
Chapter 7
Multicomponent DNLS Equations

One of the most interesting extensions of the DNLS equation is in the study of multi-
component versions of the model. Such models are relevant both in nonlinear optics,
e.g., when propagating multiple frequencies or polarizations of light; prototypical
examples of these types have been discussed, e.g., in [1, 2] from the theoretical
point of view and in [3] from the experimental point of view (see also references
therein). On the other hand, similar models are quite relevant to two-component [4]
or even one-component BECs [5] in the presence of optical lattice potentials. The
coupling between the different components can be linear or nonlinear (or both) [1].
In this chapter, we show some case examples of interesting dynamics that can arise
in the linear coupling case (symmetry breaking), as well as ones that can arise in the
nonlinear coupling case (dynamical instabilities).

7.1 Linearly Coupled

In the context of optics, systems of linearly coupled DNLS equations are relevant
to various applications: linear coupling may occur among two polarization modes
inside each waveguide of a waveguide array, being induced by a twist of the core
(for linear polarizations), or by the birefringence (for circular polarizations). Linear
coupling between two modes also takes place in arrays of dual-core waveguides [1].
On the other hand, in BECs, the linear coupling may be imposed by an external
microwave or radio frequency field, which can drive Rabi [6, 7] or Josephson [8, 9]
oscillations between populations of two different states.

In both optical and atomic media, the basic linearly coupled DNLS model takes
the following form:

⎧
⎨

⎩
iUt = K ε�2U + K V + |U |2 U,

i Vt = K ε�2V + K U + |V |2 V ,
(7.1)

where U = U (x, t) and V = V (x, t) are wave functions of the two species in
BEC, or electric field envelopes of the two coupled modes in optics (x is realized
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as a discrete vectorial coordinate), K is the strength of the linear coupling between
fields U and V , and ε determines the couplings between adjacent sites of the lattice.
For convenience, the full lattice-coupling constant is defined as K ε (this will allow
us to scale out K from the analysis presented below).

Following the analysis of [10], we seek stationary solutions to the equations in
the form

⎧
⎨

⎩
U (x, t) = √K u (x) exp[−i K (μ− 2Dε) t],

V (x, t) = √K v (x) exp[−i K (μ− 2Dε) t],
(7.2)

where u(x) and v(x) are real-valued functions, and μ is an appropriately shifted
chemical potential. Then the steady-state equations become

⎧
⎨

⎩
μun = ε�1un + vn + u3

n,

μvn = ε�1vn + un + v3
n,

(7.3)

with �1wn ≡ wn+1+wn−1. In the two-dimensional case, the stationary equations are

⎧
⎨

⎩
μun,m = ε�2un,m + vn,m + u3

n,m,

μvn,m = ε�2vn,m + un,m + v3
n,m,

(7.4)

where �2wn,m ≡ wn+1,m + wn−1,m +wn,m+1 + wn,m−1.
In [10], both symmetric (with u = v) and symmetry-broken (with u 
= v) states

were constructed as solutions of Eqs. (7.3) and (7.4). Since we are interested here
in the properties of the fundamental single-site states, we will use as a reasonably
accurate method to obtain an analytical handle on the waveforms the variational
approximation (comparing it with the full numerical results). We start by noting
that Eqs. (7.3) and (7.4) can be derived from the following Lagrangians:

L1D =
∞∑

n=−∞

[
−μ

2

(
u2

n + v2
n

)+ 1

4

(
u4

n + v4
n

)+ unvn + ε (un+1un + vn+1vn)

]
,(7.5)

L2D =
∞∑

m,n=−∞

[
−μ

2

(
u2

n,m + v2
n,m

)+ 1

4

(
u4

n,m + v4
n,m

)+ un,mvn,m

+ ε(un+1,mun,m + un,m+1un,m + vn+1,mvn,m + vn,m+1vn,m)

]
. (7.6)

Then, the discrete soliton ansätze, {un, vn} = {A, B}e−λ|n| and {un,m, vn,m} =
{A, B}e−λ|n|e−λ|m|, with free constants A, B , and λ > 0, are used in the one- and
two-dimensional cases, respectively, as in our earlier analysis in Chaps. 2 and 3.
It should be noted in comparison to the standard one-component ansatz that by
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introducing different amplitudes A and B , we admit a possibility of asymmetric
solitons, within the framework of the variational approximation.

The resulting expressions for the effective Lagrangians are

L1D =
[

AB − μ
2

(
A2 + B2)] coth λ+ 1

4

(
A4 + B4) coth (2λ)

+ε (A2 + B2
)

cosechλ,

L2D =
[

AB − μ
2

(
A2 + B2)] coth2 λ+ 1

4

(
A4 + B4) coth2 2λ

+2ε
(

A2 + B2
)

(cosechλ) cothλ.

Then, deriving the static version of the Euler–Lagrange equations �L1D,2D/

� (λ, A, B) = 0 yields

μ

2

(
A2 + B2) cosech2λ− 1

2

(
A4 + B4) cosech22λ

−ABcosech2λ− ε (A2 + B2
)

cosechλ coth λ = 0,

−μA cothλ+ A3 coth 2λ+ B coth λ+ 2εAcosechλ = 0,

−μB coth λ+ B3 coth 2λ+ A cothλ+ 2εBcosechλ = 0

for the one-dimensional case, and

μ
(
A2 + B2

)
coth λcosech2λ− (A4 + B4

)
coth 2λcosech22λ

−2AB coth λcosech2λ− 2ε
(
A2 + B2) (cosechλ coth2 λ+ cosech3λ

) = 0,

−μA coth2 λ+ A3 coth2 2λ+ B coth2 λ+ 4εAcosechλ coth λ = 0,

−μB coth2 λ+ B3 coth2 2λ+ A coth2 λ+ 4εBcosechλ coth λ = 0

for the two-dimensional fundamental waves.
An interesting observation consists of the analytically tractable AC limit of

ε = 0. For the symmetric branch, we then have un = vn = 0 or un = vn =
√
μ− 1,

while for the asymmetric branch, a system of algebraic equations has to be solved
μun = vn + u3

n, μ + 1 = u2
n + unvn + v2

n . The solution is shown in Fig. 7.1,
which displays the symmetry-breaking bifurcation in the AC limit, by means of a
plot of the asymmetry measure, r ≡ (E1 − E2)/(E1 + E2), versus half the total
norm, E = (E1 + E2)/2, where {E1, E2} =

∑
n

{
u2

n, v
2
n

}
are the norms of the two

components of the solution. It is particularly interesting to point out that in the case
of ε = 0, the observed pitchfork bifurcation is supercritical (cf. with the finite ε
case below).
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Fig. 7.1 From [10]: the
bifurcation diagram for the
discrete solitons in the
anti-continuum limit, ε = 0;
r and E are the asymmetry
parameter and the half of the
total squared norm,
respectively. The solid and
dashed lines represent stable
and unstable solutions,
respectively
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These results can be compared with those of direct numerical continuation of
the corresponding branches from the AC limit. In [10] the relevant branches were
obtained and their numerical linear stability was also examined using the perturbed
solution ansatz

{
U (x, t) = e−iμt

[
u(x)+ a(x) eλt + b∗(x) eλ

∗t
]
,

V (x, t) = e−iμt
[
v(x)+ c(x) eλt + d∗(x) eλ

∗t] (7.7)

in Eqs. (7.1) and solving the resulting linearized equations for the perturbation
eigenmodes a, b, c, d and the eigenvalues λ associated with them.

Typical results for particular values of ε are shown in Figs. 7.2 and 7.3, for
the one- and two-dimensional cases, respectively. In both cases, it is remarkable
to observe that the relevant bifurcation is observed to be subcritical (instead of
supercritical as in the AC limit) pitchfork due to the collision of the fundamental

Fig. 7.2 From [10]: the
bifurcation diagram is shown
for ε = 1.6 in the
one-dimensional model. The
dash–dotted line indicates
solutions found through the
variational approximation,
while solid and dashed lines
show, respectively,
numerically found stable and
unstable steady-state
solutions
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Fig. 7.3 From [10]: the left panel shows the bifurcation diagram in the two-dimensional model
for ε = 0.25, in the same way (i.e., with the same meaning of the different curves) as the one-
dimensional diagram is shown in Fig. 7.2. The right panel displays the dependence of the solution’s
squared norm, E , upon the chemical potential, μ, for the symmetric solutions. Unlike the one-
dimensional case, there are now two different symmetric solutions, resulting in both stable (solid
line) and unstable (dashed lines) solutions for norms below the value at which the symmetric and
asymmetric solution branches intersect

symmetric branch with two unstable asymmetric branches. The latter ones emerge
through a saddle node bifurcation also generating a stable asymmetric branch. In-
terestingly, between the two critical points, both the symmetric branch and the outer
asymmetric one are stable, hence there exists a region of bistability. We also observe
that, in these typical comparisons, the results obtained from the variational approx-
imation are quite close to the fully numerical results. This is more so in the one-
dimensional case than in the two-dimensional case, since, as we have seen before
(e.g., in Chap. 3), since the inaccuracy of the variational ansatz tends to accumulate
the error in higher dimensions.

Typical examples of the existence and stability results obtained numerically, and
how the former compare with the variational predictions are shown in Fig. 7.4 for the
one-dimensional case and in Figs. 7.5 and 7.6 for the two-dimensional case. We note
that in general the VA provides a fairly accurate description of the profile, although
in some cases, it may yield slower decay rates (and slightly different amplitudes)
than the full numerical results. It should also be reminded to the reader that in the
two-dimensional case, as discussed in Chap. 3, there are typically two (symmetric)
solutions corresponding to the same norm, namely a stable and an unstable one, as
is shown, e.g., in Fig. 7.6 (see also the right panel of Fig. 7.3).

There are a couple of physically relevant observations to be made here. On the
one hand, a conclusion following from the comparison of Figs. 7.1 and 7.2 is that
the bifurcation found in the AC limit (see Fig. 7.1) is supercritical, unlike the weakly
subcritical one in Fig. 7.2. This indicates that the character of the pitchfork bifur-
cation should change from subcritical to supercritical with the increase of discrete-
ness, i.e., decrease of ε, which, in turn, should eliminate the unstable asymmetric
branches. In accordance with this expectation, it was found in [10] that the unsta-
ble asymmetric solutions exist only for ε > 0.35, in the one-dimensional case.
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Fig. 7.4 From [10]: plots of solutions belonging to different branches in Fig. 7.2, at E = 3.4.
The top row figures show the solution profiles found by means of the numerical (UN , VN ) and
variational (“analytical”, UA, VA) methods. The bottom row plots illustrate the linear stability
eigenvalues for the numerical solution. The first column presents a stable stationary asymmetric
solution belonging to the outer (upper) branch in Fig. 7.2, the second column is an unstable asym-
metric solution, and the last column shows a stable solution of the symmetric family

On the other hand, in the two-dimensional case, the bifurcation diagram has no
continuum analog due to the occurrence of collapse, contrary to what is the case in
one-dimension. In the two-dimensional case also, due to the existence of a minimum
norm threshold below which the symmetric branch does not exist, as discussed in
Chap. 3 [11–14], it is possible that the asymmetric solution (as in Fig. 7.3) will exist
for powers below the symmetric solution’s excitation threshold. This will enable the
system to access lower norm states than in its one-component incarnation. Finally,
it should be pointed out that the bistability arising from Figs. 7.2 and 7.3 above has
been used in [10] to successfully “steer” the unstable asymmetric solitons dynami-
cally toward either the stable symmetric or the stable asymmetric branch, depending
on the type of the original “kick” (i.e., perturbation) to the unstable solution.

7.2 Nonlinearly Coupled

In the context of nonlinearly coupled DNLS equations, numerous studies have been
present at the theoretical level discussing the properties of solitary waves, both in
one dimension [15–17], and in two-dimensions [1, 15, 18–20], as well as even in
three dimensions [21]. However, experimental results in this system materialized, to
the best of our knowledge, only very recently in [3] (see also the longer exposition
of [22]). These experimental realizations resulted in further theoretical work ad-
dressing various aspects of nonlinearly coupled multicomponent models including
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Fig. 7.5 From [10]: cross section plots of the asymmetric solutions belonging to different branches
in Fig. 7.3, at E = 1.435. The top row figures show the solutions found by means of the numer-
ical (UN , VN ) and variational (“analytical,” UA, VA) methods, and the bottom row plots display
linear stability eigenvalues for the numerical solution. The first and second columns represent,
respectively, stable and unstable solutions belonging to the asymmetric branches of the bifurcation
diagram, respectively

switching and instability-induced amplification, modulational instability, PN bar-
riers, and stability of localized modes among others [2, 23–25]. Here, we restrict
ourselves to the study of the fundamental modes of the system in one dimension
and a small sampler of the interesting possibilities that arise in higher dimensions
(including multivortex structures, etc.). We refer the interested reader to the above
literature for further details.

7.2.1 One Dimension

The theoretical model put forth in [3] to analyze the experimental results was of the
form

i ȧn = −an − ε (an+1 + an−1)− (|an|2 + A|bn|2
)

an − Bb2
na�n, (7.8)

i ḃn = bn − ε (bn+1 + bn−1)− (|bn|2 + A|an|2
)

bn − Ba2
nb�n. (7.9)
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Fig. 7.6 Same as Fig. 7.5 for two symmetric solutions found at E = 1.435

In the experimental context, an and bn are the appropriately normalized, slowly
varying, complex field envelopes for the transverse electric (TE) and transverse
magnetic (TM) polarized waves, respectively. The constants A and B are respec-
tively associated with the cross-phase modulation (XPM) and four-wave mixing
(FWM) and were evaluated in the experiments of [3] to be approximately equal to
A � 1 and B � 1/2. It is interesting to note that in this case, due to the FWM term,
only the total power (instead of the individual powers of each component, as would
be the case if B = 0)

P =
∑

n

(|an|2 + |bn|2
)

(7.10)

is conserved and based on the analysis of [3], it is connected to the dimen-
sional power Pd (measured in watts) through Pd � 56.4P . While in the anal-
ysis of [2], which we will follow here, the dimensionless coupling ε was con-
sidered a free parameter, in the experimental results reported in [3], it was ε ≈
0.921.

Seeking stationary solutions in the form an = ãneiqz and bn = b̃neiqz and subse-
quently dropping the tildes, results in the following stationary equations:
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(q − 1)an − ε (an+1 + an−1)− (|an|2 + A|bn|2
)

an − Bb2
na�n = 0, (7.11)

(q + 1)bn − ε (bn+1 + bn−1)− (|bn|2 + A|an|2
)

bn − Ba2
nb�n = 0. (7.12)

The dimensionless propagation constant q is then an additional (to the dimen-
sionless coupling ε) free parameter and it is in the (ε, q) two-parameter plane that
the results presented herein are given.

The linear stability of a given stationary solution (a0
n, b0

n) of the stationary equa-
tions (7.11) and (7.12) can be obtained through the usual perturbation ansatz

an = a0
n + δ

(
cne−iωz + dneiω�z

)
, (7.13)

bn = b0
n + δ

(
fne−iωz + gneiω�z

)
. (7.14)

Then the matrix eigenvalue problem yielding the eigenfrequency ω reads

ω

⎛

⎜⎜⎜⎝

cn

d�n
fn

g�n

⎞

⎟⎟⎟⎠ = L ·

⎛

⎜⎜⎜⎝

cn

d�n
fn

g�n

⎞

⎟⎟⎟⎠ ,

where

L =

⎛
⎜⎜⎜⎝

L11 L12 L13 L14

L21 L22 L23 L24

L31 L32 L33 L34

L41 L42 L43 L44

⎞
⎟⎟⎟⎠ .

The N × N (where N is the size of the lattice) blocks of the linearization matrix
are given by

L11 = (q − 1)− ε (�2 + 2)− 2
∣∣a0

n

∣∣2 − A
∣∣b0

n

∣∣2 , (7.15)

L12 = −
(
a0

n

)2 − B
(
b0

n

)2
, (7.16)

L13 = −Aa0
n

(
b0

n

)� − 2B
(
a0

n

)�
b0

n, (7.17)

L14 = −Aa0
nb0

n, (7.18)

L21 = −L�12, (7.19)

L22 = −L11, (7.20)

L23 = −L�14, (7.21)

L24 = −L�13, (7.22)
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L31 = L�13, (7.23)

L32 = L14, (7.24)

L33 = (q + 1)− ε (�2 + 2)− 2
∣∣b0

n

∣∣2 − A
∣∣a0

n

∣∣2 , (7.25)

L34 = −
(
b0

n

)2 − B
(
a0

n

)2
, (7.26)

L41 = −L�14, (7.27)

L42 = −L13, (7.28)

L43 = −L�34, (7.29)

L44 = −L33. (7.30)

In the above, we use the shorthand notation (�2+2)zn = zn+1+ zn−1. In [2], this
eigenvalue problem was solved fully in the AC limit of ε = 0 for the fundamental
branches and subsequent numerical continuation was used to determine the stability
of the branches for finite values of ε.

We first examine the AC limit of individual sites whose complex fields we de-
compose as an = rneiθn and bn = sneiφn , obtaining from Eqs. (7.11) and (7.12)

(q − 1)− (r2
n + As2

n

)− Bs2
n e2i(φn−θn) = 0, (7.31)

(q + 1)− (s2
n + Ar2

n

)− Br2
n e−2i(φn−θn) = 0. (7.32)

From these equations, we obtain

θn − φn = k
π

2
(7.33)

with k ∈ Z . The simplest possible solutions are the ones that involve only one of
the two branches and were hence termed TE and TM modes, respectively, in [26].
The TE solution of Eqs. (7.31) and (7.32) has the form (in the present limit)

rn = ±
√

q − 1, sn = 0 (7.34)

and exists only for q > 1. On the other hand, the TM mode features

rn = 0, sn = ±
√

q + 1 (7.35)

and is only present for q > −1.
In addition to these, there are two possible mixed mode solutions allowed by

Eq. (7.33). The first one (e2i(θn−φn ) = 1) was characterized as a linearly polarized
(LP) branch in [3], involving in-phase contributions from both the TE and TM com-
ponents. In this case, the linear system of Eqs. (7.31) and (7.32) has the general
solution
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rn = ±
√

(A + B)(q + 1)− (q − 1)

(A + B)2 − 1
, (7.36)

sn = ±
√

(A + B)(q − 1)− (q + 1)

(A + B)2 − 1
. (7.37)

If (A + B)2 > 1 (as was the case in the experiment of [3]), this branch only
exists for (A + B)(q + 1) > (q − 1) and (A + B)(q − 1) > (q + 1) (the sign of
the two above inequalities should be reversed for existence conditions in the case
of (A + B)2 < 1). Among the two conditions, in the present setting, the second
one is the most “stringent” for the case A = 2B = 1, which yields the constraint
q ≥ 5 (while the first condition requires for the same parameters q ≥ −5). Finally,
the second mixed mode possibility with e2i(θn−φn ) = −1 represents the so-called
elliptically polarized mode (EP) with amplitudes

rn = ±
√

(A − B)(q + 1)− (q − 1)

(A − B)2 − 1
, (7.38)

sn = ±
√

(A − B)(q − 1)− (q + 1)

(A − B)2 − 1
. (7.39)

If (A − B)2 < 1 (as is experimentally the case), the EP branch will exist if
q − 1 ≥ (A− B)(q + 1) and q + 1 ≥ (A− B)(q − 1) (once again the signs should
be reversed if (A − B)2 > 1). Here, the first condition is more constraining than
the second, imposing for A = 2B = 1 that q ≥ 3 (while the second condition only
requires q ≥ −3).

We now turn to the analysis of the stability of the various single-site branches
(TE, TM, LP, and EP) that can be constructed at the AC limit with one excited site,
while all others are inert. It is straightforward to see [2] from direct inspection of the
stability matrix that the inert sites yield a pair of eigenfrequencies at ±(q − 1), as
well as one at ±(q + 1). On the other hand, the excited site will yield a non-trivial
4×4 block in the stability matrix. One pair of the eigenvalues of that block will be at
ω = 0 due to the gauge invariance of the solution, associated with the conservation
of the total power P . The other pair in the case of the TE mode will be

ωT E = ±
√

(q + 1)2 + (A2 − B2)(q − 1)2 − 2A(q2 − 1). (7.40)

Examining our model for the experimental case of A = 1, B = 1/2, and q > 0,
we find that this eigenfrequency is real for q < 5, while it is imaginary for q > 5
(hence implying the presence of an instability, due to the corresponding eigenvalue
λ = iω becoming real). The mode is stable, on the other hand, for 1 < q < 5.
Similar considerations for the TM mode yield
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ωT M = ±
√

(q − 1)2 + (A2 − B2)(q + 1)2 − 2A(q2 − 1), (7.41)

leading to stability for −1 < q < 3, and instability for q > 3. Finally, for the LP
and EP modes, following [2], we only give the results for A ≈ 2B ≈ 1 as

ωL P = ±2
√

2

5

√
q2 − 25 (7.42)

and

ωE P ± 2
√

2

3

√
q2 − 9, (7.43)

suggesting stability for q ≥ 5 and q ≥ 3, respectively.
Based on the above observations, one can reconstruct the full picture at the AC

limit (and, to be specific, for A ≈ 2B ≈ 1, although it is possible to do for any
value of A and of B). In particular, the TE branch exists for q ≥ 1 and is stable for
1 ≤ q ≤ 5. For q > 5, the branch is destabilized as a new branch emerges, namely
the LP branch, through a pitchfork bifurcation; note that the TM component of this
branch, per Eq. (7.37) is exactly zero at q = 5, hence it directly bifurcates from the
TE branch. The two branches of this supercritical pitchfork correspond to the two
signs of sn in Eq. (7.37). The bifurcating branch “inherits” the stability of the TE
branch for all larger values of q , while the latter branch remains unstable thereafter.
Similarly, the TM branch exists for q ≥ −1 and is stable in the interval−1 ≤ q ≤ 3.
However, at q = 3, a new branch (in fact, a pair thereof) bifurcates with non-
zero rn , beyond the bifurcation point, as in Eq. (7.38). This is accompanied by the
destabilization of the TM branch (due to a real eigenvalue) and the apparent stability
of the ensuing EP branch for all values of q > 3.

In the presence of finite coupling, it is firstly important to determine the nature of
the continuous spectrum, by using an ∼ ei(kn−ωz) and bn ∼ ei(kn−ωz) . The resulting
dispersion relations then read

ω = (q − 1)− 2ε cos(k), (7.44)

ω = (q + 1)− 2ε cos(k). (7.45)

Hence the continuous spectrum extends through the frequency intervals [q−1−
2ε, q − 1 + 2ε] and [q + 1 − 2ε, q + 1 + 2ε] (and their opposites), which for
ε = 0 degenerate to the isolated points q − 1 and q + 1 (obtained previously).
Also, importantly, for q − 1 < 2ε (equivalently for ε > (q − 1)/2), the continuous
spectrum branch will be crossing the origin, leading to the collision of the eigen-
values with their mirror symmetric opposites, that will, in turn, lead to instabilities.
For this reason, we need only consider couplings in the interval ε ∈ [0, (q − 1)/2].
Using the above pieces of information and two-parameter numerical continuation
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Fig. 7.7 TE branch from [2]:
the panel shows the two
parameter bifurcation
diagram of the coupling ε as
a function of q. All the
relevant existence and
stability regimes have been
accordingly labeled

1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

q

Stable

Unstable

No TE Solutions

in [2], the numerical bifurcation diagrams of the different single-site branches were
constructed, which we reproduce below.

The continuation of the TE branch is detailed in Fig. 7.7. For this branch, so-
lutions cannot be obtained for ε > (q − 1)/2, i.e., the branch terminates at that
point with its amplitude tending to zero at this point. Within its region of existence,
the branch has a domain of stability and one of instability. The point of separation
between the two in the AC limit, studied previously, was the critical point of q = 5.
For ε 
= 0, the separatrix curve is shown in Fig. 7.7 and can be well approximated
numerically by the curve εc

T E ≈ (4
√

2/5)
√

q − 5. Hence for q ≤ 5, the solution is
stable for all values of ε in its range of existence (0 < ε < (q − 1)/2), while for
q ≥ 5, the solution is only stable for εc

T E < ε < (q − 1)/2 and unstable (due to a
real eigenvalue pair) for 0 < ε < εc

T E .
The TM branch is somewhat more complicated than the TE one. Firstly, it does

not disappear beyond the critical ε = (q−1)/2; however, it does become unstable as
predicted previously, hence we will, once again, restrict ourselves to this parameter
range. Also, similarly to the TE branch case, there is an εc

T M below which the branch
is always unstable, whereas for ε > εc

T M , the branch may be stable. At the AC limit,
the critical point for the instability is q = 3, as discussed previously; for q > 3,
the critical point is obtained numerically in Fig. 7.8. It can be well approximated
numerically (close to q = 3) by εc

T M ≈ (9/10)
√

q − 3.
However, within the range of potential stability (0 ≤ ε ≤ (q−1)/2 for q ≤ 3, and

εc
T M ≤ ε ≤ (q−1)/2 for q ≥ 3), we observe an additional large region of instability

in the two-parameter bifurcation diagram of Fig. 7.8, due to a complex quartet of
eigenvalues. This instability appears to stem from the point with (q, ε) = (2.2, 0)
in the AC limit, and to linearly expand its range as ε increases. At q = 2.2 in
the AC limit, the point spectrum eigenfrequency of Eq. (7.41) “collides” with the
continuous spectrum point of concentration, corresponding to ω = q − 1. However,
this eigenvalue is associated with a negative Krein signature, i.e., opposite to that
of the continuous band at ω = q − 1 (see Chap. 2 for a detailed discussion of the
Krein signature). The resulting collision therefore leads to the formation of a quartet
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Fig. 7.8 Similarly to Fig. 7.7,
the bifurcation diagram
shows the two-parameter
plane of stability of the TM
branch
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of eigenvalues emerging in the complex plane and, in turn, implying the instability
of the TM configuration. As ε grows, the continuous spectrum band grows linearly
in ε, hence the corresponding interval of q’s, where this instability is present also
grows at the same rate. Along the same vein, it is worth pointing out that the line of
this instability threshold and that of ε = (q − 1)/2 are parallel.

The LP branch has in-phase contributions of the TE and TM modes and exists
for q > 5. It emerges through a supercritical pitchfork as q is varied for fixed ε.
Since this branch stems from the TE one, it only arises for 0 < ε < εc

T E and q > 5
and it is stable throughout its interval of existence, which is exactly the interval of
Fig. 7.7 where the TE branch is found to be unstable.

Finally, the EP branch is shown in Fig. 7.9 and its description is somewhat anal-
ogous to that of the LP one. In particular, for fixed q close to (and larger than) 3
and varying ε, the branch exists and is stable for 0 < ε < εc

T M , since it emerges
from the TM branch through a supercritical pitchfork (as q is increased). Inter-
estingly, for q > 3.62, this phenomenology appears to change and an expanding

Fig. 7.9 The panel shows the
two-parameter diagram for
the EP mode from [2]. The
region for q > 3 and
0 < ε < εc

T M , where this
modes exists is separated by
the dashed line into a stable
and an unstable regime. For
comparison the extension of
the regions of
stability/instability of the TM
mode from Fig. 7.8 are also
included
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(for increasing q) interval of oscillatory instability within the range of existence of
the EP branch appears to arise. Returning to the AC limit, we note that the EP branch
has a point spectrum eigenfrequency given by Eq. (7.43) with a negative Krein sig-
nature which upon collision with the continuous spectrum band of eigenfrequencies
leads to instability. Setting the frequency of Eq. (7.43) equal to q − 1, we obtain
that this collision occurs at q = 9. For lower values of q , this “collision” will occur
for a finite (non-zero) interval of values of ε, which is the source of the oscillatory
instability of the EP mode shown by the dashed line in Fig. 7.9.

7.2.2 Higher Dimensions

In addition to the one-dimensional incarnation of the above nonlinearly coupled
mode, a number of studies have considered ground states [1] or excited states
[19, 20] in two-dimensional DNLS lattices and even three-dimensional examples
thereof [21]. Here we give some representative examples of these results and refer
the interested reader to the corresponding references for more details.

In particular, in two-dimensional settings, among the most interesting solutions
that it is possible to construct are the vortex pairs that were considered in [19].
Such pairs can have the form of the so-called double-charge configuration (S, S),
where S is the topological charge of the structure, or the so-called hidden charge
configuration (S,−S), where the pair denotes the vorticity of each of the com-
ponents. It was shown even in the continuum analog of NLS-type models that
these distinct possibilities have different stability windows in terms of the model
parameters [27, 28]. In particular, in the setting of [19], a so-called vortex cross
configuration of charge S = 1 was considered as the single-component building
block consisting of a vortex on the four sites: (−1, 0), (1, 0), (0, 1), and (0,−1).
In fact, such a vortex cross inspired by a prototypical configuration of the form
un,m ∝ exp(iφ) = cos(φ)+ i sin(φ) was the original motivation in [29] for suggest-
ing the existence of a discrete vortex in the context of the two-dimensional DNLS
model. For this discrete vortex cross, the technique of the Lyapunov–Schmidt reduc-
tions as developed in Chap. 3 yields two pairs of imaginary eigenvalues λ = ±2iε,
while a higher order calculation yields for the remaining pair of nonzero eigenvalues
(since the fourth pair is at the origin due to the U(1) invariance) the approximation
λ = ±4iε2. The comparison of these predictions with the full numerical results is
shown in Fig. 7.10, indicating good agreement with the analytical predictions for
coupling strengths up to ε ≈ 0.1. The instability of this mode arises for ε ≈ 0.395.

Subsequently, the case of coupled vortices of the double charge and of the hidden
charge variety were examined in the model

[
i

d

dt
+ C�2 +

( |φm,n|2 β|ψm,n|2

β|φm,n|2 |ψm,n|2

)](
φm,n

ψm,n

)
= 0, (7.46)

where β is used to denote the strength of the XPM (and equal SPMs [self-phase
modulations] are assumed). In that setting, it was found by appropriately extending
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Fig. 7.10 Eigenvalues of the
scalar vortex cross versus ε
from [19]. The top panel
shows the imaginary part of
the relevant eigenvalues,
while the bottom panel shows
the real part. The solid lines
display the numerical results,
while the dashed ones
correspond to the asymptotic
approximations given in the
text
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the LS technique to the multicomponent setting (see [19] for details) that it is possi-
ble to compute the relevant eigenvalues as a function of β. Two leading order pairs of
these eigenvalues preserve the form of the one-component problem (λ = ±2iε), but
then there exists a pair which is intrinsically dependent on β at the leading order,
namely λ = ±2iε

√
(1− β)/(1+ β) (which is shared by both double and hidden

charge configurations). More importantly, at the next order, the eigenvalues of the
(1, 1) configuration differ from those of the (1,−1) configuration. In particular, for
the former we have a pair λ = ±4iε2 and one which is λ = ±4i |(1−β)/(1+β)|ε2,
while for the latter there is a double pair λ = ±4i

√
(1− β)/(1+ β)ε2. Interest-

ingly, these differences in eigenvalues are evident also in the numerical results il-
lustrated in Fig. 7.11; note, in particular, the marked differences between the (1, 1)
and (1,−1) eigenvalues, and the good agreement of both with the corresponding
theoretical result for small ε < 0.1. Along the same vein, it should be pointed
out that the double charge branch (1, 1) becomes unstable for ε > 0.395, while
the (1,−1) branch becomes unstable only for ε > 0.495, i.e., has a wider stabil-
ity interval. We have found this to be generally true for the cases with β < 1.
On the other hand, for values of β > 1, both branches are always unstable (i.e.,
∀ε). Lastly, the most delicate case is that of β = 1, whereby there is an addi-
tional homotopic symmetry between the two components, as both the transforma-
tions φn,m = cos(δ)�n,m and ψ = sin(δ)�n,m (pertaining to the (1, 1) solution for
δ = π/4) and φn,m = cos(δ)�n,m and ψ = sin(δ)�∗n,m (pertaining to the (1,−1)
solution for δ = π/4), yield a one-component equation (and δ is a free parameter).
Hence, these cases need to be treated specially, as was done in [19], with the, perhaps
somewhat unexpected, result that this special case leads to stability for small ε in
the (1, 1) case, while it results in immediate instability for the (1,−1) case due to a
double real eigenvalue pair λ = ±2

√
3ε2 (note the marked difference between this

special case and the cases with β < 1).
In addition to these solutions associated with S = 1, it is also possible to obtain

similar results for the different vortex pairs of S = 3, in the form of both double
charge (3, 3) and hidden charge (3,−3) vortices, as is illustrated in Fig. 7.12 for
ε = 0.25 and β = 2/3. In this particular case, for both types of configuration,
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Fig. 7.11 From [19]: the contour plots of the top two rows show the amplitude and phase (left and
right panels, respectively) of the two components (top and bottom, respectively) for a (1, 1) (left
four subplots) and a (1,−1) (right four subplots) vortex configuration, in the case of β = 2/3, and
ε = 0.1. The bottom two rows show for the case of β = 2/3 the eigenvalues of the vector vortex
cross as a function of ε. Left: (1, 1). Right: (1,−1). The solid lines show the numerical results,
while the dashed lines show the asymptotic approximations. Bold curves correspond to double
eigenvalues
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Fig. 7.12 The left panels show the case of a double charge with S = 3 (i.e., a (3, 3) two-component
vortex, similarly to the top two rows of Fig. 7.11 above). The right panels illustrate the hidden
charge case of a (3,−3) two-component vortex. Both are for ε = 0.25 and β = 2/3
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Fig. 7.13 A complex of two-component orthogonal vortices with S = 1 from [21] in the two-
component three-dimensional system is shown for ε = 0.01 and β = 0.5. The top panels corre-
spond to the first component, while the bottom ones to the second component; the left panels show
the respective real parts, while the right ones the corresponding imaginary parts

the instability occurs for ε ≥ 0.1; however, again the differences in the relevant
eigenvalues and instability growth rates are evident. For instance, for ε = 0.4, the
growth rate of the most unstable eigenvalue for the (3, 3) configuration is 0.3077,
while for the (3,−3) one it is 0.2097.

Finally, as an interesting example of a possibility that arises in such multicom-
ponent systems in three spatial dimensions, we illustrate the result of Fig. 7.13,
whereby a stable vortex complex has been constructed in which one component
has a vortex in the (l,m) plane, while the other has a vortex in the (m, n) plane
(perpendicular to the first one). Such configurations were indicated in [21] as being
stable for sufficiently small ε, again in the case where β < 1 (while they should be
expected to be unstable for β > 1).
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