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Abstract— Wireless Capsule Video Endoscopy is a recent ac-
quisition method providing an internal view of the gastrointesti-
nal tract which is currently applied in a large quantity of meth-
ods for detecting different intestinal diseases. In some of these
applications, the automatic identification of some regions of the
small intestine is essential. However, the high amount of time
needed for video visualization makes this task unfeasible. In this
paper, we present a novel system for automatical labelling the
transition from proximal to distal parts of the small bowel in the
capsule endoscopy video based on textural descriptors. Results
show an accuracy of the proximal-distal boundary detection of
more than 70%.
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I. INTRODUCTION

Wireless Capsule Video Endoscopy (WCVE) [1] provides

an internal view of the gastrointestinal tract allowing a physi-

cian to examine the entire small intestine non-invasively.

Automatic characterization of the different regions of the

intestinal tract in WCVE is a current open field of research.

In [2] the authors proposed an automatic classification of di-

gestive regions in WCVE using patterns of intestinal contrac-

tions. They characterize contractions by an energy function of

intensity value of HSI color space in frequency domain from

WCE images. Then, they define a condition for event detec-

tion by combining this energy and a High Frequency Con-

tent (HFC) function and imposing an empirical threshold. Fi-

nally, events corresponding to every digestive region are de-

tected using a hierarchy structure. The method performance

is tested on 10 different videos with good results for the de-

termination of the entering stomach and entering duodenum.

However, the lack of information of specialist annotation for

entering cecum and, especially, for entering ileum, makes the

evaluation of this segmentation difficult. In [3], the authors

proposed a method to localize the end of the stomach using

color and texture features of 28 sub-regions of each frame.

Hue-Saturation histograms are chosen as color descriptors

and a method based on singular value decomposition is used

for texture measurements.

In this paper, we propose a new method for detecting

the boundary between the proximal and distal regions of the

small intestine (proximal-distal boundary). These two regions

are visually distinguishable by their different textural ap-

pearances, corresponding to the particular shapes shown by

the folds and wrinkles of the intestinal walls. The proximal

part comprises the whole duodenum together with a small

transition region of the jejunum-ileum complex, which share

the same visual aspect. The distal part comprises the whole

jejunum-ileum, except for the small transition part. The sep-

aration of these two regions arises as a relevant step in those

methods which use the fold and wrinkle patterns for the char-

acterization of intestinal events, such as intestinal contrac-

tions [4].

The limit from stomach to duodenum (gastric entrance

or pylorus) is easily localized by specialists in the video,

whereas the definition of the proximal-distal boundary is

much more complicated. The tissue of proximal and distal

regions can be characterized by the different texture of the

intestinal wall; however the transition is smooth. For this

reason, the specialists need several visual inspections of the

whole video to have a global vision of it and correctly local-

ize the boundary. Moreover, this could cause a considerable

divergence in the annotation of the proximal-distal boundary

of the same video by different specialists (inter-observer vari-

ability).

The structure of our method is shown in the scheme in Fig-

ure 1. First, in order to accelerate the process, we resample

the video and filter the frames with intestinal contents which

prevent the correct visualization of the intestine wall. Then,

we process the rest of the frames by applying a bank of Ga-

bor filters followed by a half-wave rectification. The obtained

responses bring out the textural differences of the proximal

intestinal region with respect to the rest of the intestine. This

descriptor information is used to classify the video frames as

belonging to the proximal or distal part. Finally, the result of

the classification serves to approximate a step function and

localize the proximal-distal boundary.

The paper is organized as follows: in Section II, we in-

troduce the methodology for the automatic detection of the

proximal-distal boundary, in Section III, we present the ex-

perimental results, and in Section IV, we expose the conclu-

sions.
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Fig. 1: Scheme of the method for automatic discrimination of small

intestine proximal and distal regions.

II. METHODOLOGY

WCVE frames visualize three essential parts: the intesti-

nal wall, lumen and intestinal contents. The texture of the

gut wall change from proximal to distal regions of the small

bowel as it can be seen in the examples displayed in Fig-

ure 2 (first row images). The main difference between tissue

in proximal and distal parts is that wrinkles and mucous folds

are much more abundant in the first part. Therefore, we deal

with the region discrimination by using textural analysis. Vi-

sual texture in intestinal images can be due to intestinal con-

tents (turbid and bubbles) or wrinkles of the intestinal wall.

We get rid of the textural component due to the intestinal con-

tents and focus our textural analysis on the wrinkles.

Let us describe the five steps of our system for automatical

labelling of the proximal-distal boundary of a video.

Step 1: Resampling. We perform a subsampling taking

into account that the frame ratio is two frames per second. We

keep 1 frame of every 5 efficiently reducing the computation

time without a loss in accuracy.

Step 2: Filtering. We detect the frames with turbid in-

testinal contents and bubbles which can prevent the correct

visualization of the intestinal wall and we remove them.

For turbid intestinal contents detection, we use a semi-

supervised procedure using a Self-Organized Map Method

(SOM) [5], where the distance measure is computed based

on a color space. Some frames with intestinal juices are not

filtered by this method due to a low presence of them or a dif-

ferent color characterization, as for instance could be the case

of bubbles. Some frames with bubbles show a color that is

slightly different from the general turbid paradigm. However,

these bubbles have also impact in the textural analysis and

hinder the correct classification of the frames, so they have

to be detected. For that, we use the method in [6] based on

Gabor filters for the characterization of the bubble-like shape

of intestinal juices. This method returns the segmented areas

with intestinal juice bubbles for the video frames. Then, we

Fig. 2: Example of WVCE frames (top) and their polar representation

(bottom). Proximal (left) vs. distal (right) frame.

Fig. 3: Example of WVCE frame with bubbles (left) and the detected

non-valid area (right).

use the following criterion for the rejection decision: if more

than 50% of the frame contains bubbles, then we filter this

frame. Moreover, the bubble areas of a frame are used to de-

fine non-valid areas for textural analysis. The non-valid areas

are avoided in the subsequent processing and only the pixels

in valid areas are used (see Figure 3 for an example).

Step 3: Textural Feature Extraction. The free movement

of the camera and the intestine motion can make the identifi-

cation of the proximal wrinkle paradigm difficult. Our main

interest is to find frame descriptors invariant to translations

and rotations. For these reasons, we compute the textural de-

scriptors by applying a bank of Gabor filters on the polar rep-

resentation of images (Figure 2).

A Gabor filter is a sinusoidal plane of particular frequency

and orientation, modulated by a Gaussian envelope. These fil-

ters have been shown to possess good localization properties

in both spatial and frequency domain and have been success-

fully applied in multiple tasks such as texture segmentation,

edge detection, object detection, and image representation,

among others [7, 4]. We denote H(x,y,σ ,φ) the response

of a Gabor filter, where σ is the standard deviation of the

Gaussian kernel and φ represents the orientation.

For the construction of the bank of even-symmetric linear

filters, we use two different scales and four different direc-

tions: σ = [12.7205,6.3602] and φ = [0, π
4 , π

2 , 3π
4 ], with an

overall result of 8 filters in the bank. These parameters were

obtained throughout an extensive empirical search.

We perform a convolution of the gray-scale version of

the images with the bank of filters resulting in Ri(x,y) =
I ∗ Hi(x,y,σ ,φ), where Hi denotes the ith Gabor filter and
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i ∈ {1, ...,8}. After the filter application, we perform a half-

wave rectification [8] to avoid possible cancellations of pos-

itive and negative values. That is, we split the positive and

negative parts of the filter response into R+
i (x,y) and R−

i (x,y).
Finally, we obtain a 16-dimensional descriptor vector

d(t) = (d1(t), ...,d8(t)) for each frame at time t by computing

the following averages of the filter responses:

di(t) =
( 1

NX

NX

∑
x

R+
i (x),

1

NX

NX

∑
x

R−
i (x)

)
, (1)

where x = (x,y) and NX are the number of pixels of the valid

areas of the frame. This descriptor vector is used as texture

features and highlight the differences of the small intestine

proximal frames with respect to the distal ones.

Step 4: Classification. The next step of the system uses

the textural features for classifying each frame as belong-

ing to the proximal or distal parts. We consider two different

approaches, an unsupervised classification and a supervised
classification.

In the unsupervised classification approach, the descriptor

information is used to clusterize the video in four parts using

a Normalized Cuts algorithm [9].

Regarding the choice of min-cut as a clustering method

among others, we argue the following reasoning: A major

drawback to clustering methods such k-means is that they

cannot separate clusters that are non-linearly separable in in-

put space. A recent approach has emerged for tackling such

a problem: the spectral clustering algorithms, which use the

eigenvectors of an affinity matrix to obtain a clustering of the

data [9]. A popular objective function used in spectral cluster-

ing is to minimize the normalized cut, which is the approach

taken in our work.

We associate one label li, i ∈ {1, ...,4} to each cluster,

Then, we reduce the number of labels to only two in the fol-

lowing way: all the frames belonging to the two clusters with

the highest cardinality (assume l1 and l2) will keep their let-

ter. Those frames belonging to the clusters with the lower car-

dinality will adopt one of the letters of the other clusters as

follows:

L(t) =
{

l1 if Pl2(I) < Pl1(I) and I = [t −10, t +10],
l2 otherwise

where Pl1(I) = P(L(t) = l1|t ∈ I).
In this way, the video is dichotomized in two different

classes. A further refinement is applied by means of a mor-

phological closing in order to remove spurious frames.

In the supervised classification approach, the descriptor in-

formation is used in the training and testing a SVM classifier

[10].

Fig. 4: Graphic of the classification results. The expert (solid line) and the

system (dashed line) boundaries are displayed together with the error

function E, and the frame label result are denoted by ’*’.

Step 5: Step Function Approximation. We use the re-

sults of the classification for estimating the most probable

position of the proximal-distal boundary by computing the

best fit to a step function. Given the labels of the classifica-

tion L(t) for each frame at time t, we define the error function

E(t) = |L(t)− S(t)|, where S(t) is the step function defined

as follows:

S(t) =
{

0 if x < t
1 if x ≥ t

Then, we find the first distal frame at time t0 such that t0 =
argmintE(t).

III. RESULTS

The experimental tests of the proposed method were per-

formed on 13 different videos of healthy volunteers recorded

using the endoscopy capsule developed by Given Imaging,

Ltd., Israel [11] in the same conditions (fasting preparation).

The total of frames to analyze were 349,100 and after re-

sampling: 69,820. In average each video had 5,370 frames

to be analyzed. Moreover, we had the following expert anno-

tations: first post-gastric image, first distal image and first ce-

cal image. We tested both approaches for classifying frames

as proximal vs. distal frames: unsupervised classification and

supervised classification.

Unsupervised classification. In Table 1, we show the re-

sults of the mean (μ) and median (μ1/2) of the classification

of the 13 videos in terms of Error, Sensitivity, Specificity,

Precision and False Alarm Ratio.

In Figure 4, we display the result of the classification

for one of the videos. The stars on the abcise axis indicate
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 Error Sens. Spec. Prec. FAR

μ 32.61% 64.91% 67.63% 48.88% 118.40%

μ1/2 31.44% 65.00% 66.06% 55.27% 69.26%

Table 1: Results of the unsupervised classification.

Error Sens. Spec. Prec. FAR

μ 17.72 % 82.65 % 82.31% 68.08% 89.50%

μ1/2 8.95% 100.00% 92.93% 78.68% 7.50%

Table 2: Results of the unsupervised classification after step function

approximation (Step 5).

the classification results at frame level. The minimum of the

function E, depicted in the graphic, points the proximal-distal

boundary that we have emphasized with the dashed line. The

solid line indicates the position of the boundary defined by

the specialist.

After the step function approximation (Step 5), we recom-

puted the error measures and we improved the mean and me-

dian of the results as shown in Table 2. We also computed

the error between the estimated boundary and the boundary

annotated by the specialist in minutes for all the videos. The

mean and median are 26.09 and 18.04 minutes respectively.

Supervised classification. We performed a Leave-One-

Video-Out Cross Validation with a SVM classifier for the

same data and the mean (μ) and median (μ1/2) of the obtained

results are displayed in Table 3. In Table 4, we show the mean

and median of the results after computing the most proba-

ble position of the boundary (Step 5). The mean and median

of the errors made in the boundary estimation are 28.28 and

21.13 minutes respectively.

IV. CONCLUSIONS

We have presented a system to automatically discriminate

the frames of proximal and distal regions of the small in-

testine in WCVE using texture descriptors. Moreover, this

method is able to localize the proximal-distal boundary with

an accuracy of approximately 26 minutes in average. A po-

tential application of the presented method is to define non-

valid frames for intestinal contraction analysis, since the con-

traction paradigm changes due to the presence of proximal

wrinkles. Moreover, clinical procedures based on the capsule

position could potentially be improved with this new infor-

mation.
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