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Preface

Business process modeling plays an important role in the management of business
processes. As valuable design artifacts, business process models are subject to qual-
ity considerations. The absence of formal errors such as deadlocks is of paramount
importance for the subsequent implementation of the process. This book develops a
framework for the detection of formal errors in business process models and for the
prediction of error probability based on quality attributes of these models (metrics).
We focus on Event-driven Process Chains (EPCs), a widely used business process
modeling language due to its extensive tool support. The advantage of this focus is
firstly that the results of this book can be directly translated into process modeling
practice. Secondly, there is a large empirical basis of models. By utilizing this large
stock of EPC model collections, we aim to bring forth general insights into the con-
nection between process model metrics and error probability. In order to validate
such a connection, we first need to establish an understanding of which model at-
tributes are likely connected with error probability. Furthermore, we must formally
define an appropriate notion of correctness that answers the question of whether or
not a model has a formal error. As a prerequisite to answering this question, we must
define the operational semantics of the process modeling language formally.

Contributions

This book presents a precise description of EPCs, their control-flow semantics and a
suitable correctness criterion called EPC soundness. Furthermore, we identify theo-
retical arguments on why structural metrics should be connected with error probabil-
ity and provide an empirical validation of this connection. To be more concise, this
book provides the following technical contributions.

Formalization of the OR-join: The semantics of the OR-join have been debated for
more than a decade. Existing formalizations suffer from either a restriction of
the EPC syntax (see [78, 247, 238, 4, 101]) or from non-intuitive behavior (see
[325, 218, 11, 465]). In Chap. 2, we formalize the EPC semantics concept as
proposed elsewhere [267]. In comparison to other approaches this novel formal-
ization has the advantage of not being restricted to a subset of EPCs. Moreover,
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it provides intuitive semantics for blocks of matching OR-splits and joins since
they cannot deadlock. As a proof of concept, we implemented a plug-in for ProM
that calculates the reachability graph. In this way, this novel semantics definition
contributes to research on the specification of business process modeling lan-
guages.

Verification of process models with OR-joins and multiple start and end events:
Verification techniques for process models with OR-joins and multiple start and
end events suffer from one of two problems: Firstly, they build on an approxi-
mation of the actual behavior, e.g., by considering a relaxed notion of soundness
[101], by involving user decisions [109] or by approximating relaxed sound-
ness with invariants [440]. Therefore, they do not provide a precise answer to
the verification problem. Secondly, some verification approaches for semantics
definitions (see [88, 464]) suffer from the previously mentioned non-intuitive
behavior. While this is not the result of the verification problem itself, none of
these approaches has been tailored to cope with multiple start and end events.
In Chap. 3, we specify a dedicated soundness criterion for EPC business pro-
cess models with OR-joins and multiple start and end events. We also define
two verification approaches for EPC soundness: one as an explicit analysis of
the reachability graph and a second based on reduction rules to provide a bet-
ter verification performance. Both approaches were implemented as a proof of
concept. In this way, we contribute to the verification of process models with
OR-joins and multiple start and end events. Importantly, we also extend the set
of reduction rules for business process models.

Metrics for business process models: Metrics play an important role in the opera-
tionalization of various quality-related aspects in software engineering, network
analysis, and business process modeling. Several authors use metrics to cap-
ture different aspects of business process models that are presumably related to
quality (see [244, 320, 308, 348, 72, 37, 67, 74, 241, 356, 275, 276]). Unfortu-
nately, business process-specific concepts such as sequentiality, decision points,
concurrency, and repetition are hardly considered while simple count metrics
are often defined. There also appears to be little awareness of related research,
possibly owing to the fact that process model measurement is conducted in sep-
arate disciplines such as software process management, network analysis, Petri
nets theory, and conceptual modeling. In Chap. 4, we provide an extensive list
of metrics for business process models and provide links to previously isolated
research. Beyond that, we provide a detailed discussion of the rationale and lim-
itations of each metric to serve as a predictor for error probability. We formulate
a hypothesis for each metric based on whether it is positively or negatively cor-
related with error probability.

Validation of metrics as error predictors: Until now, there has been little empirical
evidence for the validity of business process model metrics as predictors for er-
ror probability. Some empirical work has been conducted; however, it has always
maintained a different focus: Lee and Yoon investigate the empirical relationship
between parameters of Petri nets and their state space [243, 244]. Canfora et al.
empirically evaluate the suitability of metrics to serve as predictors for main-
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tainability of the process model [67]. Cardoso analyzes the correlation between
the control flow complexity metric with the perceived complexity of process
models [73]. Of most significance to this book is an analysis of the SAP Refer-
ence Model in which Mendling et al. test a set of simple count metrics as error
predictors [275, 276]. In Chap. 5 we use logistic regression for the test, which
is similar to the analysis of the SAP Reference Model. We consider both the
broader set of metrics from Chap. 4, a precise notion of EPC soundness as de-
fined in Chap. 3, and a much broader sample of EPC models from practice. The
results show not only that certain metrics are indeed a good predictor for error
probability, but also that simple count metrics fail to capture important aspects
of a process model.

So little research on information systems and conceptual modeling combines design
science and behavioral science research paradigms that there is clearly a need for
more empirical insight [306]. Since the previously listed contributions cover both
design and behavioral aspects, we consider the main contribution of this book to be
the innovative and holistic combination of both these research paradigms in an effort
to deliver a deeper understanding of errors in business process modeling.

Structure

This book is organized in six chapters. Beginning with a general overview of busi-
ness process management, we continue with semantics of EPCs and the verification
of soundness before discussing metrics for business process models which are sub-
sequently validated for their capability to predict error probability.

Chapter 1 – Business Process Management: In this chapter, we discuss the back-
grounds of business process management and define important related terms. We
also sketch the importance of business process modeling and the role of errors
in the business process management lifecycle.

Chapter 2 – Event-driven Process Chains (EPC): This chapter gathers state-of-the-
art work on EPCs. Building on the foundations of prior work, we establish a
novel syntax definition and a novel semantics definition for EPCs. Our seman-
tics are based on transition relations that define both state changes and context
changes. We then present an algorithm to calculate the reachability graph of an
EPC based on the transition relations and a respective implementation as a plug-
in for ProM. The major motivations for these novel semantics are semantic gaps
and non-intuitive behavior of existing formalizations.

Chapter 3 – Verification of EPC Soundness: This chapter presents an EPC-specific
version of soundness as a criterion of correctness for EPCs. We propose two dif-
ferent approaches for the verification of soundness: one based on the reachability
graph and another based on reduction rules. While the first approach explicitly
considers all states and transitions that are represented by an EPC, there is a
problem with state explosion due to the maximum number of states growing
exponentially with the number of arcs. In order to avoid a performance prob-
lem we introduce a set of reduction rules. This set extends prior work with new
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reductions for start and end components, delta components, prism components
and homogeneous EPCs. This approach is tested by reducing the SAP Reference
Model and shows that the reduction is fast, provides a precise result for almost
all models, and finds three times as many errors as other approaches based on
relaxed soundness.

Chapter 4 – Metrics for Business Process Models: This chapter discusses the suit-
ability of business process model metrics predicting error probability from a
theoretical point of view. Revisiting related research in the area of network anal-
ysis, software measurement, and metrics for business process models, we find
that several aspects of process models have not yet been combined in an overall
measurement framework. Based on theoretical considerations we present a set
of 15 metrics related to size and 13 metrics that capture various aspects of the
structure and the state space of the process model. For each of the metrics we dis-
cuss their presumable connection with error probability and formulate respective
hypotheses.

Chapter 5 – Validation of Metrics as Error Predictors: In this chapter, we conduct
several statistical analyzes related to the connection of metrics and error prob-
ability. The results of the correlation analysis and the logistic regression model
strongly confirm the hypothetical impact direction of the metrics. We then de-
rive a logistic regression function, based on a sample of approximately 2000 real
EPC business process models, that correctly classifies 90% of the models from
a second independent sample.

Chapter 6 – Implications for Business Process Modeling: Here we present a sum-
mary of the findings and offer an outlook on future research. A major result
is a set of seven guidelines of process modeling. Beyond that, we discuss the
implications for the business process modeling process, respective tool support,
EPCs as a business process modeling language, and teaching of business process
modeling.
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1

Business Process Management

The recent progress of Business Process Management (BPM) is reflected by the fig-
ures of the related industry. Wintergreen Research estimates that the international
market for BPM-related software and services accounted for more than USD $1 bil-
lion in 2005 with a tendency towards rapid growth in the subsequent couple of years
[457]. The relevance of business process modeling to general management initiatives
has been previously studied in the 1990s [28]. Today, Gartner finds that organizations
that had the best results in implementing business process management spent more
than 40 percent of the total project time on discovery and construction of their initial
process model [265]. As a consequence, Gartner considers Business Process Model-
ing to be among the Top 10 Strategic Technologies for 2008.

Despite the plethora of popular and academic textbooks [164, 95, 196, 378, 27,
380, 248, 7, 9, 257, 49, 213, 233, 170, 407, 415, 199, 405, 447, 227, 408] as well as
international professional and academic conference series such as the BPM confer-
ence [13, 106, 5, 115, 23], there are several fundamental problems that remain un-
solved by current approaches. A particular problem is the lack of research regarding
the definition of good design. What few contributions there are reveal an incomplete
understanding of quality aspects. Business process modeling as a sub-discipline of
BPM faces a particular problem in that modelers who have little background in for-
mal methods often design models without understanding the full implications of their
specification (see [336]). As a consequence, process models designed on a business
level can rarely be reused on an execution level since they often suffer from formal
errors such as deadlocks. Formal errors can, however, be identified algorithmically
with verification techniques. In contrast, inconsistencies between the real-world busi-
ness process and the process model can only be detected by talking to stakeholders.
The focus of this book will be on formal errors. Since the costs of errors increase
exponentially over the development life cycle [306], it is of paramount importance
that errors are discovered as early as possible. A large amount of work has been
conducted in an attempt to resolve this weak understanding by providing formal
verification techniques, simulation tools, and animation concepts. Several of these
approaches cannot be applied, however, if the business process modeling language
in use is not specified appropriately. Furthermore, this research area does not address

J. Mendling: Metrics for Process Models, LNBIP 6, pp. 1–15, 2008.
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2 1 Business Process Management

the root of the problem: as long as we do not understand why people introduce errors
in a process model, we will never be able to improve the design process.

This chapter provides an overview of business process management and busi-
ness process modeling. Section 1.1 elaborates on the background of business pro-
cess management through a historical classification of seminal work. Section 1.2
defines business process management and illustrates the business process manage-
ment life cycle. Section 1.3 discusses modeling from a general information systems
point of view and derives a definition for business process modeling. Section 1.4
distinguishes between formal verification and external validation of business process
models and emphasizes the need to understand why formal errors are introduced in
business process models. Finally, Section 1.5 concludes the chapter with a summary.

1.1 History of Business Process Management

In the last couple of years, there has been a growing interest in business process
management from industry as well as from business administration and information
systems research. In essence, business process management deals with the efficient
coordination of business activities within and between companies. As such, it can be
related to several seminal works on economics and business administration. Henri
Fayol, one of the founders of modern organization theory, recommended a subdivi-
sion of labor in order to increase productivity [122, p.20]. Adam Smith had already
illustrated its potential benefits by analyzing pin production [406]. Subdivision of
labor, however, requires coordination between subtasks. Business process manage-
ment is concerned with coordination mechanisms in order to leverage the efficient
creation of goods and services in a production system based on such subdivision of
labor. The individual tasks and the coordination between them are, therefore, sub-
ject to optimization efforts. Frederick Taylor advocated the creation of an optimal
work environment based on scientific methods to leverage the most efficient way of
performing individual work steps. In the optimization of each step, he proposed to
“select the quickest way”, to “eliminate all false movements, slow movements, and
useless movements” and to “collect into one series the quickest and best movements”
[421, p.61]. The efficient coordination of business processes is demonstrated by the
innovation of the assembly line system: its inventor Henry Ford proudly praised the
production cycle of only 81 hours “from the mine to the finished machine” in his
factories to illustrate the efficiency of the concept [130, p.105].

In academia, Nordsieck was one of the first to distinguish between structural and
process organization [321, 322]. He described several types of workflow diagrams for
things such as subdivision and distribution of labor, sequencing of activities, or task
assignment [321]. In his work, Nordsieck identifies the order of work steps and the
temporal relationship of tasks as the subject of process analysis with the overall goal
of integrating these steps [322] and distinguishes between five levels of automation:
free course of work, contents bound course of work, order bound course of work,
temporally bound course of work, and beat bound course of work [322].
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The decades after World War II saw a discussion about the potential of infor-
mation systems to facilitate automation of office work [246, 80]. In the 1950s, these
ideas seemed still quite visionary [311]. Later, in the early 1970s, it became appar-
ent that information systems would indeed become a new design dimension in an
organizational setting (see [145, 166, 148]), but research of the time mainly focused
on the structural aspects (such as the relational data model [82] and query languages
that later evolved to SQL [29, 30, 76]) without paying much attention to behavioral
aspects such as processes. At that time, the logic of business processes used to be
hard-coded into applications and were, therefore, difficult to change [189, 310]. Pro-
totypes for office automation during the late 1970s were the starting point for a more
explicit control over the flow of information and the coordination of tasks. The basic
idea was to build electronic forms for clerical work that was normally handled via
paper. In his doctoral thesis, Zisman [472, 471] used Petri nets [335] to specify the
clerical work steps of an office agent and introduced a respective prototype system
called SCOOP. A comparable approach was presented by Ellis [117], who modelled
office procedures as Information Control Nets, a special kind of Petri nets consisting
of activities, precedence constraints, and information repositories. An overview of
further work on office automation is provided in [118].

Although the business importance of processes received some attention in the
1980s [338] and new innovations were introduced in information system support of
processes (e.g. system support for communication processes [455] based on speech
act theory introduced by [34, 390]), it was only in the early 1990s that workflow man-
agement prevailed as a new technology to support business processes. An increasing
number of commercial vendors of workflow management systems benefited from
new business administration concepts and ideas such as process innovation [95] and
business process reengineering [164]. On the other hand, these business programs re-
lied heavily on information system technology, especially workflow systems, in order
to establish new and more efficient ways of doing business. In the 1990s, the appli-
cation of workflow systems, in particular those supporting information systems inte-
gration processes, profited from open communication standards and distributed sys-
tems technology that both contributed to interoperability with other systems [139].
The Workflow Management Coalition (WfMC), founded in 1993, is of special im-
portance for this improvement [185]. The historical overview of office automation
and workflow systems given in [310, p.93] illustrates this breakthrough nicely. This
period also saw an increase in scientific publications on workflow technology and
process specification (see [119, 139, 75, 196, 386, 327, 326, 346, 3, 453, 248]) and
intra-enterprise processes remained the major focus of business process management
through until the end of the 1990s [97].

Since the advent of the eXtended Markup Language (XML) and web ser-
vices technology, application scenarios for business process integration have be-
come much easier to implement in an inter-enterprise setting. Current standard-
ization efforts mainly address interoperability issues related to such scenarios (see
[292, 280, 277]). The common industry interest in facilitating the integration of
interorganizational processes leverages the specification of standards for web ser-
vice composition (e.g. the Business Process Execution Language for Web Services
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(BPEL) [91, 26, 24]), for web service choreography (the Web Service Choreogra-
phy Description Language (WS-CDL) [209]), or for interorganizational processes
based on ebXML and related standards (see [183] for an overview). The integration
of composition and choreography languages is currently one of the main research
topics in this area [270, 451].

Today business process management is an important research area that combines
insights from business administration, organization theory, computer science and
computer supported cooperative work. It remains a considerable market for software
vendors, IT service providers and business consultants.

1.2 Definition of Business Process Management

Since the beginning of organization theory, several definitions for business processes
have been proposed. As early as the 1930s, Nordsieck described a business process
as a sequence of activities producing an output. By this definition an activity is the
smallest separable unit of work performed by a work subject [322, pp.27-29]. Along
these lines Becker and Kugeler [48] propose the following definition:

“A process is a completely closed, timely and logical sequence of activities
which are required to work on a process-oriented business object. Such a
process-oriented object can be, for example, an invoice, a purchase order or
a specimen. A business process is a special process that is directed by the
business objectives of a company and by the business environment. Essential
features of a business process are interfaces to the business partners of the
company (e.g. customers, suppliers).”

As Davenport puts it [95, p.5], a “process is thus a specific ordering of work activ-
ities across time and place, with a beginning, an end, and clearly identified inputs
and outputs: a structure for action.” Van der Aalst and Van Hee add that the order
of the activities is determined by a set of conditions [9, p.4]. It is important to dis-
tinguish here between the business process and several individual cases. Consider a
business process such as car production. This process produces cars as an output.
The production of one individual car that is sold to customer John Smith is one case.
Accordingly, each case can be distinguished from other cases and a business process
can be regarded as a class of similar cases [9].

Several categorization schemes were proposed in relation to business processes
and information systems support. As an extension of Porter’s value chain model
(see [338]), Van der Aalst and Van Hee distinguish between production, support, and
managerial processes [9, p.9]. Production processes create products and services of a
company that are sold to customers. These processes are of paramount importance as
they generate income for the company. Support processes establish an environment
in which the production processes go smoothly. Therefore, they do not only include
maintenance activities, but also marketing and finance. Managerial processes direct
and coordinate production and support processes. They are primarily concerned with
defining goals, preconditions and constraints for the other processes. Leymann and
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Roller provide a classification scheme1 for processes based on their business value
and their degree of repetition [248]. They use the term “production process” to refer
to those processes that have both a high business value and a high degree of repeti-
tion. Administrative processes are also highly repetitive but of little business value.
Furthermore, collaborative processes are highly valuable but hardly repeatable. Fi-
nally, ad hoc processes are neither repetitive nor valuable. Leymann and Roller con-
clude that information systems support should focus on production processes. In
particular, workflow management systems are discussed as a suitable tool. Further
definitions and classifications can be found, for example, in [264, 251, 114].

Business process management can be defined as the set of all management ac-
tivities related to business processes. In essence, the management activities related
to business processes can be idealistically arranged in a life cycle. Business process
management life cycle models have been described in [9, 310, 114]. In the remainder
of this section, we mainly follow the life cycle proposed in [310, pp.82-87] because it
not only includes activities but also artifacts, and because it consolidates the life cy-
cle models for business process management reported in [176, 134, 420, 317]. This
life cycle shares the activities analysis, design and implementation with the gen-
eral process of information systems development identified by [448]. The life cycle
comprises the management activities of analysis, design, implementation, enactment,
monitoring and evaluation. The solid arcs represent the typical order of these activi-
ties (see Figure 1.1). Organizations differ in the level of sophistication in which they
support these phases and the smooth transition between them. A related model of
business process management maturity is discussed in [363].

Analysis

Design

Implementation

Enactment

Evaluation

Monitoring

Requirements

Process Model

Infrastructure

Case Data

Case Data

Requirements

Figure 1.1. Business process management life cycle

1 The authors refer to the GIGA group who originally introduced the scheme.
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Analysis: The business process management life cycle begins with an analysis ac-
tivity (see Figure 1.1). This analysis covers both the environment of the process
and the organization structure. The output of this step is a set of requirements for
the business process such as performance goals or intentions [352].

Design: These requirements drive the subsequent design activity. The design in-
cludes the identification of process activities, the definition of their order, the
assignment of resources to activities and the definition of the organization struc-
ture. These different aspects of process design are typically formalized as a busi-
ness process model [93, 139, 381, 9]. This model can be tested in a simulation if
it meets the design requirements.2

Implementation: The process model is then taken as input for implementation. In
this phase, the infrastructure for the business process is set up. This includes
training of staff, provision of a dedicated work infrastructure or the technical
implementation and configuration of software. If the process execution is to
be supported by dedicated information systems, the process model is used as
a blueprint for the implementation.

Enactment: As soon as the implementation is completed, the actual enactment of
the process can begin. In this phase the dedicated infrastructure is used to handle
individual cases covered by the business process. The enactment produces infor-
mation such as consumption of time, resources and materials for each handled
case. This data can be used as input for two subsequent activities: monitoring
and evaluation.

Monitoring is a continuous activity that is performed with respect to each individual
case. Depending on process metrics, for instance maximum waiting time for a
certain process activity, monitoring triggers respective counteractions if such a
metric indicates a problematic situation.

Evaluation, on the other hand, considers case data on an aggregated level. The per-
formance results are compared with the original requirements and sources of
further improvement are discussed. Evaluation thus leads to new requirements
that are taken as input in the next turn of the business process management life
cycle.

The business process management life cycle reveals that business process models
play an important role in the design, implementation and enactment phases, espe-
cially when information systems support the process enactment. As a result, they are
valuable resources for continuous process improvement, quality management, com-
pliance management, knowledge management, end-user training, ERP system selec-
tion, and software implementation [165, 93, 95, 159, 359]. Current market research
supports this relevance: approximately 90% of participating companies in a survey
conducted or considered business process modeling [333]. This trend is partially mo-
tivated by new legislation including the Basel II recommendations on banking laws

2 Note that zur Muehlen considers simulation as a separate activity related to evaluation [310,
p.86] but this view neglects the fact that simulation is always done to evaluate different
design alternatives.
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and regulations and the Sarbanes-Oxley Act in the United States. In practice, soft-
ware tools play a decisive role in performing the various management activities in
an efficient and effective manner. There are several commercial and academic tools
which support different life cycle activities (see [9, Ch.5]). The Workflow Manage-
ment Coalition has proposed 5 interfaces in a reference model in order to link these
tools [184]. The availability of tools is critical to the modeling of business processes
in a correct and consistent way.

1.3 Definition of Business Process Modeling

Before defining business process modeling, we need to discuss the term “modeling”
in a more general manner. Nordsieck has emphasized that “the utilization of symbols
enables the model not only to replace or to complement natural language for the
representation of complex matters, but to reveal the notion of the subject matter often
in a more comprehensive way as with any other form of representation” [321, p.3].
The most important features of a model are brevity, clarity, precision and its graphic
quality [321, p.3]. Stachowiak defines a model as the result of a simplifying mapping
from reality that serves a specific purpose [414]. According to this definition, there
are three important qualities a model should possess: First, a mapping that establishes
a representation of natural or artificial originals that can be models itself; second,
only those attributes of the original that are considered relevant are mapped to the
model while the rest are skipped. Therefore, the model provides an abstraction in
terms of a homomorphism in a mathematical sense [232]. Finally, the model is used
by the modeler in place of the original at a certain point in time and for a certain
purpose. This means that a model always involves pragmatics [343].

A weakness of Stachowiak’s concept of a model is that it implies an epistemo-
logical position of positivism.3 This is criticized in [388], where the authors propose
an alternative position based on insights from critical realism and constructivism.4

This position regards a model as a “result of a construct done by a modeler” [388,
p.243]. As such, it is heavily influenced by the subjective perception of the modeler.
This makes modeling a non-deterministic task (see [293]) that requires standards
in order to achieve a certain level of inter-subjectivity. The Guidelines of Modeling
(GoM) [50, 388, 51] define principles that serve this standardization purpose. They
are applicable for either epistemological positions or positivism and constructivism
because both the choice for a certain homomorphism (positivist position) and the
perception of the modeler (constructivist position) introduce subjective elements.

The Guidelines of Modeling (GoM) [50, 388] include six particular principles for
achieving inter-subjectivity of models. The first three define necessary preconditions
for the quality of models (correctness, relevance, and economic efficiency) and the
other three are optional (clarity, comparability, and systematic design).

3 Positivism is the philosophical theory that establishes sensual experience as the single ob-
ject of human knowledge.

4 In contrast to positivism, constructivism regards all knowledge as constructed. Therefore,
there is nothing like objective knowledge or reality.
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Modeling Language Modeling Method

Notation Syntax Semantics

Modeling Technique

Modeling Tool

Figure 1.2. Concepts of a modeling technique

Correctness: A model must be syntactically correct. This requirement demands the
usage of allowed modeling primitives and their combination according to pre-
defined rules. A model must also be semantically correct. It must, therefore, be
formally correct and consistent with (the perception of) the real world.

Relevance: This criterion demands that only interesting parts of the universe of dis-
course are reflected in the model. It is, therefore, related to the notion of com-
pleteness as proposed in [46].

Economic Efficiency: This guideline introduces a trade-off between benefits and
costs of putting the other criteria into practice. For example, semantic correctness
might be neglected to a certain extent if achieving it is prohibitively expensive.

Clarity: This is a highly subjective guideline demanding that the model must be
understood by the model user. It is primarily related to layout conventions or the
complexity of the model.

Comparability demands consistent utilization of a set of guidelines in a modeling
project. It refers to naming conventions amongst other things.

Systematic Design: This guideline demands a clear separation between models in
different views (e.g. statical aspects and behavioral aspects) and defined mecha-
nisms to integrate them.

Following this line of argument, the explicit definition of a modeling technique
appears to be a useful means to address several of these guidelines. A modeling
technique consists of two interrelated parts: a modeling language and a modeling
method5 (see Figure 1.2). The modeling language consists of three parts: syntax,
semantics and, optionally, at least one notation. The syntax provides a set of con-
structs and a set of rules how these constructs can be combined. A synonym is

5 Several authors use heterogeneous terminology to refer to modeling techniques. Our con-
cept of a modeling language is similar to grammar in [448, 449, 450] who also use the
term method with the same meaning. In [207], a modeling method is called “procedure”
while the term “method” is used to define a composition of modeling technique plus related
algorithms.
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Figure 1.3. Examples of process models in different modeling languages

modeling grammar [448, 449, 450]. Semantics bind the constructs defined in the
syntax to a meaning. This can be done in a mathematical way, for example by us-
ing formal ontologies or operational semantics. The notation defines a set of graph-
ical symbols that are utilized for the visualization of models [207]. As an exam-
ple, Figure 1.3 shows the same loan approval business process in different model-
ing notations: namely Event-driven Process Chains (EPCs), Petri nets and Business
Process Modeling Notation (BPMN). The modeling method defines procedures by
which a modeling language can be used [450]. The result of applying the model-
ing method is a model that complies with a specific modeling language6. Consider
entity-relationship diagrams (ERDs) as defined in [77]. Since they define a modeling
language and a respective modeling method, ERDs are a modeling technique. Enti-
ties and Relationships are syntax elements of its language. They are used to capture
certain semantics of a universe of discourse. The notation represents entities as rect-
angles and relationships as arcs connecting such rectangles and carrying a diamond
in the middle. Respective procedures, like looking for nouns and verbs in documents,
define the modeling method. In practice, modeling tools are of crucial importance for
the application of a modeling technique: they support the specification of models, the
redundancy controlled administration of models, multi-user collaboration and model
reuse via interfaces to other tools [359]. A recent comparison of business process
modeling tools is reported in [25].

There are different approaches to providing a foundation for the correctness and
relevance of what is to be put into a process model (see [398]). The following para-
graph sketches ontology, speech act theory, the workflow patterns, and metamodeling
as four alternative foundations. These four approaches are chosen as examples for

6 Instead of model, Wand and Weber use the term “script” (cf. [448, 449, 450]).
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their wide-spread application in information systems research. Further foundations
and evaluation techniques for modeling languages are discussed in [398].

• Ontology is the study of being. It seeks to describe what is in the world in terms of
entities, categories and relationships. It is a prominent sub-discipline of philoso-
phy. Wand and Weber were among the first to adopt ontology for a foundation of
information systems modeling (see [448, 449]). They make two basic assump-
tions: as information systems reflect what is in the real world they should also
be modelled with a language that is capable of representing real-world entities;
and that the ontology proposed by Bunge [66] is a useful basis for describing the
real world. The so-called Bunge-Wand-Weber (BWW) model proposed by Wand
and Weber includes a set of representation constructs that are deemed necessary
and sufficient for describing real-world things including their properties and be-
havior. These constructs should thus be available for modeling a specific domain
and fulfilling certain consistency criteria [449]. An overview of applications of
the BWW model is given in [345]. For examples of other ontological models
refer to [450, 158]. Recently, ontology languages such as OWL [263] have be-
come popular for defining domain ontologies to be used as a component of the
semantic web [54].

• Speech act theory is a philosophy of language first proposed by Austin [34] and
subsequently refined by Searle [390]. It emphasizes that language is not only
used to make statements about the world that are true or false but also utilized to
do something. A priest, for example, performs a speech act when he pronounces
a couple husband and wife. The language action perspective has extended this
view after determining that speech acts do not appear in isolation, but that they
are frequently part of a larger conversation [455]. Johannesson uses this insight to
provide a foundation for information systems modeling based on conversations
built from speech acts [200]. Coming from the identification of such conversa-
tions, Johannesson derives consistent structural and behavioral models. Both the
foundations in ontology and in speech act theory have in common that they imply
two levels of modeling: a general level that is based on abstract entities that the
respective theory or philosophy identifies, and a concrete level where the modeler
identifies instances of these abstract entities in his modeling domain.

• Workflow Patterns: Business process models capture different aspects such as
activities, control flow, organizational entities, functional goals and information
consumed and generated by activities [93, 461, 107, 208]. The heterogeneity
of business process modeling languages (see [292]) has motivated research into
generic patterns that need to be described in a model. The work by Van der Aalst,
Ter Hofstede, et al. identifies different patterns for control flow [12, 368], data
[371], resources [370], exception handling [369] and instantiation [98]. These
patterns have been used in various evaluations of process modeling languages.
For an overview refer to [367].

• Metamodeling frees modeling from philosophical assumptions by extending the
subject of the modeling process to the general level. The philosophical theory
of this level, such as an ontology, is replaced by a metamodel. The difference to
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an ontological foundation is that a metamodel does not claim any epistemologi-
cal validity. Essentially, the metamodel identifies the abstract entities that can be
used in the process of designing models. In other words, the metamodel repre-
sents the modeling language (see [31, 207, 232]). The flexibility gained from this
meta-principle comes at the cost of relativism; as a metamodel is meta relative
to a model, it is a model itself. Therefore a metamodel can also be defined for
the metamodel and it is called metametamodel. This regression can be continued
ad infinitum without ever reaching an epistemological ground.7 Most modeling
frameworks define three or four modeling levels (see UML’s Meta Object Fa-
cility [329], CASE Data Interchange Format (CDIF) [129] or Graph Exchange
Language (GXL) [456]). The definition of a modeling language based on a meta-
model is more often used than the explicit reference to a philosophical position.
Examples of metamodeling can be found in [332, 331, 129, 378, 380, 32, 31, 33].
Several tools like MetaEdit [410, 212], Protegé [323] or ADONIS [203] sup-
port metamodeling in such a way that modeling languages can be easily defined
by the user. For the application of the meta principle in other contexts refer to
[315, 419].

The meta-hierarchy provides a means to distinguish different kinds of models.
A model can never be a metamodel by itself, however; it can only be relative to
the model for which it defines the modeling language. Models can also be distin-
guished depending on the mapping mechanism [419, p.21]: Non-linguistic models
capture some real-world aspects as material artifacts or as pictures. Linguistic mod-
els can be representational, verbal, logistic or mathematical. Focusing on business
administration, Kosiol distinguishes descriptive models, explanatory models and de-
cision models [226]. Descriptive models capture objects of a certain area of discourse
and represent them in a structured way. Beyond that, explanatory models define de-
pendency relationships between nomological hypotheses. These serve as empirically
valid general laws to explain real-world phenomena. Finally, decision models sup-
port the deduction of actions: this involves the availability of a description model to
formalize the setting of the decision, a set of goals that constraint the design situation
and a set of decision parameters.

The terms business process model, business process modeling language, and
business process modeling can thus be defined as follows:

• A business process model is the result of mapping a business process. This busi-
ness process can be either a real-world business process as perceived by a mod-
eler or a conceptualized business process.

• Business process modeling is the human activity of creating a business process
model. Business process modeling involves an abstraction from the real-world
business process because it serves a certain modeling purpose. Therefore, only
those aspects relevant to the modeling purpose are included in the process model.

7 This negation of a theoretical foundation of a modeling language has some similarities with
approaches that emphasize that models are not mappings from the real world but products
of negotiations between different stakeholders, as in [181, 402].
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• Business process modeling languages guide the procedure of business process
modeling by offering a predefined set of elements and relationships for business
processes. A business process modeling language can be specified using a meta-
model. In conjunction with a respective method, it establishes a business process
modeling technique.

This definition requires some explanation. In contrast to [414], it does not claim that
the business process model is an abstraction and serves a purpose. These attributions
involve some problems about whether a model always has to be abstract or to serve
a purpose. Instead, the procedure of business process modeling is characterized in
such a way that it is guided by abstraction and a purpose in mind. This is important
as a model is not just a “representation of a real-world system” (as Wand and Weber
put it [448, p.123]), but a design artifact in the sense of Hevner et al. [180] that itself
becomes part of the real world as soon as it is created. Beyond this, business process
models can be characterized as linguistic models that are mainly representational
and mathematical. The representational aspect points to the visual notation of a busi-
ness process modeling language, while the mathematical notion refers to the formal
syntax and semantics. In practice, business process models are often used for docu-
mentation purposes [96]. They can, therefore, be regarded as descriptive models for
organization and information systems engineers. They also serve as explanatory and
decision models for the people who are involved in the actual processing of cases. In
this book, the focus is on the descriptive nature of business process models.

1.4 Business Process Modeling and Errors

It is a fundamental insight of software engineering that design errors should be de-
tected as early as possible (see [60, 450, 306]). The later that errors are detected,
the more work must be redone and the more design effort has been wasted. This
also holds for the consecutive steps of analysis, design, and implementation in the
business process management life cycle (see [360, 361, 336]). In the design phase,
process models are typically created with semi-formal business process modeling
languages while formal executable models are needed for the implementation. This
problem is often referred to as the gap between business process design and imple-
mentation phase (see [312]). Therefore, the Guidelines of Process Modeling stress
correctness as the most important quality attribute of business process models [51].

In order to provide a better understanding of potential errors in business process
models, it is proposed to adapt the information modeling process as identified by
Frederiks and Van der Weide [132]. This process can also serve as a framework for
discussing business process modeling in the analysis and design phase of the busi-
ness process management life cycle. Furthermore, it covers several steps to provide
quality assurance in the modeling phase which is of paramount importance for the
success of modeling projects (see [360, 361]). Figure 1.4 gives a business process
modeling process mainly inspired by [132] and consisting of eight steps. In accor-
dance with Van Hee et al. [174], it is proposed to first verify the process model (Step
6) before validating it (Step 7-8).



1.4 Business Process Modeling and Errors 13

DesignAnalysis

requirementsCollect information
objects

Verbalize information
objects

Reformulate
specification

Discover modeling
concepts

Map to modeling
language

Verification of model

Paraphrasing
preliminary model

Validate model
against specification

Informal
specification

Normal form
specification

Process model

Modified
specification

process model

Implementation

1

2

3

4

5

6

7

8

Figure 1.4. Business process modeling process in detail, adapted from [132].

The business process modeling process starts with collecting information objects rel-
evant to the domain (Step 1). Such information objects include documents, diagrams,
pictures and interview recordings. In Step 2, these different inputs are verbalized to
text that serves as a unifying format. This text is rearranged according to some gen-
eral guideline of how to express facts (Step 3) yielding an informal specification. The
following step (Step 4) takes this informal specification as a basis to discover mod-
eling concepts from and to produce a normalized specification. This normal form
specification is then mapped to constructs of the process modeling language (Step 5)
in order to create a business process model. These models have to be verified for
internal correctness (Step 6) before they can be translated back to natural language
(Step 7) in order to validate them against the specification (Step 8). In Steps 6-8 the
order of activities follows the proposal of Van Hee et al. [174]. It is a good idea to
first verify the internal correctness of a model before validating it against the speci-
fication, as this prevents incorrect models from being unnecessarily validated.

The business process modeling process points to two categories of potential er-
rors based on the distinction of verification and validation. This distinction follows
the terminology of the Petri nets community (see Valmari [436, pp.444]), the concep-
tual modeling community (see Hoppenbrouwers, Proper, and Van der Weide [187])
and the software engineering community (see Boehm [59], Sommerville [413]). Dif-
ferent terms for similar concepts are used in Soffer and Wand [412].
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• Verification addresses both the general properties of a model and the satisfaction
of a given formula by a model. Related to the first aspect, formal correctness
criteria play an important role in process modeling. Several criteria have been
proposed including soundness for Workflow nets [2], relaxed soundness [101] or
well-structuredness (see [102] for a comparison). The second aspect is the subject
of model checking and involves issues like separation of duty constraints, which
can be verified, for example, by using linear temporal logic (LTL) (see [337]).

• Validation addresses the consistency of the model within the universe of dis-
course. As it is an external correctness criterion, it is more difficult and more
ambiguous to decide. While verification typically relies on an algorithmic analy-
sis of the process model, validation requires the consultation of the specification
and discussion with business process stakeholders. SEQUAL can be used as a
conceptual framework to validate different quality aspects of a model [250, 228].

In this book, we will refer to formal errors in connection with the internal correct-
ness of business process models. Formal errors can be identified via verification.
Furthermore, we use the term inconsistencies to refer to a mismatch of model and
specification. Inconsistencies are identified by validation. Generally speaking, error
detection is related to both verification and validation [436, p.445]. We also focus
on error detection related to verification and, in particular, to the question which
combination of model elements affects the verification of a correctness criterion for
a business process model.

While there has been empirical work on different aspects of conceptual modeling
[399, 39, 256, 138], little such work has been conducted on formal errors of business
process models in practice. One reason for this is that large repositories of business
process models capture specific and valuable real-world business knowledge of in-
dustrial or consulting companies. Confidentiality concerns present a serious problem
for academia since practical modeling experience can hardly be reflected in a purely
theoretical way. Thomas [422] calls this the “dilemma” of modeling research. One
case of a model that is, at least partially, publicly available is the SAP Reference
Model. It has been described in [92, 211] and is referred to in many research papers
(see [127, 235, 281, 362, 427]). The extensive database of this reference model con-
tains almost 10,000 sub-models, 604 of them being non-trivial EPCs [92, 211]. The
verification of these EPC models has shown that there are several formal errors in the
models (see [473, 109, 110, 275]). In [275] the authors identify a lower bound for
the number of errors of 34 (5.6%) using the relaxed soundness criterion. In another
survey, Gruhn and Laue [154] analyze a collection of 285 EPCs mainly taken from
master theses and scientific publications. From these 285 models 30% had trivial
errors and another 7% had non-trivial errors. These first contributions highlight that
errors are indeed an issue in business process models.

1.5 Summary

In this chapter, we discussed the backgrounds of business process management and
defined important terms related to it. We also sketched the importance of business
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process modeling for the business process management life cycle. Since process
models are created in the early design phase, they should be free from errors in
order to avoid expensive rework and iterations in subsequent phases. In the follow-
ing chapters, we concentrate on Event-driven Process Chains (EPCs) which are fre-
quently used for business process modeling. Based on a formal semantics definition,
we identify verification techniques to detect errors.



2

Event-Driven Process Chains (EPC)

This chapter provides a comprehensive overview of Event-driven Process Chains
(EPCs) and introduces a novel definition of EPC semantics. EPCs became popu-
lar in the 1990s as a conceptual business process modeling language in the context
of reference modeling. Reference modeling refers to the documentation of generic
business operations in a model such as service processes in the telecommunications
sector, for example. It is claimed that reference models can be reused and adapted
as best-practice recommendations in individual companies (see [230, 168, 229, 131,
400, 401, 446, 127, 362, 126]). The roots of reference modeling can be traced back
to the Kölner Integrationsmodell (KIM) [146, 147] that was developed in the 1960s
and 1970s. In the 1990s, the Institute of Information Systems (IWi) in Saarbrücken
worked on a project with SAP to define a suitable business process modeling lan-
guage to document the processes of the SAP R/3 enterprise resource planning sys-
tem. There were two results from this joint effort: the definition of EPCs [210] and
the documentation of the SAP system in the SAP Reference Model (see [92, 211]).
The extensive database of this reference model contains almost 10,000 sub-models:
604 of them non-trivial EPC business process models. The SAP Reference model
had a huge impact with several researchers referring to it in their publications (see
[473, 235, 127, 362, 281, 427, 415]) as well as motivating the creation of EPC
reference models in further domains including computer integrated manufacturing
[377, 379], logistics [229] or retail [52]. The wide-spread application of EPCs in
business process modeling theory and practice is supported by their coverage in sem-
inal text books for business process management and information systems in general
(see [378, 380, 49, 384, 167, 240]). EPCs are frequently used in practice due to a high
user acceptance [376] and extensive tool support. Some examples of tools that sup-
port EPCs are ARIS Toolset by IDS Scheer AG, AENEIS by ATOSS Software AG,
ADONIS by BOC GmbH, Visio by Microsoft Corp., Nautilus by Gedilan Consult-
ing GmbH, and Bonapart by Pikos GmbH. In order to facilitate the interchange of
EPC business process models between these tools, there is a tool neutral interchange
format called EPC Markup Language (EPML) [283, 285, 286, 287, 289, 290, 291].

The remainder of this chapter is structured as follows: Section 2.1 gives a brief,
informal description of EPC syntax and semantics and introduces the notation by

J. Mendling: Metrics for Process Models, LNBIP 6, pp. 17–57, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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the help of an example. Section 2.2 discusses several approaches to EPC syntax
formalization and consolidates them in one definition. Section 2.3 presents various
extensions that were proposed for EPCs. Section 2.4 covers different approaches to
formal semantics of EPCs and introduces the semantics definition that is used later in
this book. A respective implementation of these semantics in ProM is also described.
Finally in Section 2.5, EPCs are compared to other business process modeling lan-
guages. The chapter concludes with a summary in Section 2.6.

2.1 EPC Notation

The Event-driven Process Chain (EPC) is a business process modeling language for
the representation of temporal and logical dependencies of activities in a business
process (see [210]). It is utilized by Scheer [378, 380, 384] in the Architecture of
Integrated Information Systems (ARIS) as the central method for the conceptual in-
tegration of the functional, organizational, data and output perspective in information
systems design. EPCs offer function type elements to capture activities of a process
and event type elements describing pre-conditions and post-conditions of functions.
Some EPC definitions also include process interface type elements. A process inter-
face is a syntax element that links two consecutive EPCs. At the bottom of the first
EPC, a process interface points to the second EPC while at the beginning of the sec-
ond there is a process interface representing the preceding EPC. Syntactically, it is
treated like a function since it represents a subsequent process that can be regarded as
a business activity. There are three kinds of connector types including AND (symbol
∧), OR (symbol ∨) and XOR (symbol ×) for the definition of complex routing rules.
Connectors have either multiple incoming and one outgoing arc (join connectors) or
one incoming and multiple outgoing arcs (split connectors). As a syntax rule, func-
tions and events have to alternate either directly or indirectly when they are linked
via one or more connectors. OR- and XOR-splits after events are not allowed since
events cannot make decisions. Control flow arcs are used to link these elements.

The informal (or intended) semantics of an EPC can be described as follows: The
AND-split activates all subsequent branches in concurrency; the XOR-split repre-
sents a choice between one of several alternative branches; the OR-split triggers one,
two or up to all of multiple branches based on conditions. In both cases of the XOR-
and OR-split, the activation conditions are given in events subsequent to the connec-
tor. Accordingly, splits from an event to multiple functions are forbidden with XOR
and OR as the activation conditions do not become clear in the model. The AND-
join waits for all incoming branches to complete and then propagates control to the
subsequent EPC element. The XOR-join merges alternative branches. The OR-join
synchronizes all active incoming branches. This feature is called non-locality since
the state of all transitive predecessor nodes is considered.

Figure 2.1 shows an EPC model for a loan request process as described in
Nüttgens and Rump [325]. The start event loan is requested signals the start of the
process and the precondition to execute the record loan request function. After the
post-condition request is recorded, the process continues with the function conduct
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Figure 2.1. EPC for a loan request process [325]
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risk assessment after the XOR-join connector. The subsequent XOR-split connector
indicates a decision. In case of a negative risk assessment, the function check client
assessment is performed. The following second XOR-split marks another decision:
in case of a negative client assessment the process ends with a rejection of the loan
request; in case of a positive client assessment the conduct risk assessment function
is executed a second time under consideration of the positive client assessment. If
the risk assessment is not negative, there is another decision point to distinguish new
clients and existing clients. In case of an existing client, the set up loan contract
function is conducted. After that, the AND-split indicates that two activities have to
be executed: the sign loan contract function and the offer further products subse-
quent process (represented by a process interface). If the client is new, the analyze
requirements function has to be performed in addition to setting up the loan contract.
The OR-join waits for both functions to be completed if necessary. If the analyze
requirements is not executed, it continues with the subprocess immediately. The of-
fer further products process interface basically triggers a subsequent process (see
Figure 2.2) for repeatedly offering products until the offering process is completed.

product 
offering 

completed

offer accepted

offer declined

offer further 
products

consider 
further 

products

further 
products to be 

offered
offer product

further 
products to be 

considered

Figure 2.2. EPC for offering further products

2.2 EPC Syntax

There is not just one but several approaches towards the formalization of EPC syntax.
This is due to the original EPC paper introducing them in an informal way (see
[210]). This section gives a historical overview of EPC syntax definitions and joins
them into one definition. Please note that we first discuss only standard control flow
elements. Extensions are presented in Section 2.3.
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2.2.1 Approaches to EPC Syntax Formalization

In Langner, Schneider, and Wehler [236, 238], the authors provide a graph-based for-
malization of EPC syntax distinguishing four types of nodes: function, event, con-
nector and process interface. Arcs connect elements of these four node types in such
a way that the EPC is a simple, directed and coherent graph. The authors define the
following constraints: There are no arcs between elements of the same type; the car-
dinality of predecessor and successor sets is less or exactly one for events and exactly
one for functions and process interfaces; and the border of the EPC graph consists of
event type elements only.

Keller and Teufel [211, pp.158] provide a formal definition of EPCs in their book
on the SAP Reference Model. Beyond the four element types (function, event, pro-
cess interface and connector) they introduce a concept of model hierarchy depend-
ing on hierarchical (or hierarchically ranked) functions. Those hierarchical functions
represent a call to a subprocess. The authors also identify additional constraints for
the EPC graph: connections between connectors must be acyclic and EPCs have at
least three nodes: one start event, one end event and one function.

The syntax formalization by Van der Aalst [4] defines the notion of a path in
order to distinguish event-function connectors and function-event connectors. If a
connector c is on a path of several consecutive connectors, it is an event-function
connector if all paths to it via other connectors start with events and all paths from it
via other connectors lead to functions. Function-event connectors are defined analo-
gously. It is an additional constraint that each connector is either an event-function
or a function-event connector.

In the doctoral thesis of Rump [366, pp.79], the EPC syntax definition is sepa-
rated into two parts: a flat EPC schema and a hierarchical EPC schema. The defi-
nition of a flat EPC schema essentially reflects the element types and properties as
described above. In addition, Rump introduces an initial marking of an EPC. This
initial marking must be a subset of the power set of all start events and each start
event must be included in at least one initial marking. A hierarchical EPC schema
contains one or more flat EPC schemas and a hierarchy relation that maps hierarchi-
cal functions and process interfaces to EPCs. The hierarchy relation must establish
an acyclic graph. A similar syntax definition is presented in [325].

The alternation between events and functions with several connectors in between
was first enforced by the definition of Van der Aalst, yet all paths between the el-
ements have to be considered. Mendling and Nüttgens provide a syntax definition
based on two arc types: event-function arcs and function-event arcs [284]. As a con-
straint, event-function arcs must have either events or event-function connectors as
source nodes and functions or event-function connectors as target nodes. A similar
constraint must hold for function-event arcs. An advantage of this definition is that
EPC syntax validation does not require path expansion for each connector in a chain.

While the different syntax formalizations cover an extensive set of properties,
there is one syntax problem which is not addressed. Figure 2.3 shows an EPC that
has two undesirable properties. First, there is no path from a start node to reach the
nodes e1, f1, and c1 . There is also no path from the nodes e2, f2, and c4 to an end
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Figure 2.3. An EPC with nodes that have no path from a start event and that have no path to
an end event

node. Since such a structure is not meaningful, we will also require that each node
of an EPC must be on a path from a start to an end node.

Table 2.1 summarizes the presented approaches towards EPC syntax formaliza-
tion. Further work related to EPC syntax is listed in [325]. The following section
provides a formal EPC syntax definition that consolidates the different approaches.

Table 2.1. Overview of approaches to EPC syntax formalization

[236] [211] [4] [366] [284]
Cardinality Constraints + + + + +
Fnct.-Event Alternation +/- +/- + + +
No Connector cycles - + - + +
Hierarchy - + - + +
No Hierarchy cycles - - - + +
Initial Marking - - - + +
Nodes on start-end-path - - - - -

2.2.2 Formal Syntax Definition of Flat EPCs

The subsequent syntax definition of flat EPCs essentially follows the presentation in
[325] and [284]. If it is clear from the context that a flat EPC is discussed, the term
EPC will be used instead for brevity. Please note that an initial marking as proposed
in [366, 325] is not included in the syntax definition, but discussed in the context of
EPC semantics in Section 2.4.4.

Definition 2.1 (Flat EPC). A flat EPC = (E, F, P, C, l, A) consists of four pair-
wise disjoint and finite sets E, F, C, P , a mapping l : C → {and, or, xor}, and a
binary relation A ⊆ (E ∪ F ∪ P ∪ C) × (E ∪ F ∪ P ∪ C) such that
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– An element of E is called event. E �= ∅.
– An element of F is called function. F �= ∅.
– An element of P is called process interface.
– An element of C is called connector.
– The mapping l specifies the type of a connector c ∈ C as and, or, or xor.
– A defines the control flow as a coherent, directed graph. An element of A is called

an arc. An element of the union N = E ∪ F ∪ P ∪ C is called a node.

In order to allow for a more concise characterization of EPCs, notations are intro-
duced for preset and postset nodes, incoming and outgoing arcs, paths, transitive
closure, corona, and several subsets.

Definition 2.2 (Preset and Postset of Nodes). Let N be a set of nodes and A ⊆
N × N a binary relation over N defining the arcs. For each node n ∈ N , we define
•n = {x ∈ N |(x, n) ∈ A} as its preset, and n• = {x ∈ N |(n, x) ∈ A} as its
postset.

Definition 2.3 (Incoming and Outgoing Arcs). Let N be a set of nodes and A ⊆
N × N a binary relation over N defining the arcs. For each node n ∈ N , we define
the set of incoming arcs nin = {(x, n)|x ∈ N ∧(x, n) ∈ A}, and the set of outgoing
arcs nout = {(n, y)|y ∈ N ∧ (n, y) ∈ A}.

Definition 2.4 (Paths and Connector Chains). Let EPC = (E, F, P, C, l, A) be a
flat EPC and a, b ∈ N be two of its nodes. A path a ↪→ b refers to the existence of
a sequence of EPC nodes n1, . . . , nk ∈ N with a = n1 and b = nk such that for
all i ∈ 1, . . . , k holds: (n1, n2), . . . , (ni, ni+1), . . . , (nk−1, nk) ∈ A. This includes
the empty path of length zero, i.e., for any node a : a ↪→ a. If a �= b ∈ N and
n2, . . . , nk−1 ∈ C, the path a

c
↪→ b is called connector chain. This includes the

empty connector chain, i.e., a
c

↪→ b if (a, b) ∈ A. The transitive closure A∗ contains
(n1, n2) if there is a non-empty path from n1 to n2, i.e., there is a a non-empty set of
arcs of A leading from n1 to n2. For each node n ∈ N , we define its transitive preset
∗n = {x ∈ N |(x, n) ∈ A∗}, and its transitive postset n∗ = {x ∈ N |(n, x) ∈ A∗}.

Definition 2.5 (Upper Corona, Lower Corona). Let EPC = (E, F, P, C, l, A) be

a flat EPC and N its set of nodes. Then its upper corona is defined as
c∗n= {v ∈

(E∪F ∪P )|v c
↪→ n} for some node n ∈ N . It includes those non-connector nodes of

the transitive preset that reach n via a connector chain. In analogy, its lower corona
is defined as n

c∗= {w ∈ (E ∪ F ∪ P )|n c
↪→ w}.

Definition 2.6 (Subsets). For an EPC = (E, F, P, C, l, A), we define the following
subsets of its nodes and arcs:

– Es = {e ∈ E | |•e| = 0 ∧ |e•| = 1} being the set of start events,
Eint = {e ∈ E | |•e| = 1 ∧ |e•| = 1} being the set of intermediate events, and
Ee = {e ∈ E | |•e| = 1| ∧ e•| = 0} being the set of end events.

– Ps = {p ∈ P | |•p| = 0 ∧ |p•| = 1} being the set of start process interfaces,
Pe = {p ∈ P | |•p| = 1 ∧ |p•| = 0} being the set of end process interfaces.
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– J = {c ∈ C | |•c| > 1 and |c•| = 1} as the set of join- and
S = {c ∈ C | |•c| = 1 and |c•| > 1} as the set of split-connectors.

– Cand = {c ∈ C | l(c) = and} being the set of and-connectors,
Cxor = {c ∈ C | l(c) = xor} being the set of xor-connectors, and
Cor = {c ∈ C | l(c) = or} being the set of or-connectors.

– Jand = {c ∈ J | l(c) = and} being the set of and-join connectors,
Jxor = {c ∈ J | l(c) = xor} being the set of xor-join connectors,
Jor = {c ∈ J | l(c) = or} being the set of or-join connectors,

– Sand = {c ∈ S | l(c) = and} being the set of and-split connectors,
Sxor = {c ∈ S | l(c) = xor} being the set of xor-split connectors, and
Sor = {c ∈ S | l(c) = or} being the set of or-split connectors.

– CEF = {c ∈ C | c∗c ⊆ E∧c
c∗⊆ (F ∪P )} as the set of event-function connectors

(ef-connectors) and
CFE = {c ∈ C | c∗c ⊆ (F ∪P )∧c

c∗⊆ E} as the set of function-event connectors
(fe-connectors).

– AEF = A ∩ ((E ∪ CEF ) × (F ∪ P ∪ CEF )) as the set of event-function arcs,
AFE = A ∩ ((F ∪ P ∪ CFE) × (E ∪ CFE)) as the set of function-event arcs.

– As = {(x, y) ∈ A | x ∈ Es} as the set of start-arcs,
Aint = {(x, y) ∈ A | x /∈ Es ∧ y /∈ Ee} as the set of intermediate-arcs, and
Ae = {(x, y) ∈ A | y ∈ Ee} as the set of end-arcs.
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Figure 2.4. An EPC (a) with labelled nodes and (b) its nodes related to the subsets of Defini-
tion 2.6.

Figure 2.4 illustrates the different subsets of an EPC. Consider the connector AND3.
This is an event-function connector (labelled as EF-AND) since its upper corona
(those non-connector nodes from which there is a connector chain to AND3) con-
tains only events and its lower corona only contains a function. The arc from AND1
to AND3 is an event-function arc (labelled as EFA) since it connects two event-
function connectors. Note that arcs from events to event-function connectors and
arcs from event-function connectors to functions are also event-function arcs.

We summarize the EPC syntax requirements as follows.
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Definition 2.7 (Syntactically Correct EPC). An EPC = (E, F, P, C, l, A) is
called syntactically correct, if it fulfills the requirements:

1. EPC is a simple, directed, coherent, and antisymmetric graph such that ∀n ∈
N : ∃e1 ∈ Es, e2 ∈ Ee such that e1 ↪→ n ↪→ ee.

2. There are no connector cycles, i.e. ∀a, b ∈ C : if a �= b and a
c

↪→ b, then �∃b
c

↪→ a.
3. |Es ∪ Ps| ≥ 1 ∧ |Ee ∪ Pe| ≥ 1. There is at least one start node and one end

node in an EPC.
4. |F | ≥ 1. There is at least one function in an EPC.
5. Events have at most one incoming and one outgoing arc.

∀e ∈ E : |•e| ≤ 1 ∧ |e•| ≤ 1.
This implies that Es,Eint, and Ee partition E.

6. Functions have exactly one incoming and one outgoing arc.
∀f ∈ F : |•f | = 1 ∧ |f•| = 1.

7. Process interfaces have one incoming or one outgoing arc, but not both.
∀p ∈ P : (|•p| = 1 ∧ |p•| = 0) ∨ (|•p| = 0 ∧ |p•| = 1).
This implies that Ps and Pe partition P .

8. Connectors have one incoming and multiple outgoing arcs or multiple incoming
and one outgoing arc. ∀c ∈ C : (|•c| = 1 ∧ |c•| > 1) ∨ (|•c| > 1 ∧ |c•| = 1).
This implies that J and S partition C.

9. Events must have function, process interface, or fe-connector nodes in the preset,
and function, process interface, or ef-connector nodes in the postset.
∀e ∈ E : •e ⊆ (F ∪ P ∪ CFE) ∧ e• ⊆ (F ∪ P ∪ CEF ).

10. Functions must have events or ef-connectors in the preset and events or fe-
connectors in the postset.
∀f ∈ F : •f ⊆ (E ∪ CEF ) ∧ f• ⊆ (E ∪ CFE).

11. Process interfaces are connected to events only.
∀p ∈ P : •p ⊆ E ∧ p• ⊆ E.

12. Connectors must have either functions, process interfaces, or fe-connectors in
the preset and events or fe-connectors in the postset; or events or ef-connectors
in the preset and functions, process interfaces, or ef-connectors in the postset.
∀c ∈ C : (•c ⊆ (F ∪ P ∪ CFE)) ∧ c• ⊆ (E ∪ CFE)∨
(•c ⊆ (E ∪ CEF ) ∧ c• ⊆ (F ∪ P ∪ CEF )).

13. Arcs either connect events and ef-connectors with functions, process interfaces,
and ef-connectors or functions, process interfaces, and fe-connectors with events
and fe-connectors.
∀a ∈ A : (a ∈ (F∪P∪CFE)×(E∪CFE))∨(a ∈ (E∪CEF )×(F∪P∪CEF )).

According to this definition, the EPCs of Figures 2.1 and 2.4 are syntactically cor-
rect. In Section 3.3, we define reduction rules for EPCs with relaxed syntax require-
ments. Relaxed syntactical correctness removes the requirements that the EPC graph
is simple and antisymmetric (1), that there are no connector cycles (2), that the set of
functions is not empty (4), and that functions and events have to alternate (9 to 13).
We will later define semantics for this class of EPCs.

Definition 2.8 (Relaxed Syntactically Correct EPC). An EPC = (E,F,P,C, l,A)
is called relaxed syntactically correct if it fulfills the following requirements:
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1. EPC is a directed and coherent graph such that ∀n ∈ N : ∃e1 ∈ Es, e2 ∈ Ee

such that e1 ↪→ n ↪→ e2.
2. |Es ∪ Ps| ≥ 1 ∧ |Ee ∪ Pe| ≥ 1. There is at least one start node and one end

node in an EPC.
3. Events have at most one incoming and one outgoing arc.

∀e ∈ E : |•e| ≤ 1 ∧ |e•| ≤ 1.
4. Functions have exactly one incoming and one outgoing arcs.

∀f ∈ F : |•f | = 1 ∧ |f•| = 1.
5. Process interfaces have one incoming or one outgoing arcs.

∀p ∈ P : (|•p| = 1 ∧ |p•| = 0) ∨ (|•p| = 0 ∧ |p•| = 1).
6. Connectors have at least one incoming and one outgoing arc such that

∀c ∈ C : (|•c| = 1 ∧ |c•| ≥ 1) ∨ (|•c| ≥ 1 ∧ |c•| = 1).

If an EPC is syntactically correct it is also syntactically correct according to a relaxed
definition.

2.2.3 Formal Syntax Definition of Hierarchical EPCs

Hierarchical decomposition is a general principle of many system analysis tech-
niques such as data-flow diagrams, object-oriented analysis, or organization charts
(see [38, pp.557] or [413, Ch.7]). Hierarchical refinement is also an appropriate tech-
nique for the description of complex processes at different levels of granularity [9,
p.34]. Such deposition techniques were also defined for EPCs (see [325, 284, 191]).
Figure 2.5 gives the example of a return deliveries process that is included in the
procurement module of the SAP Reference Model. Within this EPC the Warehouse
function is hierarchically decomposed to another EPC that is depicted on the right-
hand side of the figure. The semantics of such a decomposition mean that the sub-
process is started when the hierarchical function is activated. When the subprocess is
completed, control is forwarded to the event subsequent to the hierarchical function.
We define hierarchical EPCs in a slightly different way compared to [325, 284] in
order to achieve a clear separation of the EPC and the hierarchy concept. Still, not all
requirements of [325] are met by the example in Figure 2.5 since only the start event
of the subprocess matches the pre-event in the parent process and not the end events.

Definition 2.9 (Hierarchical EPC). A hierarchical EPC EPCH = (Z, h) consists
of a set of EPCs Z and a partial function h : D ⇀ Z on a domain D of decomposed
functions and process interfaces such that

– Z is a set of EPCs. N(z) refers to the nodes of one individual EPC z ∈ Z .
Accordingly, E(z), Ee(z), Es(z), F (z), P (z), C(z), and A(z) refer to the sets
of events, start events, end events, functions, process interfaces, connectors, and
arcs of an EPC z ∈ Z . We refer to the union of all functions and process inter-
faces by F =

⋃
z∈Z F (z) and P =

⋃
z∈Z P (z).

– The domain D is a subset of functions and process interfaces of EPCs contained
in Z , i.e., D ⊆ F ∪ P .
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Figure 2.5. The return deliveries process from the SAP Reference Model with a hierarchical
decomposition of the Warehouse function.

– The mapping h specifies a partial function from the domain D to the set of EPCs
Z . For a node d ∈ D such that h(d) = z, z is called “subprocess of d” or
“process referenced from d”.

– G ⊆ (Z × Z) defines the hierarchy graph for a hierarchical EPC.
A pair (z1, z2) ∈ G if and only if ∃d ∈ (D ∩ (F (z1) ∪ P (z1))) : h(d) = z2.

According to [325], a syntactically correct hierarchical EPC must fulfill the following
constraints.

Definition 2.10 (Syntactically Correct Hierarchical EPC). A hierarchical EPCH

= (Z, h) with the domain D of h is called syntactically correct if it fulfills the fol-
lowing constraints:

1. All EPCs of Z must be syntactical correct flat EPCs.
2. All functions of the domain D map to an EPC of Z .

∀f ∈ F : f ∈ D ⇒ h(f) ∈ Z .
3. All process interfaces map to an EPC of Z .

∀p ∈ P : p ∈ D ∧ h(p) ∈ Z .
4. If f ∈ D, then the upper corona of f is equal to the set of start events of h(f),

i.e.,
c∗f = Es(h(f)).
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5. If f ∈ D, then the lower corona of f is equal to the set of end events of h(f),
i.e.,
f

c∗= Ee(h(f)).
6. For all p ∈ P the preset event of p is a subset of the start events of h(p), i.e.,

•p ⊆ Es(h(f)).
7. For all p ∈ P the postset event of p is a subset of the end events of h(p), i.e.,

p• ⊆ Ee(h(f)).
8. The hierarchy graph G of EPCH is acyclic.

While constraint 4 is fulfilled in Figure 2.5 (task-dependent follow-up actions are
triggered precedes the hierarchical function warehouse and it is the start event of
the subprocess), constraint 5 is not fulfilled since the post-event to warehouse differs
from the end events of the subprocess. If the constraints are met, however, the hier-
archy relation can be used to flatten the hierarchical EPC. Therefore, the event after
the warehouse function should be renamed to Transfer order item confirmed with or
without difference. In this case, the relationships between the corona of functions or
process interfaces and the start and end events of the referenced EPC can be utilized
to merge the EPC with its subprocess as defined in [151, 299].

2.2.4 Formal Syntax Definition of Standard EPCs

Throughout the remainder of this book, we will have a specific focus on a subset of
EPCs that we refer to as standard EPCs.

Definition 2.11 (Standard EPC). A flat EPC = (E, F, P, C, l, A) that has an
empty set P = ∅ is called standard EPC. For brevity P can be omitted in the defini-
tion. Accordingly, EPC = (E, F, C, l, A) refers to a standard EPC.

In the following sections and chapters, we will use the terms EPC and standard EPC
as synonyms. We also assume EPCs to be relaxed syntactically correct.

2.3 EPC Syntax Extensions

Several variants and extensions were proposed for EPCs and some of them are listed
in [375, p.106]. EPC Variants include Real-Time EPC (rEPC) [182], EPC* for work-
flow execution [473], Object-oriented EPC (oEPC) [383], Modified EPC (modEPC)
[349], Agent-oriented EPC (xEPC) [222], Yet Another EPC (yEPC) [279, 281, 282],
Nautilus EPCs [224], Semantic EPCs [424, 425], and iEPCs [298, 357]. There is also
a plethora of EPCs with non control flow elements (see [378, 380, 384, 358, 387, 254,
382, 231, 61, 385, 47]) that serve as structured annotations to the process model. In
the following subsections, we give an overview of EPC extensions for control flow
and configurability (see Table 2.2).
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Table 2.2. Overview of EPC extensions for control flow and configurability

Category Name of Concept Authors
Control Flow SEQ-Connector Priemer [341]

ET-Connector Rosemann [358]
OR1-Connector Rosemann [358]
OR-Connector variants Rittgen [349, 350]
Fuzzy-Connector Thomas et al. [426, 21]
Multiple-Instance-Connector Rodenhagen [351]
Empty-Connector Mendling et al. [279]
Multiple Instances Mendling et al. [279]
Cancellation Mendling et al. [279]

Configurability Configurable Function Rosemann et al. [362]
Configurable Connector Rosemann et al. [362]
Configuration Requirement Rosemann et al. [362]
Configuration Guideline Rosemann et al. [362]
Configuration Order Rosemann et al. [362]

2.3.1 Control Flow Extensions

Control flow extensions are defined either to introduce expressive power or to pro-
vide a clarification of semantics. The SEQ-connector is introduced in Priemer [341].
It can be used to specify non-parallel, but arbitrary orders of activities. As such, a
SEQ split-join pair captures the semantics of workflow pattern 17 (interleaved paral-
lel routing) as described in [12]. Rosemann introduces an ET-connector that explic-
itly models a decision table and a so-called OR1 connector to mark branches that are
always executed [358]. The motivation of both these proposals is to offer a straight-
forward way to model certain behavior. In contrast, the works of Rittgen are moti-
vated by semantic ambiguities of the OR-join (see [349, 350]). We will discuss his
proposal for every-time, first-come, and wait-for-all OR-joins in Section 2.4.3. The
aim of Thomas et al. [426, 21, 423] is to provide modeling support for decisions that
are taken based on fuzzy information. The authors introduce a fuzzy XOR-connector
that takes multiple inputs and triggers alternative outputs. Rodenhagen presents mul-
tiple instantiation as a missing feature of EPCs [351]. He proposes dedicated begin
and end symbols to model that a branch of a process may be executed multiple times.
This notation does not enforce that a begin symbol is followed by a matching end
symbol.

The work by Mendling, Neumann, and Nüttgens on yEPCs [279, 281, 282] is a
response to missing support for some of the workflow patterns identified in [12]. In
order to capture the semantics of unsupported patterns, three new elements are intro-
duced: empty connector, cancellation area and multiple instantiation. The empty split
can be interpreted as a hyperarc from the event before the empty split to the functions
subsequent to it; the empty join analogously as a hyperarc from multiple functions
before it to its subsequent event. In this case, the split semantics match the deferred
choice pattern and the join semantics match the multiple merge pattern. Interleaved
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parallel routing and milestones can also be represented by the help of empty connec-
tors. Multiple instantiation in yEPCs is described similarly as in YAWL by giving
the min and max cardinality of instances that may be created. The required parame-
ter specifies an integer number of instances that must finish in order to complete the
function. The creation parameter specifies whether further instances may be created
at run-time (dynamic) or not (static). Cancellation areas (symbolized by a lariat) in-
clude a set of functions and events. The end of the lariat is connected to a function.
When this function is completed, all functions and events in the lariat are cancelled.
In [274], the authors provide a transformation from yEPCs to YAWL.

2.3.2 Configurability Extensions

A first approach towards the configurability of EPCs can be found in Rosemann
[358, p.245] where type operators are defined to describe process alternatives. Con-
figurable EPCs (C-EPCs) extend EPCs for specification of variation points, config-
uration constraints and configuration guidelines in a reference model. C-EPCs play
a central role in the realization of an integrated, model-driven Enterprise Systems
Configuration life cycle as proposed in [344].

Functions and connectors can be configured in a C-EPC. For a configurable func-
tion a decision has to be made: whether to perform it in every process instance during
run time (ON), whether to exclude it permanently (OFF - it will not be executed in
any process instance), or whether to defer this decision to run time (OPT - for each
process instance it has to be decided whether to execute the function or not). Con-
figurable connectors subsume build-time connector types that are less or equally
expressive, therefore, a configurable connector can only be configured to a connec-
tor type that restricts its behavior. A configurable OR-connector may be mapped to a
regular OR-, XOR-, AND-connector or to a single sequence of events and functions
(indicated by SEQn for some process path starting with node n). A configurable
AND-connector may only be mapped to a regular AND-connector. A configurable
XOR-connector may be mapped to a regular XOR-connector or to a single sequence
SEQn . Interdependencies between configurable EPC nodes can be specified via con-
figuration requirements (logical expressions that define constraints for inter-related
configuration nodes). Configuration guidelines formalize recommendations and best
practices (also in the form of logical expressions) in order to support the config-
uration process semantically. Additional work formalizes C-EPC syntax [362], its
mapping to EPCs [294] and its identification from existing systems [197]. Recently,
configuration of roles and objects has been defined for an extension of EPCs called
iEPCs [357].

2.4 EPC Semantics

In addition to related work on the syntax of EPCs, there are several contributions
towards the formalization of EPC semantics. This section first illustrates the semantic
problems related to the OR-join. We then give a historical overview of semantic
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definitions and provide a formalization for EPCs that is used in this book. We also
present an implementation of these semantics as a ProM plug-in that generates the
reachability graph for a given EPC.

2.4.1 Informal Semantics as a Starting Point

Before discussing EPC formalization problems, we need to establish an informal un-
derstanding of state representation and state changes of an EPCs. A formal definition
is given later. The informal declaration of state concepts helps to discuss formaliza-
tion issues in this section. The state, or marking, of an EPC is defined by assigning
a number of tokens (or process folders) to its arcs.1 The formal semantics of an EPC
define which state changes are possible for a given marking. These state changes
are formalized by a transition relation. A node is called enabled if there are enough
tokens on its incoming arcs that it can fire. That is, a state change defined by a transi-
tion can be applied. This process is also called firing. A firing of a node n consumes
tokens from its input arcs nin and produces tokens at its output arcs nout. The for-
malization of whether an OR-join is enabled is a non-trivial issue since not only the
incoming arcs must be considered. The sequence τ = n1n2...nm is called a firing
sequence if it is possible to execute a sequence of steps; i.e. after firing n1 it is possi-
ble to fire n2, etc. Through a sequence of firings, the EPC moves from one reachable
state to the next. The reachability graph of an EPC represents how states can be
reached from other states. A marking that is not a final marking but from which no
other marking can be reached is called a deadlock. The notion of an initial and a final
marking will be formally defined in Section 2.4.5.

2.4.2 EPC Formalization Problems

We have briefly stated that the OR-join synchronizes all active incoming branches.
This reveals a non-trivial problem: if there is a token on one incoming arc, does the
OR-join have to wait or not? Following the informal semantics of EPCs, it is only
allowed to fire if it is not possible for a token to arrive on the other incoming arcs
(see [325]). In the following subsection, we will show what the formal implications
of these intended semantics are. Before that, we present some example EPCs, the
discussion of which raises some questions that will not be answered immediately.
We will revisit them later on to illustrate the characteristics of different formalization
approaches.

Figure 2.6(a) shows an EPC with an OR-join on a loop. There is a token on arc a2
from function f1 to the OR-join c1. The question is whether c1 can fire. If it could
fire, it would be possible for a token to arrive on arc a9 from f3 to the join. This

1 This state representation based on arcs reflects the formalization of Kindler [216, 217, 218]
and can be related to arcs between tasks in YAWL that are interpreted as implicit conditions
[11]. Other approaches assign tokens to the nodes of an EPC, e.g., [366]. Later, we will
make a distinction between state and marking in our formalization of EPC operational
semantics.
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Figure 2.6. EPCs (a) with one OR-join and (b) with two OR-joins on the loop

would imply that it should wait and not fire. On the other hand, if it must wait, it is
not possible that a token might arrive at a9. Figure 2.6(b) depicts an EPC with two
OR-joins (c3 and c5) on a loop which are both enabled (see [6]). Here the question
is whether both or none of them can fire. Since the situation is symmetrical, it seems
unreasonable that only one of them should be allowed to fire.
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Figure 2.7. EPCs with three OR-joins on the loop
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The situation might be even more complicated, as Figure 2.7 illustrates (refer to
[216, 217, 218]). This EPC includes a loop with three OR-joins: c1, c3, and c5, all of
which are enabled. Following the informal semantics, the first OR-join c1 is allowed
to fire if it is not possible for a token to arrive on arc a21 from the AND-split c6.
In other words, if c1 is allowed to fire, it is possible for a token to arrive on arc a7
that leads to the OR-join c3. Furthermore, the OR-join c5 could eventually fire. The
first OR-join c1 would also have to wait for that token before firing. In short, if c1
could fire, it would have to wait. One can show that this also holds in reverse: if it
could not fire, it would not have to wait. This observation is also true for the two
other OR-joins. In the subsequent section, we will discuss whether this problem can
be resolved.
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Figure 2.8. EPC refined with an OR-Block

Refinement is another issue related to OR-joins. Figure 2.8 shows two versions of
an EPC process model. In Figure 2.8(a) there is a token on a7. The subsequent OR-
join c2 must wait for this token and synchronize it with the second token on a5
before firing. In Figure 2.8(b) the sequence e3-a7-f3 is refined with a block of two
branches between an OR-split c3a and an OR-join c3b. The OR-join c2 is enabled
and should wait for the token on a7f . The question here is whether such a refinement
might change the behavior of the OR-join c1. Figure 2.8 is just one simple example.
The answer to this question may be less obvious if the refinement is introduced in
a loop that already contains an OR-join. Figure 2.9 shows a respective case of an
OR-join c1 on a loop that is refined with an OR-Block c3a-c3b. One would expect
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that the EPC of Figure 2.8(a) exhibits the same behavior as the one in (b). In the
following section, we will discuss these questions from the perspective of different
formalization approaches.

2.4.3 Approaches to EPC Semantics Formalization

The transformation to Petri nets plays an important role in early formalizations of
EPC semantics. In Chen and Scheer [78], the authors define a mapping to colored
Petri nets and address the non-local synchronization behavior of OR-joins. This for-
malization builds on the assumption that an OR-split always matches a correspond-
ing OR-join. The colored token that is propagated from the OR-split to the corre-
sponding OR-join signals which combination of branches is enabled. The authors
also describe the state space of some example EPCs by giving reachability graphs.
However, this first Petri net semantics for EPCs has two obvious weaknesses: a for-
mal algorithm to calculate the state space is missing and the approach is restricted
to EPCs with matching OR-split and OR-join pairs. Therefore, this approach does
not provide semantics for the EPCs shown in figures 2.6 and 2.7. Even though the
approach is not formalized in all its details, it should be able to handle the refined
EPC of Figure 2.8(b) and the inner OR-join c3b in Figure 2.8(b).

The transformation approach by Langner, Schneider, and Wehler [236, 237, 238]
maps EPCs to Boolean nets in order to define formal semantics. Boolean nets are a
variant of colored Petri nets whose token colors are 0 (negative token) and 1 (pos-
itive token). Connectors propagate both negative and positive tokens according to
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their logical type. This mechanism is able to capture the non-local synchroniza-
tion semantics of the OR-join similar to dead-path elimination in workflow systems
(see [247, 248]). The XOR-join only fires if there is one positive token on incom-
ing branches and a negative token on all other incoming branches, otherwise it is
blocked. A drawback of this semantic definition is that the EPC syntax has to be
restricted: arbitrary structures are not allowed. If there is a loop, it must have an
XOR-join as entry point and an XOR-split as exit point. This pair of connectors in
a cyclic structure is mapped to one place in the resulting Boolean net. As a conse-
quence this approach does not provide semantics for the EPCs in Figures 2.6 and 2.7.
Still, it can cope with any pair of matching OR-split and OR-join. The Boolean nets
define the expected semantics of the refined EPC of Figure 2.8(b) and of the inner
OR-Block introduced as a refinement in Figure 2.8(b).

Van der Aalst [4] presents a mapping approach to derive Petri nets from EPCs,
but does not give a mapping rule for OR-connectors because of the semantic prob-
lems illustrated in Section 2.4.2. The mapping provides clear semantics for XOR and
AND-connectors as well as for the OR-split, but since the OR-join is not formalized
the approach does not provide semantics for the EPCs of Figures 2.6 to 2.9. Dehnert
presents an extension of this approach by mapping the OR-join to a Petri net block
[99]. Since the resulting Petri net block may or may not necessarily synchronize
multiple tokens at runtime (a non-deterministic choice), its state space is larger than
the actual state space with synchronization. Based on the so-called relaxed sound-
ness criterion, it is possible to cut away undesirable paths and check whether a join
should be synchronized (see [100]).

In [349, 350] Rittgen discusses the OR-join. He proposes to distinguish between
three types of OR-joins on the syntactic level: every-time, first-come and wait-for-all.
The every-time OR-join reflects XOR-join behavior, the first-come OR-join passes
the first incoming token and blocks afterwards, and the wait-for-all OR-join depends
on a matching split similar to the approach of Chen and Scheer. This proposal could
provide semantics for the example EPCs of Figures 2.6 to 2.9 in the following way. If
we assume every-time semantics, all OR-joins of the example EPCs could fire. While
the loops would not block in this case, there would be no synchronization at all which
contradicts the intended OR-join semantics. If the OR-joins behave according to the
first-come semantics, all OR-joins could fire. There would also be no synchronization
and the loops could be run only once. If the OR-joins had wait-for-all semantics, we
would have the same problems as before with the loops. Altogether, the proposal by
Rittgen does not provide a general solution to the formalization problem.

Building on prior work of Rump [473, 366], Nüttgens and Rump [325] define a
transition relation for EPCs that also addresses the non-local semantics of the OR-
join, but there is a problem: the transition relation for the OR-join refers to itself
under negation. Van der Aalst, Desel, and Kindler [6] show that a fixed point for this
transition relation does not always exist. They present an example to prove the oppo-
site: an EPC with two OR-joins on a circle which wait for each other as depicted in
Figure 2.6(b). This vicious circle is the starting point for the work of Kindler towards
a sound mathematical framework for the definition of non-local semantics for EPCs.
In a series of papers [216, 217, 218], Kindler elaborates on this problem in detail. The
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technical problem is that for the OR-join the transition relation R depends upon itself
in negation. Instead of defining one transition relation, he considers a pair of transi-
tion relations (P, Q) on the state space Σ of an EPC and a monotonously decreasing
function R : 2Σ×N×Σ → 2Σ×N×Σ . A function ϕ((P, Q)) = (R(Q), R(P )) has a
least fixed point and a greatest fixed point. P is called pessimistic transition relation
and Q optimistic transition relation. An EPC is called clean, if P = Q. For most
EPCs this is the case. Some EPCs, such as the vicious circle EPC, are unclean since
the pessimistic and the optimistic semantics do not coincide. Moreover, Cuntz pro-
vides an example of a clean EPC which becomes unclean by refining it with another
clean EPC [87, p.45]. Kindler shows that there are even acyclic EPCs that are un-
clean (see [218, p.38]). Furthermore, Cuntz and Kindler present optimizations for an
efficient calculation of the state space of an EPC and a respective prototype imple-
mentation called EPC Tools [89, 90]. EPC Tools also offers a precise answer to the
questions regarding the behavior of the example EPCs in Figures 2.6 to 2.9.

• Figure 2.6(a): For the EPC with one OR-join on a loop, there is a fixed point and
the connector is allowed to fire.

• Figure 2.6(b): The EPC with two OR-joins on a loop is unclean. Therefore, it is
not clear whether the optimistic or the pessimistic semantics should be consid-
ered.

• Figure 2.7: The EPC with three OR-joins is also unclean (the pessimistic deviates
from the optimistic semantics).

• Figure 2.8(a): The OR-join c2 must wait for the second token on a7.
• Figure 2.8(b): The OR-join c2 must wait for the second token on a7f .
• Figure 2.9(a): The OR-join c1 must wait for the second token on a7.
• Figure 2.9(b): The OR-join c1 is allowed to fire: the second OR-join c2 in the

OR-block must wait.

Even though the approach by Kindler provides semantics for a large subclass of
EPCs (clean EPCs), there are some cases like the EPCs of Figure 2.6(b) and 2.7
that do not have semantics. The theorem by Kindler proves that it is not possible to
calculate these EPCs semantics as long as the transition relation is defined with a self-
reference under negation. Such a semantics definition may imply some unexpected
results. For example, the EPC of Figure 2.9(a) behaves differently than its refinement
in Figure 2.9(b).

While it is argued that unclean EPCs only have theoretical relevance, there actu-
ally are unclean EPCs in practice. Figure 2.10 shows the Test Equipment Manage-
ment EPC from the Quality Management branch of the SAP Reference Model (see
[211]). The marking of this EPC in the figure can be produced by firing the OR-
split on the right-hand side of the EPC. Both XOR-joins are on a loop resulting in
an unclean marking. This illustrates the need in theory and practice to also provide
semantics for EPCs that are unclean, according to Kindler’s definition [218].

Van Hee, Oanea, and Sidorova discuss a formalization of extended EPCs as they
are implemented in the simulation tool of the ARIS Toolset (see [191]) based on
a transition system [172]. This transition system is mapped to colored Petri nets
in order to be verified with CPN Tools (see [198]). The considered EPC extension
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Figure 2.10. Test Equipment Management EPC from the Quality Management branch of the
SAP Reference Model

includes data attributes, time and probabilities which are used for the simulation in
ARIS. The essential idea of this formalization and the ARIS implementation is that
process folders can have timers and that these timers are used at an OR-join for
synchronization purposes.2 If a folder arrives at an OR-join it has to wait until its
timer expires. Since the timers are only reduced if there are no folders to propagate,

2 Note that this general approach can be parameterized in ARIS with respect to sychroniza-
tion and waiting semantics (see [172, p.194]).
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the OR-join can synchronize multiple incoming folders. A problem of this approach
is that once the timer of a folder is expired there is no way to synchronize it once it
has passed the OR-join. If there are several OR-joins used in sequence only the first
one will be synchronized. Therefore this formalization –though elaborate– provides
only a partial solution to the formalization of the OR-join.

Van der Aalst and Ter Hofstede define a workflow language called YAWL [11]
which also offers an OR-join with non-local semantics. As Mendling, Moser, and
Neumann propose transformation semantics for EPCs based on YAWL [274], we
will discuss how the OR-join behavior is formalized in YAWL. In [11], the authors
propose a definition of the transition relation R(P ) with a reference to a second
transition relation P that ignores all OR-joins. Similar semantics that are calculated
on history-logs of the process are proposed by Van Hee, Oanea, Serebrenik, Sidorova,
and Voorhoeve in [171]. The consequence of this definition can be illustrated using
the example EPCs.

• Figure 2.6(a): The single OR-join on the loop can fire.
• Figure 2.6(b): The two OR-joins on the loop can fire.
• Figure 2.7: The three OR-joins on the loop can fire.
• Figure 2.8(a): The OR-join c2 must wait for the second token between e3 and f3.
• Figure 2.8(b): Both OR-joins can fire.
• Figure 2.9(a): The OR-join c1 must wait for the second token between e3 and f3.
• Figure 2.9(b): Both OR-joins can fire.

Kindler notes that each choice for defining P “appears to be arbitrary or ad hoc
in some way” [218] and uses the pair (P, Q) instead. The example EPCs illustrate
that the original YAWL semantics provide for a limited degree of synchronization.
Consider the vicious circle EPC with three OR-joins: all are allowed to fire but, if
one does, the subsequent OR-join has to wait. Furthermore, the refined EPCs exhibit
different behavior from their unrefined counterparts since OR-joins are ignored (they
are considered unable to fire).

Wynn, Edmond, Van der Aalst, and Ter Hofstede point out that the OR-join se-
mantics in YAWL exhibit some non-intuitive behavior when OR-joins depend upon
each other [465]. They present a novel approach based on a mapping to Reset nets.
Whether or not an OR-join can fire (i.e. R(P )), is determined depending on (a)
a corresponding Reset net (i.e. P ) that treats all OR-joins as XOR-joins3, and (b)
a predicate called superM that prevents firing if an OR-join is on a directed path
from another enabled OR-join. In particular, the Reset net is evaluated using back-
ward search techniques that grant coverability to be decidable (see [245, 128]). A
respective verification approach for YAWL nets is presented in [464]. Using these
semantics, the example EPCs behave as follows:

3 In fact, [465] proposes two alternative treatments for the “other OR-joins” when evaluating
an OR-join: treat them either as XOR-joins (optimistic) or as AND-joins (pessimistic).
The authors select the optimistic variant because the XOR-join treatment of other OR-joins
more closely match the informal semantics of the OR-join.
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• Figure 2.6(a): The single OR-join on the loop can fire since superM evaluates to
false and no more tokens can arrive at c1.

• Figure 2.6(b): The two OR-joins are not enabled since superM evaluates to true
because if the respectively other OR-join is replaced by an XOR-join an addi-
tional token may arrive.

• Figure 2.7: The three OR-joins are not enabled because if one OR-join assumes
the other two to be XOR-joins then this OR-join has to wait.

• Figure 2.8(a): The OR-join c2 must wait for the second token on a7.
• Figure 2.8(b): The OR-join c2 must wait for the second token on a7f.
• Figure 2.9(a): The OR-join c1 must wait for the token on a7.
• Figure 2.9(b): The OR-join c1 must wait because if c3b is assumed to be an XOR-

join a token may arrive via a3. The OR-join c3b must also wait because if c1 is
an XOR-join another token may move to a7c. Therefore, there is a deadlock.

The novel approach based on Reset nets provides interesting semantics but in some
cases also leads to deadlocks.

Mendling and Van der Aalst introduce a semantics definition based on state and
context [266, 268]. Both are assignments on the arcs. While the state uses similar
concepts as Langner, Schneider, and Wehler (positive and negative tokens), the con-
text captures whether a positive token can be expected in the future or not. Context
is considered for the firing of the OR-join. This semantics definition implies that the
examples of Section 2.4 behave as follows:

• Figure 2.6(a): The single OR-join on the loop produces a wait context at a9.
Therefore, it is blocked.

• Figure 2.6(b): The two OR-joins produce a wait context at a23 and a24. There-
fore, they are both blocked.

• Figure 2.7: The three OR-joins are blocked due to a wait context at a7, a14, and
a21.

• Figure 2.8(a): The OR-join c2 must wait for the second token on a7.
• Figure 2.8(b): The OR-join c2 must wait for the second token on a7f.
• Figure 2.9(a): The OR-join c1 must wait for the token on a7.
• Figure 2.9(b): The OR-join c1 must wait for the token on a7. The OR-split c3a

produces a negative token on a7c so that c3b can fire.

It can be seen that the refined EPCs exhibit the expected behavior similar to the
unrefined cases (the OR-join in the structured block does not deadlock). If there is an
OR-join as an entry point to a loop it will deadlock if there is not a second XOR-entry
that can propagate a token into this loop.

Table 2.3 summarizes existing work on the formalization of the OR-join. Several
early approaches define syntactical restrictions, such as OR-splits to match corre-
sponding OR-joins or models to be acyclic (see [78, 238, 349]). Newer approaches
impose little or even no restrictions (see [218, 11, 464]), but exhibit unexpected be-
havior for OR-block refinements on loops with further OR-joins on it. The solution
based on Reset nets seems to be promising from the intuition of its behavior yet it
requires extensive calculation effort since it depends upon backward search to decide
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Table 2.3. Overview of EPC semantics and their limitations

OR-join semantics Limitations
[78] OR-join must match OR-split
[238] Joins as loop entry undefined
[349] every-time missing synchronization
[349] first-come OR-join can block
[349] wait-for-all OR-join as loop entry undefined
[218] EPC can be unclean
[172] folders with expired timers do not synchronize
[11] limited synchronization
[464] OR-join may block
[266] OR-join loop entries block

coverability. Note that reachability is undecidable for reset nets illustrating the com-
putational complexity of the OR-join in the presence of advanced routing constructs.
The state-context semantics partially resolve these problems because OR-joins can-
not be used anymore as single loop entries [266]. In the following subsection, we
provide further details on the state-context semantics. Since OR-join decisions can
be taken with local knowledge, we will consider these semantics later for verification
purposes.

2.4.4 EPC Semantics Based on State and Context

In this subsection, we introduce a novel concept for EPC semantics.4 The formal-
ization of this concept follows in the subsequent section. The principal idea of these
semantics borrows some concepts from Langner, Schneider, and Wehler [238] and
adapts the idea of Boolean nets with true and false tokens in an appropriate manner.
The transition relations depend on the state and the context of an EPC. The state of an
EPC is defined as an assignment of positive and negative tokens to the arcs. Positive
tokens signal which functions have to be carried out in the process while negative to-
kens indicate which functions are to be ignored for the moment. The transition rules
of AND-connector and OR-connectors are adopted from the Boolean nets formal-
ization which facilitates synchronization of OR-joins in structured blocks. In order
to allow for a more flexible utilization of XOR-connectors in a cyclic structure, we
have modify and extended the approach of Boolean nets in three ways:

1. XOR-splits produce one positive token on one of their their output arcs but no
negative tokens. XOR-joins fire each time there is a positive token on an in-
coming arc. This mechanism provides the expected behavior in both structured

4 An earlier version of these semantics is described in [267]. Essentially, this version is differ-
ent in two ways: (1) Dead context is propagated already if only one input is dead. Without
that, XOR-loops could not be marked dead. (2) We introduce a concept to clean up negative
tokens that could not be forwarded to an OR-join (see negative upper corona in phase 4 for
positive token propagation).
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XOR-loops and structured XOR-blocks where an XOR-split matches an XOR-
join.

2. In order to signal to the OR-joins that it is not possible to have a positive token
on an incoming branch, we define the context of an EPC. The context assigns a
status of wait or dead to each arc of an EPC. A wait context indicates that it is
still possible that a positive token might arrive and a dead context status means
that either a negative token will arrive next or no positive token can arrive any-
more. For example, XOR-splits produce a dead context on those output branches
that are not taken and a wait context on the output branch that receives a positive
token. A dead context at an input arc is then used by an OR-join to determine
whether it has to synchronize with further positive tokens or not. Since dead and
wait context might be conflicting and thus have to alternate, both context and
state are propagated in separate phases to guarantee termination.

3. The propagation of context status and state tokens is arranged in a four phase
cycle: (a) dead context, (b) wait context, (c) negative token and (d) positive token
propagation.

a) In this phase, all dead context information is propagated in the EPC until no
new dead context can be derived.

b) All wait context information is propagated until no new wait context can be
derived. It is necessary to have two phases (first the dead context propagation
and then the wait context propagation) in order to avoid infinite cycles of
context changes (details below).

c) All negative tokens are propagated until no negative token can be propagated
anymore. This phase cannot run into an endless loop (details below).

d) One of the enabled nodes is selected and propagates positive tokens leading
to a new iteration of the four phase cycle.

We will now give an example to illustrate the behavior of the EPC semantics before
defining state, context, and each transition phase in detail.

Revisiting the Cyclic EPC Refined with an OR-Block

Figure 2.11 revisits the example of the cyclic EPC refined with an OR-block that we
introduced as Figure 2.9 in Section 2.4.2.

In Figure 2.11(a) an initial marking with two positive tokens on a1 and a11 is
given. These positive tokens induce a wait context on all arcs which implies that all
of them might potentially receive a positive token at some point in time. The context
status is indicated by a letter next to the arc: w for wait and d for dead. Subsequently,
the positive tokens can be propagated to the arcs a2 and a12 respectively and the
context of a1 and a11 changes to dead. In this situation, the OR-join c1 is not al-
lowed to fire due to the wait context on arc a3 but has to synchronize with positive
and negative tokens that might arrive there. The XOR-join is allowed to fire with-
out considering the second arc a10. In (b) the OR-split c3a has fired (following the
execution of c3) and produces a positive token on a7a and a negative token on a7d.
Accordingly, the context of a7d is changed to dead. This dead context is propagated
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Figure 2.11. Example of EPC marking propagation
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down to arc a7f . The rest of the context remains unchanged. The state shown in (b)
is followed by (c) where the positive and the negative tokens are synchronized at the
connector c3b and one positive token is produced on the output arc a8. Please note
that the OR-join c3b does not synchronize with the other OR-join c1 that is on the
loop. In the Kindler and the Reset nets semantics, c3b would have to wait for the
token from a2. Here, the wait context propagation is blocked by the negative token.
In (d) the XOR-split c2 produces a positive token on a9 and a dead context on a5.
This dead context is propagated via a3 to the rest of the loop in the dead context
propagation phase. In the wait context propagation phase, the dead context of the
loop is reset to wait, which is propagated from c1. As a consequence, the OR-join c1
is not enabled.

This example allows us to make two observations. First, the context propagation
blocks OR-joins that are entry points to a loop in a wait position since the self-
reference is not resolved, and second, the XOR-split produces a dead context but
not a negative token. The disadvantage of producing negative tokens would be that
the EPC is flooded with negative tokens if an XOR-split was used as an exit of a
loop. These tokens would give downstream joins the wrong information about the
state of the loop since it would still be live. An OR-join could then synchronize with
a negative token while a positive token is still in the loop. In contrast, the XOR-
split as a loop exit produces a dead context. Since there is a positive token in the
loop, it overwrites the dead context at the exit in the wait context propagation phase.
Downstream OR-joins then have the correct information that there are still tokens to
wait for.

Definition of State, Context and Marking

We define both state and context as an assignment to the arcs. The term marking
refers to state and context together. The EPC transition relations defines which state
and/or context changes are allowed for a given marking in a given phase.

Definition 2.12 (State and Context). Let EPC = (E, F, C, l, A) be a standard
EPC. Then, a mapping σ : A → {−1, 0, +1} is called a state of an EPC. The
positive token captures the state as it is observed from outside the process. It is
represented by a black filled circle. The negative token depicted by a white open circle
with a minus on it has a similar semantics as the negative token in the Boolean nets
formalization. Arcs with no state tokens on them do not depict a circle. Furthermore,
a mapping κ : A → {wait, dead} is called a context of an EPC. A wait context is
represented by a w and a dead context by a d next to the arc.

In contrast to Petri nets, we distinguish the terms marking and state: the term marking
refers to state σ and context κ collectively.

Definition 2.13 (Marking of an EPC). Let EPC = (E, F, C, l, A) be a EPC. Then,
the set of all markings MEPC of an EPC is called marking space with MEPC ⊆
A → ({−1, 0, +1} × {wait, dead}). A mapping m ∈ MEPC is called a marking.
Note that m ∈ MEPC defines the two mappings presented above, i.e., m(a) =
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(σ(a), κ(a)). The projection of a given marking m to a subset of arcs S ⊆ A is
referred to as mS .

The marking ma of an arc a can be written as ma = (κ(a), σ(a)) · a, for example
(w, 1)a for an arc with a wait context and a positive token. If we refer to the κ- or
the σ-part of m, we write κm and σm, respectively, that is m(a) = (σm(a), κm(a)).

Phase 1: Dead Context Propagation

The transition relation for dead context propagation defines rules for deriving a dead
context if one input arc of a node has a dead context status. Note that this rule might
result in arcs having a dead context that could still receive a positive token. Those
arcs are reset to a wait context in the subsequent phase of wait context propagation
(Phase 2).

Figure 2.12 gives an illustration of the transition relation. Please note that the
figure does not depict the fact that the rules for dead context propagation can only
be applied if the respective output arc does not hold a positive or a negative token.
Concrete tokens override context information. For instance, an arc with a positive
token will always have a wait context. Rules (a) and (b) indicate that if an input
arc of a function or an event is dead then the output also arc has to have a dead
context status. Rule (c) means that each split-connector propagates a dead context to
its output arcs. These transition relations formalize the observation that if an input
arc cannot receive a token anymore, this also holds true for its output arcs (unless
they already hold positive or negative tokens). The join-connectors require only one
dead context status at their input arcs for reproducing it at their output arc (see (d) ).
It is important to note that a dead context is propagated until there is an end arc or an
arc that carries a token.

Phase 2: Wait Context Propagation

The transition relation for wait context propagation defines rules for deriving a wait
context if one or more input arcs of a node have a wait context status. Figure 2.12
gives an illustration of the transition relation. All transitions can only be applied if the
respective output arc does not hold a positive or a negative token. Concrete tokens
override context information (an arc with a positive token will always have a wait
context). Rules (a) and (b) show that if an input arc of a function or an event has a
wait context, then the output arc also has to have a wait context status. Rule (c) means
that each split-connector propagates a wait context to its output arcs. The AND-join
requires all inputs to have a wait context status in order to reproduce it at its output
arc (see (d) ). XOR- and OR-joins propagate a wait context if one of their input arcs
has a wait context (see (e) and (f) ). Similar to the dead context propagation, the
wait context is propagated until an end node is received or until an arc holds a token.
The wait context is propagated by an AND-join where all of the inputs have a wait
context.
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Phase 3: Negative Token Propagation

Negative tokens can result from branches that are not executed after OR-joins or start
events. The transition relation for negative token propagation includes four firing
rules that consume and produce negative tokens. Furthermore, the output arcs are
set to a dead context. Figure 2.12 gives an illustration of the transition relation. All
transitions can only be applied if all input arcs hold negative tokens and if there is
no positive token on the output arc. In the following section, we will show that this
phase terminates.

Phase 4: Positive Token Propagation

The transition relation for positive token propagation specifies firing rules that con-
sume negative and positive tokens from the input arcs of a node to produce positive
tokens on its output arcs. Figure 2.12 gives a respective illustration. Rules (a) and (b)
show that functions and events consume positive tokens from the input arc and prop-
agate them to the output arc. Furthermore, and this holds true for all rules, consuming
a positive token from an arc implies setting this arc to a dead context status. Rules
(c) and (d) illustrate that AND-splits consume one positive token and produce one
on each output arc while AND-joins synchronize positive tokens on all input arcs to
produce one on the output arc. Rule (e) depicts the fact that XOR-splits forward pos-
itive tokens to one of their output arcs. In contrast to the Boolean net formalization,
they do not produce negative tokens but a dead context on the output arcs which do
not receive the token. Correspondingly, XOR-joins (f) propagate each incoming pos-
itive token to the output arc, no matter what the context or the state of the other input
arcs is. If there are negative tokens on the incoming arcs, they are consumed. The
OR-split (g) produces positive tokens on those output arcs that have to be executed
and negative tokens on those that are ignored. Note that the OR-join is the only con-
struct that may introduce negative tokens (apart from start events that hold a negative
token in the initial marking). Rule (h) shows that on OR-join can only fire either if
it has full information about the state of its input arcs (each input has a positive or
a negative token) or all arcs that do not hold a token are in a dead context. Finally,
in all rules each output arc that receives a negative token is set to a dead context and
each that gets a positive token is set to a wait context.

The transition relations of state propagation permit the observation that the EPC
semantics are safe: it is not possible to have more than one token on an arc. This
property is enforced by the definition of state since it is a mapping from the arcs
to the set of -1,0, and +1. The state propagation rules also guarantee safeness since
a node can fire only if all its outputs are empty. Due to the safeness property, we
already know that the state space is finite since also the number of arcs is finite for
an EPC. Another observation is that there are several state and context propagations
that are not interesting to the user of the model. The following section will, therefore,
make a distinction between the transition relation of an EPC that covers all state
and context changes and the reachability graph that only covers the propagation of
positive tokens and hides context and negative token propagation.
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2.4.5 Reachability Graph of EPCs

In this section, we formalize the concepts that were introduced in the previous sec-
tion. In particular, we define the reachability graph of EPCs based on markings (state
and context mappings σ and κ collectively). The reachability graph hides the tran-
sitions of the context propagation and negative token propagation phases. These are
defined in the Appendix A. We first provide definitions for marking, initial marking
and final marking. We then define the reachability graph RG based on the transi-
tion relations and an algorithm to calculate RG. Please note that all definitions are
applicable for relaxed syntactically correct EPCs (see Definition 2.8 on page 25).

Definition of Initial and Final Marking

In this paragraph, we define the sets of the initial and the final markings of an EPC
similar to the definition in Rump [366]. An initial marking is an assignment of pos-
itive or negative tokens to all start arcs while all other arcs have no token. Only end
arcs may hold positive tokens in a final marking.

Definition 2.14 (Initial Marking of an EPC). Let EPC = (E, F, C, l, A) be a
relaxed syntactically correct EPC and MEPC its marking space. IEPC ⊆ MEPC is
defined as the set of all possible initial markings, i.e. m ∈ IEPC if and only if 5:

• ∃as ∈ As : σm(as) = +1,
• ∀as ∈ As: σm(as) ∈ {−1, +1},
• ∀as ∈ As: κm(as) = wait if σm(as) = +1 and

κm(as) = dead if σm(as) = −1, and
• ∀a ∈ Aint ∪ Ae : κm(a) = wait and σm(a) = 0.

While this definition contains enough information for verification purposes (by the
bundling of start and end events with OR-connectors as proposed in [274], for exam-
ple) it does not provide executable semantics according to the original definition of
EPCs. As pointed out in [349], it is not possible to equate the triggering of a single
start event with the instantiation of a new process. This is because EPC start events
do not only capture the creation of a process instance but also external events that
influence the execution of a running EPC (see [78]). This observation suggests an
interactive validation approach as presented by [109] where the user makes explicit
assumptions about potential combinations of start events. Here we assume that in the
initial marking all start arcs as ∈ As have either a positive or a negative token with
the matching context6.

5 Note that the marking is given in terms of arcs. Intuitively, one can think of start events
holding positive or negative tokens. However, the corresponding arc will formally represent
this token.

6 The context of non-start arcs is derived when the four propagation phases are entered the
first time. We choose to initialize all non-start arcs with a wait context (cf. Figure 2.11).
Note that this context might be changed in the dead context propagation phase before any
token is moved.
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Definition 2.15 (Final Marking of an EPC). Let EPC = (E, F, C, l, A) be a re-
laxed syntactically correct EPC and MEPC its marking space. OEPC ⊆ MEPC is
defined as the set of all possible final markings, i.e. m ∈ OEPC if and only if:

• ∃ae ∈ Ae: σm(ae) = +1 and κm(ae) = wait and
• ∀a ∈ As ∪ Aint : σm(a) ≤ 0 and κm(a) = dead.
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Figure 2.13. Initial and final marking of an EPC

Initial and final markings are the start and end points for calculating the transition
relation of an EPC. Figure 2.13(a) illustrates one particular initial marking i ∈ I
which assigns a positive token to the left start arc and a negative token to the right
start arc. The OR-join synchronizes both these tokens and may produce (after some
steps) the marking that is depicted in Figure 2.13(b). There the left branch of the
XOR-split has been taken which results in positive tokens on the end arcs after the
AND-split and a dead context on the right end arc.

Calculating the Reachability Graph for EPCs

In this section, we define the reachability graph of an EPC and present an algo-
rithm to calculate it. This algorithm builds on the transition relations Rd, Rw, R−1,
and R+1 for each of the four phases. For a marking m, we refer to the result-
ing markings after completing the propagations of each of the first three phases as
m

max→
d

md
max→

w
mw

max→
−1

m−1, respectively. Furthermore, if a marking m+1 can

be produced from m by applying the propagations of the fourth phase we write
m

n→
+1

m+1. The corresponding definitions A.1 to A.8 are included in the Ap-

pendix A. Using these transition relations, we formalize the concept of reachability
related to an EPC.

Definition 2.16 (Reachability related to an EPC). Let EPC = (E, F, C, l, A) be
a relaxed syntactically correct EPC, N = E ∪ F ∪ C its set of nodes, and MEPC

its marking space. Then, a marking m′ ∈ MEPC is called reachable from another
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marking m if and only if ∃n ∈ N ∧ md, mw, m−1 ∈ MEPC : m
max→

d
md

max→
w

mw
max→
−1

m−1
n→
+1

m. Furthermore, we define the following notations:

• m
n→ m′ if and only if m′ is reachable from m.

• m → m′ ⇔ ∃n ∈ N : m
n→ m′.

• m
τ→ m′ if and only if ∃n1,...,nq,m1,...,mq+1 : τ = n1n2...nq ∈ N ∗ ∧

m1 = m ∧ mq+1 = m′ ∧ m1
n1→ m2, m2

n2→ ...
nq→ mq+1.

• m1
∗→ mq ⇔ ∃τ : m1

τ→ mq.

Definition 2.17 (Reachability Graph of an EPC). Let EPC = (E, F, C, l, A) be
a relaxed syntactically correct EPC, N = E ∪ F ∪ C its set of nodes,

n→ the one-
step reachability relation, MEPC its marking space, and IEPC ⊆ MEPC the set of
all possible initial markings. The reachability graph of EPC is the graph RG =
(V, W ) consisting of a set of vertices V = IEPC ∪{m′ ∈ MEPC | ∃m∈IEP C : m

∗→
m′} and labeled edges W = {(m, n, m′) ∈ V × N × V | m n→ m′}.

The calculation of RG requires an EPC as input and a set of initial markings
I ⊆ IEPC . For several EPCs from practice, such a set of initial markings will
not be available. In this case, one can easily calculate the set of all possible ini-
tial markings. Algorithm 1 uses an object-oriented pseudo code notation to de-
fine the calculation. In particular, we assume that RG is an instance of the class
ReachabilityGraph, propagated an instance of class Set, and toBePropagated
an instance of class Stack that provides the methods pop() and push(). Fur-
thermore, currentMarking, oldMarking and newMarking are instances of
class Marking that provides the methods clone() to return a new, but equivalent
marking, propagateDeadContext(EPC), propagateWaitContext(EPC) and
propagateNegativeTokens(EPC) to change the marking according to the transi-
tions of the respective phase (to determine maxd, maxw, and max−1 of the current
marking). Finally, the method propagatePositiveT okens(EPC) returns a set of
(node,marking) pairs including the node that can fire and the marking that is reached
after the firing.

In lines 1-3, the sets RG and propagated are initialized with the empty set and
the stack object toBePropagated is filled with all initial markings of the set IEPC .
The while loop between lines 4-18 calculates new markings for the marking that is
on top of the stack toBePropagated. In particular, currentMarking receives the
top marking from the stack (line 5) and it is cloned into the oldMarking object (line
6). In lines 7-9, the propagations of dead and wait context and of negative tokens are
applied on currentMarking. In line 10, the pairs of nodes and new markings that
can be reached from the old marking are stored in the set nodeNewMarking. After
that the old marking is added to the propagated set (line 11). In lines 12-17, a new
transition (oldMarking, node, newMarking) is added to RG for each pair of node
and new marking. If a new marking has not yet been propagated, it is pushed on top
of the toBePropagated stack (lines 14-16). Using a stack, the reachability graph is
calculated in a depth-first manner. Finally in line 19, RG is returned.
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Algorithm 1 Pseudo code for calculating the reachability graph of an EPC
Require: EPC = (E, F, C, l, A), I ⊆M
1: RG← ∅
2: toBePropagated← IEPC

3: propagated← ∅
4: while toBePropagated �= ∅ do
5: currentMarking ← toBePropagated.pop()
6: oldMarking ← currentMarking.clone()
7: currentMarking.propagateDeadContext(EPC)
8: currentMarking.propagateWaitContext(EPC)
9: currentMarking.propagateNegativeTokens(EPC)

10: nodeNewMarking ← currentMarking.propagatePositiveTokens(EPC)
11: propagated.add(oldMarking)
12: for all (node, newMarking) ∈ nodeNewMarkings do
13: RG.add(oldMarking, node, newMarking)
14: if newMarking /∈ propagated then
15: toBePropagated.push(newMarking)
16: end if
17: end for
18: end while
19: return RG

2.4.6 Tool Support for EPC Semantics

There is some tool support for different versions of EPC semantics: most notably
EPC Tools [90] and ARIS Simulator [191, 172]. Based on the previous algorithm,
we have implemented the EPC semantics based on state and context as a conver-
sion plug-in for the ProM (Process Mining) framework [111, 444, 41]. ProM was
originally developed as a tool for process mining, a domain that aims at extracting
information from event logs to capture the business process as it is being executed
(see [8, 19, 83, 144, 179]). In the meantime, the functionality of ProM was extended
to include other types of analysis, model conversions, model comparison, etc. This
was enabled by the plug-able architecture of ProM, which allows to add new func-
tionality without changing the framework itself and the fact that ProM supports mul-
tiple modeling languages. Since ProM can interact with a variety of existing systems,
e.g. workflow management systems such as Staffware, Oracle BPEL, Eastman Work-
flow, WebSphere, InConcert, FLOWer, Caramba and YAWL, simulation tools such
as ARIS, EPC Tools, Yasper and CPN Tools, ERP systems like PeopleSoft and SAP,
analysis tools such as AGNA, NetMiner, Viscovery, AlphaMiner and ARIS PPM
(see [41]), the plug-in for the new EPC semantics can easily be used for the analysis
of existing models. There are currently more than 150 plug-ins in release 4.1. ProM
basically supports five kinds of plug-ins:

Mining plug-ins to take a log and produce a model,
Import plug-ins to import a model from file and possibly use a log to identify the

relevant objects in the model,
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Figure 2.14. Calculating the reachability graph in ProM

Export plug-ins to export a model to file.
Conversion plug-ins to convert one model into another.
Analysis plug-ins to analyze a model, potentially in combination with a log.

The conversion plug-in maps an EPC to the transition systems package (see [18,
365]) that was developed for an implementation of the incremental workflow mining
approach by Kindler, Rubin, and Schäfer [219, 220, 221]. Figure 2.14 illustrates how
the conversion plug-in works. First, one has to load an EPC business process model
into ProM (by using the import plug-in for the ARIS XML format [192] or for the
EPC Markup Language [291], for instance). In the figure, the EPC example model
for a loan request process that we introduced in the beginning of this chapter is
loaded. Since ProM generates a new layout automatically, the model looks different
compared to the previous figure. Once the EPC is displayed in ProM, one can click
on it, trigger the conversion plug-in “EPC to State/Context Transition System” and
the reachability graph is calculated and shown in a new ProM window. The dense
network of states and transitions on the right-hand side stems from the concurrent
execution if there is both a positive risk assessment for the loan request and the
requester is a new customer. There are two markings that do not serve as a source for
another transition in case if the request is rejected or accepted. Both these markings
are displayed with a green border since they are proper final markings. If they were
deadlocks they would be drawn with a red border.
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Figure 2.15. A Petri net that is bisimilar to the Loan Request EPC
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One of the nice features of the transition system package is that it provides an
export to the file format of Petrify. Petrify is a software tool developed by Cortadella,
Kishinevsky, Lavagno, and Yakovlev [86, 85] that can not only generate the state
space for a Petri net but also a Petri net from a transition system. The concepts of
this Petri net synthesis builds on the theory of regions by Ehrenfeucht and Rozenberg
[116, 36]. Running Petrify with the reachability graph of the Loan Request example
EPC of Figure 2.1 generates a free-choice Petri net as shown in Figure 2.15. It is
interesting to see how the OR-join or16 is treated in the Petri net synthesis as it
requires a token at each of the two input places before it can fire. If both the positive
risk assessment and the requester is new client branch are executed, the OR-join
synchronizes these paths via its two input places. If only the positive risk assessment
branch is executed, the required tokens are produced by xor3. The decision point
xor11 is the same as in the EPC model. It can be seen that each alternative of an
XOR-split becomes a transition of its own (see xor10 and xor10. 1 or xor11 and
xor11. 1) while the AND-split and13 remains one transition in the Petri net. The
generation of a reachability graph for an EPC and the synthesis of a Petri net could
be an important step to bring EPCs and Petri nets closer together. Such a procedure
could be a way to get rid of OR-joins for a Petri net implementation that has been
modelled with EPCs in the design phase.

Another useful application related to the ProM plug-in is the possibility to export
to the FSM format via the Petri net analysis plug-in in ProM. This format can be
loaded into the visualization tool FSMTool by Groote and Van Ham [163, 149, 150].
FSMTool provides sophisticated interactive and customizable visualization of large
state transition systems. The general visualization principle of FSMTool is to project

Figure 2.16. A visualization of the state
space of the Loan Request Petri net

Figure 2.17. Another visualization of the
Loan Request state space
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the state space on levels of a backbone in such a way that structural symmetry can
easily be seen. The Figures 2.16 and 2.17 visualize the state space of the Loan Re-
quest Petri net that was generated by Petrify as a three-dimensional backbone. The
two decision points of this process are represented as cones in the upper part of the
backbone. Each of these decision points splits off a new branch of execution that is
visualized as a separate arm. On the first arm for negative risk assessment there is
a green line in Figure 2.16 (in Figure 2.17 it is blue) that represents an iteration of
the loop. The other green lines highlight the activation of a node that is closer to the
start node than the node that had control before. The thick pillar of the backbone rep-
resents the parallel execution after the AND-split. Overall, the FSMTool is a useful
addition to the ProM plug-ins for understanding the complexity of the state space.
Certain information about function labels is not present, however, and there is no
direct connection to the process model.

This shortcoming is the motivation of the work by Verbeek, Pretorius, Van der
Aalst, and Van Wijk [445] on a two-dimensional projection of state spaces as an ex-
tension to the Diagraphica tool of Pretorius and Van Wijk [339, 340]. Diagraphica
can also load FSM files and in addition the diagram of a Petri net. Figure 2.18 shows
that Diagraphica uses an attribute clustering technique where, in this case, the at-
tributes are related to the places of the Petri net. As Figure 2.19 shows, there may be
multiple places in a cluster depending on the selections of the user. Transitions are
represented as arcs. This figure permits an interesting observation. Below the diag-
onal line of yellow clusters, the clustering hierarchy does not branch anymore. This
means that in the selected places, only one can be marked simultaneously (see [445,
p.16]). Further interpretations of different clustering patterns are discussed in [445].

Figure 2.18. Visualization of the Petri net
and the state space in DiaGraphica

Figure 2.19. Clustering of places for the
same state space in DiaGraphica
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Based on the implementation of the reachability graph calculation in ProM, we
can relate the novel EPC semantics to several other tools and approaches for anal-
ysis, synthesis, and visualization of process models and state spaces. In this way,
researchers can easily benefit from the EPC semantics and analyze its relationship to
other formalisms.

2.5 EPCs and Other Process Modeling Languages

In this section, we provide a comparison of EPCs with other business process mod-
eling languages. The selection includes Workflow nets [2], UML Activity Diagrams
(UML AD) [330], BPMN [328] and YAWL [11] and is meant to illustrate differences
and commonalities without going into mapping details. We first discuss whether
these other process modeling languages offer elements similar to the different EPC
connectors. After that, we utilize the workflow patterns documented in [12] to com-
pare the languages. BPEL [91, 26, 24], which is also receiving increasing attention as
a standard, is not included here since it addresses the execution rather than the con-
ceptual modeling of processes. For further details on the relationship between EPCs
and BPEL refer to [302, 470, 303, 271, 273, 272]. For a workflow pattern analysis of
BPEL see [458]. The XPDL standard [462, 463] has also gained some support in the
industry for the definition of executable workflow process. A workflow pattern anal-
ysis of XPDL is reported in [1]. Other approaches for comparing process modeling
languages are reported in [411, 364, 53, 310, 252].

2.5.1 Comparison Based on Routing Elements

The six different connectors of EPCs (XOR-split and XOR-join, AND-split and
AND-join, OR-split and OR-join) provide the means to model complex routing and
ordering between activities of a business process. Table 2.4 uses these routing el-
ements as a benchmark to compare EPCs with other business process modeling
languages. It shows that the behavioral semantics of XOR-connectors and AND-
connectors, as well as OR-split connectors, can be represented in most of the con-
sidered languages. In Workflow nets XOR-connectors and AND-connectors are cap-
tured by places and transitions with multiple input and output arcs, respectively. OR-
split behavior can be specified as a complex subnet that determines each possible
combination of inputs. OR-join behavior cannot be modelled directly but a relaxed
soundness analysis is possible. In UML AD the XOR-split maps to a Decision, the
XOR-join to a Merge, the AND-split to a Fork, the AND-Join to a Join and the OR-
split to a Fork with guards on its output arcs. OR-joins cannot be represented in UML
AD directly. In BPMN routing elements are called gateways, and each EPC connec-
tor can be transformed to a respective gateway. In YAWL, there are also similar splits
and joins matching the behavior of the EPC connectors.
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Table 2.4. EPC routing elements and equivalent elements in other business process modeling
languages

EPC Workflow nets UML AD BPMN YAWL
XOR-split multi-out place Decision XOR-gateway XOR-split task
XOR-join multi-in place Merge XOR-gateway XOR-join task
AND-split multi-out transition Fork AND-gateway AND-split task
AND-join multi-in transition Join AND-gateway AND-join task
OR-split complex subnet Fork OR-gateway OR-split task
OR-join - - OR-gateway OR-join task

2.5.2 Comparison Based on Workflow Patterns

Motivated by the heterogeneity of workflow languages and products, Van der Aalst,
Ter Hofstede, Kiepuszewski and Barros have gathered a set of 20 workflow patterns
[12]. These patterns can be utilized to clarify semantics or to serve as a benchmark.
Table 2.5 illustrates the result of several workflow pattern analyses of EPCs [279],
Workflow nets [11], UML AD [459], BPMN [460] and YAWL [11]. It can be seen
that EPCs support the basic control flow patterns multiple choice and synchronizing
merge. These patterns can be directly represented with the different EPC connectors.
EPCs also permit arbitrary cycles and offer implicit termination. Multiple instances
with apriori design time knowledge can be modelled by an AND-block with as many
instances as required of the same activity in parallel. The yEPC extension provides
support for all patterns.

In contrast to EPCs, Workflow nets support the state-based patterns but perform
weak when it comes to advanced branching and synchronization patterns. UML AD
cover several patterns missing only the synchronizing merge, multiple instances with-
out apriori runtime knowledge and two state-based patterns. BPMN performs even
better since it supports the synchronizing merge, but only in a structured block. As
YAWL was defined to provide a straight-forward support for the workflow patterns, it
is no surprise that it has the best score. The implicit termination pattern is not sup-
ported in order to force the designer to make the completion condition explicit. The
comparison reveals that the patterns supported by EPCs are, in most cases, also sup-
ported by the other languages. Because of this large overlap several of the findings
that are elaborated throughout the remainder of this book can be more or less directly
applied to the other languages, YAWL in particular.

2.6 Summary

In this chapter, we gathered state of the art work on EPCs. Building on the founda-
tions of prior work, we established a syntax definition and a semantics definition for
EPCs. In particular, we focused on transition relations that are defined based on both
state and context changes. We presented an algorithm to calculate the reachability
graph of an EPC that builds on the the transition relations described in Appendix A
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Table 2.5. Workflow pattern support of EPCs and other business process modeling languages

Workflow Pattern EPC Wf. nets UML AD BPMN YAWL
Basic Control Flow Patterns
1. Sequence + + + + +
2. Parallel Split + + + + +
3. Synchronization + + + + +
4. Exclusive Choice + + + + +
5. Simple Merge + + + + +
Advanced Branching and
Synchronization Patterns
6. Multiple Choice + + + + +
7. Synchronizing Merge + - - +/- +
8. Multi Merge - + + + +
9. Discriminator - - + +/- +
Structural Patterns
10. Arbitrary Cycles + + + + +
11. Implicit Termination + - + + -
Patterns involving
Multiple Instantiation (MI)
12. MI without

Synchronization - + + + +
13. MI with apriori

Design Time Knowledge + + + + +
14. MI with apriori

Runtime Knowledge - - + + +
15. MI without apriori

Runtime Knowledge - - - - +
State-based Patterns
16. Deferred Choice - + + + +
17. Interl. Parallel Routing - + - +/- +
18. Milestone - + - - +
Cancellation Patterns
19. Cancel Activity - +/- + + +
20. Cancel Case - - + + +

and a respective implementation as a plug-in for ProM. The major motivations for
using the state-context semantics are semantic gaps and non-intuitive behavior of ex-
isting formalizations. The comparison to other business process modeling languages
revealed that EPCs share their routing elements with several other process modeling
languages. The findings that are elaborated throughout the remainder of this book
can, therefore, be adapted to these languages in future research.
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Verification of EPC Soundness

The aim of this book is to evaluate the power of metrics for predicting errors in busi-
ness process models. In order to do so, we need to establish a clear and unambiguous
understanding of which EPC business process model is correct and how it can be
verify. This chapter presents verification techniques that can be applied to identify
errors in EPCs with a focus on reachability graph analysis and reduction rules. Other
verification techniques such as calculating invariants (see [313, 440]), reasoning (see
[337, 112]) or model integration (see [403]) will not be considered.

In this chapter we will define a notion of EPC soundness for business process
models (Section 3.1) and demonstrate how an analysis of the reachability graph can
be applied to verify soundness of an EPC (Section 3.2). We then present a method of
implementing the analysis as an extension of the EPC to Transition System plug-in
for ProM. Since this verification approach suffers from the “state explosion” prob-
lem, we turn to an optimization based on a set of reduction rules (Section 3.3). For
this approach we present the implementation as a batch program called xoEPC and
show the results of reducing the SAP Reference model. Section 3.4 summarizes the
chapter.

3.1 Soundness of EPCs

This section discusses existing correctness criteria for business process models (Sec-
tion 3.1.1) and proposes a novel soundness notion that directly relates to multiple
start and end events of EPCs (Section 3.1.2). Section 3.2 shows how the reachability
graph can be utilized for the verification of EPC soundness.

3.1.1 Correctness Criteria for Business Process Models

Soundness, first introduced by Van der Aalst in [2], is an important correctness cri-
terion for business process models. The original soundness property is defined for a
Workflow net: a Petri net with one source and one sink that must satisfy the following
requirements: (i) for every state reachable from the source, there must exist a firing

J. Mendling: Metrics for Process Models, LNBIP 6, pp. 59–102, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Figure 3.1. A relaxed sound EPC with structural problems

sequence to the sink (option to complete); (ii) the state with a token in the sink is the
only state reachable from the initial state with at least one token in it (proper comple-
tion); and (iii) there are no dead transitions [2]. Van der Aalst shows that soundness
of a Workflow net is equivalent to liveness and boundedness of the corresponding
short-circuited Petri net.1 Several liveness and boundedness analysis techniques are,
therefore, directly applicable to the verification of soundness. Soundness can be ver-
ified with Petri net analysis tools such as Woflan [442, 443, 441].

Research on soundness of workflow models has resulted in the specification of
several soundness derivatives due to certain aspects which proved to be too restrictive
in certain application domains. Dehnert and Rittgen argue that business processes are
often conceptually modelled in such a way that only the desired behavior results in
a proper completion. Since such models are not used for workflow execution, non-
normative behavior is resolved by the people working in the process in a cooperative
and ad-hoc fashion. Processes are accordingly labelled relaxed sound if every tran-
sition in a Petri net representation of the process model is included in at least one
proper execution sequence [101]. As already mentioned in Section 2.4.3, relaxed
soundness can be used to analyze EPCs. If OR-joins are mapped to a Petri net block
(see [99]), the Petri net state space is larger than the actual state space with synchro-
nization. Based on the relaxed soundness criterion, it is possible to check whether a
join should synchronize (see [100]).

Figure 3.1 illustrates a subtle implication of the relaxed soundness definition.
Consider an initial marking that includes both start arcs after e1 and e2. Entering
the loop at the XOR-join, the right token can be propagated via the XOR-split to
synchronize with the left token at the AND-join. If the loop is exited at the XOR-
split the process can complete properly. Since this execution sequence covers all
nodes, the model is relaxed sound. There is, however, a structural problem: the loop
can never be executed another time without running into a deadlock. The right token

1 “A Petri net is said to be k-bounded or simply bounded if the number of tokens in each
place does not exceed a finite number k for any marking that is reachable from the initial
marking” [313, p.547]. “A Petri net is said to be live if, no matter what marking has been
reached from the initial marking, it is possible to ultimately fire any transition of the net by
progressing through some further firing sequence” [313, p.548].
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must also never leave the loop without synchronizing with the left token at the AND-
join. The relaxed soundness criterion is, therefore, too weak in some cases. The fact
that relaxed soundness process models can still include livelocks and deadlocks was
a motivation for Puhlmann and Weske to define a notion of lazy soundness [342]. A
lazy sound process is deadlock and livelock free as long as the final node has not been
reached. Clean-up activities, such as cancelling parts of the process, are therefore still
permitted. Since such cleaning-up is needed for some of the workflow patterns, the
authors also reject weak soundness as defined by Martens [259] because it does not
provide this feature. Both weak and lazy soundness still allow dead activities.

Soundness was also extended towards k-soundness in order to study processes
with shared resources [42]. k > 1 refers, in this case, to the number of tokens that are
allowed on the initial and final place. A related term, generalized soundness [175],
means that a process is k-sound for all k > 1. Structural soundness is fulfilled if
there exists a k > 1 such that the process is k-sound. Both generalized and structural
soundness are decidable (see [428, 175]) and a verification approach for general-
ized soundness is reported in [173]. Relationships between the different soundness
notions are discussed in [431].

Beyond the soundness property, structuredness (or well-structuredness) is also
discussed as a correctness criterion (see [3]). In essence, a structured process can be
constructed by nesting simple building blocks like split and join of the same con-
nector type. We used such a structured OR-block in Section 2.4.2 to illustrate how
refinement can affect the behavior in some EPC formalizations. Structuredness of
a process model guarantees soundness if the model is live (see [102]). Some pro-
cess modeling languages, like BPEL and several workflow systems [214], enforce
the definition of a structured model by imposing syntactical restrictions2 in order to
provide correctness by design (see [248, 91, 26, 24]. Finding a structured model with
behavior equivalent to an originally unstructured model is also used as a verification
technique (see [215, 15, 16, 253, 469, 169]). Structuredness as a correctness crite-
rion has been criticized for being too strict (see [102]) since some sound process
models are discarded right from the start. Nesting of structured blocks, however, nei-
ther meets the way people comprehend processes nor does every process easily fit
into this scheme. Structuredness should, therefore, be regarded as a general guideline
from which one can deviate if necessary.

Figure 3.2 summarizes the correctness criteria of soundness, relaxed soundness,
structuredness and their relations [102]. It also links the Petri net classes of free-
choice nets and state machines.3 Importantly, it highlights that a sound process model
is also relaxed sound and that a model that is both relaxed sound and structured is
also sound. In the following section, we aim to analyze EPCs with respect to a strict

2 BPEL relaxes structured modeling by allowing synchronization links between parallel ac-
tivities.

3 A free-choice net is a Petri net in which a place that is in the preset of multiple transitions
is the only place in all these presets (see [105]). Therefore, the choice is “free” in a sense
that it can be made without considering other places. A state machine is a subclass of free-
choice nets in which each transition has exactly one pre- and one postcondition (cf. e.g.
[104]). Therefore, there is no concurrency in a state machine.
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Figure 3.2. Relations between different Petri net-properties (see [102, p.389])

correctness criterion that guarantees that the models can be utilized in subsequent
phases of the BPM life cycle as defined in Section 1.2. While the soundness definition
would be a candidate for analysis, it is not directly applicable for EPCs: workflow
nets have one unique start and one unique end node but EPCs may have multiple
start and end events. Accordingly, we will have to consider several initial and several
final markings related to an EPC-specific soundness criterion.

3.1.2 Definition of EPC Soundness

The definition of soundness for workflow nets cannot be used directly for EPCs as
they may have multiple start and end events. Based on the definitions of the initial
and final states of an EPC, we define EPC soundness as analogous to soundness of
Workflow nets [2]. According to Rump [366], there must be a set of initial markings
for an EPC such that there exists at least one initial marking in which a particular
start arc holds a positive token. We, therefore, require that a definition of soundness
includes such a set of initial markings and that proper completion is guaranteed for
each initial marking. Accordingly, we demand that there exists a set of final markings
that is reachable from some of these initial markings such that at least one final
marking in which a particular end arc holds a positive token exists. If this requirement
is fulfilled every arc contributes to properly completing the behavior of the EPC.
The requirement that the EPC has to be relaxed syntactically correct excludes those
pathological EPCs for which no semantics can be determined: if there are multiple
input arcs of a function or if there are loops without an entry or exit connector, for
example.

Definition 3.1 (Soundness of an EPC). Let EPC = (E, F, C, l, A) be a relaxed
syntactically correct EPC, N = E ∪ F ∪ C its set of nodes, MEPC its marking
space, and IEPC and OEPC the set of possible initial and final markings. An EPC
is sound if there exists a non-empty set of initial markings I ⊆ IEPC and a set of
final markings O ⊆ OEPC such that:

(i) For each start-arc as there exists an initial marking i ∈ I where the arc (and
hence the corresponding start event) holds a positive token. Formally:
∀as ∈ As : ∃i ∈ I : σi(as) = +1
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(ii) For every marking m reachable from an initial state i ∈ I , there exists a firing
sequence leading from marking m to a final marking o ∈ O. Formally:
∀i ∈ I : ∀m ∈ M : (i ∗→ m) ⇒ ∃o ∈ O (m ∗→ o)

(iii)The final markings o ∈ O are the only markings reachable from a marking i ∈ I
such that there is no node that can fire. Formally:
∀m ∈ M : ((i → m) ∧ �∃m′(m → m′)) ⇒ m ∈ O

This soundness definition deserves some comment with respect to dead nodes, live-
locks and contact situations. The original soundness definition requires that a work-
flow net must not include dead transitions (property iii). In Definition 3.1 it is not ex-
plicitly demanded that there are no dead arcs. Still, this property is implicitly granted
due to the fact that the EPC is relaxed syntactically correct and that all decisions of
an EPC are free-choice. Together with EPC soundness (i) it follows that an arc can
either be reached by some token from a start arc that carries a positive token in some
initial marking or there must be a deadlock on the path between the start arcs and the
respective arc. If the latter is the case, the EPC is not sound because (iii) is violated.
We summarize this property in the following observation without a proof.

Observation 3.1 (No dead nodes in sound EPCs) Let EPC = (E, F, C, l, A) be
a relaxed syntactically correct EPC, N = E ∪F ∪C its set of nodes, and MEPC its
marking space. If an EPC is sound according to Definition 3.1, all arcs are reachable
from some initial marking i ∈ I .

It is not possible to construct a livelock for an EPC. Since we consider relaxed syn-
tactically correct EPCs, each loop must have a split-connector as an exit. If there is a
loop in the EPC that has an AND-split as an exit (similar to a token machine in Petri
net terms), a token t1 can either reach an end arc from the AND-split or it must previ-
ously deadlock. In either case, the token t2 that is produced in the second iteration of
the loop can only be propagated to the input arcs of the node that has t1 on one of its
output arcs. Since the number of arcs between the AND-split and the end arc is finite,
the loop will eventually be deadlocked when a token ti cannot be propagated further
from its output arc outside the loop. The consequence of this fact is twofold. First,
due to the relaxed syntactical correctness of the EPC and its free-choice behavior, all
start arcs which can produce a marking that includes the loop with an AND-split exit
must run into a deadlock and are, therefore, not sound. Second, due to the safeness
of the EPC we only have to look for deadlocks in the reachability graph for verifying
soundness: looking for livelocks is not required. We also summarize this property in
the following observation without a proof.

Observation 3.2 (Loops with AND-split exit are not sound) If there is a loop with
an AND-split exit in a relaxed syntactically correct EPC, it is not sound no matter
which set of initial markings is considered.

So-called contact situations refer to a marking where there is a token on at least one
of the input arcs (token t2) and another one (token t1) on at least one of the output
arcs of a node n. Due to the safeness property of the EPC (see Section 2.4.4) n
cannot fire (see [218]). Because of the free-choice property of EPCs, token t2 on the
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input arc has the option to follow the other token t1 in all its firings. t2 will either
be in a deadlock when t1 is on an end arc and t2 on the input arc of the node which
is blocked by t1 on its output arc. Alternately, there is a join that does not receive
the required tokens on other input arcs in order to propagate t2 to its output. This is
also a deadlock. Accordingly, a contact situation implies the option to deadlock. The
following observation formulates this fact the other way round.

Observation 3.3 (Contact situation is not sound) If an EPC = (E, F, C, l, A) is
sound, there is no marking reachable that is a contact situation.

Given the soundness definition, the example EPCs of Figures 2.6 and Figure 2.7 are
not sound as the OR-joins block each other. Both EPCs of Figure 2.8 are sound. Both
EPCs of Figure 2.9 are not sound because if the token at a7 or a7f exits the loop
the OR-join c1 is blocked. In the subsequent section, we show how soundness can
be verified based on the reachability graph of an EPC.

3.2 Reachability Graph Verification of Soundness

In this section, we present an approach to verifying soundness based on the reach-
ability graph of an EPC. Since the reachability graph of an EPC is finite and there
are no livelocks in an EPCs, we have to consider deadlocks as the starting point of
the analysis. In the reachability graph, deadlocks are leaf vertices that are not a final
marking.

Definition 3.2 (Deadlock of an EPC). Let m ∈ M be a marking of an EPC. The
marking m is called a deadlock if:

(i) There is no node that can fire in m. Formally:
�∃m′ ∈ M : m → m′

(ii) m is not a final marking. Formally:
m /∈ O

The verification of soundness requires the reachability graph as input. Algorithm 2
shows an object-oriented pseudo code doing the calculation. We assume that RG is
an instance of the class ReachabilityGraph that provides the methods getLeaves()
and getRoots(). We then define the objects BadLeaves, GoodLeaves and Good-
Roots as instances of a class MarkingList that offers the methods add(marking),
remove(marking) and missing(). The first two methods change the markings that
are included in the list while the latter method returns a list of nodes that do not have
a positive token in any marking of the MarkingList. This method initializes a list
with all start and end arcs and iterates over the markings of the list. For each marking
arcs with a positive token are deleted. After the iteration, the list includes only the
missing arcs. Using this method we can determine whether I and O cover all start
and end arcs. The objects current, pre, and post are instances of class Marking
that provides the methods isLeaf(), getPredecessors() and getSuccessors().
The objects predecessorStack and successorStack are instances of Stack that
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provides a pop() and a push(element) method, and GoodRootSuccessors and
BadLeavesPredecessors are sets.

The algorithm covers three different phases. In the first phase, the deadlocks are
determined and stored in the BadLeaves list of markings (lines 2-6). If there are
no deadlocks (BadLeaves is empty), the EPC is sound and the algorithm returns
all roots and all leaves of the reachability graph and two empty sets indicate that
there are no start arcs and no end arcs missing in the set of initial markings and final
markings. In the second phase (lines 10-23), all predecessor markings of deadlocks
are determined. If there is an initial marking found via the isRoot() method, this
marking is removed from the GoodRoots list. If the marking is not a root, all those
predecessors are added to the stack which have not yet been visited as indicated
by the BadLeavesPredecessors list. As a result of this phase, GoodRoots now
includes only those initial markings that never result in a deadlock. If GoodRoots
was empty, we could stop after line 23 and return two empty lists for good root
and leaf elements plus two lists of all start and end arcs. Due to the limited size
of the page, we omitted a respective if statement. In the third phase (lines 24-37),
we determine those leaves of the reachability graph that can be reached from good
roots. The calculation is performed in reference to the second phase. Finally, line 38
returns the list of good roots and of good leaves as well as a list of start arcs that are
not covered by initial markings and end arcs that are not included in final markings.
The EPC is sound if both arc lists are empty.

We implemented Algorithm 2 as an extension to the EPC to Transition System
plug-in for ProM (see Section 2.4.6). Figure 3.3 shows the refined EPC of Figure 2.9
on page 34 as it is modelled in Visio. Loading this model in ProM results in a new
layout that is displayed in Figure 3.4. If we now use the conversion plug-in to create
a transition system, we get a pop-up window that reports the result of the soundness
check.4 For the refinement EPC there is only one initial marking (positive token after
e4 and negative token after e1) that does not result in a deadlock. The start arc after
e1 does not have a positive token in any initial marking. The EPC is, therefore, not
sound.

Figure 3.6 shows the transition system that is generated for the EPC. Two of the
three initial markings are painted with a red border to indicate that they may run into
a deadlock. One initial marking has a green border to highlight that it never runs into
a deadlock. The initial marking on the top right of the graph immediately produces a
deadlock and though the other red initial marking can complete properly, it may also
deadlock.

The verification of soundness based on the reachability graph and its implemen-
tation in ProM is a powerful tool to identify behavioral problems of EPCs. The po-
tential number of markings, however, grows exponentially with the number of arcs.
The reachability graph of a model with 17 arcs like the refinement example depicted
in Figure 3.3 can have up to |V | = 3|A| = 317 = 129, 140, 163 markings as vertices
and |V | × (|V | − 1) = 16, 677, 181, 570, 526, 406 transitions in the worst case. This
problem is called the state explosion problem in the Petri nets community (see [436]).

4 The result is also written to the message panel at the bottom of ProM.
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Algorithm 2 Pseudo code for verification of soundness
Require: RG
1: BadLeaves← ∅, GoodLeaves← ∅, GoodRoots← RG.getRoots()
2: for all leaf ∈ RG.getLeaves() do
3: if ¬leaf.isF inalMarking() then
4: BadLeaves.add(leaf)
5: end if
6: end for
7: if |BadLeaves| = 0 then
8: return RG.getLeaves(),RG.getRoots(),∅, ∅
9: end if

10: BadLeavesPredecessors← ∅, predecessorStack← BadLeaves
11: while predecessorStack �= ∅ do
12: current← predecessorStack.pop()
13: if current.isRoot then
14: GoodRoots.remove(current)
15: else
16: for all pre ∈ current.getPrecessors() do
17: if pre /∈ BadLeavesPredecessors then
18: predecessorStack.push(pre)
19: end if
20: end for
21: BadLeavesPredecessors.add(current)
22: end if
23: end while
24: GoodRootSuccessors← ∅, successorStack ← GoodRoots
25: while successorStack �= ∅ do
26: current← successorStack.pop()
27: if current.isLeaf() then
28: GoodLeaves.add(current)
29: else
30: for all post ∈ current.getSuccessors() do
31: if post /∈ GoodRootSuccessors then
32: successorStack.push(post)
33: end if
34: end for
35: GoodRootSuccessors.add(current)
36: end if
37: end while
38: return GoodLeaves,GoodRoots, GoodLeaves.missing(),GoodRoots.missing()
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ple EPC loaded in ProM

Figure 3.5. Feedback about EPC soundness

One approach to cope with this problem is to apply reduction rules that preserve the
property under consideration (see [313]), i.e. EPC soundness. In the following sec-
tion, we will investigate in how far reduction rules can be applied for EPCs.

3.3 Verification by Reduction Rules

In the previous section, we presented a verification approach for EPC soundness
based on the reachability graph. Similar to Petri nets, the concurrency of functions
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Figure 3.6. Transition System of the second refinement example EPC

and events can lead to a performance problem due to the state explosion. In this sec-
tion, we focus on an approach based on reduction rules to increase the performance
of the verification process. First, we revisit related work on reduction rules for busi-
ness process models (Section 3.3.1). We then present a set of reduction rules for
EPCs that extends existing rule sets and that is easy to apply for a given model (Sec-
tion 3.3.2). In the following pages, we use the term reduction kit to refer to a set of
reduction rules (see [120]). It must be noted that our EPC reduction kit is sound but
not complete: the fact that an EPC is not completely reduced does not provide an an-
swer to the verification question. There is still a possibility of unknown errors. Even
if the model is not completely reduced, however, the reachability graph verification is
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more efficient for the unreduced EPC. If the EPC is reduced to the trivial model and
no errors are recorded, it is sound. In Section 3.3.3 we present a reduction algorithm
and a respective implementation in the xoEPC program. Section 3.3.4 illustrates the
application of xoEPC in the analysis of the SAP Reference model. In particular, we
present which rules are used how often, how many EPCs could be reduced and how
many errors were found.

3.3.1 Related Work on Reduction Rules

The state explosion problem is one of the motivations for considering reduction rules
for Petri nets. A set of six reduction rules that preserve liveness, safeness and bound-
edness of a Petri net is introduced in Berthelot [55, 56] and summarized in Murata
[313, p.553]. Unfortunately, this set of rules is not complete. There are live, safe and
bounded Petri nets that cannot be reduced to the trivial model by these rules. Fig-
ure 3.7 shows an illustration of the six reduction rules including (a) fusion of series
places, (b) fusion of series transitions, (c) fusion of parallel places, (d) fusion of par-
allel transitions, (e) elimination of self-loop places, and (f) elimination of self-loop
transitions. For the Petri net class of free choice nets, Esparza shows that there exists
a complete reduction kit including rules for fusion of places and transitions similar
to (a) and (b) of Murata and two linear dependency rules to eliminate nonnegative
linearly dependent places and transitions [120, 105]. By showing that soundness cor-
responds to liveness and boundedness of the short-circuited net, Van der Aalst makes
the reduction kit of Murata applicable to the analysis of workflow nets [2].

(a) Fusion of series places (b) Fusion of series transitions

(d) Fusion of parallel transitions

(c) Fusion of parallel places

(e) Elimination of self-loop places (f) Elimination of self-loop transitions

Figure 3.7. Six reduction rules to preserve liveness, safeness, and boundedness [313]



70 3 Verification of EPC Soundness

Sadiq & Orlowska discuss the applicability of reduction rules for business pro-
cess models that are defined in a language called workflow graphs [372, 373, 374].
They provide a kit including (a) the adjacent reduction rule to merge parallel splits
and joins, (b) the closed reduction rule to eliminate redundant synchronization arcs
and (c) the overlapped reduction rule that eliminates a proper block with one XOR-
split, multiple AND-splits, multiple XOR-joins and one AND-join. Lin et al. show
that the reduction kit of Sadiq & Orlowska is not complete by giving a counter exam-
ple [249]. They propose a new reduction kit including seven rules: (a) the terminal re-
duction rule to eliminate sequential start and end nodes, (b) the sequential reduction
rule to eliminate sequences, (c) the adjacent reduction rule of Sadiq & Orlowska, (d)
the closed reduction rule of Sadiq & Orlowska, (e) the choice-convergence reduction
rule to move a choice out of a parallel structure, (f) the sychronizer-convergence re-
duction rule that moves a sychronization out of a choice structure and (g) the merge-
fork reduction rule which actually replaces a simple structure with a complicated
one. Van der Aalst, Hirnschall and Verbeek showed that the original reduction kit is
not complete and question approaches to continue adding rules for counter examples
[10]. They use a completely different approach building on well-known Petri net re-
sults. By providing a mapping to Petri nets they show that the resulting net is free
choice [10]. This makes the complete reduction kit of Esparza applicable and basic
Petri net analysis techniques and tools can be applied and soundness can be checked
in polynomial time.

A set of reduction rules for flat EPCs was first mentioned in Van Dongen, Van
der Aalst and Verbeek in [109]. The idea is to eliminate those structures of an EPC
that are trivially correct for any semantics formalization. Rule (a) deletes sequential
elements from the EPC, i.e. elements with one input and one output arc. Rule (b)
merges multiple parallel arcs between connectors of the same type. This might result
in connectors with one-one cardinality so that rule (a) can be applied. Rules (c) and
(d) merge consecutive join and split connectors of the same type. Rule (e) eliminates
the backward arc of a simple XOR-loop. Finally, rule (f) reduces OR-loops based on

(a) Trivial constructs (b) Simple split/join

c1

c2

c1

c2

x

x

x

x

(e) XOR loop

(c) Similar joins
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c2 c2
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c1

l(c1)=l(c2) v
l(c2) = or

l(c1)=l(c2) 

l(c1)=l(c2) 

v

c2

v
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(f) OR loop
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Figure 3.8. Six reduction rules of [109]
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Figure 3.9. Unclean and deadlocking EPC

the assumption that only arcs from outside the loop are synchronized (see [108]). The
authors use this reduction kit to derive a more compact EPC for further analysis. The
domain expert then has to specify the set of allowed initial markings for the reduced
EPC. This information is used in a coverability analysis of a Petri net representation
of the EPC to identify structural problems. The approach has been implemented as
an analysis plug-in which is shipped with the standard distribution of ProM.

While the rules by Van Dongen et al. are indeed helpful to reduce the complexity
of the verification problem, it is possible to reduce erroneous models (assuming the
semantics of this book) with the combination of rule (c) and (f). Figure 3.9 shows
an EPC that is unclean under the semantics of Kindler [218] and in deadlock under
the semantics of Wynn et al. [464] as well as under the semantics presented in Sec-
tion 2.4.4. This EPC can still be easily reduced by first merging the three OR-joins
with rule (c) and then eliminating the OR-loop with rule (f). The further application
of rule (a) yields a trivial EPC consisting only of three start events, one OR-join
and one end event. Since loops without XOR-entries deadlock following our novel
semantics, we have to consider structured loops with OR-entries as error cases.

In [466], Wynn, Verbeek, Van der Aalst, Ter Hofstede and Edmond discuss reduc-
tion rules for Reset nets, a Petri net class that offers so-called reset arcs which clean
tokens from the net. Their reduction kit of seven reduction rules is mainly inspired by
rules for Petri nets by Murata [313] and for free-choice nets by Esparza [120, 105].
The rules 1 to 4 (fusion of series places and of series transitions as well as fusion of
parallel places and parallel transitions) can be directly related to the rules of Murata
and Esparza. Rule 5 (abstraction rule) removes a sequence of a place s and a transi-
tion t where s is the only input of t and t the only output of s and there is no direct
connection between the inputs of s and the outputs of t. Rule 6 for self-loop tran-
sitions matches the self-loop rule of Murata. Rule 7 (fusion of equivalent subnets)
allows identical parts of the net to be merged.

Based on a Reset net formalization, Wynn, Verbeek, Van der Aalst, Ter Hofstede
and Edmond define a reduction kit for YAWL [467]. They also prove that it preserves
soundness by constructing respective Reset net reductions. Several rules are defined
for YAWL nets including fusion of series, parallel, and alternative conditions; fu-
sion of series, parallel, and alternative tasks; elimination of self-loop tasks, fusion of
AND-split and AND-join tasks; fusion of XOR-split and XOR-join tasks; fusion of an
OR-join and another task and fusion of incoming edges to an OR-join. The last two
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rules differ from the other rules since they are not explicitly proved based on Reset
net rules. This is because the enabling rule of an OR-join depends on the reachability
analysis of the YAWL net (see [464]).

3.3.2 A Reduction Kit for EPCs

In this section, we take the work of Van Dongen et al. as a starting point and introduce
novel reduction rules. Since we want to increase the performance of verification, we
are interested in rules which involve as few directly connected nodes as possible.
We are not interested, however, in the completeness of the rules. For each reduction
rule, we have to show that it does not introduce a deadlock into the EPC that affects
property (ii) of EPC soundness. For rules that reduce the set of initial or final mark-
ings we have to show that properties (i) to (iii) of EPC soundness are not violated.
Additionally, both the source and the target EPC have to fulfill the requirements of
relaxed syntactically correctness.
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Figure 3.10. Overview of patterns that are addressed by EPC reduction rules

In this context, a reduction rule T is a binary relation that transforms a source EPC1

to a simpler target EPC2 that has less nodes and/or arcs (see [120]). We associate
an index function fA with an EPC for keeping track of multiple arcs that might
be derived in the reduction process. A reduction rule is bound to a condition that
defines for which arcs and nodes it is applicable. We define the construction of the
target EPC and error cases for several of the rules. Our strategy is to record errors
while applying the reduction and continue with the reduced model to potentially find
further errors. Figure 3.10 gives an overview of the reduction rules that we discuss
on the following pages.

Some of the reduction rules we will define might introduce pre-existing arcs
to the reduced EPC. Consider the EPC on the left hand side of Figure 3.11. The
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Figure 3.11. Reduction producing arcs that already exist

reduction of trivial constructs that we will introduce afterwards first replaces the
function f1 and its input and output arcs (2 and 4) by a single arc (7). The same
procedure is then applied for function f2. The problem in this case is that an arc
between the AND-split and the XOR-join already exists. We use the index set IA,
the index function fA and the count function ξ to keep track of added arcs that
already exist. While the EPC on the right-hand side has only one arc between the two
connectors, there are two indices 7 and 8 in the index set IA pointing at it. Without
indices we lose the information indicating that the two connectors are problematic.
The indexing mechanism allows us to define several rules in a more simple way as
opposed to parameterizing each rule to deal with potentially multiple arcs. Note that
the EPC semantics can be easily adapted to deal with the index set extension.

Definition 3.3 (Index Set and Index Function for Arcs). Let EPC =(E,F,C,l,A)
be a relaxed syntactically correct EPC. Then IA ⊂ IN is an index set such that
fA : IA → A is a totally surjective function mapping all elements of IA onto the
set of arcs. Furthermore, we define the function ξ : IA × A → IN such that for
a ∈ A, IA : ξ(a, IA) = |{x ∈ IA | fA(x) = a}|.
In the following pages, we define the different reduction rules. These definitions
build on reduction relations Tx, where x ∈ {a, b, c, d, d1a, d1b, d2a, d2b, e, f, g, h}
refers to the different rule types as depicted in Figure 3.10.

Trivial Constructs

The reduction of trivial constructs allows for eliminating sequential nodes from EPCs
that have one input and one output arc. These nodes do not cause deadlock problems
and neither does their removal. The rule is similar to the fusion of series places and
transitions for Petri nets by Murata [313] and previously defined by Van Dongen et
al. [109]. Figure 3.12 illustrates the rule.

Definition 3.4 (Reduction of Trivial Constructs). Let EPC1 and EPC2 be two
relaxed syntactically correct EPCs with the respective index sets IA1 and IA2 , index
and count functions fA1 , fA2 , ξ1, and ξ2. The pair ((EPC1, IA1), (EPC2, IA2)) ∈
Ta if the following conditions hold for a node n ∈ N1 of EPC1, and if EPC2 can
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Figure 3.12. Reduction of trivial constructs

be constructed from EPC1 as follows:
Condition:
1) there exists n ∈ N1 such that

|nin| = |nout| = 1 ∧
nin = {(v, n)} ∧ ξ1((v, n), IA1) = 1 ∧
nout = {(n, w)} ∧ ξ1((n, w), IA1 ) = 1.

Construction:
2) E2 = E1 \ {n}
3) F2 = F1 \ {n}
4) C2 = C1 \ {n}
5) A2 = (A1 ∪ {(v, w)}) \ {(v, n), (n, w)}
6) Introduce ivw such that ivw ∈ IN \ IA1 ∧

IA2 = (IA1 ∪ {ivw}) \ {i ∈ IA1 | fA1(i) = (v, n) ∨ fA1(i) = (n, w)} ∧
∀i ∈ IA2 \ {ivw} : fA2(i) = fA1(i) ∧
fA2(ivw) = (v, w)

There are no error cases.

It can be shown that the rule preserves relaxed syntactical correctness. If all nodes of
EPC1 were on a path from a start to an end node, this must obviously still hold for
EPC2 after reduction. The cardinality restrictions still hold since there is no node
beyond the deleted node that has a different cardinality after reduction. Finally, the
only case where the rule can produce self-arcs is if an undesirable structure exists
such that not every node is on a path from a start to an end node (cf. Figure 2.3 on
page 22). According to relaxed syntactical correctness, however, such a structure is
not allowed.

Structured Blocks

Structured blocks include a split and a join connector with multiple arcs from the
split to the join (see Figure 3.13). To be concise, the multiple arcs are an illustration
of the fact that there are multiple indices in IA1 pointing at the arc from c1 to c2.
Such structured blocks usually appear when parallel or alternative sequences are re-
duced by other rules. If the type of both connectors is equivalent, the rule matches the
parallel place and transition reduction rules of Murata [313] and the structured com-
ponent rule of Van Dongen et al. [109]. In these cases, it is safe to fuse the parallel



3.3 Verification by Reduction Rules 75

arcs: the multiple indices are replaced by a single index. There are four problem-
atic cases: if c1 is an XOR or an OR and c2 is an AND, the process can run into a
deadlock which implies that it is not sound. If c2 is an XOR and c1 is an AND or
an OR, there is a lack of synchronization which can result in contact situations. The
process is again not sound. We record the error in these cases and continue searching
for further errors in the reduced model.

c1

c2

c1

c2

Figure 3.13. Reduction of structured blocks

Definition 3.5 (Reduction of Structured Block). Let EPC1 and EPC2 be two re-
laxed syntactically correct EPCs with the respective index sets IA1 and IA2 , index
and count functions fA1 , fA2 , ξ1, and ξ2. The pair ((EPC1, IA1), (EPC2, IA2)) ∈
Tb if the following conditions hold for a pair of connectors c1, c2 ∈ C1 of EPC1,
and if EPC2 can be constructed from EPC1 as follows:
Condition:
1) there exists c1, c2 ∈ C1 such that

c1 �= c2 ∧ (c1, c2) ∈ A1 ∧ ξ((c1, c2), IA1) > 1
Construction:
2) E2 = E1

3) F2 = F1

4) C2 = C1

5) A2 = A1

6) Introduce icc such that icc ∈ IN \ IA1 ∧
IA2 = IA1 ∪ {icc} \ {i ∈ IA1 | fA1(i) = (c1, c2)} ∧
∀i ∈ IA2 \ {icc} : fA2(i) = fA1(i) ∧
fA2(icc) = (c1, c2)

Error Cases:
7) l(c1) = xor ∧ l(c2) = and (Deadlock)
8) l(c1) = or ∧ l(c2) = and (Potential Deadlock)
9) l(c1) = and ∧ l(c2) = xor (Lack of Synchronization)
10) l(c1) = or ∧ l(c2) = xor (Potential Lack of Synchronization)

Obviously the rule preserves the cardinality restrictions of all nodes and the coher-
ence restriction of relaxed syntactical correctness.
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Structured Loops

Structured loops include a join as an entry to the loop and a split as exit, with one arc
from the join to the split and one in the opposite direction (see Figure 3.14). If the
type of both connectors is XOR, the rule is similar to the loop elimination rules by
Murata [313] and the XOR-loop rule of Van Dongen et al. [109]. In these cases, it
is safe to delete the back arc. There are also problematic cases: if c1 is not an XOR,
the loop cannot be entered because the entry-join deadlocks. If c2 is not an XOR,
the process can run into a contact situation (see Observation 3.2). In both cases, the
process is not sound and an error is recorded before applying the reduction rule.

c1

c2

c1

c2

Figure 3.14. Reduction of structured loops

Definition 3.6 (Reduction of Structured Loop). Let EPC1 and EPC2 be two re-
laxed syntactically correct EPCs with the respective index sets IA1 and IA2 , index
and count functions fA1 , fA2 , ξ1, and ξ2. The pair ((EPC1, IA1), (EPC2, IA2)) ∈
Tc if the following conditions hold for a pair of connectors c1, c2 ∈ C1 of EPC1,
and if EPC2 can be constructed from EPC1 as follows:
Condition:
1) there exists c1, c2 ∈ C1 such that

c1 �= c2 ∧ (c1, c2) ∈ A1 ∧ (c2, c1) ∈ A1 ∧
ξ((c1, c2), IA1) = 1 ∧ ξ((c2, c1), IA1) = 1

Construction:
2) E2 = E1

3) F2 = F1

4) C2 = C1

5) A2 = A1 \ {(c2, c1)}
6) IA2 = IA1 \ {i ∈ IA1 | fA1(i) = (c2, c1)} ∧

∀i ∈ IA2 : fA2(i) = fA1(i)
Error Cases:
7) l(c1) �= xor (Loop cannot be entered)
8) l(c2) �= xor (Potential contact situation)

The rule again preserves the cardinality restrictions of all nodes and the coherence
restriction of relaxed syntactical correctness.

Figure 3.15 shows an example from the SAP Reference Model of the Personnel
Appraisal process from the Personal Development branch. It includes two problems
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Figure 3.15. Personnel Development – Personnel Appraisal (reduced size 8)

with structured blocks. The first error at the top involves an OR-split and an AND-
join. With this mismatch, it is possible that the OR-split activates only one branch.
As a consequence, the AND-join can deadlock. The second problem is caused by
another mismatch of an OR-split and an AND-join in the center of the figure. The
third error relates to an AND-join that is an entry point to a loop. Since we have two
loop-entries (there is an XOR-join entry at the left top of the model) this problem
cannot be detected by the structured loop rule. It is a particular type of a start and
end component that we discuss in the following.

Start and End Components

A specific verification problem of EPCs, in contrast to workflow nets, is that they may
have multiple start and end nodes. Real-world models sometimes have more than 20
start events (i.e. |IEPC | = 220 − 1 initial markings). In this case, the reduction
of these nodes becomes a critical issue to make verification feasible regarding the
complexity (see [440, 276]). In this section we introduce reduction rules for so-called
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Figure 3.16. Reduction of structured start and end components

structured and unstructured start and end components. Both these rule sets aim to
reduce the number of start and end events without affecting the soundness of the
EPC. For unstructured start and end components, we distinguish a set for connectors
not on a cycle and connectors on a cycle.

Figure 3.16 illustrates the reduction rules for structured start and end compo-
nents. A structured start component contains two start events and one join connector,
while a structured end component has one split connector and two end events. In both
cases, the second event and the respective arc can be eliminated without affecting the
overall soundness. Furthermore, there are no error cases.

Definition 3.7 (Reduction of Structured Start and End Components). Let EPC1

and EPC2 be two relaxed syntactically correct EPCs with the respective index sets
IA1 and IA2 , index and count functions fA1 , fA2 , ξ1, and ξ2. The pair ((EPC1, IA1),
(EPC2, IA2)) ∈ Td if the following conditions hold for two start or two end events
e1, e2 ∈ E1 and a connector c ∈ C1 of EPC1, and if EPC2 can be constructed
from EPC1 as follows:
Condition:
1) there exists c ∈ C1, e1, e2 ∈ E1 and a1, a2 ∈ A1 such that

e1 �= e2 ∧
a1 = (e1, c), a2 = (e2, c) ∈ A1 ∨ a1 = (c, e1), a2 = (c, e2) ∈ A1 ∧
ξ(a1, IA1) = 1 ∧ ξ(a2, IA1) = 1

Construction:
2) E2 = E1 \ {e2}
3) F2 = F1

4) C2 = C1

5) A2 = A1 \ {a2}
6) IA2 = IA1 \ {i ∈ IA1 | fA1(i) = a2} ∧

∀i ∈ IA2 : fA2(i) = fA1(i)
There are no error cases.

The rule preserves the cardinality restrictions of all nodes and the restriction that all
nodes must be on a path from a start to an end node. The reduced model is, therefore,
relaxed syntactically correct.

Figure 3.17 shows an EPC from the SAP Reference Model that illustrates the
correctness of the reduction rule and two observations can be made. The two start
events on the top left-hand side can be merged in such a way that afterwards the sub-
sequent AND-join is deleted. In this case, a token on the start arc in the reduced EPC
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Figure 3.17. Financial Accounting – Funds Management – Budget Execution

represents the case where there are tokens on each of the two start arcs in the unre-
duced model. Both cases lead to the same behavior once the subsequent AND-split
connector is reached. Additionally, the red arrows highlight three errors of the EPC,
implying that the model is not sound. In each of these cases, end events are connected
to one XOR-split while there is an AND-join that may later need a token to continue
processing. The reduction rule merges the two end events into one in each case. For
example, the Purchase requisition/order to be created and the Funds reservation re-
jected/budget exceeded end events after the first problematic XOR-split. This way,
the erroneous behavior is preserved since it is not important how many XOR-jumps
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out of the process exist, but only if there exists one. The identification of such prob-
lematic jumps is subject of the next reduction rule for unstructured start and end
components.

Figure 3.18 shows the reduction rules for unstructured start and end components
that are applicable for connectors that are not on a cycle. In case (a) there is an AND-
split connector c1 followed by an end event. Since this end event is reachable if the
connector is reachable, we can delete e1 and only consider the input arc of c1. The
output arc not pointing to e1 will always receive control via c1 no matter whether
there is an arc to e1 or not. If c1 is not an AND-split but an OR- or an XOR-split, we
can consider case (b) where the structure is extended with a join-connector c2 and a
start event e2. If c2 is an AND-join it might not get control from the (X)OR-split c1

which implies that the structure is not sound. In this case, an error is recorded and the
branch to e1 as the reason is deleted. This pattern appears three times in Figure 3.17.
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e1 e2

c2
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l(c1)=and
l(c1)=(x)or 
l(c2)=and 

(a) (b)

Figure 3.18. Reduction of unstructured start and end components, not on cycle

Definition 3.8 (Reduction of Unstructured Acyclic Start and End Components
(a)). Let EPC1 and EPC2 be two relaxed syntactically correct EPCs with the re-
spective index sets IA1 and IA2 , index and count functions fA1 , fA2 , ξ1, and ξ2. The
pair ((EPC1, IA1), (EPC2, IA2)) ∈ Td1a if the following conditions hold for one
end event e1 ∈ E1 and a connector c1 ∈ C1 of EPC1, and if EPC2 can be con-
structed from EPC1 as follows:
Condition:
1) there exists c1 ∈ C1, e1 ∈ E1 and a1 ∈ A1 such that

e1• = ∅ ∧
a1 = (c1, e1, ) ∈ A1 ∧ l(c1) = and ∧
ξ(a1, IA1) = 1 ∧
�∃n ∈ N \ {c1} : c1 ↪→ n ↪→ c1

Construction:
2) E2 = E1 \ {e1}
3) F2 = F1

4) C2 = C1

5) A2 = A1 \ {a1}
6) IA2 = {i ∈ IA1 | fA1(i) �= a1} ∧

∀i ∈ IA2 : fA2(i) = fA1(i)
There are no error cases.
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Definition 3.9 (Reduction of Unstructured Acyclic Start and End Components
(b)). Let EPC1 and EPC2 be two relaxed syntactically correct EPCs with the re-
spective index sets IA1 and IA2 , index and count functions fA1 , fA2 , ξ1, and ξ2. The
pair ((EPC1, IA1), (EPC2, IA2)) ∈ Td1b if the following conditions hold for one
start or one end event e1, e2 ∈ E1 and a connector c1, c2 ∈ C1 of EPC1, and if
EPC2 can be constructed from EPC1 as follows:
Condition:
1) there exists c1, c2 ∈ C1, e1, e2 ∈ E1 and a1, a2, a3 ∈ A1 such that

e1 �= e2 ∧ c1 �= c2 ∧
e1• = ∅ ∧ •e2 = ∅
l(c1) �= and ∧ l(c2) = and ∧
a1 = (c1, e1, ), a2 = (e2, c2), a3 = (c1, c2) ∈ A1 ∧ (c2, c1) /∈ A1 ∧
ξ(a1, IA1) = 1 ∧ ξ(a2, IA1) = 1 ∧ ξ(a3, IA1) = 1 ∧
�∃n ∈ N \ {c1, c2} : c1 ↪→ n ↪→ c1 ∨ c2 ↪→ n ↪→ c2

Construction:
2) E2 = E1 \ {e1}
3) F2 = F1

4) C2 = C1

5) A2 = A1 \ {a1}
6) IA2 = IA1 \ {i ∈ IA1 | fA1(i) = a1} ∧

∀i ∈ IA2 : fA2(i) = fA1(i)
Error Cases:
7) The reduction rule always yields an error since c2 might not get control from c1.

Both these rules for unstructured acyclic start and end components preserve the car-
dinality restrictions of all nodes and the coherence restriction of relaxed syntactical
correctness.

Figure 3.19 shows the reduction rules for unstructured start and end components
that are applicable for connectors that are on a cycle. By considering two connectors,
we make sure that the reduction does not delete the last exit or the last entry point
of a loop. Such a reduction would violate the relaxed syntactical correctness of the
reduced EPC. In case (a) there are two exit-connectors c1, c2 ∈ C1 to a cyclic part of
the EPC and at least one of them, i.e. cnonxor ∈ {c1, c2}, is not of type XOR. This
implies that if the loop is executed multiple times the non-XOR-connector cnonxor

will repeatedly create tokens at the same exit of the loop. According to our definition
of safe semantics, this leads to contact situations and unsound behavior of the EPC.
Therefore, the reduction rule eliminates the reason for this error (the end-event from
the non-XOR-connector cnonxor). In case (b) there are two entry connectors to a
loop. If there is an AND-join among them (cand) the EPC is not sound since there
will be a token missing on the start arc in the second execution of the loop. The start-
event leading to the AND-join cand is, therefore, deleted and an error is recorded.

Definition 3.10 (Reduction of Unstructured Cyclic Start and End Components
(a)). Let EPC1 and EPC2 be two relaxed syntactically correct EPCs with the re-
spective index sets IA1 and IA2 , index and count functions fA1 , fA2 , ξ1, and ξ2. The
pair ((EPC1, IA1), (EPC2, IA2)) ∈ Td2a if the following conditions hold for one
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Figure 3.19. Reduction of unstructured start and end components, not on cycle

start or one end event e1, e2 ∈ E1 and a connector c1, c2 ∈ C1 of EPC1, and if
EPC2 can be constructed from EPC1 as follows:
Condition:
1) there exists c1, c2 ∈ C1, e1, e2 ∈ E1 and a1, a2, a3 ∈ A1 such that

e1 �= e2 ∧ c1 �= c2 ∧
e1• = ∅ ∧ e2• = ∅
a1 = (c1, e1, ), a2 = (c2, e2), a3 = (c1, c2) ∈ A1 ∧ (c2, c1) /∈ A1 ∧
ξ(a1, IA1) = 1 ∧ ξ(a2, IA1) = 1 ∧ ξ(a3, IA1) = 1 ∧
∃n1 ∈ N \ {c1} : c1 ↪→ n1 ↪→ c1 ∧
∃n2 ∈ N \ {c2} : c2 ↪→ n2 ↪→ c2 ∧
there exists cnonxor ∈ {c1, c2}, enonxor ∈ {e1, e2} :
l(cnonxor) �= xor ∧ anonxor = (cnonxor, enonxor)

Construction:
2) E2 = E1 \ {enonxor}
3) F2 = F1

4) C2 = C1

5) A2 = A1 \ {anonxor}
6) IA2 = IA1 \ {i ∈ IA1 | fA1(i) = anonxor} ∧

∀i ∈ IA2 : fA2(i) = fA1(i)
Error Cases:
7) The reduction rule always reports an error since cnonxor produces repeatedly
tokens on anonxor.

Definition 3.11 (Reduction of Unstructured Cyclic Start and End Components
(b)). Let EPC1 and EPC2 be two relaxed syntactically correct EPCs with the re-
spective index sets IA1 and IA2 , index and count functions fA1 , fA2 , ξ1, and ξ2. The
pair ((EPC1, IA1), (EPC2, IA2)) ∈ Td2b if the following conditions hold for one
start or one end event e1, e2 ∈ E1 and a connector c1, c2 ∈ C1 of EPC1, and if
EPC2 can be constructed from EPC1 as follows:
Condition:
1) there exists c1, c2 ∈ C1, e1, e2 ∈ E1 and a1, a2, a3 ∈ A1 such that

e1 �= e2 ∧ c1 �= c2 ∧
•e1 = ∅ ∧ •e2 = ∅ ∧
a1 = (e1, c1, ), a2 = (e2, c2), a3 = (c1, c2) ∈ A1 ∧ (c2, c1) /∈ A1 ∧
ξ(a1, IA1) = 1 ∧ ξ(a2, IA1) = 1 ∧ ξ(a3, IA1) = 1 ∧
∃n1 ∈ N \ {c1} : c1 ↪→ n1 ↪→ c1 ∧
∃n2 ∈ N \ {c2} : c2 ↪→ n2 ↪→ c2 ∧
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Figure 3.20. Reduction of Delta Components

there exists cand ∈ {c1, c2}, enonxor ∈ {e1, e2} :
l(cand) = and ∧ aand = (eand, cand)

Construction:
2) E2 = E1 \ {eand}
3) F2 = F1

4) C2 = C1

5) A2 = A1 \ {aand}
6) IA2 = IA1 \ {i ∈ IA1 | fA1(i) = aand} ∧

∀i ∈ IA2 : fA2(i) = fA1(i)
Error Cases:
7) The reduction rule always reports an error since cand will not have a token on its
input arc aand in the second execution of the cyclic part.

Both these rules for unstructured cyclic start and end components preserve the car-
dinality restrictions of all nodes and the coherence restriction of relaxed syntactical
correctness. If we had considered only a single pair of a connector and an event, we
would not be able to guarantee that every node would still be on a path from a start
to an end node.

Delta Components

In this section, we will discuss a subpart of an EPC built from three connectors that
we call delta component. A delta component contains one input arc to a first split
which is followed by another split and a join in the postset. The preset of the join
connector also only includes the two splits. There are two output arcs from a delta
component: one from the second split and one from the join. Accordingly, there are
33 types of delta components for each combination of three connector labels (see Fig-
ure 3.20). For some of the delta components it is possible to eliminate the arc from
the first split to the join or from the second split to the join. In some cases no reduc-
tion is possible. Some delta components produce a deadlock or a contact situation
at the join connector. If there is an error case, an empty circle represents a missing
token and a filled circle a token that is potentially too much (see Figures 3.21–3.23).

Figure 3.21 illustrates delta components where the first split is an XOR. If both
split connectors are XORs (see first column) the join should also be an XOR. In
this case, the arc between the first split and the join can be deleted and the same
combination of outputs can still be produced. This also holds if the second split is
an OR. If the split is an AND, either both outputs or the right one only is activated.
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l(c1) = xor l(c2) = xor l(c2) = or l(c2) = and

l(c3) = xor
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Figure 3.21. Reduction of XOR Delta Components

l(c1) = and l(c2) = xor l(c2) = or l(c2) = and

l(c3) = xor

l(c3) = or

l(c3) = and

Figure 3.22. Reduction of AND Delta Components
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Figure 3.23. Reduction of OR Delta Components

Therefore, no arc can be deleted. The XOR delta component runs into a deadlock if
the join is an AND, but should be an XOR or an OR. We record the error and apply
the reduction rule as if the connector had the appropriate label accordingly.

Figure 3.22 depicts delta components with an AND as the first split. In this case,
a reduction is only possible if the second split is also an AND. The join should be
an AND or an OR in order to avoid a lack of synchronization such as in the first row
where the join is an XOR. This lack of synchronization results in contact situations
in the reachability graph. If the join is an AND but the second split is an XOR or
an OR (third row), there is a potential deadlock since the arc between second split
and join might not get a positive token. For both the first and the second column,
no reduction can be applied. In this case, the left output is optional while the right
output is always covered.

Figure 3.23 shows those delta components that have an OR as first split connec-
tor. If the join is an XOR, there is a potential lack of synchronization with subsequent
contact situations (first row). If the join is an AND, there might be tokens missing
to fire (third row). The second row shows the well-behaving cases where the first
OR-split is matched by an OR-join. In these cases, either one or both of the output
arcs are taken. The arc between the XOR-split and the OR-join (first column)5 and
the arc between the first OR-split and OR-join (second column) can accordingly be
deleted without restricting the output combinations. If the second split is an AND,

5 Please note that this changes the behavior since the OR-join does not have to wait for the
XOR-split. Still, the combination of tokens that can be produced on the remaining output
arcs of the second and the third connector are the same as in the unreduced case.
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the left output is optional and the right is always covered. Therefore, no reduction
can be applied.

Definition 3.12 (Reduction of Delta Components). Let EPC1 and EPC2 be two
relaxed syntactically correct EPCs with the respective index sets IA1 and IA2 , index
and count functions fA1 , fA2 , ξ1, and ξ2. The pair ((EPC1, IA1), (EPC2, IA2)) ∈
Te if the following conditions hold for three connectors c1, c2, c3 ∈ C1, and if EPC2

can be constructed from EPC1 as follows:
Condition:
1) there exists c1, c2, c3 ∈ C1, a1, a2, a3 ∈ A1 such that

c1 �= c2 ∧ c1 �= c3 ∧ c2 �= c3∧
a1 = (c1, c2), a2 = (c1, c3), a3 = (c2, c3) ∧
c1• = {c2, c3} ∧ •c2 = {c1} ∧ •c3 = {c1} ∧
ξ(a1, IA1) = 1 ∧ ξ(a2, IA1) = 1 ∧ ξ(a3, IA1) = 1 ∧

Construction for l(c1) = l(c2) ∨ (l(c1) = xor ∧ l(c2) = or):
2) E2 = E1

3) F2 = F1

4) C2 = C1

5) A2 = A1 \ {a2}
6) IA2 = IA1 \ {i ∈ IA1 | fA1(i) = a2}
7) ∀i ∈ IA2 : fA2(i) = fA1(i)
Construction for l(c1) = or ∧ l(c2) = xor:
8) E2 = E1

9) F2 = F1

10) C2 = C1

11) A2 = A1 \ {a3}
12) IA2 = IA1 \ {i ∈ IA1 | fA1(i) = a3} ∧

i ∈ IA2 : fA2(i) = fA1(i)
Error cases:
13) l(c1) = xor ∧ l(c3) = and
14) l(c1) = and ∧ l(c3) = xor
15) l(c1) = and ∧ l(c2) �= and ∧ l(c3) = and
16) l(c1) = or ∧ l(c3) = xor
17) l(c1) = or ∧ l(c3) = and

The rule preserves both the cardinality restrictions of all nodes and the coherence
restriction of relaxed syntactical correctness.

Figure 3.24 is another example from the SAP Reference Model. It describes the
Quality Inspection for the Technical Object process. In this process, there are two
Delta components that contain errors. Both have the structure OR-split, OR-split,
XOR-join. In this component, the XOR-join can receive control twice from the first
OR-split. This leads to execution problems due to a lack of synchronization. The
problem could be fixed by replacing the XOR-join with an OR-join.
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Prism Components

In the previous section, we saw four cases of delta components that could not be
reduced: (1) c1 is an XOR and c2 is an AND, (2) c1 is an AND and c2 is an XOR,
(3) c1 is again an AND and c2 an OR, and (4) c1 is an OR and c2 an AND. In all of
these cases one output arc is activated optionally, while the other always receives a
positive token. Figure 3.25 shows that these delta components can be extended with a
fourth connector c4 to become a prism component. The four cases must always have
an OR-join as a fourth connector in order to provide proper synchronization of the
mandatory and the optional branch. If the fourth is not an OR, the model is not sound
due to a potential deadlock (AND) or a contact situation (XOR). The prism can be
reduced by deleting the arc a3 between the second and the third connector. The type
of the third connector is not considered here since the delta rule already contributes
reduction and error reports concerning the interplay of connectors c1 to c3.

c3c3 c3c3
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Figure 3.25. Reduction of Prism Components

Definition 3.13 (Reduction of Prism Components). Let EPC1 and EPC2 be two
relaxed syntactically correct EPCs with the respective index sets IA1 and IA2 , index
and count functions fA1 , fA2 , ξ1, and ξ2. The pair ((EPC1, IA1), (EPC2, IA2)) ∈
Tf if the following conditions hold for three connectors c1, c2, c3, c4 ∈ C1, and if
EPC2 can be constructed from EPC1 as follows:
Condition:
1) there exists c1, c2, c3, c4 ∈ C1, a1, a2, a3, a4, a5 ∈ A1 such that

c1 �= c2 ∧ c1 �= c3 ∧ c1 �= c4 ∧ c2 �= c3 ∧ c2 �= c4 ∧ c3 �= c4 ∧
((l(c1) = xor ∧ l(c2) = and) ∨ (l(c1) = and ∧ l(c2) = xor)∨
(l(c1) = and ∧ l(c2) = or) ∨ (l(c1) = or ∧ l(c2) = and)) ∧
a1 = (c1, c2), a2 = (c1, c3), a3 = (c2, c3), a4 = (c2, c4), a5 = (c3, c4) ∧
c1• = {c2, c3} ∧ •c2 = {c1} ∧ •c3 = {c1} ∧
c2• = {c3, c4} ∧ c3• = {c4} ∧ •c4 = {c2, c3} ∧
ξ(a1, IA1) = 1 ∧ . . . ∧ ξ(a5, IA1) = 1

Construction:
2) E2 = E1

3) F2 = F1

4) C2 = C1

5) A2 = A1 \ {a3}
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6) IA2 = IA1 \ {i ∈ IA1 | fA1(i) = a3} ∧
∀i ∈ IA2 : fA2(i) = fA1(i)

Error cases:
7) l(c4) �= or

The rule preserves both the cardinality restrictions of all nodes and the coherence
restriction of relaxed syntactical correctness.

Connector Merge

Van Dongen et al. point to the fact that two consecutive joins or splits of the same
connector type provide the same behavior as if both were merged. Figure 3.26 illus-
trates the respective reduction rules. One consequence of such a merger is that the
identity of the individual connectors is lost. This might be a problem for errors that
are found by further rules since it is not clear which of the merged connectors is
responsible for the error.

c1

c2 c2
l(c1)=l(c2) 

c1

c2

c1

l(c1)=l(c2) 

Figure 3.26. Connector Merge

Definition 3.14 (Connector Merge). Let EPC1 and EPC2 be two EPCs. The
pair (EPC1, EPC2) ∈ Tg if the following conditions hold for two connectors
c1, c2 ∈ C1, and if EPC2 can be constructed from EPC1 as follows:
Condition:
1) there exists (c1, c2 ∈ J1 ∧ (c1, c2) ∈ A1) ∨ (c1, c2 ∈ S1 ∧ (c1, c2) ∈ A1) such
that

c1 �= c2 ∧
(c2, c1) /∈ A1 ∧
l(c1) = l(c2) ∧
ξ((c1, c2), IA1) = 1

Construction for c1, c2 ∈ J1:
2) E2 = E1

3) F2 = F1

4) C2 = C1 \ {c1}
5) A2 = {(x, y) ∈ A1 | x �= c1 ∧ y �= c1} ∪ {(x, y)|x ∈ •c1 ∧ y = c2}
6) IA2 = {i ∈ IA1 | fA1(i) �= (c1, c2)} ∧

∀{i ∈ IA2 ∧(x, y) = fA1(i)} : fA2(i) =
{

(x, y) if and only if x �= c1 ∧ y �= c1

(x, c2) if and only if y = c1
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Construction for c1, c2 ∈ S1:
6) E2 = E1

7) F2 = F1

8) C2 = C1 \ {c2}
5) A2 = {(x, y) ∈ A1 | x �= c2 ∧ y �= c2} ∪ {(x, y)|x = c1 ∧ y ∈ c2•}
6) IA2 = {i ∈ IA1 | fA1(i) �= (c1, c2)} ∧

∀{i ∈ IA2 ∧(x, y) = fA1(i)} : fA2(i) =
{

(x, y) if and only if x �= c1 ∧ y �= c1

(c1, y) if and only if x = c2

There are no error cases.

The rule preserves both the cardinality restrictions of all nodes and the coher-
ence restriction of relaxed syntactical correctness. No self-arcs can be created since
(c2, c1) /∈ A1.

Homogeneous

Similar to the Petri net class of state machines (see [104, p.172]), EPCs with no other
than XOR-connectors are trivially correct. Consider the set of initial markings, which
includes for each start arc an initial marking, where it is the only arc having a positive
token. Since there are only XOR-connectors, there is no deadlock and the sum of
positive tokens is one in all markings. Due to the relaxed syntactical correctness of
the EPC, every node is on a path from a start to an end node. This also means that all
end arcs are reached from the described set of initial markings. An EPC only with
XOR-connectors is, therefore, sound. Acyclic EPCs are also correct if either there
are only OR-connectors or if there are only AND-connectors and OR-joins. These
cases are similar to the flow activity in BPEL which is correct by design (see [440]).

Definition 3.15 (Reduction of Homogeneous EPCs). Let EPC1 and EPC2 be two
EPCs. The pair (EPC1, EPC2) ∈ Th if the following conditions hold for C1, and
if EPC2 can be constructed from EPC1 as follows:
Condition:
1) ∀c ∈ C1 : l(c) = xor ∨

(�∃n ∈ N : n ↪→ n ∧ ∀c ∈ C1 : l(c) = or) ∨
(�∃n ∈ N : n ↪→ n ∧ ∀c ∈ S1 : l(c) = and ∧ c ∈ J1 : l(c) �= xor)

Construction:
2) E2 = {e1, e2}
3) F2 = ∅
4) C2 = ∅
5) A2 = {(e1, e2)}
6) IA2 = {1, 2}
7) fA2(1) = e1, fA2(2) = e2

There are no error cases.

The homogeneous rule is the desirable last reduction. It obviously preserves relaxed
syntactical correctness and it yields the trivial EPC which implies that there are not
more errors in the source EPC1. After applying this rule it is easy to determine
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whether the original EPC was sound. If there are errors recorded in the reduction
process, the EPC is not sound. Otherwise, it is sound.

3.3.3 A Reduction Algorithm for EPCs

In the previous section, we defined a set of reduction rules for the verification of
EPC soundness. Algorithm 3 illustrates through object-oriented pseudo code how
the rules can be prioritized. Each invocation of a rule that has error cases takes the
error list to append further errors (lines 7-11). The algorithm tries to minimize the
utilization of the connector merge rule, since losing the identity of a connector poses
problems in finding the connector that is responsible for an error. The inner while-
loop (lines 3-13) accordingly calls all reduction rules except the connector merge as
long as the EPC can be reduced. If that is no longer possible, i.e. the new numbers
of arcs and nodes equal the old values, the loop is exited and the algorithm tries to
merge one connector as part of the outer while-loop. If that succeeds, the inner loop
is re-entered again. Otherwise, the reduction terminates. The size of the reduced EPC
and a list of errors is returned as a result.

Algorithm 3 Pseudo code for reduction of an EPC
Require: EPC
1: nodes← |N |, arcs← |A|, nodesnew← 0, arcsnew← 0, ErrorList← ∅
2: while nodes �= nodesnew ∨ arcs �= arcsnew do
3: while nodes �= nodesnew ∨ arcs �= arcsnew do
4: nodes← |N |, arcs← |A|
5: reduceHomogeneous(EPC)
6: reduceTrivialConstructs(EPC)
7: reduceStructuredBlocks(EPC,ErrorList)
8: reduceStructuredLoop(EPC,ErrorList)
9: reduceStartEndComponents(EPC,ErrorList)

10: reduceDeltaComponent(EPC,ErrorList)
11: reducePrismComponent(EPC,ErrorList)
12: nodesnew← |N |, arcsnew← |A|
13: end while
14: mergeConnector(EPC)
15: nodesnew← |N |, arcsnew← |A|
16: end while
17: return |N |, ErrorList

Figure 3.27 illustrates how the reduction algorithm works on the Loan Request EPC
from page 19. Deleting the trivial constructs yields the EPC that is shown in (b).
It consists of eight connectors, one start event, two end events and an end process
interface. Applying the end component reduction and the trivial construct reduction
results in the EPC depicted in (c). On the right-hand side, there is a delta component
that cannot be reduced but, together with the OR-join as a fourth connector, yields
a well-behaving prism component. The prism component reduction then results in
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Figure 3.27. Stepwise reduction of the Loan Request EPC

the EPC given in (d). Since there are only XOR-connectors left the Homogeneous
Reduction can be applied to reduce the EPC to the trivial EPC.

Algorithm 3 was implemented in a batch program called xoEPC.6 xoEPC is writ-
ten in the object-oriented scripting language XOTcl [316], which is an extension of
Tcl (see [452]). Figure 3.28 gives an overview of input files that are read by xoEPC
and the output files generated by it. xoEPC loads all *.xml files from the current di-
rectory and checks whether they are ARIS XML files [190, 192]. If this is the case,

6 Some of the functionality of xoEPC is available via a web interface at http://wi.wu-
wien.ac.at/epc.
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xoEPCxoEPC

reducedEPCs.epml
<epml>
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Figure 3.28. ./verif/xoEPC inputs and outputs

the XML is processed with the tDOM package [255], a Tcl implementation of the
DOM specification7. For each EPC model that has at least one event and one func-
tion, xoEPC checks relaxed syntactical correctness and applies the reduction algo-
rithm. The internal data structure of xoEPC uses an adjacency matrix representation
of the EPC and the reduction methods work on this data structure. All EPCs that can-
not be reduced completely are written to the reducedEPCs.epml file.8 These EPCs
can be further analyzed by loading them into ProM via the EPML import. If errors
are encountered they are recorded in the errorresults.xml file. This file also records
the processing time of the reduction, metadata of the model, as well as the size of
the original and the size of the reduced EPC. Finally, an XHTML file with an em-
bedded SVG graphic9 is generated for each EPC based on the position information
in the ARIS XML file. This projects the errors back to the model by highlighting the
involved connectors. Figure 3.29 shows an example of an XHTML+SVG file gener-
ated by xoEPC. The different colors refer to the errors that are listed at the top of the
screen. We discuss the errors in detail on page 101. Using this visual information,
the modeler can easily fix the problems.

7 For an overview of the various DOM specifications of the World Wide Web Consortium
refer to http://www.w3.org/DOM/DOMTR.

8 The reason for using EPML as an output format and not the ARIS file format is that the
EPML representation is more compact and easier to generate. For details refer to [288, 41].
The ARIS format is chosen as an input format since many EPCs such as those of the SAP
Reference Model are available in ARIS.

9 For the respective specifications, see XHTML [334] and SVG [125].
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Figure 3.29. Snapshot of an SVG generated by xoEPC for the Plant Maintenance – Refur-
bishment Processing in Plant Maintenance EPC



3.3 Verification by Reduction Rules 95

3.3.4 Reduction of the SAP Reference Model

In order to test the performance of the reduction kit, we turn back to the SAP Ref-
erence Model [211] that was mentioned before. This extensive model collection in-
cludes almost 10,000 individual models. 604 of them are EPCs that have at least one
event and one function and 600 of them are interpretable: they do not include func-
tions and events with more that one input or output arc. In the following pages, we
discuss the reduction performance from four perspectives: (1) Processing time of re-
duction, (2) Extent of reduction, (3) Applicability of reduction rules, and (4) Number
of errors found.

Processing Time of Reduction

The processing of the whole SAP Reference Model took about 18 minutes on a
desktop computer with a 3.2 GHz processor. Figure 3.30 shows how the processing
time is distributed over different models. Each EPC model is represented by a number
on the horizontal axis ordered by the processing time: the EPC that was processed the
fastest is on the very left position and the most time-consuming EPC is found on the
very right-hand side of the spectrum. Each EPC is assigned its processing time as the
ordinate. Please note that the ordinate is given in a logarithmic scale. In Figure 3.30
it can be seen that about 320 models are processed in less than one second. We also
see that only some EPCs (16) take more than 10 seconds. It is interesting to note that
the 13 largest models with more than 80 nodes are also the 13 models that require the
most processing time. The number of nodes and the processing time are correlated
with a Pearson’s coefficient of correlation of 0.592, showing that the performance
very much depends on the size of the EPC. The maximum processing time was two
minutes and 22 seconds for an EPC with 111 nodes, 136 arcs, and 32 connectors.
The performance of the analysis is much better than the performance of the relaxed
soundness analysis reported in [275, 276], which took about seven hours and 45
minutes on the same computer, in contrast to less than 30 minutes with reduction
rules.

Extent of Reduction

In this section we will discuss the extent of the reduction by comparing the number of
nodes from before and after the reduction. All original EPCs together include 12,529
nodes while the reduced EPCs have only 1,118 altogether. The average per model is
about 21 nodes before and 1.85 nodes after the reduction. This means that 91% of the
nodes are deleted in the various reduction steps. Figure 3.31 shows the EPCs ordered
by size of the reduced model related to the reduced size. Two things can be gathered
from this figure. 103 of 604 EPCs could not be reduced completely and these have
less than 29 nodes (slightly more than the average for the unreduced models). Only
15 of them have more than 15 nodes.
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Applicability of Reduction Rules

Figure 3.32 shows how often the eight reduction rules can be applied for the verifi-
cation for the SAP Reference Model. Not surprisingly, the reduction of trivial con-
structs is used most often (about 6,600 times). It is followed by the start and end
component reduction with about 2,400 applications. This is a good result consider-
ing that large sets of start and end events have been a major verification problem
in previous studies (see [440, 276]). The structured block rule is the fourth best re-
garding the frequency of application with 345 reductions. The homogeneous rule is
still applied quite often (460 times) since this rule can only be applied once for an
EPC. The remaining four rules are applied less frequently. They still play an impor-
tant role for the reduction approach as a whole. Running the reduction without the
structured loop, delta, prism and merge rule causes 13 additional models to not be
reduced completely and 53 errors would be missed.
Some of the reduced EPCs yield a specific pattern that could be used for designing
additional reduction rules. The Figures 3.33–3.36 show four patterns that were found
multiple times in the set of reduced EPCs. The reachability graph analysis with ProM
can be used to verify them. While the EPCs of Figures 3.33, 3.34 and 3.36 are not
sound, the Figure 3.35 is correct. Analyzing such reduced EPCs systematically is
subject of future research.

Number of Errors Found

Prior research on the verification of the EPCs of the SAP Reference Model has shown
that there are several formal errors in the models (see [473, 109, 110, 275]). In [275]
the authors identify a lower bound for the number of errors of 34 (5.6%) using the
relaxed soundness criterion. The reduction based on xoEPC identifies 90 models for
which altogether 178 error patterns were found (see Figure 3.37). This is almost three
times as many models as in an earlier study which used the relaxed soundness crite-
rion (see [275]). Furthermore, there are 103 models that are not completely reduced
and for 57 of them no error was found in the reduction phase. We analyzed these
models using the reachability graph approach. 68 of the 103 unreduced EPCs were
not sound and 36 unsound EPCs were not detected by the reduction rules. This yields
126 EPCs with errors in total for the SAP Reference Model.

Comparing the application of a rule to the error cases, as depicted in Figure 3.37,
offers some first inside regarding the question why errors are introduced in models.
While 44 errors in structured blocks is often in absolute terms, it is little compared to
the 345 times a structured block was reduced. This is different for structured loops
and delta components: the relation of errors to no-error cases is about 1:2 (11 to 21
for loops and 21 to 37 for deltas). It seems as if modelers have more problems with
these sophisticated building blocks than with the structured blocks. The start and end
components may be regarded as the extreme opposite, with 102 error cases compared
to 2,400 applications. This is still the highest value in absolute terms and points to
a problem with using unstructured start and end events. Surprisingly, the prism is
applied six times, and even though it is the reduction pattern with the most nodes, it
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causes no errors. One explanation could be that modelers are aware that non-trivial
components are best joined with an OR.

Figure 3.38 depicts one of the small EPCs from the SAP Reference Model that
was identified to be unsound by the reduction algorithm. xoEPC reports that there
is a loop with an AND-join as entry and an XOR-split as exit. Obviously, the only
possible initial marking including Time for order monitoring is reached cannot lead
to a proper execution of the process since the AND-join cannot receive a token on
its second input arc. Figure 3.39 shows another example EPC for which nine errors
were found by xoEPC. Errors 1 and 2 are mismatches of an OR-split with XOR-
join connectors. These components might potentially create more than one token
on subsequent arcs. The third error is an OR-exit to a loop. If this loop is executed
multiple times, it is possible that multiple tokens are created at the exit. Error 4 relates
to an AND-join that might not get control from a previous XOR-split. This implies
that there is no initial marking in which a positive token on the start arc pointing to
the AND-join is guaranteed to run into a proper completion. The same holds true
for error 9. Errors 5,6 and 8 relate to the loop at the bottom with its OR-entry and
AND-exits and OR-exits. Error 7 is a delta component with two OR-splits and one
XOR-join. There is again a potential lack of synchronization at the XOR-join. The
reduction rules could also not reduce the EPC completely. An analysis with ProM
reveals that the AND-join with the start arc involved in error 4 and 9 might also not
get control from the OR-split behind the first function Order. All unsound models
that were detected by xoEPC are listed in the Appendix A of [266]. EPCs that were
not completely reduced and checked with the ProM plug-in are depicted in Appendix
B of [266].
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3.4 Summary

In this section, we presented an EPC-specific version of soundness as a correctness
criterion for EPCs. We proposed two different approaches for soundness verification,
one based on the reachability graph and a second based on reduction rules. While the
first approach explicitly considers all markings and transitions of an EPC, there is a
state explosion problem as the maximum number of markings grows exponentially
with the number of arcs. In order to avoid a performance problem, we introduced a set
of reduction rules. This set extends prior work with new reductions for start and end
components, delta components, prism components and homogeneous EPCs. Both
approaches were implemented as a proof-of-concept: the reachability graph verifica-
tion approach as a plug-in within the ProM framework and the reduction rules as a
batch program called xoEPC written in XOTcl. We tested the performance of xoEPC
in the verification of the SAP Reference model which showed that the reduction rules
approach is fast, that it provides a precise result for almost all models and that it finds
three times as many errors as other approaches based on relaxed soundness. In the
following chapter, we discuss which model attributes could have an impact on the
error probability from a theoretical point of view. The elaboration provides a foun-
dation for answering the question whether errors are introduced randomly in a model
or whether there are factors that influence error probability.



4

Metrics for Business Process Models

Up until now, there has been little research on why people introduce errors in real-
world business process models. In a more general context, Simon [404] points to
the limitations of cognitive capabilities and concludes that humans act rationally
only to a certain extent. Concerning modeling errors, this argument would imply
that human modelers lose track of the interrelations of large and complex models
due to their limited cognitive capabilities and introduce errors that they would not
insert in a small model. A recent study by Mendling et al. [275] explores in how far
certain complexity metrics of business process models have the potential to serve as
error determinants. The authors conclude that complexity indeed appears to have an
impact on error probability. Before we can test such a hypothesis in a more general
setting, we have to establish an understanding of how we can define determinants
that drive error probability and how we can measure them.

In this instance, measurement refers to a process that assigns numbers or symbols
to attributes of entities in the real world [124] in order to represent the amount or de-
gree of those attributes possessed by the entities [432, p.19]. This way, measurement
opens abstract concepts to an empirical evaluation and is, therefore, a cornerstone
of natural, social and engineering sciences. In this definition, an attribute refers to
a property or a feature of an entity while an entity may be an object or an event
in the real world. Measurement at least serves the following three purposes: un-
derstanding, control and improvement. The classical statement attributed to Galilei,
“What is not measurable make measurable”, stresses the ability of a measurement
to deliver understanding. The principle idea behind this phrase is that measurement
makes concepts more visible. In effect, entities and their relationships can be tracked
more precisely bringing forth a better understanding. In an emerging discipline like
complexity of business process models, it might not be clear what to measure in the
first place. Proposing and discussing measures opens a debate that ultimately leads
to a greater understanding [124, p.7]. Measurement then enables control in order to
meet goals. According to DeMarco “you cannot control what you cannot measure”
[103]. Based on an understanding of relationships between different attributes, one
can make predictions such as whether goals will be met and what actions need to
be taken. For business process modeling projects, it is important to establish suit-

J. Mendling: Metrics for Process Models, LNBIP 6, pp. 103–133, 2008.
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able measurements since, as Gilb points out, projects without clear goals will not
achieve their goals clearly [141]. The lack of measurements that can be automati-
cally calculated from a given process model is a central problem of several quality
frameworks. Examples include the Guidelines of Modeling (GoM) [50, 388, 51], SE-
QUAL [250, 307, 228] or the work of Güceglioglu and Demirörs [157, 156]. While
various empirical research has been conducted on quality aspects of data models (see
[304, 135, 305, 136, 137]), such work is mostly missing for business process models
[306]. Defining quality concepts in a measurable way would be a major step to-
wards understanding bad process design in general. Measurement is also crucial for
the improvement of both business process models as products and business process
modeling processes. In business science, it is an agreed upon insight, from Taylor’s
scientific management [421] to Kaplan and Norton’s balanced scorecard [205, 206],
that measurement directs human behavior towards a goal. In organizational theory,
this phenomenon was first recognized in the Hawthorne plant of Western Electric
and is referred to as the Hawthorne Effect: what you measure will be improved (see
[234, p,21]). Business process modeling has not yet established a general suite of
measurements that is commonly accepted. The potential for improvements in current
modeling practices is, therefore, difficult to assess. This chapter aims to contribute to
a more quantitatively oriented approach to business process modeling by proposing
a set of potential error determinants for EPC business process models. This is also
a step towards establishing business process modeling as an engineering discipline
since “to predict and control effectively you must be able to measure. To understand
and evaluate quality, you must be able to measure.” [234, p.4].

The remainder of this chapter is structured as follows: Section 4.1 presents the
theoretical background of measurement with a focus on scale types and issues related
to validity and reliability. Section 4.2 discusses which concepts are measured in the
neighboring discipline of network analysis. We focus on degree, density, centrality
and connectivity metrics since they seem to be promising for business process mod-
els. Section 4.3 gives an overview of complexity metrics in software engineering. We
highlight the most prominent metrics and discuss their relationship to more abstract
quality concepts for software products. In Section 4.4, we present related work on
metrics for business process models. In Section 4.5, we identify the complexity of a
process model’s structure and its state space as the key determinants for error proba-
bility. Related to these two aspects we define a set of metrics and discuss their impact
on error probability. Section 4.7 gives a summary before the metrics are tested in the
subsequent chapter.

4.1 Measurement Theory

The representational theory of measurement (or measurement theory) explains how
empirical phenomena can be captured in terms of a measurement (see [474, 124,
409]). A measurement can be formally defined as a mapping (also called scale)
from the domain of the empirical world to the range of mathematical concepts (see
[124]). In software engineering, the terms metric and measurement are often used
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interchangeably. There seems to be a certain reluctance to make a clear distinction
between both terms, partially to avoid confusion with the term metric in a mathemat-
ical sense (see [124, p.103]). Several software engineering books only give vague
characteristics of a metric (see [140, p.368], [413, p.567] or [234, p.9]). Throughout
the remainder of this book we will use the term metric in order to refer to the type of
a measurement that quantifies a certain attribute of an entity in the real world by fol-
lowing a predefined way of quantification. An implication of this definition is that en-
tities of the real world can be compared by comparing the measurement for a certain
metric. The term statistic is related to such an understanding of a metric since it refers
to a sample as a specific entity of the real world [20, p.212]. A sample can be defined
as a subset of measurements selected from a population while a population consists
of the set of all measurements in which an investigator is interested [20, p.17].

Three problems related to measurement have to be considered (see [439]). First,
the representation problem relates to the condition that the mapping should preserve
relations that exist in the real world. Second, the uniqueness problem refers to in-
variance of a measurement under certain transformations. Third, the meaningfulness
problem is concerned with drawing conclusions about the truth of statements based
on comparison of assigned scale values. While the third aspect is subject to ongoing
research, the first and the second problem are addressed by the scale hierarchy pro-
posed by Stevens [416]. It distinguishes nominal, ordinal, interval and ratio scales.
Stevens assumes that a scale maps an empirical relation to the real numbers and dis-
cusses how the scale values can be interpreted.

• Nominal: The values of this scale can only be interpreted as unique identifiers.
Consider, for example, two business process models that have the unique IDs 1
and 7. The only conclusion that can be drawn from this data is that the models are
not the same. Any transformation of the scale values can, therefore, be performed
if the uniqueness of the identifiers is not affected.

• Ordinal: The ordinal scale preserves an order relation that exists in the domain
of the empirical relation. For a questionnaire asking in how far several business
process models are complex, the responses could be mapped to the scale values 1
for trivial, 2 for rather simple, 3 for rather complex and 4 for incomprehensible.
This representation of the responses is as good as any other that does not change
the order of the values. Any monotone transformation like taking logs or square
roots can be applied.

• Interval: The interval scale is invariant to linear transformations that preserve
relative distance. Consider two business process models and the point in time
when they were designed. We could encode the values as days after the start of
the modeling project (01 September 2000 for example) or as years AD in the
range of real numbers. We could then use a linear transformation to calculate
from one scale to the other.

• Ratio: In contrast to the interval scale, the ratio scale has a zero element that
represents absence of a certain property. Consider the number of connectors a
certain business process model has. The values can accordingly be multiplied by
a constant as this preserves the relative ratio of the values.
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There is a hierarchy between the scale types, since the classes of meaningful trans-
formations narrow from nominal to ratio scale. Stevens recommends using certain
statistics only for specific scale types: the mean only for interval scale data, for ex-
ample [417]. Criticism of such a clerical restriction and the scale type hierarchy itself
is presented in [439]. In [309], an alternative list of categories including names, or-
dered grades, ranks, counted fractions, counts, amounts and balances is proposed.
Beyond this, Guttman argues that instead of restricting data analysis to permissive
statistics for a scale, one should rather consider the loss function to be minimized
[160]. This argument points to the problem of measurement involving validity and
reliability issues.

In essence, validity refers to the question whether conclusions based on a mea-
sure are actually accurate and whether measurement captures what is intended to be
measured. Since abstract concepts have to be translated into a measurable operational
definition or a metric, there is plenty of room for mismatch (see [204, 234]). Validity
can be judged in terms of freedom from systematic error. While the true scores are
often not available, validity is, in general, difficult to assess. Establishing the valid-
ity of a measurement involves the three issues of content validity, criterion validity
and construct validity (see [409, 258]). If a measurement is not valid it is also not
possible to draw valid conclusions from it.

• Content Validity: This type of validity refers to the ability of a measurement
scale to represent the full range of meanings associated with the empirical phe-
nomenon. Assuming we want to find out which one of two process models is
perceived to be more complex: If a questionnaire only were to offer two answers
like “model A seems more complex” and “model B seems more complex”, we
would have a problem with content validity since the phenomenon of indifference
(“both models seem equally complex”) could not be represented.

• Criterion Validity: This type of validity points to the pragmatic value of a mea-
surement, i.e. how closely measurement values and real phenomena are con-
nected. Assume we are interested again in the complexity of a process model
as it is perceived by modelers. If we choose to consider the number of arcs as a
measurement for it, we might encounter the problem that models with the same
number of arcs. For example, a sequential model and a model with arbitrary cy-
cles are perceived as having totally different complexity. The number of arcs
might, therefore, have a problem with criterion validity related to complexity
since the measurement and the real phenomenon might not be closely connected.

• Construct Validity: This type of validity refers to theoretical considerations re-
lated to the question why a certain construct is appropriate. Consider again the
perceived complexity of process models and assume that the randomly assigned
ID number of the model exhibits the capability to rank a sample of process mod-
els with respect to complexity. Though we might have a certain degree of cri-
terion validity due to the pragmatic ranking capability, we have a problem with
construct validity since there is no theoretical explanation available for the con-
nection between ID and perceived complexity.

An alternative classification of measurement validity is proposed in [433].
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Reliability refers to the consistency of measurements over entities and time.
While a scale can be reliable and not valid, an unreliable measurement cannot
be valid. In this way, reliability establishes an upper bound on validity (see [409,
p.364]). In the following sections, we will discuss metrics that can be calculated from
graphs, software artifacts and business process models. Reliability essentially relates
to the question of whether our calculation algorithm works correctly and determin-
istically. There are hardly content validity problems since all metrics are based on
counts related to the models. We will, however, discuss construct validity from a the-
oretical point of view for each of the metrics that we identify. We will test criterion
validity in the following chapter, but first we present results from the neighboring
disciplines network analysis and software measurement.

4.2 Metrics in Network Analysis

Network analysis refers to structure theory and related methods in the area of applied
graph theory [63, p.1]. It has a long tradition in social sciences as social network anal-
ysis (SNA) dating back to the 1930s (see [389, pp.7]), but there are also applications
in engineering related to electrical circuits or in natural sciences like epidemiology.
Since EPC business process models are a special class of graphs, it is worth investi-
gating whether network analysis techniques might be applicable.

Network analysis deals with three subareas with a focus on either elements,
groups or the overall network [63]. Element-level analysis deals with quantifying the
position of an element within a network. The Google PageRank is an example that
assigns an individual web page a rank based on its connections within a network of
web pages. Group-level analysis refers to sets of elements of a network and their rela-
tionships. An application example is the case of describing political decision making
with concurrent groups of interest. Network-level analysis considers properties of
the overall network. Some properties have been studied related to the International
Movie Database (IMDb) about what the average distance between any two actors
is. For business process models, we are particularly interested in network-level anal-
ysis metrics. In this section, we focus on degree, density, distance, centrality and
connectivity metrics. For further details on network analysis refer to [389, 64].

A graph G = (V, E) defined by a set of vertices V and edges E ⊆ V × V is the
starting point of network analysis. EPCs as defined in Definition 2.1 are a specific
kind of graph with the sets of functions, events and connectors being the vertices (or
nodes) and directed edges called arcs. A basic set of network analysis techniques is
related to the degree of the vertices of a graph. The degree d(v) of a vertex is the
number of edges that are connected to it. For a directed graph the degree of a vertex
is the sum of its in-degree (the number of incoming arcs) and its out-degree (the
number of outgoing arcs). The average degree

d(G) =
1
|V |

∑

v∈V

d(v)



108 4 Metrics for Business Process Models

summarizes whether vertices are connected to many or to few other vertices. Since
the sum of degrees equals twice the number of arcs, the average degree can also be
calculated as

d(G) =
2 · |E|
|V |

A frequently used metric in network analysis is density (see [389, pp.69]). Density
gives the ratio of edges divided by the maximum number of possible edges. The
density ∆ of a directed graph is calculated as

∆(G) =
|E|

|V | · (|V | − 1)

ranging from 0 for an empty graph to 1 for a complete graph (assuming no self-
edges from a vertex to itself). Despite its popularity the results of this metric have
to be handled with care. This is due to the fact that complete graphs are rare in
practice [389, p.70]. For a random graph, it can be expected that the degrees of the
vertices are binomially distributed: only every other potential edge would be included
yielding a ∆ of 0.5. Several researchers observed that natural graphs do not follow
such a binomial, but a distribution that can be expressed as a power law (see [65]
for an overview). This power law defines the distribution over degrees using two
parameters c > 0 and γ > 0 such that the expected amount of vertices with degree k
is ck−γ . The constant c is used for scaling in such a way that the sum over k yields
either 1 or the number of vertices. An implication of such a power law distribution
is that nodes with a small degree are more likely than nodes with a high degree. In
some example graphs, γ values are estimated as for the actor collaboration graph
(γ ≈ 2.3) and the power grid of the United States of America (γ ≈ 4) [40]. The
implication of this finding is twofold. First, if such a power law is present then graphs
become less dense with increasing size. Second, and due to the previous fact, density
might be only applicable for a comparison of graphs of the same size. For business
process models, it can be expected that nodes with a high degree value are scarce.
The implications of the power law distribution must, therefore, be kept in mind when
interpreting the density metric of process models.

While density captures the overall cohesion of a graph, centrality metrics de-
scribe to which extent the cohesion is organized around a central point [389, p.89].
Several centrality metrics are based on the distance matrix δ(u, v) of a graph in which
each entry gives the shortest path between vertices u and v, also called geodesic dis-
tance. If the graph does not include cycles with negative weight, the distance matrix
can be calculated in polynomial time (see [65] for an overview of algorithms). Based
on the distances it is easy to determine the average distance

δ(G) =
1

|V | · (|V | − 1)

∑

u,v∈V
u�=v

δ(u, v)

and the diameter
diam(G) = max{δ(u, v) | u, v ∈ V }
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of a connected graph1. The centrality of a graph depends upon the sum of differences
between the score of the most central point and any other point. It is the ratio between
this sum of differences and the maximum possible sum of differences (see [133]).
Centrality scores can be calculated based on degree sum, closeness and betweenness.
While the sum of degrees of a vertex only uses information of its local importance
in a graph, closeness considers the sum of distances between vertices. The closeness
centrality of a graph is defined as the inverse of the average distance that a vertex has
to all other vertices. Given the maximum sum of these differences, one can calculate
the closeness centrality for the overall graph (see [133]). Betweenness is based on
the idea that certain vertices are more important since they connect subparts of the
graph. The betweenness proportion of a vertex y for a pair x and z describes the
proportion of shortest paths that connect x and z via y. The pair dependency of x
and y is the sum of betweenness proportions of y that involves all pairs containing x.
The betweenness score of a vertex is ,therefore, half the sum of all dependency scores
of that vertex. The most central point of a graph can be identified using either degree
sums, closeness or betweenness scores. For further details and formulas see [133,
225]. While the diameter appears to be interesting for measuring the length of an EPC
process model, the centrality concept is rather difficult to relate to business process
modeling concepts. We will ,therefore, disregard centrality metrics for measuring
complexity of an EPC.

Connectivity is related to questions about how many vertices have to be removed
from the graph to make it unconnected. An interesting concept in this context is that
of a cut-vertex. A cut-vertex (also called articulation point or separation vertex) is
a vertex which, when removed, increases the number of connected components of a
graph. The number of cut-vertices can be calculated in O(|V |+|E|) based on a depth-
first search tree of the graph (see [84, Ch.22] or [62]). It gives important information
about how easily the overall graph can be split into its components. For an EPC,
the number of cut-vertices might reveal information in how far the model could be
understandable in a divide-and-conquer way, i.e. considering components that are
connected via cut-vertices in isolation. Depth-first search trees can also be used to
decide whether a graph is planar, i.e. if it can be drawn in such a way that edges
do not cross [186]. Since process models are frequently drawn as planar graphs we
assume that the planarity property has little selective power and, therefore, disregard
it for process models.

In summary, degree, density, distance and connectivity metrics seem to be inter-
esting not only in terms of graphs in general, but also for business process models in
particular. We will adapt these metrics to EPCs in Section 4.5. For further network
and graph analysis techniques we refer to [389, 84, 64].

1 For a disconnected graph, the calculation has to be restricted to those pairs that do not have
an infinite distance.
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4.3 Metrics in the Software Engineering Process

In the software engineering process, several metrics are used to provide input for
quality assurance (see [59, 413]). The challenge is to establish a relationship between
metrics for internal attributes that are easy to measure and external ones. While in-
ternal product attributes can be directly calculated for software artifacts, this does
not hold for external attributes like maintainability or reliability as well as unknown
parameters like total effort and number of defects. Instead of the term error, soft-
ware engineering used the generic term defect comprising faults and failures (see
[193, 124]). Faults are defects that result from human errors that are encoded in
the software. The terms fault and error are often used synonymously. Failures are
departures of a software system from its required behavior. Several failures might
potentially be tracked back to the same fault as a source. Software measurement
approaches typically follow a top down design. The classical Goal-Question-Metric
(GQM) approach by Basili et al. [45, 44] advocates a clear definition of the over-
all goal for a software design project. Based on this goal, several questions can be
derived related to how the goal can be achieved. Respective metrics offer a quan-
titative answer to the questions. A similar approach is proposed by Kan [204] who
suggests first to identify a concept of interest and to define it. In a second step an
operational definition has to be found that serves as the basis for a measurement re-
lated to the concept. This measurement must be checked for validity and reliability
with respect to the concept. In the remainder of this section, we will present several
metrics for internal attributes related to the structure of a program like size and com-
plexity which are frequently used in software engineering. These metrics essentially
capture control flow, data flow and/or data structure. We will then discuss external
quality attributes. External quality attributes model aspects like reliability, usability
and maintainability that relate them to internal attributes. We also report on empirical
results related to validating these metrics.

Before presenting individual metrics, we must discuss the association between a
software program and its control flow graph. Since we aim to investigate the potential
analogy between software measurement and business process model measurement
we consider software programs to be represented as control flow graphs. A control
flow graph G = (V, E) can be derived from a program by mapping blocks of se-
quential code to vertices with one input and one output arc and branching statements
like if or while to vertices with multiple input and output arcs (see [261]). Metrics
defined for control flow graphs can be easily adapted to process models.

The lines of code metric is the traditional metric for measuring the size of soft-
ware. While the idea of counting the lines of a software program is rather simple,
there have been several discussions regarding whether comments should be included.
Jones states that depending on the way lines are counted, the results might differ by
the factor of five [201]. Standardization efforts such as the 242 pages long report
of the Software Engineering Institute of Carnegie Mellon University illustrate the
extent of choices in this area [391]. Given the control flow graph G = (V, E) of a
program, the lines of code can be identified with the number of vertices:

LoC(G) = |V |
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One problem with lines of code is that code from different programming languages is
not directly comparable. Research on language productivity has established so-called
gearing factors that capture the effort of writing an arbitrary program in a certain lan-
guage. For example, programming in SQL requires an average effort of 39 compared
to 172 in Assembler [234, p.38]. An increase in lines of code does not necessarily
imply an increase in functionality. Function Point Analysis, originally proposed in
[22], addresses this problem by assigning a score to each input, output, interface,
data file and inquiries based on their individual difficulty. While function points can
be compared for programs written in different languages, there is the problem that
function point analysis requires human interpretation of program difficulty. It can,
therefore, be only partially automated. This is a major disadvantage compared to
lines of code that can be counted automatically.

The cyclomatic number CC proposed in [260, 261, 262] is an early complexity
metric. It is based on the control flow graph G = (V, E) of a program and captures
the number of paths through a program that are needed to visit all vertices. More
precisely, it matches the maximum number of linearly independent paths through a
program. The cyclomatic number is of particular importance for test theory since it
defines the number of test cases required for unit tests. It can either be calculated
based on the number of vertices and edges as

CC(G) = |E| − |V | + 1

or alternatively by counting the number of choices weighted with the number of
alternatives. Since CC is not biased towards a specific programming language, it can
be used to compare the complexity of programs written in different languages. The
cyclomatic complexity density CCD is an CC extension for predicting maintenance
productivity [142]. CCD is calculated as CC divided by the lines of code LoC.
A second extension called essential cyclomatic complexity ECC is a measure of
unstructuredness of the program [260]. It is calculated as the cyclomatic number of
the code after removing all structured constructs like if and while statements. A
totally structured program, therefore, has an essential cyclomatic complexity of zero.
The cyclomatic number can be calculated for EPC business process models that do
not include concurrency (see Figure 4.1).

Halstead’s metrics provide measurable definitions for the length, vocabulary, vol-
ume, difficulty and effort of a software program based on the number of operators
and operands [162]. Operators comprise commands and structuring elements like
parentheses. Operands basically refer to elements that have a value like variables
and constants. The operator parameters n1 and N1 refer to the number of distinct
operators and the total occurrences of operators, respectively. The operand parame-
ters n2 and N2 describe the number of distinct operands and the total occurrences of
operands, respectively. Halstead then defines the following metrics:

Length N = N1 + N2

Vocabulary n = n1 + n2

Volume V = N · log2(n)
Difficulty D = n1/2 · N2/n2

Effort E = D · V
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Figure 4.1. Cyclomatic number of an EPC without concurrency

The formula of volume is motivated by the number of binary mental comparisons
needed to write a program of length N . The formula for difficulty is a postulate of
Halstead’s theory. Halstead claims with reference to the psychologist Stroud that
the required programming time T can be calculated as T = E/18sec. Although the
work by Halstead had a lasting impact on software metrics research, it has been crit-
icized repeatedly as “an example of confused and inadequate measurement” [124].

The information flow metric proposed by Henry and Kafura [177] is based on
the data flow between different modules of a program. Information can be passed
between modules in three ways: by a module invoking another one; by returning
a result from the invoked module to the caller; and by exchanging information via
a global data structure. The fan-in of a module M refers to the number of calls to
the module plus the number of reads to global data structures. The fan-out captures
calls to other modules and write operations to global data structures. Based on these
parameters, the information flow complexity is calculated as

IFC(M) = LoC(M) · (fanin · fanout)2

The IFC metric can be used at design-time to predict which modules are likely to
contain errors. The multiplication of fan-in and fan-out has been criticized in [124].
If a module has either no fan-in or fan-out the metric yields zero which is misleading.

The lines of code, cyclomatic complexity, Halstead complexity and information
flow complexity metrics were developed for procedural programming languages. In
[81], a set of metrics for object-oriented development is proposed. In this context,
coupling and cohesion are important concepts. Coupling describes the degree of in-
terdependence between a pair of modules and cohesion describes the degree to which
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the elements of a module are functional related (see [468, 413]). The proposal is
based on ontological work of Bunge, Wand and Weber [66, 448] and includes six
metrics.

• Weighted methods per class: This metric is calculated as the sum of complexity
weights over all methods.

• Depth of inheritance tree: The inheritance tree defines a hierarchy of classes from
which an individual class inherits properties and methods. The metric gives the
depth of such inheritance for a class in order to describe how many ancestors
potentially affect it.

• Number of children: This metric gives the number of successors in the inheritance
tree for a particular class.

• Coupling between object classes: This measure states to how many other classes
a class is coupled.

• Response for class: This metric gives the size of the set of methods that a class
might use to respond to a message. It is calculated as the sum of local methods
plus methods called by these local methods.

• Lack of cohesion metric: This is the number of disjoint sets identified by compar-
ing each pair of methods and the instance variables they relate to. A high value
for this metric would suggest a split up of the class.

A generic framework for classifying further object-oriented metrics is proposed and
validated against 350 metrics in [435].

The previously presented metrics related to internal attributes of a software arti-
fact were tested in various empirical studies for their criterion validity with respect
to predicting defects or project effort. Fenton and Ohlsson test several hypotheses
on faults and failures that LoC is a useful predictor for defects and that complexity
metrics perform better [123]. They find that LoC is indeed suited to rank modules
according to their absolute number of faults. They also confirm the finding of Basili
and Perricone [43] that fault density seems to decrease with module size. Cyclomatic
complexity CC does not seem to outperform LoC as a predictor for errors. Fenton
and Ohlsson propose to rather consider CC as a predictor for comprehensibility and
maintainability.

An overview of effort estimation is given in [234, pp.79]. Benchmark data is
useful to assess productivity in particular. For example, in one staff month, code pro-
duced for data processing applications appear to range between 165 and 500 lines
[234, p.86]. Measurements are also used to predict the dynamics of effort and de-
fects throughout the development process. Given a record of found defects and a
typical distribution of defects over time, one can estimate defects to be found in
future. A typical distribution in this context is the Rayleigh curve that sharply steep-
ens to a maximum and then decreasing falls towards zero. Such an estimation is
particularly helpful for determining a suitable release date (see [234]). Regression-
based prediction can also be applied in terms of effort. Boehm’s constructive cost
model (COCOMO) assumes that effort E = aSbF with S measuring size, F an
adjustment factor, and a and b depending on the type of software being constructed
[60]. The ISO/IEC 9126 Software Product Quality Model [195] provides an over-
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all classification scheme for quality-related product attributes on four levels. It can
be used as a framework for several metrics defined earlier. Further models and em-
pirical results are summarized in various text books on software measurement (see
[474, 124, 204, 234]).

4.4 Related Work on Metrics for Process Models

In this section, we discuss related work on metrics for process models. Since the
authors hardly refer to each other, it is difficult to group the contributions according
to subject area. We will, therefore, present their work mainly chronologically.

In 1990, Lee and Yoon conducted pioneering work on the definition of metrics for
Petri net process models and their empirical validation [243, 244]. The authors group
their metrics into two categories: structural metrics include simple counts of places,
transitions, arcs and the cyclomatic number of the control graph. Dynamic metrics
cover the number of markings and the maximum and average number of tokens for
the original and a reduced state space. In an empirical study of a set of 75 Petri nets,
the authors find that a simple adaptation of the cyclomatic number is not a suitable
complexity metric; that the number of places can serve as a predictor for the size
of the reachability graph in an exponential equation; and that reduction techniques
reduce the analysis problem by factor four for the sample nets.

Nissen was among the first to introduce measurement concepts for business pro-
cess modeling and business process design in particular (see [318, 319, 320]). His
work is motivated by the observation that business process design is an ill-structured
process and that it is, therefore, a case for business process reengineering on itself.
Based on a set of measurements for process models, he utilizes design heuristics and
a knowledge-based system for reasoning on the quality of the design. The proposed
metrics cover counts for distinct paths, hierarchy levels, nodes in the process model,
cycles, diameter and parallelism as number of nodes divided by the diameter. These
metrics are provided by the KOPeR tool which guides the process reengineering
process [320].

Tjaden, Narasmihan and Gupta operationalize four characteristics of a business
process that need to be balanced: simplicity, flexibility, integration and efficiency
[430, 429]. Simplicity is calculated based on so-called basic complexity of the pro-
cess, i.e. in essence the sum of nodes, arcs and roles. The overall simplicity is then
formalized as the average activity complexity divided by the maximum activity com-
plexity. Flexibility and Integration are determined based on a list of scores similar
to function point analysis. Though it is mentioned, the technical report [429] does
not operationalize efficiency. Balasubramanian and Gupta criticize the high level of
abstraction of the metrics by Tjaden (see [37]). A function point approach, such as it
is proposed for flexibility and integration, is difficult to automate.

Building on measurement efforts for concurrent programs (see [396]), Morasca
proposes a set of metrics for Petri nets and a theoretical foundation [308]. He identi-
fies size, length, structural complexity and coupling as interesting attributes of a Petri
net and for each attribute he defines a set of axiomatic properties which a respective
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metric would have to fulfill. For size he proposes number of places and transitions,
for length the maximum minimal distance (i.e. the diameter), for structural com-
plexity the number of base paths, the concurrent contribution as the number of arcs
minus two times the number of transitions, the sequential contribution as the num-
ber of transitions with one input places and for coupling the number of inbound or
outbound arcs of a subnet. Since Morasca’s contribution is theoretical, an empirical
validation is not included in his paper.

Latva-Koivisto [239] proposes several complexity metrics for business process
models including the Coefficient of Network Connectivity, Cyclomatic Number, Re-
duction Complexity Index, Restrictiveness Estimator and Number of Trees in a Graph
as metrics. This work has two basic weaknesses. First, there is no distinction made
between different kinds of routing elements and second a motivation to consider the
restrictiveness estimator and the number of trees in a graph as a complexity metric is
missing. The work by Latva-Koivisto did not receive much attention in the commu-
nity since it was published only as a technical report.

A different stream of research adapts coupling and cohesion concepts from soft-
ware engineering (see [397, 68, 393, 57]). In the tradition of this work, Daneva et al.
[94] introduce a set of complexity metrics for EPCs based on the notational elements
of the model: function cohesion, event cohesion and cohesion of a logical connec-
tor. From a limited validation with 11 EPCs they conclude that these metrics help
to identify error-prone model fragments. In [347, 348], Reijers and Vanderfeesten
develop a set of coupling and cohesion metrics to guide the design of workflow pro-
cesses. The coupling of an activity is calculated based on its relation cohesion and
its information cohesion. The activity relation cohesion λ describes in how far an
activity shares control flow input and output with other activities. It is defined as the
sum of overlaps between each activity pair divided by the maximum number of pairs
with choices not being considered as overlap. The activity information cohesion µ
determines how many information objects are used by an activity more than once
in relation to all information objects in use. The cohesion of an activity is calcu-
lated as λ · µ. The overall process cohesion c is then defined as the average activity
cohesion. The process coupling k metric is calculated as the number of connected
activities divided by the maximum number of connections. That is, process coupling
is equated with the density ∆ of the process graph. Inspired by [394], the authors de-
fine a process coupling/cohesion ratio as ρ = k/c with a low value indicating good
design.

The work of Cardoso is centered around an adaptation of the cyclomatic num-
ber for business processes he calls control-flow complexity (CFC) [69, 72]. CFC is
calculated from a model by summing up the split connectors weighted by the combi-
nations of output markings they can produce: 1 for an AND-split Sand, |Sxor • | for
an XOR-split Sxor, and 2|Sor•| − 1 for an OR-split. The CFC metric was validated
against a set of complexity axioms proposed by Weyuker [454] in [70, 71] and tested
with respect to their correlation with perceived complexity [73]. In an analysis of
the SAP Reference Model, however, the CFC metric was found unsuitable for the
prediction of errors in business process models [276].
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The research conducted by a group including Canfora, Rolón, Garcı́a, Piattini,
Ruiz and Visaggio extends work related to measurement of the software process. In
[67], Canfora et al. present a set of metrics and evaluate their suitability to serve
as predictors for maintainability of the process model. The operational definition of
maintainability covers analyzability as the likeliness of discovering errors or defi-
ciencies in the model, understandability as the likeliness of comprehending a model
and modifiability as the likeliness of correctly changing the structure of the model.
The metrics address structural properties of the process model related to size, com-
plexity and coupling. For size they include count metrics based on the number of
activities, work products, process roles, input and output dependencies of work prod-
ucts with activities, ratio of work products to activities and ratio of process roles to
activities. For complexity they consider number of dependencies between work prod-
ucts and activities and ratio between input or output dependencies of work products
with activities and total number of dependencies. Coupling is measured as number of
precedence dependencies between activities and activity coupling. In a set of related
experiments, the authors find that most of the metrics are correlated to maintain-
ability: the numbers of activities, work products, work product dependencies and
precedence dependencies show good results while activities coupling and the ratio
of roles to activities are only correlated to a limited extent. The number of roles and
the ratios related to work product dependencies are not correlated. Rolón et al. ex-
tend this set of metrics and tailor it to the specifics of BPMN reflecting additional
numbers for events, gateways, message flows and pools [354, 355, 356, 353].

Inspired by Nissen’s and Tjaden’s work, Balasubramanian and Gupta propose
a set of metrics to support business process design (see [37]). This set includes,
among others, metrics to quantify the degree of automatic decision making (branch-
ing automation), activity automation, role integration, role dependency, activity par-
allelism and transition delay risk. These metrics are applied in a case study for iden-
tifying the best of two alternative process designs.

Cognitive considerations play an important role for understanding good design
in software engineering, for example [58]. This is explicitly reflected in some ap-
proaches to metrics. The work by Gruhn and Laue adapts cognitive weights from
software engineering to business process models [152, 153]. The approach by Van-
derfeesten et al. defines the cross-connectivity metric. Its aim is to capture how diffi-
cult it is to understand how two nodes in a process model relate to each other [437].
This metric is validated for predicting errors and understanding of process models.

Only partially related is the work by Etien and Rolland on measuring the fitness
of a business process model with a real-world process [121]. The authors define sev-
eral metrics related to concepts of the Bunge-Wand-Weber ontology which express
in how far certain concepts are represented in a model that is present in the real
world. In practice, such a measurement maps to a comparison of a business process
model with a potentially more complete model that captures entities of the BWW-
ontology related to the real-world process. Such a measurement is accordingly more
of theoretical interest than of benefit in the design process.

Modularity is another concept that builds on insights on software design. In
essence, modularity relates to the number, the size and the depth of nesting of mod-
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ules. The approach by Lassen and Van der Aalst identifies structured components
in arbitrary process models for the translation to structured BPEL [14, 17]. These
components can also be used to describe the process model in a quantitative way.
The work by Vanhatalo et al. builds on the program structure tree concept for formal
computer program analysis [438]. Using a linear time algorithm, a program structure
tree can be derived that includes a nesting of all single-entry-single-exit components
of the process model. The authors use maximum, average and minimum component
size to describe their model sample. The structuredness of the process model can be
defined depending on the structure of the components [242].

The two survey papers by Cardoso, Mendling, Neumann and Reijers [74] and
Gruhn and Laue [241] summarize a great share of the earlier mentioned work. They
reveal that several metrics for business process models are adaptations of software
complexity metrics. This also holds true for an adaptation of complexity metrics for
EPCs as reported in [155]. Only some authors provide operationalizations for cen-
tral concepts of business process models such as parallelism, cycles and sequential-
ity (see [320]). Several process-related aspects like structuredness and mismatch of
connectors are covered only to a limited extent or not at all. In the following section,
we will identify several metrics that are specifically tailored for predicting errors in
business process models.

4.5 Definition of Metrics for Process Models

In the previous sections we have discussed several metrics for business process mod-
els. Many of them aim to operationalize the structural complexity of the process
graph. The term complexity is discussed in software measurement and authors try
to identify axioms that a complexity metric would have to fulfill (see the work by
Weyuker [454]). Such an axiomatic approach is criticized from different perspec-
tives. In [79], the authors show that the Weyuker axioms do not guarantee that the
metric is meaningful by defining an obviously useless metric that meets the axioms.
More serious is the criticism by Zuse who shows that the aspects subsumed under
the term complexity cannot be captured by a single metric alone [474]. Fenton and
Pfleeger reinforce this finding by pointing to measurement theory [124, pp.322], say-
ing that every valid measurement should obey the rules of representational theory of
measurement. This implies that first an empirical concept or relationship in the real
world should be identified, followed by suitable measurements. In other words, the
concept guides the measurement and the metric does not define the concept. This
principle is incorporated in several software measurement approaches such as the
Goal Question Metric (GQM) approach by Basili et al. [45, 44] or the Concept, Def-
inition, Operational Definition, Measurement approach by Kan [204].

Following this line of argument, we consider the comprehensibility of the busi-
ness process model as the main determinant for error probability. This is based on
the assumption that process models are constructed by human modelers and that their
design is subject to bounded rationality [404]. The comprehensibility of any model
by a person is influenced by a variety of factors including model-related factors like
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size, personal factors like modeling competence, purpose of modeling like docu-
mentation or execution, domain knowledge, modeling language or graphical layout
of the model. In this chapter, we only investigate the model-related aspect. More
precisely, we analyze several metrics that capture various aspects related to either
the process model structure, the process model state space, or both (see [244]) and
discuss their impact on error probability. Each metric is presented by giving its (1)
symbol, (2) definition, (3) rationale why it should be considered, (4) limitations, (5)
the hypothesis related to it and (6) related work that mentions similar metrics in pre-
vious research. We consider a business process model to be a special kind of graph
G = (N, A) with at least three node types N = T ∪ S ∪ J , that is tasks T , splits
S, joins J and control flow arcs A ⊆ N × N to connect them. We use the generic
term connectors C = S ∪ J for splits and joins collectively. Each connector has a
label AND, OR or XOR that gives its routing of merging semantics. For presentation
purposes we subdivide the set of metrics into the categories size, density, partition-
ability, connector interplay, cyclicity and concurrency.

4.5.1 Size

Several papers point to size as an important factor for the comprehensibility of soft-
ware and process models (see [324, 67, 74, 241, 474, 124, 204]). While the size of
software is frequently equated with lines of code, the size of a process model is often
related to the number of nodes N of the process model. Furthermore, we consider
the diameter of the process graph.

Symbol SN

Definition Number of nodes of the process model graph G
Metric SN (G) = |N |
Rationale A larger business process model in terms of SN (G) should be more

likely to contain errors than a small one since the modeler would
only be able to perceive a certain amount of nodes in a certain period
of time.

Limitations There are obviously large models in terms of SN (G) that are un-
likely to have errors, e.g. if the model is sequential without any
connectors.

Hypothesis An increase in SN (G) should imply an increase in error probability
of the overall model.

Related Work LoC [474, 124, 204]; Number of nodes [244, 320, 308, 37, 67, 74,
241, 356].

The size metric SN does not differentiate between the several node types and its
subsets of an EPC. We define size metrics for each EPC element type and its subsets
by mentioning it as the index of S, i.e. SEE refers to the number of end events of an
EPC, and SF to the number of functions of an EPC. The size of the model might be
closer related to the longest path of it and we, therefore, define the diameter diam of
a process model.
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Symbol diam
Definition The diameter gives the length of the longest path from a start node

to an end node in the process model.
Metric diam(G) is calculated either based on the distance matrix of a pro-

cess model or based on shortest path algorithms (see [65])
Rationale A larger business process model in terms of diam(G) should be

more likely to contain errors than a small one since the modeler
would only be able to perceive a certain amount of consecutive
nodes in a certain period of time.

Limitations There are obviously large models in terms of diam(G) that are un-
likely to have errors, for example if the model is sequential.

Hypothesis An increase in diam(G) should imply an increase in error proba-
bility of the overall model.

Related Work The diameter was also proposed in [320, 308].

Figure 4.2 illustrates one particular shortcoming of size as a simple count metric.
The left and the right model have exactly the same number of nodes but the diameter
of the right EPC is longer. This difference between the models does not become
apparent if only the size metric SN is considered.
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Figure 4.2. Two EPCs of the same size with different diameter

4.5.2 Density

In the context of this book we use density as a generic term to refer to any metric that
relates numbers of nodes to numbers of arcs. There are several metrics that provide
information about the relation of arcs and nodes. Here we consider the density met-
ric, the coefficient of network connectivity, average connector degree and maximum
degree.
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Symbol ∆
Definition The density of the process graph refers to the number of arcs divided

by the number of the maximum number of arcs for the same number
of nodes.

Metric ∆(G) =
|A|

|N | · (|N | − 1)
Rationale A business process model with a high density ∆(G) should be more

likely to contain errors than a less dense model with the same num-
ber of nodes.

Limitations The density in terms of ∆ is difficult to compare for models with
a different number of nodes: larger models with the same average
degree have a smaller density since the maximum possible number
of arcs grows by the square of |N |. Many natural graphs seem to
obey a power law (see [64]) which implies that larger models would
be less dense in terms of ∆.

Hypothesis An increase in ∆(G) should imply an increase in error probability
of the overall model.

Related Work ∆ is mentioned as process coupling metric in [348].

Symbol CNC
Definition The coefficient of connectivity gives the ratio of arcs to nodes.

Metric CNC(G) =
|A|
|N |

Rationale A denser business process model in terms of CNC(G) should be
more likely to contain errors since the modeler has to perceive more
connections between nodes than in a model that is less dense.

Limitations There are process models with the same CNC value that might dif-
fer in error probability. Consider, for example, a sequential model
without any connector and a model with the same number of nodes
having one split-connector. The two models also have the same
number of arcs, therefore CNC is equivalent.

Hypothesis An increase in CNC(G) should imply an increase in error proba-
bility of the overall model.

Related Work CNC is listed in [239, 74]. The inverse of CNC called activity
coupling NCA = |N |/|A| = 1/CNC is proposed in [67, 356].

Symbol dC

Definition The average degree of connectors gives the number of nodes a con-
nector is in average connected to.

Metric dC(G) =
1
|C|

∑

c∈C

d(c)
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Rationale A denser business process model in terms of dC(G) should be more
likely to contain errors since the modeler has to perceive more con-
nections between nodes than in a model that is less dense.

Limitations There are process models with the same dC value which differ in
size. They should, therefore, also differ in error probability.

Hypothesis An increase in dC(G) should imply an increase in error probability
of the overall model.

Related Work dC is related to the information flow metric by Henry and Kafura
[177] and its adaptation to process models in [74, 241].

Symbol d̂C

Definition The maximum degree of a connector.
Metric d̂C(G) = max{d(c) | c ∈ C}
Rationale A business process model with a high maximum degree d̂C(G)

should be more likely to contain errors since the modeler has to per-
ceive more connections between the connector of maximum degree
than in a model that has a lower maximum degree.

Limitations There are obviously process models with a high maximum degree
and the same d̂C , but with a low average degree.

Hypothesis An increase in d̂C(G) should imply an increase in error probability
of the overall model.

Related Work d̂C is closely related to the information flow metric by Henry and
Kafura [177]. The idea of information flow is to identify modules
whose interactions are difficult to comprehend and the connector of
maximum degree is the most difficult following this line of argu-
mentation.

Figure 4.3 illustrates the sensitivity of the different density metrics to size. The EPC
on the left-hand side has 18 nodes and 17 arcs while the one on the right-hand side
only has 8 nodes and 7 arcs. The density metric ∆ of the smaller model is more than
twice as high (0.055 to 0.125) than that of the larger one although the structure is
quite similar. This fact reinforces the statements of Section 4.2 on the difficulty to
compare graphs of different size by the density value. The CNC metric reflects the
similar structure much better with similar values (0.945 to 0.875). The average and
the maximum degree of connectors dC and dC yield 3 for both models. In this case,
they underline the similarity of the models well.

4.5.3 Partitionability

We use the term partitionability for referring to those aspects of a process model that
relate to the relationship of subcomponents to the overall model. We discuss sepa-
rability and sequentiality in particular, both of which capture how far certain parts
of the model can be considered in isolation. Furthermore, structuredness quantifies
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Figure 4.3. Two EPCs of the same average and maximum connector degree and varying den-
sity and CNC values

to which degree components are composed in a structured way while depth defines
how far a certain node is from a start or end event.

Separability is closely related to the notion of a cut-vertex (or articulation point),
i.e. a node whose deletion separates the process model into multiple components.
We define the separability ratio as the number of cut-vertices to number of nodes.
Cut-vertices can be found using depth-first search.

Symbol Π
Definition The separability ratio relates the number of cut-vertices to the

number of nodes.

Metric Π(G) =
|{n ∈ N | n is cut-vertex}|

|N | − 2
Rationale A model with a high ratio of cut-vertices should be less likely to

contain errors than a model with a low ratio. If every node except
the start and the end node is a cut-vertex, the model is sequential
and should, thus, be easy to understand.

Limitations The separability ratio Π can be low if there are two long sequential
paths in parallel since none of the parallel nodes is a cut-vertex.

Hypothesis An increase in Π(G) should imply a decrease in error probability
of the overall model.

Related Work Π has not yet been considered as a business process model metric.

Sequentiality relates to the fact that sequences of consecutive tasks are the most sim-
ple components of a process model. The sequentiality ratio relates arcs of a sequence
to the total number of arcs.
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Symbol Ξ
Definition The sequentiality ratio is the number of arcs between none-

connector nodes divided by the number of arcs.

Metric Ξ(G) =
|A ∩ (T × T )}|

|A|
Rationale A process model with a high sequentiality ratio should be less likely

to contain errors than one with a low sequentiality ratio. In contrast
to the separability ratio Π , the sequentiality ratio Ξ also considers
sequences that are in parallel or exclusive. If every arc connects only
non-connector nodes, the model is sequential and the sequentiality
ratio is 1.

Limitations There are models with the same sequentiality ratio but whose non-
sequential arcs might differ in their degree of comprehensibility.

Hypothesis An increase in Ξ(G) should imply a decrease in error probability
of the overall model.

Related Work Ξ has not yet been considered as a business process model metric.
It is related to sequential contribution of Morasca [308].

Figure 4.4 illustrates the difference between the separability and the sequentiality ra-
tio. The model on the left-hand side includes two cut vertices (the XOR-split and the
XOR-join) while the model on the right-hand side additionally has the cut vertices
B, C, F and G. Even though the number of nodes is the same in both models, the
separability ratio is 0.25 for the left model and 0.75 for the right model. The sequen-
tiality ratio counts sequence arcs no matter in which part of the EPC they appear.
The sequential components B to F and C to G, therefore, contribute as much to the
sequentiality ratio of the left model as the sequences A to C and F to H in the right
model (40%).

Structuredness relates to how far a process model can be built by nesting blocks
of matching join and split connectors (see [215]). The degree of structuredness can be
determined by applying reduction rules and comparing the size of the reduced model
to the original size. We consider the reduction of trivial constructs, structured blocks
and loops and of structured start and end components as defined in Section 3.3.2.

Symbol Φ
Definition The structuredness ratio of the process graph is one minus the num-

ber of nodes in the reduced process graph G′ divided by the number
of nodes in the original process graph G.

Metric ΦN = 1 − SN (G′)
SN(G)

Rationale A process model with a high structuredness ratio should be more
likely to contain errors than one with a low ratio. If every node is
part of a structured block, the model is structured and the structured-
ness ratio is 1.

Limitations There are models with the same structuredness ratio but which differ
in their degree of comprehensibility, e.g. if one is larger.



124 4 Metrics for Business Process Models

Hypothesis An increase in Φ(G) should imply a decrease in error probability of
the overall model.

Related Work Φ has not yet been formalized in literature but mentioned in [241,
154]. It is related to essential cyclomatic complexity [260].

Figure 4.5 illustrates the structuredness ratio by the help of two EPCs. The EPC
on the left-hand side is totally structured and yields a structuredness value2 of 1. The
EPC on the right-hand side contains one additional arc and two XOR-connectors that
affect the structuredness. While the nodes B to G are deleted by the reduction rule
for trivial constructs, the connectors cannot be eliminated. Only 6 out of 12 nodes are
deleted yielding a structuredness ratio of 0.5. In the EPC on the right-hand side, the
arc between the left and the right column blocks the application of further reduction
rules.

Depth relates to the maximum nesting of structured blocks in a process. To cal-
culate depth also for unstructured models we define an algorithm that calculates the
in-depth λin(n) of a node n relative to its predecessor nodes •n. All nodes are initial-
ized with an in-depth value of 0. The process model is then traversed along all paths
starting from a start node and ending with either an end node or a node that was
visited before in this path.3 At each visited node n, the new in-depth value λ′

in(n) is
updated based on the value of the previously visited predecessor node λin(pre) and
the current value λin(n) according to the following rule:

λ′
in(n) =

⎧
⎪⎪⎨

⎪⎪⎩

max(λin(n), λin(pre) + 1) if pre ∈ S ∧ n /∈ J
max(λin(n), λin(pre)) if pre ∈ S ∧ n ∈ J
max(λin(n), λin(pre)) if pre /∈ S ∧ n /∈ J
max(λin(n), λin(pre) − 1) if prei /∈ S ∧ n ∈ J

This definition of in-depth captures the maximum number of split connectors that
have to be visited to arrive at a node minus the number of joins on this path. The
out-depth λout(n) is defined analogously with respect to the successor nodes and
decreased for splits and increased for joins. In a structured model, λin(n) equates
with λout(n). We define depth λ(n) as the minimum of in-depth λin(n) and out-
depth λout(n). The depth of the process model Λ is then the maximum depth λ(n)
over n.

Symbol Λ
Definition The depth is the maximum depth of all nodes.
Metric Λ(G) = max{λ(n) | n ∈ N}
Rationale A process model with a high depth should be more likely to contain

errors since connectors are deeply nested.
Limitations There are models with the same depth that differ in size.

2 Please note that if the reduced EPC has the minimum size of 2, i.e. if only one start and one
end event are connected by an arc, then the value of Φ is set to 1.

3 This definition addresses potential problems with the existence of a fixed point by visiting
each node only once for each path even if it is on a loop.
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Hypothesis An increase in Λ(G) should imply an increase in error probability
of the overall model.

Related Work Λ has not yet been formalized but mentioned in [320, 241].

Figure 4.6 shows a structured EPC with its in-depth and out-depth values next to the
nodes. It can be seen that both in-depth and out-depth increase with each visit to an
XOR-split while visiting an XOR-join decreases both parameters. It must be men-
tioned that joins are used as entries to loops and splits as exits. The depth calculation
algorithm is not able to identify such loops as deeper nested structures. Still, it offers
a way to quantify the depth of any process model, no matter if it is structured or not.

4.5.4 Connector Interplay

In this section, we present metrics related to connectors and their interplay. In partic-
ular, we discuss connector mismatch, connector heterogeneity and the control flow
complexity metric.

Structuredness implies that each split-connector matches a corresponding join
of the same type. A mismatch might be the source of an error. Depending on the
connector label and the degree, we define the connector mismatch as MMl =
|∑c∈Sl

d(c)−∑
c∈Jl

d(c)| where l is the connector type. The mismatch ratio MM
gives the sum of mismatch for each connector type.

Symbol MM
Definition The connector mismatch gives the sum of mismatches for each con-

nector type.
Metric MM(G) = MMor + MMxor + MMand

Rationale A process model with a high mismatch is likely to include er-
rors since parallel tokens might not be synchronized or alternative
branches might run into AND-joins and deadlock. If the model is
structured with matching split- and join connectors MM is zero.

Limitations Languages like EPCs offer multiple start and end events. They,
therefore, might show a mismatch without having errors.

Hypothesis An increase in MM(G) should imply an increase in error probabil-
ity of the overall model.

Related Work MM has not yet been formalized in literature.

Connector heterogeneity refers to which extent different connectors are used in a
business process model. For defining a suitable metric that ranges from 0 in the case
that there are only connectors of one type, to 1 in the case that there are the same
amount of connectors of all three types, we refer to the information entropy measure
which has exactly these characteristics. In contrast to the original work of Shannon
and Weaver [395], we do not consider a binary encoding but a ternary because of
the three connector types. The base of the logarithm is therefore three, not two. We
also utilize the relative frequency p(l) = |Cl|/|C|. The connector heterogeneity is
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then calculated analogously to information entropy as the negative sum over the three
connector types of p(l) · log3(p(l)).

Symbol CH
Definition The connector heterogeneity gives the entropy over the different

connector types.
Metric CH(G) = −∑

l∈{and,xor,or} p(l) · log3(p(l))
Rationale A process model with a high heterogeneity is likely to include er-

rors since connectors can be mismatched more easily. If the model
includes only one connector type then CH is 0.
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Limitations Process models might have a high connector heterogeneity but if the
model is structured an error is less likely.

Hypothesis An increase in CH(G) should imply an increase in error probability
of the overall model.

Related Work CH has not yet been formalized in literature.

The Control Flow Complexity metric was introduced in [72] for measuring how
difficult it is to consider all potential states after a split depending on its type.

Symbol CFC
Definition CFC is the sum over all connectors weighted by their potential

combinations of states after the split.

Metric CFC(G) =
∑

c∈Sand

1 +
∑

c∈Sxor

|cxor • | +
∑

c∈Sor

2|cor•| − 1

Rationale A process model with a high CFC should be more likely to contain
errors according to the above argument.

Limitations Models with the same structure but with different connector labels
may have a huge difference in CFC while they are equally easy to
understand.

Hypothesis An increase in CFC(G) should imply an increase in error proba-
bility of the overall model.

Related Work CFC is inspired by [260] and introduced in [72].

Figure 4.7 illustrates the three connector metrics by the help of two example EPCs.
The EPC on the left-hand side has six XOR-connectors, each with a matching coun-
terpart. The mismatch value is 0. Since there are only XOR-connectors, the hetero-
geneity value is also 0. The CFC value is 6 since each of the three split connectors
represents a binary choice. The EPC on the right-hand side has the same structure
but partially different connector types. There is one AND-split and an OR-join that
do not have a matching counterpart. This results in a mismatch value of 4. Three
OR, two XOR and one AND-connector yield a high heterogeneity value of 0.92. Fi-
nally, the CFC value is calculated by summing up 2 for the XOR-split and 3 for the
OR-split which gives a result of 5.

4.5.5 Cyclicity

Cyclic parts of a model are presumably more difficult to understand than sequential
parts. |NC | gives the number of nodes ni for which a cycle exists such that ni ↪→ ni,
and cyclicity relates it to the total number of nodes.

Symbol CY C
Definition Cyclicity relates nodes on a cycle to the number of nodes.
Metric CY CN = |NC |/|N |
Rationale A process model with a high cyclicity should be more likely to con-

tain errors. For a sequential model cyclicity is 0.
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Limitations There are models with the same cyclicity but which differ in com-
prehensibility, e.g. if one is larger.

Hypothesis An increase in CY C(G) should imply an increase in error proba-
bility of the overall model.

Related Work CY C has not yet been mentioned in literature. Nissen proposes to
count the number of cycles instead [320].

Figure 4.8 depicts two similar EPCs. They have the same cyclicity since they have
the same number of nodes that are on a loop. The difference is that the model on the
right-hand side has two cycles that are nested in another cycle while the EPC on the
left side has two structured XOR-blocks on one loop. Since the cyclicity metric only
captures how many nodes are on a cycle it cannot distinguish between models with
a different number of cycles.

4.5.6 Concurrency

Modelers have to keep track of concurrent paths that need to be synchronized. AND-
splits and OR-splits introduce new threads of control, so that the number of control
tokens potentially increases by the number of the output degree minus one. The To-
ken Split metric counts these newly introduced tokens. Concurrent tokens from the
initial marking are not considered.

Symbol TS
Definition The token split sums up the output-degree of AND-joins and OR-

joins minus one.

Metric TS(G) =
∑

c∈Cor∪Cand

dout(n) − 1

Rationale A process model with a high token split value should be more likely
to contain errors since it introduces a high degree of parallelism. A
model with TS = 0 does not introduce new threads of execution
after instantiation.4

Limitations There are models with the same token split value but which differ
in comprehensibility, e.g. if one is structured.

Hypothesis An increase in TS(G) should imply an increase in error probability
of the overall model.

Related Work The maximum number of tokens was proposed by Lee and Yoon
in [244]. While that approach is appealing, it is more computation
intense than the token split metric. In Nissen [320], the concept of
parallelism is captured by an approximation as number of nodes
divided by diameter assuming that all splits introduce parallelism.
Morasca proposes concurrent contribution which is related to token
splits [308]. Balasubramanian and Gupta relate parallel nodes to
nodes in total [37].

4 There may still be concurrency due to multiple start events.
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Figure 4.9. Two EPCs with the same token split values

Figure 4.9 illustrates that the token split gives an upper bound for the number of
tokens in a model assuming boundedness. The EPC on the left-hand side contains
two blocks of concurrency is sequence. Its maximum number of tokens is, therefore,
lower than the token split value. In the model on the right-hand side the two blocks
are nested. In this case, the maximum number of tokens matches the token split value.

The set of presented metrics reveals that there are several independent factors that
presumably affect error probability. Approaches trying to squeeze the complexity of
a process model5 into a single metric consequently seem doomed to fail. A similar
observation is made by Zuse [474] who describes software complexity as a multi-
dimensional phenomenon. In the subsequent section, we revisit the example EPC
from Figure 2.1 to illustrate the metrics.

4.6 Calculating Metrics

In Section 2.1, we introduced the example of a loan request EPC taken from [325].
Table 4.1 summarizes the different metrics and Figure 4.10 illustrates which nodes
and arcs contribute to the more elaborate metrics. Since the different count metrics,
for size in particular, can be easily read from the model, we focus on those that need
to be calculated from the process graph (separability, sequentiality, structuredness,
depth, cyclicity and diameter).

The separability ratio Π depends on the identification of cut vertices (articulation
points); those nodes whose deletion breaks up the graph in two or more disconnected

5 The complexity of a process model can be defined as the degree to which a process model
is difficult to analyze, understand or explain (see [194]).
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Table 4.1. Metrics derived from the EPC example

Size SN 27 density ∆ 0.040
Size SE 11 density CNC 1.074
Size SES 1 av. connector degree dC 3
Size SEInt 8 max. connector degree ̂dC 3
Size SEE 2 separability Π 0.440
Size SF 8 sequentiality Ξ 0.345
Size SC 8 structuredness Φ 0.556
Size SSXOR 3 depth Λ 1
Size SJXOR 2 mismatch MM 8
Size SSAND 0 heterogeneity CH 0.819
Size SJAND 2 control flow complexity CFC 8
Size SSOR 0 cyclicity CY C 0.259
Size SJOR 1 token splits TS 2
Size SA 29
Size diam 14

components. Figure 4.10 displays articulation points with a letter A written next to
the top left-hand side of the node. For example, if the function record loan request
is deleted the start event is no longer connected with the rest of the process model.
There are eleven articulation points in total yielding a separability ratio of 11/(27−
2) = 0.440. Note that start and end events do not belong to the set of articulation
points since their removal does not increase the number of separate components.

The sequentiality ratio Ξ is calculated by relating the number of sequence arcs
(arcs that connect functions and events) to the total number of arcs. Figure 4.10
highlights sequence arcs with an s label. There are ten sequence arcs and 29 arcs
altogether which results in a sequentiality ratio of 10/29 = 0.345. The degree of
structuredness Φ relates the size of a reduced process model to the size of the original
one. Figure 4.10 shows those elements with a cross on the left-hand side that are
eliminated by reduction of trivial constructs. Other structured reduction rules are not
applicable. Since 15 elements are deleted by reduction, the structuredness ratio is
1 − 15/27 = 0.556. The in-depth and out-depth is also indicated for each node
in Figure 4.10. The depth of a node is then the minimum of in-depth and out-depth.
Several nodes have a depth of 1, which is a maximum, and therefore also the depth of
the overall process. The cyclicity is based on the relation between number of nodes
on a cycle and nodes in total. Figure 4.10 shows nodes on a cycle with a letter C
written to the left-hand side bottom. There are seven such nodes yielding a cyclicity
ratio of 7/27 = 0.259. Figure 4.10 connects those 14 nodes that are on the diameter
with a bold line.

We implemented the calculation of the various metrics as an extension to xoEPC
(see Section 3.3.2). For each EPC that is analyzed by the program, the whole set of
metrics is calculated and written to the entry for the model in the errorreport.xml
file. We will use this feature in the following chapter for the analysis of an extensive
collection of real-world EPC business process models.
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4.7 Summary

In this chapter, we discussed the suitability of metrics for error prediction from a
theoretical point of view. Revisiting related research in the area of network analy-
sis, software measurement and metrics for business process models, we found that
several aspects of process models were not yet combined in an overall measurement
framework. Based on theoretical considerations, we presented a set of 15 metrics
related to size and 13 metrics that capture various aspects of the structure and the
state space of the process model. For each of the metrics we discussed a plausible
connection with error probability and formulated respective hypotheses. In the fol-
lowing chapter, we will test these hypotheses for a large set of EPC business process
models from practice using statistical methods.
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Validation of Metrics as Error Predictors

In this chapter, we test the validity of metrics that were defined in the previous chap-
ter for predicting errors in EPC business process models. In Section 5.1, we provide
an overview of how the analysis data is generated. Section 5.2 describes the sample
of EPCs from practice that we use for the analysis. Here we discuss a disaggrega-
tion by the EPC model group and by error as well as a correlation analysis between
metrics and error. Based on this sample, we calculate a logistic regression model
for predicting error probability with the metrics as input variables in Section 5.3. In
Section 5.4, we then test the regression function for an independent sample of EPC
models from textbooks as a cross-validation. Section 5.5 summarizes the findings.

5.1 Analysis Data Generation

Figure 5.1 gives an overview of the analysis data generation process. As input, we use
four sets of EPC business process models that are available in the XML interchange
format of ARIS Toolset of IDS Scheer AG. In Section 5.2, we describe these sets of
EPC models in detail. As a first step, the set of ARIS XML files is read and processed
by xoEPC, the batch program we introduced in Chapter 3. xoEPC applies the set of
reduction rules that we described in Section 3.3.3, and generates an XML error report
file that includes, among others, the following information for each EPC:

• processing time for the EPC,
• references to syntactical problems,
• references to errors,
• statistics about how often a certain reduction rule was applied,
• information about whether the model is reduced completely and finally
• values for each of the metrics that we described in Section 4.5.

The error report XML file is then transformed to an HTML table by an XSLT pro-
gram. Each incompletely reduced EPC is then written to an EPML file. The reduced
EPCs are analyzed with the help of the reachability graph analysis plug-in for ProM

J. Mendling: Metrics for Process Models, LNBIP 6, pp. 135–150, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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V

V

V

ARIS XML files

xoEPC
<?xml version='1.0' encoding='UTF-8'?>
<Models>
   <model modelid="kg4m">
       <metrics n="13" c="3" event="7" function="3" 
and="0" xor="3" or="0" startevent="4" endevent="3" 
heterogeneity="2.14285714286" 
averageConnectorDegree="3.66666666667" 
mismatchSum="2.0" mismatchRatio="0.181818181818" 
cyclenodes="0" cyclicity="0.0" articulationpoints="kg6r 
kg5b kg6y" separability="0.272727272727" diameter="5" 
depth="0" maxdepthnodes="kg60 kg5y kg6r kg62 kg5k 
kg4v kg4x kg6g kg6i kg5b kg6y kg5d kg6k" 
structuredness="0.923076923077"/>
       <reductionresult fromsize="13" tosize="1"/>
   </model>

error report

reduced EPCs
<?xml version='1.0' encoding='UTF-8'?>
<epml xmlns="http://www.epml.de">
    <directory name="Root">
        <epc xmlns="" epcId="kc5k" name="kc5k">
            <xor id="kcdv">
                <name>kcdv</name>
            </xor>
            <and id="kcer">
                <name>kcer</name>
            </and>

reachability 
graph analysis

to HTML
# # # # # ## #
# # # # # ## #
# # # # # ## #
# # # # # ## #
# # # # # ## #
# # # # # ## #

Analysis Table

# # # # # ## #
# # # # # ## #
# # # # # ## #
# # # # # ## #
# # # # # ## #
# # # # # ## #

Figure 5.1. Overview of the analysis

introduced in Section 3.2. The results of this analysis are added to the analysis ta-
ble. The table is stored as an MS Excel file, as this format can be loaded by SPSS;
the software package that we use for the statistical analysis. The complete list of
variables of the analysis table is described in Appendix C.1 of [266].

5.2 The Sample of EPC Models

This section describes the sample of EPC models that we use for the validation of
the set of metrics that we defined in the previous chapter. We present descriptive
statistics disaggregated by group and error as well as a correlation analysis between
the variable hasErrors and each of the metrics.

The sample includes four collections of EPCs with a total of 2003 process mod-
els. All EPCs of the four groups were developed by practitioners.

1. SAP Reference Model: The first collection of EPCs is the SAP Reference Model.
We already used this set of process models to illustrate the performance of the
reduction rule verification approach as implemented in xoEPC (see Chapter 3).
The development of the SAP reference model started in 1992 and the first models
were presented at CEBIT’93 [211, p.VII]. It was subsequently developed further,
up until version 4.6 of SAP R/3 which was released in 2000 [269]. The SAP
reference model includes 604 non-trivial EPCs.

2. Service Model: The second collection of EPCs stems from a German process
reengineering project in the service sector. The project was conducted in the
late 1990s. The modeling task was carried out by a project team with academic
supervision. As an organization principle, the business processes were modelled
in two separate groups depending on whether they were supported by the ERP-
system or not. The models that were defined in this project include 381 non-
trivial EPCs. There are models describing the organization, data and information
systems.
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3. Finance Model: The third model collection contains the EPCs of a process
documentation project in the Austrian financial industry. The project not only
recorded the various business processes of the different functional units of the
company but also information systems, organization and business forms. It in-
cludes 935 EPC process models altogether.

4. Consulting Model: The fourth collection covers a total of 83 EPCs from three
different consulting companies. These companies reside in three different coun-
tries. The models of these collections also include organizational and functional
models. The models are mainly used as reference models to support and stream-
line consulting activities of the companies.

Figure 5.2. EPC with
error from group 2

Figure 5.3. EPC with error
from group 3

Figure 5.4. EPC with error
from group 4

We will use the terms group 1 synonymously for the SAP Reference Model, group 2
for the Service Model, group 3 for the Finance Model, and group 4 for the Consulting
Model. Figures 5.2 to 5.4 show example EPCs with errors from the service model,
the finance model and the consulting model.

5.2.1 How Do the Four Groups Differ?

In this section, we use descriptive statistics to characterize the overall EPC sample
and its four sub-groups. We give mean values µ and standard deviation σ for each
metric including size SN and its variants, diameter diam, density ∆, coefficient of
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Table 5.1. Mean and Standard Deviation of model sets disaggregated by group

Parameter Complete Sample SAP Ref. Model Services Model Finance Model Consulting Model
µ σ µ1 σ1 µ2 σ2 µ3 σ3 µ4 σ4

SN 20.71 16.84 20.74 18.74 22.14 15.71 19.50 15.30 27.64 21.35
SE 10.47 8.66 11.50 10.44 9.54 7.80 9.93 7.41 13.20 9.99
SES

2.43 2.70 3.87 3.84 1.99 2.02 1.59 1.12 3.43 3.38
SEE

2.77 3.20 4.49 4.78 2.35 2.08 1.77 1.24 3.39 3.12
SF 5.98 4.94 4.03 3.81 8.23 5.45 6.22 4.79 7.22 5.95
SC 4.27 5.01 5.21 6.22 4.37 4.20 3.35 3.90 7.22 6.96
SCAND

2.25 3.00 2.18 2.75 1.26 1.88 0.48 1.27 3.37 3.71
SCXOR

1.26 2.24 1.95 2.78 2.34 3.01 2.29 2.99 3.49 4.05
SCOR

0.76 1.54 1.08 1.81 0.77 1.27 0.57 1.45 0.35 0.89
SJAND

0.63 1.23 1.09 1.60 0.56 0.93 0.27 0.71 1.64 2.01
SJXOR

1.01 1.46 1.02 1.51 0.94 1.38 1.00 1.41 1.49 1.93
SJOR

0.37 0.82 0.46 1.03 0.37 0.69 0.32 0.73 0.22 0.54
SSAND

0.62 1.17 1.08 1.48 0.68 1.06 0.22 0.64 1.51 1.79
SSXOR

1.24 1.75 0.93 1.50 1.27 1.76 1.36 1.81 1.88 2.19
SSOR

0.37 0.86 0.62 1.14 0.33 0.57 0.25 0.74 0.13 0.46
SA 21.11 18.87 20.80 20.84 22.50 17.43 20.12 17.54 28.14 22.80
diam 11.45 8.21 9.20 6.46 12.25 7.90 12.27 8.78 14.83 10.50
∆ 0.09 0.07 0.09 0.08 0.07 0.05 0.09 0.07 0.06 0.05
CNC 0.96 0.13 0.94 0.13 0.97 0.13 0.96 0.13 1.00 0.12
dC 3.56 2.40 3.30 1.46 3.12 1.66 2.50 1.62 3.08 0.81
̂dC 2.88 1.60 4.36 2.72 3.85 2.30 2.91 2.11 3.81 1.22
Π 0.56 0.27 0.52 0.22 0.56 0.25 0.60 0.30 0.50 0.21
Ξ 0.46 0.31 0.29 0.28 0.45 0.26 0.59 0.29 0.32 0.22
Φ 0.88 0.11 0.83 0.14 0.90 0.09 0.90 0.08 0.81 0.17
Λ 0.70 0.74 0.55 0.71 0.79 0.66 0.72 0.76 1.00 0.86
MM 3.31 4.55 6.02 6.19 2.84 3.42 1.68 2.49 3.95 3.47
CH 0.28 0.35 0.43 0.38 0.31 0.34 0.15 0.28 0.38 0.34
CFC 382.62 8849.48 1187.98 16040.30 101.80 1678.82 10.17 52.79 6.71 7.35
CY C 0.01 0.08 0.02 0.09 0.04 0.13 0.00 0.01 0.02 0.09
TS 1.82 3.53 3.16 4.89 1.84 2.66 0.91 2.39 2.13 2.63

connectivity CNC, average and maximum connector degree dC and d̂C , Separa-
bility Π , Sequentiality Ξ , Structuredness Φ, Depth Λ, connector mismatch MM
and heterogeneity CH , control flow complexity CFC, cyclicity CY C and token
splits TS.

Table 5.1 gives an overview of the mean µ and the standard deviation σ for all
metrics disaggregated by the four model groups. Several of the disaggregated mean
values are quite close to each other but the Finance Model in particular shows some
striking differences. Notably, it uses start and end events very scarcely (1.59 and
1.77 compared to 3.87 and 4.49 in average in the SAP Reference Model) and has the
highest mean in structuredness Φ and sequentiality Ξ . Figures 5.5 and 5.6 illustrate
the distribution of both the latter metrics as box plots1 disaggregated by group. In this
type of diagram the median is depicted as a horizontal line in a box that represents
the interval between lower and upper quartile; that is, the box refers to middle range
EPCs ranked by the metric from 25% to 75%. Please note that the table indicates
the mean while the box plot shows the median. The upper and lower lines outside
the box define a one and a half multiple of the respective 25%–50% and 50%–75%

1 The box plot is particularly useful for exploratory data analysis. It was invented by Tukey
in 1977 (see [434]). Box plots of all variables disaggregated by group are included in Ap-
pendix C.2 of [266].
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Figure 5.5. Box plot for structuredness Φ
disaggregated by group

Figure 5.6. Box plot for sequentiality Ξ dis-
aggregated by group

quartiles. Values outside these two intervals are drawn as individual points and are
considered to be outliers. From the two observations on start and end events, as well
as on structuredness Φ and sequentiality Ξ , we might be tempted to conclude that
the Finance Model contains the more structured EPCs and thus might have less error
models.

There is some evidence for such a hypothesis when we look at the number of
errors in each of the four groups. Table 5.2 gives a respective overview. It can be
seen that there are 2003 EPCs in the overall sample with 215 of them containing
at least one error. This is an overall error ratio of 10.7%. 154 of the 215 errors were
found by xoEPC. 156 EPCs could not be completely reduced and were analyzed with
ProM. This analysis revealed that 115 of the unreduced EPCs still had errors. Please
note that there are EPCs for which both xoEPC and ProM found errors. The number
of EPCs with errors is, therefore, less than the sum of EPCs with xoEPC and ProM
errors. The comparison of the groups shows that the error ratio is quite different. In
the previous paragraph, we hypothesized that the finance model group might have
less errors since it seems to follow certain guidelines that lead to more structured
models. This might be an explanation for a low error ratio of only 3.3%. We might
find some further evidence regarding the connection between metrics and errors in
the subsequent section with a disaggregation by the boolean variable hasErrors.

Table 5.2. Errors in the sample models

Parameter Complete SAP Ref. Services Finance Consulting
Parameter Sample Model Model Model Models
xoEPC errors 154 90 28 26 10
Unreduced EPCs 156 103 18 17 18
ProM error EPCs 115 75 16 7 17
EPCs with errors 215 126 37 31 21
EPCs in total 2003 604 381 935 83
Error ratio 10.7% 20.9% 9.7% 3.3% 25.3%
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5.2.2 How Do Correct and Incorrect Models Differ?

In this section, we discuss the distribution of the different metrics disaggregated by
the variable hasErrors. Table 5.3 shows that there are quite large differences in the
mean values of the EPC sub-sample with and without errors. It is interesting to note
that the error mean µe is higher than the non-error mean µn for most metrics where
we assumed a positive connection with error probability in Section 4.5 and smaller
for those metrics with a presumably negative connection. The only case where this
does not apply is the density metric. We discussed potential problems of this metric
earlier in Chapter 4 and it seems that it works more accurately as a counter-indicator
for size than as an indicator for the density of connections in the model. Indeed,
there is a correlation of -0.659 between density and size. The two columns on the
right-hand side of Table 5.3 might provide the basis for proposing potential error
thresholds. The first of these columns gives a double σn deviation upwards from the
non-error mean µn. Assuming a normal distribution, only 2.5% of the population can
be expected to have a metric value greater than this. The comparison of this value
with the mean µe of the error EPCs provides an idea of how well the two sub-samples
can be separated by the metric. In several cases, the mean µe is outside the double σn

interval around µn. The box plots in Figures 5.7 and 5.8 illustrate the different dis-
tributions. It can be seen that correct EPCs tend to have much higher structuredness
values and lower connector heterogeneity values.2 We verified the significance of the
difference between the mean values by applying an analysis of variance (ANOVA).
The result of the Kolmogorov-Smirnov test shows that the prerequisite of an approx-
imate normal distribution is fulfilled by all variables. The F-statistic values of the
analysis of variance indicate that the mean differences are significant with 99.9%
confidence for all metrics. In the subsequent section, we gather further evidence re-
garding the direction of the connection between metrics and errors based on a corre-
lation analysis. Details on the analysis are reported in [266].

5.2.3 Correlation Analysis

This section approaches the connection between error probability and metrics with a
correlation analysis. The Appendix C.4 of [266] lists the complete correlation table
calculated according to Pearson for interval scale data and to Spearman for ordinal
scale data. The tendency is the same for both methods. As a confirmation of the
previous observation, all variables have the expected direction of influence except
for the density metric. Table 5.4 presents the Spearman correlation between hasEr-
rors and the metrics ordered by strength of correlation. It can be seen that several
correlations are quite considerable with absolute values between 0.30 and 0.50. The
significance of all correlations is good with more than 99% confidence.

The ability of a metric to separate error from non-error models by ranking
is illustrated in Figures 5.9 and 5.10. For Figure 5.9, all models are ranked ac-
cording to their size. A point (x, y) in the graph relates a size x to the relative

2 The two outliners in Figure 5.8 are cyclic models with only OR-connectors in the first case
and only AND-connectors in the second case.
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Table 5.3. Mean and Standard Deviation of the sample models disaggregated by error

Parameter Complete Sample Non-Error EPCs Error EPCs 2 σ dev. up 2 σ dev. down
µ σ µn σn µe σe µn + 2σn µn − 2σn

SN 20.71 16.84 18.04 13.48 42.97 24.08 44.99 ≈ µe

SE 10.47 8.66 9.06 6.69 22.17 13.19 22.45 ≈ µe

SES
2.43 2.70 2.04 2.04 5.69 4.65 6.12 ≈ µe

SEE
2.77 3.20 2.25 2.11 7.02 6.19 6.47 < µe

SF 5.98 4.94 5.67 4.65 8.53 6.33 14.97
SC 4.27 5.01 3.30 3.47 12.26 7.89 10.24 < µe

SCAND
2.25 3.00 0.85 1.47 4.74 3.89 3.78 < µe

SCXOR
1.26 2.24 1.85 2.60 5.50 3.97 7.05

SCOR
0.76 1.54 0.60 1.33 2.02 2.35 3.27

SJAND
0.63 1.23 0.40 0.81 2.54 2.12 2.02 < µe

SJXOR
1.01 1.46 0.82 1.24 2.63 2.06 3.29

SJOR
0.37 0.82 0.32 0.74 0.79 1.26 1.79

SSAND
0.62 1.17 0.44 0.84 2.13 2.09 2.12 ≈ µe

SSXOR
1.24 1.75 1.04 1.56 2.86 2.31 4.16

SSOR
0.37 0.86 0.27 0.68 1.22 1.51 1.63

SA 21.11 18.87 18.14 15.20 45.79 26.78 48.54 ≈ µe

diam 11.45 8.21 10.63 7.71 18.25 9.01 26.06
∆ 0.09 0.07 0.09 0.07 0.03 0.02 0.23
CNC 0.96 0.13 0.95 0.13 1.05 0.08 1.21
dC 3.56 2.40 2.80 1.66 3.57 0.68 6.11
̂dC 2.88 1.60 3.31 2.28 5.64 2.41 7.87
Π 0.56 0.27 0.59 0.27 0.35 0.13 0.06
Ξ 0.46 0.31 0.49 0.30 0.18 0.14 -0.12
Φ 0.88 0.11 0.90 0.09 0.70 0.16 0.72 > µe

Λ 0.70 0.74 0.61 0.69 1.45 0.73 1.98
MM 3.31 4.55 2.54 3.45 9.71 6.92 9.44 < µe

CH 0.28 0.35 0.22 0.32 0.75 0.19 0.85
CFC 382.62 8849.48 202.19 6306.23 1883.17 19950.26 12814.64
CY C 0.01 0.08 0.01 0.06 0.07 0.17 0.12
TS 1.82 3.53 1.28 2.46 6.26 6.62 6.20 < µe

Figure 5.7. Box plot for structuredness Φ
disaggregated by error

Figure 5.8. Box plot for connector hetero-
geneity CH disaggregated by error
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Table 5.4. Spearman correlation between hasError and metrics ordered by absolute correlation

hasError hasError hasError
SJAND 0,48 SEE 0,38 SSOR 0,31

CH 0,46 ∆ -0,37 SSXOR 0,31
SCAND 0,45 SSAND 0,37 CY C 0,30

SC 0,43 Φ -0,36 SCOR 0,30
MM 0,42 Ξ -0,35 diam 0,30
CFC 0,39 SCXOR 0,35 Π -0,29

SA 0,38 SES 0,35 CNC 0,28
TS 0,38 Λ 0,34 dC 0,23
SN 0,38 SJXOR 0,33 SF 0,19

SE 0,38 ̂dC 0,33 SJOR 0,15

frequency of error models in a subset of models that have at least size x, i.e.
y = |{ errorEPC

EPC | SN (EPC) > x}|. It can be seen that the relative frequency
of error EPCs increases by increasing the minimum number of nodes. The relative
frequency of error EPCs in particular is higher than 50% for all EPCs of at least 48
nodes. In Figure 5.10, all models are ranked according to their structuredness and
(x, y) relates the structuredness x to the subset y of models that have at most struc-
turedness x. Here the graph decreases and drops below 50% at a structuredness value
of 0.80. Similar observations can also be made for some other metrics. The relative
frequency of error models above 50% is reached if

number of nodes SN > 48 number of arcs SA > 62
number of connectors SC > 8 token splits TS > 7
number of events SE > 22 connector mismatch MM > 9
number of end events SEe > 7 structuredness Φ < 0.8
number of functions SF > 40
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In this section, we have gathered some evidence that the hypothetical connections be-
tween metrics and error probability as postulated in Section 4.5 might actually hold.
We have found considerable and statistically significant differences in the metrics’
mean values for the sub-samples of EPCs with and without errors. The mean values
of error EPCs in particular tend to be larger or smaller as expected by the hypotheses.
Correlation analysis has also confirmed the hypothetical direction of the connection
between metrics and errors. The only exception is the density metric. It seems that
this metric might be more suitable as a counter-indicator for size than as an indicator
of the relative number of arcs in the EPCs. It must be kept in mind, however, that
correlation alone does not provide a means to predict error probability. In contrast,
logistic regression allows a precise prediction by estimating the parameters of the
logistic function. We will, therefore, investigate logistic regression in the following
section.

5.3 Logistic Regression

This section provides an introduction to logistic regression analysis and presents
the result of its application for estimating the prediction model for error probability
based on metrics.

5.3.1 Introduction to Logistic Regression

Logistic regression is a statistical model designed to estimate binary choices. It is
perfectly suited to deal with dependent variables such as hasErrors with its range
error and no error. The idea of binary choice models is to describe the probability
of a binary event by its odds; that is, the ratio of event probability divided by non-
event probability. In the logistic regression (or logit) model the odds are defined as
logit(pi) = ln( pi

1−pi
) = β0 + β1x1,i + · · · + βkxk,i for k input variables and i

observations (EPC i here). From this follows that

pi =
eβ0+β1x1,i+···+βkxk,i

1 + eβ0+β1x1,i+···+βkxk,i

The relationship between input and dependent variables is represented by an S-
shaped curve of the logistic function that converges to 0 for −∞ and to 1 for ∞
(see Figure 5.11). The cut value of 0.5 defines whether event or non-event is pre-
dicted. Exp(βk) gives the multiplicative change of the odds if the input variable βk

is increased by one unit (Exp(βk) > 1 increases and Exp(βk) < 1 decreases error
probability). The actual value Exp(βk) cannot be interpreted in isolation since its
impact depends upon the position on the non-linear curve [202, p.791].

The significance of the overall model is assessed by the help of two statistics.
First, the Hosmer & Lemeshow Test should be greater than 5% to indicate a good
fit based on the difference between observed and predicted frequencies (see [188]).
Second, Nagelkerke’s R2 ranging from 0 to 1 serves as a coefficient of determina-
tion indicating which fraction of the variability is explained [314]. Each estimated
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0.5

1.0
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event predicted

p

ln(p/1-p)

Figure 5.11. S-shaped curve of the logistic regression model

coefficient of the logit model is tested using the Wald statistic for values signifi-
cantly different from zero. The significance should be less than 5%. We calculate
the logistic regression model based on a stepwise introduction of those variables that
provide the greatest increase in likelihood. For more details on logistic regression
see [188, 161, 35].

5.3.2 Preparatory Analyses

Before calculating a multivariate logistic regression model for error probability, we
carry out two preparatory analyses. We check collinearity, then determine which
variables are included in the regression model. We also exclude 29 EPCs from the
analysis that are not relaxed syntactically correct. While it is possible to find errors
in these models (as we did in Section 3.3.4), it is not appropriate to use them in
a regression analysis for predicting errors in EPCs that fulfill relaxed syntactical
correctness.3

Collinearity describes the phenomenon of at least one of the independent vari-
ables being representable as a linear combination of other variables. The absence of
collinearity is not a hard criterion for the applicability of logistic regression, but it
is desirable. In a variable set without collinearity, every variable has a so-called tol-
erance value4 higher than 0.1, otherwise there is a collinearity problem. There are

3 Still, the effect of this choice is minimal. Including the 29 EPCs with syntax problems
yields a logistic regression model with the same metrics and similar coefficients, and the
same Nagelkerke R2.

4 The tolerance value is calculated based on the variance inflation factor. For an overview of
multicollinearity detection methods refer to [202, Ch.21].
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several collinearity problems in the original variable set. We dropped all count met-
rics apart from SN as they were highly correlated. This resulted in a reduced variable
set with almost no collinearity problems. The SN metric is close to the 0.1 threshold
and, therefore, kept in the metrics set.

As a second step, we calculated univariate models with and without a constant in
order to check whether all inputs (the constant and each metric) were significantly
different from zero. As a conclusion from these models we drop the constant and
the control flow complexity CFC for the multivariate analysis. The constant is not
significantly different from zero (Wald statistic of 0.872 and 0.117) in the separability
and the sequentiality model which suggests that it is not necessary. The CFC metric
is also not significantly different from zero (Wald statistic of 0.531 and 0.382) in both
models with and without constant. All other metrics stay in the set of input variables
from the multivariate logistic regression model.

5.3.3 Multivariate Logistic Regression Model

This section presents the results of the multivariate logistic regression model. We use
a stepwise introduction of the variables to the logit model selected for its potential to
improve the likelihood. Variables are only introduced if their Wald statistic is better
than 0.05. They are excluded if this statistic becomes worse than 0.1. Such a stepwise
approach for determining the best set of variables is particularly appropriate for a
setting where little is known about the relative importance of the variables (see [188,
p.116]). The final model was calculated in nine steps and includes seven variables. It
is interesting to note that the hypothetical impact direction of the included metrics is
reconfirmed. All variables have an excellent Wald statistic value (better than 0.001)
indicating that they are significantly different from zero. The Hosmer & Lemeshow
test is also greater than 0.05; another good value. The Nagelkerke R2 has an excellent
value of 0.901, indicating a high degree of explanation.

Based on the regression results, we can derive a classification function p(EPC)
for EPCs. It predicts that the EPC has errors if the result is greater than 0.5. Oth-
erwise it predicts that there are no errors in the EPC. It is calculated by the help of
the metrics coefficient of connectivity CNC, connector mismatch MM , cyclicity
CY C, separability Π , structuredness Φ, connector heterogeneity CH and the diam-
eter diam.

p(EPC) =
elogit(EPC)

1 + elogit(EPC)

with

logit(EPC) = +4.008 CNC
+0.094 MM
+3.409 CY C
−2.338 Π
−9.957 Φ
+3.003 CH
+0.064 diam
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It is easy to calculate an error prediction for an EPC based on this function. The
results are as follows:

• 1724 EPCs are correctly predicted to have no errors,
• 155 EPCs are correctly predicted to have errors,
• 58 EPCs are predicted to have no errors, but actually have errors, and
• 37 EPCs are predicted to have errors, but actually have none.

Altogether 1879 EPCs have the correct prediction. The overall percentage is 95.2%
which is 6% better than the naive model that always predicts no error (89.2%). There
are also 213 EPCs with errors in the reduced sample and 155 of them are correctly
predicted (72.7%). The prediction function gives a clue about the relative importance
of the different metrics. Structuredness Φ appears to be the most important parameter
since its absolute value is three times as high as the second. The coefficient of con-
nectivity CNC, cyclicity CY C, separability Π , and connector heterogeneity CH
likewise seem to be of comparable importance. Finally, connector mismatch MM
and the diameter diam might be of minor importance.

We then excluded the metrics of the regression model and calculated a second
best model without the coefficient of network connectivity CNC, connector mis-
match MM , cyclicity CY C, separability Π , structuredness Φ, connector hetero-
geneity CH , and without the diameter diam; the idea being to gain insight into the
direction of the influence of further metrics on error probability. This second best
model includes sequentiality Ξ , density ∆ and size SN . The Hosmer & Lemeshow
Test fails to indicate a good fit since the value is less than 5% after the second step.
The value of Nagelkerke’s R2 still indicates a high fraction of explanation of the
variability with a value of 0.824 and 91.4% if all cases are classified correctly. These
figures indicate that the second best regression model is less powerful than the first
model. The estimated equation is

logit2(EPC) = −6.540 Ξ − 23.873 ∆ + 0.034 SN

We also excluded the metrics of the second best regression model (only token split
TS, average and maximum connector degree dC and d̂C , and Depth Λ were consid-
ered). The Hosmer & Lemeshow Test fails to indicate a good fit since the value is
less than 5% and the Nagelkerke’s R2 reaches only (compared to the previous mod-
els) a value of 0.627. 72.9% of all cases are classified correctly indicating a weaker
capability to predict errors correctly compared to the other models. The estimated
equation is

logit3(EPC) = 0.194 TS − 1.371 dC + 0.405 d̂C + 0.440 Λ

It is interesting to note that most coefficients of the different regression models con-
firm the expected direction of influence on error probability. Beyond that, two vari-
ables have an impact opposite to the expectation: the density ∆ and the average con-
nector degree dC . We have already identified potential problems with density in Sec-
tions 4.2 and 4.5.2. It appears that this metric is more strongly negatively connected
with size than with the degree of connections in the process model. In contrast, the
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unexpected sign of the coefficient for average connector degree dC seems to be due
to a positive correlation with structuredness of 0.251 which is significant at a 99%
confidence level. Since structuredness is not included in the variable set of the third
best regression model, the average connector degree dC apparently captures some of
its negative impact on error probability. Additional details on the logistic regression
analysis are reported in [266].

In the following section, we analyze how well the different regression function is
able to forecast errors in a sample of EPCs that was not included in the estimation.

5.4 External Validation

In this section, we utilize the estimated function to predict errors in EPCs from a
holdout sample. This external validation step is of paramount importance for estab-
lishing the criterion validity of the measurements (to demonstrate that the model is
not overfitting the data, see Section 4.1) and that it can also be used to predict errors
in other model samples (see [188, pp.186]). A holdout sample is only one option
for external validation. There are several techniques for cross-validation in which
the original sample is partitioned into a training set and a test set. In k-fold cross-
validation, the data set is split into k mutually exclusive subsets that each serve as a
test set for an estimation that is calculated using the respective rest set. In the leave-
one-out case (also called jackknife) only one case is left out and it is used to validate
the estimation done with the rest. For a sample size N this procedure is repeated N/k
times; that is, N times for the jackknife method. Another technique is bootstrapping.
In the validation phase the bootstrap sample is built by sampling n instances from the
data with replacement. Several papers compare the three validation methods theoret-
ically and by running simulations (see e.g. [418, 143, 223]). Cross-validation and
bootstrapping are particularly important when the sample size is small relative to
the number of parameters; in case of there being 19 independent variables with 155
observations as discussed in [143], for example. Since our sample size is more than
100 times as large as the number of input variables (15 metrics without collinearity to
2003 EPC models), we deem it justified to consider an independent holdout sample
and disregard cross-validation and bootstrapping.

For testing the performance of the prediction function, we gathered a holdout
sample from popular German EPC business process modeling textbooks. The sample
includes 113 models from the following books in alphabetical order:

• Becker and Schütte: Handelsinformationssysteme, 2004 [52]. This book dis-
cusses information systems in the retail sector with a special focus on conceptual
modeling. It covers 65 EPC models that we include in the holdout sample.

• Scheer: Wirtschaftsinformatik: Referenzmodelle für industrielle Geschäftspro-
zesse, 1998 [379]. This textbook is an introduction to the ARIS framework and
uses reference models for production companies to illustrate it. We included 27
EPC reference models in the holdout sample from this book.
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Classification Table
 Predicted

            hasErrors Percentage 
Observed 0 1 Correct
hasErrors 0 86 2 97,73%

1 9 16 64,00%
Overall Percentage 90,27%
The cut value is ,500
113 cases included

Figure 5.12. Classification table for EPCs from the holdout sample

• Seidlmeier: Prozessmodellierung mit ARIS, 2002 [392]. This is another introduc-
tion to the ARIS framework. It features 10 EPCs that we included in the holdout
sample.

• Staud: Geschäftsprozessanalyse: Ereignisgesteuerte Prozessketten und Objek-
torientierte Geschäftsprozessmodellierung für Betriebswirtschaftliche Standard-
software, 2006 [415]. This book focuses on business process modeling and EPCs
in particular. We included 13 EPCs from this book in the holdout sample.5

All EPCs in the holdout sample were checked for errors: first with xoEPC and then
with the ProM plug-in if the rest size was greater than two. Altogether, there are 25 of
the 113 models that have errors (21.43%). Based on the metrics generated by xoEPC,
we can easily apply the prediction function. The result of this calculation is summa-
rized in the classification table in Figure 5.12. It can be seen that 102 of the 113 EPCs
are classified correctly (86 models without errors are predicted to have none and 16
with errors are predicted to have at least one). Altogether, 90.27% of the 113 EPCs
were predicted correctly (81.25% with the second best model and 78.57% with the
third best model). Please note that there is a difference between the interpretation of
this classification result and the one in Section 5.3.3. During the estimation of the
logistic regression, the sample is known. The lowest possible classification result is,
therefore, defined by predicting no error for every EPC which would yield a correct
prediction (89.2% of the cases for the sample in Section 5.3.3). The classification
result of applying the estimated function on the estimation sample must accordingly
be compared to this trivial classification. In Section 5.3.3, the regression function
improves the result from 89.2% to 95.2%. Here we used a given function to classify
an independent sample. The lowest possible classification result in this setting is 0%,
while 50% might be expected for a random function. Using the regression function
for the independent sample increases the classification result from 50% to 90.27%.

Based on the De Moivre-Laplace theorem we are also able to calculate a confi-
dence interval for the accuracy of the prediction function. Using Equation 3 of [223]
with a confidence value of 95% yields an accuracy interval from 81.15% to 96.77%
(the prediction can be expected to be correct in at least 81.15% of the cases with a
95% confidence). This result strongly supports the validity of the regression function
(and also the second and the third best model) for predicting error probability.

5 The largest EPC of this book has 288 nodes and required 113 minutes processing time.
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Table 5.5. Hypothetical and empirical connection between metrics and errors

Hypothetical µe − µn Correlation Regression Direction
connection coefficient

SN + 24.93 0.38 0.034b) confirmed
SE + 13.11 0.38 confirmed

SES + 3.65 0.35 confirmed
SEE + 4.76 0.38 confirmed
SF + 2.86 0.19 confirmed
SC + 8.96 0.43 confirmed

SCAND + 3.89 0.45 confirmed
SCXOR + 3.65 0.35 confirmed
SCOR + 1.41 0.30 confirmed

SJAND + 2.14 0.48 confirmed
SJXOR + 1.81 0.33 confirmed
SJOR + 0.47 0.15 confirmed

SSAND + 1.70 0.37 confirmed
SSXOR + 1.82 0.31 confirmed
SSOR + 0.95 0.31 confirmed

SA + 27.64 0.38 confirmed
diam + 7.62 0.30 0.064a) confirmed

∆ + -0.06 -0.37 -23.873b) not confirmed
CNC + 0.11 0.28 4.008a) confirmed

dC + 0.76 0.23 -1.371c) partially confirmed

d̂C + 2.33 0.33 0.405c) confirmed
Π - -0.24 -0.29 -2.338a) confirmed
Ξ - -0.31 -0.35 -6.540b) confirmed
Φ - -0.20 -0.36 -9.957a) confirmed
Λ + 0.85 0.34 0.440c) confirmed

MM + 7.18 0.42 0.094a) confirmed
CH + 0.54 0.46 3.003a) confirmed

CFC + 1680.99 0.39 confirmed
CY C + 0.06 0.30 3.409a) confirmed

TS + 4.97 0.38 0.194c) confirmed

a) first regression model, b) second best, c) third best
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5.5 Summary

In this section, we conducted several statistical analyses related to the hypotheses on
a connection between metrics and error probability. The results strongly support the
hypotheses since the mean difference between error and non-error models, the cor-
relation coefficients and the regression coefficients confirm the hypothetical impact
direction of all metrics except the density metric ∆ (see Table 5.5) and partially the
average connector degree dC . The density metric appears to be more closely related
to the inverse of size than the relative number of arcs of an EPC. The wrong sign
of the average connector degree in the regression model seems to be caused by a
positive correlation with structuredness Φ, which tends to reduce error probability.
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Implications for Business Process Modeling

In the previous chapters, we presented a novel holistic approach for the verification
and metrics-based prediction of errors in EPC business process models. Against the
state of the art, the technical results of this research can be summarized as follows.

Formalization of the OR-join: Existing formalizations of the OR-join suffer from a
restriction of the EPC syntax or from non-intuitive behavior. In Chapter 2, we
presented a novel formalization of EPC semantics including OR-joins that is
applicable for any EPC that is relaxed syntactically correct and provides intuitive
semantics for blocks of matching OR-splits and OR-joins. The calculation of the
reachability graph is implemented as a plug-in for ProM as a proof of concept.

Verification of process models with OR-joins and multiple start and end events:
Verification techniques for EPC process models with OR-joins and multiple start
and end events suffer from a problem of using an approximation of the actual
behavior, building on non-intuitive semantics or not being tailored to cope with
multiple start and end events. In Chapter 3, we specified a dedicated soundness
criterion for EPC business process models with OR-joins and multiple start and
end events. We also defined two verification approaches for EPC soundness: one
as an explicit analysis of the reachability graph and a second based on reduc-
tion rules to provide a better verification performance. Both approaches were
implemented as a proof of concept.

Metrics for business process models: Metrics play an important role in operational-
izing various quality-related aspects of business process models. While the cur-
rent research on business process model measurement is mainly inspired by soft-
ware metrics and not consolidated, Chapter 4 provides an extensive overview of
existing work. We also introduced new metrics that capture important process
model concepts such as partionability, connector interplay, cyclicity and concur-
rency and discussed their theoretical connection with error probability.

Validation of metrics as error predictors: Up until now there has been little empiri-
cal evidence for the validity of business process model metrics as predictors for
error probability. In Chapter 5, we used statistical methods to confirm the hypo-
thetical connection between metrics and errors. We then used logistic regression

J. Mendling: Metrics for Process Models, LNBIP 6, pp. 151–154, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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to estimate a error prediction function. This function not only fits an extensive
EPC sample nicely, but shows a good performance in terms of external validity
to predict errors in an independent EPC sample.

In the following sections, we discuss the implications of this research. Section 6.1
presents a set of seven process modeling guidelines that help the modeler to come up
with less error-prone and more understandable process models. Section 6.2 discusses
more general implications for business process modeling. Section 6.3 identifies some
areas where future research is required.

6.1 Seven Process Modeling Guidelines (7PMG)

The results of Chapter 5 confirm that process models in practice suffer from quality
problems and suggests that industry process model collections are likely to have
error rates of 10% to 20%. There are clearly differences in error rates and different
structural metrics that are closely connected with error probability exist. Based on
these connections and on work on activity labeling [295], Mendling, Reijers and
Van der Aalst propose a set of seven process modeling guidelines (7PMG) that are
supposed to direct the modeler to creating understandable models that are less prone
to errors [297].

Table 6.1. Seven Process Modeling Guidelines [297]

G1 Use as few elements in the model as possible
G2 Minimize the routing paths per element
G3 Use one start and one end event
G4 Model as structured as possible
G5 Avoid OR routing elements
G6 Use verb-object activity labels
G7 Decompose a model with more than 50 elements

Table 6.1 summarizes the 7PMG guidelines. Each of them is supported by empirical
insight into the connection of structural metrics and errors or understanding. Parts
of these foundations have been established by the research reported in Chapter 5.
The size of the model has undesirable effects on understandability and likelihood
of errors [296, 301, 278]. G1, therefore, recommends the use of as few elements
as possible. G2 suggests minimizing the routing paths per element. The higher the
degree of elements in the process model the harder it becomes to understand the
model [296, 278]. G3 demands using one start and one end event since the number
of start and end events is positively connected with an increase in error probability
[278]. Following G4, models should be structured as much as possible. Unstructured
models tend to have more errors and are understood less well [278, 154, 242, 296].
G5 suggests avoiding OR routing elements since models that have only AND and
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XOR connectors are less error-prone [278]. G6 recommends using the verb-object
labeling style because it is less ambiguous compared to other styles [295] According
to G7, models should be decomposed if they have more than 50 elements.

6.2 Discussion

The results of this research have some more general implications for business process
modeling. In the following pages, we discuss the implications for 1) the importance
of verification in real-world projects, 2) for improvements of the business process
modeling process, 3) for future business process modeling tools and 4) for teaching
of business process modeling languages.

1. Importance of Verification: The amount of errors in the different EPC model
collections from real-world projects that we used in this book emphasizes the
importance of verification. We showed that an error ratio of about 10% is the
average over the samples, with 3.3% the minimum. Other recent studies find
similar error ratios [113, 438, 154]. While verification has been discussed for
some time, this book demonstrates that the different techniques have matured
to handle large sets of several thousand business process models on a common
desktop computer. This observation relates to the gap between business analysis
and information systems engineering in business process modeling (see [384,
p.141] or [178, pp.424]), demonstrated by the refusal of engineers to reuse pro-
cess documentations for systems implementation. While this gap is frequently
accepted as a natural breach, this research tells a different story. The consider-
able amount of formal errors in documentation models hardly makes it possible
to directly reuse them in the implementation. The utilization of verification tech-
niques in practice might, therefore, be the key to eventually closing this gap in
the future.

2. Business Process Modeling Process: In this research, we gathered substantial
theoretical and statistical evidence that formal errors are connected with several
characteristics of the process model. This finding provides the opportunity to use
process model metrics for the management of the design process and of process
model quality. This is the case especially if different design options have to be
evaluated and one of multiple models might be considered to be superior re-
garding error-probability based on some metric. The strong connection between
size and errors offers objective input for decisions regarding the question when a
model should be split up or when model parts should be put in a sub-process. The
seven process modeling guidelines (7PMG) summarize some of these findings
[297]. There is clearly a need for further research in this area. Our findings nev-
ertheless represent a major step towards establishing business process modeling
as an engineering discipline beyond the intuition of the modeler.

3. Business Process Modeling Tools: Both items 1) and 2) call for respective tool
support. While the verification techniques are apparently capable of dealing with
large real-world models, there seems to be too little attention paid to this issue
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by tool vendors. Indeed, tool vendors should have an interest in these topics as
the lack of respective features has a negative impact on the productivity of the
business process modeling exercise: models cannot be reused for system devel-
opment, business users cannot interpret the models properly and conclusions can
not be drawn from the models regarding process performance. Beyond verifica-
tion support, modeling tools could easily calculate process metrics to assist the
modeler in the design task. Building on such features, the tool vendors could eas-
ily provide a greater benefit to their customers and help to improve the process
of designing business process models.

4. Teaching Process Modeling: There is apparently a weakness in business process
modeling teaching methods if practitioners introduce a formal error in every
tenth model (at least in our sample). The four textbooks on business process
modeling that we used to build the holdout sample had an even higher error ra-
tio. While these rates might be partially attributed to missing verification support
in the tools, there seems to be a problem for many modelers to understand the
behavioral implications of their design. This observation is confirmed by recent
experiments [296, 300]. This has two consequences. Teaching of business pro-
cess modeling should focus less on specific business process modeling language
and instead concentrate on conveying the general principles behind it (concur-
rency, synchronization, repetition, and other aspects as captured by the workflow
patterns). Formal errors also seem to get too little attention. Concepts like dead-
locks should not only be taught as a technical property of a business process
model, but also an erroneous business rule that leads to problems in real-world
business processes that are not supported by information systems. The metrics
are a good starting point for teaching patterns that are unlikely to result in er-
rors. A high degree of structuredness, for example, appears to be less prone to
cause errors. Such an approach might eventually deliver a better awareness and
attention of formal errors in business process modeling practice.

6.3 Future Research

There are several open questions that could not be addressed in detail in this book.
We focused in particular on business process model metrics and their capability to
predict errors in business process models. We found strong evidence that our set of
metrics can indeed explain a great share of the variation in error probability. There
are other factors we did not investigate in detail including personal factors, modeling
purpose, domain knowledge, modeling language or graphical layout, all of which
might be connected with error probability [296, 300]. They might also be related
to other important quality aspects, like maintainability or understandability, that we
did not analyze. We strongly agree with Moody [306], who calls for more empirical
research in business process modeling. This book and its findings give an idea of
the benefits we might gain from this research and therefore may be regarded as an
encouragement to follow Moody’s call.
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Transition Relation of EPCs Based on State and
Context

In this appendix, we formalize the semantics of EPCs based on state and context. In
particular, we define the transition relations Rd, Rw, R−1 and R+1 for each phase
based on markings, i.e. state and context mappings σ and κ collectively.

A.1 Phase 1: Transition Relation for Dead Context Propagation

Given the definition of an EPC marking , we define the transition relations for each
phase. We can summarize the different dead context rules of Figure 2.12 in a single
one: if one input arc of the respective node has a dead context, then this is propagated
to the output arcs.

Definition A.1 (Transition Relations for Dead Context Propagation). Let EPC =
(E, F, C, l, A) be a relaxed syntactically correct EPC, N = E ∪ F ∪ C its set of
nodes, and MEPC its marking space. Then Rd ⊆ MEPC × N × MEPC is the
transition relation for dead context propagation and (m, n, m′) ∈ Rd if and only if:

(∃a∈nin : κm(a) = dead) ∧
(∀a∈A : σm(a) = σm′(a)) ∧
(∃X �=∅ : X = {a ∈ nout | σm(a) = 0 ∧ κm(a) = wait} ∧

(∀a∈X : κm′(a) = dead) ∧
(∀a∈A\X : κm′(a) = κm(a))

Furthermore, we define the following notations:

• m1
n→
d

m2 if and only if (m1, n, m2) ∈ Rd. We say that in the dead context

propagation phase marking m1 enables node n and its firing results in m2.
• m →

d
m′ if and only if ∃n : m1

n→
d

m2.

• m
τ→
d

m′ if and only if ∃n1,...,nq,m1,...,mq+1 : τ = n1n2...nq ∈ N ∗ ∧
m1 = m ∧ mq+1 = m′ ∧ m1

n1→
d

m2, m2
n2→
d

...
nq→
d

mq+1.
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• m
∗→
d

m′ if and only if ∃τ : m
τ→
d

m′.

• m
max→

d
m′ if and only if ∃τ : m

τ→
d

m′ ∧ �∃m′′ �=m′ : m′ →
d

m′′.

• maxd : MEPC → MEPC such that maxd(m) = m′ if and only if m
max→

d
m′.

The existence of a unique maxd(m) is the subject of Theorem A.2 below.

Theorem A.2 (Dead Context Propagation terminates). For an EPC and a given
marking m, there exists a unique maxd(m) which is determined in a finite number
of propagation steps.

Proof. Regarding uniqueness, by contradiction: Consider an original marking m0 ∈
MEPC and two markings mmax1, mmax2 ∈ MEPC such that m0

max→
d

mmax1,

m0
max→

d
mmax2, and mmax1 �= mmax2. Since both mmax1 and mmax2 can be pro-

duced from m0 they share at least those arcs with dead context that were already
dead in m0. Furthermore, following from the inequality, there must be an arc a that
has a wait context in one marking, but not in the other. Let us assume that this mark-
ing is mmax1. But if ∃τ : m0

τ→
d

mmax2 such that κmmax2(a) = dead, then there

must also ∃τ ′ : mmax1
τ ′→
d

m′ such that κm′(a) = dead because mmax2 is produced

applying the propagation rules without ever changing a dead context to a wait con-
text. Accordingly, there are further propagation rules that can be applied on mmax1

and the assumption m0
max→

d
mmax1 is wrong. Therefore, if there are two mmax1 and

mmax2, they must have the same set of arcs with dead context, and therefore also the
same set of arcs with wait context. Since both their states are equal to the state of m0

they are equivalent, i.e., maxd(m) is unique.
Regarding finiteness: Following Definition 2.1 on page 22, the number of nodes

of an EPC is finite, and therefore the set of arcs is also finite. Since the number of
dead context arcs is increased in each propagation step, no new propagation rule can
be applied, at the latest after each arc has a dead context. Accordingly, dead context
propagation terminates at the latest after |A| steps.

A.2 Phase 2: Transition Relation for Wait Context Propagation

For the wait context propagation, we also distinguish two cases based on the wait
context transition relations of Figure 2.12. The first case covers (a) function, (b)
intermediate event, (c) split, (d) and-join nodes. If the node belongs to this group
and all input arcs are in a wait context, then the wait context is propagated to those
output arcs that have a dead context and no state token on them. The second case, if
the node is an XOR-join or an OR-join and one of the input arcs is in a wait context,
then this is propagated to the dead output arc.

Definition A.3 (Transition Relations for Wait Context Propagation). Let EPC =
(E, F, C, l, A) be a relaxed syntactically correct EPC, N = E ∪ F ∪ C its set of
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nodes, and MEPC its marking space. Then Rw ⊆ MEPC × N × MEPC is the
transition relation for wait context propagation and (m, n, m′) ∈ Rw if and only if:

((n ∈ F ∪ Eint ∪ S ∪ Jand) ∧
(∀a∈nin : κm(a) = wait) ∧
(∀a∈A : σm(a) = σm′(a)) ∧
(∃X �=∅ : X = {a ∈ nout | σm(a) = 0 ∧ κm(a) = dead} ∧

(∀a∈X : κm′(a) = wait) ∧
(∀a∈A\X : κm′(a) = κm(a)))

∨
((n ∈ Jxor ∪ Jor) ∧
(∃a∈nin : κm(a) = wait) ∧
(∀a∈A : σm(a) = σm′(a)) ∧
(∃X �=∅ : X = {a ∈ nout | σm(a) = 0 ∧ κm(a) = dead} ∧

(∀a∈X : κm′(a) = wait) ∧
(∀a∈A\X : κm′(a) = κm(a)))

Furthermore, we define the following notations:

• m1
n→
w

m2 if and only if (m1, n, m2) ∈ Rw. We say that in the wait context

propagation phase marking m1 enables node n and its firing results in m2.
• m →

w
m′ if and only if ∃n : m1

n→
w

m2.

• m
τ→
w

m′ if and only if ∃n1,...,nq,m1,...,mq+1 : τ = n1n2...nq ∈ N ∗ ∧
m1 = m ∧ mq+1 = m′ ∧ m1

n1→
w

m2, m2
n2→
w

...
nq→
w

mq+1.

• m
∗→
w

m′ if and only if ∃τ : m
τ→
w

m′.

• m
max→

w
m′ if and only if ∃τ : m

τ→
w

m′ ∧ �∃m′′ �=m′ : m′ →
w

m′′.

• maxw : MEPC → MEPC such that maxw(m) = m′ if and only if m
max→

w
m′.

The existence of a unique maxw(m) is the subject of Theorem A.4 below.

Theorem A.4 (Wait Context Propagation terminates). For an EPC and a given
marking m, there exists a unique maxw(m) which is determined in a finite number
of propagation steps.

Proof. Analogous proof as for Theorem A.2.

The transition relations of context propagation permit the following observations:

• Context changes terminate: The Theorems A.2 and A.4 show that dead and wait
context propagation cannot run in an infinite loop. As a consequence, the context
change phase will always terminate and enable the consideration of new state
changes in the subsequent phase.

• State tokens block context propagation: The transition relations for context prop-
agation require that the output arcs to be changed do not hold any state token,
i.e., arcs with a positive token always have a wait context and arcs with a nega-
tive token always have a dead context.
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• Context propagating elements: Functions, events and split nodes reproduce the
context that they receive at their input arcs.

• OR- and XOR-joins: Both these connectors reproduce a dead and also a wait
context if at least one of the input arcs has the respective context.

• AND-joins: AND-joins produce wait context status only if all inputs are wait.
Otherwise, the output context remains in a dead context.

a1 a2

a3a4

i1 i2

a1 a2

a3a4

i1 i2

a1 a2

a3a4

i1 i2

(a) context changes at i1 and i2 (b) context changes propagate (c) context changes alternate
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w
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d d
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w d

d

w

Figure A.1. Situation of unstable context changes without two phases

Figure A.1 illustrates the need to perform context propagation in two separate phases
as opposed to together in one phase. If there are context changes (a) at i1 and i2, the
current context enables the firing of the transition rules for both connectors producing
a dead context status in a1 and a wait context status in a3. This leads to a new
context in (b) with an additional dead context status in a2 and a new wait context
status in a4. Since both arcs from outside the loop to the connectors are marked in
such a way that incoming context changes on the other arc is simply propagated,
there is a new context in (c) with a wait status in a1 and a dead context status in
a3. Note that this new context can be propagated and this way the initial situation is
reproduced. This can be repeated again and again. Without a sequence of two phases,
the transitions could continue infinitely and the result would be undefined.

a1 a2

a3a4

i1 o1

a1 a2
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(a) initial wait context (b) input context changes to dead (c) the loop is dead
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Figure A.2. Propagating dead context in a loop

The precedence of the two phases can also be motivated using an example EPC con-
taining a loop. The propagation of dead context with only one dead input is needed
to accurately mark loops as dead. Figure A.2 shows the picture of a simple loop with
one XOR-join as entrance and one XOR-split as exit. Initially, the loop might be in
a wait context (a). If the path to the loop becomes dead, this context is propagated
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into the loop (b) and to its output (c). If not all join-connectors would propagate dead
context with one dead input, the loop could never become dead. But since this often
results in too many dead arcs, the wait context propagation must be performed af-
terwards. It guarantees that arcs that can still be receive a positive token get a wait
context.

A.3 Phase 3: Transition Relation for Negative State Propagation

The transition rules for the various node types in this phase can be easily summarized
in one transition relation: if all input arcs carry a negative token and all output arcs
hold no negative or positive token, then consume all negative tokens on the input arcs
and produce negative tokens on each output arc.

Definition A.5 (Transition Relations for Negative State Propagation). Let EPC
= (E, F, C, l, A) be a relaxed syntactically correct EPC, N = E ∪ F ∪ C its set
of nodes, and MEPC its marking space. Then R−1 ⊆ MEPC × N × MEPC is the
transition relation for negative state propagation and (m, n, m′) ∈ R−1 if and only
if:

(∀a∈nin : σm(a) = −1) ∧
(∀a∈nout : σm(a) = 0) ∧
(∀a∈nin : σm′(a) = 0) ∧
(∀a∈nout : σm′(a) = −1) ∧
(∀a∈A\nout

: κm′(a) = κm(a)) ∧
(∀a∈nout : κm′(a) = dead) ∧
(∀a∈A\(nin∪nout) : σm′(a) = σm(a))

Furthermore, we define the following notations:

• m1
n→
−1

m2 if and only if (m1, n, m2) ∈ R−1. We say that in the negative state

propagation phase marking m1 enables node n and its firing results in m2.
• m →

−1
m′ if and only if ∃n : m1

n→
−1

m2.

• m
τ→
−1

m′ if and only if ∃n1,...,nq,m1,...,mq+1 : τ = n1n2...nq ∈ N ∗ ∧
m1 = m ∧ mq+1 = m′ ∧ m1

n1→
−1

m2, m2
n2→
−1

...
nq→
−1

mq+1.

• m
∗→
−1

m′ if and only if ∃τ : m
τ→
−1

m′.

• m
max→
−1

m′ if and only if ∃τ : m
τ→
−1

m′ ∧ �∃m′′ �=m′ : m′ →
−1

m′′.

• max−1 : MEPC → MEPC such that max−1(m) = m′ if and only if m
max→
−1

m′.

The existence of a unique max−1(m) is discussed below in Theorem A.6.

Theorem A.6 (Negative State Propagation terminates). For an EPC and a given
marking m, there exists a unique max−1(m) which is determined in a finite number
of propagation steps.
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Proof. Regarding finiteness, by contradiction. Since an EPC is safe, i.e. there is at
maximum one token per arc, it is a prerequisite for an infinite propagation that there
is a cyclic structure in the process in which the negative token runs into an infinite
loop. Due to the coherence property of an EPC, and the minimum number of one start
and one end node (Definition 2.1), two cases of a cyclic path can be distinguished:

(i) cyclic path a ↪→ a with �∃e ∈ Es : e ↪→ a: in this case the loop could po-
tentially propagate a negative token infinitely, but it will never receive a token
since there is no path from a start node into the cyclic path. Furthermore, relaxed
syntactically correct EPCs do not contain such paths according to Definition 2.8.

(ii) cyclic path a ↪→ a with ∃e ∈ Es : e ↪→ a: In this case, there must be a join j
on a cyclic path a ↪→ a such that there exists an arc (x, j) and there is no path
a ↪→ x. Therefore, a negative token could only be propagated infinitely on the
path a ↪→ a if the join j would receive repeatedly ad infinitum negative tokens
on the arc (x, j) in order to allow j to fire according to Definition A.5. Since the
number of tokens on arcs is limited to one, this is only possible if there is another
cyclic path b ↪→ b that produces negative tokens ad infinitum on a split node s.
Again, for this cyclic path b ↪→ b, the two cases (i) and (ii) can be distinguished.
Accordingly, there must be another cyclic path c ↪→ c that feeds the path with b,
and so forth.

Since the existence of a cyclic path that propagates negative tokens infinitely depends
on the existence of another such path, there is a contradiction.

Regarding uniqueness we do not provide a formal proof here. Consider that there
exist an original marking m0 ∈ MEPC and two markings mmax1, mmax2 ∈ MEPC

such that m0
max→
−1

mmax1, m0
max→
−1

mmax2, and mmax1 �= mmax2. According to the

transition relation, there are no transitions that could compete for tokens such as in
non free-choice Petri nets, i.e. the firing of a transition cannot disable another one,
and there are no alternative transitions for an enabled node. Furthermore, a context
change of an arc has no impact on the applicability of a rule and no positive tokens
are involved in firings. Therefore, mmax1 and mmax2 must either be equivalent or
there must be a transition enabled in one of them such that the max property of it
does not hold.

A.4 Phase 4: Transition Relation for Positive State Propagation

The positive state firing rules of the OR-join in Figure 2.12 deserve some further
comments. Beyond the removal of all positive and negative tokens on the input arcs,
also those negative tokens on the negative upper corona of the OR-join are removed.
The motivation for this concept is that loops can propagate dead context, but negative
tokens get stuck at the entry join of a loop. After the loop, a dead context can make
the firing condition of an OR-join become true, while negative tokens that were gen-
erated for synchronization purposes still reside before the loop. Not removing such
negative tokens with the firing of an OR-join might cause non-intuitive behavior.
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Figure A.3. A structured EPC with a negative token on the negative upper corona of OR-join
c5

Therefore, in addition to the positive and negative tokens on the input arcs of the
OR-join, also those negative tokens with a path leading to the OR-join via arcs that
all have a dead context, i.e. on the negative corona, are also removed.

Figure A.3 gives the example of a structured EPC with an outer XOR-loop be-
tween c1 and c6 and an inner XOR-loop between c3 and c4. The inner loop is also
nested in an OR-block between c2 and c5. The current marking is produced by firing
the OR-split with a negative token to the left and a positive token to the right, and
then propagating the positive token via f2. Now, the OR-join c5 is enabled with a
dead context on one of the input arcs. Moreover, there is a negative token before the
inner XOR-loop which cannot be propagated. If the OR-join would now simply fire
and navigate via e2 back to c2 the EPC would be in a deadlock since the firing rules
for tokens require the output arcs to be empty. Therefore, the negative token before
c3 has to be removed when firing the OR-join c5. Accordingly, if an OR-join fires, it
has to remove all negative tokens on its so-called negative upper corona, i.e. the arcs
carrying a negative token that have a path to the OR-join on which each arc has a
dead context and no token on it. The following Definition A.7 formalizes the notion
of a negative upper corona.

Definition A.7 (Dead Empty Path, Negative Upper Corona). Let EPC = (E, F,
C, l, A) be a relaxed syntactically correct EPC, N = E ∪ F ∪ C its set of nodes,
and a marking m ∈ MEPC . Then, we define the negative upper corona of a node

n ∈ N based on a dead empty path. A dead empty path a
d

↪→
m

b refers to a sequence

of nodes n1, . . . , nk ∈ N with a = n1 and b = nk such that for (n1, n2) ∈ A :
σm(n1, n2) = −1 and ∀i ∈ 2, . . . , k − 1 holds: (ni, ni+1) ∈ A ∧ σm(ni, ni+1) =
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0 ∧ κm(ni, ni+1) = dead. Then, the negative upper corona
−1
↪→
m

n = {a ∈ A|a =

(s, t)∧ σ(a) = −1∧ t
d

↪→
m

n} refers to those arcs with a negative token whose target

node t is a transitive predecessor of n and has a dead empty path to n in marking m.

The transition rules for the various node types can be easily summarized as fol-
lows: (1) for function, event and AND-connector nodes, positive tokens on all input
arcs are consumed and propagated to all output arcs if all of them are empty. The
input context is set to dead and the output context to wait. (2) For XOR-connectors,
one input token is consumed from one input arc and propagated to one of the output
arcs if all of them are empty. The respective input arc is set to a dead context, as well
as those output arcs that do not receive the token. The output arc with the positive
token gets a wait context. (3) For OR-splits, the positive token is consumed from the
input, and a combination of positive and negative tokens is produced at the output
arcs such that at least one positive token is available. Furthermore, each output arc
with a positive token gets a wait context while the others get a dead context. (4) OR-
joins fire either if all input arcs are not empty and one of them has a positive token
or if there is no empty arc with a wait context and at least one positive token on the
inputs. Then, all input tokens are consumed plus potentially negative tokens on the
negative upper corona, the input arcs are set to a dead context, and a positive token
is produced on the output with a wait context.

Definition A.8 (Transition Relation for Positive State Propagation). Let EPC =
(E, F, C, l, A) be a relaxed syntactically correct EPC, N = E ∪ F ∪ C its set
of nodes, and MEPC its marking space. Then R+1 ⊆ MEPC × N × MEPC is
the transition relation for positive state propagation and (m, n, m′) ∈ R+1 if and
only if:

((n ∈ F ∪ Eint ∪ Cand) ∧
(∀a∈nin : σm(a) = +1) ∧
(∀a∈nout : σm(a) = 0) ∧
(∀a∈nin : σm′(a) = 0 ∧ κm′(a) = dead) ∧
(∀a∈nout : σm′(a) = +1 ∧ κm′(a) = wait) ∧
(∀a∈A\(nin∪nout) : κm′(a) = κm(a)) ∧
(∀a∈A\(nin∪nout) : σm′(a) = σm(a)))
∨
((n ∈ Cxor) ∧
(∃a1∈nin : (σm(a1) = +1 ∧ σm′(a1) = 0 ∧

κm(a1) = wait ∧ κm′(a1) = dead) ∧
(∀a∈nout : σm(a) = 0) ∧
(∃X∧a2∈nout : X = {a ∈ nin | σm(a) = −1 ∧ κm(a) = dead} ∧

(σm′(a2) = +1 ∧ κm′(a2) = wait) ∧
(∀a∈A\{a1,a2} : κm′(a) = κm(a)) ∧
(∀a∈X : σm′(a) = 0 ∧ κm′(a) = κm(a)) ∧
(∀a∈A\(X∪{a1,a2}) : σm′(a) = σm(a)))))

∨



A.4 Phase 4: Transition Relation for Positive State Propagation 163

((n ∈ Sor) ∧
(∀a∈nin : σm(a) = +1) ∧
(∀a∈nout : σm(a) = 0) ∧
(∀a∈nin : σm′(a) = 0 ∧ κm′(a) = dead) ∧
(∃X �=∅ : X = {a ∈ nout | σm′(a) = +1 ∧ κm′(a) = wait} ∧

(∀a∈nout\X : σm′(a) = −1 ∧ κm′(a) = dead) ∧
(∀a∈A\(nin∪nout) : κm′(a) = κm(a) ∧ σm′(a) = σm(a)))

∨
((n ∈ Jor) ∧
(∃X �=∅ : X = {a ∈ nin | σm(a) = +1 ∧ κm(a) = wait}) ∧
(∃Y : Y = {a ∈ nin | σm(a) = −1 ∧ κm(a) = dead}) ∧
(∃Z : Z = {a ∈ nin | σm(a) = 0 ∧ κm(a) = dead}) ∧
(X ∪ Y ∪ Z = nin) ∧
(∀a∈nout : σm(a) = 0) ∧
(∀a∈nin : σm′(a) = 0 ∧ κm′(a) = dead)) ∧
(∀a∈nout : σm′(a) = +1 ∧ κm′(a) = wait) ∧
(∃U⊂A : U =

−1
↪→
m

n ∧
(∀a∈U : σm′(a) = 0 ∧ κm′(a) = κm(a)) ∧
(∀a∈A\(U∪nin∪nout) : σm′(a) = σm(a) ∧ κm′(a) = κm(a)))).

Furthermore, we define the following notations:

• m1
n→
+1

m2 if and only if (m1, n, m2) ∈ R+1. We say that in the positive state

propagation phase marking m1 enables node n and its firing results in m2.
• m →

+1
m′ if and only if ∃n : m1

n→
+1

m2.

• m
τ→

+1
m′ if and only if ∃n1,...,nq,m1,...,mq+1 : τ = n1n2...nq ∈ N ∗ ∧

m1 = m ∧ mq+1 = m′ ∧ m1
n1→
+1

m2, m2
n2→
+1

...
nq→
+1

mq+1.

• m
∗→

+1
m′ if and only if ∃τ : m

τ→
+1

m′.

The transition relations cover several marking changes that are not interesting for an
observer of the process. The reachability graph RG of an EPC as defined in Defini-
tion 2.17 abstracts from dead context, wait context and negative context propagation
and includes only transitions of the positive state propagation phase.
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ICATPN 1997. LNCS, vol. 1248, pp. 407–426. Springer, Heidelberg (1997)

3. van der Aalst, W.M.P.: The Application of Petri Nets to Workflow Management. The
Journal of Circuits, Systems and Computers 8(1), 21–66 (1998)

4. van der Aalst, W.M.P.: Formalization and Verification of Event-driven Process Chains.
Information and Software Technology 41(10), 639–650 (1999)

5. van der Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.): BPM 2005. LNCS,
vol. 3649. Springer, Heidelberg (2005)

6. van der Aalst, W.M.P., Desel, J., Kindler, E.: On the semantics of EPCs: A vicious circle.
In: Proc. of the 1st GI-Workshop on Business Process Management with Event-Driven
Process Chains (EPK 2002), Trier, Germany, pp. 71–79 (2002)

7. van der Aalst, W.M.P., Desel, J., Oberweis, A. (eds.): Business Process Management.
LNCS, vol. 1806. Springer, Heidelberg (2000)

8. van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G., Weijters,
A.J.M.M.: Workflow Mining: A Survey of Issues and Approaches. Data and Knowledge
Engineering 47(2), 237–267 (2003)

9. van der Aalst, W.M.P., van Hee, K.: Workflow Management: Models, Methods, and
Systems. MIT Press, Cambridge (2002)

10. van der Aalst, W.M.P., Hirnschall, A., Verbeek, H.M.W.: An Alternative Way to Ana-
lyze Workflow Graphs. In: Pidduck, A.B., Mylopoulos, J., Woo, C.C., Ozsu, M.T. (eds.)
CAiSE 2002. LNCS, vol. 2348, pp. 535–552. Springer, Heidelberg (2002)

11. van der Aalst, W.M.P., ter Hofstede, A.H.M.: YAWL: Yet Another Workflow Language.
Information Systems 30(4), 245–275 (2005)

12. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.: Workflow
Patterns. Distributed and Parallel Databases 14(1), 5–51 (2003)

13. van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M. (eds.): BPM 2003. LNCS,
vol. 2678. Springer, Heidelberg (2003)

14. van der Aalst, W.M.P., Jørgensen, J.B., Lassen, K.B.: Let’s Go All the Way: From Re-
quirements via Colored Workflow Nets to a BPEL Implementation of a New Bank Sys-
tem. In: Meersman, R., Tari, Z. (eds.) OTM 2005. LNCS, vol. 3760, pp. 22–39. Springer,
Heidelberg (2005)



166 References

15. van der Aalst, W.M.P., Jørgensen, J.B., Lassen, K.B.: Let’s Go All the Way: From Re-
quirements via Colored Workflow Nets to a BPEL Implementation of a New Bank Sys-
tem Paper. In: Meersman, R., Tari, Z. (eds.) OTM 2005. LNCS, vol. 3760, pp. 22–39.
Springer, Heidelberg (2005)

16. van der Aalst, W.M.P., Lassen, K.B.: Translating Workflow Nets to BPEL4WS. BETA
Working Paper Series, WP 145. Eindhoven University of Technology, Eindhoven (2005)

17. van der Aalst, W.M.P., Lassen, K.B.: Translating unstructured workflow processes
to readable BPEL: Theory and implementation. Information and Software Technol-
ogy 50(3), 131–159 (2008)

18. van der Aalst, W.M.P., Rubin, V., van Dongen, B.F., Kindler, E., Günther, C.W.: Process
mining: A two-step approach using transition systems and regions. BPMCenter Report
BPM-06-30, BPMcenter.org (2006)

19. van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow Mining: Discovering
Process Models from Event Logs. IEEE Transactions on Knowledge and Data Engineer-
ing 16(9), 1128–1142 (2004)

20. Aczel, A.D., Sounderpandian, J.: Complete Business Statistics, 5th edn. McGraw-Hill,
New York (2002)

21. Adam, O., Thomas, O., Martin, G.: Fuzzy enhanced process management for the in-
dustrial order handling. In: Scheer, A.-W. (ed.) Proceedings of the 5th International
Conference; The Modern Information Technology in the Innovation Processes of the
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52. Becker, J., Schütte, R.: Handelsinformationssysteme, 2nd edn. Moderne Industrie,
Landsberg/Lech (2004)

53. Bernauer, M., Kappel, G., Kramler, G., Retschitzegger, W.: Specification of Interorga-
nizational Workflows - A Comparison of Approaches. In: Proceedings of the 7th World
Multiconference on Systemics, Cybernetics and Informatics, pp. 30–36 (2003)

54. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American (Mai
2001)

55. Berthelot, G.: Checking Properties of Nets Using Transformations. In: Rozenberg, G.
(ed.) APN 1985. LNCS, vol. 222, pp. 19–40. Springer, Heidelberg (1986)

56. Berthelot, G.: Transformations and Decompositions of Nets. In: Brauer, W., Reisig, W.,
Rozenberg, G. (eds.) APN 1986. LNCS, vol. 254, pp. 360–376. Springer, Heidelberg
(1987)

57. Bieman, J.M., Kang, B.-K.: Measuring design-level cohesion. IEEE Transactions on
Software Engineering 24(2), 111–124 (1998)

58. Blackwell, A.F., Britton, C., Cox, A.L., Green, T.R.G., Gurr, C.A., Kadoda, G.F., Kutar,
M., Loomes, M., Nehaniv, C.L., Petre, M., Roast, C., Roe, C., Wong, A., Young, R.M.:
Cognitive dimensions of notations: Design tools for cognitive technology. In: Beynon,
M., Nehaniv, C.L., Dautenhahn, K. (eds.) CT 2001. LNCS (LNAI), vol. 2117, pp. 325–
341. Springer, Heidelberg (2001)

59. Boehm, B.W.: Software engineering; R & D trends and defense needs. In: Wegner, P.
(ed.) Research Directions in Software Technology, MIT Press, Cambridge (1979)

60. Boehm, B.W.: Software Engineering Economics. Prentice-Hall, Englewood Cliffs
(1981)

61. Brabänder, E., Ochs, J.: Analyse und Gestaltung prozessorientierter Risikomanage-
mentsysteme mit Ereignisgesteuerten Prozessketten. In: Proc. of the 1st GI-Workshop
on Business Process Management with Event-Driven Process Chains (EPK 2002), Trier,
Germany, pp. 17–35 (2002)

62. Brandes, U., Erlebach, T.: Fundamentals. In: Brandes, U., Erlebach, T. (eds.) Network
Analysis. LNCS, vol. 3418, pp. 7–15. Springer, Heidelberg (2005)

63. Brandes, U., Erlebach, T.: Introduction. In: Brandes, U., Erlebach, T. (eds.) Network
Analysis. LNCS, vol. 3418, pp. 1–6. Springer, Heidelberg (2005)

64. Brandes, U., Erlebach, T. (eds.): Network Analysis. LNCS, vol. 3418. Springer, Heidel-
berg (2005)

65. Brinkmeier, M., Schank, T.: Network statistics. In: Brandes, U., Erlebach, T. (eds.) Net-
work Analysis. LNCS, vol. 3418, pp. 293–317. Springer, Heidelberg (2005)

66. Bunge, M.: Treatise on Basic Philosophy. Vol.3. Ontology I. The Furniture of the World.
D. Reidel Publishing, New York (1977)

67. Canfora, G., Garcı́a, F., Piattini, M., Ruiz, F., Visaggio, C.A.: A family of experiments
to validate metrics for software process models. Journal of Systems and Software 77(2),
113–129 (2005)

68. Card, D.N., Church, V.E., Agresti, W.W.: An empirical study of software design prac-
tices. IEEE Transactions on Software Engineering 12(2), 264–271 (1986)

69. Cardoso, J.: About the complexity of teamwork and collaboration processes. In:
2005 IEEE/IPSJ International Symposium on Applications and the Internet Workshops
(SAINT 2005 Workshops), 31 January - 4 February 2005, Trento, Italy, pp. 218–221.
IEEE Computer Society Press, Los Alamitos (2005)



References 169

70. Cardoso, J.: Control-flow Complexity Measurement of Processes and Weyuker’s Prop-
erties. In: 6th International Enformatika Conference. Transactions on Enformatika, Sys-
tems Sciences and Engineering, vol. 8, pp. 213–218 (2005)

71. Cardoso, J.: Evaluating the process control-flow complexity measure. In: 2005 IEEE
International Conference on Web Services (ICWS 2005), 11-15 July 2005, Orlando, FL,
USA, pp. 803–804. IEEE Computer Society Press, Los Alamitos (2005)

72. Cardoso, J.: Evaluating Workflows and Web Process Complexity. In: Fischer, L. (ed.)
Workflow Handbook 2005, pp. 284–290. Future Strategies, Inc., Lighthouse Point
(2005)

73. Cardoso, J.: Process control-flow complexity metric: An empirical validation. In: Pro-
ceedings of IEEE International Conference on Services Computing (IEEE SCC 06),
Chicago, USA, September 18-22, pp. 167–173. IEEE Computer Society Press, Los
Alamitos (2006)

74. Cardoso, J., Mendling, J., Neumann, G., Reijers, H.A.: A Discourse on Complexity of
Process Models. In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006. LNCS, vol. 4103,
pp. 117–128. Springer, Heidelberg (2006)

75. Casati, F., Ceri, S., Pernici, B., Pozzi, G.: Conceptual modeling of workflows. In: Pro-
ceedings of the OOER International Conference, Gold Cost, Australia (1995)

76. Chamberlin, D.D., Astrahan, M.M., Eswaran, K.P., Griffiths, P.P., Lorie, R.A., Mehl,
J.W., Reisner, P., Wade, B.W.: SEQUEL 2: A Unified Approach to Data Definition,
Manipulation, and Control. IBM Journal of Research and Development 20(6), 560–575
(1976)

77. Chen, P.: The Entity-Relationship Model - Towards a Unified View of Data. ACM Trans-
actions on Database Systems (TODS) 1, 9–36 (1976)

78. Chen, R., Scheer, A.W.: Modellierung von Prozessketten mittels Petri-Netz-Theorie.
Heft 107, Institut für Wirtschaftsinformatik, Saarbrücken, Germany (1994)

79. Cherniavsky, J.C., Smith, C.H.: On weyuker’s axioms for software complexity mea-
sures. IEEE Transactions on Software Engineering 17(6), 636–638 (1991), doi:10.1109/
32.87287

80. Chernowitz, G.: Review: Office work and automation and electronic data processing for
business and industry. Management Science 4(4), 475–477 (1958)

81. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE Trans-
action on Software Engineering 20(6), 476–493 (1994)

82. Codd, E.F.: A relational model for large shared data banks. Communications of the
ACM 13(6), 377–387 (1970)

83. Cook, J.E., Wolf, A.L.: Discovering Models of Software Processes from Event-Based
Data. ACM Transactions on Software Engineering and Methodology 7(3), 215–249
(1998)

84. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd
edn. MIT Press, Cambridge (2001)

85. Cortadella, J.: Petrify: a tutorial for the designer of asychronous circuits. Universitat
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87. Cuntz, N.: Über die effiziente Simulation von Ereignisgesteuerten Prozessketten (in Ger-
man). Master’s thesis, University of Paderborn (June 2004)

88. Cuntz, N., Freiheit, J., Kindler, E.: On the semantics of EPCs: Faster calculation for
EPCs with small state spaces. In: Proceedings of the 4th GI Workshop on Business Pro-
cess Management with Event-Driven Process Chains (EPK 2005), Hamburg, Germany,
December 2005, pp. 7–23. German Informatics Society (2005)

http://www.lsi.upc.es/petrify


170 References

89. Cuntz, N., Kindler, E.: On the semantics of EPCs: Efficient calculation and simulation.
In: Proceedings of the 3rd GI Workshop on Business Process Management with Event-
Driven Process Chains (EPK 2004), pp. 7–26 (2004)

90. Cuntz, N., Kindler, E.: On the semantics of ePCs: Efficient calculation and simula-
tion. In: van der Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005.
LNCS, vol. 3649, pp. 398–403. Springer, Heidelberg (2005)

91. Curbera, F., Goland, Y., Klein, J., Leymann, F., Roller, D., Thatte, S., Weerawarana,
S.: Business Process Execution Language for Web Services, Version 1.0. Specification,
BEA Systems, IBM Corp., Microsoft Corp. (2002)

92. Curran, T., Keller, G., Ladd, A.: SAP R/3 Business Blueprint: Understanding the Busi-
ness Process Reference Model. Enterprise Resource Planning Series. Prentice Hall PTR,
Upper Saddle River (1997)

93. Curtis, B., Kellner, M.I., Over, J.: Process modeling. Commun. ACM 35(9), 75–90
(1992)

94. Daneva, M., Heib, R., Scheer, A.-W.: Benchmarking Business Process Models. IWi Re-
search Report 136, Institute for Information Systems. University of the Saarland, Ger-
many (1996)

95. Davenport, T.H.: Process Innovation: Reengineering Work Through Information Tech-
nology. Harvard Business School Press, Boston (1993)

96. Davies, I., Green, P., Rosemann, M., Indulska, M., Gallo, S.: How do practitioners
use conceptual modeling in practice? Data & Knowledge Engineering 58(3), 358–380
(2006)

97. Dayal, U., Hsu, M., Ladin, R.: Business Process Coordination: State of the Art, Trends,
and Open Issues. In: Proc. of 27th International Conference on Very Large Data Bases
(VLDB), Roma, Italy, Sept. 2001 (2001)

98. Decker, G., Mendling, J.: Instantiation semantics for process models. In: Dumas, M.,
Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, Springer, Heidelberg
(2008)

99. Dehnert, J.: Making EPC’s fit for Workflow Management. In: Proc. of the 1st GI-
Workshop on Business Process Management with Event-Driven Process Chains (EPK
2002), Trier, Germany, pp. 51–69 (2002)

100. Dehnert, J., van der Aalst, W.M.P.: Bridging The Gap Between Business Models And
Workflow Specifications. International J. Cooperative Inf. Syst. 13(3), 289–332 (2004)

101. Dehnert, J., Rittgen, P.: Relaxed Soundness of Business Processes. In: Dittrich, K.R.,
Geppert, A., Norrie, M.C. (eds.) CAiSE 2001. LNCS, vol. 2068, pp. 157–170. Springer,
Heidelberg (2001)

102. Dehnert, J., Zimmermann, A.: On the suitability of correctness criteria for business pro-
cess models. In: van der Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) BPM
2005. LNCS, vol. 3649, pp. 386–391. Springer, Heidelberg (2005)

103. DeMarco, T.: Controlling Software Projects. Yourdon Press, New York (1982)
104. Desel, J.: Process Modeling Using Petri Nets. In: Dumas, M., ter Hofstede, A., van der

Aalst, W.M.P. (eds.) Process Aware Information Systems: Bridging People and Software
Through Process Technology, pp. 147–178. Wiley, Chichester (2005)

105. Desel, J., Esparza, J.: Free Choice Petri Nets. Cambridge Tracts in Theoretical Computer
Science, vol. 40. Cambridge University Press, Cambridge (1995)

106. Desel, J., Pernici, B., Weske, M. (eds.): BPM 2004. LNCS, vol. 3080. Springer, Heidel-
berg (2004)

107. Dietz, J.L.G.: The deep structure of business processes. Communications of the ACM
49(5), 58–64 (2006)



References 171

108. van Dongen, B.F.: Process Mining and Verification. PhD thesis. Eindhoven University
of Technology, Eindhoven, The Netherlands (2007)

109. van Dongen, B.F., van der Aalst, W.M.P., Verbeek, H.M.W.: Verification of ePCs: Using
reduction rules and petri nets. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005.
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210. Keller, G., Nüttgens, M., Scheer, A.-W.: Semantische Prozessmodellierung auf der
Grundlage “Ereignisgesteuerter Prozessketten (EPK)”. Heft 89, Institut für Wirtschafts-
informatik, Saarbrücken, Germany (1992)

211. Keller, G., Teufel, T.: Sap R/3 Process Oriented Implementation: Iterative Process Pro-
totyping. Addison-Wesley Longman Publishing Co., Inc., Boston (1998)

212. Kelly, S., Lyytinen, K., Rossi, M.: Metaedit+: A fully configurable multi-user and multi-
tool case and came environment. In: Constantopoulos, P., Vassiliou, Y., Mylopoulos, J.
(eds.) CAiSE 1996. LNCS, vol. 1080, pp. 1–21. Springer, Heidelberg (1996)

213. Khan, R.N.: Business Process Management: A Practical Guide. Meghan Kiffer (2004)
214. Kiepuszewski, B.: Expressiveness and Suitability of Languages for Control Flow Mod-

elling in Workflows. PhD thesis, Queensland University of Technology, Brisbane, Aus-
tralia (2003)

215. Kiepuszewski, B., ter Hofstede, A.H.M., Bussler, C.J.: On structured workflow mod-
elling. In: Wangler, B., Bergman, L.D. (eds.) CAiSE 2000. LNCS, vol. 1789, pp. 431–
445. Springer, Heidelberg (2000)

216. Kindler, E.: On the semantics of EPCs: A framework for resolving the vicious circle (Ex-
tended Abstract). In: Proc. of the 2nd GI-Workshop on Business Process Management
with Event-Driven Process Chains (EPK 2003), Bamberg, Germany, pp. 7–18 (2003)

217. Kindler, E.: On the Semantics of EPCs: A Framework for Resolving the Vicious Circle.
In: Desel, J., Pernici, B., Weske, M. (eds.) BPM 2004. LNCS, vol. 3080, pp. 82–97.
Springer, Heidelberg (2004)

218. Kindler, E.: On the semantics of EPCs: Resolving the vicious circle. Data & Knowledge
Engineering 56(1), 23–40 (2006)

219. Kindler, E., Rubin, V., Schäfer, W.: Incremental workflow mining based on document
versioning information. In: Li, M., Boehm, B., Osterweil, L.J. (eds.) SPW 2005. LNCS,
vol. 3840, pp. 287–301. Springer, Heidelberg (2006)
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279. Mendling, J., Neumann, G., Nüttgens, M.: Towards Workflow Pattern Support of Event-
Driven Process Chains (EPC). In: Proc. of the 2nd Workshop XML4BPM 2005, Karl-
sruhe, Germany, Karlsruhe, Germany, March 2005. CEUR Workshop Proceedings,
vol. 145, pp. 23–38. Sun SITE Central Europe (2005)
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