7  m M Al suffering a 30% inhibition of relative root elongation. Only a few cells 
in the elongation zone are damaged.  c  Control cucumber plant without damage. (Unpublished data 
and modified from Corrales et al.  2008)   
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through Al-induced enhancement of ethylene-derived, apoplastic ROS—plays an 
important role in the inhibition of root cell elongation (Laohavisit and Davies 
 2007) . Therefore, reactive oxygen species participate in the Al-induced inhibition 
of elongation by inducing crosslinking reactions in proteins or cell wall phenolics 
rather than through a general breakdown of membrane integrity due to lipid 
peroxidation reactions. The inner cortical cell layers (Pritchard  1994)  drive root 
elongation. However, cell wall rigidification of the epidermal cell layers could 
hamper this expansion process (Jones et al.  2006) . Cracks in the epidermal layer 
(frequently observed after a few hours of Al exposure) are the visible consequence. 
Furthermore, Al-induced ROS can disturb Ca homeostasis through ROS-activated 
Ca channels (Kawano et al.  2004)   

  3.1.2 Plasma Membrane, Cytoplasm, and Tonoplast 

 Although cell walls make the initial contact with high Al concentrations in the soil 
solution, and most root-tip Al is localized in the apoplast, the primary toxic effects 
of Al on cell expansion are not restricted to impaired cell wall extensibility. 
Aluminum-induced impairment of the hydraulic conductivity (Gunsé et al.  1997)  of 
the plasma membranes (PMs) and the tonoplasts of root cells have severe conse-
quences for cell expansion. The importance of this toxic effect of Al on hydraulic 
conductance is reflected in the prominent changes in aquaporin gene transcription 
induced by Al within both plant roots and animal cells (Milla et al.  2002 ; Mathieu 
et al.  2006 ; Kumari et al.  2008) . The PM responds very quickly to Al toxicity. 
Depolarization of PM has been observed immediately upon exposure to Al in root 
cells and Characeae (Sivaguru et al.  1999 ; Kisnierienë and Sakalauskas  2005) . 
The cell membrane provides potential binding sites for Al, such as carboxyl and 
phosphate groups. The affinity of Al for the surfaces of phosphatidylcholine (PC) 
vesicles is 500 times higher than that of Ca (Akeson et al.  1989) . The binding of Al 
to the plasma membrane can account for changes in key properties of this membrane, 
such as fluidity and lateral lipid phase separation. Decreased hydraulic conductivity 
of PM (Gunsé et al.  1997) , changes in membrane potential and ion channel activity, 
alteration of Ca homeostasis (Rengel and Zhang  2003) , and inhibition of H + –ATPase 
(Ahn et al.  2001)  are rapid consequences. All of these effects are characteristics of 
Al toxicity syndrome (Ma  2007 ; Poschenrieder et al.  2008) . The exact sequence 
of events signaling the presence of Al at the plasma membrane, leading to adaptive 
root growth responses or inducible resistance mechanisms or both, is still not clearly 
established (see Sect. 4). 

 Classically, the plasma membrane was considered impermeable to trivalent cations. 
Aluminum was thought to penetrate into the symplast only after long-term exposure. 
As the inhibition of root elongation is a fast process, most research efforts have 
focused on the apoplast and membrane surface binding. In fact, studies with Al 3+  or 
Ga 3+  (used as an Al analog) have shown that the influx rate of these trivalent cations 
is slow. Rates on the order of 20–250 pmol m −2  s −1  have been reported (Reid et al. 
 1996 ; Ritchie and Raghupati 2008). However, even these slow rates allow small 
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amounts of potentially toxic Al to enter the symplasm within minutes. This has now 
been clearly demonstrated by several investigations (Lazof et al.  1996 ; Vázquez 
et al.  1999 ; Taylor et al.  2000 ; Silva et al.  2000) . The mechanisms and the chemical 
species that enable Al to pass through the plasma membrane are still unknown. 
Based on results with Al-tolerant accumulator species like  Fagopyrum  and 
 Melastoma  (Ma and Hiradate  2000 ; Watanabe et al.  2001) , it was postulated that 
ionic Al 3+  is taken up by a passive mechanism facilitated by an as-yet unidentified 
transporter and driven by a favorable electrochemical gradient. The gradient is 
maintained due to the immediate chelation of the incoming Al 3+  by citrate or 
oxalate (Ma  2007) . 

 Membrane transport of Al via endocytosis appears to be another path for Al 
intake. Internalization of aluminum into endosomal/vacuolar vesicles in cells of the 
distal transition zone of  Arabidopsis  roots has been visualized by fluorescence 
microscopy (Illéš et al.  2006) . The presence of Al in the distal transition zone of 
maize and  Arabidopsis  was detected approximately 3 h after Al was supplied to the 
small root tip vacuoles (Vázquez et al.  1999 ; Illéš et al.  2006) . This implies Al 
transport across the tonoplast. In  Arabidopsis , chelated Al can be transported 
through the tonoplast by a half-type ABC transporter (Larsen et al.  2007) . 

 Due to the low uptake rates of Al across the plasma membrane and the compart-
mentation of Al into the vacuole, combined with the close-to-neutral pH of sym-
plastic solutions, it can be expected that the free activity of Al 3+  in the cytoplasm is 
extremely low. However, even subnanomolar concentrations of Al can efficiently 
compete with Mg for binding to ATP (Ma  2007) . In fact, the toxicity of symplastic 
Al would largely depend on the relative affinity for Al of toxicity targets and of 
protective ligands that are able to detoxify Al. Symplastic toxicity targets include 
(among others) ATP, GTP, nucleic acids, glutamate, endosomal vesicle transport 
and the cytoskeleton (Sect. 5). Organic acids, especially citrate and oxalate, are 
well-identified organic ligands that can prevent Al binding to these targets.   

  3.2 Effects of Aluminum on Cell Division 

 Pioneering work by Clarkson  (1965)  demonstrated that Al toxicity strongly affects 
root developmental features, and he pointed to the inhibition of cell division as a 
primary cause of Al-induced inhibition of root growth. The binding of Al to nucleic 
acid in root tips was demonstrated more than 40 years ago (Matsumoto et al.  1976 ; 
Morimura et al.  1978) . More recent investigations revealed severe toxic effects of 
Al on root tip cell nuclei and cell division. Chromosome bridges, breaks and 
nuclear dissolution have been described in maize or onion roots (de Campos and 
Viccini  2003) . Most of the early investigations were performed after several days 
of exposure to Al. As Al was thought to enter the symplasm only after long-term 
exposure, while Al-induced inhibition of root elongation can be observed after less 
than 1 h under Al stress, further investigations focused mainly on cell walls and root 
cell elongation (Horst  1995) . 
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 In recent years there has been a renewed interest in Al-induced alteration of the 
cell cycle for several reasons. On the one hand it is now well established that small 
amounts (at least) of Al can penetrate into the symplast quite rapidly (see Sect. 
3.1.2). On the other hand, alterations of the cell cycle could be induced by Al in an 
indirect way, through a signaling cascade, without the need for Al to reach the 
nuclei of meristematic cells directly. Moreover, the strong influence of Al is not 
restricted to inhibition of the main root length. The fast developmental changes in 
response to Al seem to imply a complex coordination of cell patterning events that 
include inhibition of root cell elongation, inhibition of root cell division, and even 
stimulation of root cell division (Doncheva et al.  2005) . 

 Lumogallion, a highly specific fluorescence stain for Al, revealed the presence 
of Al in root tip nuclei after only 30 min of exposure to low Al concentrations 
(Silva et al.  2000) . Aluminum-induced inhibition of the cell cycle in root tips has 
been observed to occur even more quickly than this.  Figure    3   shows the effects 
of Al in different zones ( Fig.    3a  ) of root tips of maize plants. After only 5 min 
of exposure to Al followed by a 2-h labeling period, strong inhibition of the 
incorporation of fluorescent-labeled desoxybromouridine into the cells of the apical 
meristem is observable ( Fig.    3b  ). Confocal microscopy of the apical meristems 
of control and Al-treated plants revealed a high number of S-phase cells in 
controls ( Fig.    3d  ) and a virtual halting of cell cycle activity in the Al-treated 
plant ( Fig.    3e  ).        

 This rapid negative effect on cell cycling in the apical meristem of maize 
root is not due to a general caryotoxic effect of Al in the root tips (Doncheva 
et al.  2005) . On the contrary, the Al treatment quickly stimulated cell cycle 
activity in the subapical part of the root, in the transition zone ( Fig.    3b  ). After 
30 min an incipient protuberance with many dividing cells was observable. 
After longer Al exposure (3 h) the initial of a new lateral at a short distance 
from the apex of the main root was distinguished ( Fig.    3c  ). This sequence of 
events shows that the plant is able to detect excess Al and react to it by adaptive 
root growth within minutes. 

 Stimulation of cell division by low Al concentrations has mainly been described 
in cell culture experiments. Cell cycle activity and cyclin-dependent kinase type A 
activity were stimulated in the Al-tolerant cell lines of  Coffea arabica , while 
inhibition was observed in an Al-sensitive line (Valadez-Gonzalez et al.  2007) . 
Aluminum-induced enhancement of cell division has also been described in human 
or animal osteoblasts and blood cells (Quarles et al.  1991 ; Yao et al.  1994)  and in 
yeast (Zheng et al.  2007) . The response is concentration-dependent and exposure to 
higher Al levels causes inhibition of mitosis and cell death. The Al-induced cell 
activation has been related to Al binding to an extracellular cation-sensing 
G-protein-coupled receptor (CaR) that is responsible for the perception of extracel-
lular Ca 2+  (Pi et al.  2005) . The expression of a plasma membrane protein for extra-
cellular Ca 2+  sensing (CAS) has also been described in stems, leaves and stomata 
of  Arabidopsis  (Han et al.  2003) . No ortholog exists in animal species. However, 
CAS apparently uses the same mechanism to increase intracellular Ca 2+  by the 
phosphoinositide/Ca 2+  pathway (Hofer  2005) .  
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 Fig. 3a    Model of a maize root tip showing different developmental zones.  b  Labeling index (% of 
cells with S-phase nuclei) in the apical meristem and the transition zone cells of root tips of maize 
plants exposed to Al for different times followed by a 2 h bromodeoxyuridine (BrDU) labeling 
period.  c  Confocal image showing the formation of a lateral root initial close to the transition zone 
in a maize root exposed to Al for 3 h; S-phase nuclei exhibit green fluorescence due to BrDU labe-
ling.  d  Apical meristem of a control root tip.  e  Apical meristem of a root tip exposed to Al for 30 
min; no S-phase nuclei are detectable. (Unpublished data and modified after Doncheva et al.  2005)   
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  3.3  Root Transition Zone: Site for Al Perception 
and Al Signal Transduction 

 Investigations on the spatial sensitivity to Al in different root tip zones revealed the 
transition zone (1–2 mm from the tips of maize roots) to be the main target of Al 
toxicity (Sivaguru and Horst  1998 ; Rangel et al.  2007) . The transition zone is located 
between the meristem and the elongation zone ( Fig.    3a  ). Distinctive features of the 
cells in the transition zone should be responsible for the perception of Al. Transition 
zone cells have a specific architecture that has been related to their exceptional 
capacity for sensing environmental factors (Baluška et al.  2001b,   2004) . 

 Studies into the gravitropic responses of maize roots revealed a high sensitivity to 
extracellular Ca in the transition zone (Ishikawa and Evans  1992) . Different mem-
brane proteins are responsible for Ca binding and Ca transport in plant cells: the 
abovementioned CAS (Han et al.  2003) ; Mca1, a plasma membrane protein from 
 Arabidopsis  that enhances Ca influx into the cytoplasm upon distortion of the plasma 
membrane (Nakagawa et al.  2007) ; ROS-activated Ca channels (Mori and Schroeder 
 2004) ; other voltage dependent and independent Ca channels, and Ca efflux trans-
porters (White and Broadley  2003) . However, it is still unclear whether the high 
environmental sensitivity of the transition zone is related to a site-specific distribution 
of Ca receptors and/or Ca channels. The interference of Al with Ca homeostasis is 
well established (Rengel and Zhang  2003) . Aluminum causes an increase in cytosolic 
Ca. This can be due to enhanced entry from the apoplast or enhanced release from 
intracellular storage sites, or both (Ma  2007) . Aluminum-induced disturbance of Ca 
homeostasis can also be brought about by the interference of Al with the phosphoi-
nositide cascade (Jones and Kochian  1995 ; Ramos-Diaz et al. 2007). Aluminum 
inhibits phospholipase C, which in turn affects the synthesis of phosphatidic acid. 

 The cytoskeleton plays a crucial role in driving the impressive changes in cell 
 architecture that occur during the transition from mitotic to elongating cells. The fast 
impact of Al on the actin cytoskeleton has been documented in detail (Grabski and 
Schindler  1995 ; Blancaflor et al.  1998 ; Ahad and Nick  2007) . Using high Al concentra-
tions, Sivaguru et al.  (1999)  reported the most conspicuous effects of Al on the cytoskel-
eton in the epidermal and outer cortex cells of the distal transition zone in maize root tips. 
Under less severe toxicity, we have scored the most prominent Al-induced alterations on 
F-actin in the central, stelar part of the transition zone and, to a lesser extent, in the central 
part of the meristem zone (Amenós et al., unpublished). Actin filaments were also an 
early target of Al in the meristem cells of  Triticum turgidum  roots (Frantzios et al.  2005) .   

  4  Al Toxicity Mechanisms: Common Features in Plant 
and Animal Cells?  

 The characterization of the structural and functional differences between transition 
zone cells and cells in less sensitive root zones is of fundamental interest when 
assessing primary mechanisms of Al toxicity in roots. Another approach arises 
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from the question: what are the common features shared by the different highly 
Al-sensitive cell types? Besides root transition zone cells, examples of highly 
Al-sensitive cell types include plant cells that experience tip growth, like root hairs 
(Jones et al.  1995 ; Care  1995) , pollen tubes (Konishi and Miyamoto  1983 ; Zhang 
et al.  1999)  and filamentous algae (Alessa and Oliveira  2001) , as well as astrocytes 
of the animal and human nervous systems (Suarez-Fernandez et al.  1999) . 

  4.1  Actin–Myosin Network and Vesicle Trafficking: Common 
Targets for Al Toxicity in Plant and Brain Cells 

 Effects of Al on polar growing cells can be extremely fast. In  Vaucheria longicau-
lis , a filamentous alga, cytoplasmic streaming was inhibited by more than 50% after 
30 s of Al exposure, and the movement of cell organelles was completely inhibited 
after only 3 min (Alessa and Oliveira  2001) . The movement of cell organelles 
should not be considered a passive flow movement but rather an active organelle 
translocation due to the actomyosin transport network (Peremyslov et al.  2008) . 
Rigor has also been observed in the actin filament network as a fast Al-induced 
alteration in suspension-grown soybean cells (Grabski and Schindler  1995) . In this 
system, the fast Al effects were not related to alterations in ion fluxes, and it was 
hypothesized that the formation of nonhydrolyzable Al–ATP or Al–ADP com-
plexes and its binding to actin/myosin could be responsible for the stiffness of the 
network. Knocking out myosin genes XI-2 and XI-K severely affects Golgi-derived 
vesicle trafficking and root hair development (Peremyslov et al.  2008) . Class VIII 
myosins play the role of endocytic motors in plants, and endocytosis is a fundamental 
process in cell tip growth (Šamaj et al.  2004,   2005) . 

 Astrocytes in the brain are specific targets for Al toxicity (Levesque et al. 
 2000 ; Aremu and Meshitsuka  2005) . Astrocytes play a crucial role in the function-
ing of neurons (Aremu and Meshitsuka  2006) . Among others, clathrin-dependent 
endocytosis of GLT-1, a glutamate transporter that is predominantly expressed in 
astrocytes, seems to be important for the maintenance of local glutamate concen-
trations in synapsis. Impaired astroglial function leads to inhibition of glutamate 
clearance and excitotoxicity. Astroglia can respond to external stimuli by generating 
Ca waves that release the neurotransmitter glutamate, enhancing the activity in 
the synapses of nearby neurons. The signal can also be spread across distances 
through gap junctions. By altering the organization of the actin network, aluminum 
disturbs connexin trafficking and therefore the formation of gap junctions of two 
hemichannels in adjacent cells (Theiss and Meller  2002) . In root tips of plants, 
Al also inhibits cell-to-cell transport via plasmodesmatal connections (Sivaguru 
et al.  2000) . Plasmodesmata are located in the actomyosin-enriched domain of 
the cell periphery (Baluška et al.  2000) . As Ca waves regulate fast changes in 
plasmodesmatal permeability (Baluška et al.  2001a) , an Al-induced rise in intra-
cellular Ca can be expected to account for plasmodesmata closure and inhibition 
of cell-to-cell trafficking. 
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 Glutamate also plays a role in the response to Al in plant cells. Effects of 
glutamate on membrane depolarization, depolymerization of microtubules and 
root growth inhibition are similar to those of Al. However, the effects of glutamate 
occurred more rapidly than those of Al, and Al did not further enhance glutamate 
action. These observations suggest that glutamate or a glutamate-like substance is 
involved in the early signaling response to Al toxicity in plants (Sivaguru et al. 
 2003) . The glutamate receptor GLR3.3 is required for Ca 2+  transport into 
 Arabidopsis  cells in response to glutamate by a mechanism that can be considered 
homologous to the fundamental component of neuronal signaling (Qui et al.  2006) . 
This glutamate-receptor-mediated Ca 2+  influx also seems to be responsible for the 
glutamate-specific alterations in root branching (Walch-Liu et al.  2006) . These root 
architectural changes are similar to those observed in Al-stressed plants. 

 Altogether, these observations reveal striking similarities in the responses to Al 
between Al-sensitive plant and animal cells. Tip-growing plant cells, such as root 
hairs, pollen tubes or filamentous algae, transition zone cells in plant root tips, 
and astrocytes are very different in terms of origin, morphology and function. 
However, a common characteristic of all of them is a high activity of vesicle 
trafficking. In both the quickly expanding tip-growing cells (Ishida et al.  2008)  
and the transition zone cells, intense vesicle trafficking is required to provide the 
new components for the expanding cell walls, among other reasons (Illéš et al. 
 2006) . Vesicle trafficking in astrocytes is essential for the astrocyte-to-neuron 
communication in the brain (Potokar et al.  2007) . Actomyosin network integrity 
is crucial to the correct functioning of this endocytic and exocytic transport. The fast 
impact of Al on this network can be considered the common toxicity target in both 
plant and animal cells. Moreover, in both root transition zone cells (Illéš et al.  2006)  
and astrocytes (Levesque et al.  2000) , endocytosis appears to be an important 
mechanism for the entry of Al into cells. Therefore, the high Al sensitivities of 
cells with high endocytic activity may be due to the fact that the actomyosin 
network is a primary target for Al toxicity, as well as the preferential accumulation 
of Al in these cells.   

  5 Coordination of Root Developmental Features Under Al Stress  

 From this brief glance into the mechanisms of Al toxicity mechanisms, it has 
become clear that the response of plant roots to this important stress factor is not 
simply a disruption of cell elongation and a cessation of root growth due to the loss 
of cell viability. The perception of Al by transition zone cells induces a signaling 
cascade that can lead to changes in root architecture. The inhibition of main root 
extension and the induction of lateral roots are key processes in this adaptive 
growth response. 

 Inhibition of cell cycle activity in the root apical meristem and activation of cell 
division for lateral initiation are coordinated events in determinate root growth 
(Shishikova et al.  2008) . Determinate root growth can be constitutive or inducible. 
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Constitutive determinate root growth is characteristic of certain species like Cactaceae. 
In these species, the apical meristem function is lost with age, and root hairs 
and laterals emerge very close to the tip. Exhaustion of the root apical meristem is 
temporally related to the onset of lateral development. This loss of meristem function 
has been described as being a physiological root decapitation (Dubrovsky  1997) . 
Phosphorus deficiency (Sánchez-Calderon et al. 2005) and glutamate (Walch-Liu 
et al.  2006)  have been found to induce determinate root growth. The exhaustion of 
the apical meristem induced by these factors requires several days and is reversible 
at the beginning. A stimulation of lateral root development close to the tip has also 
been observed in roots suffering from Cu 2+  or Al 3+  toxicity after a few days of 
exposure to the toxic factor (Llugany et al.  2003 ; Doncheva et al.  2005) . However, 
the inhibition of the cell cycle in the apical meristem and stimulation of cell 
division in the subapical region can be observed after only a few minutes of 
exposure to Al. Similar effects can be induced when NPA (naphthylphthalamic 
acid), a auxin transport inhibitor, is locally applied to the transition zone of maize 
root tips (Doncheva et al.  2005) . 

 Lateral roots originate from pericycle cells at a variable distance from the 
main root apex. Usually laterals emerge from the root zone, where a clearly 
differentiated vascular cylinder can be distinguished. However, early lateral root 
primordia initiation can arise close to the root tip (Dubrovsky et al.  2000) . Cell 
division activity in the pericycle cells is restricted by the E2F–RB pathway. 
Auxin triggers cell division in these stem cells. In addition, an auxin-derived 
signal seems to be required for the proliferation of a new lateral (Vanneste et al. 
 2007) . The role of polar auxin transport and its relation to differential gene 
expression in the patterning of morphogenetic events has mainly been investigated 
in plant shoots (Bowman and Floyd  2008) . However, there is increasing evidence 
for a similar role of polar auxin transport in the development of the roots 
(Vanneste et al.  2007) . In  Arabidopsis , the patterning of root stem cells is 
mediated by PLETHORA genes (PLT) (Aida et al.  2004) . The expression of PLT 
can be induced by maximum auxin concentrations. 

 Based on this, the plastic response of roots to environmental factors could be 
regulated by direct or indirect interactions between the environmental factor and the 
mechanism of polar auxin transport, leading to changes in the local auxin gradients 
and therefore to changes in developmental patterns; e.g., the induction of lateral 
root formation. It is now well established that polar auxin transport is mediated by 
a polar distribution of the auxin efflux transporter protein (PIN) (Wisniewska et al. 
 2006) . Endocytotic cycling is considered a highly regulated mechanism for polar 
PIN localization (Benjamin and Scheres  2008) . 

 Within this scenario, the mechanism responsible for the strong influence of Al 
on root architecture could be directly related to the toxic action of Al on the 
actomyosin network that governs vesicle trafficking required for polar auxin 
transport. The potential key molecule for this toxic action of Al could be small 
GTPases that are involved in vesicle trafficking and PIN localization (Molendijk 
et al.  2004) . Aluminum fluoride (AlF 4– ) is a well-known activator of trimeric G pro-
teins, while it inhibits small GTPases.  
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  6 Aluminum Tolerance  

 Plants adapted to grow in soils with high Al 3+  activity must have efficient mecha-
nisms for either Al exclusion or tolerance to high Al tissue concentrations (Barceló 
and Poschenrieder  2002 ; Ma  2007) .  Figure    4   summarizes some of these mecha-
nisms. Internal detoxification of Al can be achieved by binding Al to strong chela-
tors like oxalate, citrate, or phenolic substances and Al compartmentation in 
vacuoles (Vázquez et al.  1999) . A constitutively expressed gene ( AlS1 ) coding for 
a half-type ABC transporter protein has been identified in  Arabidopsis . Located at 
the tonoplast, this transporter could be important for the compartmentation of 
chelated Al into the vacuoles (Larsen et al.  2007) . It has been suggested that a 
phloem-located PM transporter protein that is inducible by Al removes the poten-
tially toxic Al from sensitive parts of the root (Larsen et al.  2005) . In rice, a gene 
coding for a possible Al efflux protein (Als1) located in the PM of root tip cells has 
recently been identified (Ma  2007) . Rice mutants defective in this PM protein have 
higher cytoplasmic Al concentrations than the wild type. Even plants that can with-
stand the hyperaccumulation of Al in their shoots, such as members of the 
Melastomataceae or tea plants, must prevent the access of phytotoxic Al species to 
the sensitive cells in the transition zone. Different mechanisms have been proposed 
to operate in Al exclusion: plant-induced pH changes in the rhizosphere, production 
of mucilage and border cells, fewer binding sites in root tip cell walls, lower PM 
permeability, or enhanced Al efflux. The best-characterized mechanism, however, 
is the root-tip-located exudation of low molecular weight organic substances with 
a high affinity for Al (Kidd et al.  2001 ; Ryan et al.  2001 ; Kochian et al.  2005) . 
Organic acid exudation seems to be the most widespread mechanism. Two exuda-
tion patterns in response to Al can be distinguished: pattern 1 exudation which is 
activated by Al almost immediately, and pattern 2, where a lag time of several hours 
is required before the Al-stimulated exudation of organic acids is detectable (Ma et al. 
 2001) . The presence of an efficient, Al-activable, organic acid efflux system in root 
tips is responsible for the Al resistance ( Fig.    4  ). In contrast, organic acid metabolism 
seems of minor importance (Ma  2007) . Aluminum-activated malate efflux in wheat 
( TaALMT1 ) (Saski et al.  2006) , in  Arabidopsis thaliana  ( AtALMT1 ) (Hoekenga 
et al.  2006) , and in  Secale cereale  ( ScALMT1 ) (Fontecha et al.  2007 ; Collins et al. 
 2008)  is related to Al resistance. Reversible phosphorylation is important in the 
transcriptional and posttranscriptional regulation of  ALMT1  (Kobayashi et al. 
 2007) . In maize,  ZmALMT1  is not, however, involved in the specific Al-activated 
efflux of citrate (Piñeros et al.  2008) . Aluminum-activated citrate efflux in barley 
and in sorghum is mediated by a protein of the MATE (Multidrug And Toxic 
compound Extrusion) efflux pump family (Furukawa et al.  2007 ; Magalhaes et al. 
 2007 ; Wang et al.  2007) .        

 How Al activates these organic acid efflux systems has not yet been clearly 
established. Delhaize et al.  (2007)  recently proposed two hypothetical models for 
Al 3+ -activated organic acid efflux by ALMT and MATE family proteins: model 1, 
where a direct interaction of Al with the membrane transporter occurs (e.g., TaALMT1 
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in wheat), and model 2, which implies an Al-activated signal transduction cascade. 
This second model corresponds to Al-activated malate efflux in  Arabidopsis  and 
 Brassica  and to Al-activated citrate efflux in sorghum. In this pattern 2 response, 
Al induces the expression of the proteins either by binding to specific PM receptors 
or by activating a nonspecific stress response. Interaction of Al with these new 
proteins would then promote the organic acid efflux (Delhaize et al.  2007) .  

  7 Conclusions and Outlook  

 During the last decades of intense research, substantial advances have been made 
in our understanding of the molecular mechanisms that are responsible for the 
resistance of plants to Al toxicity. The identification of Al resistance genes has 
provided new strategies for improving the breeding of crops adapted to acid soils 
with Al toxicity problems. 

 Fig. 4    Mechanisms for Al exclusion and compartmentation in root tips. Distribution of 
membrane transporter proteins involved in Al efflux, Al phloem transport and Al vacuolar transport 
are shown along with transporters for organic acid anions. Mucilage and border cells help to stop 
Al 3+  from reaching the sensitive root tip (modified after Ma  2007)   
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 Besides this evident practical progress, the plant response to Al toxicity is 
becoming a very illustrative model system for basic research—not only in the field 
of membrane transport systems, but also in the area of studies into the mechanisms 
governing root developmental features. The information summarized in this review 
highlights the endocytic process as a common target for Al toxicity in very different 
cellular systems: tip-growing plant cells like pollen tubes, root hairs and filamen-
tous algae, cells in the transition zones of plant roots, and astrocytes in the brain. 
Taken together, this information suggests the hypothesis that cells with high endo-
cytotic activity are especially vulnerable to Al. Future research should clarify if his 
high Al sensitivity is due to enhanced Al entry into these cells via an endocytic 
uptake mechanism. Investigations into the differences in the Al-activated signal 
transduction cascades that can lead to adaptive root growth in Al-sensitive geno-
types, while activation of anion efflux is induced in resistant genotypes of pattern 
2 species, will help to establish the primary mechanism of Al perception in 
plant roots.      
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